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In statistics, the technique of 7least squares is used for
estimating the unknown parameters in a linear regres-
sionmodel (see7Linear RegressionModels).�is method
minimizes the sum of squared distances between the
observed responses in a set of data, and the �tted responses
from the regression model. Suppose we observe a collec-
tion of data {yi, xi}ni= on n units, where yis are responses
and xi = (xi, xi, . . . , xip)T is a vector of predictors. It is
convenient to write the model in matrix notation, as,

y = Xβ + ε, ()

where y is n ×  vector of responses, X is n × p matrix,
known as the design matrix, β = (β, β, . . . , βp)T is the
unknown parameter vector and ε is the vector of random
errors. In ordinary least squares (OLS) regression, we esti-
mate β by minimizing the residual sum of squares, RSS =
(y−Xβ)T(y− Xβ), giving β̂OLS = (XTX)−XTy.�is esti-
mator is simple and has some good statistical properties.
However, the estimator su�ers from lack of uniqueness
if the design matrix X is less than full rank, and if the
columns of X are (nearly) collinear. To achieve better pre-
diction and to alleviate ill conditioning problem of XTX,
Hoerl and Kernard () introduced ridge regression (see
7Ridge and Surrogate Ridge Regressions), which mini-
mizes the RSS subject to a constraint, ∑ βj ≤ t, in other
words
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where λ ≥  is known as the complexity parameter that
controls the amount of shrinkage. �e larger the value

of λ, the greater the amount of shrinkage.�e quadratic
penalty term makes β̂

ridge
a linear function of y. Frank

and Friedman () introduced bridge regression, a
generalized version of penalty (or absolute penalty type)
estimation,which includes ridge regressionwhen γ = . For
a given penalty function π(⋅) and regularization parameter
λ, the general form can be written as

ϕ(β) = (y − Xβ)
T
(y − Xβ) + λπ(β),

where the penalty function is of the form

π(β) =
p

∑
j=

∣βj∣
γ , γ > . ()

�e penalty function in () bounds the Lγ norm of the
parameters in the given model as∑mj= ∣βj∣

γ
≤ t, where t is

the tuning parameter that controls the amount of shrink-
age. We see that for γ = , we obtain ridge regression.
However, if γ ≠ , the penalty function will not be rota-
tionally invariant. Interestingly, for γ < , it shrinks the
coe�cient toward zero, and depending on the value of λ, it
sets some of them to be exactly zero.�us, the procedure
combines variable selection and shrinkage of coe�cients of
penalized regression. An important member of the penal-
ized least squares (PLS) family is the L penalized least
squares estimator or the lasso [least absolute shrinkage and
selection operator, Tibshirani ()]. In other words, the
absolute penalty estimator (APE) arises when the absolute
value of penalty term is considered, i.e., γ =  in (). Similar
to the ridge regression, the lasso estimates are obtained as
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()
�e lasso shrinks the OLS estimator toward zero and
depending on the value of λ, it sets some coe�-
cients to exactly zero. Tibshirani () used a quadratic
programming method to solve () for β̂

lasso
. Later,

Efron et al. () proposed least angle regression
(LAR), a type of stepwise regression, with which the
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lasso estimates can be obtained at the same compu-
tational cost as that of an ordinary least squares esti-
mation Hastie et al. (). Further, the lasso esti-
mator remains numerically feasible for dimensions m
that are much higher than the sample size n. Zou and
Hastie () introduced a hybrid PLS regression with
the so called elastic net penalty de�ned as λ∑

p

j=(αβj +

( − α) ∣βj∣). Here the penalty function is a linear com-
bination of the ridge regression penalty function and
lasso penalty function. A di�erent type of PLS, called
garotte is due to Breiman (). Further, PLS estima-
tion provides a generalization of both nonparametric least
squares and weighted projection estimators, and a popu-
lar version of the PLS is given by Tikhonov regularization
(Tikhonov ). Generally speaking, the ridge regres-
sion is highly e�cient and stable when there are many
small coe�cients. �e performance of lasso is superior
when there are a small-to-medium number of moderate-
sized coe�cients. On the other hand, shrinkage esti-
mators perform well when there are large known zero
coe�cients.
Ahmed et al. () proposed an APE for partially

linear models. Further, they reappraised the properties of
shrinkage estimators based on Stein-rule estimation.�ere
exists a whole family of estimators that are better than
OLS estimators in regression models when the number of
predictors is large. A partially linear regression model is
de�ned as

yi = x
T
i β + g(ti) + εi, i = , . . . ,n, ()

where ti ∈ [, ] are design points, g(⋅) is an unknown
real-valued function de�ned on [, ], and yi, x, β, and εi’s
are as de�ned in the context of (). We consider experi-
ments where the vector of coe�cients β in the linear part
of () can be partitioned as (β

T
 , β

T
 )
T , where β is the

coe�cient vector of order p×  for main e�ects (e.g., treat-
ment e�ects, genetic e�ects) and β is a vector of order
p ×  for “nuisance” e�ects (e.g., age, laboratory). Our
relevant hypothesis is H : β = . Let β̂ be a semi-
parametric least squares estimator of β, and we let β̃
denote the restricted semiparametric least squares estima-
tor of β. �en the semiparametric Stein-type estimator
(see 7James-Stein Estimator and Semiparametric Regres-
sion Models), β̂

S
, of β is

β̂
S

 = β̃ + { − (p − )T−}(β̂ − β̃), p ≥  ()

where T is an appropriate test statistic for the H.
A positive-rule shrinkage estimator (PSE) β̂

S+
 is de�ned as

β̂
S+
 = β̃ + { − (p − )T−}+(β̂ − β̃), p ≥  ()

where z+ = max(, z).�e PSE is particularly important to
control the over-shrinking inherent in β̂

S

 .�e shrinkage
estimators can be viewed as a competitor to the APE
approach. Ahmed et al. () �nds that, when p is
relatively small with respect to p, APE performs bet-
ter than the shrinkage method. On the other hand, the
shrinkage method performs better when p is large, which
is consistent with the performance of the APE in linear
models. Importantly, the shrinkage approach is free from
any tuning parameters, easy to compute and calculations
are not iterative.�e shrinkage estimation strategy can be
extended in various directions to more complex problems.
Itmay beworthmentioning that this is one of the two areas
Bradley Efron predicted for the early twenty-�rst century
(RSSNews, January ). Shrinkage and likelihood-based
methods continue to be extremely useful tools for e�cient
estimation.

About the Author
�e author S. Ejaz Ahmed is Professor and Head Depart-
ment of Mathematics and Statistics. For biography, see
entry 7Optimal Shrinkage Estimation.

Cross References
7Estimation
7Estimation: An Overview
7James-Stein Estimator
7Linear Regression Models
7Optimal Shrinkage Estimation
7Residuals
7Ridge and Surrogate Ridge Regressions
7Semiparametric Regression Models

References and Further Reading
Ahmed SE, Doksum KA, Hossain S, You J () Shrinkage, pretest

and absolute penalty estimators in partially linear models. Aust
NZ J Stat ():–

Breiman L () Better subset selection using the non-negative
garotte. Technical report, University of California, Berkeley

Efron B, Hastie T, Johnstone I, Tibshirani R () Least angle
regression (with discussion). Ann Stat ():–

Frank IE, Friedman JH () A statistical view of some chemomet-
rics regression tools. Technometrics :–

Hastie T, Tibshirani R, Friedman J () The elements of statisti-
cal learning: data mining, inference, and prediction, nd edn.
Springer, New York

Hoerl AE, Kennard RW () Ridge regression: biased estimation
for nonorthogonal problems. Technometrics :–

Tibshirani R () Regression shrinkage and selection via the lasso.
J R Stat Soc B :–



Accelerated Lifetime Testing A 

ATikhonov An () Solution of incorrectly formulated problems
and the regularization method. Soviet Math Dokl :–
, English translation of Dokl Akad Nauk SSSR , ,
–

Zou H, Hastie T () Regularization and variable selction via the
elastic net. J R Stat Soc B ():–

Accelerated Lifetime Testing

Francisco Louzada-Neto
Associate Professor
Universidade Federal de São Carlos, Sao Paulo, Brazil

Accelerated life tests (ALT) are e�cient industrial experi-
ments for obtaining measures of a device reliability under
the usual working conditions.
A practical problem for industries of di�erent areas is

to obtain measures of a device reliability under its usual
working conditions. Typically, the time and cost of such
experimentation are long and expensive.�e ALT are e�-
cient for handling such situation, since the information on
the device performance under the usual working condi-
tions are obtained by considering a time and cost-reduced
experimental scheme. �e ALT are performed by test-
ing items at higher stress covariate levels than the usual
working conditions, such as temperature, pressure and
voltage.

�ere is a large literature on ALT and interested read-
ers can refer to Mann et al. (), Nelson (), Meeker
and Escobar () which are excellent sources for ALT.
Nelson (a, b) provides a brief background on acceler-
ated testing and test plans and surveys the related literature
point out more than  related references.
A simple ALT scenario is characterized by putting k

groups of ni items each under constant and �xed stress
covariate levels, Xi (herea�er stress level), for i = , . . . , k,
where i =  generally denotes the usual stress level, that is,
the usual working conditions.�e experiment ends a�er a
certain pre-�xed number ri < ni of failures, ti, ti, . . . , tiri ,
at each stress level, characterizing a type II censoring
scheme (Lawless ; see also 7Censoring Methodol-
ogy). Other stress schemes, such as step (see 7Step-Stress
Accelerated Life Tests) and progressive ones, are also com-
mon in practice but will not be considered here. Examples
of those more sophisticated stress schemes can be found in
Nelson ().

�e ALT models are composed by two components.
One is a probabilistic component, which is represented

by a lifetime distribution, such as exponential, Weibull,
log-normal, log-logistic, among others. �e other is a
stress-response relationship (SRR), which relates the mean
lifetime (or a function of this parameter) with the stress
levels. Common SRRs are the power law, Eyring and
Arrhenius models (Meeker and Escobar ) or even a
general log-linear or log-non-linear SRRwhich encompass
the formers. For sake of illustration, we shall assume an
exponential distribution as the lifetime model and a gen-
eral log-linear SRR. Here, the mean lifetime under the
usual working conditions shall represent our device reli-
ability measure of interesting.
Let T >  be the lifetime random variable with an

exponential density

f (t, λi) = λi exp{−λit} , ()

where λi >  is an unknown parameter representing the
constant failure rate for i = , . . . , k (number of stress
levels).�e mean lifetime is given by θ i = /λi.

�e likelihood function for λi, under the i-th stress
level Xi, is given by

Li(λi)=
⎛

⎝

ri

∏
j=
f (tij, λi)

⎞

⎠
(S(tiri , λi))

ni−ri = λ
ri
i exp{−λiAi} ,

where S(tiri , λi) is the survival function at tiri and Ai =
∑
ri
j= tij + (ni − ri)tiri denotes the total time on test for the

i-th stress level.
Considering data under the k random stress levels,

the likelihood function for the parameter vector λ =

(λ, λ, . . . , λk) is given by

L(λ) =
k

∏
i=

λ
ri
i exp{−λiAi} . ()

We consider a general log-linear SRR de�ned as

λi = exp(−Zi − β − βXi), ()

where X is the covariate, Z = g(X) and β and β are
unknown parameters such that −∞ < β, β <∞.

�e SRR () has several models as particular cases.�e
Arrhenius model is obtained if Zi = , Xi = /Vi, β=−α
and β = α, where Vi denotes a level of the tempera-
ture variable. If Zi = , Xi = −log(Vi), β = log(α) and
β = α, where Vi denotes a level of the voltage variable
we obtain the power model. Following Louzada-Neto and
Pardo-Fernandéz (), the Eyring model is obtained if
Zi = − logVi, Xi = /Vi, β = −α and β = α, where
Vi denotes a level of the temperature variable. Interested
readers can refer to Meeker and Escobar () for more
information about the physical models considered here.
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From () and (), the likelihood function for β and β
is given by

L(β, β) =
k

∏
i=

{exp(−Zi − β − βXi)
ri

exp(− exp(−Zi − β − βXi)Ai)}. ()

�e maximum likelihood estimates (MLEs) of β and
β can be obtained by direct maximization of (), or by
solving the system of nonlinear equations, ∂ logL/∂θ = ,
where θ′ = (β, β). Obtaining the score function is con-
ceptually simple and the expressions are not given explic-
itly.�e MLEs of θ i can be obtained, in principle, straight-
forwardly by considering the invariance property of the
MLEs.
Large-sample inference for the parameters can be

based on theMLEs and their estimated variances, obtained
by inverting the expected information matrix (Cox and
Hinkley ). For small or moderate-sized samples how-
ever we may consider simulation approaches, such as the
bootstrap con�dence intervals (see 7Bootstrap Methods)
that are based on the empirical evidence and are therefore
preferred (Davison and Hinkley ). Formal goodness-
of-�t tests are also feasible since, from (), we can use the
likelihood ratio statistics (LRS) for testing goodness-of-�t
of hypotheses such as H : β = .
Although we considered only an exponential dis-

tribution as our lifetime model, more general lifetime
distributions, such as the Weibull (see 7Weibull Distribu-
tion and Generalized Weibull Distributions), log-normal,
log-logistic, among others, could be considered in prin-
ciple. However, the degree of di�culty in the calcula-
tions increase considerably. Also we considered only one
stress covariate, however this is not critical for the over-
all approach to hold and the multiple covariate case can be
handle straightforwardly.
A study on the e�ect of di�erent reparametrizations on

the accuracy of inferences forALT is discussed in Louzada-
Neto and Pardo-Fernandéz ). Modeling ALT with a
log-non-linear SRR can be found in Perdoná et al. ().
Modeling ALT with a threshold stress, below which the
lifetime of a product can be considered to be in�nity or
much higher than that for which it has been developed is
proposed by Tojeiro et al. ().
We only considered ALT in presence of constant stress

loading, however non-constant stress loading, such as step
stress and linearly increasing stress are provided by Miller
and Nelson () and Bai, Cha and Chung (), respec-
tively. A comparison between constant and step stress tests
is provided by Khamis (). A log-logistic step stress
model is provided by Srivastava and Shukla ().

Two types of so�ware for ALT are provided by
Meeker and Escobar () and ReliaSo� Corporation
().
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Introduction
Acceptance sampling (AS) is one of the oldest statisti-
cal techniques in the area of 7statistical quality control.
It is performed out of the line production, most com-
monly before it, for deciding on incoming batches, but also
a�er it, for evaluating the �nal product (see Duncan ;
Stephens ; Pandey ; Montgomery ; and
Schilling and Neubauer , among others). Accepted
batches go into the production line or are sold to
consumers; the rejected ones are usually submitted to a
recti�cation process. A sampling plan is de�ned by the size
of the sample (samples) taken from the batch and by the
associated acceptance–rejection criterion.�e most widely
used plans are given by theMilitary Standard tables, devel-
oped during the World War II, and �rst issued in .
We mention MIL STD E () and the civil version
ANSI/ASQC Z. () of the American National Stan-
dards Institution and the American Society for Quality
Control.
At the beginning, all items and products were

inspected for the identi�cation of nonconformities. At the
late s, Dodge and Romig (see Dodge and Romig ),
in the Bell Laboratories, developed the area of AS, as an
alternative to % inspection.�e aimofAS is to lead pro-
ducers to a decision (acceptance or rejection of a batch)
and not to the estimation or improvement of the qual-
ity of a batch. Consequently, AS does not provide a direct
form of quality control, but its indirect e�ects in quality
are important: if a batch is rejected, either the supplier
tries improving its production methods or the consumer
(producer) looks for a better supplier, indirectly increasing
quality.

Regarding the decision on the batches, we distin-
guish three di�erent approaches: () acceptance without
inspection, applied when the supplier is highly reliable;
() % inspection, which is expensive and can lead to a
sloppy attitude towards quality; () an intermediate deci-
sion, i.e., an acceptance sampling program. �is increases
the interest on quality and leads to the lemma: make
things right in the �rst place. �e type of inspection that
should be applied depends on the quality of the last batches
inspected. At the beginning of inspection, a so-called nor-
mal inspection is used, but there are two other types of
inspection, a tightened inspection (for a history of low qual-
ity), and a reduced inspection (for a history of high quality).
�ere are special and empirical switching rules between
the three types of inspection, as well as for discontinuation
of inspection.

Factors for Classifications of Sampling
Plans
Sampling plans by attributes versus sampling plans by vari-

ables. If the item inspection leads to a binary result (con-
forming or nonconforming), we are dealing with sampling
by attributes, detailed later on. If the item inspection leads
to a continuous measurement X, we are sampling by vari-
ables.�en, we generally use sampling plans based on the
sample mean and standard deviation, the so-called vari-
able sampling plans. IfX is normal, it is easy to compute the
number of items to be collected and the criteria that leads
to the rejection of the batch, with chosen risks α and β. For
di�erent sampling plans by variables, see Duncan (),
among others.

Incoming versus outgoing inspection. If the batches are
inspected before the product is sent to the consumer, it is
called outgoing inspection. If the inspection is done by the
consumer (producer), a�er they were received from the
supplier, it is called incoming inspection.

Rectifying versus non-rectifying sampling plans. All depends
on what is done with nonconforming items that were
found during the inspection. When the cost of replac-
ing faulty items with new ones, or reworking them is
accounted for, the sampling plan is rectifying.

Single, double, multiple and sequential sampling
plans.

● Single sampling.�is is the most common sampling
plan: we draw a random sample of n items from the
batch, and count the number of nonconforming items
(or the number of nonconformities, if more than one
nonconformity is possible on a single item). Such a
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plan is de�ned by n and by an associated acceptance-
rejection criterion, usually a value c, the so-called accep-
tance number, the number of nonconforming items
that cannot be exceeded. If the number of noncon-
forming items is greater than c, the batch is rejected;
otherwise, the batch is accepted.�e number r, de�ned
as the minimum number of nonconforming items
leading to the rejection of the batch, is the so-called
rejection number. In the most simple case, as above,
r = c + , but we can have r > c + .

● Double sampling. A double sampling plan is charac-
terized by four parameters: n << n, the size of the �rst
sample, c the acceptance number for the �rst sample,
n the size of the second sample and c (> c) the accep-
tance number for the joint sample.�emain advantage
of a double sampling plan is the reduction of the total
inspection and associated cost, particularly if we pro-
ceed to a curtailment in the second sample, i.e. we stop
the inspection whenever c is exceeded. Another (psy-
chological) advantage of these plans is theway they give
a second opportunity to the batch.

● Multiple sampling. In the multiple plans a pre-
determined number of samples are drawn before
taking a decision.

● 7Sequential sampling.�e sequential plans are a gen-
eralization ofmultiple plans.�emaindi�erence is that
thenumber of samples is not pre-determined. If, at each
step, we draw a sample of size one, the plan, based on
Wald’s test, is called sequential item-to-item; otherwise,
it is sequential by groups. For a full study of multiple
and sequential plans see, for instance, Duncan ()
(see also the entry 7Sequential Sampling).

Special sampling plans. Among the great variety of special
plans, we distinguish:

● Chain sampling. When the inspection procedures are
destructive or very expensive, a small n is recommend-
able. We are then led to acceptance numbers equal to
zero.�is is dangerous for the supplier and if rectifying
inspection is used, it is expensive for the consumer. In
, Dodge suggested a procedure alternative to this
type of plans, which uses also the information of pre-
ceding batches, the so-called chain sampling method
(see Dogdge and Romig ).

● Continuous sampling plans (CSP).�ere are continu-
ous production processes, where the rawmaterial is not
naturally provided in batches. For this type of produc-
tion it is common to alternate sequences of sampling
inspection with % inspection – they are in a certain
sense rectifying plans.�e simplest plan of this type,
the CSP-, was suggested in  by Dodge. It begins

with a % inspection. When a pre-speci�ed num-
ber i of consecutive nonconforming items is achieved,
the plan changes into sampling inspection, with the
inspection of f items, randomly selected, along the
continuous production. If one nonconforming item is
detected (the reason for the terminology CSP-), %
inspection comes again, and the nonconforming item
is replaced. For properties of this plan and its general-
izations see Duncan ().

A Few Characteristics of a Sampling Plan
OCC.�e operational characteristic curve (OCC) is Pa ≡
Pa(p) = P(acceptance of the batch ∣ p), where p is the
probability of a nonconforming item in the batch.

AQL and LTPD (or RQL). �e sampling plans are built
taken into account the wishes of both the supplier and
the consumer, de�ning two quality levels for the judg-
ment of the batches: the acceptance quality level (AQL),
the worst operating quality of the process which leads to
a high probability of acceptance of the batch, usually %
– for the protection of the supplier regarding high quality
batches, and the lot tolerance percent defective (LTPD) or
rejectable quality level (RQL), the quality level belowwhich
an item cannot be considered acceptable.�is leads to a
small acceptance of the batch, usually % – for the pro-
tection of the consumer against low quality batches.�ere
exist two types of decision, acceptance or rejection of the
batch, and two types of risks, to reject a “good" (high qual-
ity) batch, and to accept a “bad" (low quality) batch.�e
probabilities of occurrence of these risks are the so-called
supplier risk and consumer risk, respectively. In a single
sampling plan, the supplier risk is α =  − Pa(AQL) and
the consumer risk is β = Pa(LTPD). �e sampling plans
should take into account the speci�cationsAQL andLTPD,
i.e. we are supposed to �nd a single plan with an OCC that
passes through the points (AQL, -α) and (LTPD, β).�e
construction of double plans which protect both the sup-
plier and the consumer are much more di�cult, and it is
no longer su�cient to provide indication on two points
of the OCC. �ere exist the so-called Grubbs’ tables (see
Montgomery ) providing (c, c,n,n), for n = n,
as an example, α = ., β = . and several rates
RQL/AQL.

AOQ, AOQL and ATI. If there is a rectifying inspection
program – a corrective program, based on a % inspec-
tion and replacement of nonconforming by conforming
items, a�er the rejection of a batch by an AS plan –,
the most relevant characteristics are the average outgoing
quality (AOQ), AOQ(p) = p ( − n/N)Pa, which attains
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Aa maximum at the so-called average output quality limit
(AOQL), the worst average quality of a product a�er a
rectifying inspection program, as well as the average total
inspection (ATI), the amount of items subject to inspection,
equal to n if there is no recti�cation, but given by ATI(p) =
nPa +N( − Pa), otherwise.
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A speci�c (and relatively new) type of �nancial calcula-
tions are actuarial operations, which represent a special
(in majority of countries they are usually licensed) sphere
of activity related to identi�cations of risks outcomes and
market assessment of future (temporary) borrowed cur-
rent assets and liabilities costs for their redemption.

�e broad range of existing and applicable actuarial
calculations require use of various methods and inevitably
predetermines a necessity of their alteration depending
on concrete cases of comparison analysis and selection of
most e�cient of them.

�e condition of success is a typology of actuarial cal-
culations methods, based on existing typology �elds and
objects of their applications, as well as knowledge of rule
for selection of most e�cient methods, which would pro-
vide selection of target results withminimum costs or high
accuracy.
Regarding the continuous character of �nancial trans-

actions, the actuarial calculations are carried out
permanently. �e aim of actuarial calculations in every
particular case is probabilistic determination of pro�t shar-
ing (transaction return) either in the form of �nancial
liabilities (interest, margin, agio, etc.) or as commission
charges (such as royalty).

�e subject of actuarial calculations can be distin-
guished in the narrow and in the broad senses.

�e given subject in the broad sense covers �nancial
and actuarial accounts, budgeting, balance, audit, assess-
ment of �nancial conditions and �nancial provision for
all categories and types of borrowing institutions, basis
for their preferential �nancial decisions and transactions,
conditions and results of work for di�erent �nancial and
credit institutions; �nancial management of cash �ows,
resources, indicators, mechanisms, instruments, as well as
�nancial analysis and audit of �nancial activity of compa-
nies, countries, nations their groups and unions, includ-
ing national system of �nancial account, �nancial control,
engineering, and forecast. In other words, the subject of
actuarial calculations is a process of determination of any
expenditures and incomes from any type of transactions in
the shortest way.
In the narrow sense it is a process of determination,

in the same way, of future liabilities and their comparison
with present assets in order to estimate their su�ciency,
de�cit of surplus.
We can de�ne general and e�cient actuarial calcula-

tions, the principals of which are given below.
E�cient actuarial calculations imply calculations of

any derivative indicators, which are carried out through
conjugation (comparison) of two or more dissimilar ini-
tial indicators, the results of which are presented as dif-
ferent relative numbers (coe�cients, norms, percents,
shares, indices, rates, tari�s, etc.), characterizing di�eren-
tial (e�ect) of anticipatory increment of one indicator in
comparison with another one.
In some cases similar values are called gradients,

derivatives (of di�erent orders), elasticity coe�cients, or
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anticipatory coe�cients and can be determined by ref-
erence to more complex statistical and mathematical
methods including geometrical, di�erential, integral, and
correlation and regression multivariate calculations.
Herewith in case of application of nominal comparison

scales for two or more simple values (so called scale of sim-

ple interests, which are calculated and represented in terms

of current prices) they are determined and operated as it was

mentioned by current nominal �nancial indicators, but in

case of real scales application, i.e. scales of so called com-

pound interests, they are calculated and represented in terms

of future or current prices, that is real e�cient �nancial

indicators.
In case of insurance scheme the calculation of e�cient

�nancial indicators signify the special type of �nancial cal-
culations i.e. actuarial calculations, which imply additional
pro�t (discounts) or demanding compensation of loss
(loss, damage or loss of pro�t) in connection with occur-
rence of contingency and risks (risk of legislation alter-
ation, exchange rates, devaluation or revaluation, in�ation
or de�ation, changes in e�ciency coe�cients).
Actuarial calculations represent special branch of

activity (usually licensed activity) dealing with market
assessment of compliance of current assets of insurance,
joint-stock, investment, pension, credit and other �nan-
cial companies (i.e. companies engaged in credit relations)
with future liabilities to the repayment of credit in order
to prevent insolvency of a debtor and to provide e�cient
protection for investors-creditors.
Actuarial calculations assume the comparison of assets

(ways of use or allocation of obtained funds) with liabili-
ties (sources of gained funds) for borrowing companies of
all types and forms, which are carried out in aggregate by
particular items of their expenses under circumstances of
mutual risks in order to expose the degree of compliance or
incompliance (surplus or de�cit) of borrowed assets with
future liabilities in term of repayment, in other words to
check the solvency of borrowing companies.
Borrowing companies – insurance, stock, broker and

auditor �rms, banks, mutual, pension, and other special-
ized investment funds whose accounts payable two or
more times exceeds their own assets and appear to be
a source of high risk, which in turn a�ects interests of
broad groups of business society as well as population –
are considered as companies that are subjects to obligatory
insurance and actuarial assessment.
Actuarial calculations assume the construction of bal-

ances for future assets and liabilities, probabilistic assess-
ment of future liabilities repayment (debts) at the expense
of disposable assets with regard to risks of changes of
their amount on hand and market prices.�e procedures

of documentary adoption, which include construction of
actuarial balances and preparation of actuarial reports and
conclusions, are called actuarial estimation; the organi-
zations that are carrying out such procedures are called
actuarial organizations.
Hence, there is a necessity to learn the organization and

technique of actuarial methods (estimations) in aggregate;
as well as to introduce the knowledge of actuarial subjects
to any expert who is involved in direct actuarial estima-
tions of future assets and liabilities costs of various funds,
credit, insurance, and similarly �nancial companies.�is
is true for assets and liabilities of any country.

�e knowledge of these actuarial assessments and
practical use is a signi�cant reserve for increasing not only
e�ciency but (more important today) legitimate, transpar-
ent, and protected futures for both borrowing and lending
companies.

Key Terms
Actuary (actuarius – Latin) – profession, appraiser of risks,
certi�ed expert on assessment of documentary insurance
(and wider – �nancial) risks; in insurance – insurer; in
realty agencies – appraiser; in accounting – auditor; in
�nancial markets – broker (or bookmaker); in the past reg-
istrar and holder of insurance documents; in England –
adjuster or underwriter.
Actuarial transactions – special �eld of activity related

to determination of insurance outcomes in circumstances
of uncertainty that require knowledge of probability theory
and actuarial statistics methods and mathematics, includ-
ing modern computer programs.
Actuarial assessment – type of practical activity,

licensed in the majority of countries, related to prepara-
tion of actuarial balances, market assessment of current
and future costs of assets and liabilities of insurer (in
case of pension insurance assets and liabilities of non-
governmental pension funds, insurances companies and
specialized mutual trust funds); completed with prepara-
tion of actuarial report according to standard methodolo-
gies and procedures approved, as a rule in conventional
(sometimes in legislative) order.
Actuarial estimations – documentary estimations of

chance outcomes (betting) of any risk (gambling) actions
(games) with participation of two or more parties with
�xed (registered) rates of repayment of insurance premium
and compensations premium for possible losses.�ey dif-
fer by criteria of complexity – that is elementary (simple
or initial) and complex. �e most widespread cases of
elementary actuarial estimations are bookmaker estima-
tions of pro�t and loss from di�erent types of gambling
including playing cards, lottery, and casinos, as well as risk
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Ataking on modern stock exchange, foreign exchange mar-
kets, commodity exchanges, etc.�e complex estimations
assume determination of pro�t from second and conse-
quent derived risks (outcomes over outcomes, insurance
over insurance, repayment on repayment, transactions
with derivatives, etc.). All of these estimations are carried
out with the help of various method of high mathemat-
ics (�rst of all, numeric methods of probability theory and
mathematical statistics).�ey are also o�en represented as
methods of high actuarial estimations.
Generally due to ignorance about such estimations,

current world debt (in  approximately  trillion
USD, including  trillion USD in the USA) has dras-
tically exceeded real assets, which account for about
 trillion USD, which is actually causing the enormous
�nancial crisis everywhere in the world.
Usually such estimations are being undertaken towards

future insurance operations, pro�ts and losses, and that is
why they are classi�ed as strictly approximate and repre-
sented in categories of probabilistic expectations.

�e fundamental methods of actuarial estimations are

the following: methods for valuing investments, select-
ing portfolios, pricing insurance contracts, estimating
reserves, valuing portfolios, controlling pension scheme,
�nances, asset management, time delays and underwriting
cycle, stochastic approach to life insurance mathematics,
pension funding and feed back, multiple state and disabil-
ity insurance, and methods of actuarial balances.

�e most popular range of application for actuarial

methods are: ) investments, (actuarial estimations) of
investments assets and liabilities, internal and external,
real and portfolio types their mathematical methods and
models, investments risks and management; ) life insur-
ance (various types and methods, insurance bonuses,
insurance companies and risks, role of the actuarial
methods in management of insurance companies and
reduction of insurance risks); ) general insurance (insur-
ance schemes, premium rating, reinsurance, reserving); )
actuarial provision of pension insurance (pension invest-
ments – investment policy, actuarial databases, meeting
the cost, actuarial researches).
Scientist who have greatly contributed to actuarial prac-

tices: William Morgan, Jacob Bernoulli, A. A. Markov,
V. Y. Bunyakovsky, M. E. Atkinson, M. H. Amsler,
B. Benjamin, G. Clark, C. Haberman, S. M. Hoem,
W. F. Scott, and H. R. Watson.
World’s famous actuary’s schools and institutes: �e

Institute of Actuaries in London, Faculty of Actuaries in
Edinburgh (on  May , following a ballot of Fellows
of both institutions, it was announced that the Institute and
Faculty wouldmerge to form one body – the “Institute and

Faculty of Actuaries”), Charted Insurance Institute, Inter-
national Association of Actuaries, International Forum of
Actuaries Associations, International Congress of Actuar-
ies, and Groupe Consultatif Actuariel Européen.
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Consider a set of data consisting of n observations of a
response variable Y and of vector of p explanatory vari-
ablesX = (X,X, . . . ,Xp)⊺.�eir relationship is described
by the linear regression model (see 7Linear Regression
Models)

Y = βX + βX + . . . + βpXp + e.

In terms of the observed data, the model is

Yi = βxi + βxi + . . . + βpxip + ei, i = , , . . . ,n.

�e variables e, . . . , en are unobservable model errors,
which are assumed being independent and identically dis-
tributed random variables with a distribution function F
and density f .�e density is unknown,we only assume that
it is symmetric around .�e vector β = (β, β, . . . , βp)⊺

is an unknown parameter, and the problem of interest is
to estimate β based on observations Y, . . . ,Yn and xi =
(xi, . . . , xip)⊺, i = , . . . ,n.
Besides the classical 7least squares estimator, there

exists a big variety of robust estimators of β. Some are dis-
tributionally robust (less sensitive to deviations from the
assumed shape of f ), others are resistant to the leverage
points in the design matrix and have a high breakdown
point [introduced originally by Hampel (), the �nite
sample version is studied in Donoho and Huber ()].

�e last  years brought a host of statistical pro-
cedures, many of them enjoying excellent properties
and being equipped with a computational so�ware (see

7Computational Statistics and 7Statistical So�ware: An
Overview). On the other hand, this progress has put an
applied statistician into a di�cult situation: If one needs
to �t the data with a regression hyperplane, he (she) is
hesitating which procedure to use. If there is more infor-
mation on the model, then the estimation procedure can
be chosen accordingly. If the data are automatically col-
lected by a computer and the statistician is not able tomake
any diagnostics, then he (she) might use one of the high
breakdown-point estimators. However, many decline this
idea due to the di�cult computation.�en, at the end, the
statistician can prefer the simplicity to the optimality and
uses either the classical least squares (LS), LAD-method or
other reasonably simple method.
Instead of to �x ourselves on one �xedmethod, one can

try to combine two convenient estimationmethods, and in
this way diminish eventual shortages of both. Taylor ()
suggested to combine the LAD (minimizing the L norm)
and the least squares (minimizing the L norm) methods.
Arthanari and Dodge () considered a convex com-
bination of LAD- and LS-methods. Simulation study by
Dodge and Lindstrom () showed that this procedure
is robust to small deviations from the normal distribu-
tion (see7NormalDistribution,Univariate). Dodge ()
extended thismethod to a convex combination of LADand
Huber’sM-estimationmethods (see7Robust Statistics and
Robust Statistical Methods). Dodge and Jurečková ()
observed that the convex combination of two methods
could be adapted in such a way that the resulted esti-
mator has the minimal asymptotic variance in the class
of estimators of a similar kind, no matter what is the
unknown distribution. �e �rst numerical study of this
procedure was made by Dodge et al. (). Dodge and
Jurečková (, ) then extended the adaptive proce-
dure to the combinations of LAD- with M-estimation and
with the trimmed least squares estimation.�e results and
examples are summarized in monograph of Dodge and
Jurečková (), where are many references added.
Let us describe the general idea, leading to a construc-

tion of an adaptive convex combination of two estimation
methods: We consider a family of symmetric densities
indexed by an suitable measure of scale s :

F = {f : f (z) = s−f(z/s), s > }.

�e shape of f is generally unknown; it only satis�es some
regularity conditions and the unit element f ∈ F has
the scale s = . We take s = /f () when we combine
L-estimator with other class of estimators.
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A�e scale characteristic s is estimated by a consistent
estimator ŝn based on Y, . . . ,Yn, which is regression-
invariant and scale-equivariant, i.e.,

(a) ŝn(Y)
p→ s as n→∞

(b) ŝn(Y + Xb) = ŝn(Y) for any b ∈ Rp (regression-invariance)
(c) ŝn(cY) = cŝn(Y) for c >  (scale-equivariance).

Such estimator based on the regression quantiles was con-
structed e.g., by Dodge and Jurečková (). Other esti-
mators are described in themonograph byKoenker ().

�e adaptive estimator Tn(δ) of β is de�ned as a
solution of the minimization problem

n

∑
i=

ρ (
Yi − x⊺i t
ŝn

) := min

with respect to t ∈ Rp, where

ρ(z) = δρ(z) + ( − δ)ρ(z) ()

with a suitable �xed δ,  ≤ δ ≤ , where ρ(z)

and ρ(z) are symmetric (convex) discrepancy func-
tions de�ning the respective estimators. For instance,
ρ(z)= ∣z∣ and ρ(z)= z

 if we want to combine LAD and
LS estimators. �en

√
n(Tn(δ) − β) has an asymptot-

ically normal distribution (see 7Asymptotic Normality)
Np(,Q−σ (δ, ρ, f ))with the variance dependent on δ, ρ
and f , where

Q = lim
n→∞

Qn, Qn =

n

n

∑
i=
xix⊺i .

Using δ = δ which minimizes σ (δ, ρ, f ) with respect to
δ,  ≤ δ ≤ , we get an estimator Tn(δ) minimizing the
asymptotic variance for a �xed distribution shape. Typi-
cally, σ (δ, ρ, f ) depends on f only through two moments
of f. However, these moments should be estimated on the
data.
Let us illustrate the procedure on the combination of the
least squares and the L procedures. Set

σ

= ∫ z


f (z)dz, σ


 = ∫ z


f(z)dz ()

E

 = ∫ ∣z∣ f(z)dz, E = ∫ ∣z∣ f (z)dz.

�en

σ

= ∫ z


f (z)dz = s


σ

 , E = ∫ ∣z∣ f (z)dz = sE




and the corresponding asymptotic variance of Tn(δ) is

σ

(δ, f , s) =

s


{( − δ)


σ

 + δ( − δ)E


 + δ


}. ()

If we know all moments in (), we minimize the variance
() with respect to δ, under the restriction  ≤ δ ≤ . It is
minimized for δ = δ where

δ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

 if σ  ≤ E < /
σ  − E
σ  − E + 

if E < / and E < σ 

 if / ≤ E < σ  .

�e estimatorTn(δ) of β is a solution of theminimization

n

∑
i=

ρ((Yi − x⊺i t)/ŝn) := min, t ∈ Rp,

ρ(z) = ( − δ)z

+ δ∣z∣, z ∈ R. ()

But δ is unknown, because the entities in () depend on
the unknown distribution f . Hence, we should replace δ
by an appropriate estimator based on Y. We shall proceed
in the following way:
First estimate E = E/s = f () ∫IR ∣z∣ f (z)dz by

Ê

 = ŝ

−
n (n − p)

−
n

∑
i=

∣Yi − x′i β̂n (


)∣ ()

where β̂n(/) is the LAD-estimator of β. �e choice of
optimal δ̂n is then based on the following decision proce-
dure (Table ).
It can be proved that δ̂n

p
Ð→ δ as n → ∞ and

Tn(δ̂n) is a consistent estimator of β and is asymptotically
normally distributed with the minimum possible variance.

Adaptive Linear Regression. Table  Decision procedure

Compute Ê
 as in ().

() If Ên
 < /, calculate

σ̂n
 = 

ŝn
(n−p)

n
∑
i=
(Yi − x⊺i β̂(/))



and go to (). If not, go to ().

() If Ê 
n ≥ σ̂ 

n , put δ̂n = . Then Tn is the ordinary LS

estimator of β. If not, go to ().

() If Ê 
n < σ̂ 

n, calculate

δ̂n =
σ̂ 

n−̂E 
n

σ̂ 
n−̂E 

n+

and perform the minimization () with the function
ρ equal to

( − δ̂n)
n
∑
i=
( Yi−x′i t

ŝ n
)



+ δ̂n

n
∑
i=
∣ Yi−x⊺i t

ŝn
∣ .

() Put δ̂n = ; then Tn is the LAD-estimate of β.
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Many numerical examp les based on real data can be �nd
in the monograph Dodge and Jurečková ().
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Introduction
Statistical procedures, the e�ciencies of which are opti-
mal and invariant with regard to the knowledge or not of
certain features of the data, are called adaptive statistical
methods.
Such procedures should be used when one suspects

that the usual inference assumptions, for example, the nor-
mality of the error’s distribution, may not be met. Indeed,
traditional methods have a serious defect. If the distri-
bution of the error is non-normal, the power of classi-
cal tests, as pseudo-Gaussian tests, can be much less than
the optimal power. So, the variance of the classical least
squares estimator ismuch bigger than the smallest possible
variance.

What Is Adaptivity?
�e adaptive methods deal with the problem of estimat-
ing and testing hypotheses about a parameter of interest
θ in the presence of nuisance parameter ν.�e fact that ν

remains unspeci�ed induces, in general, a loss of e�ciency
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Awith the situation where ν is exactly speci�ed. Adaptivity
occurs when the loss of e�ciency is null, i.e., when we can
estimate (testing hypotheses about) θ as when not know-
ing ν as well as when knowing ν.�e method used in this
respect is called adaptive.
Adaptivity is a property of the model under study, the

best known of which is undoubtedly the symmetric loca-
tion model; see Stone (). However, under a totally
unspeci�ed density, possibly non-symmetric, the mean
can not be adaptively estimated.

Approaches to Adaptive Inference
Approaches to adaptive inference mainly belong to one of
two types: either to estimate the unknown parameters ν

in some way, or to use the data itself to determine which
statistical procedure is the most appropriate to these data.
�ese two approaches are the starting points of two rather
distinct strands of the statistical literature. Nonparametric
adaptive inference, on one hand, where ν is estimated from
the sample, and on the other hand, data-driven methods,
where the shape of ν is identi�ed via a selection statistic to
distinguish the e�ective statistical procedure suitable at the
current data.

Nonparametric Methods
�e �rst approach is o�en used for the semiparametric
model, where θ is a Euclidean parameter and the nuisance
parameter is an in�nite dimensional parameter f - o�en,
the unspeci�ed density of some white noise underlying the
data generating process.
Stein () introduced the notion of adaptation and

gave a simple necessary condition for adaptation in semi-
parametric models. A comprehensive account of adaptive
inference can be found in the monograph by Bickel et al.
() for semiparametricmodels with independent obser-
vations. Adaptive inference for dependent data have been
studied in a series of papers, e.g., Kreiss (), Drost et al.
(), and Koul and Schick ().�e current state of the
art is summarized in Grenwood et al. ().

�e basic idea in this literature is to estimate the under-
lying f using a portion of the sample, and to reduce locally
and asymptotically the semiparametric problem to a sim-
pler parametric one, through the so-called “least favorable
parametric submodel” argument. In general, the resulting
computations are non-trivial.
An alternative technique is the use of adaptive rank

based statistics. Hallin and Werker () proposed a suf-
�cient condition for adaptivity; that is, adaptivity occurs
if a parametrically e�cient method based on rank statis-
tics can be derived.�en, it su�ces, to substitute f in the
rank statistics by an estimate f̂ measurable on the 7order

statistics. Some results in this direction have been obtained
by Hájek (), Beran (), and Allal and El Melhaoui
().
Finally, these nonparametric adaptive methods, when

they exist, are robust in e�ciency: they cannot be out-
performed by any non-adaptive method. However, these
methods have not beenwidely used in practice, because the
estimation of density, typically, requires a large number of
observations.

Data-Driven Methods
�e second strand of literature addresses the same prob-
lem of constructing adaptive inference, and consists of the
use of the data to determine which statistical procedure
should be used and then using the data again to carry out
the procedure.

�e was �rst proposed by Randles and Hogg ().
Hogg et al. () used the measure of symmetry and tail-
weight as selection statistics in and adaptive two-sample
test. If the selection fell into one of the regions de�ned by
the adaptive procedure, then a certain set of rank scores
was selected, whereas if the selection statistic fell into a dif-
ferent region, then di�erent rank scores would be used in
the test. Hogg and Lenth () proposed an adaptive esti-
mator of the mean of symmetric distribution.�ey used
selection statistics to determine if a mean, a % trimmed
mean, ormedian should be used as an estimate of themean
of population. O’Gorman () proposed an adaptive
procedure that performs the commonly used tests of sig-
ni�cance, including the two-sample test, a test for a slope
in linear regression, and a test for interaction in two-way
factorial design.A comprehensive account of this approach
can be found in the monograph by O’Gorman ().

�e advantage of the data-driven methods is that if
an adaptive method is properly constructed, it automat-
ically downweight outliers and could easily be applied
in practice. However, and contrary to the nonparamet-
ric approach, the adaptive data-driven method is the best
among the existing procedures, but not the best that can
be built. As a consequence, the method so built is not
de�nitively optimal.

Cross References
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7Robust Inference
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7Robust Statistics
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Adaptive Sampling
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Adaptive sampling is particularly useful for sampling
populations that are sparse but clustered. For example, �sh
can form large, widely scattered schools with few �sh in

between. Applying standard sampling methods such as
simple random sampling (SRS, see7Simple Random Sam-
ple) to get a sample of plots from such a population could
yield little information, withmost of the plots being empty.
�e idea can be simply described follows. We go �shing
in a lake using a boat and, assuming complete ignorance
about the population, we select a location at random and
�sh. If we don’t catch anything we select another location
at random and try again. If we do catch something we
�sh in a speci�c neighborhood of that location and keep
expanding the neighborhood until we catch no more �sh.
We then move on to a second location.�is process con-
tinues until we have, for example, �shed at a �xed number
of locations or until our total catch has exceeded a certain
number of �sh. �is kind of technique where the sam-
pling is adapted to what turns up at each stage has been
applied to a variety of diverse populations such as marine
life, birds, mineral deposits, animal habitats, forests, and
rare infectious diseases, and to pollution studies.
We now break down this process into components and

introduce some general notation. Our initial focus will be
on adaptive 7cluster sampling, the most popular of the
adaptive methods developed by Steven�ompson in the
s. Supposewe have a population ofN plots and let yi be
a variable that we measure on the ith plot (i = , , . . . ,N).
�is variable can be continuous (e.g., level of pollution
or biomass), discrete (e.g., number of animals or plants),
or even just an indicator variable taking the value  for
presence and zero for absence. Our aim is to estimate some
function of the population y values such as, for example,
the population total τ = ∑

N
i= yi, the population mean

µ = τ/N, or the population density D = τ/A, where A is
the population area.

�e next step is to determine the nature of the neigh-
borhood of each initially chosen plot. For example, we
could choose all the adjacent units with a common bound-
ary which, together with unit i, form a “cross” Neighbor-
hoods can be de�ned to have a variety of patterns and the
units in a neighborhood do not have to be contiguous (next
to each other).We then specify a condition C such as yi > c
which determines when we sample the neighborhood of
the ith plot; typically c =  if y is a count. If C for the ith
plot or unit is satis�ed, we sample all the units in the neigh-
borhood and if the rule is satis�ed for any of those units we
sample their neighborhoods as well, and so on, thus lead-
ing to a cluster of units.�is cluster has the property that
all the units on its “boundary” (called “edge units”) do not
satisfy C. Because of a dual role played by the edge units,
the underlying theory is based on the concept of a network,
which is a cluster minus its edge units.
It should be noted that if the initial unit selected is any

one of the units in the cluster except an edge unit, then
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Aall the units in the cluster end up being sampled. Clearly,
if the unit is chosen at random, the probability of select-
ing the cluster will depend on the size of the cluster. For
this reason adaptive cluster sampling can be described as
unequal probability cluster sampling – a form of biased
sampling.

�e �nal step is to decide how we choose both the size
and the method of selecting the initial sample size. Focus-
ing on the second of these for the moment, one simple
approach would be to use SRS to get a sample of size n,
say. If a unit selected in the initial sample does not satisfy
C, then there is no augmentation and we have a cluster of
size one. We note that even if the units in the initial sam-
ple are distinct, as in SRS, repeats can occur in the �nal
sample as clusters may overlap on their edge units or even
coincide. For example, if two non-edge units in the
same cluster are selected in the initial sample, then that
whole cluster occurs twice in the �nal sample. �e �nal
sample then consists of n (not necessarily distinct) clus-
ters, one for each unit selected in the initial sample. We
�nally end up with a total of n units, which is random, and
some units may be repeated.

�ere are many modi�cations of the above scheme
depending on the nature of the population and we men-
tion just a few. For example, the initial sample may be
selected by sampling with replacement, or by using a form
of systematic sampling (with a random start) or by using
unequal probability sampling, as in sampling a tree with
probability proportional to its basal area. Larger initial
sampling units other than single plots can be used, for
example a strip transect (primary unit) commonly used
in both aerial and ship surveys of animals and marine
mammals. Other shaped primary units can also be used
and units in the primary unit need not be contiguous. If
the population is divided into strata, then adaptive clus-
ter sampling can be applied within each stratum, and the
individual estimates combined. How they are combined
depends on whether clusters are allowed to cross stratum
boundaries or not. If instead of strata, we simply have a
number of same-size primary units and choose a sample
of primary units at random, and then apply the adaptive
sampling within each of the chosen primary units, we have
two-stage sampling with its appropriate theory.
In some situations, the choice of c in condition C is

problematical as, with a wrong choice, we may end up
with a feast or famine of plots.�ompson suggested using
the data themselves, in fact the 7order statistics for the
yi values in the initial sample. Sometimes animals are
not always detected and the theory has been modi�ed
to allow for incomplete detectability. If we replace yi by
a vector, then the scheme can be modi�ed to allow for
multivariate data.

We now turn our attention to sample sizes. Several
ways of controlling sample sizes have been developed. For
example, to avoid duplication we can remove a network
once it has been selected by sampling networks without
replacement. Sequential methods can also be used, such
as selecting the initial sample sequentially until n exceeds
some value. In fact Salehi, in collaboration with various
other authors has developed a number of methods using
both inverse and sequential schemes. One critical question
remains:How canweuse a pilot survey to design an experi-
mentwith a given e�ciency or expected cost?One solution
has been provided using the two-stage sampling method
mentioned above (Salehi and Seber ).
We have not said anything about actual estimates as

this would take several pages. However, a number of
estimates associated with the authors Horvitz-�ompson
(see 7Horvitz–�ompson Estimator), Hansen-Hurwitz,
and Murthy have all been adapted to provide unbiased
estimates for virtually all the above schemes and modi-
�cations. Salehi () has also used the famous 7Rao-
Blackwell theorem to provide more e�cient unbiased esti-
mates in a number of cases. �e mentioned estimators
based on small samples under adaptive cluster sampling
o�en have highly skewed distributions. In such situations,
con�dence intervals (see 7Con�dence Interval) based on
traditional normal approximation can lead to unsatisfac-
tory results, with poor coverage properties; for another
solution see Salehi et al. (a).
As you can see, the topic is rich in applications and

modi�cations and we have only told part of the story! For
example, there is a related topic called adaptive allocation
that has been used in �sheries; for a short review of adap-
tive allocation designs see Salehi et al. (b). Extensive
references to the above are�ompson and Seber () and
Seber and Salehi ().

About the Author
Professor Seber was appointed to the foundation Chair
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rate Department of Statistics in . He was awarded the
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ing and writing (). He has authored or coauthored ten
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on the estimation of animal abundance. He is the author
of the internationally recognized text Estimation of Ani-
mal Abundance and Related Parameters (Wiley, nd edit.,
; paperback reprint, Blackburn, ).�e third con-
ference on Statistics in Ecology and Environmental Moni-
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the contribution of Professor George Seber to Statistical
Ecology.”
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Advantages of Bayesian
Structuring: Estimating Ranks
and Histograms
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Introduction
Methods developed using the Bayesian formalism can be
very e�ective in addressing both Bayesian and frequentist
goals. �ese advantages are conferred by full probabil-
ity modeling are most apparent in the context of 7non-
linear models or in addressing non-standard goals. Once
the likelihood and the prior have been speci�ed and data

observed, 7Bayes’ �eorem maps the prior distribution
into the posterior. �en, inferences are computed from
the posterior, possibly guided by a 7loss function. �is
last step allows proper processing for complicated, non-
intuitive goals. In this context, we show how the Bayesian
approach is e�ective in estimating 7ranks and CDFs (his-
tograms). We give the basic ideas; see Lin et al. (,
); Paddock et al. () and the references thereof for
full details and generalizations.
Importantly, as Carlin and Louis () and many

authors caution, the Bayesian approach is not a panacea.
Indeed, the requirements for an e�ective procedure are
more demanding than those for a frequentist approach.
However, the bene�ts are many and generally worth the
e�ort, especially now that 7Markov Chain Monte Carlo
(MCMC) and other computing innovations are available.

A Basic Hierarchical Model
Consider a basic, compound sampling model with para-
meters of interest θ = (θ, . . . , θK) and data Y = (Y,
. . . ,YK).�e θk are iid and conditional on the θs, the Yk
are independent.

θk
iid
∼ G(⋅) ()

Yk∣θk
indep
∼ fk(Yk∣θk)

in practice, the θk might be the true di�erential expres-
sion of the kth gene, the true standardized mortality ratio
for the kth dialysis clinic, or the true, underlying region-
speci�c disease rate. Generalizations of () include adding
a third stage to represent uncertainty in the prior, a regres-
sion model in the prior, or a priori association among
the θs.
Assume that the θk and η are continuous random

variables.�en, their posterior distribution is,

g(θ ∣ Y) =
K

∏

g(θk ∣ Yk) ()

g(θk ∣ Yk) =
fk(Yk ∣ θk)g(θk)

∫ fk(Yk ∣ s)g(s)ds
=
fk(Yk ∣ θk)g(θk)

fG(Yk)

Ranking
�e ranking goal nicely shows the beauty of Bayesian struc-
turing. Following Shen and Louis (), if the θk were
directly observed, then their ranks (Rk) and percentiles
(Pk) are:

Rk(θ) = rank(θk) =
K

∑
j=
I{θk≥θ j}; Pk(θ) = Rk(θ)/(K + ).

()
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A�e smallest θ has rank  and the largest has rank K.
Note that the ranks aremonotone transform invariant (e.g.,
ranking the logs of parameters produces the original ranks)
and estimated ranks should preserve this invariance. In
practice, we don’t get to observe the θk, but can use their
posterior distribution () to make inferences. For exam-
ple, minimizing posterior squared-error loss for the ranks
produces,

R̄k(Y) = Eθ ∣Y[Rk(θ) ∣ Y] =
K

∑
j=
pr(θk ≥ θ j ∣ Y). ()

�e R̄k are shrunk towards the mid-rank, (K + )/, and
generally are not integers. Optimal integer ranks result
from ranking the R̄k, producing,

R̂k(Y) = rank(R̄k(Y)); P̂k = R̂k/(K + ). ()

Unless the posterior distributions of the θk are stochasti-
cally ordered, ranks based on maximum likelihood esti-
mates or those based on hypothesis test statistics perform
poorly. For example, if all θk are equal, MLEs with rela-
tively high variance will tend to be ranked at the extremes;
if Z-scores testing the hypothesis that a θk is equal to the
typical value are used, then the units with relatively small
variance will tend to be at the extremes. Optimal ranks
compromise between these two extremes, a compromise
best structured by minimizing posterior expected loss in
the Bayesian context.

Example: The basic Gaussian-Gaussian model
We specialize () to the model with a Gaussian prior and
Gaussian sampling distributions, with possibly di�erent
sampling variances. Without loss of generality assume that
the prior mean is µ =  and the prior variance is τ = .
We have,

θk iid N(, ),

Yk∣θk ∼ N(θk, σ

k )

θk ∣ Yk ind N (θ
pm

k
, ( − Bk)σ


k )

θ
pm

k
= ( − Bk)Yk; Bk = σ


k /(σ


k + ).

�e σ k are an ordered, geometric sequence with ratio of
the largest σ  to the smallest rls = σ K/σ  and 7geometric
mean gmv = GM(σ  , . . . , σ K). When rls = , the σ k are
all equal.�e quantity gmv measures the typical sampling
variance and here we consider only gmv = .
Table  documents SEL performance for P̂k (the opti-

mal approach), Yk (the MLE), ranked θ
pm

k
and ranked

exp{θ
pm

k
+

(−Bk)σ 
k

 } (the posterior mean of eθk ). We

present this last to assess performance for a monotone,

Advantages of Bayesian Structuring: Estimating Ranks and
Histograms. Table  Simulated preposterior ,  × SEL for
gmv = . As a baseline for comparison, if the data provided no
information on the θk(gmv =∞), all entries would be . If
the data provided perfect information (gmv = ), all entries
would be 

Percentiles based on

rls P̂k θ
pm
k exp{θ

pm
k + (−Bk)σ

k


} Yk

    

    

    

non-linear transform of the target parameters. For rls= ,
the posterior distributions are stochastically ordered and
the four sets of percentiles are identical, as is their per-
formance. As rls increases, performance of Yk-derived
percentiles degrades, those based on the θ

pm

k
are quite

competitive with P̂k, but performance for percentiles based
on the posterior mean of eθk degrades as rls increases.
Results show that though the posterior mean can perform
well, in general it is not competitive with the optimal
approach.

Estimating the CDF or Histogram
Similar advantages of the Bayesian approach apply to
estimating the empirical distribution function (EDF) of
the θk,

GK(t ∣ θ) = K
−
∑ I{θk≤t}.

As shown by Shen and Louis (), �e optimal SEL
estimate is

ḠK(t∣Y) = E[GK(t ∣ θ)∣Y] = K−∑Pr(θk ≤ t∣Y).

�e optimal discrete distribution estimate with at most K
mass points is ĜK , with mass K− at

Ûj = Ḡ
−
K (
j − 
K

∣Y), j = , . . . ,K

�e EDF is easy to compute from MCMC sampling. A�er
burn-in, pool all θs, order them and set Uj equal to the
(j − )th order statistic.
Bayesian structuring to estimate GK pays big divi-

dends. As shown in Fig. , for the basic Gaussian model
it produces the correct spread, whereas the histogram
of the θ

pm

k
(the posterior means) is under-dispersed and

that of the Yk (the MLEs) is over dispersed. More gen-
erally, when the true EDF is asymmetric or multi-modal,
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Advantages of Bayesian Structuring: Estimating Ranks and Histograms. Fig.  Histogram estimates using θpm, ML, and
−

GK for
the basic Gaussian/Gaussian model. GM({σ

k}) = , rls = 

the Bayesian approach also produces the correct shape
Paddock et al. ().

Discussion
�e foregoing are but two examples of the e�ectiveness of
Bayesian structuring. Many more are available in the cited
references and in other literature. In closing, we reiterate
that the Bayesian approach needs to be used with care;
there is nothing automatic about realizing its bene�ts.
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Definition
A Population 7census is the total process of collecting,
compiling, evaluating, analyzing and disseminating demo-
graphic, economic and social data related to a speci�ed
time, to all persons in a country or a well de�ned part of a
country.

History of Population Censuses
Population censuses are as old as human history.�ere are
records of census enumerations as early as in  bc in
Babylonia, in  bc in China and in  bc in Egypt.
�e Roman Empire conducted population censuses and
one of the most remembered censuses was the one held
around ad  when Jesus Christ was born as his parents
had moved from Nazareth to Bethlehem for the purpose
of being counted. However, modern censuses did not start
taking place until one was held in Quebec, Canada in .
�is was followed by one in Sweden in , USA in ,
UK in  and India .

African Population Censuses
In the absence of complete civil registration systems in
Africa, population censuses provide one of the best sources
of socioeconomic and demographic information for the
continent. Like in other parts of the world, censuses in
Africa started as headcounts and assemblies until a�er the
Second World War.�e British were the �rst to introduce
modern censuses in their colonial territories in west, east
and southern Africa. For example in East Africa, the �rst
modern census was conducted in  in what was being
referred to as British East Africa consisting of Kenya and
Uganda.�is was followed by censuses in  in Tanzania,
in  in Uganda and  in Kenya to prepare the coun-
tries for their political independence in ,  and ,
respectively. Other censuses have followed in these three

countries. Similarly, the British West African countries of
Ghana, Gambia, Nigeria and Sierra Leone were held in
s, s and s. In Southern Africa, similar cen-
suses were held in Botswana, Lesotho, Malawi, Swaziland,
Zambia and Zimbabwe in s and s, long before the
Francophone and Lusophone countries did so. It was not
until in s and s that the Francophone and Luso-
phone African countries started doing censuses instead of
sample surveys which they preferred.
To help African countries do population censuses,

United Nations set up an African census programme in
late s. Out of  countries,  participated in the
programme.�is programme closed in  and was suc-
ceeded by the Regional Advisory Services in the demo-
graphic statistics set up as a section of Statistics Division at
theUnitedNations EconomicCommission for Africa.�is
section supported many African countries in conducting
the  and  rounds of censuses. �e section was
superseded by the UNFPA sub-regional country support
teams stationed in Addis Ababa, Cairo, Dakar and Harare.
Each of these teams had census experts to give advisory
services to countries in the  round of censuses.�ese
teams have now been reduced to three teams stationed in
Pretoria, Cairo andDakar and are currently supporting the
African countries in population censuses.

�ere were working group committees on census on
each round of censuses to work on the content of cen-
sus 7questionnaire. For instance, in the  round of
censuses the working group recommended that the cen-
sus questionnaire should have geographic characteristics,
demographic characteristics, economic characteristics,
community level variables and housing characteristics. In
 round of censuses, questions on the disabled persons
were recommended to be added to the  round ques-
tions. Later in the  round of censuses, questions on
economic establishments, agricultural sector and deaths
in households were added. In the current round of 
censuses, the questions on disability were sharpened to
capture the data better. New questions being asked include
those on child labour, age at �rst marriage, ownership
of mobile phone, ownership of email address, access to
internet, distance to police post, access to salt in household,
most commonly spoken language in household and cause
of death in household.
In the  and s round of censuses, Post enu-

meration surveys (PES) to check on the quality of the
censuses were attempted in Ghana. However, the expe-
rience with and results from PES were not encouraging,
which discouraged most of the African countries from
conducting them. Recently, the Post enumeration sur-
veys have been revived and conducted in several African
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countries like South Africa, Tanzania and Uganda. �e
challenges of PES have included: poor cartographic work,
neglecting operational independence, inadequate funding,
fatigue a�er the census, matching alternative names, lack
of quali�ed personnel, useless questions in PES, probabil-
ity sample design and selection, �eld reconciliation, lack of
unique physical addresses in Africa and neglect of pretest
of PES.

�e achievements of the African censuses include sup-
plying the needed sub-national data to the decentral-
ized units for decision making processes, generating data
for monitoring poverty reduction programmes, provid-
ing information for measuring indicators of most MDGs,
using the data formeasuring the achievement of indicators
of International Conference on Population and Develop-
ment (ICP), meeting the demand for data for emerging
issues of socioeconomic concerns, accumulating experi-
ence in the region of census operations and capacity build-
ing at census and national statistical o�ces.
However, there are still several limitations associated

with the African censuses. �ese have included inade-
quate participation of the population of the region; only
% of the African population was counted in the 
round of censuses, which was much below to what hap-
pened in other regions: Oceania – %, Europe and
North America – %, Asia – %, South America – %
and the world – %. Other shortcomings were weak
organizational and managerial skills, inadequate funding,
non-conducive political environment, civil con�icts, weak
technical expertise at NSOs and lack of data for gender
indicators.
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Aggregation Schemes

Devendra Chhetry
President of the Nepal Statistical Association (NEPSA),
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Given a data vector x = (x, x, . . . , xn) and a weight
vector w = (w,w, . . . ,wn), there exist three aggrega-
tion schemes in the area of statistics that, under certain
assumptions, generate three well-knownmeasures of loca-
tion: arithmetic mean (AM),7geometric mean (GM), and
7harmonic mean (HM), where it is implicitly understood
that the data vector x contains values of a single variable.
Among all these three measures, AM is more frequently
used in statistics for some theoretical reasons. It is well
known that AM ≥ GM ≥ HM where equality holds only
when all components of x are equal.
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AIn recent years, some of these three and a new aggre-
gation scheme are being practiced in the aggregation of
development or deprivation indicators by extending the
de�nition of data vector to a vector of indicators, in the
sense that it contains measurements of development or
deprivation of several sub-population groups or measure-
ments of several dimensions of development or depriva-
tion.�emeasurements of development or deprivation are
either available in the form of percentages or need to be
transformed in the formof unit free indices. PhysicalQual-
ity of Life Index (Morris ),HumanDevelopment Index
(UNDP ), Gender-relatedDevelopment Index (UNDP
), Gender Empowerment Measure (UNDP ), and
Human Poverty Index (UNDP ) are some of the aggre-
gated indices of several dimensions of development or
deprivation.
In developing countries, aggregation of development

or deprivation indicators is a challenging task, mainly due
to two reasons. First, indicators usually display large varia-
tions or inequalities in the achievement of development or
in the reduction of deprivation across the sub-populations
or across the dimensions of development or deprivation
within a region. Second, during the process of aggregation
it is desired to incorporate the public aversion to social
inequalities or, equivalently, public preference for social
equalities. Public aversion to social inequalities is essential
for development workers or planners of developing coun-
tries for bringing marginalized sub-populations into the
mainstream by monitoring and evaluation of the develop-
ment works. Motivated by this problem, Anand and Sen
(UNDP ) introduced the notion of the gender-equality
sensitive indicator (GESI).
In societies of equal proportion of female and male

population, for example, the AM of  and  percent of
male and female literacy rate is the same as that of  and
 percent, showing that AM fails to incorporate the pub-
lic aversion to gender inequality due to the AM’s built-in
problem of perfect substitutability, in the sense that a  per-
centage point decrease in female literacy rate in the former
society as compared to the latter one is substituted by the
 percentage point increase in male literacy rate. �e
GM or HM, however, incorporates the public aversion to
gender inequality because they do not posses the perfect
substitutability property. Instead of AM, Anand and Sen
used HM in the construction of GESI.
In the above example consider that society perceives

the social problem from the perspective of deprivation;
that is, instead of gender-disaggregated literacy rates
society considers gender-disaggregated illiteracy rates.
Arguing as before, it immediately follows that AM fails to
incorporate the public aversion to gender inequality. It also

follows that neither GM nor HM incorporates the public
aversion to gender inequality. A new aggregation scheme
is required for aggregating indicators of deprivation.
So far, currently practiced aggregation schemes are

accommodated within a slightly modi�ed version of the
following single mathematical function due to Hardy et al.
() under the assumption that components of x and w
are positive and the sum of the components of w is unity.

µ(x, w, r) =
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)
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∏
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xi
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()

For �xed x and w, the function () is de�ned for all real
numbers, implying that the function () yields an in�nite
number of aggregation schemes. In particular, it yieldsAM
when r = , HM when r = −, and obviously GM when
r = , and a new aggregation scheme suggested by Anand
and Sen in constructing Human Poverty Index when
n = , w = w = w = / and r =  (UNDP ). It
is well known that the values of the function are bounded
between x() and x(n), where x() = min{x, x, . . . , xn}
and x(n) = max{x, x, . . . , xn}, and the function is strictly
increasing with respect to r if all the components of data
vector are not equal (see Fig.  when w = w = ., x =
% and x = %).

�e �rst two partial derivatives of the function with
respect to the kth component of the vector x yield the
following results where g(x, w) is GM.
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respect to each xk, implying that the aggregated value

increases at
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rate with respect to each com-

ponent of x. �ese properties are desirable for aggregat-

ing the
⎛
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development
deprivation

⎞
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⎠
indicators, since the aggregated

value of
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with any value of r,
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, could be used to aggregate the

⎛
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development
deprivation

⎞
⎟
⎠
indicators if the public aversion to social

inequalities should be incorporated.
What value of r should one use in practice?�ere is no

simple answer to this question, since the answer depends
upon the society’s degree of preference for social equality.
If a society has no preference for social equality, then one
can use r =  in aggregating development or deprivation
indicators, which is still a common practice in develop-
ing countries, even though the public e�orts for bring-
ingmarginalized sub-populations into themainstream has
become a major agenda of development.

If a society has preference for social equality, then sub-
jective judgment in the choice of r seems to be unavoidable.
For the purpose of monitoring and evaluation, such judg-
ment does not seem to be a serious issue as long as a
�xed value of r is decided upon. In this context, Anand
and Sen suggested using r = − for aggregating the indi-
cators of development when n =  (UNDP ), and
r =  for aggregating the indicators of deprivation when
n =  (UNDP ). A lot of research work still needs to
be done in this area for producing social-equality sensitive
indicators of development or deprivation.
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�e need to collect information on agricultural production
has been with us since the dawn of civilization. Agri-
culture was the main economic activity, supplying both
food for growing populations and the basis for taxation.
�e Sumerians ofMesopotamia before  BC developed
writing systems in order to record crop yields and livestock
numbers.�e Ancient Egyptians recorded the extent and
productivity of arable land on the banks of the Nile. Later
conquerors surveyed their new possessions, as in the Nor-
man conquest of England which resulted in the Domesday
Book of , recording the agricultural potential of each
district in great detail.

�e pioneers of scienti�c agriculture, such as J.B.
Lawes and J.H.Gilbert at Rothamsted, England, from 
onwards, insisted on accurate measurement and record-
ing as the �rst requirement for a better understanding of
the processes of agricultural production.�e Royal Statis-
tical Society (RSS) was founded in  with its symbol of a
sheaf of corn, implying that the duty of statisticians was to
gather numerical information, but for others to interpret
the data. Lawes published numerous papers on the vari-
ability of crop yields from year to year, and later joined
the Council of the RSS. By  agricultural experiments
were conducted in several countries, including Germany,
the Netherlands and Ireland, where W.S. Gosset, publish-
ing under the name of “Student,” conducted trials of barley
varieties for the brewing industry.
In  R.A. Fisher was appointed to analyze the

accumulated results of  years of �eld experimenta-
tion at Rothamsted, initiating a revolution in statisti-
cal theory and practice. Fisher had already published
the theoretical explanation of Student’s t-distribution
and the sampling distribution of the correlation coe�-
cient, and challenged Karl Pearson’s position that statis-
tical analysis was only possible with large samples. His
�rst task was to study the relationship between rain-
fall and crop yields on the long-term experiments, for
which he demanded a powerful mechanical calculator, the
“Millionaire.” Introducing orthogonal polynomials to �t
the yearly weather patterns and to eliminate the long-term
trend in crop yield, he performed multiple regressions on
the rainfall components, and developed the variance ratio
test (later the F-distribution) to justify which terms to

include using what became the 7analysis of variance. If
the results were of minor interest to farmers, the methods
usedwere of enormous importance in establishing the new
methodology of curve �tting, regression analysis and the
analysis of variance.
Fisher’s work with agricultural scientists brought him

a whole range of statistical challenges. Working with small
samples he saw the role of the statistician as one who
extracts the information in a sample as e�ciently as pos-
sible. Working with non-normally distributed data he
proposed the concept of likelihood, and the method of
maximum likelihood to estimate parameters in a model.
�e early �eld experiments at Rothamsted contained the
accepted notion of comparison of treatments with con-
trols at the same location, and some plots included fac-
torial combinations of fertilizer sources. Fisher saw that
in order to apply statistical methods to assess the signif-
icance of observed e�ects it was necessary to introduce
7randomization and replication. Local control on land
of varying fertility could be improved by blocking, and
for trends in two directions he introduced Latin Square
designs. �e analysis of factorial experiments could be
expressed in terms of main e�ects and interaction e�ects,
with the components of interaction between blocks and
treatments regarded as the basic residual error variance.
Fisher’s ideas rapidly gained attention and his ideas and

methods were extended to many �elds beyond agricul-
tural science. George Snedecor in Iowa, Mahalanobis and
C.R. Rao in India, were early disciples, and his assistants
included L.H.C. Tippett, J. Wishart and H. Hotelling. He
was visited in  by J. Neyman, who was working with
agricultural scientists in Poland. In  he was joined by
Frank Yates who had experience of 7least squares meth-
ods as a surveyor in West Africa. Fisher le� Rothamsted
in  to pursue his interests in genetics, but continued to
collaborate with Yates.�ey introduced Balanced Incom-
plete Blocks and Lattice designs, and Split Plot designswith
more than one component of error variance.�eir Statis-
tical Tables, �rst published in , were widely used for
many decades later.
Yates expanded his department to provide statistical

analysis and consulting to agricultural departments and
institutes in Britain and the British Empire. Field exper-
imentation spread to South America with W.L Stevens,
and his assistants W.G. Cochran, D.J. Finney and O.
Kempthorne became well-known statistical innovators in
many applications. During World War II Yates persuaded
the government of the value of sample surveys to provide
information about farm productivity, pests and diseases
and fertilizer use. He later advised Indian statisticians on
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the design and analysis of experiments in which small
farmers in a particular area might be responsible for
one plot each.
In  Yates saw the potential of the electronic com-

puter in statistical research, andwas able to acquire the �rst
computer devoted to civilian research, the Elliott . On
this computer the �rst statistical programswere written for
the analysis of �eld experiments and surveys, for bioassay
and 7probit analysis, for multiple regression and multi-
variate analysis, and for model �tting by maximum like-
lihood. All the programs were in response to the needs of
agricultural scientists, at �eld or laboratory level, including
those working in animal science. Animal experiments typ-
ically had unequal numbers of units with di�erent treat-
ments, and iterativemethodswere needed to �t parameters
by least squares or maximum likelihood. Animal breed-
ing data required lengthy computing to obtain compo-
nents of variance from which to estimate heritabilities and
selection indices.�e needs of researcher workers in fruit
tree research, forestry, glasshouse crops and agricultural
engineering all posed di�erent challenges to the statistical
profession.
In  J.A. Nelder came to Rothamsted as head

of the Statistics Department, having been previously at
the National Vegetable Research Station at Wellesbourne,
where he had explored the used of systematic designs
for vegetable trials, and had developed the well-used Sim-
plex Algorithm with R. Mead to �t 7nonlinear models.
With more powerful computers it was now possible to
combine many analyses into one system, and he invited
G.N.Wilkinson from Adelaide to include his general algo-
rithm for the analysis of variance in amore comprehensive
system that would allow the whole range of nested and
crossed experimental designs to be handled, along with
facilities for regression and multivariate analysis.�e pro-
gram GENSTAT is now used world-wide in agricultural
and other research settings.
Nelder worked with R.M. Wedderburn to show how

the methodology of Probit Analysis (�tting binomial data
to a transformed regression line) could be generalized to a
whole class of 7Generalized Linear Models.�ese meth-
ods were particularly useful for the analysis of multiway
contingency tables, using logit transformations for bino-
mial data and log transformations for positive data with
long-tailed distributions.�e applications may have been
originally in agriculture but found many uses elsewhere,
such as in medical and pharmaceutical research.

�e needs of soil scientists brought new classes
of statistical problems. �e classi�cation of soils was
complicated by the fact that overlapping horizons with

di�erent properties did not occur at the same depth,
although samples were essential similar but displaced.�e
method of Kriging, �rst used by South African mining
engineers, was found to be useful in describing the spa-
tial variability of agricultural land, with its allowance for
di�ering trends and sharp boundaries.

�e need to model responses to fertilizer applica-
tions, the growth of plants and animals, and the spread
of weeds, pests and diseases led to developments in �tting
non-linear models. While improvements in the e�ciency
of numerical optimization algorithms were important,
attention to the parameters to be optimized helped to
show the relationship between the model and the data,
and which observations contributed most to the parame-
ters of interest. �e limitations of agricultural data, with
many unknown or unmeasurable factors present, makes
it necessary to limit the complexity of the models being
�tted, or to �t common parameters to several related
samples.
Interest in spatial statistics, and in the use of models

with more than one source of error, has led to develop-
ments such as the powerful REML algorithm.�e use of
intercropping tomake better use of productive land has led
to appropriate developments in experimental design and
analysis.
With the increase in power of computers it became

possible to construct large, complex models, incorporat-
ing where possible known relationships between growing
crops and all the natural and arti�cial in�uences a�ecting
their growth over the whole cycle from planting to har-
vest. �ese models have been valuable in understanding
the processes involved, but have not been very useful in
predicting �nal yields. �e statistical ideas developed by
Fisher and his successors have concentrated on the choices
which farmers can make in the light of information avail-
able at the time, rather than to provide the best outcomes
for speculators in crop futures. Modeling on its own is no
substitute for continued experimentation.

�e challenge for the st century will be to ensure
sustainable agriculture for the future, taking account of cli-
mate change, resistance to pesticides and herbicides, soil
degradation and water and energy shortages. Statistical
methods will always be needed to evaluate new techniques
of plant and animal breeding, alternative food sources and
environmental e�ects.

About the Author
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Akaike’s Information Criterion

Hirotugu Akaike†

Former Director General of the Institute of Statistical
Mathematics and a Kyoto Prize Winner
Tokyo, Japan

�e Information Criterion I(g : f ) that measures the devi-
ation of a model speci�ed by the probability distribution f
from the true distribution g is de�ned by the formula

I(g : f ) = E log g(X) − E log f (X).

Here E denotes the expectation with respect to the
true distribution g of X. �e criterion is a measure of
the deviation of the model f from the true model g, or
the best possible model for the handling of the present
problem.

�e following relation illustrates the signi�cant char-
acteristic of the log likelihood:

I(g : f) − I(g : f) = −E(log f(X) − log f(X)).

�is formula shows that for an observation x of X
the log likelihood log f (x) provides a relative measure
of the closeness of the model f to the truth, or the good-
ness of the model.�is measure is useful even when the
true structure g is unknown.
For a model f (X/a) with unknown parameter a the

maximum likelihood estimate a(x) is de�ned as the value
of a thatmaximizes the likelihood f (x/a) for a given obser-
vation x. Due to this process the value of log f (x/a(x))
shows an upward bias as an estimate of log f (X/a).�us
to use log f (x/a(x)) as the measure of the goodness of
the model f (X/a), it must be corrected for the expected
bias.
In typical application of the method of maximum like-

lihood this expected bias is equal the dimension, or the
number of components, of the unknown parameter a.
�us the relative goodness of a model determined by the
maximum likelihood estimate is given by
AIC = − (log maximum likelihood − (number of

parameters)).
Here log denotes natural logarithm. �e coe�cient

− is used to make the quantity similar to the familiar
chi-square statistic in the test of dimensionality of the
parameter.
AIC is the abbreviation of An Information Criterion.

About the Author
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�nest statistician in their history and many of us a most
noble friend” (Professor Howell Tong, from “�e Obituary
of Professor Hirotugu Akaike.” Journal of the Royal Statis-
tical Society, Series A,March, ). Professor Akaike had
sent his Encyclopedia entry on May  , adding the
following sentence in his email: “�is is all that I could do
under the present physical condition.”
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Introduction
�e 7Akaike Information Criterion, AIC, was introduced
by Hirotogu Akaike in his seminal  paper “Informa-
tion�eory and an Extension of theMaximum Likelihood
Principle.” AIC was the �rst model selection criterion to
gain widespread attention in the statistical community.
Today, AIC continues to be the most widely known and
used model selection tool among practitioners.

�e traditional maximum likelihood paradigm, as
applied to statistical modeling, provides a mechanism for
estimating the unknown parameters of a model having a
speci�ed dimension and structure. Akaike extended this
paradigm by considering a framework in which the model
dimension is also unknown, and must therefore be deter-
mined from the data.�us, Akaike proposed a framework
wherein both model estimation and selection could be
simultaneously accomplished.
For a parametric candidate model of interest, the like-

lihood function re�ects the conformity of the model to
the observed data. As the complexity of the model is
increased, the model becomes more capable of adapting
to the characteristics of the data.�us, selecting the �tted
model that maximizes the empirical likelihood will invari-
ably lead one to choose the most complex model in the
candidate collection. 7Model selection based on the like-
lihood principle, therefore, requires an extension of the
traditional likelihood paradigm.

Background
To formally introduce AIC, consider the following model
selection framework. Suppose we endeavor to �nd a
suitable model to describe a collection of response mea-
surements y. We will assume that y has been generated
according to an unknown density g(y). We refer to g(y)
as the true or generating model.
A model formulated by the investigator to describe the

data y is called a candidate or approximating model. We
will assume that any candidate model structurally corre-
sponds to a parametric class of distributions. Speci�cally,

for a certain candidate model, we assume there exists a
k-dimensional parametric class of density functions

F(k) = { f (y∣ θk) ∣ θk ∈ Θ(k)} ,

a class in which the parameter space Θ(k) consists of
k-dimensional vectors whose components are functionally
independent.
Let L(θk ∣ y) denote the likelihood corresponding to

the density f (y∣ θk), i.e., L(θk ∣ y) = f (y∣ θk). Let θ̂k denote
a vector of estimates obtained bymaximizing L(θk ∣ y) over
Θ(k).
Suppose we formulate a collection of candidate models

of various dimensions k.�ese models may be based on
di�erent subsets of explanatory variables, di�erent mean
and variance/covariance structures, and even di�erent
speci�cations for the type of distribution for the response
variable. Our objective is to search among this collection
for the �tted model that “best” approximates g(y).
In the development of AIC, optimal approximation is

de�ned in terms of a well-known measure that can be
used to gauge the similarity between the true model g(y)
and a candidate model f (y∣ θk): theKullback–Leibler infor-
mation (Kullback and Leibler ; Kullback ). �e
Kullback–Leibler information between g(y) and f (y∣ θk)
with respect to g(y) is de�ned as

I(θk) = E{log
g(y)

f (y∣ θk)
},

where E(⋅) denotes the expectation under g(y). It can be
shown that I(θk) ≥  with equality if and only if f (y∣ θk)
is the same density as g(y). I(θk) is not a formal metric,
yet we view the measure in a similar manner to a distance:
i.e., as the disparity between f (y∣ θk) and g(y) grows, the
magnitude of I(θk) will generally increase to re�ect this
separation.
Next, de�ne

d(θk) = E{− log f (y∣ θk)}.

We can then write

I(θk) = d(θk) − E{− log g(y)}.

Since E{− log g(y)} does not depend on θk, any rank-
ing of a set of candidate models corresponding to values
of I(θk) would be identical to a ranking corresponding to
values of d(θk). Hence, for the purpose of discriminating
among various candidate models, d(θk) serves as a valid
substitute for I(θk). We will refer to d(θk) as the Kullback
discrepancy.
To measure the separation between between a �t-

ted candidate model f (y∣ θ̂k) and the generating model
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Ag(y), we consider the Kullback discrepancy evaluated
at θ̂k:

d(θ̂k) = E{− log f (y∣ θk)}∣θk=θ̂k
.

Obviously, d(θ̂k) would provide an attractive means for
comparing various �tted models for the purpose of dis-
cerning which model is closest to the truth. Yet evaluating
d(θ̂k) is not possible, since doing so requires knowledge of
the true distribution g(⋅).�e work of Akaike (, ),
however, suggests that − log f (y∣ θ̂k) serves as a biased
estimator of d(θ̂k), and that the bias adjustment

E{d(θ̂k)} − E{− log f (y∣ θ̂k)} ()

can o�en be asymptotically estimated by twice the dimen-
sion of θk.
Since k denotes the dimension of θk, under appropriate

conditions, the expected value of

AIC = − log f (y∣ θ̂k) + k

will asymptotically approach the expected value of d(θ̂k),
say

∆(k) = E{d(θ̂k)}.

Speci�cally, we will establish that

E{AIC} + o() = ∆(k). ()

AIC therefore provides an asymptotically unbiased esti-
mator of ∆(k). ∆(k) is o�en called the expected Kullback
discrepancy.
In AIC, the empirical log-likelihood term − log

f (y∣ θ̂k) is called the goodness-of-�t term.�e bias correc-
tion k is called the penalty term. Intuitively, models which
are too simplistic to adequately accommodate the data at
hand will be characterized by large goodness-of-�t terms
yet small penalty terms. On the other hand, models that
conform well to the data, yet do so at the expense of con-
taining unnecessary parameters, will be characterized by
small goodness-of-�t terms yet large penalty terms. Mod-
els that provide a desirable balance between �delity to the
data and parsimony should correspond to small AIC val-
ues, with the sum of the two AIC components re�ecting
this balance.

Derivation
To justify AIC as an asymptotically unbiased estimator
of ∆(k), we will focus on a particular candidate class
F(k). For notational simplicity, we will suppress the
dimension index k on the parameter vector θk and its
estimator θ̂k.

�e justi�cation of () requires the strong assump-
tion that the true density g(y) is a member of the candi-
date class F(k). Under this assumption, we may de�ne a
parameter vector θo having the same size as θ, and write
g(y) using the parametric form f (y∣ θo).�e assumption
that f (y∣ θo) ∈ F(k) implies that the �tted model is either
correctly speci�ed or over�t.
To justify (), consider writing ∆(k) as indicated:

∆(k)
= E{d(θ̂)}

= E{− log f (y∣ θ̂)}
+ [E{− log f (y∣ θo)} − E{− log f (y∣ θ̂)}] ()

+ [E{d(θ̂)} − E{− log f (y∣ θo)}]. ()

�e following lemma asserts that () and () are both
within o() of k.
We assume the necessary regularity conditions required

to ensure the consistency and 7asymptotic normality of
the maximum likelihood vector θ̂.

Lemma

E{− log f (y∣ θo)} − E{− log f (y∣ θ̂)} = k + o(), ()
E{d(θ̂)} − E{− log f (y∣ θo)} = k + o(). ()

Proof

De�ne

I(θ) = E [−
∂ log f (y∣ θ)

∂θ∂θ
′

]

and I(θ, y) = [−
∂ log f (y∣ θ)

∂θ∂θ
′

].

I(θ) denotes the expected Fisher information matrix and
I(θ, y) denotes the observed Fisher information matrix.
First, consider taking a second-order expansion of

− log f (y∣ θo) about θ̂, and evaluating the expectation of
the result. Since − log f (y∣ θ) is minimized at θ = θ̂, the
�rst-order term disappears, and we obtain

E{− log f (y∣ θo)} = E{− log f (y∣ θ̂)}

+E{(θ̂ − θo)
′

{I(θ̂, y)}(θ̂ − θo)}

+ o().

�us,

E{− log f (y∣ θo)} − E{− log f (y∣ θ̂)}

= E{(θ̂ − θo)
′

{I(θ̂, y)}(θ̂ − θo)} + o(). ()

Next, consider taking a second-order expansion of
d(θ̂) about θo, again evaluating the expectation of the
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result. Since d(θ) is minimized at θ = θo, the �rst-order
term disappears, and we obtain

E{d(θ̂)} = E{− log f (y∣ θo)}

+E{(θ̂ − θo)
′

{I(θo)}(θ̂ − θo)}

+ o().

�us,

E{d(θ̂)} − E{− log f (y∣ θo)}

= E{(θ̂ − θo)
′

{I(θo)}(θ̂ − θo)} + o(). ()

Recall that by assumption, θo ∈ Θ(k).�erefore, the
quadratic forms

(θ̂ − θo)
′

{I(θ̂, y)}(θ̂ − θo) and (θ̂ − θo)
′

{I(θo)}(θ̂ − θo)

both converge to centrally distributed chi-square ran-
dom variables with k degrees of freedom. �us, the
expectations of both quadratic forms are within o()
of k. �is fact along with () and () establishes ()
and ().

Properties
�e previous lemma establishes that AIC provides an
asymptotically unbiased estimator of ∆(k) for �tted can-
didate models that are correctly speci�ed or over�t. From
a practical perspective, AIC estimates ∆(k) with negligi-
ble bias in settings where n is large and k is comparatively
small. In settings where n is small and k is comparatively
large (e.g., k ≈ n/), k is o�en much smaller than the bias
adjustment, making AIC substantially negatively biased as
an estimator of ∆(k).
If AIC severely underestimates ∆(k) for higher dimen-

sional �tted models in the candidate collection, the cri-
terion may favor the higher dimensional models even
when the expected discrepancy between these mod-
els and the generating model is rather large. Exam-
ples illustrating this phenomenon appear in Linhart and
Zucchini (, –), who comment (p. ) that “in
some cases the criterion simply continues to decrease as
the number of parameters in the approximating model is
increased.”
AIC is asymptotically e�cient in the sense of Shibata

(, ), yet it is not consistent. Suppose that the gen-
erating model is of a �nite dimension, and that this model
is represented in the candidate collection under consider-
ation. A consistent criterion will asymptotically select the
�tted candidate model having the correct structure with
probability one. On the other hand, suppose that the gen-
erating model is of an in�nite dimension, and therefore

lies outside of the candidate collection under considera-
tion. An asymptotically e�cient criterion will asymptoti-
cally select the �tted candidatemodel whichminimizes the
mean squared error of prediction.
From a theoretical standpoint, asymptotic e�ciency

is arguably the strongest optimality property of AIC.�e
property is somewhat surprising, however, since demon-
strating the asymptotic unbiasedness of AIC as an esti-
mator of the expected Kullback discrepancy requires the
assumption that the candidate model of interest subsumes
the true model.

Refinements
A number of AIC variants have been developed and pro-
posed since the introduction of the criterion. In general,
these variants have been designed to achieve either or both
of two objectives: () to relax the assumptions or expand
the setting under which the criterion can be applied, () to
improve the small-sample performance of the criterion.
In the Gaussian linear regression framework, Sugiura

() established that the bias adjustment () can be
exactly evaluated for correctly speci�ed or over�t mod-
els. �e resulting criterion, with a re�ned penalty term,
is known as “corrected” AIC, or AICc. Hurvich and
Tsai () extended AICc to the frameworks of Gaussian
nonlinear regression models and time series autoregres-
sive models. Subsequent work has extended AICc to other
modeling frameworks, such as autoregressivemoving aver-
age models, vector autoregressive models, and certain
7generalized linear models and 7linear mixed models.

�e Takeuchi () information criterion, TIC, was
derived by obtaining a general, large-sample approxima-
tion to each of () and () that does not rely on the assump-
tion that the true density g(y) is amember of the candidate
class F(k). �e resulting approximation is given by the
trace of the product of twomatrices: an informationmatrix
based on the score vector, and the inverse of an informa-
tion matrix based on the Hessian of the log likelihood.
Under the assumption that g(y) ∈ F(k), the information
matrices are equivalent.�us, the trace reduces to k, and
the penalty term of TIC reduces to that of AIC.
Bozdogon () proposed a variant of AIC that cor-

rects for its lack of consistency.�e variant, called CAIC,
has a penalty term that involves the log of the deter-
minant of an information matrix. �e contribution of
this term leads to an overall complexity penalization that
increases with the sample size at a rate su�cient to ensure
consistency.
Pan () introduced a variant of AIC for applica-

tions in the framework of generalized linear models �tted
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Ausing generalized estimating equations. �e criterion is
called QIC, since the goodness-of-�t term is based on the
empirical quasi-likelihood.
Konishi and Kitagawa () extended the setting in

which AIC has been developed to a general framework
where () the method used to �t the candidate model is
not necessarily maximum likelihood, and () the true den-
sity g(y) is not necessarily a member of the candidate
class F(k). �eir resulting criterion is called the gener-
alized information criterion, GIC. �e penalty term of
GIC reduces to that of TIC when the �tting method is
maximum likelihood.
AIC variants based on computationally intensive

methods have also been proposed, including cross-
validation (Stone ; Davies et al. ), bootstrap-
ping (Ishiguro et al. ; Cavanaugh and Shumway ;
Shibata ), and Monte Carlo simulation (Hurvich
et al. ; Bengtsson andCavanaugh ).�ese variants
tend to perform well in settings where the sample size
is small relative to the complexity of the models in the
candidate collection.
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Algebraic statistics applies concepts from algebraic geom-
etry, commutative algebra, and geometric combinatorics
to better understand the structure of statistical models, to
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improve statistical inference, and to explore new classes of
models. Modern algebraic geometry was introduced to the
�eld of statistics in themid s. Pistone andWynn ()
used Gröbner bases to address the issue of confounding in
design of experiments, and Diaconis and Sturmfels ()
used them to perform exact conditional tests. �e term
algebraic statistics was coined in the book by Pistone et al.
(), which primarily addresses experimental design.
�e current algebraic statistics literature includes work
on contingency tables, sampling methods, graphical and
latent class models, and applications in areas such as sta-
tistical disclosure limitation (e.g., Dobra et al. ()), and
computational biology and phylogenetics (e.g., Pachter
and Sturmfels ()).

Algebraic Geometry of Statistical Models
Algebraic geometry is a broad subject that has seen an
immense growth over the past century. It is concerned
with the study of algebraic varieties, de�ned to be (closures
of) solution sets of systems of polynomial equations. For
an introduction to computational algebraic geometry and
commutative algebra, see Cox et al. ().
Algebraic statistics studies statistical models whose

parameter spaces correspond to real positive parts of alge-
braic varieties. To demonstrate how this correspondence
works, consider the following simple example of the inde-
pendence model of two binary random variables, X and Y ,
such that joint probabilities are arranged in a  ×  matrix
p := [pij]. �e model postulates that the joint probabil-
ities factor as a product of marginal distributions: pij =
pi+p+j, where i, j ∈ {, }.�is is referred to as an explicit
algebraic statistical model. Equivalently, the matrix p is
of rank , that is, its  ×  determinant is zero: pp −
pp = .�is is referred to as an implicit description of
the independence model. In algebraic geometry, the set of
rank- matrices, where we allow pij to be arbitrary com-
plex numbers, is a classical object called a Segre variety.
�us, the independence model is the real positive part of
the Segre variety. Exponential family models, in general,
correspond to toric varieties, whose implicit description is
given by a set of binomials. For a broad, general de�ni-
tion of algebraic statistical models, see Drton and Sullivant
().
By saying that “we understand the algebraic geometry

of amodel,” wemean that we understand some basic infor-
mation about the corresponding variety, such as: degree,
dimension and codimension (i.e., degrees of freedom);
the de�ning equations (i.e., the implicit description of the
model); the singularities (i.e., degeneracy in the model).
�e current algebraic statistics literature demonstrates that
understanding the geometry of a model can be useful

for statistical inference (e.g., exact conditional inference,
goodness-of-�t testing, parameter identi�ability, andmax-
imum likelihood estimation). Furthermore, many relevant
questions of interest in statistics relate to classical open
problems in algebraic geometry.

Algebraic Statistics for Contingency
Tables
A paper by Diaconis and Sturmfels () on algebraic
methods for discrete probability distributions stimulated
much of the work in algebraic statistics on contingency
tables, and has led to two general classes of problems:
() algebraic representation of a statistical model, and ()
conditional inference.�e algebraic representation of the
independence model given above generalizes to any k-way
table and its corresponding hierarchical log-linear mod-
els (e.g., see Dobra et al. ()). A standard reference on
log-linear models is Bishop et al. ().
Most of the algebraic work for contingency tables

has focused on geometric characterizations of log-linear
models and estimation of cell probabilities under those
models. Algebraic geometry naturally provides an explicit
description of the closure of the parameter space.�is fea-
ture has beenutilized, for example, by Eriksson et al. ()
to describe polyhedral conditions for the nonexistence of
the MLE for log-linear models. More recently, Petrović
et al. () provide the �rst study of algebraic geometry
of the p random graph model of Holland and Leinhardt
().
Conditional inference relies on the fact that data-

dependent objects are a convex bounded set, Pt = {x : xi ∈
R≥, t = Ax}, where x is a table, A is a design matrix, and t
a vector of constraints, typically margins, that is, su�cient
statistics of a log-linear model.�e set of all integer points
inside Pt is referred to as a �ber, which is the support of the
conditional distribution of tables given t, or the so-called
exact distribution. Characterization of the �ber is crucial
for three statistical tasks: counting, sampling and opti-
mization. Diaconis and Sturmfels () provide one of the
fundamental results in algebraic statistics regarding sam-
pling from exact distributions.�ey de�ne aMarkov basis,
a set of integer valued vectors in the kernel of A, which
is a smallest set of moves needed to perform a 7random
walk over the space of tables and to guarantee connec-
tivity of the chain. In Hara et al. (), for example, the
authors useMarkov bases for exact tests in amultiple logis-
tic regression. �e earliest application of Markov bases,
counting and optimization was in the area of statistical
disclosure limitation for exploring issues of con�dentiality
with the release of contingency table data; for an overview,
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Asee Dobra et al. (), and for other related topics, see
Chen et al. (), Onn (), and Slavković and Lee
().

Graphical and Mixture Models
Graphical models (e.g., Lauritzen ()) are an active
research topic in algebraic statistics. Non-trivial problems,
for example, include complete characterization of Markov
bases for these models, and counting the number of solu-
tions of their likelihood equations. Geiger et al. ()
give a remarkable result in this direction: decomposable
graphical models are precisely those whose Markov bases
consist of squarefree quadrics, or, equivalently, those
graphical models whose maximum likelihood degree is .
More recently, Feliz et al. () made a contribution to the
mathematical �nance literature by proposing a newmodel
for analyzing default correlation.

7Mixture models, including latent class models,
appear frequently in statistics, however, standard asymp-
totics theory o�en does not apply due to the presence of
singularities (e.g., see Watanabe ()). Singularities are
created by marginalizing (smooth) models; geometrically,
this is a projection of the corresponding variety. Alge-
braically, mixture models correspond to secant varieties.
�e complexity of such models presents many interesting
problems for algebraic statistics; e.g., see Fienberg et al.
() for the problems of maximum likelihood estima-
tion and parameter identi�ability in latent class models.
A further proliferation of algebraic statistics has been sup-
ported by studying mixture models in phylogenetics (e.g.,
see Allman et al. ()), but many questions about the
geometry of these models still remain open.

Further Reading
�ere are many facets of algebraic statistics, including gen-
eralizations of classes of models discussed above: exper-
imental design, continuous multivariate problems, and
new connections between algebraic statistics and informa-
tion geometry. For more details see Putinar and Sullivant
(), Drton et al. (), Gibilisco et al. (), and ref-
erences given therein. Furthermore, there are many freely
available algebraic so�ware packages (e.g., ti (ti team),
CoCoA (CoCoATeam)) that can be used for relevant com-
putations alone, or in combinationwith standard statistical
packages.
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Definition and Relationship to Other
Modes of Convergence
Almost sure convergence is one of the most fundamen-
tal concepts of convergence in probability and statistics. A
sequence of random variables (Xn)n≥, de�ned on a com-
monprobability space (Ω,F ,P), is said to converge almost
surely to the random variable X, if

P({ω : lim
n→∞

Xn(ω) = X(ω)}) = .

Commonly used notations are Xn
a.s.
Ð→ X or limn→∞ Xn =

X (a.s.). Conceptually, almost sure convergence is a very
natural and easily understood mode of convergence; we
simply require that the sequence of numbers (Xn(ω))n≥
converges to X(ω) for almost all ω ∈ Ω. At the same time,
proofs of almost sure convergence are usually quite subtle.

�ere are rich connections of almost sure convergence
with other classical modes of convergence, such as con-
vergence in probability, de�ned by limn→∞ P(∣Xn − X∣ ≥
є) =  for all є > , convergence in distribution, de�ned
by limn→∞ Ef (Xn) = Ef (X) for all real-valued bounded,
continuous functions f , and convergence in Lp, de�ned by
limn→∞ E∣Xn − X∣p = . Almost sure convergence implies

convergence in probability, which again implies conver-
gence in distribution, but not vice versa. Almost sure con-
vergence neither implies nor is it implied by convergence in
Lp. A standard counterexample, de�ned on the probability
space [, ], equipped with the Borel σ-�eld and Lebesgue
measure, is the sequenceXn(ω) = [ j

k
, j+
k

](ω), if n = k+j,

k ≥ ,  ≤ j < k.�e sequence (Xn)n≥ converges to zero
in probability and in Lp, but not almost surely. On the same
probability space, the sequence de�ned by Xn = n/p [, 

n
]

provides an example that converges to zero almost surely,
but not in Lp.
Although convergence in probability does not imply

almost sure convergence, there is a partial result in this
direction. If (Xn)n≥ converges in probabilty to X, one can
�nd a subsequence (nk)k≥ such that Xnk

a.s.
Ð→ X.

Skorohod’s almost sure representation theorem is a
partial converse to the fact that almost sure convergence
implies convergence in distribution. If (Xn)n≥ converges
in distribution to X, one can �nd a sequence of random
variables (Yn)n≥ and a random variable Y such that Xn
and Yn have the same distribution, for each n, X and Y
have the same distribution, and limn→∞ Yn = Y almost
surely. Originally proved by Skorohod () for random
variables with values in a separable metric space, this rep-
resentation theorem has been extended by Dudley ()
to noncomplete spaces and later by Wichura () to
nonseparable spaces.
By some standard arguments, one can show that almost

sure convergence of (Xn)n≥ to X is equivalent to

lim
n→∞

P(sup
k≥n

∣Xk − X∣ ≥ є) = , for all є > .

�us almost sure convergence holds, if the series ∑k≥
P(∣Xk − X∣ ≥ є) converges. In this case, the sequence
(Xn)n≥ is said to converge completely to X.

Important Almost Sure Convergence
Theorems
Historically the earliest and also the best known almost
sure convergence theorem is the Strong Law of Large Num-
bers, established originally by Borel (). Given an i.i.d.
sequence (Xk)k≥ of random variables that are uniformly
distributed on [, ], Borel showed that


n
Sn

a.s.
Ð→ E(X),

where Sn := ∑nk= Xk denotes the partial sum. Later, this
was generalized to sequences with arbitrary distributions.
Finally, Kolmogorov () could show that the existence
of �rst moments is a necessary and su�cient condition for
the strong law of large numbers for i.i.d. random variables.
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AHsu and Robbins () showed complete convergence in
the law of large numbers, provided the random variables
have �nite secondmoments; BaumandKatz () showed
that this condition is also necessary.
Birkho� () proved the Ergodic �eorem, i.e., the

validity of the strong law of large numbers for station-
ary ergodic sequences (Xk)k≥ with �nite �rst moments.
Kingman () generalized this to the Subadditive Ergodic
�eorem, valid for doubly indexed subadditive process
(Xs,t) satisfying a certain moment condition. Doob ()
established the Martingale Convergence �eorem, which
states that every L-bounded submartingale converges
almost surely.

�e Marcinkiewicz-Zygmund Strong Law of Large

Numbers () is a sharpening of the law of large num-
bers for partial sums of i.i.d. random variables, stating that
for  ≤ p <  we have

lim
n→∞


n/p

n

∑
k=

(Xk − E(Xk)) =  a.s.,

if and only if the random variables have �nite p-th
moments. Note that for p =  this result is false as it would
contradict the central limit theorem (see 7Central Limit
�eorems).
For i.i.d. random variables with �nite variance σ  ≠ ,

Hartman andWintner () proved the Law of the Iterated
Logarithm, stating that

lim sup
n→∞


√
σ n log logn

n

∑
k=

(Xi − E(X)) =  a.s.,

and that the corresponding lim inf equals−. In the special
case of a symmetric7randomwalk, this theorem had been
established earlier by Khintchin ().�e law of the iter-
ated logarithm gives a very precise information about the
behavior of the centered partial sum.
Strassen () proved the Functional Law of the Iter-

ated Logarithm, which concerns the normalized partial
sum process, de�ned by

fn(
k

n
) :=


√
σ n log logn

k

∑
i=

(Xi − E(Xi)),  ≤ k ≤ n,

and linearly interpolated in between.�e randomsequence
of functions (fn)n≥ is almost surely relatively compact and
has the following set of limit points

K = {x ∈ C[, ] : x is absolutely continuous and

∫




(x
′
(t))


dt ≤ }.

�e functional lawof the iterated logarithmgives a remark-
ably sharp information about the behavior of the partial
sum process.

�e Almost Sure Invariance Principle, originally estab-
lished by Strassen () is an important technical tool
in many limit thorems. Strassen’s theorem states that for
i.i.d. random variables with �nite variance, one can de�ne
a standard Brownian motion (see 7Brownian Motion and
Di�usions)W(k) satisfying

n

∑
k=

(Xk − E(X)) − σW(n) = o(
√
n log logn), a.s..

Komlos et al. () gave a remarkable sharperning of the
error term in the almost sure invariance principle, showing
that for p >  one can �nd a standard Brownian motion
(Wt)t≥ satisfying

n

∑
k=

(Xk − E(X)) − σW(n) = o(n
/p

), a.s..

if and only if the random variables have �nite p-th
moments. In this way, results that hold for Brownian
motion can be carried over to the partial sum process.
E.g., many limit theorems in the statistical analysis of
change-points are proved by a suitable application of
strong approximations.
In the s, Brosamler, Fisher and Schatte indepen-

dently discovered the Almost Sure Central Limit �eo-
rem, stating that for partial sums Sk := ∑

k
i= Xi of an

i.i.d. sequence (Xi)i≥ with mean zero and variance σ 

lim
n→∞


logn

n

∑
k=


k
{Sk/σ

√
k≤x} = Φ(x),

where Φ(x) = ∫
x

−∞
√
π
e−t

/dt denotes the standard nor-
mal distribution function.�e remarkable feature of this
theorem is that one can observe the central limit theorem,
which in principle is a distributional limit theorem, along
a single realization of the process.
In , Glivenko and Cantelli independently discov-

ered a result that is now known as the Glivenko–Cantelli
�eorem (see 7Glivenko-Cantelli �eorems). Given a
sequence (Xk)k≥ of i.i.d random variables with distribu-
tion function F(x) := P(X ≤ x), we de�ne the empir-
ical distribution function Fn(x) = 

n ∑
n
k= {Xk≤x}. �e

Glivenko–Cantelli theorem states that

sup
x∈R

∣Fn(x) − F(x)∣
a.s.
Ð→ .

�is theorem is sometimes called the fundamental theorem
of statistics, as it shows that it is possible to recover the
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distribution of a random variable from a sequence of
observations.
Almost sure convergence has been established for U-

statistics, a class of sample statistics of great importance in
mathematical statistics. Given a symmetric kernel h(x, y),
we de�ne the bivariate U-statistic

Un := (
n


)

−

∑
≤i<j≤n

h(Xi,Xj).

Hoe�ding () proved theU-Statistic Strong Law of Large
Numbers, stating that for any integrable kernel and i.i.d.
random variables (Xi)i≥,

Un
a.s.
Ð→ Eh(X,X).

Aaronson et al. () established the corresponding
U-Statistic Ergodic�eorem, albeit under extra conditions.
�eU-statistic Law of the Iterated Logarithm, in the case of
i.i.d. data (Xi) was established by Sen (). In the case
of degenerate kernels, i.e., kernels satisfying Eh(x,X) = ,
for all x, this was sharpened by Dehling et al. () and
Dehling (). �eir Degenerate U-Statistic Law of the
Iterated Logarithm states that

lim sup
n→∞


n log logn ∑

≤i<j≤n
h(Xi,Xj) = ch, a.s.,

where ch is the largest eigenvalue (see7Eigenvalue, Eigen-
vector and Eigenspace) of the integral operator with kernel
h(x, y). A functional version as well as an almost sure
invariance principle were established by the same authors.

Proofs of Almost Sure Convergence
In most situations, especially in applications in Statistics,
almost sure convergence is proved by identifying a given
sequence as a a continuous function of a sequence of a
type studied in one of the basic theorems on almost sure
convergence.

�e proofs of the basic almost sure convergence
theorems are quite subtle and require a variety of tech-
nical tools, such as exponential inequalities, maximal
inequalities, truncation techniques and the Borel-Cantelli
lemma (see 7Borel–Cantelli Lemma and Its Generaliza-
tions).
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Areal Data
Areal data yi are data that are assigned to spatial regions
Ai, i = , , . . . ,n. Such data and spatial areas naturally arise
at di�erent levels of spatial aggregation, like data assigned

to countries, counties, townships, political districts, con-
stituencies or other spatial regions that are featured by
more or less natural boundaries. Examples for data yi
might be the number of persons having a certain chronic
illness, number of enterprises startups, average income,
population density, number of working persons, area of
cultivated land, air pollution, etc. Like all spatial data, also
areal data aremarked by the fact that they exert spatial cor-
relation to the data from neighboring areas. Tobler ()
expresses this in his �rst law of geography: “everything is
related to everything else, but near things are more related
than distant things.” It is this spatial correlation which
is investigated, modeled and taken into account in the
analysis of areal data.
Spatial proximity matrix. A mathematical tool that

is common to almost all areal analysis methods is the so-
called (n × n) spatial proximity matrixW, each of whose
elements, wij, represents a measure of spatial proximity of
area Ai and area Aj. According to Bailey and Gatrell ()
some possible criteria might be:

● wij =  if Aj shares a common boundary with Ai and
wij =  else.

● wij =  if the centroid of Aj is one of the k nearest
centroids to that of Ai and wij =  else.

● wij = d
γ

ij if the inter-centroid distance dij < δ (δ > ,
γ < ); and wij =  else.

● wij =
lij
li
, where lij is the length of common boundary

between Ai and Aj and li is the perimeter of Ai.

All diagonal elements wii are set to .�e spatial proxim-
ity matrix W must not be symmetric. For instance, case
 and case  above lead to asymmetric proximity matri-
ces. For more proximity measures we refer to Bailey and
Gatrell () and any other textbook on areal spatial
analysis like Anselin ().

Spatial Correlation Measures
Globalmeasures of spatial correlation.�e globalMoran
index I, �rst derived byMoran (), is a measure for spa-
tial correlation of areal data having proximity matrix W.
De�ning S = ∑ni=∑

n
j= wij and ȳ, the mean of the data yi,

i = , , . . . ,n, the global Moran index may be written

I =
n

S

∑
n
i=∑

n
j= wij(yi − ȳ)(yj − ȳ)

∑
n
i= (yi − ȳ)

 . ()

�us the global Moran index may be be interpreted as
measuring correlation between y = (y, y, . . . , yn)T and
the spatial lag-variableWy. But the Moran index does not
necessarily take values between − and . Its expectation
for independent data yi is E[I] = − 

n− . Values of the
Moran index larger than this value thus are an indication of
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positive global spatial correlation; values smaller than this
value indicate negative spatial correlation.
A global correlation measure similar to the variogram

known from classical geostatistics is the Geary-index
(Geary’s c, Geary ):

c =
n − 
S

∑
n
i=∑

n
j= wij(yi − yj)



∑
n
i= (yi − ȳ)

 ()

Under the independence assumption for the yi its expecta-
tion is E[c] = . Values of c larger than  indicate negative
correlation and values smaller than  positive correlation.

�e signi�cance for Moran’s I and Geary’s c may be
tested by means of building all n! permutations of the yi,
i = , , . . . ,n, assigning them to the the di�erent areas Aj,
j = , , . . . ,n, calculating for each permutation Moran’s I
or Geary’s c and then considering the distributions of these
permuted spatial correlation statistics. True correlation
statistics at the lower or upper end of these distributions
are an indication of signi�cance of the global correlation
measures.
Amap o�en useful for detecting spatial clusters of high

or low values is the so-called LISA map. It may be shown
that Moran’s I is exactly the upward slope of the regres-
sion line between the regressors (y − n ȳ) and the spatial
lag-variables W(y − n ȳ) as responses, where the matrix
W is here standardized to have rows which sum up to one.
�e corresponding scatterplot has four quadrants PP, NN,
PN and NP, with P and N indicating positive and negative
values for the regressors and responses. If one codes these
four classes into which the pairs [yi − ȳ,∑nj= wij(yj − ȳ)]
may fall with colors and visualizes these colors in a map
of the areas one can easily detect clusters of areas that are
surrounded by low or high neighboring values.
Both statistics, theMoran I andGeary’s cmake a global

assumption of second order stationarity, meaning that the
yi, i = , , . . . ,n all have the same constant mean and vari-
ance. If one doubts that this condition is fully met one has
to rely on local measures of spatial correlation, for local
versions of Moran’s I and Geary’s c see Anselin ().

Spatial Linear Regression
A problem frequently occuring in areal data analysis is the
regression problem. Response variables yi and correspond-
ing explanatory vectors xi are observed in spatial areas Ai,
i = , , . . . ,n and one is interested in the linear regression
relationship yi ≈ xTi β, where β is an unknown regres-
sion parameter vector to be estimated. Subsuming all row
vectors xTi in the (n × p) design matrix X and writing
y = (y, y, . . . , yn)T the ordinary 7least squares solution
to this regression problem, which does not take account

of spatial correlation, is known to be β̂ = (XTX)−XTy. If
the data in y are known to be correlated the above ordi-
nary least squares estimator is known to be ine�cient and
statistical signi�cance tests in this regression model are
known to be misleading. Problems may be resolved by
considering the generalized least squares estimator β̂ =

(XTΣ−X)−XTΣ−y, where the covariance matrix Σ is
measuring the correlation between the data in y. All regres-
sion procedures used in areal data analysis deal more or
less with the modeling and estimation of this covariance
structure Σ and the estimation of β. In all subsequent sec-
tions we will assume that the spatial proximity matrixW is
standardized such that its rows sum up to one.
Simultaneous autoregressive model (SAR).�e SAR

model is given as follows:

y = Xβ + u, u = λWu + є. ()

Here λ is an unknown parameter, − < λ < , mea-
suring spatial correlation; the parameters λ and β are to
be estimated. �e error vector є has uncorrelated com-
ponents with constant unknown variances σ , like u it
has expectation zero.�e two equations may be combined
to get

y = λWy +Xβ − λWXβ + є

Obviously y ismodeled as being in�uenced also by the spa-
tial lag-variablesWy and the spatial lag-regressionWXβ.
�e coe�cient λ is measuring the strength of this in�u-
ence. �e covariance matrix of u may be shown to be
cov[u] = σ ((In−λW)

T
(In−λW))

−. An estimation pro-
cedure for the SARmodel is implemented in the R-package
spdep, Bivand (). It is based on the Gaussian assump-
tion for y and iteratively calculatesmaximum (pro�le) like-
lihood estimates for σ  and λ and generalized least squares
estimates for β based on the covariance matrix cov[u] and
the estimates for σ  and λ calculated a step before.
Spatial lagmodel.�e so-called spatial lag model may

be written
y = λWy +Xβ + є. ()

It is simpler in structure than the SAR model because the
lag-regression term −λWXβ is missing. For its estimation,
again, an iterative pro�le likelihood procedure similar to
the SAR procedure may be used.
Spatial Durbin model.�e spatial Durbin model is a

generalization of the SAR model and given as

y = λWy +Xβ +WXγ + є, ()

withWXγ having its own regression parameter vector γ.
By means of the restriction γ = −λβ the Durbin model
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Abecomes equivalent to a SAR model.�e so-called com-
mon factor test (Florax and de Graaf ), a likelihood
ratio test, can be used to decide between the two hypothe-
ses, - SAR-model and spatial Durbin model. As an alter-
native to the above models one may also use a SAR model
with a lag-error component

y = Xβ + λWє + є. ()

Deciding between models. For the investigation
whether a SAR model, a spatial lag model or ordinary
least squares give the best �t to the data one may adopt
Lagrange multiplier tests as described in Florax and de
Graaf (). Interestingly, these tests are based on ordi-
nary least squares residuals and for this reason are easily
calculable. Breitenecker () gives a nice overview on all
the possibilities related to testing models.
Geographically weighted regression. Fotheringham

et al. () propose, as an alternative to the above men-
tioned regression models, geographically weighted regres-
sion. �e proposed methodology is particularly useful
when the assumption of stationarity for the response
and explanatory variables is not met and the regression
relationship changes spatially. Denoting by (ui, vi) the
centroids of the spatial areas Ai, i = , , . . . ,n, where
the responses yi and explanatory vectors xi are observed,
the model for geographically weighted regression may be
written

yi = xTi β(ui, vi) + єi, i = , , . . . ,n. ()

�e regression vector β(ui, vi) is thus dependent on the
spatial location (ui, vi) and is estimated by means of a
weighted least squares estimator that is locally dependent
on a diagonal weight matrix Ci:

β̂(ui, vi) = (XTCiX)−XTCiy

�e diagonal elements c(i)jj of Ci are de�ned by means

of a kernel function, e.g. c(i)jj = exp(−dij/h). Here dij
is a value representing the distance beetween Ai and Aj;
dij may either be Euclidean distance or any other met-
ric measuring distance between areas. Further, h is the
bandwidth measuring how related areas are and can be
determined bymeans of crossvalidating the residuals from
the regression or based on the 7Akaike’s information cri-
terion (Brunsdon et al. ). Selecting the bandwidth h
too large results in oversmoothing of the data. On the other
hand a bandwidth too small allows for too less data during
estimation.
All areal analysis methods discussed so far are imple-

mented in the R-packages spdep and spgwr, (Bivand ,
). Methods for counting data, as they frequently

appear in epidemiology, and Bayesian methods are not
dealt with here; for those methods the interested reader is
referred to Lawson ().

Spatial Interaction Data
�is is a further category of spatial data which is related to
modeling the “�ow” of people and/or objects between a set
of origins and a set of destinations. In contrast with areal
(and geostatistical) data, which are located at points or in
areas, spatial interaction data are related to pairs of points,
or pairs of areas. Typical examples arise in health services
(e.g., �ow to hospitals), transport of freight goods, popula-
tion migration and journeys-to-work. Good introductory
material on spatial interaction models can be found in
Haynes and Fotheringham ().

�e primary objective is to model aggregate spatial
interaction, i.e. the volume of �ows, not the �ows at an
individual level. Havingm origins and n destinations with
associated �ow data considered as random variables Yij
(i = , . . . ,m; j = , . . . ,n), the general spatial interaction
model is of the form

Yij = µij + εij; i = , . . . ,m; j = , . . . ,n ()

where E(Yij) = µij and εij are error terms with E(εij) = .
�e goal is then to �nd suitable models for µij involving
�ow propensity parameters of the origins i, attractiveness
parameters of the destinations j, and the e�ects of the “dis-
tances” dij between them. Here, the quantities dij may be
real (Euclidean) distances, travel times, costs of travel or
any other measure of the separation between origins and
destinations.One of themostwidely used classes ofmodels
for µij is the so-called gravity model

µij = αiβj exp(γ dij) ()

involving origin parameters αi, destination parameters βj
and a scaling parameter γ. Under the assumption that the
Yij are independent Poisson random variables with mean
µij, this model can be treated simply as a particular case of
a generalised linear model with a logarithmic link. Model
�tting can then proceed by deriving maximum likelihood
estimates of the parameters using iteratively weighted least
squares (IRLS) techniques.�e above gravity models can
be further enhanced when replacing the parameters βj by
some function of observed covariates xj = (xj, . . . , xjk)T

characterising the attractiveness of each of the destinations
j = , . . . ,n. Again, this is usually done in a log-linear way,
and the model becomes

µij = αi exp(g(xj, θ) + γ dij) ()
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where g is some function (usually linear) of the vector of
destination covariates and a vector of associated param-
eters θ. Contrary to (), which reproduces both the total
�ows from any origin and the total observed �ows to each
destination, the new model () is only origin-constrained.
�e obvious counterpart to () is onewhich is destination-
constrained:

µij = βj exp(h(z i,ω) + γ dij)

where h is some function of origin characteristics z i and
a vector of associated parameters ω. Finally, when model-
ing both αi and βj as functions of observed characteristics
at origins and destinations, we arrive at the unconstrained
model

log µij = h(z i,ω) + g(xj, θ) + γ dij ()
In population migration one o�en uses a particular form
of (), where z i and xj are taken to be univariate variables
meaning the logarithms of the population Pi and Pj at
origin i and destination j, respectively. Adding an overall
scaling parameter τ to re�ect the general tendency for
migration, the following simple model results:

Yij = τP
ω
i P

θ
j exp(γ dij) + εij ()

Likewise, in all the above models one can introduce more
complex distance functions than exp(γ dij). Also, as men-
tioned before, dij could be replaced by a general separation
term sij embracing travel time, actual distance and costs of
overcoming distance.

�e interaction models considered so far are only
models for µij, the mean �ow from i to j. �us, they
are only �rst order models, no second order e�ects are
included and the maximum likelihood methods for esti-
mating the parameters of the gravity models rest on the
explicit assumption that �uctuations about the mean are
independent. Up to now, there has been only little work
done on taking account of spatially correlated errors in
interaction modeling. To address such problems, pseudo-
likelihood-methods are in order. Good references for fur-
ther reading on spatial interaction models are Upton and
Fingleton (), Bailey andGatrell () andAnselin and
Rey ().
Spatial interaction models have found broad attention

among (economic) geographers and within the GIS com-
munity, but have received only little attention in the spatial
statistics community.�e book by Anselin and Rey ()
forms a bridge between the twodi�erentworlds. It contains
a reprint of the original paper by Getis (), who �rst
suggested that the family of spatial interaction models is
a special case of a general model of spatial autocorrelation.
Fischer et al. () present a generalization of the Getis-
Ord statistic which enables to detect local non-stationarity

and extend the log-additive model of spatial interaction to
a general class of spatial econometric origin-destination
�ow models, with an error structure that re�ects ori-
gin and/or destination autoregressive spatial dependence.
�ey �nally arrive at the general spatial econometricmodel
(), where the design matrix X includes the observed
explanatory variables as well as the origin, destination and
separation variables, andW is a row-standardized spatial
weights matrix.
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Introduction
�e Analysis of Covariance (generally known as
ANCOVA) is a statistical methodology for incorporat-
ing quantitatively measured independent observed (not
controlled) variables in a designed experiment. Such a
quantitatively measured independent observed variable
is generally referred to as a covariate (hence the name
of the methodology – analysis of covariance). Covariates
are also referred to as concomitant variables or control
variables.
If we denote the general linear model (GLM) associ-

ated with a completely randomized design as

Yij = µ + τj + εij, i = , . . . ,nj, j = , . . . ,m

where
Yij = the ith observed value of the response variable at the
jth treatment level
µ = a constant common to all observations
τj = the e�ect of the jth treatment level
εij = the random variation attributable to all uncon-
trolled in�uences on the ith observed value of the response
variable at the jth treatment level

For this model the within group variance is considered to
be the experimental error, and this implies that the treat-
ments have similar e�ects on all experimental units. How-
ever, in some experiments the e�ect of the treatments on
the experimental units varies systematically with some

characteristic that varies across the experimental units. For
example, one may test for a di�erence in the e�cacy of
a new medical treatment and an existing treatment pro-
tocol by randomly assigning the treatments to patients
(experimental units) and testing for a di�erence in the
outcomes. However, if the 7randomization results in the
placement of a disproportionate number of young patients
in the group that receives the new treatment and/or place-
ment of a disproportionate number of elderly patients in
the group that receives the existing treatment, the results
will be biased if the treatment is more (or less) e�ective on
young patients than it is on elderly patients. Under such
conditions one could collect additional information on the
patients’ ages and include this variable in the model.�e
resulting general linear model

Yij = µ + τj + βXij + εij, i = , . . . ,nj, j = , . . . ,m.

where
Xij = the ith observed value of the covariate at the jth treat-
ment level,
β = the estimated change in the response that corresponds
to a one unit increase in the value of the covariate at a �xed
level of the treatment

is said to be a completely randomized design ANCOVA
model and describes an experimental design GLM one
factor experiment with a single covariate.
Note that the addition of covariate(s) can accompany

many treatment and design structures.�is article focuses
on the simple one way treatment structure in a com-
pletely randomized design for the sake of simplicity and
brevity.

Purpose of ANCOVA
�ere are three primary purposes for including a covariate
in the 7analysis of variance of an experiment:

. To increase the precision of estimates of treatment
means and inferences on di�erences in the response
between treatment levels by accounting for concomi-
tant variation on quantitative but uncontrollable vari-
ables. In this respect covariates are the quantitative
analogies to blocks (which are qualitative/categorical)
in that they are () not controlled and () used to
remove a systematic source of variation from the
experimental error. Note that while the inclusion of a
covariate will result in a decrease in the experimental
error, it will also reduce the degrees of freedom asso-
ciated with the experimental error, and so inclusion of
a covariate in an experimental model will not always
result in greater precision and power.
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. To allow for the assessment of the nature of the rela-
tionship between the covariate(s) and the response
variable a�er taking into consideration the treatment
e�ects. In this respect covariates are analogous to inde-
pendent variables in linear regression, and their asso-
ciated slopes can provide important insight into the
nature of the relationship between the response and the
covariate.

. To statistically adjust comparisons of the response
between groups for imbalances in quantitative but
uncontrollable variables. In this respect covariates are
analogous to strati�cation and are of particular impor-
tance in situations where strati�cation on the covariate
is impractical or infeasible.

Applications of ANCOVA
Typical applications of analysis of covariance include:

● Clinical trials in which quantitative but uncontrollable
variables such as the weight, height, and age of the
patients may in�uence the e�ectiveness of a treatment
protocol.

● Marketing research in which quantitative but uncon-
trollable variables such as the pretest rating of a product
given by a respondent may in�uence the respondent’s
posttest rating (i.e., a�er exposure to the test condition)
of the product.

● Education experiments in which quantitative but
uncontrollable variables such as the age, intelli-
gence (if this can be measured), and prior scholastic
performance of the students may in�uence the e�ec-
tiveness of a pedagogical approach.

● Agricultural experiments in which quantitative but
uncontrollable variables such as rainfall and histori-
cal yield of fruit bearing trees may in�uence the yield
during an experiment.

Comparing Treatments in ANCOVA
Least squares means (or LS means) are generally used
to compare treatment e�ects in experiments that include
one or more covariates. LS means (which are sometimes
referred to as marginal means, estimated marginal means,
or adjusted treatment means) are the group means when
the covariate is set equal to its grandmeanXm (mean of the
covariate over all observations across all treatments).�ese
are easily calculated by substituting the grand mean of the
covariate into the estimated general linear model, i.e.,

Ŷj = µ + τj + βXm, j = , . . . ,m

Standard errors for LS means are typically calculated and
used (in conjunctionwith the7asymptotic normality of LS

means) to conduct inference on individual LS means and
contrasts based on the LSmeans.

Assumptions of ANCOVA
In addition to the standard ANOVA assumptions:

● Independence of error terms
● Homogeneity of variance of the error terms across
treatments

● Normality of the error terms across treatments

One must also consider the regression assumptions when
performing statistical inference with ANCOVA. �e
regression assumptions include:

● A linear relationship exists between the covariate and
the response variable.
If no relationship exists between the covariate and

response, there is no reason to include the covariate
in the experiment or resulting model. If the relation-
ship between the covariate and the response variable
is nonlinear, the inclusion of a covariate in the model
will not remove all variation in the observed values of
the response that can potentially be accounted for by
the covariate. �e nature of the relationship between
the covariate and the response can be assessed with
scatter plots of these two variables by treatment. If a
nonlinear relationship exists between the covariate and
the response, one can utilize a polynomial ANCOVA
model.

● Homogeneity of the regression slopes associated with
the covariate (i.e., parallel regression lines across treat-
ments).

�e calculations of the LS means are predicated
on the lack of existence of a response by covariate
interaction. If this assumption is violated, the adjust-
ment to the response variable for a common value of
the covariate is misleading. �is assumption can be
assessed through either scatter plots of the covariate
and the response by treatment or through the inclusion
of a treatment-covariate interaction in the model.

If the sample results suggest that any of these assumptions
are not satis�ed, inference based on the model may not be
valid.

Alternatives to ANCOVA
Bonate () provides a good discussion of alternatives
to ANCOVA in pretest-posttest designs; he considers the
relative merits of di�erence scores, relative change func-
tions, various blocking methods, and repeated-measures
analysis. Several authors have suggestedmore general non-
parametric alternatives to ANCOVA based on an analysis
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Aof covariance of the ranks of the response and covari-
ance. Some notable examples of these approaches have
been suggested byQuade (, ), Puri and Sen (),
McSweeney and Porter (), Burnett and Barr (),
Shirley (), Conover and Iman (), Chang (),
Lesa�re and Senn (), and Tsangari andAkritas ().
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Analysis of Multivariate
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Asghar Ali
Professor and Chairman
Bahauddin Zakariya University, Multan, Pakistan

Agricultural research ismost o�enly based onobservational
studies and experimentation resulting in multi-response
variables. �e selection of appropriate variety to grow;
amount and types of fertilizers, insecticides and pesticides
to apply; the irrigation system to use; the plant sowing
technology to apply and to assess the soil fertility through
chemical analysis of macro and micro nutrients avail-
able in the soil are the major areas of interest for the
researcher to work on for the improvement of the agricul-
tural productivity in terms of quality and quantity.�e role
of Statistics in planning agricultural research, designing
experiments, data collection, analysis, modeling and inter-
pretation of agricultural results is very well established.
�e basic principles and theoretical development of exper-
imental designs pioneered by R. A. Fisher are the result
of collaborative work of agricultural scientists and statisti-
cians. In the process of experimentation and observational
studies, the researcher is keen to have as many data infor-
mation as possible so that nothing is le� unattended related
to the phenomenon under study as there will be no chance
to repeat the experiment till the next season of the crop
and it will not be less than a miracle if data from one year
of the crop is consistent with the results of second year, no
matter how much care is taken to keep the experimental
conditions identical.
Agricultural data obtained through experimentation is

initially analyzed using 7analysis of variance technique
and then depending on the nature of treatments/factors
applied, either the approach of multiple comparisons
or 7response surface methodology is used to explore
further the hidden features of the data. For example, the
experimenter might be interested to compare di�erent
varieties of a particular crop such that there are two local
varieties (V,V) in practice; three varieties are imported
(V,V,V) and two new varieties (V,V) are devel-
oped by a local agricultural institute. If results obtained
from analysis of variance conclude that performance of
the varieties is signi�cantly di�erent from each other
then obvious questions arise are to test the di�erence
between the following variety comparisons: [V and V];
[V and V]; [(V,V) and (V,V)]; [(V,V,V,V)
and (V,V,V)]; and if V is a hybrid variety, then one
has two more comparisons to test i.e., [V with (V,V)]
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and [V with V].�ese contrasts are orthogonal to each
other but it will not always be the case, other techniques of
multiple comparisons will have to be used then, which are
available in almost all the books on experimental designs.
On the other hand, if multifactor experiments are con-
ducted to determine the appropriate levels of the applied
factors on which optimum response is achieved. For this
purpose data sets are modeled in adequate functional
forms and the researcher is intended to �t simple func-
tional form. Ordinary polynomials are the most popular
functional forms which are used to model experimental
data from many �elds of scienti�c research. If �rst order
polynomial is �tted, the researcher very simply states that
the concerned factor has linear e�ect and the interpreta-
tion is made accordingly that with increase of levels of
factor will result in increase (or decrease) in the response.
�e second order polynomials are used with the expec-
tation that it will be possible to identify the levels of the
applied factors to get the optimum response. A number of
response functions that have been widely used by the agri-
cultural and biological researchers have been discussed by
Mead and Pike (). It should not be taken as granted
that one response function considered applicable to one
sort of situation will also be applicable to other similar
situations; it is advisable that graphical approach be used
to guess the appropriate functional form of the response
under consideration. An extremely useful concept that is
revealed by Nelder () is known as Inverse Polynomial
Response Functions (IPRF). It emphasizes that in agricul-
tural research the e�ect of increasing a factor inde�nitely
is either to produce a saturation e�ect, in which case the
response does not exceed a �nite amount, or to produce
a toxic e�ect, in which case the response eventually fall to
zero and the response curve has no build-in-symmetry.
Nelder () and Pike () advocated these surfaces

as giving responses that are nonnegative and bounded if
regression coe�cients are constrained to be positive and
it is further assumed that Var(Y) ∝ [E(Y)]. Exten-
sion in the ideas has been developed by Nelder and
Wedderburn () and McCullagh and Nelder () for
the response variables that may not be normal and that the
expected response may be a function of the linear predic-
tors rather than just the linear predictors itself. Ali ()
and Ali et al. () have objected on placing constrains
on the parameters as it will violate all the properties of
good estimators and will no longer follow the distribu-
tional structure required for valid inferences.�eir expe-
rience of examining many sets of data leads them not to
expect all regression coe�cients to be positive. Taking into
account the error structure and functional form used for
IPRF, Ali () proposed the form of a response function

called as Log Linear Response Functions (LLRF) based on
the logarithmic transformation of the response variable
and assuming that logY ∼ N(E(logY), σ ).�e estima-
tion of regression coe�cients achieved by carrying out a
multiple regression of logY on the terms required �tting
the data adequately; the resulting estimators are therefore
Minimum Variance Linear Unbiased Estimators. It is sim-
ple to estimate the variance-covariance matrix of these
estimators and to test hypotheses concerning parameters
by the usual linear regression methods. On the theoretical
grounds the LLRF model therefore has much to commend
it. �e assumption that logYi follows the normal distri-
bution may not always be true; in such cases it is recom-
mended that Box-Cox family of transformation may be
used under the same structure of the response function as
has been used for LLRF and IPRF.
In order to produce an adequate prediction the

researcher is usually uncertain as to which of the large
number of terms should be included in the �nalmodel.�e
main point to bear in mind is that it should have as many
terms as necessary so that maximum variation of the data
is explained and as few terms as possible so that it can easily
be interpreted. Ali () argued that for summarizing the
data from agricultural experiments the terms in the �nal
model are required to be selected in a conforming order
by preferring main e�ect terms over the interactions and
lower order terms over the higher. It is further to remem-
ber that the inverse terms describe the rising ridge of the
surfaces, the linear terms describe the optimum region and
the higher degree terms contribute in explaining the falling
portion of the surfaces. It is therefore recommended that
for building the appropriate model one should concentrate
on selection the inverse and linear terms along with their
associated interaction terms. One who is not convinced
with such types of model building method has the option
to use the approach established by Nelder ().

�e methods used for selection of �nal model are
mainly based on the Minimum Mean Square Error crite-
rion. It is possible to �nd more than one models which
ful�lls this criterion. In such cases one should select the
one which has reasonable shape of the response surface,
capable to determine the values of quantitative factors at
which the response is an optimum, statistically signi�cant
regression coe�cients and simple functional form.

�ere is no ambiguity to recognize the agricultural
research as multifactor and multi-response and that these
responses are measured at di�erent stages of the maturity
of the crop and that these are interrelatedwith one another.
�e univariate analyses of these variables therefore have
partial impact on the true �ndings of research.Multivariate
analyses are therefore natural and essential to consider the
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Adata by giving due weight to the interrelationships among
the variables under study. One possible approach which is
widely used by the researchers is to study the correlation
matrix of the variables. �is approach only facilitates to
assess the relationship among the pairs of variables and it
can be extended to triplets of variables by considering the
partial correlations and the multiple correlations among
those. As a result there would be 


p(p + ) pairs and

triplets to consider and it will certainly be confusing if the
number p of variables under consideration is large.
To overcome this di�culty, Principal Component

Analysis (PCA) can be used. It is a multivariate technique
that has its aim the explanation of relationships among
several di�cult-to-interpret, correlated variables in terms
of a few conceptually meaningful components which are
uncorrelatedwith each other and are capable of accounting
for nearly all the variation present in the observed data.
PCA therefore �nds a linear transformation of original
variables into a new set of variables called as principal
components which are uncorrelated with each other; are
capable of accounting for the variation of the obtained data
and are derived in such a way that the �rst few of them
can o�en provide enough information about the data and
so the dimensionality of the problem can considerably be
reduced.�e variables with higher component loadings in
a particular principal component are considered to be the
important ones and it is assumed that the principal com-
ponent is the representative of these variables; hence it is
interpreted only in terms of these variables.�is approach
of interpretation of principal components is acceptable
if principal components are extracted using the correla-
tion matrix R.�e variance–covariance matrix Σ is as well
used to derive principal components; since the principal
component technique is scale dependent, the principal
component loadings with this approach will therefore be
much in�uenced by the unit of the measurements of the
variables under consideration, hence, the interpretation
of principal components just based on the magnitude of
the loading may become questionable and misleading. Ali
et al. () suggested using the correlation between the
original variables and the principal component for selec-
tion of representative variables in a particular principal
component instead of using principal component loadings.
PCA is extremely useful technique when interest

lies in investigating the interrelationship within a set
of variables; when the relationship of two sets of vari-
ables, within and among the sets is of interest, the PCA
is not a valid technique. �e agricultural researchers
always encounter with such types of problems where
the assessment of relationship among and within the

twosets is essential e.g. the interdependence of nutri-
tional status and vegetative related characteristics with the
crop yield related characteristics is pivotal. For such cases,
7Canonical Correlation Analysis (CCA) technique devel-
oped by Hotelling () is of great bene�t. It has certain
maximal properties similar to those of PCA and in a way is
an extension of themultiple regression analysis.�e object
of this approach is to �nd the linear functions of the vari-
ables for each of the sets such that the correlation between
these linear functions is as high as possible. A�er locat-
ing such a pair of linear functions which are maximally
correlated with each other, we look for other pairs of lin-
ear functions which are maximally correlated subject to
the restriction that the new pair of linear functions must
be uncorrelated with all other previously located func-
tions. For the purpose of interpretation of the results, it
is proposed to use correlation between the canonical vari-
ates and the original variables instead of canonical weights
as has been already proposed for interpretation of PCA
results. Details of PCA and CCA may be found in Mardia
et al. () and Jolli�e ().
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Analysis of variance is the name given to a collection of sta-
tistical methods originally used to analyze data obtained
from experiments.�e experiments make us of a quantita-
tive dependent variable, also known as a metric variable
or an interval or ratio variable, and one or more qual-
itative independent variables, also known as categorical
or nominal variables.�ese analysis methods grew out of
agricultural experiments in the beginning of the twentieth
century, and the great English statistician Sir Ronald Fisher
developed many of these methods. As an example, the
dependent variable could be the yield in kilos of wheat
from di�erent plots of land and the independent variable
could by types of fertilizers used on the plots of land.

Experimental Design
�e way an experiment is run a�ects the particular anal-
ysis of variance method used for the analysis of the data.
Experiments are designed according to di�erent plans, and
the choice of the design of the experiment a�ects which
analysis of variance method being used. Without going

into details about designs of experiments, an experiment
could follow a factorial design, a randomized block design,
a Latin square design, etc.�ere exist too many designs of
experiments and accompanying analysis of variancemeth-
ods for the analysis of the resulting data to cover all of them
in this short presentation. But it is possible to present the
underlying features of all analysis of variance methods.

Analysis of Variance and Multiple
Regression
But �rst it is worth noting that analysis of variance is
closely related to regression analysis. Indeed, it is possible
to see both analyses as special cases of the so-called gen-
eral linear model. In particular, using 7dummy variables
for the independent variables in analysis of variance, the
analysis quickly turns into a regression analysis.�e main
di�erence is that when data are collected through a prop-
erly designed experiment, it is possible to conclude that
there is a causal e�ect of the independent variable(s) on
the dependent variable. When data are collected through
observational, studies there may be a causal e�ect of the
independent variable(s) or not.

Statistical Software
Much of the early work on analysis of variance consisted
of �nding e�cient ways of making the necessary com-
putations with the use of simple calculators. With the
introduction of modern statistical so�ware for electronic
computers, this line of work is now less important. Instead,
statisticians have worked on showing the similarities of
the computations needed for both analysis of variance and
multiple regression, and the old distinction between the
two approaches to data analysis is no longer of any impor-
tance. However, statistical so�ware packages still make a
distinction between the two, and the output from the two
methods o�en look very di�erent.

One-Way Analysis of Variance
�is name is given to the design where there is one inde-
pendent nominal variable with several categories and a
quantitative dependent variable with a unit of measure-
ment and o�en ameaningful zero. An example of an exper-
iment could be where students are randomly assigned to
two di�erent groups and the students in one group were
taught using a new method of teaching while the students
in the second group, as a control group, were taught using
the old method.�e random assignment to the di�erent
groups means that the e�ects of all other variables, for
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Aexample gender, is canceled out, and any observed di�er-
ence between the two groups is causally due to the teach-
ing method being used. In this simple case, the statistical
method is the same as the t-test for the di�erence between
two groups. From a regression point of viewwe could use a
dummy variable and assign the value  to all the students in
the control group and the value  to all the students in the
experiment group. In this case, the intercept of the regres-
sion line would equal the mean of the dependent variable
for the control group and the slope of the line would equal
the di�erence between the means of the two groups.�us,
the t-test for the null hypothesis that the population regres-
sion line has zero slop becomes the same as the t-test for
the di�erence between the two means.

�e fundamental question in an analysis of variance
is whether the population means for di�erent groups
are equal or not. But the methods for analysis of variance
use variances to answer the question about means, thus
the name analysis of variance. �e analysis is based on
identifying two factors that determine the values of the
dependent variable. One such factor is the net e�ect of
all factors except the independent variable, known as the
residual variable, and the other factor is the independent
variable.

The Residual Sum of Squares
If the residual variable had no e�ect, then all the values
of the dependent variable for the control group would be
equal to each other, and all the values of the dependent
variable for the experimental group would be equal to each
other.�e best estimates of these two values would be the
mean of the dependent variable for the group. To the extent
that the values within each group are not equal, is due to
the residual variable.�us, the e�ect of the residual vari-
able for a single observation can be seen as the di�erence
between the observed value and the group mean. For each
observation we now have such a di�erence. One way to
summarize the values of these di�erences for a group is to
square each di�erence and add all these squares. We then
have a sum of squares for each of the two groups, and by
adding these two sums we have a measure of the overall
e�ect of the residual variable. If the dependent variable is
known as Y and yij is the ith observation in the jth group
and yj is the mean in the jth group, then the residual sum
of squares RSS can be written

RSS =∑∑(yij − yj)
.

Note that there are many other ways we could com-
bine these di�erences. For example, we could have taken
the absolute value of each di�erence and added those

di�erences instead of using squares.�us, the �nal conclu-
sion from the analysis should include a statement that the
conclusion is based on squares and not some other mathe-
matical operation. Even though nobody does include such
awarning, it should bemade clear that the analysis is based
on squares.

The Treatment Sum of Squares
We also need a measure of how di�erent the two groups
are from each other. One way to do that is �nd how dif-
ferent the group means are from the overall mean. If the
treatment variable has no e�ect, then the two groupmeans
would be equal and equal to the overall mean. One way
to measure how di�erent the group means are from the
overall mean is to take each group mean and subtract the
overall mean. By squaring each di�erence and weighing
each square by the number of observations in the group
nj, then the treatment sum of squares between the groups
GSS can be written

GSS =∑∑nj(yj − y)
.

The F-Test
�e residual sum of squares is also known as the within
group sum of squares and the group sum of squares is
sometimes known as the between group squares.�e �nal
step consists of making a comparison between the two
sums of squares. If the residual sum of squares is large in
comparison with the group sum of squares, then it seems
that the di�erence between the group means is not statis-
tically signi�cant. For this comparison we take into how
many groups we have, here  and in general k groups, and
how many observations n there are all together. A math-
ematical development shows that we should compute the
ratio

F =
GSS/(k − )
RSS/(n − k)

�is is known as the F-ratio and is named in honor of
Ronald Fisher. It gives rise to the F-distribution, and the
distribution has been extensively tabulated.�e two num-
bers (k−) and (n−k) are the so-called degrees of freedom,
and they are used to take into account how many groups
there are in the experiment and how many observations
there are in the experiment. For example, for a % signi�-
cance level with k =  groups and n =  observations, the
critical value of F on  and  degrees of freedom equals
..�us, for any observed value of F larger than ., we
conclude that there is a statistically signi�cant di�erence
between the two groups. In this case, had we done a t-test
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for the di�erence between the special case of two group
means, the critical value of t becomes

√
. = ..

Other Analyses
It is possible to generalize to an experiment withmore than
just two groups.�e null hypothesis of equal group means
is tested the same way as with two groups, and the compu-
tations follow the same plan as above. With two or more
independent variables the analysis becomes more exten-
sive. We can still represent the independent variables by
dummy variables and do a regression analysis. But that
way it is easy to overlook the possible interaction e�ect
of the two independent variables. �is means we could
have an e�ect of the independent variables together over
and beyond their separate e�ects. Finally, in analysis of
variance we distinguish between using all values of the
independent variables (Model I) and only using a sample
of possible values (Model II).
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Introduction
Every statistical model has its own underlying “assump-
tions” that must be veri�ed to validate the results. In
some situations, violations of these assumptions will not
change substantive research conclusions, while in others,
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Aviolation of assumptions can be critical to meaningful
research. For a meaningful and conclusive data analysis by
7Analysis of Variance (ANOVA), the following assump-
tions are needed:

(a) Errors be normally distributed
(b) Errors have same variances (homogeneity of vari-

ances)
(c) Errors be independently distributed

However, the question arising is What would be the e�ects
of any departure from the assumptions of themodel on the
inferences made?�e answer is simple: It may either in�u-
ence the probability ofmakingType I error (i.e., incorrectly
rejecting null hypothesis) or a Type II error (i.e., failing to
reject a null hypothesis when it is false). For a thorough
discussion of the topic, the reader is referred to Sche�é
(), Miller (), Snedecor and Cochran (), Sahai
and Ojeda (), and Sahai and Ageel (). Some
of the main �ndings are discussed in the following
section.

Effects of Departures from Assumptions
Departures from Normality
For �xed e�ects model, due to the central limit theo-
rem (see 7Central Limit�eorems) the lack of normality
causes no problems in large samples, as long as the assump-
tions hold. In general, when true 7randomization occurs
the violations of normality is acceptable. Also, heterogene-
ity of variances can result in nonnormality, so ensuring
homogeneity of variances may also result in normality.
Only highly skewed distributions would have a marked
e�ect either on the level of signi�cance or the power of
the F test. However, it is worth mentioning that kurtosis
of the error distribution (either more or less peaked than a
normal distribution) is more important than skewness of
the distribution in terms of the e�ects on inferences. Both
analytical results (see, e.g., Sche�é :–) and the
empirical studies by Pearson (), Geary (), Gayen
(), Box and Anderson (), Boneau (, ),
Srivastava (), Bradley (), Tiku (, ), and
Donaldson () attest to the conclusion that lack of nor-
mality would have little e�ect of F test either in terms of
level of signi�cance or power. Hence, the F test is gener-
ally robust against departures from normality (in skewness
and/or kurtosis) if sample sizes are large or even if moder-
ately large. For instance, the speci�ed level of signi�cance
might be ., whereas the actual level for a nonnormal
error distribution might vary from . to . depend-
ing on the sample size and the magnitude of the kurtosis.
Generally, the actual level of signi�cance in the presence
of positive kurtosis (platykurtic) is slightly higher than

the speci�ed one and the real power of the test for posi-
tive kurtosis is slightly higher than the normal one. If the
underlying population has negative kurtosis (leptokurtic),
the actual power of the test will be slightly lower than the
normal one (Glass et al. ). Single interval estimates of
the factor level means and contrasts and some of the mul-
tiple comparison methods are also not much a�ected by
the lack of normality provided the sample sizes are not too
small.�e robustness of multiple comparison tests in gen-
eral has not been as thoroughly studied.Among few studies
in this area is that of Brown (). Some other studies have
investigated the robustness of several multiple comparison
procedures, including Tukey and Sche�é, for exponential
and chi-square distributions and found little e�ect on both
α and power (see, e.g., Petrinovich and Hardyck ;
Keselman and Rogan ). Dunnett () reported that
Tukey is conservative both with respect to α and power
for long-tailed distributions and to 7outliers. Similarly,
Ringland () found that Sche�é was conservative for
distributions with in�uence to outliers.
Lange andRyan () gave several examples that show

that nonnormality of random e�ects is, indeed, encoun-
tered in practice. For random e�ects model, the lack of
normality has more serious implications than �xed e�ects
model.�e estimates of the variance components are still
unbiased, but the actual con�dence coe�cients for inter-
val estimates of σ e , σ α , σ α/σ e may be substantially di�erent
from the speci�ed one (Singhal and Sahai ). Moreover,
when testing the null hypothesis, if the variance of a ran-
dom e�ect is some speci�ed value di�erent from zero, the
test is not robust to the assumption of normality. For some
numerical results of this, the reader is referred to Arvesen
and Schmitz () and Arvesen and Layard (). How-
ever, if one is concerned only with a test of hypothesis
σ α = , then slight departures from normality have only
minor consequences for the conclusions reached when the
sample size is reasonably large (see, e.g., Tan and Wong
; Singhal et al. ).

Departures from Equal Variances
Both the analytical derivations by Box () and the
empirical studies indicate that if the variances are unequal,
the F test for the equality of means under �xed e�ects
model is only slightly a�ected provided there is no remark-
able di�erence in sample sizes and the parent popula-
tions are approximately normally distributed. When the
variances are unequal, an approximate test similar to the
approximate t test when two group variances are unequal
may be used (Welch ). Generally, unequal error vari-
ances increase the actual level of signi�cance slightly
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higher than the speci�ed level and result in a slight ele-
vation of the power function to a degree related to the
magnitude of di�erences among variances. If larger vari-
ances are associated with larger sample sizes, the level of
signi�cance will be slightly less than the nominal value,
and if they are associated with smaller sample sizes, the
level of signi�cance will be slightly greater than the nomi-
nal value (Horsnell ; Kohr and Games ). Similarly,
the Sche�é’s multiple comparison procedure based on the
7F distribution is not a�ected to any appreciable degree
by unequal variances if the sample sizes are approximately
equal.�us, the F test and the related analyses are robust
against unequal variances if the sample sizes are nearly
equal.
On the other hand, when di�erent number of cases

appear in various samples, violation of the assumption
of homogeneous variances can have serious e�ects in
the validity of the �nal inference (see, e.g., Sche�é ;
Welch ; James ; Box ; Brown and Forsythe
; Bishop and Dudewicz ; Tan and Tabatabai ).
Krutchko� () made an extensive simulation study to
determine the size andpower of several analysis of variance
procedures, including the F test, Kruskal–Wallis test, and
a new procedure called the K test. It was found that both
the F test and the Kruskal–Wallis test are highly sensitive
whereas the K test is relatively insensitive to the hetero-
geneity of variances. Kruskal–Wallis test, however, is not
as sensitive to the unequal error variances as the F test
and was found to be more robust to nonnormality (when
the error variances are equal) than either the F test or the
K test.�us, whenever possible, the experimenter should
try to achieve the same number of cases in each factor level
unless the assumption of equal population variances can
reasonably be assured in the experimental context.�e use
of equal sample sizes for all factor levels not only tends to
minimize the e�ects of unequal variances using the F test,
but also simpli�es the computational procedure.
For random e�ects model, however, the lack of

homoscedasticity or unequal error variances can have seri-
ous e�ects on inferences about the variance components,
even when all factor levels contain equal sample sizes.
Boneau () has shown that when variances are dif-
ferent in the various groups and sample sizes are small
and di�erent, ANOVA can produce highly misleading
results.

Departures from Independence of Error
Terms
Lack of independence can result from biased measure-
ments or possibly from a poor allocation of treatments to
experimental units. Nonindependence of the error terms
can have important e�ects on inferences for both �xed

and random e�ects models. If this assumption is not met,
the F ratio may be strongly a�ected severely in serious
errors in inferences (Sche�é ). �e direction of the
e�ect depends on the nature of the dependence of the error
terms. In most cases encountered in practice, the depen-
dence tends to make the value of the ratio too large and
consequently the signi�cance level will be smaller than it
should be (although the opposite can also be true). Since
the remedy of violation of this assumption is o�en di�-
cult, every possible e�ort should be made to obtain inde-
pendent random samples. �e use of randomization in
various stages of the study can be most important pro-
tection against independence of error terms. In general,
great care should be taken to ensure that the data are based
on independent observations, both between and within
groups, i.e., each observation is in no way related to any
of the other observations. Although, dependency among
the error terms creates a special problem in any analysis
of variance, it is not necessary that the observations them-
selves must be completely independent for applying the
random e�ects model.
In summary, ANOVA is very robust to violations of the

assumptions, as long as only one assumption is violated. If
two or more assumptions are severely violated the results
are not to be trusted. Further if the data are:

(a) Not normally distributed, but satis�es the homo-
geneity of variance and independent assumptions,
the �ndings may still be valid.

(b) Normally distributed and are independent samples,
but does not satisfy the homogeneity of variance
assumption, the �ndings may still be valid.

�e above review and discussion are restricted to the one-
way analysis of variance. A similar �nding for two-way
classi�cation without and with interaction can be found in
Sahai and Ageel ().

Tests for Departures from Assumptions
As we have seen in the preceding section, the analysis
of variance procedure is robust and can tolerate certain
departures from the speci�ed assumptions. It is, neverthe-
less, recommended that whenever a departure is suspected
it should be checked out. In this section, we shall brie�y
state the tests for normality and homoscedasticity.

Tests for Normality
A relatively simple technique to determine the appropri-
ateness of the assumption of normality is to graph the data
points on a normal probability paper. If a straight line can
be drawn through the plotted points, the assumption of
normality is considered to be reasonable. Some formal tests
for normality are the chi-square goodness of �t test, and the
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Atests for skewness and kurtosis that are o�en used as sup-
plements to the chi-square test (see 7Chi-Square Tests).
For a detailed discussion of these tests refer to Sahai and
Ageel ().

�e tests mentioned above are some of the classical
tests of normality. Over the years, a large number of other
techniques have been developed for testing for departures
from normality. Some powerful omnibus tests proposed
for the problem are Shapiro–Wilk’s test (Shapiro and Wilk
), Shapiro–Francia’s test (Shapiro and Francia ),
and D’Agostino’s test (D’Agostino ).
For a discussion of tests especially designed for detect-

ing outliers see Barnett and Lewis (). Robust esti-
mation procedures have also been employed in detecting
extreme observations.�e procedures give less weight to
data values that are extreme in comparison to the rest of
the data. Robust estimation techniques have been reviewed
by Hampel et al. ().

Tests for Homoscedasticity
If there are just two populations, the equality of two pop-
ulation variances can be tested by using the usual F test.
However, more than two population, rather than making
all pairwise F tests, we want a single test that can be used to
verify the assumption of equality of population variances.
�ere are several tests available for this purpose.�e three
most commonly used tests are the Bartlett’s, Hartley’s, and
Cochran’s tests.�e7Bartlett’s test (Bartlett a, b) com-
pares the weighted arithmetic and geometric means of the
sample variances. �e Hartley’s test (Hartley ) com-
pares the ratio of the largest to the smallest variance.�e
Cochran’s test (Cochran ) compares the largest sam-
ple variance with the average of all the sample variances.
For a full description of these procedures and illustration
of their applications with examples see Sahai and Ageel
(). �ese tests, however, have lower power than is
desired for most applications and are adversely a�ected by
nonnormality. Detailed practical comments on Bartlett’s,
Hartley’s, and Cochran’s tests are also given by Sahai and
Ageel. In recent years, there have appeared a number of
tests in the literature that are less sensitive to normal-
ity in the data and are found to have a good power for
a variety of population distributions see Levene ().
Following Levene (), a number of other robust pro-
cedures have been proposed, which are essentially based
on techniques of applying ANOVA to transformed scores.
For example, Brown and Forsythe (a) proposed apply-
ing an ANOVA to the absolute deviations from the mean.
A somewhat di�erent approach known as 7jackknife was
proposed byMiller () where the original scores in each
group are replaced by the contribution of that observa-
tion to the group variance. O’Brien (, ) proposed a

procedure, which is a blend of Levene’s squared deviation
scores and the jackknife. In recent years, there have been
a number of studies investigating the robustness of these
procedures. For a further discussion and details, the reader
is referred to Conover et al. (), Olejnik and Algina
(), and Ramsey ().

Corrections for Departures from
Assumptions of the Model
Departure from independence could arise in an experi-
ment in which experimental units or plots are laid out in a
�eld so that adjacent plots give similar yields. Lack of inde-
pendence can also result from correlation in time rather
than in space. If the data set in a given problem violates the
assumptions of the analysis of variance model, a choice of
possible corrective measures is available. One approach is
to modify the model. However, this approach has the dis-
advantage that more o�en than not the modi�ed model
involves fairly complex analysis. Another approach may
be to consider using some nonparametric tests. A third
approach to be discussed in this section is to use transfor-
mations on the data. Sometimes it is possible to make an
algebraic transformation of the data to make them appear
more nearly normally distributed, or to make the vari-
ances of the error terms constant. Conclusions derived
from the statistical analyses performed on the transformed
data are also applicable to the original data. In this section,
we brie�y discuss some commonly used transformations
to correct for the lack of normality and homoscedastic-
ity. An extremely thorough and detailed monograph on
transformation methodology has been prepared by�öni
(). An excellent and thorough introduction and a
bibliography of the topic can be found in a review paper
by Hoyle (). For a more recent bibliography of articles
on transformations see Draper and Smith (:–).

Transformations to Correct Lack of Normality
Some transformations to correct for the departures from
normality are logarithmic transformation, square-root
transformation, and arcsine transformation.

Transformations to Correct Lack of
Homoscedasticity
�ere are several types of data in which the variances
of the error terms are not constant. If there is evidence
of some systematic relationship between treatment mean
and variance, homogeneity of the error variance may be
achieved through an appropriate transformation of the
data. Bartlett () has given a formula for deriving such
transformations provided the relationship between µi and
σ e is known. In many cases where the nature of the rela-
tionship is not clear, the experimenter can, through trial
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and error, �nd a transformation that will stabilize the vari-
ance. We give some commonly employed transformations
to stabilize the variance.�ese are logarithmic transforma-
tion, square-root transformation, reciprocal transforma-
tion, arcsine transformation, and power transformation.
For a detailed discussion of these transformations and their
applicability refer to Sahai and Ageel ().

�ese are some of the more commonly used transfor-
mations. Still other transformations can be found appli-
cable for various other relationships between the means
and the variances. Further, the transformations to stabilize
the variance also o�en make the population distribution
nearly normal. For equal sample sizes, however, these
transformations may not usually be necessary. Moreover,
the use of such transformations may o�en result in dif-
ferent group means. It is possible that the means of the
original scores are equal but the means of the transformed
scores are not, and vice versa. Further, the means of trans-
formed scores are o�en changed in ways that are not
intuitively meaningful or are di�cult to interpret.
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Introduction
A “goodness-of-�t” test is a procedure for determining
whether a sample of n observations, x, . . . , xn, can be con-
sidered as a sample from a given speci�ed distribution. For
example, the distribution might be a normal distribution
with mean  and variance . More generally, the speci�ed
distribution is de�ned as

F(x) =

x

∫
−∞

f (y)dy, −∞ < x <∞ , ()

where f (y) is a speci�ed density.�is densitymight be sug-
gested by a theory, or it might be determined by a previous
study of similar data.
When X is a random variable with distribution func-

tion F(x) = Pr{X ≤ x} , then U = F(X) is a random
variable with distribution function

Pr{U ≤ u} = Pr{F(X) ≤ u} = u,  ≤ u ≤ . ()

�e model speci�es u = F(x), . . . ,un = F(xn) as a sam-
ple from the distribution (), that is, the standard uniform
distribution (see 7Uniform Distribution in Statistics) on
the unit interval [, ] written U(, ).
A test of the hypothesis that x, . . . , xn is a sample from

a speci�ed distribution, say F(x), is equivalent to a test
that u = F(x), . . . ,un = F(xn) is a sample fromU(, ).
De�ne the empirical distribution function as

Fn(x) =
k

n
, −∞ < x <∞, ()

if k of (x, . . . , xn) are ≤ x. A goodness-of-�t test is a com-
parison of Fn(x) with F(x).�e hypothesis H : F(x) =
F(x), −∞ < x < ∞, is rejected if Fn(x) is very di�erent
from F(x). “Very di�erent” is de�ned here as

W

n = n

∞

∫
−∞

[Fn(x) − F

(x)]


ψ [F


(x)]dF


(x)

= n

∞

∫
−∞

[Fn(x) − F

(x)]


ψ [F


(x)] f


(x)dx ()

being large; here () holds and ψ(z) is a weight function
such that ψ(z) ≥ , and f (x) is the density of F(x).

If ψ(z) = , the statisticW
n is the Cramér-von Mises

statistic, denoted by nω. Anderson and Darling ()
gave a table of the limiting distribution of nω as n → ∞.
For example, the % signi�cance point is . and the %
signi�cance point is ..

The Anderson–Darling Statistic
For a given x and hypothetical distribution F(⋅), the ran-
dom variable nFn(x) has a 7binomial distribution with
probability F(x).�e expected value of nFn(x) is nF(x)
and the variance is nF(x) [ − F(x)]. �e de�nition
of the goodness-of-�t statistic () permits the choice of
weight function ψ(⋅). In particular the investigator may
want to emphasize the tails of the presumed distribution
F(x). In that case the choice is

ψ(u) =


u( − u)
. ()

�en for a speci�ed x

√
n

Fn(x) − F

(x)

√
F(x) [ − F (x)]

()

hasmean  and variance  when the null hypothesis is true.
�e Anderson–Darling statistic is

A

n = n

∞

∫
−∞

[Fn(x) − F

(x)]



F(x) [ − F(x)]
d F


(x). ()

It was shown in Anderson and Darling () that () can
be written as

A

n = −n−


n

n

∑
j=

(j − ) [logu(j) + log ( − u(n−j+))] ()

where u(j) = F (x(j)) and x() < x() < . . . < x(n) is the
ordered sample.
Anderson and Darling found the limiting distribution

of An [for weight function ()]. In the next section the
development of this distribution is outlined.�e % sig-
ni�cance point of the limiting distribution is . and the
% point is ..�e mean of this limiting distribution is
 and the variance is (π − )/ ∼ ..

Outline of Derivation
Let u = F(x), ui = F()(xi), i = , . . . ,n, and u(i) = F()

(x(i)), i = , . . . ,n. LetGn(u) be the empirical distribution
function of u, . . . ,un; that is

Gn(u) =
k

n
,  ≤ u ≤ , ()

if k of u, . . . ,un are ≤ u.�us

Gn [F

(x)] = F


n(x), ()
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Aand

W

n = n



∫


[Gn(u) − u]


ψ(u)du, ()

when the null hypothesis F(x) = F()(x) is true. For every
u ( ≤ u ≤ )

Yn(u) =
√
n [Gn(u) − u] ()

is a randomvariable, and the set of thesemay be considered
as a stochastic process with parameter u.�us

Pr{W
n ≤ z} = Pr

⎧⎪⎪
⎨
⎪⎪⎩



∫


Y

n(u)ψ(u)du ≤ z

⎫⎪⎪
⎬
⎪⎪⎭

= An(z),

()
say. For a �xed set u, . . . ,uk the k-variate distribution
of Yn (u) , . . . ,Yn (uk) approaches a multivariate normal
distribution (see 7Multivariate Normal Distributions) as
n→∞ with mean and covariance function

E [Yn(u)] = , EYn(u)Yn(v) = min(u, v) − uv. ()

�e limiting process of {Yn(u)} is a Gaussian process
y(u),  ≤ u ≤ , and Ey(u) =  and Ey(u)y(v) = min
(u, v) − uv. Let

a(z) = Pr
⎧⎪⎪
⎨
⎪⎪⎩



∫


y

(u)ψ(u)du ≤ z

⎫⎪⎪
⎬
⎪⎪⎭

. ()

�en An(z) → a(z),  ≤ z < ∞. �e mathematical
problem for the Anderson–Darling statistic is to �nd the
distribution function a(z) when ψ(u) = /u( − u).
We brie�y sketch the procedure to �nd the distribution

of


∫

z(u)du, where z(u) is a Gaussian stochastic process

with Ez(u) =  and Ez(u)z(v) = k(u, v). When the kernel
is continuous and square integrable (as is the case here), it
can be written as

k(u, v) =
∞
∑
j=


λj
fj(u) fj(v), ()

where λj is an eigenvalue and fj(u) is the corresponding
normalized eigenfunction of the integral equation

λ



∫


k(u, v)f (u)du = f (v), ()



∫


f

j (u)du = ,



∫


fi(u)fj(u)du = , i /= j. ()

�en the process can be written

z(u) =
∞
∑
j=


√

λj
Xjfj(u), ()

where X,X, . . ., are independent N(, ) variables.�en



∫


z

(u)du =

∞
∑
j=


λj
X

j , ()

with characteristic function

E exp
⎡
⎢
⎢
⎢
⎢
⎣

it



∫


z

(u)du

⎤
⎥
⎥
⎥
⎥
⎦

=
∞
∏
j=
E (exp itXj /λj)

=
∞
∏
j=

( − it/λj)
−  . ()

�e process Y∗n (u) =
√

ψ(u)Yn(u) has covariance
function

k(u, v) =
√

ψ(u)
√

ψ(v) [min (u, v) − uv] ; ()

as n→∞, the process Y∗n (u) approaches y∗(u) =√
ψ(u) y(u)with covariance ().�e characteristic func-

tion of the limiting distribution of nω is
¿
Á
ÁÀ

√
it

sin
√
it

()

for ψ(u) = , and that of the limiting distribution of An is

¿
Á
Á
ÁÀ

−πit

cos(
π


√
 + it)

. ()

for ψ(u) = /u( − u).
�e integral equation () can be transformed to a

di�erential equation

h
′′
(t) + λψ(t) h((t) = . ()

Anderson–Darling Tests with Unknown
Parameters
When parameters in the tested distribution are not known,
but are estimated e�ciently, the covariance () is mod-
i�ed, and the subsequent limiting distribution theory
for both nω and An follows the same lines as above,
with this new covariance. If the parameters are location
and/or scale, the limiting distributions do not depend on
the true parameter values, but depend on the class of
tested distributions. If the parameters are shape param-
eters, the limiting distribution depends on shape. Lim-
iting distributions have been evaluated and percentage
points given for a number of di�erent tested distribu-
tions; see Stephens (, ). Tests for three parameter
Weibull, and von Mises have been given by Lockhart and
Stephens (, ).
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�e percentage points for these tests are much smaller
than those given above for the case when parameters are
known.
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Introduction
Durbin (a) proposed a simple method for obtaining
asymptotic expansions for the densities of su�cient esti-
mators. �e expansion is a series which is e�ectively in
powers of n−, where n is the sample size, as compare
with the 7Edgeworth expansion which is in powers of
n−/. �e basic approximation is just the �rst term of
this series.�is has an error of order n− compare to the
error of n−/ in the usual asymptotic normal approxima-
tion (see7AsymptoticNormality).�e order ofmagnitude
of the error can generally be reduced to order n−/ by
renormalization.
Suppose that the real m-dimensional random vector

Sn = (Sn, Sn, . . . , Smn)′ has a density with respect to
Lebesgue measure which depends on integer n > N for
some positive N and on θ ∈ Θ, where Θ is a subset of Rq

for q an arbitrary positive integer.
Let

Dn(θ) = n
−
E {Sn − E(Sn)} {Sn − E(Sn)}′ ()

which we assume is �nite and positive-de�nite for all n
and θ, and which we assume converges to a �nite positive-
de�nite matrix D(θ) as n → ∞ and θ → θ, where θ is
a particular value of θ, usually the true value.
Let ϕn(z, θ) = E(eiz

′Sn) be the characteristic function
of Sn where z = (z, z, . . . , zm)′. Whenever the appropri-
ate derivatives exists, let

∂j log ϕn(̃z, θ)
∂zj
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Adenote the set of jth order derivatives ∂j log ϕn(z, θ)/
∂z
j
 ⋯∂z

jm
m for all integers j, j,…, jm ≥  satisfying∑k jk =

j, evaluated at z = z̃.�e jth cumulant κnj(θ) of Sn, where
it exists, satis�es the relation

i
j
κnj(θ) =

∂j log ϕn(, θ)
∂zj

. ()

Inwhat follows, let θ and θ be points in an open subsetΘ
ofΘ, and let r be a speci�ed integer. We use the word limit
in the sense of joint limit, and introduce three assumptions.
Assumption . If n is large enough ∣ϕn(z, θ)∣ is inte-

grable over Rm, and if δ is an arbitrary positive constant
the limit of

n
r
− ∫
Bδ
√

n

∣ϕn (z/
√
n, θ)∣dz,

as n → ∞ and θ → θ is zero, where Bδ
√
n is the region

∥z∥ ≥ δ
√
n and ∥⋅∥denotes the Euclidean norm.

Assumption .�e rth derivative ∂r log ϕn(z, θ)/∂zr

exists for z in a neighborhood of the origin and the limit of

n
− ∂

r log ϕn(z, θ)
∂zr

as n→∞, θ → θ and ∥z∥→  exists.
Assumption . �e cumulant κnj(θ) = O(n) uni-

formly for θ in a neighborhood of θ for j = , . . . ,
r − .
Now we present the Edgeworth expansion and the

corresponding approximation to the density hn(x, θ) of
Xn = n−/E {Sn − E(Sn)}. Suppose that there is an inte-
ger r ≥  such that Assumptions – hold.�en there is a
neighborhood ∥θ − θ∥ < δ of θ such that

hn(x, θ) − ĥn(x, θ) = o{n−(r/)+} ()

uniformly in x and in θ for ∥θ − θ∥ < δ, where

ĥn(x, θ) =
∣Dn(θ)∣

−/

(π)m/
exp{−



x′D−n (θ)x}

⎧⎪⎪
⎨
⎪⎪⎩

 +
r

∑
j=
n
−(j/)+

Pnj(x, θ)
⎫⎪⎪
⎬
⎪⎪⎭

, ()

and where Pnj(x, θ) is a generalized Edgeworth poly-
nomial of order j the de�nition of which is given in
Durbin (a).�e practical construction of Pnj(x, θ) is
described by Chambers (, pp. –).

Approximations to the Densities
of Sufficient Estimators
Suppose that y = (y, . . . , yn)

′ is amatrix of observations of
n continuos or discrete random ℓ× vectors, not necessarily
independent or identically distributed, with density

f (y, θ) = G(t, θ)H(y), y ∈ Y , θ ∈ Θ, ()

where t = (t, . . . , tm)′ is the value computed from y of an
estimator Tn of the m-dimensional parameter θ, where Y
and Θ are observation and parameter spaces and where Y
and H do not depend upon θ. We assume that f (y, θ) > 
for all y ∈ Y and θ ∈ Θ. By the factorization theorem Tn is
su�cient for θ.
Suppose that a transformation y, . . . , yn → t, . . . , tm,

um+, . . . ,unℓ exists such that on substituting for y on the
right-hand side of () and integrating or summing out
um+, . . . ,unℓ we obtain the marginal density g(t, θ) of Tn
in the form g(t, θ) = G(t, θ)H(t) where H does not
depend upon θ. We therefore have

f (y, θ) = g(t, θ)h(y), ()

where h(y) = H(y)/H(t). �e derivation of () from
() has been given in this form to avoid measure-theoretic
complications.
Suppose further that although functions G(t, θ) sat-

isfying () can be deduced immediately from inspection
of f (y, θ), the density g(t, θ) is unknown and we want to
obtain an approximation to it for a particular value θ of θ.
Since () holds for all θ ∈ Θ we have

f (y, θ) = g(t, θ)h(y). ()

On dividing () by () the unknown factor h(y) is elimi-
nated and we obtain immediately

g(t, θ) =
f (y, θ)
f (y, θ)

g(t, θ). ()

If we substitute t for θ in (), as is legitimate since we have
assumed that t ∈ Θ, we obtain

g(t, θ) =
f (y, θ)
f (y, t)

g(t, t). ()

�e basic idea is to obtain an approximation ĝ(t, θ) for
g(t, θ) by substituting a series approximation ĝ(t, t) for
g(t, t) in (), giving

ĝ(t, θ) =
f (y, θ)
f (y, t)

ĝ(t, t). ()

In e�ect, the method rescales the approximation ĝ(t, t) at
θ = t by the likelihood ratio f (y, θ)/f (y, t).
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A second idea is to substitute an Edgeworth series
approximation ĝ(t, θ̃) for g(t, θ) in (), where θ̃ is cho-
sen as the value of θ for which the mean of the distribution
of Tn coincides with t.�e reason for using this indirect
approach instead of approximating g(t, θ) directly is that
a straightforward Edgeworth approximation of g(t, θ),
would normally be in powers of n−/ whereas an Edge-
worth approximation of g(t, t) or ĝ(t, θ̃) is normally a
series in powers of n−.
Suppose that E(Tn) = θ − βn(θ), where βn(θ) =

O(n−) uniformly for θ in a neighborhood of θ, and that
nTn = Sn, where Sn satis�es the Assumptions – given
above with r = . Maximum likelihood estimators o�en
satisfy these assumptions. We make the following further
assumption:
Assumption . Uniformly for θ in a neighbor-

hood of θ,

∣Dn(θ)∣ = ∣D(θ)∣ { +O(n−)} .

�e assumption is, of course, satis�ed when Sn is a sum
of independent and identically distributed vectors but it
is also satis�ed in other cases of interest, notably in some
applications in time series analysis. We suppose that we
require a single-term approximation which has an error of
order n− at most.
SinceXn =n−/E {Sn − E(Sn)} =

√
n{Tn−θ+βn(θ)},

the value ofXn whenTn = t and θ = t is x= βn(θ)
√
n.With

r = , () gives

ĥn(x, t)=
∣Dn(t)∣−/

(π)m/
exp{−



nβn(t)

′D−n (t)βn(t)}

×

⎡
⎢
⎢
⎢
⎢
⎣

 +


∑
j=
n
−(j/)+

Pnj {βn(θ)
√
n, t}

⎤
⎥
⎥
⎥
⎥
⎦

.

()
Now nβn(t)

′D−n (t)βn(t) = O(n
−
) and the constant term

ofPn isO().MoreoverPn contains no constant term and
hence is O(n−/) when x = βn(θ)

√
n. We note that these

orders of magnitude are uniform for t in a neighborhood
of θ under the Assumptions –. Because of Assumption
, we have

ĥn(x, t) =
∣D(t)∣−/

(π)m/
{ +O(n−)}

uniformly for t in a neighborhood of θ.

Let hn(x, t) be the true density of Xn, then by ()

hn(x, t) = ĥn(x, t) + o(n−)

=
∣D(t)∣−/

(π)m/
{ +O(n−)} + o(n−). ()

Since the term o(n−) is uniform for t in a neighborhood
of ∥t − θ∥ < δ, where δis a suitably chosen positive con-
stant independent of n, and since ∣D(t)∣ is continuous at θ
and hence is bounded away from zero for t in the neigh-
borhood, the term o(n−) of () can be absorbed inside
the curly bracket. We thus have uniformly

hn(x, t) =
∣D(t)∣−/

(π)m/
{ +O(n−)} .

Transforming from x to t we obtain for the density of
Tn at Tn = θ = t,

g(t, t) = (
n

π
)
m/

∣D(t)∣−/ { +O(n−)} . ()

Substituting in () we obtain

g(t, θ) = (
n

π
)
m/

∣D(t)∣−/
f (y, θ)
f (y, t)

{ +O(n−)} ,

()
uniformly in t for ∥t − θ∥ < δ.
Expression () is the basic approximation for the

density of the su�cient estimator Tn. �e fact that
the error is a proportional error which is uniform
over the region ∥t − θ∥ < δ is important since the
limiting probability that Tn falls outside this region
is zero.
Assuming appropriate regularity conditions to be sat-

is�ed, D−(θ) is the limiting mean information matrix
I(θ), where

I(θ) = lim
n→∞

E [−n
− ∂

 log f (y, θ)
∂θ∂θ′

] .

We then have for the basic approximation

g(t, θ) = (
n

π
)
m/

∣I(t)∣/
f (y, θ)
f (y, t)

{ +O(n−)} ,

()
uniformly in t for ∥t − θ∥ < δ.

�e simplicity of the structure of this approximation
should be noted. It consists of the normal approximation
to the density when θ = t, namely {n/(π)}m/ ∣I(t)∣/,
multiplied by the likelihood ratio f (y, θ)/f (y, t).
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ADurbin (a) proved that when either () or () is
integrated over any subset of Rm, the error term remains
O(n−). �is result is, in fact, of great importance in
practical situations since it demonstrates that the basic
approximation can be integrated for inference purposes
with an error which is of order n− at most. He proved
as well that when the constant term of the approxima-
tion (), and consequently also of (), is adjusted to
make the integral over the whole space equal to unity,
the order of magnitude of the error is o�en reduced from
O(n−) to Ox(n−/), where Ox(n−q) denotes a quan-
tity which is O(n−q) for each �xed x =

√
n{t − E(Tn)}

but which is not O(n−q) uniformly for all x. �is pro-
cess of adjusting the constant term is generally called
renormalization.
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Introduction
�e exact probability distribution of estimators for �nite
samples is only available in convenient form for simple
functions of the data and when the likelihood function is
completely speci�ed. Frequently, these conditions are not
satis�ed and the inference is based on approximations to
the sample distribution. Typically, large sample methods
based on the central limit theorem (see 7Central Limit
�eorems) are generally used. For example, if Tn is an esti-
mator of the parameter θ based on a sample of size n, it
is sometimes possible to obtain functions σ(θ) such that
the distribution of the random variable

√
n(Tn − θ)/σ(θ)

converges to the standard normal distribution as n tends to
in�nity. In such a case, it is very common to approximate
the distribution of Tn by a normal distribution with mean
θ and variance σ (θ)/n.

�ese asymptotic approximations can be good even for
very small samples.�emean of independent draws froma
rectangular distribution has a bell-shaped density for n as
small as three. But it is easy to construct examples where
the asymptotic approximation is bad even when the sam-
ple has hundreds of observations. It is therefore desirable to
know the conditions under which the asymptotic approx-
imations are reasonable and to have alternative methods
available when these approximations do not work prop-
erly. Most of the material discussed here is closely related
with the topic Asymptotic, higher order which is presented
as well in this Encyclopedia.

�ere is a good literature treating the theory and prac-
tice of approximations to distributions, but introductory
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texts are relatively few. A very brief summary can be
seen in Bickel and Doksum (), while some discussion
is given in Johnson and Kotz (). �e extension to
asymptotic expansions can be seen in the excellent paper
by Wallace (), although it is outdated. For a good
treatment of the subject, an incursion upon the advanced
probability and numerical analysis textbooks is needed.
For those with enough time and patience, Chaps.  and
 of Feller () are well worth reading.

The Central Limit Theorem
�e center of a large part of the asymptotic theory is
the central limit theorem, initially formulated for sums of
independent random variables. Let {Yn} be a sequence of
independent random variables. Denote byHn the distribu-
tion function of the standardized sum

Xn =

n

∑
j=

{Yj − E(Yj)}

¿
Á
ÁÀ{

n

∑
j=
V(Yj)}

,

where V(Yj) is the variance of Yj, and by N (.) the stan-
dard normal distribution function.�e central limit the-
orem then states that limHn(x) = N (x), as n → ∞,
for every �xed x, provided only that the means and vari-
ances are �nite. If the {Yj} are not identically distributed,
an additional condition guaranteeing that the distributions
are not too unbalanced is necessary.
For time series problems, for example, where in gen-

eral the variables are not independent, there have been
particularized versions of this theorem guaranteeing the
asymptotic behavior of statistics used in this area. Good
references are the textbook by Anderson (), Brockwell
and Davis (), Hannan (), and Priestley ()
where one can �nd an excellent treatment of the asymp-
totic theory applied to time series problems.
Some authors have shown that the order of magnitude

of the errors in the central limit theorem is O(n−/).
While the central limit theorem is very useful theo-

retically and o�en in practice, it is not always satisfactory
since for small or moderate n the errors of the normal
approximation may be too large.

Curve Fitting
�e most simplest form for obtaining an approximation
to a distribution is to look for a family of curves with the
correct shape and select the member that �ts best. If the
moments, specially those of low order, of the true distri-
bution are known, they can be used in the �tting process.

Otherwise one can use Monte Carlo simulations or any
other information about the true distribution.
Durbin andWatson () describe a number of di�er-

ent approximations to the null distribution of the statistic d
used for testing serial correlation in regression analysis.
One of the most accurate is the beta approximation pro-
posed by Henshaw (). Since d is between zero and
four and it seems to have a unimodal density, it is rea-
sonable to think that a linear transformation from a beta
distributed variable can be a good approximation to the
true distribution. Suppose that Y is a random variable with
beta distribution function

Pr(Y ≤ y) =


B(p, q)

y

∫


t
p−

( − t)q−dt = G(y; p.q),

where

B(p, q) =
∞

∫


t
p−

( − t)q−dt.

�en, for a and b constant, the random variable a + bY
has moments depending on p, q, a and b.�ese moments
are easy to express analytically. Moreover, the moments
of the Durbin–Watson’s statistic d are simple functions
of the matrix of explanatory variables. Equating the �rst
four moments of d with the corresponding moments of
a + bY , one obtains four equations with four unknowns.
For a given matrix of explanatory variables these equa-
tions give a unique solution, p∗, q∗, a∗ and b∗ say. So
Pr(d≤ y) can be approximated byG{(y − a∗)/b∗; p∗, q∗}.
�is approximation gives good results in many cases.
�eil and Nagar () proposed a similar approxima-
tion but using the approximated moments of d instead
of the true moments. Since these approximated moments
are independent of the matrix of explanatory variables,
�eil–Nagar’s approximation does not depend on the data
and can be tabulated without any problem. Unfortunately
the approximated moments are not always accurate and
the resulting approximation to the distribution is less
satisfactory than Henshaw’s approximation.
If one has enough information over the true den-

sity, the curve �tting methods give simple and correct
approximations. However these methods are not so attrac-
tive when the purpose is not quantitative but qualita-
tive.�e comparison of alternative procedures is di�cult
because the curve �tting methods does not produce, in
general, parametric families of curves easily comparable.
If two statistics are approximately normal, they can be
compared by their means and variances. If one statistic
is approximately beta and another is approximately nor-
mal, the comparison between them is not easy since the
usual parameters that describe one of the distributions are
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Anot of much interest for obtaining information about the
other.�e �exibility that makes the curve �tting method
so accurate is, as well, an inconvenience for using it in
comparisons.

Transformations
Suppose that Y is a random variable and b amonotonically
increasing function such that b(Y) has a distribution func-
tionHwhich can be approximated by Ĥ. Since Pr(Y ≤ y) is
equal to Pr{b(Y) ≤ b(y)}, the distribution function of Y
can be approximated by Ĥ {b(y)}. A well known example
of this technique is Fisher’s z transformation.�e sample
correlation coe�cient ρ̂ based on a random sample from
a bivariate normal population is very far from symme-
try when the true coe�cient ρ is large in absolute value.
But, z = b(ρ̂) = − log{( + ρ̂)/( − ρ̂)} is almost sym-
metric and can be approximated by a normally distributed
random variable with mean − log{( + ρ)/( − ρ)} and
variance n−. �erefore Pr(ρ̂ ≤ y) can be approxi-
mated by N {

√
nb(y) −

√
nb(ρ)} for moderate sample

size n.
�e use of transformations for approximating distribu-

tions is an art. Sometimes, as in the case of the correlation
coe�cient, the geometry of the problem can suggest the
appropriate transformation b. Since ρ̂ can be interpreted as
the cosine of the angle between two normally distributed
random vectors, an inverse trigonometric transformation
can be useful. In other cases, arguments based on approx-
imations to the moments are helpful. Suppose that b(Y)
can be expanded as a power series about µ = E(Y)

b(Y) = b(µ) + b
′
(µ)(Y − µ) +



b
′′
(µ)(Y − µ)


+⋯,

where Y − µ is in some sense small. so we can do

E(b) ≈ b(µ) +


b
′′
(µ)E(Y − µ)

,

V(b) ≈ {b
′
(µ)}


V(Y),

E {b − E(b)}

≈ {b

′
(µ)}


E(Y − µ)



+


{b

′
(µ)}


b
′′
(µ)E(Y − µ)

,

and choose b in such a way that these approximates
moments are equal to the moments of the approximated
distribution. If the approximated distribution is normal,
we can require that the variance V(b) be a constant inde-
pendent of µ; or we can require that the third order
moment be zero. If the moments of Y are (almost) known
and the above approximation is used, the criterion leads

to di�erential equations in b(µ). Note that Fisher’s trans-
formation of ρ̂ stabilizes the approximated variance of b
making it independent of ρ.
Jenkins () and Quenouille () apply inverse

trigonometric transformations to the case of the autocor-
relation coe�cient in time series.�e use of transforma-
tions in econometrics seems, however, to beminimumdue
mainly to the fact that the method is closely related with
univariate distributions.

Asymptotic Expansions
Frequently it is possible to decompose the problem of �nd-
ing the distribution in a sequence of similar problems.
If the sequence has a limit which can easily be found,
one can obtain an approximation to the solution of the
original problem by a solution of the limit problem.�e
sequence of the problem is indexed by a parameter, which
usually is the sample size n. Suppose for instance that we
want an approximation to the distribution of an estimator,
computed from a sample, of a parameter θ. We de�ne an
in�nite sequence θ̂n of estimators, one for each sample size
n = , , . . ., and we consider the problem of obtaining the
distribution of each θ̂n. Of course, it is necessary to have
some description of the joint distribution of the observa-
tions for each n. Given such a sequence of problems, the
asymptotic approach implies three steps:

(a) To look for a simple monotonic transformation Xn =
b(θ̂n; θ,n) such that the estimator Xn is not very sen-
sitive to n. Since the majority of estimators are cen-
terd upon the true value of the parameter and they
have a dispersion which decreases at the same rate
as n−/, the transformation Xn =

√
n(θ̂n − θ) is

frequently used.
(b) To look for an approximation Ĥn(x) to the distribution

function Hn(x) = Pr(Xn ≤ x) such that, when n tends
to in�nity, the error

∣Ĥn(x) −Hn(x)∣

tends to zero.
(c) �e distribution function of θ̂n is approximated by Ĥn,

i.e., Pr(θ̂n ≤ a) = Pr{Xn ≤ bn(a; θ,n)} is approxi-
mated by Ĥn {bn(a; θ,n)}.

Let Ĥn(x) be an approximation to the distribution
function Hn(x). If, for every x,

lim
n→∞

n
(r/)−

∣Ĥn(x) −Hn(x)∣ = , r = , , . . . ,

we write

Hn(x) = Ĥn(x) + o{n
(r/)−

} , r = , , . . . ,
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and we say that Ĥn(x) is an approximation o{n(r/)−} or
an approximation of order r − .�ese names are used as
well when approximating density functions. �e asymp-
totic distribution is an approximation o(n) = o() or a
�rst order approximation.�ese concepts are related with
the topic Asymptotic, higher order which is presented as
well in this Encyclopedia.

�e number nmeasures the velocity at which the error
of approximation tends to zero as n tends to in�nity. If we
choose the transformation b such thatHn and Ĥn vary gen-
tly with n, the value of r can give an indication of the error
of approximation for moderate values of n.

�ere are two well known methods for obtaining
high order approximations to distributions, both based on
the Fourier inversion of the characteristic function. Let
ϕn(z, θ) = E {exp(izXn)} be the characteristic function
of Xn and let ψn(z, θ) = log ϕn(z, θ) be the cumulant gen-
erating function. If ϕn is integrable, the density function hn
of Xn can be written as

hn(x; θ) =

π

∞

∫
−∞

e
−ixz

ϕn(z, θ)dz

=

π

∞

∫
−∞

exp{−ixz + ψn(z, θ)}dz. ()

Frequently it is possible to expand ψn(z, θ) in power series
where the successive terms are increasing powers of n−/.
In this case the integrand can be approximated by the �rst
few terms of this series expansion. Integrating term by
term, one obtains a series approximation to hn; a�erward
integration will give an approximation to the distribution
function.�e approximation known as Edgeworth approx-
imation or 7Edgeworth expansion consists in expanding
ψn(z, θ) at z = . �is method is the most frequently
used in practice because of its relative simplicity. It does
not require a complete knowledge of ψn(z, θ). It is enough
if one knows the �rst low order cumulants of Xn. More
details about this method is given in this Encyclopedia
under the name Edgeworth expansion. �e approxima-
tion known as saddlepoint approximation is obtained by
expanding ψn(z, θ) at the “saddlepoint” value z∗ where
the integrand of () ismaximized.�ismethod, introduced
by Daniels (), is more complex and requires a deeper
knowledge of the function ψn(z, θ).When this knowledge
is available, themethod gives accurate approximations spe-
cially in the “tail” region of the distribution. Daniels ()
and Phillips () applied this method to some autocorre-
lation statistics in time series analysis. More details about

this method is given in this Encyclopedia under the name
Saddlepoint approximations.
Wallace () gives an excellent introduction to the

approximations based on expansions of the characteris-
tic function. An exposition with emphasis on multivari-
ate expansions can be found in Barndor�-Nielsen and
Cox (). Durbin () proposed a simple method for
obtaining a second order approximation to the density of a
large class of statistics.�is method is discuss in this Ency-
clopedia under the name Approximations for densities of
su�cient estimators.

Attitudes and Perspectives
�e theory of approximate distributions, like the theory
of exact distributions, depends on the assumptions made
about the stochastic process which generates the data.�e
quality of the approximations will not be better than the
quality of the speci�cations sustaining them. one certainly
will not rely upon a theory of distribution unless the con-
clusions are so robust that they do not vary signi�cantly
in front of moderate changes of basic assumptions. Since
themajority of themethods of approximation use informa-
tion about the �rst four moments at least, while the usual
asymptotic theory only need information about the �rst
two moments, some loss of robustness has to be expected.
However, if some idea about the degree of skewness
and kurtosis is available, this information can be helpful
to obtain better approximations to the distribution of
statistics.
Recently there has been an increasing interest in

asymptotic theory. Great e�orts have been made in order
to demonstrate that some statistics are asymptotically nor-
mal and e�cient. Of course, the asymptotic theory is
important to have an idea of the sample properties of a
given statistical procedure. Unfortunately there has been
some confusion with the use of the terms “asymptotic”
and “approximated.”�e fact that a standardized estimator
has an asymptotic normal distribution is purely a math-
ematical proposition about the limit of the probabilities
measures under a set of previously speci�ed assumptions.
�e fact that a given estimator is approximately normal
suggests that, for this particular problem, one believes
in the possibility of treating the estimator as if it was
normal.
Sometimes, under certain circumstances, asymptotic

arguments lead to good approximations, bet frequently
they do not. A careful analyst, with some knowledge of
statistical theory, a modest computer and a great amount
of common sense can �nd reasonable approximations for
a given inferential problem.
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As a means of summarizing the potential relationship
between two (or more) random categorical variables X
and Y , a number of measures of association have been
proposed over the years. A historical review of such mea-
sures and new proposals have been presented in a series of
papers by Goodman and Kruskal () [see also Kendall
and Stuart (), Ch.  and Liebetrau ()]. Such sum-
mary measures depend on whether X and Y are nominal
or ordinal as well as on whether X and Y are to be treated
symmetrically or asymmetrically. In the symmetric case,
X and Y are treated equivalently and no causal relation-
ship is assumed to exist between them. In the asymmetric
case, a causal relationship between X and Y is considered
to exist so that one variable is treated as the explanatory
variable (X) and the other variable treated as the response
variable (Y).

�e focus here will be on the case when both X and Y
are nominal categorical variables, i.e., no natural ordering
exists for the variables. Association measures for both the
symmetric and asymmetric case will be considered.

Symmetric Measures
For the variable X with I categories and the variable Y
with J categories, their joint and marginal probabilities are
de�ned as Pr(X = i,Y = j) = pij, Pr(X = i) = pi+, and
Pr(Y = j) = p+j for i = , . . . , I and j = , . . . , J where


∑

i = I



∑

j = Jpij =



∑

i = Ipi+ =



∑

j = Jp+j = . In terms

of a two-way contingency table with I rows and J columns,
the cell entries come from the joint distribution {pij}, with
pij being the entry in cell (i, j), and {pi+} and {p+j} are the
marginal distributions (totals) for the rows and columns,
respectively.�e conditional distribution of Y given X is
de�ned in terms of pj∣i = pij/pi+ for all i and j.
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Several early suggested association measures were
based on the (Pearson) coe�cient of mean square contin-
gency de�ned by

Φ =
I

∑
i=

J

∑
j=

(pij − pi+p+j)

pi+p+j



=
I

∑
i=

J

∑
j=

p ij

pi+p+j
− . ()

If the pij represent sample estimates (of population proba-
bilities πij) pij = nij/N based on themultinominal frequen-

cies nij for all i, j and sample size N =


∑

i = I



∑

j = Jnij,

then it is recognized that Φ = X/N whereX is the famil-
iar Pearson chi-square goodness-of-�t statistic for testing
the null hypothesis or independence betweenX and Y , i.e.,

X

= N(

I

∑
i=

J

∑
j=

nij

ni+n+j
− ). ()

�e most popular such association measure based on X

appears to be Cramér’s () V de�ned as

V =

√
X

N(M − )
, M = min{I, J} . ()

�is V ranges in value between  and , inclusive, for any
given I and J, with V =  if, and only if, X and Y are
independent and V =  when there is no more than one
non-zero entry in either each row or in each column.�e
V is invariant with any permutations of the rows or the
columns. �e estimated standard error of V is given in
Bishop et al. (, p. ), but its expression is rather
messy.
Kendall and Stuart (, p. ), have shown that

V is the mean squared canonical correlation. However,
it has been argued that values of V are di�cult to inter-
pret since V has no obvious probabilistic meaning or
interpretation. Nevertheless, V does re�ect the divergence
(or “distance”) of the distribution {pij} from the inde-
pendence distribution {pi+p+j} relative to the maximum
divergence.

�ere is some uncertainty in the literature as to
whether V or V is the proper measure to use.�is issue
will be addressed in a section below. It may also be pointed
out that a similar association measure can be formulated
in terms of the likelihood-ratio statistic G, which has the
same asymptotic chi-square distribution as χ under the
null hypothesis and is o�en used instead of χ. For the G

under independence, i.e., for

G

= 

I

∑
i=

J

∑
j=
nij log(

Nnij

ni+n+j
) ()

and since nij ≤ ni+ and nij ≤ n+j for all i and j, it follows
that

G

≤ G


X = 

I

∑
i=
ni+ log(

N

ni+
) and G ≤ GY

= 
J

∑
j=
n+j log(

N

n+j
) .

()

�us, analogously to V in (), one could de�ne the associ-
ation measure

W =

√
G

min{GX ,G

Y}

()

with GX and G

Y as given in ().

�is new measure W can also be interpreted as the
divergence (“distance”) of the distribution {pij} from the
independence distribution {pi+p+j} relative to its maxi-
mum [see also Kvålseth ()].�eW has the same type
of properties as Cramér’s V in () and can be expected to
take on values quite similar to those of V . For instance, for
the data

n =  n =  n = 

n =  n =  n = 

it is found from () and () that V = . andW = ..

Asymmetric Measures
Goodman and Kruskal  have discussed two di�erent
asymmetric association measures (λY∣X) and (τY∣X) for
the case when X can be considered to be the explanatory
variable and Y the response variable. Such measures are
frequently referred to as proportional reduction in error
(PRE) measures since they can be interpreted in terms of
the relative di�erence between two error probabilities PY
and PY∣X , i.e.,

PREY∣X =
PY − PY∣X

PY
()

where PY is the probability of error when predicting the
Y – category of a randomly selected observation or item
without knowing its X – category and PY∣X is the cor-
responding expected (weighted mean) error probability
given its X – category.

�e optimal prediction strategy would clearly be to
predict that a randomly selected observation (item) would
belong to a maximum-probability (modal) category, so
that with

p+m = max{p+, . . . , p+J}; and pim = max{pi, . . . , piJ},

i = , . . . , I
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Athe error probabilities PY and PY∣X become

PY = −p+m, PY∣X =
I

∑
i=
pi+ ( − pim/pi+) = −

I

∑
i=
pim. ()

From ()–(), the so-called Goodman–Kruskal lambda
becomes

λY∣X =



∑

i = Ipim − p+m

 − p+m
()

which is the relative decrease in the error probability when
predicting the Y-category as between not knowing and
knowing the X-category.
Another asymmetric measure is based on a di�erent

prediction rule: Predictions are made according to the
given probabilities.�us, a randomly chosen observation
(item) is predicted to fall in the jth category ofY with prob-
ability p+j (j = , . . . , J) if its X-category is unknown. If,
however, the observation is known to belong to the ith cat-
egory of X, it is predicted to belong to the jth category of
Y with the (conditional) probability pij/pi+ (j = , . . . , J).
�e error probabilities are then given by

PY =  −
J

∑
j=
p

+j, PY∣X =

I

∑
i=
pi+[ −

J

∑
j=

(pij/pi+)

] ()

so that, from () and (), the following so-called
Goodman–Kruskal tau results:

τY∣X =

I

∑
i=

J

∑
j=
pij/pi+ −

J

∑
j=
p+j

 −
J

∑
j=
p+j

()

which gives the relative reduction in the error probability
when predicting an observation’sY-category as between its
X-category not given and given.
Both measures in () and (), and whose esti-

mated standard errors are given elsewhere [e.g., Bishop
et al. (, pp. –), Goodman and Kruskal (),
and Liebetrau ()], can assume values between  and
, inclusive. Both equal  if, and only if, each row of the
contingency table contains nomore than one non-zero cell
entry. Both are invariant under permutations of rows or of
columns. However, their zero-value conditions di�er.�e
τY∣X =  if, and only if, X and Y are independent, whereas
λY∣X =  if () X and Y are independent or () the modal
probabilities pim in all rows fall in the same column.�is
second condition ismost likely to occurwhen themarginal
distribution {pi+} is highly uneven (non-uniform).�us,
in cases of highly uneven {pi+}, λY∣X may be  or very
small, while other measures such as τY∣X may be substan-
tially larger. �e high sensitivity of λY∣X to {pi+} is one

limitation of this measure that may lead to misleadingly
low association values.
Symmetric version of lambda and tau can also be for-

mulated in terms of weighted averages (Goodman and
Kruskal ).�us, in terms of the general expression in
(), a symmetric PRE could be formulated as the following
weighted mean of PREY∣X and PREX∣Y :

PRE =
PY − PY∣X + PX − PX∣Y

PY + PX
.

However, there would seem to be no strong reason for pre-
ferring such symmetricized measures over the V orW in
() and ().
It should be pointed out that asymmetric association

measures can also be formulated in terms of relative reduc-
tion in variation, somewhat analogously to the coe�cient
of determination (R) used in regression analysis.�is can
be done by basically replacing the prediction error prob-
abilities in () with appropriate measures of categorical
variation (Agresti , pp. –).

Concluding Comment
For Cramér’s V in (), there is inconsistency in the
literature concerning the use of V versus V (and Cramér
himself proposedV (Cramér , p. )). Also, concern
has been expressed that di�erentmeasures such as those in
() and () can produce quite di�erent results. Such issues
are indeed important and are o�en overlooked.
As with any summary measure, and so it is with asso-

ciation measures, it is essential that a measure takes on
values throughout its range that are reasonable in that they
provide true or valid representations of the attribute being
measured. In order to make such an assessment for the
above association measures, consider the simple case of a
× table with all themarginal probabilities equal to . and
with the following cell entries:

p = ( − w)/p = ( + w)/

p = ( + w)/p = ( − w)/

with  ≤ w ≤ . Each of these probabilities are seen
to be the weighted mean of the corresponding probabili-
ties for the case of perfect association and zero association
(independence) for the given marginal probabilities, i.e.,

p = p = w()+(−w)(.), p = p = w(.)+(−w)(.)

In order for some association measure A ∈ [, ] to
take on reasonable values in this ease, the only logical
requirement is clearly that

A = w(A = ) + ( − w)(A = ) = w, w ∈ [, ]
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It is readily seen that the measures in () and () meet
this requirement for all w, i.e., V = w (and not V) and
λY∣X = w for the above {pij} – distribution. However, it is
seen that, for (), λY∣X = w.�is shows that τ′Y∣X =

√
τY∣X

should be used as an association measure rather than τY∣X .
In the case ofW in (), it is apparent thatW is only approx-
imately equal to w, but the approximation appears to be
su�ciently close for W to be a competitive association
measure.
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Introduction
�e term “astronomy” is best understood as short-hand
for “astronomy and astrophysics.” Astronomy is the obser-
vational study of matter beyond Earth: planets and other
bodies in the Solar System, stars in the Milky Way Galaxy,
galaxies in the Universe, and di�use matter between these

concentrations of mass. �e perspective is rooted in our
viewpoint on or near Earth, typically using telescopes or
robotic satellites. Astrophysics is the study of the intrinsic
nature of astronomical bodies and the processes by which
they interact and evolve.�is is an inferential intellectual
e�ort based on the well-con�rmed assumption that phys-
ical processes established to rule terrestrial phenomena
– gravity, thermodynamics, electromagnetism, quantum
mechanics, plasma physics, chemistry, and so forth – also
apply to distant cosmic phenomena.
Statistical techniques play an important role in analyz-

ing astronomical data and at the interface between astron-
omy and astrophysics. Astronomy encounters a huge range
of statistical problems: samples selected with truncation;
variables subject to censoring and heteroscedastic mea-
surement errors; parameter estimation of complex mod-
els derived from astrophysical theory; anisotropic spatial
clustering of galaxies; time series of periodic, stochastic,
and explosive phenomena; image processing of both gray-
scale and Poissonian images; 7data mining of terabyte-
petabyte datasets; and much more. �us, astrostatistics
is not focused on a narrow suite of methods, but rather
brings the insights frommany �elds of statistics to bear on
problems arising in astronomical research.

History
As the oldest observational science, astronomy was the
driver for statistical innovations over many centuries
(Stigler ; Hald ). Hipparchus, Ptolemy, al-Biruni,
andGalileoGalilei were among thosewho discussedmeth-
ods for averaging discrepant astronomical measurements.
�e least squares method (see 7Least Squares) and its
understanding in the context of the normal error distri-
bution were developed to address problems in Newto-
nian celestial mechanics during the early nineteenth cen-
tury by Pierre-Simon Laplace, Adrian Legendre, and Carl
Friedrich Gauss.�e links between astronomy and statis-
tics considerably weakened during the �rst decades of
the twentieth century as statistics turned its attention to
social and biological sciences while astronomy focused
on astrophysics. Maximum likelihood methods emerged
slowly starting in the s, and Bayesianmethods are now
gaining considerably popularity.
Modern astrostatistics has grown rapidly since the

s. Several cross-disciplinary research groups emerged
to develop advanced methods and critique common prac-
tices (http://hea-www.harvard.edu/AstroStat; http://www.
incagroup.org; http://astrostatistics.psu.edu).Monographs
were written on astrostatistics (Babu and Feigelson ),
galaxy clustering (Martinez and Saar ), image pro-
cessing (Starck and Murtagh ), Bayesian analysis
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A(Gregory ), and Bayesian cosmology (Hobson et al.
). �e Statistical Challenges in Modern Astronomy
(Babu and Feigelson ) conferences bring astronomers
and statisticians together to discuss methodological issues.

�e astronomical community is devoting consider-
able resources to the construction and promulgation of
large archival datasets, o�en based on well-designed sur-
veys of large areas of the sky.�ese surveys can generate
petabytes of images, spectra and time series. Reduced data
products include tabular data with approximately ten vari-
ables measured for billions of astronomical objects. Major
projects include the SloanDigital Sky Survey, International
Virtual Observatory, and planned Large Synoptic Sur-
vey Telescope (http://www.sdss.org, http://www.ivoa.net,
http://www.lsst.org). Too large for traditional treatments,
these datasets are spawning increased interest in computa-
tionally e�cient data visualization, data mining, and sta-
tistical analysis. A nascent �eld of astroinformatics allied
to astrostatistics is emerging.

Topics in Contemporary Astrostatistics
Given the vast range of astrostatistics, only a small por-
tion of relevant issues can be outlined here. We outline
three topics of contemporary interest (�e astronomi-
cal research literature can be accessed online through
the SAO/NASA Astrophysics Data System, http://adsabs.
harvard.edu.).

Heteroscedastic Measurement Errors
Astronomical measurements at telescopes are made with
carefully designed and calibrated instruments, and “back-
ground” levels in dark areas of the sky are examined to
quantitatively determine the noise levels.�us, unlike in
social and biological science studies, heteroscedastic mea-
surement error are directly obtained for each astronomical
measurement.�is produces unusual data structures. For
example, a multivariate table of brightness of quasars in six
photometric bands will have  columns of numbers giving
the measured brightness and the associated measurement
error in each band.
Unfortunately, few statistical techniques are available

for this class of non-identically distributed data. Most
errors-in-variables methods are designed to treat situa-
tions where the heteroscedasticity is not measured, and
instead becomes part of the statistical model (Carroll
et al. ). Methods are needed for density estimation,
regression, multivariate analysis and classi�cation, spatial
processes, and time series analysis. Common estimation
procedures in the astronomical literature weight eachmea-
surement by its associated error. For instance, in a func-
tional regression model, the parameters θ̂ in model M

are estimated by minimizing the weighted sum of squared
residuals ∑i(Oi − Mi(θ̂)/σ i of the observed data Oi
where σ i are the known variances of the measurement
errors.
More sophisticated methods are being developed, but

have not yet entered into common usage. Kelly ()
treats structural regression as an extension of a nor-
mal mixture model, constructing a likelihood which can
either be maximized with the EM Algorithm or used in
7Bayes’ theorem.�e Bayesian approach is more power-
ful, as it also can simultaneous incorporate censoring and
truncation into the measurement error model. Delaigle
and Meister () describe a nonparametric kernel den-
sity estimator that takes into account the heteroscedastic
errors. More methods (e.g., for multivariate clustering and
time series modeling) are needed.

Censoring and Truncation
In the telescopic measurement of quasar brightnesses
outlined above, some targeted quasars may be too faint
to be seen above the background noise level in some
photometric bands.�ese nondetections lead to censored
data points.�e situation is similar in some ways to cen-
soring treated by standard survival analysis, but di�ers in
other ways: the data are le�-censored rather than right-
censored; censoring can occur in any variable, not just a
single response variable; and censoring levels are linked to
measurement error levels. Survival techniques have come
into common usage in astronomy since their introduc-
tion (Isobe et al. ).�ey treat some problems such as
density estimation (with the Kaplan-Meier product-limit
estimator), two-sample tests (with the Gehan, logrank and
Peto-Prentice tests), correlation (using a generalization of
Kendall’s τ), and linear regression (using the Buckley-
James line).
Consider a survey of quasars at a telescope with lim-

ited sensitivity where the quasar sample is not provided
in advance, but is derived from the photometric colors of
objects in the survey. Now quasars which are too faint for
detection are missing entirely from the dataset. Recovery
from this form of truncation is more di�cult than recov-
ery from censoring with a previously established sample.
A major advance was the derivation of the nonparamet-
ric estimator for a randomly truncated dataset, analo-
gous to the Kaplan-Meier estimator for censored data, by
astrophysicist Lynden-Bell (). �is solution was later
recovered by statistician Woodroofe (), and bivari-
ate extensions were developed by Efron and Petrosian
().
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Periodicity Detection in Difficult Data
Stars exhibit a variety of periodic behaviors: binary star
or planetary orbits; stellar rotation; and stellar oscillations.
While Fourier analysis is o�en used to �nd and charac-
terize such periodicities, the data o�en present problems
such as non-sinusoidal repeating patterns, observations of
limited duration, and unevenly-spaced observations. Non-
sinusoidal periodicities occur in elliptical orbits, eclipses,
and rotational modulation of surface features. Unevenly-
spaced data arise from bad weather at the telescope, diur-
nal cycles for ground-based telescopes, Earth orbit cycles
for satellite observatories, and inadequate observing time
provided by telescope allocation committees.
Astronomers have developed a number of statis-

tics to locate periodicities under these conditions. �e
Lomb-Scargle periodogram (Scargle ) generalizes the
Schuster periodogram to treat unevenly-spaced data.
Stellingwerf () presents a widely used least-squared
technique where the data are folded modulo trial peri-
ods, grouped into phase bins, and intra-bin variance is
compared to inter-bin variance using χ. �e method
treats unevenly spaced data, measurement errors, and
non-sinusoidal shapes. Dworetsky () gives a simi-
lar method without binning suitable for sparse datasets.
Gregory and Loredo () develop a Bayesian approach
for locating non-sinusoidal periodic behaviors from Pois-
son distributed event data. Research is now concentrat-
ing on methods for computationally e�cient discovery of
planets orbiting stars as they eclipse a small fraction during
repeated transits across the stellar surface.�ese methods
involve matched �lters, Bayesian estimation, least-squares
box-�tting, maximum likelihood, 7analysis of variance,
and other approaches (e.g., Pontopappas et al. ).
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Consider a sequence of random variables Tn, whose
distribution depends on a parameter n that generally
represents sample size.�e sequence is said to be asymp-
totically normal if there exists a sequences µn and σn
such that limn→∞ P [(Tn − µn)/σn ≤ x] = Φ(x) for all
x, where Φ(x) is the standard Gaussian distribution
function

∫

x

−∞
exp(−y/)(π)−/ dy. ()

One o�en writes

Tn ∼ AN(µn, σ n) ()

to express asymptotic normality. Note that µn generally
depend on n, and furthermore may be data-dependent.
Furthermore, in some casesTnmight be a sequence of ran-
dom vectors; in this case, µn is a sequence of vectors, σ n is
a sequence of matrices, and Φ the vector valued counter-
part of (). In the scalar case, for �xed n, the quantity σn is
called the standard error of Tn.
Many frequentist statistical inferential procedures are

performed by constructing a Tn so that () holds under
a null hypothesis, with a dissimilar distribution under
interesting alternative hypotheses, and reporting

( −Φ(∣(Tn − µn)/σn∣)) ()

as a two-sided p-value; the application for one-sided
p-values is similar, and there are also Bayesian applica-
tions of a similar �avor. Ser�ing () provides further
information.
Consider the following examples of quantities that are

asymptotically normal:

● If Tn is the mean of n independent and identically dis-
tributed randomvariables, eachwith expectation µ and
standard deviation σ , then

Tn ∼ AN(µ, σ /n). ()

Furthermore, if sn is the traditional standard deviation
of the contributors the the mean,

Tn ∼ AN(µ, sn/n); ()

note that the standard error here is data-dependent,
and it is incorrect to call sn/

√
n a standard deviation of

Tn, even approximately. In the present case square root

of the second argument to the AN operator estimates
the standard deviation of Tn, but a further example
shows that even this need not be true. In this case, the
standard Z-test for a single sample mean follows from
using () when σ is known, and when the components
of Tn are binary, the standard standard Z-test for a sin-
gle sample mean follows from using () with σ  the
standard Bernoulli variance. When σ is unknown, ()
is o�en used instead, and for n ≤ , the t distribution
function is generally used in place ofΦ in () for greater
accuracy.

● Many rank-based statistics are asymptotically nor-
mal; for example, if Tn is the Wilcoxon signed-rank
statistic (see 7Wilcoxon-Signed-Rank Test) for testing
whether the expectation of n independent and identi-
cally distributed random variables takes on a particu-
lar null value, assuming symmetry and continuity of
the underlying distribution. Without loss of general-
ity, take this null mean to be zero.�en Tn is obtained
by ranking the absolute values of the observations, and
summing the ranks of those observations that are pos-
itive. Hettmansperger () notes that () holds with
µn = n(n + )/ and σn =

√
n(n + )(n + )/, and

the test against the two-sided alternative reports the
p-value (). In this case, Tn may be written as the sum
of independent but not identically-distributed random
variables, or as the sum of identically-distributed but
not independent random variables.

● Many parameter estimates resulting from �tting mod-
els with independent observations are asymptotically
normal. For example, consider independent Bernoulli
observations Yi with P [Yi = ] = exp(β + βxi)/( +
exp(β + βxi)). Let

ℓ(β) =
n

∑
i=

[Yiβ + xiYiβ − log( + exp(β + βxi))] ,

()
and let β̂ maximize ℓ; here β̂ implicitly depends on n.
�en

β̂ ∼ AN(β, [−ℓ′′(β)]
−
), ()

as one can see by heuristically expressing ℓ′(β) + ℓ′′

(β)(β̂ − β) ≈ ℓ′(β̂) = , and solving for β̂ to obtain
β̂ ≈ β − [ℓ′′(β)]−ℓ′(β), noting that ℓ′′(β) is non-
random, and noting that a variant of the Central Limit
�eorem proves the asymptotic normality of ℓ′(β),
and hence of β̂.�is heuristic argument is easily made
rigorous once one notes β̂ is consistent (i.e., for any
є > , limn→∞ P [∥β̂ − β∥ > є] = ; see Cox and
Hinkley ). In this example, the outcome Yi =  ∀i
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has positive probability, and for such {Y, . . . ,Yn}, β̂
is in�nite. A similar result holds for Yi =  ∀i. Hence
the variance of β̂ does not exist.
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Asymptotic Relative Efficiency of Two
Estimators
For statistical estimation problems, it is typical and even
desirable that several reasonable estimators can arise for
consideration. For example, themean andmedian parame-
ters of a symmetric distribution coincide, and so the sample

mean and the sample median become competing estima-
tors of the point of symmetry.Which is preferred? By what
criteria shall we make a choice?

One natural and time-honored approach is simply to
compare the sample sizes at which two competing estima-
tors meet a given standard of performance.�is depends
upon the chosen measure of performance and upon the
particular population distribution F.
To make the discussion of sample mean versus sam-

ple median more precise, consider a distribution function
F with density function f symmetric about an unknown
point θ to be estimated. For {X, . . . ,Xn} a sample from
F, put Xn = n−∑ni= Xi and Medn = median{X, . . . ,Xn}.
Each of Xn and Medn is a consistent estimator of θ in the
sense of convergence in probability to θ as the sample size
n → ∞. To choose between these estimators we need to
use further information about their performance. In this
regard, one key aspect is e�ciency, which answers: How
spread out about θ is the sampling distribution of the estima-

tor?�e smaller the variance in its sampling distribution,
the more “e�cient” is that estimator.
Here we consider “large-sample” sampling distribu-

tions. For Xn, the classical central limit theorem (see
7Central Limit �eorems) tells us: if F has �nite vari-
ance σ F , then the sampling distribution of Xn is approxi-
matelyN (θ, σ F/n), i.e., Normal withmean θ and variance
σ F/n. For Medn, a similar classical result (Ser�ing )
tells us: if the density f is continuous and positive at θ,
then the sampling distribution of Medn is approximately
N(θ, /[f (θ)]n). On this basis, we consider Xn and
Medn to perform equivalently at respective sample sizes n
and n if

σ F
n

=


[f (θ)]n
.

Keeping inmind that these sampling distributions are only
approximations assuming that n and n are “large,” we
de�ne the asymptotic relative e�ciency (ARE) of Med to X
as the large-sample limit of the ratio n/n, i.e.,

ARE (Med,X,F) = [f (θ)]

σ

F . ()

Definition in the General Case
For any parameter η of a distribution F, and for esti-
mators η̂() and η̂() approximately N(η,V(F)/n) and
N(η,V(F)/n), respectively, the ARE of η̂() to η̂() is
given by

ARE (η̂
(), η̂(),F) =

V(F)

V(F)
. ()

Interpretation. If η̂() is used with a sample of size n, the
number of observations needed for η̂() to perform equiv-
alently is ARE(η̂(), η̂(),F) × n.
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AExtension to the case of multidimensional parameter. For a
parameter η taking values in Rk, and two estimators η̂(i)

which are k-variate Normal with mean η and nonsingular
covariance matrices Σi(F)/n, i = , , we use [see Ser�ing
()]

ARE (η̂
(), η̂(),F) = (

∣Σ(F)∣

∣Σ(F)∣
)

/k

, ()

the ratio of generalized variances (determinants of the
covariance matrices), raised to the power /k.

Connection with the Maximum Likelihood
Estimator
Let F have density f (x ∣ η) parameterized by η ∈ R and
satisfying some di�erentiability conditions with respect to

η. Suppose also that I(F) = Eη {[
∂
∂η
log f (x ∣ η)]


} (the

Fisher information) is positive and �nite.�en (Lehmann
and Casella ) it follows that (a) the maximum likeli-
hood estimator η̂ (ML) of η is approximately N(η, /I(F)n),
and (b) for a wide class of estimators η̂ that are approx-
imately N(η,V(η̂,F)/n), a lower bound to V(η̂,F) is
/I(F). In this situation, () yields

ARE (η̂, η̂
(ML),F) =


I(F)V(η̂,F)

≤ , ()

making η̂ (ML) (asymptotically) the most e�cient among
the given class of estimators η̂. We note, however, as will
be discussed later, that () does not necessarily make η̂(ML)

the estimator of choice, when certain other considerations
are taken into account.

Detailed Discussion of Estimation of
Point of Symmetry
Let us now discuss in detail the example treated above,
with F a distribution with density f symmetric about an
unknown point θ and {X, . . . ,Xn} a sample from F. For
estimation of θ, we will consider not onlyXn andMedn but
also a third important estimator.

Mean versus Median
Let us now formally compareXn andMedn and see how the
ARE di�ers with choice of F. Using () with F = N (θ, σ F),
it is seen that

ARE (Med,X,N (θ, σ F)) = /π = ..

�us, for sampling from aNormal distribution, the sample
mean performs as e�ciently as the sample median using
only % as many observations. (Since θ and σF are loca-
tion and scale parameters of F, and since the estimators

Xn andMedn are location and scale equivariant, their ARE
does not depend upon these parameters.)�e superiority
of Xn here is no surprise since it is the MLE of θ in the
model N (θ, σ F).
As noted above, asymptotic relative e�ciencies pertain

to large sample comparisons and need not reliably indicate
small sample performance. In particular, for F Normal, the
exact relative e�ciency of Med to X for sample size n = 
is a very high %, although this decreases quickly, to %
for n = , to % for n = , and to % in the limit.
For sampling from a double exponential (or Laplace)

distribution with density f (x) = λe−λ∣x−θ ∣
/, −∞ < x <∞

(and thus variance /λ), the above result favoring Xn over
Medn is reversed: () yields

ARE (Med,X, Laplace) = ,

so that the sample mean requires % as many observa-
tions to perform equivalently to the samplemedian. Again,
this is no surprise because for this model the MLE of θ is
Medn.

A Compromise: The Hodges–Lehmann
Location Estimator
We see from the above that the ARE depends dramatically
upon the shape of the density f and thus must be used cau-
tiously as a benchmark. For Normal versus Laplace, Xn is
either greatly superior or greatly inferior to Medn.�is is a
rather unsatisfactory situation, since in practice we might
not be quite sure whether F is Normal or Laplace or some
other type. A very interesting solution to this dilemma
is given by an estimator that has excellent overall perfor-
mance, the so-called Hodges–Lehmann location estimator
(Hodges and Lehmann ; see 7Hodges-Lehmann Esti-
mators):

HLn =Median{
Xi + Xj


} ,

the median of all pairwise averages of the sample
observations. (Some authors include the cases i = j,
some not.) We have (Lehmann a) that HLn is
asymptoticallyN(θ, /[∫ f


(x)dx]n), which yields that

ARE (HL,X,N (θ, σ F)) = /π = . and ARE(HL,X,
Laplace) = .. Also, for the 7Logistic distribution with
density f (x) = σ−e(x−θ)/σ

/[ + e(x−θ)/σ
]
, −∞ < x <

∞, for which HLn is the MLE of θ and thus opti-
mal, we have ARE(HL,X, Logistic) = π/ = . [see
Lehmann (b)]. Further, for F the class of all distri-
butions symmetric about θ and having �nite variance, we
have infF ARE(HL,X,F) = / = . [see Lehmann
(a)].�e estimator HLn is highly competitive with X
at Normal distributions, can be in�nitely more e�cient at
some other symmetric distributions F, and is never much
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less e�cient at any distribution F in F .�e computation
of HLn appears at �rst glance to require O(n) steps, but a
much more e�cient O(n logn) algorithm is available [see
Monohan ()].

Efficiency versus Robustness Trade-Off
Although the asymptotically most e�cient estimator is
given by the MLE, the particular MLE depends upon the
shape of F and can be drastically ine�cient when the actual
F departs even a little bit from the nominal F. For example,
if the assumed F isN(µ, ) but the actual model di�ers by a
small amount ε of “contamination,” i.e., F = (−ε)N(µ, )+
εN(µ, σ ), then

ARE(Med,X,F) =

π
( − ε + εσ

−
)

( − ε + εσ


) ,

which equals /π in the “ideal” case ε =  but otherwise→
∞ as σ →∞. A small perturbation of the assumed model
thus can destroy the superiority of the MLE.
One way around this issue is to take a nonparamet-

ric approach and seek an estimator with ARE satisfying a
favorable lower bound. Above we saw how the estimator
HLn meets this need.
Another criterion by which to evaluate and com-

pare estimators is robustness. Here let us use �nite-sample
breakdown point (BP): the minimal fraction of sample
points which may be taken to a limit L (e.g., ±∞) with-
out the estimator also being taken to L. A robust estima-
tor remains stable and e�ective when in fact the sample
is only partly from the nominal distribution F and con-
tains some non-F observations which might be relatively
extreme contaminants.
A single observation taken to ∞ (with n �xed) takes

Xn with it, so Xn has BP = . Its optimality at Normal
distributions comes at the price of a complete sacri�ce of
robustness. In comparison, Medn has extremely favorable
BP = . but at the price of a considerable loss of e�ciency
at Normal models.
On the other hand, the estimator HLn appeals broadly,

possessing both quite high ARE over a wide class of F and
relatively high BP =  − −/ = ..
As another example, consider the problem of estima-

tion of scale. Two classical scale estimators are the sample
standard deviation sn and the sample MAD (median abso-
lute deviation about the median) MADn. �ey estimate
scale in di�erent ways but can be regarded as competi-
tors in the problem of estimation of σ in the model F =
N(µ, σ ), as follows. With both µ and σ unknown, the
estimator sn is (essentially) the MLE of σ and is asymp-
totically most e�cient. Also, for this F, the population
MAD is equal to Φ−(/)σ , so that the estimator σ̂n =

MADn/Φ−(/) = .MADn competes with sn for
estimation of σ . (Here Φ denotes the standard normal dis-
tribution function, and, for any F, F−(p) denotes the pth
quantile, inf{x : F(x) ≥ p}, for  < p < .) To compare
with respect to robustness, we note that a single observa-
tion taken to∞ (with n �xed) takes sn with it, sn has BP =
. On the other hand, MADn and thus σ̂n have BP = .,
like Medn. However, ARE(σ̂n, sn,N(µ, σ )) = ., even
worse than the ARE of Medn relative to X. Clearly desired
is amore balanced trade-o� between e�ciency and robust-
ness than provided by either of sn and σ̂n. Alternative scale
estimators having the same . BP as σ̂n but much higher
ARE of . relative to sn are developed in Rousseeuw and
Croux (). Also, further competitors o�ering a range of
trade-o�s given by (BP, ARE) = (., .) or (., .)
or (., .), for example, are developed in Ser�ing
().
In general, e�ciency and robustness trade o� against

each other.�us ARE should be considered in conjunction
with robustness, choosing the balance appropriate to
the particular application context. �is theme is promi-
nent in the many examples treated in Staudte and
Sheather ().

A Few Additional Aspects of ARE
Connections with Confidence Intervals
In view of the asymptotic normal distribution underlying
the above formulation of ARE in estimation, we may also
characterize the ARE given by () as the limiting ratio of
sample sizes at which the lengths of associated con�dence
intervals at approximate level ( − α)%,

η̂
(i)

± Φ− ( −
α


)

√
Vi(F)

ni
, i = , ,

converge to  at the same rate, when holding �xed the
coverage probability  − α. (In practice, of course, con-
sistent estimates of Vi(F), i = , , are used in forming
the CI.)

Fixed Width Confidence Intervals and ARE
One may alternatively consider con�dence intervals of
�xed length, in which case (under typical conditions) the
noncoverage probability depends on n and tends to  at an
exponential rate, i.e., n− log αn → c > , as n → ∞. For
�xed width con�dence intervals of the form

η̂
(i)

± d σF , i = , ,

we thus de�ne the �xed width asymptotic relative e�ciency
(FWARE) of two estimators as the limiting ratio of sample
sizes at which the respective noncoverage probabilities α

(i)
n ,

i = , , of the associated �xed width con�dence intervals
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Aconverge to zero at the same exponential rate. In particular,
for Med versus X, and letting η =  and σF =  without loss
of generality, we obtain (Ser�ing and Wackerly )

FWARE(Med,X,F) =
logm(−d)

log[(F(d) − F(d))/]
, ()

wherem(−d) is a certain parameter of the 7moment gen-
erating function of F.�e FWARE is derived using large
deviation theory instead of the central limit theorem. As
d → , the FWARE converges to the ARE. Indeed, for F
a Normal distribution, this convergence (to /π = .) is
quite rapid: the expression in () rounds to . for d = ,
to . for d = , and to . for d ≤ ..

Confidence Ellipsoids and ARE
For an estimator η̂ which is asymptotically k-variate Nor-
mal with mean η and covariance matrix Σ/n, as the sam-
ple size n → ∞, we may form (see Ser�ing ) an
associated ellipsoidal con�dence region of approximate level

( − α)% for the parameter η,

En,α = {η : n (η̂ − η)
′
Σ
−
(η̂ − η) ≤ cα},

with P (χk > cα) = α and in practice using a consistent
estimate of Σ.�e volume of the region En,α is

πk/(cα/n)
k/

∣Σ∣/

Γ((k + )/)
.

�erefore, for two such estimators η̂(i), i = , , the ARE
given by () may be characterized as the limiting ratio of
sample sizes at which the volumes of associated ellipsoidal
con�dence regions at approximate level ( − α)% con-
verge to  at the same rate, when holding �xed the coverage
probability  − α.
Under regularity conditions on the model, the maxi-

mum likelihood estimator η̂(ML) has a con�dence ellipsoid
En,α attaining the smallest possible volume and, moreover,
lying wholly within that for any other estimator η̂.

Connections with Testing
Parallel to ARE in estimation as developed here is the
notion of Pitman ARE for comparison of two hypothesis
test procedures. Based on a di�erent formulation, although
the central limit theorem is used in common, the Pitman
ARE agrees with () when the estimator and the hypothe-
sis test statistic are linked, as for example X paired with the
t-test, or Medn paired with the 7sign test, or HLn paired
with the 7Wilcoxon-signed-rank test. See Lehmann b,
Nikitin , Nikitin , and Ser�ing .

Other Notions of ARE
As illustrated above with FWARE, several other important
approaches to ARE have been developed, typically using
either moderate or large deviation theory. For example,
instead of asymptotic variance parameters as the criterion,
one may compare probability concentrations of the esti-
mators in an ε-neighborhood of the target parameter η:
P (∣η̂(i)

− η∣ > ε), i = , . When we have

logP(∣η̂(i)
n − η∣ > ε)

n
→ γ

(i)
(ε, η), i = , ,

as is typical, then the ratio of sample sizes n/n at which
these concentration probabilities converge to  at the same
rate is given by γ()

(ε, η)/γ()
(ε, η), which then represents

another ARE measure for the e�ciency of estimator η̂
()
n

relative to η̂
()
n . See Ser�ing (, ..) for discussion

andBasu () for illustration that the variance-based and
concentration-based measures need not agree on which
estimator is better. For general treatments, see Nikitin
(), Puhalskii and Spokoiny (), Nikitin (), and
Ser�ing (, Chap. ), as well as the other references
cited below. A comprehensive bibliography is beyond the
present scope. However, very productive is ad hoc explo-
ration of the literature using a modern search engine.
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Asymptotic Relative Efficiency of Two
Tests
Making a substantiated choice of the most e�cient statis-
tical test of several ones being at the disposal of the statis-
tician is regarded as one of the basic problems of Statistics.
�is problem became especially important in the middle
of XX century when appeared computationally simple but
“ine�cient” rank tests.
Asymptotic relative e�ciency (ARE) is a notion which

enables to implement in large samples the quantitative
comparison of two di�erent tests used for testing of the
same statistical hypothesis.�e notion of the asymptotic

e�ciency of tests is more complicated than that of asymp-
totic e�ciency of estimates. Various approaches to this
notion were identi�ed only in late forties and early ��ies,
hence, – years later than in the estimation theory. We
proceed now to their description.
Let {Tn} and {Vn} be two sequences of statistics

based on n observations and assigned for testing the null-
hypothesis H against the alternative A. We assume that
the alternative is characterized by real parameter θ and
for θ = θ turns into H. Denote by NT(α, β, θ) the sam-
ple size necessary for the sequence {Tn} in order to attain
the power β under the level α and the alternative value
of parameter θ.�e number NV(α, β, θ) is de�ned in the
same way.
It is natural to prefer the sequence with smaller N.

�erefore the relative e�ciency of the sequence {Tn}with
respect to the sequence {Vn} is speci�ed as the quantity

eT ,V(α, β, θ) = NV(α, β, θ)/NT(α, β, θ) ,

so that it is the reciprocal ratio of sample sizes NT and NV .
�e merits of the relative e�ciency as means for

comparing the tests are universally acknowledged. Unfor-
tunately it is extremely di�cult to explicitly compute
NT(α, β, θ) even for the simplest sequences of statistics
{Tn}. At present it is recognized that there is a possi-
bility to avoid this di�culty by calculating the limiting
values eT ,V(α, β, θ) as θ → θ, as α →  and as
β →  keeping two other parameters �xed. �ese lim-
iting values ePT ,V , e

B
T ,V and e

HL
T ,V are called respectively

the Pitman, Bahadur and Hodges–Lehmann asymptotic
relative e�ciency (ARE), they were proposed correspond-
ingly in Pitman (), Bahadur () and Hodges and
Lehmann ().
Only close alternatives, high powers and small levels

are of the most interest from the practical point of view. It
keeps one assured that the knowledge of these ARE types
will facilitate comparing concurrent tests, thus producing
well-founded application recommendations.

�e calculation of the mentioned three basic types
of e�ciency is not easy, see the description of theory
and many examples in Ser�ing (), Nikitin ()
and Van der Vaart (). We only mention here, that
Pitman e�ciency is based on the central limit theorem
(see 7Central Limit�eorems) for test statistics. On the
contrary, Bahadur e�ciency requires the large deviation
asymptotics of test statistics under the null-hypothesis,
while Hodges–Lehmann e�ciency is connected with large
deviation asymptotics under the alternative. Each type of
e�ciency has its own merits and drawbacks.
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APitman Efficiency
Pitman e�ciency is the classical notion usedmost o�en for
the asymptotic comparison of various tests. Under some
regularity conditions assuming 7asymptotic normality of
test statistics underH andA, it is a number which has been
gradually calculated for numerous pairs of tests.
We quote now as an example one of the �rst Pitman’s

results that stimulated the development of nonparametric
statistics. Consider the two-sample problem when under
the null-hypothesis both samples have the same continu-
ous distribution and under the alternative di�er only in
location. Let e PW , t be the Pitman ARE of the two-sample
Wilcoxon rank sum test (see 7Wilcoxon–Mann–Whitney
Test) with respect to the corresponding Student test (see
7Student’s t-Tests). Pitman proved that for Gaussian sam-
ples e PW , t = /π ≈ . , and it shows that the ARE of
the Wilcoxon test in the comparison with the Student test
(being optimal in this problem) is unexpectedly high. Later
Hodges and Lehmann () proved that

. ≤ ePW , t ≤ +∞ ,

if one rejects the assumption of normality and, moreover,
the lower bound is attained at the density

f (x) =

⎧⎪⎪
⎨
⎪⎪⎩

 ( − x)/ (
√
) if ∣x∣ ≤

√
,

 otherwise.

Hence the Wilcoxon rank test can be in�nitely better
than the parametric test of Student but their ARE never
falls below .. See analogous results in Ser�ing ()
where the calculation of ARE of related estimators is
discussed.
Another example is the comparison of independence

tests based on Spearman and Pearson correlation coef-
�cients in bivariate normal samples. �en the value of
Pitman e�ciency is /π ≈ ..
In numerical comparisons, the Pitman e�ciency

appear to be more relevant for moderate sample sizes than
other e�ciencies Groeneboom and Oosterho� (). On
the other hand, Pitman ARE can be insu�cient for the
comparison of tests. Suppose, for instance, that we have
a normally distributed sample with the mean θ and vari-
ance  and we are testing H : θ =  against A : θ > . Let
compare two signi�cance tests based on the sample mean
X̄ and the Student ratio t. As the t-test does not use the
information on the known variance, it should be inferior
to the optimal test using the sample mean. However, from
the point of view of Pitman e�ciency, these two tests are
equivalent. On the contrary, Bahadur e�ciency eBt,X̄(θ) is
strictly less than  for any θ > .

If the condition of asymptotic normality fails, consid-
erable di�culties arise when calculating the Pitman ARE
as the latter may not at all exist or may depend on α

and β. Usually one considers limiting Pitman ARE as
α → . Wieand () has established the correspondence
between this kind of ARE and the limiting approximate
Bahadur e�ciency which is easy to calculate.

Bahadur Efficiency
�e Bahadur approach proposed in Bahadur (; )
to measuring the ARE prescribes one to �x the power
of tests and to compare the exponential rate of decrease
of their sizes for the increasing number of observa-
tions and �xed alternative. �is exponential rate for a
sequence of statistics {Tn} is usually proportional to some
non-random function cT(θ) depending on the alternative
parameter θ which is called the exact slope of the sequence
{Tn}. �e Bahadur ARE e BV ,T(θ) of two sequences
of statistics {Vn} and {Tn} is de�ned by means of the
formula

e
B
V ,T(θ) = cV(θ) / cT(θ).

It is known that for the calculation of exact slopes it is nec-
essary to determine the large deviation asymptotics of a
sequence {Tn} under the null-hypothesis. �is problem
is always nontrivial, and the calculation of Bahadur e�-
ciency heavily depends on advancements in large deviation
theory, see Dembo and Zeitouni () and Deuschel and
Stroock ().
It is important to note that there exists an upper bound

for exact slopes
cT(θ) ≤ K(θ)

in terms of Kullback–Leibler information number K(θ)

which measures the “statistical distance” between the
alternative and the null-hypothesis. It is sometimes com-
pared in the literature with the7Cramér–Rao inequality in
the estimation theory.�erefore the absolute (nonrelative)
Bahadur e�ciency of the sequence {Tn} can be de�ned as
eBT(θ) = cT(θ)/K(θ).
It is proved that under some regularity conditions

the likelihood ratio statistic is asymptotically optimal in
Bahadur sense (Bahadur ; Van der Vaart , Sect.
.; Arcones ).
O�en the exact Bahadur ARE is uncomputable for any

alternative θ but it is possible to calculate the limit of
Bahadur ARE as θ approaches the null-hypothesis.�en
one speaks about the local Bahadur e�ciency.

�e indisputable merit of Bahadur e�ciency consists
in that it can be calculated for statistics with non-normal
asymptotic distribution such as Kolmogorov-Smirnov,
omega-square, Watson and many other statistics.
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Asymptotic Relative Efficiency in Testing. Table  Some
local Bahadur efficiencies

Statistic Distribution

Gauss Logistic Laplace
Hyperbolic
cosine Cauchy Gumbel

Dn . .  . . .

ω
n . . .  . .

Consider, for instance, the sample with the distribution
function (df) F and suppose we are testing the goodness-
of-�t hypothesis H : F = F for some known continu-
ous df F against the alternative of location. Well-known
distribution-free statistics for this hypothesis are the Kol-
mogorov statistic Dn and omega-square statistic ωn. �e
following table presents their local absolute e�ciency in
case of six standard underlying distributions:
We see from Table  that the integral statistic ωn is in

most cases preferable with respect to the supremum-type
statistic Dn. However, in the case of Laplace distribution
the Kolmogorov statistic is locally optimal, the same hap-
pens for the Cramér-von Mises statistic in the case of
hyperbolic cosine distribution. �is observation can be
explained in the framework of Bahadur local optimality,
see Nikitin ( Chap. ).
See also Nikitin () for the calculation of local

Bahadur e�ciencies in case of many other statistics.

Hodges–Lehmann efficiency
�is type of the ARE proposed in Hodges and Lehmann
() is in the conformity with the classical Neyman-
Pearson approach. In contrast with Bahadur e�ciency, let
us �x the level of tests and let compare the exponential rate
of decrease of their second-kind errors for the increasing
number of observations and �xed alternative.�is expo-
nential rate for a sequence of statistics {Tn} is measured
by some non-random function dT(θ) which is called the
Hodges–Lehmann index of the sequence {Tn}. For two
such sequences the Hodges–Lehmann ARE is equal to the
ratio of corresponding indices.

�e computation of Hodges–Lehmann indices is di�-
cult as requires large deviation asymptotics of test statistics
under the alternative.

�ere exists an upper bound for the Hodges–Lehmann
indices analogous to the upper bound for Bahadur exact
slopes. As in the Bahadur theory the sequence of statistics
{Tn} is said to be asymptotically optimal in the Hodges–
Lehmann sense if this upper bound is attained.

�e drawback of Hodges–Lehmann e�ciency is that
most two-sided tests like Kolmogorov and Cramér-von
Mises tests are asymptotically optimal, and hence this kind

of e�ciency cannot discriminate between them. On the
other hand, under some regularity conditions the one-
sided tests like linear rank tests can be compared on the
basis of their indices, and their Hodges–Lehmann e�-
ciency coincides locally with Bahadur e�ciency, see details
in Nikitin ().
Coupled with three “basic” approaches to the ARE cal-

culation described above, intermediate approaches are also
possible if the transition to the limit occurs simultane-
ously for two parameters at a controlledway.�us emerged
the Cherno� ARE introduced by Cherno� (), see also
Kallenberg (); the intermediate, or the Kallenberg
ARE introduced by Kallenberg (), and the Borovkov–
Mogulskii ARE, proposed in Borovkov and Mogulskii
().
Large deviation approach to asymptotic e�ciency of

tests was applied in recent years to more general prob-
lems. For instance, the change-point, “signal plus white
noise” and regression problems were treated in Puhalskii
and Spokoiny (), the tests for spectral density of a sta-
tionary process were discussed in Kakizawa (), while
Taniguchi () deals with the time series problems, and
Otsu () studies the empirical likelihood for testing
moment condition models.
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Higher order asymptotic deals with two sorts of closely
related things. First, there are questions of approxima-
tion. One is concerned with expansions or inequalities
for a distribution function. Second, there are inferential
issues. �ese involve, among other things, the applica-
tion of the ideas of the study of higher order e�ciency,
admissibility and minimaxity. In the matter of expansions,
it is as important to have usable, explicit formulas as a rig-
orous proof that the expansions are valid in the sense of

truly approximating a target quantity up to the claimed
degree of accuracy.
Classical asymptotics is based on the notion of asymp-

totic distribution, o�en derived from the central limit
theorem (see 7Central Limit�eorems), and usually the
approximations are correct up to O(n−/), where n is
the sample size. Higher order asymptotics provides re�ne-
ments based on asymptotic expansions of the distribution
or density function of an estimator of a parameter.�ey are
rooted in the Edgeworth theory, which is itself a re�nement
of the central limit theorem. �e theory of higher order
asymptotic is very much related with the corresponding
to Approximations to distributions treated as well in this
Encyclopedia.
When higher order asymptotic is correct up to

o(n−/), it is second order asymptotic. When further
terms are picked up, so that the asymptotic is correct up
to o(n−), it is third order asymptotic. In his pioneer-
ing papers, C. R. Rao coined the term second order e�-
ciency for a concept that would now is called third order
e�ciency. �e new terminology is essentially owing to
Pfanzagl and Takeuchi.
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Linear regressions are a useful empirical tool for economists
and social scientists and the standard 7least squares esti-
mates are popular because they are the best linear unbiased
estimators (BLUE) under some albeit strict assumptions.
�ese assumptions require the regression disturbances not
to be correlated with the regressors, also homoskedastic,
i.e., with constant variance, and not autocorrelated. Viola-
tion of the no autocorrelation assumption on the distur-
bances, will lead to ine�ciency of the least squares esti-
mates, i.e., no longer having the smallest variance among
all linear unbiased estimators. It also leads to wrong stan-
dard errors for the regression coe�cient estimates.�is in
turn leads to wrong t-statistics on the signi�cance of these
regression coe�cients and misleading statistical inference
based on a wrong estimate of the variance–covariance
matrix computed under the assumption of no autocor-
relation. �is is why standard regression packages have
a robust heteroskedasticity and autocorrelation-consistent
covariance matrix (HAC) option for these regressions
which at least robusti�es the standard errors of least
squares and shows how sensitive they would be to such
violations, see Newey and West ().
Autocorrelation is more likely to occur in time-series

than in cross-section studies. Consider estimating the con-
sumption function of a random sample of households.
An unexpected event, like a visit of family members will
increase the consumption of this household. However, this
positive disturbance need not be correlated with the dis-
turbances a�ecting consumption of other randomly drawn
households. However, if we were estimating this consump-
tion function using aggregate time-series data for the U.S.,
then it is very likely that a recession year a�ecting con-
sumption negatively that year, may have a carry over e�ect
to the next few years. A shock to the economy like an oil

embargo in  is likely to a�ect the economy for several
years. A labor strike this year may a�ect production for
the next few years.�e simplest work horse for illustrating
this autocorrelation in time series on the regression dis-
turbances, say ut is the �rst-order autoregressive process
denoted by AR():

ut = ρut− + єt t = , , . . . ,T

where єt is independent and identically distributed with
mean  and variance σ є . It is autoregressive because ut
is related to its lagged value ut−. One can show, see for
example Baltagi (), that the correlation coe�cient
between ut and ut− is ρ. Also, that the correlation coef-
�cient between ut and ut−r is ρr . When ρ = , there is
no autocorrelation and one test for this null hypothesis is
the Durbin and Watson () test discussed as a separate
entry in this encyclopedia by Krämer.�is AR() process
is also stationary as long as ∣ ρ ∣< . If ρ = , then this
process has a unit root and it is called a 7random walk.
See the entry by Dickey on testing for this unit root using
the 7Dickey-Fuller tests. Note that if the process is sta-
tionary, then ρ is a fraction and the correlation for two
disturbances r periods apart is ρr , i.e., a fraction raised to
an integer power.�is means that the correlation is decay-
ing between the disturbances the further apart they are.
�is is reasonable in economics andmay be the reasonwhy
this AR() form is so popular. One should note that this
is not the only form that would correlate the disturbances
across time. Other forms like the Moving Average (MA)
process, and higher order Autoregressive Moving Average
(ARMA)processes are popular, see Box and Jenkins (),
but these are beyond the scope of this entry.
Since least squares is no longer BLUE under autocor-

relation of the disturbances, Cochrane and Orcutt ()
suggested a simple estimator that corrects for autocor-
relation of the AR() type. �is method starts with an
initial estimate of ρ, the most convenient is , and mini-
mizes the residual sum of squares of the regression.�is
gives us the least squares estimates of the regression coe�-
cients and the corresponding least squares residuals which
we denote by et . In the next step, one regresses et on
et− to get an estimate of ρ, say ρ̂. �e second step of
the Cochrane–Orcutt procedure (SCO) is to perform the
regression of (Yt − ρ̂Yt−) on (Xt − ρ̂Xt−) to get estimates
of the regression coe�cients. One can iterate this proce-
dure (ITCO) until convergence. Both the SCO and the
ITCO are asymptotically e�cient as the sample size gets
large.�e argument for iterating must be justi�ed in terms
of small sample gains. Other methods of correcting for
serial correlation includePrais andWinsten (),Durbin
(), as well asmaximum likelihoodmethods, all studied
more extensively inChap.  of Baltagi ().�e Prais and
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AWinsten method recaptures the initial observation lost in
the Cochrane–Orcutt method. Monte Carlo studies using
an autoregressive regressor, and various values of ρ, found
that least squares is still a viable estimator as long as ∣ρ∣ <
., but if ∣ρ∣ > ., then it pays to perform procedures that
correct for serial correlation based on an estimator of ρ.
For trended regressors, which is usually the case with eco-
nomic data, least squares outperforms SCO, but not the
Prais-Winsten procedure that recaptures the initial obser-
vation. In fact, Park and Mitchell () who performed
an extensive Monte Carlo using trended and untrended
regressors recommend that one should not use regressions
based on (T − ) observations as in the Cochrane and
Orcutt procedure.�ey also found that test of hypotheses
regarding the regression coe�cients performed miserably
for all estimators based on an estimator of ρ.
Correcting for serial correlation is not without its crit-

ics. Mizon () argues this point forcefully in his arti-
cle entitled “A simple message for autocorrelation correc-
tors: Don’t.” �e main point being that serial correla-
tion is a symptom of dynamic misspeci�cation which is
better represented using a general unrestricted dynamic
speci�cation.
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Ingredients of Probability Spaces
De�nition  A collection F of subsets of a set Ω is called
a ring on Ω if it satis�es the following conditions:

. A,B ∈ F ⇒ A ∪ B ∈ F ,
. A,B ∈ F ⇒ A ∖ B ∈ F .

A ring F is called an algebra if Ω ∈ F .
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De�nition  A ringF on Ω is called a σ-ring if it satis�es
the following additional condition:

. For every countable family (An)n∈N of subsets of F :
⋃n∈N An ∈ F .

A σ-ringF on Ω is called a σ-algebra (or σ-�eld) if Ω ∈ F .

Proposition  �e following properties hold:

. If F is a σ-algebra of subsets of a set Ω, then it is an
algebra.

. If F is a σ-algebra of subsets of Ω, then
● For any countable family (En)n∈N∖{} of elements
of F :⋂∞n= En ∈ F ,

● For any �nite family (Ei)≤i≤n of elements of F :
⋂
n
i= Ei ∈ F ,

● B ∈ F ⇒ Ω ∖ B ∈ F .

De�nition  Every pair (Ω,F) consisting of a set Ω and
a σ-ring F of subsets of Ω is a measurable space. Further-
more, ifF is a σ-algebra, then (Ω,F) is ameasurable space
on which a probability measure can be built.

Example 

. Generated σ-algebra. IfA is a family of subsets of a set
Ω, then there exists the smallest σ-algebra of subsets
of Ω that contains A.�is is the σ-algebra generated
by A, denoted by σ(A). If, now, G is the set of all
σ-algebras of subsets of Ω containingA, then it is not
empty because it has the set P(Ω) of all subsets of Ω,
among its elements, so that σ(A) = ⋂C∈G C.

. Borel σ-algebra. Let Ω be a topological space. �en
the Borel σ-algebra on Ω, denoted by BΩ , is the
σ-algebra generated by the set of all open subsets of Ω.
Its elements are called Borel sets.

. Product σ-algebra. Let (Ωi,Fi)≤i≤n be a family ofmea-
surable spaces, with allFi,  ≤ i ≤ n, σ-algebras, and let
Ω =∏

n
i= Ωi. De�ning

R={E ⊂ Ω∣∀i = , . . . ,n ∃Ei ∈ Fi such that E=
n

∏
i=
Ei},

the σ-algebra onΩ generated byR is called the product
σ-algebra of the σ-algebras (Fi)≤i≤n.

Proposition  Let (Ωi)≤i≤n be a family of topological
spaces with a countable base and letΩ =∏

n
i= Ωi.�en the

Borel σ-algebra BΩ is identical to the product σ-algebra of
the family of Borel σ-algebras (BΩi)≤i≤n.

Axioms of Probability
Weassume that the reader is already familiar with the basic
motivations and notions of probability theory. We present

the axioms of probability according to the Kolmogorov
approach [see Kolmogorov ()].

De�nition  Given a set Ω, and a σ-algebra F of subsets
of Ω, a probability measure on F is any function P : F →
[, ] such that

P. P(Ω) = ,
P. for any countable family A, . . . ,An, . . . of elements of
F such that Ai ∩ Aj = /, whenever i ≠ j:

P(⋃
n

An) =∑
n

P(An).

De�nition  A probability space is an ordered triple
(Ω,F ,P), whereΩ is a set,F is a σ-algebra of subsets ofΩ,
and P : F → [, ] is a probability measure on F .�e set
Ω is called the sample space, the elements of F are called
events.

De�nition  A probability space (Ω,F ,P) is �nite if Ω
has �nitely many elements.

Remark  If Ω is at most countable, then it is usual to
assume that F = P(Ω), the σ-algebra of all subsets of Ω.
In this case all sets {ω} reduced to sample points ω ∈ Ω

are events; they are called elementary events.
Remark  If the σ−algebra of events F is �nite, then the
requirement of countable additivity in the de�nition of the
probability measure P can be reduced to �nite additivity.
Remark  It is worth mentioning that an important alter-
native approach to probability theory is the so called sub-
jective probability; this approach does not insist on Axiom
P., and rather uses the �nite version of it (De Finetti
–).

De�nition  A�nite probability space (Ω,F ,P)withF =

P(Ω) is an equiprobable or uniform space, if

∀ω ∈ Ω : P({ω}) = k (constant);

i.e., its elementary events are equiprobable.

Remark  Following the axioms of a probability space and
the de�nition of a uniform space, if (Ω,F ,P) is equiprob-
able, then

∀ω ∈ Ω : P({ω}) =


∣Ω∣
,

where ∣⋅∣ denotes the cardinal number of elementary events
in Ω, and

∀A ∈ F ≡ P(Ω) : P(A) =
∣A∣

∣Ω∣
.

Intuitively, in this case we may say that P(A) is the ratio of
the number of favorable outcomes, divided by the number
of all possible outcomes.
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AExample  Consider an urn that contains  balls, of
which  are red and  are black but that are otherwise
identical, from which a player draws a ball. De�ne the
event

R:�e �rst drawn ball is red.

�en
P(R) =

∣R∣

∣Ω∣
=



= ..

De�nition  We shall call any event F ∈ F such that
P(F) = , a null event.

Elementary consequences of the above de�nitions are
the following ones.

Proposition  Let (Ω,F ,P) be is a probability space.

. P(Ac) =  − P(A), for any A ∈ F ;
. P(/) = ;
. If A,B ∈ F , A ⊆ B, then P(B) = P(A) + P(B ∖ A);
. If A,B ∈ F , A ⊆ B, then P(A) ≤ P(B) (monotonicity);
. If A,B ∈ F , then

P(B ∖ A) = P(B) − P(B ∩ A)

P(A ∪ B) = P(A) + P(B) − P(A ∩ B);

. If A,B ∈ F , A ⊆ B, then P(B ∖ A) = P(B) − P(A);
. (Principle of inclusion-exclusion) Let A, . . . ,An ∈ F ,

then

P (∪ni=Ai) = ∑
n
i= P(Ai) −∑i<j P(Ai ∩ Aj)

+ . . . + (−)n+P(A ∩ . . . ∩ An);

. If A, . . . ,An ∈ F , then

P(
n

⋃
i=
Ai) ≤

n

∑
i=
P(Ai).
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Balanced sampling is a random method of selection of

units from a population that provides a sample such

that the Horvitz–�ompson estimators (see 7Horvitz–
�ompson Estimator) of the totals are the same or almost

the same as the true population totals for a set of control

variables.

More precisely, let U = {, . . . , k, . . . ,N} be a �nite

population and s ⊂ U a sample or a subset of U. A sam-

pling design p(s) is a probability distribution on the set of

all the subsets s ⊂ U, i.e. p(s) ≥  and

∑
s⊂U
p(s) = .

�e inclusion probability πk = pr(k ∈ s) of a unit k is its

probability of being selected in the sample s.

Consider a variable of interest y that takes the value yk
on unit k. Let also Y be the total of the values taken by y on

the units of the population

Y = ∑
k∈U

yk.

If πk > , for all k ∈ U, the Horvitz–�ompson ()

estimator

Ŷ = ∑
k∈S

yk
πk

is unbiased for Y .

Let also x, . . . , xj, . . . , xJ be a sequence of auxiliary

variables whose the values xk, . . . , xkj, . . . , xkJ are known

for each unit k of the population. According to the de�ni-

tion given in Tillé (), a sampling design is said to be

balanced on the x variables if

∑
k∈S

xkj
πk

≈ ∑
k∈U

xkj, for j = , . . . , J.

Balancedsampling involves samplingwith�xedsample size

and strati�cation. Indeed, a strati�ed design is balanced on

the indicator variables of the strata, because the Horvitz–

�ompson estimators of the sizes of the strata are equal

to the population sizes of the strata. In the design-based

inference, balanced sampling allows a strong improvement

of the e�ciency of the Horvitz–�ompson estimator when

the auxiliary variables are correlated with the interest

variable (see Deville and Tillé ). In the model-based

inference, balanced samples are advocated to protect under

miss-speci�cation of the model (see Valliant et al. ).

Balanced sampling must not be confused with a repre-

sentative sample. Representativity is a vague concept that

usually means that some groups have the same propor-

tions in the sample and in the population.�is de�nition

is fallacious because some groups can be over or under-

represent in a sample to obtain a more accurate unbiased

estimator. Moreover, balanced sampling implies that the

sample is randomly selected and that prede�ned inclu-

sion probabilities, that can be unequal, are satis�ed at least

approximately.

�ere exists a large family of methods for selecting bal-

anced samples. �e �rst one was probably proposed by

Yates () and consists of selecting a sample by a sim-

ple random sampling and next eventually changing some

units to get amore balanced sample. Othermethods, called

rejective, consist of selecting several samples with an initial

sampling design until obtaining a sample that is well bal-

anced. Rejective methods however have the drawback that

the inclusion probabilities of the rejective design are not

the same as the ones of the initial design and are generally

impossible to compute.

�e cubemethod proposed by Deville and Tillé ()

is a general multivariate algorithm for selecting balanced

samples that can use several decades of auxiliary variables

with equal of unequal inclusion probabilities. �e cube

method exactly satis�es the prede�ned inclusion probabil-

ities and provides a sample that is balanced as well as pos-

sible. SAS and R language implementations are available.
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Statistics in banking is becoming increasingly important

to the extent that modern banking at all levels would

be impossible without the application of statistical meth-

ods (Hand , p. ). Particularly the �nancial crisis

has underlined the importance of high quality and timely

data to the banking sector. Indeed, “information short-

ages – directly related to a lack of timely and accurate

data – with regard to complex credit derivatives lie at

the heart of the current crisis and have complicated the

crisis management e�orts of central banks around the

world.” (Current challenges and the Future of Central Bank

Statistics).

According to the Monetary and Financial Statistics

(International Monetary Fund ), the banking sector

consists of all resident corporations mainly engaged in

�nancial intermediation in any given economy.�ese cor-

porations consist of the central bank which is the national

�nancial institution with the principal responsibility of

ensuring monetary stability and �nancial sector sound-

ness (Bangura ), and other depository corporations

including commercial retail banks, merchant banks, sav-

ings banks, credit unions, credit cooperatives, rural and

agricultural banks, etc.

�e range of statistical tools and models in banking

applications is vast, starting from purely descriptive mod-

els, risk assessment, statistics of extreme values, Markov

chain approaches (including mover–stayer models), clus-

ter analysis (see 7Cluster Analysis: An Introduction), sta-
tistical methods of fraud detection (see Bolton and Hand

; Hand , ; Sudjianto et al. ), 7logistic
regression, classi�cation trees, etc.

Statistics in Banking: The Colombian
Perspective
�e Central Bank has focused signi�cantly on the use of

statistics to conduct monetary policy. Statistical method-

ologies have evolved in quantity, depth, and degree of

sophistication as economic and �nancial systems have

become more complex because of the generalized eco-

nomic growth over time, increased market participants,

and all sorts of �nancial transactions. Moreover, the adop-

tion annual in�ation-targeting, based on the consumer

price index (CPI), to achieve a long-term GDP growth

trend as the monetary policy rule since  has set

new challenges for our statistics section and practition-

ers as well. As a result, we have had to adapt to new

demands for information. First, the in�ation forecasting

model of the Banco de la República requires monitoring

the in�ationary pressures continually, and second, assess-

ing the economic activity. To accomplish these, econo-

metric models based on observational data have been put

into place, and the Bank has made e�orts in using best

practices with respect to surveys as an alternative to full

reporting.

To elaborate on the above, we need to produce statistics

in an e�cient way, including a new form of data analysis

provided by individual reports coming from �nancial and

non�nancial institutionsmostly through electronic report-

ing.�e degree of sophistication of statistical techniques

depends on the data availability. A priority task involves

data compilation, which is a statistical activity that requires

the implementation of new ideas that combine statistical

techniques, view points from economists, and themanage-

ment of large databases. For instance, nominal short-term

interest rates have remained as a main policy tool in this

country, which depend on the reliability of the micro data

reported daily to the Bank. We have to establish graphical

and statistical tools to guarantee the quality and accuracy

of the aggregate data. Aggregation also involves the incor-

poration of new methodologies, such as the index number

theory, which explains the behavior of crucial indicators

over time in carrying out monetary policy management.

Consequently, we have worked on building core in�a-

tion indices, forward looking indicators, stock indices, real

estate prices, and real exchange rates. Furthermore, one

important part of the transmission mechanism is to know

how monetary policy a�ects aggregate demand and it has



Banking, Statistics in B 

B

been important to identify shocks of trade terms, �scal

policy, and real world price of commodities.

With regard to surveys, we should note that the

recent increased responses of �nancial markets, and oth-

ers, to economic expectations. �us, the Bank has made

several surveys protecting statistical con�dentiality: �e

Monthly Business Surveys, which provide clues on forma-

tion expectations in the private sector and �ll the need for

more timely indicators that can be used to gain insight

into the economic climate before o�cial statistics are pub-

lished. Furthermore, they indicate signals of turning points

in economic activity. �e regional aspect of this survey

also creates network contacts in the business community.

Another survey is the Monthly Expert In�ation Fore-

casts, which summarize short macroeconomic forecasts

from the experts. �e statistics derived from the latter

provide relevant information on the professional in�a-

tion consensus and allow us to assess the credibility of

monetary policy through the dispersion of the forecast of

the in�ation. In addition, we developed Quarterly Market

Expectation Surveys to ascertain the entrepreneurship per-

ception of current and expected economic developments

over the very short term in the main macroeconomic

variables. We are also working on surveys involved with

remittance �ows and the cost of remitting money. Nev-

ertheless, the realization of surveys has imposed central

bank statisticians do serious e�orts on issues related to

statistical surveymethodologies. For instance, introducing

good questionnaire design, using probabilistic sampling

techniques, and assuring adequate response rates. Also,

we have to notice di�culty of survey implementation as

there is a lack of incentives for respondent to cooperate,

absence of proper legal mandate to collect information,

and resources constraints. �ese factors are considered

through the cost-bene�t evaluation of the generation of

this kind of information.

Statistics is decisive to monetary policy decisions by

central bank policy makers, who face diverse forms of

uncertainty, and it is important to rely on various informa-

tion sources assessment of economic statistics and judg-

ment. In fact, they need to analyze �nancial markets,

watch carefully national accounts and labor force statis-

tics. �is statistical challenge has intensi�ed cooperation

with the national statistical institute (DANE) and produc-

ers of statistics in the private sector to try to improve

data coherence, minimize the response burden to report-

ing agents, exchange micro data, share methodologies,

and ameliorate data quality under international recognized

standards. In addition, the experience fromother countries

has led to coordinate regional tasks in order to homog-

enize key economic indicators. It is also of paramount

importance for the central bank’s credibility to keep the

public clearly informed about the actions that have been

taken by the monetary authorities. As a result, new ways

of presenting statistics have been implemented in di�er-

ent channels of communication such as In�ation Report,

Report to Congress, and Press releases, among others.

Statistics contribute to understand trends in the econ-

omy policy evaluations and help to design future policies.

�erefore, the ability to research in�ation issues and �nd

recent statistical methodologies to present new economic

indicators mainly where information is insu�cient is a

challenge for central bank statisticians. For example, it is

actually required to understand the service sector trends,

the behavior of �exible labor markets, and how the popu-

lation’s quality of life has improved.
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Bartlett Correction
�e log-likelihood ratio (LR) statistic is one of the most

commonly used statistics for inference in parametricmod-

els. Let w be the LR statistic for testing some compos-

ite or simple null hypothesis H against an alternative

hypothesisH. In regular problems, the null distribution of

w is asymptotically χq, where q is the di�erence between

the dimensions of the parameter spaces under the two

hypotheses tested. However, as the samples sizes decreases,

the use of such a statistic becomes less justi�able.

One way of improving the χ approximation to the

LR statistic is by multiplying w by a correction factor c

known as the Bartlett correction (Lawley ; Hayakawa

; Cordeiro ).�is idea was pioneered by Bartlett

() and later put into a general framework by Law-

ley (). Bartlett obtained a number of these correc-

tions in the area of multivariate analysis in several papers

published between  and , and these corrections

became widely used for improving the large-sample χ

approximation to the null distribution of w.

Bartlett () used the following approach to improve

the χ approximation to the null distribution ofw. Suppose

that, under the null hypothesis H, E(w) is calculated up

to order n−, say E(w) = q + b +O(n−), where b is a con-

stant of order n− and n is the number of observations or

some related quantity. Speci�cally, the Bartlett correction is

determined by the relation c = (+b/q) and it represents an

important tool for improving the χ approximation for w.

�e corrected statisticw∗ = w/c has an expected value that

comes closer to that of χq than does the expected value of

w. Moreover, for continuous data, the distribution of w∗

is, in general, closer to χq than is the distribution ofw. Box

() used Bartlett’s approach to investigate in detail the

general expression for the moments of the statistic w in

the following cases: the test of constancy of variance and

covariance of k sets of p-variate samples andWilk’s test for

the independence of k sets of residuals, the ith set having pi
variables. He showed, at least for these cases, that themod-

i�ed statisticw∗ follows a χq distributionmore closely than

does the unmodi�ed statisticw. Box’s results are applicable

to all tests for which the Laplace transformof the test statis-

tic can be explicitly written in terms of gamma functions

and reciprocal gamma functions.

A general method to obtain Bartlett corrections for

regular statistical models was developed in full general-

ity by Lawley (), who gave a general formula for the

correction c as function of covariant tensors. He derived

expressions for the moments of certain derivatives of the

log-likelihood function, and, via an exceedingly compli-

cated calculation, obtained a general formula for the null

expected value of w. Further, he showed that all cumu-

lants of the corrected statistic w∗ for testing composite

hypotheses agree with those of the reference χq distribu-

tion with error of order O(n−) [see Hayakawa () and

Cordeiro ()]. Calculations of the Bartlett corrections

via Lawley’s approach are, however, notoriously cumber-

some since they involve substantial e�ort into computing

certain joint cumulants of log-likelihood derivatives. See

also Eqs. .–. in Barndor�-Nielsen and Cox’s ()

book.

A further step on the improvement of the statistic w

was taken by Hayakawa (), who derived an asymptotic

expansion for the null distribution of w for testing a com-

posite null hypothesis H against a composite alternative

hypothesis H. He showed that to order O(n−)

Pr(w ≤ z) = Fq(z) + (n)
−
[AFq+(z)

− (A − A)Fq+(z) + (A − A)Fq(z)],

()

where Fs(⋅) is the cumulative distribution function of a χ

random variable with s degrees of freedom. Here, A is a

function of expected values of the �rst four log-likelihood

derivatives and of the �rst two derivatives of these expected

values with respect to the parameters of the model and its

expression holds for both simple and composite hypothe-

ses, thus allowing for nuisance parameters.When nuisance

parameters are present, A can be calculated as the dif-

ference between two identical functions evaluated under

the null and alternative hypotheses. �e error in Equa-

tion  is O(n−) and not O(n−/) as it is sometimes

reported. However, the Bartlett correction is given by

c =  + (nq)−A, which di�ers from the one obtained

from the above expansion, unless A = .�is points to

a con�ict between Hayakawa’s and Lawley’s results. �e

answer to this puzzle came with papers by Harris ()

and Cordeiro (). Harris showed that A should not be

present in (), whereas Cordeiro showed that the termA is

always equal to zero.�e main contribution of Equation 

with A =  is that it provides a relatively simple demon-

stration that w∗ = w/c has a χq distribution with error

O(n−). In fact, Cordeiro () demonstrated that the

simple correction of the �rstmoment ofw to orderO(n−),

quite generally has the e�ect of eliminating the term of
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this order in the asymptotic expansion of the corrected

statistic w∗.�is result was a starting point for numerous

subsequent research e�orts in the direction of establish-

ing several expressions for Bartlett corrections in various

classes of statistical models.

One di�culty encountered with the use of w∗ rather

thanw is the fact that the required expectationmay be very

di�cult or even impossible to compute. A general matrix

formula for c was derived by Cordeiro (a), which has

advantages for numerical and analytical purposes. For con-

tinuous data the e�ect of the Bartlett correction is amaz-

ingly good even for very small sample sizes. However, for

discrete data, the Bartlett correction does not in general

yield an improvement in the asymptotic error rate of the

chi-squared approximation. Several papers have focused

on deriving these corrections for special regression mod-

els by usingmatrix formulae for speci�cmodels, bypassing

the traditional machinery of calculating these cumulants.

We can always obtain these matrix formulae when the

joint cumulants of log-likelihood derivatives are invariant

under permutation of parameters.�e matrix formulae in

conjunction with computer algebra systems (Mathematica

or Maple for example) and programming languages with

support for matrix operations (Gauss, R and Ox) represent

a computationally much simpler way of deriving Bartlett

corrections in rather general classes of statistical models.

Several papers have focused on deriving matrix for-

mulae for Bartlett corrections in general classes of regres-

sion models. Cordeiro (, ) described Bartlett’s

approach for univariate 7generalized linear models. Cor-
rected LR statistics for exponential family nonlinear mod-

els were obtained by Cordeiro and Paula (). �ey

gave general matrix expressions for Bartlett corrections

in these models involving an unpleasant looking quan-

tity which may be regarded as a measure of nonlinearity

of the systematic component of the model. Att�eld ()

and Cordeiro (b) showed how to correct LR statis-

tics for heteroskedasticity. An algorithm for computing

Bartlett corrections was given by Andrews and Sta�ord

(). Cordeiro et al. () proposed matrix formulae

for Bartlett corrections in dispersion models. Cordeiro

() presented extensive simulation results on the per-

formance of the corrected statisticw∗ in generalized linear

models focusing on gamma and log-linear models. For a

detailed account of the applicability of Bartlett corrections,

see Cribari-Neto and Cordeiro ().

Barndor�-Nielsen and Cox () gave an indirect

method for computing Bartlett corrections under rather

general parametric models by establishing a simple con-

nection between the correction term b and the norming

constants of the general expression for the conditional

distribution of the maximum likelihood estimator, namely

b = (
A
A
)
q n
π
, where A and A are the normalized con-

stants of the general formula for the density of the max-

imum likelihood estimator conditional on an exact or

approximate ancillary statistic when this formula is applied

to the full and null models, respectively. It is usually eas-

ier to obtain the Bartlett correction for special cases using

Lawley’s formula than using Barndor�-Nielsen and Cox’s

expression, since the former involves only moments of

log-likelihood derivatives whereas the latter requires exact

or approximate computation of the conditional distribu-

tion of the maximum likelihood estimator.When there are

many nuisance parameters, it may not be easy to obtain

ancillary statistics for these parameters, and hence the

evaluation of Barndor�-Nielsen and Cox’s formula can be

quite cumbersome. �e constants A and A are usually

functions of the maximal ancillary statistic, although to

the relevant order of magnitude, w∗ is independent of the

ancillary statistic selected. �ey have also obtained vari-

ous expressions for these quantities and, in particular, an

approximation which does not require integration over the

sample space for the one-parameter case.

Since the statistic w is invariant under re-

parametrization, it is possible to obtain a large sample

expansion for this statistic and its expectation in terms

of invariants. McCullagh and Cox () used this fact to

represent the Bartlett correction as a function of invariant

combinations of cumulants of the �rst two log-likelihood

derivatives and gave it a geometric interpretation in full

generality in terms of the model curvature. It is also note-

worthy that McCullagh and Cox’s () general formula

coincides with Lawley’s () formula.�e advantage of

McCullagh and Cox’s formula is its geometric interpre-

tation, whereas the main advantage of Lawley’s result is

that it can be more easily implemented to obtain Bartlett

corrections for special models.

Bartlett-Type Correction
�e problem of developing a correction similar to the

Bartlett correction to other test statistics, such as the score

(S) andWald (W) statistics, was posed by Cox () and

addressed three years later in full generality by Cordeiro

and Ferrari (), and by Chandra and Mukerjee ()

and Taniguchi () for certain special cases. We shall

focus on Cordeiro and Ferrari’s results since they are

more general in the sense that they allow for nuisance

parameters.

�e score test has beenwidely used in statistics because

it has an advantage over other large sample tests such

as the LR and Wald tests. �us, while these tests involve
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estimation of the parameters under the alternative hypoth-

esis, the score test requires estimation only under the

null hypothesis. �e LR, Wald and score statistics have

the same chi-squared distribution asymptotically. Harris

() obtained an asymptotic expansion for the null dis-

tribution of the score statistic S to order O(n−) as

Pr(S ≤ z) = Fq(z) + (n)
−
[AFq+(z)

+ (A − A)Fq+(z) + (A − A

+ A)Fq+(z) + (A − A + A)Fq(z)], ()

where A,A and A are functions of some cumulants

of log-likelihood derivatives. �e general expressions for

these coe�cients are given in Harris’ paper. He showed

that the �rst three cumulants of the score statistic are

(to order n−) given by κ = q + A/(n), κ = q + (A +

A)/(n) and κ = q + (A + A + A)/n.

Equation  holds for both simple and composite

hypotheses.More importantly, this result implies that there

exists no scalar transformation based on the score statistic

which corrects all cumulants to a certain order of precision,

as it is the case with the Bartlett correction to the LR statis-

tic.�e coe�cients A’s can be used to obtain corrections

formodels based on independent, but not necessarily iden-

tically distributed observations, thus covering a number of

linear and nonlinear regression models (see 7Nonlinear
Regression).

From Eq. , Cordeiro and Ferrari () proposed

a Bartlett-type correction to improve the score statis-

tic. �ey de�ned a modi�ed score statistic having a

chi-squared distribution to order O(n−) under the null

hypothesis

S
∗
= S

⎛

⎝
 −


n



∑
j=

γjS
j−⎞

⎠
, ()

where γ = (A−A+A)/(q), γ = (A−A)/{q(q+

)} and γ = A/{q(q + )(q + )}. �ey demon-

strated that S∗ is distributed as χq when terms of order

smaller than O(n−) are neglected. When the A’s involve

unknown parameters they should be replaced by their

maximum likelihood estimates under the null hypothe-

sis but this does not a�ect the order of approximation of

the correction.�e correction factor in () is a function of

the unmodi�ed statistic, and hence this correction is not

a “Bartlett correction” in the classical sense. Given its sim-

ilarity with the Bartlett correction, however, it is termed

“Bartlett-type correction.”

Cordeiro and Ferrari () obtained a more general

result to be applied to any test statistic which converges to

χ which can be described as follows. Let S be a test statistic

which is asymptotically distributed as χq. Chandra ()

showed, under mild regularity conditions, that

Pr(S ≤ z) = Fq(z) +


n

k

∑
i=

aiFq+i(z) ()

when terms of order O(n−) or smaller are neglected.

Equation  implies that the distribution function toO(n−)

of a test statistic asymptotically distributed as chi-squared

is, under certain conditions, a linear combination of chi-

squareds with degrees of freedom q, q + , . . . , q + k.

�e coe�cients a’s are linear functions of cumulants of

log-likelihood derivatives for a general test statistic T.

For LR and SR, k =  and k = , respectively, where the

a’s are linear functions of the A’s in Eqs.  and .

Let µ′i = 
i
Γ(i + q/)/{Γ(q/)} be the ith moment

about zero of the χq distribution, where Γ(⋅) is the gamma

function. Cordeiro and Ferrari () demonstrated that

the modi�ed test statistic

S
∗
= S

⎧⎪⎪
⎨
⎪⎪⎩

 − 
k

∑
i=

⎛

⎝

k

∑
j=

aj
⎞

⎠
(µ

′
i)
−
S
i−

⎫⎪⎪
⎬
⎪⎪⎭

is distributed as χq to order O(n
−
).�is is a very general

result which can be used to improve many important tests

in econometrics and statistics.

Building upon the result described above, Cordeiro

et al. () and Cribari-Neto and Ferrari () obtained

Bartlett-type corrections to improve score tests in gener-

alized linear models with known and unknown disper-

sion parameter, respectively. Cordeiro and Ferrari ()

demonstrated gavematrix formula for computing Bartlett-

type corrections to improve score tests in a general statis-

tical model and in exponential family nonlinear models,

respectively. Finally, Cordeiro and Ferrari () derived

Bartlett-type corrections for chi-squared statistics based

on the calculation of their moments.
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Bartlett’s test (introduced in  byMaurice Barlett (–

)) is an inferential procedure used to assess the

equality of variance in di�erent populations (not in samples

as sometimes can be found, since there is no point in test-

ing whether the samples have equal variances – we can

always easily calculate and compare their values). Some

common statistical methods assume that variances of the

populations from which di�erent samples are drawn are

equal. Bartlett’s test assesses this assumption. It tests the

null hypothesis that the population variances are equal.

All statistical procedures have underlying assumptions.

In some cases, violation of these assumptions will not

change substantive research conclusions. In other cases,

violation of assumptions is critical to meaningful research.

Establishing that one’s data meet the assumptions of the

procedure one is using is an expected component of all

quantitatively based journal articles, theses, and disser-

tations. �e following are the two general areas where

Bartlett’s test is applicable:

. In regression analysis and time series analyses, the

residuals should have a constant variance (i.e., homosk-

edastic condition). One may check this condition by

dividing the residuals data into two or more groups,

then using the Bartlett’s test.

. Another area of application is the F-test in ANOVA

that requires the assumption that each underlying

population has the same variance (i.e., homogeneity

condition).

Bartlett’s test is derived from the likelihood ratio test

under the normal distribution.�erefore, it is dependent

on meeting the assumption of normality.

Bartlett’s test of homogeneity of variance is based on a

chi-square statistic with (k−) degrees of freedom,where k

is the number of categories (or groups) in the independent

variable. In other words, Bartlett’s test is used to test if k

populations have equal variances.

We wish to test the null hypothesis:

H : σ

 = σ


 = . . . = σ


k
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against the alternative that at least two population

variances are not equal.�e following brie�y explains the

procedure employed by Bartlett’s test.

To investigate the signi�cance of the di�erences

between the variances of k normally distributed popula-

tions, independent samples are drawn from each of the

populations. Let Sj denote the variance of a sample of nj
items from the jth population (j = , . . . , k).

�e test statistic has the following expression:

B =

(N − k) ln

⎛
⎜
⎜
⎜
⎜
⎝

k

∑
i=

(ni − ) s

i

N − k

⎞
⎟
⎟
⎟
⎟
⎠

−
k

∑
i=

(ni − ) ln (s

i )

 +


 (k − )
[(

k

∑
i=



ni − 
) −



N − k
]

where N corresponds to the sum of all sample sizes. It is

asymptotically distributed as a χ distribution with (k− )

degrees of freedom.�e null hypothesis of equal popula-

tion variances is rejected if test statistics is larger than the

critical value.Onemay also use online tools to perform this

test, under condition that each sample contains at least �ve

observations.

Bartlett’s test is known to be powerful if the underlying

populations are normal. According to some recent results

based on simulation (Legendre and Borcard), Bartlett’s

test and Box’s test are the best overall methods to test

the homogeneity of variances. With non-normal data,

Bartlett’s and Box’s tests can be used if the samples are fairly

large.

It was shown that Bartlett’s test is unbiased (Pitman

) and consistent (Brown ). One of its major

drawbacks, however, is that it is extremely sensitive (that

is non-robust) to the departures from normality (Box

). Since in reality heterogeneity and non-normality

frequently simultaneously occur, when the null hypoth-

esis is rejected, we cannot know whether this is due to

unequal population variances or non-normality, or both.

�is test is so sensitive to departures from normality that

Box commented that it well may be used as a good test

of the population normality. Box also remarked that using

Bartlett’s test to check whether it is appropriate to apply

ANOVAwould be rather like “putting a rowing boat to sea

to �nd out whether conditions are su�ciently calm for an

ocean liner to leave a port” (Box , p ).

Finally, for the unequal sample-sizes case, several

approaches have been advised for �nding exact critical

values (see, for example, Chao and Glaser () and

Manoukian et al. ()).
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�e conditional probability P{A ∣ B} of event A given

event B, is commonly de�ned as follows:

P{A ∣ B} =
P{AB}

P{B}
()

provided P{B} > . Alternatively, () can be reexpressed as

P{AB} = P{A ∣ B}P{B}. ()

�e le�-hand side of () is symmetric inA and B, while the

right-hand side does not appear to be.�erefore we have

P{A ∣ B}P{B} = P{B ∣ A}P{A}, ()

or

P{A ∣ B} =
P{B ∣ A}P{A}

P{B}
, ()

which is the �rst form of Bayes’�eorem.

Note that the event B can be reexpressed as

B = AB ∪AB. ()

Because AB and AB are disjoint, we have

P{B} = P{AB} + P{AB} = P{B ∣A}P{A} + P{B ∣A}P{A}.

()

Substituting () into () yields the second form of Bayes’

�eorem:

P{A ∣ B} =
P{B ∣ A}P{A}

P{B ∣ A}P{A} + P{B ∣ A}P{A}
. ()

Finally, let A,A, . . . ,Ak be disjoint sets whose union is

the whole space S.�en, generalizing (),

B = ∪
k
i=AiB ()

and the sets AiB are disjoint.�en

P{B} =
k

∑
i=

P{AiB} =
k

∑
i=

P{B ∣ Ai}P(Ai}. ()

�en generalizing (), we have

P{Aj ∣ B} =
P{B ∣ Aj}P{Aj}

∑
k
i= P{B ∣ Ai}Pi{Ai}

, ()

the third form of Bayes’�eorem.

As an example, let A be the event that a particular per-

son has HIV, and suppose P{A} = .. Suppose there is

a test for the presence of HIV in a patient. If B is the event

of a positive result from the test, suppose

P{B ∣ A} = . and P{B ∣ A} = .,

which means that if the person has HIV, the test is %

likely to �nd it, and if the person does not have HIV, the

test is % likely to report a positive result.

�en

P{A ∣ B} =
(.)(.)

(.)(.) + (.)(.)

=
.

. + .

=
.

.

= .

�us a positive test result, on a respectable test, does

not imply a high probability that the patient actually has

HIV.

Bayes’ �eorem has an aura of being controversial.

Since everything above is a consequence of the laws of

probability and the de�nition of conditional probability,

the correctness of the formulas above is conceded by all

the various schools of interpretation of probability.

�e Bayesian school uses Bayes’�eorem as a way to

understand the extent to which knowing that the event B

(test result in the example) has changed the probability of

the event A, resulting in a map from P{A} to P{A ∣ B}. In

the example,P{A} = . is the probability the person has

HIV given that person’s risk factors. P{A ∣ B} = . is

the updated probability that takes into account the positive

test result B.

�e controversy comes from the fact that some statis-

ticians (Fisher ) take the view that the only events that

have probabilities are those that can be regarded as ele-

ments of an in�nite (or large) sequence of independent

and identically distributed events.�en the probability of

A is taken to be the relative frequency of the event A in

this sequence. �us the controversy has to do not with

the legitimacy of Bayes’�eorem itself, but rather with the

applications of it.
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Introduction
�e original Bayes proposal leads to likelihood and con�-

dence for many simple examples. More generally it gives

approximate con�dence but to achieve exact con�dence

reliability it needs re�nement of the argument and needs

more than just the usual minimum of the likelihood

function from observed data. A general Bayes approach

provides a �exible and fruitful methodology that has blos-

somed in contrast to the widely-based long-standing fre-

quentist testing with focus on the % level. We examine

some key events in the evolution of the Bayes approach

promoted as an alternative to the present likelihood based

frequentist analysis of data withmodel, the evidence-based

approach of central statistics. And we are led to focus on

the bane of Bayes: parameter curvature.

Bayes 
Bayes () examined the Binomial model f (y; θ)= (

n

θ
)

θy(− θ)n−y and proposed the �at prior π(θ)=  on [, ].

�en with data y he used a lemma from probability cal-

culus to derive the posterior π(θ∣y)= cθy


( − θ)n−y


on

[, ]. And then for an interval say (θ, ) he calculated the

integral of the posterior,

s(θ) = ∫


θ
θ
y
( − θ)

n−y
dθ/∫




θ
y
( − θ)

n−y
dθ

and referred to it as probability that the parameter

belonged to the interval (θ, ). Many endorsed the pro-

posed calculation and many disputed it.

As part of his presentation he used an analogy. A

ball was rolled on a level table, perhaps an available bil-

liard table, and was viewed as having equal probability of

stopping in any equal sized area.�e tablewas then divided

conceptually by a North-South line through the position

where the ball stopped, with area θ to theWest and (− θ)

to the East.�e ball was then rolled n further times and the

number y of time that it stopped le� of the line observed.

In the analogy itself, the posterior probability calculation

given data seems entirely appropriate.

The Economist 
In an article entitled “In praise of Bayes,” the Economist

() speaks of an “increasingly popular approach to

statistics (but) not everyone is persuaded of its validity.”

�e article mentions many areas of recent application

of the Bayesian approach, and cites “the essence …is to

provide a mathematical rule explaining how you should

change your existing beliefs in the light of new evidence.”

�e indicated areas of application are wide spread and

there is emphasis on attaining de�nitive answers. And this

is set in full contrast to “traditional ways of presenting

results” indicated to be the mid-twentieth-century deci-

sion theoretic view of accepting a null view –%on some

departure scale. �e article does o�er some caution for

“when used indiscriminently” in the form of a quotation

from LarryWasserman that it can become “more a religion

than a science.”

�e mathematical rule cited as the essence of the

Bayesian approach is a very broad expansion from Bayes

original proposal where a statistical model f (y; θ) evalu-

ated at an observed data value y giving f (y; θ) is com-

bined with a constant mathematical prior π(θ) =  and
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treated as a conditional density. �e force of the rule

is that with new model-data information the new likeli-

hood would be folded with the old. But this is of course

standard practice in statistics: use the up-to-date likeli-

hood, and possibly re�ne such a procedure with meta-

analysis. What is di�erent is that the Bayesian method

essentially overlooks evidence beyond the observed like-

lihood function and does so on principle.

Validity or Analogy
Bayes considered a uniform prior and a Binomial (n, p)

model, and used analogy to justify combining them by a

standard lemma from probability calculus. For the anal-

ogy involving balls on a billiard table, the calculations

seem entirely proper and appropriate. �e more gener-

ally interpreted Bayes approach has a statistical model

f (y; θ) with data y coupled with a mathematical prior

π(θ) representing symmetries or other properties of the

model or context. Analogies can be great for explaining

an argument but not to be the argument itself: there is no

billiard table equivalent in the typical binomial or more

general context.

�ere is an explicit time line:�ere is a context with

a true value θ∗ for the parameter θ; there is an inves-

tigation f (y; θ) yielding an observed y from the true

value model f (y; θ∗); and possibilities for θ are then to be

assessed.�us in order: θ∗ is realized but unknown; y

is

observed; then assess θ.�e values θ∗ and y

are realized

and are in the past. And the issue is what can be said about

θ given the model f (y; θ) and data y.

If θ is understood in fact to come from an objec-

tive source π(θ) with realized value θ∗; then the

time line is longer. Accordingly: π(θ) produces θ∗;

f (y; θ∗) produces y

; and the issue is to assess θ. In this sit-

uation π(θ) is properly an objective prior. And an option

is of course is to examine and present the composite model

π(θ)f (y; θ) with observed y. But an even more com-

pelling option is to examine and present π(θ) and to

separately examine and present f (y; θ) with y.

Now consider the model f (y; θ) with data y; and the

mathematical prior π(θ) as proposed by Bayes.�e lemma

from the probability calculus has two probability inputs say

π(x) and f (y∣x) and it has one probability output π(x∣y);

the output records the behavior of x that is associated with

the observed value y = y. For the Bayes case π(x) would

be π(θ) and π(x∣y)would be π(θ∣y). Is the lemma appli-

cable or relevant in the Bayes case? In the Bayes case there

is just one probability input f (y; θ); and the other nominal

input is π(θ), a mathematical object that refers to symme-

try or patterns in the model and has no probability status

whatsoever. �us the assumptions of the lemma do not

hold, and consequently the output of the lemma is ... by

analogy ... not by derivation. �e usage of the lemma in

the proposed argument is not proper and can be viewed as

fraudulent logic.

�e standard frequentist would refer to f (y; θ) as

likelihood L(θ; y) = L(θ). An explorationwithweighted

likelihood π(θ)L(θ) can be a very natural, obvious and

sensible procedure ... for just that, for exploring possibil-

ities for θ. But for obtaining probabilities, perhaps a pipe

dream!

Likelihood and Confidence
Bayes’ () original approach suggested a density

cπ(θ)f (y; θ) as a description of an unknown θ in the

presence of observed data y. As such it records likeli-

hood L(θ) or weighted likelihood. And this was long

before the formal introduction (Fisher ) of likelihood.

Both viewpoints record the same formal information con-

cerning the parameter; the di�erences are in the color or

�avor associated with the particular argument; and with

properties attributed to the output.

Bayes () also o�ered a distribution as a summary of

information concerning the parameter θ; the distribution

had density cπ(θ)f (y; θ) = cπ(θ)L(θ). �e majority

of models at that time had least-squares location structure

and for such models the posterior π(θ)L(θ) using a nat-

ural prior just reproduces what is now called con�dence

(Fisher , ).

It thus seems appropriate to acknowledge that Bayes

introduced the primary concepts of likelihood and con�-

dence long before Fisher (, ) and long before the

re�nement o�ered by Neyman (). For likelihood he

o�ered the extra �exibility of the weight function but for

con�dence he did not have the statistical re�nement that

later provided the logical extension to non-location mod-

els; this latter can be viewed as a matter of reasonable �ne

tuning of the argument, of intellectual evolution, and of the

familiar iterative processes of science.

Laplace and Venn
Laplace () seems to have fully endorsed the proposals

arising from Bayes (). And Venn () seems equally

to have rejected them. Certainly asserting the conclusions

of a theorem or lemma when one of the premises does not

hold is unacceptable from a mathematical or logical view-

point. Nonetheless the results were impressive and �lled a

substantial need, but indeed with downstream risks. And

it does have, as is now becoming apparent, the support

of approximate con�dence (Fraser ). At present Bayes

and con�dence lead a coexistence, perhaps an uneasy

unstable coexistence!
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Priors and Priors
�e original Bayes prior was a �at prior π(θ) =  for a

probability θ that then in sequence becomes the param-

eter in a Binomial (n, θ) model; the resulting posterior

is π(θ)L(θ), which focally uses the observed likelihood

from the Binomial context. Some aspects of invariance

were invoked to support the particular choice.�e possible

plausible extensions are immense.

For a location model f {y − β(θ)} the natural prior

would be π(θ)dθ = dβ(θ) = β′(θ)dθ.�us for f (y−Xβ)

we would have π(β)dβ = dXβ = cdβ, giving a �at prior

for the regression coe�cients. Motivation would come by

noting that y − β(θ) has a �xed θ-free distribution.

Extensions are possible by seeking approximate θ-free

distributions.�is was initiated by Je�reys () and then

�ne-tuned to acknowledge various types of parameters

(Je�reys ). �ese extensions use expected informa-

tion i(θ) = E{−ℓθθ(θ; y); θ} in the model to calibrate the

scale for θ; here −ℓθθ(θ) is the negative second deriva-

tive of likelihood and the initial Je�reys prior is π(θ)dθ =

∣i(θ)∣/dθ, and it is parameterization invariant. For the

regression model, where y = Xβ + σz with N(, )

error, the Je�reys () prior is π(θ)dθ = dβdσ/σ r+

where r is the column rank of X. �e second or modi-

�ed Je�reys () is π(θ)dθ = dβdσ/σ and gives gen-

erally more acceptable results, o�en in agreement with

con�dence.

�e approximate approach can be modi�ed (Fraser

et al. ) to work more closely with the location invari-

ance indicated by the initial Bayes () approach. In

many regular problems continuity within the model leads

to a relationship dθ̂ = W(θ)dθ where W(θ) is a p × p

matrix; the dθ̂ refers to an increment at the data y and

the dθ refers to an increment dθ at θ. �is immediately

indicates the prior π(θ)dθ = ∣W(θ)∣dθ based on simple

extension of the translation invariance dy = β′(θ)dθ for

the model f (y − β(θ))dθ; and it widely agrees with pre-

ferred priors in many problems. But the parameter must

not have curvature: the bane of Bayes!

�e approximate approach can also be modi�ed to

make use of an asymptotic result that to second order the

statistical model can be treated as an exponential model

(Reid andFraser ; Fraser et al. ).�is uses continu-

ity to obtain a nominal reparameterization φ(θ) that yields

second and third order inference by acting as if the model

were just g(s; θ) = exp{ℓ(θ)+φ(θ)s}h(s)with data s = .

�is allows information to be calculatedwithin the approx-

imating model using the information function jφφ(θ; s)

= −ℓφφ{θ(φ)}; this draws attention to marginalization

and to curvature e�ects that are not usually apparent in the

search for default priors (Fraser et al. ).

�e preceding can also be viewed as a somewhat nat-

ural evolution from the original Bayes proposal with some

reference to location invariance. �e evolution has been

assisted by the fact that many posterior distributions have

appealing and sensible properties. It is our view here that

these sensible properties are precisely the approximate

con�dence properties that have become evident quite sep-

arately. In any case the priors just described can all be

classi�ed as default priors, priors that one might choose to

use as a default without strong arguments for something

di�erent.

�e Bayesian approach is committed to using a weight

function applied to an observed likelihood and thus to

formally omitting other properties of the model. Within

this approach the default priors are widely called objective

priors. But the term objective means objective reference,

and this as a property is speci�cally absent here; there is a

strong �avor of deception.�us using the term objective

for default priors seems highly inappropriate, but could

be viewed as just a seeking for a wider area of applica-

tion. �e author was present at the Bayesian convention

when the term was being chosen and did not register an

objection, being perhaps somewhat of an outsider, not a

good defense! We will however explicitly refer to them

as default priors, and keep the term objective for con-

texts where the prior does have an explicit reference in

context.

A di�culty with the use of default priors is that a pos-

terior probability obtained by marginalization from a full

posterior distributionmay not be equal the posterior prob-

ability calculated directly from the appropriate marginal

model; this was given prominence by Dawid et al. ()

and applies equally to con�dence distributions and other

attempts to present model-data information as a distribu-

tion for the parameter. �e complication in any of these

cases derives from parameter curvature: for some discus-

sion see Fraser et al. () and Fraser and Sun ().

�e wealth of possibilities available from a weight-

function combined with likelihood is well documented in

the development of the Bayesianmethods as just described.

Its success can amply be supported as “approximate con�-

dence” but derived by a route that is typically much eas-

ier. Approximate con�dence provides full support for the

acceptable, o�en meritorious behavior of Bayes posterior

probabilities. We address later whether there can be any-

thing beyond approximate con�dence in support of the

Bayesian approach.

Another approach, somewhat di�erent from the

original Bayes way of obtaining a weight function is

derived fromKullback-Leibler distance onmeasure spaces

(Bernardo ): this chooses a prior to maximize the
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statistical distance from prior to posterior. Modi�ca-

tions of this distance approach have been developed to

obtain specialized priors for di�erent component param-

eters of interest, o�en parameters that have a statistical

curvature.

�e richness available from using just a likelihood

function is clearly evident to Bayesians if not to frequen-

tists; but is not widely acknowledged. Much of recent

likelihood theory divides on whether or not to use more

than the observed likelihood, speci�cally sampling prop-

erties that are associated with likelihood characteristics

but are not widely or extensively available. In many ways

central statistics has ignored the extra in going beyond like-

lihood, and indeed has ignored the wealth available from

just likelihood alone.

Meanwhile those committed to using just the weighted

likelihoods, those associated with the development of the

Bayes approach as we have just described, have aggres-

sively sought to use the weighted likelihood approach as

a general approach to updating information and to pro-

ducing decisions. Central to this direction is the subjec-

tive approach with a major initiative coming from Savage

().�is takes a prior to represent the views, the under-

standing, the personal probabilities concerning the true

value of the parameter; these might come from highly

personal thoughts, from detailed elicitation from knowl-

edgeable people, from gut feelings as one approaches a

game at a casino; and they can have the bene�t of intuition

or themerits of a seasoned gambler, with orwithout insider

information. But who should use it? Certainly the chronic

gambler will. But from the statistical perspective here there

is nothing of substance to say that such prior “informa-

tion” π(θ) should be combined with likelihood. With due

respect it can be presented as π(θ) alongside a presenta-

tion of the evidence-based well calculated con�dence. If

a user would like to combine them, it would certainly be

plausible for him to do so but it would not be an imper-

ative despite Bayesian persuasion. Certainly place them

both to be seen and available. Inwide generality combining

them is not a necessary statistical step, although sometimes

expedient.

Lindley and Territory
Fisher’s (, ) proposal for con�dence with

e�ective support from Neyman () o�ered strong

alternatives to a prominent sympathy for the Bayesian

approach. �en Je�reys (, ) with great promi-

nence in geophysics provided reinforcement for the use of

the Bayesian approach in the physical sciences. Meanwhile

the con�dence approach gained strength both in math-

ematics departments and in scienti�c applications. Both

approaches lead from model and data to a distribution for

the parameter, but the results were o�en in con�ict. Both

sides clearly felt threatened, and each side in a practical

sense had territory to defend.

Lindley () focused on the very basic case, a scalar

parameter and a scalar variable, say with distribution func-

tion F(y; θ).�e Bayesian answer with prior π(θ) is given

by the posterior distribution cπ(θ)Fy(y; θ)dθ where the

subscript y denotes di�erentiationwith respect to the argu-

ment y thus giving the density or likelihood function. By

contrast the Fisher (, ) approach gives the con�-

dence distribution ∣Fθ(y; θ)∣dθ. Lindley examined when

these would be equal and solved for π(θ):

π(θ) = c
F;θ(y; θ)

Fy(y; θ)
= c

∂

∂θ
y(u; θ);

the right hand expression records the derivative of the

quantile function for �xed p-value u = f (y; θ) as pur-

sued in Fraser et al. (). �e equation is actually a

di�erential equation that asserts that the model must be

a location model, the form of model actually found in sec-

tion “7Likelihood and Con�dence” to have good Bayesian
answers. In Fraser et al. (ibid) the equation is used to

determine the data dependent priors that give posterior

probabilities having objective validation.

Lindley was concerned that the con�dence approach

did not follow the primal Bayesian concept that a proba-

bility statement concerning a parameter should be updated

by multiplication by new likelihood and his criticism had

a profound e�ect suggesting that the con�dence distribu-

tion approach was defective. We now know that the defect

is the attempt to use a distribution as the summary, either

by Bayes or by con�dence. And if there were to be a lesser

of two evils then calling con�dence probability and calling

Bayes approximate con�dence would be safer.

Another view might be that this was just a territo-

rial dispute as to who had the rights to provide a distri-

butional description of the parameter in the model data

context. But the social con�ict aspects were not in evi-

dence. Rather there was a wide spread perception that

giving a distribution of con�dence was wrong. Neyman

() of course had provided a route around. But nonethe-

less, the judgment stuck: a con�dence distribution was

wrong and a Bayesian analysis was all right. Of course, in

Dawid et al. (), there is a clear message that neither

approach can handle vector parameters without special

�ne-tuning. Clearly Lindley had focused on a substantive

issue but the arguments invoked had not quite attained the

point of acknowledging that an e�ective priormust in gen-

eral be data dependent; for some current discussion see

Fraser et al. ().
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Bayesian Analysis and Imperatives
Bayesian () analysis has been around for a long time,

but alternative views perhaps now identi�ed as frequen-

tist are perhaps older although somewhat less formalized.

�ese approaches have cross dialogued and o�en been in

open con�ict. Each has made various appeals to holding

the truth. And they have actively sought territorial advan-

tage. In particular Fisher’s  initial steps towards con-

�dence were directly to provide an alternative to inverse

probability, the name at the time attached to the Bayesian

approach. So it is not surprising that there would be a very

focal reverse criticism (Lindley ) of the con�dence

approach.

�ose favoring the Bayesian approach have frequently

felt they were underdogs, o�en for example having their

articles rejected by journals for just being Bayesian. It thus

seems rather natural that the Bayesian supporters would

seek to broaden their methodology and their community.

�e subjective approach as strongly initiated by Savage

() has led to a powerful following in an area where

prior probabilities are extended to include personal feel-

ings, elicited feelings, and betting view points. Certainly

such extensions are a guide for gambling and much more.

But there is nothing of substance to assert that they should

be ... the imperative ... used for the analysis. �e prior

subjective assessment and the objective evidence-based

assessment can be placed side by side for anyone to see

and to use as deemed appropriate. And the Bayes combi-

nation of these can also be presented for anyone to use if so

inclined. Perhaps the Bayesian expansion was ill advised to

promote the imperative: that the proper analysis was that

of the Bayes paradigm.

What is perhaps even more dangerous is the widely

promoted hierarchical model where each parameter is

given a prior distribution, and then parameters in the prior

distributions are themselves given priors, perhaps then

multilevel. O�en an impressive edi�ce that seems only

equaled by the lack of evidence for the various introduced

elements and the impressive resort toMcMC.�e resort to

multilevel Bayesmodelingwould seemingly be best viewed

as one of expediency, to extend the base of Bayes without

supporting evidence.

And then of course there are model data situations

where the true parameter has come from a source with a

known frequency distribution. In such cases the obvious

name for the prior would be objective prior. But assem-

bled Bayesians as mentioned earlier have adopted that

name for the opposite situation, where there is in fact no

objective reference, and the prior is purely a mathemati-

cal construct. But what about the multitude of cases where

there is an identi�ed source for the true parameter value?

�ese can arise widely when the entity being examined

has been obtained by sampling from some identi�ed sub-

population; or they can arise by genetics or by Mendel

or perhaps by updated genetic laws. Or much more. In

reality this is just a modeling issue: what aspect of the con-

text, of the immediate environment, or the more extended

environment should be modeled. It is a modeling issue. It

is perhaps only natural that Bayesian promotion should

seek to subsume wider and wider contexts as part of the

evolution of the approach. Especially when traditional

statistics has been widely immersed in technical criteria

connected with some global optimization or with deci-

sion rules to reject at some % level or accept at some

/ level, even when it was becoming abundantly appar-

ent that these rules for scienti�c publication have serious

defects.

But if there is an objective source π(θ) for a true value

in amodel-data context, there is nothing that says it should

be folded into a combined model for analysis. �e prior

source π(θ) can be set in parallel with the more directly

evidence-based analysis of the model-data combination.

And of course even the combinedmodel-data-prior analy-

sis presented. But again there is no substantive precept that

says the combined analysis is the statistical inference. Such

a step would be purely an assertion of extended territory

for Bayesian analysis.

Curvature: The Bane of Bayes
Contours of a parameter can have obvious curvature. A

simple example can throw light on the e�ects of such

curvature.

Consider (y, y) with a Normal {(θ, θ); I} dis-

tribution on the plane. With data (y , y

) the basic

original Bayes approach would say that (θ, θ) was

Normal {(y , y

) ; I}. First we examine an obviously lin-

ear parameter ψ = θ and assess say the value ψ =  on the

basis of data, say (y , y

) = (, ).

In an obvious way y measures ψ and has the

Normal(ψ; ) distribution. Accordingly the p-value for ψ

from the observed data is

p(ψ) = Φ {(y

 − ψ) /} = Φ(−ψ).

And for assessing the value ψ =  we have p() = %.

Now consider the Bayesian assessment of the value ψ.

themarginal posterior distribution ofψ isN (y , ) and the

corresponding posterior survivor value is

s(ψ) =  −Φ ((ψ − y

 ) /) =  −Φ(ψ)
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at the observed data. In particular for assessing ψ = 

we would have s() = %. �e Bayesian and frequen-

tist values are equal for the special ψ =  and also for

general ψ.

Now consider a clearly curved parameter, the distance

ψ on the parameter space from the point (−, ) to the

parameter value (θ, θ),

ψ = {(θ + )

+ θ


}
/
.

An obvious way to measure this parameter is by using the

distance r from the point (−, ); thus r = {(y + )

+

y}
/
.�e distribution of r is noncentral Chi-squarewith

two degrees of freedom and noncentrality δ = ψ. �e

indicated p-value for assessing ψ is then

p(ψ) = H(r

;ψ

)

where H is the noncentral Chi-square distribution func-

tion with two degrees of freedem and noncentrality δ =

ψ.�is is readily available in R. In particular for assessing

ψ =  we would have

p() = H(; ) = .%

which is substantially less than %.

Now consider the Bayesian assessment of the curved

parameter ψ. �e posterior distribution of ψ from the

observed data is noncentral Chi-square with two degrees

of freedom and noncentrality δ = . If follows that the

posterior survivor value for assessing ψ =  is

s() =  −H(; ) = .%

which is substantially larger than %.

For this simple example we have seen that the p-value

and the survivor value are equal for a linear parameter.�is

happens generally for linear parameters (Fraser and Reid

). And with the introduction of a curvature change

to the parameter, the Bayesian and frequentist values go

in opposite directions. �is happens widely with curved

parameters: as a parameter contour is changed from linear

to curved, the Bayesian survivor changes in the opposite

direction from the frequentist.�us the Bayesian can be

viewed as correcting negativity, that is making an adjust-

ment opposite to what is appropriate in a context. For some

recent discussion see Fraser (). �e example above

suggests that curvature is precisely the reason that Bayes

fails to correctly assess parameters.

Consider y with a Normal {θ, σ (θ)} distribution

where the variance σ (θ) depends weakly on the mean θ.

Precise p-values are available for assessing θ:

p(θ) = Φ{(y − θ)/σ(θ)}

with a clear frequency interpretations. �e con�dence

inversion is well established (Fisher , ). �e

Bayesian inversion does not seem to have an obvious prior

that targets the parameter θ.

How does one assess the merits of a proposed dis-

tribution for a parameter?�e use of two-sided intervals

provides a slippery slope. Strange tradeo�s can be made

between two interval bounds; see for example Fraser et al.

() on statistics for discovering new particles in High

Energy Physics. A more direct approach is to examine a

particular quantile of a proposed distribution, say the β-th

quantile θ̂β which has posterior probability β to the right

and ( − β) to the le�. One can certainly simulate or have

an oracle and determine what proportion of the time the

true value is larger than the particular quantile being con-

sidered; and determine whether the true proportion bears

a sensible relation to the alleged value β. �is has been

addressed at length in Fraser ().

In particular for the Normal{θ, σ (θ)} example there

is no determination of a prior that will give the third order

accuracy that is available from the con�dence approach

unless the prior is directly speci�c to the observed data

value. �is result holds in wide generality: the use of a

default or Bayesian prior cannot lead to the third order

accuracy readily available from the evidence-based proce-

dures of frequentist inference. And parameter curvature is

the number one culprit.

Why Bayes?
Linear approximations are widely used throughout statis-

tics, mathematics, physics, the sciences generally, and

much more.�ey provide a local replica of something that

might be intangible otherwise and when used iteratively

can provide exploration of something unknown otherwise.

�ere is substantial evidence that the Bayes procedure pro-

vides an excellent �rst order approximation for the anal-

ysis of a statistical model.�ere are also ample warnings

that global acceptance of Bayes results can be extremely

hazardous. Use but be cautious!

�e Bayes calculus asserts that the posterior results

are probabilities. And the name itself is assertive. �e

Bayesian supporters have also been vocal, asserting that

con�dence results do not have the status of probabili-

ties calculated by the Bayes paradigm; some indication of

this is implicit in Lindley (); and further indication

is found in the active broadening of the application area

for Bayesian analysis. From an evidence-based approach it
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is clear that the direct use of the likelihood function pro-

vides substantial information, �rst order information. And

higher order results are available with the careful choice

of prior. But beyond that, the Bayes procedure comes up

short, unless the priors become data dependent and the

calculations are carefully targeted using an evidence-based

formulation.

�us linear approximations can be hugely useful but

they can carry substantial risks.�e assertion of probabil-

ity status is directly contradicted by reality! And no indi-

cations seem available that a Bayesian calculation could

yield more than just approximate con�dence.�e promo-

tional assertiveness that accompanies current Bayes devel-

opment ismisleading andmisleading to the extent of being

fraudulent.

Of course there can be contexts where there is an

objective prior π(θ) that records how the true value was

generated. �e Bayes paradigm can be applied but it is

inappropriate; the direct approach is a matter of model-

ing, of what aspect of the context is appropriate to include.

From this viewpoint the indicated methodology predates

Bayes; it is just probability analysis. Even then it allows the

prior information and the evidence based information to

be presented separately, thus of course allowing the end

user to combine if needed or wanted.

�ere is no imperative that says the prior and the

evidence-based should be combined. It is an option. And

it is an option with risks!
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In statistical inference, two approaches of hypothesis test-

ing can be used.�e �rst one, called classical approach, is

based on calculating probabilities of the data in handunder

certain conditions (which are encompassed by the null and

alternative hypotheses).�e second one, named Bayesian

approach, looks at probabilities of competing conditions

(which are the hypotheses being compared) given the data

in hand.�is approach integrates prior probabilities asso-

ciated with competing conditions into the assessment of

which condition is the most likely explanation for the data

in hand. Also, it allows to evaluate the likelihood of com-

peting conditions by evaluating the change in the odds

associated with these conditions, a change produced by

assessing the data in hand. If the odds change su�ciently

when the data are examined, then the scientist may alter

his opinion about which competing condition is the most

likely. One of the main papers published on this topic

is the paper of Schotman and Van Dijk (a), where

a very important problem in Bayesian analysis is tack-

led, namely, the Bayesian approach for unit root testing.

Several economists, Dejong and Whiteman (), Koop

(), and in particular, Sims (), and Sims and Uhlig

(), have advocated forcefully for Bayesian alternatives

over the more traditional classical approach such as the

ADF tests (Dickey and Fuller ) in unit root testing.

Despite the apparent advantages of the Bayesian approach

over the classical approach in unit root testing, a rela-

tively small number of studies have used the Bayesian

approach.�e reasons may be that the Bayesian approach

requires a likelihood function and the use of prior

information.

�emodeling objective of the Bayesian approach is not

to reject a hypothesis based on a predetermined level of

signi�cance, but to determine how probable a hypothesis

is relative to other competing hypotheses. Schotman and

Van Dijk (a) propose a posterior odds analysis of the

hypothesis of a unit root in real exchange rates because

nominal and real exchange rates behave almost like ran-

dom walks (see 7RandomWalk).
Now, suppose that we have a sample of T consecutive

observations on a time series yt generated by

yt = ρyt− + µt ()

where

. y is a known constant.

. µt are identically and independently (i.i.d) normally

distributed with mean zero and unknown variance σ .

. ρ ∈ S ∪ {}, S = {ρ/ −  < a ≤ ρ < }.

�e econometric analysis aims at discriminating

between a stationary model (here de�ned as a ≤ ρ < ) and

the nonstationary model with ρ = .�e lower bound a in

assumption () largely determines the speci�cation of the

prior for ρ. Recall that the principal Bayesian tool to com-

pare a sharp null hypothesis with a composite alternative

hypothesis is the posterior odds ratio, which is de�ned as

K = K
∫
∞


p(σ)L(y ∣ ρ = , σ , y)dσ

∫S ∫
∞


p(σ)p(ρ)L(y ∣ρ, σ , y)dσdρ

=
p(ρ =  ∣y)

p(ρ ∈ S ∣ y)

()

K andK are the prior odds and the posterior odds in favor

of the hypothesis ρ = , respectively. p(ρ) represents the

prior density of ρ ∈ S, p(σ) the prior density of σ .

L(y ∣ .) is the likelihood function of the observed data

y = (y . . . yT)
′

and Y = (y, y
′

)
′

is all observed data.

�e Bayes factor is de�ned as the ratio of the marginal

posterior density of ρ under the null hypothesis ρ =  over

a weighted average of the marginal posterior under the

alternative using the prior density of ρ as a weight func-

tion. �en, one can notice that the posterior odds K is

equal to the prior oddsK times the Bayes factor.�e prior

odds express the special weight given to the null hypoth-

esis, the point ρ =  is given the discrete prior probability

ϑ = K/( + K). From the posterior odds, one can com-

pute the posterior probability of the null hypothesis as

K/( + K).

For the complete speci�cation of the marginal prior of

ρ and σ , we assume that

Pr(ρ = ) = v ()

p(ρ ∣ ρ ∈ S) =


 − a
()

p(σ)∝


σ
()

�e prior of ρ is uniform on S but has a discrete proba-

bility ϑ that ρ = .�e likelihood function for the vector

of T observations y is
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L(y ∣ ρ, σ , y) = (πσ

)
−T/

exp{−


σ 
µ
′
µ} ()

where µ = y − y−ρ, and y− = (y, . . . , yT−)
′

Having computed the relevant integrals in (), the pos-

terior odds ratio becomes

K =
C−T

(T − )/
v

 − v
(

σ 

σ̂ 
)

−T/

(
 − a

sρ̂
)[F (

 − ρ̂

sρ̂
)

−F (
a − ρ̂

sρ̂
)]

−

()

where

σ

 =



T − 
(y−y−)

′
(y−y−) σ̂


=



T − 

⎛

⎝
y
′
y −

(y′−y)


(y′−y−)

⎞

⎠

s

ρ̂ = σ̂


(y
′
−y−)

−
ρ̂ =

y′−y

y′−y−
CT =

Γ((T − )/)Γ(/)

Γ(T/)
()

�e empirical lower bound a∗ is given by a∗ = ρ̂ +

sρ̂F
−
(αF(−τ̂)). F(.) is the cumulative t-distribution with

(T − ) degrees of freedom and τ̂ =
ρ̂−

s ρ̂
is the Dickey–

Fuller test statistic.�e unit root model is preferred if K >

 or P(ρ = ∣y, y) ≥ ., thus treating the null and the

alternative in a symmetric way.

A�er �xing numerical values for ϑ and α, the posterior

odds is just a function of the data like any other test statis-

tic. Due to a speci�c way that the lower bound has been

constructed, the posterior odds are directly related to the

7Dickey–Fuller test. Setting the prior odds equal to one
and for large T, Schotman & Van Dijk approximate F(.)

to the cumulative normal distribution.�e posterior odds

become a function of the Dickey–Fuller statistic τ̂.

lnK = −



ln(π) −




τ̂

+ ln(

−τ̂ − F−(αF(−τ̂))

F(−τ̂)
) ()

Since the posterior odds is a function of the Dickey–Fuller

test statistic, its sampling properties correspond exactly

to those of the Dickey–Fuller test. In literature, there is

a great attention to the nature of suitable noninforma-

tive priors for the autoregressive coe�cients. For example,

Sims () and Sims and Uhlig () advocate the use of

�at priors. Phillips (a) proved that �at priors bias the

inference toward stationary models, and suggests to use

Je�rey priors derived from conditional likelihood func-

tions. Also, Uhlig (a) determines the Je�reys priors

for an AR() process from the exact likelihoods and jus-

ti�es the use of �at priors in some speci�c cases only.

Uhlig (b) summarizes the Bayesian contribution to

the unit root problem and discusses the sensitivity of the

tails of the predictive densities on the prior treatment of

explosive roots. Schotman and Van Dijk (a) stress the

sensitivity of the posterior odds to the size of the station-

ary region and suggest restricting the later’s size. Berger

and Yang () consider a reference prior approach for

the AR() model. It is particularly interesting to note that

Marriott and Newbold () criticized the use of priors,

such as the uniform or the Je�reys prior, for the autore-

gressive coe�cients in this context and advocate the use

of sharp informative prior distributions. However, for the

simple problem of testing for a unit root in a �rst-order

autoregressive process, they �nd that the prior distribution

for the autoregressive coe�cient has a substantial impact

on the posterior odds, so that, a very sharp beta prior

performs extremely well when the generating process is

stationary autoregressive, but the uniform prior is prefer-

able when the true model is nonstationary. Marriott and

Newbold () explore the use of the 7beta distribution
as a prior speci�cation.�ey have explained how Bayesian

calculations can be carried out, noting the importance of

the analyst, giving careful thought to the question of what

might be an appropriate prior.

Conclusions
Generally, authors agree with the idea that the Bayesian

approach o�ers an alternative and a more useful way than

the classical approach in empirical modeling. In unit root

testing, Sims (), Sims and Uhlig (), and Koop

(, ) have advocated the Bayesian approach over

the classical ADF tests. In some papers, various opin-

ions were expressed saying that the Bayesian solution is

clear and simple when the classical approach is logically

unsound. In a series of empirical applications, using a

Bayesian approach, Dejong andWhiteman (, a, b)

obtained results rejecting the presence of a unit root in var-

ious economic series, which contradicted those of Nelson

and Plosser (). Ahking () studied the power of

Koop’s “objective” unit root test. In particular, he was inter-

ested inwhether or not it provides a better alternative to the

classical ADF unit root test, and whether or not the use of

“objective” priors are appropriate. However, there is no evi-

dence to suggest that the “objective” Bayesian test is better

than the classical ADF tests in unit root tests.Moreover, the

“objective” priors do not seem to be appropriate since they

tend to produce results that are biased in favor of the trend

stationary hypothesis.�us, unfortunately, while there is

a need for more objective analysis of Bayesian time series,

Koop’s “objective” Bayesian test does not appear tomove us

closer to that goal. So, one can ask, what is the best use in

unit root tests, classical or Bayesian procedure? Intuitively,
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it is very hazardous to discriminate between two compet-

ing economic theories on the basis of a univariate model.

However, unit root tests may be helpful when they are

used in a more complete modeling strategy as a protection

against gross errors, as well as misspeci�cation tests.
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Bayesian nonparametric statistics covers Bayesian analysis

of nonparametric models, statistical models whose param-

eter space is not �nite-dimensional, and allows more �exi-

ble modeling than the parameteric alternatives. Bayesian

analysis of a statistical model consists of three ingredi-

ents: prior, model (or likelihood), and posterior.�e prior

π(θ) is a probability measure on the parameter space Θ

that re�ects the analyst’s knowledge about the unknown

parameter θ before he or she observes the data.�e model

describes the random mechanism by which the observa-

tion X is generated given the parameter θ, that is, X∣θ ∼

f (x∣θ).�e posterior is the conditional distribution of θ

given X, π(θ∣X), which re�ects the analyst’s knowledge

about θ a�er X is observed. �e prior and posterior of

nonparametric models are, thus, probability measures of

in�nite dimensional parameter spaces. Examples of such

parameter spaces include the space of all probability mea-

sures on the real line, the space of all probability density

functions on the real line, the space of all smooth func-

tions, and many more.

�e most widely used nonparametric prior is the

Dirichlet process (Ferguson ), a probability measure

on the space of all probability measures. Let X be a

measurable space with a σ-�eld A and α be a nonnull

�nite measure on X . A random probability measure P

on X is said to follow a Dirichlet process with parame-

ter α, denoted by DP(α), if for every measurable partition

(A,A, . . . ,Ak) of X , (P(A),P(A), . . . ,P(Ak)) follows
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(�nite-dimensional) Dirichlet distribution with parameter

(α(A), α(A), . . . , α(Ak)).

�e Dirichlet process has many important properties

that have theoretical and practical consequences.�e class

of Dirichlet processes is a conjugate prior class in the

following sense. Suppose

P ∼ DP(α), X,X, . . . ∣P ∼ P. ()

�en, the posterior P given X,X, . . . ,Xn also follows

Dirichlet process, that is,P∣X, . . . ,Xn ∼ DP (α +∑
n
i= δXi),

where δx is a degenerate probability measure at x. Under

model (), the sequence X,X, . . . form, marginally, the

Pölya urn sequence, that is, X ∼ α/α(X ) and for n ≥ ,

Xn+∣X, . . . ,Xn ∼
α +∑

n
i= δXi

α(X ) + n
. ()

�is property is the key to the posterior computation

of the mixtures of Dirichlet process models. Sethuraman

() derived an alternative constructive de�nition of

the Dirichlet process. Suppose Y,Y, . . . are iid α/α(X ),

θ, θ . . . are iid Beta(, α(X )) independently of Y ′i s. Let

p = θ, pn = θn
n−

∏
i=

( − θ i),n ≥ . ()

�en, P = ∑
∞
i= piδYi ∼ DP(α).�is property shows P is

discretewith probability  ifP ∼ DP(α), whichwas initially

thought to be a shortcoming of the Dirichlet process.

To remedy the discreteness of the Dirichlet pro-

cess, the mixtures of Dirichlet process model has been

proposed, which turns out to be themost successful model

with Dirichlet process. It has the following structure:

P ∼ DP(α)

X,X, . . . ,Xn∣P
iid
∼ ∫ h(x∣θ)dP(θ),

where h(x∣θ) is a probability density functionwith param-
eter θ, or equivalently,

P ∼ DP(α)

θ, θ, . . . , θn∣P
iid
∼ P

Xi∣θ i
ind
∼ h(x∣θ i),  ≤ i ≤ n.

�e mixtures of Dirichlet processes have been used for

di�erent problems, for example, Bayesian density estima-

tion, cluster analysis (see 7Cluster Analysis: An Introduc-
tion), etc. Especially, mixtures of Dirichlet processes have

been successful in cluster analysis. Since the random prob-

ability measure P is discrete, the random sample θs from

P naturally have ties, and clusters of Xs are based on ties

in θs.

Since the Dirichlet process was proposed, many other

nonparametric priors have appeared. Among them are

neutral to the right process (Doksum ), Gaussian pro-

cess (O’Hagan ), beta process (Hjort ; Lo ),

Polya tree process (Lavine ), and species sampling

model (Pitman ), all of which are priors for distribu-

tion except beta process and gaussian process. �e beta

process and gaussian process are priors for cumulative

hazard function and regression function, respectively.

�e posterior computation with nonparametric mod-

els can be complicated.�ere are algorithms specialized for

speci�c priors (e.g., MacEachern ; MacEachern and

Müller ; Lee ). Recently, DPpackage (Jara ),

an R package that automates the posterior computation of

some nonparametric models, has been built and lessens

computational e�ort of practical users of nonparametric

models.

Unlike parametric models, whose posteriors behave

asymptotically optimal in the frequentist sense, nonpara-

metric posteriors can behave suboptimally. Diaconis and

Freedman () have shown that even an innocent-

looking prior may generate inconsistent posterior. �is

observation spurs the research e�ort to obtain conditions

for posterior consistency, posterior convergence rate, and

7asymptotic normality of the posterior (Bernstein-von
Mises theorem).�ere is now a large body of literature on

the asymptotic issue of 7Bayesian statistics (e.g., Ghosal
et al. ; Shen and Wasserman ; Kim and Lee ;

Freedman ).
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While Bayesians do not like classical 7P-values and prefer
measuring evidence in data through posterior probabili-

ties of parameters ormodels, some problems like testing or

exploration of goodness of �t of a single given model have

led to the introduction of P-values. We con�ne ourselves

to this particular context of goodness of �t in the brief dis-

cussion of Bayesian P-values. Most of this material is taken

from Ghosh, Delampady and Samanta () and Ghosh,

Purkayastha and Samanta ().

Suppose that we have a single modelM that speci�es a

density f (x∣θ), θ ∈ Θ for the observableX and the Bayesian

has a prior π(θ). �e Bayesian wishes to examine how

well the modelM �ts the data xobs on the basis of a statis-

tic T(X) which measures the goodness of �t of data and

model. Of course, T is also chosen by the Bayesian even

though it is not part of the usual paradigm for Bayesian

inference.

Let

mπ(x) = ∫Θ f (x∣θ)π(θ)dθ

be the prior predictive density. Box () de�nes

p = ∫{T(x)>T(xobs)}mπ(x)dx

as a prior predictive P-value. Of course, this depends on

the prior π of the Bayesian.

To reduce the dependence on π and also to make it

possible to use an improper non-informative prior π with

proper posterior π(θ∣xobs), Gutman (), Rubin (),

Meng () and Gelman et al. () propose a posterior

predictive P-value p∗ de�ned as follows.

Let

m
∗
(x∣xobs) = ∫

Θ
f (x∣θ)π(θ∣xobs)dθ,

p
∗
= ∫

{T(x)>T(xobs)}
m
∗
(x∣xobs)dx.

However, as pointed out by Bayarri and Berger (),

p∗ involves a double use of the data in both the integrand

and the tail area of the integrand de�ning p∗. In order to

remove this undesirable feature, Bayarri and Berger ()

introduce what they call a conditional predictive P-value

which is de�ned as follows.

Identify a statistic U(X) which is not a function of

T(X) and let m(t∣u) be the conditional predictive density

of T given U.�en the conditional predictive P-value is

pc = ∫
{T(x)>T(xobs)}

m(t∣uobs)dt.

Bayarri and Berger () also de�ne a partial poste-

rior predictive P-value in the same vein. �is alternative

P-value does not require the choice of the auxiliary statistic

U and to that extent is less arbitrary.

When the model is simple, meaning that the distribu-

tion of the random observable has no unknown param-

eters, then under this model, all these P-values reduce

to the tail area probability under this distribution (which

is exactly the classical P-value). In this case, the P-value

treated as random (i.e., p = p(X)) has the U(, ) distri-

bution, a desirable property as far as its interpretation is

concerned.�is property is desirable even when themodel

is composite and the nuisance parameters are eliminated
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in some way. However, this is not always likely and what

can be expected is that they be asymptotically uniformly

distributed. Robins et al. () argue that in the absence

of the U(, ) property, one should at least require that

these P-values not su�er from serious conservative or anti-

conservative behavior; p(X) is de�ned to be conservative

(anti-conservative) when P(p(X) < u) is smaller (larger)

than u for all u < /, with P denoting the distribution of

X under (any θ from) the model.

Assuming certain regularity conditions on the model

as well as the prior, Robins et al. () prove that the

conditional predictive and partial predictive P-values are

asymptotically uniformly distributed, whereas the poste-

rior predictive P-value is o�en conservative.

�e di�erent P-values are illustrated below with two

examples from Bayarri and Berger (, ).

Example  SupposeX = (X,X, . . . ,Xn) is a random sam-

ple from some distribution, and we want to check if it is

N(µ, σ

), σ  unknown and µ is a speci�ed value for its

mean.�e natural discrepancy statistic isT(X) = (X̄−µ).

Consider the usual non-informative prior π(σ ) ∝ /σ .

�en the prior predictive P-value doesn’t exist since this

prior is improper. Let s = ∑
n
i=(Xi − X̄)


/n. We obtain

π(σ

∣xobs)∝ (σ


)
−n/−

exp (−n (s

obs + t


obs) /(σ


)),

and thus the posterior predictive density of T is

m(t∣xobs)∝ ( +


n

nt

s
obs
+ t
obs

)

−(n+)/

.

therefore the posterior predictive P-value is

p
∗
= 

⎧⎪⎪
⎨
⎪⎪⎩

 − Tn
⎛

⎝

√
ntobs

√
s
obs
+ t
obs

⎞

⎠

⎫⎪⎪
⎬
⎪⎪⎭

,

with Tν denoting the c.d.f. of Student’s tν .

Choose U(X) ≡ s, and note that nU∣σ  ∼ σ  χn−.

�erefore,

π(σ

∣U = s


)∝ (σ


)
−(n−)/−

exp(−ns

/(σ


)),

and consequently, the conditional predictive density of T

given U = sobs is

m(t∣s

obs) = ∫

∞


fT(t∣σ


)π (σ


∣s

obs) dσ



∝ ∫

∞


(σ

)
−/
exp(−

nt

σ 
)(σ


)
−(n−)/

exp(−
n

σ 
s

obs)

dσ 

σ 

∝ ∫

∞


exp (−nv{s


obs + t


}) v

n/ dv

v

∝ ( +


n − 

(n − )t

s
obs

)

−n/

.

�is implies, under the conditional predictive distribution,

√
n − 

T

sobs
∼ tn−.

�e conditional predictive P-value, therefore, is

pc = { − Tn− (

√
n − tobs

sobs
)} .

Bayarri and Berger (, ) show that in this

example the partial predictive P-value and the conditional

predictive P-value coincide.

Listed in Table  are values of p∗, tobs =
√
n − (x̄obs −

µ)/sobs and t
∗
=
√
n/(n − )tobs/

√
 + t

obs
/(n − ) corre-

sponding to di�erent values of n when pc is �xed at .,

. and ., respectively.

Example  Suppose, as in the previous example, X,

X, . . . ,Xn is a random sample from some population.�e

targetmodel now is Exponential(λ). Consider π(λ)∝ /λ.

Let T = X() be the model checking statistic and let S =

∑
n
i= Xi.�e posterior density of λ given S = sobs is propor-

tional to λn− exp(−sobsλ) so that the posterior predictive

density of T given S = sobs is

n

s
n
obs(nt + sobs)

−(n+)
.

Bayesian P-Values. Table  P-values: p∗ versus pc for the
normal model

n

      

pc = . tobs . . . . . . .

pc = . t∗ . . . . . . .

pc = . p∗ . . . . . . .

pc = . tobs . . . . . . .

pc = . t∗ . . . . . . .

pc = . p∗ . . . . . . .

pc = . tobs . . . . . . .

pc = . t∗ . . . . . . .

pc = . p∗ . . . . . . .
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Bayesian P-Values. Table  P-values: p∗ versus pc for the
exponential model

n

    

t∗ = . pc     

t∗ = . p∗ . . .  

t∗ = . pc . . .  

t∗ = . p∗ . . . . 

t∗ = . pc . . .  

t∗ = . p∗ . . . . 

t∗ = . pc . . . . 

t∗ = . p∗ . . . . 

t∗ = . pc . . . . 

t∗ = . p∗ . . . . .

t∗ = . pc . . . . .

t∗ = . p∗ . . . . .

�is yields the posterior predictive P-value of

p
∗
= ( +

ntobs

sobs
)
−n

.

A direct calculation gives

f (x∣T = t, λ)∝ λ
n−
exp(−λ(s − nt)),

from which the partial posterior density for λ is seen to be

λn− exp(−λ(sobs − ntobs))

Γ(n − )(sobs − ntobs)−(n−)
;

�is is called partial posterior because it is obtained from

the partial likelihood, f (xobs∣T = tobs, λ) instead of the full

likelihood f (xobs∣λ).�en the partial posterior predictive
density of T is obtained as

n(n − )(sobs − ntobs)
n−

(nt + sobs − ntobs)n
.

�is leads to the following expression for the partial

posterior predictive P-value:

( −
ntobs

sobs
)
n−

.

Bayarri and Berger () go on to show that this

coincides with the conditional predictive P-value pc upon

taking the conditioning (auxiliary) statistic to be the MLE

of λ from f (x∣T = t, λ) (which is given by (n− )/(S−nT).

In Table , values of p∗ and pc corresponding to some

values of t∗ = ntobs/sobs and n are displayed.
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Bayesian reliability modeling is an application of rigorous

Bayesian statistical inference theory, one of the frontiers

of modern statistics. It is particularly useful in the con-

text of the scarcity of system failure (or quality index)

data. Bayesian decision theory can guide reliability engi-

neers to utilize both “so�” and “hard” evidence relevant

to the reliability index under investigation. So� evidence

includes expert knowledge, design and performance of

similar products, and their mathematical treatment, etc. In

contrast, hard evidence includes the direct failure (or qual-

ity testing) data, any other transformable evidence having

functional relationship with failure rate, such as test data

from proving ground sources, factors in a product operat-

ing environment and any partially relevant evidence, say,

warranty data, customer research surveys, etc.

�e basic form of Bayesian reliability modeling can be

illustrated by following formulation and example. When

evidence of system performance denoted by x, is scarce,

a reliability (or quality) index of the system, denoted by

s ( ≤ s ≤ ), we may use the so� evidence on s in the

form of a prior density ρ(s) in terms of 7Bayes’ theorem
to calculate the posterior density of s,

f (s∣x) =
l(s∣x)ρ(s)

∫



l(s∣x)ρ(s)ds

. ()

where l(s∣x)
∆
= f (x∣s) is called the likelihood function,

obtained from the joint density of the sample evidence x.

For example, N electronic devices are under testing

until a preset time T, by assuming that the failure time of a

random individual device follows an exponential distribu-

tion with the density:

f (t∣λ) = λe
−λt
, t ≥ , λ > . ()

Suppose that in testing period [,T], x units failed and the

failure times are recorded as t, t,⋯, tx, thus the sample

evidence as t = (t, t,⋯, tx,T,T,⋯,T), and the likelihood

function is then given by

l(λ∣t) = [
x

∏
i=

(λe
−λti)] [ − ( − e

−λT
)]
n−x

= λ
x
e
−λη
, ()

where η = (n − x)T +
x

∑
i=

ti.�en a gamma prior density

on the failure rate λ, with priori parameters α and β, may

represent the expert knowledge:

ρ(λ) =
βα

Γ (α)
λ

β−
e
−α λ
, λ > , α ≥ , β ≥ . ()

�e posterior density of the failure rate λ is evaluated in

terms of Eq. :

f (λ∣x) =
l(λ∣x)ρ(λ)

∫



l(λ∣x)ρ(λ)dλ

=
(α + η)

β+x

Γ (α + x)
λ

β+x+
e
−(α+η)λ

,

()

which is also a gamma density because the prior density

takes the form of the conjugate family. Further analysis or

inference will be based on the posterior density.

It is necessary to emphasize that in reliability engineer-

ing reality, the formations and applications of Bayesian reli-

ability modeling are far more complicated and diversi�ed

than that shown as the basic form in Eq.  because the con-

crete formation of an individual reliability problem is heav-

ily dependent upon the compositional form of Bayesian

decision criterion engaged, the form of distribution of
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quality index and hence the form of the likelihood func-

tion, which is inevitably linked to a host of factors which

may have serious impacts.�e factors include any sample

censoring mechanism, the form of prior and the design or

physical structure of the systemunder study, themanner of

collecting evidence (e.g., sequential or otherwise) and even

research progress of the relevant mathematical branches.

For example, Dai et al. (), demonstrated that

graph theory related fault tree analysis is a common clas-

sical reliability analysis model, while the Bayesian coun-

terpart, Bayesian networks (abbreviated as BN), is just a

combination of fault trees and appropriate arrangement

of conditional probability and on probability assessments

which can combine the so� and hard evidence under a

Bayesian risk criterion. Bayesian networks can model the

complicated physical structure as well as failure depen-

dence structures of a complex system and predict the sys-

tem failure behavior. A dynamic version of BN (DBN) was

also developed for large system reliability modeling.

Arti�cial 7Neural Networks form a powerful regres-
sion modeling tool, permitting a non-linear analysis.

Combination of a Bayesian theoretical frame and Stan-

dard Neural Networks structure creates the Bayesian

Neural Networks (abbreviated as BNNs), which allow

active Bayesian reliability modeling for complex systems

with complicated sample evidence. Mathematically, BNNs

are nothing but probabilistic networks. For details, see

Waszczyszyn et al. (). Markov chain Monte Carlo

(abbreviated as MCMC) simulation (see 7Markov Chain
Monte Carlo) is another frontier of modern computational

statistics. Merging of BNN and MCMC has created an

extremely powerful but convenient computational reliabil-

ity engineering model type.

It is well-known that the conventional Bayesian risk

criterion is based on quadratic loss function and use of

a conjugate family. Maximum Entropy modeling is an

important Bayesian inference. �e reliability engineer-

ing community has made e�orts in this direction. How-

ever,Maximumentropy (abbreviated asMaxent)modeling

so�ware development and application in environmental

context may improve from attention to Bayesian reliability

modeling e�orts. See Phillips et al. ().

�erefore, Bayesian reliability modeling is widely

applied in business and industries, particularly in com-

plex systems, nano-electronics and so�ware industry, say,

accelerating life testing models, reliability growth models,

testing models for new product design, etc. See Blischke

and Murthy (), Kuo (), and Garg et al. ().

As we pointed out at the beginning, Bayesian reli-

ability modeling is a small-sample inference in its

mathematical nature. Hence there is no reason to ignore

the other developments in small-sample inference. It will

be bene�cial to combine some elements in small-sample

inference with developments in the Bayesian reliabil-

ity modeling. Jin et al. () illustrated how to use a

“grey di�erential equation” approach to improve BNNs in

so�ware reliability modeling, although the “grey” concept

is not yet well-accepted in mathematical and statistical

societies. Guo et al. () proposed a di�erential equation

associated regression (abbreviated asDEAR)model, which

is small-sample based inference with a rigorous math-

ematical foundations and resolves the problem in “grey

di�erential equations.”

Ushakov and Harrison () o�ered a system-

atic treatment in Chap. . Singpurwalla’s book ()

is authoritative in Bayesian reliability modeling, and

re�ects the author’s state-of-art modeling experiences and

judgments.
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Linear or7generalized linearmodels assume that the (con-
ditional) mean µ = E(y∣x), of the response y, given the
covariate vector x, is linked to a linear predictor µ by

µ = h(η), η = x′β.

Here, h is a known response function and β is an

unknown vector of regression parameters. More generally,

other characteristics of the response distribution, such as

7variance or 7skewness may be related to covariates in
similar manner. Another example is the Cox model for

7survival data, where the hazard rate is assumed to have
the form

λ(t∣x) = λ(t) exp(x′β)

with λ(t) as an (unspeci�ed) baseline hazard rate. Inmost

practical regression situations, however, we are facing at

least one of the following problems.

(a) For the continuous covariates in the data set, the

assumption of a strictly linear e�ect on the predictor

may not be appropriate.

(b) Observations may be spatially correlated.

(c) Heterogeneity among individuals or units may be

insu�ciently described by covariates. Hence, unob-

served unit- or cluster speci�c heterogeneity must be

considered appropriately.

(d) Interactions between covariates may be of complex,

nonlinear form.

7Semiparametric regression models extend models with
linear predictors by incorporating additional non- and

semiparametric components. Bayesian semiparametric

regression regularizes the resulting high-dimensional

inferential problem by imposing appropriate priors.

Observation Models
We consider some semiparametric regression models that

may be considered as special classes of structured additive

regression (STAR) models (Fahrmeir et al. ). Gener-

alized additive models (GAMs) extend the linear predictor

of GLMs to

ηi = x
′
iβ + f(z) + . . . + fp(zip), i = , . . . ,n ()

where fj are smooth functions of continuous covari-

ates z, . . . , zp. Most semiparametric regression approaches

assume that unknown functions are represented or

approximated through a linear combination of basis func-

tions, i.e.,

f (z) =
K

∑
k=

γkBk(z)

for a typical function f .�e most popular basis function

representations are spline functions, with truncated power

series or B-spline basis functions Bk(z), a relatively large

number of knots, and a correspondingly high-dimensional

vector γγγ of basis function coe�cients γ, ..., γK .

Collecting all predictors ηi in the predictor vector η,
and constructing appropriate design matrix, the predic-

tor () can be rewritten in matrix notation as a high-

dimensional linear predictor

η = Xβ + Zγγγ + . . . + Zpγγγp. ()

GAMs can be extended by additively incorporating e.g.,

interaction terms f∣(z, z) of two continuous covariates,

varying coe�cient terms g(z)x, where the e�ect of x varies

with z, a spatial e�ect fspat(s) where s denotes spatial

location and individual – or group speci�c i.i.d. random

e�ects αg , g = , . . . ,G. Combining these di�erent types of
e�ects in additive form leads to STARmodels with general-

ized additive mixed models (GAMMs), varying coe�cient

models and geoadditive models as important subclasses.

�e Cox model can be extended in quite similar fashion,

see Hennerfeind et al. () and Kneib and Fahrmeir

(). It turns out that a�er appropriate de�nition of
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design matrices and coe�cient vectors, the predictor still

is of additive structure as in ().

Priors and Inference
For Bayesian inference, �at priors p(β) ∝ const or weakly

informative Gaussian priors are usually assumed for lin-

ear e�ects. In a Gaussian smoothness prior approach, it

turns out that all priors for parameters γj representing

smooth functions, GaussianMarkov random�elds for spa-

tial e�ects, i.i.d. random e�ects, etc., have the same generic

conditionally Gaussian form

p (γγγj∣τ

j )∝ exp

⎛

⎝
−


τj
γγγ
′

jKjγγγj
⎞

⎠
. ()

�e precision matrix Kj depends on the speci�c e�ect and
acts as a penalty matrix to enforce smoothness, and τj is

an inverse smoothing parameter, controlling the amount

of smoothness. In full Bayesian inference, a hyperprior

is assigned to τj , and regression and smoothness param-

eters are estimated jointly through MCMC techniques

(Brezger and Lang ). Another possibility is to look

at () and () as a mixed model with correlated random

e�ects, enabling empirical Bayes inference with mixed

model technology, see Fahrmeir et al. () and Ruppert

et al. (). A recent review on (Bayesian) semiparametric

regression is Ruppert et al. (). A forthcoming book

(Fahrmeir and Kneib ) provides details on all issues.

Approximate full Bayesian inference avoiding MCMC has

been recently proposed by Rue et al. ().

A somewhat di�erent approach to Bayesian inference

in semiparametric regression is based on adaptive selec-

tion of knots of B-splines or coe�cients of basis functions

through concepts of Bayesian variable selection, see for

example the book by Denison et al. () or Smith et al.

(), Kohn et al. ().
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Introduction
Available observations generally consist of (possiblymany)

sets of data of the general formD = {x, . . . , xn}, where the
xi’s are somewhat “homogeneous” (possibly multidimen-
sional) observations xi. Statistical methods are then typi-
cally used to derive conclusions on both the nature of the

processwhich has produced those observations, and on the

expected behavior at future instances of the same process.

A central element of any statistical analysis is the speci�-

cation of a probability model which is assumed to describe
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the mechanism which has generated the observed data D

as a function of a (possibly multidimensional) parame-

ter (vector) ω ∈ Ω, sometimes referred to as the state of
nature, aboutwhose value only limited information (if any)

is available. All derived statistical conclusions are obviously

conditional on the assumed probability model.

Unlike most other branches of mathematics, conven-

tional methods of statistical inference su�er from the lack

of an axiomatic basis; as a consequence, their proposed

desiderata are o�en mutually incompatible, and the analy-

sis of the same data may well lead to incompatible results

when di�erent, apparently intuitive procedures are tried

(see Lindley () and Jaynes () for many instruc-

tive examples). In marked contrast, the Bayesian approach

to statistical inference is �rmly based on axiomatic foun-

dations which provide a unifying logical structure, and

guarantee the mutual consistency of the methods pro-

posed. Bayesian methods constitute a complete paradigm

to statistical inference, a scienti�c revolution in Kuhn’s

sense.

Bayesian statistics only require the mathematics of

probability theory and the interpretation of probability

which most closely corresponds to the standard use of this

word in everyday language: it is no accident that some

of the more important seminal books on Bayesian statis-

tics, such as the works of Laplace (), Je�reys ()

or de Finetti () are actually entitled “Probability�e-

ory.”�e practical consequences of adopting the Bayesian

paradigm are far reaching. Indeed, Bayesian methods ()

reduce statistical inference to problems in probability the-

ory, thereby minimizing the need for completely new con-

cepts, and () serve to discriminate among conventional

statistical techniques, by either providing a logical justi�-

cation to some (and making explicit the conditions under

which they are valid), or proving the logical inconsistency

of others.

�e main consequence of these foundations is the

mathematical need to describe by means of probabil-

ity distributions all uncertainties present in the prob-

lem. In particular, unknown parameters in probability

models must have a joint probability distribution which

describes the available information about their values;

this is o�en regarded as the characteristic element of

a Bayesian approach. Notice that (in sharp contrast to

conventional statistics) parameters are treated as random

variables within the Bayesian paradigm. �is is not a

description of their variability (parameters are typically

�xed unknown quantities) but a description of the uncer-

tainty about their true values.

An important particular case arises when either no

relevant prior information is readily available, or that

information is subjective and an “objective” analysis is

desired, one that is exclusively based on accepted model

assumptions and well-documented data.�is is addressed

by reference analysis, which uses information-theoretic

concepts to derive appropriate reference posterior distri-

butions, de�ned to encapsulate inferential conclusions on

the quantities of interest solely based on the supposed

model and the observed data.

In this article it is assumed that probability distribu-

tions may be described through their probability density

functions, and no distinction is made between a random

quantity and the particular values that it may take. Bold

italic roman fonts are used for observable random vec-

tors (typically data) and bold italic greek fonts are used

for unobservable random vectors (typically parameters);

lower case is used for variables and upper case for their

dominion sets. Moreover, the standard mathematical con-

vention of referring to functions, say f and g of x ∈ χ,
respectively by f (x) and g(x), will be used throughout.
�us, p(θ ∣C) and p(x ∣C) respectively represent general
probability densities of the random vectors θ ∈ Θ and x ∈ χ
underconditionsC, so thatp(θ ∣C) ≥ , ∫Θ p(θ ∣C)dθ = ,

and p(x ∣C) ≥ , ∫χ p(x ∣C)dx = .�is admittedly impre-
cise notation will greatly simplify the exposition. If the

random vectors are discrete, these functions naturally

becomeprobabilitymass functions, and integrals over their

values become sums.

Density functions of speci�c distributions are denoted

by appropriate names. �us, if x is a random quantity

with a normal distribution of mean µ and standard devi-

ation σ , its probability density function will be denoted

N(x ∣ µ, σ).

Bayesian methods make frequent use of the concept

of logarithmic divergence, a very general measure of the

goodness of the approximation of a probability density

p(x) by another density p̂(x).�e Kullback-Leibler, or log-
arithmic divergence of a probability density p̂(x) of the
random vector x ∈ χ from its true probability density p(x),
is de�ned as δ{p̂(x) ∣ p(x)} = ∫χ p(x) log{p(x)/p̂(x)} dx.
It may be shown that () the logarithmic divergence is non-

negative (and it is zero if, and only if, p̂(x) = p(x) almost
everywhere), and () that δ{p̂(x) ∣ p(x)} is invariant under
one-to-one transformations of x.

�is article contains a brief summary of the mathe-

matical foundations of Bayesian statistical methods (sec-

tion “7Foundations”), an overview of the paradigm (sec-
tion “7�e Bayesian Paradigm”), a description of use-
ful inference summaries, including both point an region

estimation and hypothesis testing (section “7Inference
Summaries”), an explicit discussion of objective Bayesian

methods (section “7Reference Analysis”), and a �nal
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discussion which includes pointers to further issues not

addressed here (section “7Discussion”).

Foundations
A central element of the Bayesian paradigm is the use of

probability distributions to describe all relevant unknown

quantities, interpreting the probability of an event as a con-

ditional measure of uncertainty, on a [, ] scale, about

the occurrence of the event in some speci�c conditions.

�e limiting extreme values  and , which are typically

inaccessible in applications, respectively describe impos-

sibility and certainty of the occurrence of the event.�is

interpretation of probability includes and extends all other

probability interpretations. �ere are two independent

arguments which prove the mathematical inevitability of

the use of probability distributions to describe uncertain-

ties; these are summarized later in this section.

Probability as a Measure of Conditional
Uncertainty
Bayesian statistics uses the word probability in precisely

the same sense in which this word is used in everyday

language, as a conditional measure of uncertainty associ-

ated with the occurrence of a particular event, given the

available information and the accepted assumptions.�us,

Pr(E ∣C) is ameasure of (presumably rational) belief in the

occurrence of the event E under conditions C. It is impor-

tant to stress that probability is always a function of two

arguments, the event E whose uncertainty is being mea-

sured, and the conditionsC under which themeasurement

takes place; “absolute” probabilities do not exist. In typical

applications, one is interested in the probability of some

event E given the available data D, the set of assumptions A

which one is prepared tomake about themechanismwhich

has generated the data, and the relevant contextual knowl-

edge K which might be available.�us, Pr(E ∣D,A,K) is to

be interpreted as a measure of (presumably rational) belief

in the occurrence of the event E, given data D, assump-

tions A and any other available knowledge K, as a measure

of how “likely” is the occurrence of E in these conditions.

Sometimes, but certainly not always, the probability of an

event under given conditions may be associated with the

relative frequency of “similar” events in “similar” condi-

tions.�e following examples are intended to illustrate the

use of probability as a conditional measure of uncertainty.

Probabilistic diagnosis. A human population is known

to contain .% of people infected by a particular virus.

A person, randomly selected from that population, is sub-

ject to a test which, from laboratory data, is known to

yield positive results in % of infected people and in

% of non-infected, so that, if V denotes the event that a

person carries the virus and + denotes a positive result,

Pr(+ ∣V) = . and Pr(+ ∣V) = .. Suppose that

the result of the test turns out to be positive. Clearly, one

is then interested in Pr(V ∣+,A,K), the probability that

the person carries the virus, given the positive result, the

assumptions A about the probability mechanism gener-

ating the test results, and the available knowledge K of

the prevalence of the infection in the population under

study (described here by Pr(V ∣K) = .). An elemen-

tary exercise in probability algebra, which involves7Bayes’
theorem in its simplest form (see section “7�e Bayesian
Paradigm”), yields Pr(V ∣+,A,K) = .. Notice that the

four probabilities involved in the problem have the same

interpretation: they are all conditional measures of uncer-

tainty. Besides, Pr(V ∣+,A,K) is both a measure of the

uncertainty associated with the event that the particular

person who tested positive is actually infected, and an esti-

mate of the proportion of people in that population (about

.%) that would eventually prove to be infected among

those which yielded a positive test.

Estimation of a proportion. A survey is conducted to

estimate the proportion θ of individuals in a popula-

tion who share a given property. A random sample of

n elements is analyzed, r of which are found to pos-

sess that property. One is then typically interested in

using the results from the sample to establish regions of

[, ] where the unknown value of θ may plausibly be

expected to lie; this information is provided by proba-

bilities of the form Pr(a < θ < b ∣ r,n,A,K), a con-

ditional measure of the uncertainty about the event that

θ belongs to (a, b) given the information provided by

the data (r,n), the assumptions A made on the behav-

ior of the mechanism which has generated the data (a

random sample of n Bernoulli trials), and any relevant

knowledge K on the values of θ which might be avail-

able. For example, a�er a political survey in which 

citizens out of a random sample of  have declared

their support to a particular political measure, one may

conclude that Pr(θ < . ∣ , , ,A,K) = .,

indicating a probability of about % that a referendum

of that issue would be lost. Similarly, a�er a screening test

for an infection where  people have been tested, none

of which has turned out to be infected, one may conclude

that Pr(θ < . ∣ , ,A,K) = ., or a probability of

about % that the proportion of infected people is smaller

than %.

Measurement of a physical constant. A team of sci-

entists, intending to establish the unknown value of a

physical constant µ, obtain data D = {x, . . . , xn} which

are considered to be measurements of µ subject to error.

�e probabilities of interest are then typically of the form
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Pr(a < µ < b ∣ x, . . . , xn,A,K), the probability that the

unknown value of µ (�xed in nature, but unknown to the

scientists) lies within an interval (a, b) given the infor-

mation provided by the data D, the assumptions A made

on the behavior of the measurement mechanism, and

whatever knowledge K might be available on the value

of the constant µ. Again, those probabilities are condi-

tional measures of uncertainty which describe the (nec-

essarily probabilistic) conclusions of the scientists on the

true value of µ, given available information and accepted

assumptions. For example, a�er a classroom experiment

to measure the gravitational �eld with a pendulum, a stu-

dent may report (in m/sec

) something like Pr(. <

g < . ∣D,A,K) = ., meaning that, under accepted

knowledgeK and assumptionsA, the observed dataD indi-

cate that the true value of g lies within . and . with

probability ., a conditional uncertainty measure on a

[,] scale.�is is naturally compatible with the fact that

the value of the gravitational �eld at the laboratory may

well be knownwith high precision from available literature

or from precise previous experiments, but the student may

have been instructed not to use that information as part

of the accepted knowledge K. Under some conditions, it

is also true that if the same procedure were actually used

by many other students with similarly obtained data sets,

their reported intervals would actually cover the true value

of g in approximately %of the cases, thus providing some

form of calibration for the student’s probability statement

(see section “7Frequentist Properties”).
Prediction. An experiment is made to count the num-

ber r of times that an event E takes place in each of n

replications of a well de�ned situation; it is observed that

E does take place ri times in replication i, and it is desired

to forecast the number of times r that E will take place in a

future, similar situation.�is is a prediction problem on the

value of an observable (discrete) quantity r, given the infor-

mation provided by dataD, accepted assumptionsA on the

probability mechanism which generates the ri’s, and any

relevant available knowledge K. Hence, simply the com-

putation of the probabilities {Pr(r ∣ r, . . . , rn,A,K)}, for

r = , , . . ., is required. For example, the quality assurance

engineer of a �rm which produces automobile restraint

systems may report something like Pr(r =  ∣ r = . . . =

r = ,A,K) = ., a�er observing that the entire pro-

duction of airbags in each ofn =  consecutivemonths has

yielded no complaints from their clients. �is should be

regarded as a measure, on a [, ] scale, of the conditional

uncertainty, given observed data, accepted assumptions

and contextual knowledge, associated with the event that

no airbag complaint will come from next month’s pro-

duction and, if conditions remain constant, this is also an

estimate of the proportion ofmonths expected to share this

desirable property.

A similar problemmay naturally be posed with contin-

uous observables. For instance, a�er measuring some con-

tinuous magnitude in each of n randomly chosen elements

within a population, it may be desired to forecast the pro-

portion of items in the whole populationwhosemagnitude

satis�es some precise speci�cations. As an example, a�er

measuring the breaking strengths {x, . . . , x} of ten ran-

domly chosen safety belt webbings to verify whether or

not they satisfy the requirement of remaining above  kN,

the quality assurance engineer may report something like

Pr(x >  ∣ x, . . . , x,A,K) = .. �is should be

regarded as a measure, on a [, ] scale, of the conditional

uncertainty (given observed data, accepted assumptions

and contextual knowledge) associated with the event that

a randomly chosen safety belt webbing will support no less

than  kN. If production conditions remain constant, it

will also be an estimate of the proportion of safety belts

which will conform to this particular speci�cation.

O�en, additional information of future observations

is provided by related covariates. For instance, a�er

observing the outputs {y

, . . . , yn} which correspond to a

sequence {x, . . . , xn} of di�erent production conditions,
it may be desired to forecast the output y which would
correspond to a particular set x of production condi-
tions. For instance, the viscosity of commercial condensed

milk is required to be within speci�ed values a and b;

a�er measuring the viscosities {y, . . . , yn} which corre-

spond to samples of condensed milk produced under dif-

ferent physical conditions {x, . . . , xn}, production engi-
neers will require probabilities of the form Pr(a < y <

b ∣ x, (y, x), . . . , (yn, xn),A,K).�is is a conditional mea-
sure of the uncertainty (always given observed data,

accepted assumptions and contextual knowledge) associ-

ated with the event that condensed milk produced under

conditions x will actually satisfy the required viscosity
speci�cations.

Statistical Inference and Decision Theory
Decision theory not only provides a precise methodology

to deal with decision problems under uncertainty, but its

solid axiomatic basis also provides a powerful reinforce-

ment to the logical power of the Bayesian approach. We

now summarize the basic argument.

A decision problem exists whenever there are two or

more possible courses of action; let A be the class of pos-

sible actions. Moreover, for each a ∈ A, let Θa be the set
of relevant events which may a�ect the result of choosing

a, and let c(a, θ) ∈ Ca, θ ∈ Θa, be the consequence of hav-
ing chosen action a when event θ takes place.�e class of
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pairs {(Θa,Ca), a ∈ A} describes the structure of the deci-

sion problem.Without loss of generality, itmay be assumed

that the possible actions are mutually exclusive, for oth-

erwise one would work with the appropriate Cartesian

product.

Di�erent sets of principles have been proposed to cap-

ture a minimum collection of logical rules that could sen-

sibly be required for “rational” decision-making.�ese all

consist of axioms with a strong intuitive appeal; examples

include the transitivity of preferences (if a > a given C,

and a > a given C, then a > a given C), and the sure-

thing principle (if a > a given C and E, and a > a
given C and E, then a > a given C). Notice that these

rules are not intended as a description of actual human

decision-making, but as a normative set of principles to

be followed by someone who aspires to achieve coherent

decision-making.

�ere are naturally di�erent options for the set of

acceptable principles, but all of them lead basically to the

same conclusions, namely:

. Preferences among consequences should necessarily

be measured with a real-valued bounded utility func-

tion u(c) = u(a, θ) which speci�es, on some numeri-
cal scale, their desirability.

. �e uncertainty of relevant events should be measured

with a set of probability distributions {(p(θ ∣C, a), θ ∈

Θa), a ∈ A} describing their plausibility given the

conditions C under which the decision must be taken.

. �e desirability of the available actions is measured by

their corresponding expected utility

u(a ∣C) = ∫
Θa
u(a, θ) p(θ ∣C, a)dθ, a ∈ A.

It is o�en convenient to work in terms of the non-negative

loss function de�ned by

ℓ(a, θ) = sup
a∈A

{u(a, θ)} − u(a, θ),

which directly measures, as a function of θ, the “penalty”
for choosing a wrong action.�e relative undesirability of

available actions a ∈ A is then measured by their expected

loss

ℓ(a ∣C) = ∫
Θa
ℓ(a, θ) p(θ ∣C, a)dθ, a ∈ A.

Notice that, in particular, the argument described above

establishes the need to quantify the uncertainty about

all relevant unknown quantities (the actual values of the

θ’s), and speci�es that this quanti�cation must have the
mathematical structure of probability distributions.�ese

probabilities are conditional on the circumstancesC under

which the decision is to be taken, which typically, but

not necessarily, include the results D of some relevant

experimental or observational data.

It has been argued that the development described

above (which is not questioned when decisions have to be

made) does not apply to problems of statistical inference,

where no speci�c decision making is envisaged. However,

there are two powerful counterarguments to this. Indeed,

() a problem of statistical inference is typically considered

worth analyzing because itmay eventually help make sen-

sible decisions (as Ramsey () put it, a lump of arsenic

is poisonous because it may kill someone, not because it

has actually killed someone), and () it has been shown

(Bernardo a) that statistical inference on θ actually has
the mathematical structure of a decision problem, where

the class of alternatives is the functional space

A = {p(θ ∣D); p(θ ∣D) > , ∫
Θ
p(θ ∣D)dθ = }

of the conditional probability distributions of θ given the
data, and the utility function is a measure of the amount

of information about θ which the data may be expected to
provide.

Exchangeability and Representation
Theorem
Available data o�en take the form of a set {x, . . . , xn}
of “homogeneous” (possibly multidimensional) obser-

vations, in the precise sense that only their values mat-

ter and not the order in which they appear. Formally,

this is captured by the notion of exchangeability. �e set

of random vectors {x, . . . , xn} is exchangeable if their
joint distribution is invariant under permutations. An

in�nite sequence {xj} of random vectors is exchange-

able if all its �nite subsequences are exchangeable. Notice

that, in particular, any random sample from any model

is exchangeable in this sense. �e concept of exchange-

ability, introduced by de Finetti () put it, is central

to modern statistical thinking. Indeed, the general repre-

sentation theorem implies that if a set of observations is

assumed to be a subset of an exchangeable sequence, then it

constitutes a random sample from some probability model

{p(x ∣ω),ω ∈ Ω}, x ∈ X , described in terms of (labeled

by) some parameter vector ω; furthermore this parameter
ω is de�ned as the limit (as n→∞) of some function of the

observations. Available information about the value of ω
in prevailing conditions C is necessarily described by some

probability distribution p(ω ∣C).

For example, in the case of a sequence {x, x, . . .} of

dichotomous exchangeable random quantities xj ∈ {, },

de Finetti’s representation theorem establishes that the
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joint distribution of (x, . . . , xn) has an integral represen-

tation of the form

p(x, . . . , xn ∣C) = ∫




n

∏
i=

θ
xi( − θ)

−xi p(θ ∣C)dθ,

θ = lim
n→∞

r

n
,

where r = ∑ xj is the number of positive trials. �is is

nothing but the joint distribution of a set of (condition-

ally) independent Bernoulli trials with parameter θ, over

which some probability distribution p(θ ∣C) is therefore

proven to exist. More generally, for sequences of arbitrary

random quantities {x, x, . . .}, exchangeability leads to
integral representations of the form

p(x, . . . , xn ∣C) = ∫
Ω

n

∏
i=

p(xi ∣ω) p(ω ∣C)dω,

where {p(x ∣ω),ω ∈ Ω} denotes some probability model,

ω is the limit as n → ∞ of some function f (x, . . . , xn)
of the observations, and p(ω ∣C) is some probability dis-

tribution over Ω.�is formulation includes “nonparamet-
ric” (distribution free) modeling, where ω may index, for
instance, all continuous probability distributions on X .

Notice that p(ω ∣C) does not describe a possible variability

of ω (since ω will typically be a �xed unknown vector), but
a description on the uncertainty associated with its actual

value.

Under appropriate conditioning, exchangeability is a

very general assumption, a powerful extension of the tradi-

tional concept of a random sample. Indeed,many statistical

analyses directly assumedata (or subsets of the data) to be a

random sample of conditionally independent observations

from some probability model, so that p(x, . . . , xn ∣ω) =

∏
n
i= p(xi ∣ω); but any random sample is exchangeable,

since ∏
n
i= p(xi ∣ω) is obviously invariant under permu-

tations. Notice that the observations in a random sample

are only independent conditionalon the parameter valueω;
as nicely put by Lindley, the mantra that the observations

{x, . . . , xn} in a random sample are independent is ridicu-
lous when they are used to infer xn+. Notice also that,
under exchangeability, the general representation theorem

provides an existence theorem for a probability distribution

p(ω ∣C) on the parameter space Ω, and that this is an argu-

ment which only depends on mathematical probability

theory.

Another important consequence of exchangeability is

that it provides a formal de�nition of the parameter ω
which labels the model as the limit, as n → ∞, of some

function f (x, . . . , xn) of the observations; the function f
obviously depends both on the assumed model and the

chosen parametrization. For instance, in the case of a

sequence of Bernoulli trials, the parameter θ is de�ned as

the limit, as n → ∞, of the relative frequency r/n. It fol-

lows that, under exchangeability, the sentence “the true

value of ω” has a well-de�ned meaning, if only asymp-
totically veri�able. Moreover, if two di�erent models have

parameters which are functionally related by their def-

inition, then the corresponding posterior distributions

may be meaningfully compared, for they refer to func-

tionally related quantities. For instance, if a �nite subset

{x, . . . , xn} of an exchangeable sequence of integer obser-

vations is assumed to be a random sample from a Pois-

son distribution Po(x ∣ λ), so that E[x ∣ λ] = λ, then λ is

de�ned as limn→∞{xn}, where xn = ∑j xj/n; similarly,

if for some �xed non-zero integer r, the same data are

assumed to be a random sample for a negative binomial

NBi(x ∣ r, θ), so that E[x ∣ θ, r] = r( − θ)/θ, then θ is

de�ned as limn→∞{r/(xn+r)}. It follows that θ ≡ r/(λ+r)

and, hence, θ and r/(λ + r) may be treated as the same

(unknown) quantity whenever this might be needed as,

for example, when comparing the relative merits of these

alternative probability models.

The Bayesian Paradigm
�e statistical analysis of some observed data D typi-

cally begins with some informal descriptive evaluation,

which is used to suggest a tentative, formal probability

model {p(D ∣ω), ω ∈ Ω} assumed to represent, for some

(unknown) value of ω, the probabilistic mechanism which
has generated the observed data D. �e arguments out-

lined in section “7Foundations” establish the logical need
to assess a prior probability distribution p(ω ∣K) over the

parameter space Ω, describing the available knowledge K
about the value of ω prior to the data being observed.
It then follows from standard probability theory that, if

the probability model is correct, all available information

about the value of ω a�er the data D have been observed
is contained in the corresponding posterior distribution

whose probability density, p(ω ∣D,A,K), is immediately

obtained from Bayes’ theorem,

p(ω ∣D,A,K) =
p(D ∣ω) p(ω ∣K)

∫Ω p(D ∣ω) p(ω ∣K)dω
,

where A stands for the assumptions made on the prob-

ability model. It is this systematic use of Bayes’ theorem

to incorporate the information provided by the data that

justi�es the adjective Bayesian by which the paradigm is

usually known. It is obvious from Bayes’ theorem that any

value of ω with zero prior density will have zero poste-
rior density.�us, it is typically assumed (by appropriate

restriction, if necessary, of the parameter space Ω) that
prior distributions are strictly positive (as Savage put it,
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keep the mind open, or at least ajar). To simplify the pre-

sentation, the accepted assumptions A and the available

knowledge K are o�en omitted from the notation, but the

fact that all statements aboutω givenD are also conditional
to A and K should always be kept in mind.

Example  (Bayesian inference with a �nite parameter

space). Let p(D ∣ θ), where θ ∈ {θ , . . . , θm}, be the prob-

ability mechanism which is assumed to have generated the

observed data D, so that θ may only take a �nite num-

ber of values. Using the �nite form of Bayes’ theorem,

and omitting the prevailing conditions from the nota-

tion, the posterior probability of θ i a�er data D have been

observed is

Pr(θ i ∣D) =
p(D ∣ θ i) Pr(θ i)

∑
m
j= p(D ∣ θ j) Pr(θ j)

, i = , . . . ,m.

For any prior distribution p(θ) = {Pr(θ ), . . . , Pr(θm)}

describing available knowledge about the value of θ,

Pr(θ i ∣D) measures how likely should θ i be judged, given

both the initial knowledge described by the prior distribu-

tion, and the information provided by the data D.

An important, frequent application of this simple tech-

nique is provided by probabilistic diagnosis. For exam-

ple, consider the simple situation where a particular test

designed to detect a virus is known from laboratory

research to give a positive result in % of infected people

and in % of non-infected. �en, the posterior probabil-

ity that a person who tested positive is infected is given by

Pr(V ∣+) = (. p)/{. p+. (−p)} as a function of

p = Pr(V), the prior probability of a person being infected

(the prevalence of the infection in the population under

study). Figure  shows Pr(V ∣+) as a function of Pr(V).
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Bayesian Statistics. Fig.  Posterior probability of infection
Pr(V ∣+) given a positive test, as a function of the prior proba-
bility of infection Pr(V)

As one would expect, the posterior probability is only

zero if the prior probability is zero (so that it is known

that the population is free of infection) and it is only one

if the prior probability is one (so that it is known that the

population is universally infected). Notice that if the infec-

tion is rare, then the posterior probability of a randomly

chosen person being infected will be relatively low even

if the test is positive. Indeed, for say Pr(V) = ., one

�nds Pr(V ∣+) = ., so that in a population where only

.% of individuals are infected, only .% of those testing

positive within a random sample will actually prove to be

infected: most positives would actually be false positives.

In the rest of this section, we describe in some detail

the learning process described by Bayes’ theorem, discuss

its implementation in the presence of nuisance parame-

ters, show how it can be used to forecast the value of future

observations, and analyze its large sample behavior.

The Learning Process
In the Bayesian paradigm, the process of learning from

the data is systematically implemented by making use of

Bayes’ theorem to combine the available prior information

with the information provided by the data to produce the

required posterior distribution. Computation of posterior

densities is o�en facilitated by noting that Bayes’ theorem

may be simply expressed as

p(ω ∣D)∝ p(D ∣ω) p(ω),

(where∝ standsfor ‘proportional to’andwhere, forsimplic-

ity, theacceptedassumptionsAandtheavailableknowledge

K have been omitted from the notation), since the miss-

ing proportionality constant [∫Ω p(D ∣ω) p(ω)dω]
−
may

always be deduced from the fact that p(ω ∣D), a probability

density,must integrate toone.Hence, to identify the formof

a posterior distribution it su�ces to identify a kernel of the

corresponding probability density, that is a function k(ω)

such that p(ω ∣D) = c(D) k(ω) for some c(D) which does

not involveω. In the examples which follow, this technique
will o�en be used.

An improper prior function is de�ned as a positive

function π(ω) such that ∫Ω π(ω) dω is not �nite. �e
formal expression of Bayes’ theorem, remains technically

valid if p(ω) is replaced by an improper prior func-

tion π(ω) provided the proportionality constant exists,

thus leading to a well de�ned proper posterior density

π(ω ∣D) ∝ p(D ∣ω)π(ω). It will later be established

(section “7Reference Analysis”) that Bayes’ theorem also
remains philosophically valid if p(ω) is replaced by an

appropriately chosen reference “noninformative” (typically

improper) prior function π(ω).
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Considered as a function of ω, p(D ∣ω) is o�en

referred to as the likelihood function.�us, Bayes’ theorem

is simply expressed in words by the statement that the

posterior is proportional to the likelihood times the prior.

It follows from Bayes’ theorem that, provided the same

prior p(ω) is used, two di�erent data sets D and D,

with possibly di�erent probability models p(D ∣ω) and

p(D ∣ω) but yielding proportional likelihood functions,

will produce identical posterior distributions for ω. �is
immediate consequence of Bayes theorem has been pro-

posed as a principle on its own, the likelihood principle,

and it is seen by many as an obvious requirement for rea-

sonable statistical inference. In particular, for any given

prior p(ω), the posterior distribution does not depend

on the set of possible data values, or the outcome space.

Notice, however, that the likelihood principle only applies

to inferences about the parameter vector ω once the data
have been obtained. Consideration of the outcome space is

essential, for instance, in model criticism, in the design of

experiments, in the derivation of predictive distributions,

or (see section “7Reference Analysis”) in the construction
of objective Bayesian procedures.

Naturally, the terms prior and posterior are only rel-

ative to a particular set of data. As one would expect

from the coherence induced by probability theory, if

data D = {x, . . . , xn} are sequentially presented, the
�nal result will be the same whether data are globally

or sequentially processed. Indeed, p(ω ∣ x, . . . , xi+) ∝

p(xi+ ∣ω) p(ω ∣ x, . . . , xi), for i = , . . . ,n − , so that the
“posterior” at a given stage becomes the “prior” at the next.

Inmost situations, the posterior distribution is “sharper”

than the prior so that, in most cases, the density

p(ω ∣ x, . . . , xi+) will be more concentrated around the
true value of ω than p(ω ∣ x, . . . , xi). However, this is not
always the case: occasionally, a “surprising” observation

will increase, rather than decrease, the uncertainty about

the value of ω. For instance, in probabilistic diagnosis, a
sharp posterior probability distribution (over the possible

causes {ω, . . . ,ωk} of a syndrome) describing, a “clear”

diagnosis of disease ωi (that is, a posterior with a large

probability for ωi) would typically update to a less concen-

trated posterior probability distribution over {ω, . . . ,ωk}

if a new clinical analysis yielded data which were unlikely

under ωi.

For a given probability model, one may �nd that some

particular function of the data t = t(D) is a su�cient
statistic in the sense that, given the model, t(D) contains
all information about ω which is available in D. Formally,
t = t(D) is su�cient if (and only if) there exist nonnegative
functions f and g such that the likelihood function may be

factorized in the form p(D ∣ω) = f (ω, t)g(D). A su�cient

statistic always exists, for t(D) = D is obviously su�cient;
however, a much simpler su�cient statistic, with a �xed

dimensionality which is independent of the sample size,

o�en exists. In fact this is known to be the case whenever

the probability model belongs to the generalized exponen-

tial family, which includes many of the more frequently

used probability models. It is easily established that if t
is su�cient, the posterior distribution of ω only depends
on the data D through t(D), and may be directly com-
puted in terms of p(t ∣ω), so that, p(ω ∣D) = p(ω ∣ t) ∝
p(t ∣ω) p(ω).

Naturally, for �xed data and model assumptions, dif-

ferent priors lead to di�erent posteriors. Indeed, Bayes’

theorem may be described as a data-driven probability

transformation machine which maps prior distributions

(describing prior knowledge) into posterior distributions

(representing combined prior and data knowledge). It is

important to analyze whether or not sensible changes in

the prior would induce noticeable changes in the posterior.

Posterior distributions based on reference “noninforma-

tive” priors play a central role in this 7sensitivity analysis
context. Investigation of the sensitivity of the posterior to

changes in the prior is an important ingredient of the com-

prehensive analysis of the sensitivity of the �nal results to

all accepted assumptions which any responsible statistical

study should contain.

Example  (Inference on a binomial parameter). If the

data D consist of n Bernoulli observations with param-

eter θ which contain r positive trials, then p(D ∣ θ,n) =

θr( − θ)n−r , so that t(D) = {r,n} is su�cient. Sup-

pose that prior knowledge about θ may be approximately

described by a 7Beta distribution Be(θ ∣ α, β), so that

p(θ ∣ α, β) ∝ θα−
( − θ)β−

. Using Bayes’ theorem,

the posterior density of θ is p(θ ∣ r,n, α, β) ∝ θr( −

θ)n−r θα−
( − θ)β−

∝ θr+α−
( − θ)n−r+β−

, the Beta

distribution Be(θ ∣ r + α,n − r + β).

Suppose, for example, that in the light of precedent sur-

veys, available information on the proportion θ of citizens

who would vote for a particular political measure in a ref-

erendum is described by a Beta distribution Be(θ ∣ , ),

so that it is judged to be equally likely that the referendum

would be won or lost, and it is judged that the probability

that either side wins less than % of the vote is ..

A random survey of size  is then conducted, where

only  citizens declare to be in favor of the proposed

measure. Using the results above, the corresponding pos-

terior distribution is then Be(θ ∣ , ).�ese prior and

posterior densities are plotted in Fig. ; it may be appreci-

ated that, as one would expect, the e�ect of the data is to

drastically reduce the initial uncertainty on the value of θ
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Bayesian Statistics. Fig.  Prior and posterior densities of the

proportion θ of citizens that would vote in favor of a referen-
dum text

and, hence, on the referendum outcome. More precisely,

Pr(θ < . ∣ , , ,H,K) = . (shaded region in

Fig. ) so that, a�er the information from the survey has

been included, the probability that the referendum will be

lost should be judged to be about %.

�e general situation where the vector of interest is

not the whole parameter vector ω, but some function
θ = θ(ω) of possibly lower dimension than ω, will now
be considered. Let D be some observed data, let {p(D ∣ω),

ω ∈ Ω} be a probability model assumed to describe the

probability mechanism which has generated D, let p(ω)

be a probability distribution describing any available infor-

mation on the value of ω, and let θ = θ(ω) ∈ Θ be

a function of the original parameters over whose value

inferences based on the dataD are required. Any valid con-

clusion on the value of the vector of interest θ will then be
contained in its posterior probability distribution p(θ ∣D)

which is conditional on the observed data D and will nat-

urally also depend, although not explicitly shown in the

notation, on the assumedmodel {p(D ∣ω),ω ∈ Ω}, and on

the available prior information encapsulated by p(ω).�e

required posterior distribution p(θ ∣D) is found by stan-

dard use of probability calculus. Indeed, by Bayes’ theorem,

p(ω ∣D) ∝ p(D ∣ω) p(ω). Moreover, let λ = λ(ω) ∈ Λ be
some other function of the original parameters such that

ψ = {θ, λ} is a one-to-one transformation of ω, and let
J(ω) = (∂ψ/∂ω) be the corresponding Jacobian matrix.

Naturally, the introduction of λ is not necessary if θ(ω) is

a one-to-one transformation of ω. Using standard change-
of-variable probability techniques, the posterior density of

ψ is

p(ψ ∣D) = p(θ, λ ∣D) = [
p(ω ∣D)

∣ J(ω) ∣
]

ω=ω(ψ)

and the required posterior of θ is the appropriatemarginal
density, obtained by integration over the nuisance param-

eter λ,

p(θ ∣D) = ∫
Λ
p(θ, λ ∣D) dλ.

Notice that elimination of unwanted nuisance parameters,

a simple integration within the Bayesian paradigm is, how-

ever, a di�cult (o�en polemic) problem for conventional

statistics.

Sometimes, the range of possible values of ω is e�ec-
tively restricted by contextual considerations. Ifω is known
to belong toΩc ⊂ Ω, the prior distribution is only positive
in Ωc and, using Bayes’ theorem, it is immediately found
that the restricted posterior is

p(ω ∣D,ω ∈ Ωc) =
p(ω ∣D)

∫Ωc p(ω ∣D)
, ω ∈ Ωc ,

and obviously vanishes if ω ∉ Ωc .�us, to incorporate a
restriction on the possible values of the parameters, it suf-

�ces to renormalize the unrestricted posterior distribution

to the set Ωc ⊂ Ω of parameter values which satisfy the
required condition. Incorporation of known constraints

on the parameter values, a simple renormalization within

the Bayesian pardigm, is another very di�cult problem for

conventional statistics.

Example  (Inference on normal parameters). Let D =

{x , . . . xn} be a random sample from a normal distribu-

tion N(x ∣ µ, σ).�e corresponding likelihood function is

immediately found to be proportional to σ−n exp[−n{s +

(x − µ)}/(σ )], with nx = ∑i xi, and ns

= ∑i(xi − x)


.

It may be shown (see section “7Reference Analysis”) that
absence of initial information on the value of both µ and σ

may formally be described by a joint prior function which

is uniform in both µ and log(σ), that is, by the (improper)

prior function p(µ, σ) = σ− . Using Bayes’ theorem, the

corresponding joint posterior is

p(µ, σ ∣D)∝ σ
−(n+)

exp[−n{s

+ (x − µ)


}/(σ


)].

�us, using the Gamma integral in terms of λ = σ− to

integrate out σ ,

p(µ ∣D) ∝ ∫
∞


σ
−(n+)

exp [ −
n

σ 
[s

+ (x − µ)


]] dσ ∝ [s


+ (x − µ)


]
−n/
,
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which is recognized as a kernel of the Student density

St (µ ∣ x, s/
√
n − ,n − ). Similarly, integrating out µ,

p(σ ∣D)∝ ∫
∞

−∞
σ
−(n+)

exp [ −
n

σ 
[s

+ (x − µ)


]]dµ ∝ σ

−n
exp [−

ns

σ 
] .

Changing variables to the precision λ = σ− results in

p(λ ∣D) ∝ λ(n−)/ens
 λ/
, a kernel of the Gamma den-

sity Ga(λ ∣ (n − )/,ns/). In terms of the standard

deviation σ this becomes p(σ ∣D) = p(λ ∣D)∣∂λ/∂σ ∣ =

σ−Ga(σ− ∣ (n − )/,ns/), a square-root inverted

gamma density.

A frequent example of this scenario is provided by lab-

oratory measurements made in conditions where central

limit conditions apply, so that (assuming no experimen-

tal bias) those measurements may be treated as a random

sample from a normal distribution centered at the quan-

tity µ which is being measured, and with some (unknown)

standard deviation σ . Suppose, for example, that in an

elementary physics classroom experiment to measure the

gravitational �eld g with a pendulum, a student has

obtained n =  measurements of g yielding (in m/s) a

mean x = ., and a standard deviation s = ..

Using no other information, the corresponding posterior

distribution is p(g ∣D) = St(g ∣ ., ., ) repre-

sented in the upper panel of Fig. . In particular, Pr(. <

g < . ∣D) = ., so that, with the information pro-

vided by this experiment, the value of g at the location of

the laboratory may be expected to lie between . and

. with probability ..

Formally, the posterior distribution of g should be

restricted to g > ; however, as immediately obvious from

Fig. , this would not have any appreciable e�ect, due to the

fact that the likelihood function is actually concentrated on

positive g values.

Suppose now that the student is further instructed

to incorporate into the analysis the fact that the value

of the gravitational �eld g at the laboratory is known to

lie between . m/s

(average value at the Equator)

and . m/s

(average value at the poles).�e updated

posterior distribution will then be

p(g ∣D, g ∈ Gc) =
St (g ∣m, s/

√
n − ,n)

∫g∈Gc
St (g ∣m, s/

√
n − ,n)

, g ∈ Gc ,

represented in lower panel of Fig. , where Gc =

{g; . < g < .}. Simple 7numerical integra-
tion may be used to verify that Pr(g > . ∣D, g ∈

Gc) = .. Moreover, if inferences about the stan-

dard deviation σ of the measurement procedure are also

requested, the corresponding posterior distribution is

found to be p(σ ∣D) = σ−Ga(σ− ∣ ., .).�is has

a mean E[σ ∣D] = . and yields Pr(. < σ <

. ∣D) = ..

Predictive Distributions
Let D = {x , . . . , xn}, xi ∈ X , be a set of exchange-

able observations, and consider now a situation where it is

desired to predict the value of a future observation x ∈ X
generated by the same randommechanism that has gener-

ated the dataD. It follows from the foundations arguments

discussed in section “7Foundations” that the solution to
this prediction problem is simply encapsulated by the pre-

dictive distribution p(x ∣D) describing the uncertainty on
the value that x will take, given the information provided
byD and any other available knowledge. Suppose that con-

textual information suggests the assumption that data D

may be considered to be a random sample from a dis-

tribution in the family {p(x ∣ω),ω ∈ Ω}, and let p(ω)

be a prior distribution describing available information

on the value of ω. Since p(x ∣ω,D) = p(x ∣ω), it then
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Bayesian Statistics. Fig.  Posterior densities p(g ∣m, s,n) of
the value g of the gravitational field
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follows from standard probability theory that p(x ∣D) =

∫Ω p(x ∣ω) p(ω ∣D)dω, which is an average of the prob-
ability distributions of x conditional on the (unknown)
value of ω, weighted with the posterior distribution of ω
given D.

If the assumptions on the probabilitymodel are correct,

the posterior predictive distribution p(x ∣D)will converge,
as the sample size increases, to the distribution p(x ∣ω)

which has generated the data. Indeed, the best technique

to assess the quality of the inferences about ω encapsu-
lated in p(ω ∣D) is to check against the observed data the

predictive distribution p(x ∣D) generated by p(ω ∣D).

Example  (Prediction in a Poisson process). Let D =

{r, . . . , rn} be a random sample from a Poisson distribu-

tion Po(r ∣ λ) with parameter λ, so that p(D ∣ λ)∝ λte−λn
,

where t = ∑ ri. It may be shown (see section “7Reference
Analysis”) that absence of initial information on the value

of λ may be formally described by the (improper) prior

function p(λ) = λ−/. Using Bayes’ theorem, the corre-

sponding posterior is

p(λ ∣D)∝ λ
t
e
−λn

λ
−/

∝ λ
t−/

e
−λn
,

the kernel of a Gamma density Ga(λ ∣ , t + /,n), with

mean (t + /)/n.�e corresponding predictive distribu-

tion is the Poisson-Gamma mixture

p(r ∣D) = ∫
∞


Po(r ∣ λ)Ga(λ ∣ , t +




,n) dλ

=
nt+/

Γ(t + /)



r!

Γ(r + t + /)

( + n)r+t+/
.

Suppose, for example, that in a �rm producing automo-

bile restraint systems, the entire production in each of 

consecutive months has yielded no complaint from their

clients. With no additional information on the average

number λ of complaints per month, the quality assurance

department of the �rm may report that the probabilities

that r complaints will be received in the next month of

production are given by the last equation, with t =  and

n = . In particular, p(r =  ∣D) = ., p(r =  ∣D) =

., and p(r =  ∣D) = .. Many other situations

may be described with the same model. For instance, if

meteorological conditions remain similar in a given area,

p(r =  ∣D) = . would describe the chances of no �ash

�ood next year, given  years without �ash �oods in the

area.

Example  (Prediction in a Normal process). Consider

now prediction of a continuous variable. Let D =

{x, . . . , xn} be a random sample from a normal distribu-

tion N(x ∣ µ, σ). As mentioned in Example , absence of

initial information on the values of both µ and σ is formally

described by the improper prior function p(µ, σ) = σ−,

and this leads to the joint posterior density describe above.

�e corresponding (posterior) predictive distribution is

p(x ∣D) = ∫
∞


∫

∞

−∞
N(x ∣ µ, σ) p(µ, σ ∣D)dµdσ

= St
⎛

⎝
x ∣ x, s

√
n + 

n − 
,n − 

⎞

⎠
.

If µ is known to be positive, the appropriate prior func-

tion will be the restricted function p(µ, σ) = σ− if µ > 

and p(µ, σ) =  otherwise. However, the result will still

hold, provided the likelihood function p(D ∣ µ, σ) is con-

centrated on positive µ values. Suppose, for example, that

in the �rm producing automobile restraint systems, the

observed breaking strengths of n =  randomly chosen

safety belt webbings havemean x = . kN and standard

deviation s = . kN, and that the relevant engineering

speci�cation requires breaking strengths to be larger than

 kN. If data may truly be assumed to be a random sam-

ple from a normal distribution, the likelihood function is

only appreciable for positive µ values, and only the infor-

mation provided by this small sample is to be used, then

the quality engineer may claim that the probability that a

safety belt randomly chosen from the same batch as the

sample tested would satisfy the required speci�cation is

Pr(x >  ∣D) = .. Besides, if conditions remain con-

stant, .% of the safety belt webbings may be expected

to have acceptable breaking strengths.

Asymptotic Behavior
�e behavior of posterior distributions when the sample

size is large is now considered. �is is important for, at

least, two di�erent reasons: () asymptotic results provide

useful �rst-order approximations when actual samples are

relatively large, and () objective Bayesian methods typi-

cally depend on the asymptotic properties of the assumed

model. Let D = {x, . . . , xn}, x ∈ X , be a random sample

of size n from {p(x ∣ω),ω ∈ Ω}. It may be shown that,

as n →∞, the posterior distribution p(ω ∣D) of a discrete

parameter ω typically converges to a degenerate distribu-
tion which gives probability one to the true value of ω, and
that the posterior distribution of a continuous parameter

ω typically converges to a normal distribution centered at
itsmaximum likelihood estimate ω̂ (MLE), with a variance
matrix which decreases with n as /n.

Consider �rst the situation where Ω = {ω,ω, . . .}
consists of a countable (possibly in�nite) set of val-

ues, such that the probability model which corresponds

to the true parameter value ωt is distinguishable from
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the others in the sense that the logarithmic diver-

gence δ{p(x ∣ωi) ∣ p(x ∣ωt)} of each of the p(x ∣ωi)
from p(x ∣ωt) is strictly positive. Taking logarithms in
Bayes’ theorem, de�ning zj = log[p(xj ∣ωi)/p(xj ∣ωt)],
j = , . . . ,n, and using the strong law of large numbers

on the n conditionally independent and identically dis-

tributed random quantities z, . . . , zn, it may be shown

that

lim
n→∞

p(ωt ∣ x, . . . , xn) = ,

lim
n→∞

p(ωi ∣ x, . . . , xn) = , i ≠ t.

�us, under appropriate regularity conditions, the poste-

rior probability of the true parameter value converges to

one as the sample size grows.

Consider now the situation where ω is a k-dimensional
continuous parameter. Expressing Bayes’ theorem as

p(ω ∣ x, . . . , xn)∝ exp{log[p(ω)] +∑
n
j= log[p(xj ∣ω)]},

expanding∑j log[p(xj ∣ω)] about its maximum (the MLE

ω̂), and assuming regularity conditions (to ensure that
terms of order higher than quadratic may be ignored and

that the sum of the terms from the likelihood will domi-

nate the term from the prior) it is found that the posterior

density of ω is the approximate k-variate normal

p(ω ∣ x, . . . , xn) ≈ Nk{ω̂, S(D, ω̂)},

S−(D,ω) = ( −
n

∑
l=

∂ log[p(xl ∣ω)]

∂ωi∂ωj
).

A simpler, but somewhat poorer, approximation may be

obtained by using the strong law of large numbers on the

sums above to establish that S−(D, ω̂) ≈ nF(ω̂), where

F(ω) is Fisher’s information matrix, with general element

Fij(ω) = −∫
X
p(x ∣ω)

∂ log[p(x ∣ω)]

∂ωi∂ωj
dx,

so that

p(ω ∣ x, . . . , xn) ≈ Nk(ω ∣ ω̂,n− F−(ω̂)).

�us, under appropriate regularity conditions, the pos-

terior probability density of the parameter vector ω
approaches, as the sample size grows, a multivarite nor-

mal density centered at the MLE ω̂, with a variance matrix
which decreases with n as n− .

Example  (Inference on a binomial parameter, contin-

ued). Let D = (x, . . . , xn) consist of n independent

Bernoulli trials with parameter θ, so that p(D ∣ θ,n) =

θr( − θ)n−r . �is likelihood function is maximized at

θ̂ = r/n, and Fisher’s information function is F(θ) =

θ−( − θ)−.�us, using the results above, the posterior

distribution of θ will be the approximate normal,

p(θ ∣ r,n) ≈ N (θ ∣ θ̂, s(θ̂)/
√
n) , s(θ) = {θ( − θ)}

/

with mean θ̂ = r/n and variance θ̂( − θ̂)/n. �is will

provide a reasonable approximation to the exact poste-

rior if () the prior p(θ) is relatively “�at” in the region

where the likelihood function matters, and () both r and

n are moderately large. If, say, n = ,  and r = ,

this leads to p(θ ∣D) ≈ N(θ ∣ ., .), and to Pr(θ >

. ∣D) ≈ ., which may be compared with the exact

value Pr(θ > . ∣D) = . obtained from the posterior

distribution which corresponds to the prior Be(θ ∣ , ).

It follows from the joint posterior asymptotic behav-

ior of ω and from the properties of the multivariate nor-
mal distribution (see7Multivariate Normal Distributions)
that, if the parameter vector is decomposed into ω =

(θ, λ), and Fisher’s information matrix is correspondingly
partitioned, so that

F(ω) = F(θ, λ) =
⎛
⎜
⎜
⎝

Fθθ(θ, λ) Fθ λ(θ, λ)

Fλθ(θ, λ) Fλλ(θ, λ)

⎞
⎟
⎟
⎠

and

S(θ, λ) = F−(θ, λ) =
⎛
⎜
⎜
⎝

Sθθ(θ, λ) Sθ λ(θ, λ)

Sλθ(θ, λ) Sλλ(θ, λ)

⎞
⎟
⎟
⎠

,

then themarginal posterior distribution of θ will be

p(θ ∣D) ≈ N{θ ∣ θ̂, n− Sθθ(θ̂, λ̂)},

while the conditional posterior distribution of λ given θ
will be

p(λ ∣ θ,D) ≈ N{λ ∣ λ̂ − F−λλ(θ, λ̂)

Fλθ(θ, λ̂)(θ̂ − θ), n− F−λλ(θ, λ̂)} .

Notice that F−λλ = Sλλ if (and only if) F is block diagonal,
i.e., if (and only if) θ and λ are asymptotically independent.

Example  (Inference on normal parameters, continued).

Let D = (x, . . . , xn) be a random sample from a nor-

mal distribution N(x ∣ µ, σ).�e corresponding likelihood

function p(D ∣ µ, σ) is maximized at (µ̂, σ̂) = (x, s), and

Fisher’s information matrix is diagonal, with Fµµ = σ−.

Hence, the posterior distribution of µ is approximately

N (µ ∣ x, s/
√
n); thismay be comparedwith the exact result

p(µ ∣D) = St (µ ∣ x, s/
√
n − ,n − ) obtained previously

under the assumption of no prior knowledge.

Inference Summaries
From a Bayesian viewpoint, the �nal outcome of a prob-

lem of inference about any unknown quantity is nothing

but the corresponding posterior distribution.�us, given

some data D and conditions C, all that can be said about

any function ω of the parameters which govern the model
is contained in the posterior distribution p(ω ∣D,C), and
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all that can be said about some function y of future obser-
vations from the same model is contained in its posterior

predictive distribution p(y ∣D,C). As mentioned before,
Bayesian inference may technically be described as a deci-

sion problem where the space of available actions is the

class of those posterior probability distributions of the

quantity of interest which are compatible with accepted

assumptions.

However, tomake it easier for the user to assimilate the

appropriate conclusions, it is o�en convenient to summa-

rize the information contained in the posterior distribution

by () providing values of the quantity of interest which,

in the light of the data, are likely to be “close” to its true

value and by () measuring the compatibility of the results

with hypothetical values of the quantity of interest which

might have been suggested in the context of the inves-

tigation. In this section, those Bayesian counterparts of

traditional estimation and hypothesis testing problems are

brie�y considered.

Estimation
In one or two dimensions, a graph of the posterior proba-

bility density of the quantity of interest (or the probability

mass function in the discrete case) immediately conveys

an intuitive, “impressionist” summary of the main conclu-

sions which may possibly be drawn on its value. Indeed,

this is greatly appreciated by users, and may be quoted as

an important asset of Bayesian methods. From a plot of

its posterior density, the region where (given the data) a

univariate quantity of interest is likely to lie is easily dis-

tinguished. For instance, all important conclusions about

the value of the gravitational �eld in Example  are quali-

tatively available from Fig. . However, this does not easily

extend to more than two dimensions and, besides, quanti-

tative conclusions (in a simpler form than that provided by

the mathematical expression of the posterior distribution)

are o�en required.

Point Estimation. LetD be the available data, which are

assumed to have been generated by a probability model

{p(D ∣ω),ω ∈ Ω}, and let θ = θ(ω) ∈ Θ be the quantity of
interest. A point estimator of θ is some function of the data
θ̃ = θ̃(D)which could be regarded as an appropriate proxy
for the actual, unknown value of θ. Formally, to choose a
point estimate for θ is a decision problem, where the action
space is the class Θ of possible θ values. From a decision-
theoretic perspective, to choose a point estimate θ̃ of some
quantity θ is a decision to act as if the true value of θ were
θ̃, not to assert something about the value of θ (although
desire to assert something simple may well be the reason

to obtain an estimate). As prescribed by the foundations

of decision theory (section “7Foundations”), to solve this
decision problem it is necessary to specify a loss function

ℓ(θ̃, θ)measuring the consequences of acting as if the true
value of the quantity of interestwere θ̃, when it is actually θ.
�e expected posterior loss if θ̃ were used is

ℓ[θ̃ ∣D] = ∫
Θ
ℓ(θ̃, θ) p(θ ∣D)dθ,

and the corresponding Bayes estimator θ∗ is that func-
tion of the data, θ∗ = θ∗(D), which minimizes this
expectation.

Example  (Conventional Bayes estimators). For any

given model and data, the Bayes estimator obviously

depends on the chosen 7loss function.�e loss function
is context speci�c, and should be chosen in terms of the

anticipated uses of the estimate; however, a number of

conventional loss functions have been suggested for those

situations where no particular uses are envisaged. �ese

loss functions produce estimates which may be regarded

as simple descriptions of the location of the posterior dis-

tribution. For example, if the loss function is quadratic, so

that ℓ(θ̃, θ) = (θ̃ − θ)t(θ̃ − θ), then the Bayes estimator is
the posterior mean θ∗ = E[θ ∣D], assuming that the mean

exists. Similarly, if the loss function is a zero-one function,

so that ℓ(θ̃, θ) =  if θ̃ belongs to a ball or radius є centered
in θ and ℓ(θ̃, θ) =  otherwise, then the Bayes estimator θ∗

tends to the posteriormode as the ball radius є tends to zero,

assuming that a unique mode exists. If θ is univariate and

the loss function is linear, so that ℓ(θ̃, θ) = c(θ̃ − θ) if

θ̃ ≥ θ, and ℓ(θ̃, θ) = c(θ − θ̃) otherwise, then the Bayes

estimator is the posterior quantile of order c/(c + c), so

that Pr[θ < θ∗] = c/(c + c). In particular, if c = c, the

Bayes estimator is the posterior median.�e results derived

for linear loss functions clearly illustrate the fact that any

possible parameter value may turn out be the Bayes esti-

mator: it all depends on the loss function describing the

consequences of the anticipated uses of the estimate.

Example  (Intrinsic estimation).Conventional loss func-

tions are typically non-invariant under reparametrization,

so that the Bayes estimator ϕ∗ of a one-to-one transfor-
mation ϕ = ϕ(θ) of the original parameter θ is not
necessarily ϕ(θ∗) (the univariate posterior median, which
is invariant, is an interesting exception). Moreover, con-

ventional loss functions focus on the “distance” between

the estimate θ̃ and the true value θ, rather than on the “dis-
tance” between the probability models they label. Intrin-

sic losses directly focus on how di�erent the probability

model p(D ∣ θ, λ) is from its closest approximation within
the family {p(D ∣ θ̃, λi), λi ∈ Λ}, and typically produce

invariant solutions. An attractive example is the intrinsic

discrepancy, d(θ̃, θ) de�ned as the minimum logarith-
mic divergence between a probability model labeled by θ
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and a probability model labeled by θ̃. When there are no
nuisance parameters, this is given by

d(θ̃, θ) = min{δ(θ̃ ∣ θ), δ(θ ∣ θ̃)},

δ(θ i ∣ θ) = ∫
T
p(t ∣ θ) log

p(t ∣ θ)
p(t ∣ θ i)

dt,

where t = t(D) ∈ T is any su�cient statistic (which

may well be the whole data set D).�e de�nition is eas-

ily extended to problems with nuisance parameters; in this

case,

d(θ̃, θ, λ) = min
λi∈Λ

d(θ̃, λi, θ, λ)

measures the logarithmic divergence from p(t ∣ θ, λ) of its
closest approximation with θ = θ̃, and the loss function
now depends on the complete parameter vector (θ, λ).
Although not explicitly shown in the notation, the intrin-

sic discrepancy function typically depends on the sample

size n; indeed, when the data consist of a random sample

D = {x, . . . , xn} from some model p(x ∣ θ) then

δ(θ i ∣ θ) = n∫
χ
p(x ∣ θ) log

p(x ∣ θ)
p(x ∣ θ i)

dx,

so that the discrepancy associated with the full model is

simply n times the discrepancywhich corresponds to a sin-

gle observation.�e intrinsic discrepancy is a symmetric,

non-negative loss function with a direct interpretation in

information-theoretic terms as the minimum amount of

information which is expected to be necessary to distin-

guish between themodel p(D ∣ θ, λ) and its closest approx-
imation within the class {p(D ∣ θ̃, λi), λi ∈ Λ}. Moreover,
it is invariant under one-to-one reparametrization of the

parameter of interest θ, and does not depend on the choice
of the nuisance parameter λ. �e intrinsic estimator is
naturally obtained by minimizing the posterior expected

intrinsic discrepancy

d(θ̃ ∣D) = ∫
Λ
∫
Θ
d(θ̃, θ, λ)p(θ, λ ∣D)dθdλ.

Since the intrinsic discrepancy is invariant under repara-

metrization,minimizing its posterior expectation produces

invariant estimators.

Example  (Inference on a binomial parameter, contin-

ued). In the estimation of a binomial proportion θ, given

data D = (n, r) and a Beta prior Be(θ ∣ α, β), the Bayes

estimator associated with the quadratic loss (the corre-

sponding posteriormean) is E[θ ∣D] = (r+α)/(n+α+β),

while the quadratic loss based estimator of, say, the log-

odds ϕ(θ) = log[θ/( − θ)], is E[ϕ ∣D] = ψ(r + α) −

ψ(n−r+β) (whereψ(x) = d log[Γ(x)]/dx is the digamma

function), which is not equal to ϕ(E[θ ∣D]).�e intrinsic

loss function in this problem is

d(θ̃, θ) = n min{δ(θ̃ ∣ θ), δ(θ ∣ θ̃)},

δ(θ i ∣ θ) = θ log
θ

θ i
+ ( − θ) log

 − θ

 − θ i
,

and the corresponding intrinsic estimator θ∗ is obtained

by minimizing the expected posterior loss d(θ̃ ∣D) =

∫ d(θ̃, θ) p(θ ∣D)dθ. �e exact value of θ∗ may be

obtained by numerical minimization, but a very good

approximation is given by

θ
∗
≈




r + α

n + α + β
+




eψ(r+α)

eψ(r+α) + eψ(n−r+β)
.

Since intrinsic estimation is an invariant procedure, the

intrinsic estimator of the log-odds will simply be the log-

odds of the intrinsic estimator of θ. As one would expect,

when r + α and n − r + β are both large, all Bayes estima-

tors of any well-behaved function ϕ(θ)will cluster around

ϕ(E[θ ∣D]).

Interval Estimation. To describe the inferential con-

tent of the posterior distribution of the quantity of interest

p(θ ∣D) it is o�en convenient to quote regions R ⊂ Θ of
given probability under p(θ ∣D). For example, the identi�-

cation of regions containing %, %, %, or % of the

probability under the posterior may be su�cient to con-

vey the general quantitative messages implicit in p(θ ∣D);

indeed, this is the intuitive basis of graphical represen-

tations of univariate distributions like those provided by

boxplots. Any region R ⊂ Θ such that ∫R p(θ ∣D)dθ = q

(so that, given dataD, the true value of θ belongs to Rwith
probability q), is said to be a posterior q-credible region

of θ. Notice that this provides immediately a direct intu-
itive statement about the unknown quantity of interest θ in
probability terms, in marked contrast to the circumlocu-

tory statements provided by frequentist con�dence inter-

vals. Clearly, for any given q there are generally in�nitely

many credible regions. A credible region is invariant under

reparametrization; thus, for any q-credible region R of θ,
ϕ(R) is a q-credible region of ϕ = ϕ(θ). Sometimes, credi-
ble regions are selected to haveminimumsize (length, area,

volume), resulting in highest probability density (HPD)

regions, where all points in the region have larger probabil-

ity density than all points outside. However, HPD regions

are not invariant under reparametrization: the image ϕ(R)
of an HPD region R will be a credible region for ϕ, but
will not generally be HPD; indeed, there is no compelling

reason to restrict attention to HPD credible regions. Pos-

terior quantiles are o�en used to derive credible regions.

�us, if θq = θq(D) is the q% posterior quantile of θ,
then R = {θ; θ ≤ θq} is a one-sided, typically unique
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q-credible region, and it is invariant under reparametriza-

tion. Indeed, probability centered q-credible regions of the

form R = {θ; θ(−q)/ ≤ θ ≤ θ(+q)/} are easier

to compute, and are o�en quoted in preference to HPD

regions.

Example  (Inference on normal parameters, continued).

In the numerical example about the value of the gravita-

tional �eld described in the top panel of Fig. , the interval

[., .] in the unrestricted posterior density of g

is a HPD, %-credible region for g. Similarly, the inter-

val [., .] in the bottom panel of Fig.  is also a

%-credible region for g, but it is not HPD.

�e concept of a credible region for a function θ =

θ(ω) of the parameter vector is trivially extended to pre-

diction problems. �us, a posterior q-credible region for

x ∈ χ is a subset R of the outcome space X with posterior
predictive probability q, so that ∫R p(x ∣D)dx = q.
For a description of the choice of credible regions using

the intrinsic loss function, see Bernardo (b).

Hypothesis Testing
�e posterior distribution p(θ ∣D) of the quantity of inter-

est θ conveys immediate intuitive information on those
values of θ which, given the assumed model, may be taken
to be compatible with the observed data D, namely, those

with a relatively high probability density. Sometimes, a

restriction θ ∈ Θ ⊂ Θ of the possible values of the quan-
tity of interest (where Θ may possibly consists of a single
value θ) is suggested in the course of the investigation
as deserving special consideration, either because restrict-

ing θ to Θ would greatly simplify the model, or because
there are additional, context speci�c arguments suggesting

that θ ∈ Θ. Intuitively, the hypothesis H ≡ {θ ∈ Θ}
should be judged to be compatiblewith the observed dataD

if there are elements in Θ with a relatively high poste-
rior density. However, a more precise conclusion is o�en

required and, once again, this is made possible by adopt-

ing a decision-oriented approach. Formally, testing the

hypothesis H ≡ {θ ∈ Θ} is a decision problem where the
action space has only two elements, namely to accept (a)

or to reject (a) the proposed restriction. To solve this deci-

sion problem, it is necessary to specify an appropriate loss

function, ℓ(ai, θ), measuring the consequences of accept-
ing or rejectingH as a function of the actual value θ of the
vector of interest. Notice that this requires the statement of

an alternative a to acceptingH; this is only to be expected,

for an action is taken not because it is good, but because it

is better than anything else that has been imagined.

Given data D, the optimal action will be to reject H
if (and only if) the expected posterior loss of accepting,

∫Θ ℓ(a, θ) p(θ ∣D)dθ, is largerthantheexpectedposterior
loss of rejecting, ∫Θ ℓ(a, θ) p(θ ∣D)dθ, that is, if (and
only if)

∫
Θ
[ℓ(a, θ) − ℓ(a, θ)] p(θ ∣D)dθ

= ∫
Θ
∆ℓ(θ) p(θ ∣D)dθ > .

�erefore, only the loss di�erence ∆ℓ(θ) = ℓ(a, θ) −
ℓ(a, θ), which measures the advantage of rejecting H as
a function of θ, has to be speci�ed.�us, as common sense
dictates, the hypothesis H should be rejected whenever

the expected advantage of rejecting H is positive.

A crucial element in the speci�cation of the loss func-

tion is a description of what is actually meant by rejecting

H. By assumption ameans to act as if H were true, i.e.,as

if θ ∈ Θ, but there are at least two obvious options for the
alternative action a. �is may either mean () the nega-

tion of H, that is to act as if θ ∉ Θ or, alternatively, it
may rather mean () to reject the simpli�cation implied

by H and to keep the unrestricted model, θ ∈ Θ, which

is true by assumption. Both options have been analyzed

in the literature, although it may be argued that the prob-

lems of scienti�c data analysis where hypothesis testing

procedures are typically used are better described by the

second alternative. Indeed, an established model, identi-

�ed by H ≡ {θ ∈ Θ}, is o�en embedded into a more
general model, {θ ∈ Θ,Θ ⊂ Θ}, constructed to include
possibly promising departures from H, and it is required

to verify whether presently available data D are still com-

patible with θ ∈ Θ, or whether the extension to θ ∈ Θ is

really required.

Example  (Conventional hypothesis testing).Let p(θ ∣D),

θ ∈ Θ, be the posterior distribution of the quantity of

interest, let a be the decision to work under the restric-

tion θ ∈ Θ and let a be the decision to work under the
complementary restriction θ ∉ Θ. Suppose, moreover,
that the loss structure has the simple, zero-one form given

by {ℓ(a, θ) = , ℓ(a, θ) = } if θ ∈ Θ and, similarly,
{ℓ(a, θ) = , ℓ(a, θ) = } if θ ∉ Θ, so that the advantage
∆ℓ(θ) of rejecting H is  if θ ∉ Θ and it is − otherwise.
With this loss function it is immediately found that the

optimal action is to rejectH if (and only if) Pr(θ ∉ Θ ∣D)
is larger than Pr(θ ∈ Θ ∣D). Notice that this formulation
requires that Pr(θ ∈ Θ) > , that is, that the hypothesis

H has a strictly positive prior probability. If θ is a continu-
ous parameter andΘ has zero measure (for instance ifH
consists of a single point θ), this requires the use of a non-
regular “sharp” prior concentrating a positive probability

mass on Θ.



 B Bayesian Statistics

Example  (Intrinsic hypothesis testing).Again, let p(θ ∣D),

θ ∈ Θ, be the posterior distribution of the quantity of

interest, and let a be the decision to work under the

restriction θ ∈ Θ, but let a now be the decision to keep
the general, unrestricted model θ ∈ Θ. In this case, the

advantage ∆ℓ(θ) of rejecting H as a function of θ may
safely be assumed to have the form ∆ℓ(θ) = d(Θ, θ) −
d∗, for some d∗ > , where () d(Θ, θ) is some measure
of the discrepancy between the assumed model p(D ∣ θ)
and its closest approximation within the class {p(D ∣ θ),
θ ∈ Θ}, such that d(Θ, θ) = whenever θ ∈ Θ, and ()
d∗ is a context dependent utility constant which measures

the (necessarily positive) advantage of being able to work

with the simpler model when it is true. Choices of both

d(Θ, θ) and d∗ which may be appropriate for general use
will now be described.

For reasons similar to those supporting its use in point

estimation, an attractive choice for the function d(Θ, θ)
is an appropriate extension of the intrinsic discrepancy;

when there are no nuisance parameters, this is given

by

d(Θ, θ) = inf
θ∈Θ

min{δ(θ ∣ θ), δ(θ ∣ θ)}

where δ(θ ∣ θ) = ∫T p(t ∣ θ) log{p(t ∣ θ)/p(t ∣ θ)}dt, and
t = t(D) ∈ T is any su�cient statistic, which may well be
the whole datasetD. As before, if the dataD = {x, . . . , xn}
consist of a random sample from p(x ∣ θ), then

δ(θ ∣ θ) = n∫
χ
p(x ∣ θ) log

p(x ∣ θ)
p(x ∣ θ)

dx.

Naturally, the loss function d(Θ, θ) reduces to the intrin-
sic discrepancy d(θ, θ) of Example  when Θ contains
a single element θ. Besides, as in the case of estimation,
the de�nition is easily extended to problems with nuisance

parameters, with

d(Θ, θ, λ) = inf
θ∈Θ ,λ∈Λ

d(θ, λo, θ, λ).

�e hypothesis H should be rejected if the posterior

expected advantage of rejecting is

d(Θ ∣D) = ∫
Λ
∫
Θ
d(Θ, θ, λ) p(θ, λ ∣D)dθdλ > d∗,

for some d∗ > . It is easily veri�ed that the function

d(Θ,D) is nonnegative. Morovever, if ϕ = ϕ(θ) is
a one-to-one transformation of θ, then d(ϕ(Θ),D) =

d(Θ,D), so that the expected intrinsic loss of rejecting
H is invariant under reparametrization.

It may be shown that, as the sample size increases,

the expected value of d(Θ,D) under sampling tends to

one when H is true, and tends to in�nity otherwise; thus

d(Θ,D) may be regarded as a continuous, positive mea-
sure of how inappropriate (in loss of information units) it

would be to simplify the model by accepting H. In tra-

ditional language, d(Θ,D) is a test statistic for H and
the hypothesis should be rejected if the value of d(Θ,D)
exceeds some critical value d∗. In sharp contrast to con-

ventional hypothesis testing, this critical value d∗ is found

to be a context speci�c, positive utility constant d∗, which

may precisely be described as the number of information

unitswhich the decision maker is prepared to lose in order

to be able to work with the simpler model H, and does

not depend on the sampling properties of the probability

model.�e procedure may be used with standard, contin-

uous regular priors even in sharp hypothesis testing, when

Θ is a zero-measure set (as would be the case if θ is con-
tinuous and Θ contains a single point θ). Naturally, to
implement the test, the utility constant d∗ which de�nes

the rejection region must be chosen.

All measurements are based on a comparison with

a standard; comparison with the “canonical” problem of

testing a value µ = µ for the mean of a normal distri-

bution with known variance (see below) makes it possible

to calibrate this information scale. Values of d(Θ,D) of
about one should be regarded as an indication of no evi-

dence against H, since the expected value of d(Θ,D)
under H is exactly equal to one. Values of d(Θ,D) of
about ., and  should be respectively regarded as an

indication ofmild evidence againstH, and signi�cant evi-

dence against H since, in the canonical normal problem,

these values correspond to the observed sample mean x

respectively lying two or three posterior standard devia-

tions from the null value µ. Notice that, in sharp contrast

to frequentist hypothesis testing, where it is hazily recom-

mended to adjust the signi�cance level for dimensionality

and sample size, this provides an absolute scale (in infor-

mation units) which remains valid for any sample size and

any dimensionality.

Example  (Testing the value of a normal mean). Let the

data D = {x, . . . , xn} be a random sample from a normal

distribution N(x ∣ µ, σ), where σ is assumed to be known,

and consider the “canonical” problem of testing whether

these data are or are not compatible with some speci�c

sharp hypothesis H ≡ {µ = µ} on the value of the

mean.

�e conventional approach to this problem requires a

non-regular prior which places a probability mass, say p,

on the value µ to be tested, with the remaining  − p
probability continuously distributed over R. If this prior is

chosen to be p(µ ∣ µ ≠ µ) = N(µ ∣ µ, σ), Bayes theorem
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may be used to obtain the corresponding posterior

probability,

Pr[µ ∣D, λ] =
B(D, λ) p

( − p) + p B(D, λ)
,

B(D, λ) = ( +
n

λ
)
/

exp [−




n

n + λ
z

] ,

where z = (x− µ)/ (σ/
√
n)measures, in standard devia-

tions, the distance between x and µ and λ = σ /σ  is the

ratio of model to prior variance.�e function B(D, λ),

a ratio of (integrated) likelihood functions, is called the

Bayes factor in favor of H. With a conventional zero-one

loss function, H should be rejected if Pr[µ ∣D, λ] < /.

�e choices p = / and λ =  or λ = /, describing

particular forms of sharp prior knowledge, have been sug-

gested in the literature for routine use.�e conventional

approach to sharp hypothesis testing deals with situations

of concentrated prior probability; it assumes important

prior knowledge about the value of µ and, hence, should

not be used unless this is an appropriate assumption.More-

over, as pointed out by Bartlett (), the resulting poste-

rior probability is extremely sensitive to the speci�c prior

speci�cation. In most applications, H is really a hazily

de�ned small region rather than a point. For moderate

sample sizes, the posterior probability Pr[µ ∣D, λ] is an

approximation to the posterior probability Pr[µ − є <

µ < µ − є ∣D, λ] for some small interval around µ which

would have been obtained from a regular, continuous prior

heavily concentrated around µ; however, this approxima-

tion always breaks down for su�ciently large sample sizes.

One consequence (which is immediately apparent from

the last two equations) is that for any �xed value of the

pertinent statistic z, the posterior probability of the null,

Pr[µ ∣D, λ], tends to one as n → ∞. Far from being spe-

ci�c to this example, this unappealing behavior of posterior

probabilities based on sharp, non-regular priors (discov-

ered by Lindley , and generally known as Lindley’s

paradox) is always present in the conventional Bayesian

approach to sharp hypothesis testing.

�e intrinsic approach may be used without assum-

ing any sharp prior knowledge.�e intrinsic discrepancy

is d(µ, µ) = n(µ − µ)

/(σ ), a simple transforma-

tion of the standardized distance between µ and µ. As

later explained (section “7Reference Analysis”), absence
of initial information about the value of µmay formally be

described in this problem by the (improper) uniform prior

function p(µ) = ; Bayes’ theorem may then be used to

obtain the corresponding (proper) posterior distribution,

p(µ ∣D) = N (µ ∣ x, σ/
√
n).�e expected value of d(µ, µ)

with respect to this posterior is d(µ,D) = ( + z)/,

where z = (x − µ)/ (σ/
√
n) is the standardized dis-

tance between x and µ. As foretold by the general theory,

the expected value of d(µ,D) under repeated sampling

is one if µ = µ, and increases linearly with n if µ = µ.

Moreover, in this canonical example, to reject H when-

ever ∣z∣ >  or ∣z∣ > , that is whenever µ is two or

three posterior standard deviations away from x, respec-

tively corresponds to rejecting H whenever d(µ,D) is

larger than ., or larger than . But the information scale

is independent of the problem, so that rejecting the null

whenever its expected discrepancy from the true model is

larger than d∗ =  units of information is a general rule

(and one which corresponds to the conventional “σ” rule

in the canonical normal case).

If σ is unknown, the intrinsic discrepancy becomes

d(µ, µ, σ) =
n


log [ + (

µ − µ

σ
)



].

Moreover, as mentioned before, absence of initial infor-

mation about both µ and σ may be described by the

(improper) prior function p(µ, σ) = σ−. �e intrinsic

test statistic d(µ,D) is found as the expected value of

d(µ, µ, σ) under the corresponding joint posterior distri-

bution; this may be exactly expressed in terms of hyperge-

ometric functions, and is approximated by

d(µ,D) ≈



+
n


log( +

t

n
),

where t is the traditional statistic t =
√
n − (x − µ)/s,

ns = ∑j(xj − x)

. For instance, for samples sizes , 

and , , and using the utility constant d∗ = , the

hypothesis H would be rejected whenever ∣t∣ is respec-

tively larger than ., ., and ..

Reference Analysis
Under the Bayesian paradigm, the outcome of any infer-

ence problem (the posterior distribution of the quantity

of interest) combines the information provided by the

data with relevant available prior information. In many

situations, however, either the available prior informa-

tion on the quantity of interest is too vague to warrant

the e�ort required to have it formalized in the form of a

probability distribution, or it is too subjective to be use-

ful in scienti�c communication or public decision mak-

ing. It is therefore important to be able to identify the

mathematical form of a “noninformative” prior, a prior

that would have a minimal e�ect, relative to the data,

on the posterior inference. More formally, suppose that

the probability mechanism which has generated the avail-

able data D is assumed to be p(D ∣ω), for some ω ∈ Ω,
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and that the quantity of interest is some real-valued func-

tion θ = θ(ω) of the model parameter ω. Without
loss of generality, it may be assumed that the probability

model is of the form p(D ∣ θ, λ), θ ∈ Θ, λ ∈ Λ, where
λ is some appropriately chosen nuisance parameter vec-
tor. As described in section “7�e Bayesian Paradigm”, to
obtain the required posterior distribution of the quantity

of interest p(θ ∣D) it is necessary to specify a joint prior

p(θ, λ). It is now required to identify the form of that
joint prior πθ(θ, λ), the θ-reference prior, which would

have a minimal e�ect on the corresponding posterior

distribution of θ,

π(θ ∣D)∝ ∫
Λ
p(D ∣ θ, λ) πθ(θ, λ)dλ,

a prior which, to use a conventional expression, “would

let the data speak for themselves” about the likely value of

θ. Properly de�ned, reference posterior distributions have

an important role to play in scienti�c communication, for

they provide the answer to a central question in the sci-

ences: conditional on the assumed model p(D ∣ θ, λ), and
on any further assumptions of the value of θ on which

there might be universal agreement, the reference pos-

terior π(θ ∣D) should specify what could be said about

θ if the only available information about θ were some

well-documented data D.

Much work has been done to formulate “reference”

priors which would make the idea described above mathe-

matically precise.�is section concentrates on an approach

that is based on information theory to derive reference

distributions which may be argued to provide the most

advanced general procedure available. In the formulation

described below, far from ignoring prior knowledge, the

reference posterior exploits certain well-de�ned features

of a possible prior, namely those describing a situation

where relevant knowledge about the quantity of interest

(beyond that universally accepted) may be held to be neg-

ligible compared to the information about that quantity

which repeated experimentation (from a particular data

generating mechanism) might possibly provide. Reference

analysis is appropriate in contexts where the set of infer-

ences which could be drawn in this possible situation is

considered to be pertinent.

Any statistical analysis contains a fair number of sub-

jective elements; these include (among others) the data

selected, the model assumptions, and the choice of the

quantities of interest. Reference analysis may be argued to

provide an “objective” Bayesian solution to statistical infer-

ence problems in just the same sense that conventional

statistical methods claim to be “objective”: in that the solu-

tions only depend on model assumptions and observed

data. �e whole topic of objective Bayesian methods is,

however, subject to polemic; interested readers will �nd in

Bernardo (a) and references therein some pointers to

the relevant literature.

Reference Distributions
One parameter. Consider the experiment which consists of

the observation of data D, generated by a random mecha-

nism p(D ∣ θ)which only depends on a real-valued param-

eter θ ∈ Θ, and let t = t(D) ∈ T be any su�cient

statistic (which may well be the complete data set D). In

Shannon’s general information theory, the amount of infor-

mation Iθ{T , p(θ)}whichmay be expected to be provided

by D, or (equivalently) by t(D), about the value of θ is

de�ned by

I
θ
{T , p(θ)} = ∫

T
∫
Θ
p(t, θ) log

p(t, θ)
p(t)p(θ)

dθdt

= Et[∫
Θ
p(θ ∣ t) log

p(θ ∣ t)
p(θ)

dθ]

the expected logarithmic divergence of the prior from the

posterior.�is is naturally a functional of the prior p(θ):

the larger the prior information, the smaller the informa-

tion which the data may be expected to provide.�e func-

tional Iθ{T , p(θ)} is concave, non-negative, and invariant

under one-to-one transformations of θ. Consider now the

amount of information Iθ{T k, p(θ)} about θ which may

be expected from the experiment which consists of k con-

ditionally independent replications {t, . . . , tk} of the orig-
inal experiment. As k → ∞, such an experiment would

provide anymissing information about θ which could pos-

sibly be obtained within this framework; thus, as k → ∞,

the functional Iθ{T k, p(θ)} will approach the missing

information about θ associated with the prior p(θ). Intu-

itively, a θ-“noninformative” prior is one whichmaximizes

themissing information about θ. Formally, if πk(θ) denotes

the prior density which maximizes Iθ{T k, p(θ)} in the

class P of strictly positive prior distributions which are

compatible with accepted assumptions on the value of θ

(which may well be the class of all strictly positive proper

priors) then the θ-reference prior π(θ) is the limit as k →

∞ (in a sense to be made precise) of the sequence of priors

{πk(θ), k = , , . . .}.

Notice that this limiting procedure is not some kind of

asymptotic approximation, but an essential element of the

de�nition of a reference prior. In particular, this de�nition

implies that reference distributions only depend on the

asymptotic behavior of the assumed probability model, a

feature which greatly simpli�es their actual derivation.
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Example  (Maximum entropy). If θ may only take

a �nite number of values, so that the parameter space

is Θ = {θ, . . . , θm} and p(θ) = {p, . . . , pm}, with

pi = Pr(θ = θ i), then the missing information associated

to {p, . . . , pm}may be shown to be

lim
k→∞

I
θ
{T

k
, p(θ)} = H(p, . . . , pm) = −∑

m

i=
pi log(pi),

that is, the entropy of the prior distribution {p, . . . , pm}.

�us, in the �nite case, if there is no further structure in the

problem (which should then be taken into account), the

reference prior is that with maximum entropy in the class

P of priors compatible with accepted assumptions. Conse-

quently, the reference prior algorithm contains “maximum

entropy” priors as the particular case which obtains when

the parameter space is �nite, the only case where the origi-

nal concept of7entropy (in statisticalmechanics, as amea-
sure of uncertainty) is unambiguous and well-behaved.

If, in particular, P contains all priors over {θ, . . . , θm},

then the reference prior is the uniform prior, π(θ) =

{/m, . . . , /m}.

Formally, the reference prior function π(θ) of a univari-

ate parameter θ is de�ned to be the limit of the sequence

of the proper priors πk(θ) which maximize Iθ{Tk, p(θ)}

in the precise sense that, for any value of the su�cient

statistic t = t(D), the reference posterior, the pointwise
limit π(θ ∣ t) of the corresponding sequence of posteriors
{πk(θ ∣ t)}, may be obtained from π(θ) by formal use of

Bayes theorem, so that π(θ ∣ t)∝ p(t ∣ θ) π(θ).

Reference prior functions are o�en simply called ref-

erence priors, even though they are usually not probability

distributions.�ey shouldnotbe considered as expressions

of belief, but technical devices to obtain (proper) posterior

distributions which are a limiting form of the posteriors

which could have been obtained frompossible prior beliefs

which were relatively uninformative with respect to the

quantity of interest when compared with the information

which data could provide.

If () the su�cient statistic t = t(D) is a consis-
tent estimator θ̃ of a continuous parameter θ, and () the

class P contains all strictly positive priors, then the refer-

ence prior may be shown to have a simple form in terms of

any asymptotic approximation to the posterior distribution

of θ. Notice that, by construction, an asymptotic approx-

imation to the posterior does not depend on the prior.

Speci�cally, if the posterior density p(θ ∣D) has an asymp-

totic approximation of the form p(θ ∣ θ̃,n), the reference

prior is simply

π(θ)∝ p(θ ∣ θ̃,n)∣
θ̃=θ

One-parameter reference priors are shown to be invariant

under reparametrization; thus, if ψ = ψ(θ) is a piece-

wise one-to-one function of θ, then the ψ-reference prior

is simply the appropriate probability transformation of the

θ-reference prior.

Example  (Je�reys’ prior). If θ is univariate and

continuous, and the posterior distribution of θ given

{x . . . , xn} is asymptotically normal with standard devi-

ation s(θ̃)/
√
n, then, using the last displayed equation, the

reference prior function is π(θ) ∝ s(θ)−. Under reg-

ularity conditions (o�en satis�ed in practice, see section

“7Asymptopic Behavior”), the posterior distribution of θ

is asymptotically normal with variance n− F−(θ̂), where

F(θ) is Fisher’s information function and θ̂ is the MLE of

θ. Hence, the reference prior function in these conditions

is π(θ)∝ F(θ)/, which is known as Je�reys’ prior. It fol-

lows that the reference prior algorithm contains Je�reys’

priors as the particular case which obtains when the prob-

abilitymodel only depends on a single continuous univari-

ate parameter, there are regularity conditions to guarantee

7asymptotic normality, and there is no additional infor-
mation, so that the class of possible priors P contains all

strictly positive priors over Θ.�ese are precisely the con-

ditions under which there is general agreement on the use

of Je�reys’ prior as a “noninformative” prior.

Example  (Inference on a binomial parameter, contin-

ued). Let data consist of a sequence D = {x, . . . , xn}

of n conditionally independent Bernoulli trials, so that

p(x ∣ θ) = θx( − θ)−x, x ∈ {, }; this is a regular,

one-parameter continuousmodel, whose Fisher’s informa-

tion function is F(θ) = θ−( − θ)−. �us, the refer-

ence prior π(θ) is proportional to θ−/( − θ)−/, so

that the reference prior is the (proper) Beta distribution

Be(θ ∣ /, /). Since the reference algorithm is invariant

under reparametrization, the reference prior of ϕ(θ) =

 arc sin
√

θ is π(ϕ) = π(θ)/∣∂ϕ/∂/θ∣ = ; thus, the ref-

erence prior is uniform on the variance-stabilizing transfor-

mation ϕ(θ) = arc sin
√

θ, a feature generally true under

regularity conditions. In terms of the original parame-

ter θ, the corresponding reference posterior is Be(θ ∣ r +

/,n − r + /), where r = ∑ xj is the number of positive

trials.

Suppose, for example, that n =  randomly selected

people have been tested for an infection and that all tested

negative, so that r = .�e reference posterior distribu-

tion of the proportion θ of people infected is then the

Beta distribution Be(θ ∣ ., .), represented in Fig. .

It may well be known that the infection was rare, lead-

ing to the assumption that θ < θ, for some upper bound
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Bayesian Statistics. Fig.  Posterior distribution of the propor-

tion of infected people in the population, given the results of
n =  tests, none of which were positive

θ; the (restricted) reference prior would then be of the

form π(θ)∝ θ−/(−θ)−/ if θ < θ, and zero otherwise.

However, provided the likelihood is concentrated in the

region θ < θ, the corresponding posterior would virtually

be identical to Be(θ ∣ ., .).�us, just on the basis of

the observed experimental results, one may claim that the

proportion of infected people is surely smaller than % (for

the reference posterior probability of the event θ > . is

.), that θ is smaller than . with probability .

(area of the shaded region in Fig. ), that it is equally likely

to be over or below .% (for the median, represented by

a vertical line, is .), and that the probability that a

person randomly chosen from the population is infected

is . (the posterior mean, represented in the �gure by

a black circle), since Pr(x =  ∣ r,n) = E[θ ∣ r,n] = ..

If a particular point estimate of θ is required (say a number

to be quoted in the summary headline) the intrinsic esti-

mator suggests itself; this is found to be θ∗ = . (rep-

resented in the �gure with a white circle). Notice that the

traditional solution to this problem, based on the asymp-

totic behavior of the MLE, here θ̂ = r/n =  for any n,

makes absolutely no sense in this scenario.

One nuisance parameter. �e extension of the reference

prior algorithm to the case of two parameters follows the

usual mathematical procedure of reducing the problem to

a sequential application of the established procedure for

the single parameter case. �us, if the probability model

is p(t ∣ θ, λ), θ ∈ Θ, λ ∈ Λ and a θ-reference prior πθ(θ, λ)

is required, the reference algorithm proceeds in two

steps:

. Conditional on θ, p(t ∣ θ, λ) only depends on the
nuisance parameter λ and, hence, the one-parameter

algorithm may be used to obtain the conditional refer-

ence prior π(λ ∣ θ).

. If π(λ ∣ θ) is proper, this may be used to integrate

out the nuisance parameter thus obtaining the one-

parameter integrated model p(t ∣ θ) = ∫Λ p(t ∣ θ, λ)
π(λ ∣ θ)dλ, to which the one-parameter algorithm

may be applied again to obtain π(θ).�e θ-reference

prior is then πθ(θ, λ) = π(λ ∣ θ) π(θ), and the

required reference posterior is π(θ ∣ t)∝ p(t ∣ θ)π(θ).

If the conditional reference prior is not proper, then the

procedure is performed within an increasing sequence

{Λi} of subsets converging to Λ overwhich π(λ ∣ θ) is inte-

grable. �is makes it possible to obtain a corresponding

sequence of θ-reference posteriors {πi(θ ∣ t} for the quan-
tity of interest θ, and the required reference posterior is

the corresponding pointwise limit π(θ ∣ t) = limi πi(θ ∣ t).
A θ-reference prior is then de�ned as a positive function

πθ(θ, λ) which may be formally used in Bayes’ theorem

as a prior to obtain the reference posterior, i.e., such that,

for any t ∈ T, π(θ ∣ t) ∝ ∫Λ p(t ∣ θ, λ) πθ(θ, λ)dλ. �e

approximating sequences should be consistently chosen

within a given model. �us, given a probability model

{p(x ∣ω),ω ∈ Ω} an appropriate approximating sequence

{Ωi} should be chosen for the whole parameter space Ω.
�us, if the analysis is done in terms of, say, ψ = {ψ ,ψ} ∈

Ψ(Ω), the approximating sequence should be chosen such

that Ψi = ψ(Ωi). A natural approximating sequence in
location-scale problems is {µ, log σ} ∈ [−i, i].

�e θ-reference prior does not depend on the choice

of the nuisance parameter λ; thus, for any ψ = ψ(θ, λ)

such that (θ,ψ) is a one-to-one function of (θ, λ), the

θ-reference prior in terms of (θ,ψ) is simply πθ(θ,ψ) =

πθ(θ, λ)/∣∂(θ,ψ)/∂(θ, λ)∣, the appropriate probability

transformation of the θ-reference prior in terms of (θ, λ).

Notice, however, that the reference prior may depend on

the parameter of interest; thus, the θ-reference prior may

di�er from the ϕ-reference prior unless either ϕ is a piece-

wise one-to-one transformation of θ, or ϕ is asymptotically

independent of θ.�is is an expected consequence of the

fact that the conditions under which the missing informa-

tion about θ is maximized are not generally the same as the

conditionswhichmaximize themissing information about

some function ϕ = ϕ(θ, λ).

�e non-existence of a unique “noninformative prior”

which would be appropriate for any inference problem

within a given model was established by Dawid et al.

(), when they showed that this is incompatible with

consistent marginalization. Indeed, if given the model

p(D ∣ θ, λ), the reference posterior of the quantity of inter-

est θ, π(θ ∣D) = π(θ ∣ t), only depends on the data through
a statistic t whose sampling distribution, p(t ∣ θ, λ) =

p(t ∣ θ), only depends on θ, one would expect the refer-

ence posterior to be of the form π(θ ∣ t) ∝ π(θ) p(t ∣ θ)
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for some prior π(θ). However, examples were foundwhere

this cannot be the case if a unique joint “noninforma-

tive” prior were to be used for all possible quantities of

interest.

Example  (Regular two dimensional continuous refer-

ence prior functions). If the joint posterior distribution of

(θ, λ) is asymptotically normal, then the θ-reference prior

may be derived in terms of the corresponding Fisher’s

information matrix, F(θ, λ). Indeed, if

F(θ, λ) =

⎛
⎜
⎜
⎝

Fθθ(θ, λ) Fθ λ(θ, λ)

Fθ λ(θ, λ) Fλλ(θ, λ)

⎞
⎟
⎟
⎠

, and

S(θ, λ) = F−(θ, λ),

then the θ-reference prior is πθ(θ, λ) = π(λ ∣ θ) π(θ),

where

π(λ ∣ θ)∝ F
/

λλ
(θ, λ), λ ∈ Λ.

If π(λ ∣ θ) is proper,

π(θ)∝ exp{∫
Λ

π(λ ∣ θ) log [S
−/

θθ
(θ, λ)] dλ}, θ ∈ Θ.

If π(λ ∣ θ) is not proper, integrations are performed on

an approximating sequence {Λi} to obtain a sequence

{πi(λ ∣ θ) πi(θ)}, (where πi(λ ∣ θ) is the proper renormal-

ization of π(λ ∣ θ) to Λi) and the θ-reference prior πθ(θ, λ)

is de�ned as its appropriate limit. Moreover, if () both

F
/

λλ
(θ, λ) and S

−/

θθ
(θ, λ) factorize, so that

S
−/

θθ
(θ, λ)∝ fθ(θ) gθ(λ), F

/

λλ
(θ, λ)∝ fλ(θ) gλ(λ),

and () the parameters θ and λ are variation independent,

so that Λ does not depend on θ, then the θ-reference prior

is simply πθ(θ, λ) = fθ(θ) gλ(λ), even if the conditional

reference prior π(λ ∣ θ) = π(λ) ∝ gλ(λ) (which will not

depend on θ) is actually improper.

Example  (Inference on normal parameters, continued).

�e information matrix which corresponds to a normal

model N(x ∣ µ, σ) is

F(µ, σ) =
⎛
⎜
⎜
⎝

σ− 

 σ−

⎞
⎟
⎟
⎠

,

S(µ, σ) = F−(µ, σ) =
⎛
⎜
⎜
⎝

σ  

 


σ 

⎞
⎟
⎟
⎠

;

hence F
/
σσ (µ, σ) =

√
 σ− = fσ(µ) gσ(σ), with gσ(σ) =

σ−, and π(σ ∣ µ) = σ−. Similarly, S
−/
µµ (µ, σ) = σ− =

fµ(µ) gµ(σ), with fµ(µ) = , and π(µ) = .�erefore, the

µ-reference prior is πµ(µ, σ) = π(σ ∣ µ) π(µ) = σ−, as

already anticipated. Moreover, as one would expect from

the fact that F(µ, σ) is diagonal and also anticipated, it is
similarly found that the σ-reference prior is πσ(µ, σ) =

σ−, the same as πµ(µ, σ).

Suppose, however, that the quantity of interest is not

the mean µ or the standard deviation σ , but the stan-

dardized mean ϕ = µ/σ . Fisher’s information matrix in

terms of the parameters ϕ and σ is F(ϕ, σ) = J t F(µ, σ) J,
where J = (∂(µ, σ)/∂(ϕ, σ)) is the Jacobian of the inverse

transformation; this yields

F(ϕ, σ) =
⎛
⎜
⎜
⎝

 ϕσ−

ϕσ− σ−( + ϕ)

⎞
⎟
⎟
⎠

,

S(ϕ, σ) =
⎛
⎜
⎜
⎝

 + 


ϕ − 


ϕσ

− 

ϕσ 


σ 

⎞
⎟
⎟
⎠

.

�us, S
−/

ϕϕ (ϕ, σ) ∝ ( + 


ϕ)

−/
and F

/
σσ (ϕ, σ) ∝

σ−( + ϕ)/. Hence, using again the results in Exam-

ple , πϕ(ϕ, σ) = ( + 


ϕ)

−/
σ−. In the original

parametrization, this is πϕ(µ, σ) = ( + 


(µ/σ))

−/
σ−,

which is very di�erent from πµ(µ, σ) = πσ(µ, σ) = σ−.

�e corresponding reference posterior of ϕ is π(ϕ ∣ x, . . .,

xn) ∝ ( + 


ϕ)

−/
p(t ∣ ϕ) where t = (∑ xj)/ (∑ x


j )
/
,

a one-dimensional (marginally su�cient) statistic whose

sampling distribution, p(t ∣ µ, σ) = p(t ∣ ϕ), only depends

on ϕ. �us, the reference prior algorithm is seen to be

consistent under marginalization.

Many parameters. �e reference algorithm is easily

generalized to an arbitrary number of parameters. If the

model is p(t ∣ ω, . . . ,ωm), a joint reference prior

π(θm ∣ θm−, . . . , θ) × . . . × π(θ ∣ θ) × π(θ)

may sequentially be obtained for each orderedparametriza-

tion {θ(ω), . . . , θm(ω)} of interest, and these are invari-

ant under reparametrization of any of the θ i(ω)’s. �e

choice of the ordered parametrization {θ, . . . , θm} pre-

cisely describes the particular prior required, namely that

which sequentially maximizes the missing information

about each of the θ i’s, conditional on {θ, . . . , θ i−}, for

i = m,m − , . . . , .

Example  (Stein’s paradox). Let D be a random sam-

ple from a m-variate normal distribution with mean

µ = {µ, . . . , µm} and unitary variance matrix.�e refer-

ence prior which corresponds to any permutation of the

µi’s is uniform, and this prior leads indeed to appropri-

ate reference posterior distributions for any of the µi’s,

namely π(µi ∣D) = N (µi ∣xi, /
√
n). Suppose, however,

that the quantity of interest is θ = ∑i µ

i , the distance

of µ to the origin. As showed by Stein in the s, the
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posterior distribution of θ based on that uniform prior

(or in any “�at” proper approximation) has very unde-

sirable properties; this is due to the fact that a uniform

(or nearly uniform) prior, although “noninformative” with

respect to each of the individual µi’s, is actually highly

informative on the sum of their squares, introducing a

severe positive bias (Stein’s paradox). However, the ref-

erence prior which corresponds to a parametrization of

the form {θ, λ, . . . , λm−} produces, for any choice of the

nuisance parameters λi = λi(µ), the reference posterior
π(θ ∣D) = π(θ ∣ t) ∝ θ−/ χ(nt ∣m,nθ), where t =

∑i x

i , and this posterior is shown to have the appropriate

consistency properties.

Far from being speci�c to Stein’s example, the inap-

propriate behavior in problems with many parameters

of speci�c marginal posterior distributions derived from

multivariate “�at” priors (proper or improper) is indeed

very frequent. Hence, sloppy, uncontrolled use of “�at” pri-

ors (rather than the relevant reference priors), is strongly

discouraged.

Limited information. Although o�en used in contexts

where no universally agreed prior knowledge about the

quantity of interest is available, the reference algorithm

may be used to specify a prior which incorporates any

acceptable prior knowledge; it su�ces to maximize the

missing information within the class P of priors which

is compatible with such accepted knowledge. Indeed, by

progressive incorporation of further restrictions into P ,

the reference prior algorithm becomes a method of (prior)

probability assessment. As described below, the problem

has a fairly simple analytical solution when those restric-

tions take the form of known expected values.�e incor-

poration of other type of restrictions usually involves

numerical computations.

Example  (Univariate restricted reference priors). If

the probability mechanism which is assumed to have

generated the available data only depends on a univarite

continuous parameter θ ∈ Θ ⊂ R, and the class P of

acceptable priors is a class of proper priors which satis�es

some expected value restrictions, so that

P = {p(θ); p(θ) > , ∫
Θ
p(θ)dθ = ,

∫
Θ
gi(θ) p(θ)dθ = βi, i = , . . . ,m}

then the (restricted) reference prior is

π(θ ∣P)∝ π(θ) exp [∑
m

j=
γi gi(θ)]

where π(θ) is the unrestricted reference prior and the γi’s

are constants (the corresponding Lagrange multipliers), to

be determined by the restrictions which de�ne P . Sup-

pose, for instance, that data are considered to be a random

sample from a location model centered at θ, and that it

is further assumed that E[θ] = µ and that Var[θ] =

σ  .�e unrestricted reference prior for any regular loca-

tion problem may be shown to be uniform. �us, the

restricted reference prior must be of the form π(θ ∣P) ∝

exp{γθ + γ(θ − µ)

}, with ∫Θ θ π(θ ∣P)dθ = µ and

∫Θ(θ − µ)
 π(θ ∣P)dθ = σ  . Hence, π(θ ∣P) is a normal

distribution with the speci�ed mean and variance.

Frequentist Properties
Bayesian methods provide a direct solution to the prob-

lems typically posed in statistical inference; indeed, pos-

terior distributions precisely state what can be said about

unknown quantities of interest given available data and

prior knowledge. In particular, unrestricted reference pos-

terior distributions state what could be said if no prior

knowledge about the quantities of interest were available.

A frequentist analysis of the behavior of Bayesian pro-

cedures under repeated sampling may, however, be illu-

minating, for this provides some interesting connections

between frequentist andBayesian inference. It is found that

the frequentist properties of Bayesian reference procedures

are typically excellent, and may be used to provide a form

of calibration for reference posterior probabilities.

Point Estimation. It is generally accepted that, as the

sample size increases, a “good” estimator θ̃ of θ ought to
get the correct value of θ eventually, that is to be consis-
tent. Under appropriate regularity conditions, any Bayes

estimator ϕ∗ of any function ϕ(θ) converges in probability
to ϕ(θ), so that sequences of Bayes estimators are typically
consistent. Indeed, it is known that if there is a consistent

sequence of estimators, then Bayes estimators are consis-

tent. �e rate of convergence is o�en best for reference

Bayes estimators.

It is also generally accepted that a “good” estimator

should be admissible, that is, not dominated by any other

estimator in the sense that its expected loss under sam-

pling (conditional to θ) cannot be larger for all θ values
than that corresponding to another estimator. Any proper

Bayes estimator is admissible; moreover, as established by

Wald (), a procedure must be Bayesian (proper or

improper) to be admissible. Most published admissibil-

ity results refer to quadratic loss functions, but they o�en

extend to more general loss functions. Reference Bayes

estimators are typically admissible with respect to intrinsic

loss functions.

Notice, however, that many other apparently intuitive

frequentist ideas on estimation have been proved to be

potentially misleading. For example, given a sequence of n
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Bernoulli observationswith parameter θ resulting in r pos-

itive trials, the best unbiased estimate of θ is found to be

r(r − )/{n(n− )}, which yields θ̃ =  when r = ; but to

estimate the probability of two positive trials as zero, when

one positive trial has been observed, is not at all sensible. In

marked contrast, any Bayes reference estimator provides a

reasonable answer. For example, the intrinsic estimator of

θ is simply (θ∗), where θ∗ is the intrinsic estimator of θ

described in section “7Estimation”. In particular, if r = 
and n =  the intrinsic estimator of θ is (as one would

naturally expect) (θ∗) = /.

Interval Estimation. As the sample size increases, the

frequentist coverage probability of a posterior q-credible

region typically converges to q so that, for large samples,

Bayesian credible intervals may (under regularity condi-

tions) be interpreted as approximate frequentist con�dence

regions: under repeated sampling, a Bayesian q-credible

region of θ based on a large sample will cover the true
value of θ approximately q% of times. Detailed results
are readily available for univariate problems. For instance,

consider the probability model {p(D ∣ω),ω ∈ Ω}, let

θ = θ(ω) be any univariate quantity of interest, and let

t = t(D) ∈ T be any su�cient statistic. If θq(t) denotes
the q% quantile of the posterior distribution of θ which

corresponds to some unspeci�ed prior, so that

Pr[θ ≤ θq(t) ∣ t] = ∫
θ≤θq(t)

p(θ ∣ t)dθ = q,

then the coverage probability of the q-credible interval

{θ; θ ≤ θq(t)},

Pr[θq(t) ≥ θ ∣ω] = ∫
θq(t)≥θ

p(t ∣ω)dt,

is such that Pr[θq(t) ≥ θ ∣ω] = Pr[θ ≤ θq(t) ∣ t] +
O(n−/). �is asymptotic approximation is true for all

(su�ciently regular) positive priors. However, the approx-

imation is better, actually O(n−), for a particular class

of priors known as (�rst-order) probability matching pri-

ors. Reference priors are typically found to be probabil-

ity matching priors, so that they provide this improved

asymptotic agreement. As a matter of fact, the agreement

(in regular problems) is typically quite good even for rela-

tively small samples.

Example  (Product of normal means). Consider the

case where independent random samples {x, . . . , xn} and

{y, . . . , ym} have respectively been taken from the normal

densitiesN(x ∣ ω, ) andN(y ∣ ω, ), and suppose that the

quantity of interest is the product of their means, ϕ = ωω
(for instance, onemay be interested in inferences about the

area ϕ of a rectangular piece of land, given measurements

{xi} and {yj} of its sides). Notice that this is a simpli-

�ed version of a problem that it is o�en encountered in

the sciences, where one is interested in the product of sev-

eral magnitudes, all of which have been measured with

error. Using the procedure described in Example , with

the natural approximating sequence induced by (ω,ω) ∈

[−i, i], the ϕ-reference prior is found to be

πϕ(ω,ω)∝ (nω

 +mω


)
−/
,

very di�erent from the uniform prior πω(ω,ω) =

πω(ω,ω) =  which should be used to make

objective inferences about either ω or ω. �e prior

πϕ(ω,ω) may be shown to provide approximate agree-

ment between Bayesian credible regions and frequen-

tist con�dence intervals for ϕ; indeed, this prior (with

m = n) was originally suggested by Stein in the s

to obtain such approximate agreement. �e same exam-

ple was later used by Efron () to stress the fact that,

even within a �xed probability model {p(D ∣ω),ω ∈

Ω}, the prior required to make objective inferences

about some function of the parameters ϕ = ϕ(ω)

must generally depend on the function ϕ.

�e numerical agreement between reference Bayesian

credible regions and frequentist con�dence intervals is

actually perfect in special circumstances. Indeed, as Lind-

ley () pointed out, this is the case in those problems

of inference which may be transformed to location-scale

problems.

Example  (Inference on normal parameters, continued).

Let D = {x, . . . xn} be a random sample from a normal

distribution N(x ∣ µ, σ). As mentioned before, the refer-

ence posterior of the quantity of interest µ is the Student

distribution St (µ ∣ x, s/
√
n − ,n − ). �us, normalizing

µ, the posterior distribution of t(µ) =
√
n − (x − µ)/s,

as a function of µ given D, is the standard Student

St(t ∣ , ,n − ) with n −  degrees of freedom. On the

other hand, this function t is recognized to be precisely

the conventional t statistic, whose sampling distribution is

well known to also be standard Student with n −  degrees

of freedom. It follows that, for all sample sizes, posterior

reference credible intervals for µ given the data will be

numerically identical to frequentist con�dence intervals

based on the sampling distribution of t.

A similar result is obtained in inferences about the

variance.�us, the reference posterior distribution of λ =

σ− is the 7Gamma distribution Ga(λ ∣ (n − )/,ns/)

and, hence, the posterior distribution of r = ns/σ , as

a function of σ  given D, is a (central) χ with n − 

degrees of freedom. But the function r is recognized to

be a conventional statistic for this problem, whose sam-

pling distribution is well known to also be χ with n − 

degrees of freedom. It follows that, for all sample sizes, pos-

terior reference credible intervals for σ  (or any one-to-one
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function of σ ) given the data will be numerically identical

to frequentist con�dence intervals based on the sampling

distribution of r.

For a recent reviewormodern objective Bayesian infer-

ence, see Bernardo ().

Discussion
In writing a broad article it is always hard to decide what

to leave out.�is article focused on the basic concepts of

the Bayesian paradigm; methodological topics which have

unwillingly been omitted include design of experiments,

sample surveys, linear models and sequential methods.

�e interested reader is referred to the bibliography for

further information.�is �nal section brie�y reviews the

main arguments for the Bayesian approach, and includes

pointers to further issues which have not been discussed

in more detail due to space limitations.

Coherence
By using probability distributions to characterize all uncer-

tainties in the problem, the Bayesian paradigm reduces

statistical inference to applied probability, thereby ensur-

ing the coherence of the proposed solutions.�ere is no

need to investigate, on a case by case basis, whether or

not the solution to a particular problem is logically cor-

rect: a Bayesian result is only a mathematical consequence

of explicitly stated assumptions and hence, unless a logi-

cal mistake has been committed in its derivation, it cannot

be formally wrong. In marked contrast, conventional sta-

tistical methods are plagued with counterexamples.�ese

include, among many others, negative estimators of posi-

tive quantities, q-con�dence regions (q < ) which consist

of the whole parameter space, empty sets of “appropri-

ate” solutions, and incompatible answers from alternative

methodologies simultaneously supported by the theory.

�e Bayesian approach does require, however, the

speci�cation of a (prior) probability distribution over the

parameter space. �e sentence “a prior distribution does

not exist for this problem” is o�en stated to justify the use

of non-Bayesian methods. However, the general represen-

tation theorem proves the existence of such a distribution

whenever the observations are assumed to be exchange-

able (and, if they are assumed to be a random sample then,

a fortiori, they are assumed to be exchangeable). To ignore

this fact, and to proceed as if a prior distribution did not

exist, just because it is not easy to specify, ismathematically

untenable.

Objectivity
It is generally accepted that any statistical analysis is sub-

jective, in the sense that it is always conditional on accepted

assumptions (on the structure of the data, on the probabil-

ity model, and on the outcome space) and those assump-

tions, although possibly well founded, are de�nitely sub-

jective choices. It is, therefore, mandatory to make all

assumptions very explicit.

Users of conventional statisticalmethods rarely dispute

the mathematical foundations of the Bayesian approach,

but claim to be able to produce “objective” answers in con-

trast to the possibly subjective elements involved in the

choice of the prior distribution.

Bayesian methods do indeed require the choice of a

prior distribution, and critics of the Bayesian approach sys-

tematically point out that in many important situations,

including scienti�c reporting and public decision making,

the results must exclusively depend on documented data

which might be subject to independent scrutiny. �is is

of course true, but those critics choose to ignore the fact

that this particular case is covered within the Bayesian

approach by the use of reference prior distributions which

() are mathematically derived from the accepted proba-

bility model (and, hence, they are “objective” insofar as the

choice of that model might be objective) and, () by con-

struction, they produce posterior probability distributions

which, given the accepted probability model, only contain

the information about their values which datamay provide

and, optionally, any further contextual information over

which there might be universal agreement.

An issue related to objectivity is that of the operational

meaning of reference posterior probabilities; it is found

that the analysis of their behavior under repeated sampling

provides a suggestive form of calibration. Indeed, Pr[θ ∈

R ∣D] = ∫R π(θ ∣D)dθ, the reference posterior probability
that θ ∈ R, is both a measure of the conditional uncer-

tainty (given the assumed model and the observed dataD)

about the event that the unknown value of θ belongs to
R ⊂ Θ, and the limiting proportion of the regions which

would cover θ under repeated sampling conditional on
data “su�ciently similar” to D. Under broad conditions

(to guarantee regular asymptotic behavior), all large data

sets from the same model are “su�ciently similar” among

themselves in this sense and hence, given those condi-

tions, reference posterior credible regions are approximate

unconditional frequentist con�dence regions.

�e conditions for this approximate unconditional

equivalence to hold exclude, however, important special

cases, like those involving “extreme” or “relevant” observa-

tions. In very special situations, when probability models

may be transformed to location-scale models, there is an

exact unconditional equivalence; in those cases reference

posterior credible intervals are, for any sample size, exact

unconditional frequentist con�dence intervals.
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Applicability
In sharp contrast to most conventional statistical methods,

whichmay only be exactly applied to a handful of relatively

simple stylized situations, Bayesian methods are (in the-

ory) totally general. Indeed, for a given probability model

and prior distribution over its parameters, the deriva-

tion of posterior distributions is a well-de�ned mathe-

matical exercise. In particular, Bayesian methods do not

require any particular regularity conditions on the proba-

bility model, do not depend on the existence of su�cient

statistics of �nite dimension, do not rely on asymptotic

relations, and donot require the derivation of any sampling

distribution, nor (a fortiori) the existence of a “pivotal”

statistic whose sampling distribution is independent of the

parameters.

However, when used in complex models with many

parameters, Bayesian methods o�en require the compu-

tation of multidimensional de�nite integrals and, for a

long time in the past, this requirement e�ectively placed

practical limits on the complexity of the problems which

could be handled.�is has dramatically changed in recent

years with the general availability of large computing

power, and the parallel development of simulation-based

numerical integration strategies like importance sampling

or 7Markov chain Monte Carlo (MCMC).�ese methods
provide a structure within which many complex models

may be analyzed using generic so�ware. MCMC is numer-

ical integration using Markov chains. Monte Carlo inte-

gration proceeds by drawing samples from the required

distributions, and computing sample averages to approx-

imate expectations. MCMC methods draw the required

samples by running appropriately de�ned7Markov chains
for a long time; speci�c methods to construct those

chains include the Gibbs sampler and theMetropolis algo-

rithm, originated in the s in the literature of statisti-

cal physics.�e development of improved algorithms and

appropriate diagnostic tools to establish their convergence,

remains a very active research area.

Actual scienti�c research o�en requires the use of

models that are far too complex for conventional statisti-

cal methods.�is article concludes with a glimpse at some

of them.

Hierarchical structures. Consider a situation where a

possibly variable number ni of observations, {xij, j =

, . . . ,ni}, i = , . . . ,m, are made on each of m internally

homogeneous subsets of some population. For instance, a

�rmmight have chosenm production lines for inspection,

and ni items might have been randomly selected among

those made by production line i, so that xij is the result of
the measurements made on item j of production line i. As

another example, animals of some species are captured to

study their metabolism, and a blood sample taken before

releasing them again; the procedure is repeated in the same

habitat for some time, so that some of the animals are

recaptured several times, and xij is the result of the analysis
of the j-th blood sample taken from animal i. It those situa-

tions, it is o�en appropriate to assume that the ni observa-

tions on subpopulation i are exchangeable, so that theymay

be treated as a random sample from some model p(x ∣ θ i)
indexed by a parameter θ i which depends on the subpop-
ulation observed, and that the parameters which label the

subpopulations may also be assumed to be exchangeable,

so that {θ , . . . , θm} may be treated as a random sample
from some distribution p(θ ∣ω).�us, the complete hier-

archical model which is assumed to have generated the

observed data D = {x, . . . , xmnm} is of the form

p(D ∣ω) = ∫
Θm

[

ni

∏
j=

p(xij ∣ θ i)][
m

∏
i=

p(θ i ∣ω)] [
m

∏
i=

dθ i].

Hence, under the Bayesian paradigm, a family of con-

ventional probability models, say p(x ∣ θ), θ ∈ Θ, and

an appropriate “structural” prior p(θ ∣ω), may be nat-

urally combined to produce a versatile, complex model

{p(D ∣ω),ω ∈ Ω} whose analysis is o�en well beyond

the scope of conventional statistics.�e Bayesian solution

only requires the speci�ction a prior distribution p(ω),

the use Bayes’ theorem to obtain the corresponding poste-

rior p(ω ∣D)∝ p(D ∣ω) p(ω), and the performance of the

appropriate probability transformations to derive the pos-

terior distributions of the quantities of interest (whichmay

well be functions of ω, functions of the θ i’s, or functions of
future observations). As in any other Bayesian analysis, the

prior distribution p(ω) has to describe available knowl-

edge about ω; if none is available, or if an objective analysis
is required, an appropriate reference prior function π(ω)

may be used.

Contextual information. In many problems of statis-

tical inference, objective and universally agreed contex-

tual information is available on the parameter values.�is

information is usually very di�cult to handle within the

framework of conventional statistics, but it is easily incor-

porated into a Bayesian analysis by simply restricting the

prior distribution to the class P of priors which are com-

patible with such information. As an example, consider

the frequent problem in archaeology of trying to establish

the occupation period [α, β] of a site by some past culture

on the basis of the radiocarbon dating of organic samples

taken from the excavation. Radiocarbon dating is not pre-

cise, so that each dating xi is typically taken to be a normal

observation from a distribution N(x ∣ µ(θ i), σi), where θ i
is the actual, unknown calendar date of the sample, µ(θ)
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is an internationally agreed calibration curve, and σi is a

known standard error quoted by the laboratory.�e actual

calendar dates {θ, . . . , θm} of the samples are typically

assumed to be uniformly distributedwithin the occupation

period [α, β]; however, stratigraphic evidence indicates

some partial orderings for, if sample i was found on top

of sample j in undisturbed layers, then θ i > θ j. �us, if

C denotes the class of values of {θ, . . . , θm} which sat-

isfy those known restrictions, datamay be assumed to have

been generated by the hierarchical model

p(x, . . . , xm ∣ α, β) = ∫
C
[
m

∏
i=

N (xi ∣ µ(θ i), σ

i ) ]

(β − α)
−m
dθ . . . dθm.

O�en, contextual information further indicates an abso-

lute lower bound α and an absolute upper bound β for

the period investigated, so that α < α < β < β.

If no further documented information is available, the

corresponding restricted reference prior for the quanti-

ties of interest, {α, β} should be used; this is found to

be π(α, β) ∝ (β − α)− whenever α < α < β < β
and zero otherwise.�e corresponding reference posterior

π(α, β ∣ x, . . . , xm) ∝ p(x, . . . , xm ∣ α, β) π(α, β) summa-

rizes all available information on the occupation period.

Covariate information. Over the last  years, both

linear and non-linear regression models have been ana-

lyzed from a Bayesian point of view at increasing levels

of sophistication. �ese studies range from the elemen-

tary objective Bayesian analysis of simple linear regression

structures (which parallel their frequentist counterparts)

to the sophisticated analysis of time series involved in

dynamic forecasting which o�en make use of complex

hierarchical structures. �e �eld is far too large to be

reviewed in this article, but the bibliography contains some

relevant pointers.

Model Criticism. It has been stressed that any statisti-

cal analysis is conditional on the accepted assumptions of

the probabilitymodel which is presumed to have generated

the data. Recent years have shown a huge e�ort into the

development of Bayesian procedures for model criticism

and model choice. Most of these are sophisticated elabora-

tions of the procedures described in section “7Hypothesis
Testing” under the heading of hypothesis testing. Again,

this is too large a topic to be reviewed here, but some key

references are included in the bibliography.
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Bayesian Versus Frequentist
Statistical Reasoning

Jordi Vallverdú

Universitat Autònoma de Barcelona, Catalonia, Spain

We can consider the existence of two main statistical

schools: Bayesian and frequentist. Both provide ways to

deal with probability, although their methods and theories

are mutually exclusive (Vallverdú ).

Bayesian Statistics
From a historical perspective, Bayesian appeared �rst, in

, when Richard Price published posthumously the

paper of late Rev.�omas Bayes “An Essay towards solv-

ing a Problem in the Doctrine of Chances” (Dale ).

In this paper, Bayes presented his ideas about the best way
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of dealing with probability (and trying to solve the prob-

lem of inverse probability), which can be exempli�ed today

with the classic formula called “Bayes’ Rule” or “Bayes’

�eorem”:

P (A ∣B) =
P (B ∣A)P (A)

P (B)
.

We must look at the notation and terminology involved:

● P(A∣B) is the conditional probability of A, given B. It is

also called the posterior probability because it is derived

from or depends upon the speci�ed value of B.

● P(B∣A) is the conditional probability of B given A.

● P(A) is the prior probability or marginal probability of

A. It is “prior” in the sense that it does not take into

account any information about B.

● P(B) is the prior or marginal probability of B, and acts

as a normalizing constant.

We can see, then, that our posterior belief P(A∣B) is calcu-

lated by multiplying our prior belief P(A) by the likelihood

P(B∣A) that B will occur if A is true. Although Bayes’

methodwas enthusiastically taken up by Laplace and other

leading probabilists of the day, it fell into disrepute in the

nineteenth century because they did not yet know how to

handle prior probabilities properly.�e prior probability of

A represents our best estimate of the probability of the fact

we are considering, prior to consideration of the new piece

of evidence.�erefore, in the Bayesian paradigm, current

knowledge about the model parameters is expressed by

placing a probability distribution on the parameters, called

the “prior distribution.” When new data become available,

the information they contain regarding themodel parame-

ters is expressed in the “likelihood,” which is proportional

to the distribution of the observed data given the model

parameters. �is information is then combined with the

prior to produce an updated probability distribution called

the “posterior distribution,” on which all Bayesian infer-

ence is based. 7Bayes’�eorem, an elementary identity in
probability theory, states how the update is done mathe-

matically: the posterior is proportional to the prior times

the likelihood.

�ere are a large number of types of Bayesians (speak-

ing ironically, Good () spoke of “, kinds of

Bayesians”), depending on their attitude toward subjectiv-

ity in postulating priors. Some recent Bayesian books are

Earman (), Howson and Urbach (), Bernardo and

Smith ().

Frequentist Statistics
On the other hand, we have the frequentist paradigm. Its

followers understand probability as a long-run frequency

of a “repeatable” event and developed a notion of con�-

dence intervals. Probability would be, then, a measurable

frequency of events determined from repeated experi-

ments. We can express it as:

P (A) = n/N,

where n is the number of times event A occurs in N

opportunities.

From the frequentist viewpoint two closely related

methods have been developed. One is the Neyman–

Pearson theory of signi�cance tests and the other is based

on Fisher’s notion of 7p-values. �e researchers who
follow this approach, consider frequentism as the only

allowed statistical method for achieving sound scienti�c

inferences (Mayo and Cox ).

The Debate: Degrees of Belief Versus
Relative Frequencies
As early as in , Maurice George Kendall () wrote

a paper, “On the Reconciliation of�eories of Probability,”

in which he coined the word “frequentist” and stated: “Few

branches of scienti�cmethod have been subject to somuch

di�erence of opinion as the theory of probability.” He tried

to attempt mediation between the contestants, but failed.

Clearly, one of the recurrent arguments against/in

favor of one of the two positions (frequentist or Bayesian)

consists in saying that a true scientist is always/never fre-

quentist/Bayesian (you can choose between the two possi-

bilities). As an example of this confrontation see the ideas

of Giere (): “Are Scientists Bayesian Agents? (. . .)�e

overwhelming conclusion is that humans are not bayesian

agents,” and of Efron () or Cousins ().�e last two

do not need to be quoted. It seems to be an epistemolog-

ical law about statistical practices: “A true scientist never

belongs to the opposite statistical school” (Vallverdú ).

It could seem that frequentists are realists, when they

consider relative frequencies and that Bayesian are sub-

jective, when they defend degrees of belief of prior prob-

abilities but the truth is that in cluster investigations, for

example, the frequentist approach is just as subjective as

the Bayesian approach, although the Bayesian approach is

less ambitious in that it treats the analysis as a synthesis of

data and personal judgments (possibly poor ones), rather

than objective reality (Coory et al. ).

Why to Become Frequentist/Bayesian?
Bland and Altman (, p. ) have their own answer:

“Most statisticians have become Bayesians or Frequentists

as a result of their choice of university.” And as the epi-

demiologist Berger () says: “practicing epidemiolo-

gists are given little guidance in choosing between these

approaches apart from the ideological adherence of men-

tors, colleagues and editors.”
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So, the arguments go beyond the ethereal philosophical

arena and become more practical ones. Better opportu-

nities to �nd a good job is an important argument, and

the value of a Bayesian academic training is now accepted:

“where once graduate students doing Bayesian disserta-

tions were advised to try not to look too Bayesian when

they went on the job market, now great numbers of grad-

uate students try to include some Bayesian �avor in their

dissertations to increase theirmarketability” (Wilson ,

p. ). �erefore, and following Hacking (, p. ):

“Euler at once retorted that this advice is metaphysical,

not mathematical. Quite so!�e choice of primitive con-

cepts for inference is a matter of ‘metaphysics’.�e ortho-

dox statistician has made one metaphysical choice and

the Bayesian another.” To be honest, there is not a fatally

�awed position, but di�erent context-based applications of

both main approaches. As Gigerenzer et al. () express

“we need statistical thinking, not statistical rituals.” Lilford

and Braunholtz (, p. ) go further: “when the sit-

uation is less clear cut (. . .) conventional statistics may

drive decision makers into a corner and produce sudden,

large changes in prescribing.�e problem does not lie with

any of the individual decision makers, but with the very

philosophical basis of scienti�c inference.We propose that

conventional statistics should not be used in such cases

and that the Bayesian approach is both epistemologically

and practically superior.”�ere is also a structural aspect:

computational facilities; due to recent innovations in sci-

enti�c computing (faster computer processors) and drastic

drops in the cost of computers, the number of statisticians

trained in Bayesianmethodology has increased (Tan ).

Trying to o�er a midpoint perspective, Berger () pro-

poses using both models and studying case by case their

possibilities: “based on the philosophical foundations of

the approaches, Bayesianmodels are best suited to address-

ing hypotheses, conjectures, or public-policy goals, while

the frequentist approach is best suited to those epidemio-

logical studies which can be considered ‘experiments’, i.e.,

testing constructed sets of data.” Usually, we �nd no such

equitable position.

Considering all these facts, we can conclude that both

frequentist and Bayesian statisticians use sound science in

their researches and that, in the end, this debate is a deep

philosophical one, not a matter of rational argument.
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�e foundations of the classical theory of point estimation

are embedded in the work of Frederick Gauss, Karl Pear-

son and Ronald Fisher, though there have beenmany other

contributors, as documented in Stigler’s () historical

masterpiece or, in more technical terms, in Lehmann and

Casella (). In the framework of independent, identi-

cally distributed (i.i.d.) observations, the theory seeks to

obtain good estimators (or “best guesses”) of an unknown

scalar or vector-valued parameter θ based on a “random

sample” of observations drawn from a distribution indexed

by this parameter.�e adjective “frequentist” is o�en used

in referring to classical methods, largely because the the-

ory of their performance is based on the premise that

the experiment from which data is drawn can be repli-

cated repeatedly and that estimators (and other statistical

procedures) may be evaluated and compared on the basis

of their expected performance over the intended number

of replications or on a hypothesized in�nite number of

i.i.d. trials. Finite sample methods leading, for example, to

7least-squares, best-unbiased or best-invariant estimators,
and estimators based on asymptotic theory, the premier

example of which is the maximum likelihood estimators

proposed by Fisher, are generally studied separately and

are, together, the mainstays of the theory and practice of

frequentist estimation.�ese are discussed in more detail

below, as well as elsewhere in the Encyclopedia.

Bayesian estimation theory tends to start at the same

place outlined above. It begins with a model for the

observable data, and assumes the existence of data upon

which inference about a target parameter will be based.

�e important point of departure from classical infer-

ence is the position that uncertainty should be treated

stochastically. From this, it follows that since the target

parameter in a point estimation problem is unknown, one’s

uncertainty about its value is appropriately represented by

a “prior probability distribution” on that parameter. �e

Bayesian position is not simply a whim or a matter of con-

venience; it is in fact motivated and defended through a

system of axioms about the comparison of possible uncer-

tain events and the fact that the axiom system leads to this

position as a derived result. See De Groot () for fur-

ther details.�e Bayesian paradigm for estimation can be

by described as involving three steps: the speci�cation of a

prior distribution (through introspection or the elicitation

of expert opinion), the updating of that prior on the basis of

available data, leading to the “posterior distribution” on the

parameter, and the estimation of the parameter based on

characteristics of the posterior distribution.�e mean of

the posterior distribution is probably the most commonly

used Bayesian point estimator.

Comparisons between frequentist and Bayesian esti-

mators raise some challenging issues. �ere are impor-

tant philosophical di�erences between the approaches that

make it di�cult to compare them side by side. For exam-

ple, the Likelihood Principle (see, for example, Berger

and Wolpert ()) stipulates that inference about an

unknown parameter should depend of the experiment

only through the observed data x = (x, x, . . . , xn) or,

equivalently, through the likelihood function, which for

the present purposes, may be thought of as a constant

multiple of the joint density

L(θ∣x) = f (x∣θ),

with x �xed and known. As a consequence, the process of
averaging over the sample space, as the frequentist does, for

example, in minimizing the variance among unbiased esti-

mators of a parameter, is inappropriate from the Bayesian

viewpoint. Only the observed data, rather than what

might have been observed in the experiment but wasn’t, is

relevant in Bayesian inference about θ. Maximum likeli-

hood estimation, which obeys the likelihood principle in

the sense that its calculation relies solely on the maxi-

mization of L(θ∣x), might thus seem consistent with the
Bayesian approach, but it runs afoul of that paradigm on

the basis of the facts that it fails to quantify the uncertainty

about θ stochastically and its entire theoretical justi�cation

is based on the familiar averaging process over the sample

space, albeit in a limiting sense.

�ere aremany texts, monographs and research papers

which treat Bayesian and frequentist estimators and o�er

some discussion on how one might compare them. In this

brief review, the discussion of this literature is clearly out

of the question. We will limit ourselves to arguments and

theory that may be found in the books by Lehmann and

Casella (), Robert (), Cox () and in the paper

by Samaniego and Reneau (). A more comprehen-

sive treatment of the subject of the comparative analysis of

Bayesian and frequentist point estimators can be found in

the monograph by Samaniego ().�e references cited

in the sources above are wide in scope and will provide

the interested readerwith an enormous collection of collat-

eral reading that is highly relevant to the subject of interest

here.

When one seeks to compare the Bayesian and frequen-

tist approaches to point estimation, onemight begin with a



Bayesian vs. Classical Point Estimation: A Comparative Overview B 

B

foundational issue, namely, which approach has defensible

logical underpinnings. As it happens, this is a rather easy

matter to resolve.�e classical theory of estimation has no

logical underpinnings to speak of.�e theories of unbiased

estimators, invariant estimators and maximum likelihood

estimators (MLEs) are justi�ed by frequentists on intuitive

grounds. For example, “unbiasedness” and “invariance” are

intuitively appealing ways of restricting the class of all pos-

sible estimators, a class which is “too large” and contains

no “best estimator” in any nontrivial problem. Maximum

likelihood estimators “work well” based on a sample of

in�nite size, so perhaps they will work well the given

�nite-sample problem at hand.�e frequentist approach to

estimation is unabashedly ad hoc, and there is widespread

recognition that the particular frequentist tool one might

wish to use in di�erent problems might vary, with least

squares (or its well-known variants) used in regression and

ANOVA problems, UMVUEs used in �nite-sample prob-

lems in which their derivation is feasible and MLEs used

in estimation problems in which the sample size is thought

to be suitably large. In contrast with these circumstances,

the Bayesian approach to point estimation is based on a

system of “plausible” axioms about how one should deal

with uncertainty. �e fact that the Bayesian approach to

statistical inference is built upon a logical basis which one

can formally study and scrutinize places it on a higher “log-

ical” plane than frequentist inference. Most readers of the

axioms of Bayesian inference will �nd them “reasonable”;

for example, the transitivity of one’s assessments about

which events are more likely to occur than others is typi-

cal of the assumptions one is expected to make. On logical

grounds, the Bayesian approach appears to have a strong

advantage. Is that enough to justify the claim that Bayesian

inference is the preferred approach? �e approach does

provide a logically consistent process of prior assessment,

updating and posterior assessment, leading to inference

that can clearly be defended on logical grounds. A dis-

turbing counterargument is that logic, by itself, is not

enough. A�er all, it is possible to be perfectly logical and

yet woefully wrong. Poor prior speci�cation can lead to

logically consistent estimation in which the Bayesian esti-

mator is way o� the mark. Other considerations must be

brought to bear on these comparisons.

Bayesian estimation (as well as other modes of

Bayesian inference) has a fairly apparent Achilles heal, the

fact that the Bayesian interjects subjective prior informa-

tion into the inference process, potentially infusing errors

or biases that would not otherwise be present. �is is a

legitimate concern, and one that the “orthodox” Bayesian

(that is, one who uses a proper probability distribution

for his prior) must always be mindful of and careful

about. While the usual counterargument does di�use the

criticism somewhat, a general �x does not exist.�e argu-

ment that helps mitigate the criticism is that it is o�en the

case that the Bayesian approach is essential in making sen-

sible inferences. For example, a frequentist who observes

ten heads in ten tosses of a newlyminted coin has no choice

but to estimate the probability of heads as p = , while a

typical Bayesian, using a quite reasonable beta prior, might

instead estimate p to be about .. In situations such as

this, Bayesian methods may be seen as a reasonable way of

averting disaster.

�ere are many other grounds on which compar-

isons can be made. Regarding asymptotic performance

for example, it is known that proper Bayes estima-

tors based on priors that place positive mass on all

open subsets of the parameter space enjoy the same

asymptotic properties as the best asymptotically normal

(BAN) estimators of frequentist estimation theory (most

notably, MLEs). Multivariate analysis poses greater chal-

lenges to the Bayesian than to the frequentist, largely

due to the di�culty of obtaining and quantifying useful

prior information on high-dimensional parameters. �e

frequentists would seem to have a bit of an advantage

in this area. Robert () employs decision theoretic

arguments quite prominently in his defense of Bayesian

methods. One of the centerpieces of that defense is the

so-called complete class theorem which, in essence, says

that any admissible decision rule (here, estimator) is Bayes

(or nearly Bayes) with respect to some prior. �is state-

ment begs the question: why ever use anything else? To

some, this argument seems to have obvious weaknesses,

and the question is rather easy to answer.�e fact that an

estimator belongs to a class that contains all the “good”

estimators hardly justi�es its use. A�er all, the estima-

tor that always estimates the scalar parameter θ to be

 is admissible but would (essentially) never be recom-

mended for use. In addition to the inconclusive arguments

above, there are examples on both sides that show that

the other approach gives silly answers to particular statis-

tical questions. Bayesians o�en use the term “incoherent”

when referring to frequentist procedures of this sort. To the

frequentist school, the most pressing concern is the very

real possibility of obtaining poor answers from a Bayesian

analysis due to poor prior input.

Samaniego and Reneau () o�er a quite di�erent,

performance-based comparison of Bayesian and frequen-

tist estimators – the Bayes risk of an estimator relative to

the “truth”, with the latter modeled as a (possibly degener-

ate) “true prior distribution” on the unknown parameter.

�e threshold problem (i.e., �nding the boundary sepa-

rating Bayes estimators that outperform the frequentist

estimator of choice from Bayes estimators that don’t) is

introduced. Explicit solutions to the threshold problem are
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obtained in the context of sampling distributions belong-

ing to one-parameter exponential families, conjugate prior

families and squared error loss. In Samaniego (),

subsequent extensions of this work to the estimation of

high-dimensional parameters and to estimation under

asymmetric loss are treated. While the “true state” of the

target parameter remains unknown throughout these anal-

yses, it is seen that useful practical guidance can nev-

ertheless be gleaned from them. In many problems, the

class of Bayes estimators that are superior to frequentist

alternatives is surprisingly broad. Bayesians who are both

misguided (with a poorly centered prior distribution) and

stubborn (with a tightly concentrated prior distribution)

will generally not do well. Interestingly, it is shown that

one �aw or the other need not be fatal by itself. But per-

haps the most important conclusion of these studies is

the simple fact that that neither the Bayesian nor the fre-

quentist approach to point estimation will be uniformly

dominant in any well-de�ned point estimation problem.

In all such problems, there will be a threshold separat-

ing “good” priors from “bad” ones, and the remaining

challenge, one that is by nomeans trivial, is trying to make

a sensible judgment about which side of the threshold one

is on, given the prior information one has in hand. �is

examination may lead one to a Bayes estimator or to a

frequentist estimator in the particular problem of interest.
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Introduction
�e Behrens–Fisher problem is the problem in statistics

of hypothesis testing and interval estimation regarding the

di�erence between the means of two independent normal

populations without assuming the variances are equal.�e

solution of this problemwas �rst o�ered by Behrens ()

and reformulated later by Fisher () using

t
′
=

(x̄ − x̄) − (µ − µ)
√
s /n + s


/n

= t sin θ − t cos θ,

where the sample mean x̄ and sample variance s

 are

obtained from the random sample of size n from the nor-

mal distribution with mean µ and variance σ  , t = (x̄ −

µ)/
√
s /n has a t distribution with ν = n −  degrees

of freedom, the respective quantities with subscript  are

de�ned similarly, and tan θ = (s/
√
n)/(s/

√
n) or
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θ = tan
−
[(s/

√
n)/(s/

√
n)].�e distribution of t

′
is

the Behrens–Fisher distribution. It is, hence, a mixture of

the two t distributions.

Under the usual null hypothesis ofH: µ = µ, the test

statistic t′, can be obtained and comparedwith the percent-

age points of the Behrens–Fisher distribution. Tables for

the Behrens–Fisher distribution are available from Fisher

and Yates () and Lindley and Scott (). �e table

entries are based on the four numbers: ν, ν, θ, and

the Type I error rate α. For example, Fisher and Yates

() presented signi�cance points of the Behrens–Fisher

distribution in two tables, one for ν = ν = , , ,∞,

θ = 
○
, 

○
, 

○
, 

○
, 

○
, 

○
, 

○
, and α = ., .,

and the other for ν that is greater than ν = , , , , , ,

, θ = 
○
, 

○
, 

○
, 

○
, 

○
, 

○
, 

○
, and α = ., .,

., ..

Using the Behrens–Fisher distribution, the (−α)%

interval that contains µ − µ can be constructed with

x̄ − x̄ ± t
′
α/(ν, ν, θ)

√

s /n + s

/n,

where the probability that t′ > t′α/(ν, ν, θ) is α/ or,

equivalently, Pr[t′ > t′α/(ν, ν, θ)] = α/.

�e Behrens–Fisher t′ statistic and the Behrens–Fisher

distribution are based on Fisher’s () �ducial approach.

�e approach is to �nd a �ducial probability distribu-

tion that is a probability distribution of a parameter from

observed data. Consequently, the interval that involves

t′α/(ν, ν, θ) is referred to as the ( − α)% �ducial

interval.

Example
Driving times from a person’s house to work were mea-

sured for two di�erent routes with n =  and n =  (see

Lehmann , p. ).�e ordered data from the �rst route

are ., ., ., ., . yielding x̄ = . and s

 = .,

and the data from the second route are ., ., ., ., .,

., ., ., ., ., . yielding x̄ = . and s

 = ..

It is assumed that the two independent sampleswere drawn

from two normal distributions having means µ and µ
and variances σ  and σ  , respectively. A researcher wants

to know whether the average driving times di�ered for the

two routes.

�e test statistic under the null hypothesis of equal

population means is t′ = . with ν = , ν = , and

θ = ..�e result, Pr(t′ > .) = ., indicates

the null hypothesis cannot be rejected at α = . when

the alternative hypothesis is non-directional, Ha: µ ≠ µ,

because p = ..�e corresponding % interval for the

population mean di�erence is [−., .].

Other Solutions
�e Student’s t test (see7Student’s t-Tests) for independent
means can be used when the two population variances are

assumed to be equal and σ  = σ  = σ ,

t =
(x̄ − x̄) − (µ − µ)

√
sp/n + s


p/n

,

where the pooled variance that provides the estimate of

the common population variance σ  is de�ned as sp =

[(n − )s

 + (n − )s


] /(n + n − ). It has a t distribu-

tion with ν = n + n −  degrees of freedom.�e example

data yield the Student’s t = ., ν = , the two-tailed p =

., and the % con�dence interval of [., .].

�e null hypothesis of equal population means is rejected

at the nominal α = ., and the con�dence interval does

not contain .

When the two variances cannot be assumed to be the

same, there are several alternative solutions in addition

to use the Behrens–Fisher t′ statistic. One simple way to

solve this two means problem, called the smaller degrees

of freedom t test, is to use the same t′ statistic that has a t

distribution with di�erent degrees of freedom (e.g., Moore

, p. ):

t
′
∼ t[min(ν, ν)],

where the degrees of freedom is the smaller value of ν or

ν. Note that this method should be used only if no statis-

tical so�ware is available because it yields a conservative

test result and a wider con�dence interval. �e example

data yield t′ = ., ν = , the two-tailed p = .,

and the % con�dence interval of [−., .]. �e

null hypothesis of equal population means is not rejected

at α = ., and the con�dence interval contains .

Welch ()’s approximate t test also uses the same

t′ statistic that has a t distribution with the approximate

degrees of freedom ν′ (see Moore , p. ):

t
′
∼ t(ν

′
),

where ν′ = /[c/ν + ( − c)/ν] with c =

(s /n) / [(s

 /n) + (s/n)]. It can be noted that the

equivalent of this Welch’s approximate t test was proposed

by Smith (). Moore () indicated that the approxi-

mation is accurate when both sample sizes are  or larger.

Although there are other solutions, Welch’s approximate t

test currently seems to be the best practical solution to the

Behrens–Fisher problem because of its availability from

popular statistical so�ware including SPSS and SAS.�e

example data yield t′ = ., ν′ = ., the two-tailed

p = ., and the % con�dence interval of [−.,

.].�e null hypothesis of equal population means is
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not rejected at α = ., and the con�dence interval

contains .

In addition to the previous method,Welch (, )

andAspin () presented an approximation of the distri-

bution of t′ by the method of moments (i.e., Welch-Aspin

t test; see Kim and Cohen , for the detailed expansion

terms for the approximation).�e example data yield t′ =

. and the critical value under the Welch-Aspin t test

for the two-tailed test is . at α = ..�e correspond-

ing % con�dence interval is [−., .]. Again, the

null hypothesis of equal population means is not rejected

at α = ., and the con�dence interval contains .

�e Bayesian solution to the Behrens–Fisher problem

was o�ered by Je�reys (). When uninformative uni-

form priors are used for the population parameters, the

Bayesian solution to the Behrens–Fisher problem is identi-

cal to that of Fisher’s ().�e Bayesian highest posterior

density interval that contains the population mean dif-

ference with the probability of  − α is identical to the

( − α)% �ducial interval.

�ere are many solutions to the Behrens–Fisher prob-

lem based on the frequentist approach of the Neyman

and Pearson () sampling theory. Among the meth-

ods, Kim and Cohen () indicated that Welch (,

), Aspin (), and Tsui and Weerahandi () are

the most important ones from the frequentist perspective.

�e critical values and the con�dence intervals from vari-

ous methods under the frequentist approach are in general

di�erent from either �ducial or Bayesian approach. For the

one-sided alternative hypothesis, however, it is interesting

to note that the generalized extreme region to obtain the

generalized p by Tsui andWeerahandi () is identical to

the extreme area from the Behrens–Fisher t′ statistic (see

also Weerahandi , pp. –).

For the example data, the smaller degrees of freedom

t test yielded the most conservative result with the largest

critical value and the widest con�dence interval.�e Stu-

dent’s t test yielded the smallest critical value and the

shortest con�dence interval. All other intervals lie between

these two intervals. Robinson () pointed out that the

di�erences between many solutions to the Behrens–Fisher

problem might be less than their di�erences from the

Student’s t test when sample sizes are greater than .

�e popular statistical so�ware programs SPSS and

SAS produce results from the Welch’s approximate t test

and the Student’s t test as well as the respective con�dence

intervals. It is essential to have a table that contains the

percentage points of the Behrens–Fisher distribution or

computer programs that can calculate the tail areas and

percentage values in order to use the Behrens–Fisher t test

or to obtain the �ducial interval. Note that the Welch’s

approximate t test may not be as e�ective as the Welch-

Aspin t test (Wang ). Note also that the sequential

testing of the population means based on the result from

either Levene’s test of the equal population variances from

SPSS or the folded F test from SAS is not recommended

in general due to the complicated nature of control of the

Type I error in the sequential testing.
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Introduction
In this article we consider the general linear model

y = Xβ + ε, or in shortM = {y, Xβ, σ
V},

where X is a known n × pmodel matrix, the vector y is an
observable n-dimensional random vector, β is a p× vector
of unknown parameters, and ε is an unobservable vector of
random errors with expectation E(ε) = , and covariance
matrix cov(ε) = σ V, where σ  >  is an unknown con-

stant.�e nonnegative de�nite (possibly singular) matrix

V is known. In our considerations σ  has no role and hence

we may put σ  = .

As regards the notation, we will use the symbols A′,
A−,A+,C (A),C (A)�, andN (A) to denote, respectively,
the transpose, a generalized inverse, the Moore–Penrose

inverse, the column space, the orthogonal complement of

the column space, and the null space, of the matrix A. By
(A : B) we denote the partitioned matrix with A and
B as submatrices. By A� we denote any matrix satisfying
C (A�) = N (A′) = C (A)�. Furthermore, we will write
PA = AA+ = A(A′A)−A′ to denote the orthogonal pro-
jector (with respect to the standard inner product) onto

C (A). In particular, we denote H = PX and M = In − H.
One choice for X� is of course the projectorM.
LetK′β be a given vector of parametric functions spec-

i�ed by K′ ∈ IRq×p. Our object is to �nd a (homogeneous)
linear estimator Ay which would provide an unbiased and
in some sense “best” estimator for K′β under the model
M . However, not all parametric functions have linear

unbiased estimators; those which have are called estimable

parametric functions, and then there exists amatrixA such
that

E(Ay) = AXβ = K′β for all β ∈ IR
p
.

Hence K′β is estimable if and only if there exists a matrix
A such that K′ = AX, i.e., C (K) ⊂ C (X′).

�e ordinary7least squares estimator ofK′β is de�ned
as OLSE(K′β) = K′ β̂, where β̂ is any solution to the nor-
mal equation X′Xβ̂ = X′y; hence β = β̂ minimizes (y −
Xβ)′(y − Xβ) and it can be expressed as β̂ = (X′X)−X′y,
while Xβ̂ = Hy. Now the condition C (K) ⊂ C (X′)
guarantees that K′ β̂ is unique, even though β̂ may not be
unique.

The Best Linear Unbiased Estimator
(BLUE) of Xβ
�e expectation Xβ is trivially estimable and Gy is unbi-
ased for Xβ whenever GX = X. An unbiased linear esti-
mator Gy for Xβ is de�ned to be the best linear unbiased
estimator, BLUE, for Xβ underM if

cov(Gy) ≤L cov(Ly) for all L∶LX = X,

where “≤L” refers to the Löwner partial ordering. In other

words, Gy has the smallest covariance matrix (in the
Löwner sense) among all linear unbiased estimators. We
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denote the BLUE of Xβ as BLUE(Xβ) = Xβ̃. If X has full
column rank, then β is estimable and an unbiased estima-
torAy is the BLUE for β ifAVA′ ≤L BVB′ for allB such that
BX = Ip.�e Löwner ordering is a very strong ordering
implying for example

var(β̃i) ≤ var (β∗i ) , i = , . . . , p,

tracecov(β̃)≤ tracecov(β∗), det cov(β̃)≤det cov(β∗),

for any linear unbiased estimator β∗ of β; here “det”
denotes determinant.

�e following theorem gives the “Fundamental BLUE

equation”; see, e.g., Rao (), Zyskind () and

Puntanen et al. ().

�eorem  Consider the general linear model M =

{y, Xβ, V}.�en the estimatorGy is the BLUE for Xβ if and
only if G satis�es the equation

G(X : VX�) = (X : ). ()

�e corresponding condition for Ay to be the BLUE of an
estimable parametric function K′β is A(X : VX�) =

(K′ :).

It is sometimes convenient to express () in the follow-

ing form, see Rao ().

�eorem  (Pandora’s Box) Consider the general linear

modelM = {y, Xβ, V}.�en the estimator Gy is the BLUE
for Xβ if and only if there exists a matrix L ∈ IRp×n so that

G is a solution to

⎛
⎜
⎜
⎝

V X

X′ 

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

G′

L

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝



X′

⎞
⎟
⎟
⎠

.

�e equation () has a unique solution forG if and only
if C (X : V) = IR

n
. Notice that underM we assume that

the observed value of y belongs to the subspace C (X : V)
with probability ; this is the consistency condition of the

linear model, see, e.g., Baksalary et al. (). �e con-

sistency condition means, for example, that whenever we

have some statements which involve the random vector y,
these statements need hold only for those values of y that
belong to C (X : V). �e general solution for G can be
expressed, for example, in the following ways:

G = X(X′W−X)−X′W−
+ F(I n −WW−

),

G = H−HVM(MVM)
−M + F[In −MVM(MVM)

−
]M,

where F and F are arbitrary matrices, W = V + XUX′

and U is any arbitrary conformable matrix such that

C (W) = C (X : V). Notice that even though G may not
be unique, the numerical value of Gy is unique because
y ∈ C (X : V). If V is positive de�nite, then BLUE(Xβ) =
X(X′V−X)−X′V−y. Clearly OLSE(Xβ) = Hy is the BLUE
under {y, Xβ, σ I}. It is also worth noting that the matrix
G satisfying () can be interpreted as a projector: it is a
projector onto C (X) along C (VX�), see Rao ().

OLSE vs. BLUE
Characterizing the equality of the Ordinary Least Squares

Estimator (OLSE) and the BLUE has received a lot of

attention in the literature, but the major breakthroughs

weremade by Rao () and Zyskind (); for a detailed

review, see Puntanen and Styan (). We present below

six characterizations for theOLSE and the BLUE to be equal

(with probability ).

�eorem  (OLSE vs. BLUE) Consider the general linear

model M = {y, Xβ, V}.�en OLSE(Xβ) = BLUE(Xβ) if
and only if any one of the following six equivalent condi-

tions holds. (Note: Vmay be replaced by its Moore–Penrose
inverse V+ and H andM = I −Hmay be interchanged.)

. HV = VH,
. HVM = ,
. C (VH) ⊂ C (H),

. C (X) has a basis comprising orthonormal eigenvectors
of V,

. V = HAH +MBM for some A and B,
. V = αIn +HKH +MLM for some α ∈ IR, and K and L.

Two Linear Models
Consider now two linear models M = {y, Xβ, V} and
M = {y, Xβ, V}, which di�er only in their covari-
ance matrices. For the proof of the following proposition

and related discussion, see, e.g., Rao (, �eorem .,

�eorem .), and Mitra and Moore (, �eorem .,

�eorems .–.).

�eorem  Consider the linear modelsM = {y, Xβ, V}
andM = {y, Xβ, V}, and let the notation {BLUE(Xβ ∣

M) } ⊂ {BLUE(Xβ ∣ M) } mean that every representa-

tion of the BLUE for Xβ underM remains the BLUE for Xβ
underM.�en the following statements are equivalent:

. {BLUE(Xβ ∣ M) } ⊂ {BLUE(Xβ ∣ M) },

. C (VX�) ⊂ C (VX�),
. V = V + XNX′ +VMNMV, for some N and N,
. V = XNX′ +VMNMV, for some N and N.
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Notice that obviously

{BLUE(Xβ ∣ M) } = {BLUE(Xβ ∣ M) } ⇐⇒

C (VX�) = C (VX�).

For the equality between the BLUEs of Xβ under two
partitioned models, see Haslett and Puntanen (a).

Model with New Observations: Best
Linear Unbiased Predictor (BLUP)
Consider the model M = {y, Xβ, V}, and let yf denote
an m ×  unobservable random vector containing new

observations.�e new observations are assumed to follow

the linear model yf = Xf β + εf , where Xf is a known
m × p model matrix associated with new observations, β
is the same vector of unknown parameters as in M , and

εf is an m ×  random error vector associated with new

observations. Our goal is to predict the random vector

yf on the basis of y. �e expectation and the covariance
matrix are

E

⎛
⎜
⎜
⎝

y

yf

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

Xβ

Xf β

⎞
⎟
⎟
⎠

, cov

⎛
⎜
⎜
⎝

y

yf

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

V = V V

V V

⎞
⎟
⎟
⎠

,

which we may write as

Mf =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

⎛
⎜
⎜
⎝

y

yf

⎞
⎟
⎟
⎠

,

⎛
⎜
⎜
⎝

Xβ

Xf β

⎞
⎟
⎟
⎠

,

⎛
⎜
⎜
⎝

V V

V V

⎞
⎟
⎟
⎠

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

.

A linear predictor Ay is said to be unbiased for yf if
E(Ay) = E(yf ) = Xf β for all β ∈ IR

p
.�en the randomvec-

tor yf is said to be unbiasedly predictable. Now an unbiased
linear predictor Ay is the best linear unbiased predictor,
BLUP, if the Löwner ordering

cov(Ay − yf ) ≤L cov(By − yf )

holds for all B such that By is an unbiased linear predictor
for yf .

�e following theorem characterizes the BLUP; see,

e.g., Christensen (, p ), and Isotalo and Puntanen

(, p ).

�eorem  (Fundamental BLUP equation) Consider the

linear modelMf , where Xf β is a given estimable paramet-
ric function.�en the linear estimator Ay is the best linear
unbiased predictor (BLUP) for yf if and only if A satis�es the
equation

A(X : VX�) = (Xf : VX
�
).

In terms of Pandora’s Box (�eorem ), Ay is the BLUP for yf
if and only if there exists a matrix L such that A satis�es the
equation

⎛
⎜
⎜
⎝

V X

X′ 

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

A′

L

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

V

X′f

⎞
⎟
⎟
⎠

.

The Mixed Model
A mixed linear model can be presented as

y = Xβ + Zγ + ε, or in short Mmix = {y, Xβ + Zγ, D, R},

whereX ∈ IR
n×p
andZ ∈ IRn×q are knownmatrices, β ∈ IR

p

is a vector of unknown �xed e�ects, γ is an unobservable
vector (q elements) of random e�ectswith cov(γ, ε) = q×p
and

E(γ) = q, cov(γ) = Dq×q, E(ε) = n, cov(ε) = Rn×n.

�is leads directly to

�eorem  Consider the mixed modelMmix = {y, Xβ +
Zγ, D, R}.�en the linear estimator By is the BLUE for Xβ
if and only if

B(X : ΣX�) = (X : ),

where Σ = ZDZ′ + R. Moreover, Ay is the BLUP for γ if and
only if

A(X : ΣX�) = ( : DZ′X�).

In terms of Pandora’s Box (�eorem ), Ay = BLUP(γ) if
and only if there exists a matrix L such that A satis�es the
equation

⎛
⎜
⎜
⎝

Σ X

X′ 

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

A′

L

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

ZD



⎞
⎟
⎟
⎠

.

For the equality between the BLUPs under two mixed

models, see Haslett and Puntanen (b, c).
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A random variable X is said to have the beta distribu-

tion with parameters a and b if its probability density

function is

fX(x) =


B(a, b)
x
a−

( − x)
b−
,  < x < , a > , b > 

()

where

B(a, b) = ∫



u
a−

( − u)
b−
du

denotes the beta function.�e beta family, whose origin

can be traced to . in a letter from Sir Isaac Newton to

Henry Oldenberg, has been utilized extensively in statisti-

cal theory and practice.

Originally de�ned on the unit interval, many gener-

alizations of () have been proposed in the literature; see

Karian and Dudewicz () for a four parameter gen-

eralization de�ned over a �nite interval, McDonald and

Richards (a, b) for a generalization obtained by power

transformation of X; Libby and Novick () and Armero

and Bayarri () for generalizations obtained by dividing

() by certain algebraic functions; Gordy () for a gen-

eralization obtained by multiplying () by an exponential

function; and, Nadarajah and Kotz () for a generaliza-

tion obtained by multiplying () by a Gauss hypergeomet-

ric function. For further details, the reader is referred to
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Chap.  in Johnson et al. () and Gupta and Nadarajah

().

Some properties of beta distribution () are listed here.

. rth moment about zero

µ′r =
B(a + r, b)

B(a, b)

=
Γ(a + r)Γ(a + b)

Γ(a)Γ(a + b + r)
.

In particular,

E(X) =
a

a + b
,

Var(X) =
ab

(a + b + )(a + b)
.

. Characteristic function

E[e
itX

]= F(a; a + b; it)

where F is the con�uent hypergeometric function de-

�ned by

F(α; β; z) =
∞

∑
k=

(α)k

(β)k

zk

k!
.

.�e random variable

Y =
X

 − X

has the Pearson type VI distribution de�ned by

fY(y) =


B(a, b)

ya−

( + y)a+b
, y > .
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Methodological shortcomings of studies can lead to bias,

in the sense of systematic (nonrandom) distortion of esti-

mates from the studies. Well-recognized shortcomings

(bias sources) include the following: Units may be selected

for observation in a nonrandom fashion; stratifying on

additional unmeasured covariates U may be essential for

the X-Y association to approximate a target causal e�ect;

inappropriate covariates may be entered into the analysis;

and components of X or Y or Z may not be adequately

measured.

In methodologic modeling or bias analysis, one mod-

els these shortcomings. In e�ect, one attempts to model

the design and execution of the study, including features

(such as selection biases and measurement errors) beyond

investigator control. �e process is thus a natural exten-

sion to imperfect experiments and observational studies

of the design-based paradigm in experimental and survey

statistics.
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Bias analysis well established in engineering and pol-

icy research and are covered in many books, albeit in a

wide variety of forms and specialized applications. Little

and Rubin () focus on missing-data problems; Eddy

et al. () focus on medical and health-risk assessment;

andVose () covers general risk assessment.Models for

speci�c biases have a long if scattered history in epidemi-

ology, going back to Berkson () and Corn�eld et al.

(); Greenland and Lash () give a review. Nonethe-

less, methods for statistical inference from bias models

have only recently begun to appear in observational health

research (Robins et al. ; Graham ; Lash and Fink

; Lash et al. ; Phillips ; Greenland a,

, a, b; Gustafson , a, b; Fox et al. ).

Statistical Formulation
Many of the parameters in realistic bias models will not be

identi�able (estimable) from the data, necessitating infer-

ential approaches well beyond those of conventional statis-

tics. �e simplest approach is to �x those parameters at

speci�c values, estimate e�ects assuming those values are

correct, and see how e�ect estimates change as those values

are varied.�is process is an example of 7sensitivity anal-
ysis. One can also assign the parameters prior probability

distributions based on background information, and sum-

marize target estimates over these distributions or over the

resulting posterior distribution.

Consider the problem of estimating the e�ect of X on

Y, given a collection of antecedent covariates Z, as common

in causal inference (see Causation and Causal Inference).

Standard approaches estimate the regression of Y on X

and Z, E(Y∣x,z), and then taking the �tted (partial) regres-

sion of Y on X given Z as the e�ect of X on Y. Usually a

parametric model r(x,z;β) for E(Y∣x,z) is �t and the coe�-

cient for X is taken as the e�ect (this approach is re�ected

in common terminology that refers to such coe�cients as

“main e�ects”); the logisticmodel for a binary Y is themost

common epidemiologic example. Model �tting is almost

always done as if

. Within levels of X and Z, the data are a 7simple
random sample and any missingness is completely

random.

. �e causal e�ect of X on Y is accurately re�ected by the

association of X and Y given Z (i.e., there is no residual

confounding – as might be reasonable to assume if X

were randomized within levels of Z).

. X, Y, and Z are measured without error.

In reality, () sampling and missing-data probabilities may

jointly depend on X, Y, and Z in an unknown fashion, ()

stratifying or adjusting for certain unmeasured (and pos-

sibly unknown) covariates U might be essential for the

association of X and Y to correspond to a causal e�ect of

X on Y, and () some of the X, Y and Z components are

mismeasured.

Selection Biases
Let V = (X,Y,Z). One approach to sampling (selection)

biases posits a model s(v;σ) for the probability of selec-

tion given v, then uses this model in the analysis along

with r(x,z;β), e.g., by incorporating s(v;σ) into the like-

lihood function (Eddy et al. ; Little and Rubin ;

Gelman et al. ; Greenland b) or by using s(v;σ)
−

as a weighting factor (Robins et al. , ; Copas and

Li ; Scharfstein et al. ).�e parameters β and σ

are usually cannot be completely estimated from the data

under analysis, so one must either posit various �xed val-

ues for σ and estimate β for each chosen σ (sensitivity

analysis), or else give β σ a prior distribution and conduct

a Bayesian analysis.

A third, somewhat informal approach between sen-

sitivity and Bayesian analysis is Monte-Carlo risk anal-

ysis or Monte-Carlo sensitivity analysis (MCSA). �is

approach repeatedly samples σ from its prior distribu-

tion, resamples (bootstraps) the data, and re-estimates β

using the sampled σ and data; it then outputs the distri-

bution of results obtained from this repeated sampling-

estimation cycle. MCSA can closely approximate Bayesian

results under certain (though not all) conditions (Green-

land , ), most notably when β and σ are a pri-

ori independent and there is negligible prior information

about β. �ese selection-modeling methods can be gen-

eralized (with many technical considerations) to handle

arbitrary missing data (Little and Rubin ; Robins et al.

, ).

Confounding
Suppose U is a collection of unmeasured (latent) covari-

ates required for identi�cation of the e�ect of X on Y.

One approach to problem () is to model the distribu-

tion of U and V with a probability model p(u,v;β,γ)

= p(y∣u,x,z;β)p(u,x,z;γ). Again, one can estimate β by

likelihood-based or by weighting methods, but because

U is unmeasured, the parameter (β,γ) will not be fully

estimable from the data and so some sort of sensitivity

analysis or prior distributionwill be needed (e.g., Corn�eld

et al. ; Yanagawa ; Robins et al. ; Rosenbaum

; Greenland a, b, , b). Results will

depend heavily on the prior speci�cation given U. For

example, U may be a speci�c unmeasured covariate (e.g.,

smoking status) with well studied relations to X, Y, and Z,
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which a�ords straightforward Bayesian and MCSA ana-

lyzes (Steenland and Greenland ). On the other hand,

U may represent an unspeci�ed aggregation of latent con-

founders, in which case the priors and hence inferences are

more uncertain (Greenland a).

Measurement Error and Misclassification
Suppose that the collection of “true” values V = (X,Y,Z)

has a corresponding collection of measurements or sur-

rogates W (which might include multiple surrogates for

X, Y, or Z).�e measurement-error problem (problem )

can then be expressed as follows: For some or all units, at

least one of the V components is missing, but themeasure-

ments in W that correspond to the missing V components

are present. If enough units are observed with both V

and W complete, the problem can be handled by standard

missing-data methods. For example, given a model for

the distribution of V and W one can use likelihood-based

methods (Little and Rubin ), or impute V components

where absent and then �t the model r(x,z;β) for E(Y∣x,z)

to the completed data (Cole et al. ), or �t the model

to the complete records using weights derived from all

records using a model for missing-data patterns (Robins

et al. ). Direct Bayesian approaches to measure-

ment error are also available (Gustafson ; Greenland

a, b).

Alternatively, there are many measurement-error cor-

rection procedures that adjust the “naïve” β estimates

obtained by �tting the regression using W as if it were

V.�is adjustment is usually accomplished with a model

relating V to W �tted to the complete records, as in

instrumental-variable (regression calibration) corrections

and their extensions (Carroll et al. ). Some recent

methods are based on assuming various subsamples with

information on multiple surrogates are available (so W

may be of much higher dimension than V and may have

complex missing-data patterns) (e.g., Spiegelman et al.

).

All methods assume that missingness in V and W

components is random, which is o�en quite implausi-

ble because noncooperation increases with demands on

subjects, collection of some components may be demand-

ing (e.g., as when W includes diet diaries or biomarkers),

and cooperation may be related to unobserved true values

or confounders. �us selection modeling will be needed

along with measurement modeling to account for this

nonrandom (“nonignorable”) missingness.

Further nonidenti�ed modeling becomes a necessity

if a component of V is never observed on any unit (or,

more practically, if there are too few complete records to

support large-sample missing-data or measurement-error

procedures). Latent-variable methods are natural for this

situation (Berkane ). For example, one could model

the distribution of (V,W) or a su�cient factor from that

distribution by a parametric model; the unobserved com-

ponents of V are then the latent variables in the model.

As before, the parameters will not be fully identi�ed,

making Bayesian methods a natural choice for summary

inferences (Gustafson , a, b; Greenland ,

a, b).

Realistic speci�cation for nonidenti�ed measurement

error models can become quite complex, with inferences

displaying extreme sensitivity to parameter constraints

or prior distributions. Nonetheless, methodologic mod-

eling helps provide an honest accounting for the large

uncertainty that can be generated by even modest mea-

surement error.
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Introduction
A central object in asymptotic likelihood theory is the

calculation of the second-order biases of the maximum

likelihood estimates (MLEs). To improve the accuracy

of these estimates, substantial e�ort has gone into com-

puting the cumulants of log-likelihood derivatives which

are, however, notoriously cumbersome. �e MLEs typi-

cally have biases of order O(n−) for large sample size

n, which are commonly ignored in practice, the justi�-

cation being that they are small when compared to the

standard errors of the parameter estimates that are of order

O(n−/). For small samples sizes, however, these biases

can be appreciable and of the same magnitude as the

corresponding standard errors. In such cases, the biases

cannot be neglected, and for turning feasible estimation

of their size in practical applications, corresponding for-

mulae for their calculation need to be established for

a wide range of probability distributions and regression

models.
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Bias correction has been extensively studied in the

statistical literature and there has been considerable inter-

est in �nding simple matrix expressions for second-order

biases of MLEs in some classes of regressionmodels which

do not involve cumulants of log-likelihood derivatives.

�e methodology has been applied to several regression

models. We focus on the following models: normal non-

linear models (Cook et al. ), generalized log-gamma

regression model (Young and Bakir ), 7generalized
linear models (Cordeiro and McCullagh ), ARMA

models (Cordeiro and Klein ), multivariate nonlin-

ear regression models (Cordeiro and Vasconcellos ),

generalized linear models with dispersion covariates (Bot-

ter and Cordeiro ), symmetric nonlinear regression

models (Cordeiro et al. ), Student t regression model

with unknown degrees of freedom (Vasconcellos and Silva

), beta regression models (Ospina et al. ) and

a class of multivariate normal model where the mean

vector and the covariance matrix have parameters in

common (Patriota and Lemonte ). In general two

parameter continuous distributions, Stósic and Cordeiro

() showed how to symbolically compute the biases of

the MLEs bypassing the traditional computation of joint

cumulants of log-likelihood derivatives.

�e bias approximationmay be used to produce a bias-

corrected estimator by subtracting the bias approximation

from the MLE. Alternatively, an examination of the form

of the bias may suggest a re-parametrization of the model

that results is less biased estimates.

General Formula
Consider that the total log-likelihood function ℓ(θ), based

on n observations not necessarily independent and identi-

cally distributed, is a function of a p× vector θ of unknown

parameters. We assume that ℓ = ℓ(θ) is regular (Cox and

Hinkley ) with respect to all θ derivatives up to and

including those of third order. We introduce the following

log-likelihood derivatives in which we reserve lower-case

subscripts r, s, t, . . . to denote components of the vector θ:

Ur = ∂l/∂θr , Urs = ∂l/∂θr∂θs, and so on.�e standard

notation is adopted for the cumulants of log-likelihood

derivatives κrs = E(Urs), κr,s = E(UrUs), κrs,t = E(UrsUt),

etc, where all κ’s refer to a total over the sample and are, in

general, of order n.�e elements of the informationmatrix

K− are κr,s = −κrs and let κr,s = −κrs denote the corre-

sponding elements of the inverse information matrix K−,

which is of order O(n−).

�e MLE θ̂ of θ can be obtained as a solution of a

system of nonlinear equations Ûr =  for r = , . . . , p.

A general formula for the O(n−) bias of θ̂ for a regular

statistical model with p unknown parameters was given

by Cox and Snell () and Cordeiro and McCullagh

(). Assuming standard regularity conditions (Cox and

Hinkley ), we can expand Ûr =  to obtain Ur +

∑s Urs(θ̂s − θs) + Op() =  and write in matrix notation

U = J(θ̂ − θ) +Op(), where U is the score vector and J is

the observed information matrix. Since J = K + Op(n
/

)

we have U = K(θ̂ − θ) +Op() and

θ̂ − θ = K
−
U +Op(n

−
). ()

Equation  is important to provide higher-order moments

and cumulants of the estimate θ̂. If we now expand Ûr up

to terms of second-order, we obtain

Ur+∑
s

Urs(θ̂s−θs)+



∑
s,t

Urst(θ̂s−θs)(θ̂t−θt)+op() = 

and then by calculating its expected value

∑
s

κrsE(θ̂s − θs) +∑
s

Cov(Urs, θ̂s − θs)

+



∑
s,t

κrst(−κ
st
) + o() = . ()

Up to terms of order O(n−), we can write Cov(Urs, θ̂s −

θs) = Cov (Urs,−∑t κ
stUt) = −∑t κrs,tκ

st
.

Let B(θ̂a) be theO(n
−
) bias of the estimate θ̂a for a =

, . . . , p. Inverting Eq. , we can write B(θ̂a) as (Cox and

Snell )

B(θ̂a) =∑
r,s,t

κ
ar

κ
st
(κrs,t +




κrst)

=∑
r,s,t

κ
ar

κ
st
(κ

(t)
rs −




κrst) . ()

We can verify that the two alternative forms for B(θ̂a)

are equivalent using Bartlett identity. In general regression

models, we can derivematrix expressions for the bias of the

estimate θ̂, sayB(θ̂), fromEq. when the cumulants κ’s are

invariant under permutations of parameters (see Cordeiro

and McCullagh ).

�e estimate θ̂ can be inserted in B(θ̂) to de�ne bias

corrected estimate θ̃ = θ̂ − B̂(θ̂), where B̂(θ̂) is the value

of B(θ̂) at θ̂.�e bias corrected estimate θ̃ is expected to

have better sampling properties than the classical estimate

θ̂. In fact, several simulations presented in the literature

(Botter and Cordeiro ; Cordeiro et al. ; Vascon-

cellos and Silva ; Ospina et al. ; Patriota and

Lemonte ) have shown that the corrected estimates θ̃

have smaller biases than their corresponding uncorrected

estimates, thus suggesting that these bias corrections have

the e�ect of shrinking the corrected estimates toward to the

true parameter values. However, we can not say that the

bias corrected estimates o�er always some improvement
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over the MLEs, since they can have larger mean squared

errors than the uncorrected estimates.

We give a simple example by taking n iid observations

from a normal distribution N(µ, σ ), where we are inter-

ested to calculate the n− biases of the MLEs of µ and

σ . �e elements of the information matrix are: κµ ,µ =

n/σ , κµ ,σ =  and κσ ,σ = n/σ . �e third cumulantes

are easily obtained: κµµµ = κµ ,µµ = κσ ,µµ = κσ ,µσ = κµ ,σσ =

κµσσ = , κµµσ = −κµ ,µσ = n/σ , κσ ,σσ = −n/σ  and

κσσσ = n/σ .�us,B(µ̂) =  since µ̂ = Σyi/n has no bias.

Further, a�er some algebra, B(σ̂) = −σ/n.�is result is

in agreement with the exact bias of σ̂ = {Σ(yi − y)

/n}/

given by E(σ̂) =
√



n

Γ( n−

)

Γ( n

)

σ , which is obtained from the

χn− distribution of (n − )σ̂ /σ . In fact, using Stirling

expansion in E(σ̂) yields E(σ̂) = σ { − 

n
+O(n−)}.

�e corrected estimate of σ is then σ̃ = ( + 

n
) σ̂ .

For a one-parameter model, the n− bias of θ̂ follows

from Eq.  by setting all parameters equal to θ. We obtain

a formula �rst derived by Bartlett ()

B(θ̂) = κ
θθ

(κθθ ,θ +



κθθθ) = κ

θθ
(κ

(θ)

θθ
−



κθθθ) .

Stósic and Cordeiro () presented simple pro-

grams (scripts) that may be used with algebraic manip-

ulation so�ware Maple and Mathematica to calculate

closed-form analytic expressions for the bias corrections

Bµ and Bϕ of the MLEs of the parameters µ and ϕ for arbi-

trary two-parameter continuous distributions through a

straightforward application of Eq. .

While these symbolic computation so�ware packages

have currently the ability to deal with analytic expres-

sions of formidable size and complexity, limitations still

exist, and it turns out that the complexity of the formu-

lae involved in calculating the cumulants of log-likelihood

derivatives for some distributions exceed their capacity.

It is precisely for this reason that they presented equiv-

alent scripts for calculating the bias correction terms

in both frameworks. For some very rare cases neither

Maple nor Mathematica were able to produce closed form

expressions, but even for these, the current scripts may

be expected to produce results on future versions of the

so�wares (under the assumption that backward compat-

ibility of the scripting language is maintained). It should

be pointed out that the above fact does not diminish the

usefulness of either of the so�ware packages (in their cur-

rent versions), as both have produced closed form expres-

sions in a large majority of the tested continuous density

functions.Moreover, in all caseswhere both packages came

up with a closed form expression, the results were found

to be identical stressing the extremely high level of con-

�dence that may be attributed to analytic manipulations

involved.

For both Maple and Mathematica, a�er specifying the

form and the domain of the density function f (y; µ, ϕ)

as well as the assumptions to be made on µ and ϕ (e.g.

µ ∈ IR or µ > ), the program �rst de�nes and ana-

lytically calculates the cumulants (κ’s), the second-order

cumulants are then subsequently inserted into interme-

diate expression for the information matrix, in order to

�nd the inverse information matrix, which are then used

together with the third-order cumulants to produce the

�nal result from Eq. . From now on, we use the nota-

tion ψ′(p) and ψ′′(p) for the derivatives of the digamma

function ψ(p) = d log{Γ(p)}/dp, γ =  − ψ() for the

Euler’s constant and ζ(p) for the Riemann Zeta func-

tion. �e examples below are obtained using these pro-

grams and agree with previously reported results in the

literature:

. Normal distribution with mean µ and variance ϕ

nBµ = , nBϕ = −
 ϕ

n
.

. Inverse Gaussian distribution with mean µ and preci-

sion parameter ϕ

nBµ = , nBϕ =
 ϕ

n
.

. Gamma distribution with mean µ and shape param-

eter ϕ

Bµ = , Bϕ = −
 − ϕψ′(ϕ) + ϕψ′′(ϕ)

n (ϕψ′(ϕ) − )

.

. Weibull distribution with scale µ and shape ϕ (here

E(y) = µΓ( + /ϕ))

Bµ =
µ

 π ϕ n
{π ( −  ϕ)+

 π [+ γ +  ϕ −  γ (+  ϕ)]+ (γ−) ϕ ζ()} ,

Bϕ =
 ϕ (π −  ζ())

π n
.

. Logistic distribution with mean µ and variance

π ϕ/

Bµ = , Bϕ = −


n

ϕ ( π + )

(π + )

.
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. Extreme value distribution with mean µ + γ ϕ and

variance π ϕ/

Bµ =
ϕ ( (− +  γ) π + π −  (− + γ) ζ())

π
,

Bϕ =
− ϕ (π −  ζ())

π
.

. Beta distribution with parameters µ and ϕ

Bµ =


 [ψ′(µ) (ψ′(ϕ) − ψ′(µ + ϕ)) − ψ′(ϕ)ψ′(µ + ϕ)] n
× {− [ψ′(µ + ϕ) (ψ′(µ + ϕ) (ψ′′(µ) − ψ′′(ϕ))

+ψ′(µ)ψ′′(ϕ))]

+ ψ′(ϕ) [−ψ′′(µ) + ψ′′(µ + ϕ)]

+ψ′(ϕ) [ψ′(µ + ϕ)ψ′′(µ) + ψ′(µ)ψ′′(µ + ϕ)]} ,

Bϕ =


 [ψ′(µ) (ψ′(ϕ) − ψ′(µ + ϕ)) − ψ′(ϕ)ψ′(µ + ϕ)] n
× {ψ′(µ + ϕ) [ψ′′(µ) − ψ′′(ϕ)]

+ ψ′(µ)ψ′(µ + ϕ)ψ′′(ϕ)
+ψ′(µ) [−ψ′′(ϕ) + ψ′′(µ + ϕ)]

+ψ′(ϕ) [− (ψ′(µ + ϕ)ψ′′(µ)) + ψ′(µ)ψ′′(µ + ϕ)]} .

. Student t distribution with location parameter µ and

dispersion parameter ϕ

Bµ = , Bϕ =
− (− +  ν + ν) ϕ

n ν ( + ν)
.

When ν tends to in�nity, we obtain Bϕ = −ϕ/(n)

as is well known in the normal case.

. Generalized Rayleigh distribution with mean

Γ(ϕ+



)

√
µ Γ(ϕ+)

and variance 
µ
[ + ϕ −

Γ(ϕ+ 

)


Γ(ϕ+)
]

Bµ =
µ [− ψ′( + ϕ) +  ( + ϕ) ψ′( + ϕ) − ( + ϕ) ψ′′( + ϕ)]

 [− + ( + ϕ) ψ′( + ϕ)]
,

Bϕ =
− + ( + ϕ) ψ′( + ϕ) − ( + ϕ) ψ′′( + ϕ)

 n [− + ( + ϕ) ψ′( + ϕ)]
.

. Type I Gumbel distribution with mean
γ+log(ϕ)

µ
and

variance π

 µ

Bµ =
 µ (π −  ζ())

π n
,

Bϕ =
 ϕ

 π n
{ (− +  γ + γ


) π


+ π


+  π


log(ϕ)



+  log(ϕ) [( + γ) π

−  ζ()]

− (− + γ) ζ()} .

. Type II Gumbel distribution with mean ϕ


µ Γ ( − 

µ
)

and variance

ϕ


µ

⎡
⎢
⎢
⎢
⎣
Γ( −



µ
) − Γ( −



µ
)

⎤
⎥
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,
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− ϕ (π −  ζ())

π n
.

For these twelve distributions tested, Maple fails to

yield closed form analytic expressions for bias corrections

Bµ and Bϕ for the extreme value, Student t, type I Gumbel

and Fisher-Tippett distributions, whereas Mathematica

fails only for the 7logistic distribution. Comparing the
equations obtained with Maple and Mathematica with

some results previously reported in the literature, we note

that, in most cases, all of the terms fully agree with the

previously reported results, and where discrepancies were

observed, it was found that the current results are cor-

rect, and errors were identi�ed in the previous publica-

tions.�is fact builds con�dence regarding the correctness

of the presented scripts, and the ability of these so�ware

for analytic formulae manipulation, so that application of

the scripts to other density functions may be expected to

produce reliable closed form expressions.

It is worth emphasizing that there are other methods

to obtain bias corrected estimates. In regular parametric

problems, Firth () developed the so-called “preven-

tive” method, which also allows for the removal of the

second-order bias. His method consists of modifying the

original score function to remove the �rst-order term

from the asymptotic bias of these estimates. In exponential

families with canonical parameterizations, his correction

scheme consists in penalizing the likelihood by the Jef-

freys invariant priors. �is is a preventive approach to

bias adjustment which has its merits, but the connections

between our results and his work are not pursued here. We

should also stress that it is possible to avoid cumbersome

and tedious algebra on cumulant calculations by using

Efron’s bootstrap; see Efron and Tibshirani (). We use
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the analytical approach here since this leads to a nice

formula. Moreover, the application of the analytical bias

approximation seems to generally be themost feasible pro-

cedure to use and it continues to receive attention in the

literature.
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�e binomial distribution is one of the most important

distributions in Probability and Statistics and serves as a

model for several real life problems. Special cases of it were

�rst derived by Pascal () and Bernoulli ().

De�nition and genesis. Denote by X the number of
successes in a sequence of n (≥ ) independent trials of

an experiment, and assume that each trial results in a suc-

cess (S) or a failure (F) with respective probabilities p

( < p < ) and q = −p.�e random variable (rv)X is said

to have the binomial distribution with parameters n and p,

and it is denoted by B(n, p).�e probability mass function

(pmf) f (x) of X is given by

f (x) = P(X = x) = (
n

x
)p
x
q
n−x
, x = , , , . . . ,n, ()

where (
n

x
) = n!/x!(n − x)! for  ≤ x ≤ n and  otherwise.

In fact a typical element of the event {X = x} is a

sequence SSFS . . . SF of x S’s and n − x F’s, having prob-

ability pxqn−x because of P(S) = p and the independence

of the trials. Since there are (
n

x
) such distinct allocations of

x S’s and n − x F’s, the result follows.

�e name of the distribution is due to the binomial the-

orem, which implies that B(n, p) is a proper probability

distribution, since f (x) ≥  for x ∈ R and

n

∑
x=

f (x) =
n

∑
x=

(
n

x
)p
x
q
n−x

= (q + p)
n
= . ()

�e cumulative distribution function (cdf) of X is related

with the incomplete beta function by the formula

F(x)= P(X ≤ x) = ∑
x
i= (

n

i
)piqn−i

= (n − x)(n
x
) ∫

q


tn−x−( − t)xdt, x = , , , . . . ,n.

()
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Its 7moment generating function (mgf) is

M(t) = E(e
tX
) =

n

∑
x=

e
tx
(
n

x
)p
x
q
n−x

= (q + pe
t
)
n

()

from which the mean and the variance follow as

µ = E(X) =M′
() = np, σ  = Var(X) = E(X) − µ

=M′′
() − (M′

())

= npq.

()

When n = , the binomial distribution B(n, p) is known as

the Bernoulli distribution.

By substitution, we get from () the recurrence relation

f (x) =
(n − x + )p

xq
f (x − ), x = , , . . . ,n, ()

which along with the initial condition f () = qn is very

useful for calculating binomial probabilities. It follows

from () that if (n + )p is not an integer, then f (x) has

a unique mode at x = [(n + )p]. If (n + )p is an integer,

then f (x) has two modes, one at x = (n + )p and one at

x = (n + )p − .

�e binomial distribution arises whenever a sample

of size n is drawn randomly with replacement from a

population containing just two types of elements.

Urn models. From an urn containing w white and b
black balls, n balls are drawn randomly with replacement.
Let X be the number of white balls drawn.�en

f (x)=P(X = x)= (
n

x
)(

w

w + b
)
x

(
b

w + b
)
n−x

, x= , , , . . . ,n.
()

In fact considering as a success S the drawing of a

white ball, and noting that that the n balls are drawn ran-

domly with replacement, it follows that X is the number of

successes in a sequence of n independent trials of an exper-

iment with success probability p = w/(w + b).�e result

then follows from ().

Assume now that the balls are drawn randomly with-

out replacement and denote by Y the number of white balls

drawn.�e rv Y follows the hypergeometric distribution

with pmf

g(x) = P(Y = x) =
(
w

x
)(

b

n−x
)

(
w+b

n
)
, x = , , , . . . ,n. ()

If, in addition, w/(w + b) → p ( < p < ), as w →∞ and

b→∞, it follows from () that

lim
w,b→∞

g(x) = (
n

x
)p
x
q
n−x
, x = , , , . . . ,n. ()

�e last equation practically means that g(x) is approxi-

mately equal (≃) to the RHSof () for largew and b in com-

parison to n.�e approximation is considered adequate if

w + b > n.

�e binomial distribution converges to the following

distribution named a�er Poisson.

Poisson convergence (Poisson ). Let Xn be a
sequence of rv’s distributed as B(n, pn) and assume that as

n→∞, pn →  and npn → λ (> ).�en

lim
n→∞

(
n

x
)p
x
n( − pn)

n−x
= e

−λ λx

x!
, x = , , , . . . . ()

In practice, () means

(
n

x
)p
x
q
n−x

≃ e
−np (np)

x

x!
()

for large n and small p.�e approximation is quite accurate

if n ≥  and p ≤ . or if n ≥  and p ≤ ..

�e binomial distribution can be approximated by the

normal distribution.

Normal approximation. Let X be a rv distributed as
B(n, p). Since X can be viewed as a sum of n indepen-

dent Bernoulli rv’s, a direct application of theCentral Limit

�eorem yields the following approximation for the cdf

of X

F(x) = P(X ≤ x) ≃ Φ(
x − np
√
npq

) ()

where Φ(⋅) denotes the cdf of the standard normal dis-

tribution. If a 7continuity correction is used we have the
following improved approximation

F(x) = P(X ≤ x) ≃ Φ(
x + . − np

√
npq

) ()

�e approximation is fairly good provided n and p are such

that npq > .

�e approximation of binomial probabilities by the

normal distribution was proved by de Moivre () for

p = / and for arbitrary values of p by Laplace ().

We end this note by the following example.

Example.�e manager of Alpha Airlines knows from
past data that % of the passengers who buy Alpha tick-

ets do not show up for travel. Based on this, Alpha Airlines

sell  tickets when the available seats in their planes are

only . Find the probability that each ticket holder show-

ing up will �nd a seat available and hence there will be no

complaints.

Solution. Denote by X the number of ticket holders
who do not show up for travel. �en the required prob-

ability is P(X ≥ ) =  − P(X ≤ ). Assuming that

each of the  ticket holders has the same probability
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p = . of not showing up, independently of the oth-

ers, we have that X is distributed as B(, .).�erefore,

the exact probability of no complaints is P(X ≥ ) =

−∑

x= (



x
)(.)

x
(.)

−x
=..�ePoisson approx-

imation by () gives P(X ≥ )≃ − ∑

x= e

−

x
/x! =

..�e normal approximation by () is P(X ≥ ) ≃

 − Φ ((−)/
√
.)=Φ(.)=.. Finally, the

normal approximation with continuity correction by () is

P(X≥)≃−Φ ((+.−)/
√
.)=Φ(.)=..
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Bioinformatics is a relatively young, cross-disciplinary

research area at the intersection of the biological sciences

with the mathematical, statistical, and physical sciences

and chemistry and information technology. In the past

decade or so, there has been phenomenal growth of life

science databases. For example, the most widely used

nucleotide sequence database is Genbank that is main-

tained by the National Center for Biotechnology Infor-

mation (NCBI) of the US National Library of Medicine;

as of February  it contained approximately  bil-

lion nucleotides from  million sequences. Its size con-

tinues to grow exponentially as more genomes are being

sequenced. However, there is a very large gap (that will

take a long time to �ll) between our knowledge of the

functioning of the genome and the generation (and stor-

ing) of raw genomic data.�is overview touches brie�y on

those aspects of bioinformatics that will be of interest to

statisticians.

�e stated goal for many researchers is for develop-

ments in Bioinformatics to be focused at �nding the fun-

damental laws that govern biological systems, as in physics.

However, if such laws exist, they are a long way from

being determined for biological systems. Instead the cur-

rent aim is to �nd insightful ways to model limited com-

ponents of biological systems and to create tools which

biologists can use to analyze data. Examples include tools

for statistical assessment of the similarity between two or

more DNA sequences or protein sequences, for �nding

genes in genomic DNA, for quantitative analysis of func-

tional genomics data, and for estimating di�erences in

how genes are expressed in say di�erent tissues, for anal-

ysis and comparison of genomes from di�erent species,

for phylogenetic analysis, and for DNA sequence analysis

and assembly. Tools such as these involve statistical mod-

eling of biological systems. Although the most reliable way

to determine a biological molecule’s structure or function

is by direct experimentation, there is much that can be

achieved in vitro, i.e., by obtaining the DNA sequence of

the gene corresponding to an RNA or protein and ana-

lyzing it, rather than the more laborious �nding of its

structure or function by direct experimentation.

Much biological data arise frommechanisms that have

a substantial probabilistic component, the most signi�cant

being the many random processes inherent in biological

evolution, and also from randomness in the sampling pro-

cess used to collect the data. Another source of variability

or randomness is introduced by the biotechnological pro-

cedures and experiments used to generate the data. So the

basic goal is to distinguish the biological “signal” from

the “noise”. Today, as experimental techniques are being

developed for studying genome wide patterns, such as

expression arrays, the need to appropriately deal with the

inherent variability has been multiplied astronomically.

For example, we have progressed from studying one or
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a few genes in comparative isolation to being able to

evaluate simultaneously thousands of genes. Not onlymust

methodologies be developed which scale up to handle the

enormous data sets generated in the post-genomic era,

they need to become more sensitive to the underlying

biological knowledge and understanding of the mecha-

nisms that generate the data. For statisticians, research has

reached an exciting and challenging stage at the interface

of computational statistics and biology.�e need for novel

approaches to handle the new genome-wide data has coin-

cided with a period of dramatic change in approaches to

statistical methods and thinking.�is “quantum” change

has been brought about, or even has been driven by, the

potential of ever more increasing computing power. What

was thought to be intractable in the past is now feasi-

ble, and so new methodologies need to be developed and

applied.

Unfortunately too many of the current practices in

the biological sciences rely on methods developed when

computational resources were very limiting and are o�en

either (a) simple extensions of methods for working with

one or a few outcome measures, and do not work well

when there are thousands of outcome measures, or (b)

ad-hoc methods (that are commonly referred to as “statis-

tical” or “computational”, or more recently “data mining”!

methods (see 7Data Mining)) that make many assump-
tions for which there is o�en no (biological) justi�cation.

�e challenge now is to creatively combine the power of

the computer with relevant biological and stochastic pro-

cess knowledge to derive novel approaches and models,

using minimal assumptions, and which can be applied at

genomic wide scales. Such techniques comprise the foun-

dation of bioinformatic methods in the future.

Hidden Markov model (HMMs) is a tool that is pop-

ular in bioinformatics. Here, applications of HMMs are

related to prediction of protein-coding regions in genome

sequences, modeling families of related DNA or protein

sequences or prediction of secondary structure elements

from protein primary sequences. Biological data are the

result of evolution, that is, the result of an incredibly com-

plex, and currently unknown, stochastic process. Very sim-

pli�ed models of this process are o�en used, particularly

for the construction of phylogenetic trees. Such evolution-

ary models have been developed as both discrete time and

continuous time processes. A key requirement of these

processes is that they be reversible, since statistical com-

parisons of, say, two contemporary species, can require

one tracing up the tree of evolution to a common ances-

tor and then down the tree to the other species, and so

the stochastic process for tracing must be the same in each

direction.

Of recent years, gene expression data have become

of increasing interest to statistical scientists. �e tech-

nology has evolved too. Such data are being generated

using technologies like microarrays, and very recently,

next-generation sequencing.�ese data can be thought of

as lying in very high dimensional space, and the resul-

tant challenges are at the forefront of modern statistical

science.

In the past, biologists looked at genes and proteins one

at a time. Now we have the technology to start to look

at all the elements – genes, mRNA, proteins, interactions,

and so on - in a biological system, and to explore their

relationships as the system functions in response to bio-

logical, and environmental, perturbations.�is is known

as systems biology.�e long-term goal is to have (math-

ematical) models to describe the behavior of the system

given any kind of perturbation, and then to be able to

redesign systems by modi�cations, such as drugs, to have

completely new properties.�e key question is whether it

is possible to take a systematic approach to mapping path-

ways. �e preliminary step involves building a compre-

hensive “sca�old” of molecular interactions that broadly

covers many aspects of cellular function and physiologi-

cal responses. At the broad, overall level, statistical data

mining approaches are used to search for patterns and

relationships between variables, and Bayesian networks

model conditional dependencies. At a more detailed level,

Markov chains model predictions, loss and interconver-

sion among molecular species and states. Today, systems

biology is very much in its infancy, but with a challeng-

ing future that will also involve expansion to include many

more levels of complexity.

An excellent starting point reference for statisticians

is Ewens and Grant (). Bioconductor (http://www.

bioconductor.org) is an open source and open develop-

ment so�ware project for the analysis of genomic data.
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“Statistics in Biopharmaceutical Research” is the title of

the on-line journal launched by the American Statistical

Association in .�ere are at least two other interna-

tional peer-reviewed journals completely dedicated to the

use of statistics to support the development of pharma-

ceutical products. �ey are Journal of Biopharmaceutical

Statistics (Taylor and Francis Group) and Pharmaceutical

Statistics (John Wiley and Sons). �ere are many books

devoted to this area of statistical applications also, e.g.,

Senn (), Dmitrienko et al. () and Dmitrienko

et al. (). In the United States, pharmaceutical and

biotech industries employ thousands of statisticians, either

directly or indirectly. �ese statisticians support the dis-

covery, development and commercialization of valuable

medicines, medicines that have made substantial contri-

butions to a longer life expectancy and a better quality of

life in the past  years.

�e development of pharmaceutical products is a long

and high risk proposition. It takes an average of  years for

a new compound to be discovered and eventually submit-

ted to regulators for approval. As of , the cost of devel-

oping a new drug is estimated to be between $ million

and $ billion US dollars (Masia ). Biopharmaceutical

research begins in the laboratory where chemists synthe-

size compounds and biologists screen the compounds for

activities. Because of the large number of compounds, it

is essential to develop an e�cient algorithm-based pro-

cess to conduct high-throughput screening for the maxi-

mum yield of promising compounds. Once a compound

is judged to meet the level of required potency, it needs

to go through formulation development so that the active

ingredient could be delivered to the target site of actions in

test subjects.�e �rst test subjects are laboratory animals

used to evaluate the e�ect of the compound on cardiovas-

cular function, reproductive function, tumor development

and the general wellbeing of o�spring born to animals

exposed to the compound.Most of the animal experiments

are conducted according to the International Conference

onHarmonisation (ICH) guidanceM(R) () onnon-

clinical safety studies.�e need to use the smallest number

of animals at this preclinical testing stage has led to the use

of e�cient experimental designs with repeated measures

on each animal. In addition, data mining techniques (see

7Data Mining) are used widely to search for chemical and
physical properties that tend to associate with compounds

that turn out to be successful.

�e majority of statistical support in biopharmaceu-

tical research takes place during the clinical testing in

humans. In the United States, this support has grown

substantially since the  Kefauver-Harris Amendment

(Krantz ) that required drug sponsors to prove a prod-

uct’s safety and e�cacy in controlled clinical trials before

receiving marketing authorization. It is usually thought

that the �rst properly randomized control trial in the

twentieth century that was recorded involved the use of

streptomycin for the treatment of pulmonary tuberculo-

sis (MRC, ). Since that time, the number of clinical

trials (both randomized and non-randomized) has sky-

rocketed as evidenced by the number of trials registered

at the www.clinicaltrials.gov site in the United States.

�e clinical development of a new treatment is o�en

divided into three phases. All clinical trials need to follow

ICH E guidance on good clinical practice () and the

 Declaration of Helsinki. In Phase  trials, healthy vol-

unteers are randomized to receive a single dose or multiple

doses of the compound or a placebo to study the toler-

ance and pharmacokinetics of the new compound. �e

objective is to decide an acceptable dose range. For cyto-

toxic agents, Phase  trials are conducted in cancer patients

with the objective to estimate themaximum tolerated dose.

Because of the small number of subjects (e.g., –) at

this stage, safety evaluation focuses on identifying com-

mon side e�ects of the new treatment. If the tolerance

and pharmacokinetic pro�les based on the limited data are

judged to be acceptable, testing will proceed to Phase .

In Phase , treatment using the new compound will

be compared against a concurrent comparator (placebo,

an approved product or the standard of care) in patients

with the target disease.�e primary objective is to gather

safety and e�cacy data in patients. Di�erent dose strengths

are typically used in these trials to help estimate the dose–

response relationship. �e latter o�en involves �tting an

Emaxmodel or logistic model. For oncology trials, Phase 

studies can be a single arm study using the maximum

tolerated dose estimated from Phase . Some researchers

further divide Phase  into Phase a proof-of-concept and

Phase b dose-ranging studies.�e former o�en includes

a single dose strength to verify the hypothesized mech-

anism while the latter uses di�erent dose strengths and

clinically relevant endpoints. Phase  and Phase  trials are

designed to help a sponsor learn about the new treatment

(Sheiner ).�ey are exploratory in nature and the anal-

ysis will focus on estimation instead of hypothesis testing.
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�is is a critical phase of product development. It is during

this stage that important information on dose(s), dosing

schedule(s), endpoints and the target population will be

evaluated and decided upon. Statistics is heavily used to

design trials, to analyze the results and to make Go or

No-Go decisions.

If data from the Phase  development o�er good rea-

sons to believe that the new treatment has a positive bene�t

to risk balance and can bring value to patients, develop-

ment will move into the con�rmatory stage, or Phase . In

general, Phase  trials are double-blind randomized trials

if blinding is at all possible.�ese trials are typically large

(hundreds to thousands of patients) with a longer dura-

tion.�e primary objective is to con�rm the presence of

a treatment e�ect and to collect additional safety infor-

mation in a more diverse population. In terms of e�cacy

assessment, it could be either superiority over a compara-

tor or non-inferiority to an active control (ICH E ).

For life-threatening conditions, interim analyses are o�en

conducted to stop a trial early for e�cacy (positive out-

come) or futility (negative outcome) for ethical reasons.

Interim analyses are typically conducted by individuals

independent of the study and reviewed by an Indepen-

dent Data Monitoring Committee (FDA DMC guidance

). Except for those pre-speci�ed in the protocol as

possible mid-trial adaptations, changes are strongly dis-

couraged at this stage.Whenmultiple comparisons (multi-

ple doses, multiple endpoints, multiple subgroups, interim

e�cacy analysis etc.) are conducted for inferential pur-

poses, the signi�cance levels for comparisons need to be

properly adjusted so that the family-wide Type I error

rate is strongly controlled.�e adjustment method needs

to be pre-speci�ed and can’t be changed once the trial

results become known. In short, the design and analysis

of Phase  trials need to be carefully planned and rigor-

ously executed. Statistical principles, as articulated in ICH

E (), should be followed with very few deviations.

Deviations, when occurring, need to be justi�ed and sensi-

tivity analyses should be conducted to evaluate the impact

of the deviations on conclusions. Statistics is the basis for

inferential conclusions in these trials.

A�er a product receives a marketing authorization,

testing typically continues for additional uses of the prod-

uct. A new product could also be included in a head-

to-head comparison against another marketed product

for di�erentiation or comparative e�ectiveness research.

Much of the work on comparative e�ectiveness is to sup-

port the valuation of a new product, particularly in regions

where a government board decides if a new product is

eligible for reimbursement and the price of the product

under a national healthcare system. �ese e�orts o�en

involve pooling data from multiple studies and can rely

on endpoints di�erent from those used to make mar-

keting authorization decision.�e work requires statisti-

cians to collaborate closely with health economists, health

care providers, third party payers and patients. Systematic

review (including7meta-analysis) is o�en an integral part
of such e�orts.

Following several highly visible product withdrawals,

the safety of pharmaceutical products has been a major

source of public attention in recent years. Data from

clinical trials, spontaneous reports of adverse reactions

collected in pharmacovigilance databases and longitudinal

patient information from healthcare or claims databases

are increasingly used to explore possible product-induced

injuries. Statistical techniques, based on the concept of

proportionality (Almeno� et al. ), have been devel-

oped and applied extensively to look for possible safety

signals.

�e decrease in the overall productivity measured by

the number of approved new molecular entities each year

has led industry and regulators to look for better ways

to conduct biopharmaceutical research. Examples include

FDA’s Critical Path Initiative (, http://www.fda.gov/

ScienceResearch/SpecialTopics/CriticalPathInitiative/)

and European Union’s Innovative Medicines Initiative

() (http://www.imi.europa.eu/index_en.html). One

outcome from this emphasis is the extensive research on

adaptive trial designs over the last  years (Gaydos et al.

; Bornkamp et al. ; Bretz et al. ; Gallo et al.

 etc.). Research on adaptive design includes designs

for dose-ranging studies and con�rmatory studies. Central

to the concept of adaptive designs is a more e�cient use of

data and a more agile response to accumulated evidence

on the e�ect of a new treatment.

In biopharmaceutical research, statisticians are at the

heart of evidence collection, synthesis and communica-

tion. Statisticians have enormous opportunities and face

probably an equal number of challenges. We can expect

both opportunities and challenges to increase in the

twenty-�rst century. Statisticians need to be in tune with

the dynamic environment, to help meet the needs of mul-

tiple customers, to cash in on the opportunities and rise to

the challenges (Chuang-Stein et al. )!
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�e term Biostatistics is formed from the words biology

and statistics, but these days more commonly refers to a

somewhat narrower coverage of statisticalmethods needed

in medicine and public health. In its broadest sense, bio-

statistics is the science of collecting and analyzing biolog-

ical data to create knowledge about biological processes.

�e �eld of biostatistics (even as the term is generally

used today) is wide and in its scope includes applications

in clinical medicine, public health, epidemiology, genet-

ics (genomics and all the other ’omics), health services,

7demography, and laboratory research. An essential part
of the practice of biostatistics is collaboration between the

statistician and themedical scientist or health professional.

To give some insight into the very many facets encom-

passed by biostatistics we use the �ve central principles
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of applied statistics (of which Biostatistics arguably can

be regarded as the largest branch) proposed by Cox

().

. Formulation of Objectives: �is can vary very widely,

dependent on the biological, health and related envi-

ronmental issues being studied. Such issues range over,

for example, calculations of birth and death rates, and

life expectancy, �nding the genomic and environmen-

tal basis of complex disease, evaluating the e�cacy

of a new treatment/drug, determination of e�cacious

dose for reliable drug production in pharmaceutical

research, improving the delivery of health care. It can

be useful to distinguish between decision-making and

inference. A Bayesian approach is usually to be pre-

ferred for decisionmaking in a narrow sense. Inference

of causality is o�en a major objective and is widely

studied, particularly in epidemiology. In the early stage

of an investigation, biostatisticians can be important in

helping to focus on the speci�c formulation of concrete

objectives.

. Study design: �is ranges from observational studies

and sample surveys, to secondary analysis of collected

data, through to experimental design. Major study

types include the ecologic study, the cross-sectional

study, the case-control study, the cohort study and

clinical trials.

. Measurement: �e actual entities being measured

depend on the objectives, and speci�c situation, and

range from instrument measurements to quality of life

measures. Basic criteria include relevance, precision

and minimal (preferably no) bias. Care may be needed

to ensure that data quality does not drop if too many

measurements are being taken, particularly when deal-

ing with human subjects. One also needs to avoid any

confounding e�ect on the system due to the measure-

ment process itself; a much-studied example is the

placebo e�ect in human studies.

. Analysis of Biostatistical Data: �e three basic, com-

mon phases in any statistical data analysis are data edit-

ing and quality control, preliminary, o�en exploratory,

analysis and graphics, and more detailed analysis. Of

recent years there has been an explosion in statisti-

cal reasoning and methods for analysis of studies of

human health. Examples include developments in epi-

demiological methods, clinical trials, survival analy-

sis, statistical inference based on likelihood methods,

7statistical genetics. Although much analysis is based
on probabilistic models, increasingly purely algorith-

mic approaches, such as cluster analysis (see 7Cluster
Analysis: An Introduction), machine learning and

7bioinformatics, are being used.�is is particularly the

case in the analyses of extremely large data sets where

the current challenge is dealing with the extremely

large number of measurements that is many times the

number of observations.

. Interpretation:�e borderlinewith analysis is not clear-

cut, but it is fundamentally important that biostatisti-

cians present the conclusions in a way that is readily

interpretable by the relevant members of the health

community.

�e human context of biostatistics di�erentiates it from

other areas of applied statistics. In particular, ethical issues

may arise, patients o�en do not make ideal “experimen-

tal units” and establishment of causation (as in all areas

of biology) can be problematic. To achieve evidence-based

medical practice, the Cochrane Collaboration was estab-

lished in  with the aims of facilitating meta-analyses

of randomized clinical trials, to disseminate results e�ec-

tively, and update these regularly.

Many parts of the global �eld of biostatistics have

become disciplines in their own right, such as statistical

genetics, demography, actuarial science, methods for clin-

ical trials, as well as bioassay. O�en there is overlap with

a part of another scienti�c area; one such example is the

recently emerged discipline of bioinformatics.

Many journals are either entirely devoted to biostatis-

tics (including Biostatistics, Statistics in Medicine, Statis-

tical Methods for Medical Research) or have a substantial

part devoted (including Biometrics, Biometrical Journal).

�ere are specialist journals for speci�c subareas, (such as

Pharmaceutical Statistics, Journal of the Society for Clinical

Trials). Besides specialist societies dealing with a subarea,

many of the major statistical societies have a Biostatistics

(or 7Medical Statistics) section.
Biostatistical so�ware has been expanding rapidly to

handle developments of new methodology, as well as

changing to meet the ongoing improvements in computer

power and capability.�ere is an enormous, exponentially

growing, number of biostatistics reference and textbooks,

aimed at the great variety of backgrounds of those inter-

ested in biostatistics.

�e Encyclopedia of Biostatistics () o�ers a rela-

tively de�nitive reference on the development and use of

statisticalmethods for addressing the problems and critical

questions that confront scientists, practitioners and policy

makers involved in the medical and life sciences.�erein,

broad sections of the subject were identi�ed, covering spe-

ci�c biostatistical work (clinical trials, epidemiologic stud-

ies, clinical epidemiology, vital and health statistics, health

services research, laboratory studies, biological models,

health surveys and biomedical experiments), as well as

particular branches of statistical methodology of special
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biostatistical interest (7categorical data analysis, statisti-
cal models, longitudinal data analysis, multivariate anal-

ysis, survival analysis, sampling and experimental design,

statistical computing), medical specialities with statistical

applications, human genetics and genetic epidemiology.

�e growing importance and application of

7biostatistics is re�ected in the increasing number of
statisticians employed in the healthcare sector, pharma-

ceutical industry and medical schools.�e boundaries are

vague as the discipline of biostatistics is broad, linking a

theoretical discipline, namely mathematical statistics, to

a diversity of applied sciences relevant to medicine and

human health.
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Bivariate distributions allow one to model the relationship

between two random variables, and thus they raise subject

areas such as dependence, correlation and conditional dis-

tributions. We consider the continuous and discrete cases,

separately.

Continuous Bivariate Distributions
Let (X,Y) denote two random variables de�ned on a

domain of support Λ ⊂ IR

, where we assume Λ is an open

set in IR

.�en a function f : Λ → IR+ is a joint bivari-

ate pdf (probability density function) if it has the following

properties:

f (x, y) > , for (x, y) ∈ Λ

∫ ∫

Λ

f (x, y)dxdy =  ()

P((X,Y) ∈ S) = ∫ ∫

S

f (x, y)dxdy, for any S ⊂ Λ

�e joint cdf (cumulative distribution function) is given by:

F(x, y) = P(X ≤ x,Y ≤ y) = ∫
y

−∞
∫

x

−∞
f (v,w)dvdw ()

where  ≤ F(x, y) ≤ .�e probability content of a rectan-

gular region S = {(x, y) : a < x < b, c < y < d} can be

expressed in terms of the cdf F(x, y) as:

P(a < X < b, c < Y < d) = F(a, c) − F(a, d)

− F(b, c) + F(b,d) ()

�emarginal pdf of X, denoted fx(x), is:

fx(x) = ∫
y

f (x, y)dy ()

and similarly, themarginal pdf of Y , denoted fy(y), is:

fy(y) = ∫
x

f (x, y)dx ()

�e conditional pdf of X given Y = y is denoted by

f (x∣Y = y) or, for short, f (x∣y). It is de�ned by

f (x∣y) =
f (x, y)

fy(y)
, provided fy(y) >  ()

Table  lists somewell-known bivariate pdf ’s.Whereas,

in a univariate world, one speaks of the7Gamma distribu-
tion (one single functional form), by contrast, in a bivariate

world, there are a multitude of di�erent bivariate Gamma

distributions.�is is because the termbivariate Gamma, or

bivariate Exponential, or bivariate Uniform etc. is applied

to essentially any bivariate distribution whose marginal

pdf ’s are univariate Gamma, Exponential, or Uniform,

respectively.
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Example  Joint pdf

Consider the function f (x, y) = e
−−x
y x /y with domain of

support Λ = {(x, y) :  < x <∞,  < y <∞}. Clearly, f is

positive over its domain, and it integrates to unity over the

domain.�us, f (x, y) can represent the joint pdf of a pair

of random variables. Figure  plots f (x, y) over part of its

support, and the cdf over a somewhat wider region of its

support…

A contour plot allows one to pick out speci�c con-

tours along which z = f (x, y) is constant. �at is, each
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contour joins points on the surface that have the same

height z. Figure  plots all combinations of x and y such

that f (x, y) =



,



,



,



and




.

For extensive detail on continuous bivariate distribu-

tions, see Balakrishnan and Lai ().

Constructing Continuous Bivariate
Distributions: Copulae
Copulae (see 7Copulas) provide a method for construct-
ing bivariate distributions from known marginal distribu-

tions.

Let the continuous random variable X have cdf Φ(x);

similarly, let the continuous random variable Y have cdf

G(y). We wish to create a bivariate distribution H(x, y)

from these known marginals.�e joint distribution func-

tion H(x, y) is given by

H(x, y) = C(Φ,G) ()

where C denotes the copula function.�en, the joint pdf

h(x, y) is given by

h(x, y) =
∂H(x, y)

∂x ∂y
()

Table  lists some examples of copulae.

With the exception of the independent case, each cop-

ula in Table  includes parameter α.�is term induces a

new parameter into the joint bivariate distribution h(x, y),

which gives added �exibility. In each case, setting param-

eter α =  (or taking the limit α → , in the Frank

case) yields the independent copula C = ΦG as a spe-

cial case. For more detail on copulae, see, for instance,

Nelson (). Formany alternativeways to construct con-

tinuous bivariate distributions, see Balakrishnan and Lai

().

Discrete Bivariate Distributions
Let (X,Y) denote two random variables de�ned on a

domain of support Λ ⊂ IR

.�en a function f : Λ → IR+ is

a joint pmf (probabilitymass function) if it has the following

properties:

f (x, y) = P(X = x,Y = y) > , for (x, y) ∈ Λ

∑∑
Λ

f (x, y) =  ()

P((X,Y) ∈ S) = ∑∑
S

f (x, y), for any S ⊂ Λ

�e joint cdf is:

F(x, y) = P(X ≤ x,Y ≤ y) = ∑
v≤ x

∑
w≤ y

f (v,w) ()

�emarginal pmf of X, denoted fx(x), is:

fx(x) =∑
y

f (x, y) ()

and similarly, themarginal pmf of Y , denoted fy(y), is:

fy(y) =∑
x

f (x, y) ()

�e conditional pmf of Y given X = x is denoted by

f (y∣X = x) or, for short, f (y∣x). It is de�ned by

f (y∣x) =
f (x, y)

fx(x)
, provided fx(x) >  ()

For extensive detail on discrete bivariate distributions, see

Kocherlakota and Kocherlakota ().

Given discrete random variables de�ned on subsets of

the non-negative integers{, , , . . .}, and
⇀

t = (t, t) ∈ IR

,

the bivariate probability generating function (pgf) is:

Π (
⇀

t ) = E [t
X
 t
Y
 ] ()

�e pgf provides a way to determine the probabilities:

P(X= r,Y = s) =


r!s!

∂r+sΠ (
⇀

t )

∂ tr∂ t
s


∣⇀
t =
⇀


()

Example  Joint pmf

Let random variables X and Y have joint pmf f (x, y) =
x +  − y


with domain of support Λ ={(x, y) : x ∈{, , },

y ∈ {, , , }}, as per Table .

�is is awell-de�nedpmf since all the probabilities are pos-

itive, and they sum to . Figure  plots the joint pmf and the

joint cdf. For computational details, see Rose and Smith

().

Example  A bivariate Poisson

Let Z, Z and Z be mutually stochastically independent

univariate Poisson random variables, with non-negative

parameters λ, λ and λ, respectively, and pmf ’s gi(zi) for

i ∈ {, , }:

gi (zi) =
e−λi λzii
zi!

de�ned on zi ∈ {, , , . . .} ()

Due to independence, the joint pmf of (Z,Z,Z) is

g(z)g(z)g(z). �en, a non-trivial bivariate Poisson

distribution is obtained as the joint distribution of X and

Y where:

X = Z + Z and Y = Z + Z ()

�e joint pmf of X and Y can be found via the method of

transformations (see, for instance, Rose and Smith (,
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Bivariate Distributions. Table  Some examples of copulae

Copula Formula Restrictions

Independent C = ΦG

Morgenstern C = ΦG( + α( −Φ)( − G)) − ≤ α ≤ 

Ali−Mikhail−Haq C =
ΦG

 − α( −Φ)( − G)
− ≤ α < 

Frank C = −


α
log

⎡⎢⎢⎢⎢⎣
 +

(e−αΦ − ) (e−αG − )
e−α − 

⎤⎥⎥⎥⎥⎦
α ≠ 

Bivariate Distributions. Table  Joint pmf of

h(x, y) =
x +  − y
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p. )). Doing so yields the bivariate Poisson pmf as:

f (x, y)=P(X = x,Y = y)

=e
(−λ−λ−λ)

x

∑
i=

λiλ
x−i
 λ

y−i



i!(x − i)!(y − i)!

=e
(−λ−λ−λ)λ

x
(−λ)

−x
λ
y


U (−x,  − x + y,− λ λ
λ

)

x!y!

()

with domain of support {(x, y) : x ∈ {, , , . . .}, y ∈

{, , , . . .}}, and where U(a, b, c) denotes the con�uent

hypergeometric function.

Product Moments
�e bivariate raw moment µ́r,s is de�ned as:

µ́r,s = E [X
r
Y
s
]. ()

With s = , µ́r, denotes the r
th
rawmoment ofX. Similarly,

with r = , µ́,s denotes the s
th
raw moment of Y . More

generally, µ́r,s is known as a product raw moment or joint

raw moment.

�e bivariate central moment µr,s is de�ned as

µr,s = E[(X − E[X])
r
(Y − E[Y])

s
] ()

�e covariance of X and Y , denoted Cov(X,Y), is de�ned

as µ,, namely:

Cov(X,Y) = E[(X − E[X])(Y − E[Y])] ()

�e correlation between X and Y is de�ned as

ρ =
Cov(X,Y)

√
Var(X)Var(Y)

()

where it can be shown, by the Cauchy–Schwarz inequality,

that − ≤ ρ ≤ .

Let
⇀

t = (t, t) ∈ IR

denote two dummy variables.

�en the bivariate 7moment generating function (mgf)

MX,Y (
⇀

t ) is a function of
⇀

t , de�ned by

M (
⇀

t ) = E[exp(tX + tY)] ()

provided the expectation exists for all ti ∈ (−c, c), for some

constant c > , i = , . If it exists, the mgf M (
⇀

t ) can be

used to generate the product rawmoments µ́r,s = E [X
rY s]

as follows:

µ́r,s = E [X
r
Y
s
] =

∂r+sM (
⇀

t )

∂ tr∂ t
s


∣⇀
t =
⇀


()

�e cumulant generating function is the natural loga-

rithm of the mgf. �e bivariate characteristic function is

similar to () and given by

C (
⇀

t ) = E[exp(i (tX + tY))] ()

where i denotes the unit imaginary number.

Dependence
Let random variables X and Y have joint pdf f (x, y), with

marginal density functions fx(x) and fy(y). �en X and

Y are said to be mutually stochastically independent if and

only if

f (x, y) = fx(x)fy(y) ()
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Bivariate Distributions. Fig.  Contour plots of the bivariate

Normal pdf, for different values of ρ

i.e., if and only if the joint pdf is equal to the product of the

marginal pdf ’s. IfX andY aremutually stochastically inde-

pendent, then, amongst other properties, Cov(X,Y)=.

Independence implies zero covariance, but the converse is

not true: that is, zero covariance does not imply that X

and Y are independent.

Figure  illustrates contour plots for a bivariate Nor-

mal pdf with zero means and variance–covariance matrix

⎛
⎜
⎝

 ρ

ρ 

⎞
⎟
⎠
. Here, ρ denotes the correlation coe�cient between

X and Y . Each plot corresponds to a speci�c value of ρ.

In the top le� corner, ρ = −. (almost perfect negative

correlation), whereas in the bottom right corner, ρ = .

(almost perfect positive correlation).�e middle plot cor-

responds to the case of zero correlation. In any given plot,

the edge of each shaded region represents the contour line,

and each contour is a two-dimensional ellipse along which

the bivariate Normal pdf f (x, y) is constant.

Balakrishnan and Lai (, Chaps.  and ) provide

detail on alternative and more sophisticated concepts of

dependence.
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�e bootstrap (see 7Bootstrap Methods), introduced by
Efron (), merges simulation with formal model-based

statistical inference. A statistical model for a sample Xn
of size n is a family of distributions {Pθ ,n ∶ θ ∈ Θ}. �e

parameter space Θ is typically metric, possibly in�nite-

dimensional.�e value of θ that identi�es the true distri-

bution from which Xn is drawn is unknown. Suppose that

θ̂n = θ̂n(Xn) is a consistent estimator of θ.�e bootstrap

idea is

(a) Create an arti�cial bootstrap world in which the true

parameter value is θ̂n and the sample X
∗
n is generated

from the �tted model P
θ̂n ,n
. �at is, the conditional

distribution of X∗n , given the data Xn , is Pθ̂n ,n
.
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(b) Act as if a sampling distribution computed in the fully

known bootstrap world is a trustworthy approxima-

tion to the corresponding, but unknown, sampling

distribution in the model world.

For example, consider constructing a con�dence set

for a parametric function τ(θ), whose range is the set T.

As in the classical pivotal method, let Rn(Xn, τ(θ)) be a

speci�ed root, a real-valued function of the sample and

τ(θ). Let Hn(θ) be the sampling distribution of the root

under the model.�e bootstrap distribution of the root is

Hn(θ̂n), a random probability measure that can also be

viewed as the conditional distribution of Rn (X
∗
n , τ(θ̂n))

given the sampleXn. An associated bootstrap con�dence set

for τ(θ), of nominal coverage probability β, is then Cn,B =

{t ∈ T∶Rn(Xn, t) ≤ H
−
n (β, θ̂n)}.�e quantile on the right

can be approximated, for instance, by Monte Carlo tech-

niques. �e intuitive expectation is that the coverage

probability of Cn,B will be close to β whenever θ̂n is

close to θ.

When does the bootstrap approach work? Bootstrap

samples are perturbations of the data from which they are

generated. If the goal is to probe how a statistical pro-

cedure performs on data sets similar to the one at hand,

then repeating the statistical procedure on bootstrap sam-

ples stands to be instructive. An exploratory rationale for

the bootstrap appeals intellectually when empirically sup-

ported probability models for the data are lacking. Indeed,

the literature on “statistical inference” continues to strug-

gle with an uncritical tendency to view data as a random

sample from a statistical model known to the statistician

apart from parameter values. In discussing the history of

probability theory, Doob () described the mysterious

interplay between probability models and physical phe-

nomena: “But deeper and subtler investigations had to

await until the blessing and curse of direct physical signi�-

cance had been replaced by the bleak reliability of abstract

mathematics.”

Efron () and most of the subsequent bootstrap lit-

erature postulate that the statistical model {Pθ ,n∶ θ ∈ Θ}

for the data is credible. “�e bootstrap works” is taken to

mean that bootstrap distributions, and interesting func-

tionals thereof, converge in probability to the correct limits

as sample size n increases. �e convergence is typically

established pointwise for each value of θ in the parameter

space Θ. A template argument: Suppose that Θ is metric

and that (a) θ̂n → θ in Pθ ,n-probability as n → ∞; (b) for

any sequence {θn ∈ Θ} that converges to θ, Hn(θn) ⇒

H(θ).�en Hn(θ̂n) ⇒ H(θ) in Pθ ,n-probability. More-

over, any weakly continuous functional of the bootstrap

distribution converges in probability to the value of that

functional at the limit distribution.

Such equicontinuity reasoning, in various formulations,

is widespread in the literature on bootstrap convergence.

For statistical models of practical interest, considerable

insight may be needed to devise a metric on Θ such that

the template su�cient conditions both hold. Some early

papers on bootstrap convergence a�er Efron () are

Bickel and Freedman (), Hall (), Beran ().

Broader references are the books and monographs by

Hall (), Mammen (), Efron and Tibshirani (),

Davison and Hinkley () and the review articles in the

bootstrap issue of Statistical Science  ().
�ese references leave the impression that bootstrap

methods o�en work, in the sense of correct point-

wise asymptotic convergence or pointwise second-order

accuracy, at every θ in the parameter space Θ. Counter-

examples to this impression have prompted further investi-

gations. One line of research has established necessary and

su�cient conditions for correct pointwise convergence of

bootstrap distributions as n tends to in�nity [cf. Beran

(), van Zwet and Zwet ()].

In another direction, Putter () showed: Suppose

that the parameter space Θ is complete metric and that

(a) Hn(θ) ⇒ H(θ) for every θ ∈ Θ as n → ∞; (b)

Hn(θ) is continuous in θ, in the topology of weak con-

vergence, for every n ≥ ; (c) θ̂n → θ in Pθ ,n-probability

for every θ ∈ Θ as n → ∞. �en Hn(θ̂n) ⇒ H(θ) in

Pθ ,n-probability for “almost all” θ ∈ Θ.�e technical def-

inition of “almost all” is a set of Baire category II. While

“almost all” θ may sound harmless, the failure of bootstrap

convergence on a tiny set in the parameter space typically

stems from non-uniform convergence of bootstrap distri-

butions over neighborhoods of that set. When that is the

case, pointwise limits are highly deceptive.

To see this concretely, let θ̂n,S denote the 7James-Stein
estimator for an unknown p-dimensional mean vector θ

on which we have n i.i.d. observations, each having a

N(, Ip) error. Let Hn(θ) be the sampling distribution of

the root n/(θ̂n,S − θ) under this model. As n tends to

in�nity with p ≥  �xed, we �nd (cf. Beran ()):

(a) �e natural bootstrap distribution Hn(X̄n), where X̄n
is the sample mean vector, converges correctly almost

everywhere on the parameter space, except at θ = .

A similar failure occurs for the bootstrap distribution

Hn(θ̂n,S).

(b) �e weak convergences of the sampling distribution

Hn(θ) and of the two bootstrap distributions just

described are not uniform over neighborhoods of the

point of bootstrap failure, θ = .
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(c) �e exact quadratic risk of the James-Stein estimator

strictly dominates that of X̄n at every θ, especially at

θ = . If the dimension p is held �xed, the region of

substantial dominance in risk shrinks towards θ = 

as n increases.�e asymptotic risk of the James-Stein

estimator dominates that of the sample mean only at

θ = .�at the dominance is strict for every �nite n ≥ 

is missed by the non-uniform limit. Apt in describ-

ing non-uniform limits is George Berkeley’s celebrated

comment on in�nitesimals: “ghosts of departed quan-

tities.”

In the James-Stein example, correct pointwise conver-

gence of bootstrap distributions as n tends to in�nity is

an inadequate “bootstrap works” concept, doomed by lack

of uniform convergence.�e example provides a leading

instance of an estimator that dominates classical counter-

parts in risk and fails to bootstrap naively. �e message

extends farther. Stein (, �rst section) already noted

that multiple shrinkage estimators, which apply di�erent

shrinkage factors to the summands in a projective decom-

position of the mean vector, are “better for most practical

purposes.” Stein () developed multiple shrinkage esti-

mators in detail. In recent years, low risk multiple shrink-

age estimators have been constructed implicitly through

regularization techniques, among them adaptive penalized

least squares with quadratic penalties, adaptive submodel

selection, or adaptive symmetric linear estimators. Naive

bootstrapping of such modern estimators fails as it does in

the James-Stein case.

Research into these di�culties has taken two paths: (a)

devising bootstrap patches that �x pointwise convergence

of bootstrap distributions as the number of replications n

tends to in�nity [cf. Beran () for examples and refer-

ences to the literature]; (b) studying bootstrap procedures

under asymptotics in which the dimension p of the param-

eter space increases while n is held �xed or increases. Large

p bootstrap asymptotics turn out to be uniform over use-

fully large subsets of the parameter space and yield e�ec-

tive bootstrap con�dence sets around the 7James-Stein
estimator and other regularization estimators [cf. Beran

(), Beran and Dümbgen ()]. �e �rst section of

Stein () foreshadowed the role of large p asymptotics

in studies of modern estimators.

About the Author
Rudolf Beran was Department Chair at UC Davis (–

) and atUCBerkeley (–).He received in 

the Memorial Medal of the Faculty of Mathematics and

Physics, Charles University, Prague, in recognition of “dis-

tinguished and wide-ranging achievements in mathemat-

ical statistics, . . . devoted service to the international sta-

tistical community, and a long-lasting collaboration with

Czech statisticians.” During – he held an Alexan-

der von Humboldt U.S. Senior Scientist Award at Hei-

delberg University. He has authored or co-authored over

 papers in international journals and published lecture

notes (with G. R. Ducharme) on Asymptotic �eory for

BootstrapMethods in Statistics (PublicationsCRM,Univer-

sité de Montréal, ).

Cross References
7Bootstrap Methods
7Functional Derivatives in Statistics: Asymptotics and
Robustness

References and Further Reading
Beran R () Prepivoting to reduce level error of confidence sets.

Biometrika :–

Beran R () Stein confidence sets and the bootstrap. Statistica

Sinica :–

Beran R () Diagnosing bootstrap success. Ann Inst Stat Math

:–

Beran R, Dümbgen L () Modulation of estimators and confi-

dence sets. Ann Stat :–

Bickel PJ, Freedman DA () Some asymptotic theory for the

bootstrap. Ann Stat :–

Davison AC, Hinkley DV () Bootstrap methods and their appli-

cation. Cambridge University Press, Cambridge

Doob JL () William Feller and twentieth century probability. In:

Le Cam LM, Neyman J, Scott EL (eds) Proceedings of the Sixth

Berkeley Symposium on Mathematical Statistics and Probabil-

ity. II, University of California Press, Berkeley and Los Angeles,

pp xv–xx

Efron B () Bootstrap methods: another look at the jackknife.

Ann Stat :–

Efron B, Tibshirani R () An introduction to the bootstrap.

Chapman and Hall, New York

Hall P () On the bootstrap and confidence intervals. Ann Stat

:–

Hall P () The bootstrap and Edgeworth expansion. Springer,

New York

Mammen E () When does bootstrap work? Lecture Notes in

Statistics . Springer, New York

Putter H () Consistency of resampling methods. PhD disserta-

tion, Leiden University, Leiden

Stein C () Inadmissibility of the usual estimator for the mean of

a multivariate normal distribution. In: Neyman J (ed) Proceed-

ings of the Third Berkeley Symposium on Mathematical Statis-

tics and Probability I, University of California Press, Berkeley

and Los Angeles, pp –

Stein C () An approach to the recovery of inter-block informa-

tion in balanced incomplete block designs. In: David FN (ed)

Festschrift for Jerzy Neyman. Wiley, New York, pp –

van Zwet EW, Zwet WR () A remark on consistent estimation.

Math Method Stat :–



Bootstrap Methods B 

B

Bootstrap Methods

Michael R. Chernick

, Wenceslao

González-Manteiga

, RosaM. Crujeiras


, Erniel B.

Barrios



Lankenau Institute for Medical Research, Wynnewood,

PA, USA

University of Santiago de Compostela, Santiago de

Compostela, Spain

Professor and Dean

University of the Philippines, Quezon City, Philippines

Introduction
Use of the bootstrap idea goes back at least to Simon ()

who used it as a tool to teach statistics. But the properties

of the bootstrap and its connection to the 7jackknife and
other resampling methods, was not realized until Efron

(). Similar resampling methods such as the jackknife

and subsampling go back to the late s and s

respectively (Quenouille () for the jackknife and Har-

tigan () and McCarthy () for subsampling). In

 the impact that the bootstrap would have was not

really appreciated and the motivation for Efron’s paper

was to better understand the jackknife and its properties.

But over the past  years it has had a major impact on

both theoretical and applied statistics with the applica-

tions sometimes leading the theory and vice versa. �e

impact of Efron’s work has been so great that he was

awarded with the President’s Medal of Science by former

President George W. Bush and Kotz and Johnson ()

included the  Annals of Statistics paper in their three

volume work on breakthroughs in statistics. A�er the pub-

lication of Efron’s paper, Simon’s interest in bootstrapping

was revitalized and he and Peter Bruce formed the com-

pany Resampling Stats which publicized the methodology

and provided elementary so�ware for teaching and basic

data analysis (see Simon and Bruce ()).�e bootstrap

is not simply another statistical technique but is rather a

general approach to statistical inference with very broad

applicability and very mild modeling assumptions.

�ere are now a number of excellent books that spe-

cialize in bootstrap or resampling in general. Included

in this list are Efron (), Efron and Tibshirani (),

Davison and Hinkley (), Chernick (, ), Hall

(), Manly (), Lunneborg (), Politis et al.

(), Shao and Tu () and Good (, ). Many

other texts devote chapters to the bootstrap including a

few introductory statistics texts.�ere are even a couple of

books that cover subcategories of bootstrapping (Westfall

and Young () and Lahiri (b)).

The Basic Idea
Formally, denote by X = (X, . . . ,Xn) a random sample

from X with unknown distribution F and consider a ran-

dom variableT = T(X, . . . ,Xn;F)whichmay be as simple

as T = X − µ, with µ = ∫ xdF(x), or a more complicated

one such as a nonparametric kernel density estimator of

the density f given by T = f̂h(x) =


nh

n

∑
i=

K (
x − Xi

h
),

where hdenotes the bandwidth parameter andK is a kernel

function.�e main goal in statistical inference is to deter-

mine the sampling distribution ofT, namely IPF(T(X,F) ≤
x). If Fn denotes the empirical distribution of X, from

the sample X, then the bootstrap version of T is given
by T∗ = T (X∗ , . . . ,X

∗
n ;Fn) where X∗ = (X∗ , . . . ,X

∗
n )

is a random sample from Fn.�is is known as the naive

bootstrap. We may also replace F by a smoothed version

F̃n(x) = ∫
x

−∞
f̂h(t)dt (called the smooth or generalized

bootstrap) or by a parametric estimate of F say F
θ̂n
(para-

metric bootstrap). See Efron (, ) as introductory

references, and Silverman and Young () andDudewicz

() for detailed coverage on the smooth bootstrap.

As it has been said, the main goal is to estimate the

sampling distribution of T. �e bootstrap estimator of

IPF(T(X,F) ≤ x) is given by IPFn(T(X
∗
,Fn) ≤ x) =

IP
∗
(T(X∗,Fn) ≤ x), where IP∗ is the associated probabil-

ity in the bootstrap world (the distribution associated with

sampling with replacement from Fn in the naive bootstrap

case). Since in most cases this probability cannot be com-

puted,Monte Carlomethods are used in order to obtain an

approximation, based on B bootstrap replicates X∗j, with
j = , . . .B.�e estimate of IP∗(T(X∗,Fn) ≤ x) is just

ÎP∗(T(X∗,Fn) ≤ x) =
#{j;T(X∗j,Fn) ≤ x}

B
,

where # denotes the cardinal of the set. Once we have

approximated the statistic’s distribution, other inference

problems such as bias and variance estimation, con�dence

interval construction or hypothesis testing, etc. can be

tackled. With con�dence intervals, the variable of inter-

est is usually given by T = θ̂ − θ, where θ is an unknown

parameter of the distribution and θ̂ is the corresponding

estimator.�e simplest case is based on the direct approx-

imation of the distribution of T, known as the percentile

method. Several re�nements such as bias-corrected per-

centile, percentile-t (also called bootstrap-t) or other cor-

rections based on Edgeworth expansions (see7Edgeworth
Expansion), have been proposed. For more complete cov-

erage of bootstrap con�dence intervals, see Hall (,

), Efron and Tibshirani (), Chernick () or

Davison and Hinkley ().
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Generally speaking, the bootstrap methodology aims

to reproduce from the sample the mechanism generat-

ing the data which may be a probability distribution, a

regression model, a time series, etc. Nowadays, bootstrap

methods have been applied to solve di�erent inference

problems, including bandwidth selection in curve estima-

tion (Cao ), distribution calibration in7empirical pro-
cesses or empirical regression processes (Stute et al. )

or inference for incomplete data detailed below, among

others.

Extension to Dependent Data
For the sake of simplicity, wemay distinguish two perspec-

tives. First, data involved in the statistic may be directly

observed, where the basic bootstrap resampling proce-

dures introduced above can be applied. Secondly, datamay

exhibit a complex generatingmechanism.As a special case,

consider a parametric regression model

yi = mθ(xi) + εi, i = , . . . ,n,

where mθ(⋅) is the regression function and εi denotes

the associated ith error. For �xed design and parametric

regression function, we may proceed by resampling the

residuals ei = yi −mθ̂
(xi), where θ̂ is a parameter estima-

tor. Naive bootstrap samples ẽ∗i drawn from the empirical

distribution of the centered residuals {ei − e} are used to

get the bootstrap regression model y∗i = mθ̂
(xi) + ẽ

∗
i .�is

approach is called model-based bootstrapping.

Efron also introduced the bootstrap in this context.

Each of the bootstrap samples can provide an estimate of

the regression parameter (possibly a vector of parameters)

following the same estimation procedure that was used

with the original �tted model (e.g., ordinary 7least
squares). From all the bootstrap replicates, we get a Monte

Carlo approximation to the bootstrap distribution of the

regression parameter and this is then used to make infer-

ences about the parameter based on this approximation

to the sampling distribution for the parameter estimate.

In model-based inference, Paparoditis and Politis ()

underscored the importance of the choice of residuals.

For example, to maximize power in bootstrap-based

hypothesis testing, residuals are obtained using a sequence

of parameter estimators that converge to the true parame-

ter value under both the null and alternative hypotheses.

Di�erent modi�cations of this simple idea allow for

adapting to random design, heterocedastic models or situ-

ations where the regression function is not totally speci�ed

or is unknown, such as in nonparametric regression. From

the �rst references, specially in parametric regression, by

Bickel and Freedman () and Freedman (), several

advances have been introduced in this context. For the

nonparametric case, see Chap.  in Schimek ().

Although bootstrap originally started with indepen-

dent sample observations, just as in the regression models

described above, there are extensions to dependent data:

7time series, 7spatial statistics, 7point processes, spatio-
temporal models and more. For example, similar to the

ideas of bootstrap in regression models, given an explicit

dependence structure such an autoregressive model, we

may write:

yi = m(yi−, . . . , yi−p) + εi

and proceed by resampling from the residuals. When an

explicit parametric equation is not available, an alternative

is block bootstrap, which consists of resampling blocks of

subsamples, trying to capture the dependence in the data.

Bootstrap replicates obtained by these methods may not

be stationary even though the original data came from a

stationary process. In order to solve this problem, Poli-

tis and Romano (a) propose the stationary bootstrap.

�ese bootstrap procedures can be adapted for predicting

the future values of the process. An overview of bootstrap

methods for estimation and prediction in time series can

be found in Cao (). �e idea of block bootstrap has

also been extended to the spatial setting (see Lahiri b)

�ere is theoretical justi�cation for bootstrapping time

series. As an example, Politis and Romano (b) estab-

lished convergence of certain sums of stationary time

series that can facilitate bootstrap resampling. �e block

bootstrap was among the early proposals for time series

data. While the method is quite straightforward, there are

associated problems like getting independence between

blocks while maintaining the dependence structure within

the block. �e size of the block is a crucial quantity

that should be determined to assure success in block

bootstrapping.�e AR-sieve method was also introduced

as a residual-based method similar to the model-based

approach. Local bootstrap was also introduced but in the

context of a local regression framework (nonparametric)

and to account for the nonparametric model, resampling

allows the empirical distribution to vary locally in the time

series.

Bühlman () compared di�erent methods for time

series bootstrapping.�e block bootstrap is recognized as

the most general and simplest generalization of the origi-

nal independent resamples but is sometimes criticized for

the possible artifacts it may exhibit when blocks are linked

together. Blocking can potentially introduce some depen-

dence structure in addition to those naturally existing in

the data. �e AR-sieve is less sensitive to selection of a
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model than the block to the block length.�e local boot-

strap for 7nonparametric estimation is observed to yield
slower rates of convergence. Generally, the AR-sieve is rel-

atively advantageous among the bootstrap approaches for

time series data.

Recently, the bootstrap has been introduced in more

complex and complicated models. In modeling non-

stationary volatility, Xu () used an autoregression

around a polynomial trend with stable autoregressive

roots to illustrate how non-stationary volatility a�ects the

consistency, convergence rates and asymptotic distribu-

tions of the estimators. Westerlund and Edgerton ()

proposed a bootstrap test for the null hypothesis of cointe-

gration in 7panel data. Dumanjug et al. () developed
a block bootstrap method in a spatial-temporal model.

Diversity of Applications
�e use of bootstrap as a tool for calibrating the distri-

bution of a statistic has been extended to most topics in

statistical inference. Not trying to be exhaustive, it is worth

it considering the immersion of bootstrap in the following

�elds of study:

. Incomplete data.When dealing with censored data, the

empirical estimator of the distribution is replaced by

the 7Kaplan-Meier estimator (Efron ).
. Missing information. If some observations are miss-

ing or imputed, bootstrap estimators must be suitably

adapted (Efron ).

. Hypothesis testing in regression models. When the

goal is to check whether a parametric regressionmodel

mθ �ts the data, the distribution of a test statistic

T = D(m̂h,mθ̂
), where m̂h is a nonparametric estima-

tor of the regression function m and D is a distance

measure, must be calibrated. In this context, a broad

literature can be cited, such as Härdle and Mammen

() or Cao and González-Manteiga (). For a

recent review on the topic, see González-Manteiga and

Crujeiras ().

. Small area inference. Bootstrap has also shown a great

development in �nite populations (Shao and Tu ),

specially in recent years with the appearance of small

area models. See Hall and Maiti () and Lahiri

(a).

. Bootstrap has also recently been used in learning the-

ory and high dimensional data. As an example, see the

application of bootstrap in the regression model with

functional data (Ferraty et al. ) or the bootstrap for

variable choice in regression or classi�cation models

(Hall et al. ).

�e continuing development of bootstrap methods has

been motivated by the increasing progress in computa-

tional e�ciency in recent years. Other computer-intensive

methods are the 7Markov Chain Monte Carlo, usually
known as MCMC [see Smith and Roberts (), for

instance] and subsampling (Politis et al. ).

Some Historical Development
�e bootstrap’s popularity rests in its relaxation of distribu-

tion assumptions that can be restrictive and its wide variety

of applications as described above.We see that the develop-

ment of the bootstrap evolved as follows. Efron introduced

it in () with some theoretical and heuristic develop-

ment.�eoretical activity followed quickly with Athreya,

Bickel, Freedman, Singh, Beran andHall providing notable

contributions in the early s. Efron realized its practical

value early on and e�orts tomake the scienti�c community

aware of its potential were the Diaconis and Efron ()

article in Scienti�c American and the article by Efron and

Tibshirani ().

So by the early s enough theory and successful

applications had developed to lead to an explosion of

papers, mostly applied and some extending the theory.�e

literature was so large that Chernick () contains more

than , references. An excellent and nearly up-to-date

survey article on the bootstrap is Lahiri ().

When and Why Bootstrap Can Fail to
Work
For the bootstrap to work, the bootstrap estimates must be

consistent. But even when the �rst results on consistency

of the bootstrap estimate of a mean were derived, Bickel,

Freedman and others realized that there were cases where

the bootstrap is inconsistent. Two notable examples are ()

the sample mean when the population distribution has an

in�nite variance but the ordinary sample mean appropri-

ately normalized still converges to a stable law and () the

maximum of a sample when the population distribution is

in the domain of attraction of an extreme value distribu-

tion.�ese examples are covered in Chap.  of Chernick

().

�ese results on bootstrap inconsistency were already

published in the s and led to a concern about what the

real limitations of the bootstrap are.�e volume edited by

LePage andBillard () and themonograph byMammen

() address these concerns. Consistency is one require-

ment but what about the small sample properties? �is

was addressed beautifully using simulation as illustrated

in Shao and Tu () and Efron ().�e work of Efron
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and others on small sample accuracy of bootstrap estimates

of error rates in classi�cation is summarized in Chap.  of

Chernick ().

Remedies for Failure
Efron’s bootstrap principle states that the nonparametric

bootstrap mimics sampling from a population by letting

the empiric distribution Fn play the role of the unknown

population distribution F and letting the bootstrap dis-

tribution F∗n play the role of Fn. �is is to say in words

what was described using formal mathematics earlier in

this article.

Efron thought it was natural to take the size of a boot-

strap sample to be n but others saw no reason why a value

m < n could not be used. Formany problemswhere consis-

tency was shown m = n works �ne. Bickel and Ren ()

introduced a bootstrap approach called the m-out-of-n

bootstrap which takesm < n and works well in some prob-

lems. A recent advance in bootstrapping was the proof that

for the two examples previously described, where the boot-

strap is inconsistent whenm = n, them-out-of-n bootstrap

is consistent provided m tends to in�nity at a slower rate

than n and slow enough for m/n → . Prior to the formal

introduction of the m-out-of-n bootstrap, Athreya ()

showed that for heavy-tailed distributions a trimmedmean

could converge to the populationmean with the advantage

that the sampling distribution of the trimmed mean has

second moments. Using this idea he proved consistency

of the m-out-of-n bootstrap for the mean in the in�nite

variance case. Fukuchi () did the same for extremes.

Both results require m and n to approach in�nity at a rate

that would have m/n → .�e m-out-of-n bootstrap has

been further studied by Bickel et al. () and Politis et al.

(). Zelterman () found a di�erent way to modify

the bootstrap to make it consistent for the extreme values.

�is is all summarized in Chap.  of Chernick ().

�e theoretical developments from  to the present

have been in the area of () modifying the bootstrap to �x

inconsistency in order to widen its applicability and ()

extending the theory todependent situations (as previously

mentioned). Lahiri (a) is the ideal reference for a

detailed account of these developments with dependent

data.

Problems and Refinements for Bootstrap
Confidence Intervals
Bootstrap con�dence intervals have been a concern and

Efron recognized early on that getting the asymptotic

coverage nearly correct in small samples required more

sophistication than his simple percentile method boot-

strap. So the bias corrected bootstrap was developed to

do that. However, in Schenker () the example of vari-

ance estimation for a particular chi square population

distribution showed that even the BC method had cover-

age problems in small samples. Efron () introduced the

BCa method which remedied the problem discovered by

Schenker.

However, in recent years variance estimation for other

examples with skewed or heavy-tailed distributions has

shown all bootstrap con�dence interval methods to be

problematic in small samples. A large Monte Carlo inves-

tigation, Chernick and LaBudde (), compares the cov-

erage of various bootstrap con�dence intervals for the

variance estimate from a variety of population distribu-

tions when sample sizes are small. �ey also provide an

idea of rates of convergence by showing how the coverage

improves as the sample size gets large. An interesting sur-

prise is that in some situations for small sample sizes the

lower order bootstrap work better than the higher order

ones.�is is because they are simpler and do not involve

estimating biases and acceleration constants which depend

on third order moments of the distribution. For the log-

normal population they show that at the small sample

sizes (–) the coverage error is shockingly high for all

methods.
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�e celebrated Borel–Cantelli Lemma is important and

useful for proving the 7laws of large numbers in the
strong form. Consider a sequence of random events

{An} on a probability space (Ω,F,P), and we are inter-

ested in the question of whether in�nitely many random

events occur or if possibly only a �nite number of them

occur.

�e upper limit of the sequence {An} is the random

event de�ned by

{An i.o.} = lim sup
n→∞

An =
∞

⋂
n=

∞

⋃
k=n

Ak ,

which occurs if and only if an in�nite number of eventsAn
occur.�is i.o. stands for “in�nitely o�en.”

Below we shall use the fact that if {An} is a sequence of

random events, then

P(
∞

⋃
n=

An) ≤
∞

∑
n=

P(An). (∗)

The Borel–Cantelli Lemma
Lemma  If∑

∞
n=P(An)<∞, then P(lim supn→∞ An) = .

If the random events A,A,⋯,An,⋯ are independent and

∑
∞
n= P(An) =∞, then P(lim sup

n→∞

An) = .
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Intuitively, P(lim sup
n→∞

An) is the probability that the

random events An occur “in�nitely o�en” and will be

denoted by P(An i.o.).

Proofaaaaa

First part

Note that lim sup
n→∞

An ⊂
∞

⋃
k=m

Ak for each m ≥ . So for

eachm ≥ .

P(lim sup
n→∞

An) ≤ P(
∞

⋃
k=m

Ak) ≤
∞

∑
k=m

P(Ak) by (∗).

Since∑
∞
n= P(An) is convergent, the tails∑

∞
k=m P(Ak)→ 

as m → ∞. Letting m → ∞, we get

P(lim supn→∞ An) = .

Second part

We show that

 − P(lim sup
n→∞

An) = P((lim sup
n→∞

An)
′
) = ,

where A′ denotes the complement of A. To this end, it is

enough to show that

P(
∞

⋂
k=m

A
′
k) =  for eachm ≥ ,

since then by De Morgan’s Rule

P((lim sup
n→∞

An)
′
)= P(

∞

⋃
n=

∞

⋂
k=n

A
′
k) ≤

∞

∑
n=

P(
∞

⋂
k=n

A
′
k)

=  by (∗).

Fix such an m. Since  − x ≤ exp(−x) for each real x, we

have for each j ≥ 

P(
∞

⋂
k=m

A
′
k) ≤ P(

m+j

⋂
k=m

A
′
k)=

m+j

∏
k=m

( − P(Ak))

≤ exp
⎛

⎝
−

m+j

∑
k=m

P(Ak)
⎞

⎠
.

As ∑
∞
n= P(An) diverges, so does ∑

∞
k=m P(Ak) which

implies that ∑
m+j

k=m
P(Ak) → ∞ as j → ∞. As limx→∞

exp(−x) = , we get upon letting j→∞ that

P(
∞

⋂
k=m

A
′
k) = .

Generalizations
�e �rst part of the Borel-Cantelli Lemma was generalized

in Barndor�-Nielsen ().

Lemma  Let {An} be a sequence of random events satis-

fying the conditions

lim
n→∞

P(An) =  and
∞

∑
n=

P(AnA
′
n+) <∞.

�en

P(lim sup
n→∞

An) = .

Lemma  holds true if the random events A′nAn+ are

substituted with AnA
′
n+.

It should be noted that the hypothesis in Lemma  is

weaker than the hypothesis in Lemma .

A further generalization of Lemma  was obtained in

Stepanov ().

Lemma  Let {An} be a sequence of random events satis-

fying the condition limn→∞ P(An) = . Assume that there

exists m≥  such that

∞

∑
n=

P(A
′
n A

′
n+⋯A

′
n+m− An+m) <∞.

�en

P(lim sup
n→∞

An) = .

Observe that the hypothesis in Lemma  when m ≥ 

is weaker than the hypothesis in Lemma .

Many attempts were made in order to weaken the

independence condition in the second part of the Borel-

Cantelli Lemma. �is condition means mutual indepen-

dence of random events A, A, ⋯,An for every n. Erdös

and Rényi () discovered that the independence con-

dition can be replaced by the weaker condition of pair-

wise independence of the random eventsA, A, ⋯,An for

everyn. Indeed they also proved the result which is the spe-

cial case ‘l = ’ in the following lemma due to Kochen and

Stone ():

Lemma  If {An} is a sequence of random events satisfy-

ing the conditions

∞

∑
n=

P(An) =∞ and lim inf
n→∞

∑
n
i,k= P(Ai⋂Ak)

[∑
n
k= P(Ak)]


= l,

then

P(lim sup
n→∞

An) ≥


l
.

A further extension due to Chandra () is given

below.
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Lemma  Let {An} be a sequence of random events such

that
∞

∑
n=

P(An) =∞. Let

lim inf
n→∞

∑≤i≤j≤n(P(Ai⋂Aj) − aij)

(∑≤k≤n P(Ak))


= L

where aij = (cP(Ai) + cP(Aj))P(Aj−i) + cP(Ai)P(Aj)

for  ≤ i < j, c ≥ , c ≥ , c ∈ R being constants (L may

depend on c, c, c). Assume that L is �nite.�en c+ L ≥ 

and

P(lim sup
n→∞

An) ≥ (c + L)
−

where c = (c + c) + c.

As a special case of Lemma , we have the following

result.

Lemma  Let {An} be a sequence of random events such

that
∞

∑
n=

P(An) =∞. If for some constants c ≥ , c ≥ , and

c ∈ R there exists an integer N ≥  such the P(Ai⋂Aj) ≤

aij whenever N ≤ i < j where the aij are as in Lemma , then

c ≥  and P(lim supn→∞ An) ≥ /c, c being as in Lemma .

Petrov () found conditions that are necessary and

su�cient for the equality

P(lim sup
n→∞

An) = p , where  ≤ p ≤ ,

as well as for the inequality

P(lim sup
n→∞

An) ≥ p , where  < p ≤ .

For a di�erent type of extensions of the Borel-Cantelli

lemma, see Chen () and Ser�ing ().
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Box–Cox Transformation
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Box and Cox () proposed a family of power trans-

formations in order to improve additivity, normality, and

homoscedasticity of observations.�e Box–Cox transfor-

mation, which was a modi�cation of a family of power

transformations introduced by Tukey (), was named

for their work. For each value of a real or vector val-

ued transformation parameter λ, let ψ(y, λ) be a strictly

monotone increasing transformation for a positive y in
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some interval. Tukey’s power transformations takes the

following form:

ψ(y, λ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

yλ
, λ /= ,

log y, λ = .

To take account of the discontinuity at λ =  in the

above equation, the original form of the Box–Cox trans-

formation takes the following form:

ψ
BC

(y, λ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

y
λ
− 

λ
, λ /= ,

log y, λ = .

�ey also proposed an extended form of the Box–Cox

transformation, “shi�ed” power transformation which

could deal with situations where y is negative but bounded

below:

ψ(y, λ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(y + λ)
λ − 

λ
, λ /= ,

log(y + λ), λ = ,

where λ = (λ, λ)
T
. However, since the range of the distri-

bution is determined by the unknown shi� parameter λ,

the asymptotic results of maximum likelihood theory may

not apply. Consequently, there have existed some alterna-

tive versions of the Box–Cox transformation which could

handle a negative y. For example, Manly () proposed

the exponential transformation:

ψ(y, λ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

exp(λy) − 
λ

, λ /= ,

y, λ = .

John and Draper () presented the so-called modulus

transformation:

ψ(y, λ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

sign(y)
(∣y∣ + )

λ
− 

λ
, λ /= ,

sign(y) log(∣y∣ + ), λ = ,

where

sign(y) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

, y ≥ ,

−, y < .

Bickel andDoksum () suggested anothermodi�cation:

ψ(y, λ) = ∣y∣
λ
sign(y) − 

λ
, λ /= .

Yeo and Johnson () proposed another power transfor-

mation family motivated by the above modi�ed modulus

transformation:

ψ(y, λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(y + )
λ
− 

λ
, y ≥ , λ /= ,

log(y + ), y ≥ , λ = ,

−
( − y)

−λ
− 

 − λ
, y < , λ /= ,

− log( − y), y < , λ = .

�e main objective in the analysis using Box–Cox

transformation is to make inference on the transforma-

tion parameter λ. Box and Cox () applied the maxi-

mum likelihood aswell as Bayesianmethods for estimating

the transformation parameter, but there have been many

approaches to other inferences including hypothesis test-

ing on the transformation parameter (see Sakia  for

details, which gave a comprehensive review on the Box–

Cox transformation).

�e Box–Cox transformation can be applied to a

regressor, a combination of regressors, and/or to the

response variable in a linear or nonlinear regression. For

example let us consider the following linear functional

form:

ψ
BC

(y, λ) = β +
q

∑
j=

βjψ
BC

(xj, λj) + ε,

where ψ(y, λ) and ψ(xj, λj) represent the transformed

response variable and explanatory variables, respectively,

where λj (j = , , . . . , p) are the transformation parame-

ters, and ε represents the errors. When using such a func-

tional form with the Box–Cox transformation, it is helpful

to explore the underlying relationship in cases where the

determination of the functional form need not be based

on a priori rationale in any research �eld.

In addition, for example, for nonlinear regressions (See

7Nonlinear Regression) we can consider the following
form (see Carroll and Ruppert ):

ψ
BC

(y, λ) = ψ
BC

(f (x, β), λ) + ε,

where f (x, β) is a functional form (possibly, corresponding

to a theoretical model) that has explanatory variables x and

is nonlinear with respect to a real or vector valued param-

eter β. It is noted that the both sides in the above equation

have the sameBox–Cox transformation.�us the objective

here is to reduce 7heteroscedasticity and autocorrelation
of the error structure as well as non-normality of the error

(or residual) itself, rather than the determination of the

functional form as above mentioned.

�e Box–Cox transformation has been widely utilized.

However, when using it we note that this transformation

seldom ful�lls the basic assumptions required for statistical



 B Box–Jenkins Time Series Models

inference such as linearity, normality and homoscedas-

ticity simultaneously as originally suggested by Box and

Cox ().
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Introduction
We are going to examine the Autoregressive Moving Aver-

age (ARMA) process for identifying the serial correlation

attributes of a stationary time series (see Boland ;

Box and Jenkins ). Another name for the processes

that we will undertake is the Box–Jenkins (BJ) Method-

ology, which describes an iterative process for identifying

a model and then using that model for forecasting. �e

Box–Jenkins methodology comprises four steps:

● Identi�cation of process

● Estimation of parameters

● Veri�cation of model

● Forecasting

Identification of Process
Assume we have a (at least weakly) stationary time series,

i.e., no trend, seasonality, and it is homoscedastic (constant

variance). Stationarity will be discussed further in section

Stationarity.�e general form of an ARMAmodel is

Xt − ϕXt− −⋯ − ϕpXt−p = Zt + θZt− +⋯ + θqZt−q,

()

where {Xt} are identically distributed random variables

∼(, σ X) and {Zt} are white noise, i.e., independent and

identically distributed (iid) ∼(, σ Z). ϕi and θ j are the

coe�cients of polynomials satisfying

ϕ(y) =  − ϕy −⋯ − ϕpy
p

()

θ(y) =  + θy +⋯ + θqy
q
,

where ϕ(y), θ(y) are the autoregressive and moving aver-

age polynomials respectively. De�ne the backward shi�

operator BjXt = Xt−j, j = , , , . . . and we may then write

() in the form

ϕ(B)Xt = θ(B)Zt ()

de�ning an ARMA(p, q)model. If ϕ(B) = , we then have

a moving average model of order q, designated MA(q).

Alternatively, if we have θ(B) = , we have an autoregres-

sive model of order p, designated AR(p).�e question is,

how do we identify whether we have anMA(q),AR(p) or

ARMA(p, q)? To do so, we can examine the behavior of the

autocorrelation and partial autocorrelation functions.

Autocorrelation and Partial
Autocorrelation Functions
Weneed some de�nitions to begin with. Suppose two vari-

ables X and Y have means µX , µY respectively. �en the

covariance of X and Y is de�ned to be

Cov(X,Y) = E{(X − µX)(Y − µY)}. ()

If X and Y are independent, then

Cov(X,Y) = E{(X − µX)(Y − µY)}

= E(X − µX)E(Y − µY) = . ()

If X and Y are not independent, then the covariance

may be positive or negative, depending on whether high
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values of X tend to happen coincidentally with high or low

values of Y . It is usual to standardise the covariance by

dividing by the product of their respective standard devia-

tions, creating the correlation coe�cient. If X and Y are

random variables for the same stochastic process at dif-

ferent times, then the covariance coe�cient is called the

autocovariance coe�cient, and the correlation coe�cient

is called the autocorrelation coe�cient. If the process is

stationary, then the standard deviations of X and Y will

be the same, and their product will be the variance of

either.

Let{Xt} be a stationary time series.�e autocovariance

function (ACVF) of {Xt} is γX(h) = Cov(Xt+h,Xt), and

the autocorrelation function (ACF) of {Xt} is

ρX(h) =
γX(h)

γX()
= Corr(Xt+h,Xt). ()

�e autocovariance and autocorrelation functions can be

estimated from observations of X,X, . . . ,Xn to give the

sample autocovariance function (SAF) and the sample

autocorrelation function (SACF), the latter de�ned by

rk =

n−k

∑
t=

(xt − x)(xt+k − x)

n

∑
t=

(xt − x)
. ()

�us the SACF is a measure of the linear relation-

ship between time series separated by some time period,

denoted by the lag k. Similar to the correlation coe�cient

of linear regression, rk will take a value between + and −,

and the closer to ±, the stronger the relationship. What

relationship are we talking about? Consider a lag  value

close to + as an example.�is means that there is a strong

relationship betweenXt andXt−,Xt− andXt−, . . . ,Xt−k+
and Xt−k, and so on.�e interesting thing is that what can

happen in practice is that because of this serial correla-

tion, it can appear that Xt has a strong relationship with

Xt−k, k time units away from Xt , when in fact it is only

because of this interaction. To sort out this potential prob-

lem, one estimates the partial autocorrelation function

(PACF).�e partial autocorrelation between Xt and Xt−k
is the correlation between them a�er their mutual linear

dependency on the intervening variables Xt−, . . . ,Xt−k+
has been removed.�e sample PACF (SPACF) is given by

the Yule–Walker equations,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

 r r ⋯ rk− rk−

r  r ⋯ rk− rk−

. . . ⋯ . .

. . . ⋯ . .
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. ()

�e value of ϕ̂kk gives the estimate of the PACF at lag

k. �ese equations can be solved using Cramer’s Rule to

obtain:

ϕ̂mm =
rm −∑

m−
j= ϕ̂m−,jrm−j

 −∑
m−
j= ϕ̂m−,jrj

. ()

Once we have calculated these estimates for a stationary

time series, we can use them to give an indication whether

we should �t an AR(p),MA(q), or ARMA(p, q) model.

�e criteria are in general:

● When the SACF dies down gradually and the SPACF

has insigni�cant spikes at lags greater than pwe should

�t an AR(p).

● When the SACF has a signi�cant spike at lag q and the

SPACF dies down gradually, we should �t anMA(q).

● If both die down gradually, we �t an ARMA(p, q). In

this case, we will have to progressively increase p, q

until we get a suitable model.

�e last point brings up an interesting question; how

do we decide between competing models? In fact, the sit-

uation is o�en not as simple as these criteria make it seem.

Sometimes it is di�cult to decide between for instance,

an AR() and an ARMA(, ) model. An aid in identi-

fying the appropriate model comes from the principle of

parsimony, using criteria from Information �eory. �e

7Akaike’s Information Criterion (AIC) is one such mea-
sure (Akaike ). �e goal is to pick the model that

minimises

AIC = −


T
{ ln(likelihood) + l}. ()

Here, l is the number of parameters �tted and T the

number of data values. �ere is a competing criterion,

that penalises the number of parameters �tted even more,

called the (Schwarz) Bayesian Information Criterion (BIC)

(Schwarz ),

BIC = −


T
ln(likelihood) +

l ln(T)

T
. ()



 B Box–Jenkins Time Series Models

Moving Average Process
In a moving average process MA(q), the present value of

the series is written as the weighted sum of past shocks:

Xt = Zt + θZt− + θZt− +⋯ + θqZt−q, ()

where Zt ∼WN(, σ Z).

We �nd immediately that

E(Xt) = ,

Var(Xt) = σ

Z( +

q

∑
i=

θ

 ). ()

Autoregressive Process
�e general form of an AR(p) process is:

ϕ(B)Xt = Zt

( − ϕB − ϕB

−⋯ − ϕpB

p
)Xt = Zt

Xt = ϕXt− + ϕXt− +⋯ + ϕpXt−p + Zt .

A �rst order autoregressive process AR() is referred to as

a Markov Chain (see 7Markov Chains). It can, through
successive substitutions, be written as:

Xt = ϕXt− + Zt

= ϕ(ϕXt− + Zt−) + Zt

= Zt + ϕZt− + ϕ

Zt− + ϕ


Zt− +⋯.

From thiswewriteVar(Xt) = σ Z(+∑
∞
i= ϕ

i
) =

σ Z

 − ϕ
.

Any AR(p) process can be rewritten as an in�nite order

moving average process.

Stationarity
If neither the mean µt nor the autocovariances γX(h)

are dependent on t, then the process is said to be

weakly stationary. �is means that the autocovariances

depend only on the length of time separating the

observations h. A process is strictly stationary if for

any values of h,h, . . . ,hn, the joint distribution of

(Xt ,Xt+h ,Xt+h , . . . ,Xt+hn) depends not on t, but only on

the time intervals between the variables. A su�cient condi-

tion for negating weak stationarity (and thus strict station-

arity) is failure of the unit root test. A stochastic process

has a unit root if its characteristic equation has  as a root.

For Xt = ϕXt− + ϕXt− + ⋯ + ϕpXt−p + Zt , the

characteristic equation is given by:

m
p
− ϕm

p−
− ϕm

p−
−⋯ − ϕp−m − ϕp = .

Ifm =  is a root of this characteristic equation, the process

has a unit root or is termed integrated of order , denoted

I(). A �rst di�erence of the time series will be stationary.

If the characteristic equation has a unit root of multiplic-

ity r then the process is integrated of order r, denoted I(r).

�e time series di�erenced r times will be stationary.�e

process de�ned by Xt = Xt− + Zt has a unit root and this

process de�nes a 7random walk.�e process is customar-
ily started at zero when t = , so X = Z, and Xt = ∑

t
i= Zi,

so we obtain Var(Xt) = tσ

Z , dependent on t.

Conditional Heteroscedastic Modelling
�ere is one particular type of non-stationarity that is

receiving increasing attention. In �nancial markets, and

other applications such as modelling wind farm output

(Boland et al. ), a phenomenon has been identi�ed

wherein the SACF of Zt shows no residual autocorrelation,

but the SACF of Z t does. �is property means that the

noise is uncorrelated but not independent.�is is re�ec-

tive of a process that retains conditional heteroscedastic-

ity, wherein there is what is termed as volatility cluster-

ing. Periods of high volatility can be followed by periods

of low volatility. �e volatility is generally modelled by

Autoregressive Conditional Heteroscedastic (ARCH) or

Generalised ARCH (GARCH) models, or utilising a con-

cept called realised volatility (see Tsay  and references

therein).
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Brownian Motion and the Wiener Process
A small particle (e.g., a pollen corn) suspended in a liq-

uid is subject to in�nitely many collisions with atoms,

and therefore it is impossible to observe its exact trajec-

tory. With the help of a microscope it is only possible

to con�rm that the movement of the particle is entirely

chaotic. �is type of movement, discovered under simi-

lar circumstances by the botanist Robert Brown, is called

Brownian motion. As its mathematical inventor Einstein

already observed, it is necessary to make approximations,

in order to describe the process. �e formalized math-

ematical model de�ned on the basis of these is called a

Wiener process. Henceforth, we will limit ourselves to the

study of the one-dimensional Wiener process in IR, under

the assumption that the three components determining its

motion in space are independent.

De�nition  A real-valued process (Wt)t∈IR+ is aWiener

process if it satis�es the following conditions:

. W =  almost surely.

. (Wt)t∈IR+ is a process with independent increments.

. Wt −Ws is normally distributed with N(, t − s), ( ≤

s < t).

Remark  Frompoint  of De�nition  it becomes obvious

that every Wiener process is time homogeneous.

Proposition  If (Wt)t∈IR+ is a Wiener process, then

. E[Wt] =  for all t ∈ IR+,

. K(s, t) = Cov[Wt ,Ws] = min{s, t}, s, t ∈ IR+.

Proof . Fixing t ∈ IR, we observe thatWt =W + (Wt −

W) and thus E[Wt] = E[W] + E[Wt −W] = .�e

latter is given by the fact that E[W] =  (by  of De�nition

) and E[Wt −W] =  (by  of De�nition ).

. Let s, t ∈ IR+ and Cov[Wt ,Ws] = E[WtWs] −

E[Wt]E[Ws], which (by point ) gives Cov[Wt ,Ws] =

E[WtWs]. For simplicity, if we suppose that s < t, then

E[WtWs]= E[Ws(Ws + (Wt −Ws))] = E [W

s ]

+E[Ws(Wt −Ws)].

Since (Wt)t∈IR+ has independent increments, we obtain

E[Ws(Wt −Ws)] = E[Ws]E[Wt −Ws]

and by  of De�nition  it follows that this is equal to zero,

thus

Cov[Wt ,Ws] = E [W

s ] = Var[Ws].

If we now observe that Ws = W + (Ws − W) and

hence Var[Ws] = Var[W + (Ws − W)], then, by the

independence of the increments of the process, we get

Var[W + (Ws −W)] = Var[W] + Var[Ws −W].

�erefore, by points  and  of De�nition  it follows that

Var[Ws] = s = inf{s, t},

which completes the proof.

Remark  By  of De�nition , it follows, for all t ∈

IR+, Wt = Wt − W almost surely and by  of the same

de�nition, thatWt is distributed as N(, t).�us

P(a ≤Wt ≤ b) =


√
πt

∫

b

a
e
− x



t dx, a ≤ b.

Remark  �e Wiener process is a Gaussian process. In

fact, if n ∈ IN∗, (t, . . . , tn) ∈ IR
n
+ with  = t < t < . . . < tn
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and (a, . . . , an) ∈ IR
n
, (b, . . . , bn) ∈ IR

n
, such that ai ≤

bi, i = , , . . . ,n, it can be shown that

P(a ≤Wt ≤ b, . . . , an ≤Wtn ≤ bn)

= ∫

b

a

⋯∫

bn

an

g(∣x, t)g(x∣x, t − t)

⋯g(xn−∣xn, tn − tn−)dxn⋯dx,

()

where

g(x∣y, t) =
e−

∣x−y∣

t

√
πt
.

Proposition  If (Wt)t∈IR+ is a Wiener process, then it is

also a martingale (see 7Martingales).

Proof �e proposition follows from the fact that

(Wt)t∈IR+ is a zero mean process with independent incre-

ments.

�eorem  Every Wiener process (Wt)t∈IR+ is a Markov

process.

Proof �e theorem follows directly from the fact that

(Wt)t∈IR+ is a process with independent increments.

Remark  Since Brownian motion is continuous in prob-

ability, it admits a separable and progressively measurable

modi�cation.

�eorem  (Kolmogorov’s continuity theorem). Let

(Xt)t∈IR+ be a separable real-valued stochastic process. If

there exist positive real numbers r, c, є, δ such that

∀h < δ,∀t ∈ IR+, E[∣Xt+h − Xt ∣
r
] ≤ ch

+є
, ()

then, for almost every ω ∈ Ω, the trajectories are continuous

in IR+.

�eorem  If (Wt)t∈IR+ is a real-valued Wiener process,

then it has continuous trajectories almost surely.

Proof Let t ∈ IR+ and h > . BecauseWt+h −Wt is nor-

mally distributed as N(,h), putting Zt,h =
Wt+h−Wt√

h
, Zt,h

has standard normal distribution.�erefore, it is clear that

there exists an r >  such that E[∣Zt,h∣
r
] > , and thus

E[∣Wt+h −Wt ∣
r
] = E[∣Zt,h∣

r
]h

r
 . If we write r = ( + є),

we obtain E[∣Wt+h − Wt ∣
r
] = ch+є , with c = E[∣Zt,h∣

r
].

�e assertion then follows by Kolmogorov’s continuity

theorem.

�eorem  If (Wt)t∈IR+ is a real-valued Wiener process,

then

. P(supt∈IR+Wt = +∞) = 

. P(inf t∈IR+Wt = −∞) = 

�eorem  If (Wt)t∈IR+ is a real-valued Wiener process,

then,

∀h > , P (max
≤s≤h

Ws > ) = P (min
≤s≤h

Ws < ) = .

Moreover, for almost every ω ∈ Ω the process (Wt)t∈IR+
has a zero (i.e., crosses the spatial axis) in [,h], for all

h > .

�eorem  Almost every trajectory of the Wiener process

(Wt)t∈IR+ is di�erentiable almost nowhere.

Proposition  (scaling property). Let (Wt)t∈IR+ be a

Wiener process. �en the time-scaled process (W̃t)t∈IR+
de�ned by

W̃t = tW/t , t > , W̃ = 

is also a Wiener process.

Proposition  (Strong law of large numbers). Let

(Wt)t∈IR+ be a Wiener process.�en

Wt

t
→ , as t → +∞, a.s.

Proposition (Lawof iterated logarithms).Let (Wt)t∈IR+
be a Wiener process.�en

lim sup
t→+∞

Wt
√
t ln ln t

= , a.s.,

lim inf
t→+∞

Wt
√
t ln ln t

= −, a.s.

As a consequence, for any є > , there exists a t > , such

that for any t > t we have

−( + є)
√
t ln ln t ≤Wt ≤ ( + є)

√
t ln ln t, a.s.

Existence of the Wiener process is guaranteed by the

following fundamental theorem (see, e.g., Billingsley ).

�eorem (Donsker). Let ξ, ξ, . . . , ξn, . . . be a sequence

of independent identically distributed random variables

de�ned on a common probability space (Ω,F ,P), with

mean  and �nite, positive variance σ :

E[ξn] = , E [ξ

n] = σ


.

Let S =  and, for any n ∈ IN∖{}, let Sn = ξ+ ξ+⋯+ ξn.

�en the sequence of random processes de�ned by

Xn(t,ω) =


σ
√
n
S[nt](ω) + (nt − [nt])



σ
√
n

ξ[nt]+(ω)

for any t ∈ IR+, ω ∈ Ω, n ∈ IN, weakly converges to a Wiener

process.
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Diffusion Processes
Markov Processes
De�nition  Let (Xt)t∈IR+ be a stochastic process on a
probability space, valued in (E,B) and adapted to the
increasing family (Ft)t∈IR+ of σ-algebras of subsets of F .
(Xt)t∈IR+ is aMarkov processwith respect to (Ft)t∈IR+ if the
following condition is satis�ed:

∀B ∈ B,∀(s, t) ∈ IR+× IR+, s < t : P(Xt ∈ B∣Fs) = P(Xt ∈ B∣Xs) a.s.
()

Remark  If, for all t ∈ IR+, Ft = σ(Xr ,  ≤ r ≤ t), then

condition () becomes

P(Xt ∈ B∣Xr ,  ≤ r ≤ s) = P(Xt ∈ B∣Xs) a.s.

for all B ∈ B, for all (s, t) ∈ IR+ × IR+, and s < t.

Proposition  Under the assumptions of De�nition , the

following two statements are equivalent:

. For all B ∈ B and all (s, t) ∈ IR+ × IR+, s < t : P(Xt ∈

B∣Fs) = P(Xt ∈ B∣Xs) almost surely.

. For all g : E → IR,B-BIR-measurable such that g(Xt) ∈

L(P) for all t, for all (s, t) ∈ IR+, s < t : E[g(Xt)∣Fs] =

E[g(Xt)∣Xs] almost surely.

�eorem  Every real stochastic process (Xt)t∈IR+ with

independent increments is a Markov process.

Proposition  Consider a real valued Markov process

(Xt)t∈IR+ , and let

p(s, x, t,A)=P(Xt ∈ A∣Xs = x),  ≤ s < t <∞, x ∈ IR,A ∈ BIR .

p is aMarkov transition probability function, i.e., it is a non-

negative function de�ned for  ≤ s < t <∞, x ∈ IR,A ∈ BIR,

which satis�es the following properties

. For all  ≤ s < t < ∞, for all A ∈ BIR, p(s, ⋅, t,A) is

BIR-measurable.

. For all  ≤ s < t < ∞, for all x ∈ IR, p(s, x, t, ⋅) is a

probability measure on BIR.

. p satis�es the Chapman–Kolmogorov equation:

p(s, x, t,A) = ∫
IR

p(s, x, r,dy)p(r, y, t,A) ∀x ∈ IR, s < r < t.

De�nition  A Markov process (Xt)t∈[t ,T] is said to

be homogeneous if the transition probability functions

p(s, x, t,A) depend on t and s only through their di�er-

ence t − s.�erefore, for all (s, t) ∈ [t,T]

, s < t, for all

u ∈ [,T − t], for all A ∈ BIR, and for all x ∈ IR:

p(s, x, t,A) = p(s + u, x, t + u,A) a.s.

Remark  If (Xt)t∈IR+ is a homogeneous Markov pro-

cess with transition probability function p, then, for all

(s, t) ∈ IR+

, s < t, for all A ∈ BIR, and for all x ∈ IR, we

obtain

p(s, x, t,A) = p(, x, t − s,A) a.s.

We may then de�ne a one-parameter transition function

p(t̄, x,A) := p(, x, t − s,A)

with t̄ = (t − s), x ∈ IR,A ∈ BIR.

Semigroups Associated with Markov Transition
Probability Functions
Let BC(IR) be the space of all continuous and bounded

functions on IR, endowedwith the norm ∥ f ∥ = supx∈IR ∣ f (x)∣

(<∞), and let p(s, x, t,A) be a transition probability func-

tion ( ≤ s < t ≤ T, x ∈ IR,A ∈ BIR). We consider the

operator

Ts,t : BC(IR)→ BC(IR),  ≤ s < t ≤ T,

de�ned by assigning, for all f ∈ BC(IR),

(Ts,tf )(x) = ∫
IR
f (y)p(s, x, t,dy).

If s = t, then

p(s, x, s,A) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

 if x ∈ A,

 if x ∉ A.

�erefore,

Tt,t = I (identity). ()

Moreover, we have that

Ts,tTt,u = Ts,u,  ≤ s < t < u. ()

In fact, if f ∈ BC(IR) and x ∈ IR,

(Ts,t(Tt,uf ))(x)

= ∫
IR
(Tt,uf )(y)p(s, x, t,dy)

= ∫ ∫
IR
f (z)p(t, y,u,dz)p(s, x, t,dy)

= ∫
IR
f (z)∫

IR
p(t, y,u,dz)p(s, x, t,dy)

(by Fubini’s theorem)

= ∫
IR
f (z)p(s, x,u,dz)

(by the Chapman–Kolmogorov equation)

= (Ts,uf )(x).

De�nition  �e family {Ts,t}≤s≤t≤T is a semigroup

associatedwith the transition probability function p(s, x, t,A)

(or with its corresponding Markov process).
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De�nition  If (Xt)t∈IR+ is a Markov process with tran-

sition probability function p and associated semigroup

{Ts,t}, then the operator

Asf = lim
h↓

Ts,s+hf − f

h
, s ≥ , f ∈ BC(IR)

is called the in�nitesimal generator of the Markov process

(Xt)t≥. Its domain DAs
consists of all f ∈ BC(IR) for

which the above limit exists uniformly (and therefore in

the norm of BC(IR)) (see, e.g., Feller ).

Remark  From the preceding de�nition we observe that

(Asf )(x) = lim
h↓



h
∫
IR
[f (y) − f (x)]p(s, x, s + h,dy).

De�nition  Let (Xt)t∈IR+ be a Markov process with

transition probability function p(s, x, t,A), and {Ts,t}

(s, t ∈ IR+, s ≤ t) its associated semigroup. If, for all f ∈

BC(IR), the function

(t, x) ∈ IR+×IR→(Tt,t+λf )(x) =∫
IR
p(t, x, t+λ,dy)f (y) ∈ IR

is continuous for all λ > , then we say that the process

satis�es the Feller property.

�eorem  If (Xt)t∈IR+ is a Markov process with right-

continuous trajectories satisfying the Feller property, then,

for all t ∈ IR+, Ft = Ft+ , where Ft+ = ⋂t′>t σ(X(s),  ≤ s ≤

t′), and the �ltration (Ft)t∈IR+ is right-continuous.

Remark  It can be shown that Ft+ is a σ-algebra.

Example  Wiener processes are processes with the Feller

property, or simply Feller processes.

If we consider the time-homogeneous case, a Markov

process (Xt)t∈IR+ on (IR,BIR), will be de�ned in terms of a

transition kernel p(t, x,B) for t ∈ IR+, x ∈ IR, B ∈ BIR, such

that

p(h,Xt ,B) = P(Xt+h ∈ B∣Ft) ∀t,h ∈ IR+,B ∈ BIR,

given that (Ft)t∈IR+ is the natural �ltration of the process.

Equivalently, if we denote by BC(IR) the space of all con-

tinuous and bounded functions on IR, endowed with the

sup norm,

E[g(Xt+h)∣Ft]=∫
E
g(y)p(h,Xt ,dy) ∀t,h ∈ IR+, g ∈ BC(IR).

In this case the transition semigroup of the process is a

one-parameter contraction semigroup (T(t), t ∈ IR+) on

BC(IR) de�ned by

T(t)g(x) := ∫
E
g(y)p(t, x,dy) = E[g(Xt)∣X = x], x ∈ IR,

for any g ∈ BC(IR).�e in�nitesimal generator will be time

independent. It is de�ned as

Ag = lim
t→+



t
(T(t)g − g)

for g ∈ D(A), the subset of BC(IR) for which the above

limit exists, in BC(IR), with respect to the sup norm. Given

the above de�nitions, it is obvious that for all g ∈ D(A),

Ag(x) = lim
t→+



t
E[g(Xt)∣X = x], x ∈ IR.

If (T(t), t ∈ IR+) is the contraction semigroup associ-

ated with a time-homogeneous Markov process, it is not

di�cult to show that the mapping t → T(t)g is right-

continuous in t ∈ IR+ provided that g ∈ BC(IR) is such

that the mapping t → T(t)g is right continuous in t = .

�en, for all g ∈ D(A) and t ∈ IR+,

∫

t


T(s)gds ∈ D(A)

and

T(t)g − g = A∫
t


T(s)gds = ∫

t


AT(s)gds

= ∫

t


T(s)Agds

by considering Riemann integrals.�e following, so-called

Dynkin’s formula, establishes a fundamental link between

7Markov processes and 7martingales (see Rogers and
Williams , p ).

�eorem  Assume (Xt)t∈IR+ is a time-homogeneous

Markov process on (IR,BIR), with transition kernel p(t, x,B),

t ∈ IR+, x ∈ IR, B ∈ BIR. Let (T(t), t ∈ IR+) denote its tran-

sition semigroup andA its in�nitesimal generator.�en, for

any g ∈ D(A), the stochastic process

M(t) := g(Xt) − g(X) − ∫
t


Ag(Xs)ds

is an Ft-martingale.

�e next proposition shows that a Markov process is

indeed characterized by its in�nitesimal generator via a

martingale problem (see, e.g., Rogers and Williams ,

p ).

�eorem  (Martingale problem forMarkov processes).

If an RCLL (right continuous with le� limits)Markov process

(Xt)t∈IR+ is such that

g(Xt) − g(X) − ∫
t


Ag(Xs)ds

is an Ft-martingale for any function g ∈ D(A), where A

is the in�nitesimal generator of a contraction semigroup on
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E, then Xt is equivalent to a Markov process havingA as its

in�nitesimal generator.

Markov Diffusion Processes
De�nition  A Markov process on IR with transition

probability function p(s, x, t,A) is called a di�usion process

if

. For all є > , for all t ≥ , and for all x ∈ IR :

limh↓


h ∫∣x−y∣>є p(t, x, t + h,dy) = .

. �ere exist a(t, x) and b(t, x) such that, for all є > ,

for all t ≥ , and for all x ∈ IR,

lim
h↓



h
∫
∣x−y∣<є

(y − x)p(t, x, t + h,dy) = a(t, x),

lim
h↓



h
∫
∣x−y∣<є

(y − x)

p(t, x, t + h,dy) = b(t, x).

a(t, x) is the dri� coe�cient and b(t, x) the di�usion coef-

�cient of the process.

Proposition  If (Xt)t∈IR+ is a di�usion process with tran-

sition probability function p and dri� and di�usion coef-

�cients a(x, t) and b(x, t), respectively, and if As is the

in�nitesimal generator associated with p, then we have that

(Asf )(x) =
∂f

∂x
a(s, x) +





∂f

∂x
b(s, x), ()

provided that f is bounded and twice continuously di�eren-

tiable.

Proposition  A Wiener process is a time homogeneous

di�usion process, with dri� zero and di�usion coe�cient

equal to .

Its in�nitesimal generator is then

(Af )(x) =




∂f

∂x
, ()
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Forecasting, Planning, and Goals
Forecasting is a common statistical task in business where

it helps inform decisions about scheduling of production,

transportation and personnel, and provides a guide to

long-term strategic planning. However, business forecast-

ing is o�en done poorly and is frequently confused with

planning and goals.�ey are three di�erent things.
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Forecasting is about predicting the future as accurately as

possible, given all the information available including

historical data and knowledge of any future events that

might impact the forecasts.

Goals are what you would like to happen. Goals should be

linked to forecasts and plans, but this does not always

occur. Too o�en, goals are set without any plan for how

to achieve them, and no forecasts for whether they are

realistic.

Planning is a response to forecasts and goals. Planning

involves determining the appropriate actions that are

required to make your forecasts match your goals.

Forecasting should be an integral part of the

decision-making activities of management, as it can play

an important role in many areas of a company. Mod-

ern organizations require short-, medium-, and long-term

forecasts, depending on the speci�c application.

Short-term forecasts are needed for scheduling of person-

nel, production, and transportation. As part of the

scheduling process, forecasts of demand are o�en also

required.

Medium-term forecasts are needed to determine future

resource requirements in order to purchase raw mate-

rials, hire personnel, or buymachinery and equipment.

Long-term forecasts are used in strategic planning. Such

decisions must take account of market opportunities,

environmental factors, and internal resources.

An organization needs to develop a forecasting sys-

tem involving several approaches to predicting uncertain

events. Such forecasting systems require the development

of expertise in identifying forecasting problems, applying a

range of forecasting methods, selecting appropriate meth-

ods for each problem, and evaluating and re�ning forecast-

ing methods over time. It is also important to have strong

organizational support for the use of formal forecasting

methods if they are to be used successfully.

Commonly Used Methods
Typically, businesses use relatively simple forecasting

methods that are o�en not based on statistical modelling.

However, the use of statistical forecasting is growing and

some of the most commonly used methods are listed

below.

Time Series Methods
Let the historical time series data be denoted by y, . . . , yn,

and the forecast of yn+h be given by ŷn+h∣n, h > .

● Naïve forecasting is where the forecasts of all future

values of a time series are set to be equal to the last

observed value: ŷn+h∣n = yn, h = , , . . . . If the data

follow a random walk process (yt = yt− + et where et
is white noise – a series of iid random variables with

zero mean), then this is the optimal method of fore-

casting. Consequently, it is popular for stock price and

stock index forecasting, and for other time series that

measure the behavior of a market that can be assumed

to be e�cient.

● Simple exponential smoothing was developed in the

s (Brown ) and has been widely used ever

since. Forecasts can be computed recursively as each

new data point is observed:

ŷt+∣t = αyt + ( − α)ŷt∣t−,

where  < α < . (Longer-term forecasts are constant:

ŷt+h∣t = ŷt+∣t , h ≥ .) Consequently, only the most

recent data point and most recent forecast need to be

stored. �is was an attractive feature of the method

when computer storage was expensive. �e method

has proved remarkably robust to a wide range of time

series, and is optimal for several processes including

the ARIMA(,,) process (Chat�eld et al. ).

● Holt’s linear method (Holt ) is an extension of sim-

ple exponential forecasting that allows a locally linear

trend to be extrapolated. Forecasts are given by ŷt+h∣t =

ℓt + hbt where

ℓt = αyt + ( − α)(ℓt− + bt−),

bt = β(ℓt − ℓt−) + ( − β)bt−,

and the two parameters α and βmust lie in [, ]. Here

ℓt denotes the level of the series and bt the slope of the

trend at time t.

● For seasonal data, a popularmethod is theHolt–Winters’

method, also introduced in Holt (), which extends

Holt’s method to include seasonal terms.�en ŷt+h∣t =

ℓt + hbt + st−m+h+
m
where

ℓt = α(yt − st−m) + ( − α)(ℓt− + bt−),

bt = β(ℓt − ℓt−) + ( − β)bt−,

st = γ(yt − ℓt) + ( − γ)st−m,

h+m = [(h − ) mod m] + , and the three parameters

α, β and γ all lie in [,].

�ere is also a multiplicative version of the Holt–Winters’

method, and damped trend versions of both Holt’s lin-

ear method and Holt–Winters’ method (Makridakis et al.

). None of these methods are explicitly based on
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underlying time series models, and as a result the esti-

mation of parameters and the computation of predic-

tion intervals is o�en not done. However, all the above

methods have recently been shown to be optimal for

some state space models (Hyndman et al. ), and

maximum likelihood estimation of parameters, statistical

model selection and computation of prediction intervals is

now becoming more widespread.

Other time series models sometimes used in business

forecasting include ARIMA models, GARCH models

(especially in �nance), structural models and7neural net-
works.

Explanatory Models for Forecasting
�e use of explanatorymodels in business forecasting does

not have such a long history as the use of time series

methods.

● Linear regression modeling (see 7Linear Regression
Models) is now widely used (e.g., Pardoe ) where

a variable to be forecast is modeled as a linear combi-

nation of potential input variables:

yt =
J

∑
j=

cjxj,t + et ,

where et denotes an iid error term with zero mean.

An interesting application of regressionmodels to fore-

casting is given by Byron and Ashenfelter () who

use a simple regressionmodels to predict the quality of

a Grange wine using simple weather variables. How-

ever, it is far more common for regression modelling

to be used to explain historical variation than for it to

be used for forecasting purposes.

● In some domains, the use of nonparametric additive

models for forecasting is growing (e.g., Hyndman and

Fan ). Here, the model is o�en of the form

yt =
J

∑
j=

fj(xj,t) + et ,

where fj is a smooth nonlinear function to be estimated

nonparametrically.

● In advertising, there is a well-developed culture of

using distributed lag regression models (e.g., Hanssens

et al. ) such as

yt =
J

∑
j=

αλ
j
xt−j + et ,

where xt denotes advertising expenditure in month t,

 < λ <  and α > .

Data Mining Methods for Business
Forecasting
Outside of traditional statistical modelling, an enormous

amount of forecasting is done using data mining meth-

ods (see 7Data Mining). Most of these methods have no
formal statistical model, prediction intervals are not com-

puted, and there is limited model checking. But some of

the data-miningmethods have proven powerful predictors

in some contexts, especially when there is a vast quan-

tity of available data. Predictive methods include neural

networks, support vector machines, and regression trees.

Many of the best-known business predictive algorithms

are based on data-mining methods including the predic-

tion ofNet�ix ratings (see7DataMiningTime SeriesData,
Forecasting Principles).
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�ere is no unique de�nition of the term and concept of

Business Intelligence (BI) adopted both in the academic

community and commercial business circles. However,

there are various short and broad de�nitions that empha-

size some speci�c aspects of this complex concept. In gen-

eral, the concept of Business Intelligence refers to in-depth

analysis of companydata for better decision-making.How-

ever, more speci�cally, the concept may be explained

as follows: BI is an umbrella term combining architec-

tures, tools, databases, analytical tools, applications, and

methodologies for gathering, storing, analyzing, and pro-

viding access to data for improving business performance

and helping enterprise users make better business and

strategic decisions (Turban et al. ).

From a historical point of view, the term business intel-

ligence appeared in the late s, but many years later

its usage has been widened to cover the sense it is asso-

ciated with nowadays.�e history of BI concept develop-

ment is closely connected to the evolution of information

systems for enterprise decision support. �is is the �eld

in which the roots of the BI concept can be identi�ed,

i.e., the Management Information System – MIS report-

ing systems of the s.�ese systems were characterized

by static reporting features without analytical capabilities.

�e next generation of information systems – the Execu-

tive Information System (EIS) that emerged in the early

s provided some additional capabilities, such as: ad-

hoc reporting, on-demand reporting, forecasting and pre-

diction, trend analysis, drill-down capability, and critical

success factors.�ese capabilities were essential for com-

puterized support to top-level managers and executives

and they were all integrated in the BI system. While the

widespread usage of the term and the concept had been

recorded in the late s, the rapid growth of BI tools

and technologies became evident in s, when many

sophisticated data analysis tools were being included in BI

enterprise information systems.

Considering the broader scene of the main busi-

ness and technological trends that had an impact on

the development of the BI concept, the following are

particularly worth noting: globalization, rapid business

growth, strong market competition, data explosion and

information overload in all spheres of business and ordi-

nary life, user dissatisfaction with fragmented information

systems capabilities, client/server architecture, Enterprise

Resource Planning (ERP), Data warehouse (DW) tech-

nology, arti�cial intelligence computing, and web-based

technologies and applications. Among all of these tech-

nologies, one can be distinguished as the biggest techno-

logical catalyst for BI rapid development and success – the

DW technology. DW is a repository of subject-oriented,

consistent, integrated, historic, and non-volatile collection

of data, organized in such way to allow the end-user easy

access to data in a form acceptable for analytical process-

ing activities. One of the key features of the DW refers

to speci�c data organization. In contrast to classical data

organization approach, with data stored in operational

systems (legacy, inventory, shipping, or ERP) and orga-

nized according to a concrete business process (purchas-

ing, shipping, billing. . .), data in DW are organized by

subject. Special so�ware, called ETL (Extract, Transform

and Load) is responsible for extracting data from di�er-

ent sources, cleaning them up and loading them into a

data warehouse.�anks to this feature, DW provides fast

retrieval of historical data (allowing users to analyze time

series, trends, and historical patterns) and allows users to

analyze broader sets of data. In addition to the data ware-

house, the architecture of a BI system comprises three other

components (Turban et al. ): business analytics as a

collection of tools for data query and reporting, online

analytical processing, statistical analysis, prediction, data

visualization, 7data mining, text and web mining; busi-
ness performance management (BPM) used for monitoring

and analyzing performance through business performance

indicators; and a user interface that aims to adequate user

communication with the BI system (e.g., dashboard, alerts,

and noti�cations).

For analytical purposes, the BI concept assumes a

broad usage of statistical so�ware products and machine

learning techniques.�e combination of statistics and pre-

dictive analytics is recognized as one of the crucial trends

in business intelligence. So, it is not unusual to observe

some of the most famous statistical so�ware products

being incorporated in the integrated predictive analyt-

ics technology suits or portfolios. �e most impressive

examples in this sense are the transformation of two sta-

tistical so�ware leaders – SPSS (“Statistical Package for

the Social Sciences”) and SAS (“Statistical Analysis Sys-

tem”) into remarkable providers of predictive analytics

so�ware and services. By using this combined technol-

ogy, organizations can address their vital BI needs, be it

reporting, querying, business visualization, statistics, sur-

vey analysis,7datamining, text andWeb analysis, decision
optimization, or, very o�en, a combination of previous

capabilities.
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�e market of BI products and tools has been on

the rise in the last few years and shows a strong ten-

dency for further expansion in the future. According to

the Business Intelligence Tools Survey (published in Octo-

ber ), the most renowned providers of BI products

are: Oracle, SAP, SAS Institute, IBM, EFM So�ware, Infor-

mation Builders, Microso�, QlikTech, Microstrategy, and

Actuate.
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An Overview and Definitions
Business statistics can be viewed from two perspectives.

One focuses on the use of the statistics themselves. �e

other sees business statistics as a practitioner-based dis-

cipline. To the user, business statistics are intended to be

helpful information pertaining to the e�cacy of either a

company (e.g., �nancial statements and �nancial ratios

at a particular point in time over several time peri-

ods), an industry (e.g., a series of data or an index con-

structed over time), or the overall economy.�e informa-

tion gleaned is o�en intended to help the user in making

decisions regarding planning, monitoring or investing. To

the practitioner, however, business statistics is a particular

academic branch of study, similar to other applications-

based branches of statistics such as agricultural statis-

tics, 7astrostatistics, 7biostatistics, educational statistics,
7medical statistics, psychological statistics and sociologi-
cal statistics.�e operational de�nition of business statis-

tics adopted herein is the latter.

Business statistics is an applied branch of mathe-

matics that transforms data into useful information for

decision-making purposes (Berenson et al. a). �e

applications transcend the various functional areas of busi-

ness – accounting (e.g., auditing), �nance (e.g., portfo-

lio development, 7risk analysis, forecasting, econometric
modeling), information systems (e.g., database manage-

ment, e-commerce analysis), management (e.g., project

management, quality and productivity management) and

marketing (e.g., consumer behavior, sales forecasting,mar-

ket segmentation, conjoint analysis).

Owing to the wide variety of applications within these

areas, business statistics is sometimes referred to as indus-

trial statistics or economic statistics. However, the scope

of such nomenclature is too narrow and the more encom-

passing de�nition of business statistics is preferred. Indus-

trial statistics typically pertains to quality and productivity

whereas economic statistics usually pertains to economet-

ric modeling.

�e key feature which distinguishes business statistics

as a discipline distinct from other subject area applications

of statistics is that in business two types of studies can be

conducted, enumerative or analytic, and each has its own

methodology. To distinguish between these two types of

studies, consider a photograph in a frame versus a motion

picture �lm played on a DVD. Whereas an enumerative

study is a “snapshot at a singlemoment in time,” an analytic

study is a “motion picture taken over time.”

Enumerative studies are common to other application-

based branches of statistics and various methodologies

employed transcend these statistics disciplines. Enumer-

ative studies involve decision making regarding a popu-

lation and/or its characteristics at a particular point in

time.�e sampled data collected can be analyzed descrip-

tively and inferentially provided that appropriate probabil-

ity sampling methods are used in the data collection stage.

Inferences drawn through con�dence interval estimation

and regression modeling would be considered appropriate

for that population at that moment in time. For example, a

% con�dence interval estimate based on a survey con-

ducted today might show that adult males are between

% and % more con�dent than are adult females that

there will be improvements in global economic conditions

next year, but who would believe that such opinions would

remain static over time as events which led to such opin-

ions change? Decisions made based on inferences drawn

fromenumerative studies hold true only as long as the pop-

ulation frames fromwhich the samples were drawn remain

unchanged.

On the other hand, analytic studies are speci�cally

applicable to industrial or business situations (Deming
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). Analytic studies involve taking some action on a

process to improve future performance (Berenson et al.

a; Cryer and Miller ; Hoerl and Snee ). Data

fromaprocess aremonitored over time and the focus of the

study is to understand process behavior in order to make

improvements to the process. Data collected typically con-

stitute samples (i.e., subgroups) from some ongoing pro-

duction process or service process obtained at regular

intervals of time. �e data can be analyzed descriptively

but inferential analysis at this stage is usually limited to

studying whether there are recognizable trends or other

patterns in some critical-to-quality (CTQ) characteristic

over time. By monitoring and understanding process vari-

ation, once a process is deemed “in-control,” the objec-

tive is to improve the process either by enhancing the

critical-to-quality characteristic’s average and/or reducing

process variation.�is is done through inference – design-

ing appropriate experiments based on the principle of

7randomization (Box et al. ). �e �elds of quality
and productivity management, CQI/TQM, and Six-Sigma

management have evolved from analytic studies.

A parallel to the analytic study described in managing

a manufacturing or service process is time-series analy-

sis (Roberts ) which, for many years, was used for

either decomposing a series of data into its trend, sea-

sonal or cyclical components in order to compare the

series with others in the same industry, across industries or

against movements in the overall economy or for forecast-

ing the series into the future (Croxton and Cowden ).

�e �elds of econometric modeling and forecasting have

evolved from time-series analysis.

Evolution of Business Statistics
Education
�rough the s teaching emphasis was mainly on

descriptive statistical methods along with time series

decomposition, forecasting, and index number construc-

tion (Croxton andCowden ).Numbers-crunchingwas

typically achieved through the use of desktop calculators.

However, in the s, as growth in computer technol-

ogy permitted the storing of large data sets along with

more rapid numbers-crunching capability, research using

multivariate analysis methods that were developed in the

s through s was �nally plausible. Statistical so�-

ware packages such as SPSS, SAS and BMDP, designed for

research in the social sciences, psychology and medicine,

were also adopted for use in business, particularly in mar-

keting research and in �nance.�us, from the mid s

through themid s, business statistics educationmainly

focused on probability (Schlaifer ), sampling and, in

particular, statistical inference.

In the mid s, sparked by world-wide recognition

of the achievements of W. Edwards Deming, the need to

distinguish between enumerative and analytic studies in

a business environment in which collected data are o�en

longitudinal and not a random sample led to the develop-

ment of annualMSMESB (Making StatisticsMore E�ective

in Schools and Business) conferences and resulted in the

infusion of TQM into the business statistics curriculum

(Tiao et al. ). Probability and inference were deem-

phasized. Following Deming’s death in , the TQM

approach, which so successfully developed in Japan, was

marred by �nancial failures and corrupt business prac-

tices in that country. Unfortunately, MSMESB was unable

to sustain its earlier momentum regarding the importance

of TQM in the business statistics course curriculum, par-

ticularly a�er TQM evolved into a Six-Sigma approach

(see 7Six Sigma) which B-school faculty considered “too
much” to handle in a -year, let alone one-semester intro-

ductory course.

�e late s and the �rst decade of the new mil-

lennium have witnessed an even more rapid expansion

of information technology capability. Owing to increased

computer literacy and the ability to use computer so�ware

to solve larger-scale problems, there has been a reduc-

tion in numbers-crunching and more emphasis is now

placed on analyzing computer-obtained results. In addi-

tion, advances in information technology have led to fur-

ther advances in the data mining of enormous data bases

and emphasis on regressionmodel-building andother ana-

lytical tools for evaluating such large data sets is emerging

in business statistics education.

The Future of Business Statistics
Education
Approximately % of all undergraduate students in the

US who currently take an introductory statistics course

are business majors.�us, as recognized at the very �rst

MSMESB conference (Tiao et al. ) in , it is essen-

tial that the course be practical and relevant, demon-

strate applications to the functional areas of business,

use real data, employ computer information technology

rather than “numbers crunching” to get results, emphasize

analysis and interpretation of results, and enhance criti-

cal thinking and problem-solving skills through written

articulation of �ndings (Berenson et al. b).

In addition, attention must be given to proper tabular

and graphic presentation that assist in descriptive analy-

sis and decision making. �e importance of probability

sampling and randomization in making inferences from

sample statistics to population parameters in enumerative

studies must be emphasized. And the course must provide

an understanding of models useful for prediction and for
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forecasting as well as an understanding of processmanage-

ment in analytic studies through control chart monitoring

and the use of other quality tools (Berenson et al. a).

Owing to the need for B-schools to produce graduates

whowill be able tomake useful contributions to business in

an ever dynamic global environment, the �eld of business

statistics will continue to make important contributions

by providing the tools and methods along with enhanc-

ing the quantitative and critical thinking skills of the future

workforce. With continued advances in IT, and continued

developments in data mining and methodology for han-

dling and analyzing enormously large sets of data collected

over time, emerging functional area disciplines in busi-

ness such as business analytics and business informatics

will likely subsume business statistics along with the �elds

of operations research, management information systems

and supply chain management. Future students preparing

for work in such emerging �elds will have a tremendous

opportunity to learn and contribute to the world at large.
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�e label business survey is typically attached to surveys

that concern organizations involved in business activities

such as manufacturing, commerce, �nance, and other ser-

vices. Business surveys may be considered a subgroup of

establishment surveys. Establishment surveys refer to any

formal organization engaged in any kind of productive

activities, which also includes schools, hospitals, prisons,

and other types of institutions that always or prevalently

lack a lucrative purpose.

Surveying businesses serves several aims. Govern-

ments use business surveys to collect data for eco-

nomic indicators within the system of national accounts
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(e.g., for gross domestic product) and other areas of

economic and 7business statistics. �e collected data
are quantitative rather than categorical data, and among

the quantitative data the continuous type tends to be

more frequent than discrete (Cox and Chinnappa ).

Some examples are revenues, costs, value of imported and

exported goods, number of employees, amount of pro-

duced goods, and energy consumption.�e most impor-

tant statistical parameters include totals, structures, and

averages, for example, total production or total employ-

ment, the structure of businesses by size, and average

wages. Changes in these statistics may even be more inter-

esting for the conduct of economic policies (Rivière ).

�is is why panel or longitudinal sampling designs and

recurring surveys are o�en used in such business surveys.

In addition, academic researchers use business surveys to

collect data for theoretical models that o�en describe com-

plex structures and relationships, for example, organiza-

tional structures, the relationship between business inno-

vativeness and revenue growth, the relationship between

atmosphere at work and working at home, etc. Chambers

of commerce and industry, boards of trade, commodity

and industrial boards, and similar organizations repre-

senting businesses also use business surveys when they

are interested in getting data from their members. Finally,

there are business research methods (e.g., Blumberg et al.

) that are used by businesses to support their internal

decision making related to business-to-business relations

and their market position.

�e nature of participation in business surveys depends

on their aims. In Europe, business surveys conducted

by governmental institutions are typically mandatory,

which means that sanctions may be used in case of non-

compliance. In the US, this also applies to many but

not all business surveys and censuses carried out by

the Census Bureau. Mandatory business surveys usually

achieve a response rate of % or more, o�en a�er a

series of reminders. Voluntary business surveys not con-

ducted by governmental statistical agencies achieve much

lower response rates. �ese may be slightly higher for

academic surveys (e.g., Baruch and Holtom () cal-

culated an average around %) compared to commercial

surveys.

Business surveys have many unique characteristics

given speci�c characteristics of the business population.

�e business population is volatile (this is particularly

true of small enterprises) and di�cult to track due to

mergers, acquisitions, numerous forms of linkages, and co-

operation. Various business units beyond administrative

ones may constitute the most appropriate and meaningful

unit of observation depending on the survey objectives: an

enterprise, a local unit, a kind-of-activity unit etc., but they

may not be simple to determine in practice. �e choice,

de�nition, and identi�cation of the unit of observation are

of paramount importance as they may have a considerable

impact on estimates, in particular on breakdowns by activ-

ity and region. A public business register can support this

complex task and help to construct the survey frame, par-

ticularly if it builds on standard statistical units, provides

common background variables (at least main economic

activity, size indicator, and location), uses standard clas-

si�cations for these variables (see, for instance, the UN

Classi�cations Registry 7unstats.un.org/unsd/cr/registry/
and the latest version of the International Standard Indus-

trial Classi�cation of all EconomicActivities (ISIC)), and is

regularly updated.�is reduces frame errors like omissions

(e.g., start-ups), erroneous inclusions (e.g., bankrupt com-

panies), duplications (e.g., change of the business name),

and misclassi�cations (e.g., change of the main economic

activity). �is is why the construction, maintaining, and

updating of business registers has traditionally been given

a lot of attention in business survey methodology (see, for

instance, Cox et al. ).

Businesses are also heterogeneous in terms of their

activity, behavior, and size. Many variables in business sur-

veys have skewed distributions. Larger businesses in the

economy (or in an activity or a region) may therefore

be selected in the sample at all times and receive spe-

cial attention in statistics production. Availability of back-

ground variables and a larger weight of some businesses

make strati�ed sampling and probability-proportional-to-

size typical sampling methods for business surveys (see

7Sample survey methods).
Questionnaires in business surveys o�en resemble

forms with item labels. Item labels substitute survey ques-

tions; they o�en consist of technical terms, are accom-

panied by detailed instructions, and request data kept

in business records, which all make the response task

quite burdensome and time-consuming, and call for self-

administered modes of data collection. �e trend in

governmental business surveys is towards mixed-mode

designs in which paper questionnaires are complemented

with electronic ones that can either be completed on-line

or downloaded to be completed o�-line (see 7Internet
survey methodology – recent trends and developments).

Both paper and electronic questionnaires should be

designed in such a way that it serves the response process

within businesses (see e.g., Snijkers et al. ).

In business surveys, more than one person may

be necessary to reach the decision on survey partic-

ipation and provide survey answers because authority,

capacity, and motivation to respond rarely reside in
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one single person within the organization. Organiza-

tions have several characteristics that in�uence their deci-

sion on survey participation such as centralization of

decision making, fragmentation of knowledge through

specialization and founding of subsidiaries and branch

plants, boundary-spanning roles, environmental depen-

dence, etc. (Tomaskovic-Devey et al. ; Snijkers et al.

). Some factors in�uencing this decision are under

researchers’ control while others are not.�e former, for

instance, include the selection of the mode, the ques-

tionnaire design, and the contact strategies (e.g., intro-

ducing the survey, motivating respondents to participate,

and respondent chasing); the latter include the selec-

tion of the actual respondent(s), internal business factors

(e.g., policy not to participate in surveys), and factors

in external environment such as survey-taking climate,

political and economic climate, and legal and regulatory

requirements (Willimack et al. ; Snijkers ). Pay-

ing attention to these factors, even taking the factors that

are out of control into account in the survey design,

may help prevent or reduce non-response in business

surveys.

As in other surveys, the measurement process cul-

minates in the process of responding to survey questions.

Tourangeau () pointed to four cognitive components

of this process: understanding of the survey question,

retrieval of information from memory, judgment of

retrieved pieces of information, and communication of

the response (see 7Sample survey methods). While the
essence of the response process stays the same also in

business surveys, many speci�cs shape this process con-

siderably. Several people are o�en involved in the process:

in addition to the respondent, also referred to as a reporter

or an informant that indeed acts as a business representa-

tive or spokesperson, there may be other business partici-

pants such as gatekeepers (e.g., boundary-spanning units,

receptionists), response coordinators, data providers, and

authorities who also may serve as gatekeepers. When the

required data and/or knowledge to extract them are dis-

persed across the business, response coordinators organize

the survey task. Respondents retrieve the required data

themselves or have data providers to retrieve data for them.

Authorities have an important role in providing a mandate

to work on the 7questionnaire, delegating and schedul-
ing the survey response task and in authorizing the survey

response.

Another speci�c of business surveys is heavy reliance

on data stored in business records. When the requested

data are not (readily) available in business records, the

response burden increases. If the survey design is tailored

to internal business processes, the response burden is likely

to decrease, which a�ects the occurrence of non-response

andmeasurement errors (Dale and Haraldsen ; Snijk-

ers ).

Complexity of data collection in business surveys gave

rise to severalmodels of response processes.�e latest con-

tributions are the hybrid model by Willimack and Nichols

(), the model introducing the idea of socially dis-

tributed cognition by Lorenc (), the response model

focusing on motivating people and in�uencing their

response behavior by Snijkers (), and themultidimen-

sional integral business survey response (MIBSR) model by

Bavdaž (b).

Quality assessment of business surveysmay be based on

quality frameworks developed by statistical organizations

(e.g., IMF, Eurostat, Statistics Canada, Australian Bureau of

Statistics, etc.), especially if these surveys provide data for

o�cial statistics. None of these frameworks can dowithout

the accuracy of statistical data. Accuracy can be assessed

using the concept of the total survey error (see7Total sur-
vey error) even though some speci�csmay apply especially

to non-sampling errors (see7Non-sampling errors in sur-
veys). Speci�cation errors, for instance, may be quite large

because business surveys attempt tomeasure complex eco-

nomic phenomena. Frame errors depend on the existence

and quality of a business register; these errors do not only

refer to under coverage and over coverage but also to dupli-

cations and misclassi�cations. When several units within

a business constitute units of observation, businesses may

not report data for all of them, which results in within-

business non-response; when units of observation di�er

from existing organisational units, businesses may report

data for wrong units, which results in measurement errors.

Given the speci�cs and complexity of the response process

in business surveys, sources ofmeasurement errors include

all business participants and survey sta� involved in the

response process, the business environment, the survey

instrument, and various survey characteristics and proce-

dures beyond the mode of data collection, in particular

the recurrence of the response process (Bavdaž a). For

many items in business survey questionnaires, it is di�-

cult to distinguish between item non-response and a valid

zero value. Non-response and measurement errors may be

reduced in the data editing process. Given the usual abun-

dance of auxiliary information taken from previous data

reporting in the same survey, other surveys, or adminis-

trative sources, data editing has traditionally been given

a lot of attention in business surveys. �is is why data

processing errors may be relatively small.

Since the s, business surveymethodology has been

increasingly given a systematic approach in order to solve

business surveys’ unique problems (Cox et al. ). Up
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to now, three International Conferences on Establishments

Surveys (ICES) have been organized in , 

and , and the fourth one is coming up ().

Other initiatives also serve this goal, for example, the

International Workshop on Business Data Collection

Methodology (www.ssb.no/bdcmethods) and the Euro-

pean Establishment StatisticsWorkshop (www.enbes.org).

In Europe, Eurostat has started a major program on Mod-

ernisation of European Enterprise and Trade Statistics

(MEETS; Behrens ). �ese initiatives try to provide

a platform for business survey methodologists to discuss

their problems, promote exchange of ideas and interna-

tional collaboration, foster research in this �eld, and come

to current best practices.
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Variousmethods and di�erent (linear or not, simple linear,

or multivariate) models have been adopted in industry to

address the calibration problem. In practice, most of the

models attempt to deal with the simple linear calibration

technique, mostly applied in chemical applications, espe-

cially when some instruments are to be calibrated (exam-

ples include pHmeters, NIR instruments, and establishing

calibration graphs in chromatography).

�e early work of Shukla () put forward the prob-

lem on the real statistical dimensions, and even early on

it was realized that when a non-linear model describes

the phenomenon (Schwartz ), a linear approximation

is eventually adopted. But even so, in the end we come

to a nonlinear function to be estimated as best as possi-

ble (Kitsos and Muller ). When the variance of the

measurement is due to many sources of variability, dif-

ferent techniques are used. Statistical calibration has been

reviewed byOsborn (), who provides a list of pertinent

references; when a robust approach might be appropriate,

see Kitsos and Muller (). Certainly, to consider the

variance constant and to follow a statistical quality con-

trol method (see 7Statistical Quality Control), Hochberg
and Marom () might be helpful, but not in all cases.

For the multivariate case, see the compact book of Brown

(), Brereton (), and for an application Oman and

Wax (). Moreover, di�erent methods have been used

on the development of the calibration problem like cross-

validation (see Clark ).

Next we brie�y introduce the statistical problem and

the optimal design approach is adopted in the sequence to

tackle the problem.

Consider the simple regression model with

n = E(y∣u) = θ + θu u ∈ U = [−, ]

where U is the design space, which can always be trans-

formed to [−, ]. Moreover, the involved error is assumed

to be from the normal distribution with mean zero and

variance σ  > .

�e aim is to estimate the value of u = u given n = C,

i.e.,

u = (C − θ) /θ

which is a nonlinear function of the involved linear param-

eters, as we have already emphasized above.

�e most well-known competitive estimators of u
when y is provided are the so-called “classical predictor”

C (u) = x̄ +
Sxx

Sxy
(ẏ − ȳ)

and the “inverse predictor”

I (u) = ū +
Sxy

Syy
(ẏ − ȳ)

with:

Str =∑(ti − t̄)(ri − r̄)

were by ẏ we mean the average of the possible k obser-

vations taken at the prediction stage (or experimental

condition) and ȳ as usually the average of the collected

values.

�e comparison of C(u) and I(u) is based on the

values of the sample size n and the proportion ∣σ/θ∣ under

the assumption that x belongs to the experimenter area.

One of the merits of C(u) is that when the usual

normal assumption for the errors is imposed, the classical

predictor is the maximum likelihood estimator. Moreover,

C(u) is a consistent estimator while I(u) is inconsistent.

�e I(u) estimation is criticized as it provides a con�-

dence interval that might be the whole real line or, in the

best case, two disjoint semi-in�nite intervals. When ∣σ/θ∣

is small the asymptotic mse (mean square error) of C(u)

is smaller than with the use of I(u), when x does not lie

in the neighborhood of ū.

�e main di�culty is the construction of con�dence

intervals, as the variance of u does not exist. �is pro-

vides food for thought for an optimal design approach

for the calibration problem. To face these di�culties the

Miodrag Lovric (ed.), International Encyclopedia of Statistical Science, DOI ./----,

© Springer-Verlag Berlin Heidelberg 
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optimal experimental approach is adopted (see Optimum

Experimental Designs, also see Kitsos ).

For the one-stage design we might use of the criterion

functionΦ, eitherD-optimality for (θ, θ) or c-optimality

for estimating u. �e D-optimal design is of interest

because its e�ectiveness can be investigated, as measured

by the c-optimality criterion. Under c-optimality, thanks

to Elfving’s theorem, locally optimal two-point design can

be constructed geometrically. �e criterion that experi-

menters like to use is

minVar(û).

Di�erent approaches have been adopted for this crucial

problem: Bayesian, see Chaloner and Verdinelli (),

Hunter and Lamboy (); structural inference, see

Kalotay ().�ere is a criticism that structural inference

is eventually Bayesian, but this is beyond the scope of this

discussion.

When suitable priors for u are chosen the calibrative

density functions come from the non-central Student with

mean Ba(u) as

Ba(u) = ū +
Syy

r
(ẏ − ȳ)

where r = Syy +∑
k
j (yj − ȳ)


. When k =  the Bayesian es-

timator coincideswith the inverse, namelyBa(u) = I(u).

�e structural approach forms the simple linear model

as a “structural model” and obtains a rather complicated

model, which, again, with k = , coincides with the inverse

regression.

�e nonlinear calibration has attracted classical and

Bayesian approaches, both based on the Taylor expansion

of the nonlinear model.�erefore, calibration is based on

the linear approach of the nonlinear model.
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Introduction
�e Bravais–Pearson linear correlation coe�cient and the

Sarmanov maximal coe�cient are well known statistical



Canonical Analysis and Measures of Association C 

C

tools that permit to measure, respectively, correlation (also

called linear dependence) and stochastic dependence of

two suitable random variables X and X de�ned on a

probability space (Ω,A,P). Since these coe�cients just are

the �rst canonical coe�cients obtained from linear and

nonlinear canonical analysis, respectively, it is relevant to

improve them by using all the canonical coe�cients. In

order to give an uni�ed framework for these notions, we

introduce the canonical analysis (CA) of two closed sub-

spaces H and H of a Hilbert space H. �en, a class of

measures of association that admits the aforementioned

coe�cients as particular cases can be constructed.

Canonical Analysis
LetH be a separable real Hilbert space with inner product

and related norm denoted by ⟨⋅, ⋅⟩ and ∥⋅∥ respectively, and

H andH be two closed subspaces ofH.�en we have the

following de�nition that comes from Dauxois and Pousse

().

De�nition  �e canonical analysis (CA) of H and H is

any triple

({ρi}i∈I ,{ f }i∈I ,{g}i∈I),

with Iℓ ⊂ N∗ for ℓ ∈ {, , }, that satis�es:

. �e system { f }i∈I (resp. {g}i∈I ) is an orthonormal

basis of H (resp. H)

. ρ=⟨ f, g⟩=sup{⟨ f , g⟩; ( f , g) ∈H×H, ∥ f ∥= ∥g∥=}

. For any i ∈ I such that i ≥ , one has:

ρi=⟨ fi, gi⟩ = sup{⟨ f , g⟩; ( f , g) ∈ F
⊥
i ×G

⊥
i , ∥ f ∥=∥g∥= }

where Fi = span{ f,⋯, fi−} andGi = span{g,⋯, gi−}.

Conditions for existence of canonical analysis have

been investigated in the aforementioned work. More pre-

cisely, denoting by ΠE the orthogonal projector onto the

closed subspace E of H, a su�cient condition is the com-

pacity of T = ΠHΠH ∣H or, equivalently, that of T =

ΠHΠH ∣H . In this case, we say that we have a compact CA,

and the following proposition holds:

Proposition  Consider a compact CA ({ρi}i∈I ,{ f }i∈I ,

{g}i∈I), of H and H, where the ρi ’s are arranged in

nonincreasing order.�en:

. {ρi }i∈I
is the noincreasing sequence of eigenvalues of T

and T and, for any i ∈ I, one has  ≤ ρi ≤ .

. { f }i∈I (resp. {g}i∈I ) is an orthonormal basis of H
(resp. H) such that, for any i ∈ I, fi (resp. gi) is an

eigenvector of T (resp. T) associated with ρi .

. ∀(i, j) ∈ (I)
, ⟨ fi, gj⟩ = δijρi, ΠH fi = ρigi, ΠHgi =

ρifi.

. { f }i∈I−I (resp. {g}i∈I−I ) is an orthonormal basis of

ker(T) = H ∩H
⊥
 (resp. ker(T) = H ∩H

⊥
 ).

Remark  . �e ρi’s are termed the canonical coe�-

cients. �ey permit to study the relative postions of

each of the preceding subspace with respect to the

other. For instance, the nullity of all these coe�cients

is equivalent to the orthogonality of H and H, and

if one of these subspaces is included into the other

these coe�cients are all equal to . Note that, in this

later case there does not exist a compact CA when the

considered subspaces are in�nite-dimensional ones.

Nevertheless, it is possible to �nd a triple having the

same properties than a compact CA. Such a triple

can be given by (I, ( fi)i∈N∗ , (gi)i∈N∗), where I is the

numerical sequence with all terms equal to , ( fi)i∈N∗
is a orthonormal basis ofH and (gi)i∈N∗ is the previous

system possibly completed with an orthonormal basis

of kerT = H ∩ H
⊥
 so as to obtain an orthonormal

basis of H.

. From the previous notion of CA it is possible to de�ne

a canonical analysis of two subspaces H and H rela-

tively to a third oneH. It is just theCAof the subspaces

H⋅ := (H ⊕ H) ∩ H
⊥
 and H⋅ := (H ⊕ H) ∩

H⊥ . �is CA leads to interesting properties given in

Dauxois et al. (a), and is useful in statistics for

studying conditional independence between random

vectors (see, e.g., Dauxois et al. [b]).

. When X = (X ,⋯,X
p
 )

T
and X = (X,⋯,X

p
 )

T
are

two random vectors such that any X
j

i belongs to L

(P),

their Linear Canonical Analysis (LCA) is the CA of H
and H where Hi = span (Xi ,⋯,X

pi
i ). �e spectral

analysis of T is equivalent to that of V
−
 VV

−
 V,

where Vi (resp. V; resp. V) denotes the covariance

(resp. cross-covariance) operator ofXi (resp.X andX;

resp. X and X). So, it is just the CA of random vec-

tors introduced by Hotelling ().�e �rst canoni-

cal coe�cient is the Bravais–Pearson linear correlation

coe�cient.

. When X and X are arbitrary random variables, their

Nonlinear Canonical Analysis (NLCA) is the CA of H
and H where Hi is the closed subspace of L


(P) con-

sisting in random variables of the form φ(Xi), where φ

is a measurable function valued intoR. In this case, the
�rst canonical coe�cient just is the Sarmanovmaximal

coe�cient.

Measures of Association
Let C be the set of pairs (H,H) of closed subspaces

of a Hilbert space, having a compact CA or being

in�nite-dimensional and such that H ⊂ H or H ⊂

H. We consider an equivalence relation ≃ de�ned on C,

such that (H,H) ≃ (E,E) if there exists a pair (I, I)

of isometries satisfying: I(H) = E, I(H) = E and

∀(x, y) ∈ H × H, < I(x), I(y) >E=< x, y >H , where
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H (resp. E) denotes the separable real Hilbert space which

contains H and H (resp. E and E). We also consider a

preordering relation ⪯ on C, such that (H,H) ⪯ (E,E)

if there exists a pair (E′,E
′
) of closed subspaces satisfying:

E′ ⊂ E, E
′
 ⊂ E and (H,H) ≃ (E′,E

′
).

De�nition  A measure of association r between Hilber-

tian subspaces is any map from a subset Cr of C into [, ]

such that the following conditions are satis�ed:

r(H,H) = r(H,H);

H ⊥ H⇔ r(H,H) = ;

H ⊂ H or H ⊂ H ⇒ r(H,H) = ;

(H,H) ≃ (E,E) ⇒ r(H,H) = r(E,E);

(H,H) ⪯ (E,E) ⇒ r(H,H) ≤ r(E,E).

Remark  . When X = (X ,⋯,X
p
 )

T
and X =

(X,⋯,X
p
 )

T
are two random vectors such that any

X
j

i belongs to L

(P), we obtain a measure of linear

dependence betweenX andX by putting r(X,X) :=

r(H,H) with Hi = span (X

i ,⋯,X

pi
i ). Indeed, from

second axiom given above, r(X,X) =  if and only if

X and X are uncorrelated, that is V = . From the

third one, it is seen that if there exists a linear map A

such that X = AX then r(X,X) = .

. When X and X are arbitrary random variables, con-

sidering Hi = {φ(Xi) /E(φ(Xi)

) < +∞}, a measure

of stochastic dependence of X and X is obtained by

putting r(X,X) := r(H,H). In this case, the above

axioms are closed to the conditions proposed by Rényi

() for good measures of dependence. In particu-

lar, the second axiomgives the equivalence between the

independence ofX andX and the nullity of r(X,X),

and from the third axiom it is seen that for any one

to one and bimeasurable functions f and g, one has

r( f (X), g(X)) = r(X,X).

A class of measures of association can be built by using

symmetric non decreasing functions of canonical coe�-

cients. In what follows, P(N∗
) denotes the set of permu-

tations of N∗
. For σ ∈ P(N∗

) and x = (xn)n ∈ c, we

put xσ = (xσ(n))n and ∣x∣ = (∣xn∣)n. We denote by c
the space of numerical sequences x = (xn)n such that

limn→∞ xn = .

De�nition  A symmetric nondecreasing function (sndf)

is a map Φ from a subset cΦ of c to R+ satisfying:

. For all x ∈ cΦ and σ ∈ P(N∗
), one has xσ ∈ cΦ and

Φ (∣xσ ∣) = Φ (x).

. For all (x, y) ∈ (cΦ)

, if ∀n, ∣xn∣ ≤ ∣yn∣, then Φ (x) ≤

Φ (y).

. �ere exists a nondecreasing function fΦ from R to R
such that : fΦ() = ; ∀u ∈ R, (u, ,⋯) ∈ cΦ and

Φ (u, ,⋯) = fΦ(∣u∣).

We denote by Ψ the map from C to c ∪ {I} such

that Ψ(H,H) is the noincreasing sequence of canonical

coe�cients of H and H.�en we have:

Proposition  LetΦ be a sndf with de�nition domain cΦ ,

and such thatΦ (I) = .�en, themap rΦ = Φ○Ψ is a mea-

sure of association de�ned on the subset CΦ = {(H,H) ∈

C; Ψ(H,H) ∈ cΦ ∪ {I}}.

�is proposition means that a measure of association

between two subspaces is obtained as a function of the

related nonincreasing sequence of canonical coe�cients

through a sndf. Some examples of such measures are:

r(H,H) =  − exp(−
+∞
∑
i=

ρ

i , r,p(H,H))

=

¿
Á
Á
ÁÀ

∑
+∞
i= ρ

p

i

 +∑
+∞
i= ρ

p

i

(p ∈ N∗
), r(H,H)

= max
i≥

∣ρi∣ = ρ.

On the one hand, this class of measures of association

contains all the measures built by using LCA of random

vectors (see Cramer and Nicewander (), Lin (),

Dauxois and Nkiet (b)). On the other hand, when

H and H are the subspaces considered in the second

assertion of Remark , r just is the Sarmanov maximal

coe�cient. In this case, estimation of the coe�cients from

NLCA and, therefore, the related measures of associations

can be obtained from approximation based on step func-

tions or B-spline functions, and from sampling. Using this

approach, a class of independence tests that admits the chi-

squared test of independence as particular case, have been

be proposed (see Dauxois and Nkiet ()).

Cross References
7Canonical Correlation Analysis
7Multivariate Data Analysis: An Overview
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Introduction
Canonical correlation analysis (CCA) is one of the

most general multivariate statistical analysis methods (see

7Multivariate Statistical Analysis). To introduce CCA,
consider two sets of variables, denoted A and B for ease

of reference (e.g., Raykov and Marcoulides ). Let A

consist of p members collected in the vector x, and let B
consist of q members placed in the vector y (p > , q > ).
In an application setting, the variables in either set may or

may not be considered response variables (dependent or

outcome measures) or alternatively independent variables

(predictors, explanatory variables). As an example, Amay

consist of variables that have to do with socioeconomic

status (e.g., income, education, job prestige, etc.), while B

may comprise cognitive functioning related variables (e.g.,

verbal ability, spatial ability, intelligence, etc.).

Consider the correlation matrix R of all variables in

A and B taken together, which has (p + q) ⋅ (p + q − )/

non-duplicated (non-redundant) correlations. Obviously,

even for relatively small p and q, there are many non-

duplicated elements of R. CCA deals with reducing this

potentially quite large number of correlations to a more

manageable group of interrelationship indices that repre-

sent the ways in which variables in A covary with vari-

ables in B, i.e., the interrelationships among these two sets

of variables. More speci�cally, the purpose of CCA is to

obtain a small number of derived variables (measures)

from those in A on the one hand, and from those in B on

the other, which show high correlations across the two sets

(e.g., Johnson and Wichern ).�at is, a main goal of

CCA is to “summarize” the correlations between variables

in set A and those in set B into a much smaller number

of corresponding linear combinations of them, which in

a sense are representative of those correlations. With this

feature, CCA can be used as a method for () examining

independence of two sets of variables (viz. A and B), ()

data reduction, and () preliminary analyses for a series of

subsequent statistical applications.

Achieving this goal is made feasible through the fol-

lowing steps (cf. Raykov and Marcoulides ). First, a

linear combination Z of the variables x in A is sought, as
is a linear combinationW of the variables y in B, such that
their correlation ρ, = Corr(Z,W) is the highest possible

across all choices of combination weights for W and Z
(see next section for further details). Call Z and W the

�rst pair of canonical variates, and ρ, the �rst canonical

correlation. In the next step, another linear combination

Z of variables in A is found and a linear combination

W of variables in B, with the following property: their

correlation ρ, = Corr(Z,W) is the highest possible

under the assumption of Z and W being uncorrelated

with the variables in the �rst combination pair, Z andW.

Z and W are referred to as the second pair of canonical

variates, and ρ, as the second canonical correlation.�is

process can be continued until t pairs of canonical variates

are obtained, where t = min(p, q) being the smaller of p

and q. While in many applications t may be fairly large,

it is o�entimes the case that only up to the �rst two or

three pairs of canonical variates are really informative (see

following section). If all canonical correlations are then

uniformly weak and close to zero, A and B can be con-

sidered largely (linearly) unrelated. Otherwise, one could

claim that there is some (linear) interrelationship between

variables in A with those in B. Individual scores on the

canonical variates can next be computed and used as val-

ues on new variables in subsequent analyses.�ese scores

may be attractive then, since they capture the essence of the

cross-set variable interrelationships.

Procedure
To begin a CCA, two linear combinations Z = a′ x and
W = b′ y are correspondingly sought from the variables
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in A and in B, such that ρ, = Corr(Z,W) is at its maxi-

mal possible value across all possible choices of a

and b


.

Consider the covariance matrix S of the entire set of p + q

variables in A and B:

S =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

S S

S S

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

where S is the covariance matrix of the p variables in

A, S that of the q variables in B, S that of the q vari-

ables in B with the p in A, and S denotes the covariance

matrix of the p variables in A with the q measures in B. It

can be shown (e.g., Johnson and Wichern ) that this

maximum correlation ρ, will be achieved if the following

holds:

. a

is taken as the (generalized) eigenvector per-

taining to the largest solution ρ of the equation

∣SS
−
 S − ρS∣ = , where ∣.∣ denotes determinant,

that is, a

ful�ls the equation (SS

−
 S − ρS) a =

, with ρ being the largest solution of the former

equation.

. b

is the (generalized) eigenvector pertaining to the

largest root of the equation ∣SS
−
 S − πS∣ = ,

that is, b

ful�ls the equation (SS

−
 S − πS)b =

, with the largest π satisfying the former equation.

�e solutions of the two involved determinantal equations

are identical, that is, ρ = π, and the positive square

root of the largest of them equals ρ() = π() = ρ, =

Corr(Z,W), the maximal possible correlation between

a linear combination of variables in A with a linear com-

bination of those in B. �en Z = a′ x and W = b′ y
represent the �rst canonical variate pair, with this max-

imal correlation, Corr(Z,W), being the �rst canonical

correlation.

As a next step, the second canonical variate pair is fur-

nished as a linear combination of the variables in A, using

the eigenvector pertaining to the second largest solution

of ∣SS
−
 S − ρS∣ =  on the one hand, and a linear

combination of the B variables using the second largest

solution of ∣SS
−
 S − πS∣ =  on the other hand;

then their correlation is the second canonical correlation.

One continues in the same manner until t = min(p, q)

canonical variate pairs are obtained; the corresponding

canonical correlations are calculated as their interrelation-

ship indices (correlations). From the construction of the

canonical variates follows that they are uncorrelated with

one another:

Cov(Zi,Zj) = Cov(Wi,Wj) = Cov(Zi,Wj)

=  (for all i ≠ j; i, j = , . . . , t).

Interpretation
Even though there are t = min(p, q) canonical variate

pairs and canonical correlations, o�entimes in applications

not all are important for understanding the relationships

among variables in A and B. Statistical tests are available

which help evaluate the importance of canonical variate

pairs and aid a researcher in �nding out how many pairs

could be retained for further analysis. �e tests assume

multivariate normality and examine hypotheses of canon-

ical correlations being  in a given population. �e �rst

test evaluates the null hypothesis that all canonical corre-

lations are . If this hypothesis is rejected, at least the �rst

canonical variate pair is of relevance when trying to under-

stand the interrelationship between the variables in A and

B; more speci�cally, at least the �rst canonical correlation

is not zero in the population.�en the second test exam-

ines the null hypothesis that apart from the �rst canonical

correlation, all remaining ones are ; and so on. If the �rst

tested hypothesis is not rejected, it can be concluded that

A and B are (linearly) unrelated to one another.

A�er completing these tests, and in case at least the

�rst canonical correlation is signi�cant, the next question

may well be how to interpret the canonical variates. To this

end, one can use the correlations of each canonical variate

with variables within its pertinent set.�at is, when try-

ing to interpret Z, one can look at its correlations with

the variables in A. Similarly, when trying to interpretW,

one can examine its correlations with the variables B; and

so on for the subsequent canonical variate pairs and their

members. �e principle to follow thereby, is to interpret

each canonical variate as representing the common fea-

tures of initial variables correlated highly with that variate.

Furthermore, for a given canonical correlation ρi = πi,

its square ρ i can be interpreted as a squared multiple

correlation coe�cient for the regression relating the ith

canonical variate for any of the sets A or B, with the vari-

ables of the other set (B or A, respectively; i = , . . . , t).

With this in mind, ρ i can be viewed as proportion shared

variance between A and B, as captured by the ith canon-

ical variate pair (i = , . . . , t); the square of the �rst

canonical correlation is interpretable as a measure of “set

overlap.”

Similarly to principal components and factors, canoni-

cal variates can be used to obtain individual subject scores

on them. �ey can be used in subsequent analyses, e.g.,

as scores on explanatory variables. Like principal com-

ponents, the units of a canonical variate may not be

meaningful. It is stressed that canonical variates are not

latent variables, but instead share the same observed sta-

tus as manifest (recorded) variables, since they are linear

combinations of the latter.
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Relationship to Discriminant
Function Analysis
It can be shown (Tatsuoka ) that with k >  groups

discriminant function analysis (DFA) is identical to CCA

using additionally de�ned variables D,D, . . . ,Dk− as

comprising set A, while the original explanatory (predic-

tor) variables, say x = (x, x, . . . , xp)
′
, are treated as set

B. �ese 7dummy variables D,D, . . . ,Dk− are de�ned
in exactly the same way they would be for purposes of

regression analysis with categorical predictors. If one then

performs a CCA with these sets A and B, the results will

be identical to those obtained with a DFA on the origi-

nal variables x. Speci�cally, the �rst canonical variate for
B will equal the �rst discriminant function; the second

canonical variate for B will equal the second discriminant

function, etc.�e test for signi�cance of the canonical cor-

relations is then a test for signi�cance of discriminant func-

tions, and the number of signi�cant such functions and of

canonical correlations is the same. Further, each consecu-

tive eigenvalue for the discriminant criterion, vi, is related

to a corresponding generalized eigenvalue (determinantal

equation root) ρi : vi =
ρ i

 − ρ i
(i = , , . . . , r; Johnson

and Wichern ). Testing the signi�cance of discrimi-

nant functions is thus equivalent to testing signi�cance of

canonical correlations.

Generality of Canonical Correlation
Analysis
CCA is a very general multivariate statistical method that

uni�es a number of analytic approaches. �e canonical

correlation concept generalizes the notion of bivariate cor-

relation that is a special case of the former for p= q= 

variables.�e multiple correlation coe�cient of main rel-

evance in regression analysis is also a special case of

canonical correlation, which is obtained when the set A

consists of p =  variable – the response measure – and

the set B consists of q variables that are the predictors

(explanatory variables) in the pertinent regression model.

�e multiple correlation coe�cient is then identical to the

�rst canonical correlation. �ird, since various uni- and

multivariate ANOVA designs can be obtained as appropri-

ate special cases of regression analysis, these designs and

corresponding ANOVAs can be seen as special cases of

canonical correlation analysis. Also, as indicated in the pre-

ceding section, discriminant function analysis is a special

case of CCA as well. (Since DFA is a “reverse” MANOVA

– e.g., Raykov and Marcoulides  – one can alterna-

tively see the latter also as a special case of CCA.) Hence,

canonical correlation analysis is a very generalmultivariate

analysis method, which subsumes a number of others that

are widely used in statistical applications.
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Statistics has changed over the last decades from being

a discipline that primarily studied ways to characterize

randomness and variation to a discipline that emphasizes

the importance of data in the explanation of phenomenon

and in problem solving. While statisticians routinely use

mathematics and computer programming languages as key



 C Careers in Statistics

tools in their work, they usually also function as an impor-

tant data-driven decision maker within their application

domain. Consequently, a statistician must have a genuine

curiosity about the subject domain they work within, and

furthermore, must have strong collaborative and commu-

nication skills in order successfully interact with the many

colleagues they will encounter and rely on for information.

As the world becomes more quantitative through the

data revolution, more professions and businesses depend

on data and on the understanding and analyses of these

data. Data are not simply numbers. Data contain infor-

mation that needs to be understood and interpreted. As

a result, statisticians are much more than bean counters

or number crunchers.�ey possess skills to �nd needles

in haystacks and to separate noise from signal. �ey are

able to translate a problem or question into a framework

that enables data collection and data analysis to provide

meaningful insights that can lead to practical conclusions.

Loosely speaking there is a spectrum of statisticians

that ranges from very applied on one end to very theoret-

ical on the other end. Applied statisticians skillfully select

and implement an appropriate statistical methodology to

solve a problem.�ey are a statistician who has a problem

and is looking for a solution.�eoretical statisticians are

interested in trying to expand the toolkit of applied statis-

ticians by generalizing or creating new methods that are

capable of solving new problems or solving existing prob-

lems more e�ciently.�ey are statisticians who might get

motivated by a problem someone else encountered in prac-

tice, but who then abstract the problem asmuch as possible

so that their solution has as broad an impact as possible.

Most statisticians are not planted �rmly on either end of

this spectrum, but instead �nd themselves moving around

and adapting to the particular challenge they are facing.

Another way to loosely categorize statisticians is in

terms of industrial (or government) versus academic statis-

ticians. Academic statisticians are primarily involved with

innovative research and the teaching of statistics classes.

Aside from Statistics departments, there are many alter-

native departments for academic statisticians including

Mathematics, Economics, Business, Sociology and Psy-

chology. Research goals for an academic statistician vary

with their interests, and also depend on their emphasis

toward either applied or theoretical research. In addition,

the University at which they work can emphasize either a

teaching or researchmission that further dictates the quan-

tity and type of research they engage in. In any case, it

is a primary responsibility of an academic statistician to

publish papers in leading statistics journals to advance the

�eld. Teaching responsibilities can include introductory

Statistics for undergraduate non-majors, core statistical

theory and methods classes for Statistics majors and in

many cases advanced graduate-level Statistics classes for

students pursuing an MS and/or PhD degree in Statistics.

Industrial statisticians are frequently focused on prob-

lems that have some bearing on the company’s business.

In some large companies there may be a fundamental

research group that operates more like an academic envi-

ronment, but in recent years the number and size of these

groups are diminishing as corporations are more squarely

focused on their bottom lines. Industrial statisticians are

expected to assimilate the company culture and add value

to the projects they work on that goes well beyond the

contributions that their statistical skills alone enable.�ey

might, for example, become project managers and even

technical managers where their organizational, motiva-

tional, and leadership skills become important assets to the

company.

Many statisticians engage in statistical consulting,

either as their primary vocation or as a part-time endeavor.

Academic statisticians, for example, o�en have opportu-

nities to lend their data analysis and quantitative problem

solving skills to government and industry clients, and can

contribute to litigation cases as an expert consultant or

even an expert witness. Consultants must have exception-

ally strong communication skills to be able to translate the

interpretation of their �ndings into the language of the

client. In the same way, they have to be able to elicit infor-

mation from their clients that will ensure the e�cacy of

their data analyses. Industrial statisticians o�en function

as internal consultants to the company they work for.�is

is particularly true in large companies where there can be a

group of statisticians that serve as a shared central resource

for the entire company.

�e following alphabetical list is meant to provide an

appreciation of the diversity of �elds where statisticians are

gainfully employed: Agriculture, Archaeology, Astronomy,

Biology, Chemistry, Computer Science, Demography, Eco-

nomics, Ecology, Education, Engineering, Epidemiology,

Finance, Forestry, Genetics, Health Sciences, Insurance,

Law, Manufacturing, Medicine, National Defense,

Pharmacology, Physics, Psychology, Public Health, Safety,

Sociology, Sports, Telecommunications, and Zoology. To

be more speci�c, consider the following brief descriptions

of work and employment of statisticians in the following

�elds:

Medicine
Florence Nightingale was not only a historic �gure because

of what she brought to the profession of nursing, but

she was also a pioneering �gure in the use of statistics.

Statistical work in medicine involves designing studies
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and analyzing their data to determine if new (or exist-

ing) drugs, medical procedures and medical devices are

safe and e�ective. Statisticians �nd careers at pharma-

ceutical companies, medical research centers and govern-

mental agencies concerned with drugs, public health and

medicine.

Ecology
Research laboratories, commercial �rms and government

environmental agencies employ statisticians to evaluate the

environmental impact of air, water and soil pollutants.

Statisticians also work with government lawyers to ana-

lyze the impact (false positive or false negative) of proposed

federal or state pollution tests and regulations.

Market Research
Statisticians analyze consumer demand for products and

services, analyze the e�ectiveness of various types of adver-

tising, and analyze the economic risk of satisfying con-

sumer demand for products and services.

Manufacturing
�e success ofmanufacturing industries such as aerospace,

electronics, automobile, chemical or other product pro-

ducing industries depends, at least in part, on the e�-

ciency of production and the quality and reliability of

their products. Statistical techniques and models are used

for predicting inventory needs, improving production

�ow, quality control, reliability prediction and improve-

ment, and development of product warranty plans. �e

Deming Prize, named a�er the proli�c statistician W.

Edwards Deming, was established in  and is annually

awarded to companies that make major advances in qual-

ity improvement.�eMalcolmBaldridgeNational Quality

Award, named a�er Malcolm Baldridge who served as

the United States Secretary of Commerce under President

Regan, was established in  and is annually awarded to

U.S. organizations for performance excellence.

Actuarial Sciences
Actuarial statisticians use Mathematics and Statistics to

assess the risk of insurance and �nancial portfolios. Statis-

tical methods are used, for example, to determine a wide

variety of appropriate insurance premiums (e.g., home-

owner, life, automobile, �ood, etc.) and to manage invest-

ment and pension funds.

Safety
Statisticians are employed by many businesses and agen-

cies to model safety concerns and to estimate and pre-

dict the probability of occurrence of these safety concerns.

Nuclear power plants, national defense agencies and air-

lines are just a fewof the businesses that statistically analyze

safety risks.

Telecommunications
�e reliability of voice and data networks is paramount

to a telecommunication company’s revenue and their

brand name image. Statisticians work collaboratively with

engineers to model alternative design architectures and

choose the most cost-e�ective design that minimizes

customer-perceived downtime. Statisticians working in

telecommunication companies frequently shi� into new

technology areas to keep up with the vastly changing land-

scape of high-tech companies.

�e authors have found that their careers in statistics

involve work that is usually very interesting, o�en involves

new ideas and learning experiences, and can de�nitely

bring value to problem solving.

For more information on careers in statistics consult

www.amstat.org or e-mail asainfo@amstat.org.
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Introduction
�e basic aim of a case-control study is to investigate the

association between a disease (or some other condition

of interest) and potential risk factors by drawing sepa-

rate samples of “cases” (people with the disease, say) and

“controls” (people at risk of developing the disease). Let Y

denote a binary response variable which can take values

Y = , corresponding to a case, or Y = , corresponding

to a control, and let x be a vector of explanatory variables
or covariates. Our aim is to �t a binary regression model

to explain the probabilistic behavior of Y as a function of

the observed values of the explanatory variables recorded

in x. We focus particularly on the logistic regression
model (see 7Logistic Regression),

logit{pr(Y ∣ x; β)} = log{
pr(Y =  ∣ x; β)
pr(Y =  ∣ x; β)

}

= β + xTβ

, ()

since this makes the analysis of case-control data par-

ticularly simple and is the model of choice in most

applications.

In principle, themost straightforwardway of obtaining

data from which to build regression models for pr(Y ∣ x)
would be to use a prospective sampling design. Here

covariate information is ascertained for a cohort of indi-

viduals who are then tracked through time until the end

of the study when whether they have contracted the dis-

ease (Y = ) or not (Y = ) is recorded. With prospec-

tive sampling designs, observation proceeds from covari-

ates (explanatory variables) to response, corresponding

to the logic underlying the modelling. With case-control

sampling, the order is reversed, with data collection

proceeding from response to covariates. �e parameter

β

in Model () can still be estimated, however. Con-

sider the simplest situation of a single binary covari-

ate taking values x =  or x = . Using Bayes

�eorem, Corn�eld () showed that the prospective

odds ratio,
pr(Y=∣x=)
pr(Y=∣x=)/

pr(Y=∣x=)
pr(Y=∣x=) , can be expressed as

pr(x=∣Y=)
pr(x=∣Y=)/

pr(x=∣Y=)
pr(x=∣Y=) , which only involves quantities that

can be estimated directly from case-control data. Corn-

�eld also pointed out that the relative risk, pr(Y =  ∣

x = )/pr(Y =  ∣ x = ), which is usually of more

interest, is approximated well by the odds ratio if the dis-

ease is rare. If the overall probability of a case can be

estimated from other sources, then this can be combined

with the relative risk to give estimates of the absolute risk

of disease for exposed (x = ) and non-exposed (x =

) groups. All this extends immediately to general β

,

all of whose components represent individual log odds

ratios.

Types of Case-Control Studies
�ere are twobroad types of case-control study, population-

based and matched, corresponding to two di�erent ways

of controlling for confounding variables. In the simplest

form of population-based sampling sampling, random

samples are drawn independently from the case- and

control-subpopulations of a real, �nite target population

or cohort. Covariate information, x, is then ascertained
for sampled individuals. Fitting logistic model () is par-

ticularly simple here. Following earlier work for discrete

covariates, Prentice andPyke () showed thatwe can get

valid inferences about β

by running the case-control data

through a standard logistic regression program designed

for prospective data.�e intercept β, which is needed if

we want to estimate the absolute risk for given values of

the covariates, is completely confounded with the relative

sampling rates of cases and controls but can be recovered

using additional information such as the �nite population

totals of cases and controls.

Prentice and Pyke extended this to strati�ed case-

control sampling, where the target population is �rst split

into strata on the basis of variables known for the whole

population and separate case-control samples are drawn

from each stratum. Again we get valid inferences about

all the other coe�cients by running the data through a

prospective logistic regression program, provided that we
introduce a separate intercept for each stratum into our

model. Otherwise standard logistic programs need to be

modi�ed slightly to produce valid inferences (Scott andh
Wild ).

In designing a population-based study, it is impor-

tant to make sure that the controls really are drawn from

the same population, using the same protocols, as the

cases. Increasingly, controls are selected using modern

sample survey techniques, involving multi-stage sampling

and varying selection probabilities, to help ensure this.�e

modi�cations needed to handle these complications are

surveyed in Scott and Wild ().

In a matched case-control study, each case is individ-

ually matched with one or more controls. �is could be

regarded as an limiting case of a strati�ed study with the
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strata so �nely de�ned that each stratum includes only

a single case. If we introduce an extra intercept for each

matched set, then we can no longer use a simple logis-

tic program since the plethora of parameters will lead to

inconsistent parameter estimates. Instead we need to carry

out a conditional analysis. More speci�cally, suppose that

there are M controls in the jth matched set and model ()

is replaced by logit{pr(Y ∣ x; β)} = βj + xTβ

for these

observations. �en the conditional probability that the

covariates xj are those of the case and (xj, . . . , xjM) are
those of theM controls, given the set ofM+ covariates can

be expressed in the form exp (xTjβ) /∑
M+
m= exp (x

T
jmβ


),

which does not involve the intercept terms. Inferences

about β

can then bemade from the conditional likelihood

obtained when we combine these terms over all matched

sets. With pair matching (M = ), this likelihood is identi-

cal to a simple logistic regression on the di�erence between

the paired covariates.

More sophisticated designs, including incidence den-

sity sampling, nested case-control studies and case-

cohort studies, that can handle complications such as

time-varying covariates and 7survival data are discussed
in other chapters in this volume.

Discussion
Case-control sampling is a cost-reduction device. If we

could a�ord to collect data on the whole �nite popula-

tion or cohort, then we would do so.�ere many practical

di�culties that need to be overcome to run a successful

case-control study; a good account of these is given in

Breslow (). Despite this, the case-control study in its

various forms is one of the most common designs in

health research. In fact, Breslow and Day () described

such studies as “perhaps the dominant form of analytical

research in epidemiology” and since that time the rate of

appearance of papers reporting on case-control studies has

gone up by a factor of more than . �ese designs are

also used in other �elds, sometimes under other names. In

econometrics, for example, the descriptor “choice-based”

is used (see Manski and McFadden ()).

�ere are several reasons for the popularity of case-

control studies. �e �rst is the simplicity of the logistic

analysis outlined above. �e other two reasons concern

e�ciency: time e�ciency and statistical e�ciency. �e

former comes from being able to use historical informa-

tion immediately rather than having to follow individuals

through time and then wait to observe an outcome as

in a prospective study. �e �rst chapter of Breslow and

Day () has a good discussion of the attendant risks.

�e gain in statistical e�ciency can be huge. For example,

suppose that we have a condition that a�ects only  individ-

ual in  on average and we wish to investigate the e�ect

of an exposure that a�ects % of people. In this situation

a case-control study with equal numbers of cases and con-

trols has the same power for detecting a small increase in

risk as a prospective study with approximately �ve times as

many subjects. If the condition a�ects only one individual

in  then the prospective study would need  times as

many subjects!
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Introduction
A categorical variable consists of a set of non-overlapping

categories. Categorical data are counts for those categories.

�e measurement scale is ordinal if the categories exhibit a

natural ordering, such as opinion variables with categories

from “strongly disagree” to “strongly agree.”�e measure-

ment scale is nominal if there is no ordering.�e types of

possible analysis depend on the measurement scale.

When the subjects measured are cross-classi�ed on

two or more categorical variables, the table of counts for

the various combinations of categories is a contingency

table.�e information in a contingency table can be sum-

marized and further analyzed through appropriate mea-

sures of association and models. A standard reference on

association measures is Goodman and Kruskal ().

Most studies distinguish between one ormore response

variables and a set of explanatory variables.When themain

focus is on the association and interaction structure among

a set of response variables, such as whether two variables

are conditionally independent given values for the other

variables, log-linear models are useful. More commonly,

research questions focus on e�ects of explanatory vari-

ables on a categorical response variable. Logistic regression

models (see 7Logistic Regression) are then of particular
interest. For binary (success-failure) response variables,

they describe the logit, which is log[P(Y = )/P(Y = )],

using

log[P(Y = )/P(Y = )] = a + βx + βx +⋯ + βpxp

where Y is the binary response variable and x, . . . , xp the

set of the explanatory variables. For a nominal response Y

with J categories, the model simultaneously describes

log[P(Y = )/P(Y = J)],

log[P(Y = )/P(Y = J)], . . . , log[P(Y = J − )/P(Y = J)].

For ordinal responses, a popular model uses explanatory

variables to predict a logit de�ned in terms of a cumulative

probability (McCullagh ),

log[P(Y ≤ j)/P(Y > j)], j = , , . . . , J − .

For categorical data, the binomial (see 7Binomial Distri-
bution) and multinomial distributions (see 7Multinomial

Distribution) play the central role that the normal does

for quantitative data. Models for categorical data assuming

the binomial or multinomial were uni�ed with standard

regression and 7analysis of variance (ANOVA) models

for quantitative data assuming normality through the

introduction by Nelder and Wedderburn () of the

generalized linear model (GLM, see 7Generalized Linear
Models). �is very wide class of models can incorporate

data assumed to come from any of a variety of standard

distributions (such as the normal, binomial, and Poisson).

�e GLM relates a function of the mean (such as the log

or logit of the mean) to explanatory variables with a linear

predictor.

Contingency Tables
Two categorical variables are independent if the probabil-

ity of response in any particular category of one variable

is the same for each category of the other variable. �e

most well-known result on two-way contingency tables is

the test of the null hypothesis of independence, introduced

by Karl Pearson in . If X and Y are two categorical

variables with I and J categories respectively, then their

cross-classi�cation leads to a I × J table of observed fre-

quencies n = (nij). Under this hypothesis, the expected

cell frequencies equal mij = nπi⋅π⋅j, i = , . . . , I, j = , . . . , J,

where n is the total sample size (n = ∑i,j nij) and πi⋅(π⋅j)

is the ith row ( jth column) marginal of the underlying

probabilities matrix π = (πij). �en the corresponding

maximum likelihood (ML) estimates equal m̂ij = npi⋅p⋅j =
ni⋅n⋅j

n
, where pij denotes the sample proportion in cell (i, j).

�e hypothesis of independence is tested throughPearson’s

chi-squared statistic

χ

=
∑i,j(nij − m̂ij)



m̂ij
. ()

�e P-value is the right-tail probability above the observed

χ value.�e distribution of χ under the null hypothesis is

approximated by a χ(I−)(J−), provided that the individual

expected cell frequencies are not too small.When a contin-

gency table has ordered row or column categories (ordinal

variables), specialized methods can take advantage of that

ordering.

More generally, models can be formulated that are

more complex than independence, and expected frequen-

cies mij can be estimated under the constraint that the

model holds. If m̂ij are the correspondingmaximum likeli-

hood estimates, then, to test the hypothesis that the model

holds, we can use the Pearson statistic () or the statis-

tic that results from the standard statistical approach of
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conducting a likelihood-ratio test, which has test statistic

G

= ∑

i,j

nij ln(
nij

m̂ij
). ()

Independence between the classi�cation variablesX and Y

(i.e.,mij = nπi⋅π⋅j, for all i and j) can be expressed in terms

of a log-linear model as

log(mij) = λ + λ
X
i + λ

Y
j , i = , . . . , I, j = , . . . , J.

�e more general model that allows association between

the variables is

log(mij) = λ + λ
X
i + λ

Y
j + λ

XY
ij , i = , . . . , I, j = , . . . , J.

()

Log-linear models describe the way the categorical vari-

ables and their association in�uence the count in each

cell of the contingency table. �ey can be consid-

ered as a discrete analogue of ANOVA. �e two-factor

interaction terms relate to odds ratios describing the

association.

Associations can be modeled through simpler associa-

tion models.�e simplest such model, the linear-by-linear

associationmodel, is relevant when both classi�cation vari-

ables are ordinal. It replaces the interaction term λ XYij
by the product ϕµiνj, where µi and νj are known scores

assigned to the row and column categories respectively.

�is model is

log(mij) = λ+ λ
X
i + λ

Y
j + ϕµiνj, i = , . . . , I, j = , . . . , J.

()

More general models treat one or both sets of scores as

parameters.

�e special case of square I × I contingency tables with

the same categories for the rows and the columns occurs

with matched-pairs data. For example, such tables occur

in the study of rater agreement and in the analysis of social

mobility. A condition of particular interest for such data is

marginal homogeneity, that πi⋅ = π⋅i, i = , . . . , I. For the

 ×  case of binary matched pairs, the test comparing the

margins using the chi-squared statistic (n − n)

/(n +

n) is calledMcNemar’s test.

�e models for two-way tables extend to higher

dimensions. �e various models available vary in terms

of the complexity of the association and interaction

structure.

Inference and Software
Standard statistical packages, such as SAS,R, and SPSS,

are well suited for analyzing categorical data, mainly using

maximum likelihood for inference. For SAS, a variety of

codes are presented and discussed in the Appendix of

Agresti (), and see also Stokes et al. (). For R,

see the on-line manual of �ompson (). Bayesian

analysis of categorical data can be carried out through

WinBUGS (http://wlww.mrc-bsu.cam.ac.uk/bugs/winbugs
/contents.shtml).

�e standard reference on log-linear models is Bishop

et al. (). For logistic regression,Hosmer andLemeshow

() is popular. A more comprehensive book dealing

with categorical data analysis using various types ofmodels

and analyses is Agresti (), with Agresti () focusing

on ordinal data.
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From their inception, causal systems models (more com-

monly known as structural-equations models) have been

accompanied by graphical representations or path dia-

grams that provide compact summaries of qualitative

assumptions made by the models.�ese diagrams can be

reinterpreted as probability models, enabling use of graph

theory in probabilistic inference, and allowing easy deduc-

tion of independence conditions implied by the assump-

tions. �ey can also be used as a formal tool for causal

inference, such as predicting the e�ects of external inter-

ventions. Given that the diagram is correct, one can see

whether the causal e�ects of interest (target e�ects, or

causal estimands) can be estimated from available data, or

what additional observations are needed to validly estimate

those e�ects. One can also see how to represent the e�ects

as familiar standardized e�ect measures.�e present arti-

cle gives an overview of: () components of causal graph

theory; () probability interpretations of graphical models;

and () methodologic implications of the causal and prob-

ability structures encoded in the graph, such as sources of

bias and the data needed for their control.

Introduction
From their inception in the early twentieth century, causal

models (more commonly known as structural-equations

models) were accompanied by graphical representations

or path diagrams that provided compact summaries of

qualitative assumptions made by the models. Figure  pro-

vides a graph that would correspond to any system of �ve

equations encoding these assumptions:

. independence of A and B

. direct dependence of C on A and B

. direct dependence of E on A and C

. direct dependence of F on C and

. direct dependence of D on B,C, and E

�e interpretation of “direct dependence” was kept

rather informal and usually conveyed by causal intuition,

for example, that the entire in�uence of A on F is “medi-

ated” by C.

By the s it was recognized that these diagrams

could be reinterpreted formally as probability models,

enabling use of graph theory in probabilistic inference,

and allowing easy deduction of independence conditions

implied by the assumptions (Pearl ). By the s it

was further recognized that these diagrams could also be

used as tools for guiding causal and counterfactual infer-

ence (Pearl , ; Pearl and Robins ; Spirtes et al.

) and for illustrating sources of bias and their rem-

edy in empirical research (Greenland et al. ;Greenland

, ; Robins ; Greenland and Brumback ;

Cole and Hernán ; Hernán et al. ; Jewell ;

Pearl ; Glymour and Greenland ). Given that the

graph is correct, one can see whether the causal e�ects of

interest (target e�ects, or causal estimands) can be esti-

mated from available data, or what additional observations

are needed to validly estimate those e�ects. One can also

see how to represent the e�ects as familiar standardized

e�ect measures.

�e present article gives an overview of: () compo-

nents of causal graph theory; () probability interpreta-

tions of graphical models; and () methodologic implica-

tions of the causal and probability structures encoded in

the graph, such as sources of bias and the data needed for

their control. See7Causation and Causal Inference for dis-
cussion of de�nitions of causation and statistical models

for causal inference.

Graphical Models and Causal Diagrams
Basics of Graph Theory
As be�tting a well developed mathematical topic, graph

theory has an extensive terminology that, once mastered,

provides access to a number of elegant results which may

be used to model any system of relations.�e term depen-

dence in a graph, usually represented by connectivity, may

refer to mathematical, causal, or statistical dependencies.

�e connectives joining variables in the graph are called

arcs, edge, or links, and the variables are also called nodes

or vertices. Two variables connected by an arc are adjacent

or neighbors and arcs that meet at a variable are also adja-

cent. If the arc is an arrow, the tail (starting) variable is the

parent and the head (ending) variable is the child. In causal

diagrams, an arrow represents a “direct e�ect” of the par-

ent on the child, although this e�ect is direct only relative
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Causal Diagrams. Fig.  E ← C → D is open, E → A → C ←
B→ D is closed

to a certain level of abstraction, in that the graph omits any

variables that might mediate the e�ect.

A variable that has no parent (such asA and B in Fig. )

is exogenous or external, or a root or source node, and is

determined only by forces outside of the graph; otherwise

it is endogenous or internal. A variable with no children

(such as D in Fig. ) is a sink or terminal node. �e set

of all parents of a variable X (all variables at the tail of an

arrow pointing intoX) is denoted pa[X]; in Fig. , pa[D] =

{B,C,E}.

A pathor chain is a sequence of adjacent arcs. A directed

path is a path traced out entirely along arrows tail-to-head.

If there is a directed path from X to Y , X is an ancestor of

Y and Y is a descendant of X. In causal diagrams, directed

paths represent causal pathways from the starting variable

to the ending variable; a variable is thus o�en called a cause

of its descendants and an e�ect of its ancestors. In a directed

graph the only arcs are arrows, and in an acyclic graph there

is no feedback loop (directed path from a variable back to

itself).�erefore, a directed acyclic graph or DAG is a graph

with only arrows for edges and no feedback loops (i.e., no

variable is its own ancestor or its own descendant).

A variable intercepts a path if it is in the path (but not

at the ends); similarly, a set of variables S intercepts a path

if it contains any variable intercepting the path. Variables

that intercept directed paths are intermediates ormediators

on the pathway. A variable is a collider on the path if the

path enters and leaves the variable via arrowheads (a term

suggested by the collision of the arrows at the variable).

Note that being a collider is relative to a path; for exam-

ple in Fig. , C is a collider on the path A → C ← B → D

and a noncollider on the path A → C → D. Nonetheless,

it is common to refer to a variable as a collider if it is a

collider along any path (i.e., if it has more than one par-

ent). A path is open or unblocked at noncolliders and closed

or blocked at colliders; hence a path with no collider (like

E ← C ← B → D) is open or active, while a path with a

collider (like E← A→ C ← B→ D) is closed or inactive.

Some authors use a bidirectional arc (two-headed

arrow,↔) to represent the assumption that two variables

share ancestors that are not shown in the graph; A ↔ B

then means that there is an unspeci�ed variable U with

directed paths to both A and B (e.g., A← U → B).

Interpretations of Graphs
Depending on assumptions used in its construction,

graphical relations may be given three distinct levels of

interpretation: probabilistic, causal, and functional. We

now brie�y describe these levels, providing further details

in later sections.

�e probabilistic interpretation requires the weakest

set of assumptions. It treats the diagram as a carrier of

conditional independencies constraints on the joint dis-

tribution of the variables in the graph. To serve in this

capacity, the parents pa[X] of each variable X in the dia-

gram are chosen so as to render X independent of all its

nondescendants, given pa[X]. When this condition holds,

we say that the the diagram is compatible with the joint

distribution. In Fig. , for example, variable E is assumed

to be independent of its nondescendants {B,D,F} given

its parents pa[E] = {A,C}. We will see that compatibility

implies many additional independencies (e.g., E and F are

independent givenC) that could be read from the diagram

by tracing its paths. In real-life problems, compatibility

arises if each parent–child family {X, pa[X]} represents a

stochastic process by which nature determines the prob-

ability of the child X as a function of the parents pa[X],

independently of values previously assigned to variables

other than the parents.

To use diagrams for causal inference, we must assume

that the direction of the arrows correspond to the structure

of the causal processes generating the data. More specif-

ically, the graph becomes a causal diagram if it encodes

the assumption that for each parent–child family, the con-

ditional probability Pr(x∣pa[X]) would remain the same

regardless of whether interventions take place on vari-

ables not involving {X, pa[X]}, even if they are ancestors

or descendants of X. In Fig. , for example, the condi-

tional probability P(C∣A,B) is assumed to remain invari-

ant under manipulation of the consequences of C, i.e., E,F

or D. A causal DAG represents a complete causal struc-

ture, in that all sources of causal dependence are explained

by causal links; in particular, it is assumed that all com-

mon (shared) causes of variables in the graph are also in

the graph, so that all exogenous variables (root nodes) are

causally independent (although they may be unobserved).

If we assume further that the arrows represent func-

tional relationships, namely processes by which nature

assigns a de�nite value to each internal node, the diagram

can then be used to process counterfactual information

and display independencies among potential outcomes
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(including counterfactual variables) (Pearl , Chap. ).

We will describe such structural diagrams and potential

outcomes below.

Control: Manipulation Versus Conditioning
�e word “control” is used throughout science, but with

a variety of meanings that are important to distinguish.

In experimental research, to control a variable C usually

means tomanipulate or set its value. In observational stud-

ies, however, to control C (or more precisely, to control

for C) more o�en means to condition on C, usually by

stratifying on C or by entering C in a regression model.

�e two processes are very di�erent physically and have

very di�erent representations and implications (Pearl ;

Greenland et al. ).

If a variable X is in�uenced by a researcher, a realistic

causal diagram would need an ancestor R of X to repre-

sent this in�uence. In the classical experimental case in

which the researcher alone determines X,R and X would

be identical. In human trials, however, R more o�en rep-

resents just an intention to treat (with the assigned level of

X), leaving X to be in�uenced by other factors that a�ect

compliance with the assigned treatmentR. In either case, R

might be a�ected by other variables in the graph. For exam-

ple, if the researcher uses age to determine assignments (an

age-biased allocation), agewould be a parent ofR. Ordinar-

ily however Rwould be exogenous, as when R represents a

randomized allocation.

In contrast, by de�nition in an observational study

there is no such variable R representing the researcher’s

in�uence on X. Conditioning is o�en used as a substitute

for experimental control, in the hopes that with su�cient

conditioning, X will be independent of uncontrolled in�u-

ences. Conditioning on a variable C closes open paths that

pass through C. However, if C is a collider, conditioning

on C opens paths that were blocked by C or by an ancestral

collider A. In particular, conditioning on a variable may

open a path even if it is not on the path, as with F in Figs. 

and .

To illustrate conditioning in a graph, we will redraw

the graph to surround conditioned variables with square

brackets (conditioned variables are o�en circled instead).

We may now graphically determine the status of paths

a�er conditioning by regarding the path open at colliders

that are bracketed or have bracketed descendants, open at

unbracketed noncolliders, and closed elsewhere. Figure 

shows Fig.  a�er conditioning on C, from which we see

that the E−D paths E ← C ← B→ D and E← A→ C → D

have been blocked, but the path E← A→ C ← B→ D has

been opened.Werewe to condition on F but notC, no open

Causal Diagrams. Fig.  Conditional onC, E ← C → D is closed
but E → A→ C ← B→ D is open

Causal Diagrams. Fig.  Conditional on F, E ← C → D and E →
A → C ← B → D are both open

path would be blocked, but the path E← A→ C ← B→ D

would again be opened.

�e opening of paths at conditioned colliders re�ect

the fact that we should expect two unconditionally inde-

pendent causesA and B become dependent if we condition

on their consequences, which in Fig.  areC and F. To illus-

trate, suppose A and B are binary indicators (i.e., equal to 

or ), marginally independent, andC = A+B.�en among

persons with C = , some will have A = , B =  and some

will have A = , B =  (because other combinations pro-

duce C ≠ ).�us when C = , A and B will exhibit perfect

negative dependence: A =  − B for all persons with C = .

�e distinction between manipulation and condition-

ing is brought to the fore when considering the notion of

“holding a variable constant.” Conditioning on a variable

X means that we choose to narrow the scope of discus-

sion to those situations only where X attains a given value,

regardless of how that value is attained. Manipulating X

means that we physically intervene and set X to a given

value, sayX = x.�e di�erence can be profound. For exam-

ple, in cancer screening, conditioning on the absence of

lighters and matches in the home lowers dramatically the

probability of �nding lung cancer, because restricting our

attention to those who do not have these tools for smok-

ing is tantamount to examining nonsmokers. In contrast,

removing lighters and matches from people’s homes dur-

ing the screening will not lower the probability of �nding

lung cancer, since any lung cancers present will be unaf-

fected by this act. Likewise, conditional on a low barom-

eter reading we will have a lower probability of rain than
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unconditionally, but setting the barometer to a low read-

ing (e.g., by pushing its needle down) will have no e�ect

on the weather.

Graphical Representation of Manipulation
One way of representing manipulation in the graph is to

simulate the act of setting X to a constant, or the imme-

diate implications of that act. If prior to intervention the

probability ofX is in�uenced by its parents via P(x∣pa[X]),

such in�uence no longer exists under an intervention that

is made without reference to the parents or other variables.

In that case, physically setting X at x dislodges X from the

in�uence of its parents and subjects it to a new in�uence

that keeps its value at X = x regardless of the values taken

by other variables.�is can be represented by cutting out

all arrows pointing to X and thus creating a new graph, in

which X is an exogenous (root) node, while keeping the

rest of the graph (with its associated conditional probabil-

ities) intact. For example, setting C to a constant in Fig. ,

will render E and D independent, because all E − D paths

will be blocked by such intervention, including E ← A →

C ← B → D, even though the latter path would be opened

by conditioning on C. On the other hand, manipulating F

but not C would leave all E−D paths intact, and the E−D

association will therefore remain unaltered.

Assuming the graph is correct, graphical represen-

tation of interventions by deleting arrows enables us

to compute post-intervention distributions from pre-

intervention distributions (Pearl , , ; Spirtes

et al. ; Lauritzen ) for a wide variety of inter-

ventions, including those that have side e�ects or that are

conditioned upon other variables in the graph (Pearl ,

pp. , ). Nonetheless, “holding X constant” does not

always correspond to a physically feasible manipulation,

not even conceptually. Consider systolic blood pressure

(SBP) as a cause of stroke (Y). It is easy to “hold SBP con-

stant” in the sense of conditioning on each of its observed

values. But what does it mean to “hold SBP constant”

in the manipulative sense? �ere is only one condition

under which SBP is constant: Death, when it stays put

at zero. Otherwise, SBP is �uctuating constantly in some

strictly positive range in response to posture, activity, and

so on. Furthermore, no one knows how to in�uence SBP

except by interventions Rwhich have side e�ects on stroke

(directed paths from R to Y that do not pass through SBP).

Yet these side e�ects vary dramatically with intervention

(e.g., there are vast di�erences between exercise versus

medication side e�ects).

On the other hand, consider the problem of estimat-

ing the causal e�ect of SBP on the rate of blood �ow in a

given blood vessel. At this physiological level of discussion

we can talk about the e�ect on blood �ow of “changing SBP

from level s to level s′,” without specifying any mechanism

for executing that change.We know frombasic physics that

the blood �ow in a vessel depends on blood pressure, ves-

sel diameter, blood viscosity, and so on; and we can ask

what the blood �ow would be if the blood pressure were to

change from s to s′ while the other factors remained at their

ambient values. Comparing the results from conditioning

on SBP = s versus conditioning on SBP = s′ would

not give us the desired answer because these conditioning

events would entail di�erent distributions for the causes

(ancestors) of SBP, some of which might also a�ect those

determinants of �ow which we wish held constant when

comparing.

Wemay thus conclude that there are contexts in which

it makes no practical sense to speak of “holding X con-

stant” via manipulation. In these contexts, manipulation of

a given variable X can only be represented realistically by

an additional node R representing an actual intervention,

which may have side e�ects other than those intended or

desired. On the other hand, such an R node will be redun-

dant ifX itself is amenable to directmanipulation. For such

an X, manipulation can be represented by removing the

arrows ending inX which correspond to e�ects overridden

by the manipulation (Pearl , , ; Spirtes et al.

; Lauritzen ). When X is completely randomized

or held constant physically, this corresponds to removing

all arrows into X.

�e phrase “holding X constant” may also be mean-

ingful when X is not directly manipulable. In these cases,

we may still be able to estimate a causal e�ect of X if we

can �nd an instrumental variable Z (a variable that is asso-

ciated with X but not with any uncontrolled confounding

variable U, and Z has no e�ect on Y except through X).

Although the operational meaning of these e�ects is not

immediately apparent when direct manipulation of X free

of side e�ects is not conceivable, estimation of these e�ects

can help judge proposed interventions that a�ect Y via

e�ects on X.

Separation
�e intuition of closing and opening paths by condition-

ing is captured by the concept of “separation” which will

be de�ned next. We say that a path is blocked by a set S if

the path contains either an arrow-emitting node that is in

S, or a collider that is outside S and has no descendant in S.

Two variables (or sets of variables) in the graph are

d-separated (or just separated) by a set S if, a�er condi-

tioning on S, there is no open path between them. �us

S d-separates X from Y if S blocks all paths from X to

Y . In Fig. , {A,C} d-separates E from B, but {C} does
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not (because conditioning on C alone results in Fig. , in

which E and B are connected via the open path A). In

a causal DAG, pa[X] d-separates X from every variable

that is not a�ected by X (i.e., not a descendant of X).�is

feature of DAGs is sometimes called the “Markov condi-

tion,” expressed by saying the parents of a variable “screen

o�” the variable from everything but its e�ects. �us in

Fig.  pa[E] = {A,C}, which d-separates E from B but

not from D.

In a probability graph, d-separation of X and Y by

S implies that X and Y are independent given S in any

distribution compatible with graph. In a causal diagram,

d-separation of X and Y by S implies additionally that

manipulation of X will not alter the distribution of Y if

the variables in S are held constant physically (assum-

ing this can be done). More generally, the distribution of

Y will remain unaltered by manipulation of X if we can

hold constant physically a set S that intercepts all directed

paths from X to Y , even if S does not d-separate X and Y .

�is is so because only descendants of X can be a�ected

by manipulation of X. In sharp contrast, conditioning on

X may change the probabilities of X’s ancestors; hence

the stronger condition of d-separation by S is required to

insure that conditioning on X does not alter the distribu-

tion of Y given S.

Statistical Interpretations and
Applications
Earlier we de�ned the notion of compatibility between a

joint probability distribution for the variables in a graph

and the graph itself. It can be shown that compatibility

is logically equivalent to requiring that two sets of vari-

ables are independent given S whenever S separates them

in the graph. Moreover these conditional independencies

constitute the only testable implications of a causal model

speci�ed by the diagram (Pearl , p. ).�us, given

compatibility, two sets of variables will be independent in

the distribution if there is no open path between them in

the graph.

Many special results follow for distributions compat-

ible with a DAG. For example, if in a DAG, X is not an

ancestor of any variable in a set T, then T and X will

be independent given pa[X]. A distribution compatible

with a DAG thus can be reduced to a product of factors

Pr(x∣pa[X]), with one factor for each variable X in the

DAG; this is sometimes called the “Markov factorization”

for theDAG.WhenX is a treatment, this condition implies

the probability of treatment is fully determined by the par-

ents ofX, pa[X]. Algorithms are available for constructing

DAGs that are compatible with a given distribution (Pearl

, pp. –).

Some of the most important constraints imposed by a

graphical model on a compatible distribution correspond

to the independencies implied by absence of open paths;

e.g., absence of an openpath fromA toB in Fig.  constrains

A and B to be marginally independent (i.e., independent if

no strati�cation is done). Nonetheless, the converse does

not hold; i.e., presence of an open path allows but does not

imply dependency. Independence may arise through can-

cellation of dependencies; as a consequence even adjacent

variables may be marginally independent; e.g., in Fig. , A

and E could be marginally independent if the dependen-

cies through paths A → E and A → C → E cancelled each

other.�e assumption of faithfulness, discussed below, is

designed to exclude such possibilities.

Bias and Confounding
Usually, the usage of terms like “bias,” “confounding” and

related concepts refer to dependencies that re�ect more

than just the e�ect under study. To capture these notions

in a causal graph, we say that an open path between X and

Y is a biasing path if it is not a directed path.�e associa-

tion of X with Y is then unbiased for the e�ect of X on Y

if the only open paths from X to Y are the directed paths.

Similarly, the dependence of Y on X is unbiased given S if,

a�er conditioning on S, the open paths between X and Y

are exactly (only and all) the directed paths in the start-

ing graph. In such a case we say S is su�cient to block bias

in the X − Y dependence, and is minimally su�cient if no

proper subset of S is su�cient.

Informally, confounding is a source of bias arising from

causes of Y that are associated with but not a�ected by

X (see 7Confounding).�us we say an open nondirected
path from X to Y is a confounding path if it ends with an

arrow into Y . Variables that intercept confounding paths

between X and Y are confounders. If a confounding path is

present, we say confounding is present and that the depen-

dence of Y on X is confounded. If no confounding path is

present we say the dependence is unconfounded, in which

case the only open paths from X to Y through a parent of

Y are directed paths. Similarly, the dependence of Y on

X is unconfounded given S if, a�er conditioning on S, the

only open paths between X and Y through a parent of Y

are directed paths.

An unconfounded dependency may still be biased due

to nondirected open paths that do not end in an arrow

into Y . �ese paths can be created when one conditions

on a descendant of both X and Y , or a descendant of a

variable intercepting a directed path from X to Y (Pearl

, p. ).�e resulting bias is called Berksonian bias,

a�er its discoverer Joseph Berkson (Rothman et al. ).

Most epidemiologists call this type of bias “selection bias”

(Rothman et al. ) while computer scientists refer to
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it as “explaining away” (Pearl ). Nonetheless, some

writers (especially in econometrics) use “selection bias” to

refer to confounding, while others call any bias created by

conditioning “selection bias”.

Consider a set of variables S that contains no e�ect

(descendant) of X or Y . S is su�cient to block confound-

ing if the dependence of Y on X is unconfounded given S.

“No confounding” thus corresponds to su�ciency of the

empty set. A su�cient S is called minimally su�cient to

block confounding if no proper subset of S is su�cient.

�e initial exclusion from S of descendants of X or Y in

these de�nitions arises �rst, because conditioning on X-

descendants can easily block directed (causal) paths that

are part of the e�ect of interest, and second, because con-

ditioning on X or Y descendants can unblock paths that

are not part of the X − Y e�ect, and thus create new

bias.

�ese considerations lead to a graphical criterion

called the back-door criterion which identi�es sets S that

are su�cient to block bias in the X − Y dependence (Pearl

, ). A back-door path from X to Y is a path that

begins with a parent ofX (i.e., leavesX from a “back door”)

and ends at Y . A set S then satis�es the back-door criterion

with respect to X and Y if S contains no descendant of X

and there are no open back-door paths from X to Y a�er

conditioning on S.

In a unconditional DAG, the following properties hold

(Pearl , ; Spirtes et al. ; Glymour and Green-

land ):

. All biasing paths are back-door paths.

. �e dependence of Y on X is unbiased whenever there

are no open back-door paths from X to Y .

. If X is exogenous, the dependence of any Y on X is

unbiased.

. All confounders are ancestors of either x or of y.

. A back-door path is open if and only if it contains a

common ancestor of X and Y .

. If S satis�es the back-door criterion, then S is su�cient

to block X − Y confounding.

�ese conditions do not extend to conditional DAGs

like Fig. . Also, although pa[X] always satis�es the back-

door criterion and hence is su�cient in a DAG, it may be

far from minimal su�cient. For example, there is no con-

founding and hence no need for conditioning whenever X

separates pa[X] fromY (i.e., whenever the only open paths

from pa[X] to Y are through X).

As a �nal caution, we note that the biases dealt with

by the above concepts are only confounding and selection

biases. To describe biases due to measurement error and

model-form misspeci�cation, further nodes representing

mismeasured or misspecifed variables must be introduced

(Glymour and Greenland ).

Estimation of Causal Effects
Suppose now we are interested in the e�ect of X on Y in

a causal DAG, and we assume a probability model com-

patible with the DAG. �en, given a su�cient set S, the

only source of association between X and Y within strata

of S will be the directed paths from X to Y . Hence the net

e�ect of X = x vs. X = x on Y when S = s is de�ned

as Pr(y∣x, s) − Pr(y∣x, s), the di�erence in risks of Y = y

at X = x and X = x. Alternatively one may use another

e�ect measure such as the risk ratio Pr(y∣x, s)/Pr(y∣x, s).

A standardized e�ect is a di�erence or ratio of weighted

averages of these stratum-speci�c Pr(y∣x, s) over S, using

a common weighting distribution. �e latter de�nition

can be generalized to include intermediate variables in S

by allowing the weighting distribution to causally depend

on X. Furthermore, given a set Z of intermediates along

all directed paths from X to Y and identi�cation of the

X − Z and Z − Y e�ects, one can produce formulas for the

X − Y e�ect as a function of the X − Z and Z − Y e�ects

(“front-door adjustment” (Pearl , )).

�e above form of standardized e�ect is identical to

the forms derived under other types of causal models, such

as potential-outcome models (see 7Causation and Causal
Inference). In those models, the outcome Y of each unit is

replaced by a vector of outcomesY containing components

Yx, where Yx represents the outcome when X = x is the

treatment given. When S is su�cient, some authors (Pearl

) go so far as to identify the Pr(y∣x, s) with the distri-

bution of potential outcomes Yx given S, thereby creating

a structural model for the potential outcomes. If the graph

is based on functional rather than probabilistic relation-

ships between parents and children, this identi�cation can

also model unit-based counterfactuals Yx(u) for any pair

(X,Y), where u is a unit index or a vector of exogeneous

variables characterizing the units.

�ere have been objections to this identi�cation on

the grounds that not all variables in the graph can

be manipulated, and that potential-outcome models do

not apply to nonmanipulable variables. �e objection

loses force when X is an intervention variable, however.

In that case, su�ciency of a set S implies that the

marginal potential-outcome distribution Pr(Yx = y)

equals ∑s Pr(y∣x, s)Pr(s), which is the risk of Y = y given

X = x standardized to the S distribution.

In fact, su�ciency of S implies the stronger condi-

tion of strong ignorability given S, which says that X and

the vector Y of potential outcomes are independent given

S. In particular, strong ignorability given S follows if S
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satis�es the back-door criterion, or if X is randomized

given S. Nonetheless, for the equation Pr(Yx = y) =

∑s Pr(y∣x, s)Pr(s) it su�ces thatX be independent of each

component potential outcome Yx given S, a condition

sometimes called weak ignorability given S.

Identification of Effects and Biases
To check su�ciency and identify minimally su�cient sets

of variables given a graph of the causal structure, one need

only see whether the open paths from X to Y a�er con-

ditioning are exactly the directed paths from X to Y in

the starting graph. Mental e�ort may then be shi�ed to

evaluating the reasonableness of the causal independen-

cies encoded by the graph, some of which are re�ected

in conditional independence relations. �is property of

graphical analysis facilitates the articulation of necessary

background knowledge for estimating e�ects, and eases

teaching of algebraically di�cult identi�cation conditions.

As an example, spurious sample associations may arise

if each variable a�ects selection into the study, even if those

selection e�ects are independent. �is phenomenon is a

special case of the collider-strati�cation e�ect illustrated

earlier. Its presence is easily seen by starting with a DAG

that includes a selection indicator F =  for those selected,

 otherwise, as well as the study variables, then noting that

we are always forced to examine associations within the

F =  stratum (i.e., by de�nition, our observations stratify

on selection). �us, if selection (F) is a�ected by multi-

ple causal pathways, we should expect selection to create

or alter associations among the variables.

Figure  displays a situation common in randomized

trials, in which the net e�ect of E on D is unconfounded,

despite the presence of an uncontrolled cause U of D.

Unfortunately, a common practice in health and social

sciences is to stratify on (or otherwise adjust for) an inter-

mediate variable F between a cause E and e�ect D, and

then claim that the estimated (F-residual) association rep-

resents that portion of the e�ect of E on D not mediated

through F. In Fig.  this would be a claim that, upon strati-

fying on the collider F, the E−D association represents the

direct e�ect of E on D. Figure  however shows the graph

conditional on F, in which we see that there is now an open

path from E to D through U, and hence the residual E −D

association is confounded for the direct e�ect of E on D.

�e E − D confounding by U in Fig.  can be seen as

arising from the confounding of the F − D association by

U in Fig. . In a similar fashion, conditioning on C in Fig. 

opens the confounding path throughA,C, and B as seen in

Fig. ; this path can be seen as arising from the confound-

ing of the C−E association by A and the C−D association

by B in Fig. . In both examples, further strati�cation on

Causal Diagrams. Fig.  E → F → D is open, E → F ← U→ D is

closed

Causal Diagrams. Fig.  Conditional on F, E → F → D is closed

but E → F ← U→ D is open

either A or B blocks the created path and thus removes the

new confounding.

Bias from conditioning on a collider or its descendant

has been called “collider bias” (Greenland ; Glymour

and Greenland ). Starting from a DAG, there are two

distinct forms of this bias: Confounding induced in the

conditional graph (Figs. , , and ), and Berksonian bias

from conditioning on an e�ect of X and Y . Both biases can

in principle be removed by further conditioning on certain

variables along the biasing paths from X to Y in the con-

ditional graph. Nonetheless, the starting DAG will always

display ancestors of X or Y that, if known, could be used

remove confounding; in contrast, no variable need appear

or even exist that could be used to remove Berksonian bias.

Figure  also provides a schematic for estimating the

F −D e�ect, as in randomized trials in which E represents

assignment to or encouragement toward treatment F. In

this case E acts as an instrumental variable (or instrument),

a variable associated with F such that every open path

from E toD includes an arrow pointing into F (Pearl ;

Greenland ;Glymour andGreenland ). Although

the F−D e�ect is not generally estimable, using the instru-

ment E one can put bounds on confounding of the F − D

association, or use additional assumptions that render the

e�ect of F on D estimable.

Questions of Discovery
While deriving statistical implications of graphical models

is uncontroversial, algorithms that claim to discover causal

(graphical) structures from observational data have been
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subject to strong criticism (Freedman and Humphreys

; Robins and Wasserman ). A key assumption in

certain “discovery” algorithms is a converse of compati-

bility called faithfulness Spirtes et al. . A compatible

distribution is faithful to the graph (or stable Pearl ())

if for all X,Y , and S, X and Y are independent given S only
when S separatesX andY (i.e., the distribution contains no

independencies other than those implied by graphical sep-

aration). Faithfulness implies that minimal su�cient sets

in the graph will also be minimal for consistent estimation

of e�ects. Nonetheless, there are real examples of near can-

cellation (e.g., when confounding obscures a real e�ect),

whichmake faithfulness questionable as a routine assump-

tion. Fortunately, faithfulness is not needed for the uses of

graphical models discussed here.

Whether or not one assumes faithfulness, the gener-

ality of graphical models is purchased with limitations on

their informativeness. Causal diagrams show whether the

e�ects can be estimated from the given information, and

can be extended to indicate e�ect direction when that is

monotone VanderWeele and Robins ;. Nonetheless,

the nonparametric nature of the graphs implies that para-

metric concepts like e�ect-measure modi�cation (hetero-

geneity of arbitrary e�ect measures) cannot be displayed

by the basic graphical theory. Similarly, the graphs may

imply that several distinct conditionings are minimal suf-

�cient (e.g., both {A,C} and {B,C} are su�cient for the

ED e�ect in Fig. ), but o�er no further guidance on

which to use. Open paths may suggest the presence of an

association, but that association may be negligible even if

nonzero. Because association transmitted by an open path

may become attenuated as the length of the path increases,

there is o�en good reason to expect certain phenomena

(such as the conditional E−D confounding shown in Figs.

,  and ) to be small in practical terms.

Further Readings
Full technical details of causal diagrams and their rela-

tion to causal inference can be found in the books

by Pearl () and Spirtes et al. (). A compact

survey is given in Pearl (). Less technical reviews

geared toward health scientists include Greenland et al.

(), Greenland and Brumback (), and Glymour

and Greenland ().
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In the health sciences, de�nitions of cause and e�ect have

not been tightly bound with methods for studying causa-

tion. Indeed,many approaches to causal inference require

no de�nition, leaving users to imagine causality however

they prefer. As Sir Austin Bradford Hill said in his famous

article on causation: “I have no wish. . .to embark upon

a philosophical discussion of the meaning of ‘causation”’

(Hill ). Without a formal de�nition of causation, an

association is distinguished as causal only by having been

identi�ed as such based on external and largely subject-

matter considerations, such as those Hill put forth.

Nonetheless, beneath most treatments of causation in

the health sciences, one may discern a class of de�nitions

built around the ideas of counterfactuals or potential out-

comes.�ese ideas have a very long history and form the

foundation of most current statistical methods for causal

inference. �us, the present article will begin with these

de�nitions and the methods they entail. It will then turn

methods that explicitly presume no de�nition of causation

but rather begin with an idea of what a causal associa-

tion should look like (perhaps derived from subject-matter

judgments, including consideration of possible counter-

factuals), and employ statistical methods to estimate those

associations.

Counterfactuals and Potential Outcomes
Skeptical that induction in general and causal infer-

ence in particular could be given a sound logical basis,

David Hume nonetheless captured the foundation of the

potential-outcome approach when he wrote

7 We may define a cause to be an object, followed by
another, . . .where, if the first object had not been, the sec-
ond had never existed.

(Hume , p. )

A key aspect of this view of causation is its counterfactual

element: It refers to how a certain outcome event (the “sec-

ond object,” or e�ect) would not have occurred if, contrary

to fact, an earlier event (the “�rst object,” or cause) had not

occurred. In this regard, it is no di�erent from conven-

tional statistics, which refers to samples that might have

occurred, but did not.�is counterfactual view of causa-

tion was adopted by numerous philosophers and scientists

a�er Hume (e.g., Mill ; Fisher ; Cox ; Simon

and Rescher ; MacMahon and Pugh ; Stalnaker

; Lewis ).

�e development of this view into a statistical theory

with methods for causal inference is recounted by Rubin

(), Greenland et al. (), Greenland (), and

Pearl ().�e earliest such theories were developed in

the s by Fisher, Neyman, and others for the analysis

of randomized experiments and are today widely recog-

nized under the heading of potential-outcome models of

causation (also known in engineering as destructive-testing

models). Suppose we wish to study the e�ect of an inter-

vention variable X on a subsequent outcome variable Y

de�ned on an observational unit or a population; for exam-

ple, X could be the daily dose regimen for a drug in a clini-

cal trial, and Y could be survival time. Given X has poten-

tial values x, . . . , xJ (e.g., drug doses), we suppose that

there is a list of potential outcomes y = (y(x), . . . , y(xJ))
′

such that if X = xj then Y = y(xj).�e list y thus exhibits
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the correspondence between treatments, interventions, or

actions (the X values) and outcomes or responses (the Y

values) for the unit, and so is sometimes called a response

schedule (Berk ). A simpler and common notation has

y = (y, . . . , yJ)
′
, with Yj denoting the random variable

“outcome when treated with X = xj.”

Under this model, assignment of a unit to a treatment

level xj is a choice of which potential outcome y(xj) from

the list y to attempt to observe. It is ordinarily assumed
that the assignments made for other units do not a�ect

the outcomes of another unit, although there are exten-

sions of the model to include between-unit interactions,

as in contagious outcomes (Halloran and Struchiner ).

Regardless of the X assignment, the remaining potential

outcomes are treated as existing pre-treatment covariates

on which data are missing (Rubin , ). Because at

most one of the J potential outcomes is observed per unit,

the remaining potential outcomes can be viewed as miss-

ing data, and causal inference can thus be seen as a special

case of inference with missing data.

To say that intervention xi causally a�ects Y relative to

intervention xj means that y(xi) ≠ y(xj), i.e., X “matters”

for Y for the unit. �e sharp (or strong) null hypothesis

is that y(x) is constant over x within units.�is hypoth-

esis states that changing X would not a�ect the Y of any

unit, i.e., y(xi) = y(xj) for every unit and every xi and

xj; it forms the basis of exact 7permutation tests such as
7Fisher’s exact test (Greenland ).�e e�ect of inter-
vention xi relative to xj on a unit may be measured by the

di�erence in potential outcomes y(xi) − y(xj). If the out-

come is strictly positive (like life expectancy or mortality

risk), it could instead bemeasured by the ratio y(xi)/y(xj).

Because we never observe two potential outcomes

on a unit, we can only estimate population averages of

the potential outcomes. We do this by observing average

outcomes in di�erently exposed groups and substituting

those observations for the average potential outcomes in

the group of interest – a perilous process whenever the

observed exposure groups are atypical of the population of

interest with respect to other risk factors for the outcome

(Maldonado and Greenland ) (see Confounding and

Confounder Control).

A more subtle problem is that only for di�erence mea-

sures will the population e�ect (the di�erence of average

potential outcomes) equal the population average e�ect

(the average di�erence of potential outcomes). Hence the

average of the di�erences y(xi)− y(xj) in the population is

o�en called the average causal e�ect (ACE) (Angrist et al.

). For some popular measures of e�ect, such as rate

ratios and odds ratios, the population e�ect may not even

equal any average of individual e�ects (Greenland ,

; Greenland et al. ).

�e theory extends to probabilistic outcomes by

replacing the y(xj) by probability functions pj(y)

(Greenland ; Robins ; Greenland et al. ).

�e theory also extends to continuous X by allowing the

potential-outcome list y to contain the potential outcome
y(x) or px(y) for every possible value x of X. Both exten-

sions are embodied in Pearl’s notation for intervention

e�ects, in which px(y) becomes P(Y = y∣set[X = x]) or

P(Y = y∣do[X = x]) (Pearl , ). Finally, the the-

ory extends to complex longitudinal data structures by

allowing the treatments to be di�erent event histories or

processes (Robins , ).

From Randomized to Observational
Inference
Potential outcomes were developed part of a design-based

strategy for causal inference in which 7randomization
provided the foundation for inference. Indeed, before the

s, the model was o�en referred to as “the randomiza-

tion model,” even though the causal concepts within it do

not hinge on randomization (e.g., Wilk ; Copas ).

It thus seems that the early strong linkage of potential out-

comes to randomized designs de�ected consideration of

the model for observational research. In the s, how-

ever, a number of philosophers used counterfactuals to

build general foundations for causal analysis (e.g., Simon

and Rescher ; Stalnaker ; Lewis ). Similar

informal ideas can be found among epidemiologists of

the era (e.g., MacMahon and Pugh ), and conceptual

models subsuming counterfactuals began to appear shortly

therea�er (e.g., Miettinen ; Rothman ; Hamilton

).

�e didactic value of these models was quickly appar-

ent in the clari�cation they brought to ideas of strength

of e�ect, synergy, and antagonism (MacMahon and Pugh

; Rothman ; see also Rothman et al. , Chaps. 

and ). Most importantly, the models make clear distinc-

tions between causal and statistical relations: Causal rela-

tions refer to relations of treatments to potential outcomes

within treated units, whereas statistical relations refer asso-

ciations of treatments with actual outcomes across units

(Rothman et al. , Chap. ). Consequently, the mod-

els have aided in distinguishing confounding from col-

lapsibility (Greenland and Robins ; Greenland et al.

), synergy from statistical interaction (Greenland and

Poole ), and causation probabilities from attributable

fractions (Greenland et al. ; Greenland and Robins

).

�e conceptual clari�cation also stimulated develop-

ment of statistical methods for observational

studies. Rubin (, ) and his colleagues extended

statistical machinery based on potential outcomes from
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the experimental setting to observational data analysis,

leading, for example, to propensity-scoring and inverse-

probability-of-treatment methods for confounder adjust-

ment (Rosenbaum ; Hirano et al. ), as well as new

insights into analysis of trials with noncompliance (Angrist

et al. ) and separation of direct and indirect e�ects

(Robins and Greenland , ; Frangakis and Rubin

; Kaufman et al. ). In many cases, such insights

have led tomethodologic re�nements and better-informed

choices among existing methods. In the longitudinal-data

setting, potential-outcome modeling has led to entirely

newmethodologies for analysis of time-varying covariates

and outcomes, including g-estimation andmarginal struc-

tural modeling (Robins , ; Robins et al. , ,

).

A serious caution arises, however, when it is not clear

that the counterfactual values for X (treatments other than

the actual one) represent physical possibilities or even

unambiguous states of nature. A classic example is gender

(biological sex). Although people speak freely of gender

(male vs. female) as cause of heart disease, given a partic-

ular man, it is not clear what it would mean for that man

to have been a woman instead. Do we mean that the man

cross-dressed and lived with a female identity his entire

life? Or that he received a sex-change operation a�er birth?

Or that the zygote from which he developed had its male

chromosome replaced by a female chromosome?

Potential-outcome models bring to light such ambigu-

ities in everyday causal language but do not resolve them

(Greenland a; Hernán ). Some authors appear

to insist that use of the models be restricted to situations

in which ambiguities are resolved, so that X must repre-

sent an intervention variable, i.e., a precise choice among

treatment actions or decisions (Holland ).Many appli-

cations do not meet this restriction, however, and some

go so far as to confuse outcomes (Y) with treatments

(X), which can lead to nonsense results. Examples include

estimates of mortality a�er “cause removal,” e.g., removal

of all lung-cancer deaths. Sensible interpretation of any

e�ect estimate requires asking what intervention on a unit

could have given the unit a value of X (here, lung-cancer

death) other than the one that was observed, and what

the side e�ects that intervention would have. One can-

not remove all lung-cancer deaths by smoking cessation.

A treatment with a % cure rate might do so but need

not guarantee the same subsequent lifespan as if the cancer

never occurred. If such questions cannot be given at least

a speculative answer, the estimates of the impact of cause

removal cannot be expected to provide valid information

for intervention and policy purposes (Greenland a).

More sweeping criticisms of potential-outcomemodels

are given by Dawid (), for example, that the dis-

tribution of the full potential-outcome vector Y (i.e.,
the joint distribution of the Y(x), . . . ,Y(xJ)) cannot be

nonparametrically identi�ed by randomized experiments.

Nonetheless, as the discussants point out, the practical

implication of these criticisms are not clear, because the

marginal distributions of the separate potential outcomes

Y(xj) are nonparametrically identi�able, and known

mechanisms of action may lead to identi�cation of their

joint distribution as well.

Canonical Inference
Before the extension of potential outcomes to observa-

tional inference, the only systematic approach to causal

inference in epidemiology was the informal comparison of

observations to characteristics expected of causal relations.

Perhaps, themostwidely cited of such approach is based on

Hill’s considerations (Hill ), which are discussed criti-

cally in numerous sources (e.g., Koepsell and Weiss ;

Phillips andGoodman ; Rothman et al. , Chap. )

as well as by Hill himself.

�e canonical approach usually leaves terms like

“cause” and “e�ect” as unde�ned concepts around which

the self-evident canons are built, much like axioms are

built around concepts like “set” and “is an element of ” in

mathematics. Only proper temporal sequence (cause must

precede e�ect) is a necessary condition for a cause–e�ect

relation to hold. �e remaining considerations are more

akin to diagnostic symptoms or signs of causation – that is,

they are properties an association is assumedmore likely to

exhibit if it is causal than if it is not (Hill ; Susser ,

). Furthermore, some of these properties (like speci-

�city and dose response) apply only under speci�c causal

models (Weiss , ).

�us, the canonical approach makes causal inference

more closely resemble clinical judgment than experimen-

tal science, although experimental evidence is listed among

the considerations (Hill ; Rothman et al. , Chap. ;

Susser ). Some of the considerations (such as temporal

sequence, association, dose response or predicted gradi-

ent, and speci�city) are empirical signs and thus subject

to conventional statistical analysis. Others (such as plau-

sibility) refer to prior belief, and thus (as with disease

symptoms) require elicitation, the same process used to

construct priors for Bayesian analysis.

�e canonical approach is widely accepted in health

sciences, subject to many variations in detail. Nonetheless,

it has been criticized for its incompleteness and informal-

ity, and the consequent poor �t it a�ords to the deductive
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or mathematical approaches familiar to classic science and

statistics (Rothman et al. , Chap. ). Although there

have been some interesting attempts to reinforce or rein-

terpret certain canons as empirical predictions of causal

hypotheses (e.g., Susser ; Weed ; Weiss , ;

Rosenbaum ), there is no generally accepted mapping

of the entire canonical approach into a coherent statistical

methodology; one simply uses standard statistical tech-

niques to test whether empirical canons are violated. For

example, if the causal hypothesis linking X to Y predicts a

strictly increasing trend in Y withX, a test of this statistical

predictionmay serve as a statistical criterion for determin-

ing whether the hypothesis fails the dose-response canon.

Such usage falls squarely in the falsi�cationist/frequentist

tradition of the twentieth-century statistics, but leaves

unanswered most of the policy questions that drive causal

research; this gap led to the development of methodologic

modeling or bias analysis.

Bias Analysis
In the second half of the twentieth-century, a more rig-

orous approach to observational studies emerged in the

wake of major policy controversies such as those concern-

ing cigarette smoking and lung cancer (e.g., Corn�eld et al.

).�is approach begins with the idea that, conditional

on some su�cient set of confounders Z, there is a popu-

lation association or relation between X and Y that is the

target of inference. In other words, the Z-strati�ed asso-

ciations are presumed to accurately re�ect the e�ect of X

on Y in that population stratum, however “e�ect” may be

de�ned. Estimates of this presumably causal association

are then the e�ect estimates.

Observational and analytic shortcomings bias or dis-

tort these estimates: Units may be selected for observa-

tion in a nonrandom fashion; stratifying on additional

unmeasured covariates U may be essential for the X-Y

association to approximate a causal e�ect; inappropriate

covariates may be entered into the analysis; components

of X or Y or Z may not be adequately measured; and so

on. In methodologic modeling or bias analysis, one mod-

els these shortcomings. In e�ect, one attempts to model

the design and execution of the study, including features

(such as selection biases and measurement errors) beyond

investigator control. �e process is thus a natural exten-

sion to observational studies of the design-based paradigm

in experimental and survey statistics. For further details,

see BIAS MODELING or the overviews by Greenland

(b, ).

Structural Equations and Causal
Diagrams
Paralleling the development of potential-outcome mod-

els, an entirely di�erent approach causal analysis arose

in observational research in economics and related �elds.

Like methodologic modeling, this structural-equations

approach does not begin with a formal de�nition of

cause and e�ect, but instead develops models to re�ect

assumed causal associations, from which empirical (and

hence testable) associations may be derived. Like most

of statistics before the s, structural-equations meth-

ods were largely limited to normal linear models to

derive statistical inferences. Because these models bear

no resemblance to typical epidemiologic data, this limi-

tation may in part explain the near absence of structural

equations from epidemiology, despite their ubiquity in

social-science methodology. From their inception, how-

ever, causal system models have been accompanied by

graphical representations or path diagrams that provided

compact summaries of qualitative assumptions made by

the structural model; see 7Causal Diagrams for a review.

Conclusion
Di�erent approaches to causal inference represent separate

historical streams rather than distinct methodologies, and

can be blended in various ways.�e result of anymodeling

exercise is simply one more input to informal judgments

about causal relations, which may be guided by canonical

considerations. Insights and innovations in any approach

can thus bene�t the entire process of causal inference, espe-

cially when that process is seen as part of a larger context.

Other traditions or approaches (some perhaps yet to be

imagined)may contribute to the process. It thus seems safe

to say that no one approach or blend is a complete solu-

tion to the problem of causal inference, and that the topic

remains one rich with open problems and opportunities

for innovation.
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Basic Concepts on Censored Data
In industrial and clinical experiments, there aremany situ-

ations inwhich units (or subjects) are lost or removed from

experimentation before the event of interest occurs. �e

experimentermay not always obtain complete information

on the time to the event of interest for all experimental

units or subjects. Data obtained from such experiments

are called censored data. Censoring is one of the distin-

guishing features of lifetime data. Censoring can be either

unintentional due to accidental breakage or an individual

under study drops out or intentional in which the removal

of units or subjects is pre-planned, or both. Censoring

restricts our ability to observe the time-to-event and it is

a source of di�culty in statistical analysis.

Censoring can occur at either end (single censoring)

or at both ends (double censoring). If the event of inter-

est is only known to be occured before a certain time, it is

called le� censoring.�e term “le� censored” implies that

the event of interest is to the le� of the observed time point.

�e most common case of censoring is right censoring, in

which the exact time to the event of interest is not observed

and it is only known to be occured a�er a certain time.

Di�erent types of right censoring schemes are discussed in

the subsequent section. For interval censoring, the event of

interest is only known to be occurred in a given time inter-

val.�is type of data frequently comes from experiments

where the items under test are not constantly monitored,

for example, the patients in a clinical trial have periodic

follow-up and events of interest occur in between two con-

secutive follow-ups. Note that le� censoring is a special

case of interval censoring where the starting time for the

interval is zero.
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For life-testing experiments where the event of inter-

est is the failure of the item on test, two common rea-

sons for pre-planned censoring are saving the total time

on test and reducing the cost associated with the experi-

ment because failure implies unit’s destruction which can

be costly. When budget and/or facility constraints are in

place, suitable censoring scheme can be used to control the

time spent and the cost of the experiment. Nevertheless,

censored data usually will reduce the e�cient of statisti-

cal inference compare to complete data. �erefore, it is

desirable to develop censoring scheme which can balance

between (i) total time spent for the experiment; (ii) num-

ber of units used in the experiment; and (iii) the e�cient of

statistical inference based on the results of the experiment.

Different Types of Censoring Schemes
Suppose n units are placed on a life-testing experiment.

Further, supposeX,X,⋯,Xn denote the lifetimes of these

n units taken from a population with lifetime distribution

function F(x; θ) and density function f (x; θ), where θ is

an unknown parameter(s) of interest. Let X:n ≤ ⋯ ≤ Xn:n
denote the corresponding ordered lifetimes observed from

the life-test. Some commonly used censoring schemes are

discussed in the following.

Type-I Censoring
Suppose it is planned that the life-testing experiment will

be terminated at a pre-�xed time T. �en, only the fail-

ures until time T will be observed.�e data obtained from

such a restrained life-test will be referred to as a Type-I

censored sample. It is also called time-censoring since the

experimental time is �xed. Note that the number of failures

observed here is random and, in fact, has a Binomial(n,

F(T; θ)) distribution. Figure  shows a schematic represen-

tation of a Type-I censored life-test withm = . Inferential

procedures based on Type-I censored samples have been

discussed extensively in the literature; see, for example,

Cohen () and Balakrishnan and Cohen ().

Type-I censoring scheme has the advantage that the

experimental time is controlled to be at most T while it

has the disadvantage that the e�ective sample size can turn

out to be a very small number (even equal to zero) so that

usual statistical inference procedures will not be applicable

or they will have low e�ciency.

Type-II Censoring
Suppose it is planned that the life-testing experiment will

be terminated as soon as the mth (where m is pre-�xed)

failure is observed.�en, only the �rst m failures out of n

units under test will be observed.�e data obtained from

such a restrained life-test will be referred to as a Type-

II censored sample. In contrast to Type-I censoring, the

number of failures observed is �xed (viz., m) while the

duration of the experiment is random (viz.,Xm:n). Figure 

shows a schematic representation of a Type-II censored

life-test with m = . Inferential procedures based on Type-

II censored samples have been discussed extensively in the
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literature; see, for example, Nelson (), Cohen (),

and Balakrishnan and Cohen ().

Type-II censoring scheme has the advantage that the

number of observed failures is �xed to bem which ensure

reasonable information is available for statistical inference.

However, it has the disadvantage that the experimental

time is random and it can be large.

Progressive Censoring
Both the conventional Type-I and Type-II censoring

schemes do not have the �exibility of allowing removal of

units at points other than the terminal point of the experi-

ment.�is restricts our ability to observe extreme failures

which may lead to ine�cient statistical inference if we are

interested in the behavior of the upper tail of the lifetime

distribution. For this reason, a more general censoring

scheme called progressive censoring has been introduced.

�e censored life-testing experiments described above can

be extended to situationswherein censoring occurs inmul-

tiple stages. Data arising from such life-tests are referred

to as progressively censored data. Naturally, progressive

censoring can be introduced in both Type-I and Type-II

forms.

For example, a progressive Type-II censored life-

testing experiment will be carried out in the following

manner. Prior to the experiment, a numberm < n is deter-

mined and the censoring scheme (R,R, . . . ,Rm) with

Rj >  and
m

∑
j=
Rj + m = n is speci�ed. During the exper-

iment, j-th failure is observed and immediately a�er the

failure, Rj functioning items are removed from the test.We

denote the m completely observed (ordered) lifetimes by

X
(R ,R ,. . .,Rm)
j:m:n , j = , , . . . ,m, which are the observed pro-

gressively Type-II right censored sample. Figure  shows

a schematic representation of a progressively Type-II cen-

sored life-test with m = . Notice that the conven-

tional Type-II censoring scheme is a special case of a

progressive Type-II censoring scheme when Ri = , for

i = , . . . ,m− andRm = n−m. Similarly, progressive Type-

I censoring scheme can be introduced in a similar manner.

Inferential procedures based on progressively Type-II cen-

sored samples have been discussed in the literature; see, for

example, Balakrishnan and Aggarwala () and Balakr-

ishnan () for excellent reviews on the literatures on

this topic.

Hybrid Censoring
Asmentioned previously, both Type-I and Type-II censor-

ing schemes have some shortcomings. To keep away from

these shortcomings, hybrid censoring schemes combining

Type-I and Type-II censoring schemes have been pro-

posed. Speci�cally, if the experiment is terminated at T∗ =

min{Xm:n,T}, where m and T are pre-�xed prior to the

experiment, then the censoring scheme is called Type-I

hybrid censoring scheme; if the experiment is terminated

at T∗ = max{Xm:n,T}, then the censoring scheme is

called Type-II hybrid censoring scheme. We can see that

both Type-I and Type-II hybrid censoring schemes try to

balance between the advantages and disadvantages of con-

ventional Type-I and Type-II censoring schemes. Hybrid

censoring schemes has been studied extensively in the lit-

erature, onemay refer Epstein (), Draper andGuttman

(), Gupta and Kundu (), and Childs et al. (,

), Kundu () for details. In recent years, the idea

of hybrid censoring has been generalized to progressive

censoring, for discussions on di�erent types of hybrid

progressive censoring schemes, see, for example, Kundu

and Joarder (), Banerjee and Kundu (), Ng et al.

() and Lin et al. ().
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Introduction
A census usually refers to a complete count by a national

government of the population, with the population further

de�ned by demographic, social or economic characteris-

tics, for example, age, sex, ethnic background, marital sta-

tus, and income. National governments also conduct other

types of censuses, particularly of economic activity. An

economic census collects information on the number and

characteristics of farms, factories, mines, or businesses.

Most countries of the world conduct population cen-

suses at regular intervals. By comparing the results of

successive censuses, analysts can see whether the popula-

tion is growing, stable, or declining, both in the country

as a whole and in particular geographic regions. �ey

can also identify general trends in the characteristics of

the population. Because censuses aim to count the entire

population of a country, they are very expensive and elab-

orate administrative operations and thus are conducted

relatively infrequently. �e United States and the United

Kingdom, for example, conduct a population census every

 years (a decennial census), and Canada conducts one

every  years (a quinquennial census). Economic censuses

are generally conducted on a di�erent schedule from the

population census.

Censuses of population usually try to count everyone

in the country as of a �xed date, o�en known as Cen-

sus Day. Generally, governments collect the information

by sending a 7questionnaire in the mail or a census taker
to every household or residential address in the country.

�e recipients are instructed to complete the questionnaire

and send it back to the government, which processes the

answers. Trained interviewers visit households that do not

respond to the questionnaire and individuals without mail

service, such as the homeless or those living in remote

areas.

History
Censuses have been taken since ancient times by emper-

ors and kings trying to assess the size and strength of

their realms.�ese early censuses were conducted sporad-

ically, generally to levy taxes or for military conscription.

Clay tablet fragments from ancient Babylon indicate that

a census was taken there as early as  BCE to estimate

forthcoming tax revenues.�e ancient Chinese, Hebrews,

Egyptians, and Greeks also conducted censuses. However,

enumerations did not take place at regular intervals until

the Romans began to count of the population in theRepub-

lic and later the empire. Among the Romans the censuswas

usually a count of the male population and assessment of

property value. It was used mainly for dra�ing men into

military service and for taxing property.

A�er the fall of the Roman Empire in the ��h century

CE, census taking disappeared for several hundred years

in the West.�e small feudal communities of the Middle
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Ages had neither the mechanisms nor the need for cen-

suses. However, in  William the Conqueror ordered

the compilation of the census-like Domesday Book, a

record of English landowners and their holdings. From the

data given in this survey, which was made to determine

revenues due to the king, historians have reconstructed the

social and economic conditions of the times.

�e modern census dates from the seventeenth cen-

tury, when European powers wanted to determine the suc-

cess of their overseas colonies.�us the British crown and

the British Board of Trade ordered repeated counts of the

colonial American population in the seventeenth and eigh-

teenth centuries, starting in the s in Virginia.�e �rst

true census in modern times was taken in New France,

France’s North American empire, beginning in .�e

rise of democratic governments resulted in a new feature

of the census process:�e  census of the United States

was the �rst to have its Constitution require a census and

periodic reapportionment of its House of Representatives

on the basis of the decennial census results. Sweden began

to conduct censuses in the mid-eighteenth century, and

England and Wales instituted a regular decennial census

in . During the nineteenth century and the �rst half of

the twentieth century, the practice of census taking spread

throughout the world. India conducted its �rst national

census in , under British rule. China’s �rst modern

census, in , counted  million people.

�e United Nations encourages all countries to con-

duct a population count through a census or popula-

tion registration system. It also promotes adoption of

uniform standards and census procedures. �e United

Nations Statistical O�ce compiles reports on worldwide

population.

Uses of Census Information
Governments use census information in almost all aspects

of public policy. In some countries, the population census

is used to determine the number of representatives each

area within the country is legally entitled to elect to the

national legislature.�e Constitution of the United States,

for example, provides that seats in the House of Represen-

tatives should be apportioned to the states according to the

number of their inhabitants. Each decade, Congress uses

the population count to determine how many seats each

state should have in the House and in the electoral col-

lege, the body that nominally elects the president and vice

president of the United States. �is process is known as

reapportionment. States frequently use population census

�gures as a basis for allocating delegates to the state legis-

latures and for redrawing district boundaries for seats in

the House, in state legislatures, and in local legislative dis-

tricts. In Canada, census population data are similarly used

to apportion seats among the provinces and territories in

the House of Commons and to draw electoral districts.

Governments at all levels – such as cities, counties,

provinces, and states – �nd population census informa-

tion of great value in planning public services because the

census tells how many people of each age live in di�er-

ent areas. �ese governments use census data to deter-

mine how many children an educational system must

serve, to allocate funds for public buildings such as schools

and libraries, and to plan public transportation systems.

�ey can also determine the best locations for new roads,

bridges, police departments, �re departments, and services

for the elderly.

Besides governments, many others use census data.

Private businesses analyze population and economic

census data to determine where to locate new factories,

shoppingmalls, or banks; to decide where to advertise par-

ticular products; or to compare their own production or

sales against the rest of their industry. Community orga-

nizations use census information to develop social ser-

vice programs and child-care centers. Censuses make a

huge variety of general statistical information about soci-

ety available to researchers, journalists, educators, and the

general public.

Conducting a Census
Most nations create a permanent national statistical agency

to take the census. In the United States, the Bureau of the

Census (Census Bureau), an agency of the Department of

Commerce, conducts the national population census and

most economic censuses. In Canada, the Census Division

of Statistics Canada is responsible for taking censuses.

Conducting a census involves four major stages. First,

the census agency plans for the census and determines

what information it will collect. Next, it collects the infor-

mation by mailing questionnaires and conducting per-

sonal interviews. �en the agency processes and ana-

lyzes the data. Finally, the agency publishes the results to

make them available to the public and other government

agencies.

Planning the Census
Census agencies must begin planning for a census years in

advance. One of the most important tasks is to determine

what questions will appear on the census questionnaire.

Census agencies usually undertake a lengthy public review

process to determine the questions to be asked.�ey con-

duct public meetings, consider letters and requests from

the general public, and consult with other government

agencies and special advisory committees. In the United

States, census questionsmust be approved byCongress and
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the O�ce of Management and Budget. In Canada, ques-

tions must be approved by the governor-general on the

recommendations of the Cabinet.

�e questions included on census forms vary from

nation to nation depending on the country’s particular

political and social history and current conditions. Most

censuses request basic demographic information, such as

the person’s name, age, sex, educational background, occu-

pation, and marital status. Many censuses also include

questions about a person’s race, ethnic or national origin,

and religion. Further questions may ask the person’s place

of birth; relationship to the head of the household; citi-

zenship status; the individual’s or the family’s income; the

type of dwelling the household occupies; and the language

spoken in the household.

Questions that are routine in one nation may be seen

as quite controversial in another, depending on the history

of the country.�e United States census does not ask about

religious a�liation because such a question is considered

a violation of the First Amendment right to freedom of

religion or an invasion of privacy. Other nations, such as

India, do collect such information. Questions on the num-

ber of children born to a woman were quite controversial

in China in recent years because of government e�orts

to limit families to having only one child. In the United

States, asking a question on income was considered con-

troversial in  when it was �rst asked. It is no longer

considered as objectionable. Questions change in response

to public debate about the state of society. For example,

Americans wanted to know which households had radios

in , and the census introduced questions on housing

quality in . Canadians have recently begun to ask cen-

sus questions on disability status and on the unpaid work

done in the home.

Besides determining the content of the census, cen-

sus agencies must make many other preparations. Sta�ng

is a major concern for census agencies because censuses

in most countries require a huge number of temporary

workers to collect and process data. Consequently, cen-

sus agencies must begin recruiting and training workers

months or years in advance. For example, the U.S. Census

Bureau had to �ll , temporary, short-term positions

to conduct the  census. In order to hire and retain

enough sta�, it had to recruit nearly threemillion job appli-

cants.�e majority of temporary workers are hired to go

door-to-door to interview households that do not respond

to the census questionnaire. In some countries, govern-

ment employees at a local level, such as schoolteachers, are

asked to help conduct the count.

Prior to any census, a census agency must develop an

accurate list of addresses and maps to ensure that every-

one is counted.�e U.S. Census Bureau obtains addresses

primarily from the United States Postal Service and from

previous census address lists. It also works closely with

state, local, and tribal governments to compile accurate

lists. Finally, census agencies o�en conduct an extensive

marketing campaign beforeCensusDay to remind the gen-

eral population about the importance of responding to the

census.�is campaign may involve paid advertising, dis-

tributing materials by direct mail, promotional events, and

encouraging media coverage of the census.

Collecting the Information
Until relatively recently, population censuses were taken

exclusively through personal interviews.�e government

sent enumerators (interviewers) to each household in the

country. �e enumerators asked the head of the house-

hold questions about each member of the household and

entered the person’s responses on the census question-

naire. �e enumerator then returned the responses to

the government. Today, many censuses are conducted

primarily through self-enumeration, which means that

people complete their own census questionnaire. Self-

enumeration reduces the cost of a census to the govern-

ment because fewer enumerators are needed to conduct

interviews. In addition, the procedure provides greater pri-

vacy to the public and generally improves the accuracy

of responses, because household members can take more

time to think over the questions and consult their personal

records.

Nevertheless, census operations still require hiring

very large numbers of temporary enumerators to con-

duct address canvassing in advance of a mail census and

to retrieve forms from non responding households and

check on vacant units. Other nations continue to conduct

censuses partially or totally through direct enumeration.

Some, such as Turkey, require people to stay home on

Census Day to await the census taker.

Census agencies make a special e�ort to count peo-

ple who may not receive a questionnaire by mail or who

have no permanent address. For example, the U.S. Census

Bureau sends census takers to interview people at homeless

shelters, soup kitchens, mobile food vans, campgrounds,

fairs, and carnivals. It consults with experts to �ndmigrant

and seasonal farmworkers. Finally, the agency distributes

census questionnaires to people living in group quarters,

such as college dormitories, nursing homes, hospitals, pris-

ons and jails, halfway houses, youth hostels, convents and

monasteries, and women’s shelters.

�e level of detail on the complete count census varies

by country, particularly a�er the development of prob-

ability survey techniques in the s. In the United

States, for example, until the  census, most households

received a “short form,” a brief set of questions on basic
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characteristics such as name, age, sex, racial or ethnic back-

ground, marital status, and relationship to the household

head. But from the mid-twentieth century until , a

smaller sample of households received the “long form,”

with many additional detailed questions. �ese included

questions about the individual’s educational background,

income, occupation, language knowledge, veteran status,

and disability status as well as housing-related questions

about the value of the individual’s home, the number of

rooms and bedrooms in it, and the year the structure

was built. �ese “long form” questions have been col-

lected in the American Community Survey since the early

s, and thus are no longer asked on the U.S. Census in

.

Processing and Analysis of Data
For most of the th century in the United States and

Canada, census data were tabulated and compiled by hand,

without the aid of machines. Manual processing was very

slow, and some �gures were obsolete by the time they were

published.�e invention of mechanical tabulating devices

in the late nineteenth century made processing of the data

much faster and improved the accuracy of the results. For

example, in , the U.S. Census Bureau will scan the

data from  + million paper questionnaires, and capture

the responses using optical character recognition so�ware.

Once in electronic form, the data can be analyzed and

turned into statistics. Unreadable or ambiguous responses

are checked by census clerks and manually keyed into the

computer.

Publication of Results
U.S. and Canadian censuses publish only general statisti-

cal information and keep individual responses con�den-

tial. By law, the U.S. Census Bureau and Statistics Canada

are prohibited from releasing individual responses to any

other government agency or to any individual or busi-

ness. Census workers in both countries must swear under

oath that they will keep individual responses con�dential.

Employees who violate this policy face amonetary �ne and

possible prison term. If an individual’s personal data were

not kept con�dential, people might refuse to participate in

the census for fear that their personal information would

be made public or used by the government to track their

activities. In the United States, individual census responses

are stored at the National Archives. A�er  years, the

original forms are declassi�ed and opened to the pub-

lic.�ese original responses are frequently used by people

researching the history of their families or constructing

genealogies. In Canada, census responses from  and

later are stored at Statistics Canada. Micro�lmed records

of census responses from  and earlier are stored at the

National Archives of Canada; these are the only individual

census responses currently available for public use.

Until the s, census agencies published their results

in large volumes of numeric tables – sometimes num-

bering in the hundreds of volumes. Today, the majority

of census data is distributed electronically, both in tabu-

lated form, and through anonymized public use microdata

samples.

Problems in Census Taking and Issues for
the Future
Censuses provide important information about the pop-

ulation of a country. But they can become embroiled in

political or social controversy simply by reporting infor-

mation. Complaints about the census generally involve

concerns about the accuracy of the count, the propriety of

particular questions, and the uses towhich the data are put.

All censuses contain errors of various kinds. Some peo-

ple and addresses are missed. People maymisunderstand a

question or fail to answer all the questions. Census o�cials

have developed elaborate procedures to catch and correct

errors as the data are collected, but some errors remain. For

example, the  U.S. census missed . million people

and mistakenly counted . million people, according to

Census Bureau estimates.�e latter �gure included people

counted more than once, �ctitious people listed on forms,

and fabrications by enumerators. Such errors undermine

the credibility of the census as a mechanism for allocating

seats in legislative bodies and government funds.

In recent years, developments in statistical analysis

have made it possible to measure the accuracy of censuses.

Census results may be compared with population infor-

mation from other sources, such as the records of births,

deaths, andmarriages in vital statistics. Census o�cials can

also determine the level of accuracy of the count by con-

ducting a second, sample count called a post-enumeration

survey or post-censal survey. In this technique, census sta�

knock on the door of each housing unit in selected blocks

around the country, regardless of whether the housing unit

was on the master address list. �e sta� member deter-

mines whether the household was counted in the census.

By comparing the results from this survey with the cen-

sus records, census o�cials can estimate howmany people

from each geographic region were missed in the original

census count. Some nations, such as Canada and Australia,

have begun to adjust the census results for omissions and

other errors.

Concerns about the con�dentiality of the census repre-

sent another source of data error. Censuses require public

understanding, support, and cooperation to be successful.

Concerns about government interference with private life
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can prevent people from cooperating with what is essen-

tially a voluntary counting process. People may be sus-

picious of giving information to a government agency or

may object that particular census questions invade their

privacy. When public trust is lacking, people may not

participate. In some nations, past census controversies

have led to the elimination of the national census. Dur-

ing World War II (–), for example, the German

Nazi forces occupying�e Netherlands used the country’s

census records and population registration data to identify

Jews for detention, removal, and extermination.�is use

ultimately undermined the legitimacy of the census a�er

World War II. In�e Netherlands, the legacy of the Nazi

era was one of the major justi�cations to end census tak-

ing. �e Netherlands took its last regular census in 

and now collects population information through other

mechanisms.

Many nations are currently exploring alternatives to or

major modernizations of the traditional population cen-

sus. France, for example, has recently implemented a con-

tinuous measurement population counting system. �e

United States is exploring the use of administrative records

and electronic methods of data collection to replace the

mail enumeration in .
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Introduction
One of the objectives of statistical inference is to draw con-

clusions about some parameter, like the mean or the vari-

ance of a (possibly conceptual) population of interest based
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on the information obtained in a sample conveniently

selected therefrom. For practical purposes, estimates of

these parameters must be coupled with statistical proper-

ties and except in the most simple cases, exact properties

are di�cult to obtain and onemust rely on approximations.

It is quite natural to expect estimators to be consistent, but

it is even more important that their (usually mathemati-

cally complex) exact sampling distribution be adequately

approximated by a simpler one, such as the normal or the

χ distribution, for which tables or computational algo-

rithms are available. Here we are not concerned with the

convergence of the actual sequence of statistics {Tn} to

some constant or random variable T as n → ∞, but with

the convergence of the corresponding distribution func-

tions {Gn} to some speci�c distribution function F.�is

is known as weak convergence and for simplicity, we write

Tn
D
Ð→ F. Although this is the weakest mode of stochastic

convergence, it is very important for statistical applica-

tions, since the related limiting distribution function F

may generally be employed in the construction of approx-

imate con�dence intervals for and signi�cance tests about

the parameters of interest. In this context, central limit

theorems (CLT) are used to show that statistics expressed

as sums of the underlying random variables, conveniently

standardized, are asymptotically normally distributed, i.e.,

converge weakly to the normal distribution.�ey may be

proved under di�erent assumptions regarding the original

distributions.

�e simplest CLT states that the (sampling) distri-

bution of the sample mean of independent and identi-

cally distributed (i.i.d) random variables with �nite sec-

ond moments may be approximated by a normal distri-

bution. Although the limiting distribution is continuous,

the underlying distribution may even be discrete. CLT

are also available for independent, but not identically dis-

tributed (e.g., with di�erent means and variances) under-

lying random variables, provided some (relatively mild)

assumptions hold for their moments.�e Liapounov CLT

and the Lindeberg-Feller CLT are useful examples. Further

extensions cover cases of dependent random underlying

variables; in particular, the Hájek-Šidak CLT is extremely

useful in regression analysis, where as the sample size

increases, the response variables form a triangular array in

which for each row (i.e., for given n), they are independent

but this is not true among rows (i.e., for di�erent values

of n). Extensions to cover cases where the underlying ran-

dom variables have more complex (e.g., martingale-type)

dependence structures are also available. When dealing

with partial sum or empirical distributional processes, we

must go beyond the �nite-dimensional case and assume

some compactness conditions to obtain suitable results,

wherein the so-called weak invariance principles play an

important role.

Different Versions of the Central Limit
Theorem
Wenowpresent (without proofs) themost commonly used

versions of the CLT. Details and a list of related references

may be obtained in Sen et al. ().

�eorem  (Classical CLT) Let {Xk, k ≥ } be a sequence

of i.i.d. random variables such that

. E(Xk) = µ.

. Var(Xk) = σ  <∞.

Also, let Zn = (Tn−nµ)/(σ
√
n)where Tn = ∑

n
k= Xk.�en,

Zn
D
Ð→ N (, ).

In practice, this result implies that for large n, the distribu-

tion of the sample mean Xn = Tn/nmay be approximated

by a normal distribution with mean µ and variance σ /n.

An interesting special case occurs when the underlying

variables Xk have Bernoulli distributions with probability

of success π. Here the expected value and the variance ofXk
are π and π( − π), respectively. It follows that the large-

sample distribution of the sample proportion, pn = Tn/n

may be approximated by aN [π, π( − π)/n] distribution.

�is result is known as the De Moivre–Laplace CLT.

An extension of�eorem  to cover the case of sums of

independent, but not identically distributed random vari-

ables requires additional assumptions on the moments of

the underling distributions. In this direction, we consider

the following result.

�eorem  (Liapounov CLT) Let {Xk, k ≥ } be a

sequence of independent random variables such that

. E(Xk) = µk.

. ν
(k)
+δ

= E(∣Xk−µk∣
+δ

) <∞, k ≥  for some  < δ ≤ .

Also let Tn = ∑
n
k= Xk, Var(Xk) = σ k , τn = ∑

n
k= σ k , Zn =

(Tn −∑
n
k= µk) /τn and ρn = τ

−(+δ)
n ∑

n
k= ν

(k)
+δ
.�en, if

limn→∞ ρn = , it follows that Zn
D
Ð→ N (, ).

�is as well as other versions of the CLT may also

be extended to the multivariate case by referring to the

Cramér-Wold �eorem, which essentially states that the

asymptotic distribution of the multivariate statistic under



 C Central Limit Theorems

investigation may be obtained by showing that every lin-

ear combination of its components follows an asymptotic

normal distribution. Given a sequence {Xn,n ≥ } of ran-
dom vectors in Rp, with mean vectors µn and covariance
matrices Σn, n ≥ , to show that n−/∑ni=(Xi − µi)

D
Ð→

Np(,Σ) with Σ = limn→∞ n
−
∑
n
i= Σi, one generally

proceeds according to the following strategy:

. Use one of the univariate CLT to show that for every

�xed λ ∈ Rp, n−/∑ni= λ′(Xi− µi)
D
Ð→ N (, γ)with

γ = limn→∞ n
−λ′ (∑ni= Σi) λ.

. Use the Cramér-Wold�eorem to complete the proof.

As an example we have:

�eorem  (Multivariate version of the Liapounov CLT)

Let {Xn,n ≥ } be a sequence of random vectors in

Rp with mean vectors µn and �nite covariance matrices
Σn,n ≥ , such that max≤i≤nmax≤j≤p E(∣Xij − µij∣

+δ
) <

∞ for some  < δ < , and Σ = limn→∞ n
−
∑
n
i= Σi exists.

�en n−/∑
n
i=(Xi − µi)

D
Ð→ Np(,Σ).

In the original formulation, Liapounov used δ = , but even

the existence of ν
(k)
+δ
,  < δ ≤  is not a necessary condition,

as we may see from the following theorem.

�eorem  (Lindeberg-Feller CLT) Let {Xk, k ≥ } be a

sequence of independent random variables satisfying

. E(Xk) = µk.

. Var(Xk) = σ k <∞.

Also, let Tn = ∑
n
k= Xk, τn = ∑

n
k= σ k and Zn = ∑

n
k= Ynk

where Ynk = (Xk − µk)/τn and consider the following

additional conditions:

. Uniform asymptotic negligibility (UAN): max≤k≤n
(σ k /τn)→  as n→∞.

. Asymptotic normality: Zn
D
Ð→ N (, ).

. Lindeberg-Feller (uniform integrability):

∀ε > , 
τn

n

∑
k=

E[(Xk − µk)I(∣Xk − µk ∣ > ετn)]→  as n→∞,

where I(A) denotes the indicator function.

�en, (A) and (B) hold simultaneously if and only if (C)

holds.

Condition (A) implies that the random variables Ynk are

in�nitesimal, i.e., that max≤k≤n P(∣Ynk∣ > ε) →  as n →

∞ for every ε > , or, in other words, that the random

variables Ynk,  ≤ k ≤ n, are uniformly in k, asymptotically

in n, negligible.

When the underlying random variables under consid-

eration are bounded, i.e., when P(a ≤ Xk ≤ b) =  for some

�nite scalars a < b, it follows that a necessary and su�cient

condition for Zn
D
Ð→ N (, ) is that τn →∞ as n→∞.

Up to this point we have devoted attention to the weak

convergence of sequences of statistics {Tn,n ≥ } con-

structed from independent underlying random variables

X,X, . . .. We consider now some extensions of the CLT

where such restriction may be relaxed. �e �rst of such

extensions holds for sequences of (possibly dependent)

random variables which may be structured as a double

array of the form

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

X, X, ⋯, Xk

X, X, ⋯, Xk

⋮ ⋮ ⋱ ⋮

Xn, Xn, ⋯, Xnkn

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where the Xnk are row-wise independent.�e case where

kn = n, n ≥ , is usually termed a triangular array of

random variables.�is result is very useful in the �eld of

7order statistics.

�eorem  (Double array CLT) Let the random variables

{Ynk,  ≤ k ≤ kn,n ≥ } where kn → ∞ as n → ∞ be such

that for each n, {Ynk,  ≤ k ≤ kn} are independent.�en

. {Ynk,  ≤ k ≤ kn,n ≥ } is an in�nitesimal system of

random variables, i.e., satis�es the UAN condition.

. Zn = ∑
kn
k= Ynk

D
Ð→ N (, ).

hold simultaneously, if and only if, for every ε > , as n→∞

the following two conditions hold

.
kn

∑
k=
P(∣Ynk∣ > ε)→ .

.
kn

∑
k=

{ ∫
{∣y∣≤ε}

ydP(Ynk ≤ y)

− [ ∫
{∣y∣≤ε}

ydP(Ynk ≤ x)]



}→ .

Linear regression and related models pose special

problems since the underlying random variables are not

identically distributed and in many cases, the exact func-

tional form of their distributions is not completely spec-

i�ed. Least-squares methods (see 7Least Squares) are
attractive under these conditions, since they may be

employed in a rather general setup. In this context, the fol-

lowing CLT speci�es su�cient conditions on the explana-

tory variables such that the distributions of the least

squares estimators of the regression parameters may be

approximated by normal distributions.
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�eorem  (Hájek-Šidak CLT) Let {Yn,n ≥ } be a

sequence of i.i.d. random variables with mean µ and �nite

variance σ ; let {xn,n ≥ } be a sequence of real vec-

tors xn = (xn, . . . , xnn)
′.�en if Noether’s condition holds,

i.e., if

max
≤i≤n

[x

ni/

n

∑
i=
x

ni]→  as n→∞,

holds, it follows that

Zn = [
n

∑
i=
xni(Yni − µ)]/[σ


n

∑
i=
x

ni]

/
D
Ð→ N (, ).

As an illustration, consider the simple linear regression

model (see 7Simple Linear Regression)

yni = α + βxni + eni, i = , . . . ,n,

where yni and xni represent observations of the response

and explanatory variables, respectively, α and β are the

parameters of interest and the eni correspond to uncor-

related random errors with mean  and variance σ .�e

least squares estimators of β and α are respectively β̂n =

∑
n
i=(xni − xn)(yni − yn)/∑

n
i=(xni − xn)


and α̂n = yn −

β̂nxn where xn and yn correspond to the sample means

of the explanatory and response variables. Irrespectively

of the form of underlying distribution of eni, we may use

standard results to show that α̂n and β̂n are unbiased

and have variances given by σ  [∑
n
i= x


ni/∑

n
i=(xni − xn)


]

and σ  [∑
n
i=(xni − xn)


]
−
, respectively. Furthermore, the

covariance between α̂n and β̂n is −σ xn/∑
n
i=(xni − xn)


.

When the underlying distribution of eni is normal, we may

show that (α̂n, β̂n) follows a bivariate normal distribution.

If Noether’s condition holds and both xn and n
−
∑
n
i=(xni−

xn)

converge to �nite constants as n→∞, wemay use the

Hájek-Šidak CLT and the Cramér-Wold�eorem to con-

clude that the same bivariate normal distribution speci�ed

above serves as an approximation of the true distribution

of (α̂n, β̂n), whatever the form of the distribution of eni,

provided that n is su�ciently large.

�e results may also be generalized to cover alter-

native estimators obtained by means of generalized and

weighted least-squares procedures as well as via robust

M-estimation procedures. �ey may also be extended to

generalized linear and nonlinear models. Details may be

obtained in Sen et al. (), for example.

It is still possible to relax further the independence

assumption on the underlying random variables.�e fol-

lowing theorems constitute examples ofCLT for dependent

random variables having a martingale (or reverse martin-

gale) structure. For further details, the reader is referred to

Loynes (), Brown (), Dvoretzky (), orMcLeish

().

�eorem  (Martingale CLT) Consider a sequence

{Xk, k ≥ } of random variables satisfying

. E(Xk) = .

. E (Xk) = σ k <∞.

. E{Xk∣X, . . . ,Xk−} = , X = .

Also let Tn = ∑
n
k= Xk, τn = ∑

n
k= σ k , v


k =

E (Xk ∣X, . . . ,Xk−) and w

n = ∑

n
k= v


k. If

. wn/τn
P
Ð→  as n→∞.

. ∀ε > , τ−n ∑
n
k= E[Xk I(∣Xk∣ > ετn)]→  as n→∞

(Lindeberg-Feller condition),

then the sequence {Xk, k ≥ } is in�nitesimal and Zn =

Tn/τn
D
Ð→ N (, ).

Note that the terms vk are random variables since they

depend on X, . . . ,Xk−; condition (A) essentially states

that all the information about the variability in the Xk is

contained in X, . . . ,Xk−. Also note that {Tn,n ≥ } is a

zero mean martingale (See also7Martingale Central Limit
�eorem.)

�eorem (ReverseMartingale CLT)Consider a sequence

{Tk, k ≥ } of random variables such that

E(Tn∣Tn+,Tn+, . . .) = Tn+ and E(Tn) = ,

i.e., {Tk, k ≥ } is a zero mean reverse martingale. Assume

that E (Tn) < ∞ and let Yk = Tk − Tk+, k ≥ , vk =

E (Yk ∣Tk+,Tk+, . . . ) and w

n = ∑

∞
k=n v


k. If

. wn/E (wn)
a.s.
Ð→ .

. w−n
∞
∑
k=n

E[Yk I(∣Yk∣ > εwn)∣Tk+,Tk+, . . .]
P
Ð→ ,

ε >  or w−n
∞
∑
k=n
Yk

a.s.
Ð→ ,

it follows that Tn/
√

E (wn)
D
Ð→ N (, ).

Rates of Convergence to Normality
In the general context discussed above, a question of both

theoretical and practical interest concerns the speed with

which the convergence to the limiting normal distribution

takes place. Although there are no simple answers to this

question, the following result may be useful.

�eorem  (Berry-Esséen) Let {Xn,n ≥ } be a sequence

of i.i.d. random variables with E(X) = µ, Var(X) =

σ  and suppose that E(∣X − µ∣
+δ

) = ν+δ < ∞ for
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some  < δ ≤ . Also let Tn = ∑
n
i= Xi and F(n)(x) =

P [(Tn − nµ)/ (σ
√
n) ≤ x], x ∈ R.�en there exist a con-

stant C such that

∆n = sup
x∈R

∣F(n)(x) −Φ(x)∣ ≤ C
ν+δn

−δ/

σ +δ

whereΦ denotes the standard normal distribution function.

�e reader is referred to Feller () for details. Berry

() proved the result for δ =  and Esséen () showed

thatC ≥ .. Although the exact value of the constantC

is not known, many authors have proposed upper bounds.

In particular, van Beeck () showed that C ≤ .

and more recently, Shevtsova () concluded that C ≤

..�e usefulness of the theorem, however, is limited,

since the rates of convergence attained are not very sharp.

Alternatively, the rates of convergence of the sequence

of distribution functions F(n) to Φ or of the density func-

tions f(n) (when they exist) to φ (the density function of the

standard normal distribution) may be assessed by Gram-

Charlier or Edgeworth expansions as discussed in Cramér

(), for example. Although this second approach might

o�er a better insight to the problem of evaluating the rate

of convergence to normality than that provided by the

former, it requires the knowledge of the moments of the

parent distribution and, thus, is less useful in practical

applications.

Convergence of Moments
Given that weak convergence has been established, a ques-

tion of interest is whether the moments (e.g., mean and

variance) of the statistics under investigation converge to

the moments of the limiting distribution. Although the

answer is negative in general, an important theorem, due

to Cramér, indicates conditions under which the result is

true.�e reader is referred to Sen et al. () for details.

Asymptotic Distributions of Statistics not
Expressible as Sums of Random Variables
�e Slustky theorem is a handy tool to prove weak con-

vergence of statistics that may be expressed as the sum,

product or ratio of two terms, the �rst known to con-

verge weakly to some distribution and the second known

to converge in probability to some constant. As an exam-

ple, consider independent and identically distributed ran-

dom variables Y, . . . ,Yn with mean µ and variance σ .

Since the corresponding sample standard deviation S con-

verges in probability to σ and the distribution of Y may be

approximated by aN (µ, σ /n) distribution, we may apply

Slutsky’s theorem to show that the large-sample distribu-

tion of
√
n Y/S = (

√
n Y/σ) × (σ/S) may be approxi-

mated by a N (µ, ) distribution. �is allows us to con-

struct approximate con�dence intervals for and tests of

hypotheses about µ using the standard normal distribu-

tion. A similar approachmay be employed to the Bernoulli

example by noting that pn is a consistent estimator of π.

An important application of Slutky’s�eorem relates

to statistics that can be decomposed as a sum of a term

for which some CLT holds and a term that converges in

probability to . Assume, for example, that the variables Yi
have a �nite fourth central moment γ and write the sample

variance as

S

= [n/(n − )]{n

−
n

∑
i=

[(Yi − µ)

− σ


/n]

+ [σ

−

n

∑
i=

(Y − µ)

]} .

Since the �rst term within the {} brackets is known to

converge weakly to a normal distribution by the CLT and

the second term converges in probability to , we con-

clude that the distribution of S may be approximated by

a N (σ , γ/n) distribution. �is is the basis of the pro-

jection results suggested by Hoe�ding () and exten-

sively explored by Jurečkova and Sen () to obtain

large-sample properties of 7U-statistics as well as of more
general classes of estimators.

Another convenient technique to obtain the

asymptotic distributions of many (smooth) functions of

asymptotically normal statistics is the Delta-method: if g

is a locally di�erentiable function of a statistic Tn whose

distribution may be approximated (for large samples) by

aN (µ, τ) distribution, then the distribution of the statis-

tic g(Tn)may be approximated by aN{g(µ), [g′(µ)]τ}

distribution, where g′(µ) denotes the �rst derivative of g

computed at µ. Suppose that we are interested in estimat-

ing the odds of a failed versus pass response, i.e., π/(− π)

in an exam based on a sample of n students. A straight-

forward application of the De Moivre Laplace CLT may

be used to show that the estimator of π, namely, k/n,

where k is the number of students that failed the exam,

follows an approximate N [π, π( − π)/n] distribution.

Taking g(x) = x/( − x), we may use the Delta-method

to show that the distribution of the sample odds k/(n − k)

may be approximated by a N{π/( − π), π/[n( − π)]}

distribution.�is type of result has further applications in

variance-stabilizing transformations used in cases (as the

above example) where the variance of the original statistic

depends on the parameter it is set to estimate.



Central Limit Theorems C 

C

For some important cases, like the Pearson χ-statistic

or more general quadratic forms Q = Q(µ) = (Y −
µ)tA(Y − µ) where Y is a p-dimensional random vector
with mean vector µ and covariance matrix V and A is a p-
dimensional square matrix of full rank, the (multivariate)

Delta-methodmay not be employed because the derivative

of Q computed at µ is null. If A converges to an inverse of
V, a useful result known as theCochran theorem, states that
the distribution of Qmay be approximated by a χ instead

of a normal distribution. In fact, the theorem holds even if

A is not of full rank, but converges to a generalized inverse
of V.�is is important for applications in categorical data.

�e CLT also does not hold for extreme order statis-

tics like the sample minimum or maximum; depending

on some regularity conditions on the underlying random

variables, the distribution of such statistics, conveniently

normalized, may be approximated by one of three types

of distributions, namely the extreme value distributions of

the �rst, second or third type, which, in this context, are the

only possible limiting distributions as shown byGnedenko

().

Central Limit Theorems for Stochastic
Processes
Empirical distribution functions and7order statistics have
important applications in nonparametric regression mod-

els, resampling methods like the 7jackknife and bootstrap
(see 7Bootstrap Methods), sequential testing as well as in
Survival and Reliability analysis. In particular it serves as

the basis for the well known goodness-of-�t Kolmogorov-

Smirnov and Cramér-von Mises statistics and for L- and

R-estimators like trimmed orWinsorized means. Given the

sample observations Y, . . . ,Yn assumed to follow some

distribution function F and a real number y, the empirical

distribution function is de�ned as

Fn(y) = n
−

n

∑
i=
I(Yi ≤ y)

where I(Yi ≤ y) is an indicator function assuming the

value  if Yi ≤ y and , otherwise. It is intimately related to

the order statistics,Yn: ≤ Yn: ≤ . . . ≤ Yn:n whereYn: is the

smallest among Y, . . . ,Yn, Yn: is the second smallest and

so on. For each �xed sample, Fn is a distribution function

when considered as a function of y. For every �xed y, when

considered as a function of Y, . . . ,Yn, Fn(y) is a random

variable; in this context, since the I(Yi ≤ y), i = , . . . ,n,

are independent and identically distributed zero-one val-

ued random variables, we may apply the classical CLT to

conclude that for each �xed y the distribution of Fn(y)may

be approximated by aN{F(y),F(y)[−F(y)]/n}distribu-

tion provided that n is su�ciently large. In fact, using stan-

dard asymptotic results, we may show that given any �nite

numberm of points y, . . . , ym, the distribution function of

the vector [Fn(y), . . . ,Fn(ym)]may be approximated by a

multivariate normal distribution function.�is property is

known as convergence of �nite-dimensional distributions.

On the other hand, Fn − F = {Fn(y) − F(y)∶ y ∈ R}

is a random function de�ned on the set of real numbers,

and, hence, to study its various properties we may need

more than the results considered so far. Note that as the

sample size n increases, so does the cardinality of the set

of order statistics used to de�ne the empirical distribu-

tion function and we may not be able to approximate this

n-dimensional joint distribution by anm-dimensional one

unless some further tightness or compactness conditions

are imposed on the underlying distributions. �is is the

basis of the weak invariance principles necessary to show

the convergence of empirical and other 7stochastic pro-
cesses to Brownian bridge or Brownian motion processes.

An outline of the rationale underlying these results follows.

Let t = F(y) and W
n(t) =

√
n[Gn(t) − t], t ∈

(, ) where Gn(t) = Fn[F
−
(t)] = Fn(y) with F

−
(x) =

inf{y : F(y) > x}, so that {W
n(t), t ∈ (, )} is a stochas-

tic process with E [W
n(t)] =  and E [W

n(s)W

n(t)] =

min(s, t) − st,  ≤ s, t ≤ . Using the multivariate ver-

sion of the CLT we may show that as n → ∞, for all

m ≥ , given  ≤ t ≤ . . . ≤ tm ≤ , the vector W
nm =

[W
n(t), . . . ,W


n(tm)]

D
Ð→ [W

(t), . . . ,W

(tm)] =

W
m where W

m follows a Nm(, Γm) distribution with
Γm denoting a positive de�nite matrix with elements
min(ti, tj) − titj, i, j = , . . . ,m.

Now, de�ne a stochastic process {Z(t), t ∈ (, )}

with independent and homogeneous increments such that,

for every  ≤ s < t ≤ , the di�erence Z(t) − Z(s)

follows a N (, t − s) distribution. �en, it follows that

E[Z(s)Z(t)] = min(s, t). �is process is known as a

standardBrownianmotion or standardWiener process. Fur-

thermore, lettingW
(t) = Z(t)−tZ(),  ≤ t ≤ , it follows

that {W
(t), t ∈ (, )} is also a Gaussian stochastic

process such that E[W
(t)] =  and E[W

(s)W
(t)] =

min(s, t) − st,  ≤ s, t ≤ .�en for all m ≥ , given  ≤

t ≤ . . . ≤ tm ≤ , the vectorW
m = [W

(t), . . . ,W

(tm)]

also follows a Nm(, Γm) distribution. Since W
() =

W
() =  with probability , this process is called a tied

down Wiener process or Brownian bridge.

Using the Kolmogorov maximal inequality, we may

show that {W
n(t), t ∈ (, )} is tight and referring to

standard results in weak convergence of probability mea-

sures, we may conclude that {W
n(t), t ∈ (, )}

D
Ð→
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{W
(t), t ∈ (, )}. Details and extensions to statistical

functionals may be obtained in Jurečkova and Sen ()

among others.
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Chaotic modeling is a term used to express the repre-

sentation of the state of a system or a process by using

chaotic models or tools developed in the chaotic litera-

ture and the related scienti�c context. In the following we

present the main elements of the chaotic modeling includ-

ing chaotic terms, di�erential and di�erence equations and

main theorems (Skiadas ).

Chaos is a relatively new science mainly developed

during last decades with the use of computers and super-

computers. It touches almost all the scienti�c �elds. How-

ever, the basic elements can be found at the end of the

nineteenth century and the attempts to solve the famous

three-body problem by Henri Poincaré (). Although

he succeeded to solve only the special case when the three

bodies move in the same plane, he could explore the main

characteristics of the general three-body problem and to

see the unpredictability of the resulting paths in space. In

other words he could realize the main characteristic of
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Chaotic Modelling. Fig.  The Lorenz attractor (xyz view)

Chaotic Modelling. Fig.  Autocatalytic attractor and chaotic

oscillations

a chaotic process that very small changes in initial con-

ditions have signi�cant impact to the future states of a

system.

�is was veri�ed by Edwin Lorenz in  with his

work on modeling the atmospheric changes. He reduced

the Navier-Stokes equations, used to express �uid �ows,

to a system of three nonlinear coupling di�erential equa-

tions and performed simulations in a computer trying to

model the weather changes. He surprisingly found that

the system was very sensitive to small changes of ini-

tial conditions thus making the forecasts of the future

weather unpredictable. Famous are the forms of his sim-

ulated paths that look like a butter�y with open wings.�e

three-dimensional model which he proposed has the form

(σ , r and b are parameters):

ẋ = −σx + σy, ẏ = −xz + rx − y, ż = xy − bz.

�e famous Lorenz attractor also known as the butter�y

attractor is illustrated in Fig. .

Several years later Rössler () proposed a simpler

three-dimensional model including only one nonlinear

term thus verifying the assumption that a set of simple

di�erential equations with only one nonlinear term may

express chaotic behavior.�e Rössler system is the follow-

ing (e, f andm are parameters):

ẋ = −y − z, ẏ = x − ez, ż = f + xz −mz.

It can be veri�ed that the number of chaotic parameters

is equal to the number of the equations.

Chemical chaotic oscillations where observed by

Belousov () and later on by Zhabotinsky () when

they where working with chemical autocatalytic reactions.

�e Nobel Prize in chemistry () was awarded to Pri-

gogine for his work on dynamics of dissipative systems (see

Prigogine ) including themathematical representation

of autocatalytic reactions. A simple autocatalytic reaction

is expressed by the following set of three di�erential equa-

tions:

ẋ = (


 + k
+m) (k+z)−xy


−x, ẏ =

xy + x − y

e
, ż = y−z

�is model is illustrated in Fig. ; the parameters set

are: e = ., k = .,m = ..

�e use of computing power gave rise to the explo-

ration of chaos in astronomy and astrophysics. Apaper that

in�uenced much the future developments of the chaotic

applications was due to Hénon and Heiles in . �ey

had predicted chaos in Hamiltonian systems that could

apply to astronomy and astrophysics. Few years before

George Contopoulos () had also found chaotic behav-

ior when he explored the paths of stars in a galaxy.�at

it was most important was that they had shown that the

computer experiments had much more to show than sim-

ply verify the results coming from the mathematical for-

mulations. Hidden and unexplored scienti�c �elds would

emerge by the use of computers.

It was found that chaos could emerge from a system

of three or more di�erential equations with at list one

nonlinear term.�is comes from the Poincaré–Bendixson

theorem which states that a two dimensional system of

nonlinear equations may have a regular behavior.

Another theorem is the famous KAM theorem from

the initials of the names of Kolmogorov, Arnold and

Moser.�is theoremapplies to dynamical systems andmay

explain the stability or not of these systems to small per-

turbations. It is interesting that the chaotic forms could be

quite stable as it happens for vortex and tornados.

However, the main scienti�c discovery on chaos came

only in  by Michel Feigenbaum when he found that

the simple logistic map could produce a chaotic sequence.

Feigenbaum tried a di�erence equation instead of the dif-

ferential equations that where used in the previous works

on chaos.�at is di�erent is that chaos can emerge even
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from only one di�erence equation with at list one non-

linear term.�is is because a di�erence equation de�nes

a recurrence scheme which is a set of numerous equa-

tions in which every equation uses the outcomes from the

preceding one.�e complexity resulting from a nonlinear

di�erence equation is large and it can be measured with a

power law of the number of iterations.

In the logistic model a mapping into itself is de�ned by

the di�erence equation and gives rise to period doubling

bifurcations and chaos for a speci�c range of the chaotic

parameter. �e logistic map is of the form: xn+ = bxn
( − xn), where b is the chaotic parameter and xn is the

chaotic function (see a (xn+ , xn) diagram of the Logistic

model in Fig. ; b = .).

For the logistic map as also for other maps there exists

the bifurcation diagram. �is is a diagram, usually two

dimensional, de�ning the bifurcation points with respect

to the chaotic parameter or parameters (see Fig. ).

�e chaoticmodeling has also to dowith strange attrac-

tors by means forms in space that have a great detail and

complexity.�ese forms can arise in nature and also can be

simulated fromchaotic equations. A very interesting future

of a chaotic attractor is that for a variety of initial condi-

tions the chaotic system leads the �nal results or solutions

to a speci�c area, the strange or chaotic attractor.

Chaos may also arise from a set of two or more di�er-

ence equations with at least one nonlinear term.�e most

popular model is the Hénon () model given by:

xn+ = yn +  − ax

n , yn+ = bxn.

�e Jacobian determinant of this model is:

det J =

RRRRRRRRRRRRRRRRRR

∂xn+

∂xn

∂yn+

∂xn
∂xn+

∂yn

∂yn+

∂yn

RRRRRRRRRRRRRRRRRR

= −b.

�e system is stable for  < b < . When b =  the system is

area preserving, but it is unstable.

Chaotic Modelling. Fig.  The logistic model

Chaotic Modelling. Fig.  The bifurcation diagram

Chaotic Modelling. Fig.  A carpet-like form

An alternative of theHénonmap is provided by the follow-

ing cosine model:

xn+ = byn + a cos(xn) − a + , yn+ = xn. �is map

provides a carpet-like form (see Fig. ) for b = − and

a = −..

Very many cases in nature have to do with delays.�is

mathematically can be modeled by a delay di�erential or

di�erence equation. Simpler is to use di�erence equations

to express delay cases. An example is the transformation

of the previous Hénon map to the corresponding delay

di�erence equation of the form:

xn+ = bxn− +  − ax

n .

�is delay di�erential equation has the same proper-

ties of the Hénon map. In general modeling delays leads to

di�erential or di�erence equations which produce oscilla-

tions and may produce chaos for appropriate selection of

the parameters. One of the �rst proposed chaotic models

including delays is the famousMackey-Glass () model

regarding oscillation and chaos in physiological control

systems.

Ikeda found his famous attractor in  (see Fig. ;

parameters a = , b = ., c = . and d = ) when he

was experimenting on the light transmitted by a ring cavity

system.�e equations’ set is:

xn+ = a + b(xn cos(φn) − yn sin(φn)),

yn+ = b(xn sin(φn) + yn cos(φn)),
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Chaotic Modelling. Fig.  The Ikeda attractor

Chaotic Modelling. Fig.  Chaotic rotating forms

where the rotation angle is: φn = c −
d

 + x n + y

n

�e last formof di�erence equations express a rotation-

translation phenomenon and can give very interesting

chaotic forms (see Skiadas ). Figure  illustrates such a

casewhere the rotation angle follows an inverse low regard-

ing the distance r from the origin: φn =
c√

x n + y n
=
c

r
.

A chaotic bulge is located in the central part followed by

elliptic trajectories in the outer part (the parameters are:

a = . and b = c = ).

Other interesting aspects of chaotic modeling are

found in numerous publications regarding control of chaos

with applications in various �elds.

Chaotic mixing and chaotic advection have also stud-

ied with chaotic models as well as economic and social

systems.
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Characteristic Functions
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Characteristic functions play an outstanding role in the the-

ory of probability and mathematical statistics (Ushakov

). �e characteristic function (c.f.) of a probability

distribution function (d.f.) is the Fourier–Stieltjes trans-

form of the d.f. More precisely, if F is a probability d.f. on

d-dimensional real spaceRd (d ≥ ), then its c.f. is a complex

function ϕ : Rd → C such that for any t = (t, . . . , td) ∈ R
d
,

ϕ(t) = ∫
Rd
e
i∑dj= tjxj dF(x, . . . , xd) :=

= ∫
Rd
cos

⎛

⎝

d

∑
j=
tjxj

⎞

⎠
dF(x, . . . , xd)

+ i∫
Rd
sin

⎛

⎝

d

∑
j=
tjxj

⎞

⎠
dF(x, . . . , xd),

where the integrals are Lebesgue–Stieltjes integrals with

respect to d.f. F.

If X = (X, . . . ,Xd) is a d-dimensional random vector,

then c.f. ϕ = ϕX associated to X is the c.f. of its d.f. F = FX.
Hence

ϕX(t) = E [e
i∑dj= tjXj] , t = (t, . . . , td) ∈ R

d
. ()

Particularly, c.f. ϕ = ϕX : R → C of a random variable (r.v.)

X is equal to

ϕ(t) = E[eitX], t ∈ R.

Examples of c.f.s of some r.v.s are in Table .

C.f.s have many good properties (see Table ). One of

the most important properties of c.f.s is that there is a one-

to-one correspondence between d.f.s and their c.f.s, which

is a consequence of the Lévy inversion formula (see Chow

and Teicher  or Feller ). Since it is usually sim-

pler to manipulate with c.f.s than with corresponding d.f.s,

Characteristic Functions. Table  Characteristic functions of
some univariate probability distributions

Distribution Density f(x) c.f. ϕ(t)
Degenerate at c eitc

Binomial (n
x
)px( − p)n−x (peit +  − p)n

Poisson e−λ λx

x!
exp{λ(eit − )}

Normal 
σ
√

π
exp{− (x−µ)

σ } eiµt−σt
/

Symmetric uniform
over (−θ, θ) 

θ

sin θt
θt

Gamma 
Γ(α)βα x

α−e−x/β ( − itβ)−α

Cauchy
α

π(α
+x
) e−α∣t∣

Characteristic Functions. Table  List of properties of
characteristic functions ϕX(t) given by () (the list follows one
from Ferguson ())

() ϕX(t) exists for all t ∈ Rd and is continuous.

() ϕX(Ø) =  and ∣ϕx(t)∣ ≤  for all t ∈ Rd .

() For a scalar a, ϕaX(t) = ϕX(at).

() For a matrix A and a vector c,
ϕAX+c(t) = eit

τ c ⋅ ϕX(Aτt).

() For X and Y independent, ϕX+Y(t) = ϕX(t)ϕY(t).

() If E ∣X∣ <∞,
.
ϕX(t) exists and is continuous and

.
ϕX(Ø) = iE Xτ .

() If E[∣X∣] <∞,
..
ϕX(t) exists and is continuous and

..
ϕX(Ø) = −E[XXτ].

() If P(X = c) =  for a vector c, ϕX(t) = eit
τ c.

() If X is normal r. vec. with µ = E X and cov(X) = Σ,
ϕX(t) = exp{itτµ − 


tτΣt}.

this property makes c.f.s useful in proving many theorems

on probability distributions. For example, it can be proved

that the components of a random vector X = (X, . . . ,Xd)

are independent r.v.s if and only if

(∀t, . . . , td ∈ R) ϕX(t, . . . , td)

= ϕX(t) ⋅ ϕX(t) . . . ϕXd(td).

Moreover, since for any independent r.v.s X,X, . . . ,Xn,

c.f. of their sum Sn = X + . . . + Xn is equal to the prod-

uct of their c.f.s, to obtain the d.f. of Sn, it is usually easier
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to �nd the c.f. of their sum and to apply the Lévy inversion

formula than to �nd the convolution of their d.f.s.

Another very important property of c.f.s comes from

the continuity theorem (seeChowandTeicher  or Feller

): r.v.s Xn, n ≥ , with corresponding c.f.s ϕn, n ≥ ,

converge in law to a r.v. X with c.f. ϕ if and only if c.f.s ϕn,

n ≥ , converge to ϕ pointwise. For example, this property

makes proving 7central limit theorems easier if not only
possible.

C.f.s have been important tools in developing theo-

ries of in�nite divisible and particularly stable distributions

(e.g., see Feller ; Chow and Teicher ).
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Chebyshev’s Inequality

Gerold Alsmeyer

Professor

Institut für Mathematische Statistik, Münster, Germany

Chebyshev’s inequality is one of the most common inequal-

ities used in probability theory to bound the tail probabil-

ities of a random variable X having �nite variance σ  =

VarX. It states that

P(∣X − µ∣ ≥ t) ≤
σ 

t
for all t > , ()

where µ = EX denotes the mean of X. Of course, the
given bound is of use only if t is bigger than the standard

deviation σ . Instead of proving () we will give a proof of

the more generalMarkov’s inequality which states that for

any nondecreasing function g : [,∞) → [,∞) and any

nonnegative random variable Y

P(Y ≥ t) ≤
E g(Y)
g(t)

for all t > . ()

Indeed, choosing Y = ∣X − µ∣ and g(x) = x gives ().�e

proof of Markov’s inequality is very easy: For any t > ,

P(Y ≥ t) = ∫ {Y≥t}dP ≤ ∫
{Y≥t}

g(Y)

g(t)
dP ≤

E g(X)
g(t)

.

Plainly, () provides us with the same bound σ t− for the

one-sided tail probability P(X − µ > t), but in this case

an improvement is obtained by the following considera-

tion: For any c ≥ , we infer fromMarkov’s inequality with

g(x) = x

P(X − µ ≥ t) = P(X − µ + c ≥ t + c) ≤
E(X − µ + c)

(t + c)

=
σ  + c

(t + c)
.

�e right-hand side becomes minimal at c = σ /t giving

the one-sided tail bound

P(X − µ > t) ≤
σ 

σ  + t
for all t > , ()

sometimes called Cantelli’s inequality.

Although Chebyshev’s inequality may produce only a

rather crude bound its advantage lies in the fact that it

applies to any random variable with �nite variance. More-

over, within the class of all such random variables the

bound is indeed tight because, if X has a symmetric dis-

tribution on {−a, , a} with P(X = ±a) = /(a) and

P(X = ) =  − /a for some a > , then µ = , σ  = 

and

P(∣X∣ ≥ a) = P(∣X∣ = a) =


a
,

which means that equality holds in () for t = a.

On the other hand, tighter bounds can be obtained

when imposing additional conditions on the consid-

ered distributions. On such example is the following

Vysočanskĭı-Petunı̄n inequality for random variables X

with an unimodal distribution:

P(∣X − µ∣ ≥ t) ≤
σ 

t
for all t >

√
/ σ , ()

�is improves () by a factor / for su�ciently large t.

One of the most common applications of Chebyshev’s

inequality is the weak law of large numbers (WLLN). Sup-

pose we are given a sequence (Sn)n≥ of real-valued ran-

dom variables with independent incrementsX,X, ... such

that µn := EXn and σ n := VarXn are �nite for all n ≥ .

De�ning

mn := E Sn =
n

∑
k=
µk and s


n := VarSn =

n

∑
k=

σ

k
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and assumingMarkov’s condition

lim
n→∞

sn

n
=  ()

we infer by making use of () that, for any є > ,

P(∣
Sn −mn

n
∣ ≥ є) ≤

sn

єn
→  as n→∞

and therefore

Sn −mn

n
→  in probability. (WLLN)

�is result applies particularly to the case of i.i.d. X,X, ...

�en mn = nµ and s

n = nσ  where µ := EX and σ  :=

VarX. In this case, Chebyshev’s inequality further gives,

for all є, β > , that

∑
n≥

P(∣
Sn − nµ

n
∣ ≥ є log

β
n) ≤ ∑

n≥

σ 

єn logβ n
< ∞

and thus, by invoking the Borel-Cantelli lemma (see

7Borel–Cantelli Lemma and Its Generalizations),

Sn − nµ

n logβ n
→  a.s. for all β >  ()

�is is not quite the strong law of large numbers

(β = ) but gets close to it. In fact, in order for this to

derive, a stronger variant of Chebyshev’s inequality, called

Kolmogorov’s inequality,may be employedwhich states that

P(max
≤k≤n

∣Sk −mk∣ ≥ t) ≤
sn

t
for all t > 

under the same independence assumptions stated above

for the WLLN. Notice the similarity to Chebyshev’s

inequality in that only Sn − mn has been replaced with

max≤k≤n(Sk −mk) while retaining the bound.

Let us �nally note that, if X has mean µ, median m

and �nite variance σ , then the one-sided version () of

Chebyshev’s inequality shows that

P(X − µ ≥ σ) ≤



and P(X − µ ≤ −σ) ≤




,

in otherwords, themedian ofX is alwayswith one standard

deviation of it mean.

Bibliographical notes: () dates back to Chebyshev’s

original work (Chebyshev ), but is nowadays found in

any standard textbook on probability theory, like (Feller

).�e latter contains also a proof of the one-sided ver-

sion () which di�ers from the one given here. () for uni-

modal distributions is taken fromVysočanskĭı and Petunı̆n

(), see also Sellke and Sellke (). For multivariate

extensions of Chebyshev’s inequality see Olkin and Pratt

() and Monhor ().
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Chemometrics

Rolf Sundberg

Professor of Mathematical Statistics
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�e role of statistics in chemistry is over a century old,

going back to the Guinness brewery chemist and exper-

imenter Gosset, more well-known under the pseudonym

“Student.” For his applications, he was in need of small-

sample statistical methods. Until the s, chemistry

methods and instruments were typically univariate, but in

that decade analytical chemistry and some other branches

of chemistry had to start handling data of multivariate

character. For example, instead ofmeasuring light intensity

at only a single selected wavelength, instruments became

available that could measure intensities at several di�erent

wavelengths at the same time.�e instrumental capacity

rapidly increased, and the multivariate spectral dimen-

sion soon exceeded the number of chemical samples anal-

ysed (the “n < p” problem). In parallel, other chemists

worked with Quantitative Structure–Activity Relation-

ships (QSAR), where they tried to explain and predict

biological activity or similar properties of a molecule from



Chemometrics C 

C

a large number of structural physical-chemical character-

istics of the molecule, but having an empirical data set of

only a moderate number of di�erent molecules. Gener-

ally, as soon as multivariate data are of high dimension, we

must expect near collinearities among the variables, and

when n < p, there are necessarily exact collinearities.�ese

were some of the problems faced, long before statisticians

got used to n < p in genomics, proteomics etc.�is was

the birth of the �eld of chemometrics, a name coined by

SvanteWold to characterize these research and application

activities.

A standard de�nition of Chemometrics would be of

type “�e development and use of mathematical and

statistical methods for applications in chemistry,” with

more weight on statistical than mathematical. Another

characterization, formulated by Wold, is that the aim of

chemometrics is to provide methods for

● How to get chemically relevant information out of

measured chemical data

● How to get it into data

● How to represent and display this information

and that in order to achieve this, chemometrics is heav-

ily dependent on statistics, mathematics and computer

science. �e �rst task is much concerned with analysis

of dependencies and relationships (regression, calibration,

discrimination, etc.) within a multivariate framework,

because complex chemical systems are by necessity mul-

tidimensional. �e second task is largely represented by

experimental design, both classical and newer, where

chemometrics has contributed the idea of design in latent

factors (principal variates). For representation of high-

dimensional data, projection on a low-dimensional latent

variable space is the principal tool.Using diagrams in latent

factors fromPCAor other dimension-reducingmethods is

also a way of displaying the information found.

Another type of de�nition, o�en quoted, is that

“Chemometrics is what chemometricians do.”�is is not

only to laugh at. A vital part of chemometrics is con-

nected with chemistry, but the methods developed might

be and are applied in quite di�erent �elds, where the

data analysis problems are similar, such as metabolomics,

food science, sensometrics, and image analysis.�is could

motivate to distinguish chemometrics and chemomet-

ric methods, where the latter could as well be described

as statistical methods originally inspired by problems in

chemistry.

A statistician’s look at the contents of Journal of Chemo-

metrics for the period – ( papers) showed

that regression and calibration dominated, covering a

third of the contents. Much of this was on regularized

regression methods, such as PCR (Principal Components

Regression) and PLSR (Partial Least Squares Regression).

Other statistical areas represented were multiway methods

(where each observation is a matrix or an even higher-

dimensional array, see Smilde et al. ), classi�cation

(discrimination and clustering), multivariate statistical

process control, and occasionally other areas, for example

experimental design, wavelets, genetic algorithms.

A di�erence between chemometrics and biomet-

rics (7biostatistics) is that chemometricians are mostly
chemists by principal education, with more or less of

additional statistical education, whereas biometricians are

typically statisticians by education. �is has had several

consequences for chemometrics. Statistical methods are

sometimes reinvented. Metods are sometimes proposed

without a theoretical underpinning.�e popular method

of partial least squares (see 7Partial Least Squares Regres-
sion Versus Other Methods) is a good such example,

nowadays relatively well understood, but proposed and

advocated as a computational algorithm, that was widely

regarded with suspicion among statisticians.�us there is

o�en a role for theoretical statistical studies to achieve a

deeper understanding of the chemometric methods and

their properties, not least to reveal how various suggested

methods relate to each others.
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Two journals are devoted to chemometrics, started in /
Journal of Chemometrics. John Wiley & Sons.

Chemometrics and Intelligent Laboratory Systems. Elsevier.

There are several introductions to chemometrics written for

chemists, not listed here. Not all of them are satisfactory in their

more statistical parts.

Chernoff Bound

Herman Chernoff

Professor Emeritus

Harvard University, Cambridge, MA, USA

�e Cherno� Bound, due toHerman Rubin, states that ifX

is the average of n independent observations on a random

variable X with mean µ < a then, for all t,

P(X > a) ≤ [E(e
t(X−a)

)]
n
.

�e proof which follows shortly is a simple application of

theMarkov inequality that states that for a positive random

variable Y ,P(Y ≥ b) ≤ E(Y)/b, for b > .�e Cherno�

bound was a step in the early development of the impor-

tant �eld “Large Deviation�eory.” It became prominent

among computer scientists because of its usefulness in

Information�eory.

�e Markov inequality is derived from the fact that for

b > ,

E(Y) = ∫ ydF(Y) ≥ ∫
∞

b
ydF(y) ≥ bP(Y ≥ b)

where F is the cumulative distribution of Y .

We observe that

E(e
nt(X−a)

) = [E(e
t(X−a)

)]
n

and hence P(ent(X−a) ≥ ) is less than or equal to the

bound. �is implies the Cherno� bound for t > . For

t ≤  the inequality is automatically satis�ed because the

bound is at least one.�at follows form the fact that the

7moment generating function M(t) = E(etZ) is convex

withM() = ,M′
() = E(Z) and E(X − a) < .

�e prominence of the bound is due to a natural incli-

nation to extend beyond its proper range of applicability.

�e Central Limit �eorem (see 7Central Limit �eo-
rems), for which an informal statement is that X is approx-

imately normally distributed with mean µ = E(X) and

variance σ /n where σ is the standard deviation of X. For

large deviations (see7Large Deviations and Applications),

or many standard deviations from the mean, the theorem

implies that the probability of exceeding awould approach

zero, but a naive interpretation would state that this prob-

ability would be approximately exp(−na/)(πna)−/

and could be seriously wrong.

In , for a special problem of testing a simple

hypothesis versus a simple alternative using a statistic of

the form X where X could take on a few integer values,

I realized that the normal approximation was inappropri-

ate. I derived (Cherno� ), for a > E(X),

n
−
logP(X > a)→ inf

t
E(e

t(X−a)
)

which was, as far as I know, the �rst application of Large

Deviation�eory to Statistical Inference.�is result was

used to de�ne a measure of information useful for exper-

imental design and to show that the Kullback-Leibler

information numbers (Kullback and Leibler ; Cher-

no� ) measure the exponential rate at which one

error probability approaches zero when the other is held

constant.

At the time I was informed of Cramér’s () ear-

lier elegant derivation ofmore encompassing results, using

exponentially tilted distributions. Cramér dealt with devi-

ations which were not limited to those of order square

root of n standard deviations, but required a condition that

excluded the case which I needed, where the range of X

was amultiple of the integers. Blackwell andHodges ()

later dealt with that case.

One of my colleagues, Herman Rubin, claimed that

he could derive my results more simply, and when I chal-

lenged him, he produced the upper bound that I included

in my manuscript. At the time the proof seemed so trivial,

that I did not mention that it was his. I made two seri-

ous errors. First, the inequality is stronger than the upper

limit implied bymy result, and therefore deserves mention

of authorship even though the derivation is simple. Sec-

ond, because I was primarily interested in the exponential

rate at which the probability approached zero, it did not

occur tome that this trivially derived bound could become

prominent.

About the Author
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Chernoff Faces
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�e graphical representation of two dimensional vari-

ables is rather straightforward. �ree dimensional vari-

ables presents more of a challenge, but dealing with higher

dimensions is much more di�cult. Two methods using

pro�les and stars su�ers froma confusion ofwhich variable

is represented when the dimensionality is greater than six.

�e method called “Cherno� Faces” (Cherno� )

involves a computer program which draws a caricature

of a face when given  numbers between  and .�ese

numbers correspond to features of the face.�us one may

represent the length of the nose, another curvature of the

mouth, and a third the size of the eyes. If we have  dimen-

sional data, we can adjoin  constants to get points in 

dimensional space, each represented by a face. As the point

moves in  dimensional space the face changes.

�e method was developed in response to a problem

in cluster analysis (see 7Cluster Analysis: An Introduc-
tion).�ere are many methods proposed to do clustering.

It seems that an appropriate method should depend on

the nature of the data, which is di�cult to comprehend

without visualization. �e grouping of faces which look

alike serves as a preliminary method of clustering and of

recognizing which features are important in the clustering.

In the two original applications of the method, the sci-

entists involved claimed that the implementationwas lucky

because the features which were most important were rep-

resented respectively by the size of the eyes and the shape

of the face, both of which are prominent features. I claimed

that it did not matter which features were selected for the

various variables and challenged the scientists to select an

alternative choice of features for the variables to degrade

the e�ect of the faces. �eir candidate choices had little

degradation e�ect.

To test the conjecture that the choice of variables would

have no e�ect, Rizvi and I carried out an experiment

(Cherno� and Rizvi ).Of course it is clear that the con-

jecture cannot be absolutely sound, since the position of

the pupils in the eyes cannot be detected if the eyes are

small and other features interact similarly. However we set

up an experiment where subjects were supposed to cluster

 faces into two groups of approximately  each.�e faces

were generated from two six dimensional 7multivariate
normal distributions with means δ units apart, in Maha-

lanobis distance, and identity covariance matrix. �ese

data were then subjected to a linear transformation to

an -dimensional space, and  feature selections were

made at random. �e subjects were given three cluster-

ing problem. For the �rst δ was so large that there was

no problem recognizing the clusters.�at was a practice

problem to train the students in the experiment. For the

other two problems two choices of δ were made to estab-

lish greater di�culty in separating the two distributions.

�e result of this experiment was that when the error rate

in clustering varies from % to %, the typical random

permutations could change the error rate by a proportion

which decreases from % to %.

Originally, Faces were designed to serve to understand

which variables were important and which interacted with

each other. Once such relations are understood, analytic

methods could be used to probe further. In many appli-

cations, Faces could also be used to comprehend data

where the roles of the various factors were well under-

stood. For example, in business applications, a smiling face

could indicate that some aspect of the business was doing

well. With training of the users, such applications could be

useful in providing a quick and easy comprehension of a

moderately complicated system. For example, one could

use a face to represent the many meters an airplane pilot

watches, so that he could be alerted when the face begins

to look strange.�e method of stars could also serve such

a function.

Jacob () used faces to represent �ve particular

scales of the Minnesota Multiphasic Personality Inventory

(MMPI).�e scales representedHypochondriasis,Depres-

sion, Paranoia, Schizophrenia and Hypomania. Realizing

that training a psychologist to recognize a smiling face

as belonging to a depressed patient would be di�cult, he

developed an innovative approach to selecting features for

the �ve scales. He presented a random selection of faces
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to some psychologists and asked them to rate these faces

on theMMPI scales.�en he used regression techniques to

decide how the numerical values of an MMPI scale should

be translated into features of the face, so that the face pre-

sented to a psychologist would resemble that of a person

with those scaled values.�is would facilitate the process

of training psychologists to interpret the faces.

�e method of Faces handles many dimensions well.

For more than  variables, one could use a pair of faces. It

does not deal so well with a large number of faces unless

we have a time series in which they appear in succes-

sion. In that case they can be used to detect changes in

characteristics of important complicated systems.

It seems that face recognition among humans is han-

dled by a di�erent part of the brain than that handling

other geometrical data and humans are sensitive to very

small changes in faces. Also, it seems that cartoons and

caricatures of faces are better remembered than realistic

representations.

Before the computer revolution, graphical representa-

tions, such as nomograms, could be used to substitute for

accurate calculations.�e Faces are unlikely to be useful

for calculation purposes.
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Chernoff-Savage Theorem
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Hodges and Lehmann () conjectured in  that the

nonparametric competitor to the t-test, the Fisher-Yates-

Terry-Hoe�ding or c test (Terry ), was as e�cient as

the t-test for normal alternatives and more e�cient for

nonnormal alternatives.

To be more precise, we assume that we have two large

samples, of sizesm and n with N = m+ n, from two distri-

butions which are the same except for a translation param-

eter which di�ers by an amount δ. To test the hypothesis

that δ =  against one sided alternatives, we use a test

statistic of the form

TN = m
−

N

∑
i=
ENizNi

where zNi is one or zero depending on whether the ith

smallest of the N observations is from the �rst or the sec-

ond sample. For example the Wilcoxon test is of the above

form with ENi = i/N. It was more convenient to represent

the test in the form

TN = ∫
∞

−∞
JN[HN(x)]dFm(x).

where Fm and Gn are the two sample cdf ’s, λN = m/N and

HN = λNFm + ( − λN)Gn.�ese two forms are equivalent

when ENi = JN(i/N).

�e proof of the conjecture required two arguments.

One was the 7asymptotic normality of T when δ /= .

�e Cherno�-Savage theorem (Cherno� and Savage )

establishes the asymptotic normality, under appropriate

regularity conditions on JN , satis�ed by c, using an argu-

ment where Fm and Gn are approximated by continu-

ous time 7Gaussian Processes, and the errors due to the
approximation are shown to be relatively small.

�e second argument required a variational result

using the Pitman measure of local e�cacy of the test of

δ = , which may be calculated as a function of the under-

lying distribution. For distributions with variance , the

e�ciency of the test relative to the t-test is minimized with

a value of  for the normal distribution. It follows that the

c test is as e�cient as the t-test for normal translation

alternatives and more e�cient for nonnormal translation

alternatives.
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He moved to M.I.T. in , where he founded the Statis-

tics Center. Since  he has been in the Department

of Statistics at Harvard. He retired from Harvard in .

Professor Cherno� was President of the Institute of Math-

ematical Statistics (–) and is an Elected mem-

ber of both the American Academy of Arts and Sciences

and the National Academy of Sciences. He has been hon-

ored for his contributions in many ways. He is a recipi-

ent of the Townsend Harris Medal and Samuel S. Wilks

Medal “for outstanding research in large sample theory

and sequential analysis, for extensive service to scholarly

societies and on government panels, for e�ectiveness and

popularity as a teacher, and for his continuing impact on

the theory of statistics and its applications in diverse dis-

ciplines” (). He was named Statistician of the Year,

Boston Chapter of the ASA (). He holds four hon-

orary doctorates. Professor Cherno� is the co-author, with

LincolnMoses, of a classic text, now a Dover Reprint, enti-

tled Elementary Decision�eory. He is also the author of

the SIAM monograph  entitled Sequential Analysis and

Optimal Design. �e book Recent Advances in Statistics

(MH Rizvi, J Rustagi and D Siegmund (Eds.), Academic

Press, New York, ) published in honor of his th

birthday in  contained papers in the �elds where his

in�uence as a researcher and teacher has been strong:

design and sequential analysis, optimization and con-

trol, nonparametrics, large sample theory and statistical

graphics.
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�e chi-square distribution is one of the most important

continuous probability distributions with many uses in

statistical theory and inference. According to O. Sheynin

(), Ernst Karl Abbe obtained it in ,Maxwell formu-

lated it for three degrees of freedom in , and Boltzman

discovered the general expression in . Lancaster ()

ascertained that Bienaymé derived it as early as in .

However, their derivations “had no impact on the progress

of the mainstream statistics” (R. L. Plackett , p. )
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since chi-square is not only a distribution, but also a statis-

tic and a test procedure, all ofwhich arrived simultaneously

in the seminal paper written by Karl Pearson in .

Let n ≥  be a positive integer. We say that a ran-

dom variable (r.v.) has χ (chi-square, χ is pronounced ki

as in kind) distribution with n degrees of freedom (d.f.) if

it is absolutely continuous with respect to the Lebesgue

measure with density:

f (x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

 if x ≤ 

Γ ( n

)
−

−n/xn/−e−x/ if x > 

where Γ denotes the Gamma function.

Figure  shows some of the densities.

Hence, the χ-distribution (with n d.f.) is equal to the

Γ - distribution with the parameters (n/, ), that is, with

the mean and variance equal to n and n respectively.

�e χ-distribution is closely connected with the nor-

mal distribution. It turns out that the sample variance S of

a random sample from a normally distributed population

has, up to the constant, the χ – sample distribution. More

precisely, if X, . . . ,Xn are independent and identically

distributed normal r.v.s with the population variance σ ,

then

n − 

σ 
⋅ S

=


σ 
((X − X)


+ . . . + (Xn − X)


)

=


σ 
(X


 + X


 + ⋅ ⋅ ⋅ + X


n − nX


)

is a χ-distributed r.v. with n −  d.f. (see e.g., Shorack

). �is is a consequence of a more general property

of the normality (Feller ). For example, let X be an
n-dimensional standard normal vector, that is, a random

vector X = (X, . . . ,Xn) such that its components X, . . .,

Xn are independent and normally distributed with mean

and variance equal to  and  respectively.�en the square

of the Euclidean norm of X, ∣X∣ = X + . . . + X

n, is

χ-distributed with n d.f. If means of the components of

X are non-zero, then ∣X∣ has non-central χ-distribution

with n d.f. and non-centrality parameter equal to the square

of the mean of X. In this generality, χ-distribution is

the central χ-distribution, that is, a χ-distribution with

non-centrality parameter equal to .

In statistics, many test statistics have a χ or asymp-

totic χ-distribution. For example, goodness of �t χ-tests

are based on the so-called Pearson’s χ-statistics or general

χ-statistics that have, under appropriate null-hypothesis,

asymptotic χ-distributions; �e Friedman test statistic

and likelihood ratio tests are also based on asymptotically

χ-distributed test statistic (see Ferguson ). Generally,

appropriately normalized quadratic forms of normal (and

asymptotic normal) statistics have χ (and asymptotic χ)

distributions.

Non-central χ-distributions are used for calculating

the power function of tests based on quadratic forms of

normal or asymptotic normal statistics.
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�e famous chi-squared goodness-of-�t test was discov-

ered by Karl Pearson in . If the partition of a sample

space is such that observations are grouped over r disjoined
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intervals ∆i, and denoting νi observed frequencies and

npi(θ) expected that correspond to amultinomial scheme,

the Pearson’s sum is written

χ

= X


n(θ) =

r

∑
i=

(νi − npi(θ))

npi(θ)
= VT(θ)V(θ), ()

where V(θ) is a vector with components vi(θ)=(νi −

npi(θ))(npi(θ))−/, i=, . . . , r. If the number of

observations n → ∞, the statistic () for a simple null

hypothesis, specifying the true value of θ, will follow

chi-squared probability distribution with r −  degrees of

freedom.

Until , Pearson believed that the limit distribution

of his chi-squared statistic would be the same if unknown

parameters of the null hypothesis were replaced by esti-

mates based on a sample (Stigler (), p. ). Stigler

noted that this major error of Pearson “has le� a posi-

tive and lasting impression upon the statistical world.” It

would be better to rephrase this sentence as follows: “has

le� a positive (because it inspired the further development

of the theory of chi-squared test) and lasting ‘negative’

impression”. Fisher () clearly showed that the number

of degrees of freedom of the Pearson’s test must be reduced

by the number of parameters estimated by a sample.�e

Fisher’s result is true if and only if parameters are estimated

by grouped data (minimizing Pearson’s chi-squared sum,

usingmultinomial maximum likelihood estimates (MLEs)

for grouped data, or by any other asymptotically equivalent

procedure).

Nowadays, the Pearson’s test with unknown param-

eters replaced by grouped data estimates θ̂n is known

as Pearson-Fisher test Xn(θ̂n). Cherno� and Lehmann

() showed that replacing unknown parameters in ()

by their maximum likelihood estimates based on non-

grouped data would dramatically change the limit distri-

bution. In this case, it will follow a distribution that in

general depends on unknown parameters and, hence, can-

not be used for testing. What is di�cult to understand for

those who apply chi-squared tests is that an estimate is a

realization of a random variable with its own probability

distribution and that a particular estimate can be too far

from the actual unknown value of a parameter or param-

eters. �is misunderstanding is rather typical for those

who apply both parametric and non-parametric tests for

compound hypotheses.

Roy () extended Cherno� and Lehmann’s result

to the case of random grouping intervals. Molinari ()

derived the limit distribution of Pearson’s sum if moment

type estimates (MMEs) based on raw data are used. Like

the case of MLEs it depends on unknown parameters.

�us, a problem of deriving a test statistic, where limit-

ing distribution will not depend on parameters, is aroused.

Dahiya and Gurland () showed that for location and

scale families with properly chosen random cells, the limit

distribution of Pearson’s summay not depend on unknown

parameters but on the null hypothesis. Being distribution-

free, such tests can be used in practice, but for each spe-

ci�c null distribution one has to evaluate corresponding

critical values. So, two ways of constructing distribution-

free Pearson’s type tests are to use proper estimates of

unknown parameters (e.g., based on grouped data), or to

use specially constructed grouping intervals. Another pos-

sible way is to modify the Pearson’s sum such that its limit

probability distribution would not depend on unknowns.

Nikulin (), using a very general theoretical approach

(nowadays known as Wald’s method (see Moore )),

solved the problem in full for any continuous probability

distribution if one will use random cells based on pre-

determined probabilities to fall into a cell with random

boundaries depending on e�cient estimates (MLEs or

best asymptotically normal (BAN) estimates) of unknown

parameters. Rao andRobson (), using amuch less gen-

eral heuristic approach, con�rmed the result of Nikulin

for a particular case of exponential family of distributions.

Formally their result fully coincides with that of Nikulin

()

Y

n(θ̂n) = X


n(θ̂n) +VT(θ̂n)B(J − Jg)

−BTV(θ̂n), ()

where J and Jg = BTB are Fisher information matrices
for non-grouped and grouped data correspondingly, and

B is a matrix with elements bij = √
pi(θ)

∂pi(θ)
∂θ j
, i = , . . . , r,

j = , . . . , s.�e statistic () can be presented also as (Moore

and Spruill ())

Y

n(θ̂n) = VT(θ̂n)(I − BJ−BT)−V(θ̂n). ()

�e statistic () or (), suggested �rst by Nikulin (a)

for testing the normality, will be referred to subsequently as

Nikulin-Rao-Robson (NRR) test. Nikulin () assumed

that only asymptotically e�cient estimates of unknown

parameters (e.g., MLEs based on non-grouped data or

BAN estimates) are used for testing. Singh (), Spruill

(), and Lemeshko et al. () showed that the NRR

test is asymptotically optimal in some sense.�is optimal-

ity is not surprising because the second termof () depends

on the di�erence between Fisher’s matrices for grouped

and non-grouped data that possibly takes the informa-

tion lost in full (Voinov ()). Dzhaparidze and Nikulin

() generalized Fisher’s idea to improve any
√
n- con-

sistent estimator to make it asymptotically as e�cient as
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MLE.�is gives the followingway of chi-squared testmod-

i�cation: improve an estimator �rst and then use the NRR

statistic. Since this way is not simple computationally, it

is worth considering other modi�cations. At this point it

is important to note that the NRR test is very suitable for

describing censored data (Habib and�omas ()).

Dzhaparidze and Nikulin () proposed a modi�ca-

tion of the standard Pearson’s statistic valid for any square

root of n consistent estimate θ̃n of an unknown parame-

ter Un(θ̃n) = VT(θ̃n)B(BTB)−BTV(θ̃n). �is test (the

DN test), like the asymptotically equivalent Pearson-Fisher

one, is not powerful for equiprobable cells (McCulloch

(), Voinov et al. ()) but it can be rather power-

ful if an alternative hypothesis is speci�ed and one uses

the Neyman-Pearson classes for data grouping. Having

generalized the idea of Dzhaparidze and Nikulin (),

Singh () suggested a generalization of the RRN test ()

valid for any
√
n - consistent estimator θ̃n of an unknown

parameter Qs (θ̃n) = VT∗(θ̃n)(I − BJ−BT)− V∗(θ̃n),

where V∗(θ̃n) = V(θ̃n) − BJ−W(θ̃n), and W(θ̃n) =

√
n

n

∑
i=

∂ ln f (Xi ,θ)
∂θ

∣θ=θ̃n
.

A uni�ed large-sample theory of general chi-squared

statistics for tests of �t was developed by Moore and

Spruill (). Moore (), based uponWald’s approach,

formulated a general recipe for constructing modi�ed

chi-squared tests for any square root of n consistent esti-

mator that actually is a generalization of Nikulin’s idea. He

was �rst to show that a resulting Wald’s quadratic form

does not depend on the way of limit covariance matrix of

generalized frequencies inverting.

Hsuan and Robson () showed that a modi�ed

statistic will not be the same as () in the case of moment

type estimates (MMEs) of unknown parameters. �ey

succeeded in deriving the limit covariance matrix for

generalized frequencies and proved the theorem that a

corresponding Wald’s quadratic form will follow in the

limit the chi-squared distribution. Hsuan and Robson

provided the test statistic explicitly for the exponential

family of distributions, when MMEs coincide with MLEs,

thus con�rming the already known result ofNikulin ().

Hsuan and Robson have not derived the general modi�ed

test based on MMEs θ̄n explicitly. �is was done later

by Mirvaliev (). Taking into account the input of

Hsuan and Robson, andMirvaliev, this test will be referred

to subsequently as the Hsuan-Robson-Mirvaliev (HRM)

statistic

Y

n(θ̄n) = X


n(θ̄n) + R


n(θ̄n) −Q


n(θ̄n). ()

Explicit expressions for quadratic forms Rn(θ̄n) and

Qn(θ̄n) are given, e.g., in Voinov et al. (). �e

approach, based on Wald’s transformation, was also

used by Bol’shev and Mirvaliev (), Nikulin and

Voinov (), Voinov and Nikulin (), and by

Chichagov () forminimumvariance unbiased estima-

tors (MVUEs).

It is important to mention two types of decomposi-

tions of classical and modi�ed chi-squared tests.�e �rst

way decomposes a modi�ed test on a sum of the classi-

cal Pearson’s test and a correcting term that makes the

test chi-squared distributed being distribution free in the

limit (Nikulin ()). A much more important decompo-

sition was �rst suggested by McCulloch () (see also

Mirvaliev ()). �is is a decomposition of a test on

a sum of the DN statistic and an additional quadratic

form being asymptotically independent on the DN statis-

tic. Denoting W
n(θ) = VT(θ)B(BTB)−BTV(θ) and

Pn(θ) = VT(θ)B(J − Jg)
−BTV(θ) the decomposition of

the NRR statistic () in case of MLEs will be Yn(θ̂n) =

Un(θ̂n)+(W
n(θ̂) + Pn(θ̂n)) , whereU


n(θ̂n) is asymptot-

ically independent on (W
n(θ̂) + Pn(θ̂n)), and onW


n(θ̂).

�e decomposition of the HRM statistic () is Yn(θ̄n) =

Un(θ̄n) + (W
n(θ̄) + Rn(θ̄n) −Q


n(θ̄n)) , where U


n(θ̄n)

is asymptotically independent on (W
n(θ̄) + Rn(θ̄n) −Q


n

(θ̄n)), but is asymptotically correlated withW

n(θ̄).

�e decomposition of a modi�ed chi-squared test on a

sum of the DN statistic and an additional term is of impor-

tance because the DN test based on non-grouped data

is asymptotically equivalent to the Pearson-Fisher’s (PF)

statistic for grouped data.Hence, that additional term takes

into account the Fisher’s information lost due to group-

ing. Later it was shown (Voinov et al. ()) that the DN

part, like the PF test, is (for equiprobable cells, for exam-

ple) insensitive to some alternative hypothesis in case of

equiprobable cells (�xed or random) and would be sensi-

tive to it for, e.g., non-equiprobable two Neyman-Pearson

classes. For equiprobable cells this suggests using the dif-

ference between themodi�ed statistic and theDNpart that

will be the most powerful statistic in case of equiprobable

cells (McCulloch (), Voinov et al. ()). It became

clear that the way of sample space partitioning essentially

in�uences power of a test.

Ronald Fisher () was the �rst to note that “in some

cases it is possible to separate the contributions to χ made

by the individual degrees of freedom, and so to test the

separate components of a discrepancy.” Cochran ()

wrote “that the usual χ tests are o�en insensitive, and

do not indicate signi�cant results when the null hypothe-

sis is actually false” and suggested to “use a single degree

of freedom, or a group of degrees of freedom, from the

total χ,” to obtainmore powerful and appropriate test.�e
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problem of implementing the idea of Fisher and Cochran

was that decompositions of Pearson’s sum and modi�ed

test statistics were not known at that time. Anderson ()

(see also Boero et al. ()) was possibly the �rst who

to decompose the Pearson’s χ for a simple null hypoth-

esis into a sum of independent χ random variables in

case of equiprobable grouping cells. A parametric decom-

position of Pearson’s χ in case of non-equiprobable cells

based on ideas of Mirvaliev () was obtained by Voinov

et al. () in an explicit form. At the same time Voinov

et al. () presented parametric decompositions of NRR

and HRM statistics. Voinov () and Voinov and Pya

() introduced vector-valued goodness-of-�t tests that,

in some cases, can provide a gain in power for speci�ed

alternatives.
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�e term “chi-square” refers both to a statistical distribu-

tion and to a hypothesis testing procedure that produces

a statistic that is approximately distributed as the 7chi-
square distribution. In this entry the term is used in its

second sense.

Pearson’s Chi-Square
�e original chi-square test, o�en known as Pearson’s chi-

square, dates from papers by Karl Pearson in the earlier

s.�e test serves both as a “goodness-of-�t” test, where

the data are categorized along one dimension, and as a test

for the more common “contingency table,” in which cate-

gorization is across two or more dimensions. Voinov and

Nikulin, this volume, discuss the controversy over the cor-

rect form for the goodness of �t test.�is entry will focus

on the lack of agreement about tests on contingency tables.

In  the Vermont State legislature approved a bill

authorizing civil unions.�e vote can be broken down by

gender to produce the following table, with the expected

frequencies given in parentheses.�e expected frequencies

are computed as Ri ×Cj/N, where Ri and Cj represent row

and column marginal totals and N is the grand total.

Vote

Yes No Total

Women


(.)


(.)


Men


(.)


(.)


Total   

�e standard Pearson chi-square statistic is de�ned as

χ

=∑∑

(Oij − Eij)


Eij
=

( − .)


.
+⋯

+
( − .)



.
= .

where i and j index the rows and columns of the table. (For

the goodness-of-�t test we simply drop the subscript j.)

�e resulting test statistic from the formula on the le� is

approximately distributed as χ on (r − )(c − ) degrees

of freedom.�e probability of χ ≥ . on  df = .,

so we can reject the null hypothesis that voting behavior

is independent of gender. (Pearson originallymisidenti�ed

the degrees of freedom, Fisher corrected him, though Pear-

son long refused to recognize the error, and Pearson and

Fisher were enemies for the rest of their lives.)

Likelihood Ratio Chi-Square
Pearson’s chi-square statistic is not the only chi-square test

that we have.�e likelihood ratio chi-square builds on the

likelihood of the data under the null hypothesis relative to

the maximum likelihood. It is de�ned as

G

= ∑Oij log(

Oij

Eij
) = [ ln(



.
) +  ln(



.
)

+  ln(


.
) +  ln(



.
)]

= .
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�is result is slightly larger than the Pearson chi-square

of .. One advantage of the likelihood ratio chi-square

is that G for a large dimensional table can be neatly

decomposed into smaller components. �is cannot be

done exactly with Pearson’s chi-square, and G is the usual

statistic for log-linear analyses. As sample sizes increase the

two chi-square statistics converge.

Small Expected Frequencies
Probably no one would object to the use of the Pear-

son or likelihood ratio chi-square tests for our example.

However, the chi-square statistic is only approximated

by the chi-square distribution, and that approximation

worsens with small expected frequencies. When we have

very small expected frequencies, the possible values of the

chi-square statistic are quite discrete. For example, for a

table with only four observations in each row and col-

umn, the only possible values of chi-square are , , and

. It should be clear that a continuous chi-square dis-

tribution is not a good match for a discrete distribution

having only three values.�e general rule is that the small-

est expected frequency should be at least �ve. However

Cochran (), who is generally considered the source of

this rule, acknowledged that the number “” seems to be

chosen arbitrarily.

Yates proposed a correction to the formula for chi-

square to bring it more in line with the true probability.

However, givenmodern computing alternatives, Yates’ cor-

rection is much less necessary and should be replaced by

more exact methods.

For situations in which we do not satisfy Cochran’s rule

about small expected frequencies, the obvious question

concerns what we should do instead.�is is an issue over

which there has been considerable debate. One of the most

common alternatives is Fisher’s Exact Test (see below), but

even that is controversial for many designs.

Alternative Research Designs
�ere are at least four di�erent research designs that will

lead to data forming a contingency table. One design

assumes that all marginal totals are �xed. Fisher’s famous

“tea-tasting” study had four cups of tea with milk added

�rst and fourwithmilk added second (row totals are �xed).

�e taster had to assign four cups to each guessed order

of pouring, �xing the column totals.�e underlying prob-

ability model is hypergeometric, and Fisher’s exact test

() is ideally suited to this design and gives an exact

probability.�is test is reported by most so�ware for  × 

tables, though it is not restricted to the  ×  case.

Alternatively we could �x only one set of marginals,

as in our earlier example. Every replication of that exper-

iment would include  women and  men, although

the vote totals could vary.�is design is exactly equivalent

to comparing the proportion of “yes” votes for men and

women, and it is based on the7binomial distribution.�e
square of a z-test on proportions would be exactly equal

to the resulting chi-square statistic. One alternative analy-

sis for this design would be to generate all possible tables

with those row marginals and compute the percentage of

obtained chi-square statistics that are as extreme as the

statistic obtained from the actual data. Alternatively, some

authorities recommend the use of a mid-p value, which

sums the probability of all tables less likely than the one we

obtained, plus half of the probability of the tablewe actually

obtained.

For a di�erent design, suppose that we had asked 

Vermont citizens to record their opinion on civil unions.

In this case neither the Gender nor Vote totals would be

�xed, only the total sample size. �e underlying proba-

bility model would be multinomial. Pearson’s chi-square

test would be appropriate, but a more exact test would be

obtained by taking all possible tables (or, more likely, a

very large number of randomly generated tables) with 

observations and calculating chi-square for each.Again the

probability value would be the proportion of tables with

more extreme outcomes than the actual table. And, again,

we could compute a mid-p probability instead.

Finally, suppose that we went into college classrooms

and asked the students to vote. In this case not even the

total sample size is �xed.�e underlying probabilitymodel

here is Poisson.

Computer scripts written in R are available for each

modelwith a �xed total sample size at http://www.uvm.edu

/
~
dhowell/StatPages/chi-square-alternatives.html

Summary
Based on a large number of studies of the analysis of con-

tingency tables, the current recommendation would be to

continue to use the standard Pearson chi-square test when-

ever the expected cell frequencies are su�ciently large.

�ere seems to be no problem de�ning large as “at least

.” With small expected frequencies 7Fisher’s Exact Test
seems to perform well regardless of the sampling plan,

but 7randomization tests adapted for the actual research
design, as described above, will give a somewhat more

exact solution. RecentlyCampbell () carried out a very

large sampling study on  ×  tables comparing di�er-

ent chi-square statistics under di�erent sample sizes and

di�erent underlying designs. He found that across all sam-

pling designs, a statistic suggested by Karl Pearson’s son

Egon Pearson worked best in most situations.�e statis-

tic is de�ned as χ
N

N −  . (For the justi�cation for that
adjustment see Campbell’s paper.) Campbell found that as
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long as the smallest expected frequency was at least one,

the adjusted chi-square held the Type I error rate at very

nearly α. When the smallest expected frequency fell below

, Fisher’s Exact Test did best.
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�e χ statistic was developed by Karl Pearson () as a

means to compare an obtained distribution of scores with

a theoretical distribution of scores. While it is sometimes

still employed as a univariate goodness of �t test, other

statistics, such as the 7Kolmogorov–Smirnov test and,
where the theoretical distribution is normal, the Shapiro–

Wilk test, are now more o�en used for that purpose.

�e chi-square statistic on n degrees of freedom is

de�ned as

χ

n =

n

∑
i=
z

i =∑

(Y − µ)

σ 
,

where zi is normally distributed with mean zero and stan-

dard deviation one (Winkler andHayes , pp. –).

If one were repeatedly to draw samples of one Y score from

a normally distributed population, transform that score

to a standard z score, and then square that z score, the

resulting distribution of squared z scores would be a χ

distribution on one degree of freedom. If one were repeat-

edly to draw samples of three scores, standardize, square,

and sum them, the resulting distribution would be χ on

three degrees of freedom. Because the χ statistic is so

closely related to the normal distribution, it is also closely

related to other statistics that are related to the normal

distribution, such as t and F.

One simple application of the χ statistic is to test the

null hypothesis that the variance of a population has a spec-

i�ed value (Winkler and Hayes , pp. –; Wuen-

sch ). From the de�nition of the sample variance,

s =
∑(Y −M)
N −  , where Y is a score,M is the sample mean,

and N is the sample size, the corrected sum of squares

∑(Y −M)

= (N − )s. Substituting this expression for

∑(Y − µ) in the de�ning formula yields χ =
(N − )s

σ 
.

To test the hypothesis that an observed sample came from

a population with a particular variance, one simply divides

the sample sum of squares, (N − )s, by the hypothesized

variance. �e resulting χ is evaluated on N −  degrees

of freedom, with a two-tailed p value for nondirectional

hypotheses and a one-tailed p for directional hypotheses.

One can also compute a con�dence interval for

the population variance (Winkler and Hayes , pp.

–; Wuensch ). For a ( − α)% con�dence

interval for the population variance, compute:

(N − )s

b
and

(N − )s

a

where a and b are the α/ and (− α/) fractiles of the chi

square distribution on (N − )df . It should be noted that

these procedures are not very robust to their assumption

that the population is normally distributed.

When one states that he or she has conducted a “chi-

square test,” that test is most o�en a “one-way chi-square

test” or a “two-way chi-square test” (Howell , pp.

–). �e one-way test is a univariate goodness of �t

test. For each of k groups one has an observed frequency

(O) and a theoretical frequency (E), the latter being

derived from the theoretical model being tested.�e test
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statistic is χ = ∑
(O − E)
E

on k− degrees of freedom.�e

appropriate p value is one-tailed, upper-tailed, for nondi-

rectional hypotheses. When k = , one should make a

“correction for continuity”:

χ

=∑

(∣O − E∣ − .)

E
.

�e two-way chi-square test is employed to test the null

hypothesis that two categorical variables are independent

of one another.�e datamay be represented as an r×c con-

tingency table, where r is the number of rows (levels of one

categorical variable) and c is the number of columns (levels

of the other categorical variable). For each cell in this table

two frequencies are obtained, the observed frequency (O)

and the expected frequency (E).�e expected frequencies

are those which would be expected given the marginal fre-

quencies if the row variable and the column variable were

independent of each other.�ese expected frequencies are

easily calculated from themultiplication rule of probability

under the assumption of independence. For each cell, the

expected frequency is (RiCj/N), where Ri is the marginal

total for all cells in the same row, Cj is the marginal total

for all cells in the same column, and N is the total sam-

ple size.�e χ is computed exactly as with the one-way

chi-square and is evaluated on (r − )(c − ) degrees of

freedom, with an upper-tailed p value for nondirectional

hypotheses. Although statistical so�ware o�en provides a

χ with a correction for continuity when there are only two

rows and two columns, almost always the uncorrected χ

is more appropriate (Camilli and Hopkins ).

It is not unusual to see the two-way chi-square inappro-

priately employed (Howell , pp. –). Most o�en

this is a result of having counted some observations more

than once or having not counted some observations at all.

Each case should be counted once and only one. Statisti-

cal so�ware will o�en provide a warning if one or more of

the cells has a low expected frequency.�e primary con-

sequence of low expected frequencies is low power. Even

with quite small expected frequencies, actual Type I error

rates do not deviate much from the nominal level of alpha

(Camilli and Hopkins ).

�e results of a two-way chi-square test are com-

monly accompanied by an estimate of themagnitude of the

association between the two categorical variables. When

the contingency table is  × , an odds ratio and/or the

phi coe�cient (Pearson r between the two dichotomous

variables) may be useful. With larger contingency tables

Cramer’s phi statistic may be useful.

�e chi-square statistic is also employed in many other

statistical procedures, only a few of which will be men-

tioned here.�eCochran-Mantel-Haenszel χ is employed

to test the hypothesis that there is no relationship between

rows and columns when you average across two or more

levels of a third variable.�e Breslow-Day χ is employed

to test the hypothesis that the odds ratios do not di�er

across levels of a third variable. Likelihood ratio chi-square

is employed in the log-linear analysis of multidimensional

contingency tables, where it can be employed to test the

di�erence between twomodels, where one is nested within

the other. Likewise, in 7logistic regression, chi-square can
be employed to test the e�ect of removing one or more of

the predictors from the model. In discriminant function

analysis, chi-squaremay be employed to approximate the p

value associated with the obtained value of Wilks’ lambda.

A chi-square statistic can be employed to test the null

hypothesis that k Pearson correlation coe�cients are iden-

tical. Chi-square is also used to approximate the p value

in the Kruskal-Wallis ANOVA and the Friedman ANOVA.

Many more uses of the chi-square statistic could be cited.
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In recent years, in addition to advances in methodology,

the number of clinical trials conducted and published has

greatly increased. Clinical trials, in particular, blinded, ran-

domized, controlled comparative clinical trials, are widely

recognized as the most scienti�c and reliable method

for evaluating the e�ectiveness of therapies and promot-

ing a culture of evidence-based medicine (Tukey ;

Byar et al. ; Zelen ; Cowan ; Byar ; Royall

; Smith ).

�e �rst modern clinical trial is generally considered

to be the treatment of pulmonary tuberculosis with strep-

tomycin conducted by the UK Medical Research Coun-

cil (MRC) and published in British Medical Journal in

 (MRC ; Pocock ; Ederer ; Day ).

However, there is still some controversy surrounding this

claim as some authors refer to the study with the common

cold vaccine conducted by Diehl et al. () as the �rst

modern trial (Hart , ; Gill ). �e design of

the streptomycin trial included blinding,7randomization,
and control groups as fundamental elements of the clin-

ical trial. �e trial included a total of  patients from

seven centers, who were assigned to either “streptomycin

and bed-rest” (S case) or “bed-rest” (C case) groups, by a

process involving a statistical series based on random sam-

pling numbers drawn up for each sex and each center and

sealed envelopes.�e e�cacy of streptomycin was evalu-

ated based upon the examination of patient X-ray �lms by

three experts consisting of one clinician and two radiol-

ogists.�e decision of whether or not the treatment was

e�ective wasmade by themajority based on independently

reached conclusions by each expert, who were also blinded

as to which treatment the patient had received.�e strep-

tomycin trial also included Sir Austin Bradford Hill who

served as the trial statistician. Hill was recognized as the

world’s leading medical statistician and popularized the

use of statistical methods in clinical trials, and who also

attempted to improve the quality of their implementation

and evaluation by publishing a series of  articles in�e

Lancet in  (Hill et al. ).

With the success of the streptomycin trial, the MRC

and Hill continued with further blinded, randomized,

controlled comparative clinical trials (Ederer ; Days

): for example, chemotherapy of pulmonary tubercu-

losis in young adults (MRC ), an antihistaminic drug

in the prevention and treatment of the commoncold (MRC

), the use of cortisone and aspirin in the treatment of

early cases of rheumatoid arthritis (MRC , ), and

an anticoagulant to treat cerebrovascular disease (Hill et al.

). In United States, the �rst randomized controlled

trail started in  and was the US National Institute of

Health study of the adrenocorticotropic hormone, corti-

sone and aspirin in the treatment of rheumatic heart dis-

ease in children (Rheumatics Fever Working Party ).

Presently, a huge number of randomized controlled clini-

cal trials are being conducted worldwide, with the number

of clinical trials steadily increasing each year.

Although now commonplace, the fundamental ele-

ments of clinical trials, such as blinding, randomization,

and control groups, did not just suddenly appear in the

second quarter of the twentieth century. Evidence exists

that a comparative concept for evaluating therapeutic e�-

cacy with control groups has been known since ancient

times (Ederer ; Day ). For example, Lilienfeld

() and Slotki () cited the description of a nutri-

tional experiment using a control group in the Book of

Daniel from the Old Testament:

7 .: Among these were some from Judah: Daniel, Hana-
niah, Mishael and Azariah. . . .: But Daniel resolved not to
defile himself with the royal food and wine, and he asked
the chief official for permission not to defile himself this
way. . . . .: Daniel then said to the guard whom the chief
official had appointed over Daniel, Hananiah, Mishael and
Azariah. .: Please test your servants for ten days; Give
us nothing but vegetables to eat and water to drink. .:
Then compare our appearance with that of the young men
who eat the royal food, and treat your servants in accor-
dance with what you see. .: So he agreed to this and
tested them for ten days. .: At the end of the ten days
they looked healthier and better nourished than any of the
young men who ate the royal food. . So the guard took
away their choice food and the wine they were to drink and
gave them vegetables instead.

�e above description is part of a story dating fromapprox-

imately  BCwhenDaniel was taken captive by the ruler

of Babylonia, Nebuchadnezzar. In order to refrain from

eating royal meals containing meat (perhaps pork) and

wine o�ered by Nebuchadnezzar, Daniel proposed a com-

parative evaluation and was rewarded when his test group

fared better than the royal food group. Although it is di�-

cult to con�rm the accuracy of the account, it is clear that

the comparative concept already existed when the Book

of Daniel was written around  BC. In particular, it is
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remarkable that the passage from the Book of Daniel men-

tioned not only the choice of a control group but the use of a

concurrent control group. Unfortunately, this fundamental

concept was not widely practiced until the latter half of the

twentieth century (Ederer ; Day ).

Much later than the Book of Daniel, in the eighteenth

and nineteenth centuries, there were some epoch-making

clinical researches that formed the basis of the method-

ology used in current clinical trials. Before the modern

clinical trial of the treatment of pulmonary tuberculosis

with streptomycin mentioned above (Pocock ; Ederer

; Day ), the most famous historical example of a

planned, controlled clinical trial involved six dietary treat-

ments for scurvy on board a British ship. �e trial was

conducted by the ship’s surgeon, James Lind, who was

appalled by the ravages of scurvy which had claimed the

lives of three quarters of the crew during the circumnav-

igation of the world by British admiral, George Anson

(Lind ; Bull ; Pocock ; Mosteller ; Ederer

; Day ). In , Lind conducted a comparative

trial to establish the most promising “cure” for patients

with scurvy using twelve individuals who had very simi-

lar symptoms on board the Salisbury. In addition to one

common dietary supplement given to all of the patients, he

assigned each of six pairs one of the following six dietary

supplements:

. Six spoonfuls of vinegar

. A half-pint of sea water

. A quart of cider

. Seventy-�ve drops of vitriol elixir

. Two oranges and one lemon

. Nutmeg

�ose patients who received the two oranges and one

lemon were cured within approximately  days and were

able to help nurse the other patients. Apart from the

patients who improved somewhat a�er receiving the cider,

Lind observed that the other remedieswere ine�ective.�e

reason for the success of Lind’s trial was likely due to his

knowledge of previous work by James Lancaster (Purchas

), who had served three teaspoons of lemon juice each

day to sailors su�ering from scurvy during the �rst expe-

dition to India sent by the East India Company in 

(Mosteller ). Unfortunately, however, the British Navy

did not supply lemon juice to its sailors until , although

conclusive results concerning the e�cacy of such treat-

ment had already been obtained much earlier (Bull ;

Mosteller ).

�e use of statistical concepts in clinical trials was

also advocated earlier than the streptomycin trials. For

example, Pierre Simon Laplace, a French mathemati-

cian and astronomer, mentioned the use of probability

theory to determine the best treatment for the cure of

a disease (Laplace ; Hill et al. ). Also, Pierre-

Charles-Alexandre Louis, a French physician and pathol-

ogist, discussed the use of a “numerical method” for

the assessment of treatments by constructing comparable

groups of patients with similar degrees of a disease, i.e.,

to compare “like with like” (Louis ; Ederer ; Day

). Unfortunately, these suggestions were not earnestly

acted upon until the streptomycin trial because in the eigh-

teenth and nineteenth centuries, the investigators were

more involved with the practice of medicine and less

versed in the use of probability theory since saving patients’

life was considered more important rather than collecting

data from the aspect of ethics (Bull ; Hill et al. ).

Here, the history and development of clinical trials was

very brie�y traced. More detailed aspects of the history

of clinical trials can be found in articles by Bull (),

Armitage (, ), Lilienfeld (), Pocock (),

Meinert (), Gail (), Ederer () andDay ().
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Clinical Trials: An Overview

Hiroyuki Uesaka

Osaka University, Osaka, Japan

A clinical trial is one type of clinical research where a pro-

cedure or drug is intentionally administered outside the

realm of standardmedical practice to human subjects with

the aim of studying its e�ect on the human body. �is

includes medications, operations, psychotherapy, physio-

therapy, rehabilitation, nursing, restricted diets, and the

use of medical devices. �e comparative study of two

or more treatments, involving the random assignment of

treatments to patients, is considered a clinical trial even if

the study includes approved drugs ormedical devices.�is

means that a clinical trial is an experiment which includes

human subjects. It is necessary to distinguish clinical trials

from observational studies which collect outcomes when

executing a study treatment as an ordinary treatment.

Since clinical trials include human subjects, the ethi-

cal aspects, i.e., the rights, safety and well-being of indi-

vidual research subjects, should take precedence over all

other interests at all stages, from the planning of clinical

trials to the reporting of results. Such ethical principles

for clinical research are in accordance with the Declara-

tion of Helsinki, “Ethical Principles for Medical Research

Involving Human Subjects,” issued by the World Medical

Association (). In conducting a clinical trial, the study

protocol should clearly describe the plan and content of

the trial.�e protocol must also be reviewed and approved

by the ethics committee. Furthermore, the Declaration of

Helsinki states:�e protocol should contain a statement of

the ethical considerations involved and indicate how the

principles in the above declaration have been addressed.

To protect the safety, well-being and rights of the human

subjects participating in the trial, the Declaration indicates

that potential subjects must be adequately informed of all
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relevant aspects of the study which include aims, meth-

ods, the anticipated bene�ts and potential risks of the study

and any discomfort that participation may entail. And it

states: �e potential subjects must be informed of their

right to refuse to participate in the study or to withdraw

consent to participate at any timewithout reprisal.�e vol-

untary agreement of a subject to participate a�er su�cient

details have been provided is called informed consent. It is

also recommended that the clinical trial be registered in a

publicly accessible database, and the results from the trial

should be made publicly available, regardless of whether

the results are positive or negative.

Clinical trials for a new drug application, when they

are conducted in the EU, Japan and/or the United States of

America, must meet the requirements of the “Good Clin-

ical Practice” (GCP) guideline (ICH Steering Committee

).�e GCP guideline is a uni�ed standard provided

by the Europe, Japan and the United States in the frame-

work of the International Conference on Harmonization

of Technical Requirements for Registration of Pharma-

ceuticals for Human Use [http://www.ich.org/].�e GCP

guideline provides protection for the safety, well-being and

human rights of subjects in clinical trials in accordance

with the Declaration of Helsinki.�e GCP guideline also

requires that people appointed by the sponsor, the so-

called monitors, verify that the rights and well-being of

all human subjects are being protected, that the reported

trial data are accurate, complete, and veri�able from source

documents, and that the conduct of the trial is in compli-

ance with the currently approved protocol/amendment(s),

with the GCP, and with the applicable regulatory require-

ment(s).�is is referred to as trial monitoring in the GCP.

In planning a clinical trial, a protocol must be pre-

pared, including descriptions of the trial justi�cation, trial

objectives, study treatments, the population to be studied

as de�ned by the study inclusion and exclusion crite-

ria, test treatments and treatment procedures, observed

variables and observation procedures, speci�cation of

variables to assess treatment e�ect, collection of safety

information, prohibited concomitantmedications, discon-

tinuation criteria for individual subjects, the number of

subjects planned to be enrolled and the justi�cation for

such, statistical methods to be employed, data collection,

quality control and quality assurance (ICH Steering Com-

mittee ). A case report form (CRF) should be prepared

as well.�e CRF is a document designed to record all of

the required information to be reported according to the

protocol. A�er a trial, a so-called clinical study report is

prepared (ICH Steering Committee ). �is is a doc-

ument which contains clinical and statistical descriptions

of the methods, rationale, results and analyzes of a speci�c

clinical trial fully integrated into a single report. Clinical

trials are conducted as collaborative activities involving

many specialists, such as investigators, nurses, diagnostic

testing specialists and other collaborators. Furthermore,

regulators are involved in new drug applications. �ere-

fore, the protocol, CRF and clinical study report should be

clearly and accurately documented to be easily understood

by those involved in the trial and by those who will make

use of the trial results.

Clinical trials can be classi�ed into several types

depending on various features (ICH Steering Committee

; ICH Steering Committee ). First, a trail can be

controlled or uncontrolled, this being determined by the

presence of a control group. A controlled trial is a trial to

compare the study treatment(s) with a control treatment

that is either the current standard treatment, best support-

ive care, placebo, or some other treatment; an uncontrolled

trial involves giving the same treatment to all of the sub-

jects participating in the trial.�e second feature involves

the objective of a trial, either exploratory or con�rma-

tory. A clinical trial that aims to generate or identify a

research topic, or provide information to determine the

speci�cs of a trial method is called an exploratory trial. A

con�rmatory trial is de�ned as an adequately controlled

trial where hypotheses which were derived from earlier

research or theoretical considerations are stated in advance

and evaluated. Furthermore, a con�rmatory trial generally

includes three types of comparisons: a superiority trial, a

non-inferiority trial, and an equivalence trial. A superior-

ity trial is used to show the superiority of a test treatment

over a control. A non-inferiority trial is designed to show

that the e�cacy or safety of the study treatment is no worse

than that of the control. An equivalence trial serves to

demonstrate that the test treatment is neither better nor

worse than the control. �e third aspect involves distin-

guishing between a pragmatic and an explanatory trial

(Gent and Sackett ; Schwartz and Lellouch ).�e

objective of a pragmatic trial is to con�rm e�ectiveness of

the test treatment for those subjects who are assigned to

the test treatment. An explanatory trial serves to establish a

biological action for the treatment. Finally, the fourth char-

acteristic focuses on the di�erence between a single- and

a multi-center trial. �e single-center trial is conducted

by a single investigator, and the multi-center trial is co-

conducted by multiple investigators at multiple study sites.

Recently, many multi-center trials have been planned and

conducted across not only a single country but also two

or more countries. Such a multi-center trial is called a

multinational trial.
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�e clinical development of a new drug advances in

stages (ICH Steering Committee ). A safety trial is exe-

cuted �rst to determine the maximum dose that can be

safely administered to a subject. In most safety trials of

the �rst use of a new drug in humans, the subjects are

healthy volunteers. Administration of the study treatment

begins from a dosage expected to be safe enough for nor-

mal healthy volunteers, and then the dosage is increased in

stages.�e pharmacokinetic pro�le is usually examined in

the same trial. Pharmacokinetics investigates the process

of drug disposition which usually consists of absorption,

distribution, metabolism and excretion.�is stage is called

Phase I.�e next stage is to determine the dosage range

that can be safely administered to patients and at which

su�cient e�ectiveness can be expected. �e dosage that

will be used in clinical treatment as well as the dose inter-

vals are also clari�ed at this stage.�is is called the Phase

II. In the third stage, the e�cacy and safety of the study

treatment is con�rmed in the target patient population.

�is stage is referred to as Phase III.�e dose and dosage

regimen which are con�rmed to be e�cacious and safe in

phase III are then submitted to the regulatory authority

to obtain marketing authorization of the new drug. A�er

marketing authorization is obtained, the drug becomes

widely used for clinical treatment. �is stage is called

Phase IV. During the phase III trials many restrictions are

imposed to ensure the safety of the participating subjects.

�ese include the necessity of physical examinations, col-

lection of patient anamneses, regulation of concomitant

medications, and clearly de�ned test treatment adminis-

tration periods. However, in phase IV such restrictions

are relaxed and the approved study treatment can be used

by various patients under diverse conditions. �erefore,

because the number of patients who are administered the

newly approved drug increases rapidly, with patients o�en

using the drug for very long times according to their dis-

ease condition, there is a real concern about harmful e�ects

that have not been anticipated.�erefore, an investigation

to clarify the safety and e�ectiveness of the treatment in

daily life, an observational study, a large-scale trial, or a

long-term trial, is conducted. Moreover, a clinical trial to

compare the newly approved drug with other medicines

that have been approved for the same indication may also

be conducted.

�e result of the trial should be scienti�cally valid.

Clinical trial results are intended to be applied to a tar-

get population de�ned by inclusion and exclusion criteria

for a given trial.�e enrolled subjects should be a random

sample from the target population so that the trial results

can be applied to the target population. However a trial is

conducted in a limited number of medical sites, and not

all candidate subjects give informed consent. �erefore,

whether or not the trial result can be generalized to the

target population will depend on the study protocol and

the actual execution procedure. Accordingly, it is prefer-

able to execute the trial in a variety of medical institutions

with a wide range of patients corresponding to the diver-

sity of the target population to improve the possibility of

generalizing to the target population. A controlled trial

usually estimates the di�erence in response to treatments

between treatment groups. As described above, the clin-

ical trial participants are not a random sample of the

target population. �erefore the true mean di�erence in

the study population (all subjects who participate in the

trial) will be estimated.�is is accomplished by dividing

the study population into two or more treatment groups

which are assigned to di�erent treatments, and then com-

paring themeans of response to treatment between groups.

�e estimated mean di�erence is usually di�erent from

this true value. When random allocation of treatment to

subjects is used, it is assumed that the departure from

the true di�erence is probabilistic or random error. How-

ever, there is the possibility of systematic error due to the

execution procedure of the trial. �is systematic error is

called bias (ICH Steering Committee ).�e execution

of treatment, evaluation of results, and/or subjects’ reac-

tions can be in�uenced if the people involved in a trial,

such as investigators, relevant clinical sta� or subjects, are

aware ofwhich treatment is assigned to subjects.�erefore,

masking (blinding) and randomization are used to prevent

participants from knowing which treatment is being allo-

cated towhich subjects.�ere are several levels of blinding:

double-blind, single-blind, observer-blind and open-label.

In a double-blind study neither the subjects, nor the inves-

tigator, nor any of the relevant clinical trial sta� know who

belongs to which treatment group. In a single-blind study

only treatment assignments are unknown to the subjects or

investigator and relevant clinical sta�. In an observer-blind

study treatment assignments are unknown to the observers

who assess the subjects’ conditions. In an open-label study

treatment assignments are known to both investigators and

subjects.

One of the typical methods of treatment assignment

is to assign only one treatment to each subject, and then

to compare the e�ects of the treatments between subject

groups.�is method is referred to as parallel group design.

�e other typical method is the cross-over design where

one subject receives two or more treatments and an intra-

subject comparison of treatments is done. It is necessary to

select an appropriate design because bias can be caused by

the design itself.

A clinical trial is an experiment with human beings as

subjects. It is preferable that the number of subjects be as

small as possible to protect the rights, health and welfare
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of the subjects included in the trial. However, if the objec-

tive of the trial is not achieved, the reason for executing the

trial is lost. �erefore, based on the estimated di�erence

between the treatments, the trial should be designed to

have su�cient precision to either detect such a di�er-

ence if it truly exists, or to conclude that the di�erence

is below a de�nite value based on concrete evidence. For

this purpose, it is necessary to maintain high accuracy

and precision in trials. To ensure the precision of a trial,

it is important to consider the strati�cation of the study

population, to make precise observations, and to secure a

su�cient number of subjects.

�e objective of these trials is to estimate bene�cial and

adverse e�ects, and to con�rmahypothesis about the e�ect

of the study treatment. Even if the e�ect size of the test

treatment is assumed to be of a given size, the true e�ect

size may be less than assumed. When the gap between the

actual and the assumed value is large, the planned number

of subjects might be insu�cient and, in some cases, many

more subjects than originally planned will be needed. In

such cases, a sequential design (Jennison and Turnbull

) and a more advanced adaptive design (Bretz et al.

) would be proposed.
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Medical experiments, o�en called “clinical trials,” are obvi-

ously extremely important for the human race. Here,

we shall brie�y talk, in layman’s language, about some

important aspects of the same which are of great public

interest.

Side Effect of Drugs
�e side e�ects of allopathic drugs are notorious; death

is o�en included in the same. For degenerative diseases

(as opposed to infectious diseases, as in epidemics) it is

not clear to the author whether any serious e�ort is being

made by the pharmaceutical companies to develop drugs



 C Clinical Trials: Some Aspects of Public Interest

which actually cure diseases; the trend seems to be at best

to maintain people on drugs for a long time (even for

the whole life). Mostly, people live under varying forms of

painkiller-surgery regimes.

However, in many institutions (for example, depart-

ments doing research on nutrition) there are people who

are genuinely interested in �nding cures, though o�en

they do not possess the resources they need. Many things,

considered true by the public, are not quite so. Consider

preservatives and other food additives that are legal.�ey

are found in varying quantities in most foods, and many

people do not pay attention to this at all, and consume

unknown amounts each day.�e thought that they have no

side e�ects is based on relatively (time-wise) small exper-

iments and extrapolations there from. It is probably true

that if some food with a particular preservative or a (com-

bination of the same with others) is consumed, it may not

have any noticeable e�ect within a short period. But, the

worry that many thinkers have is whether consuming food

(all the time ignoring preservatives that itmay contain)will

have a disastrous e�ect (like producing cancer, heart attack,

diabetes, stroke, etc.) , , , or  years earlier than it

would have been expected for an additives-free diet. (�e

fact that, now, teenagers and young ones in their twenties

are developing such diseases which, in an earlier age, were

foundmainly among seniors only, is alarming.) A full scale

clinical trial (to study the long term e�ect of preservatives

etc.) will take more than a century, and has not been done.

�us, extrapolations proclaiming that such additives are

safe are based on guess work only, and are not necessarily

scienti�cally sound. We live in an age when shelf life has

become more important than human life.

It is not even clear whether the damage done from side

e�ects and the painkiller-surgery policies is limited to the

increase in the periods of sickness of people, the intensities

of such sickness, and the reduction in the age at death.�e

bigger question is whether there is an e�ect on the progeny,

and for how many generations. We recall that in the pro-

cesses of natural selection in the theory of evolution, only

the �ttest may survive. Clearly, for the human race, only

the policy that promotes the good of the general public

corresponds to being �t for survival.

Contradictory Statements by Opposing
Camps of Medical Researchers
O�en, seemingly good scientists are found to be contra-

dicting each other. For example, there may be a substance

(say, an extract from some herbs) whichmay be claimed by

some nature-cure scientists (based on their experiments)

to positively a�ect some disease (relative to a placebo).

However, some pharmaceutical scientists may claim that

their experiments show that the drug is no better than

the placebo. �is is to say that, o�en in such cases, a

close look may reveal that the two sets of experiments are

not referring to the same situation. To illustrate, the sub-

jects (people, on whom an experiment is done) in the �rst

groupmay be people who just contracted the disease, these

people being randomly assigned the drug or the placebo.

In the second case, the subjects may be people who have

had the disease for some time and have been taking

painkillers. Now, the herbal drug may be quite e�ective on

a body which is in a more primeval and natural state, and

yet not work well in a body which has been corrupted by

the chemicals in the painkiller. Clearly, that would explain

the discrepancy and support the use of the herbal drug

soon a�er the disease begins, simultaneously discourag-

ing the use of painkillers etc. whose primary e�ect is to

temporarily fool the mind into thinking that one is feeling

better. �us, it is necessary to examine a clinical trial

closely rather than take its results on face value.

Large Clinical Trials: Meta-analysis
“Large” clinical trials are o�en touted as being very “infor-

mative.” To illustrate, take the simple case of comparing

two drugs A and B with respect to a placebo C. Now, how

e�ective a drug is for a person may depend upon his or

her constitution. On some people, A may be the best, on

some B, and on others, all the three may be essentially

useless. For me, even though I may not know the reality,

suppose the reality is thatBwould be very e�ective with lit-

tle negative side e�ect,Awould be only somewhat e�ective

but with a large negative side e�ect, and the e�ect of C

would be small (being somewhat positive or somewhat

negative depending on environmental factors). Suppose a

trial is done in Arizona, involving , patients randomly

divided into three equal groups, the result being that A is

e�ective in % (cases in its group), B in %, and C in %

cases. Clearly, here, the drug A wins. But, for me, what is

the value of this information? I really need to know which

drug would be best for me.

Now suppose a similar trial is done in Idaho and in

California, the result for A, B, and C being %, %, %,

and %, %, and % respectively in the two states. Does

this help me in some way or does it simply add to the con-

fusion? �e drugs manufacturer, Mr. Gaines, would like

“meta–analysis” (whose purpose is to combine the results

in a legitimate and meaningful way), because his interest

is in seeing the overall picture so that he can formulate an

appropriate manufacturing policy for his company. How-

ever, the interest of the general public is di�erent from that

of Gaines, because each individual needs to know what is

good for him or her personally.�e individual’s interest, in

a sense, runs counter to 7meta–analysis; he or she would
be more interested in knowing what aspects of a person’s
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health make him or her more receptive to A or B. Instead

of combining the data, more delineation needs to be done.

In other words, one needs to connect the results with vari-

ous features of the subjects and other related factors.�en

we may gain knowledge not only on what proportion of

subjects are positively a�ected by a drug, but what bod-

ily features of people (or the food that they eat, or their

lifestyle, or the environment around them, etc.) lead to this

positive e�ect.

For example, in the above (arti�cial) data, it seems that

A is better in a warm climate and B in cold. Where the cli-

mate is mild, all of them do well, and many people may

recover without much of drugs. If I have been more used

to a cold climate, Bmay be more e�ective onme.With this

knowledge, even though A may turn out to be much bet-

ter than B in the area where I live, B may be better for me

individually.

(�is leads us to the philosophy of statistical inference.

Not only do we need to plan our experiments or investi-

gations properly, we need to be careful in drawing infer-

ences from the data obtained from them. According to the

author, trying to �nd what a bunch of data “says” must

involve in a relevant way the space of applications where

such a �nding will be made use of. Many scholars believe

that, given a set of data, the “information” that the data

contains is a �xed attribute of the data, and the purpose

of inference is to bring out this attribute accurately. �e

author believes that the reason why the inference is sought

(in particular, to what use or application the inference will

be put) is also important, and should have a bearing on

the inference drawn.�is policy will give insight into the

kind of information we need, what should receive more

emphasis, etc. Clinical trials would really gain from this

approach.)

Reducing Side Effects of Drugs
Studies are usually done using a “loss function” which tells

how much “loss” shall we incur by adopting each of a

set of policies. For example, we may have many drugs,

several possible doses of a drug per day, many possible

durations of time over which a drug is to be continued,

etc. For each combination of these factors, the “loss” may

be “the total time of absence from work,” or “the total

�nancial loss incurred because of sickness,” or “the amount

of fever,” or “the blood pressure,” etc. If the loss func-

tion involves only one variable (like “blood pressure”), it

is “uni-dimensional.” But if, many variables are involved

simultaneously (like “blood pressure,” “fever,” “�nancial

loss”), then it is called multi-dimensional. Usually, only

one dimension is used or emphasized (like, “intensity of

fever”).More theory needs to be developed on how towork

with multi-dimensional loss functions.

Besides theory, we also need to develop good quanti-

tative criteria for measuring “healthfulness.”�ere can be

various sectors. For example, we can have one criterion for

the sector of upper digestive track, one for the middle, one

for the colon, one for the respiratory system, one for bone

diseases, one for the joints, one for nerves, one for cancer-

ous growth, and so on. For each sector, the corresponding

criterion will provide a measure of how healthy that sec-

tor is. Suppose we decided to have  such sectors.�en

the loss function will be -dimensional.�e drugs will be

evaluated in each dimension, and the results will also be

combined in various ways. �e side e�ect of a drug in a

particular sector will be caughtmore easily.When the drug

ismarketed, an assessment for each sector can be provided.

Drugs with large e�ect in any sector can be rejected.

Experiments with Many Factors:
Interactions
We make some technical remarks here. A large part

of the �eld of statistical design of multi-factorial scien-

ti�c experiments is concerned with the simplistic situa-

tion when there are either no interactions or the set of

non-negligible interactions is essentially known (though

the values of these interactions and the main e�ects are

not known). However, in medical experiments, we can

have interactions of even very high orders. �us, for the

�eld of multifactor clinical trials, we have to go beyond

Plackett–Burman designs, and orthogonal arrays of small

strength (such as ). �ere is work available on search

theory by the author and others, which would help.

However, further work is needed in that �eld. Indeed, for

vigorous full �edged research on how to cure diseases, the

statistical theory of the design and analysis of multifactor

multi-response experiments need to be developed much

further beyond its current levels. However, the basics of

the same are available in books such as Roy et al. ().

For the reader who wishes to go deeper in the �eld of this

article, some further references are provided below.
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Cluster analysis is the generic name for a variety of mathe-

matical methods for appraising similarities among a set of

objects, where each object is described by measurements

made on its attributes.�e input to a cluster analysis is a

data matrix having t columns, one for each object, and n

rows, one for each attribute.�e (i, j)th element of the data

matrix is the measurement of the ith attribute for the jth

object.�e output from a cluster analysis identi�es groups

of similar objects called clusters. A cluster may contain as

few as one object, because an object is similar to itself.

Applications of cluster analysis are widespread because

the need to assess similarities and dissimilarities among

objects is basic to �elds as diverse as agriculture, geol-

ogy, market research, medicine, sociology, and zoology.

For example, a hydrologist considers as the objects a set

of streams, and for attributes describes each stream with a

list of water quality measures. A cluster analysis of the data

matrix identi�es clusters of streams.�e streams within a

given cluster are similar, and any stream in one cluster is

dissimilar to any stream in another cluster.

�ere are two types of cluster analysis. Hierarchical

cluster analysis is the name of the collection of methods

that produce a hierarchy of clusters in the form of a tree.

�e other type, nonhierarchical cluster analysis, is the name

of the collection of methods that produce the number of

clusters that the user speci�es. For both types, computer

so�ware packages containing programs for the methods

are available.

Let us illustrate the main features of hierarchical clus-

ter analysis with an example where the calculations can be

done by hand because the data matrix is small, �ve objects

and two attributes, consisting of made-up data:

Data matrix

Object

    

Attribute      

     

To perform a hierarchical cluster analysis, we must

specify: () a coe�cient for assessing the similarity between

any two objects, j and k; and () a clustering method for

forming clusters.

For the �rst, let us choose the “Euclidean distance

coe�cient,” ejk.�e smaller its value is, the more similar

objects j and k are. If the value is zero, they are identi-

cal, i.e., maximally similar. For our example with n = 

attributes, ejk is the distance between object j and object k

computedwith the Pythagorean theorem.And for the clus-

teringmethod, let us choose the “UPGMAmethod,” stand-

ing for “unweighted pair-group method using arithmetic

averages.”

At the start of the cluster analysis, each object is con-

sidered to be a separate cluster.�uswith �ve objects, there

are �ve clusters. For the �ve we compute the (−)/ = 
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values of ejk. To demonstrate the calculation of one of

these values, consider object  and object .�e Euclidean

distance e is

e = [( − )

+ ( − )


]
/

= ..

In this manner, we compute the other values and put the

ten in a list, from smallest, indicating the most similar pair

of clusters (objects), to largest, indicating the least similar

pair: e = ., e = ., e = ., e = ., e = .,

e = ., e = ., e = ., e = ., e = ..

�e two most similar clusters,  and , head the list,

as the Euclidean distance between them is the smallest.

�erefore,

Step Merge clusters  and , giving , , (), and  at
the value of e = ..

Next, for the four clusters – , , (), and  – we

obtain the ( − )/ =  values of ejk. �ree of these

values are unchanged by the clustering at step  and can

be transcribed from the above list. �e other three have

to be computed according to the guiding principle of the

UPGMA clusteringmethod. It requires that we average the

values of ejk between clusters, like this:

e() =

/(e + e) =


/(. + .) = .;

e() =

/(e + e) =


/(. + .) = .;

e() =

/(e + e) =


/(. + .) = ..

So, the six ejk values listed in order of increasing distance

are: e = ., e() = ., e = ., e = .,

e() = ., e() = .. It follows that the two most

similar clusters are  and , since the Euclidean distance

between them is the smallest.�erefore,

Step Merge clusters  and , giving , (), and () at
the value of e = ..

Before going to the next clustering step, we note

that step  le� the distance between clusters  and ()

unchanged at e() = ..�e two remaining distances

are calculated according to theUPGMAclusteringmethod

by averaging the values of ejk as follows:

e() =

/(e + e) =


/(. + .) = .;

e()() =

/(e + e + e + e)

=

/(. + . + . + .) = ..

�e list of ejk in increasing distance is now: e() = .,

e() = ., e()() = ..�e twomost similar clusters,

 and () head the list.�erefore,

Step Merge clusters  and (), giving () and ()
at the value of e() = ..
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Cluster Analysis: An Introduction. Fig.  Tree showing the

hierarchy of similarities between the five objects specified by

the data matrix in the text

At this point there are two clusters: () and ().�e

average Euclidean distance between them is:

e()() =

/(e + e + e + e + e + e)

=

/(. + . + . + . + . + .)

= ..

�e list of ejk has only one value: e()() = ..�ere-

fore,

Step Merge clusters () and (), giving () at
the value of e()() = ..

�e calculations are �nished. With each step, the tree

(Fig. ) has been growing. It summarizes the clustering

steps, e.g., showing that the branches containing cluster

() and cluster  join at an Euclidean distance value of

..

�e tree is a hierarchical ordering of similarities that

begins at the tree’s bottomwhere each object is separate, its

own cluster. As we move to higher levels of ejk , we become

more tolerant and allow clusters to hold more than one

object. When we reach the tree’s top we are completely tol-

erant of the di�erences between objects, and all objects are

considered as one cluster.

Suppose we took the �ve objects in the data matrix and

plotted them on a graph with attribute  as one axis and
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attribute  as the other. We would see that the distances

between the objects suggest clusters that nearly match

those in the tree. However, real applications typically have

many attributes, o�en more than a hundred. In such cases,

the researcher cannot grasp the inter-object similarities by

plotting the objects in the high-dimension attribute space.

Yet cluster analysis will produce a tree that approximates

the inter-object similarities.

A tree is an old and intuitive way of showing a hier-

archy. Witness the tree of life forms, the Linnaean classi�-

cation system. At its bottom is the level of Species, at the

next higher hierarchical level is the Genus, consecutively

followed by levels of Order, Class, Phylum, and Kingdom.

A widely practiced way of creating a classi�cation of

objects is to perform a hierarchical cluster analysis of the

objects. On the tree, draw a line perpendicular across the

tree’s axis, cutting it into branches, i.e., clusters.�e objects

in the clusters de�ne the classes. Details may be found in

Romesburg () and in Sneath and Sokal ().

�ere are several general points to note about hierar-

chical cluster analysis:

. �ere are various coe�cients that can be used to assess

the similarity between clusters. Of these, there are two

types: dissimilarity coe�cients and similarity coe�-

cients.With a dissimilarity coe�cient (as the Euclidean

distance coe�cient is), the smaller its value is, themore

similar the two clusters are. Whereas with a similarity

coe�cient, the larger its value is, the more similar the

two clusters are. An example of a similarity coe�cient

is the Pearson product moment correlation coe�cient.

But whether a dissimilarity coe�cient or a similarity

coe�cient is used, a clustering method at each step

merges the two clusters that are most similar.

. Although the UPGMA clustering method (also called

“average linkage clustering method”) is perhaps most

o�en used in practice, there are other clustering meth-

ods. UPGMA forms clusters based on the average value

of similarity between the two clusters being merged.

Another is the SLINK clustering method, short for

“single linkage” clustering method, and sometimes

called “nearest neighbor” clustering method. When

two clusters are joined by it, their similarity is that of

their most similar pair of objects, one in each clus-

ter. Another is the CLINK clustering method, short for

“complete linkage” clustering method, and sometimes

called “furthest neighbor” clustering method. When

two clusters are joined by it, their similarity is that of

the most dissimilar pair of objects, one in each clus-

ter. Another isWard’s clusteringmethod,which assigns

objects to clusters in such a way that a sum-of-squares

index is minimized.

. �e data in the data matrix may bemeasured on a con-

tinuous scale (e.g., temperature), an ordinal scale (e.g.,

people’s ranked preference for products), or on a nom-

inal scale for unordered classes (e.g., people’s sex coded

as  = female,  =male).

For an illustration of nominal scale measurement,

suppose a military researcher takes a set of aircra� as

the objects, and for their attributes records whether or

not an aircra� can perform various functions. If the jth

aircra� is able to perform the ith function, the (i, j)th

element of the data matrix is coded with a “”; if it is

unable to perform the ith function, it is coded with a

“.” In this way, the data matrix consists of zeroes and

ones. A similarity coe�cient, such as the one named

“the simple matching coe�cient,” gives a numerical

value for the similarity between any two aircra�.�e

cluster analysis produces a tree which shows which of

the aircra� are functionally similar (belong to the same

cluster) and which are functionally dissimilar (belong

to di�erent clusters).

. Whenever the attributes of the data matrix are mea-

sured on a continuous scale, it is sometimes desired to

standardize the data matrix. Standardizing recasts the

units of measurement of the attributes as dimension-

less units. �en the cluster analysis is performed on

the standardized data matrix rather than on the data

matrix.�ere are several alternative ways of standard-

izing (Romesburg ).

. Commercial so�ware packages for performing hierar-

chical cluster analysis include SPSS, SAS, CLUSTAN,

and STATISTICA. Of these, SPSS is representative,

allowing the user a choice of about  simi-

larity/dissimilarity coe�cients and seven clustering

methods.

. In the literature of cluster analysis, certain terms have

synonyms. Among other names for the objects to be

clustered are “cases,” “individuals,” “subjects,” “entities,”

“observations,” “data units,” and “OTU’s” (for “oper-

ational taxonomic units”). Among other names for

the attributes are “variables,” “features,” “descriptors,”

“characters,” “characteristics,” and “properties.” And

among other names for the tree are the “dendrogram”

and the “phenogram.”

In contrast to hierarchical cluster analysis, nonhierarchi-

cal cluster analysis includes those clustering methods that

do not produce a tree.�e so�ware packages mentioned

above have programs for nonhierarchical cluster anal-

ysis. Perhaps the most-used nonhierarchical method is

K-means cluster analysis. For it, the user speci�es k, the

number of clusters wanted, where k is an integer less than

t, the number of objects. So�ware programs for K-means
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cluster analysis usually di�er a bit in their details, but they

execute an iterative process to �nd clusters, which typically

goes like this:

To begin the �rst iteration, the program selects k

objects from the data matrix and uses them as k cluster

seeds.�e selection ismade so that the Euclidean distances

between the cluster seeds is large, which helps insure that

the seeds cover all regions of the attribute space in which

the objects reside.

Next, the program forms tentative clusters by sequen-

tially assigning each remaining object to whichever cluster

seed it is nearest to. As objects are assigned, the cluster

seeds are recomputed andmade to have the attribute values

that are the average of those of the objects in the clus-

ters. Hence, cluster seeds generally change as objects are

tentatively assigned to clusters.

When the �rst iteration is �nished, the resulting cluster

seeds are taken as the k initial seeds to start the second

iteration.�en the process is repeated, sequentially assign-

ing the objects to their nearest cluster seed, and updating

the seeds as the process moves along.

Finally, a�er a number of iterations, when the change

in the cluster seeds is tolerably small from one iteration to

the next, the program terminates.�e k �nal clusters are

composed of the objects associated with the k cluster seeds

from the �nal iteration.

We now turn to the question, “Which is the better

method for �nding clusters – hierarchical cluster analysis

or nonhierarchical cluster analysis?”�e answer depends.

Broadly speaking, researchers like having a choice of a

large variety of similarity/dissimilarity coe�cients, and

like having the similarities among clusters displayed as a

hierarchy in the form of a tree – two features that hier-

archical methods o�er but nonhierarchical methods do

not. However, for hierarchical methods the amount of

computation increases exponentially with the number of

objects. Whereas for nonhierarchical methods the amount

of computation increases less than exponentially because

the methods do not require the calculation of similarities

between all pairs of objects. In any event, all of the so�-

ware packagesmentioned above can handle very large data

matrices for hierarchical methods and for nonhierarchi-

cal methods. For instance, according to the literature that

accompanies CLUSTAN’s hierarchical cluster analysis pro-

gram, the limit to the size of a data matrix that at present

can be processed in a reasonable time on a basic PC is in

the neighborhood of , objects and , attributes.

For more objects than that, CLUSTAN’s nonhierarchi-

cal K-means program can handle as many as a million

objects.

Books that provide detailed accounts of hierarchi-

cal cluster analysis and nonhierarchical cluster analysis

include those by Aldenderfer and Blash�eld (), Everitt

(), and Romesburg ().

About the Author
Dr. H. Charles Romesburg is Professor of Environment

and Society at Utah State University and holds degrees

in Operations Research and Biostatistics, Nuclear Engi-

neering, and Mechanical Engineering. He is the author

of four books, including Cluster Analysis for Researchers

(North Carolina: Lulu, ) and Best Research Practices

(North Carolina: Lulu, ). He is an active and pro-

li�c researcher with numerous scienti�c articles to his

credit. His publications in which he is the sole author have

been cited more than , times.�eWildlife Society has

awarded him its Wildlife Publication Award for his article

“Wildlife Science: Gaining Reliable Knowledge.”

Cross References
7Data Analysis
7Distance Measures
7Fuzzy Logic in Statistical Data Analysis
7Hierarchical Clustering
7Multivariate Data Analysis: An Overview
7Multivariate Statistical Analysis
7Random Permutations and Partition Models

References and Further Reading
Aldenderfer MS, Blashfield RK () Cluster analysis. Sage, Beverly

Hills

Everitt B () Cluster analysis. E. Arnold, London

Romesburg HC () Cluster analysis for researchers. Lulu.com,

North Carolina

Sneath PHA, Sokal RR () Numerical taxonomy: the principles

and practice of numerical classification. W. H. Freeman, San

Francisco

Cluster Sampling

JanuszWywial

Professor

Katowice University of Economics, Katowice, Poland

�e quality of statistical inference is dependent not

only on, for example, estimator construction but on the

structure of a population and a sampling scheme too.

For example, let the estimation of total wheat produc-

tion in a population of farms be considered. �e pop-

ulation of farms is divided into clusters corresponding

to villages. �is estimation can be based on the ordi-

nary simple sample or on the cluster sample. Popula-

tion units can be selected to the sample by means of
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several sampling schemes. �e units (i.e., farms) can

be selected to the ordinary sample, or clusters of the

units (i.e., villages) can be drawn to the cluster sam-

ple.�e accuracy of the estimation depends on the sam-

pling scheme and on the intraclass spread of a vari-

able under study (wheat production). When should the

ordinary simple sample be used and when should the

cluster one?

Let us consider a �xed and �nite population case.

�e �xed and �nite population of the size N is denoted

by Ω = {ω, . . . ,ωN} , where ωk is an element (unit) of

the population U. Let us assume that Ω is divided into

G mutually disjoint clusters Ωk (k = , . . . ,G) such that
G

⋃
k=
Ωk = Ω. �e size of a cluster Ωk is denoted by Nk.

So,  ≤ Nk ≤ N and
G

⋃
k=
Nk = N. Let U = {Ω, . . . , ΩG}

be the set of all clusters. �e clusters are called units

(elements) of the set U. �e cluster sample is selected

from the set U and it is denoted by s = {Ωi , . . . , Ωin} .

�e size of s is denoted by n, where  ≤ n ≤ G. Let S be the
set (space) of samples.�e cluster sample is a random one

if it is selected from U according to some sampling design

denoted by P(s), where P(s) ≥  for s ∈ S and∑
s∈S

P(s) = .

Let the inclusion probability of the �rst order be denoted

by πk =∑
{s:k∈s}

P(s), k = , . . . ,G. A random sample is selected

from a population by means of the so-called sampling

scheme, which ful�lls the appropriate sampling design. It

is well known that a sample can be selected according

to previously determined inclusion probabilities of the

�rst order without any explicit de�nition of the sampling

design. �is inference simpli�es our practical research.

Frequently, the inclusion probabilities are determined as

proportional to cluster sizes, so πk ∝ Nk for k = , . . . ,G.

In general, πk ∝ xk, where xk >  is the value of an

auxiliary variable.

Let us note that it is possible to show that the

well-known systematic sampling design is a particular case

of the cluster sampling design. Moreover, the cluster sam-

pling design is a particular case of two (or more) stage

sampling designs.

In general, all known sampling designs and schemes

can be applied to the cluster case.�e examples of sampling

designs and schemes are as follows: the simple cluster sam-

ple of �xed size n, drawn without replacement, is selected

according to the following sampling design: P(s) = /(
G

g
)

for s ∈ S. �e inclusion probability of the �rst order is
πk =

g

G
. �e sampling scheme ful�lling that sampling

design is as follows:�e �rst element (unit) of the set U

is selected to the sample with the probability /G, the next

one with the probability /(G−), the kth element with the

probability /(G − k + ), and so on until the nth element

of the sample.

�e sampling scheme selecting with replacement units

to the sample of �xed size n is as follows: Each element

of U is selected with probabilities equal to pk, where, for

example, pk = xk/∑
i∈U

xi. So, elements are independently

drawn to the sample n times. In this case, the sampling

design is de�ned in a straightforwardmanner. Particularly,

if pk = /G for all k = , . . . ,G, the simple cluster sample

drawn with replacement is selected according to the sam-

pling design P(s) = /Gn. In this case, each element of U

is selected with the probability /G to the sample of size n.

�e so-called Poisson without replacement sampling

scheme is as follows: �e kth unit is selected with the

probability pk,  < pk ≤ , k = , . . . ,G. In this case,

the sample size is not �xed because  ≤ n ≤ G. �ere

exists the so-called conditional without replacement sam-

pling design of a �xed sample size, but unfortunately its

sampling schemes are complicated, see, for example, Tillé

(). Additionally, let us note that the cluster sample can

be useful in the case of estimating the population mean.

It is well known that the precision of a population

mean estimation, performed on the basis of the simple

cluster sample, depends on the so-called intraclass (intr-

acluster) correlation coe�cient, see, for example, Hansen

et al. () or Cochran ().

Let us assume that sizes of clusters are the same and

equal to M and N = GM. �e ordinary variance of the

variable is de�ned by v =


N

G

∑
k=

∑
j∈Ωk

(ykj − y)

, where yk =



N

G

∑
k=

∑
j∈Ωk

ykj is the cluster sample. �e intraclass and the

betweenclass variances are given by the expressions: vw =



G(M − )
G

∑
k=

∑
j∈Ωk

(ykj − yk)

and vb =



G − 
G

∑
k=

(ȳk − ȳ)

,

respectively, where yk =


M
∑
j∈Ωk

ykj. �e intraclass corre-

lation coe�cient is de�ned by the following expression:

rI =


Nv

G

∑
k=

∑
i≠j∈Ωk

∑(yki − y) (ykj − ȳ). �e coe�cient ρ

takes its value from the closed interval [−/(M − ), ].

�e coe�cient rI can be rewritten in the following forms:

rI = (vb − vw/M) /v, rI =  − vw/v or rI = (Mvm/v − )/

(M − ). �e expressions lead to the conclusion that

the intraclaas correlation coe�cient is negative (posi-

tive) when the ordinary variance is smaller (larger) than

the intraclass variance or equivalent if the ordinary vari-

ance is larger (smaller) than the betweenclass variance

divided by M.

Let us note that it is well known that the simple cluster

sample mean is a more accurate estimator of the pop-

ulation mean than the simple sample mean when the
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intraclass correlation coe�cient is negative. So, this leads

to the conclusion that, if only possible, a population should

be clustered in such a way that the intraclass correlation

coe�cient takes the smallest negative value. A more com-

plicated case of unequal cluster sizes was considered, for

example, by Konijn (). In this case, Särndal et al. ()

considered the so-called homogeneity coe�cient, which

is the function of the intraclass variance. On the basis of

the cluster sample, not only the estimation of population

parameters is performed but also testing statistical hypoth-

esis, see, for example, Rao and Scott ().

Cross References
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7Intraclass Correlation Coe�cient
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7Sample Survey Methods
7Sampling From Finite Populations
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Coe�cient of variation is a relative measure of dispersion

and it may be considered in three di�erent contexts: in

probability, in a data set or in a sample.

In the �rst context it refers to distribution of a random

variable X and is de�ned by the ratio

v =
σ

µ
()

where µ = EX and σ =
√
E(X − EX). It is well de�ned if

EX > . Moreover it is scale-invariant in the sense that cX

has the same v for all positive c.

Data series x = (x, . . . , xn) corresponds to distri-

bution of a random variable X taking values xi with

probabilities pi =
ki
n
, for i = , . . . ,n, where ki is the number

of appearance of xi in the series. In this case the formula

() remains valid if we replace µ by x = 

n ∑i xi and σ by
√



n ∑(xi − x).

If x = (x, . . . , xn) is a sample from a population, then

the coe�cient may be treated as a potential estimator of

the coe�cient of variation v in the whole population. Since


n ∑(xi − x)

is biased estimator of σ  in order to elimi-

nate this bias we use the sample coe�cient of variance in

the form

v=
s

x
, ()

where s =
√



n− ∑(xi − x).

One can ask whether v is normalized, i.e., whether it

takes values in the interval [, ].

In spite of that v iswell de�nedproviding x >  it seems

reasonable to restrict oneself to the nonnegative samples x,

i.e., satisfying the condition xi ≥  for all i and ∑i xi > .

Under this assumption the sample coe�cient () of vari-

ance in the sample takes values in the interval [,
√
n] and

the lower and upper bound is attained.�erefore it is not

normalized.
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Collapsibility in Contingency Tables
Consider the I by J by K contingency table representing

the joint distribution of three discrete variablesX,Y ,Z, the

I by J marginal table representing the joint distribution of

X and Y , and the set of conditional I by J subtables (strata)

representing the joint distributions ofX andY within levels
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Collapsibility. Table  Trivariate distribution with (a) strict collapsibility of Y∣X risk differences over Z, (b) collapsibility of Y∣X risk
ratios when standardized over the Z margin, and (c) noncollapsibility of Y∣X odds ratios over Z. Table entries are cell probabilities

Z =  Z =  Collapsed over Z

X =  X =  X =  X =  X =  X = 

Y =  . . . . . .

Y =  . . . . . .

Risksa . . . . . .

Differences . . .

Ratios . . .

Odds ratios . . .

aProbabilities of Y =  in column

of Z. A measure of association of X and Y is strictly col-

lapsible acrossZ if it is constant across the strata (subtables)

and this constant value equals the value obtained from the

marginal table.

Noncollapsibility (violation of collapsibility) is some-

times referred to as 7Simpson’s paradox, a�er a celebrated
article by Simpson (). �is phenomenon had how-

ever been discussed by earlier authors, including Yule

(); see also Cohen and Nagel (). Some statisti-

cians reserve the term Simpson’s paradox to refer to the

special case of noncollapsibility in which the conditional

and marginal associations are in opposite directions, as in

Simpson’s numerical examples. Simpson’s algebra and dis-

cussion, however, dealt with the general case of inequality.

�e term “collapsibility” seems to have arisen in later work;

see Bishop et al. ().

Table  provides some simple examples.�e di�erence

of probabilities that Y =  (the risk di�erence) is strictly

collapsible. Nonetheless, the ratio of probabilities thatY = 

(the risk ratio) is not strictly collapsible because the risk

ratio varies across the Z strata, and the odds ratio is not at

all collapsible because itsmarginal value does not equal the

constant conditional (stratum-speci�c) value. �us, col-

lapsibility depends on the chosen measure of association.

Now suppose that a measure is not constant across the

strata, but that a particular summary of the conditional

measures does equal the marginal measure.�is summary

is then said to be collapsible across Z. As an example, in

Table  the ratio of risks averaged over (standardized to)

the marginal distribution of Z is

ΣzP(Y = ∣X = , Z = z)P(Z = z)/ΣzP(Y = ∣X = , Z = z)

P(Z = z) = {−.(.) + .(.)}/{−.(.)

+ .(.)} = .,

which is equal to the marginal (crude) risk ratio. �us,

the risk ratio in Table  is collapsible under this particular

weighting (standardization) scheme for the risks.

Various tests of collapsibility and strict collapsibility

have been developed (e.g., Whittemore ; Asmussen

and Edwards ; Ducharme and LePage ; Greenland

and Mickey ; Geng ) as well as generalizations

to partial collapsibility. �e literature on graphical prob-

ability models distinguishes other types of collapsibility;

see Frydenberg (), Whittaker (, Sect. .) and

Lauritzen (, Sect. .) for examples. Both de�nitions

given above are special cases of parametric collapsibility

(Whittaker ).

Collapsibility in Regression Models
�e above de�nition of strict collapsibility extends to

regression contexts. Consider a generalized linear model

(see 7Generalized Linear Models) for the regression of Y
on three vectors w, x, z:

g[E(Y ∣w, x, z)] = α + wβ + xγ + zδ.

�is regression is said to be collapsible for β over z if β∗ = β

in the regression omitting z,

g[E(Y ∣w, x)] = α
∗
+ wβ

∗
+ xγ

∗

and is noncollapsible otherwise.�us, if the regression is

collapsible for β over Z and β is the parameter of interest,

Z need not be measured to estimate β. If Z is measured,

however, tests of β∗ = β can be constructed (Hausman

; Clogg et al. ).

�e preceding de�nition generalizes the original

contingency-table de�nition to arbitrary variables.�ere is

a technical problem with the above regression de�nition,
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however: If the �rst (full) model is correct, it is unlikely

that the second (reduced) regression will follow the given

form; that is, most families of regression models are not

closed under deletion of Z. For example, suppose Y is

Bernoulli with mean p and g is the logit link function

ln[p/(−p)], so that the full regression is �rst-order logis-

tic.�en the reduced regressionwill not follow a �rst-order

logistic model except in special cases. One way around this

dilemma (and the fact that neither of themodels is likely to

be exactly correct) is to de�ne the model parameters as the

asymptotic means of the maximum-likelihood estimators.

�ese means are well-de�ned and interpretable even if the

models are not correct (White ).

If the full model is correct, δ =  implies collapsibility

for β and γ over Z. Nonetheless, if neither β nor δ is zero,

marginal independence of the regressors does not ensure

collapsibility for β over Z except when g is the identity

or log link (Gail et al. ; Gail ). Conversely, col-

lapsibility can occur even if the regressors are associated

(Whittemore ; Greenland et al. ). �us, it is not

generally correct to equate collapsibility overZwith simple

independence conditions, although useful results are avail-

able for the important special cases of linear, log-linear,

and logistic models (e.g., see Gail ; Wermuth ,

; Robinson and Jewell ; Geng ; Guo and Geng

).

Confounding Versus Noncollapsibility
Much of the statistics literature does not distinguish

between the concept of confounding as a bias in e�ect esti-

mation and the concept of noncollapsibility; for example,

Becher () de�nes confounding as β∗ ≠ β in the regres-

sion models given above, in which case the elements of

Z are called confounders. Similarly, Guo and Geng ()

de�ne Z to be a nonconfounder if β∗ = β. Nonetheless,

confounding as de�ned in the causal-modeling literature

(See 7Confounding) may occur with or without noncol-
lapsibility, and noncollapsibilitymay occurwith orwithout

confounding; see Greenland (, ) and Greenland

et al. () for examples. Mathematically identical con-

clusions have been reached by other authors, albeit with

di�erent terminology in which noncollapsibility is called

“bias” and confounding corresponds to “covariate imbal-

ance” (Gail ; Hauck et al. ).
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Comparison is the cognitive function that is basis for

any measuring process and a frequent activity in every-

day human life. Nowadays, comparisons of statistics over

time and, even more demanding, cross-national and mul-

tilateral comparisons are a central element of economic

and social analyzes. For politics and administration, for

business and media, and for each citizen, comparisons are

means to understand and assess the political, economic,

and social processes of this world. �is situation raises

questions: Under which conditions are statistics compa-

rable? Under which conditions is a comparison valid and

leads to reliable results? What conclusions may be drawn

and what are the risks implied by such conclusions?

Comparability: Definition and
Assessment
Rathsmann-Sponsel and Sponsel () describe “compar-

ison” as a -digit relation f (P, S, Z, K, V, A, B); P represents

the comparing person, S and Z describe the comparing

situation and the purpose of comparison, respectively; vec-

tor K stands for a number of criteria, V for a number of

procedures, and A and B represent the characteristics of

the objects to be compared, respectively.�is rather for-

mal view of psychologists indicates the complexity of the

interaction between the individual and the objects to be

compared. More visible becomes this complexity when the

de�nition is applied to real situations, e.g., comparing the

employment rates of two countries.

�e employment rate is the number of persons aged

– in employment as the share of the total popula-

tion of the same age group. Obviously, the de�nition of

“being in employment” and the exact meaning of “persons

aged –” are crucial for the value that is obtained for

the employment rate. In addition, the statistical value is

a�ected by the sampling design and other aspects of the

data collection.

In general, statistics are based on concepts and def-

initions, and the value of a statistic is the result of a

complexmeasurement process; comparability is a�ected by

all these factors and, consequently, a wide range of facts

must be considered. Moreover, the relevance of these facts

depends on the purpose of comparison, the comparing

situation, and other aspects of the comparison process.

E.g., if the comparison of the employment rates of two

countries is the basis for a decision on the allocation of sub-

sidies for structural development, comparability is a more

serious issue than in the case where the result of the com-

parisons does not have such consequences. �ese – and

many other – characteristics must be taken into considera-

tion when assessing di�erences between two employment

rates.

Assessment of comparability has to take into account the

multi-dimensionality of the conditions for comparability.

Many aspects to be considered are qualitative, so that the

corresponding dimensions cannot be measured on a met-

ric scale. Moreover, important characteristics of the statis-

tical products or the underlying measurement processes

are o�en not available or uncertain.

Hence, in general, it is not feasible to give a compre-

hensive picture of comparability by means of a few metric

measures. Alternatives are

● An indicator in form of a number between zero and

one that indicates the degree of comparability, a one

indicating perfect comparability.

● A rating of comparisons on an ordinal rating scale with

a small number of points, a high value representing

good comparability.

An example for a rating scale is the three point scale

that is used for the “Overall assessment of accuracy and

comparability” of indicators – such as the employment

rate –within the Eurostat Quality Pro�les; see Jouhette and

Sproge ().�is overall assessment is rated from “A” to

“C”. Grad “A” indicates that

● Data is collected from reliable sources applying high

standards with regard to methodology/accuracy and

is well documented in line with Eurostat metadata

standard.

● �e underlying data is collected on the basis of a

common methodology for the European Union and,
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where applicable, data for US and Japan can be consid-

ered comparable; major di�erences being assessed and

documented.

● Data are comparable over time; impact of procedural

or conceptual changes being documented.

�is example illustrates:

● �at the rating process reduces a high-dimensional

information to a single digit.

● Where the characteristics of the statistics to be com-

pared, the underlyingmeasurement processes, and also

conditions of the comparison process are crucial input

elements for the rating of comparability.

● �at the rating outcome has only the character of

a label which the user might trust but which only

re�ects – perhaps vaguely – the result of a complex and

subjective assessment process.

● �at the rating outcome may miss to give appropri-

ate weight to aspects that are important for a certain

user.

A rating of the comparability on an ordinal rating scale has

the advantage that it allows an easy communication about

comparability.

�e professional assessment of comparability requires:

● An adequate competence of the scrutinizer

● A careful documentation of all characteristics of the

statistical products that are relevant for assessing the

comparability

Generally, the scrutinizer will be di�erent from the pro-

ducer of a statistical product.�is certainly will be the case

in respect of cross-national comparisons.�e producer has

to provide a comprehensive set of metadata that docu-

ments all characteristics which are relevant for assessing

the comparability.�e outcome of this exercise might be

an indicator of the types that are described above.

For the non-expert user, the assessment of the compa-

rability of statistical products is hardly possible even when

a well-designed set of all metadata is available that are rel-

evant for assessing the comparability. Most users of the

statistical products will have to rely on the professional

assessment of the experts.

Comparability in Official Statistics
�e integration of societies and the globalization of

economies have the consequence that not only compar-

isons over time but especially cross-regional comparisons

of statistical products are of increasing interest and impor-

tance. Political planning and decisions of supranational

bodies need information that encompasses all involved

nations. Multi-national enterprises and globally acting

companies face the same problem.

Of even higher relevance for the need of comparabil-

ity is the fact that statistical products are more and more

used for operational purposes.Within the EuropeanUnion,

the process of integration of the member states into a com-

munity of states requires political measures in many areas.

National statistical indicators are the basis for allocating a

part of the common budget to member states, for admin-

istrating the regional and structural funds, for assessing

the national performances with respect to the pact for sta-

bility and growth, and for various other purposes. It is in

particular the European version of the System of National

Accounts (SNA) ESA that plays such an operational role in

various administrative processes of the European Union.

�e MillenniumDevelopment Goals and the Kyoto Proto-

col are other examples for the use of statistical indicators

in de�ning political aims and assessing the correspond-

ing progress. In all these cases, the comparability of the

relevant statistical products is a core issue.

In the cross-national context, the responsibility for

harmonizing cross-national concepts, de�nitions, and

methodological aspects must be assigned to an authority

with supra-national competence. Organizations like the

UN, OECD, and Eurostat are engaged in the compila-

tion of standards and the editing of recommendations,

guidelines, handbooks, and training manuals, important

means to harmonize statistical products and improve their

comparability. Examples of standards are the Statistical

Classi�cations of Economic Activities (ISIC) and the Inter-

national Statistical Classi�cation of Diseases (ICD). Prin-

ciples and Recommendations for Population and Housing

Censuses adopted by the Statistical Commission of the

UN is an example for a standard methodology. Exam-

ples of standards on the European level are the NACE

and CPA.

Within the European Union, standards and methods

are laid down in regulations which are legally binding for

the member states. E.g., the ESA  was approved as a

Council Regulation in June  and stipulates themember

states to apply the SNA in a very concrete form. In work-

ing groups, experts from the member states are dealing

with the preparation and implementation of such regula-

tions; the harmonization of national statistical products is

a central concern of these activities.

�e important role that is attributed to statistical com-

parability within the ESS is stressed by the fact that

the European Statistics Code of Practice () contains

Coherence and Comparability as one of its  princi-

ples.�e corresponding indicators refermainly to national

aspects but also to the European dimension.
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To assess the comparability of statistical products,

national reports are essential that providemetadata for all

related aspects of the statistical product. Standard formats

for the documentation ofmetadata have been suggested by

the International Monetary Fund in form of the General

Data Dissemination Standard (GDDS) and the Special

Data Dissemination Standard (SDDS).

It should be mentioned that standardizing concepts,

de�nitions, andmethods also has unfavorable e�ects; com-

parability has a price. An important means for improv-

ing harmonization are standards; however, they are never

perfect and tend to get outdated over time. In par-

ticular the adaptation of standards to methodological

progress might be a time-consuming task. Generally, stan-

dardization reduces �exibility and makes adaptations to

new developments, especially of methodological alter-

natives, more di�cult. �is is especially true if stan-

dards are put into the form of regulations. It is even

truer if such standards are implemented in order to ease

the use for operational purposes, as it is the case in

the ESS.

Conclusions
Lack of comparability may lead to erroneous results when

statistical products are compared. �e need for cross-

national comparability is even more pronounced if sta-

tistical results are used for operational purposes as it is

the case, e.g., in the European Union. Hence, comparabil-

ity is an important quality aspect of statistical products.

It is a�ected by the involved concepts and de�nitions,

the measurement processes, and comparability may also

depend on conditions of the comparison. �e producer

of a statistical product has to care that the conditions of

comparability are ful�lled to the highest extent possible. In

the cross-national context, international organizations like

7Eurostat are fostering the compilation of standards for
concepts and de�nitions and of principles and standards

formethods and processes in order to harmonize statistical

products and improve their cross-national comparability.

For the assessment of comparability, a wide range of

information is needed, as many aspects of the statistics to

be compared but also of the purpose and conditions of

the comparison have to be taken into account. No gen-

eral rules are available that guarantee a valid assessment

of comparability; only experts with profound knowledge

can be expected to give a reliable assessment. For such an

assessment, metadata which document all relevant char-

acteristics are essential and have to be provided by the

producer of the statistical product. For cross-national pur-

poses, organizations like Eurostat have to care that the

relevant metadata are provided by the respective produc-

ers.�e user, e.g., the consumer of an economic or social

analysis, has to trust that the analysts and expertsmade use

of the involved statistics responsively.
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Imagine a simple randomized controlled trial evaluating

a psychotherapeutic intervention for depression. Partici-

pants are randomized to one of two treatment groups.�e

�rst (the control condition) comprises treatment andman-

agement as usual (TAU). Participants in the second group

are o�ered a course of individual cognitive behavior ther-

apy (CBT) in addition to TAU. �e outcome of the trial

is evaluated by assessing the severity of depression in all

of the participants  months a�er 7randomization. For
simplicity, we assume there are no missing outcomes. We

�nd a di�erence between the average outcomes for the two

groups to be about four points on the depression rating

scale, a di�erence that is of only borderline clinical sig-

ni�cance.�is di�erence of four points is the well-known

intention-to-treat (ITT) e�ect – it is the estimated e�ect

treatment allocation (i.e., o�ering the treatment).�is we

will call ITTALL.

Participants in the control (TAU) condition did not get

any access to CBT but we now discover that only about

half of those o�ered psychotherapy actually took up the

o�er. Only % of the treatment group actually received

CBT. So, it might be reasonable to now ask “What was

the e�ect of receiving CBT?” or “What was the treatment

e�ect in those who complied with the trial protocol (i.e.,

treatment allocation)?” Traditionally, trialists have been

tempted to carry out what is called a “Per Protocol” anal-

ysis. �is involves dropping the non-compliers from the

treatment arm and comparing the average outcomes in

the compliers with the average outcome in all of the con-

trols. But this is not comparing like with like. �ere are

likely to be selection e�ects (confounding) – those with a

better (or worse) treatment-free prognosis might be more

likely to turn up for their psychotherapy. �e same crit-

icism also applies to the abandonment of randomization

altogether and comparing the average outcomes in those

who received treatment with those who did not (a mixture

of controls and non-compliers) in a so-called “As treated”

analysis.

To obtain a valid estimate of the receipt of treatment

we need to be able to compare the average of the outcomes

in those who received CBT with the average of the out-

comes of the control participants who would have received

CBThad they been allocated to the treatment group.�is is

the Complier-Average Causal E�ect (CACE) of treatment.

How do we do this? �e simplest approach is based on

the realization that the ITT e�ect is attenuated estimate

of the CACE, and that the amount of attenuation is sim-

ply the proportion of compliers (or would-be compliers)

in the trial. �e proportion of compliers (PC) is simply

estimated by the proportion of those allocated to the treat-

ment group who actually receive CBT. We postulate that

we have two (possibly hidden) classes of participant: Com-

pliers and Non-compliers. Non-compliers receive no CBT

irrespective of their treatment allocation.�e intention-to-

treat e�ects in the Compliers and Non-compliers are ITTC

(≡CACE) and ITTNC, respectively. It should be clear to the

reader that ITTALL = PCITTC and ( − PC)ITTNC.

To make use of this simple relationship, let’s now

assume that treatment allocation in the Non-compliers

has no impact on their outcome (i.e., does not a�ect the

severity of their depression). �is assumption is o�en

referred to as an exclusion restriction. It follows that

ITTALL = PCITTC and that

CACE = ITTC = ITTALL/PC

So with % compliance, and estimated overall ITT e�ect

of  units on the depression scale, the CACE estimate is

 units – a result withmuchmore promise to our clinicians.

To get a standard error estimate we might apply a simple

bootstrap (see7BootstrapMethods). Note that CACE esti-
mation is not a means of conjuring up a treatment e�ect

from nowhere – if the overall ITT e�ect is zero so will

the CACE be. If the overall ITT e�ect is not statistically-

signi�cant, the CACE will not be statistically-signi�cant.

One last point: in a conventional treatment trial aiming

to demonstrate e�cacy, the ITT estimate will be conser-

vative, but in a trial designed to demonstrate equivalence

(or non-inferiority) it is the CACE estimate that will be the

choice of the cautious analyst (we do not wish to confuse

attenuation arising from non-compliance with di�erences

in e�cacy).

Here we have illustrated the ideas with the simplest

of examples. And here we have also made the deriva-

tion of the CACE estimate as simple as possible without

any detailed reference to required assumptions. An anal-

ogous procedure was �rst used by Bloom () but its
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formal properties were derived and compared with instru-

mental variable estimators of treatment e�ects by Angrist

et al. (). Non-compliance usually has an implication

for missing data – those that do not comply (or would-

be Non-compliers) with their allocated treatment are also

those who are less likely to turn up to have their out-

come assessed. �e links between CACE estimation and

missing data models (assuming latent ignorability) are dis-

cussed by Frangakis and Rubin (). Generalizations

of CACE methodology to estimation of treatment e�ects

through the use of Principal Strati�cation have also been

introduced by Frangakis and Rubin ().
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�e two obvious subdivisions of statistics are: (a)�eoret-

ical Statistics and (b) Practical Statistics.

. �e theoretical side is largely based on a mathematical

development of probability theory (see 7Probability
�eory: An Outline) applicable to data, particularly

the asymptotic properties of estimates (see7Properties
of Estimators) which lead to powerful theorems

such as the 7Central Limit �eorem. �e aim is to
put many practical approaches to data analysis (see

also 7Categorical Data Analysis; 7Multivariate Data
Analysis: An Overview; 7Exploratory Data Analysis;
7Functional Data Analysis) on a sound theoretical
foundation and to develop theorems about the proper-

ties of these approaches.�e theories are usually based

on a number of assumptions that may or may not hold

in practice.

. Practical statistics considers the analysis of data, how

the data can be summarized in useful fashions, and

how relationships between sets of data from di�er-

ent variables can be described and interpreted. �e

amount and the quality of the data (see7Data Quality)
that is available are essential features in this area. On

occasions data may be badly constructed or terms may

be missing which makes analysis more complicated.

Descriptive statistics include means, variances, his-

tograms, correlations, and estimates of quantiles, for exam-

ple. �ere are now various types of statistics depending

on the area of application. General statistics arose from

considerations of gambling (see7Statistics andGambling),
agriculture (see 7Agriculture, Statistics in; 7Analysis of
Multivariate Agricultural Data), and health topics (see

7Medical research, Statistics in; 7Medical Statistics) but
eventually a number of specialized areas arose when

it was realized that these areas contained special types

of data which required their own methods of analysis.

Examples are:

. Biometrics (see 7Biostatistics), from biological data
which required di�erent forms of measurement and

associated tests.

. 7Econometrics, for which 7Variables may or may not
be related with a time gap; data can be in the form of

7Time Series (particularly in economies and �nance)
or in large panels (see 7Panel Data) in various parts
of economics. �e techniques developed over a wide

range and the ideas have spread into other parts of

statistics.

. Psychometrics, where methods are required for the

analysis of results from very speci�c types of experi-

ments used in the area of psychology (see7Psychology,
Statistics in).

Othermajor areas of application such as engineering, mar-

keting, and meteorology generally use techniques derived

from methods in the areas mentioned above, but all have

developed some area-speci�c methods.
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Engle) formethods of analyzing economic time series with

common trends (cointegration). Granger was knighted in

.

Professor Granger had sent his contributed entry on

June  , excusing himself for not writing a bit longer,

“Lexicon” kind of paper: “I have never written anything

for a ‘Lexicon’ before and so have failed in my attempt

to be helpful, but I do attach a page or so. I wish you

good luck with your e�ort.” We are immensely thank-

ful for his unsel�sh contribution to the prosperity of this

project.
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De�nition: A composite indicator is formed when indi-
vidual indicators are compiled into a single index, on the

basis of an underlyingmodel of themultidimensional con-

cept that is being measured (OECD, Glossary of Statisti-

cal Terms).

Multidimensional concepts like welfare, well-being,

human development, environmental sustainability, indus-

trial competitiveness, etc., cannot be adequately repre-

sented by individual indicators. For that reason, composite

indicators are becoming increasingly acknowledged as

a tool for summarizing complex and multidimensional

issues.

Composite indicators primarily arise in the follow-

ing areas: economy, society, globalization, environment,

innovation, and technology. A comprehensive list of

indicators can be found at the following address:

http:// composite-indicators.jrc.ec.europa.eu/FAQ.htm#

List_of_Composite_Indicators_

�e Handbook on Constructing Composite Indicators:

Methodology and User Guide (OECD ) recommends

a ten-step process of constructing composite indicators:

● �eoretical framework is the starting point of the
process of constructing composite indicators, de�ning

individual indicators (e.g., variables) and their appro-

priate weights, re�ecting the structure of the investi-

gated multidimensional concept.�is step is crucial in

construction process because it has the greatest impact

on the relevance of the indicator of the investigated

phenomena. For that reason, the constructors team

should include, besides the statisticians, who play the

major role, the experts and stakeholders from the topic

of the composite indicator.

Due to the fact that many new multidimensional con-

cepts do not have a generally agreed theoretical frame-

work, transparency is essential in constructing credible

indicators.

● Data selection should acquire analytically sound rel-
evant indicators, having in mind their avaliability

(country coverage, time, appropriate scale of measure-

ment, etc.). Engagement of experts and stakeholders is

recommended.

● Imputation of missing data (see 7Imputation) pro-
vides a complete dataset (single or. multiple). Inspec-

tion of presence of 7outliers in the dataset should not
be omitted.

● Multivariate analysis reveals the structure of the
considered dataset from two aspects: (a) units and

(b) available individual indicators, using appropri-

ate multivariate methods, e.g., 7principal compo-
nent analysis, factor analysis (see 7Factor Analy-
sis and Latent Variable Modelling), Cronbach coef-

�cient alpha, cluster analysis (see 7Cluster Analy-
sis: An Introduction), 7correspondence analysis, etc.
�ese methods are able to reveal internally homoge-

nous groups of countries or groups of indicators and

interpret the results.

● Normalization procedures are used to achieve com-
parability of variables of the considered dataset, taking

into account theoretical framework and the properties

of the data.�e robustness of normalization methods

against possible 7outliers must be considered.
● Weighting and aggregation should take into account
the theoretical framework and the properties of the

data.�e most frequently used aggregation form is a

weighted linear aggregation rule applied to a set of vari-

ables (OECD ). Weights shoud re�ect the relative

importance of individual indicators in a construction

of the particular composite indicator.

● Uncertainty and 7sensitivity analysis are neces-
sary to evaluate robustness of composite indicators

and to improve transparency, having in mind selec-

tion of indicators, data quality, imputation of miss-

ing data, data normalization, weighting, aggregation

methods, etc.

● Back to the original data, to (a) reconsider the rela-
tionships between composite indicator and the original
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data set and to identify the most in�uential indicators

and (b) compare pro�led performance of the consid-

ered units to reveal what is driving the composite indi-

cator results, and in particular whether the composite

indicator is overly dominated by a small number of

indicators.

● Links to other indicators identify the relationships
between the composite indicator (or its dimensions)

and other individual or composite indicators.

● Visualization of results should attract audience, pre-
senting composite indicators in a clear and accu-

rate way.

Following the above-mentioned guidelines, the construc-

tors of composite indicators should never forget that com-

posite indicators should never be seen as a goal per se.�ey

should be seen, instead, as a starting point for initiating dis-

cussion and attracting public interest and concern (Nardo

et al. ).

However, there is now general agreement about the

usefulness of composite indicators:�ere is a strong belief

among the constructors of composite indicators that such

summary measures are meaningful and that they can

capture the main characteristic of the investigated phe-

nomena. On the other side, there is a scepticism among

the critics of this approach, who believe that there is no

need to go beyond an appropriate set of individual indi-

cators.�eir criticism is focused on the “arbitrary nature

of the weighting process” (Sharpe ) in construction of

the composite indicators.
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What Is Computational Statistics?
We de�ne computational statistics to be: . . . ‘statistical

methods/results that are enabled by using computational

methods’. Having set forth a de�nition, it should be

stressed, �rst, that names such as computational statis-

tics and statistical computing are essentially semantic con-

structs that do not have any absolute or rigourous structure

within the profession; second, that there are any num-

ber of competing de�nitions on o�er. Some are unsat-

isfactory because they focus purely on data or graphical

methods and exclude symbolic/exact methods; others are

unsatisfactory because they place undue emphasis on

‘computationally-intensivemethods’ or brute force, almost

as if to exclude well-written e�cient and elegant algo-

rithms that might be computationally quite simple. Some-

times, the di�culty is not in the execution of an algorithm,

but in writing the algorithm itself.

Computational statistics can enable one:

● To work with arbitrary functional forms/distributions,

rather than being restricted to traditional known text-

book distributions.

● To simulate distributional properties of estimators and

test statistics, even if closed-form solutions do not

exist (computational inference rather than asymptotic

inference).

● To compare statisticalmethods under di�erent alterna-

tives.

● To solve problems numerically, even if closed-form

solutions are not possible or cannot be derived.

● To derive symbolic solutions to probability, moments,

and distributional problems that may never have been

solved before, and to do so essentially in real-time.
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● To explore multiple di�erent models, rather than just

one model.

● To explore potentially good or bad ideas via simulation

in just a few seconds.

● To choose methods that are theoretically appropriate,

rather than because they are mathematically tractable.

● To check symbolic/exact solutions using numerical

methods.

● To bring to life theoretical models that previously were

too complicated to evaluate . . .

Journals and Societies
Important journals in the �eld include:

● Combinatorics, Probability & Computing

● Communications in Statistics – Simulation and

Computation

● Computational Statistics

● Computational Statistics and Data Analysis

● Journal of Computational and Graphical Statistics

● Journal of the Japanese Society of Computational

Statistics

● Journal of Statistical Computation and Simulation

● Journal of Statistical So�ware

● SIAM Journal on Scienti�c Computing

● Statistics and Computing

Societies include: the International Association for Sta-

tistical Computing (IASC – a subsection of the ISI), the

American Statistical Association (Statistical Computing

Section), the Royal Statistical Society (Statistical Comput-

ing Section), and the Japanese Society of Computational

Statistics (JSCS) . . .

Computational statistics consists of three main areas,

namely numerical, graphical and symbolic methods . . .

Numerical Methods
�e numerical approach is discussed in texts such as

Gentle (), Givens and Hoeting (), and Martinez

and Martinez (); for Bayesian methods, see Bolstad

(). Numerical methods include: Monte Carlo studies

to explore asymptotic properties or �nite sample prop-

erties, pseudo-random number generation and sampling,

parametric density estimation, non-parametric density

estimation, 7bootstrap methods, statistical approaches
to so�ware errors, information retrieval, statistics of

databases, high-dimensional data, temporal and spatial

modeling, 7data mining, model mining, statistical learn-
ing, computational learning theory and optimisation etc.

. . . While optimisation itself is an absolutely essential tool

in the �eld, it is very much a �eld in its own right.

Graphical Methods
Graphical methods are primarily concernedwith either (a)

viewing theoretical models and/or (b) viewing data/�tted

models.

In the case of theoretical models, one typically

seeks to provide understanding by viewing one, two or

three variables, or indeed even four dimensions (using

-dimensional plots animated over time, translucent

graphics etc.).

Visualizing data is essential to data analysis and assess-

ing �t; see, for instance, Chen et al. (). Special interest

topics include smoothing techniques, kernel density esti-

mation, multi-dimensional data visualization, clustering,

exploratory data analysis, and a huge range of special statis-

tical plot types.Modern computing powermakes handling

and interacting with large data sets with millions of values

feasible . . . including live interactive manipulations.

Symbolic/Exact Methods
�e st century has brought with it a conceptually entirely

new methodology: symbolic/exact methods. Recent texts

applying the symbolic framework include Andrews and

Sta�ord (), Rose and Smith (), and Drew et al.

().

Traditional th century computer packages are based

on numerical methods that tend to be designed much like

a cookbook.�at is, they consist of hundreds or even thou-

sands of numerical recipes designed for speci�c cases. One

function is written for one aspect of the Normal distribu-

tion, another for the LogNormal, etc.�is works very well

provided one stays within the constraints of the known

common distributions, but unfortunately, it breaks down

as soon as one moves outside the catered framework. It

might work perfectly for random variable X, but not for

X, nor exp(X), nor mixtures, nor truncations, nor re�ec-

tions, nor folding, nor censoring, nor products, nor sums,

nor . . .

By contrast, symbolic/exactmethods are built on top of

computer algebra systems . . . programs such asMathemat-

ica and Maple that understand algebra and mathematics.

Accordingly, symbolic algorithms can provide exact gen-

eral solutions . . . not just for speci�c distributions/models.

Symbolic computational statistical packages includemath-

Statica (–, based on top of Mathematica) and

APPL (based on top of Maple).

Symbolicmethods include: automated expectations for

arbitrary distributions, probability, combinatorial prob-

ability, transformations of random variables, products

of random variables, sums and di�erences of random

variables, generating functions, inversion theorems, max-

ima/minima of random variables, symbolic and numerical

maximum likelihood estimation (using exact methods),
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curve �tting (using exact methods), non-parametric ker-

nel density estimation (for arbitrary kernels), moment

conversion formulae, component-mix and parameter-mix

distributions, copulae, pseudo-random number genera-

tion for arbitrary distributions, decision theory, asymptotic

expansions, 7order statistics (for identical and non-
identical parents), unbiased estimators (h-statistics, k-

statistics, polykays), moments of moments, etc.

The Changing Notion of What is
Computational Statistics
Just  or  years ago, it was quite common for peo-

ple working in computational statistics to write up their

own code for almost everything they did. For example, the

Handbook of Statistics : Computational Statistics (see Rao

) starts outChapter  by describing algorithms for sort-

ing data. Today, of course, one would expect to �nd sorting

functionality built into any so�ware package one uses . . .

indeed even into a word processor. And, of course, the

‘bar’ keeps on moving and evolving. Even in recent texts

such as Gentle (), about half of the text (almost all of

Part ) is devoted to computing techniques such as �xed-

and �oating-point, numerical quadrature, numerical lin-

ear algebra, solving non-linear equations, optimisation

etc., . . . techniques that Gentle et al. (, p. ) call “statis-

tical computing” but which are really just computing. Such

methods lie �rmly within the domain of computational

science and/or computational mathematics . . . they are

now built into any decent modern statistical/mathematical

so�ware package . . . they take years of work to develop

into a decent modern product, and they require tens of

thousands of lines of code to be done properly . . . all of

which means that it is extremely unlikely that any individ-

ual wouldwrite their own in today’s world. Today, one does

not tend to build an airplane simply in order to take a �ight.

And yet many current texts are still �rmly based in the

older world of ‘roll your own’, devoting substantial space

to routines that are (a) general mathematical tools such as

numerical optimisation and (b) which are now standard

functionality in modern packages used for computational

statistics. While it is, of course, valuable to understand

how such methods work (in particular so that one is aware

of their limitations), and while such tools are absolutely

imperative to carrying out the discipline of computational

statistics (indeed, as a computer itself is) – these tools are

now general mathematical tools and the days of building

one’s own are essentially long gone.

Future Directions
It is both interesting and tempting to suggest likely future

directions.

(a) So�ware packages: At the present time, the computa-

tional statistics so�ware market is catered for from

two polar extremes. On the one hand, there are

major generalmathematical/computational languages

such as Mathematica and Maple which provide best

of breed general computational/numerical/graphical

tools, and hundreds of high-level functional program-

ming constructs to expand on same, but they are

less than comprehensive in �eld-speci�c functional-

ity. It seems likely such packages will further evolve by

developing and growing tentacles into speci�c �elds

(such as statistics, combinatorics, �nance, economet-

rics, biometrics etc.). At the other extreme, there

exist narrow �eld-speci�c packages such as S-Plus,

Gauss and R which provide considerable depth in

�eld-speci�c functionality; in order to grow, these

packages will likely need to broaden out to develop

more general methods/general mathematical func-

tions, up to the standard o�ered by the major pack-

ages. �e so�ware industry is nascent and evolving,

and it will be interesting to see if the long-run equi-

librium allows for both extremes to co-exist. Perhaps,

all that is required is for a critical number of users to

be reached in order for each eco-system to become

self-sustaining.

(b) Methodology: It seems likely that the �eld will see a

continuing shi� or growth from statistical inference

to structural inference, . . . from data mining to model

mining, . . . from asymptotic inference to computational

inference.

(c) Parallel computing: Multicore processors have already

become mainstream, while, at the same time, the

growth in CPU speeds appears to be stagnating. It

seems likely then that parallel computing will become

vastly more important in evolving computational

statistics into the future. Future computational statisti-

cal so�ware may also take advantage of GPUs (graph-

ical processing units), though it should be cautioned

that the latter are constrained in serious statistical

work by the extremely poor numerical precision of

current GPUs.

(d) Symbolic methods: Symbolic methods are still some-

what in their infancy and show great promise as

knowledge engines i.e., algorithms that can derive

exact theoretical results for arbitrary randomvariables.

(e) On knowledge and proof : Symbolic algorithms can

derive solutions to problems that have never been

posed before – they place enormous technological

power into the hands of end-users. Of course, it is pos-

sible (though rare) that an error may occur (say in

integration, or by mis-entering a model). In a sense,
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this is no di�erent to traditional reference texts and

journal papers which are also not infallible, and which

are o�en surprisingly peppered with typographical or

other errors.

In this regard, the computational approach o�ers both

greater exposure to danger, as well as the tools to

avoid it.�e “danger” is that it has become extremely

easy to generate output in real-time.�e sheer scale

and volume of calculation has magni�ed, so that the

average user is more likely to encounter an error,

just as someone who drives a lot is more likely to

encounter an accident. Proving that the computer’s

output is actually correct can be very tricky, or imprac-

tical, or indeed impossible for the average practitioner

to do, just as the very same practitioner will tend to

accept a journal result at face value, without properly

checking it, even if they could do so.�e philosopher,

Karl Popper, argued that the aim of science should

not be to prove things, but to seek to refute them.

Indeed, the advantage of the computational statistical

approach is that it is o�en possible to check one’s work

using two completely di�erent methods: both numer-

ical and symbolic. Here, numerical methods take on

a new role of checking symbolic results. One can

throw in some numbers in place of symbolic param-

eters, and one can then check if the solution obtained

using symbolic methods (the exact theoretical solu-

tion) matches the solution obtained using numerical

methods (typically, 7numerical integration or Monte
Carlo methods, see 7Monte Carlo Methods in Statis-
tics). If the numerical and symbolic solutions do not

match, there is an obvious problem and we can gen-

erally immediately reject the theoretical solution (a

la Popper). On the other hand, if the two approaches

match up,we still do not have a proof of correctness . . .

all we have is just one point of agreement in parameter

space. We can repeat and repeat and repeat the exer-

cise with di�erent parameter values . . . and as we do

so, we e�ectively build up, not an absolute proof in the

traditional sense, but, appropriately for the statistics

profession, an ever increasing degree of con�dence . . .

e�ectively a proof by probabilistic induction . . . that

the theoretical solution is indeed correct. �is is an

extremely valuable (though time-consuming) skill to

develop, not only when working with computers, but

equally with textbooks and journal papers.
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In its most elementary form, the conditional probability

P(A∣B) of an event A given an event B is de�ned by

P(A∣B) =
B(A ∩ B)

P(B)
,
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provided thatP(B) ≠ .�is is a well-motivated de�nition,

compatible bothwith the frequency interpretation of prob-

ability as well as with elementary probability on count-

able spaces. An immediate consequence of the de�nition

is 7Bayes’ theorem: if A,A, . . . ,An are mutually disjoint
events whose union has probability one, then P(A∣B) =
P(B∣A)P(A)

∑ni= P(B∣Ai)P(Ai)
.

Suppose now thatX,Y are randomvariables taking val-

ues in �nite sets. We de�ne the conditional distribution of

X given Y by

P(X = x∣Y = y) =

⎧⎪⎪
⎨
⎪⎪⎩

P(X=x,Y=y)
P(Y=y) , if P(Y = y) ≠ 

, if P(Y = y) = .

�e latter choice, i.e., / interpreted as , is both physi-

cally motivated and mathematically desirable.�e object

P(X = x∣Y = y) is a probability in x (i.e., it sums up to 

over x) and a function of y. If X takes values in a set of real

numbers then we can de�ne the conditional expectation of

X given Y = y by

E(X∣Y = y) =∑
x

xP(X = x∣Y = y), ()

where the summation extends over all possible values x of

X.�is is a function of y, say h(y) = E(X∣Y = y). We can

then talk about the conditional expectation of X given Y

as the random variable h(Y) obtained by substituting y by

the random variable Y in the argument of h(y). From this

de�nition the following important property of E(X∣Y) is

easily derived:

E[(X − E(X∣Y)) ⋅ g(Y)] = , ()

for any random variable g(Y) which is a (deterministic)

function of Y .

One can easily generalise the above to countably-

valued random variables. However, de�ning conditional

probability and expectation for general random variables

cannot be done in the previous naive manner. One can

mimic the de�nitions for random variables possessing

density but this has two drawbacks: �rst, it is not easy

to rigorously reconcile with the previous de�nitions; sec-

ond, it is not easy to generalize. Instead, we resort to an

axiomatic de�nition of conditional expectation, stemming

directly from the fundamental property (). It can be easily

veri�ed that, in the earlier setup, there is only one function

h(y) satisfying () for all functions g(y), and this h(y) is

de�ned by ().

�e last observation leads us to the following de�ni-

tion: Let (Ω,F ,P) be a probability space and X a positive

random variable (i.e., a measurable function X : Ω → R+).

Let G ⊂ F be another sigma-algebra. We say that E(X∣G)

is the conditional expectation of X given G if (a) E(X∣G) is

G-measurable and (b) for all bounded G-measurable ran-

dom variables G, we have

E[XG] = E[E(X∣G)G]. ()

Such an object exists and is almost surely unique.�e lat-

ter means that if two random variables,H, H, say, satisfy

E[XG] = E[HiG], i = , , for all G then P(H = H) = .

(SuchHi are called versions of the conditional expectation.)

Existence is immediate by the 7Radon–Nikodým theo-
rem. Consider two measures on (Ω,G): the �rst one is P;

the second one is E[X1G], G ∈ G (where 1G is de�ned as 
on G and  on Ω/G). When P(G) =  we have E[X1G] = 
and therefore the second measure is absolutely continuous

with respect to the �rst. �e Radon–Nikodým theorem

ensures that the derivative (density) of the secondmeasure

with respect to the �rst exists and that it satis�es ().�is

observation and string of arguments is due to Kolmogorov

(), and it is through this that modern Probability�e-

ory was established as a mathematical discipline having a

natural connection with Measure�eory.

Having de�ned E[X∣G] for positive X we can de�ne

it for negative X by reversing signs and for general X via

the formula E[X∣G] = E[max(X, )∣G]+E[min(X, )∣G],

provided that wither E[max(X, )] < ∞ or E[min(X, )]

> −∞.

Given then two random variables X,Y (the �rst of

which is real-valued, but the second may take values

in fairly arbitrary spaces (such as a space of functions),

we can de�ne E[X∣Y] as E[X∣σ(Y)] where σ(Y) is the

σ-algebra generated by Y . It can be seen that this is entirely

compatible with the initial de�nition ().

Passing on to conditional probability, observe that if

A is an event, the expectation of 1A is precisely P(A). By
analogy, we de�ne

P(A∣G) = E[1A∣G].

For each event A ∈ F , this is a random variable, i.e., a

measurable function of ω ∈ Ω which is de�ned almost

surely uniquely (see explanation a�er formula ()). For a

real-valued random variable X we de�ne the conditional

distribution function P(X ≤ x∣G) as E[1X≤x∣G]. We would
like this to be a right-continuous non-decreasing function

of x. Since, for each x, P(X ≤ x∣G) is de�ned only almost

surely, we need to show that we can, for each x, pick a ver-

sion Hx of P(X ≤ x∣G) in a way that the probability of the

event {Hx ≤ Hy if x ≤ y and limє↓Hx+є = Hx} is one.�is

can be done and {Hx}x∈R is referred to as a regular condi-

tional distribution function ofX givenG. Informally (and in

practice) it is denoted as P(X ≤ x∣G). Regular conditional
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probabilities exist not only for real random variables X but

also for random elements X taking values in a Borel space

Kallenberg ().

From this general viewpoint we can now go down

again and verify everything we wish to have de�ned in an

intuitive or informal manner. For instance, if (X,Y) is a

pair of real-valued random variables having joint density

f (x, y) then, letting fY(y) := ∫R f (x, y)dx, de�ne

h(x∣y) :=

⎧⎪⎪
⎨
⎪⎪⎩

f (x,y)
fY(y) , if fY(y) ≠ 

, if fY(y) = 
.

�en the function ∫
x

−∞ h(s∣Y)ds serves as a the regular

conditional distribution of X given Y . We can also verify

that E(max(X, )∣Y) = ∫
∞

P(X > x∣Y)dx (in the sense

that the right-hand side is a version of the le�) and several

other elementary formulae.

It is important to mention an interpretation of E(X∣Y)

as a projection. First recall the de�nition of projection in

Euclidean space: Let x be a point (vector) in the space Rn

and Π a hyperplane. We de�ne the projection x̂ of x onto

Π as the unique element of Π which has minimal dis-

tance from x. Equivalently, the angle between x − x̂ and

any other vector g of Π must be ○: this can be written as

⟨x−x̂, g⟩ = , i.e., the standard inner product of x−x̂ and g is

equal to . Next suppose that E[X] < ∞.�en it can be

seen that

E[(X − E(X∣G))

] = min

G
E[(X −G)


],

where the minimum is taken over all G-measurable ran-

dom variables G with E[G] < ∞.�e de�ning property

() then says that the inner product between X − E(X∣G)

and any G is zero, just as in Euclidean space. Keeping the

geometric meaning in mind, we can devise (prove and

interpret) several properties of the conditional expecta-

tion. We mention one below.

�e tower property: If G ⊂ G are two sigma-algebras

then

E[E(X∣G)∣G] = E[X∣G].

�e geometric meaning is as follows: If Π is a hyperplane

(e.g., a plane in three dimensions) and Π a hyperplane

contained in Π (e.g., a line on the plane) then we can

�nd the projection onto Π by �rst projecting onto Π and

then projecting the projection.�e tower property holds

for general random variables as long as conditional expec-

tation can be de�ned, i.e., it does not require E[X] < ∞.

Another interpretation of it is as follows: if G,G represent

states of knowledge (information, say) andG is wider than

G (in the sense that G can be obtained from G) then,

in �nding the conditional expectation of X given G, the

additional knowledge contained in G can be ignored. A

particular form of this property is in the relation

E[E(X∣G)] = E[X].

Another important property is that E[GX∣G] =

GE[X∣G] if G is G-measurable. On the other hand, if Z is

independent of (X,Y) then E[X∣Y ,Z] = E[X∣Y]. For fur-

ther properties, see Williams (). In particular, if X and

Y are independent thenE[X∣Y] = E[X], i.e., it is a constant.

For normal random variables, the geometric picture

completely characterizes what we can do with them. Recall

that a random variable X is centred normal if it has �nite

variance σ  and if for all constants a, b there is a constant c

such that cX has the same distribution as aX′ + bX′′ where

X′,X′′ are independent copies of X. It follows that a + b

= c and thatX has density proportional to e−x
/σ 

.We say

that X is normal if X−E[X] is centred normal. We say that

a collection of random variables {Xt}t∈T , with T being an

arbitrary set, is (jointly) normal if for any t, . . . , tn, and any

constants c, . . . , cn, the random variable cXt+⋯+cnXtn is

normal. It follows that if {X,Y, . . . ,Yk} are jointly normal

then E[X∣Y, . . . ,Yk] = E[X∣σ(Y, . . . ,Yk)] = aY + ⋯ +

akYk + b where the constants can be easily computed by

().�e Kalman �lter property says that if {X,Y,Y} are

centred jointly normal such that Y and Y are indepen-

dent then E[X∣Y,Y] = E[X∣Y]+E[X∣Y].�e geometric

interpretation of this is: to project a vector onto a plane

de�ned by two orthogonal lines, we project to each line

and then add the projections. �e Kalman �lter is one

of the important applications of Probability to the �elds

of Signal Processing, Control, Estimation, and Inference

(Catlin ).

By the term conditioning in Probability we o�en mean

an e�ective application of the tower property in order to

de�ne a probability measure or to compute the expec-

tation of a functional. For example, if X,X, . . . are

i.i.d. positive random variables and an N is a geomet-

ric random variable, say P(N = n) = αn−( − α),

n = , , . . ., then E[θX+⋯+XN ]=E[E(θX+⋯+XN ∣N)]. But

E[θX+⋯+XN ∣N =n]=E[θX+⋯+Xn]= (E[θX])n, by inde-

pendence. Hence E[θX+⋯+XN ∣N]= (E[θX])N and so

E[θX+⋯+XN ] = E[(E[θX])N] = ( − α)/( − αE[θX]).

Conditional expectation and probability are used in de�n-

ing various classes of 7stochastic processes such as
7martingales and 7Markov chains (Williams ). Con-
ditional probability is a fundamental object in 7Bayesian
statistics (Williams ). Other applications are in the

�eld of Financial Mathematics where the operation of tak-

ing conditional expectation of a future random variable

with respect to the sigma-algebra of all events prior to the
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current time t plays a fundamental role. In fact, it can be

said that the notion of conditioning, along with that of

independence and coupling, are the cornerstones of mod-

ern probability theory and its widespread applications.
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A Con�dence Distribution (CD), H(X, θ), for a param-

eter is a function of the data, X, and the parameter in

question, θ, such that: (a) for each data value X, H(X, .)

is a (continuous) cumulative distribution function for

the parameter, and (b) for the true parameter value,

θ, H(., θ) has a uniform distribution (see 7Uniform
Distribution in Statistics) on the interval (,).�e concept

of CD has its historic roots in Fisher’s �ducial distribu-

tion (Fisher ), although, in its modern version, it is

a strictly frequentist construct (Schweder and Hjort ,

; Singh et al. , , and see also Efron ).

�e CD carries a great deal of information pertinent to a

variety of frequentist inferences and may be used for the

construction of con�dence intervals, tests of hypotheses

and point estimation.

For instance, the αth quantile of H(X, .), is the upper

end of a ( − α) percent one sided con�dence interval

for θ, and also the interval formed by the sth and tth

quantiles (s < t) is a (t− s) percent con�dence interval.

�ese properties indicate that a con�dence distribution is,

in a sense, a direct frequentist version of Fisher’s �ducial

distribution.

Similarly, a level α test of the one-sided hypothesis K :

θ ≤ θ versus K : θ > θ is given by rejecting K when

H(X, θ) ≤ α, and an analogous result holds for testing

K : θ ≥ θ versus K : θ < θ. Additionally, for testing

the two sided hypothesis K : θ = θ versus K : θ ≠ θ,

the rejection region {min(H(X, θ),  −H(X, θ))} ≥ α

gives an α level test.

�e CD may also be used in a natural ways to con-

struct a point estimate of θ. Perhaps the most straight-

forward estimator is the median of H(X, .), which is

median unbiased, and under mild conditions, consistent.

Another obvious estimator, θ̄ =∫ θ(∂H(X,θ)/∂θ)dθ is

also consistent under weak conditions.

One particularly simple way to construct a CD is via

a pivotal quantity, ψ(X, θ), a function of X and θ whose

cumulative distribution function, G(.) under the true θ

does not depend on θ. �en G(Ψ(X, θ)) is a CD pro-

vided Ψ(X, θ) is increasing in θ. Such quantities are easy

to construct in invariant models such as location or scale

models. Here is a prototypical example in a normal loca-

tion model. Suppose Xi ∼ N(θ, ), for i = ,⋯,n, are

iid.�en Ψ(X,⋯,Xn, θ) = (X − θ) ∼ N(, /n) so that

H(X,⋯,Xn, θ) = Φ
−

(
√
n(θ − X)) is a CD.

Another common construction is based on a series of

one sided α-level tests of K : θ ≤ θ versus K : θ > θ. If

the function P[θ,X] is a p-value for each value of θ, then

typically P[θ, .] has a uniform distribution for each value

of θ, and hence H(X, θ) = P[θ,X] is a CD.

�e above discussion can be extended naturally to

include the notion of an asymptotic CD by replacing (b)

above, with the requirement that H(., θ) approaches a

uniform distribution on (, ) weakly as the sample size

approaches in�nity, and dropping the continuity require-

ment in (a). Pro�le likelihoods (see, e.g., Efron ;

Schweder andHjort ; Singh et al. ), and Bootstrap

Distributions (see Efron ; Singh et al. , ) are

asymptotic CD’s under weak conditions.

It can also be extended to include nuisance parame-

ters. For example, in the case of a sample from a normal

population with unknownmean and variance, the usual t-

pivot can be used to construct a CD for the mean, while

the usual chi-square pivot can be used to construct a CD

for the variance.

See Schweder and Hjort (, ) or Singh et al.

(, ), formore detailed discussion on construction,
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properties and uses ofCD’s. In particular Singh et al. ()

discusses the combination of information from indepen-

dent sources via CD’s.
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A ( − α)% con�dence interval is an interval estimate

around a population parameter θ that, under repeated ran-

dom samples of sizeN, is expected to include θ’s true value

( − α)% of the time.�e con�dence interval thereby

indicates the precision with which a population parameter

is estimated by a sample statistic, givenN and α. For many

statistics there are also methods of constructing con�dence

regions, which are multivariate versions of simultaneous

con�dence intervals.

�e con�dence level, ( − α)%, is chosen a priori.

A two-sided con�dence interval uses a lower limit L and

upper limitU that each contain θ’s true value (−α/)%

of the time, so that together they contain θ’s true value

( − α)% of the time.�is interval o�en is written as

[L,U], and sometimes writers combine a con�dence level

and interval by writing Pr(L ≤ θ ≤ U) =  − α. In some

applications, a one-sided con�dence interval is used, pri-

marily when only one limit has a sensiblemeaning orwhen

interest is limited to bounding a parameter estimate from

one side only.

�e con�dence interval is said to be an inversion of its

corresponding signi�cance test because the ( − α)%

con�dence interval includes all hypothetical values of the

population parameter that cannot be rejected by its asso-

ciated signi�cance test using a Type I error-rate criterion

of α. In this respect, it provides more information than a

signi�cance test does. Con�dence intervals become nar-

rower with larger sample size and/or lower con�dence lev-

els. Narrower con�dence intervals imply greater statistical

power for the corresponding signi�cance test, but the con-

verse does not always hold.

�e limits L and U are derived from a sample statistic

(o�en the sample estimate of θ) and a sampling distribu-

tion specifying a probability for each value that the sample

statistic can take. �us L and U also are sample statis-

tics and will vary from one sample to another. �is fact

underscores a crucial point of interpretation regarding a

con�dence interval, namely that we cannot claim that a

particular interval has a − α probability of containing the

population parameter value.

A widespread practice regarding two-sided con�dence

intervals is to placeL andU so that α is evenly split between

the lower and upper tails.�is is o�en a matter of conven-

tion, but can be dictated by criteria that statisticians have

used for determining the “best” possible con�dence inter-

val. One such criterion is simply narrowness. It is readily

apparent, for instance, that if a sampling distribution is

symmetric and unimodal then for high con�dence levels

the shortest ( − α)% con�dence interval constructed

from that distribution is one that allocates α/ to the tails

outside of the lower and upper limits.

Other criteria for evaluating con�dence intervals are

as follows. A ( − α)% con�dence interval is exact if

it can be expected to contain the relevant parameter’s true

value (−α)%of the time.When approximate intervals
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are used instead, if the rate of coverage is greater than

( − α)% then the interval is conservative; if the rate is

less then the interval is liberal.�e (−α)% interval that

has the smallest probability of containing values other than

the true parameter value is said to be uniformly most accu-

rate. A con�dence interval whose probability of including

any value other than the parameter’s true value is less than

or equal to ( − α)% is unbiased.

Example  Suppose that a standard IQ test has been

administered to a random sample of N =  adults from

a large population with a sample mean of  and standard

deviation s = . We will construct a two-sided % con-

�dence interval for the mean, µ.�e limits U and L must

have the property that, given a signi�cance criterion of α,

sample size of , mean of  and standard deviation of

, we could reject the hypotheses that µ >  + U or

µ <  − L but not L ≤ µ ≤ U.

�e sampling distribution of the t-statistic de�ned by

t =
X − µ
serr

is a t-distribution with df = N −  = .

When df =  the value tα/ = . standard-error units

above the mean cuts α/ = . from the upper tail of this

t-distribution, and likewise −tα/ = −. standard-error

units below the mean cuts α/ = . from the lower tail.

�e sample standard error is serr = s/
√
N = .. So a

t-distribution around U =  + (.)(.) = .

has . of its tail below , while a t-distribution around

L =  − (.)(.) = . has . of its tail

above .�ese limits ful�ll the above required property,

so the % con�dence interval for µ is [., .].�us,

we cannot reject hypothetical values of µ that lie between

. and ., using α = ..

Example  (transforming one interval to obtain another)

Cohen’s d for two independent samples is de�ned by

δ = (µ − µ)/σp, where µ and µ are the means of two

populations from which the samples have been drawn and

σp is the population pooled standard deviation.�is quan-

tity has a noncentral t distribution with a noncentrality

parameter ∆ = δ[NN/(N + N)]
/
, where N and N

are the sizes of the two samples. �e sample t-statistic

is the sample estimate of ∆. Suppose a two-condition

between-subjects experiment with N = N =  yields

t() = .. Using an appropriate algorithm (Smithson

) we can �nd the % con�dence interval for ∆, which

is [., .]. Because δ and ∆ aremonotonically related

by δ = ∆/[NN/(N + N)]
/
, we can obtain a %

con�dence interval for δ by applying this formula to the

lower and upper limits of the interval for ∆. �e sample

estimate of δ is d = t/[NN/(N +N)]
/

= ./. =

., and applying the same transformation to the limits

of the interval for ∆ gives an interval of [., .] for δ.
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Introduction
�e word confounding has been used to refer to at least

three distinct concepts. In the oldest and most widespread

usage, confounding is a source of bias in estimating causal
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e�ects. �is bias is sometimes informally described as

a mixing of e�ects of extraneous factors (called con-

founders) with the e�ect of interest, and important in

causal inference (see 7Causation and Causal Inference).
�is usage predominates in nonexperimental research,

especially in epidemiology and sociology. In a second and

more recent usage originating in statistics, confounding

is a synonym for a change in an e�ect measure upon

strati�cation or adjustment for extraneous factors (a phe-

nomenon called noncollapsibility or Simpson’s paradox; see

7Simpson’s Paradox; Collapsibility). In a third usage, orig-
inating in the experimental-design literature, confounding

refers to inseparability of main e�ects and interactions

under a particular design (see 7Interaction).
�e three concepts are closely related and are not

always distinguished from one another. In particular, the

concepts of confounding as a bias in e�ect estimation and

as noncollapsibility are o�en treated as equivalent, even

though they are not. Only the �rst usage, confounding as

a bias, will be described here; for more detailed coverage

and comparisons of concepts see, Greenland et al. (a),

Pearl (), and Greenland et al. ().

Confounding as a Bias in Effect
Estimation
In the �rst half of the nineteenth century, John Stuart Mill

described the problem of confounding in causal inference;

he acknowledged the seventeenth century scientist Francis

Bacon as a forerunner in dealing with these issues (Mill

, Chap. III). Mill listed a key requirement for an exper-

iment intended to determine causal relations:

7 “...none of the circumstances [of the experiment] that we
do know shall have effects susceptible of being confounded

with those of the agents whose properties we wish to
study” (emphasis added) (Mill , Chap. X).

In Mill’s time the word “experiment” referred to an

observation in which some circumstances were under the

control of the observer, as it still is used in ordinary

English, rather than to the notion of a comparative trial.

Nonetheless, Mill’s requirement suggests that a compari-

son is to bemade between the outcomeof our “experiment”

(which is, essentially, an uncontrolled trial) and what we

would expect the outcome to be if the agents we wish

to study had been absent. If the outcome is not as one

would expect in the absence of the study agents, thenMill’s

requirement ensures that the unexpected outcome was not

brought about by extraneous “circumstances” (factors). If,

however, those circumstances do bring about the unex-

pected outcome, and that outcome ismistakenly attributed

to e�ects of the study agents, then themistake is one of con-

founding (or confusion) of the extraneous e�ects with the

agent e�ects.

Much of the modern literature follows the same infor-

mal conceptualization given by Mill. Terminology is now

more speci�c, with “treatment” used to refer to an agent

administered by the investigator and “exposure” o�en used

to denote an unmanipulated agent.�e chief development

beyond Mill is that the expectation for the outcome in the

absence of the study exposure is now almost always explic-

itly derived from observation of a control group that is

untreated or unexposed.

Confounding typically occurs when natural or social

forces or personal preferences a�ect whether a person ends

up in the treated or control group, and these forces or

preferences also a�ect the outcome variable. While such

confounding is common in observational studies, it can

also occur in randomized experiments when there are

systematic improprieties in treatment allocation, admin-

istration, and compliance. A further and somewhat con-

troversial point is that confounding (as per Mill’s original

de�nition) can also occur in perfect randomized trials due

to random di�erences between comparison groups (Fisher

; Rothman ); this problem will be discussed fur-

ther below.

The Potential-Outcome Model
of Confounding
Various models of confounding have been proposed for

use in statistical analyses. Perhaps the one closest to Mill’s

concept is based on the potential-outcome or counterfac-

tual model for causal e�ects (see 7Causation and Causal
Inference). Suppose we wish to consider how a health-

status (outcome) measure of a population would change in

response to an intervention (population treatment). More

precisely, suppose our objective is to determine the e�ect

that applying a treatment x had or would have on an out-

come measure µ relative to applying treatment x to a

speci�c target population A. For example, this population

could be a cohort of breast-cancer patients, treatment x
could be a new hormone therapy, x could be a placebo

therapy, and the measure µ could be the -year survival

probability.�e treatment x is sometimes called the index

treatment; and x is sometimes called the control or ref-

erence treatment (which is o�en a standard or placebo

treatment).

�e potential-outcome model posits that, in popula-

tion A, µ will equal µA if x is applied, µA if x is applied;

the causal e�ect of x relative to x is de�ned as the change

from µA to µA, whichmight bemeasured as µA−µA, or

if µ is strictly positive, µA/µA. If A is given treatment x,
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then µ will equal µA and µA will be observable, but µA
will be unobserved.

Suppose now that µB is the value of the outcome µ

observed or estimated for a population B that was admin-

istered treatment x. If this population is used as a substi-

tute for the unobserved experience of population A under

treatment x, it is called the control or reference popula-

tion. Confounding is said to be present if µA ≠ µB, for

then there must be some di�erence between populations

A and B other than treatment di�erence that is a�ecting µ.

If confounding is present, a naive (crude) association

measure obtained by substituting µB for µA in an e�ect

measure will not equal the e�ect measure, and the associa-

tion measure is said to be confounded. Consider µA − µB,

which measures the association of treatments with out-

comes across the populations. If µA ≠ µB, then µA − µB
is said to be confounded for µA − µA, which measures

the e�ect of treatment x on population A.�us, to say an

association measure µA − µB is confounded for an e�ect

measure µA − µA is to say these two measures are not

equal.

Dependence of Confounding on the Outcome Measure

and the Population

A noteworthy aspect of the potential-outcome model

is that confounding depends on the outcome measure. For

example, suppose populations A and B have a di�erent

-year survival probability µ under placebo treatment x;

that is, suppose µB ≠ µA so that µA − µB is confounded

for the actual e�ect µA − µA of treatment on -year sur-

vival. It is then still possible that -year survival, υ, under

the placebo would be identical in both populations; that is

υA could still equal υB, so that υA−υB is not confounded

for the actual e�ect of treatment on -year survival. Lest

one think this situation unlikely, note that we should gen-

erally expect no confounding for -year survival, since

no known treatment is likely to raise the -year survival

probability of human patients above zero.

Even though the presence of confounding is depen-

dent on the chosen outcome measure, as de�ned above

its presence does not depend on how the outcome is

contrasted between treatment levels. For example, if Y is

binary so that µ = E(Y) is the Bernoulli parameter or risk

Pr(Y = ), then the risk di�erence µA − µB, risk ratio

µA/µB, and odds ratio {µA/(− µA)}/{µB/(− µB)}

are all confounded under exactly the same circumstances.

In particular, and somewhat paradoxically, confounding

may be absent even if the odds ratio changes upon covari-

ate adjustment, i.e., even if the odds ratio is noncollapsible

(Greenland and Robins ; Greenland et al. a, ;

see 7Collapsibility).

A second noteworthy point is that confounding

depends on the target population. �e preceding exam-

ple, with A as the target, had di�erent -year survivals µA
and µB for A and B under placebo therapy, and hence

µA − µB was confounded for the e�ect µA − µA of treat-

ment on population A. A lawyer or ethicist may also be

interested in what e�ect the hormone treatment would

have had on population B. Writing µB for the (unob-

served) outcome under treatment, this e�ect on B may be

measured by µB−µB. Substituting µA for the unobserved

µB yields µA − µB.�is measure of association is con-

founded for µB − µB (the e�ect of treatment x on -year

survival in population B) if and only if µA ≠ µB.�us, the

samemeasure of association, µA−µB,may be confounded

for the e�ect of treatment on neither, one, or both of popu-

lationsA and B, andmay ormay not be confounded for the

e�ect of treatment on other targets such as the combined

population A ∪ B.

Confounders (Confounding Factors) and
Covariate Imbalance
�e potential-outcome model is that it invokes no explicit

di�erences (imbalances) between populations A and B

with respect to circumstances or covariates that might

in�uence µ. (Greenland and Robins , ). Clearly,

if µA and µB di�er, then A and Bmust di�er with respect

to factors that in�uence µ.�is observation has led some

authors to de�ne confounding as the presence of such

covariate di�erences between the compared populations

(Stone ).�is is incorrect, however, because confound-

ing is only a consequence of these covariate di�erences. In

fact, A and Bmay di�er profoundly with respect to covari-

ates that in�uence µ, and yet confounding may be absent.

In other words, a covariate di�erence between A and B is a

necessary but not su�cient condition for confounding, as

can be seen when the impact of covariate di�erences may

balance each other out, leaving no confounding.

Suppose now that populations A and B di�er with

respect to certain covariates, and that these di�erences

have led to confounding of an association measure for the

e�ect measure of interest. �e responsible covariates are

then termed confounders of the associationmeasure. In the

above example, with µA − µB confounded for the e�ect

µA− µA, the factors responsible for the confounding (i.e.,

the factors that led to µA ≠ µB) are the confounders.

It can be deduced that a variable cannot be a con-

founder unless it can a�ect the outcome parameter µ

within treatment groups and it is distributed di�erently

among the compared populations (e.g., see Yule , who

uses terms such as “�ctitious association” rather than con-

founding).�ese two necessary conditions are sometimes
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o�ered together as a de�nition of a confounder. Nonethe-

less, counterexamples show that the two conditions are

not su�cient for a variable with more than two levels to

be a confounder (Greenland et al. a). Note that the

condition of a�ecting the outcome parameter is a causal

assertion and thus relies on background knowledge for jus-

ti�cation (Greenland and Robins ; Robins ; Pearl

).

Control of Confounding
Prevention of Confounding
An obvious way to avoid confounding is estimating

µA − µA is to obtain a reference population B for which

µB is known to equal µA. Such a population is some-

times said to be comparable to or exchangeablewithAwith

respect to the outcome under the reference treatment. In

practice, such a population may be di�cult or impossi-

ble to �nd.�us, an investigator may attempt to construct

such a population, or to construct exchangeable index and

reference populations.�ese constructions may be viewed

as design-based methods for the control of confounding.

Perhaps no approach is more e�ective for preventing

confounding by a known factor than restriction. For exam-

ple, gender imbalances cannot confound a study restricted

to women. However, there are several drawbacks: restric-

tion on enough factors can reduce the number of available

subjects to unacceptably low levels, andmay greatly reduce

the generalizability of results as well. Matching the treat-

ment populations on confounders overcomes these draw-

backs, and, if successful, can be as e�ective as restriction.

For example, gender imbalances cannot confound a study

in which the compared groups have identical proportions

of women. Unfortunately, di�erential losses to observa-

tion may undo the initial covariate balances produced by

matching.

Neither restriction nor matching prevents (although it

may diminish) imbalances on unrestricted, unmatched, or

unmeasured covariates. In contrast,7randomization o�ers
a means of dealing with confounding by covariates not

accounted for by the design. It must be emphasized, how-

ever, that this solution is only probabilistic and subject to

severe constraints in practice. Randomization is not always

feasible or ethical, and many practical problems (such

as di�erential loss and noncompliance) can lead to con-

founding in comparisons of the groups actually receiving

treatments x and x.

One somewhat controversial solution to noncompli-

ance problems is intent-to-treat analysis, which de�nes

the comparison groups A and B by treatment assigned

rather than treatment received. Confounding may, how-

ever, a�ect even intent-to-treat analyses, and (contrary to

widespread misperceptions) the bias in those analyses can

exaggerate the apparent treatment e�ect (Robins ).

For example, the assignments may not always be random,

as when blinding is insu�cient to prevent the treatment

providers from protocol violations. And, purely by bad

luck, randomization may itself produce allocations with

severe covariate imbalances between the groups (and con-

sequent confounding), especially if the study size is small

(Fisher ; Rothman ). Blocked (matched) random-

ization can help ensure that random imbalances on the

blocking factors will not occur, but it does not guarantee

balance of unblocked factors.

Adjustment for Confounding
Design-based methods are o�en infeasible or insu�cient

to prevent confounding. �us, there has been an enor-

mous amount of work devoted to analytic adjustments for

confounding. With a few exceptions, these methods are

based on observed covariate distributions in the compared

populations. Such methods can successfully control con-

founding only to the extent that enough confounders are

adequately measured. �en, too, many methods employ

parametric models at some stage, and their success may

thus depend on the faithfulness of the model to real-

ity. �ese issues cannot be covered in depth here, but a

few basic points are worth noting.�e simplest and most

widely trusted methods of adjustment begin with strati�-

cation on confounders. A covariate cannot be responsible

for confounding within internally homogeneous strata of

the covariate. For example, gender imbalances cannot con-

found observations within a stratum composed solely of

women. More generally, comparisons within strata can-

not be confounded by a covariate that is unassociated with

treatment within strata.�is is so, whether the covariate

was used to de�ne the strata or not. �us, one need not

stratify on all confounders in order to control confound-

ing; it su�ces to stratify on a balancing score (such as

a propensity score) that yields strata in which the con-

founders are unassociated with treatment.

If one has accurate background information on rela-

tions among the confounders, one may use this infor-

mation to identify sets of covariates statistically su�cient

for adjustment, for example by using causal diagrams or

conditional independence conditions (Pearl , ;

Greenland et al. ab; Glymour and Greenland ).

Nonetheless, if the strati�cation on the confounders is too

coarse (e.g., because categories are too broadly de�ned),

strati�cation may fail to adjust for much of the confound-

ing by the adjustment variables.

One of the most common adjustment approaches

today is to enter suspected confounders into a model

for the outcome parameter µ. For example, let µ be the

mean (expectation) of an outcome variable of interest Y ,
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let X be the treatment variable of interest, and let Z be

a suspected confounder of the X − Y relation. Adjust-

ment for Z is o�en made by �tting a generalized-linear

model (see 7Generalized Linear Models) g(µ) = g(α +

βx + γz) or some variant, where g(µ) is a strictly increas-

ing function such as the natural log ln(µ), as in log-

linear modeling, or the logit function ln{µ/( − µ)},

as in 7logistic regression; the estimate of β that results

is then taken as the Z-adjusted estimate of the X e�ect

on g(µ).

An o�-cited advantage of model-based adjustment is

that it allows adjustment for more variables and in �ner

detail than strati�cation. If however the form of the �t-

ted model cannot adapt well to the true dependence of

Y on X and Z, such model-based adjustments may fail

to adjust for confounding by Z. For example, suppose Z

is symmetrically distributed around zero within X levels,

and the true dependence is g(µ) = g(α + βx + γz);

then using the model g(µ) = g(α + βx + γz) will pro-

duce little or no adjustment for Z. Similar failures can arise

in adjustments based on models for treatment probabil-

ity (propensity scores). Such failures can be minimized

or avoided by using reasonably �exible models, by care-

fully checking each �tted model against the data, and by

combining treatment-probability and outcome models to

produce doubly robust e�ect estimators (Hirano et al. ;

Bang and Robins ).

Finally, if (as is o�en done) a variable used for adjust-

ment is not a confounder, bias may be introduced by the

adjustment (Greenland and Neutra ; Greenland et al.

b;Hernán et al. ; Pearl ).�e formof this bias

o�en parallels selection bias familiar to epidemiologists,

and tends to be especially severe if the variable is a�ected

by both the treatment and the outcome under study, as in

classic Berksonian bias (Greenland ). In some but not

all cases the resulting bias is a form of confounding within

strata of the covariate (Greenland et al. b); adjustment

for covariates a�ected by treatment can produce such con-

founding, even in randomized trials (Cox , Chap. ;

Greenland ).

Confounded Mechanisms Versus
Confounded Assignments
If the mechanism by which the observational units come

to have a particular treatment is independent of the poten-

tial outcomes of the units, the mechanism is sometimes

described as unconfounded or unbiased for µ (Rubin ;

Stone ); otherwise the mechanism is confounded or

biased. Randomization is the main practical example of

such a mechanism. Graphical models (see 7Causal Dia-
grams) provide an elegant algorithm for checking whether

the graphed mechanism is unconfounded within strata

of covariates (Pearl , ; Greenland et al. b;

Glymour and Greenland ). Note however that in typ-

ical epidemiologic usage the term “confounded” refers to

the result of a single assignment (the study group actu-

ally observed), not the behavior of the mechanism.�us

an unconfoundedmechanism can by chance produce con-

founded assignments.

�e latter fact resolves a controversy about adjustment

for baseline (pre-treatment) covariates in randomized tri-

als. Although Fisher asserted that randomized compar-

isons were “unbiased,” he also pointed out that particular

assignments could be confounded in the single-trial sense

used in epidemiology; see Fisher (, p. ). Resolution

comes from noting that Fisher’s use of the word “unbi-

ased” referred to the design and corresponds to an uncon-

founded assignmentmechanism; it was notmeant to guide

analysis of a given trial (which has a particular assign-

ment). Once the trial is underway and the actual treatment

allocation is completed, the unadjusted treatment-e�ect

estimate will be biased conditional on the observed allo-

cation if the baseline covariate is associated with treatment

in the allocation and the covariate a�ects the outcome; this

bias can be removed by adjustment for the covariate (Roth-

man ; Greenland and Robins , ; Greenland

et al. a).

Confounder Selection
An essential �rst step in the control of confounding is to

identify which variables among those measured satis�ed

the minimal necessary conditions to be a confounder.

�is implies among other things that the variables can-

not be a�ected by exposure or outcome; it thus excludes

intermediate variables and e�ects of exposure and dis-

ease, whose control could introduce Berksonian bias.

�is initial screening is primarily a subject-matter deci-

sion that requires consideration of the causal ordering

of the variables. Relatively safe candidate confounders

will be “pre-treatment” covariates (those occurring before

treatment or exposure), which have the advantage that

they cannot be intermediates or e�ects of exposure and

outcome. Exceptions occur in which control of certain

pre-treatment variables introduce bias (Pearl , ;

Greenland et al. b), although the bias so introduced

may be much less than the confounding removed (Green-

land ).

Variables that pass the initial causal screening are

sometimes called “potential confounders.” Once these are

identi�ed, the question arises as to which must be used for

adjustment. A common but unjusti�ed strategy is to select

confounders to control based on a test (usually a signi�-

cance test) of each confounder’s association with the treat-

ment X (a test of imbalance) or with the outcome Y , e.g.,
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using stepwise regression. Suppose Z is a pre-treatment

covariate (potential confounder). �e strategy of testing

the Z association with X arises from a confusion of two

distinct inferential problems:

. Do the treated (X = ) evince larger di�erences

from the untreated (X = ) with respect to Z than

one should expect from a random (or unconfounded)

assignment mechanism?

. Should we control for Z to estimate the treatment

e�ect?

A test of the X − Z association addresses question (a), but

not (b). For (b), the “large-sample” answer is that control

is advisable, regardless of whether the X − Z association is

random.�is is because an imbalance produces bias con-

ditional on the observed imbalance, even if the imbalance

derived from random variation.

�emistake of signi�cance testing for confounding lies

in thinking that one can ignore an imbalance if it is from

random variation. Random assignment only guarantees

valid performance of statistics over all possible treatment

allocations. It does not however guarantee validity con-

ditional on the observed Z imbalance, even though any

such imbalance must be random in a randomized trial.

�us the X − Z test addresses a real question (one rel-

evant to a �eld methodologist studying determinants of

response/treatment), but is irrelevant to the second ques-

tion (b) (Greenland and Neutra ; Robins andMorgen-

stern ; Greenland et al. a).

�e case of testing the Z association with Y devolves in

part to whether one trusts prior (subject-matter) knowl-

edge that Z a�ects Y (or is a proxy for a cause of Y)more

than the results of a signi�cance test in one’s own lim-

ited data.�ere are many examples in which a well-known

risk factor exhibits the expected association with Y in the

data, but for no more than chance reasons or sample-size

limitations, that association fails to reach conventional lev-

els of “signi�cance” (e.g., Greenland and Neutra ). In

such cases there is a demonstrable statistical advantage to

controlling Z, thus allowing subject-matter knowledge to

over-ride nonsigni�cance (Robins andMorgenstern ).

Another problematic strategy is to select a poten-

tial confounder Z for control based on how much the

e�ect estimate changes when Z is controlled. Like the

testing methods described above, it also lacks formal jus-

ti�cation and can exhibit poor performance in practice

(Maldonado and Greenland ). �e strategy can also

mislead if the treatment a�ects a high proportion of sub-

jects and one uses a “noncollapsible” e�ect measure (one

that changes upon strati�cation even if no confounding is

present), such as an odds ratio or rate ratio (Greenland and

Robins ; Greenland ; Greenland et al. a).

In practice, there may be too many variables to control

using conventional methods, so the issue of confounder

selection may seem pressing. Nonetheless, hierarchical-

Bayesian or other shrinkage methods may be applied

instead. �ese methods adjust for all the measured con-

founders by estimating the confounder e�ects using a prior

distribution for those e�ects. See Greenland (, )

for details. Some of these methods (e.g., the Lasso; Tibshi-

rani ) may drop certain variables entirely, and thus in

e�ect result in confounder selection; unlike signi�cance-

testing based selection, however, this selection has a justi-

�cation in statistical theory.
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�e term contagious distribution was apparently �rst used

by Neyman () for a discrete distribution that exhibits

clustering or contagious e�ect.�e classical Neyman Type

A distribution is one well-known example. However, con-

tagious distributions are used nowadays to describe a

plethora of distributions, many of which possess compli-

cated probability distribution expressed in terms of special

functions (see, for instance, Johnson et al. ).

It is instructive to give an account of the derivation of

the Neyman Type A distribution as developed by Neyman

() in his paper “On a new class of contagious distribu-

tions applicable in entomology and bacteriology.” Neyman

wanted to model the distribution of larvae on plots in a

�eld. He assumed that the number of clusters of eggs per

unit area, N, followed a Poisson distribution with mean θ

denoted by Poi(θ), while the number of larvae develop-

ing from the egg clusters Xi, i = , , . . . ,N is distributed as

another Poisson distribution Poi (ϕ). Mathematically, this

may be expressed as follows:

SN = X + X + . . . + XN

where SN is the total number of larvae per unit area.�e

distribution of SN is then a Neyman Type A.

�e above model is known as a true contagion model,

where the occurrence of “a favourable event depends on

the occurrence of the previous favorable events” (Gurland

). Among other terms used for the distribution aris-

ing from this model are generalized, clustered, stopped, or

stopped-sum distribution (see Douglas ; Johnson et al.

). It is convenient to represent the distribution of SN
concisely by

SN ∼ U ∨U,

which reads SN distribution is aU distribution generalized

by a U distribution. As an example, the Neyman Type A

distribution for SN , above, is

Neyman Type A ∼ Poi (θ) ∨ Poi (ϕ).

In addition, the probability generating function (pgf) of SN
distribution is

E[z
SN ] = g(g(z)),

where gi(z) is the pgf for the corresponding Ui, i = , 

distribution.
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Next, using the same example as above but instead, the

number of larvae per unit area is now considered to be dis-

tributed as a Poisson distribution, Poi (kθ), where due to

heterogeneity, the mean number of eggs that hatched into

larvae is assumed to vary with k following a Poisson distri-

bution Poi (ϕ).�e distribution for the number of larvae

per unit area is again a Neyman Type A.

�e model that gives rise to a distribution as in the

preceding formulation is known as an apparent contagion

model. Generally, this distribution arises when a parame-

ter of a U distribution is a random variable Ω that follows

a U distribution of its own. �is type of distribution is

also known as amixed, mixture, or compound distribution

(see Ord ; Johnson et al. ). A compound (mixture)

distribution can be represented by

U ∧
Ω
U,

which means that the U distribution is compounded by

U distribution (the distribution of Ω).U is known as the

compounding (mixing) distribution. �us, the Neyman

Type A distribution formulated through compounding is

represented by

Neyman Type A ∼ Poi (kθ)∧
k
Poi (ϕ)

�e pgf of a compound (mixture) distribution is

∫
ω
g ( z∣ ω) dF (ω)

where g(.) is the pgf for theU and F(.) is the cumulative

distribution function for U. �e class of mixed Poisson

distributions is a well-known class of compound distribu-

tions that has found applications in many areas of study

including biology, sociology, and medicine.

Note that both given examples of contagion models

lead to the Neyman Type A distribution.�e relationship

between the generalized and compound distributions is

given by the following theorem:

�eorem  (Gurland ) Let U be a random variable

with pgf [h (z)]
θ
, where θ is a given parameter. Suppose

now θ is regarded as a random variable. �en, whatever

be U

U ∧U ∼ U ∨U. ()

�is relation shows that it may not be possible to dis-

tinguish between the two types of contagion directly from

the data (Gurland ).

Contagious distributions have been studied by many

researchers including Feller (), Skellam (), Beall

and Rescia (), Gurland (), Hinz and Gurland

(), Khatri (), and Hill (), creating a rich

literature in this �eld.�e readers are referred toOrd (,

p. ) for a list of generalized and compound Poisson

distributions such as Polya-Aeppli, negative binomial, and

Hermite distributions. Other references for generalized

and compound distributions can be found in Douglas

(, Chaps.  and ) and Johnson et al. (, Chaps. 

and ).�ese references also describe statistical inference

for the contagious distributions. Recent review articles on

this subject are Gupta and Ong () and Karlis and

Xekalaki ().
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According to the central limit theorem (CLT) (see

7Central Limit�eorems), the distribution function Fn of
a normalized sum n−/(X + . . . + Xn) of n independent

random variables X, . . . ,Xn, having a common distribu-

tion with mean zero and variance σ  > , converges to the

distribution function Φσ of the normal distribution with

mean zero and variance σ , as n→∞. We will write Φ for

Φ for the case σ = .�e densities ofΦσ andΦ are denoted

by ϕσ and ϕ, respectively. In the case X
′
j s are discrete, Fn

has jumps and the normal approximation is not very good

when n is not su�ciently large. �is is a problem which

most commonly occurs in statistical tests and estimation

involving the normal approximation to the binomial and,

in its multi-dimensional version, in Pearson’s frequency

7chi-square tests, or in tests for association in categori-
cal data. Applying the CLT to a binomial random variable

T with distribution B(n, p), with mean np and variance

npq(q =  − p), the normal approximation is given, for

integers  ≤ a ≤ b ≤ n, by

P(a ≤ T ≤ b)≈Φ ((b − np)/
√
npq)−Φ ((a − np)/

√
npq).

()

Here ≈ indicates that the di�erence between its two sides

goes to zero as n→∞. In particular, when a = b, the bino-

mial probability P(T = b) = Cnbp
bqn−b is approximated

by zero.�is error is substantial if n is not very large. One

way to improve the approximation is to think graphically

of each integer value b of T being uniformly spread over

the interval [b − 


, b + 


].�is is the so called histogram

approximation, and leads to the continuity correction given

by replacing {a ≤ T ≤ b} by {a − 


≤ T ≤ b + 


}

P (a −



≤ T ≤ b +




) ≈ Φ ((b +




− np) /

√
npq)

−Φ ((a −



− np) /

√
npq). ()

To give an idea of the improvement due to this correc-

tion, let n= , p= .. �en P(T ≤ )= ., whereas

the approximation () gives a probability Φ(−.) =

., and the continuity correction () yields

Φ(−.) = .. Analogous continuity corrections

apply to the Poisson distribution with a large mean.

For a precise mathematical justi�cation of the conti-

nuity correction consider, in general, i.i.d. integer-valued

random variables X, . . . ,Xn, with lattice span , mean µ,

variance σ , and �nite moments of order at least four.�e

distribution function Fn(x) of n
−/

(X + . . . + Xn) may

then be approximated by the 7Edgeworth expansion (See
Bhattacharya and Ranga , p. , or Gnedenko and

Kolmogorov , p. )

Fn(x) = Φσ(x) − n
− 
 S (nµ + n



 x) ϕσ(x)

+ n
− 
 µ/(σ


)( − x


/σ

)ϕσ(x) +O(n

−
), ()

where S(y) is the right continuous periodic function y−




(mod ) which vanishes when y = 


.�us, when a is an

integer and x = (a − nµ)/
√
n, replacing a by a + 


(or

a− 


) on the right side of () gets rid of the discontinuous

term involving S.

Consider next the continuity correction for the (Mann-

Whitney-)Wilcoxon two sample test (see7Wilcoxon–Mann–
Whitney Test). Here one wants to test nonparametrically

if one distribution G is stochastically larger than another

distribution F, with distribution functionsG(.), F(.).�en

the null hypothesis is H : F(x) = G(x) for all x, and

the alternative is H : G(x) ≤ F(x) for all x, with strict

inequality for some x. �e test is based on independent

random samples X, . . . ,Xm and Y, . . . ,Yn from the two

unknown continuous distributions F and G, respectively.

�e test statistic isWs = the sum of the ranks of the Y
′
j s in

the combined sample ofm+ n X′i s and Y
′
j s.�e test rejects

H ifWs ≥ c, where c is chosen such that the probability

of rejection under H is a given level α. It is known (see

Lehmann , pp. –) thatWs is asymptotically normal

and E(Ws) = 


n(m + n + ), Var(Ws) = mn(m + n +

)/. SinceWs is integer-valued, the continuity correction

yields

P(Ws ≥ c∣H) = P (Ws ≥ c −



∣H) ≈  −Φ(z), ()

where z = (c − 


− 


n(m + n + )) /

√
mn(m + n + )/.

As an example, let m = , n = , c = . �en

P(Ws ≥  ∣ H) = ., and its normal approximation

is  − Φ(.) = ..�e continuity correction yields

the better approximation P(Ws ≥  ∣ H) = P(Ws ≥

. ∣ H) ≈  −Φ(.) = ..

�e continuity correction is also o�en used in  × 

contingency tables for testing for association between two

categories. It is simplest to think of this as a two-sample

problem for comparing two proportions p, p of individ-

uals with a certain characteristic (e.g., smokers) in two

populations (e.g., men and women), based on two inde-

pendent random samples of sizes n,n from the two pop-

ulations, with n = n + n. Let r, r be the numbers in the

samples possessing the characteristic. Suppose �rst that we
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wish to test H : p = p, against H : p < p. Con-

sider the test which rejects H, in favor of H, if r ≥ c(r),

where r = r+ r, and c(r) is chosen so that the conditional

probability (under H) of r ≥ c(r), given r + r = r, is

α.�is is the uniformly most powerful unbiased (UMPU)

test of its size (See Lehmann , pp. –, or Kendall

and Stuart , pp. –). �e conditional distribu-

tion of r, given r + r = r, is multinomial, and the test

using it is called Fisher’s exact test. On the other hand,

if nipi ≥  and ni( − pi) ≥  (i = , ), the normal

approximation is generally used to rejectH. Note that the

(conditional) expectation and variance of r are nr/n and

nnr(n− r)/[n

(n− )], respectively (See Lehmann ,

p. ).�e normalized statistic t is then

t = [r − nr/n]/
√
nnr(n − r)/[n(n − )], ()

and H is rejected when t exceeds z−α , the ( −

α)th quantile of Φ. For the continuity correction, one

subtracts 

from the numerator in (), and rejectsH if this

adjusted t exceeds z−α . Against the two-sided alternative

H : p ≠ p, Fisher’sUMPU test rejectsH if r is either too

large or too small.�e corresponding continuity corrected

t rejects H if either the adjusted t, obtained by subtract-

ing 

from the numerator in (), exceeds z−α/, or if the

t adjusted by adding 

to the numerator in () is smaller

than−z−α/.�is may be compactly expressed as

Reject H if V ≡ (n − ) [∣ rn − rn ∣ −



n]


/

(nnr(n − r)) > χ

−α(), ()

where χ−α() is the ( − α)th quantile of the 7chi-square
distribution with one degree of freedom. �is two-sided

continuity correction was originally proposed by F. Yates

in , and it is known as Yates’ correction. For numeri-

cal improvements due to the continuity corrections above,

we refer to Kendall and Stuart (, pp. –) and

Lehmann (, pp. –). For a critique, see Connover

(). If the sampling of n units is done at random from

a population with two categories (men and women), then

the UMPU test is still the same as Fisher’s test above, con-

ditioned on �xed marginals n,(and, therefore, n) and r.

Finally, extensive numerical computations in

Bhattacharya and Chan () show that the chisquare

approximation to the distribution of Pearson’s frequency

chi-square statistic is reasonably good for degrees of free-

dom  and , even in cases of small sample sizes, extreme

asymmetry, and values of expected cell frequencies much

smaller than . One theoretical justi�cation for this may

be found in the classic work of Esseen (), which shows

that the error of chisquare approximation is O(n−d/(d+))

for degrees of freedom d.
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Introduction
A control chart is a graphical statistical device used to

monitor the performance of a repetitive process. Control

charts were introduced by Shewhart in the s while

working forWestern Electric and Bell Labs and, since then,

they have been routinely used in Statistical Process Control

(SPC). According to Shewhart, control charts are useful to

de�ne the standard to be attained for a process, to help
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attaining that standard, and to judge whether that standard

has been reached.

Variability and Its Causes
Anymanufacturing or business process shows somedegree

of variability.�is is obviously true when little e�ort has

been made to try to keep the process stable around a tar-

get, but it continues to be true even when a lot of e�ort

has already been dedicated to stabilize the process. In

other words, the amount of variability can be reduced (as

measured, for example, by the output standard devia-

tion), but cannot be eliminated completely. �erefore,

some knowledge about the types of variability that can be

encountered in practice and the causes of this variability is

necessary.

Concerning the types of variability, one must recog-

nize at least the di�erence between stationary and non-

stationary behavior, the former being desirable, the latter

undesirable. A stationary process has �xed mean, vari-

ance and probability distribution, so that it is di�cult (if

not impossible) to perfectly attain this desirable state in

practice. A non-stationary process does not have �xed

mean, variance or probability distribution, so that its future

behavior is unpredictable. Moreover, any natural process,

when le� to itself, tends to be non-stationary, sometimes

in the long run, but most o�en in the short run. Conse-

quently, some control e�ort is almost always necessary to,

at least, induce stationarity in the process. Control charts

are useful for this purpose.

Concerning the causes of variability, the most obvi-

ous facts are that there are a lot of causes, that many of

them are unknown, and, consequently, that they are dif-

�cult to classify. Nevertheless, Shewhart suggested that it

is conceptually useful to classify the causes of variability

in two groups: common causes and special causes. Com-

mon causes are those that are still present when the process

has been brought to a satisfactory stationary state of con-

trol; they can be described as chance variation, because the

observed variation is the sum of many small e�ects having

di�erent causes. Special causes are those that have larger

e�ects and, hence, have the potential to send the process

out of control; hopefully, they can eventually be discovered

(assigned) and permanently removed from the system.

Control charts are useful tools to detect the presence

of special causes of variation worthy of removal.�ey do

so by modelling the likely performance of a process under

the in�uence of the common causes of variation, so that the

unexpected behavior (and possible non-stationarity) of the

process caused by the emergence of a special cause at any

time can be detected e�ciently.

Shewhart Charts
When Shewhart presented his control charts, he did not

claim any mathematical or statistical optimality for such

charts, but he did demonstrate that the cost of controlling

a process could o�en be reduced by using control charts.

Consequently, Shewhart control charts aremuchmore jus-

ti�able for their practical bene�ts than for their theoretical

properties.

A Basic Chart
Bearing this in mind, a Shewhart control chart for a mea-

surable quality characteristic is constructed in the fol-

lowing way. () Select the frequency of sampling and the

sample size; e.g., take n =  observations every  h. () Cal-

culate the sample average X̄t for every time interval t (e.g.,

every  h) and plot X̄t versus t for all the values of t at hand.

By doing so, one obtains a run chart. () Add a center line

(CL) to the run chart.�e ordinate of this horizontal line

can be a target value for the quality characteristic, a his-

torical mean of past observations, or simply the mean of

the observations at hand. () Add an upper control limit

(UCL) and a lower control limit (LCL). �ese horizon-

tal lines are usually situated symmetrically around the CL

and at a distance of three times the standard deviation of

the statistics plotted in the run chart (e.g., three times the

standard deviation of X̄t).

�is chart is used at every time interval t to take the

decision of whether the process should be considered to

be in a state of economic control or not.�e usual decision

rule is: () Decide that the process stays in control at time

t if the plotted statistics (X̄t) lies between the UCL and the

LCL, and continue plotting. () Declare an out of control

situation otherwise; in this case, a search for an assignable

cause should be started, which hopefully will eventually

lead to the identi�cation of this cause and its permanent

removal from the system.�is type of control procedure is

sometimes called process monitoring, or process surveil-

lance, and is a part of SPC. Figure  shows a Shewhart chart

for a random sample of values of X̄t having mean µ = 

and standard deviation σ = .�e chart does not show any

alarm.

Some Modifications of the Basic Chart
Under certain theoretical assumptions, the basic chart can

claim some type of optimality. However, it may not be

completely satisfactory in practice. Consequently, the form

of the basic chart and how it is used can be modi�ed in

many di�erent ways. For example, the control limits could

not be symmetrically placed around the CL or could not

necessarily lie at three standard deviations from the CL.
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Warning limits situated at two standard deviations from

the CL could also be plotted. Lines at one standard devia-

tion from the CL could be added.�e decision rule could

correspondingly be modi�ed using, for example, the so

called Western Electric rules, etc.

�e usefulness of thesemodi�cations of the basic chart

should be judged, in each particular application, on the

bases of the economical or practical advantages they pro-

vide. In doing so, the costs of declaring that the process is

in control when in fact is not, and vice versa, usually play a

role.�e elapsed time since the process starts to be out of

control until this state is detected can also play a role (true

alarm), as well as the time between consecutive declara-

tions of out of control situations when the process stays in

control (false alarm rate).�ese elapsed random times are

usually called run lengths (RLs) and their means are called

average run lengths (ARLs). Clearly, the frequency distri-

bution (or probability distribution) of the RL will depend

on whether the process is in control (RL for false alarms)

or out of control (RL for true alarms), and the ARL for

false alarms should be much larger than the ARL for true

alarms.

Some More Basic Charts
Control of the mean of a measurable quality characteris-

tic is important, but a process can also be out of control

because of excessive variation around its mean.�erefore,

in addition to the basic X̄ chart, previously described, it

is customary to simultaneously run a chart to control the

range (R-chart) or the standard deviation (S-chart) of the

observations taken every time interval t.

Similarly, when the quality characteristic is not mea-

surable, one can use a p-chart or an np-chart to control

the fraction nonconforming for each time interval t, or a

c-chart or a u-chart to control the total numbers (counts)

of nonconforming items for each period t.

Some Other Types of Control Charts
Basic Shewhart charts are useful to detect relatively large

and sporadic deviations from the state of control. However,

the control of a process may be jeopardized also by small

but persistent deviations from the state of control. �e

Western Electric rules may be considered as one of many

attempts to tackle this problem. However, a more formal

approach was suggested by Page (, ) by introduc-

ing the cumulative sum (CUSUM) charts. Moreover, the

introduction of the exponentially weighted moving aver-

age (EWMA) charts provided an alternative procedure.

More recently, cumulative score (CUSCORE) charts, spe-

cialized in detecting particular types of deviation from

the state of control, have also been suggested (e.g., by

Box and Ramírez ; Box and Luceño ; Box et al.

).
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CUSUM Charts
To be able to e�ciently detect small persistent deviations

from target occurring before and at period t, some use of

recent observations is necessary. CUSUM charts do so by

using the following statistics:

S
+
t = max [S

+
t− + (X̄t − k

+
); ] ;

S
−
t = max [S

−
t− + (−X̄t − k

−
); ] ; ()

where k+ and k− are called reference values.�e process

is considered to be in control until the period t at which

one of the inequalities S+t > h+ or S−t > h− becomes true,

where h+ and h− are called decision intervals. At this time,

an alarm is declared, and the search for a special cause (or

assignable cause, in Deming’s words) should begin.

�e reference values and decision intervals of the chart

are o�en chosen in the light of the theoretical ARLs that

they produce when the process is on target and when

the process is out of target by an amount of D times the

standard deviation of Xt (or, equivalently, D
√
n times the

standard deviation of X̄t).

If only one of the statistics in () is used, the CUSUM

chart is called one-sided; if both are used, the CUSUM

is called two-sided.�e theoretical evaluation of the run

length distributions for two-sided CUSUM charts is con-

siderably more di�cult than for their one-sided counter-

parts. Figure  shows a one-sided CUSUM chart based on

S+t , with reference value µ + .σ and decision interval at

σ , for the sample used in Fig. .�is chart produces an

alarm at t = .

EWMA Charts
EWMA charts use recent data in a di�erent way than

CUSUM charts.�e EWMA statistic is

X̃t = ( − λ)X̃t− + λX̄t , ()

where  < λ < , but most o�en . ≤ λ ≤ ..�e EWMA

statistic at time t is an average of all observations taken

at time t and before, in which each observation receives

a weight that decreases exponentially with its age. In other

words, Eq. () can be written as

X̃t = λ[X̄t + ( − λ)X̄t− + ( − λ)

X̄t− +⋯ ]. ()

�e smaller the value of λ, the smoother the chart.

�e process is usually considered to be in control until

the period t at which ∣X̃t ∣ reaches three times the standard

deviation of the EWMA statistic X̃t . It can be shown that

the variance of X̃t is the product of the variance of X̄t by a

factor λ[ − ( − λ)t]/( − λ), where t =  is the origin

of the chart. When an alarm is triggered, the search for a

special cause should start.

Information about the above mentioned charts and

many possible variants can be found in the bibliography

that follows.



Convergence of Random Variables C 

C

About the Author
Professor Luceño was awarded  Brumbaugh Award of

the American Society for Quality jointly with Professor

George E.P. Box. He is a co-author (with G.E.P. Box) of

the well known text Statistical Control By Monitoring and

Feedback Adjustment (JohnWiley & Sons, ), and (with

G.E.P. Box and M.A. Paniagua-Quiñones) ñ (John Wiley

& Sons, ). He is currently Associate Editor of Qual-

ity Technology and Quantitative Management, and Quality

Engineering.

Cross References
7Acceptance Sampling
7Industrial Statistics
7Multivariate Statistical Process Control
7Six Sigma
7Statistical Quality Control
7Statistical Quality Control: Recent Advances

References and Further Reading
Box GEP, Luceño A () Statistical control by monitoring and

feedback adjustment. Wiley, New York

Box GEP, Ramírez JG () Cumulative score charts. Qual reliab

Eng Int :–

Box GEP, Luceño A, Paniagua-Quiñones MA () Statisti-

cal control by monitoring and adjustment, nd edn. Wiley,

New York

DemingWE () Out of the crisis. Massachusetts Institute of Tech-

nology, Center for Advanced Engineering Studies, Cambridge

Khattree R, Rao CR (eds) () Handbook of statistics : statistics

in industry. Elsevier, Amsterdam

Luceño A, Cofiño AS () The random intrinsic fast initial

response of two-sided CUSUM charts. Test :–

Luceño A, Puig-Pey J () Evaluation of the run-length proba-

bility distribution for CUSUM charts: assessing chart perfor-

mance. Technometrics :–

Montgomery DC () Introduction to statistical quality control,

th edn. Wiley, New York

NIST/SEMATECH () e-Handbook of statistical methods.

http://www.itl.nist.gov/div/handbook/

Page ES () Continuous inspection schemes. Biometrika :

–

Page ES () On problems in which a change in a parameter occurs

at an unknown point. Biometrika :–

Ryan TP () Statistical methods for quality improvement. Wiley,

New York

Ruggery F, Kenetts RS, Faltin FW (eds) () Encyclopedia of

statistics in quality and reliability. Wiley, New York

Shewhart WA () Economic control of quality of manufacturing

product. Van Nostrand Reinhold, Princeton, NJ. Republished by

Quality Press, Milwaukee, 

Western Electronic Company () Statistical quality control hand-

book. Western Electric Corporation, Indianapolis

Convergence of Random
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Introduction
�e convergence of a sequence of random variables (RVs)

is of central importance in probability theory and in statis-

tics. In probability, it is o�endesired to understand the long

term behavior of, for example, the relative frequency of an

event, does it converge to a number? In what sense does

it converge? In statistics, a given estimator o�en has the

property that for large samples the values it takes are dis-

tributed around and are close to the value of the desired

parameter. In many situations the distribution of this esti-

mator can be approximated by a well known distribution,

which can simplify the analysis. �us it is necessary to

understand the types of convergence of such sequences,

and conditions under which they occur.

Four modes of convergence are presented here.

. Weak convergence, also called convergence in distribu-

tion or convergence in law, refers to the conditions

under which a sequence of distribution functions con-

verges to a cumulative distribution function (cdf).

. A second mode is convergence in probability, which

studies the limiting behavior of the sequence of prob-

abilities that for each n, a RV deviates by more than a

given quantity from a limiting RV.

. Convergence with probability one, or almost sure con-

vergence, studies the conditions under which the prob-

ability of a set of points in the sample space for which

a sequence of RVs converges to another RV is equal to

one.

. Convergence in the rth mean refers to the convergence

of a sequence of expected values. As it is to be expected,

there are some relations between the di�erentmodes of

converge.

�e results here are explained, for their formal proof, the

reader is referred to the included references. In general, the

RVs {Xn} cannot be assumed to be independent or iden-

tically distributed. For each value of the subscript n, the

distribution of Xn may change (Casella and Berger ).

In many cases, however, the sequence of dfs converge to

another df.

A large amount of literature exists on the convergence

of random variables. An excellent reference for under-

standing the de�nitions and relations is Rohatgi (). For
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a discussion of some of these modes of convergence and

as they apply to statistics, see Casella and Berger ().

Chow and Teicher (), Loeve () and Dudley ()

present amore formal and general approach to the concept

of convergence of randomvariables. In this paper, the nota-

tion {Xn} is used to represent the sequence X,X,X, . . .

Convergence in Distribution
Let {Xn} be a sequence of RVs de�ned on a sample space

(Ω,F,P), and let {Fn} be the corresponding sequence of

cdfs. LetX be a RVwith cdf F.�e sequence {Xn} is said to

converge in distribution to X if lim
n→∞

Fn(x) = F(x) at every

point where F(x) is continuous.�is type of convergence

is sometimes also called convergence in law and denoted

Xn
L
Ð→ X. A sequence of distribution functions does not

have to converge, and when it does:

. �e limiting function does not have to be a cdf itself.

Consider the sequence given by Fn(x) =  if x < n and

Fn(x) =  if x ≥ n; n = , , . . .�en, at each real value

x, Fn(x)→ , which is not a cdf.

. Convergence in distribution does not imply that the

sequence of moments converges.

For n = , , . . . , consider a sequence of cdfs {Fn}

de�ned by Fn(x) = , if x < ; Fn(x) =  − /n, for

 ≤ x < n; and Fn(x) =  for x ≥ n. �e sequence

of cdfs converges to the cdf F(x) =  for x ≥ , and

F(x) =  otherwise. For each n, the cdf Fn corresponds

to a discrete RV Xn that has probability function (pf)

given by P{Xn = } =  − /n and P{Xn = n} =

/n. �e limiting cdf F, corresponds to a RV X with

pf P(X = ) = . For k ≥ , the kth moment of

Xn is E (X
k
n) = ( − /n) + nk(/n) = nk−. Finally,

E(Xk) = , so that E (Xkn) does not converge to E(X
k
).

. Convergence in distribution does not imply convergence

of their pfs or probability density functions (pdfs). Let a

and b be �xed real numbers, and {Xn} a sequence of

RVs with pfs given by P{Xn = x} =  for x = b + a/n

and P{Xn = x} =  otherwise. None of the pfs assigns

any probability to the point x = b.�en P{Xn = x} →

, which is not a pf, but the sequence of cdfs {Fn} of

the RVs Xn converges to a cdf, F(x) =  for x ≥ b and

F(x) =  otherwise.

. For integer valued RVs, its sequence of pfs converges to

another pf if and only if the corresponding sequence of

RVs converges in distribution.

. If a sequence of RVs {Xn} converges in distribution to X

and c is a real constant, then {Xn + c}, and {cXn} con-

verge in distribution to {X + c}, and {cX}, respectively.

Convergence in Probability
Let {Xn} be a sequence of RVs de�ned on a sample space

(Ω,F,P).�e sequence {Xn} is said to converge in prob-

ability to a RV X, denoted by Xn
p
Ð→ X, if for every real

number ε > ,

lim
n→∞

P{∣Xn − X∣ > ε} = .

Convergence in probability of {Xn} to the RV X refers to

the convergence of a sequence of probabilities, real num-

bers to . It means that the probability that the distance

between Xn and X is larger than ε >  tends to  as the n

increases to in�nity. It does not mean that given ε > , we

can �nd N such that ∣Xn − X∣ < ε for all n ≥ N.

Convergence in probability, behaves in many respects

as one would expect with respect to common arithmetic

operations and under continuous transformations. �e

following results hold (Rohatgi ):

. Xn
p
Ð→ X if and only if Xn − X

p
Ð→ .

. If Xn
p
Ð→ X and Xn

p
Ð→ Y , then P{X = Y} = .

. If Xn
p
Ð→ X, then Xn − Xm

p
Ð→ , as n,m→∞.

. If Xn
p
Ð→ X and Yn

p
Ð→ Y , then Xn + Yn

p
Ð→ X + Y ,

and Xn − Yn
p
Ð→ X − Y .

. If Xn
p
Ð→ X and k is a real constant then kXn

p
Ð→ kX.

. If Xn
p
Ð→ k then Xn

p
Ð→ k.

. If Xn
p
Ð→ a and Yn

p
Ð→ b; a, b real constants, then

XnYn
p
Ð→ ab.

. If Xn
p
Ð→  then /Xn

p
Ð→ .

. If Xn
p
Ð→ a and Yn

p
Ð→ b; a, b real constants, b ≠ ,

then Xn/Yn
p
Ð→ a/b.

. If Xn
p
Ð→ X and Y is a RV then XnY

p
Ð→ XY .

. If Xn
p
Ð→ X and Yn

p
Ð→ Y , then XnYn

p
Ð→ XY .

. Convergence in probability is stronger than conver-

gence in distribution; that is, if Xn
p
Ð→ X then

Xn
L
Ð→X.

. Let k be a real number, then convergence in distribu-

tion to k implies convergence in probability to k, that

is, if Xn
L
Ð→ k then Xn

p
Ð→ k.

. In general, convergence in distribution does not imply

convergence in probability. For an example, con-

sider the identically distributed RVsX,X,X, . . . with

sample space {, }, such that for every n, P(Xn =

,X = )=P(Xn = ,X = ) =  and P(Xn = ,X =

) = P(Xn = ,X = ) =

/. Because X,Xn, are

identically distributed RVs, Xn
L
Ð→ X, but P{∣Xn − X∣

>

/} ≥ P{∣Xn − X∣ = } =  ≠ . (Rohatgi ).



Convergence of Random Variables C 

C

0.400

(0.25 + ε)

(0.25 – ε)

(0.25 + ε)

(0.25 – ε)

0.350

x/n

0.300

0.250

0.200

0.150

0.100
500 1,000 1,500 2,000 n

Ten series of , trials each, of a Binomial (, .) RV
X were simulated. The ratio of the running total of suc-
cesses x, to the number of trials n is plotted for each
series. For X/n to converge in probability to . implies
for this experiment, that as n increases, for fixed ε, the
probability of observing a series outside the interval
(. − ε, . + ε), will decrease to zero. It does not
mean there is a value N such that all the series that we
can possibly simulatenwill be found inside the interval
for all n > N.

Convergence of Random Variables. Fig.  Illustration of convergence in probability

. Convergence in probability does not imply that the kth

moments converge, that is, Xn
p
Ð→ X does not imply

that E (Xkn) → E(Xk) for any integer k > . �is is

illustrated by the example in () above.

Figure  illustrates the concept of convergence in prob-

ability for series of sample means of RVs from a Bino-

mial(, .) distribution. �e following results further

relate convergence in distribution and convergence in

probability. Let {Xn,Yn},n = , , . . . be a sequence of pairs

of random variables, and let c be a real number.

. If ∣Xn − Yn ∣
p
Ð→  and Yn

L
Ð→ Y , then Xn

L
Ð→ Y .

. If Xn
L
Ð→ X and Yn

p
Ð→ c, then Xn + Yn

L
Ð→ X + c.

�is is also true for the di�erence Xn − Yn.

. If Xn
L
Ð→ X and Yn

p
Ð→ c then XnYn

L
Ð→ cX (for

c ≠ ) and XnYn
p
Ð→  (for c = ).

. If Xn
L
Ð→ X and Yn

p
Ð→ c then Xn/Yn

L
Ð→ X/c

(for c ≠ ).

Almost Sure Convergence
Let {Xn} be a sequence of RVs de�ned on a sample space

(Ω,F,P).�e sequence {Xn} is said to converge to X with

probability one or almost surely, denoted Xn
as
Ð→ X if

P ( lim
n→∞

Xn = X) = .

Almost sure convergence of a sequence of RVs {Xn}

to an RV X, means that the probability of the event

{ω; lim
n→∞

Xn(ω) = X(ω)} is one (see also 7Almost Sure

Convergence of Random Variables).�at is, the set of all

points ω in the sample space Ω, where Xn(ω) converges

to X(ω), has probability one. It is not required that the

sequence of functions {Xx(ω)} converge to the function

X(ω) pointwise, for all ω in the sample space, only that

the set of such ω has probability one.

. Convergence almost surely implies convergence in

probability. If the sequence of random variables {Xn}

converges almost surely toX then it converges in prob-

ability to X.
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. Skorokhod’s representation theorem shows that if a

sequence of RVs {Xn} converges in distribution to an

RV X, then there exists a sequence of random vari-

ables {Yn}, identically distributed as {Xn} such that

{Yn} converges almost surely to a RV Y , which itself

is identically distributed as X (Dudley ).

. Continuity preserves convergence in distribution, in

probability, and almost sure convergence. If Xn con-

verges in any of these modes to X, and f is a continu-

ous function de�ned on the real numbers, then f (Xn)

converges in the same mode to f (X).

. If {Xn} is a strictly decreasing sequence of positive ran-

dom variables, such thatXn converges in probability to

, then Xn converges almost surely to .

. Convergence in probability does not imply conver-

gence almost surely. Consider (Casella and Berger

) the sample space given by the interval [, ], and

the uniform probability distribution. Consider the RV

X(ω) = ω and let {Xn} be de�ned by

X(ω) = ω + I[,](ω), X(ω) = ω + I[,/](ω),

X(ω) = ω + I[/,](ω), X(ω) = ω + I[,/](ω),

X(ω) = ω+ I[/,/](ω), X(ω) = ω+ I[/,](ω),

and so on. Here IA(ω) is the indicator function of the

set A. �en {Xn} converges in probability to X, but

does not converge almost surely since the value Xn(ω)

alternates between ω and ω +  in�nitely o�en.

Convergence in the rth Mean
De�nition Let {Xn} be a sequence of RVs de�ned on a

samplespace(Ω,F,P)�esequence{Xn} issaidtoconverge

to X in the rth mean, r ≥ , if E(∣Xn∣r) <∞, E(∣X∣r) <∞

and lim
n→∞

E(∣Xn − X∣
r
) = .

. When r =  we say that {Xn} converges in the mean,

while for r = , we say that {Xn} converges in themean

square.

. If a sequence {Xn} converges in the rth mean, and

s < r, then {Xn} converges in the sth mean. For

example, convergence in the mean square implies con-

vergence in the mean.�is means that if the variances

of a sequence converge, so do the means.

. Convergence in the rth mean implies convergence in

probability, if {Xn} converges in the rth mean to X,

then {Xn} converges in probability to X. However,

the converse is not true. For an example, consider the

sequence {Xn} with probability function de�ned by

P(Xn = ) =  −


n
and P(Xn = n) =



n
for r > .

(Rohatgi ).
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Introduction
Prior to  there was little awareness within statistics

or the applied sciences generally that a single observation

can in�uence a statistical analysis to a point where infer-

ences drawn with the observation included can be diamet-

rically opposed to those drawn without the observation.

�e recognition that such in�uential observations do occur

with notable frequency began with the  publication of

Cook’s Distance, which is a means to assess the in�uence

of individual observations on the estimated coe�cients in

a linear regression analysis (Cook ). Today the detec-

tion of in�uential observations is widely acknowledged as

an important part of any statistical analysis and Cook’s

distance is a mainstay in linear regression analysis. Gen-

eralizations of Cook’s distance and of the underlying ideas

have been developed for application in diverse statistical

contexts. Extensions of Cook’s distance for linear regres-

sion along with a discussion of surrounding methodology

were presented by Cook and Weisberg ().

Cook’s distance and its direct extensions are based

on the idea of contrasting the results of an analysis with

and without an observation. Implementation of this idea

beyond linear and7generalized linearmodels can be prob-
lematic. For these applications the related concept of local

in�uence (Cook ) is used to study the touchiness of an

analysis to local perturbations in the model or the data.

Local in�uence analysis continues to be an area of active

investigation (see, for example, Zhu et al. ).

Cook’s Distance
Consider the linear regression of a response variable Y on

p predictors X, . . . ,Xp represented by the model

Yi = β + βXi +⋯ + βpXip + εi,

where i = , . . . ,n indexes observations, the β’s are the

regression coe�cients and ε is an error that is independent

of the predictors and has mean  and constant variance

σ .�is classic model can be represented conveniently in

matrix terms as Y = Xβ + ε. Here, Y = (Yi) is the n × 

vector of responses, X = (Xij) is the n × (p + ) matrix

of predictor values Xij, including a constant column to

account for the intercept β, and ε = (εi) is the n×  vector

of errors. For clarity, the ith response Yi in combination

with its associated values of the predictors Xi, . . . ,Xip is

called the ith case. Let β̂ denote the ordinary least squares
(OLS) estimator of the coe�cient vector β based on the
full data and let β(i) denote the OLS estimator based on

the data a�er removing the ith case. Let s denote estima-

tor of σ  based on the OLS �t of the full dataset – s the

residual sum of squares divided by (n − p − ).

Cook () proposed to assess the in�uence of the

ith case on β̂ by using a statistic Di, which subsequently
became known as Cook’s distance, that can be expressed

in three equivalent ways:

Di =
(β̂ − β̂(i))

TXTX(β̂ − β̂(i))

(p + )s
()

=
(Ŷ − Ŷ(i))T(Ŷ − Ŷ(i))

(p + )s
()

=
ri
p + 

×
hi

 − hi
. ()

�e �rst form () shows that Cook’s distance measures

the di�erence between β̂ and β̂(i) using the inverse of the

contours of the estimated covariance matrix s(XTX)− of
β̂ and scaling by the number of terms (p+ ) in the model.
�e second form shows that Cook’s distance can be viewed

also as the squared length of the di�erence between the n×

vector of �tted values Ŷ = Xβ̂ based on the full data and
the n ×  vector of �tted values Ŷ(i) = Xβ̂(i) when β is
estimated without the ith case.

�e �nal form () shows the general characteristics of

cases with relatively large values of Di.�e ith leverage hi,

 ≤ hi ≤ , is the ith diagonal of the projection matrix

H = X(XTX)−X that puts the “hat” onY, Ŷ = HY. It mea-
sures how far the predictor values Xi = (Xi, . . . ,Xip)

T
for

the ith case are from the average predictor value X. If Xi is
far fromX then the ith casewill have substantial pull on the
�t, hi will be near its upper bound of , and the second fac-

tor of () will be very large. Consequently, Di will be large

unless the �rst factor in () is small enough to compensate.

�e second factor tells us about the leverage or pull that

Xi has on the �tted model, but it does not depend on the
response and thus says nothing about the actual �t of the

ith case.�at goodness of �t information is provided by ri
in �rst factor of (): ri is the Studentized residual for the

ith case – the ordinary residual for the ith case divided by

s
√
 − hi.�e squared Studentized residual r


i will be large

when Yi does not �t the model and thus can be regarded as

an outlier, but it says nothing about leverage. In short, the
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�rst factor gives information on the goodness of the �t of

Yi, but it says nothing about leverage, while the second fac-

tor gives the leverage information but says nothing about

goodness of �t. When multiplied, these factors combine to

give a measure of the in�uence of the ith case.

�e Studentized residual ri is a common statistic for

testing the hypothesis that Yi is not an outlier. �at test

is most powerful when hi is small, so Xi is near X, and
least powerful when hi is relatively large. However, lever-

age or pull is weakest when hi is small and strongest when

hi is large. In other words, the ability to detect 7outliers is
strongest where the outliers tend to be the least in�uential

and weakest where the outliers tend to be the most in�u-

ential.�is gives another reason why in�uence assessment

can be crucial in an analysis.

Cook’s distance is not a test statistic and should not by

itself be used to accept cases or reject cases. It may indicate

an anomalous case that is extramural to the experimen-

tal protocol or it may indicate the most important case

in the analysis, one that points to a relevant phenomenon

not re�ected by the other data. Cook’s distance does not

distinguish these possibilities.

Illustration
�e data that provided the original motivation for the

development of Cook’s distance came from an experiment

on the absorption of a drug by rat livers. Nineteen rats

were given various doses of the drug and, a�er a �xed wait-

ing time, the rats were sacri�ced and the percentage Y of

the dose absorbed by the liver was measured.�e predic-

tors were dose, body weight and liver weight.�e largest

absolute Studentized residual is max ∣ri∣ = ., which is

unremarkablewhen adjusting formultiple testing.�e case

with the largest leverage . has a modest Studentized

residual of ., but a relatively large Cook’s distance of

. – the second largest Cook’s distance is .. Body

weight and dose have signi�cant e�ects in the analysis of

the full data, but there are no signi�cant e�ects a�er the

in�uential case is removed. It is always prudent to study

the impact of cases with relatively large values of Di and

all case for which Di > .. �e most in�uential case in

this analysis �ts both of these criteria.�e rat data are dis-

cussed inCook andWeisberg () and available from the

accompanying so�ware.
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Copulas were introduced by Sklar in  (Sklar ). In a

statistical model they capture the dependence structure of

the random variables involved, whatever the distribution
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functions of the single random variables.�ey also allow

the construction of families of bivariate or multivariate

distributions.

�e de�nition of the notion of copula relies on those of

d-box (De�nition ) and ofH-volume (De�nition ). Here,

and in the following, we put I := [, ].

De�nition  Let a = (a, a, . . . , ad) and b = (b,

b, . . . , bd) be two points in Rd, with  ≤ aj ≤ bj ≤ 

(j ∈ {, , . . . , d}); the d-box [a,b] is the cartesian product

[a,b] =
d

∏
j=

[aj, bj],

De�nition  For a function H : Rd → R, the H-volume
VH of the d-box [a,b] is de�ned by

VH ([a,b]) :=∑
v
sign(v)H(v),

where the sum is taken over the d vertices v of the box [a,b];
here

sign(v) =
⎧⎪⎪
⎨
⎪⎪⎩

, if vj = aj for an even number of indices,

−, if vj = aj for an odd number of indices.

De�nition  A function Cd : Id → I is a d-copula if

(a) Cd(x, x, . . . , xd) = , if xj =  for at least one index

j ∈ {, , . . . , d};

(b) when all the arguments of Cd are equal to , but for the

j-th one, then

Cd(, . . . , , xj, , . . . , ) = xj;

(c) the VCd -volume of every d-box [a,b] is positive,
VCd ([a,b]) ≥ .

�e set of d-copulas (d ≥ ) is denoted by Cd; in particular,

the set of (bivariate) copulas is denoted by C.

Property (c) is usually referred to as the “d-increasing

property of a d-copula”.�us every copula is the restric-

tion to the unit cube Id of a distribution function that
concentrates all the probability mass on Id and which has
uniformmargins (and this may also serve as an equivalent

de�nition).

It is possible to show that Cd is a compact set in the set

of all continuous functions from Id into I equipped with
the product topology, which corresponds to the topology

of pointwise convergence. Moreover, in Cd pointwise and

uniform convergence are equivalent.

Everyd-copula satis�es the Fréchet–Hoe�ding bounds:

for all x,…, xd in I, one has

Wd(x, . . . , xd) ≤ C(x, . . . , xd) ≤Md(x, . . . , xd), ()

where

Wd(x, . . . , xd) := max{, x + ⋅ ⋅ ⋅ + xd − d + }

Md(x, . . . , xd) := min{x, . . . , xd}.

Also relevant is the “independence copula”

Πd(x, . . . , xd) :=
d

∏
j=
xj.

While Πd and Md are copulas for every d ≥ , Wd is a

copula only for d = , although the lower bound provided

by () is the best possible.

● Πd is the distribution function of the random vector

U = (U,U, . . . ,Ud) whose components are indepen-

dent and uniformly distributed on I.
● Md is the distribution function of the vector

U = (U,U, . . . ,Ud) whose components are uni-

formly distributed on I and such that U = U = ⋅ ⋅ ⋅ =
Ud almost surely.

● W is the distribution function of the vector U =

(U,U) whose components are uniformly distributed

on I and such that U =  −U almost surely.

�e importance of copulas for the applications in

statistics stems from Sklar’s theorem.

�eorem  (Sklar ) Let H be a d-dimensional distri-

bution function withmargins F, F,…, Fd, and let Aj denote

the range of Fj, Aj := Fj(R) ( j = , , . . . , d). �en there

exists a d-copula C, uniquely de�ned on A ×A × ⋅ ⋅ ⋅ ×Ad,

such that, for all (x, x, . . . , xd) ∈ Rd,

H(x, x, . . . , xd) = C (F(t),F(t), . . . ,Fd(td)) . ()

Conversely, if F, F,…, Fd are distribution functions, and

if C is any d-copula, then the function H : Rd → I de�ned
by () is a d-dimensional distribution function with margins

F, F,…, Fd.

For a compact and elegant proof of this result see

(Rüschendorf ).

�e second (“converse”) part of Sklar’s theorem is espe-

cially important in the construction of statistical models,

since it allows to proceed in two separate steps:

● Choose the one-dimensional distribution functions F,

F,… , Fd that describe the behavior of the individual

statistical quantities (random variables) X, X,… , Xd
that appear in the model.

● Fit these in () bymeans of a copulaC that captures the

dependence relations among X, X,… , Xd.
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�ese two steps are independent in the sense that, once a

copula C has been chosen, any choice of the distribution

functions F, F,…, Fd is possible.

It should be stressed that the copula whose exis-

tence is established in Sklar’s theorem is uniquely de�ned

only when the distribution functions have no discrete

component; otherwise, there are, in general, several copu-

las that coincide on A × A × ⋅ ⋅ ⋅ × Ad and which satisfy

(). �is lack of uniqueness may have important conse-

quences when dealing with the copula of random variables

(see, e.g., (Marshall )).

�e introduction of copulas in the statistical litera-

ture has allowed an easier way to construct models by

proceeding in two separate steps: (i) the speci�cation of

the marginal laws of the random variables involved and

(ii) the introduction of a copula that describes the depen-

dence structure among these variables. In many applica-

tions (mainly in Engineering) this has allowed to avoid

the mathematically elegant and easy-to-deal, but usually

unjusti�ed, assumption of independence.

In view of possible applications, it is important to have

at one’s disposal a stock of copulas.Many families of bivari-

ate copulas can be found in the books by Nelsen (),

by Balakrishnan and Lai () and Jaworski et al. ().

Here we quote only the gaussian, the meta-elliptical (Fang

et al. ) and the extreme-value copulas (Ghoudi et al.

). A popular family of copulas is provided by the

Archimedean copulas, which, in the two-dimensional case,

are represented in the form

Cφ(s, t) = φ
[−]

(φ(s) + φ(t)) ,

where the generator φ : [, ] → [,+∞] is continuous,

strictly decreasing, convex and φ() = , and φ[−]
is the

pseudo-inverse of φ, de�ned by φ[−]
(t) := φ−(t), for

t ∈ [, φ()], and by , for t ∈ [φ(),+∞].�ese copu-

las depend on a function of a single variable, the generator

φ; as a consequence, the statistical properties of a pair of

random variables havingCφ as their copula are easily com-

puted in terms of φ (Genest and MacKay ; Nelsen

). For the multivariate case the reader is referred to

the paper by McNeil and Nešlehová (), where the

generators of a such a copula are completely characterized.

Notice, however, that the choice of a symmetric cop-

ula, in particular of an Archimedean one, means that the

random variables involved are exchangeable, if they have

the same distribution. �e e�ort to avoid this limitation

motivates the recent great interest in the construction of

nonsymmetric copulas (see, e.g., Liebscher ()).

It must also be mentioned that many methods of

construction for copulas have been introduced; here we

mention

● Ordinal sums (Mesiar and Sempi );

● Shu�es of Min (Mikusiński et al. ) and its gener-

alization to an arbitrary copula (Durante et al. );

● �e ∗-product (Darsow et al. ) and its generaliza-

tion (Durante et al. a);

● Transformations of copulas, Ch(u, v) := h[−]

(C(h(u),h(v))), where the function h : I → I is
concave (Durante and Sempi );

● Splicing of symmetric copulas (Durante et al. b;

Nelsen et al. );

● Patchwork copulas (De Boets and De Meyer ;

Durante et al. );

● Gluing of copulas (Siburg and Stoimenov ).

A strong motivation for the development of much of

copula theory in recent years has come from their appli-

cations in Mathematical Finance (see, e.g., (Embrechts

et al. ), in Actuarial Science (Free and Valdez ),

and in Hydrology (see, e.g., (Genest and Favre ;

Salvadori et al. )).
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Mikusiński P, Sherwood H, Taylor MD () Shuffles of min.

Stochastica :–

Nelsen RB () An introduction to copulas, Lecture Notes in

Statistics , nd edn. Springer, New York

Nelsen RB, Quesada Molina JJ, Rodríguez Lallena JA, Úbeda

Flores M () On the construction of copula and quasi-

copulas with given diagonal sections. Insurance Math Econ

:–

Rüschendorf L () On the distributional transform, Sklar’s the-

orem, and the empirical copula process. J Statist Plan Inference

:–

Salvadori G, De Michele C, Kottegoda NT, Rosso R () Extremes

in nature. An approach using copulas, Water Science and Tech-

nology Library, vol . Springer, Dordrecht

Siburg KF, Stoimenov PA () Gluing copulas. Commun Stat

Theory and Methods :–

Sklar A () Fonctions de répartition à n dimensions et leurs

marges. Publ Inst Stat Univ Paris :–

Copulas in Finance

Cherubini Umberto

Associate Professor of Mathematical Finance, MatematES

University of Bologna, Bologna, Italy

Introduction
Correlation trading denotes the trading activity aimed at

exploiting changes in correlation or more generally in the

dependence structure of assets or risk factors. Likewise,

correlation risk is de�ned as the exposure to losses trig-

gered by changes in correlation.�e copula function tech-

nique, which enables analyzing the dependence structure

of a joint distribution independently from the marginal

distributions, is the ideal tool to assess the impact of

changes in market comovements on the prices of assets

and the amount of risk in a �nancial position. As far as

the prices of assets are concerned, copula functions enable

pricing multivariate products consistently with the prices

of univariate products. As for risk management, copula

functions enable assessing the degree of diversi�cation in

a �nancial portfolio as well as the sensitivity of risk mea-

sures to changes in the dependence structure of risk fac-

tors. �e concept of consistency between univariate and

multivariate prices and risk factors is very similar, and

actually parallel, to the problem of compatibility between

multivariate probability distributions and distribution of

lower dimensions. In �nance, this concept is endowedwith

a very practical content, since it enables designing strate-

gies involving univariate and multivariate products with

the aim of exploiting changes in correlation.

Copulas and Spatial Dependence in
Finance
Most of the applications of copula functions in �nance

are limited to multivariate problems in a cross-sectional

sense (as econometricians are used to saying), or in a

spatial sense (as statisticians prefer). In otherwords, almost

all the applications have to do with the dependence struc-

ture of di�erent variables (prices or losses in the case of

�nance) at the same date.�e literature on applications like

these is too large to be quoted here in detail, and we refer

the reader to the bibliography below and to those in Bouyé

et al. () and Cherubini et al. () for more details.

Pricing Applications
Standard asset pricing theory is based on the requirement

that the prices of �nancial products must be such that

no arbitrage opportunities can be exploited, meaning that

no �nancial strategy can be built yielding positive return
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with no risk. �e price consistent with absence of arbi-

trage opportunities is also known as the “fair value” of

the product. �e fundamental theorem of �nance states

that this amounts to assert that there must exist a prob-

ability measure, called risk-neutral measure, under which

the expected future returns on each and every asset must

be zero, or, which is the same, that the prices of �nan-

cial assets must be endowed with the martingale property,

when measured with that probability measure.�en, the

price of each asset promising some payo� in the future

must be the expected value with respect to the same prob-

ability measure. �is implies that if the payo� is a func-

tion of one risk factor only, the price is the expected

value with respect to a univariate probability measure. If

the payo� is instead a function of more than one vari-

able, then it must be computed by taking expectations

with respect to the joint distribution of the risk factors.

Notice that this implies that there must be a relationship

of price consistency between the prices of univariate and

multivariate products, and more generally there must be

compatibility relationships (in the proper meaning of the

term in statistics) among prices. �is is particularly true

for derivative products promising some payments contin-

gent on a multivariate function of several assets.�ese are

the so-called basket derivative products, which are mainly

designed on common equity stock (equity derivatives), or

insurance policies against default of a set of counterpar-

ties (credit derivatives). �e same structure may be used

for products linked to commodities or actuarial risks.

�ere are also products called “hybrids” that include dif-

ferent risk factors (such as market risk, i.e., the risk of

market movements and default of some obligors) in the

same product. For the sake of illustration, we provide

here two standard examples of basket equity and credit

derivatives:

Example  (Altiplano Note) �ese are so-called digital

products, that is, paying a �xed sum if some event takes

place at a given future dateT. Typically, the event is de�ned

as a set of stocks or market indexes, and the product pays

the �xed sum if all of them are above some given level, typ-

ically speci�ed as a percentage of the initial level.�e price

of this product is of course the joint risk-neutral proba-

bility that all the assets be above a speci�ed level at time

T : Q(S(T) > K, S(T) > K, . . . , Sm(T) > Km),

where Ki are the levels (so-called strike prices). Consider

now that we can actually estimate the marginal distribu-

tions from the option markets, so that we can price each

Qi(Si(T) > Ki). As a result, the only reasonwhy one wants

to invest in the multivariate digital product above instead

of on a set of univariate ones is to exploit changes in corre-

lation among the assets. To put it in other terms, the value

of a multivariate product can increase even if the prices

of all the univariate products remain unchanged, and this

may occur if the correlation increases. Copula functions

are ideal tools to single out this e�ect.

Example  (CollateralizedDebtObligation (CDO)) Today

it is possible to invest in portfolios of credit derivatives. In

nontechnical terms, we can buy and sell insurance (“protec-

tion” is the term inmarket jargon) on the �rst x% losses on

defaults of a set of obligors (called “names”).�is product is

called − x% equity tranche of a portfolio of credit losses.

For the sake of simplicity assume  names and a –%

equity tranche, and assume that in case of default, each loss

is equal to . So, this tranche pays insurance the �rst time a

default occurs (it is also called a �rst-to-default protection).

Again, we can easily recover the univariate probabilities of

default from other products, namely the so-called credit

default swap (CDS)market. So, we can price the protection

for every single name in the basket.�e price of the �rst-to-

default must then be compatible with such prices. In fact,

with respect to such prices, the multivariate product is dif-

ferent only because it allows to invest in correlation. Again,

the equity tranche can increase in value even though the

values of single-insurance CDS for all the names remain

constant, provided that the correlation of defaults increase.

Even in this case, copula functions provide the ideal tool to

evaluate and trade the degree of dependence of the events

of default.

Risk Management
�e riskmanager faces the problemofmeasuring the expo-

sure of the position to di�erent risk factors. In the stan-

dard practice, he transforms the �nancial positions in the

di�erent assets and markets into a set of exposures (buck-

ets, in jargon) to a set of risk factors (mapping process).

�e problem is then to estimate the joint distribution of

losses L,L,L, . . . ,Lk, on these exposures and de�ne a

risk measure on this distribution. Typical measures are

Value-at-Risk (VaR) andExpected Shortfall (ES)de�ned as

VaR(Li) ≡ inf(x : Hi(Li) > −α) ES ≡ E(Li∣Li ≥ VaR)

whereHi(.) is the marginal probability distribution of loss

Li. �e risk measure of the overall portfolio will analo-

gously be

VaR(
k

∑
i=
Li) ≡ inf (x : H(

k

∑
i=
Li) >  − α)

ES ≡ E(
k

∑
i=
Li∣Li ≥ VaR)

where H(.) is now the probability distribution of the

sum of losses. It is clear that the relationship between
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univariate and multivariate risk measures is determined

by the dependence structure linking the losses themselves.

Again, copula functions are used to merge these risk mea-

sures together. Actually, if the max(. , .) instead of the sum

were used as the aggregation operator, the risk measure

would use the copula function itself as the aggregated

distribution of losses.

Copula Pricing and Arbitrage
Relationships
Using copula functions is very easy to recover arbitrage

relationships (i.e., consistency, or compatibility relation-

ships) among prices of multivariate assets.�ese relation-

ships directly stem from links between copula functions

representing the joint distribution of a set of events and

those representing the joint distribution of the comple-

ment sets. A survival copula is de�ned as

Q(S >K, S >K, . . . , Sm >Km)=C(−u, −u, . . . , −um)

�e relevance of this relationship in �nance is clear because

it enforces the so-called put-call parity relationships.

�ese relationships establish a consistency link between

the price of products paying out if all the events in a set take

place and products paying out if none of them take place.

Going back to the Altiplano note above, we may provide a

straightforward check of this principle.

Example  (Put-Call Parity of Altiplano Notes) Assume

an Altiplano Note like that in Example , with the only

di�erence that the �xed sum is paid if all the assets Si are

below (instead of above) the same prede�ned thresholds

Ki. Clearly, the value of the product will be Q(S(T) ≤

K, S(T) ≤ K, . . . , Sm(T) ≤ Km). Given themarginal dis-

tributions, the dependence structure of this product, which

could be called put, or bearish, Altiplano should be rep-

resented by a copula, while the price of the call or bullish

Altiplano in Example  should be computed using the sur-

vival copula. It can be proved that if this is not the case, one

could exploit arbitrage pro�ts (see Cherubini and Luciano

; Cherubini and Romagnoli ).

Copulas and Temporal Dependence in
Finance
So far, we have described correlation in a spatial setting.

�e �aw of this approach, and of copula applications to

�nance in general, is that no consistency link is speci�ed,

among prices with the same underlying risk factors, but

payo�s at di�erent times. We provide three examples here,

two of which extend the equity and credit products cases

presented above, while the third one refers to a problem

arising in risk management applications. Research on this

topic, as far as applications to �nance are concerned, is at

an early stage, and is somewhat covered in the reference

bibliography below.

Example  (Barrier Altiplano Note) Assume an Altiplano

Note with a single asset, but paying a �xed sum at the

�nal date if the price of that asset S remains above a given

threshold K on a set of di�erent dates {t, t, t, . . . , tn}.

�is product can be considered multivariate just like that

in Example , by simply substituting the concept of tempo-

ral dependence for that of spatial dependence.Again, copula

functions can be used to single out the impact of changes in

temporal dependence on the price of the product. For some

of these products, it is not uncommon to �nd the so-called

memory feature, according to which the payo� is paid for

all the dates in the set at the �rst time that the asset is above

the threshold.

Example  (Standard Collateralized Debt Obligations)

(CDX, iTraxx) In the market there exist CDO contracts,

like those described in Example  above, whose terms are

standardized, so that they may be of interest for a large set

of investors.�ese products include  “names” represen-

tative of a whole market (CDX for the US and iTraxx for

Europe), and on these markets people may trade tranches

buying and selling protection on –%, –%, and so on,

according to a schedule, which is also standardized. So,

for example, you may buy protection against default of

the �rst % of the same  names, but for a time hori-

zon of  or  years (the standard maturities are , , and

 years). For sure you will pay more for the  years insur-

ance than for the  years insurance on the same risk. How

much more will depend on the relationship between the

losses which you may incur in the �rst  years and those

that you may face in the remaining  years. Clearly, tem-

poral dependence cannot be avoided in this case and it

is crucial in order to determine a consistency relationship

between the price of insurance against losses on a term of 

years and those on a term of  years.�is consistency rela-

tionship is known as the term structure ofCDX (or iTraxx)

premia.

Example  (Temporal aggregation of risk measures) We

may also think of a very straightforward problem of tem-

poral dependence in riskmanagement, which arises when-

ever we want to compute the distribution of losses over

di�erent time horizons. An instance in which this prob-

lem emerges is when one wants to apply risk measures to

compare the performance of managed funds over di�erent

investment horizons.�e same problem arises whenever

we have to establish a dependence structure between risk

factors that are measured with di�erent time frequencies.
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To take the typical example, assume you want to study the

dependence structure between market risk and credit risk

in a portfolio.�e risk measures of market risk are typi-

cally computed on losses referred to a period of  or  days,

while credit risk losses are measured in periods of months.

Before linking the measures, one has to modify the time

horizon of one of the two in order tomatch that of the other

one.�e typical “square root rule” used in the market obvi-

ously rests on the assumption of independent losses with

Gaussian distribution, but this is clearly a coarse approxi-

mation of reality.

Financial Prices Dynamics and Copulas
�e need to extend copulas to provide a representation

of both spatial and temporal dynamics of �nancial prices

and risk factors has led to the rediscovery of the rela-

tionship between 7copulas and the Markov process (see
7Markov Processes) that was �rst investigated by Darsow
et al. (). Actually, even though theMarkov assumption

may seem restrictive for general applications, it turns out

to be consistent with the standard E�cientMarket Hypoth-

esis paradigm.�is hypothesis postulates that all available

information must be embedded in the prices of assets, so

that price innovations must be unpredictable. �is leads

to models of asset prices driven by independent incre-

ments, which are Markovian by construction. For these

reasons, this approach was rediscovered both for pricing

and �nancial econometrics applications (Cherubini et al.

, ; Cherubini and Romagnoli ; Ibragimov

; Chen ).

We illustrate here the basic result going back toDarsow

et al. () with application to asset prices. We assume a

set of {S, S, . . . , Sm} assets and a set of {t, t, t, . . . , tn}

dates, and a �ltered probability space generated by the

prices and satisfying the usual conditions. Denote S
j

i the

price of asset i at time j. First, de�ne the product of two

copulas as

A∗B(u, v) ≡



∫


∂A(u, t)

∂t

∂B(t, v)

∂t
dt

and the extended concept of “star-product” as

A ∗ B(u,u, . . . ,um+n−)

≡

um

∫


∂A(u,u, . . . ,um−, t)

∂t

×
∂B(t,um+,um+, . . . ,um+n−)

∂t
dt

Now, Darsow et al. proved that a stochastic process Si
is a �rst order 7Markov chain if and only if there exists a

set of bivariate copula functions T
j,j+
i , j = , , . . . ,n, such

that the dependence among {Si , S

i , . . . , S

n
i } can be written

as

G
j

i (u

i ,u


i , . . . ,u

j

i) = T
,

i (ui ,u

i )

∗T,i (ui ,u

i ) . . . ∗ T

j−,j
i (ui ,u


i )

�e result was extended to general Markov processes

of order k by Ibragimov (). Within this framework,

Cherubini et al. () provided a characterization of

processes with independent increments.�e idea is to rep-

resent the price Sj (or its logarithm) as Sj− + Y j. Assume

that the dependence structure between Sj− and Y j is rep-

resented by copulaC(u, v).�en, the dependence between

Sj− and Sj may be written as

T
j−,j

(u, v) =

u

∫


DC(w,FY(F
−
S,j (v) − F

−
S,j−(w)))dw

where D represents partial derivative with respect to the

�rst variable, FY(.) denotes the probability distribution of

the increment, and the distribution FS,k(.) the probabil-

ity distribution of Sk.�e probability distribution of Sk is

obtained by taking the marginal

F(S
j
≤ s) = T

j−,j
(, v) =



∫


DC(w,FY(s−F
−
S,j−(w)))dw

�is is a sort of extension of the concept of convolution to

the case in which the variables in the sum are not inde-

pendent. Of course, the case of independent increments

is readily obtained by setting C(u, v) = uv. �e copula

linking Sj− and Sj becomes in this case

T
j−,j

(u, v) =

u

∫


FY(F
−
S,j (v) − F

−
S,j−(w))dw

A well-known special case is

T
j−,j

(u, v) =

u

∫


Φ(Φ
−
(v) −Φ

−
(w))dw

with Φ(x) the standard normal distribution, which yields

the dependence structure of a Brownian motion (see

7Brownian Motion and Di�usions) upon appropriate
standardization. As for pricing applications, Cherubini

et al. () applied the framework to temporal depen-

dence of losses and the term structure of CDX pre-

mia, and Cherubini and Romagnoli () exploited the

model to price barrier Altiplanos. �is stream of litera-

ture, which applies copulas to modeling stochastic pro-

cesses in discrete time, casts a bridge to a parallel approach,

that directly applies copulas to model dependence among
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stochastic processes in continuous time: this is the so-

called Lévy copula approach (Kallsen and Tankov ).

Both these approaches aim at overcoming the major �aw

of copula functions as a static tool and uni�cation of them

represents the paramount frontier issue in this important

and promising �eld of research.
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Introduction
In multivariate data modelling for an understanding of

stochastic dependence the notion of correlation has been

central. Although correlation is one of the omnipresent

concepts in statistical theory, it is also one of the most

misunderstood concepts. �e confusion may arise from

the literary meaning of the word to cover any notion of

dependence. From mathematics point of view, correlation

is only one particular measure of stochastic dependence. It

is the canonicalmeasure in theworld of7multivariate nor-
mal distributions and in general for spherical and elliptical

distributions. However empirical research in many appli-

cations indicates that the distributions of the real world

seldom belong to this class. We collect and present ideas of

copula functions with applications in statistical probability

distributions and simulation.

Dependence
We denote by (X,Y) a pair of real-valued nondegenerate

random variables with �nite variances σ x and σ y respec-

tively.�e correlation coe�cient between X and Y is the

standardized covariance σxy, i.e., ρ =
σxy

σxσy
, ρ ∈ [−, ].

�e correlation coe�cient is a measure of linear depen-hh
dence only. In case of independent random variables, cor-

relation is zero. Embrechts, McNeil and Straumann ()

have discussed that in case of imperfect linear dependence,

i.e., − < ρ < , misinterpretations of correlation are possi-

ble. Correlation is not ideal for a dependence measure and
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causes problems when there are heavy-tailed distributions.

Independence of two random variables implies they are

uncorrelated but zero correlation does not in general imply

independence. Correlation is not invariant under strictly

increasing linear transformations. Invariance property is

desirable for the statistical estimation and signi�cance test-

ing purposes. Further correlation is sensitive to 7outliers
in the data set. �e popularity of linear correlation and

correlation based models is primarily because it is o�en

straightforward to calculate and manipulate them under

algebraic operations. For many 7bivariate distributions it
is simple to calculate variances and covariances and hence

the correlation coe�cient. Another reason for the pop-

ularity of correlation is that it is a natural measure of

dependence inmultivariate normal distributions andmore

generally in multivariate spherical and elliptical distribu-

tions. Some examples of densities in the spherical class are

those of the multivariate t-distribution and the 7logistic
distribution.

Another class of dependence measures is rank corre-

lations. �ey are de�ned to study relationships between

di�erent rankings on the same set of items. Rank corre-

lation measures the correspondence between two rank-

ings and assess their signi�cance. Two commonly used

measures of concordance are Spearman’s rank correla-

tion (ρs) and Kendall’s rank correlation (τ). Assuming

random variables X and Y have distribution functions

F and F and joint distribution function F, Spearman’s

rank correlation ρs = ρ(F(X),F(Y)) where ρ is the lin-

ear correlation coe�cient. If (X,Y) and (X,Y) are two

independent pairs of random variables from the distribu-

tion function F, then the Kendall’s rank correlation is τ =

Pr [(X − X)(Y − Y) > ]−Pr [(X − X)(Y − Y) < ].

�e main advantage of rank correlations over ordinary

linear correlation is that they are invariant under mono-

tonic transformations. However rank correlations do not

lend themselves to the same elegant variance–covariance

manipulations as linear correlation does since they are not

moment-based.

A measure of dependence like linear correlation sum-

marizes the dependence structure of two random variables

in a single number. Scarsini () has detailed properties

of copula based concordance measures. Another excel-

lent discussion of dependence measures is by Embrecht

et al. (). Let D(X,Y) be a measure of depen-

dence which assigns a real number to any real-valued

pair of random variables (X,Y). �en dependence mea-

sure D(X,Y) is desired to have properties: (i) Sym-

metry: D(X,Y)= D(Y ,X); (ii) Normalization: − ≤

D(X,Y) ≤ + ; (iii) Comonotonic or Countermonotonic:

�e notion of comonotonicity in probability theory is

that a random vector is comonotonic if and only if

all marginals are non-decreasing functions (or non-

increasing functions) of the same random variable.

A measure D(X,Y) is comonotonic if D(X,Y) = 

⇐⇒ X,Y or countermonotonic if D(X,Y) = −

⇐⇒ X,Y ; (iv) For a transformation T strictly mono-

tonic on the range of X, D(T(X),Y) = D(X,Y),

T(X) increasing or D(T(X),Y) = −D(X,Y), T(X)

decreasing.

Linear correlation ρ satis�es properties (i) and (ii) only.

Rank correlations ful�ll properties (i)–(iv) for continuous

random variables X and Y . Another desirable property

is: (v) D(X,Y) =  ⇐⇒ X,Y ( Independent). How-

ever it contradicts property (iv).�ere is no dependence

measure satisfying properties (iv) and (v). If we desire

property (v), we should consider dependence measure

≤D∗(X,Y)≤ + . �e disadvantage of all such depen-

dence measuresD∗(X,Y) is that they can not di�erentiate

between positive and negative dependence (Kimeldorf and

Sampson ; Tjøstheim ).

Copulas
7Copulas have recently emerged as a means of describ-
ing joint distributions with uniform margins and a tool

for simulating data. �ey express joint structure among

random variables with any marginal distributions. With a

copula we can separate the joint distribution into marginal

distributions of each variable. Another advantage is that

the conditional distributions can be readily expressed

using the copula. An excellent introduction of copulas is

presented in Joe () and Nelsen (). Sklar’s theo-

rem () states that any multivariate distribution can

be expressed as the k-copula function C(u, . . . ,ui, . . . ,uk)

evaluated at each of the marginal distributions. Copula is

not unique unless the marginal distributions are contin-

uous. Using probability integral transform, each contin-

uous marginal Ui = Fi(xi) has a uniform distribution

(see7UniformDistribution in Statistics) on I ∈[, ] where
Fi(xi) is the cumulative integral of fi(xi) for the random

variable Xi ∈ (−∞,∞) . �e k-dimensional probability

distribution function F has a unique copula representa-

tion F(x, x, . . . , xk) = C(F(x),F(x), . . . ,Fk(xk)) =

C(u,u, . . . ,uk). �e joint probability density func-

tion is written as f (x, x, . . . , xk) = Π
k
i= fi(xi) ×

c(F(x),F(x), . . . ,Fk(xk))where fi(xi) is eachmarginal

density and coupling is provided by copula density

c(u,u, . . . ,uk) = ∂kC(u,u, . . . ,uk)/∂u∂u . . . ∂uk if

it exists. In case of independent random variables, cop-

ula density c(u,u, . . . ,uk) is identically equal to one.

�e importance of the above equation f (x, x, . . . , xk)
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is that the independent portion expressed as the prod-

uct of the marginals can be separated from the function

c(u,u, . . . ,uk) describing the dependence structure or

shape.�e dependence structure summarized by a copula

is invariant under increasing and continuous transforma-

tions of the marginals.�is means that suppose we have a

probability model for dependent insurance losses of vari-

ous kinds. If our interest now lies in modelling the loga-

rithm of these losses, the copula will not change, only the

marginal distributions will change.

�e simplest copula is independent copula Π := C(u,

u, . . . ,uk) = uu . . . uk with uniform density func-

tions for independent random variables. Another cop-

ula example is the Farlie–Gumbel–Morgenstern (FGM)

bivariate copula. �e general system of FGM bivariate

distributions is given by F(x, x) = F(x) × F(x)

[ + ρ ( − F(x)) ( − F(x))] and copula associated

with this distribution is a FGM bivariate copula C(u, v) =

uv [ + ρ ( − u) ( − v)]. A widely used class of copu-

las is Archimedean copulas which has a simple form

and models a variety of dependence structures. Most of

the Archimedean copulas have closed-form solutions. To

de�ne an Archimedean copula, let ϕ be a continuous

strictly decreasing convex function from [, ] to [,∞]

such that ϕ() =  and ϕ() =∞ . Let ϕ− be the pseudo

inverse of ϕ.�en a k-dimensional Archimedean copula

is C(u,u, . . . ,uk) = ϕ
−

[ϕ(u) + . . . + ϕ(uk)]. �e func-

tion ϕ is known as a generator function.�us any generator

function satisfying ϕ() = ; limx→ ϕ(x) = ∞; ϕ′(x) <

; ϕ′′(x) >  will result in an Archimedean copula.

For an example, generator function ϕ(t) = (t−θ
− ) /θ,

θ ∈ [−,∞)/{} results in the bivariate Clayton copula

C(u,u) = max [(u −θ
 + u −θ

 − )
−/θ

, ]. �e copula

parameter θ controls the amount of dependence between

X and X.

�e Frécht–Hoe�ding bounds for copulas:�e lower

bound for k-variate copula isW(u,u, . . . ,uk) :=max {−

n +∑
k
i= ui, } ≤ C(u,u, . . . ,uk). �e upper bound for

k-variate copula is C(u,u, . . . ,uk) ≤ mini∈{,,. . .,k} ui =:

M(u,u, . . . ,uk). For all copulas, the inequalityW(u, . . .,

uk)≤ C(u, . . . ,uk) ≤ M(u, . . . ,uk) is satis�ed. �is

inequality is well known as the Frécht-Hoe�ding bounds

for copulas. Further,W andM are copulas themselves. It

may be noted that the Frécht-Hoe�ding lower bound is not

a copula in dimension k > . Copulas M,W and Π have

important statistical interpretations (Nelson, ). Given

a pair of continuous random variables (X,X), (i) copula

of (X,X) is M(u,u) if and only if each of X and X is

almost surely increasing function of the other; (ii) copula

of (X,X) is W(u,u) if and only if each of X and X

is almost surely decreasing function of the other and (iii)

copula of (X,X) is Π(u,u) = uu if and only if X and

X are independent.

�ree famous measures of concordance Kendall’s τ,

Spearman’s ρs and Gini’s index γ could be expressed in

terms of copulas (Schweizer and Wol� ) τ =  ∫ ∫I

C(u,u) dC(u,u) − , ρs =  ∫ ∫I uu dC(u,u) −

and γ =  ∫ ∫I (∣u + u − ∣− ∣u − u∣) dC(u,u). It may

however be noted that the linear correlation coe�cient ρ

cannot be expressed in terms of copula.

�e tail dependence indexes of a multivariate distribu-

tion describe the amount of dependence in the upper right

tail or lower le� tail of the distribution and can be used to

analyze the dependence among extremal random events.

Tail dependence describes the limiting proportion that one

margin exceeds a certain threshold given that the other

margin has already exceeded that threshold. Joe ()

de�nes tail dependence: If a bivariate copula C(u,u) is

such that λU := limu→
[−u+C(u,u)]

(−u) exists, then C(u,u)

has upper tail dependence for λU ∈ (, ] and no upper

tail dependence for λU = . Similarly lower tail depen-

dence in terms of copula is de�ned λL := limu→
C(u,u)
u
.

Copula has lower tail dependence for λL ∈ (, ] and no

lower tail dependence for λL = .�is measure is exten-

sively used in extreme value theory. It is the probability

that one variable is extreme given that other is extreme.

Tail measures are copula-based and copula is related to the

full distribution via quantile transformations, i.e.,C(u,u)

= F (F− (u),F
−
 (u)) for all u,u ∈ (, ) in the bivari-

ate case.

Simulation
Simulation in statistics has a pivotal role in replicating

and analysing data. Copulas can be applied in simula-

tion and Monte Carlo studies. Johnson () discusses

methods to generate a sample from a given joint distri-

bution. One such method is a recursive simulation using

the univariate conditional distributions. �e conditional

distribution of Ui given �rst i −  components is

Ci(ui∣u, . . . ,ui−) =
∂i−Ci(u ,. . .,ui)
∂u . . .∂ui−

/
∂i−Ci−(u ,. . .,ui−)

∂u . . .∂ui−
. For k≥ ,

procedure is as follows: (i) Simulate a random number

ufrom Uniform (,); (ii) Simulate value u from the con-

ditional distribution C(u∣u);(iii) Continue in this way;

(iv) Simulate a value uk from Ck(uk∣u, . . . ,uk−).

We list some important contributions in the area of

copulas under the reference section.
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Introduction
In statistical inference it is of fundamental importance to

obtain the sampling distribution of statistics. However, we

o�en encounter situations where the exact distribution

cannot be obtained in closed form, or even if it is obtained,

it might be of little use because of its complexity. One prac-

tical way of getting around the problem is to provide rea-

sonable approximations of the distribution function and

its quantiles, along with extra information on their pos-

sible errors. �is can be accomplished with the help of

Edgeworth and Cornish–Fisher expansions. Recently,

interest in Cornish–Fisher expansions has increased



Cornish–Fisher Expansions C 

C

because of intensive study of VaR (Value at Risk) models in

�nancial mathematics and �nancial risk management (see

Jaschke ()).

Expansion Formulas
Let X be a univariate random variable with a continuous

distribution function F. For α :  < α < , there exists x

such that F(x) = α, which is called the (lower) α% point

of F. If F is strictly increasing, the inverse function F−(⋅) is

well de�ned and the α% point is uniquely determined.

We also speak of “quantiles” without reference to particular

values of α meaning the values given by F−(⋅).

Even in the general case, when F(x) is not necessarily

continuous nor is it strictly increasing, we can de�ne its

inverse function by the formula

F
−
(u) = inf{x;F(x) > u}.

�is is a right-continuous nondecreasing function de�ned

on the interval (,) and F(x) ≥ u if x = F
−
(u).

Let Fn(x) be a sequence of distribution functions and

let each Fn admit the 7Edgeworth expansion (EE) in the
powers of є = n−/ or n−:

Fn(x) = Gk,n(x) +O(є
k
) with

Gk,n(x) = G(x) + {єa(x) + ⋅ + є
k−
ak−(x)}g(x),

()

where g(x) is the density function of the limiting dis-

tribution function G(x). An important approach to the

problem of approximating the quantiles of Fn is to use

their asymptotic relation to those of G’s. Let x and u be the

corresponding quantiles of Fn andG, respectively.�en we

have

Fn(x) = G(u). ()

Write x(u) and u(x) to denote the solutions of () for x

in terms of u and u in terms of x, respectively [i.e. u(x) =

G−(Fn(x)) and x(u) = F
−
n (G(u))].�en we can use the

EE () to obtain formal solutions x(u) and u(x) in the form

x(u) = u + єb(u) + є

b(u) +⋯ ()

and

u(x) = x + єc(x) + є

c(x) +⋯. ()

Cornish and Fisher () and Fisher and Cornish

() obtained the �rst few terms of these expansions

when G is the standard normal distribution function (i.e.,

G = Φ). We call both () and () the Cornish–Fisher

expansions, (CFE). Concerning CFE for random variables

obeying limit laws from the family of Pearson distributions

see Bol’shev (). Hill and Davis () gave a general

algorithm for obtaining each term of CFE when G is an

analytic function:

�eorem  Assume that the distribution function G is

analytic.�en the following relation for x and u satisfying

Fn(x) = G(u) holds:

x = u −
∞
∑
r=



r!
{−[g(u)]

−
du}

r−
[{zn(u)}

r
/g(u)] , ()

where du = d/du and zn(u) = Fn(u) −G(u).

A similar relation can be written for u as a function of

x.

Inmany statistical applications, Fn(x) is known to have

an asymptotic expansion of the form

Fn(x) = G(x) + g(x) [n
−a
p(x) + n

−a
p(x) +⋯] ,

where pr(x)may be polynomials in x and a = / or .�en

the formulas () can be written as

x = u −
∞
∑
r=



r!
d(r){gn(u)}

r
, ()

where qn(u)=n
−ap(u) + n

−ap(u) +⋯,

m(x) = −g′(x)/g(x),

d() = the identity operator,

d(r) = {m(u) − du}{m(u) − du}⋯{(r − )m(u) − du},

r = , , . . .

�e rth term in () is of order O(n−ra).

It is a tedious process to rewrite () in the form of

() and to express the adjustment terms bk(u) directly in

terms of the cumulants (see Hill and Davis ()). Lee

and Lin developed a recurrence formula for bk(u), which

is implemented in the algorithm AS (see Lee and Lin

(, )).

Usually the CFE are applied in the following form with

k = , , or :

xk(u) = u +
k−
∑
j=

є
j
bj(u) +O(є

k
), ()

In order to �nd the explicit expressions for b(u) and

b(u) we substitute () with k =  to () and using () we

have

Fn(x) = Fn(u + єb + є

b +⋯)

= G(u + єb + є

b) + g(u + єb + є


b)

× {єa(u + єb) + є

a(u)} +O(є


).

By Taylor’s expansions for G, g, and a, we obtain

Fn(x) =G(u) + єg(u){b + a(u)}

+ є

[g(u)b +




g
′
(u)b


 + g(u)a

′
(u)b

+g(u)a(u) + g
′
(u)ba(u)] +O(є


),
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which should be G(u).�erefore,

b = −a(u),

b =



{g

′
(u)/g(u)}a


 (u) − a(u) + a

′
(u)a(u).

An application of general formulas () in the case

of normal limit distribution see the entry 7Edgeworth
Expansion.

Suppose that

Fn(x) = Gf (x) +
f γ

n
[Gf (x) + Gf+(x) +Gf+(x)]

+
f

n



∑
j=

(−)
j
cjGf+j(x) + o(n

−
),

where Gf (x) = Pr{χf ≤ x}; that is, the distribution func-

tion of the 7chi-square distribution with f degrees of
freedom, γ is a constant, and cj are constants such that

∑

j=(−)

jcj = .�en G(u) = Gf (u),

g(u) = gf (u) = [Γ( f /)
f /

]
−
u
f /−

exp(−u/),

m(u) = −g
′
f (u)/gf (u) =




−


u
(
f


− ) .

�us, we can write

qn(u) = −
u(u − f − 

n( f + )
−

u

n( f + )( f + )( f + )
[cu



+ (c − c)( f + )u

+ (c − c)

( f + )( f + )u

c( f + )( f + )( f + )] + o(n
−

).

�erefore, we obtain

x = u − qn(u)−[γ

u(u − f − )/{n


(f + )


}]

× {u

− (f + )u + (f + )


} + o(n

−
).

�e upper and lower bounds for the quantiles x = x(u)

and u = u(x), satisfying the equation (), i.e.

xn(u) ≥ x(u) ≥ x̄n(u), un(x) ≥ u(x) ≥ ūn(x)

were obtained for some special distributions by Wallace

().

Validity of Cornish–Fisher Expansions
In applications, the CFE are usually used in the form ().

It is necessary to remember that the approximations for α-

quantiles provided by the CFE

(i) become less and less reliable for α →  and α → ;

(ii) do not necessarily improve (converge) for a �xed Fn
and increasing order of approximation k.

Let xα and x
∗
α be the upper α%points of Fn andGk,n

from (), respectively; that is, they satisfy

Fn(xα) = Gk,n (x
∗
α) =  − α.

�e approximate quantile x∗α based on the Edgeworth

expansion is available in numerical form but cannot be

expressed in explicit form. Suppose that the remainder

term, Rk,n(x) = Fn(x) −Gk,n(x), is such that

∣Rk,n∣ ≤ є
n
Ck.

�en

∣Fn (x
∗
α) − ( − α)∣ = ∣Fn (x

∗
α) −Gk,n (x

∗
α)∣ ≤ є

n
Ck.

�is gives an error bound for the absolute di�erences

between the probabilities based on the true quantiles and

their approximations.

�e other validity of the CFE was obtained by consid-

ering the distribution function F̃k,n of

X̃ = U +
k−
∑
j=

є
j
bj(U),

where U is the standard normal variable. Takeuchi and

Takemura () showed that if ∣Fn(x) − Gk,n(x)∣ =

o(єk−), then ∣Fn(x) − F̃k,n∣ = o(є
k−

).

Function of Sample Mean
Usually the conditions that are su�cient for validity of EE

are su�cient as well for validity of CFE. Under the condi-

tions of section “7Function of SampleMeans” in the entry
7Edgeworth Expansion and in its notation we have (see
Hall ()):

sup
є<α<−є

RRRRRRRRRRR

xα − uα −
k−
∑
j=

bj(uα)

nj/

RRRRRRRRRRR

= o(


n(k−)/
) ,

where xα = inf{x; Pr(
√
nH(Ȳ)/σ ≤ x) > α}, uα =

Φ−(α), є is any constant in (,/) and b′js are polynomials

depending on Q′js.

Error Bounds
It is possible to get error bounds for approximation given

by the CFE providedwe have error bounds for EE. For sim-

plicity, we give error bounds for the �rst-order CFE (see

Chap.  in Fujikoshi et al. ()):

�eorem  Suppose that for the distribution function of U

we have

F(x) ≡ Pr{U ≤ x} = G(x) + R(x),

where for remainder term R(x) there exists a constant c
such that

∣R(x)∣ ≤ d ≡ cє.
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Let xα and uα be the upper α% points of F and G,

respectively; that is,

Pf{U ≤ xα} = G(uα) =  − α.

�en, for any α such that  > α > d and  > α + d:

. uα+d ≤ xα ≤ uα−d .

. ∣xα − uα ∣ ≤ d/g(u()), where

g(u) = min
u∈[uα+d

,uα−d
]
g(u).
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Introduction
A covariance term loosely aims at capturing some essence

of joint dependence between two random variables. A cor-

relation coe�cient is nothing more than an appropriately

scaled version of the covariance.

Section “Population Correlation Coe�cient” intro-

duces the concepts of a covariance and the population cor-

relation coe�cient. Section “Correlation Coe�cient and

Independence” highlights some connections between the

correlation coe�cient, independence, and dependence.

Section “A Sample Correlation Coe�cient” summa-

rizes the notion of a sample correlation coe�cient and its

distribution, both exact and large-sample approximation,

due to Fisher (; ). Section “Partial Correlations”

gives a brief summary of the concept of partial correlation

coe�cients.

Population Correlation Coefficient
A covariance term tries to capture a sense of joint depen-

dence between two real valued random variables. A cor-

relation coe�cient, however, is an appropriately scaled

version of a covariance.

De�nition  �e covariance between two random vari-

ables X and X, denoted by Cov(X,X), is de�ned as

Cov(X,X) = E [(X − µ)(X − µ)]

or equivalently E [XX] − µµ,

where µi = E(Xi), i = ,  and E [XX] , µ, µ are

assumed �nite.

De�nition  �e correlation coe�cient between two ran-

dom variables X and X, denoted by ρX ,X , is de�ned as

ρX ,X =
Cov(X,X)

σσ
,
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whenever one has  < σ  = V(X) < ∞ and  < σ  =

V(X) <∞.

One may note that we do not explicitly assume −∞ <

Cov(X,X) < ∞. In view of the assumption  < σ  , σ

 <

∞, one can indeed claim the �niteness of Cov(X,X) by

appealing to Cauchy–Schwartz inequality. It should also be

clear that

Cov(X,X) = Cov(X,X) and Cov(X,X) = V(X),

as long as those terms are �nite.

Two random variables X,X are respectively called

negatively correlated, uncorrelated, or positively correlated

if and only if ρX ,X is negative, zero or positive.

�eorem  Consider random variables X and X and

assume that  < V(X),V(X) < ∞. �en, we have the

following results:

. Let Yi = ci + diXi w.p. where −∞ < ci < ∞ and  <

di <∞ are �xed numbers, i = , .�en, ρY ,Y = ρX ,X .

. ∣ρX ,X ∣ ≤ , the equality holds if and only if X = a+bX
w.p. for some real numbers a and b.

More details can be found from Mukhopadhyay (,

Sect. .).

Correlation Coefficient and
Independence
If ρX ,X is �nite andX,X are independent, then ρX ,X = .

Its converse is not necessarily true. In general, ρX ,X = 

may not imply independence between X,X. An example

follows.

Example  Let X be N(, ) and X = X . �en,

Cov(X,X) = , and surely  < V(X),V(X) < ∞, so

that ρX ,X = . But, X and X are dependent variables.

More details can be found from Mukhopadhyay (,

Sect. .). �e recent article of Mukhopadhyay () is

relevant here.

Now, we state an important result which clari�es the

role of zero correlation in a bivariate normal distribution.

�eorem  Suppose that (X,X) has the N
(µ, µ, σ


 , σ


 , ρ) distribution where −∞ < µ, µ <

∞,  < σ, σ < ∞ and − < ρ(= ρX ,X) < . �en, X
and X are independent if and only if ρ = .

Example  A zero correlation coe�cient implies inde-

pendence not merely in the case of a bivariate normal

distribution. Consider random variables X and X whose

joint probability distribution puts mass only at four points

(, ), (, ), (, ), and (, ). Now, if Cov(X,X) = ,

then X and X must be independent.

A Sample Correlation Coefficient
We focus on a bivariate normal distribution. Let (X,Y),

. . . , (Xn,Yn) be iid N (µ, µ, σ

 , σ


 , ρ) where −∞ <

µ, µ < ∞,  < σ  , σ

 < ∞ and − < ρ < ,n ≥ . Let

us denote

X = n−Σni=Xi Y = n−Σni=Yi
S = (n − )−Σni=(Xi − X) S = (n − )−Σni=(Yi − Y)

S = (n − )−Σni=(Xi − X)(Yi − Y) r = S/(SS).

Here, r is called the Pearson (or sample) correlation coe�-

cient.�is r is customarily used to estimate ρ.

�e probability distribution of r is complicated, partic-

ularly when ρ ≠ . But, even without explicitly writing the

pdf of r, it is simple enough to see that the distribution of

r can not involve µ, µ, σ

 and σ  .

Francis Galton introduced a numerical measure, r,

which he termed “reversion” in a lecture at the Royal Sta-

tistical Society on February ,  and later called “regres-

sion.” �e term “cor-relation” or “correlation” probably

appeared �rst inGalton’s paper to theRoyal Statistical Soci-

ety on December , . At that time, “correlation” was

de�ned in terms of deviations from the median instead of

the mean. Karl Pearson gave the de�nition and calculation

of correlation r in . In , Pearson and his collabora-

tors discovered that the standard deviation of r happened

to be (− ρ)/
√
n when n was large. “Student” derived the

“probable error of a correlation coe�cient” in . Soper

() gave large-sample approximations for the mean and

variance of r which performed better than those proposed

earlier by Pearson. Refer to DasGupta () for more

historical details.

�e unsolved problem of �nding the exact pdf of r

for normal variates came to R. A. Fisher’s attention via

Soper’s  paper.�e pdf of r was published in the year

 by Fisher for all values of ρ ∈ (−, ). Fisher, at the

age of , brilliantly exploited the n-dimensional geom-

etry to come up with the solution, reputedly within one

week. Fisher’s genius immediately came into limelight. Fol-

lowing the publication of Fisher’s results, however, Karl

Pearson set up amajor cooperative study of the correlation.

Onewill notice that in the team formed for this cooperative

project (Soper et al. ) studying the distribution of the

sample correlation coe�cient, the young Fisher was not

included.�is happened in spite of the fact that Fisher was

right there and he already earned quite some fame. Fisher

felt hurt as he was le� out of this project. One thing led

to another. RA. Fisher and Karl Pearson continued criti-

cizing each other even more as each held on to his own

philosophical stand.
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We will merely state the pdf of r when ρ = .�is pdf

is given by

f (r) = c ( − r)



(n−) for −  < r < ,

where c = Γ ( 

(n − )) {

√
π Γ ( 


(n − ))}

−
for n ≥ .

Using a simple transformation technique, one can easily

derive the following result:

r(n − )/( − r)−/ has the Student’s t distribution

with (n − ) degrees of freedom when ρ = .

Fisher’s geometric approach () also included the exact

pdf of r in the form of an in�nite power series for all values

of ρ ≠ . One may also look at Rao (, pp. –) for

a non-geometric approach.

Large-Sample Distribution
But, now suppose that one wishes to construct an approx-

imate ( − α)% con�dence interval for ρ,  < α < .

In this case, one needs to work with the non-null distribu-

tion of r. We mentioned earlier that the exact distribution

of r, when ρ ≠ , was found with an ingenious geometric

technique by Fisher (). �at exact distribution being

very complicated, Fisher () proceeded to derive the

following asymptotic distribution when ρ ≠ :

√
n(r − ρ)

£
→ N (, ( − ρ)) as n→∞.

For a proof, one may look at Sen and Singer (, pp.

–) among other sources.

One should realize that a variance stabilizing trans-

formation may be useful here. We may invoke Mann-

Wald�eorem (see Mukhopadhyay , pp. –) by

requiring a suitable function g(.) such that the asymptotic

variance of
√
n [g(r) − g(ρ)] becomes free from ρ.�at is,

we want to have:

g
′

(ρ)( − ρ

) = k, a constant.

So, g(ρ) = k ∫


(−ρ)dρ. Hence, we rewrite

g(ρ) = 


k ∫ { 

−ρ
+ 

+ρ
}dρ = 


k log{

+ρ

−ρ
}+ constant.

It is clear that we should look at the transformations:

U =



log{

 + r

 − r
} and ξ =




log{

 + ρ

 − ρ
} ,

and consider the asymptotic distribution of
√
n[U − ξ].

Now, we can claim that

√
n[U − ξ]

£
→ N(, ) as n→∞,

since with g(ρ) = 


log{

+ρ

−ρ
} , one has g

′

(ρ) = 

−ρ
.�at

is, for large n, we should consider the following pivot:

√
n[U − ξ], which is approximately N(, ) for large n.

�ese transformations can be equivalently stated as

U = tanh
−
(r) and ξ = tanh

−
(ρ),

which are referred to as Fisher’s Z transformations intro-

duced in .

Fisher obtained the �rst four moments of tanh
−
(r)

which were later updated by Gayen (). It turns out that

the variance of tanh
−
(r) is approximated better by 

n−
rather than 

n
when n is moderately large. Hence, in many

applications, one uses an alternate pivot (for n > ):
√
n −  [tanh

−
(r)− tanh

−
(ρ)] , which is

approximately N(, ),

for large n whatever be ρ,− < ρ < .

For large n, one customarily uses Fisher’s Z transfor-

mations to come up with an approximate ( − α)%

con�dence interval for ρ. Also, to test a null hypothesis

H : ρ = ρ, for large n, one uses the test statistic

Zcalc =
√
n −  [tanh

−
(r) − tanh

−
(ρ)]

and comes up with an approximate level α test against an

appropriate alternative hypothesis.�ese are customarily

used in all areas of statistical science whether the parent

population is bivariate normal or not.

Partial Correlations
Suppose that in general X= (X, . . . ,Xp) has a

p-dimensional probability distribution with all pairwise

correlations �nite. Now, ρXi ,Xj will simply denote the corre-

lation coe�cient betweenXi,Xj based on their joint bivari-

ate distribution derived from the distribution of X, for any
i ≠ j = , . . . , p.

Next, ρXi ,Xj .Xk is simply the correlation coe�cient

between Xi,Xj based on their joint bivariate conditional

distribution given Xk that is derived from the distribution

of X, for any i ≠ j ≠ k = , . . . , p.
Similarly, ρXi ,Xj .Xk ,Xl is simply the correlation coe�-

cient between the pair of random variables Xi,Xj based on

their joint bivariate conditional distribution given Xk,Xl
derived from the distribution of X, for any i ≠ j ≠ k ≠

l = , . . . , p. Clearly, one may continue further like this.

Such correlation coe�cients ρXi ,Xj .Xk , ρXi ,Xj .Xk ,Xl are

referred to as partial correlation coe�cients. Partial

correlation coe�cients have important implications in

multiple linear regression analysis. One may refer to

Ravishanker and Dey (, pp. –) among other

sources.
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Correspondence analysis (CA) has been developed in

the s in France by Jean-Paul Benzécri and his col-

laborators; it is the central part of the French “Anal-

yse des Données,” or in English, geometric data analysis

(cf. Benzécri et al. ; Greenacre , ; Lebart et al.

; Le Roux and Rouanet ). �e method can be

applied to any data table with nonnegative entries. �e

main objective of CA is to display rows and columns of

data tables in two-dimensional spaces, called “maps.”�is

kind of data description via visualization re�ects a way of

thinking that is typical for the social sciences in France,

especially associated with the name of Pierre Bourdieu,

and of many statisticians in the s and s in France,

who at that time published almost only in French.�e phi-

losophy behind their work can be expressed by the famous

quotation of Jean-Paul Benzécri who pointed out that “�e

modelmust follow the data, and not the other way around.”

Instead of limiting the data to restrictive and subjectively

formulated statistical models, they show the importance

of the data and of the features in the data themselves.�e

discussion outside of France started with the textbooks by

Greenacre () and Lebart et al. ().

CA translates deviations from the independencemodel

in a contingency table into distances as the following brief

introduction shows. In the simple case, there is a two-way

table N with I rows and J columns. In cases where the
data are from survey research, the cells nij of N contain
the frequencies of a bivariate cross-tabulation of two vari-

ables, with ∑
ij

nij = n. Dividing nij by the sample size n

provides the percentages of the total pij, or, for the entire

table, with the (I × J) correspondence matrix P.�ereby,
r = P is the vector of the “rowmasses,” or the “average col-
umn pro�le” with elements ri = ni+/n, and c = PT is the
vector of “columnmasses” or the “average row pro�le” with

elements cj = n+j/n; Dr and Dc are the diagonal matrices
of the row and column masses, respectively.

�e matrix of row pro�les can be de�ned as the rows

of the correspondence matrix P divided by their respective
rowmasses,D−r P; for thematrix of columns pro�les yields

PD−c . As a measure of similarity between two row pro�les

(or between two column pro�les, respectively), a weighted

Euclidian or chi-square distance in the metric D−r (or,

D−c , respectively) is used. For chi-square calculations, the

weighted deviations from independence over all cells of the

contingency table are used. For each cell, the unweighted

deviation of the observed from the expected value can be

calculated by (nij − n̂ij), with n̂ij = (ni+ × n+j)/n. Divid-

ing (nij − n̂ij) by n provides with (pij − ricj), or, in matrix

notation, (P − rcT), with the unweighted deviations from
the independence model for the entire table.

To ful�ll the chi-square statistic, thismatrix is weighted

by the product of the square root of the row and column

masses to give the standardized residuals sij = (pij −

ricj)/
√
ricj, or in matrix notation, the (I × J) matrix of
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standardized residuals S = D
−/
r (P − rcT)D

−/
c .�e sim-

ilarity to chi-square analysis and total inertia as a measure

for the variation in the data table, which is de�ned as

∑
ij

sij =
χ

n
=

I

∑
i=

J

∑
j=

(pij − ricj)
ricj

, becomes apparent. Apply-

ing singular value decomposition to S results in SVD(S) =
UΓVT , where Γ is a diagonal matrix with singular val-
ues in descending order γ ≥ γ ≥ . . . ≥ γS > , with

S = rank of S. �e columns from U are the le� singular
vectors, the columns fromV are the right singular vectors,
with UTU = VTV = I.

�e connection between SVD as used in CA and

the well-known canonical decomposition is shown by

STS = VΓUTUΓVT = VΓVT = VΛVT , with SST =

UΓVTVΓUT = UΓUT = UΛUT , and λ ≥ λ ≥ . . . ≥

λS > ; χ/n = ∑
s

λs = total inertia, since trace (SST) =

trace (STS) = trace (Γ) = trace (Λ).
As in 7principal component analysis (PCA), the �rst

axis is chosen to explain the maximum variation in the

data; the second axis captures themaximumof the remain-

ing variation, and so on. Again, analogous to PCA, it is

possible to interpret the variable categories in relation to

the axes, which can be considered the latent variables. And

furthermore, as in PCA and other data reduction meth-

ods, only the s major components are used for interpreta-

tion.�e number of interpretable dimensions depends on

criteria such as the eigenvalue criteria, theory (how many

latent variables can be substantively interpreted), or the

scree test (for more details, see Blasius ).

For the graphical representation, we use F = D
−/
r UΓ

providing the principal coordinates of the rows, and

G = D
−/
c VΓ providing the principal coordinates of the

columns (for further details seeGreenacre , ).�e

maps drawn on the basis of principal coordinates are called

“symmetric maps.” In the full space, the distances between

the rows and the distances between the columns can be

interpreted as Euclidian distances, whereas the distances

between the rows and the columns are not de�ned.

As in PCA, the input data can be factorized. Under-

standing correspondence analysis as a model (see, e.g.,

van der Heijden et al. , ), the row and column

coordinates can be used for recomputing the input data.

Adding the latent variables successively models the devi-

ations from independency.�is is similar to the loglinear

model and other modeling approaches such as the latent

class model or the log-multiplicative model (see, e.g., van

der Heijden et al. , ; Goodman ). In loglin-

ear analysis, for example, these deviations are modeled

by using higher-order interaction e�ects; in correspon-

dence analysis latent variables are used. For any cell yields

nij = nricj( +
S

∑
s=

fisgjs/γs), or pij = ricj( +
S

∑
s=

fisgjs/γs),

and in matrix notation P = rcT + DrFΓ−GTDc.�e le�
part of the equation re�ects the independence model and

the right part, themodeling from independency by includ-

ing the S factors in successive order. Including all factors in

the model fully reconstructs the original data table N.
�e interpretation of CA is similar to the one of PCA,

both methods provide eigenvalues and their explained

variances, factor loadings, and factor values. While PCA is

restricted to metric data, CA can be applied to any kind of

data table with nonnegative entries, among others, to indi-

cator and Burt matrices – in these two cases the method is

called multiple correspondence analysis (MCA).

Whereas simple correspondence analysis is applied to

a single contingency table or to a stacked table, MCA uses

the same algorithm to an indicator or a Burt matrix. In

the case of survey research, input data to simple CA is

usually a matrix of raw frequencies of one or more contin-

gency tables. In this context, there is usually one variable to

be described, for example, preference for a political party,

and one or more describing variables, for example, edu-

cational level and other sociodemographic indicators such

as age groups, gender, and income groups. �e number

of variables can be quite high, apart from theoretical con-

siderations there is no real limitation by the method. In

the given case, each of the describing variables is cross-

tabulated with the variable to be described in order to

investigate the importance of this association. Concatenat-

ing, or stacking the tables before applying CA allows to

visualize and interpret several relationships of “preferred

political party” with the sociodemographic indicators in

the same map.

Applying CA to the indicator matrix Z (=MCA), the
table of input data has as many rows as there are respon-

dents, and as many columns as there are response alter-

natives in all variables included in the analysis. A “” in a

given row indicates the respondent who chose that speci�c

response category; otherwise there is a “” for “speci�c

response category not chosen.” Considering all categories

of all variables provides row sums that are constant and

equal to the number of variables, the column sums re�ect

the marginals. An alternative to the indicator matrix as

input to MCA is the Burt matrix B.�is matrix can either
be generated by cross-tabulating all variables by all vari-

ables, including the cross-tabulations of the variables by

themselves, and stacking them row- and column-wise.

Further, B can be computed by multiplying the transposed
indicator matrix by itself, that is B = ZTZ.�e solutions
from Z can be directly converted to those of B by rescaling
the solution; for example, the squared eigenvalues of Z



 C Correspondence Analysis

are equal to those of B. As it is true for PCA, MCA con-
tains all �rst-order interaction e�ects, the method can be

understood as a generalization of PCA to categorical data.

Taking a two-way contingency table with I =  rows,

J =  columns, and n =  cases as an example, input data

of the simple CA would be the frequencies of the ( × )

cross-table. Turning to MCA, input data is an indicator

matrixwith  rows (the number of cases) and  columns

(the number of variable categories). MCA is also known

under the names “homogeneity analysis” (see Gi� ;

Heiser andMeulman ), “dual scaling” (Nishisato ,

), and “quanti�cation of qualitative data III” (Hayashi

); CA procedures are available in all major statistic

packages as well as inR (Greenacre andNenadić ). For

details regarding the history ofCAand relatedmethods,we

refer to Nishisato (, Chap. ).

CA employs the concept of inertia: the farther the cat-

egories are from the centroid along a given axis (squared

distances) and the higher their masses (their marginals),

the more the categories determine the geometric orienta-

tion of that axis. In the graphical solution, the locations

of all variable categories can be compared to each other

(except in simple CA and using symmetric maps, in this

case the distances between rows and columns are not

de�ned), short distances imply high similarities and long

distances imply high dissimilarities. For all dimensions,

CA supplies principal inertias that can be interpreted as

canonical correlation coe�cients (they are the singular val-

ues of the solution, i.e., the square roots of the eigenvalues),

correlation coe�cients between the item categories and the

latent variables as well as scores for all item categories and

all respondents.

�ere are several extensions of simple CA and MCA.

With respect to the Burt matrix B, it is apparent that
most of the variation in this super matrix is caused by

the main diagonal blocks.�ese sub-matrices contain the

cross-tabulations of the variables by themselves; the main

diagonal elements of them contain the marginals of the

variables while their o�-diagonal elements are equal to

zero. Excluding this variation in an iterative procedure and

visualizing the variation of the o�-diagonal blocks of B
only is the objective of joint correspondence analysis.�e

aim of subset correspondence analysis is to concentrate

on some response categories only, while excluding others

from the solution. For example, applying subset MCA to a

set of variables, the structure of non-substantive responses

(“don’t know,” “no answer”) can be analyzed separately, or

these responses can be excluded from the solution while

concentrating on the substantive responses. Variables can

also be included in the model as supplementary or passive

ones; in this case they do not have any impact on the

geometric orientation of the axes but they can be inter-

preted together with the active variables. CA can not only

be applied to single and stacked contingency tables or to

indicator matrix, it can also be used to analyze rank and

metric data, multiple responses, or squared tables.�e sta-

tistical background and examples of these kinds of data can

be found in the textbook of Greenacre () as well as

in the readers of Greenacre and Blasius (, ), and

Blasius and Greenacre ().
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�e Cp statistic was invented by C. Mallows in . It

facilitates the comparison of many subset-regressionmod-

els, by giving for each model an unbiased estimate of the

(scaled) total mean-square-error for that model.�ere is

an associated graphical technique called the “Cp plot” in

which values of Cp (one for each subset of regressors) are

plotted against p.

�e problem in choosing a subset-regressionmodel for

predicting a response is that including too many unneces-

sary termswill add to the variance of the predictions, while

including too few will result in biased predictions.

In more detail, if we have n observations, and k regres-

sors are available (possibly including a constant term), let

P denote some subset of these. (Usually if a constant term

is to be considered, this will appear in each subset). Let p

be the number of regressors in the subset P.�en Cp (for

the P-subset model) is de�ned to be

Cp =
RSSP

s
− n + p

whereRSSP is the residual sum of squares for this P-model,

and s is an estimate of the residual variance when all rele-

vant terms are included in the model. Usually this is taken

to be RSSK where K is the set of all available regressors.

Under the usual assumptions, that the vector of obser-

vations y equals ν + z where ν is the vector of true means,

and the z’s are independent with mean zero and constant

variance σ , sCp is an unbiased estimate of σ
E(JP)where

JP is ∣ν̂P − ν∣, and where ν̂P is the estimate of ν that is

obtained by �tting the Pmodel.�us JP is a measure of the

adequacy for prediction of the P model.�is result holds

even when the true model ν is not expressible in terms of

the available regressors.However in this casewe cannot use

the residual sum of squares from the full (K) model as an

estimate of σ .

�e Cp statistic is o�en used to guide selection of a

subset-model, but this cannot be recommended; while for

each P separately, Cp gives an unbiased estimate of the

scaled mean-square error for that subset, this is not true if

the subset is chosen to minimise Cp. In fact this approach

can lead to worse results than are obtained by simply �t-

ting all available regressors. In a  paper, Mallows has

attempted to quantify this e�ect.

�e Cp statistic is similar to 7Akaike’s Information
criterion.
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The Cramér–Rao Lower Bound
�e Cramér–Rao inequality gives a lower bound for the

variance of an unbiased estimator of a parameter. It is

named a�er work by Cramér () and Rao ().�e

inequality and the corresponding lower bound in the

inequality are stated for various situations. We will start

with the case of a scalar parameter and independent and

identically distributed random variables X, . . . ,Xn, with

the same distribution as X.

Denote X = (X, . . . ,Xn) and denote the common

probability mass function or probability density function

of X at a value x by f (x; θ) where θ ∈ Θ, which is a subset

of the real line R and x ∈ R. Denote the support of X by R,
that is, R = {x : f (x; θ) > }.

Assumptions
. �e partial derivative ∂

∂θ
log f (x; θ) exists for all θ ∈

Θ and all x ∈ R and it is �nite. �is is equivalent

to stating that the Fisher information value IX(θ) =

E [( ∂
∂θ
log f (X; θ))


] is well de�ned, for all θ ∈ Θ.

. �e order of integration and di�erentiation is inter-

changeable in ∫
∂
∂θ
log f (x; θ)dx. If the support of X,

that is, the set R, is �nite, then the interchangeability

is equivalent with the condition that the support does

not depend on θ. A counter-example on uniformly

distributed random variables is elaborated below.

The Cramér–Rao inequality
Under assumptions (i) and (ii), if θ̂ = g(X) is an unbiased

estimator of θ, this means that E[θ̂] = θ, then

var(θ̂) ≥ / [n ⋅ IX(θ)] .

�e lower bound in this inequality is called the Cramér–

Rao lower bound.

�e proof starts by realizing that the correlation of the

score V = ∂
∂θ ∑

n
i= log fX(Xi; θ) and the unbiased estima-

tor θ̂ is bounded above by . �is implies that (var(V) ⋅

var(θ̂))
/

≥ cov(V , θ̂). �e assumptions are needed to

prove that the expected score E(V) is zero. �is implies

that the covariance cov(V , θ̂) = , from which the stated

inequality readily follows.

A second version of the Cramér–Rao inequality holds

if we estimate a functional κ = H(θ). Under assumptions

(i) and (ii), if X is a sample vector of independent observa-
tions from randomvariableXwith density function f (x; θ)

and κ̂ = h(X) is an unbiased estimator of H(θ), such that

the �rst derivative
dH(θ)
dθ

exists and is �nite for all θ, then

var(κ̂) ≥ [
dH(θ)

dθ
]



/ [n ⋅ IX(θ)] .

Similar versions of the inequality can be phrased

for observations that are independent but not identically

distributed.

In the case of a vector parameter θ, the variance of
the single parameter estimator var(θ̂) is replaced by the

covariance matrix of the estimator vector Σθ̂ .�is matrix

is bounded by a matrix expression containing the inverse

of the Fisher information matrix, where bounded means

that the di�erence between the covariance matrix and its

“upper bound” is a negative semide�nite matrix.

�e Cramér–Rao inequality is important because it

states what the best attainable variance is for unbiased esti-

mators. Estimators that actually attain this lower bound are

called e�cient. It can be shown that maximum likelihood

estimators asymptotically reach this lower bound, hence

are asymptotically e�cient.

Cramér–Rao and UMVUE
If X is a sample vector of independent observations from
the random variable X with density function fX(x; θ) and

θ̂ = g(X) is an unbiased estimator of θ, then var(θ̂) =

/ [n ⋅ IX(θ)]⇔ θ̂ = aV + b with probability one, where

V is the score and a and b are some constants.�is follows

from the proof of the Cramér–Rao inequality: the lower

bounded is reached if the correlation between the score

and the estimator is one.�is implies that var ( V
σV
+ θ̂

σ
θ̂

)

=  ⇒ V
σV
+ θ̂

σ
θ̂

= c almost surely for some constant c. We

here used the notation σX to denote the standard deviation

of a random variable X.

�e coe�cients a and bmay depend on θ, but θ̂ should

be observable without knowing θ.

If a and b exist such that θ̂ is unbiased and observ-

able, then θ̂ has the smallest possible variance among

all unbiased estimators: it is then certainly the uniformly

minimum variance unbiased estimator (UMVUE).

It may, however, be well possible that no a and b can be

found. In that case, the UMVUE, if it exists, does not reach

the Cramér-Rao lower bound. In that case, the notion of

su�ciency can be used to �nd such UMVUE.
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Counter example: estimators for the
upperbound of uniform data
Let X ∼ unif[, a], so fX(x) = 

a
I( ≤ x ≤ a), where

I(c ≤ x ≤ d) is the indicator function of the interval [c,d].

We want to estimate a.�e maximum likelihood estima-

tor (MLE) is âMLE = max
i=,. . .,n

Xi, which is biased. De�ne

âu =
n
n− âMLE, which is unbiased.�e method of moments

leads to an estimator âMME = X, which is also unbiased.

�e score is Vi =
∂
∂a
log fX(Xi; a) = − 

a
. �is is a con-

stant (so, not a random variable), whose expected value

is of course not zero.�is is because the partial derivative

and expectation cannot be interchanged, as the boundary

of the support of X depends on a. As a consequence, the

Cramér–Rao lower bound is not valid here. We can verify

that var(âMLE) = n
(n+)(n+) a


and var(âu) = 

n(n+)a

.

�is is (for n → ∞) one order of magnitude smaller

than var(âMME) = 

n
a and also one order of magni-

tude smaller than what you would expect for an unbiased

estimator if the Cramér–Rao inequality would hold.

A Bayesian Cramér–Rao Bound
It should be noted that biased estimators can have vari-

ances below the Cramér–Rao lower bound. Even the MSE

(mean squared error), which equals the sumof the variance

and the squared bias can be lower than the Cramér–Rao

lower bound (and hence lower than any unbiased esti-

mator could attain). A notable example in this respect is

Stein’s phenomenon on shrinkage rules (Efron and Morris

).

In practice, large classes of estimators, for example

most nonparametric estimators, are biased. An inequality

that is valid for biased or unbiased estimators is due to

van Trees (, p. ), see also Gill and Levit () who

developed multivariate versions of the inequality.

We assume that the parameter space Θ is a closed

interval on the real line and denote by g some probabil-

ity distribution on Θ with density λ(θ) with respect to the

Lebesguemeasure.�is is where the Bayesian �avor enters.

�e θ is now treated as a random variable with density λ.

We assume that λ and f (x; ⋅) are absolutely continuous and

that λ converges to zero at the endpoints of the interval

Θ. Moreover we assume that E[ ∂
∂θ
log f (X; θ)] = . We

denote I(λ) = E[{log λ(θ)}] and have that E[IX(θ)] =

∫ IX(θ)g(θ)dθ.�en, for an estimator θ̂ = θ̂(X), it holds

that

E[{θ̂ − θ}

] ≥



E[IX(θ)] + I(λ)
.

A second form of this inequality is obtained for func-

tionals κ = H(θ). Under the above assumptions, for an

estimator κ̂ = h(X) of H(θ), such that the �rst derivative
dH(θ)
dθ

exists and is �nite for all θ,

E[{κ̂ −H(θ)}

] ≥

{E[ d
dθ
H(θ)]}

E[IX(θ)] + I(λ)
.
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Introduction
Cramér–vonMises statistics are well established for testing

�t to continuous distributions; see Anderson () and

Stephens (), both articles in this encyclopedia. In this

paper, the corresponding statistics for testing discrete dis-

tributions will be described.

Consider a discrete distribution with k cells labeled

, , . . . , k, and with probability pi of falling into cell i. Sup-

pose n independent observations are given; let oi be the

observed number of observations and ei = npi be the

expected number in cell i. Let Sj = ∑
j

i= oi and Tj = ∑
j

i= ei.
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�en Sj/n and Hj = Tj/n are the cumulated histograms

of observed and expected values and correspond to the

empirical distribution function Fn(z) and the cumulative

distribution function F(.) for continuous distributions.

Suppose Zj = Sj − Tj, j = , , . . . , k; the weighted mean

of the Zi is Z̄ = ∑
k
j= Zjtj, where tj = (pj + pj+)/, with

pk+ = p.�e modi�ed Cramér–von Mises statistics are

then de�ned as follows:

W

d = n

−
k

∑
j=
Z

j tj; ()

U

d = n

−
k

∑
j=

(Zj − Z̄)

tj; ()

A

d = n

−
k

∑
j=
Z

j tj/{Hj( −Hj)}. ()

note that Zk =  in these summations, so that the last term

inW
d is zero.�e last term in A


d is of the form /, and is

set equal to zero.

�e well-known Pearson χ statistic is

χ

=

k

∑
i=

(oi − ei)

/ei.

Statistics corresponding to the Kolmogorov–Smirnov

statistics (see7Kolmogorov-Smirnov Test) for continuous
observations are

D
+
d = max

j
(Zj)/

√
n,D

−
d = max

j
(−Zj)/

√
n,

Dd = max
j

∣Zj∣/
√
n.

Comments on the Definitions
. Several authors have examined distributions of the

Kolmogorov–Smirnov family, see Pettitt and Stephens

() and Stephens () for tables and references.

In general, for continuous data, the Kolmogorov–

Smirnov statistic is less powerful as an omnibus

test statistic than the Cramér–von Mises family; lim-

ited Monte Carlo studies suggest that this holds also

for Dd.

. �e Cramér–von Mises and Kolmogorov–Smirnov

statistics take into account the order of the cells, in

contrast to the Pearson χ statistic.

. Use of tj in these de�nitions ensures that the value of

the statistic does not change if the cells are labelled in

reverse order.

For instance, in testing the7binomial distribution,
one statistician might record the histogram of suc-

cesses, and another the histogram of failures; or in a

test involving categorical data such as the tones of a

photograph, the histogram of cells with light to dark

observations might be recorded, or vice versa.

. �e statistic Ud is intended for use with a discrete

distribution around a circle, since its value does not

change with di�erent choices of origin; this is why pk+
is set equal to p.

Matrix Formulation
To obtain asymptotic distributions it is convenient to put

the above de�nitions into matrix notation. Let a prime,

e.g., Z′, denote the transpose of a vector or matrix. Let I
be the k × k identity matrix, and let p′ be the  × k vec-

tor (p, p, . . . , pk). SupposeD is the k× k diagonal matrix
whose j-th diagonal entry is pj, j = , . . . , k and let E be
the diagonal matrix with diagonal entries tj, and K be the
diagonal matrix whose (j, j)-th element is K jj = /{Hj( −

Hj)}, j = , . . . , k−  and Kkk = . Let oi and ei be arranged

into column vectors o, e (so that, for example, the j-th com-
ponent of o is oj, j = , . . . , k).�en Z = Ad, where d = o−e
and A is the k × k partial- sum matrix

A =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

   . . . 

   . . . 

   . . . 

⋮ ⋮ ⋮ ⋱ ⋮

   . . . 

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

�e de�nitions become

W

d = Z

′
EZ/n, ()

U

d = Z

′
(I − E

′
)E(I − 

′
E)Z/n, ()

A

d = Z

′
EKZ/n, ()

X

= (d

′
D
−
d)/n = Z

′
A
− ′
D
−
A
−
Z/n. ()

Asymptotic Theory
All Parameters Known
All four statistics above are of the general form S = Y ′MY ,

where Y = Z/
√
n andM is symmetric. ForW

d ,M = E, for

Ud ,M = (I − E′)E(I − ′E), and for Ad,M = EK. Also

Y has mean . Suppose its covariance matrix is Σy, to be
found below; then S may be written

S = Y
′
MY =

k−
∑
i=

λi(w
′
iY)


, ()
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where λi are the k −  non-zero eigenvalues of MΣy and
wi are the corresponding eigenvectors, normalized so that

w′iΣywj = δij where δij is  if i = j and  otherwise.

As n → ∞, the si tend to standard normal, and they

are independent; the limiting distribution of S is that of S∞
where

sinf S∞ =
k−
∑
i=

λis

i ()

which is a sum of independent weighted χ variables.

Recall that Y = Z/
√
n = Ad/

√
n; its covariance Σy is

found as follows. Calculate the k × kmatrix

Σ = D − pp′; ()

this is the covariance matrix of (o − e)/
√
n. �en Σy =

AΣA′, with entries Σy,ij = min(Hi,Hj) −HiHj.
For the appropriate M for the statistic required, the

eigenvalues λi, i = ,⋯, k ofMΣy are used in () to obtain
the limiting distribution of the statistic.�e limiting dis-

tributions have been examined in detail in Choulakian

et al. ().

Parameters Unknown
Cramér–von Mises statistics when the tested distribution

contains unknownparameters θ i have been investigated by

Lockhart et al. ().�e θ i must be estimated e�ciently,

for example by maximum likelihood (ML). Suppose θ =
(θ, θ, . . . , θm)

′
is the vector ofm parameters.

�e log-likelihood is (omitting irrelevant constants)

L
∗
=

k

∑
i=
oi log pi,

and pi contains the unknown parameters.�e ML estima-

tion consists of solving them equations

∂L∗

∂θ j
=

k

∑
i=

oi

pi

∂pi

∂θ j
= ,

for j = , . . . ,m.

Let θ̂ be the ML estimate of θ, let p̂ be the estimate
of p, evaluated using θ̂, and let ê be the estimated vector
of expected values in the cells, with components êj = np̂j.

�en let d̂ = (o − ê) and Ẑ = Ad̂.

De�ne a k bymmatrix B with entries

Bi,j = ∂pi/∂θ j

for i = , . . . , k and j = , . . . ,m. �e matrix B′D−B is

the Fisher Informationmatrix for the parameter estimates.

De�ne V = (B′D−B)−.�e asymptotic covariance of θ̂
is then V/n, the covariance of d̂/

√
n is Σd = Σ − BVB′,

where Σ is de�ned in (), and the covariance of Ẑ/
√
n =

Ad̂/
√
n = Ŷ is

Σu = AΣdA
′
.

�en, as in the previous section, where parameters

were known, the weights λi in the asymptotic distribu-

tion () are the k eigenvalues of MΣu for the appropriate
M for the statistic required.

In practice, in order to calculate the statistics, using

(–), the various vectors and matrices must be replaced

by their estimates where necessary. For example, let matrix

D̂ beD with p replaced by p̂ and similarly obtain B̂, Ê, V̂ , K̂

and Σ̂ using estimates in an obvious way.�e eigenvalues
will also be found using the estimated matrices Σ̂u and M̂.
Consistent estimates of the λi will be obtained and () used

to �nd the estimated asymptotic distribution.

�us the steps are :

. Calculate V̂ = (B̂
′
D̂
−
B̂)−.

. Calculate Σ̂d = Σ̂ − B̂V̂B̂
′
and Σ̂u = AΣ̂dA′.

. For the statistic required, let M̂ be the estimate of

the appropriate M. Find the k −  eigenvalues of

M̂Σ̂u, or (equivalently) those of the symmetric matrix
M̂
/Σ̂uM̂

/
and use them in () to obtain the asymp-

totic distribution.

For practical purposes, percentage points of S∞ using

exact or estimated λs, can be used for the distributions of

the statistics for �nite n; this has been veri�ed by many

Monte Carlo studies. One therefore needs good approxi-

mate points in the upper tail of S∞; these can be found

from the percentage points of S, where S has the distribu-

tion a+bχp, and the a, b, p are chosen so that the �rst three

cumulants of S match those of S∞ in (). �ese cumu-

lants are κj = 
j−

(j− )!∑
k−
i= λ

j

i. In particular, the mean κ
is ∑

k−
i= λi, the variance κ is ∑

k−
i= λ


i and κ is ∑

k−
i= λi .

�en for the S approximation, b = κ/(κ), p = κ

/κ ,

and a = κ − bp.�is approximation is generally accurate

in the upper tail, at levels α < .. More accurate points

can be obtained by the method of Imhof ().

About the Author
Michael A. Stephens is Professor Emeritus of Mathemat-

ics and Statistics at Simon Fraser University in Burnaby,

British Columbia, Canada. Prior to that he taught at sev-

eral universities including McGill, Nottingham, McMas-

ter, and Toronto, and was a visiting professor at Stanford,

Wisconsin-Madison, and Grenoble. He has (co-)authored

over  papers on the analysis of directional data, contin-

uous proportions, curve-�tting, and tests of �t. Professor

Stephens was President of the Statistical Society of Canada

in . He is a Fellow of the Royal Statistical Society, and



 C Cross Classified and Multiple Membership Multilevel Models

his honors includemembership in the International Statis-

tical Institute, and fellowships of the American Statistical

Association and the Institute of Mathematical Statistics.

Dr. Stephens received the B.Sc. degree () from Bristol

University and A.M. degree () in physics from Har-

vard University, where he was the �rst Frank Knox Fellow,

and Ph.D. degree () from the University of Toronto. In

 he was awarded the Gold Medal, Statistical Society of

Canada for two main areas of research: analysis of direc-

tional data, and statistical theory and methods associated

with goodness of �t.

Cross References
7Anderson-Darling Tests of Goodness-of-Fit
7Exact Goodness-of-Fit Tests Based on Su�ciency
7Kolmogorov-Smirnov Test
7Tests of Fit Based on�e Empirical Distribution Func-
tion

References and Further Reading
Anderson TW () Anderson–Darling tests of goodness-of-fit.

Article in this encyclopedia

Anderson TW, Darling DA () Asymptotic theory of certain

goodness of fit criteria based on stochastic processes. Ann Math

Stat :–

Choulakian V, Lockhart RA, Stephens MA () Cramer–von Mises

Tests for discrete distributions. Can J Stat :–

Darling DA () The Cramér–Smirov test in the parametric case.

Ann Math Stat :–

Imhof JP () Computing the distribution of quadratic forms in

normal variables. Biometrika :–

Lockhart RA, Spinelli JJ, Stephens MA () Cramér–von Mises

statistics for discrete distributions with unknown parameters.

Can J Stat :–()

Pettitt AN, Stephens MA () The Kolmogorov–Smirov test for

discrete and grouped data. Technometrics ():–

Stephens MA () Asymptotic results for goodness-of-fit statistics

with unknown parameters. Ann Stat :–

Stephens MA () Tests based on EDF statistics. In: D’Agostino R,

Stephens MA (eds) Chap.  in Goodness-of-fit techniques.

Marcel Dekker, New York

Stephens MA () EDF tests of fit. Article in this encyclopedia

Cross Classified and Multiple
Membership Multilevel Models

Harvey Goldstein

Professor of Social Statistics

University of Bristol, Bristol, UK

Hierarchically Structured Data
Interesting real life data rarely conform to classical text

book assumptions about data structures. Traditionally

these assumptions are about observations that can bemod-

elled with independently, and typically identically, dis-

tributed “error” terms. More o�en than not, however,

the populations that generate data samples have com-

plex structures where measurements on data units are not

mutually independent, but depend on each other through

complex structural relationships. For example, a house-

hold survey of voting preferences will typically show vari-

ation among households and voting constituencies (con-

stituencies and households di�er on average in their polit-

ical preferences).�is implies that the replies from indi-

vidual respondents within a household or constituency

will be more alike than replies from individuals in the

population at large. Another example of such “hierarchi-

cally structured data” would be measurements on students

in di�erent schools, where, for example, schools di�er in

terms of the average attainments of their students. In epi-

demiology we would expect to �nd di�erences in such

things as fertility and disease rates across geographical and

administrative areas.

Techniques for modelling such data have come to be

known as “multilevel” or “hierarchical data” models and

basic descriptions of these are dealt with in other articles

(see 7Multilevel Analysis). In the present article we shall
consider two particular extensions to the basic multilevel

model that allow us to �t structures that have considerable

complexity and are quite commonly found, especially in

the social and medical sciences.

The Basic Multilevel Model
A simple multilevel model for hierarchical data structures

with normally distributed responses can be written as:

yij = β + βxij + uj + eij, uj
iid
∼ N(, σ


u ), eij

iid
∼ N(, σ


e ).

()

�is might be applied to a sample, say, of school students

where i indexes students (level ), who are grouped within

schools (level ).�e response y might be an attainment

measure and x a predictor such as a prior test score. O�en

referred to as a “variance components” model this may be

extended in a number of ways to better �t a data set. For

example, we may introduce further covariates and we may

allow the coe�cients of such covariates to vary at level , so

that, say, β, may vary from school to school. Another pos-

sibility is to allow the level  variance to depend on a set

of explanatory variables, so that, for example, we can allow

the variance between male students to be di�erent from

that for female students. We can have several responses

that are correlated leading to a multivariate model, and we

can consider non-normal responses, such as binary ones,

in order to �t generalised linear multilevel models. We can

also have several further levels; for example schoolsmay be
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grouped within school boards or authorities, so yielding

a three level structure. Goldstein () provides further

details and discusses estimation methods.

Cross Classified Structures
�e above only describes purely hierarchical models. In

practice, however, data structures are o�en more compli-

cated. Consider an educational example where students

move through both their primary and secondary education

with the response being attainment at the end of secondary

school. For any given primary school, students will gen-

erally move to di�erent secondary schools, and any given

secondary school will draw students from a number of

primary schools. We therefore have a cross classi�cation

of primary by secondary schools where each cell of the

classi�cation will be populated by students (some may be

empty).When wemodel such a structure we have a contri-

bution to the response that is the sum of an e�ect from the

primary and an e�ect from the secondary school attended

by a student. A basic, variance components, cross classi�ed

model may be written as

y
()
i = β + βxi + u

()
primary school(i) + u

()
secondary school(i)

+u
()
student(i)

u
()
primary school(i)

iid
∼ N(, σ u()),

u
()
secondary school(i)

iid
∼ N(, σ u()) ()

u
()
student(i)

iid
∼ N(, σ u()), i = , . . . ,N.

We have changed the notation to make it more general

and �exible. �e superscript refers to the set of units, or

classi�cation;  being students,  primary school and 

secondary school. Model () thus assumes that there are

separate, additive, contributions from the primary and the

secondary school attended. As with the simple hierarchical

model we can extend () in several ways by introduc-

ing random coe�cients, complex variance structures and

further cross classi�cations and levels. �ere are many

examples where cross classi�ed structures are important.

�us, for example, students will generally be grouped by

the neighborhood where they live and this will constitute a

further classi�cation. In a repeated measures study where

there is a sample of subjects and a set of raters ormeasurers,

if the subjects are rated by di�erent people at each occasion

we would have a cross classi�cation of subjects by raters.

Multiple Membership Structures
In many circumstances units can be members of more

than one higher level unit at the same time. An example

is friendship patterns where at any time individuals can be

members of more than one friendship group. In an edu-

cational system students may attend more than one school

over time. In all such cases we shall assume that for each

higher level unit to which a lower level unit belongs there is

a known weight (summing to . for each lower level unit),

which represents, for example, the amount of time spent in

the higher level unit.�e choice of weights may be impor-

tant but is beyond the scope of this article. Formore details

about choosing weights see Goldstein et al. ().

Using the general notation we used for cross classi�ca-

tions we can write a basic variance components multiple

membership model as

y
()
i = β + βxi +∑

j∈school(i)
w
()
i,j u

()
(j) + u

()
i

u
()
(j) ∼ N(, σ


u()), u

()
(i)∼N(, σ


u()) ()

∑
j∈school(i)

w
()
i,j = .

�is assumes that the total contribution from the level

 units (schools) is a weighted sum over all the units of

which the level  unit has been a member.�us, for exam-

ple, if every student spends half their time in one school

and half their time in another (randomly selected) then the

variance at level  will be

var(.u
()
j

+ .u
()
j

) = σ

u()/. ()

�us, a failure to account for the multiple membership of

higher level units in this case will lead us to treat the esti-

mate of the level  variance, σ u()/ as if it were a consistent

estimate of the true level  variance σ u(). More generally,

ignoring a multiple membership structure will lead to an

underestimation of the higher level variance.

Finally, we can combine cross classi�ed and multi-

ple membership structures within a single model and

this allows us to handle very complex structures. An

example where the response is a binary variable is given

in Goldstein (, Chap. ). It is possible to use maxi-

mum likelihood estimation for these models, but apart

from small scale datasets, MCMC estimation is more e�-

cient and �exible.�e MLwiN so�ware package (Rasbash

et al. ; Browne . http://www.cmm.bristol.ac.uk)

is able to �t these models.
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�is article will initially treat joint probability measures

and their associated cross-covariance operators. Subse-

quently, attention will be shi�ed to three examples of

problems on capacity of information channels.

Cross-covariance operators were introduced in Baker

() as a tool in solving a basic problem in informa-

tion theory, and treated more extensively in Baker ().

Related results are in Gualtierotti () and Fortet ().

�e empahsis in Baker () was in two directions: show-

ing the added power of analysis obtained by introducing

the cross-covariance operator of a joint measure, and pro-

viding new results for actually computing likelihood ratios

for joint measures. Applications to date have included

results on absolute continuity of probability measures,

mutual information for pairs of7stochastic processes, and
analysis of information capacity for communication chan-

nels. More recently, there has been interest in this topic by

researchers in machine learning, who have applied theory

from Baker () in a number of interesting publications

(e.g., Fukumizu et al. , ; Gretton et al. ).

�e jointmeasures to be discussed are probabilitymea-

sures on the product of two real separable Hilbert spaces,

H and H, with Borel sigma �elds θ. and θ. Denote the

inner products by < , > on H and < , > on H. H x H is

then a real separableHilbert space under the inner product

de�ned by <(x,u), (v,y)> = <x,v> + <u,y>. Next, intro-
duce a joint measure π on the measurable space (H x

H, θ x θ). Only strong second-order probability mea-

sures will be considered: those joint measures ∂ such

that E∂, ∣∣∣(x,y)∣∣∣

 = ∫HxH

(∣∣x∣∣

 + ∣∣y∣∣


)d∂(x,y) is �nite.

All Gaussian measures on HxH are strong second order,

as are their projections on H and H. From the measure

π one has projections πi on (Hi, θ i), i = , . Let m and

m denote themean elements andR andR the covariance

operators of π and π.

�e �rst result of note is the de�nition and properties

of the cross-covariance operator for the joint measure π.

Denoting that operator by C, it is de�ned for all (u,v) in

HxH by

<Cv,u> = ∫
HxH

<x −m,u> <y −m, v> dπ(x, y).

�eorem  C has representation C = R/ VR
/
 , V: H

→H a unique linear operator having ∣∣V ∣∣ ≤  and PVP =

V, Pi the projection of Hi onto the closure of range(Ri). ⊡

Next, we turn to the de�nition and properties of the

covariance operator R of π. By direct computation

(Baker ), one can show that this operator is de�ned on

every element (u,v) in HxH by

R(u, v) = (Ru + Cv,Rv + C
∗
u)

= (R ⊗ R)(u, v) + (C
∗
 ⊗ C)(u, v).

We now give a result that illustrates both similarity and

di�erence between a joint measure and the usual mea-

sure.as de�ned on one of the spaces H or H. We de�ne

a self-adjoint operator V in HxH by V(u,v) =(Vv, V∗u)
= (V

∗
⊗V)(u,v) and denote by I the identity operator in

HxH; it is shown in Baker () that ∣∣V∣∣ ≤  and that the
non-zero eigenvalues of VV

∗
are squares of the non-zero

eigenvalues of V.
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�eorem  �e covariance operator R of the measure
π on HxH has representation R = R/⊗(I+V)R

/
⊗,

whereR⊗ is the covariance operator of the productmeasure
π ⊗ π. If π is Gaussian, then π and π ⊗ π are mutu-

ally absolutely continuous if and only ifV is Hilbert-Schmidt
with ∣∣V∣∣ < , and otherwise orthogonal.⊡

�e preceding results give some of the basic proper-

ties of the covariance operator of a joint measure, and it

is seen that the cross-covariance operator is an essential

component in the de�nition and properties of the covari-

ance operator. In Baker (), considerable attention is

given to Gaussian joint measures. However, it should be

noted that the de�nition of the cross-covariance operator

and its relation to the covariance operator hold for any

strong-second order joint probability measure When the

joint measure at hand is not Gaussian, one still has the

cross-covariance operator available as well as themean and

the covariance operator.�ese functions can frequently be

estimated from data and used to develop suboptimum but

e�ective operations using (for example) second moment

criteria.

We now turn to a brief introduction to three prob-

llems on the capacity of a Gaussian channel without feed-

back (Baker , ; Baker and Chao a, b). �e

cited papers provide examples of the use of results from

Baker () in applications to information theory. �e

de�nition of the channel capacity is as follows. We have

a joint measure πS,AS+N where S is the actual signal,

AS is the transmitted coded signal (from a measurable

space (Ω,Θ)) and AS+N is the received waveform of sig-

nal+noise from a measurable space (Ψ, Γ).�e (average)

mutual information will be �nite if πS,AS+N is absolutely

continuous with respect to its product measure πS⊗AS+N ,

and its value is then given by

∫
ΩxΨ
log[(dπS,AS+N /dπS⊗AS+N)(x, y)]dπS,AS+N(x, y).

�e transmitted signal AS and the received AS+N can vary

with choices by the coder (and the jammer in the third

example below), and the channel capacity is the supre-

mum of the mutual information over all admissible S and

AS+N.pairs.

In each case, the transmitted signal has a constraint

given in terms of the ambient noise process. When the

constraint on the transmitted signal is given in terms of

the channel noise covariance, one says that the channel

is “matched” (coder constraint is matched to the chan-

nel noise covariance) (Baker ). �e second type of

channel is “mismatched” (the signal constraint is not given

in terms of the channel noise covariance) (Baker ).

�e third class is the jamming channel without feedback,

wherein the noise in the channel consists of a knownGaus-

sian ambient noise (nature’s contribution) plus an indepen-

dent noise that is under the control of a hostile jammer

(Baker and Chao a, b). In this channel, there is a

constraint on the jammer’s noise as well as one on the

coder’s.transmitted signal.

In the jamming channel, the jammer has no constraints

on the choice of the probability distributions of the noise

at his command. However, it is known (Ihara ) that if

the channel noise due to nature is Gaussian, then the infor-

mation capacity is minimized by the jammer choosing

(among all processes satisfying the constraints) a Gaussian

process. �us, the original problem becomes a problem

involving an ambient Gaussian noise (which is used to cal-

culate the coder’s constraint) and an independentGaussian

process (jamming) giving the covariance constraint that

the jammer uses.
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The Development of Data Analysis
Data analysis began to be developed for use in statis-
tical methodology in the early s. Today, it includes
a number of techniques which allow an acceptable syn-
thesis of information collected from n statistical units or
objects which are each characterized by p qualitative or
quantitative variables.

�e basics of certain data analysis techniques were
established in the last century, principal components at the
beginning of the s, factor analysis in the s, and
automated classi�cation methods in the s.
During the same period, statistical methodology also

saw development in statistical inference (classic and
Bayesian) and in studies of interpretative models of com-
plex phenomena (linear, loglinear, generalized linear, anal-
ysis of time series such as ARMA, ARIMA, autoregressive,
etc.). Data analysis has made use and at times stimulated
the development of two important “tools”: the language
of matrices and appropriate computer so�ware requiring
hardware with large memory capacity and very fast access
to information.

�e development of data analysis has been stimulated
by the operational needs of its application in various sec-
tors, in particular, business and the social sciences. For
example, automatic classi�cation methods are interesting
applications used for classifying clients and market seg-
ments and for establishing homogeneity between company
units and territorial administrative divisions.�ese meth-
ods are also applied in medicine for pattern recognition
(see7Pattern Recognition, Aspects of and7Statistical Pat-
tern Recognition Principles), for the automatic assessment
of words used by speakers in di�erent situations, as well
as in many other sectors. Cluster analysis (see 7Cluster
Analysis: An Introduction), when used in sample sur-
veys of a population with known structural characteristics,
allows one to reduce the variability within an equal sample

size, thereby increasing precision. Multiway matrix analy-
sis is especially interesting when seeking trends in a single
location at di�erent times or in di�erent locations at the
same time.
Methods such as 7multidimensional scaling allow us

to represent a set of n objects belonging to a space with
p >  dimensions in spaces of two or three dimensions, so
that the distortion of the matrix of the distance between
points is minimal.7Principal component analysis has also
been the subject of in-depth studies which have opened the
way for its use in a wide variety of �elds.7Correspondence
analysis, introduced by Benzécri at the end of the s,
is considered to be the acme of data analysis.�e French
school has, in some way, introduced this new sector of
statistics to scholars and has carried out research in social
sciences, economics, 7demography, and business using
methodologies which have proved to be very useful in
many research situations.
Data analysis uses not only the matrix language and

advanced so�ware mentioned above but also methods
of mathematical optimization, the theory of eigenval-
ues (see 7Eigenvalue, Eigenvector and Eigenspace) which
are of great importance in many analyses, certain results
from vector analysis, the theory of graphs and operations
research along with some theorems of mathematical anal-
ysis, and the theory of linear spaces and fuzzy sets. Impor-
tant and interesting contributions to classi�cation have
been made by scientists studying mathematical optimiza-
tionmethods, who have introduced rigorous algorithms to
establish the partitions of a set of n objects characterized
by p variables, which constitute the statistical population
or group of reference.

�e studies carried out by Minkowski and Fréchet
and other mathematicians on metrics are applicable to the
realmof data analysis. Euclideanmetrics is one ofmany but
is o�en preferred by certain so�ware for reasons of tradi-
tion.�e L norm, for example, and the geometry based
on it is, in many research situations, better suited than
other metrics to represent complex phenomena in various
�elds. But metrics in the traditional mathematical sense
have proved completely inadequate for the applications.

Miodrag Lovric (ed.), International Encyclopedia of Statistical Science, DOI ./----,
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�erefore, these interesting studies of distance and simi-
larity indices and, most importantly, of ultra-metrics have
become an important part of data analysis.
It is also of great importance in data analysis to be very

careful about conclusions drawn from surveys which have
been carried out using methodologies which are not jus-
ti�ed by the hypotheses on which the research is based.
�e great progress and widespread availability of hard-
ware and so�ware has made it possible for those who
are not students or specialists in the �eld to carry out
research. �is may lead to data processing done with-
out in-depth knowledge of the methodology, techniques,
or parametrization used; so, the default settings are cho-
sen by the so�ware without an understanding of the
meaning of many statistical parameters which allow an a
posteriori evaluation of the goodness of the data model
adopted.

�e data coding step is of fundamental importance for
the evaluation of any outcome although it is o�en given less
attention than needed by those preferring to concentrate
on the mathematical aspects of the analysis.
Inferential problems also arise in data analysis. Data

analysis has, in the �rst stage, been viewed only as a
methodology for synthesizing information with any prob-
abilistic or inferential approach excluded. Attempts to
apply classical inferential methodologies requiring strong
distribution hypotheses, especially in the multidimen-
sional �eld, have not led to any worthwhile outcome. In
some techniques – such as principal components and fac-
tor analysis – inferential aspects were considered to be of
primary importance and were the subject of wide studies
during the �rst half of the last century.
As is o�en the case in scienti�c research, techniques

used in statistical induction have proved to be unsuited to
solving inferential problems in data analysis. Furthermore,
in this �eld, induction has a wider meaning that is merely
passing from “the sample to the population,” both in terms
of an estimate of the parameters and of a veri�cation of
the hypotheses. �e themes of fundamental importance
here are those concerning the stability of results in terms of
knowing to what extent the relations found between indi-
viduals and/or between variables can be considered valid.
�e relations between variables – linear and nonlinear –
are o�en very strong.

�e veri�cation of the hypotheses and the estima-
tion of the parameters are not speci�c interests. One is
nearly always concerned with data gathered from popula-
tions of a �nite number of individuals, which makes the
stability of the results extremely important. In sampling,
on the other hand, it is important to carefully consider
what the expected outcome is and what the meaning of
the extension is. We are unaware of any studies of the

sampling plans capable of guaranteeing an acceptable level
of representation of the samples extracted. �is is also a
completely new �eld of research regarding the method-
ological instruments usable in this important �eld.

The Techniques of Data Analysis
�e expression “data analysis” (analyse des données in
French) or multidimensional data analysis (MDA) orig-
inated from the methodological approach �rst used in
France in the late s (Benzécri ; Bertier and
Bouroche ; Caillez andPages , etc.). It includes two
groups of multivariate statistical methods: classi�cation
methods or automatic clustering and linear data analysis
and speci�cally principal component analysis, canonic cor-
relation analysis, both simple andmultiple correspondence
analysis, and multidimensional scaling.
During the s, MDA spreaded to other coun-

tries of Europe and was established as an autonomous
branch of statistics. �is created the conditions for new
developments in both methodology and in applications,
which characterize recent developments in multidimen-
sional data analysis. �ere were important contributions
in this area from Italian statisticians.
In addition to those mentioned above, there are

othermethods available formultivariate statistical analysis:
regression,7analysisofvariance,discriminantanalysis (see
7DiscriminantAnalysis: AnOverview and7Discriminant
Analysis: Issues and Problems), common factor analysis,
etc.,inwhichprobabilitiesandinferentialaspectsaretreated.
�ese may be called validation analyses for assumptions
formulated about the multidimensional data set.
Inferential and validation aspects come into play in

MDA and can also be introduced, with some condi-
tions, into the methods. In general, the various methods
of 7multivariate statistical analysis have di�erent ways,
depending on the purpose, to analyze, describe, and syn-
thesize the relations between statistical characteristics and
statistical units or cases.
It is useful to this purpose to divide the di�erent meth-

ods of multivariate statistical analysis according to the role
of the variables that come into play in the analysis. In the
originalMDAapproach, themethods used formultivariate
statistical analysis could be divided into:
Symmetric Analyses: with variables of the same role (inter-
dependence).�e principals are:

● Cluster analysis
● Principal component analysis
● Canonic correlation analysis
● Factor analysis of correspondences
● Common factor analysis
● Symmetric multidimensional scaling
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Asymmetric Analyses: where some variables are explica-
tive, independent attributes of other variables, dependent
and endowed with attributes or where pairs of variables or
units are ranked as in:

● Regression
● Analysis of variance
● Discriminant analysis
● Nonsymmetrical multidimensional scaling
● Path analysis

In the context of recent developments in MDA, such a
split is no longer sharp because asymmetric variants have
been introduced in all the main methods of data analysis.
For example, in principal component analysis, the supple-
mental or passive variables can be treated as variables in
a reference subspace instead of being handled as supple-
mental elements in the plots of the principal axes without
having been used in the actual computations. Asymmetric
variants have also been introduced in simple and multiple
correspondence analysis.
Multiway data analysis concerning particular exten-

sions of the methods of data analysis is linked to
asymmetric data analysis because of the di�erent role
it assigns to variables. Instead of the traditional data
classi�cation according the two criteria (statistical units
x variables), these methods are applied, with di�erent
approaches, to data classi�ed according to three or more
criteria or statistical ways (statistical units x variables
x occurrences).

�e combination of multivariate statistical methods
and the automatic data processing necessary for this type
of analysis is what brought aboutMDA.MDA is an impor-
tant tool of7datamining.One can consider datamining to
be a procedure that starts from elementary data in a Data
Warehouse to arrive at a decision. One can consider data
mining to be the heir of arti�cial intelligence and expert
systems. In each case,MDA is the basis for discovering data
structure.

Three-Way Data Analysis
Since the last  decades of the twentieth century, there has
been growing attention paid to the analysis of phenom-
ena characterized by a set X of nkr variables, observed
on a set of n units on r occasions (di�erent times, places,
etc.). �ese phenomena must be distinguished from the
classical multivariate and are referred to as multivariate-
multioccasion. �e set X is called a three-way data set
because its elements can be classi�ed according to modes:
units, variables, and occasions.�e data structure associ-
ated with this data set is a three-indices or three-way array.

�e most widely collected three-way data set occurs
when modes are units and variables and occasions are

di�erent times. Here, we will especially refer to this data
type.�e repetition in time of the observation of the units
allows us to evaluate the dynamics of the phenomenon
di�erently from the classical case of a multivariate or
cross-sectional (two-way) data set.�ere are several major
advantages over a conventional cross-sectional or time
series data set in using these, so-called three-way lon-
gitudinal data. �e researcher has a larger number of
data which increases the degree of freedom and reduces
collinearity among explanatory variables and the possibil-
ity of making inferences about the dynamics of change
from cross-sectional evidence.

�e three-way longitudinal data set may be given by:

● Repeated recurring surveys with no overlapping units.
�at is, a survey organization repeats a survey on a
de�ned topic, generally at regular time intervals. No
overlaps of the sample units are required at di�er-
ent times. Examples of these surveys are given by the
repeated analyses made by Central Bureau of Statistics
in most countries.

● Repeated surveys with partially overlapping units.�ese
surveys are also repeated at regular intervals.�e sur-
vey design includes rotating units to allow variance
reduction, i.e., the units are included in the analysis a
number of times, then rotated out of the survey.

● Longitudinal surveys with no rotation of units. A set of
units is followed over time with a survey designed with
this aim. In the economic �eld, these collected data
are called 7panel data. An example of this type is the
Survey of Income.

● Longitudinal surveys with rotation. A group of units is
followed for a period of time, so that new units are
introduced and followed over time.�ese are repeated
surveys with a partially overlapping units. An example
of this type is the Monthly Retail Trade Survey.

In longitudinal surveys, it is generally the same vari-
able which is observed on the units to allow comparison
over time.
Examples of the applications of the analyses of three-

way data sets are found in many di�erent �elds, including
chemometrics∗, biology, economics.
Di�erent objectives can be pursued in analyzing three-

way data sets:

. To synthesize a three-way data set
. To study the multiway variability of a three-way data
set

. To study the interrelationships between sets of ele-
ments of X:
(a) Between sets of variates
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(b) Between sets of units
(c) Between sets of occasions

. To de�ne virtual modes or derivational modes for the
three sets of modes of X:
(a) Virtual units
(b) Factors or latent variables
(c) Virtual occasions

. To analyze individual di�erences in the judgments of
di�erent sets dissimilarities:
(a) �ree-way scaling of a replicated set of dissimilar-

ities (replicated multidimensional scaling): met-
ric and nonmetric Euclidean models

(b) Weighted multidimensional scaling: metric and
nonmetric weighted Euclidean models

. To simultaneously classify di�erent sets of the elements
of X:
(a) Clustering of units
(b) Clustering of variables
(c) Clustering of occasions

. To give a linear or nonlinear model of X
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Data depth provides a systematic approach to order mul-
tivariate observations in Rd. A data depth function is any
function D(t;F) that measures the closeness or centrality
of a point t ∈ Rd with respect to a distribution function
F.�us, a depth function assigns to each x ∈ Rd a non-
negative score as its center-outward depth with respect
to F. Observations close to the center of F receive high
ranks whereas peripheral observations receive low ranks.
Hotelling () characterized the univariate median as
the point which minimizes the maximum number of
observations on one of its sides. �at is, D(t;F) =
min (F(t),  − F(t)).�is notionwas generalized byTukey
(), giving rise to the de�nition of half-space or Tukey’s
multivariate depth (Donoho ). �e seminal work of
Oja () and Liu () has renewed interest in data
depth functions. Over the past two decades, various new
notions of data depth have emerged as powerful explana-
tory and inferential tools for nonparametric multivariate
analysis. Zuo and Ser�ing () proposed a formal frame-
work for statistical depth functions based on the following
four properties.
Let F be the class of distributions on the Borel set on

Rd and FX be the distribution function of a given random
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vector X. Let D : Rd × F z→ R be bounded, nonnegative,
and satisfy the following four conditions:

● A�ne invariance: D(At + b;FAX+b) = D(t;FX) holds
for any random vectorX, any d×d nonsingular matrix
A, and any vectors t and b in Rd;

● Maximality at center: D(θ;F) = supt∈RdD(t;F) holds
for any F ∈ F with center θF (a point of symmetry);

● Monotonicity relative to deepest point: For any F ∈ F
with center θ, D(t;F) ≤ D(θ + α(t − θ);F) holds for
α ∈ [, ]; and

● Vanishing at in�nity: D(t;F) →  as ∥ t ∥→ ∞, for
each F ∈ F.

A sample version of D(⋅;F) is denoted by D(⋅;Fm), where
Fm is the sample or empirical distribution function. Sev-
eral novel depth functions have appeared in the litera-
ture, including Mahalanobis (MD) (Mahalanobis ),
half-space (HSD) or Tukey’s depth (Tukey ), con-
vex hull peeling (CHPD) (Mosler ), simplicial vol-
ume (SVD) or Oja’s depth (Oja ), majority (MJD)
(Singh ), simplicial (SD) (Liu ), spatial (SPD)
(Vardi and Zhang ), projection (PD) (Stahel ;
Donoho, ), zonoid (ZD) (Koshevoy and Mosler ;
Mosler, ); spherical (SPHD) (Elmore et al. );
and triangle (Liu and Modarres ) depth functions.
Some of the above data depth functions are described
below.
Let F be a multivariate distribution function in Rd,d ≥

 and X = {x, . . . , xm} be a random sample from F.�e
Mahalanobis depthMD(t;F) is de�ned as

MD(t;F) = [ + (t − µF)Σ−F (t − µF)]
−
,

where µF and ΣF are the mean vector and dispersion
matrix of F, respectively.�e sample version of MD(t;F)
is obtained by replacing µF and ΣF with their sample
estimates.�e half-space depth HSD(t;F) is de�ned as

HSD(t;F) = inf
H
{P(H) : H is a closed half-space in Rd

and t ∈ H}

= inf
u∈Rd

PF({X : uTX ≥ uTt}) = inf
∥u∥=

PF({X : uTX ≥ uTt}).

�e sample version of HSD(t;F) is HSD(t;Fm) =

m
min∥u∥= #{i : uTxi ≥ uTt}.
�e simplicial depth SD(t;F) is de�ned as SD(t;F) =

PF{t ∈ S [X, . . . ,Xd+]} where S [X, . . . ,Xd+] is a closed
simplex formed by (d + ) random observations from F.
�e sample version of SD(t;F) is obtained by replacing F
by Fm, or alternatively, by computing the fraction of the

sample random simplices containing the point t.�e pro-
jection depth PD(t;F) (Zuo ) is de�ned as PD(t;F) =
( +O(t;F))− where O(t;F) is a measure of outlyingness
of a point tw.r.t. F. For example, the outlyingness of a point
t can be de�ned as the maximum outlyingness of t with
respect to the univariate median in any one dimensional
projection, that is,

O(t;F) = sup
∥u∥=

∣uTt −Med(uTX)∣
MAD((uTX))

where Med(⋅) denotes the univariate median, MAD(⋅)
denotes the univariate median absolute deviation; i.e.,
MAD(Y) = Med(∣Y −Med(Y)∣), and ∥⋅∥ is the Euclidean
norm.

�e spatial depth SPD(t;F) or L depth is de�ned as

SPD(t;F) =  − ∥EF (
t −X

∥t −X∥
)∥ .

�e spherical depth SPHD(t;F) is de�ned as the prob-
ability that t is contained in the unique, closed random
hypersphere, S(X,X), formed by two random points X
and X, which are i.i.d with c.d.f. F .�at is, SPHD(t;F) =
P(t ∈ S(X,X)). �e sample version of the spheri-
cal depth at a point t is SPHD(t;Fm) = 

(m)
∑mi<j I[t ∈

S(xi, xj)].
�e empirical convex hull peeling depth CHPD(t;Fm)

at t w.r.t. the sample X = {x, . . . , xm} is de�ned as
CHPD(t,Fm) = min{k : t ∈ Ek}, if such a k exists; and
zero, otherwise, where Ek denotes the level k convex layer
to which t belongs.
To obtain a convex layer at level k, one initially con-

struct the smallest convex hull which enclose all samples
points {x, . . . , xm} and t.�e points on the perimeter are
designated the �rst convex layer and removed. �e con-
vex hull for the remaining points is now constructed; the
points on the perimeter constitute the second layer.�is
process is repeated, and a sequence of nested convex layers
is formed.

�e empirical zonoid depth ZD(t;Fm) at t w.r.t. the
sample X = {x, . . . , xm} is de�ned as ZD(t,Fm) =
sup{α : t ∈ Dα(x, . . . , xm)} where Dα(x, . . . , xm) =
{∑mi= λixi : ∑mi= λi = ,  ≤ λi, αλi ≤ 

n
, for all i}.

For a continuous distribution F on Rd, let L(X,X)
denote the hyper-lens de�ned by the intersection of two
identical closed hyper-spheres centered at X and X,
respectively, with radius ∥X − X∥.�e hyper-lens of any
two i.i.d. random vectors X and X in Rd is de�ned as
L(X,X) = B(X, ∥X − X∥) ∩ B(X, ∥X − X∥) where
B(c, r) is the closed ball of radius r centered at c.�e tri-
angle depth function TD(t;F) for a vector t ∈ Rd, with
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respect to a distribution F on Rd, is the probability that t
is contained in the random hyper-lens L(X,X).�at is,
TD(t;F) = P(t ∈ L(X,X)) where X and X are i.i.d
with c.d.f. F. Let X, . . . ,Xm be an i.i.d. random sample
with c.d.f. F. �e sample (empirical) version of TD(t;F)
is the proportion of L(Xi,Xj),  ≤ i < j ≤ m, that contain t.
�at is, TD(t;Fm) = 

(m)
∑mi<j I[t ∈ L(xi, xj)].

About the Author
For biography see the entry 7Measures of
Dependence.

Cross References
7Multivariate Outliers
7Multivariate Rank Procedures: Perspectives and
Prospectives
7Statistical Quality Control: Recent Advances

References and Further Reading
Donoho DL () Breakdown properties of multivariate location

estimators. PhD qualifying paper, Department of Statistics,
Harvard University

Elmore RT, Hettmansperger TP, Xuan F () Spherical data depth
and a multivariate median. In: Liu R, Serfling R, Souvaine D
(eds) Proceedings of data depth: robust multivariate analysis,
computational geometry and applications, pp –

Hotelling H () Stability in competition. Econ J :–
Koshevoy G, Mosler K () Zonoid trimming for multivariate

distributions. Ann Stat :–
Liu RY () On a notion of data depth based on random simplices.

Ann Stat :–
Liu Z, Modarres R () Triangle data depth. Technical report.

Department of Statistics, George Washington University
Mahalanobis PC () On the generalized distance in statistics.

Proc Natl Inst Sci India :–
Mosler K () Multivariate dispersion, central regions and depth.

Lecture notes in statistics. Springer, Berlin
Oja H () Descriptive statistics for multivariate distributions.

Stat Probab Lett :–
Singh K () Majority depth. Technical report. Rutgers University
Stahel WA () Robust estimation: infinitesimal optimality and

covariance matrix estimators. PhD thesis, ETH, Zurich (in
German)

Data Mining

Bruno Scarpa
University of Padua, Padua, Italy

In recent decades technological innovation has made the
availability of large and sometimes huge amounts of infor-
mation on a phenomenon of interest simple and cheap.

�is is due to two main reasons: on one side the devel-
opment of automatic methods of data acquisition, and on
the other side the progress of storage technology produc-
ing the fall of related costs.�is new environment involves
all areas of human endeavor.

● Every month a supermarket chain releases millions of
receipts, one for each shopping trolley checking out.
�e content of each trolley summarizes the needs, the
propensities and the economic behavior of the cus-
tomer that selected it.�e collection of all these shop-
ping lists forms an important information base for the
supermarket in order to decide the sales and purchases
politics. Such an analysis becomes even more inter-
esting when each shopping list is connected with the
customers loyalty cards, allowing to follow the single
client behavior by recording the purchases sequences;
a similar problem arises in analyzing the usage of
credit cards.

● Telecommunication companies generate every day
data on millions of phone calls and of other services.
Companies are interested in analyzing the customers
behavior in order to measure chances of up sell and
cross sell, and to identify potential churners (customers
with high propensity to move to others operators).

● �e growth of the World Wide Web in the last years,
and its success and usage in research, business and
daily life, makes it the largest publicly accessible data
source in the world. Analysts o�en need to extract
knowledge from this huge source of available data.
Search engines need to identify the small part of the
documents that are related to each single query; this
operation is complicated by a number of elements: (a)
the total size of the set of documents is amazing, (b)
data are not collected in a structured form, such as a
well organized data base, (c) inside each single docu-
ment the elements related with the speci�c query are
not in a pre-speci�ed position either with respect to the
entire document or among themselves.

● In scienti�c research huge amount of data are also
available, for example in microbiology for the study of
DNAstructure.�e analysis of sequences of portions of
DNA produces very large tables, called “DNAmicroar-
ray”, where each column represents a sequence of some
thousands of numerical values associated toDNAof an
individual and each row represents di�erent individu-
als. �e goal is, for example, to connect the con�gu-
ration of these sequences with the occurrence of some
disease.

● �e set of physical, chemical or other measurements
�nalized to examining the Earth’s climate is becoming
massive. Even the simple structured organization of
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such data is problematic as much as the analysis to
summarize all these pieces of information.

● Digital images of the sky will create massive data sets
of observational data regardingmany di�erent features
of hundreds ofmillions of sky objects. Astronomers are
o�en interested in �nding some algorithm that can per-
form as well as human experts in classifying stars and
galaxies.

�ese are only few examples, but from all of these (and
from many other that could be provided), it is clear that
nowadays the analysis of huge amount of data is o�en
required in order to solve real world problems. Speci�c sta-
tistical tools are required in order to extract important and
useful knowledge from such an abundant amount of infor-
mation. In fact, from one side the large number of cases
are di�cult to visualize e�ectively and, on the other side,
as dimensionality increases, it becomes more di�cult to
describe data. Also, as we have seen in some of the exam-
ples above, data may not assume the simple structure of
a database and sometimes they are even collected from
streaming (e.g., for recording electricity usage).

�e exploration and analysis of huge amount of data
is o�en called “data mining” recalling the extraction (of
relevant knowledge) from a mine of data:

7 Data mining is the activity of graphical and numerical analy-

sis of large observational data sets or streaming data in order

to find useful knowledge for the data owner.

“Useful knowledge” in this context is quite generic, since
very o�en it is not a priori speci�ed what is the object
of interest, which is in general acquired by “mining” the
data. From such a de�nition, it is clear that data mining
is an interdisciplinary exercise where statistics, database
technology, machine learning, pattern recognition (see
7Pattern Recognition, Aspects of and 7Statistical Pat-
tern Recognition Principles), arti�cial intelligence and
visualization play a role (Hand et al. ). �erefore,
data mining requires an understanding of both statistical
and computational issues.
Looking at it as a statistician, (e.g., Azzalini and Scarpa

) it isworthwhile outlining some statistical speci�cities
of data mining:

● �e size of the data is huge. When many variables are
available, the problem of the curse of dimensionality
appears: the number of unit cells in a space as the
number of variables increases linearly has an exponen-
tial growth rate, so that, in high dimensional spaces,
“nearest” points may be very far away. Also, when the
number of cases is of the order of millions, computa-
tional issues need to be considered. “Every time the

amount of data increases by a factor of ten, we should
totally rethink how we analyze it” (Friedman ).

● �e observational context: data are o�en not collected
from an experiment, but purely observational. �ey
just “exists.” O�en they have been collected by conve-
nience or opportunity, rather than randomly.

● Data used for the analysis have o�en been collected
for some other purpose (e.g., they may have been col-
lected in order to maintain an up-to-date record of all
the transactions in a bank).

● Data may be dirty, corrupted, contaminated, missing
and need to be preprocessed in order to be used.

● Sampling and population issues: the huge amount of
data can be tackled by sampling, if the aim ismodeling,
but not necessarily so if the aim is pattern detection.
When data sets are entire populations (e.g., the entire
customer base of a company), the standard statistical
notion of inference has no relevance.

● “If you torture data long enough, Nature will always
confess” (Coase ), with so large data sets it would
be easy to �nd a model that will �t the data well,
but o�en this model will not really describe the
phenomenon of interest. In this context the trade o�
between bias and variance needs to be managed.

In summary, while data mining does overlap considerably
with the standard exploratory data analysis techniques of
statistics, it also runs into new problems, many of which
are consequences of size and the non-traditional nature of
the data sets involved.
Using a machine learning classi�cation, data mining

tasks may be divided into two groups, the supervised learn-
ing problems, “supervised” because of the presence of
an outcome variable to guide the learning process, and
the unsupervised learning problems, (also said in a more
statistical language internal analysis problems) where we
observe only the features and have nomeasurements of the
outcome.
O�en the aimof supervised learning is to build amodel

that will permit the prediction of the value of one vari-
able from known values of other variables. If the variables
being predicted (called dependent variables or outputs or
responses) are categorical, the problem is termed clas-
si�cation, while if they are quantitative the problem is
called regression. A large number of methods have been
developed in statistics and machine learning to tackle
these problems, from simple parametric models such as
7generalized linear models (McCullagh and Nelder )
to nonparametric structures such as generalized additive
models (Hastie and Tibshirani ), 7neural networks
(e.g., Ripley ), support vectormachines (Vapnik ),
classi�cation and regression trees (Breiman et al. )
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and their resampling versions such as bagging (Breiman
), boosting (Freund and Schapire ) or random
forests (Breiman a) and many others that have been
developed in recent years.
Unsupervised learning is a class of problems in which

one seeks to determine how the data are organized, directly
inferring the properties of the density of a multivariate
variable without the help of a “teacher” providing correct
answers. Classical statistics and machine learning litera-
ture (e.g., Kaufman and Rousseeuw ; Ripley ) pro-
vide many clustering algorithms with the aim of grouping
or segmenting a collection of objects into subsets or “clus-
ters,” such that those within each cluster are more closely
related to one another than objects assigned to di�erent
clusters. Another family of algorithmic techniques based
on association rules (e.g., Hastie, Tibshirani and Friedman
) is related to the task of �nding combinations of items
that occur frequently in transaction databases. Other goals
of interest, in this context, are on detecting patterns among
data, like spotting fraudulent behavior among customers of
a company, or detecting unusual stars or galaxies in astro-
nomical work in order to identify previously unknown
phenomena. A particular case of this pattern detection is
when a pattern of interest is already known by the user and
he is interested in �nding similar patterns in the data set.
�is task is very common in text and image data sets, where
the pattern can be a set of keywords, and the user may
wish to �nd relevant documents within a large set of pos-
sibly important documents, or the user may have a sample
image, and wish to �nd similar images from a large set of
images.
Most of the methods included in data mining are

o�en considered as automatic tools that do not require any
human intervention. In particular many algorithms gener-
ated in the machine learning context, dealing with really
huge amount of data with, sometimes, very complicated
computational structure, and seems to present an objective
advantage by working without any human intervention.
However, from empirical experience, it seems that an anal-
ysis driven by a thinking brain is much more powerful. In
fact the necessity to “understand the problem” character-
izes the style of statistical data mining, in all the phases
of the analysis from the data preparation to the interpre-
tation of the results. Even when black box algorithms are
used, one can never hope to solve every problem by using
so�ware on a powerful computer just by “pushing a but-
ton”. A deep knowledge of the nature of the tools used and
of how the used methods work is crucial for, at least, three
broad reasons (Azzalini and Scarpa ):

. Understanding the characteristics of the tools is crucial
in choosing the right method.

. �e same mastery is required in order to correctly
interpret the results of the algorithms.

. Some ability in the computational and algorithmic
aspects is very useful in order to better evaluate the
computer output, considering also its reliability.

�e paper by Breiman (b), with the discussion that it
generated, describes quite well the speci�cities of the type
of statisticians needed to tackle these problems.
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Time series data is ubiquitous; large volumes of time
series data are routinely created in medical and bio-
logical domains, examples include gene expression data
(Aach and Church ), electrocardiograms, electroen-
cephalograms, gait analysis, growth development charts
etc. Although statisticians have worked with time series
for more than a century, many of their techniques hold lit-
tle utility for researchers working with massive time series
databases (for reasons discussed below).
Below are the major task considered by the time series

data mining community:

● Indexing (Query byContent):Given a query time series
Q, and some similarity/dissimilarity measure D(Q,C),
�nd the most similar time series in database DB
(Chakrabarti et al. ; Faloutsos et al. ; Kahveci
and Singh ; Popivanov and Miller ).

● Clustering: Find natural groupings of the time series in
database DB under some similarity/dissimilarity mea-
sure D(Q,C) (Aach and Church ; Debregeas and
Hebrail ; Kalpakis et al. ; Keogh and Pazzani
).

● Classi�cation: Given an unlabeled time series Q,
assign it to one of two or more prede�ned classes
(Geurts ; Keogh and Pazzani ).

● Prediction (Forecasting): Given a time series Q
containing n datapoints, predict the value at time
n + .

● AssociationDetection: Given two ormore time series,
�nd relationships between them. Such relationships
may or may not be casual and may or may not exist
for the entire duration of the time series.

● Summarization: Given a time series Q containing n
datapointswheren is an extremely large number, create
a (possibly graphic) approximation of Q which retains

its essential features but �ts on a single page, computer
screen etc. (Indyk et al. ; van Wijk and van Selow
).

● AnomalyDetection (InterestingnessDetection):Given
a time series Q, assumed to be normal, and an unan-
notated time series R. Find all sections of R which con-
tain anomalies or “surprising/interesting/unexpected”
occurrences (Guralnik and Srivastava ; Keogh
et al. ; Shahabi et al. ).

● Segmentation: Given a time series Q containing n
datapoints, construct amodelQ, fromK piecewise seg-
ments (K << n) such that Q closely approximates Q
(Keogh and Pazzani ).

Note that indexing and clustering make explicit use of
a distance measure, and many approaches to classi�ca-
tion, prediction, association detection, summarization and
anomaly detection make implicit use of a distance mea-
sure. For this reason, there has been signi�cant research on
�nding the “best” distance measure for time series (Keogh
and Kasetty ). Recent work, however, suggests that
the simple Euclidean distance is surprisingly competitive
(Ding et al. ).
It is interesting to note that with the exception of index-

ing, research into the tasks enumerated above predate not
only the decade old interest in7data mining, but comput-
ing itself. What then, are the essential di�erences between
the classic, and the data mining versions of these prob-
lems?�e key di�erence is simply one of size and scalabil-
ity; time series data miners routinely encounter datasets
that are gigabytes in size. As a simple motivating example,
consider hierarchal clustering. �e technique has a long
history, and well-documented utility. If however, we wish
to hierarchically cluster a mere million items, we would
need to construct a matrix with  cells, well beyond the
abilities of the average computer formany years to come. A
data mining approach to clustering time series, in contrast,
must explicitly consider the scalability of the algorithm
(Kalpakis et al. ).
In addition to the large volume of data, it is o�en the

case that each individual time series has a very high dimen-
sionality (Chakrabarti et al. ). Whereas classic algo-
rithms assume a relatively low dimensionality (e.g., a few
measurements such as “height, weight, blood sugar etc.”),
time series data mining algorithms must be able to deal
with dimensionalities in the hundreds and thousands.�e
problems created by high dimensional data are more than
mere computation time considerations, the very meanings
of normally intuitive terms such as “similar to” and “clus-
ter forming” become unclear in high dimensional space.
�e reason is that as dimensionality increases, all objects
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become essentially equidistant to each other, and thus clas-
si�cation and clustering lose their meaning.�is surpris-
ing result is known as the “curse of dimensionality” and
has been the subject of extensive research (Aggarwal et al.
).�e key insight that allows meaningful time series
data mining is that although the actual dimensionality
may be high, the intrinsic dimensionality is typically much
lower. For this reason, virtually all time series data mining
algorithms avoid operating on the original “raw” data,
instead they consider some higher-level representation or
abstraction of the data.

Time Series Representations
As noted above, time series datasets are typically very large,
for example, just  h of electroencephalogram data can
require in excess of a gigabyte of storage.�is is a prob-
lem because for almost all data mining tasks, most of the
execution time spent by algorithm is used simply to move
data from disk intomainmemory.�is is acknowledged as
the major bottleneck in data mining, because many naïve
algorithms require multiple accesses of the data. As a sim-
ple example, imagine we are attempting to do k-means
clustering of a dataset that does not �t into main memory.
In this case, every iteration of the algorithm will require
that data in main memory to be swapped.�is will result
in an algorithm that is thousands of times slower than the
main memory case.
With this in mind, a generic framework for time series

data mining has emerged.�e basic idea is summarized in
(Table ).
It should be clear that the utility of this framework

depends heavily on the quality of the approximation cre-
ated in Step . If the approximation is very faithful to the
original data, then the solution obtained in main memory
is likely to be the same, or very close to, the solution we
would have obtained on the original data.�e handful of
disk accesses made in Step  to con�rm or slightly modify

Data Mining Time Series Data. Table  A generic time series
data mining approach

. Create an approximation of the data, which will fit in main
memory, yet retains the essential features of interest

. Approximately solve the problem at hand in main memory

. Make (hopefully very few) accesses to the original data on
disk to confirm the solution obtained in Step , or to modify
the solution so it agrees with the solution we would have
obtained on the original data

the solution will be inconsequential compared to the num-
ber of disks accesses required if we hadworked on the orig-
inal data. With this in mind, there has been a huge interest
in approximate representation of time series. Figure  illus-
trates a hierarchy of every major representation proposed
in the literature.
Given the plethora of di�erent representations, it is

natural to ask which is best. Recall that the more faithful
the approximation, the less clari�cation disks accesses we
will need to make in Step  of Table . �ere have been
many attempts to answer the question of which is the best
representation, with proponents advocating their favorite
technique (Chakrabarti et al. ; Faloutsos et al. ;
Popivanov and Miller ; Ra�ei and Mendelzon ).
�e literature abounds with mutually contradictory state-
ments such as “Several wavelets outperform the . . . DFT”
(Popivanov andMiller ), “DFT-based and DWT-based
techniques yield comparable results” (Wu et al. ), and
“Haar wavelets perform. . . better that DFT” (Kahveci and
Singh ). However an extensive empirical comparison
on  diverse datasets suggests that while some datasets
favor a particular approach, overall there is little di�erence
between the various approaches in terms of their ability to
approximate the data (Ding et al. ; Keogh and Kasetty
).�ere are however, other important di�erences in
the usability of each approach (Chakrabarti et al. ).We
will consider some representative examples of strengths
and weaknesses below.

�e wavelet transform is o�en touted as an ideal repre-
sentation for time series data mining, because the �rst few
wavelet coe�cients contain information about the overall
shape of the sequence while the higher order coe�cients
contain information about localized trends (Popivanov
and Miller ; Shahabi et al. ). �is multiresolu-
tion property can be exploited by some algorithms, and
contrasts with the Fourier representation in which every
coe�cient represents a contribution to the global trend
(Faloutsos et al. ; Ra�ei and Mendelzon ). How-
ever wavelets do have several drawbacks as a data mining
representation.�ey are only de�ned for datawhose length
is an integer power of two. In contrast, the Piecewise
Constant Approximation suggested by (Yi and Faloutsos
), has exactly the �delity of resolution of as the Haar
wavelet, but is de�ned for arbitrary length time series. In
addition, it has several other useful properties such as the
ability to support several di�erent distance measures (Yi
and Faloutsos ), and the ability to be calculated in
an incremental fashion as the data arrives (Chakrabarti
et al. ). Choosing the right representation for the task
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at hand is the key step in any time series data-mining
endeavor.�e points above only serve as a sample of the
issues that must be addressed.

Readings
�e �eld of time series data mining is relatively new, and
ever changing. Because of the length of journal publica-
tion delays, the most interesting and useful work tends
to appear in top-tier conference proceedings. Interested
readers are urged to consult the latest proceedings of the
major conferences in the �eld. �ese include the ACM
Knowledge Discovery in Data and Data Mining, IEEE
International Conference on Data Mining and the IEEE
International Conference on Data Engineering.
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Introduction
Data privacy is an overarching concern in modern society,
as government and non-government agencies alike collect,
archive, and release increasing amounts of potentially sen-
sitive personal data. Data owners or stewards, in the case of
statistical agencies, o�en critically evaluate both the type
of data that they make publicly available and the format
of the data product releases.�e statistical challenge is to
discover how to release important characteristics of exist-
ing databases without compromising the privacy of those
whose data they contain.
Modern databases, however, pose new privacy prob-

lems due to the types of information they hold and their
size. In addition to traditional types of information con-
tained in censuses (see 7Census), surveys, and medi-
cal and public health studies, contemporary information
repositories store social network data (e.g., cell phone and
Facebook data), product preferences (e.g., from commer-
cial vendors), web search data, and other statistical infor-
mation that was hitherto unavailable in digital format.
�e information in modern databases is also more com-
mercially exploitable than pure census data (e.g., credit
cards, purchase histories, medical history, mobile device
locations). As the amount of data in the public realm accu-
mulates and record-linkage methodologies improve, the
threat to con�dentiality and privacy magni�es. Repeated
database breaches demonstrate that removing obviously
identifying attributes such as names is insu�cient to pro-
tect privacy (e.g., Narayanan and Shmatikov ; Back-
strom et al. ). Even supposed anonymization tech-
niques can leak sensitive information when the intruder
hasmodest partial knowledge about the data from external
sources (e.g., Coull et al. ; Ganta et al. ).
Two rich traditions of investigating data con�den-

tiality have developed within the scienti�c community,
one in statistics, e.g., see Federal Committee on Statis-
tical Methodology (), and the other more recently
in computer science. Both tackle the fundamental trade-
o� between utility and privacy, but in essentially di�er-
ent ways. In statistics the focus has been on the trade-o�
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between disclosure risk and data utility while in com-
puter science the focus has been on algorithmic aspects
of the problem and more recently on rigorous de�nitions
of privacy that may also allow for utility. A special 
issue of the Journal of Privacy and Con�dentiality features
survey articles describing the current approaches and open
research problems (http://repository.emu.edu/jpe/).

Statistical Disclosure Limitation
Statistical disclosure limitation (SDL) applies and devel-
ops statistical tools for limiting releases of sensitive infor-
mation from statistical databases while allowing for valid
statistical inference. Emanating from o�cial statistics
involving censuses and large-scale national surveys, mod-
ern SDL emphasizes statistical inference as the main yard-
stick of utility; e.g., given a statistical model, how well can
one “anonymize” the data and still carry out valid model
estimation and assessment?�e goal of disclosure limita-
tion is to examine and manage a trade-o� between data
utility and disclosure risk (e.g., Doyle et al. ; Trottini
and Fienberg ; Duncan and Stokes ). Data util-
ity is a measure of usefulness of a dataset for an intended
analyst. Disclosure risk measures the degree to which a
dataset and its released statistics reveal sensitive informa-
tion. �is notion is probabilistic; as released data accu-
mulate in the public domain, the probability of uniquely
identifying members of the population increases.
Starting with Dalenius () and continuing to

modern work with connections to algebraic geometry,
multivariate analysis, optimization, and the generation of
synthetic data, SDLhas a vast literaturewith primary appli-
cations to social sciences and health data. In general, SDL
methods introduce bias and variance to data in order to
minimize identity and attribute disclosure while trying to
retain su�cient information needed for proper statistical
inference. Data masking involves transforming an n × p
(cases by variables) original data matrix Z through pre-
and post-multiplication and the possible addition of noise.
�at is, Z = AZB + C, where A is a matrix that oper-
ates on the n cases, B is a matrix that operates on the p
variables, and C is a matrix that adds noise. Matrix mask-
ing can be applied to either microdata or table of counts,
and includes a variety of standard approaches to disclo-
sure limitation (see 7Statistical Approaches to protecting
con�dentiality in public use data): (a) recodings such as
(e.g., rounding and thresholding), (b) cell suppression, (c)
data swapping, and (d) perturbation.More recentmethods
include sampling which involves releasing subsets of data
or variables – deleting rows that is columns of Z, and sim-
ulations such as adding rows to Z (e.g., see Reiter  for
generation of synthetic Microdata, Slavkovic and Lee 

for creation of synthetic tables, and Dobra et al.  for
partial information release, including optimization bounds
on contingency tables).

Computer Science Approaches
Closely related to SDL techniques are privacy-preserving
data mining (PPDM) methods that aim to construct e�-
cient data mining algorithms (see 7Data Mining) while
maintaining privacy with the emphasis on automation and
scalability of the anonymization process. Currently pro-
posed methods can be roughly grouped in (a) random-
ization methods (e.g., multiplicative perturbations, data
swapping), (b) group based anonymization, (c) distributed
PPDM, and (d) privacy-preservation of application rules
(e.g., see Fienberg and Slavković  for association rule
hiding). For an overview of the PPDM models and algo-
rithms, and related issues see Aggarwal and Yu ().
Research emerging from cryptography has emphasized

that privacy and security are properties of the anonymiza-
tion algorithm, rather than of a particular output. �is
perspective allows for rigorous de�nitions and proofs of
privacy. In particular, a concept called di�erential privacy
(e.g., Dwork et al. ) provides rigorous guarantees
no matter what external information is available to an
intruder.�e algorithmic perspective also leads to utility
being de�ned in terms of functional approximation: given
a database x and a function f , how well does the released
information allow one to approximate f (x).
Some recent developments aim to establish connections

between di�erential privacy and traditional statistical
inference; e.g., see Smith () for private parametric
estimation and Wasserman and Zhou () for approx-
imation of smooth densities. In some cases, the theory
has su�ciently advanced for the development of con-
crete methodological guidelines; e.g., related to the addi-
tive perturbation techniques of Dwork et al. (), Vu
and Slavković () have begun to develop rules for
sample size calculations and statistical 7power analysis.
Machanavajjhala et al. () describe the �rst application
of privacy tools to large-scale public-use databases by cre-
ating di�erentially private synthetic data based onBayesian
posterior predictive distributions.
Another more recent promising approach uses cryp-

tographic protocols for distributing privacy-preserving
algorithms for valid statistical analysis among a group
of servers (or data owners) so as to avoid pooling data
in any single location. Using ideas from secure multi-
party computation (Lindell and Pinkas ), statisti-
cians have been working on variations of secure protocols
for generalized linear models analysis (e.g., Ghosh et al.
).
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Future Directions
Protecting privacy in statistical databases is an increasingly
challenging problem. Any useful statistics extracted from a
database must reveal some information about the individ-
uals whose data are included. Despite an increasing focus
on large and o�en sparse data sets, the evaluation of dis-
closure risk and utility of statistical results o�en involves
human-guided tuning of parameters and context-speci�c
notions of privacy. New policies and data privacy research
calls formethodology that achievesmaximumutility, min-
imal risk and transparency. Current trends aim at integra-
tion of the computationally focused, rigorous de�nitions
of privacy and cryptographic protocols emanating from
computer science with notions of utility from statistics.
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Introduction and Summary
In recent years a powerful combination of database tech-
nologies, data mining techniques (see 7Data Mining) and
analytics so�ware have created vast new opportunities for
data analysts and statisticians. For example, corporations
have duly stored the results of their customer transac-
tions in corporate databases for over a generation.�ere
are, quite literally millions of records. Massively parallel
engines can examine these data in heretofore unimag-
ined ways. �e potentials to understand customer prof-
itability, develop better understandings of customers’ past

needs and predict future ones, and to use those insights to
develop new product niches are enormous.
Yet all is not well in the world of data analytics. Unlock-

ing the mysteries data have to o�er is di�cult at best. And
putting the discoveries to work can be even harder. One
major reason is poor quality data. Bad data camou�age the
hidden nuggets in data or, worse, send an analysis in the
wrong direction altogether. Some years ago George Box
observed that “. . .all models are wrong, but some are use-
ful”. Compare Box () and see Box and Draper ().
Many decision makers seem to intuitively grasp the “all
models are wrong” portion and so are skeptical of data
mining. Poor data quality exacerbates the problem. Indeed
most decision makers are well aware that poor data cause
problems in operations.Howcan things be any betterwhen
bad data are combined with incorrect models?!
What is a poor data analyst to do? Our advice: “�ink

and act like an experimenter!” Since time immemorial,
experimenters have understood the importance of high-
quality data – data that are relevant to the subject area,
are clearly de�ned, have minimal or no bias and high pre-
cision. And they invest considerable time and energy to
achieve this goal.�e following summarizes some of these
investments and how they apply to analytics.
Experimenters plan and design their experiments

carefully: Perhaps because their data are so dear, exper-
imenters take time to understand what is already known
and to carefully de�ne their objectives, the populations
and sub-populations of interest, and the hypotheses of pri-
mary interest. In contrast, it is too easy to turn an analytics
tool loose, in hope that the computer can make interest-
ing discoveries on its own. Much is lost, especially the
abilities to interpret results and identify spurious corre-
lations. So data analysts are well-advised to narrow their
foci and develop working knowledge of their subject areas.
�en they should aim their analytic tools rather more like
a high-powered ri�e than a shotgun.
Some may object that doing so limits opportunities

for serendipity. In our experience just the opposite is true.
Serendipitous discoveries are more likely when the current
level of understanding does not explain the data and piques
the experimenter’s curiosity.�at cannot happen without
adequate background.
Similarly, experimenters design their experiments,

seeking exactly the right data. Data analysts should be just
as persistent in creating or searching for the data that best
meets their needs, not the data that are easy to �nd.�ey
should con�rm interesting results based on large-scale
analyzes with small, designed studies.
Experimenters get very close to their data: First,

they develop deep understanding of their data collection
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devices. Analysts can do the same thing by working back-
wards, identifying and understanding the business pro-
cesses that created their data. Business people are o�en
more casual than experimenters about data de�nition, so
it is critical that data analysts understand the nuance in
their data.
Second, experimenters build controls into their data

collection processes. �e simplest example is calibrating
their equipment. Data analysts do not own these processes,
but they must understand existing controls and recom-
mend others where needed to prevent poor data, whenever
possible.

�ird, experimenters search for and eliminate7outliers.
When one of us (Redman) worked at Bell Labs in the
s and s, we used the expression “rinse, wash, scrub”
for increasing e�orts to identify and eliminate suspect
data. It was intense, manual e�ort, certainly not feasible
for enormous databases. But data analysts can certainly
rinse, wash, and scrub a small sample. Doing so provides
a basis for evaluating the quality of the entire database.
And if the results of a large analysis are con�rmed on the
scrubbed validating subset, one can proceed with greater
con�dence.
Experimenters are transparent in discussing

strengths and weaknesses in their data collection pro-
cesses: Data analysts must do so as well. It is the only way
to understand the limitations on what they’ve learned.
Experimenters recognize they are part of an ongo-

ing process: For an experimenter, there is no “ultimate
experiment.” A good experiment increases the body of
knowledge (even if by saying “there’s nothing of interest
here”) and leads to another experiment.Most business data
analysts are not engaged in formal science, per se. But
they may well be part of an end-to-end innovation pro-
cess. Such data analysts should develop an understanding
of where they �t and how they can make product devel-
opers, marketers, and others more e�ective. (Note: if your
organization doesn’t have such a process, data analysts are
well-advised to behave as though it did.)
Final Remarks: Taken together, relatively simple

actions, quite natural to experimenters, can assist data ana-
lysts to better understand their data, know how good their
data really are, and improve their overall e�ectiveness. For
learning more about the area of data quality, we recom-
mend these books, among many out there, English (),
Huang et al. (), and Redman (, ).
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Decision theory (see also7Decision�eory:AnOverview)
is the theory of rational decision making.�is is an inter-
disciplinary �eld to which philosophers, economists, psy-
chologists, computer scientists and statisticians contribute
their expertise. It is common to distinguish between nor-
mative and descriptive decision theory. Normative decision
theory seeks to yield prescriptions about what decision
makers are rationally required – or ought – to do. Descrip-
tive decision theories seek to explain and predict how
people actually make decisions. Descriptive decision the-
ory is thus an empirical discipline, which has its roots in
experimental psychology. Descriptive and normative deci-
sion theory are, thus, two separate �elds of inquiry, which
may or may not be studied independently of each other.
In decision theory, a decision problem is situation in

which a decision maker, (a person, a company, or a soci-
ety) chooses what to do from a set of alternative acts, where
the outcome of the decision depends on which state of the
world turns out to be the actual one. Decision problem are
classi�ed as decisions under risk or ignorance (or uncer-
tainty) depending on the information available to the agent
at the time atwhich hemakes his choice. In decisions under
risk the decision maker knows the probability of the pos-
sible outcomes, whereas in decisions under ignorance the
probabilities are either unknown or non-existent.�e term
uncertainty is either used as a synonym for ignorance, or
as a broader term referring to both risk and ignorance.
Let us consider an example. Suppose that you are

thinking about taking out insurance against the� of your
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new sports car. Perhaps it costs $ to take out insurance
on a car worth $,, and you ask: Is it worth it? In case
you know that the probability that the car is stolen is, say, 
in ,, then you are clearly facing a decision under risk.
However, in case you are not able to assess the probabil-
ity of the� then you are on the contrary facing a decision
under uncertainty or ignorance.

�emost widely applied decision rule formaking deci-
sions under risk is to apply the principle of maximizing
expected value (or utility). According to this decision rule,
the total value of an act equals the sum of the values of
its possible outcomes weighted by the probability for each
outcome. Hence, the expected values of not taking out �re
insurance is /, times the value of losing $,,
whereas the expected value of taking out insurance equals
the value of losing $ (since the insurance guarantees
that you will su�er no �nancial loss in case of a �re).
Modern decision theory is dominated by attempts to

axiomatise the principles of rational decision making, and
in particular the principle of maximizing expected utility.
(�e term “utility” refers to a technically precise notion of
value.)�e �rst axiomatisation was presented by Ramsey
in his paper Truth and Probability, written in  but
published posthumously in . Ramsey was a philoso-
pher working at Cambridge together with Russell, Moore,
and Wittgenstein. In his paper, Ramsey proposed a set of
eight axioms for how rational decision makers ought to
choose among uncertain prospects. He pointed out that
every decision maker behaving in accordance with these
axioms will act in a way that is compatible with the princi-
ple of maximizing expected value, by implicitly assigning
numerical probabilities and values to outcomes. However,
it does not follow that the decision maker’s choices were
actually trigged by these implicit probabilities and utilities.
�is way of thinking about rational decisionmaking is very
in�uential in the modern literature, and similar ideas were
put forward by Savage in�e Foundations of Statistics about
two decades later.
Another important point of departure inmodern deci-

sion theory is von Neumann and Morgenstern’s book
�eory of Games and Economic Behavior. Von Neumann
and Morgenstern showed how a linear measure of value
for outcomes (i.e., a utility function) can be generated from
a set of axioms dealing with how rational decision mak-
ers ought to choose among lotteries. For von Neumann
andMorgenstern a lottery is a probabilistic mixture of out-
comes; for example, “a ��y-��y chance of winning either
$ or a trip to London” is a lottery. �ey showed that
every decision maker behaving in accordance with their
axioms implicitly behaves in accordance with the princi-
ple of maximizing expected utility, and implicitly assigns

numerical utilities to outcomes.�e main di�erence com-
pared toRamsey’s axiomatisation is that vonNeumann and
Morgenstern presented no novel theory of probability.

�e use of the principle of maximizing expected utility
has been criticized by some decision theorists. �e most
famous counter argument was proposed by Allais in the
s. Consider the following lotteries inwhich exactly one
winning ticket will be drawn at random.

Ticket no.  Ticket no. – Ticket no. –

Gamble  $ Million $ Million $ Million

Gamble  $ $ Million $ Million

Gamble  $ Million $ Million $

Gamble  $ $ Million $

In a choice between Gamble  and Gamble  it seems
reasonable to choose Gamble  since it gives the decision
maker $ Million for sure, whereas in a choice between
Gamble  and Gamble  many people would feel that it
makes sense to trade a ten-in-hundred chance of getting
$ Million, against a one-in-hundred risk of getting noth-
ing, and consequently choose Gamble . Several empirical
studies have con�rmed thatmost people reason in this way.
However, no matter what utility one assigns to money, the
principle of maximizing expected utility recommends that
the decision maker prefers Gamble  to Gamble  if and
only if Gamble  is preferred to Gamble .�ere is simply
no utility function such that the principle of maximizing
utility is consistent with a preference for Gamble  to Gam-
ble  and a preference for Gamble  to Gamble . To see
why this is so, we calculate the di�erence in expected utility
between the two pairs of gambles. Note that the probability
that ticket  will be drawn is ., and the probability that
one of tickets numbered – will be drawn is .; hence,
the probability that one of tickets numbered – will be
drawn is ..�is gives the following equations:

u (G) − u(G) = u (M) − [.u (M)
+ .u (M) + .u (M)]

= .u (M) − [.u()
+ .u(M)] ()

u (G) − u (G) = [.u (M) + .u ()]
− [.u (M) + .u (M)]

= .u (M) − [.u () + .u (M)]
()
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Equations  and  show that the di�erence in expected
utility between G and G is precisely the same as the
di�erence between G and G. Hence, no matter what
the decision maker’s utility for money is, it is impossi-
ble to simultaneously prefer G to G and to prefer G to
G without violating the expected utility principle. How-
ever, since many people who have thought very hard about
this example still feel it would be rational to stick to
the problematic preference pattern described above, there
seems to be something wrong with the expected utility
principle.
Let us nowmove on to the other type of decision prob-

lems mentioned above, viz., decisions under ignorance (or
uncertainty).�ere is no single decision rule for decision
making under ignorance that is currently widely accepted
by decision theorists. However, the maximin rule and the
principle of insu�cient reason are two of the most in�u-
ential rules, which have been widely discussed in the lit-
erature. �e maximin rule, famously adopted by Rawls,
focuses on the worst possible outcome of each alterna-
tive. According to this principle, one should maximize
the minimal value obtainable with each act. If the worst
possible outcome of one alternative is better than that
of another, then the former should be chosen. Accord-
ing to the principle of insu�cient reason, adopted by e.g.,
Bernoulli and Laplace, it holds that if one has no reason
to think that one state of the world is more probable than
another, then all states should be assigned equal probabil-
ity. A well-known objection to the principle of insu�cient
reason is that that it seems completely arbitrary to infer
that all states are equally probable. If one has no reason
to think that one state is more probable than another, it
seems strange to conclude anything at all about probabili-
ties. Or, alternatively put, if one has no reason to think that
some state is twice as probable as another, whynot then rea-
son as if that state is twice as probable as the other? Every
possible distribution of probabilities seems to be equally
justi�ed.
However, not every decision problem can be classi�ed

as being either a decision under risk or a decision under
ignorance. A major sub-�eld of modern decision theory
is so-called multi-attribute approaches to decision the-
ory. �e di�erence between single- and multi-attribute
approaches is that in a single-attribute approach, all out-
comes are compared on a single utility scale. For example,
in a decision between saving a group of �shermen from a
sinking ship at a cost of one million dollars or letting the
�shermen die and save the money, the value of a human
life will be directly compared with monetary outcomes
on a single scale. However, many authors think that such
direct comparisons between the value of a human life and

money makes no sense – i.e., that human life and money
are incommensurable.

�e multi-attribute approach seeks to avoid the crit-
icism that money and human welfare are incommensu-
rable by giving up the assumption that all outcomes have
to be compared on a common scale. In a multi-attribute
approach, each type of attribute is measured in the unit
deemed to be most suitable for that attribute. Perhaps
money is the right unit to use for measuring �nancial
costs, whereas the number of lives saved is the right unit
to use for measuring human welfare.�e total value of an
alternative is therea�er be determined by aggregating the
attributes, e.g., money and lives, into an overall ranking of
the available alternatives.
Here is an example. Mary has somehow divided the

relevant objectives of her decision problem into a list of
attributes. For illustrative purposes, we assume that the
attributes are (a) the number of lives saved, (b) the �nan-
cial aspects of the decision, (c) the political implications of
the decision, and (d) the legal aspects of the decision. Now,
to make a decision, Mary has to gather information about
the degree to which each attribute can be realized by each
alternative. Consider the following table, in which we list
four attributes and three alternatives.

Attribute  Attribute  Attribute  Attribute 

Alt. a    

Alt. a    

Alt. a    

�e numbers represent the degree to which each
attribute is ful�lled by the corresponding alternative. For
example, in the le�most column the numbers show that
the second alternative ful�lls the �rst attribute to a higher
degree than the �rst alternative, and so on. So far the rank-
ing is ordinal, so nothing follows about the “distance” in
value between the numbers. However, in many applica-
tions of the multi-attribute approach it is of course natural
to assume that the numbers representmore than an ordinal
ranking.�e number of people saved from a sinking ship
can, for instance, be measured on a ratio scale.�is also
holds true of the amount of money saved by not rescuing
the �shermen. In this case, nothing prevents the advocate
of the multi-attribute approach to use a ratio or interval
scale if one so wishes.
Several criteria have been proposed for choosing

among alternatives with multiple attributes. It is common
to distinguish between additive and non-additive criteria.
Additive criteria assign weights to each attribute, and rank
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alternatives according to the weighted sum calculated by
multiplying the weight of each attribute with its value.�e
weights are real numbers between zero and one, which
together sum up to one. Obviously, this type of criterion
makes sense only if the degree to which each alternative
satis�es any given attribute can be represented at least on
an interval scale, i.e., if it makes sense to measure value
in quantitative terms. Let us, for the sake of the argument,
suppose that this is the case for the numbers in table above,
and suppose that all attributes are assigned equal weights,
i.e., /. �is implies that the value of alternative a is
/ ⋅  + / ⋅  + / ⋅  + / ⋅  = /. Analogous cal-
culations show that the value of a is , while that of a is
also . Since we de�ned the ranking by stipulating that a
higher number is better than a lower, it follows that a and
a are better than a.
Anothermajor sub-�eld of contemporary decision the-

ory is social choice theory. Social choice theory seeks to
analyze collective decision problems: How should a group
aggregate the preferences of its individual members into a
joint preference ordering? In this context, a group could be
any constellation of individuals, such as a married couple,
a number of friends, the members of a club, the citizens of
a state, or even all conscious beings in universe. A social
choice problem is any decision problem faced by a group,
in which each individual is willing to state at least ordi-
nal preferences over outcomes. Once all individuals have
stated such ordinal preferences we have a set of individ-
ual preference orderings.�e challenge faced by the social
decision theorist is to somehow combine the individual
preference ordering into a social preference ordering, that
is, a preference ordering that re�ects the preferences of the
group. A social state is the state of the world that includes
everything that individuals care about, and the term social
welfare function (SWF) refers to any decision rule that
aggregates a set of individual preference orderings over
social states into a social preference ordering over those
states.�e majority rule used in democratic elections is an
example of a SWF.

�e most famous technical result in social choice the-
ory is Arrow’s impossibility theorem, according to which
there is no SWF that meets a set of relatively weak nor-
mative conditions. A natural interpretation is that social
decisions can never be rationally justi�ed, simply because
every possible mechanism for generating a social prefer-
ence ordering – including the majority rule – is certain
to violate at least one of Arrow’s conditions. �is result
received massive attention in academic circles, and in the
s and s, many people took the theorem to prove that
“democracy is impossible”. However, the present view is
that the situation is not that bad. By giving up ormodifying

some of Arrow’s conditions one can formulate coherent
SWFs that are not vulnerable to his impossibility result.
Today, the theorem is interesting mainly because it opened
up an entirely new �eld of inquiry.
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Decision theory (see also7Decision�eory: An Introduc-
tion) is the systematic study of goal-directed behavior under
conditions when di�erent courses of action (options) can be

chosen.�e focus in decision theory is usually on the out-
come of decisions as judged by pre-determined criteria or,
in other words, onmeans-ends rationality. Decision theory
has developed since the middle of the twentieth century
through contributions from several academic disciplines.
In this overview over fundamental decision theory, the
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focus will be on how decisions are represented and on
decision rules intended to provide guidance for decision-
making. Finally two paradoxeswill be presented in order to
exemplify the types of issues that are discussed in modern
decision theory.

The Representation of Decisions
�e standard representation of a decision problem requires
that we specify the alternatives available to the decision-
maker, the possible outcomes of the decision, the values of
these outcomes, and the factors that have an in�uence on
the outcome.

Alternatives
To decide means to choose among di�erent alternatives
(options). In some decision problems, the set of alterna-
tives is open in the sense that new alternatives can be
invented or discovered by the decision-maker. A typical
example is your decision how to spend tomorrow evening.
In other decision problems, the set of alternatives is closed
so that no new alternatives can be added. Your decision
how to vote in the upcoming elections will probably be
an example of this. �ere will be a limited number of
alternatives (candidates or parties) between which you can
choose.
In real life, many if not most decisions come with an

open set of alternatives. In decision theory, however, alter-
native sets are commonly assumed to be closed.�e reason
for this is that closed decision problems are much more
accessible to theoretical treatment. If the alternative set is
open, a de�nitive solution to a decision problem is not in
general available.
In informal deliberations about decisions, we o�en

refer to alternatives that can be combined with each other.
Hence, when deciding how to spend tomorrow evening
you may begin by choosing between eating out and going
to the cinema, but end up deciding to do both. In decision
theory, the alternatives are assumed to be mutually exclu-
sive, i.e., no two of them can both be realized. However,
this di�erence is not very important since you can always
convert a set of compatible alternatives to a set of mutually
exclusive ones.�is is done by listing all the possible com-
binations (in this example: eating out and not going to the
cinema, eating out and going to the cinema, etc.).

States of Nature
�e e�ects of a decision depend not only on what
choice the decision-maker makes, but also on various fac-
tors beyond the decision-maker’s control. Some of these
extraneous factors constitute background information that
the decision-maker has access to. Others are unknown.

�ey may depend, for instance, on the actions of other
persons and various natural events.
In decision theory, it is common to summarize the var-

ious unknown extraneous factors into a number of cases,
called states of nature.�e states of nature include decisions
by other persons.�is is a major di�erence between deci-
sion theory and game theory. In game theory, decisions by
several persons that may compete or cooperate are treated
on a par with each other in the formal representation. In
decision theory, the focus is on one decision-maker, and
the actions and choices of others are treated di�erently,
namely in the same way as natural events.
As an example, consider a young boy, Peter, whomakes

up hismindwhether or not to go to the local soccer ground
to see if there is any soccer going on that he can join.�e
e�ect of that decision depends on whether there are any
soccer players present. In decision theory, this situation is
described in terms of two states of nature, “players present”
and “no players present.”

Outcomes
�e possible outcomes of a decision are determined by the
combined e�ects of a chosen alternative and the state of
nature that materializes. Hence, if Peter goes to the soccer
ground and there are no players present, then the outcome
can be summarized as “walk and no soccer,” if he goes and
there are players present then the outcome is “walk and
soccer,” and if he does not go then the outcome is “no walk
and no soccer.”

Decision Matrices
�e alternatives, the states of nature, and the resulting out-
comes in a decision can be represented in a decisionmatrix.
A decision matrix is a table in which the alternatives are
represented by rows and the states of nature by columns.
For each alternative and each state of nature, the decision
matrix assigns an outcome (such as “walk, no soccer” in
our example).�e decision matrix for Peter’s decision is as
follows:

No soccer players Soccer players

Go to soccer ground Walk, no soccer Walk, soccer

Stay home No walk, no soccer No walk, no soccer

Such amatrix provides a clear presentation of the deci-
sion, but it does not contain all the information that the
decision-maker needs to make the decision. �e most
important missing information concerns how the out-
comes are valued.
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Value Representation
When we make decisions, or choose among options, we
try to obtain as good an outcome as possible, accord-
ing to some standard of what is good or bad.�e choice
of a value-standard for decision-making is usually not
considered to fall within the subject matter of decision
theory. Instead, decision theory assumes that such a stan-
dard is available from other sources, perhaps from moral
philosophy.

�ere are two major ways to express our evaluations
of outcomes. One of these is relational representation. It is
expressed in terms of the three comparative value notions,
namely “better than” (strong preference, >), “equal in value
to” (indi�erence, ≡), and “at least as good as” (weak prefer-
ence, ≥).�ese three notions are interconnected according
to the following two rules:

. A is better than B if and only if A is at least as good as
B but B is not at least as good as A. (A > B if and only
if A ≥ B and not B ≥ A.)

. A is equally good as B if and only if A is at least as good
as B and B is at least as good as A. (A ≡ B if and only if
A ≥ B and B ≥ A.)

�e other major method to express our evaluations of out-
comes is numerical representation. It consists in assigning
numbers to the possible outcomes; such that an outcome
has a higher number than another if and only if it is pre-
ferred to it. In an economic context, willingness to pay is
o�en used as a measure of value. If a person is prepared to
pay, say $ for a certain used car and $ for another,
then these sums can be used to express her (economic)
valuation of the two vehicles.
However, not all values are monetary. According to

some moral theorists, all values can instead be reduced
to one unit of measurement, utility. �is entity may or
may not be identi�ed with units of human happiness.
According to utilitarian moral theory, decision-makers
should, at least in principle, always (try to) maximize total
utility.
Decision theorists o�en use numerical values as

abstract tools in the analysis of decisions.�ese valuesmay
be taken to represent utilities, but only in a rather abstract
sense since they are not based on any method to measure
utilities.
Once we have a numerical representation of value, we

can replace the verbal descriptions of outcomes in a deci-
sion matrix by these values. In our example, suppose that
Peter likes to play soccer but does not like walking to the
soccer ground and back home. �en his utilities may be
representable as follows:

No soccer players Soccer players

Go to soccer ground  

Stay home  

Mainstream decision theory is almost exclusively
devoted to problems that can be expressed in matrices of
this type, utility matrices (payo� matrices).

Probability or Uncertainty
Decisions are o�en categorized according to how much
the decision-maker knows beforehand about what state
of nature will in fact take place. In an extreme case, the
decision-maker knows for sure which state of nature will
obtain. If, in the above example, Peter knowswith certainty
that there are players at the soccer ground, then this makes
his decision very simple. �e same applies if he knows
that there are no players. Cases like these, when only one
state of nature needs to be taken into account, are called
decision-making under certainty.
Non-certainty is usually divided into two categories,

called risk and uncertainty. A decision is made under risk
if it is based on exact probabilities that have been assigned
to the relevant states of nature; otherwise it is made under
uncertainty. Decisions at the roulette table are good exam-
ples of decisions under risk since the probabilities are
known (although some players do not pay much attention
to them). A decision whether to marry is a good example
of a decision under uncertainty.�ere is no way to deter-
mine the probability that a marriage will be successful, and
presumably few prospective brides or grooms would wish
to base their decision on precise probability estimates of
marital success or failure.
In some cases, we do not even have a full list of the

relevant states of a�airs. Hence, decisions on the introduc-
tion of a new technology have to be made without full
knowledge of the possible future social states in which the
new technology will be used. Such cases are referred to
as decision-making under great uncertainty, or ignorance.
�is adds up to the following scale of knowledge situations
in decision problems:

Certainty It is known what states of nature will
occur

Risk The states of nature and their
probabilities are known

Uncertainty The states of nature are known but
not their probabilities

Great uncertainty,
ignorance

Not even the states of nature are
known
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�e probabilities referred to in decision theory may be
either objective or subjective. In some applications, reli-
able estimates of probabilities can be based on empirically
known frequencies. As one example, death rates at high
exposures to asbestos are known from epidemiological
studies. In most cases, however, the basis for probabil-
ity estimates is much less secure.�is applies for instance
to failures of a new, as yet untried technological device.
In such cases we have to resort to subjective estimates of
the objective probabilities. Some decision theorists deny
the existence of true objective probabilities and regard all
probabilities as expressions of degrees of belief, which are
of course strictly subjective.
In caseswhen exact probabilities are not known, uncer-

tainty can be expressed with various, more complex mea-
sures.
Binary measures: �e probability values are divided

into two groups, possible and impossible values (or
attention-worthy and negligible values). Usually, the for-
mer form a single interval. �en the uncertainty can be
expressed in terms of an interval, for instance: “�e prob-
ability of a nuclear war in the next thirty years is between
 and  per cent.”
Multivalued measures: A numerical measure is used

to distribute plausibility over the possible probability val-
ues.�is measure may (but need not) be a (second-order)
probability measure.�en, instead of just saying that the
probability is between % and %, we can say that there
is a % probability that the probability is between %
and %, a % probability that it is between % and
%, etc.
Robustness measures:�e more certain we are about a

probability, the less willing we are to change our estimate
of it. �erefore, willingness to change one’s estimate of a
probability when new information arrives can be used as a
measure of uncertainty.

Decision Rules
Decision theorists have developed a series of decision
rules, intended to ensure that decisions are made in a
systematic and rational way.

The Maximin Rule
Among the decision rules that are applicable without
numerical information, the maximin rule is probably the
most important one. For each alternative, we de�ne its
security level as the worst possible outcome with that alter-
native.�emaximin rule urges us to choose the alternative
that has the highest security level. In other words, we
maximize theminimal outcome.

�e maximin rule has o�en, and quite accurately, been
described as a cautious rule. It has also been described
as pessimistic, but that is an unfortunate terminology,
since caution and pessimism are quite independent of
each other.
As an example of the maximin rule, consider the

following variant of the soccer example from above:

No soccer players Soccer players

Go to soccer ground Walk, no soccer Walk, soccer

Stay home No walk, no soccer No walk, no soccer

�e preferences are:
Walk, soccer
is better than

No walk, no soccer
is better than

Walk, no soccer
�e security level of Stay home is “no walk, no soccer”
whereas that of Go to soccer ground is “walk, no soccer”.
Since the former is better than the latter, in order to max-
imize the security level, Peter would have to stay at home.
Consequently, this is what the maximin rule recommends
him to do.
Even though the maximin rule can be applied to rela-

tional value information as above, it is easier to apply if the
value information is presented in numerical form. Again,
consider the following utility matrix:

No soccer players Soccer players

Go to soccer ground  

Stay home  

Here, the security level of Stay home is  whereas that
of Go to soccer ground is . Since  is larger than , the
maximin rule recommends Peter to stay at home, just as in
the relational presentation of the same example.

The Maximax Rule
�e best level that we can at all obtain if we choose a cer-
tain alternative is called its hope level. According to the
maxi-max rule, we should choose the alternative whose
hope level (best possible outcome) is best. Just like the
maxi-min rule, the maxi-max rule can be applied even if
we only have relational (non-numerical) value informa-
tion. Consider again the soccer example.�e hope level of
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Stay home is “no walk, no soccer,” and that of Go to soccer
ground is “walk, soccer” that Peter values higher. Hence,
the maximax rule urges Peter to go to the soccer ground.
Similarly, in the numerical representation, Stay home has
the hope level  and Go to soccer ground has ; hence
again Peter is advised to go to the soccer ground.

�e maximax rule has seldom been promoted. Con-
trary to themaximin rule, it is o�en conceived as irrational
or as an expression of wishful thinking. It is indeed hardly
commendable as a general rule for decision-making. How-
ever, in certain subareas of life, taking chances may be
bene�cial, and in such areas behavior corresponding to the
maximax rule may not be irrational. Life would probably
be much duller unless at least some of us were maximaxers
on at least some occasions.

The Cautiousness Index
�ere is an obvious need for a decision criterion that does
not force us into the extreme cautiousness of the maximin
rule or the extreme incautiousness of the maximax rule.
A middle road is available, but only if we have access to
numerical information. We can then calculate a weighted
average between the security level and the hope level, and
use this weighted average to rank the alternatives. Let us
again consider the numerical presentation of the soccer
example:

No soccer players Soccer players

Go to soccer ground  

Stay home  

For each alternative A, let min(A) be its security level
andmax(A) its hope level.
In our example, min(Go to soccer ground) =  and

max(Go to soccer ground) = . If we choose to assign
equal weight to the security level and the hope level, then
the weighted value of Go to soccer ground is .×+.×
 = . Since min(Stay home) = max(Stay home) = , the
weighted average value of Stay home is . Hence, with these
relative weights, Peter is recommended to go to the soc-
cer ground. More generally speaking, each alternative A is
assigned a value according to the following formula:

α ×min (A) + ( − α) ×max (A)

If α = , then this rule reduces to the maximin criterion
and if α = , then it reduces to the maximax criterion.�e
index α is o�en called theHurwicz α index, a�er economist
Leonid Hurwicz who proposed it in . It is also o�en

called the optimism-pessimism index, but the latter ter-
minology should be avoided since the index represents
the degree of (un)cautiousness rather than that of opti-
mism. It can more appropriately be called the cautiousness
index.

Minimax Regret
Utility information also allows for another decision crite-
rion that puts focus on how an outcome di�ers from other
outcomes that might have been obtained under the same
state of a�airs, if the decision-maker had chosen another
alternative. In our example, if Peter stays home and there
are players at the soccer ground, then he has made a loss
that may give rise to considerable regret. If he goes to the
soccer ground and there is no one there to play with him,
then he has also made a loss, but a smaller one.�e deci-
sion rule based on these considerations is usually called the
minimax regret criterion. It also has other names, such as
minimax risk,minimax loss, andminimax.
In this decision rule the degree of regret is measured as

the di�erence between the utility obtained and the high-
est utility level that could have been obtained (in the same
state of the world) if another alternative had been chosen.
A regret matrix can quite easily be derived from a utility
matrix: Replace each entry by the number obtained by sub-
tracting it from the highest utility in its column. In our
example, the regret matrix will be as follows:

No soccer players Soccer players

Go to soccer ground  

Stay home  

�e minimax regret criterion advices the decision-
maker to choose the option with the lowest maximal regret
(to minimize maximal regret). In this case it recommends
Peter to go to the soccer ground.
Just like themaximin rule, the minimax regret rule can

be described as cautious, but they apply cautiousness to
di�erent aspects of the decision (the value of the actual
outcome respectively its regrettableness). As this example
shows, they do not always yield the same recommendation.

Expected Utility
None of the above decision rules requires or makes use
of probabilistic information. When probabilities are avail-
able, the dominating approach is to maximize expected
utility (EU).�en to each alternative is assigned aweighted
average of its utility values under the di�erent states
of nature, with the probabilities of these states used as
weights.
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In the above example, suppose that based on previ-
ous experience Peter believes the probability to be . that
there are players at the soccer ground. We can enter the
probabilistic information into the column headings of the
utility matrix as follows:

No soccer players
Probability .

Soccer players
Probability .

Go to soccer ground  

Stay home  

�e expected (probability-weighted) utility of going to
the soccer ground is . ×  + . ×  = , and that of
staying at home is . ×  + . ×  = . If Peter wants to
maximize expected utility then he should, in this case, go to
the soccer ground. Obviously, the recommendation would
be di�erent with other probabilities.
For a general formula representing expected utility, let

there be n outcomes, to each of which is associated a util-
ity and a probability.�e outcomes are numbered, so that
the �rst outcome has utility u and probability p, the sec-
ond has utility u and probability p, etc.�en the expected
utility is de�ned as follows:

p × u + p × u + . . . + pn × un

Expected utility maximization based on subjective prob-
abilities is commonly called Bayesian decision theory, or
Bayesianism. (�e namederives from�omasBayes, –
, who providedmuch of the mathematical foundations
for probability theory). According to Bayesianism, a ratio-
nal decision-maker should have a complete set of proba-
bilistic beliefs (or at least behave as if she had one) and all
her decisions should take the form of choosing the option
with the highest expected utility.

Two Paradoxes of Decision Theory
Much of the modern discussion on decision theory has
been driven by the presentation of paradoxes, i.e., sit-
uations in which decision-making criteria that seem to
epitomize rationality nevertheless give rise to decisions
that are contrary to most people’s intuitions. �e follow-
ing two decision paradoxes serve to exemplify the kinds of
philosophical problems that are discussed in the decision-
theoretical research literature.

Ellsberg’s Paradox
Daniel Ellsberg has presented the following decision prob-
lem: We have an urn that contains  red ball and  balls
that are either black or yellow.�e distribution between the

latter two colors is unknown. A ball is going to be drawn at
random from the urn. Before that is done you are o�ered
bets by two persons.
Anne o�ers you to bet either on red or on black. If you

bet on red, then you will receive e  if the drawn ball is
red and nothing if it is either black or yellow. Similarly, if
you bet on black, then you will gete  if the ball is black,
and nothing if it is red or yellow.
Betty o�ers you to bet either on red-or-yellow or on

black-or-yellow. If you bet on red-or-yellow, then you will
gete  if the drawn ball is either red or yellow, but noth-
ing if it is black. If you bet on black-or-yellow, then you
will gete  if the drawn ball is either black or yellow, but
nothing if it is red.
Most people, it turns out, prefer betting red to betting

black, but they prefer betting black-or-yellow to betting
red-or-yellow. It is fairly easy to show that this pattern is
at variance with expected utility maximization, i.e., there
is no way to assign utilities that would make this pat-
tern compatible with the maximization of expected utility.
Ellsberg’s own conclusion was that decision-making must
take into account factors not covered by probabilities and
utilities, in particular the degree of uncertainty of the
various probability estimates.
Another problem with this pattern is that it violates

the sure-thing principle that is a much acclaimed rational-
ity criterion for decisions. To introduce the principle, let
A and B be two alternatives, and let S be a state of nature
such that the outcome of A in S is the same as that of B. In
other words, the outcome in case of S is a “sure thing,” not
in�uenced by the choice between A and B.�e sure-thing
principle says that if the “sure thing” (i.e., the common out-
come in case of S) is changed, but nothing else is changed,
then the choice between A and B is not a�ected.
As an example, suppose that a whimsical host wants to

choose a dessert by tossing a coin. You are invited to choose
between alternatives A and B. In alternative A, you will
have fruit in case of heads and nothing in case of tails. In
alternative B you will have pie in case of heads and nothing
in case of tails.�e decision matrix is as follows:

Heads Tails

A Fruit Nothing

B Pie Nothing

When you have made up your mind and announced
which of the two alternatives you prefer, the whimsical
host suddenly remembers that he has some ice cream, and



Decision Theory: An Overview D 

D

changes the options so that the decision matrix is now as
follows:

Heads Tails

A Fruit Ice cream

B Pie Ice cream

Since only a “sure thing” (an outcome that is common
to the two alternatives) has changed between the two deci-
sion problems, the sure-thing principle demands that you
do not change your choice betweenA and Bwhen the deci-
sion problem is revised in this fashion. If, for instance, you
chose alternative A in the �rst decision problem, then you
are bound to do so in the second problem as well.
In this example, the sure-thing principle appears ratio-

nal enough, and it would seem natural to endorse it as a
general principle for decision-making. Ellsberg’s paradox
shows that is not quite as self-evident as it may seem to be
at �rst sight.

Newcomb’s Paradox
�e following paradox was proposed by the physicist
William Newcomb: In front of you are two boxes. One
of them is transparent, and you can see that it contains
$,.�e other is covered, so that you cannot see its con-
tents. It contains either $,, or nothing. You have
two options to choose between. One is to take both boxes,
and the other is to take only the covered box. A predictor
who has infallible (or almost infallible) knowledge about
your psyche has put the million in the covered box if he
predicted that you will only take that box. Otherwise, it
is empty.
Let us apply maximized expected utility to the prob-

lem. If you decide to take both boxes, then the predictor
has almost certainly foreseen this and put nothing in the
covered box. Your gain is $,. If, on the other hand, you
decide to take only one box, then the predictor has fore-
seen this and put the million in the box, so that your gain
is $,,. In other words, maximization of expected
utility urges you to take only the covered box.

�ere is, however, another plausible approach to the
problem that leads to a di�erent conclusion. If the predic-
tor has put nothing in the covered box, then it is better to
take both boxes than to take only one, since you will gain
$, instead of nothing. If he has put the million in the
box, then too it is better to take both boxes, since you will
gain $,, instead of $,,. �us, taking both
boxes is better in all states of nature. (It is a dominating

option.) It seems to follow that you should take both boxes,
contrary to the rule of maximizing expected utilities.

�e two-box strategy in Newcomb’s problem maxi-
mizes the “real gain” of having chosen an option, whereas
the one-box strategy maximizes the “news value” of
having chosen an option. �e very fact that a certain
decision has been made in a certain way changes the
probabilities that have to be taken into account in that
decision.
In causal decision theory, expected utility calcula-

tions are modi�ed so that they refer to real value rather
than news value. �is is done by replacing standard
probabilities by some formal means for evaluating the
causal implications of the di�erent options. Since there
are several competing philosophical views of causality,
there are also several formulations of causal decision
theory.
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Introduction
In many experiments or research, researchers want to
know whether the di�erence in means, proportions, or
variances between two populations is signi�cant, or some-
times if the average, proportion, or variance are near to a
standard value.�ey also will be interested in an interval
which is expected to contain the value of the di�erence in
means, proportions, and variances of the two populations,
or the average, proportion, or variance of a population.
In all these cases, researchers have to rely on statistical
estimation and choose the most appropriate procedure.
Since many di�erent con�dence intervals have been

proposed in the literature, the choice can sometimes be dif-
�cult and confusing, especially for students. In this chapter
we will show how decision trees can help in �nding the
most appropriate 7con�dence interval.

Types of Estimations
An estimator is a statistic of a sample that is used to esti-
mate a population parameter such as mean, proportion, or
variance. An estimate is a speci�c value of the observed
statistics. In real life the parameter values of the popula-
tions studied are unknown. To obtain the best achievable
information for the parameters we rely on the sample data
and apply a procedure that is called statistical estimation.
For this purpose we can use one of the following:

● Point estimator as is a single value that estimates the
value of the parameter. Two estimators are, for exam-

ple, the sample mean: x̄ =
n

∑
i=
xi

n
(as estimator for the

population mean), and sample variance: s =
n

∑
i=
xi
−nx̄

n−
(as estimator for the population variance).

● Interval estimation, which provides a numerical range
in which it is intended to �nd the value of the parame-
ter under study.

One disadvantage of point estimators is that they do not
provide information on how close they are to the true
value of the parameter. To incorporate somemeasure of the
accuracy of an estimate, we determine a range (con�dence
interval). �is range includes the value of the parame-
ter with a certain predetermined probability  − α, which

is called the con�dence level, or sometimes con�dence
coe�cient (and is typically taken to be . or .).

Decision Trees for Choosing the Proper
Confidence Interval
Because in statistics there are many di�erent con�dence
interval expressions we’ll attempt to show here how one
can choose the appropriate one, in other words, the one
that is best suited for the data at hand. Choice of the
interval depends on several conditions:

● Which population parameter has to be estimated?
● How many populations are under investigation?
● With one population, does the sample come from a
normal population or not, do we know the population
variance or not, and also is the sample size small (less
than ) or large?

● In the case of two populations, are the samples inde-
pendent or dependent and are population variances
equal or not?

To facilitate making the proper decision regarding an ade-
quate con�dence interval a researchermay use the decision
trees, discussed in the next section. �eir use is simple;
however, we will explain the procedure and give an exam-
ple to provide more clarity.

Example
A new �ltering device is installed at a chemical plant. Ran-
dom samples yield the following information of percentage
of impurity before and a�er installation:

Sample/Statistics Mean Variance Sample size

Before . . 

After . . 

(a) Establish a way to estimate if the impurity has the
same variability before and a�er installing the new
�lter device. Use α = ..

(b) Does the �ltering device have reduced the average
impurity signi�cantly? Use α = ..

(c) If the average percentage of impurities allowed in the
chemical plant is %, is the goal reached?

(a) From Fig. , we get the following information:

● How many populations are being investigated?
Since we have a before-and-a�er case, obviously

there are two populations.
● What is the keyword? Comparison of variances.



Decision Trees for the Teaching of Statistical Estimation D 

D

Mean (Figure 2)

Average
mean

Variation
Variability

Comparison
of variances

Comparison
of fractions

What is the
keyword?

Fraction
percentage

Comparison of
averages

One

Two

How many
populations are
being investigated?

Variance

Proportion

Mean differences (Figures 3)

Variance ratios

Difference of
proportions

Decision Trees for the Teaching of Statistical Estimation. Fig.  Decision tree for choosing the proper confidence interval

Any n

n>30

n<30

n>30

n>30

n<30

n<30

Large

Use the following confidence interval:

There is no confidence interval

Small

Large

Small

Small

Large

Yes

Is the population
normally distributed?

Do you know the
population
variance?

What is the
sample size?

Yes

No

No

Yes

No

Decision Trees for the Teaching of Statistical Estimation. Fig.  Decision tree for choosing the proper confidence interval for the
mean of the population
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No
No

Yes

Do you know
population
variances?

What are the
sample sizes? Are the

samples
paired?

Are the
variances of the
populations are

same?

Large

Small

Any n

n>30

n<30

No

No

Yes

Yes

No

Yes

Yes

Yes

No

No

Decision Trees for the Teaching of Statistical Estimation. Fig.  Decision tree for choosing the proper confidence interval for the

difference of means of normal populations

● �erefore, we choose the interval for the variance
ratio

P( s



s


Fα/,n−,n−

≤ σ


σ
≤ s



s


F−α/,n−,n−

) = −α.

Replacing the sample information and critical
points of the F distribution we obtain:

P( .
.


.

≤ σ 

σ 
≤ .
.


.

)

= % P (. ≤ σ 

σ 
≤ .) = %.

We conclude that there is no signi�cant di�erence
between the impurity variability before and a�er
installing the new �lter device (since the interval
contains ).

(b) From Fig. , we acquire answers to the following ques-
tions:

● How many populations are being investigated?
Two populations, with the same argument as above.

● What is the keyword? Comparison of averages. We
will make use of Fig. .

● Do we know population variances? No.
● What are the sample sizes? Less than .
● Are the variances of the populations the same? Yes
(Result of part a).

�erefore, the appropriate con�dence interval is
for mean di�erence:

P
⎛
⎝
(x − x) − tα/,vsp

√

n
+ 
n

≤ µ − µ ≤ (x − x)

+tα/,vsp
√

n
+ 
n

⎞
⎠
=  − α

with

sp =
√

(n − ) s + (n − )s
n + n − 

By including the sample information and critical
points of the t distribution we obtain

sp =
√

( − ). + ( − ).
 +  − 

= ..

P
⎛
⎝
(. − .) − (.).

√


+ 

≤ µ − µ ≤

(. − .) + (.).
√


+ 

⎞
⎠
= .

P(−. ≤ µ − µ ≤ .) = .

�e �ltering device has not been e�ective because
the average impurity before and a�er is the same
(since the con�dence interval encompasses ).
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(c) From Fig. , we get the following information:
● Howmany populations are being investigated?
Since only want to see if the new device has

helped to achieve the goal: one.
● What is the keyword?Mean. We will use Fig. .
● Is the population normally distributed? Let us
assume that the sample came from a normal

population.
● Do we know the population variance? No.
● What is the sample size? Small (less than ).

�us, the appropriate con�dence interval for
the mean is:

P(x − tα/,n−
s√
n
≤ µ ≤ x + tα/,n−

s√
n
)

=  − α

Replacing the sample information and critical
points of the t distribution:

P(. − ..√

≤ µ ≤ . + ..√


)

= % P(. ≤ µ ≤ .) = %

�e impurity is within the limit allowed by the
plant.
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Introduction
Traditionally the failure time data are usually used for
product reliability estimation. Failures of highly reliable

units are rare and other information should be used in
addition to censored failure time data. One way of obtain-
ing complementary reliability information is to use higher
levels of experimental factors or covariates to increase
the number of failures and, hence, to obtain reliability
information quickly.�e accelerated life testing (ALT, see
7Accelerated Lifetime Testing) of technical, biological or
biotechnical systems is an important practical method of
estimation of the reliability of new systems without having
to wait through the operating life of them. It is evident that
the extrapolating reliability from ALT always carries the
risk that the accelerating stresses do not properly excite the
failure mechanism which dominates at operating (usual,
normal, standard) stresses. Another way of obtaining this
complementary reliability information is to measure some
parameters (covariates) that characterize the aging and the
degradation of the product in time. In analysis of longevity
of highly reliable complex industrial or biological systems,
the degradation processes provide additional information
about the aging, degradation, fatigue, internal wear and
deterioration of systems, and from this point of view the
degradation data are really a very rich source of addi-
tional information and o�en o�er many advantages over
failure time data. Degradation is the natural response for
some tests, and it is also natural that with degradation
data it is possible to make useful reliability and statis-
tical inference, even with no failures. It is evident that
it may be di�cult or costly to collect degradation mea-
sures from some components or materials. Sometimes it
is possible to apply the expert’s estimation of the level
of degradation or fatigue, etc. Sometimes it is possible
to construct degradation models in which degradation
is measured without errors, but there are also situations
when the degradation data are obtainedwithmeasurement
errors.

Dynamic Regression Models
Statistical inference from ALT is possible if failure time
regression models relating failure time distribution with
explanatory variables (covariates, stresses), in�uencing the
reliability are well chosen. Statistical inference from failure
time-degradation data with covariates needs even more
complicated models relating failure time distribution not
only with external but also with internal explanatory vari-
ables (degradation, wear) which explain the state of units
before the failures. In the last case models for degrada-
tion process distribution are needed, too. Here we discuss
only several most used failure time-degradation regression
models.
Denote by T the random time-to-failure of a unit (or

system).We say also that T is the time of hard or traumatic
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failure. Let S be the survival function and λ be the hazard
rate of T:

S(t) = P{T > t}, λ(t) = lim
h→


h
P{t < T ≤ t + h∣T > t},

()

from where it follows that S(⋅) can be written as

S(t) = e−Λ(t), where Λ(t) = ∫
t


λ(s)ds

is the cumulative hazard function of T. Denote F(⋅) =  −
S(⋅) the cumulative distribution function of T. In Survival
Analysis and Reliability the models are o�en formulated
in terms of cumulative hazard and hazard rate functions.
�e most common shapes of hazard rates are monotone,
∪- shaped or ∩- shaped, see, for example, Meeker and
Escobar (), Lawless (), Zacks ().
Let suppose that any explanatory variable is a deter-

ministic time function

x = x(⋅) = (x(⋅), . . . , xm(⋅))T : [,∞[→ B ∈ Rm,

which is a vector of covariates itself or a realization of a
stochastic process X(⋅), which is called also the covariate
process,X(⋅) = (X(⋅), . . . ,Xm(⋅))T .We denote by E the set
of all possible (admissible) covariates. We do not discuss
here the questions of choice of Xi andm, but they are very
important for the organization (design) of the experiments
and for statistical inference. �e covariates can be inter-
preted as the control, so we may consider models of aging
in terms of the optimal control theory.Wemay say also that
we consider statistical modeling with dynamic design or in
dynamic environments.
In accordance with () the survival, the hazard rate,

the cumulative hazard and the distribution functions given
covariate x are:

S(t∣x) = P (T > t∣x(s);  ≤ s ≤ t) ,

λ(t∣x) = −S
′(t∣x)
S(t∣x)

, ()

Λ(t∣x) = − ln [S(t∣x)] ,
F(t∣x) = P (T ≤ t∣x(s);  ≤ s ≤ t)

=  − S(t∣x), x ∈ E,

from where one can see their dependence on the life-
history up to time t. On any family E of admissible
stresses, we may consider a class {S(⋅∣x), x ∈ E} of
survival functions which could be very rich. Failure is
a�ected by time-dependent covariates (loads, stress, usage
rate) which describe heterogeneous and dynamic operat-
ing conditions.
We say that the time f (t∣x) under the stress x is equiv-

alent to the time t under the stress x if the probability that a

unit used under the stress x would survive till the moment
t is equal to the probability that a unit used under the stress
x would survive till the moment f (t∣x):

S(t∣x) = P{T > t∣x(s);  ≤ s ≤ t} = P{T > f (t∣x)∣x(s);
 ≤ s ≤ f (t∣x)} = S( f (t∣x)∣x).

It implies that

f (t∣x) = S− [S(t∣x)∣x] , x ∈ E. ()

Let x and y be two admissible stresses: x, y ∈ E. We say
that a stress y is accelerated with respect to x, if S(t∣x) ≥
S(t∣y), ∀ t ≥ .

�e accelerated failure time (AFT) model is more
adapted for failure time regression analysis, see Meeker
and Escobar (), Bagdonavičius and Nikulin (),
Lawless (), Nelson ().
We say that AFTmodel holds on E if there exists a pos-

itive continuous function r : E → R such that for any x ∈ E
the survival and the cumulative hazard functions under a
covariate realization x are given by formulas:

S(t∣x) = G(∫
t


r [x(s)] ds) and

Λ(t∣x) = Λ (∫
t


r [x(s)] ds) , x ∈ E, ()

respectively, where G(t) = S(t∣x), Λ(t) = − lnG(t), x
is a given (usual) stress, x ∈ E. �e function r changes
locally the time scale. From the de�nition of f (t∣x) (cf. ())
it follows that for the AFT model on E

f (t∣x) = ∫
t


r [x(s)] ds, hence

∂f (t∣x)
∂t

= r(x(t))

at the continuity points of r[x(⋅)]. ()

Note that themodel can be considered as parametric (r and
G belong to parametric families) semiparametric (one of
these functions is unknown, other belongs to a parametric
family) or nonparametric (both are unknown).

Modeling of Degradation Process
In reliability there is considerable interest in modeling
covariate processes Z(t), t ≥ , with some properties,
depending on the phenomena in consideration, which
describe the real process of wear or the usage history up to
time t, indicate the level of fatigue, degradation, and deteri-
oration of a system, andmay in�uence the rate of degrada-
tion, risk of failure, and reliability of the system. Statistical
modeling of observed degradation processes can help to
understand di�erent real physical, chemical, medical, bio-
logical, physiological, or social degradation processes of
aging. Information about real degradation processes help
us to construct degradation models, which permit us to
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predict the cumulative damage, and so on. According to
the principal idea of degradation models, a so� failure
is observed if the degradation process reaches a critical
threshold z. A so� failure caused by degradation occurs
when Z(t), t ≥ , reaches the value z.�e moment T of
so� failure is de�ned by relation

T
 = sup{t : Z(t) < z} = inf{t : Z(t) ≥ z}. ()

So it is reasonable to construct the so-called degradation
models, based on some suppositions about the mathemat-
ical properties of the degradation process Z(t), t ≥ , in
accordance with observed longitudinal data in the exper-
iment. Both considered methods may be combined to
construct the so-called joint degradation models. For this,
it is enough to de�ne a failure of the system when its
degradation (internal wear) reaches a critical value or a
traumatic event occurs.�e joint degradationmodels form
the class of models with competing risk, since for any item
we consider two competing causes of failure: degradation,
reaching a threshold (so� failure), and occurrence of a hard
or traumatic failure. Let T be themoment of traumatic fail-
ure of a unit. In the considered class of models, the failure
time τ is the minimum of the moments of traumatic and
so� failures,

τ = min(T,T) = T ∧ T.

�ese models are also called degradation-threshold-shock
models. For such models the degradation process Z(t) can
be considered as an additional time-depending covariable,
which describes the process of wear or the usage history up
to time t.�e degradation models with covariates are used
to estimate reliability when the environment is dynamic
(see Singpurwalla ; Bagdonavičius and Nikulin ).
�e covariates cannot be controlled by an experimenter in
such a case. For example, the tire wear rate depends on the
quality of roads, the temperature, and other factors.
In Meeker and Escobar () the use of so-called

path models is proposed for construction the degra-
dation process. �e authors describe many di�erent
applications and models for accelerated degradation and
Arrhenius analysis for data involving a destructive test-
ing. Meeker and Escobar () used convex and concave
degradation models to study the growth of fatigue cracks,
the degradation of components in electronic circuits.

�e most applied 7stochastic processes describing
degradation are general path models and time scaled
stochastic processes with stationary and independent
increments such as the gamma process, shock processes
and Wiener process with a dri�.

Example  General degradation path model: �e general
degradation path model was considered by Meeker and
Escobar (), according to which

Z(t) = g(t,A, θ) ()

where A = (A, . . . ,Ar) is a �nite dimensional random
vectorwith positive components and the distribution func-
tion π of A, θ is a �nite dimensional non-random param-
eter, and g is a speci�ed continuously di�erentiable in t
function, which increases from  to +∞ when t increases
from  to +∞.�e form of the function g is suggested by
the form of individual degradation curves, obtained from
the experiments. For example, g(t, a) = t/a (linear degra-
dation, r = ) or g(t, a) = (t/a)a (convex or concave
degradation, r = ). It is also supposed that, for each t > ,
the degradation path (g(s, a) ∣  < s ≤ t) determines in
the unique way the value a of the random vectorA. Degra-
dation in these models is modeled by the process Z(t,A),
where t is time and A is some possibly multidimensional
random variable. �e linear degradation models are used
o�en to study the increase in a resistance measurement
over time, and the convex degradation models and concave
degradation models are used to study the growth of fatigue
cracks.
In many di�erent applications and models for accel-

erated degradation for data involving a destructive test-
ing are described. In�uence of covariates on degradation
is also modeled in Bagdonavičius and Nikulin (),
Doksum and Normand (), Padgett and Tomlinson
(), etc., to estimate reliability when the environment
is dynamic. �e semiparametric analysis of several new
degradation and failure time regression models without
and with covariables is described in Bagdonavičius and
Nikulin (, ), Yashin (), Bagdonavičius et al.
(), and Zacks (). �e degradation under the
covariate x is modeled by

Z(t∣x) = g( f (t, x, β),A), m(t∣x) = Eg( f (t, x, β),A).

About the methods of estimation one can see also in
Meeker and Escobar ().
Example  Time scaled gamma process: Z(t) = σ γ(t),
where γ(t) is a process with independent increments such
that for any �xed t > 

γ(t) ∼ G(, ν(t)), ν(t) = m(t)
σ 
,

i.e., γ(t) has the 7gamma distribution with the density

pγ(t)(x) =
xν(t)−

Γ(ν(t))
e
−x, x ≥ ,



 D Degradation Models in Reliability and Survival Analysis

wherem(t) is an increasing function.�en

Z(t∣x) = σ


γ( f (t, x, β)).

�e mean degradation and the covariances under the
covariate x are

m(t∣x) = E(Z(t∣x)) = m ( f (t, x, β)) ,
Cov(Z(s∣x),Z(t∣x)) = σ


m( f (s ∧ t, x, β)).

Bagdonavičius and Nikulin () considered estimation
from failure time-degradation data, Lawless (), con-
sidered estimation from degradation data.
Example  Time scaled Wiener process with a dri�:

Z(t) = m(t)+ σW(m(t)), whereW denotes the standard
Wiener motion, i.e., a process with independent incre-
ments such thatW(t) ∼ N(, t).�en

Z(t∣x) = m( f (t, x, β)) + σW(m( f (t, x, β))).

�e mean degradation and the covariances under the
covariate x are

m(t∣x) = m ( f (t, x, β)) , Cov(Z(s∣x),Z(t∣x))
= σ


m( f (s ∧ t, x, β)).

Doksum and Normand (), Lehmann (, ,
) Whitmore and Schenkelberg () considered esti-
mation from degradation data.
Example  Shock processes: Assume that degradation
results from shocks, each of them leading to an increment
of degradation. Let Tn, (n ≥ ) be the time of the nth shock
and Xn the nth increment of the degradation level. Denote
by N(t) the number of shocks in the interval [, t]. Set
X = .�e degradation process is given by

Z(t) =
∞
∑
n=
{Tn ≤ t}Xn =

N(t)

∑
n=
Xn.

Kahle andWendt ()modelTn as themoments of tran-
sition of the doubly stochastic Poisson process, i.e., they
suppose that the distribution of the number of shocks up
to time t is given by

P{N(t) = k} = E{(Yη(t))k

k!
exp{−Yη(t)}} ,

where η(t) is a deterministic function and Y is a non-
negative random variable with �nite expectation. If Y is
non-random, N is non-homogenous Poisson process, in
particular, when η(t) = λt, N is homogenous Poisson
process. If η(t) = t, then N is a mixed Poisson process.
Other models for η may be used, for example, η(t) =
tα , α > . �e random variable Y is taken from some
parametric class of distributions.Wendt and Kahle (),

Kahle andWendt () considered parametric estimation
from degradation data. Lehmann (, ) considered
estimation from failure time-degradation data.
Example  Degradation model with noise: suppose that the
lifetime of a unit is determined by the degradation process
Z(t) and themoment of its potential traumatic failure is T.
Denote byT themoment at which the degradation attains
some critical value z.�en the moment of the unit’s fail-
ure is τ = T ∧ T. To model the degradation-failure time
process, we suppose that the real degradation process is
modeled by the general path model:

Zr(t) = g(t,A) ()

where A = (A, . . . ,Ar) is a random positive vector, and
g is continuously di�erentiable increasing in t function.
As remarked earlier, the real degradation process Zr(t) is
o�en not observed, andwe have tomeasure (to estimate) it.
In this case, the observed degradation process Z(t) is di�er-
ent from the real degradation process Zr(t). We supposed
that we have the degradation model with noise according to
which the observed degradation process is

Z(t) = Zr(t)U(t), t >  ()

where lnU(t) = V(t) = σW(c(t)), W is the standard
Wiener process independent of A, and c is a speci�ed con-
tinuous increasing function, with c() = . For any t > 
themedian of U(t) is .
Using this model it is easy to construct a degra-

dation model with noise. An important class of models
based on degradation processes was developed recently by
Bagdonavičius et al. (). Wulfsohn and Tsiatis ()
proposed considered the so-called joint model for survival
and longitudinal data measured with error, given by

λT(t∣A) = λ(t)eβ(A+A t) ()

where A = (A,A) follows bivariate normal distribution.
On the other hand Bagdonavičius and Nikulin () pro-
posed themodel in terms of a conditional survival function
of T given the real degradation process:

ST(t∣A) = P{T > t∣g(s,A),  ≤ s ≤ t}

= exp{−∫
t


λ(s, θ)λ(g(s,A))ds} ()

where λ is the unknown intensity function, λ(s, θ) is from
a parametric family of hazard functions.�e distribution
of A is not speci�ed.�is model states that the conditional
hazard rate λT(t∣A) at the moment t given the degradation
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g(s,A),  ≤ s ≤ t, has the multiplicative form as in the
famous Cox model:

λT(t∣A) = λ(s, θ)λ(g(s,A)) ()

If for example, λ(s, θ) = ( + t)θ or λ(s, θ) = etθ , then
θ =  corresponds to the case when the hazard rate at
any moment t is a function of the degradation level at this
moment. One can note that in the second model the func-
tion λ, characterizing the in�uence of degradation on the
hazard rate, is nonparametric.
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Bagdonavičius V, Nikulin M () Accelerated life models. Chap-

man & Hall/CRC, Boca Raton
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Degrees of Freedom

ChongHo Yu
Arizona State University, Tempe, AZ, USA

Many elementary statistics textbooks introduce the con-
cept of degrees of freedom (df ) in terms of the number
scores that are “free to vary.” However, this explanation
cannot clearly show the purpose of df . �ere are many
other approaches to present the concept of degrees of free-
dom. Two of the most meaningful ways are to illustrate df
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in terms of sample size and dimensionality. Both represent
the number of pieces of useful information.

DF in Terms of Sample Size
Toothaker () explained df as the number of inde-
pendent components minus the number of parameters
estimated.�is approach is based upon the de�nition pro-
vided byWalker (): the number of observationsminus
the number of necessary relations, which is obtainable
from the observations (df = n − r). Although Good
() criticized that Walker’s approach is not obvious in
the meaning of necessary relations, the number of neces-
sary relationships is indeed intuitive when there are just
a few variables. “Necessary relationship” can be de�ned
as the relationship between a dependent variable (Y) and
each independent variable (X) in the research. Please note
that this illustration is simpli�ed for conceptual clarity.
Although Walker regards the preceding equation as a uni-
versal rule, df = n − r might not be applicable to all
situations.

No Degree of Freedom and Effective Sample
Figure  shows that there is one relationship under inves-
tigation (r = ) when there are two variables. In the
scatterplot there is only one datum point.�e analyst can-
not do any estimation of the regression line because the
line can go in any direction, as shown in Fig. . In other
words, there isn’t any useful information.When the degree
of freedom is zero (df = n − r =  −  = ), it is
impossible to a�rm or reject the model. In this sense, the
data have no “freedom” to vary. Bluntly stated, one subject
is basically useless, and obviously, df de�nes the e�ective
sample size (Eisenhauer ).�e e�ective sample size is
smaller than the actual sample size when df is taken into
account.

Perfect Fitting and Overfitting
In order to plot a regression line, onemust have at least two
data points as indicated in Fig. . In this case, there is one
degree of freedom for estimation (n −  = , where n = ).
When there are two data points only, one can always join
them to be a straight regression line and get a perfect corre-
lation (r = .).�is “perfect-�t” results from the lack of
useful information. Since the data do not have much “free-
dom” to vary, no alternate models could be explored. In
addition, when there are too many variables in a regres-
sion model, i.e., the number of parameters to be estimated
is larger than the number of observations, thismodel is said
to lacking degrees of freedom and thus is over-�t.
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DF in Terms of Dimensions and
Parameters
In this section, degrees of freedom are illustrated in terms
of dimensionality and parameters. According to Good
(), degrees of freedom can be expressed as

D(K) −D(H),

whereas
D(K) = the dimensionality of a broader hypothesis,

such as a full model in regression
D(H) = the dimensionality of the null hypothesis, such

as a restricted or null model.
In Fig.  vectors (variables) in hyperspace (Saville and

Wood ;Wickens ) are used for illustrating a regres-
sionmodel. It is important to point out that the illustration
is only a metaphor to make comprehension easier. Vec-
tors do not behave literally as shown. In hyperspace, Vec-
tor Y represents the dimension of the outcome variable
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Degrees of Freedom. Fig.  Vectors in hyperspace

whereas Vector Xβ and Xβ denote the dimensions of
the predictors with two estimated parameters (βs). Vec-
tor Ŷ is the dimension of Y expected and cos(θ) equals
R (relationship among X,X, and Y). In this example the
intercept is ignored.
What is (are) the degree(s) of freedom when there is

one variable (vector) in a regression model? First, we need
to �nd out the number of parameter(s) in a one-predictor
model. Since only one predictor is present, there is only
one beta weight to be estimated. �e answer is straight-
forward: �ere is one parameter to be estimated. How
about a null model? In a null model, the number of param-
eters is set to zero. �e expected Y score is equal to the
mean of Y and there is no beta weight to be estimated.
Based upon df = D(K)−D(H), when there is only one pre-
dictor, the degree of freedom is just one (− = ). Itmeans
that there is only one piece of useful information for esti-
mation. In this case, the model is not well-supported. As
you notice, a -predictor model (df =  −  = ) is better-
supported than the -predictor model (df =  −  = ).
When the number of orthogonal vectors increases, we have
more pieces of independent information to predict Y and
the model tends to be more stable. In short, the degree of
freedom can be de�ned in the context of dimensionality,
which conveys the amount of useful information. How-
ever, it is important to note that some regression methods,
such as ridge regression (see 7Ridge and Surrogate Ridge
Regressions), linear smoothers and 7smoothing splines
are not based on7least squares, and so df de�ned in terms
of dimensionality is not applicable to these modeling.

Putting Both Together
�e above illustrations (Walker’s df and Good’s df ) com-
partmentalize df in terms of sample size and df in terms
of dimensionality (variables). However, observations (n)
and parameters (k), in the context of df , must be taken
into consideration together. For instance, in regression,
the working de�nition of degrees of freedom involves the
information of both observations and dimensionality: df =
n − k −  whereas n = sample size and k = the number of

variables. Take the -observation and -variable case as an
example. In this case, df =  −  −  = . Readers who are
interested in df are referred to the online tutorial posted
on http://www.creative-wisdom.com/pub/df/default.htm
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Degrees of Freedom in Statistical
Inference
Joseph G. Eisenhauer
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University of Detroit Mercy, Detroit, MI, USA

�e term degrees of freedom refers to the number of
items that can be freely varied in calculating a statistic
without violating any constraints. Such items typically
include observations, categories of data, frequencies, or
independent variables. Because the estimation of parame-
ters imposes constraints on a data set, a degree of freedom
is generally sacri�ced for each parameter that must be esti-
mated from sample data before the desired statistic can be
calculated.
Consider �rst a simple case. A sample of size n ini-

tially has n degrees of freedom, in the sense that any or all
of the observations could be freely discarded and replaced
by others drawn from the population. However, once their
sum has been calculated, only n −  observations are free
to vary, the �nal one being determined by default. Equiv-
alently, once the sample mean x̄ has been calculated, n
deviations from the mean can be found but they must sum
to zero, so only n −  deviations are free to vary. In let-
ters to W.S. Gosset around , Sir Ronald Fisher �rst
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showed that if the deviations are squared and averaged over
n −  rather than n, the resulting sample variance s is an
unbiased estimator of the population variance σ .

�is basic notion recurs throughout inferential statis-
tics. With a normal distribution, testing a hypothesis
regarding σ  proceeds by way of a chi-square statistic,
χ = (n − )s/σ . Notice that E(s) = σ  implies E(χ) =
n − . As this suggests, there exists an entire family of chi-
square distributions, the mean of any one of which is its
degrees of freedom. Moreover, because χ takes only non-
negative values, the distribution is positively skewed when
its mean is near zero, and it becomes increasingly sym-
metric as the degrees of freedom rise. Consequently, the
probability that χ exceeds a given value increases with the
degrees of freedom. Put di�erently, the critical value for
a chi-square test at a given level of signi�cance increases
with its degrees of freedom. Student’s t statistic for testing
a normal population mean likewise has the n−  degrees of
freedom from the sample variance. As the degrees of free-
dom rise, the shape of the t distribution approaches that
of the standard normal; its variance decreases, and thus,
the probability that t exceeds a given value diminishes.
To compare the means from two normal populations with
σ  = σ  , the sample variances are pooled and the resulting
t statistic then has (n − ) + (n − ) degrees of freedom.
For normal populations with σ  ≠ σ  , Satterthwaite ()
proposed the approximation t = (x̄ − x̄)/

√
a + a with

(a+a)/ [(a /v) + (a/v)] degrees of freedom, where
ai = si /ni and vi = ni − ; in this case, the degrees of
freedom will generally not be an integer. To test for equal
variances, the F ratio (so named for Fisher), F = s /s, is
used with n −  numerator degrees and n −  denom-
inator degrees of freedom. If F is signi�cantly larger or
smaller than unity, the null hypothesis of equal variances
can be rejected. Of course, because the designation of pop-
ulations  and  is arbitrary, we could just as well invert the
F ratio and reverse its degrees of freedom.�erefore, com-
monly available tables of the F distribution report only the
right-hand critical value for an F test or con�dence inter-
val; to obtain the le�-hand critical value, the numerator
and denominator degrees of freedom are reversed, and the
resulting table value is inverted.

�e decomposition of a sample variance into explained
and unexplained components via 7analysis of variance
(ANOVA) also relies on degrees of freedom. �e sum
of squared deviations from the sample mean, or sum
of squares total (SST), has n −  degrees of freedom as
explained above. Similarly, with k treatment categories,
the sum of squares due to treatment (SSTR) has k − 
degrees, and the residual, the sum of squares due to error
(SSE), has (n − ) − (k − ) = (n − k) degrees of

freedom. Dividing the sums of squares by their respective
degrees of freedom, the mean square due to treatment is
MSTR = SSTR/(k − ) and the mean square due to error
is MSE = SSE/(n − k). Because each of these is a type
of variance, we compare them using the test statistic F =
MSTR/MSEwith k− numerator degrees and n−k denom-
inator degrees of freedom. A related application involves
measuring the strength, or explanatory power, of a mul-
tiple linear regression, where k is reinterpreted as the
number of regression coe�cients (including the intercept)
and SSTR denotes the sum of squares due to regression.
Increasing the number of independent variables (k − )
tends to alter the composition of SST by raising SSTR and
reducing SSE, though the increase in explained variation
may be somewhat spurious; the coe�cient of determina-
tion, R =  − (SSE/SST), can thereby become in�ated.
�e customary correction is to divide SSE and SST by their
respective degrees of freedom, yielding the adjusted coe�-
cient of determination R̄ = −{[SSE/(n− k)]/[SST/(n−
)]} as the measure of explanatory power.
Algebraically, a system of j simultaneous equations in

k unknowns has k − j degrees of freedom. Consider, for
example, a goodness-of-�t test to determine whether the
variable x, which takes the values , ,  . . . (k − ), fol-
lows a truncated Poisson distribution with a given mean.
�ere are k expected frequencies, but since they must sum
to the sample size n, one can be determined from the oth-
ers. �us, only k −  are free to vary, i.e., there are k − 
degrees of freedom.Moreover, if it is necessary to �rst esti-
mate the population mean from the sample data in order
to obtain the Poisson distribution, an extra constraint is
imposed, leaving k−  degrees of freedom; see Eisenhauer
() for a numerical illustration. By the same reasoning,
a goodness-of-�t test for a normal distribution segmented
into k intervals has k −  degrees of freedom if the mean
and standard deviation of the population are known; but
if both parameters need to be estimated, two more degrees
are sacri�ced and k −  degrees of freedom remain.
Fisher () originally coined the phrase degrees of

freedom in correcting Karl Pearson’s test of independence.
A contingency table consisting of r rows and c columns into
which frequencies are entered has rc cells, but given row
and column totals, the entries for the �nal row and �nal
column – totaling r + c −  cells – can be determined from
the others.�us, there are only rc−(r+c−) = (r−)(c−)
degrees of freedom for the chi-square test statistic.
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Introduction
Demographers study population dynamics: changes in
population size and structure resulting from fertility
(childbearing performance), mortality (deaths), and spa-
tial and social mobility.�e focus may be the world popu-
lation or a part of it, such as the residents of a country or
the patients of a hospital. Giving birth, dying, shi�ing usual
place of residence, and trait changes (e.g., getting married)
are called events. Each event involves transition from one
“state” to another (e.g., from never-married state to mar-
ried state). A person is said to be “at risk” or “exposed
to the risk” of experiencing an event, if for that person
the probability of that experience is greater than zero.�e
traits in�uencing the probability of experiencing an event
are called the risk factors of that event (e.g., high blood
pressure, in the case of ischemic heart disease).
Demographic data are based on censuses (see7Census),

sample surveys, and information reported to o�ces set
up for continuously recording demographic events. Some

observational studies can be viewed as random experi-
ments. For an individual selected at random from a pop-
ulation at time t, the value of the variable yt+θ , denoting
whether that individual will be alive as of a subsequent
moment t + θ is unpredictable. �is unpredictability of
the value of yt+θ quali�es the observational study involv-
ing observations at times t and t + θ to be considered as a
random experiment and yt+θ as a random variable, de�ned
by a set of possible values it may take (e.g.,  if alive at time
t+θ, and , otherwise) and an associated probability func-
tion (Kendall and Buckland ).�e interval between a
�xed date and a subsequent event is a random variable, in
the above-mentioned sense.

�e term rate is used in 7demography for the number
of events (e.g., deaths) expressed per unit of some other
quantity, such as person-years at risk (o�en expressed per
,). For example, the crude death rate (annual num-
ber of deaths expressed per , mid-year population)
in Japan in  was .�e mid-year population in such
calculations is an approximation to the sum of the person-
years lived by the members of the population involved
during the speci�ed year. Death rates calculated for sub-
populations, homogeneous, to some degree, with respect
to one ormore relevant risk factors are called speci�c death
rates. Examples are age-speci�c and age-sex speci�c death
rates.
A life-table (see 7Life Table) shows the life-and-death

history of a group of persons, called a cohort, born at the
same time (e.g., a year), as the cohort members survive to
successive ages or die in the intervals, subject to the mor-
tality conditions portrayed in a schedule of age-speci�c
death rates. An account of the origin, nature, and uses of
life tables is available in P. R. Cox (). Life tables have
become powerful tools for the analysis of non-renewable
(non-repeatable) processes. If a repeatable process, such as
giving births, can be split into its non-renewable compo-
nents (e.g., births by birth order) then each component can
be studied, using the life-table method.�e term: survival
analysis is applied to the study of non-renewable processes,
in general. Associated with the survival rate is the hazard
rate, representing the instantaneous rate of failure (to sur-
vive). Hazard rate corresponds to the instantaneous death
rate or force of mortality, as used in connection with life
tables.

Macro-Level Focus
A great deal of demographic research is linked directly or
indirectly to model construction and validation, viewing
observations as outcomes of random experiments. Birth-
and-death process (see Kendall ; Bhat ), is a con-
tinuous time, integer valued, counting process, in which
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population size at time t, remains constant, increases by
one unit (a birth), or decreases by  unit (a death), over the
period: t to t+∆t. Time-trend in population size is studied
using branching processes, in a simple version of which,
each member of each generation produces o�spring, in
accordance with a �xed probability law common to all
members (see, e.g., Grimmett and Stirzaker  for a dis-
cussion of simple as well as complex models of branching
processes).�e logistic process for population growth of
the “birth-and-death” type views the instantaneous rates of
birth and death for each individual alive at a givenmoment
as linear functions of population size (see Brillinger ;
Goel and Dyn ; Mollison ). For compositional
analysis, one may apply an appropriate log-ratio transfor-
mation to the composition of interest, and treat the result-
ing values as a random vector from a multivariate normal
distribution (see Aitchison ; Namboodiri ).
Using the component model (see Key�tz ) of pop-

ulation projection, one obtains internally consistent esti-
mates of the size and age-sex composition of populations
as of future years by combining hypothesized patterns of
change in fertility,mortality, andmigration.On the basis of
such projections, issues such as the following can be exam-
ined: () Reduction in population growth rate resulting
from the elimination of deaths due to a speci�c cause, e.g.,
heart disease; () Relative impact on the age-composition,
in the long-run, of di�erent combinations of population-
change components (e.g., fertility and mortality); and
() tendency of populations to “forget” the past features
(e.g., age composition) if the components of population
dynamics were to continue to operate without change over
a su�ciently long time.
To estimate and communicate the uncertainty of pop-

ulation projections, the practitioners have been combining
“high,” “medium,” and “low” scenarios for the components
of population change in various ways (e.g., “high” fertility
combined with “low” mortality to produce “high” pop-
ulation projection) to show di�erent possibilities regard-
ing future population size and composition. Since such
demonstrations of uncertainties have no probabilistic
interpretations, Lee and Tuljapurkar, among others, have
pioneered e�orts to develop and popularize the use of
stochastic population projections (see Lee ). Lee and
Tuljapurkar () demonstrated, for example, how to
forecast births and deaths, from time-series analyses of
fertility and mortality data for the United States, and
then combine the results with deterministically estimated
migration to forecast population size and composition.
�ey used in the demonstration, products of stochastic
matrices.
Comparison of the simple non-stochastic trendmodel:

yt = β + β(t) + et , with the stochastic (random-walk

with a dri�) model: yt = α + yt− + et , where et ’s are
NID(, σe) for all t, shows that even when the error terms
have equal variance (σ e ) in the twomodels, the prediction
intervals for the latter are wider than those of the former:
For a forecast horizonH, the variance of the forecast error
(the departure of the forecast from the actual) in the case of
yt = β+β(t)+et is σ e , while the corresponding quantity
is Hσ e , in the case of yt = α + yt− + et .

Micro-Level Processes
At the micro level, one focuses on events (such as giv-
ing birth to the �rst child, dying, recovering from illness,
and so on) experienced by individuals. In event histories,
points of time at which transitions occur (e.g., from not in
labor force to employed) are represented by a sequence of
non-negative random variables: (T,T, . . .), and the dif-
ferences: Vk = Tk − Tk−, k = , , . . . , are commonly
referred to as waiting times. Comprehensive discussions
of waiting times are available, for example, in: Cleves
et al. (); Collett (); Elandt-Johnson and Johnson
(/); and Lawless (/).
D. R. Cox () introduced, what has come to be

known as, the proportional hazards model: λ(t) =
λ(t)ψ(z, z, . . . , zk), where “t” represents time, and
the multiplier, ψ(z, z, . . . , zk), is positive and time-
independent. A special form of the model is: λ(t) =
λ(t) exp(Σβjzj), in which {βj} are unknown regression
coe�cients.
An important feature of waiting time is heterogeneity

(variation among individuals) in the hazard rate (see Sheps
and Menken ; Vaupel et al. ; Heckman and Singer
). Heterogeneity is incorporated o�en as a multiplier
in the Cox proportional hazards model. For example, the
hazard function for the ith individual may be speci�ed as:
λ(t)νi exp(ΣjβjZij), representing an individual-speci�c,
unobserved heterogeneity factor by νi. Vaupel et al. ()
called such models: “frailty” models (see 7Frailty Model).
Heckman and Singer () suggested the speci�ca-

tion of the unobserved heterogeneity factor in λ(t) =
λ(t)νi exp(ΣjβjZij), as a K-category discrete random
variable.�us the ith individual is presumed to belong to
one of K groups.�e value of K is determined empirically
so as to maximize the likelihood of the sample on hand,
under a speci�ed (e.g., the exponential orWeibull) form for
λ(t). In the presence of heterogeneity, inference becomes
sensitive to the form assumed for the hazard function (see,
e.g., Trussell and Richards ).
As Sheps and Perin () and Menken (), among

others, have pointed out, simpli�ed models, unrealistic
though theymay be, have proved useful in gaining insights
such as that a highly e�ective contraceptive used by a rather
small proportion of a population reduces birth rates more
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than does a less e�ective contraceptive used by a large
proportion of the population.
Some fertility researchers have been modeling parts

rather than the whole of the reproductive process.
�e components of birth intervals have been exam-
ined, with emphasis on the physiological and behav-
ioral determinants of fertility (see Leridon ). Another
focus has been abortions, induced and spontaneous (see
Abramson ; Potter et al. ; Michels and Willett
). Fecundability investigations have been yet another
focus (see Menken ; Wood et al. ). Menken ()
alerts researchers to the impossibility of reliably estimating
fecundability from survey data.�e North Carolina Fer-
tility Study referred to in Dunson and Zhou () is of
interest in this connection: In that study couples were fol-
lowed up from the time they discontinued birth control in
order to attempt pregnancy.�e enrolled couples provided
base-line data and then information regarding ovulation in
each menstrual cycle, day-by-day reports on intercourse,
�rst morning urine samples, and the like. Dunson and
Zhou present a Bayesian Model and Wood et al. ()
present a multistate model for the analysis of fecundability
and sterility.
To deal with problems too complex to be addressed

using analytic models, researchers have frequently been
adopting the simulation strategy, involving computer-
based sampling and analysis at the disaggregated (e.g.,
individual) level. See, for example, the study of () kinship-
resources for the elderly by Murphy (); and Wachter
(); () female family-headship by Mo�t and Rendall
(); () AIDs and the elderly by Wachter et al. ();
and () the impact of heterogeneity on the dynamics
of mortality by Vaupel and Yashin (); and Vaupel
et al. (). Questions such as the following arise: Is it
possible to reproduce by simulation the world-population
dynamics, detailing the changes in the demographic-
economic-spatial-social DESS) complex, over the period,
say: –? Obviously, in order to accomplish such a
feat, one has to have a detailed causalmodel of the observed
changes to be simulated.As of nowno satisfactorymodel of
that kind is available.�inking along such lines demogra-
phers might begin to viewmicro-simulation as a challenge
and an opportunity to delve into the details of population
dynamics.
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The Character of the Field
of Demography

The Topics of Investigation
Demography is the statistical study of human popula-
tions, including their size, composition, and geographical

distribution, and of the processes of change in these ele-
ments. Demographers focus on childbearing (fertility),
death (mortality), and geographical moves (migration),
but they also cover other processes, like the formation
and dissolution of (marital and nonmarital) unions, the
transition out of the parental home, and other transitions
relevant to population structure and population trends. As
a �eld of inquiry,Demography has roots going back to John
Graunt’s famous study of the bills ofmortality () and to
T. R. Malthus’s essay on the principle of population ().
For an account of how the endeavors of demographers have
developed into a discipline, see Hodgson (), Szreter
(), and Caldwell, ). For more extensive accounts
about the �eld of demography, see Rosenzweig and Stark
() and Demeny and McNicoll ().

The Discipline
Like all academic disciplines, demographers have formed
national, regional, and international societies, such as the
Population Association of America, the European Asso-
ciation for Population Studies, the International Union
for the Scienti�c Study of Population, and many others.
Its oldest professional journals are publishing their th
volumes or so in  (Population Studies, Population,
Genus), and there are a large number of younger journals
(Demography, the Population and Development Review,
the European Journal of Population,Demographic Research,
Journal of Population Research, Mathematical Population

Studies, Journal of Population Economics and so on), some
of which are recent start-ups (like the Romanian Journal of
Population Studies).
Demography courses are given by some universities,

o�en as a part of studies in other disciplines, such as
geography, sociology, or statistics. More extensive teach-
ing is organized through demographic research centers
like INED (Institut National des Études Démographiques
in Paris), NIDI (the Netherlands Interdisciplinary Demo-
graphic Institute in �e Hague), and MPIDR (the Max
Planck Institute for Demographic Research in Rostock),
sometimes as a joint venture of demographic centers and
university departments across Europe (like the European
Doctoral School in Demography). Teaching, research, and
instrumental advice are also o�ered by demographic cen-
ters established by the United Nations and others (e.g., the
Population Council). North America has its own demo-
graphic centers. Ideally, teaching programs re�ect the
multidisciplinarity of demography (Caselli ).

Demographic Data
Since the beginning of public data collection, demogra-
phers have made use of several sources of o�cial statis-
tics. For instance, status data are collected in decennial
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censuses, typically to provide information about popu-
lation composition and about the size of local popula-
tions or other groups at census time. Vital statistics (i.e.,
data on births, deaths, migration, marriages, etc.) are pub-
lished annually and normally provide aggregate data for an
entire population or for large population units. Individual-
level (micro) data are mostly collected in special sam-
ple surveys organized at the national (or sub-national)
level or designed to provide internationally comparable
individual-level data (the Fertility and Family Surveys, the
Generations and Gender Surveys, the Demographic and
Health Surveys, and so on). In the Nordic countries and in
a few other countries, individual-level demographic data
are organized in a continuous-register system and made
available for research. Several other countries or organiza-
tions have started to make registers of speci�c events avail-
able for research (such as a birth register, pension registers,
migration registers). Recently international databases have
been established for scienti�c use, such as theHumanMor-
tality Database and the Human Fertility Database, both
at MPIDR, or the IPUMS-data (International Public Use
Microdata Series at the Minnesota Population Center).
For further insights about demographic data regimes, see
Haines ().

Population Forecasts
Producing population forecasts is a practical activity that
many demographers are engaged in. Colleagues in other
disciplines o�en resort to population forecasts produced
by demographers.

Demography at the Crossroad of many
Disciplines
As a �eld of endeavor, demography is highly interdis-
ciplinary. Today we would characterize as demography
much of the early activity of academic statisticians, and
there is a residue of common interest down to the present
time. Historically, demography has also been allied par-
ticularly closely with actuarial mathematics, epidemiol-
ogy, sociology, economics, geography, and history. More
recently it has developed links with biology, political sci-
ence, and anthropology. �e overlap between scienti�c
�elds is o�en so great that individual scientists may �nd
it di�cult to pledge their allegiance solely to demography
or to a neighboring discipline; they o�en see themselves
as members of both. Even what initially looks like a purely
demographic theory may really need an underpinning in
other disciplines. One case in point is an understanding
of the role that a reduction of mortality at young ages has
in initiating a decline in fertility. To explain why fertil-
ity declines, why there is a link between mortality decline

and fertility decline, and why the pattern of the latter dif-
fers between societies, it is natural to resort to economics,
health science, and perhaps anthropology.

�e following examples provide selected glimpses of
some overlaps between disciplines: �ere is constantly a
mutual enrichment between demographic studies of fam-
ily dynamics and sociological theory about the family. A
deep investigation of policy e�ects in fertility trends is
unthinkable without the insight and knowledge of political
scientists, and conversely the latter can bene�t from demo-
graphic statisticians’ understanding ofmeasurement issues
(Frejka et al. , Overview Chapter ). Studies of mor-
tality di�erentials gain from a sociological understanding
of class di�erences. Demographic items are central to some
recent theories about violent con�icts internal to popula-
tions. Demographers use elements from spatial theory in
their studies of childbearing patterns among immigrants.
Patterns of union formation contain important signals
about the integration of minority groups, including immi-
grants (Basu and Aaby ), signals that should be useful
to anthropologists. On the other hand, the latter are not
always happy about the lack of attention paid to anthro-
pological insight in classical demographic explanations of
fertility trends in developing countries (Greenhalgh ).

Demographic Methodology

Stocks and Flows; Timing and Quantum
Demography has a distinctive emphasis on stocks and
�ows. Conceptually, a population is subdivided into a
number of subgroups between which individuals move.
�e subgroups may represent life statuses, like “married,”
“divorced,” “childless,” “at parity ” (=mothers/fathers with
one child), and individuals are seen as constantly exposed
to the risk of transition from one subgroup (or status)
into another. Deaths are counted among the �ows, and a
7life table can be seen as a tabular representation of attri-
tion from the stock of the living at the various ages.�e
underlying risks determine the timing of the �ows, and the
percentage that ultimately participates in a �ow is called its
quantum.

Data Cleaning and Careful Description
Cleaning the data of incorrect and inaccurate records is
part of a demographer’s preparation for analysis (Booth
). Demographers have always put great store on bring-
ing out the facts, and this continues to be important in
demographic investigations, while deeper explanation is
o�en le� to members of other disciplines despite any aspi-
ration demographers may have toward the use (and devel-
opment) of substantive theory. In this vein, demographers
have a long tradition of careful description of empirical



 D Demography

regularities, mostly based on macro-data, but lately also
covering patterns of individual-level behavior.

New Statistical Methods
To analyze demographic (vital) processes as dependent
“variables,” demographers have developed or adopted a
number of statistical methods also used in other dis-
ciplines, notably public health and epidemiology. One
can get an overview of the range of such methods as
seen by demographers by consulting the various entries
under ‘demographic techniques’ in Smelser and Baltes
(). Entries under ‘population dynamics’ in the same
source cover stable population theory, which is much used
in demography. It is essentially based on extensions of
branching-process theory.

�e advent of event-history techniques has recently
induced a change in the way many demographers
approach their investigations.Demographers have increas-
ingly turned to individual-level analyses of multi-process
models and to multi-level modeling.�e latter has opened
the way for the inclusion of population-level features as
determinants in investigations of individual behavior. It
has also become possible to incorporate a feature like
unobserved heterogeneity and thus to pick up selectiv-
ity in demographic behavior.�ese new possibilities have
strengthened the tendency to use probabilistic thinking
in demographic investigations and thus to make the �eld
more recognizable to mathematical statisticians.

Transition Rates of Type  and Type 
To give an impression of how demographic methodology
�ts into the world of statistical theory but have a �avor
of its own, let us �rst note that just like in any applica-
tion of event-history analysis in a transition model with
a piecewise-constant hazard speci�cation, a count of event
occurrences {Dj} and exposures {Rj} (time-units of expo-
sure) for the various subgroups {j} of a population can
be seen as a statistically su�cient set of statistics for the
model risk parameters {µj}. In such a situation, the occur-
rence/exposure rate µ̂j = Dj/Rj is a maximum-likelihood
estimator of the parameter µj, and demographers would
call it a rate of the �rst kind. Suppose, for instance, that
the subscript j stands for a combination of (discrete) age
x attained and civil status c, where c =  stands for “never
married,” say.�en µx, can be the “risk” of entering �rst
marriage at age x (for someone who has never been mar-
ried before that age) and the �rst-marriage rate of the �rst
kind will be µ̂x, = Dx,/Rx,. When the occurrences can
be fully sub-speci�ed but the population cannot be sub-
divided by marital status but only by age attained, say, a
�rst-marriage rate µ∗x = Dx,/Rx of the second kind can still

be computed for a given birth cohort, where Rx = ∑
c

Rx,c

is an aggregate over all marital statuses c. (Note that µ∗x is
not an occurrence/exposure rate, because the denomina-
tor Rx includes the person-years∑

c≠
Rx,c also of individuals

who are not under risk of �rst marriage in addition to the
exposuresRx, for thosewho are under the risk of �rstmar-
riage.) Demographers put rates of the second kind to uses
of their own, but to a statistician, the main advantage of
such rates is probably that in cohort data they can be con-
verted into estimates rates of the �rst kind by means of the
following formula:

ˆ̂µx, = µ∗x /
⎛
⎝
 −∑

y<x
µ
∗
y

⎞
⎠
.

For a proof, see the argument by Calot () lead-
ing up to his formula (). (Note that all quantities in this
formula refer to the same birth cohort. No corresponding
conversion formula seems to exist for period data.)
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�e problem of comparing two (or more samples) appears
in several and diverse applications. �e parametric the-
ory resolves the problem by appealing to the well-known
t-test. To carry out the t-test both samples are assumed
to be normally distributed with common unknown vari-
ance and unknown means. �e two-sample t-test enjoys
several optimality properties, for instance, it is uniformly
the most powerful unbiased test. Occasionally some (or
all) of the needed assumptions fail; for instance, when
there exists a group of observations with skewed distri-
bution, then both assumptions of normality and equality
of variances do not hold true. Hence, application of the
ordinary two-sample t-test is questionable. �e problem
is usually bypassed a�er a suitable transformation but the
comparison needs to be carried out in the transformed

scale. Alternatively, we can appeal to the nonparametric
theory, which approaches the problem of comparing two
samples by the so-called Mann–Whitney–Wilcoxon test
(see 7Wilcoxon–Mann–Whitney Test).
We consider a quite di�erent approach to the two-

sample comparison problem. �e methodology is rela-
tively new and depends on the so-called density ratiomodel
for semiparametric comparison of two samples. To bemore
speci�c, assume that

X, . . . ,Xn ∼ f(x)

Xn+, . . . ,Xn ∼ f(x) = exp (α + βh(x)) f(x).
()

where fi(x), i = ,  are probability densities, h is a known
function, and α, β are two unknown parameters. In princi-
ple, h(x) can be multivariate but we assume for simplicity
that it is a univariate function.
Model () is motivated by means of the standard

7logistic regression and the equivalence between prospec-
tive and retrospective sampling, Prentice and Pyke ().
Suppose that Y is a binary response variable and let X be
a covariate.�e simple logistic regression model is of the
form

P[Y =  ∣ X] = exp(α⋆ + βh(x))
 + exp(α⋆ + βh(x))

, ()

where α⋆ and β are scalar parameters. Notice that the
marginal distribution of X is le� completely unspeci�ed.
Assume that X, . . . ,Xn is a random sample from F(x ∣
Y = ). Independent of the Xi, assume that Xn+, . . . ,Xn
is a random sample from F(x ∣ Y = ), and let n = n − n.
Put π = P(Y = ) =  − P(Y = ) and assume that
f (x ∣ Y = i) = dF(x ∣ Y = i)/dx exists and represents the
conditional density function of X given Y = i for i = , . A
straightforward application of7Bayes’ theorem shows that

f (x ∣ Y = )
f (x ∣ Y = )

= exp(α + βh(x))

with α = α∗ + log[( − π)/π]. In other words, model () is
equivalent to () with α = α∗ + log[( − π)/π].
We refer to () as the density ratio model since it speci-

�es a parametric function of the log likelihood ratio of two
densities without assuming any speci�c form about them.
Hence, it is a semiparametric model and it is easy to see
that, under the hypothesis β = , both of the distribu-
tions are identical. In other words, both density functions
are assumed unknown but are related, however, through
an exponential tilt–or distortion–which determines the
di�erence between them. Notice that model () is quite
general and includes examples such as the exponential and
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partial exponential families of distributions.Model () pro-
vides a compromise between the fully parametric and non-
parametric approaches to the problemof testing equality of
two distribution, see Qin et al. (), Kedem et al. (),
and Fokianos et al. (), among others, for applications
of the density ratio model to real data problems.
It is also important to note that () is a biased sampling

modelwithweights depending uponparameters. Inference
regarding biased sampling models has been discussed by
Vardi (, ), Gill et al. (), and Bickel et al. (),
in the case of completely known weight functions, while
Qin and Zhang (), Qin (), Gilbert et al. (),
Gilbert (), and Fokianos et al. () consider weight
functions unknown up to a parameter.
It is easy to see that () generalizes to the m–samples

comparison problem. Considerm unknown densities that
are related by an exponential tilt of the following form

X, . . . ,Xn ∼ f(x) = exp (α + βh(x)) fm(x),
X, . . . ,Xn ∼ f(x) = exp (α + βh(x)) fm(x),

. . . . . . . . . ()
Xm, . . . ,Xmnm ∼ fm(x),

where the notation follows (). Estimation of β, . . . , βm−
as well as inference regarding the cumulative distribution
functions that correspond to f(.), . . . , fm(.) has been con-
sidered by Fokianos et al. (), who also propose some
test statistics for the hypotheses β = . . . = βm− = , that
is, all the samples are identically distributed. In this sense,
model () is also referred to as a semiparametric one-way
ANOVA.
In conclusion, the density ratio model for two and m

samples avoids the normal theory by specifying that the log
ratio of two unknowndensities is of some parametric form.
Hence, it provides another way of testing the equality of
several distributions without resorting to transformations
or any other techniques.�e last comment is particularly
useful since there are examples of data that show that pop-
ulations follow skewed distributions and therefore classical
estimation theory might yield questionable results. �e
suggestedmodel accommodates skewed data and provides
desirable results such as consistent estimators of means,
test statistics, and so on.
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7Six Sigma can be de�ned as a highly structured strategy
for acquiring, assessing, and applying customer, competitor,

and enterprise intelligence in order to produce supe-

rior product, system or enterprise innovation and designs
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(Klefsjö et al. ). Six Sigma originated approximately
three decades ago as a means of generating near-perfect
products via focus on associated manufacturing processes
and while initially applied almost exclusively in man-
ufacturing environments, its inherent sensibilities and
organization facilitated migration to service operations.
Similarly, while Six Sigma was at the outset used to gener-
ate signi�cant innovation in and improvement of existing
products, those same sensibilities led to its adaptation to
new product and process design environments and it is
on use of Six Sigma in design applications that the present
contribution is focused.

�ere is a distinction between using Six Sigma princi-
ples in design or innovation applications versus a process
operating at a level of six sigma. In terms of performance,
a process operating at a “true” six sigma level produces
an average of only . defects per million opportunities
(DPMO) for defects where this �gure is associated with a
process with a  standard deviation spread between lower
and upper speci�cation limits, but wherein the . DPMO
�gure is based on allowance for a . standard deviation
non-centrality factor or shi� away from “perfect centering”
so that, in essence, one speci�cation limit is . standard
deviations away from the targeted or ideal performance
level whereas the other speci�cation limit is . standard
deviations away from that performance level. In practice,
of course, a process may operate (typically) at lower or
(rarely) higher sigma levels – that is, with less or more
spread in standard deviation units between speci�cation
limits.
Herein we are not focused on the “sigma level” per

se, but rather on the design approach leading to the pro-
cess or product in question that operates at some sigma
level.�is approach is called Design for Six Sigma (DFSS)
and is conducive to higher sigma levels – that is, nearer
to perfect results – while at the same time aligning with
customer demands and desires or, in more customary lan-
guage, the Voice of the Customer (VOC) expressed as
“customer needs and wants”.
While multiple DFSS approaches exist, a few sim-

ilar ones dominate the application arena with the two
most prevalent ones being referred to as IDOV (Inno-
vation, Invention, Design, Optimization and Veri�cation)
and DMADV (De�ne, Measure, Analyze, Design, Verify)
Algorithm with DMADV being more commonly applied
of the two and hence emphasized herein.
It should be emphasized thatwhicheverDFSS approach

is used, whether DMADV, IDOV, or another, that the
approach provides freedom within structure rather than
rigidity. �at is to say that each phase in the chosen
approach has a particular intent, that the phases are gen-
erally sequential and linked, and that together they are

complete, but that within a given phase many and di�er-
ing tools and techniques can be brought to bear with those
used potentially di�ering substantially from one applica-
tion to the next.
Turning now to theDMADV approach toDFSSwe can

provide the following brief descriptions of each portion of
the algorithm.
De�ne (D): A primary goal of the De�ne phase of

DFSS is to acquire and access the VOC and subsequently
align goals for the product, process, or service with the
VOC. We note here that the customers considered should
be both internal and external ones, as applicable. Among
methods for acquiring the VOC are focus groups, sam-
ple surveys, and examination of customer complaints.
Another method of value is to directly observe customer
use of similar to products, processes or services so that
unspoken, more implicit information can be gathered. In
goal-setting it is recommended that these be so-called
“SMART” goals, where SMART is an acronym for Speci�c,
Measurable, Attainable, Relevant, and Time-bound. Fur-
ther, while these goals should be attainable, they should
not be “easily” attained, but should rather represent stretch
goals, ones that are more likely to position the product,
process, or service at the leading edge.
Measure (M): In the DFSS context this requires that

we measure and match performance to customer require-
ments. Fundamentally this is a quanti�cation of the VOC
and the alignment of this quanti�cation with organiza-
tional and management goals.
Analyze (A): �is phase demands that the design for

any existing relevant product, process or service be ana-
lyzed and assessed to determine its suitability, perfor-
mance, error or defect sources, and any corrective or
innovative actions that may be taken. Various tools are
of potential value in this phase, including Design Fail-
ure Modes and E�ects Analysis (DFMEA), a tool whose
name belies its intent. Other useful tools and methods
include Concept Generation and Selection, and the�eory
of Inventive Problem Solving (TRIZ).
Design (D): In this phase the array of corrective or

innovative actions identi�ed in the analyze phase are
embedded in the design and subsequent deployment of
new processes required to activate the VOC while simul-
taneously ful�lling organizational and management goals.
While various tools may be of value here, a few of the
more advanced approaches that are useful include many
from experimental design and response surface analysis

(Myers et al. ) along with more rigorous quality ori-
ented approaches such as Quality Function Deployment
(QFD). As a way of relating and integrating these latter
approaches various customer needs and wants (the VOC)
that are critical to QFD and its so-called House of Quality
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(HOQ) can be regarded as response variables (Y’s) whose
selected or joint optimization is attained through deploy-
ment of identi�ed product or process design attributes are
controllable variables X, X, . . . XP so that we have

Y = f(X, X, . . . XP) + ε

Where the optimal combination of settings of X,
X, . . . XP – called “engineering attributes” in the parlance
of QFD – can be determined through use of, e.g., response
surface methods, steepest ascent methods, and evolution-
ary operations or EVOP (Myers et al. ). It is important
to note that it is not su�cient to simply identify the optimal
combination of these variables as it is their speci�c means
of deployment – the process – that ultimately actualizes
the VOC.
Verify (V): In the Verify phase the objective is to assess

performance of the design via such means as prototyping,
simulation, or direct observation of the designed product
or process in use prior to marketplace deployment. In this
way design performance is veri�ed.
From the description of DMADV it is easily concluded

that a variety of statistical and other methods can be used
to support its e�ectiveness and a few of these have been
suggested herein.�at said, it should be evident that the
speci�c methods applied are almost boundless, being lim-
ited only as they are primarily by the knowledge and imag-
ination of the design team. In all DMADV o�ers a logical
and highly structured, yet versatile approach to product,
process, or service design.

About the Author
Rick Edgeman in Professor and Chair of Statistics at the
University of ldaho and Professor in the Aarhus Univer-
sity (Denmark) Summer University and also serves on the
Advisory Board of Hamdan Bin Mohammed E-University
of Dubai. He has more than  publications in leading
journals to his credit with much of his work in the areas
of Six Sigma, Sustainability, Innovation, Quality Manage-
ment, Leadership, and Statistical Applications in Quality
and Reliablity Engineering. In  he was cited in Quality
Progress as one of  Voices of Quality for the st Century,
one of only six academics worldwide so identi�ed.

Cross References
7Business Statistics
7Industrial Statistics
7SIPOC and COPIS: Business Flow–Business Optimiza-
tion Connection in a Six Sigma Context
7Six Sigma

References and Further Reading
Klefsjö B, Bergquist B, Edgeman R () Six sigma and total

quality management: different day, same soup? Six Sigma &
Competitive Advantage ():–

Myers RH, Montgomery DC, Anderson-Cook CM () Response
surface methodology: process and product optimization using
designed experiments, rd edn. Wiley, New York

Design of Experiments: A Pattern
of Progress

D. R. Cox
Honorary Fellow
Nu�eld College, Oxford, UK

�e article Experimental Design, Introduction to
(Hinkelman ) sets out the basic statistical principles of
experimental design.�is supplementary note comments
on the historical development of the subject.
Careful experimentation has a long history, perhaps

especially in the physical sciences. �ere is, however, a
long history also of experimentation in �elds as diverse
as agriculture and clinical medicine. �e �rst systematic
discussion of experimental design in the presence of sub-
stantial haphazard variation seems to be that of Fisher
(), later developed in his book (Fisher ). He set out
four principles:

● error control, for example by some form of matching
to compare like with like

● independent replication to improve precision and
allow its estimation

● randomization to achieve a number of aims, notably
avoidance of selection biases

● factorial design to improve the e�ciency of experimen-
tation and to allow the exploration of interactions.

�e relative importance of these four principles varies
between subject-matter �elds. �is accounts to some
extent for di�erences in how the subject has developed
when directed toward, say, agricultural �eld trials as con-
trasted with some other �elds of application.
In the period up to  these ideas were exten-

sively developed, notably by Fisher’s friend and colleague,
F. Yates, whose monograph (Yates ) is a little known
masterpiece of the statistical literature. �e focus and
impact of this work was primarily but by no means exclu-
sively agricultural.
In the ’s a strand of new ideas entered from the

chemical process industries notablywith thework ofG.E.P.
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Box and his associates; see, for example, Box and Draper
().�e di�erences were not so much that factors in a
factorial experiment mostly had quantitative levels as that
emphasis shi�ed from the estimation of factorial e�ects
to the response surface of mean outcome considered as a
smooth function of the factor level.�is led to a richer fam-
ily of designs and to an emphasis on exploring the form of
the response surface in the neighborhood of an optimum.
In some of the applications error was relatively small and
experiments could be completed quite quickly allowing for
a developing sequence of designs.
Carefully designed clinical trials have a long history

but the period from about  onward saw their appli-
cation and development on a large scale. Here typically
there a very small number of possible treatments, o�en
just two, and error is large, so that substantial replication
is essential. Avoidance of various forms of selection bias by
concealment achieved by 7randomization is o�en crucial.
See Piantadosi () for a systematic account.
Twomore recent areas of development are applications

to matters of public policy, for example in education and
criminology. Here an issue concerns the extent to which
a parallel with randomized clinical trials is appropriate.
�e second and very di�erent application concerns the sys-
tematic sensitivity analysis of complex computer models
involving many adjustable parameters and computation-
ally highly intensive individual runs. Models of climate
change are an example.
In all these areas choice of a speci�c design in a par-

ticular context typically involves largely qualitative consid-
erations of balancing the primary requirements of achiev-
ing precision and clarity and security of interpretation
with practical constraints that are always present, although
taking di�erent forms in di�erent �elds. �ere may also
be a number of distinct somewhat con�icting objectives.
�is o�en makes formal theoretical analysis of design
choice di�cult. Nevertheless a formal theory of design
choice as an optimization problems has appeal both in
the sense of showing the formal optimality of standard
designs in speci�c circumstances and in guiding how to
proceed in unusual situations, as for example there are
speci�c technical constraints on the factor combinations
that may be studied in a complex factorial experiment.
A landmark result in such a theory of optimal design is
the General Equivalence�eorem of Kiefer andWolfowitz
().
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Introduction
7Generalized linear models (GLMs) represent an exten-
sion of the class of linear models. �ey are used to �t
models in general situationswhere the response data under
consideration can be discrete or continuous.�us, GLMs
provide a uni�ed approach for the analysis of such data.
Nelder and Wedderburn () are credited for having
introduced these models.

�ree components are needed to de�ne GLMs.�ese
components are:

(a) �e response data are values of a random variable,
denoted by y, whose distribution is of the exponential
type. Its density function (or probability mass function
for a discrete distribution) is of the form

ℓ(y, θ, ϕ) = exp [ θy − b(θ)
a(ϕ)

+ c(y, ϕ)] , ()

where a(.), b(.), and c(.) are known functions, θ is
a so-called canonical parameter, and ϕ is a dispersion
parameter.
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(b) �e mean response, µ, is related to the so-called lin-
ear predictor, η, through a function, denoted by h, such
that µ = h(η), which is assumed to be monotone and
di�erentiable.�e inverse function of h, denoted by g,
is called the link function.�us,

η = g(µ). ()

�e value of the mean response at a point, x =
(x, x, . . . , xk)′, in a k-dimensional Euclidean space is
denoted by µ(x), and the corresponding value of η is
denoted by η(x). Here, x, x, . . . , xk represent control
variables that a�ect the response variable y.

(c) �e linear predictor is represented in terms of a linear
model of the form

η(x) = f ′(x)β, x ∈R, ()

where R is a certain region of interest in the k-
dimensional space, f (x) is a known function of x, and
β is a vector of p unknown parameters. It follows that
the mean response value at x is given by

µ(x) = h[η(x)]
= h[ f ′(x)β]. ()

Given a set of n independent observations on the response
y, namely y, y, . . . , yn, at n distinct locations in R, an
estimate of β in () is obtained by using themethod ofmax-
imum likelihood.�is method maximizes the likelihood
function given by

L(θ, ϕ, y) =
n

∏
i=

ℓ(yi, θ i, ϕ), ()

with respect to β, where θ i is a canonical parameter cor-
responding to yi (i = , , . . . ,n), θ = (θ, θ, . . . , θn)′,
and y = (y, y, . . . , yn)′.�e dispersion parameter, ϕ, is
considered to have a �xed value that does not change over
the values of yi (i = , , . . . ,n).�e maximum likelihood
estimate (MLE) of β is denoted by β̂. Details about the
computation of β̂ can be found in McCullagh and Nelder
(, Chap. ), McCulloch and Searle (, Chap. ), and
Dobson (, Chap. ).

�e variance–covariance matrix of β̂ is approximately
equal to (see, for example, McCulloch and Searle :)

Var(β̂) ≈ (X′W−X)−, ()

where X is the model matrix for the linear predictor in ()
based on the design matrix used to generate the response
data, y, y, . . . , yn, andW is the diagonal matrix,

W =
n

⊕
i=

{[g′(µi)]a(ϕ)b′′(θ i)}. ()

In formula (), ⊕ is the direct sum notation, g′(µi) is the
derivative of g(µ) with respect to µ evaluated at µi, and
b′′(θ i) is the second derivative of b(θ) with respect to θ

evaluated at θ i (i = , , . . . ,n).
An estimate of the linear predictor, η(x), in () is given

by
η̂(x) = f ′(x)β̂. ()

Using (), the variance of η̂(x) is approximately equal to

Var[η̂(x)] ≈ f ′(x)(X′W−X)−f (x). ()

�e mean response, µ(x), in () can then be estimated by
using the expression,

µ̂(x) = h[ f ′(x)β̂]. ()

�is estimate is called the predicted response at x. From ()
and () it follows that the variance of µ̂(x) is approxi-
mately equal to

Var[µ̂(x)] ≈ {h′[η(x)]}f ′(x)(X′W−X)−f (x), ()

where h′[η(x)] is the derivative of hwith respect to η eval-
uated at x. Formula () results from taking the variance of
the �rst-order Taylor’s series approximation of h[η̂(x)] in
a neighborhood of η(x).�e expression on the right-hand
side of () is called the prediction variance.
It should be noted that µ̂(x) is a biased estimator of

µ(x). A measure of closeness of µ̂(x) to µ(x) is given by
its mean-squared error, namely,

MSE[µ̂(x)] = E[µ̂(x) − µ(x)],

which can be partitioned as

MSE[µ̂(x)] = Var[µ̂(x)] + {E[µ̂(x)] − µ(x)}. ()

�e second expression, E[µ̂(x)]− µ(x), on the right-hand
side of () is called the bias associated with estimating
µ(x), and is denoted by Bias[µ̂(x)]. We thus have

MSE[µ̂(x)] = Var[µ̂(x)] + {Bias[µ̂(x)]}. ()

�is is called the mean-squared error of prediction
(MSEP) evaluated at x. A second-order approximation of
Bias[µ̂(x)] is described in Robinson and Khuri ().

Choice of Design for GLMs
By a choice of design, it is meant the determination of the
settings of the control variables, x, x, . . . , xk, that yield an
estimated (or predicted) response with desirable proper-
ties. Desirability is assessed by having small values for the
prediction variance in (), or small values for the MSEP
in ().�us, we can have designs that minimize the pre-
diction variance, or designs that minimize the MSEP.�e
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former designs utilize criteria similar to those used in lin-
ear models, such as D-optimality and G-optimality, and
are therefore referred to as variance-related criteria. How-
ever, because of the bias in estimating µ(x), it would be
more appropriate to adopt a design criterion based on
minimizing the MSEP in ().

The Design Dependence Problem
One problem that faces the actual construction of a design
for GLMs is the dependence of the design on β, the vector
of unknown parameters in the linear predictor in ().�is
is true since η(x), and hence µ(x), depends on β. Con-
sequently, the elements of the matrix W in (), which is
used in the formulation of both the prediction variance and
theMSEP, also depend on β.�us, to minimize any design
criterion function, some knowledge of β is required.�is
is quite undesirable since the purpose of any design is to
estimate β in order to estimate the mean response µ(x).
Common approaches to solving this design depen-

dence problem include the following:

(a) �e speci�cation of “guessed”, or initial, values of the
unknown parameters involved.�ese values are used
in the determination of the so-called locally-optimal
design. Some references that discuss this approach
include those byMathew and Sinha (),Wu (),
and Sitter and Wu ().

(b) �e sequential approach which starts by using ini-
tial values for the unknown parameters. �e design
derived from these values is then utilized to obtain
estimates of the parameters which are then used as
updated values leading to another design, and so on.
Sequential designs were proposed byWu (), Sitter
and Forbes (), and Sitter and Wu ().

(c) �e Bayesian approach which assumes a prior dis-
tribution on the elements of β. �is distribution is
then incorporated into an appropriate design cri-
terion by integrating it over the prior distribution.
�is approach was discussed by several authors. See,
for example, Chaloner and Verdinelli () and
Atkinson and Haines ().

(d) �e use of the quantile dispersion graphs approach.
�is more recent approach considers theMSEP in ()
as a criterion for comparing designs rather than select-
ing an optimal design. More speci�cally, quantiles of
MSE[µ̂(x)] values in () are obtained on several con-
centric surfaces inside a region of interest,R, which is
a subset of the k-dimensional Euclidean space (recall
that k is the number of control variables in the linear
predictor model in ()). LetRν denote the surface of a

region obtained by reducingR using a shrinkage fac-
tor, ν ( < ν ≤ ). Furthermore for a given design,D, let
QD(p, β, ν) denote the pth quantile of the distribution
of the values of MSE[µ̂(x)] onRν . Several concentric
surfaces can be so obtained by varying the values of ν.
In order to assess the dependence of the design

D on β, a certain parameter space, C, to which β is
assumed to belong, is speci�ed.�en, the minimum
and maximum values of QD(p, β, ν) with respect to β

are computed over the parameter space C.�is results
in the following extrema ofQD(p, β, ν) for each ν and
a given p:

Q
min
D (p, ν) = min

β ∈C
{QD(p, β, ν)}

Q
max
D (p, ν) = max

β ∈C
{QD(p, β, ν)}.

Plotting these values against p produces the so-
called quantile dispersion graphs (QDGs) of the MSEP
over the surface Rν for the design D. By repeating
this process using several values of ν we obtain plots
that depict the prediction capability of the design D
throughout the regionR. Several plots can be so con-
structed for each of several candidate designs for the
model in (). A preferred design is one that has small
values ofQminD andQmaxD over the range of p ( ≤ p ≤ ).
More details concerning this approach with examples
can be found in Khuri and Mukhopadhyay ().
�e approach itself was �rst introduced in Robinson
and Khuri ().

�e general problem of design dependence along with the
aforementioned four approaches were discussed in detail
by Khuri et al. ().
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Detecting Outliers in Time Series
Using Simulation

AbdallaM. El-Habil
Head of the Department of Applied Statistics, Faculty of
Economics and Administrative Sciences
Al-Azhar University, Gaza, Palestine

Introduction
7Outliers have recently been studied more in the statisti-
cal time series literature and this interest is also growing in
econometrics. Usually, time series outliers are informally
de�ned as somehow unexpected or surprising values in
relation to the rest of the series.
Data of potential value in the formulation of public and

private policy frequently occur in the form of time series.
Most time series data are observational in nature. In addi-
tion to possible gross errors, time series data are o�en sub-
ject to the in�uence of some uncontrolled or unexpected
interventions, for example, implementations of a new reg-
ulation, major changes in political or economic policy, or
occurrence of a disaster. Consequently, discordant obser-
vations and various types of structural changes occur fre-
quently in time series data. Whereas the usual time series

model is designed to grasp the homogeneous memory
pattern of a time series, the presence of outliers, depend-
ing on their nature, may have a moderate to substantial
impact on the e�ectiveness of the standard methodology
for time series analysis with respect to model identi�ca-
tion, estimation, and forecasting.�erefore, there is a clear
need to have available methods to detect or accommodate
them.
Simulation data are derived from a sequence of pseu-

dorandom numbers. �ese pseudorandom numbers are
created by a random number generator. �e generator
requires an initial seed value from which to generate its
�rst value.�e random number generator creates both a
random number and a new seed for the next value.

�e SIMULATE paragraph in the Scienti�c Comput-
ing Associate Corporation (SCA) programmay be used to
estimate an ARIMA model or a transfer function model.
�e use of the SIMULATE paragraph for the estimation
of a transfer function model is identical as its use for the
estimation of an ARIMAmodel, except for the presence of
input series.�e SIMULATEparagraphwill �rst generate a
noise sequence using a pseudorandom number generator.
�is sequence is then used according to a transfer function
model speci�ed lately using the TSMODEL paragraph.

Detecting Outliers of a Simulated AR()
Time Series
To facilitate our understanding of detecting outliers and
their e�ects, for example, on the values of a simulated
AR() process, we will assume that the constant of the pro-
posed model is equal to zero. For this purpose,  obser-
vations are simulated from the model zt = [/(−.B)]at
with σa = ..�e data are shown in Fig. .
To illustrate, for example, the e�ect of an AO on the

base AR() model, we include an AO at time t =  with
ωA =  (the value ωA represents the amount of devia-
tion from the “true” value of ZT).�e new shape of data is
shown in Fig. .
By using the SCA program, only AO has been detected

at t = , and we obtain the estimation results for anAR()
�t of the simulated AR() process as the following:

Case φ estimate
S. E. of
φ estimate σa estimate

Without outlier . . .

AO at time t =  . . .

From the table, with the additive outlier at time t =
, we can see that the parameter estimate is decreased
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by approximately ., the estimated residual variance is
in�ated, and in consequence the prediction intervals can
be too wide. In turn, it will a�ect the model identi�cation,
estimation, and forecasting.

Simulation of a Single-Equation Transfer
Function Model (with Two-Input
Variables)
To detect outliers and study their e�ects on the values of
a simulated single-equation transfer function model (with
two-input variables),  observations are simulated from
the model

zdata = . + (.)xdata + (.)ydata + at,

where the model of xdata is

( − .B)xdata = . + at,

and the model of ydata is

( − .B)ydata = . + ( − .B)at, with σa = ..

We select only the last  values of xdata, ydata, and
zdata to ensure that any potential irregularities in the
beginning of the recursive computation of values are
eliminated.
By using the SCA program, we estimated the model

zdata = . + (ω)xdata + (ω)ydata + at,

AO has been detected at t = , ,  and TC at t = .
We obtain estimation results for a single-equation trans-
fer function model (with two-input variables) �t of the
simulated single-equation transfer function model (with
two-input variables) process as the following:

Case
Estimate
of ω

S. E. of
estimate
of ω

Estimate
of ω

S. E. of
estimate
of ω

Estimate
of σa

Without . . . . .
outlier

AO at . . . . .

t = ,
, 

and TC
at t = 

As we see from the table, the parameter estimates
are moderately changed, and the estimated residual vari-
ance is in�ated.�us, the presence of those extraordinary
events could easily mislead the conventional time series
analysis.

Simulation of Simultaneous Transfer
Function (STF) Model
In order to detect outliers and study their e�ects on the val-
ues of a simulated simultaneous transfer function model,
 observations are simulated from the models

Zdata = . + ( − .B)at,
Zdata = . + ( − .B)at,

with σa = ..
By using the SCA program, we estimated the twomod-

els simultaneously using the STFMODEL JOINTMDL
paragraph. TC has been detected at t =  and IO at
t = .We get estimation results for simultaneous transfer
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function model �t of the simulated simultaneous transfer
function process as the following:
Estimation results for the simultaneous transfer func-

tion �t of the simulated transfer function process (�rst
model)

Case
Estimate
of zdata

S. E. of
estimate
of zdata

Estimate
of zdata

S. E. of
estimate
of zdata

Without outlier . . . .

TC at t =  . . . .

Estimation results for the simultaneous transfer func-
tion �t of the simulated transfer function process (second
model)

Case
Estimate
of zdata

S. E. of
estimate
of zdata

Estimate
of zdata

S. E. of
estimate
of zdata

Without outlier . . . .

TC at t =  −. . . .

As we see from the above two tables, the parameters
estimates are changed, and the estimated residual vari-
ance is in�ated. So, those outliers could easily mislead the
conventional time series analysis.

Summary
In this entry, simulations for detecting outliers and study-
ing their e�ects on the values of AR() time series,
transfer function model with one-input variable, trans-
fer function model with two-input variables processes,
and simultaneous transfer function (STF) are conducted
using the STFMODEL JOINTMDL paragraph in the Sci-
enti�c Computing Associate Corporation (SCA) program.
�e conclusion, which we come up with, is that the
presence of outliers, depending on their nature, may
have a moderate to substantial impact on the e�ective-
ness of the standard methodology for time series analy-
sis with respect to model identi�cation, estimation, and
forecasting.
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Turns in Business Cycles
A turn in a business cycle is a change from a phase of
expansion to one of recession (or vice versa). Both gov-
ernment and industry need to have systems for predicting
the future state of the economy, for example in order to
timely predict the shi� fromaperiod of expansion to one of
recession. Warnings of a turn can be given by using infor-
mation from one or several time series that are leading in
relation to the actual business cycle. A system for detecting
the turning points of a leading indicator can give us early
indications on the future behavior of the business cycle.
As pointed out for example by Diebold and Rudebusch

(), Kim and Nelson () and Birchenhall et al.
(), two distinct but related approaches to the charac-
terisation anddating of the business cycle can be discerned.
One approach emphasizes the common movements of
several variables. �is approach is pursued for example
by Stock and Watson (). �e other approach, the
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regime shi�, is the one pursued in the works by Ne�ci
(), Diebold and Rudebusch (), Hamilton (),
Jun and Joo (), Lahiri andWang (), Layton (),
Birchenhall et al. (), Koskinen and Öller () and
Andersson et al. (, ).
An important issue is which characteristic of the lead-

ing index best predicts a turn in the business cycle. �e
question remains whether the most useful predictor is the
level, as in Birchenhall et al. (), the transition and level,
as in Hamilton () and Koskinen and Öller (), or
the transition and change inmonotonicity, as inAndersson
et al. (, ).

The Detection Problem
�ere is a need for methods for early warning, i.e., meth-
ods for the timely detection of a regime shi� in a leading
index. For reviews and general discussions on the impor-
tance of timeliness in the detection of turning points, see
for example Ne�ci (), Zarnowitz and Moore (),
Hackl and Westlund (), Zellner et al. (), Li and
Dorfman () and Layton and Katsuura ().

�e inference situation can be described as one of
7surveillance, since a time series is continuously observed
with the goal of detecting the turning point in the under-
lying process as soon as possible. Repeated decisions are
made, the sample size is increasing and no null hypothesis
is ever accepted.�us, the inference situation is di�erent
from that where we have a �xed number of observations.

�e aim of statistical surveillance is the timely detec-
tion of important changes in the process that generates
the data. A process X (a leading economic indicator) is
under surveillance, where X is o�en measured monthly or
quarterly. Based on the available observations, we decide
whether the observations made so far indicate a turn.

�us at every decision time s, we use the alarm system
to decide whether there has been a turn or not.�is can be
formulated as discriminating between two events at each
decision time:D = “the turn has not occurred yet” and C =
“the turn has occurred”.

Models
An important question is which assumptions can be made
about the process.
Economic time series o�en exhibit seasonal variation.

Unfortunately, most data-driven �lters can seriously alter
the turning point times.
Autocorrelation can be a problem when the sampling

intervals are short (Luceno and Box ()). When this is
expected to be a problem, methods that adjust for autocor-
relation should be used. Ivanova et al. () argue that the

e�ect of the autoregressive parameters will largely be cap-
tured by the probabilities of remaining in the current state.
Many macroeconomic variables can be characterized

as cyclical movements around a trend. In order to distin-
guish the movements and make the time series stationary
in relation to the cycle it is sometimes judged necessary
to adjust for the trend. Adjusting for the trend by data
transformation may result in a distortion of the character-
istics of the original series. Canova () points out that
the trend may interact with the cyclical component, and
therefore it may be di�cult to isolate.
In the common movement approach, a business cycle

is characterized as the cyclical movement of several eco-
nomic activities.�is is one example of how multivariate
data are used.�e common movement approach demon-
strates that important information is contained in the rela-
tion between the turns of various indices.�is information
can be utilized either by transforming the problem to a
univariate one (by using a composite index of leading indi-
cators) or by applying a special method for surveillance
of multivariate data. See for example Ryan (), Frisén
() and Frisén et al. ().
When estimating the parameters of the monitoring

system, historical data are o�en used. �e user of a sys-
tem for on-line detection is faced with the paradox that
the parameters in the surveillance systemmay be estimated
using previous data, which means that it is assumed that
previous patterns will repeat themselves. However, the aim
of the surveillancemethod is to detect changes, and by esti-
mating parameters from previous data, the ability to detect
changes in the current cycle might be diminished. Sarlan
() examines the change in intensity and duration of
US business cycles and concludes that themodern business
cycle is di�erent from the historical one.

�e approach described by Andersson et al. (,
) of a non-parametric method may be preferred in
order to avoid the risk of misleading results. �e non-
parametric method does not assume that all phases are of
the same type or have the same level and parametric shape.
In practice, this varies a lot. At time τ there is a turn in
the expected value, µ. Di�erent assumptions can be made
about µ, conditional on D (expansion) and C (recession),
and at a turn. Instead of assuming that the parametric
shape is known, we can use monotonicity restrictions to
de�ne µ underC andD.�en the aim (at the detection of a
peak) is to discriminate between the following two events:
D(s) : µ() ≤ . . . ≤ µ(s) and C(s): “µ() ≤ . . . ≤ µ(τ − )
and µ(τ − ) ≥ µ(τ) ≥ . . . ≥ µ(s)”. �e monotonicity
restrictions for a trough are the opposite. In such situations
the exact parametric shape of µ is unknown.We only know
that µ is monotonic within each phase.
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Methods
In recent years, methods based on likelihood have been
in focus. �e performance of three methods for turn-
ing point detection in leading indicators is compared in
detail by Andersson et al. (, ). All three meth-
ods are based on likelihood, but there are di�erences in
model speci�cations, the amount of information used and
parameter estimation.�eHiddenMarkovModel (HMM)
is suggested for business cycle modeling for example by
Hamilton (), Lahiri and Moore (), Lahiri and
Wang (), Layton (), Gregoir and Lenglart ()
and Koskinen and Öller (). �e HMlin method is
based on regime switching and has amodel which is piece-
wise linear. In many ways it is similar to, for example, the
method presented byKoskinen andÖller ().�e SRlin
method is based on the Shiryaev-Roberts (SR) technique
under the assumption of a piecewise linear model. �e
SRnp method is a generalized version of the SR method.
It is a non-parametric version of the SRlin method with no
parametric assumption on the shape of the curve. It uses
only the monotonicity change and not the level.�e safe
way of the SRnp method was recommended since there is
no major loss of e�ciency.
Andersson et al. (, ) illustrated the methods

by monitoring a period of Swedish industrial production.
Evaluation measures that re�ect timeliness were used.
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One of the most basic and useful of the time series models
is the order  ( lag) autoregressive model, denoted AR()
and given byYt−µ = ρ(Yt−−µ)+et whereYt is the obser-
vation at time t, µ is the long run mean of the time series
and et is an independent sequence of random variables.We
use this venerablemodel to illustrate theDickey–Fuller test
thenmention that the results extend to a broader collection
of models.
When written as Yt = µ( − ρ) + ρYt− + et , or more

convincingly as Yt = λ + ρYt− + et , with e indepen-
dent and identically distributed as N(, σ ), the AR()
model looks like a regression with errors satisfying the
usual assumptions. Indeed the least squares estimators of
the coe�cients are asymptotically unbiased and normally
distributed under one key condition, namely that the true
ρ satis�es ∣ρ∣ < . It appears that this assumption is quite
o�en violated. Many prominent time series appear to have
ρ = , in which case Yt − µ = ρ(Yt− − µ) + et becomes
Yt = Yt− + et or Yt − Yt− = et .�at is to say there are
many series whose �rst di�erencesYt−Yt− seem to form a
sequence of independent shocks, as the e’s are o�en called.
For estimation of the parameters, only mild assumptions
on e are required. Normality is not necessary as long as the
sample size is reasonable and ∣ρ∣ < . Two things are worth
noting.�e �rst is that the long term mean µ has dropped
from this equation, that is, there is no tendency to move
toward a long termmean, no mean reversion. A series that
is high at time t is just as likely tomove up as tomove down.
�ere is nothing to be gained by assessing the distance
from the historic mean.�e second point is a recommen-
dation to write the model as Yt − µ = ρ(Yt− − µ) + et .
�e representation Yt = λ + ρYt− + et masks the rela-
tionship λ = µ( − ρ).�e uninformed analyst may not
realize that the intercept disappears when ρ = .�e case
when ∣ρ∣ <  falls into the category of stationary autoregres-
sive models whereas the model with ρ =  is an example
of a nonstationary model. For reasons discussed later, the
ρ =  case is also called a unit root model and sometimes
an integrated model.

�ere are many series of economic interest for which
a test of the hypothesis H : ρ =  is desired. �e interest
in such tests can be explained with a hypothetical sce-
nario. Suppose an autoregressive order  model Yt = .+
.(Yt−−.)+et describes the price of a stock over some

time index t. Now if the current price is Y = . then the
expected value of the next observation is .+ .(.−
.) +  = ., closer than the current . to the mean
. Likewise we’d predict a rise to ., were we currently
at ., that is, the strategy of selling high and buying low
would make money in the long run.�e ability to forecast
the direction of the stock market would cast doubt on the
assumption that it was a quickly responding market with
fully informed participants so we think that . is an esti-
mate of ρ =  and expect that the null hypothesis will not
be rejected. In contrast, we might expect the ratio of short
term to long term bond yields or interest rates to be sta-
ble, that is, we expect some long term equilibrium ratio
and we expect movement of the ratio toward that num-
ber in the long run. Here we expect to reject H : ρ = 
in favor of H : ρ < . On a logarithmic scale, we want to
testYt = log(short term rate)−log(long term rate) for sta-
tionarity.When two individual series are nonstationary but
their di�erence is stationary, the series are said to be “coin-
tegrated.” Some of the most interesting hypothesis tests in
economics concern constructed variables, as does this test
for cointegration.
Having established an interest in testing the hypoth-

esis H : ρ = , we return to the statement that the least
squares estimator is not normal under this hypothesis.
How can this be when the errors satisfy all the usual regres-
sion assumptions? �e answer lies in the assumption on
the independent (X) variables. In usual regression theory,
these X variables are assumed �xed and measured with-
out error. Extensions to random X cases typically involve
a conditioning argument, that is, we consider what would
happen if we only looked at repeated samples that have the
same X values that we observed.�ere is no way to make
that argument here, where the X variables are just the Y
(dependent) variables at a di�erent time.
When ρ =  and µ is known to be , the theory of weak

convergence as in Billingsley () implies that the least
squares estimator ρ̂ satis�es a limit in terms of a standard
Wiener processW(t) :

n(ρ̂ − ) =

n

∑
t=
Yt−et

n

∑
t=
Yt−

L
−Ð→ 


W() − 


∫

W(t)dt

.

�is is known as the “normalized bias” statistic.�is is
an appealingmathematical representation, but is neverthe-
less a random quantity. Knowing this expression does not
lead directly to a distribution and resulting table of critical
values for testing. With simulation, empirical percentiles
for various sample sizes n can be computed, however it
is not clear how large an n will get the simulations close
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enough to the limit so that no further n values need be
considered. In addition to running rather large simulations
as just mentioned, Dickey and Fuller () calculated the
eigenvalues of the limits of the numerator and denomina-
tor quadratic forms in the above normalized bias and from
those directly simulated the limit distribution.�ey were
then able to see how large an n was required to get close
to that limit. �is resulted in critical values for the nor-
malized bias n(ρ̂ − ) for �nite n and the limit. Statistical
programs that do least squares regression also produce t
tests. Dickey and Fuller looked at the t statistic associated
with the  mean regression. Its limit is the same as that

of (σ 
n

∑
t=
Yt−)

−/ n

∑
t=
Yt−et .�ey gave percentiles for that

statistic as well and called it τ to indicate that it did not
behave like the usual t, even in the limit.
At this point two distributions, one for the normalized

bias and one for τ have been discussed, but the under-
lying assumption that µ is  makes this result of little
practical interest. Suppose you have a stationary (∣ρ∣ <
) AR() time series whose values range between 
and . With no intercept in the model, the estimator
n

∑
t=
Yt−Yt

n

∑
t=
Yt−

≈  − .
n

∑
t=

(Yt−Yt−)

n

∑
t=
Yt−

, where the sum of squared

di�erences can be no greater than (n − )() and the
denominator is no less than (n − )() so the esti-
mate of ρ is between . and . Simulations (Dickey )
verify that, as the algebra suggests, stationary series with
positive means give tests that rarely reject the (false) null
hypothesis when no intercept is included in the regres-
sion. It thus becomes of interest to study themean adjusted

estimator n(ρ̂µ − ) =
n

∑
t=

(Yt−−Y)et
n

∑
t=

(Yt−−Y)
, where Y =

n

∑
t=

Yt
n
,

and its associated studentized statistic τµ . An asymptot-
ically equivalent estimator and τµ statistic are obtained
by regressing Yt on an intercept and Yt−. Dickey and
Fuller show that the addition of an intercept changes
even the asymptotic distribution rather dramatically.�is
can be demonstrated either through their quadratic form
approach or the Wiener Process limit representation.
Applying the same logic to a series that appears to be

moving upward or downward at a rather steady long run
rate, a fair test for “trend stationarity” as the alternative
hypothesis is called, one that gives a chance to both the null
and alternative hypothesis, must use a model that can cap-
ture the trend under both hypotheses. A logical candidate
is a model with linear trend and AR() error.�e model
can be expressed in two ways:

Yt − α − βt = ρ(Yt− − α − β(t − )) + et

or
Yt = α + βt + Zt , Zt = ρZt− + et .

�e �rst of these models most easily demonstrates that
under our null hypothesis ρ = , we have

Yt = β + Yt− + et

a randomwalk with dri� β.�e former slope is now called
a dri� and algebraically appears as an intercept term but in
reality, it represents the long termmonotone trend regard-
less of the ρ value. It is, a�er all, the mean change in Yt per
unit change in t. Its inclusion accomplishes our purpose of
allowing both the null and alternative model to capture the
long term trend, thus separating the alternative hypothesis
case of stationary errors around a linear trend from the null
hypothesis case of random walk with dri�.�e alternative
hypothesis de�nes the concept of trend stationarity. �e
model can be �t by regressingYt on an intercept, t, andYt−
or, in an asymptotically equivalent way, by regressingYt on
 and t, obtaining residuals rt , and then regressing rt on
rt− with no intercept.�is second approach is motivated
by the second form of the model above. As with the mean
adjusted case, this results in further changes in the distri-
butions of the estimate and its studentized statistic ττ , even
asymptotically. Since this last model subsumes the oth-
ers, why not always use an intercept and time trend?�e
answer lies in a substantial loss of powerwhen unnecessary
parameters are added to the model.
We now summarize a few numerical results from the

literature. Tables of critical values for the normalized bias
and studentized statistics are developed in Dickey and
Fuller (, ) and reported in detail in Fuller ().
�e % and %critical values fromFuller’s text are reported
below for the smallest tabulated sample size n =  and for
the limit distribution.

�e studentized statistics (top  rows of Table ) have
the more stable percentiles over di�erent sample sizes,
especially at the % level and are more o�en used in prac-
tice. Dickey (, Table .) shows what happens when
there are nonzero intercept or trend parameters in the gen-
erated data that are not in the model. For even modest
values of these omitted parameters, there are almost no
rejections of the (false) null hypothesis when ∣ρ∣ < . In
Table . of that paper we �nd empirical powers for 
replicates of these tests for data generated by Yt = ρYt− +
et , t = , , . . . , . Substantial loss of power results when
unneeded intercept or trend parameters are added to the
model as in columns ,,, and  of Table , which displays
a few entries from the power study.
Clearly inclusion of either too many or too few deter-

ministic terms in the model can cause power loss. Failing
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Dickey-Fuller Tests. Table  Left tailed unit root test
percentiles

%, %, %, %,

Model n =  limit n =  limit

No intercept τ −. −. −. −.

Intercept τµ −. −. −. −.

Linear trend ττ −. −. −. −.

No intercept n(ρ̂ − ) −. −. −. −.

Intercept n(ρ̂µ − ) −. −. −. −.

Linear trend n(ρ̂τ − ) −. −. −. .

Dickey-Fuller Tests. Table  Some empirical powers

True ρ τ τµ ττ n(ρ̂ − ) n(ρ̂µ − ) n(ρ̂τ − )

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

to reject unit roots when a model without trend is �t to
trending datamay do less damage than rejecting. Forecast-
ing future values to be the same as the present value may
be less damaging than giving mean reverting forecasts that
go in the opposite direction of the trend.

�e autoregressive order  model is common but is not
rich enough to �t all time series. Consider an autoregres-
sive model of order ,

Yt − µ = .(Yt− − µ)− .(Yt− − µ)+ .(Yt− − µ)+ et

or, written in terms of the backshi� operator B(Yt) = Yt−,

( − .B + .B − .B)(Yt − µ) = et

Because  − . + . − . =  and µ is constant over
time, µ drops out of the equation.�e factored form ( +
.B)( − .B)( − B)(Yt − µ) = et , shows that the �rst
di�erences, ( − B)(Yt − µ) = Yt − Yt−, form a stationary
process ( + .B)( − .B)(Yt − Yt−) = et . �e char-
acteristic polynomial is the backshi� polynomial with B
considered an algebraic variable. An autoregressive series
is stationary if the roots of its characteristic polynomial all
exceed  in magnitude.�e order  autoregressive example

here has a root , a “unit root.” It is therefore nonstationary
but its di�erences form a stationary (roots /. =  and
−/. = −.) autoregressive order  series.
Dickey and Fuller proved that if the �rst di�erence

Yt − Yt− of a unit root autoregressive process is regressed
on the lagged level Yt− of the process (and possibly an
intercept and trend) and enough lagged di�erences to pro-
duce the appropriate lag structure, the studentized statistic
on the lag level term will have the same limit distribution
as in the autoregressive order  case.�e tables discussed
above can thus be used. In contrast, the distribution of the
normalized bias is altered by the presence of the lagged dif-
ferences which is one reason the studentized statistics are
preferred despite the power advantage of the normalized
bias test in the simplest AR() cases.

�e characteristic polynomial here has the form
(−aB)(−aB)(−aB)with roots /ai, i = , , . If (and
only if) B =  is a root, we will have (−a)(−a)(−a) =
.�ese expressions are algebraically equivalent:

(I) ( − aB)( − aB)( − aB)(Yt − µ) = et
(II) Yt − µ = (a + a + a)(Yt− − µ) − (aa + aa +

aa)(Yt− − µ) + aaa(Yt− − µ) + et
(III) Yt−Yt− = −(−(a+a+a)+(aa+aa+aa)−

aaa)(Yt− − µ) + (aa + aa + aa − aaa)
(Yt− − Yt−) + aaa(Yt− − Yt−) + et

Expression (III) is the motivation for the regression
approach. �e coe�cient on (Yt− − µ) is −( − a)
( − a)( − a), the negative of the characteristic polyno-
mial evaluated at B =  so a unit root (any ai = ) makes
this coe�cient  and removes µ from the model.�ere is,
then, nomean reversion.�e lagged di�erences are known
as augmenting terms and the resulting tests are known as
ADF or augmented Dickey Fuller tests. Focusing on one of
the three factors in (−a)(−a)(−a), clearly it is mul-
tiplied by the other two. Under the null hypothesis that one
ai value is , the coe�cient on Yt− in (III) is an estimate of
 but is scaled by the other two factors.�is a�ects the dis-
tribution of the coe�cient, but not that of its τ statistic. As
in any regression, division of the estimate by its standard
error makes τ a self normalizing statistic. Some estimate
of those other two factors is needed to scale the normal-
ized bias so that it is asymptotically equivalent to theAR()
case.
Other results worth mentioning include the work of

S. E. Said (Said and Dickey ). Said showed that even
if a time series contained an invertible moving average
part, one could use an augmented autoregressive model.
Given a number of augmenting lagged di�erences that
increases with n at the proper rate, the studentized statis-
tic has the same limit distribution as in the autoregressive
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order  model. One can simply �t a model with augment-
ing lagged di�erences to test for unit roots. Park and Fuller
() use a weighted regression resulting in consider-
able power improvement. Elliott et al. () incorporate
a generalized least squares trend and intercept estimator
that results in a test with similar power increase. Pantula
et al. () compare a test of Gonzalez-Farias, based on
maximization of the exact stationary likelihood, and these
other two. �ey all have competitive power. Phillips and
his students have made many contributions in the area.
Among them, Phillips and Perron () suggest a di�er-
ent adjustment for the higher order models and show that
the tables described herein can be used for the test under
weak assumptions on the errors.
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Discriminant Analysis: An
Overview
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Discriminant analysis is amultivariate technique that helps
the user explain group membership as a function of multi-
ple independent variables. In particular, discriminant anal-
ysis is appropriate when the user is faced with a situation
involving a categorical (nominal or ordinal) dependent
variable and independent variables that are primarily con-
tinuous (interval or ratio) although categorical indepen-
dent variables can be included under some conditions.
�is would typically involve dummy coding of the cate-
gorical variables. Inmany cases, a dichotomous dependent
variable is employed although it can be multichotomous.

�e variate takes the familiar form:

V = wx + wx + . . . + wixi + ei

where x represents the independent variables,w represents
an empirically derived parameter estimate that weights
the extent to which the independent variable determines
group membership, and V represents the resulting vari-
ate valuewhich determines groupmembership.�e variate
takes on the form of a Z score.�is metric value is ulti-
mately the key indicator of which group an observation
should belong to based on the corresponding set of inde-
pendent variable values. Groups are formed based on these
Z-values by determining a cutting score which is used to
separate observations into two groups. Discriminant anal-
ysis applies the fundamental logic that observations that
produce similar Z-values (based on values for the set of
independent variables) should be grouped together and
observations with dissimilar Z-values are di�erent and
should not be grouped together.�us, for a dichotomous
dependent variable, the cutting score can be thought of as:

ZCS =
NAZB +NBZA
NA +NB
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Where,Zcs is the cutting score andN represents the sample
size in groups A and B, respectively. ZA and ZB represent
the centroids of groups A and B formed by splitting all
observations into groups using the cutting score.
Considering the dichotomous case, the observed val-

ues for each independent variable can be used to predict
whether each observed value for a dependent variable is
a “” or “.”�e values for the independent variables are
multiplied by derived parameter estimates just as in mul-
tiple regression. In other words, the analysis determines
which group an observation should belong to based upon
the calculated value? A classi�cation matrix is created
which shows how accurately the model can actually place
these observations into categories.�ismatrix is formed by
taking a conditional frequency of predicted group mem-
bership against actual observed group membership. �e
contingency table takes a form as follows:

Actual
Group Predicted GroupMembership

Membership Group  Group 

Group  Correctly classified Incorrectly classified

Group  Incorrectly classified Correctly classified

�e percent of observations correctly classi�ed
becomes one measure of a discriminant function’s e�ec-
tiveness. Consider that if group  had two times as many
respondents as group , correct classi�cation could be 
percent simply by placing all observations into group .
�erefore, the discriminant analysis should be able to pro-
duce better than  percent correct classi�cations if it is
to be useful. In fact, a t-test is available to determine the
signi�cance level for classi�cation accuracy:

t = p − g
√
g(. − g)
N

Where, p = percent correctly classi�ed, N = sample size,
and g represents the proportion of observations actually
observed in the largest group (. in the example above
and . if group sizes are equal, for instance).

�e pattern of discriminant weights or discriminant
loadings determines which variables most predict or
explain group membership (i.e., via the Z-values). Dis-
criminant loadings are sometimes called structure corre-
lations and they are directly analogous to factor loadings
in the multivariate technique known as factor analysis
(see7FactorAnalysis and LatentVariableModeling).�ey
represent the correlation between an observation and the

discriminant function (i.e., variate).�us, the relativemag-
nitude of a loading shows how in�uential a variable is
to the grouping variable. If causal terms are appropriate,
it would show relatively speaking, how much a variable
caused observations to be in one group or another. �e
number of discriminant factors that can be recovered is
equal to one less than the number of groups so that for
a dichotomous dependent variable, only one discriminant
function, or factor, is possible. In the three group case two
factors are possible.

�us, two key results are () how accurately a discrim-
inant function can classify observations and () which
variables are most responsible for the classifying. As the
cross-classi�cation suggests that the model predicts mem-
bership at better than a chance rate, the discriminant
function has validity. As loadings are greater in magni-
tude, they are predictive of group membership. In a very
real way, the mathematics of discriminant analysis mirrors
that of MANOVA, another multivariate technique. Both
MANOVA and discriminant analysis will each produce a
Wilkes Λ that indicates whether or not the observed group
membership accounts for di�erences in the means of the
independent variables. Discriminant validity is o�en used
in combination with other techniques like cluster analy-
sis (see 7Cluster Analysis: An Introduction) and also is
conceptually similar to techniques like7logistic regression
that also predict categorical dependent variables.
Here, a simple illustration of discriminant analysis is

described.�e observations represent records of academic
journal submissions forming a sample of the larger popula-
tion of submissions.�e dependent variable is whether or
not the submissionwas rejected.�us, there are two groups
of observations. One hundred and eighteen papers were
rejected and were not rejected. Groupmembership con-
stitutes the dependent variable andwas coded  = Rejected
and  = Not Rejected.�e independent variables represent
the paper’s review scores based on:

(a) topical relevance,
(b) theoretical development,
(c) research approach,
(d) analytical competence,
(e) writing quality,
(f) contribution potential.

Each independent variable was scored on a  point scale
with higher scores being better. Here is a brief overview
of the results. �e Wilkes’ Λ is . which suggests the
means for the independent variables di�er signi�cantly
based on group membership (p < .). �e resulting
cross-classi�cation matrix is shown below:
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Predicted GroupMembership

Actual GroupMembership Rejected Not Rejected

Rejected  

Not Rejected  

 of  observations, or . percent, are correctly
classi�ed.�is can be compared to the  percent of obser-
vations that would be correctly classi�ed if all  obser-
vations were predicted to be rejected. �e discriminant
analysis improves predictability signi�cantly over chance
(p < .). Additionally, the discriminant loadings are as
follows:

Variable Function 

Theoretical development .

Research methods .

Writing quality .

Analytical competence .

Contribution potential .

Topical relevance .

�us, theoretical development is the most in�uen-
tial independent variable helping explain why papers get
rejected from this particular journal. In contrast, topical
relevance does very little to distinguish papers that are
rejected from others. Perhaps the reason for this is that
most submissions receive similar high scores for relevance.
Practically, the results suggest that stronger theory is a
route to avoiding rejection.
As you can see, discriminant analysis can be a very

useful tool for explaining why observations end up in
one group or another (Hair et al. ). Some applica-
tions of discriminant analysis include a study predict-
ing cohort group membership as the dependent variable
with personal value scores as a independent variables
(Noble and Schewe ), a study trying to explain dif-
ferences between small �rms and �rms that grow into
large �rms (Culpan ), and a study explaining groups
of consumers based on how they respond to poor per-
formance in a retail setting.�is idea involves explaining
why someone might be an irate consumer, an active con-
sumer or a passive consumer, for instance, using a vari-
ety of demographic, lifestyle and situational independent
variables (Singh ).
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Discriminant Analysis: Issues and
Problems
Carl J. Huberty
Professor Emeritus
University of Georgia, Athens, GA, USA

Introduction
It was in the mid s when Sir Ronald A. Fisher (–
) formally introduced the notion of “discriminant
analysis” (DA) in writing. His introduction involved pre-
diction of group membership in a two-group context –
a predictive discriminant analysis (PDA). �e notion of
“discriminant analysis” became of interest to researchers
in various areas of study in the s and s (e.g.,
Cooley and Lohnes ).�at is when the variant which
may be termed “descriptive discriminant analysis” (DDA)
“caught on.”

PDA Versus DDA
�e mixing of PDA and DDA is fairly common in many
books and journal articles. �e distinction of PDA from
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Discriminant Analysis: Issues and Problems. Table  PDA versus DDA

PDA DDA

Research context Prediction of group membership Description of group separation

Variable roles

Predictor(s) Response variables Grouping variable(s)

Criterion(ia) Grouping variable Response variables

Response variable set Hodgepodge System

Response variable composite LCF/QCF LDF

Number of composites k min(p, k − )

Preliminary analysis concerns

Equality of covariance matrices Yes Yes

MANOVA No Yes

Analysis aspects of typical concern

Variable construct(s) No Yes(!)

Response variable deletion Yes (!) Maybe

Response variable ordering Yes Yes

Criterion for variable deletion/ordering Classification accuracy Group separation

Research purpose Practical/theoretical Theoretical

DDA is, to the current writer, fairly important for descrip-
tion, interpretation, and reporting purposes. A PDA is
used to determine a “rule” for predicting membership in
one of k groups of analysis units based on measures on p
predictor variables.�e rule, then, consists of k compos-
ites of the p predictors.�ese composites may be of linear
form (if the k p × p covariance matrices are judged to be
approximately equal) or of quadratic form (if the k covari-
ance matrices are clearly unequal). For the former, one has
k linear classi�cation functions (LCFs). For the latter, one
has k quadratic classi�cation functions (QCFs). For details,
see Huberty and Olejnik (, Chap. ).
A DDA is considered in the context of comparing

k group mean vectors of the p outcome variables. A
DDA would be applicable when a 7multivariate anal-
ysis of variance (MANOVA) is conducted and the k
mean vectors of the p outcome variables are judged to
be unequal. [In a MANOVA context, it is assumed that
the k covariance matrices are “in the same ballpark.” See
Huberty and Olejnik (, Chap. ).] One obtains a set
of min(p, k − ) linear discriminant functions (LDFs).
�ese linear composites comprise the essence of a DDA.
[Such composites are analogous to “factors” in a factor
analysis.]
An issue/problem in DA is the lack of distinction

between PDA and DDA. �is lack results in the misuse

of terms, and somemisinterpretations of computer output.
[�e computer output o�en leads to misuse of terms.] See
Table  for a summary of PDA versus DDA. In sum, it is
classi�cation (PDA) versus separation (DDA).

Terms
It should be clear from the stated purpose of an empir-
ical study involving k ≥  groups of analysis units and
p ≥  attributes/variables pertaining to the units, whether
one is interested in group membership prediction or in
group comparison description. For the former analysis
(PDA), one would be interested in prediction, and, there-
fore, related termuse should be utilized. Similarly for appli-
cations of DDA. Issues in term use in PDA and in DDA are
reviewed by Huberty and Olejnik (, Chap. ).
More speci�cally, proper use of terms in reporting the

use, and results, of a PDA and DDA is given by Huberty
and Olejnik (, Chaps.  and ). Also, reliance on
terms found in computer output is not strongly recom-
mended.

More Issues and Problems
Five issues in PDA are discussed by Huberty and Olejnik
(, Chap. ): () linear versus quadratic classi�cation
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rules; () nonnormal classi�cation rules; () prior prob-
abilities; () misclassi�cation costs; and () hit-rate esti-
mation. Also discussed in that chapter are three issues
in DDA: () stepwise analyses (yuk!); () standardized
LDF weights versus structure r’s; and () data-based struc-
ture. All of these issues involve the use of researcher
judgment – of course, consultationwith respected “experts”
would help in making some judgment calls.

�ere are, also, some additional problems in the use
of both PDA and DDA – see Huberty and Olejnik (,
Chap. ).�ree of these problems involve missing data,
outliers, and misclassi�cation costs. A detailed discussion
of these problemswill not be presented herein.With regard
to the �rst two problems, a recommendation is to “look at
your data” (via graphs).

About the Author
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Introduction
A dispersion model, denoted Y ∼ DM(µ, σ ), is a two-
parameter family of distributions with probability density
functions on R of the form

f (y; µ, σ ) = a(y; σ ) exp{− 
σ 
d(y; µ)}. ()

Here µ and σ  are real parameters with domain (µ, σ ) ∈
Ω × R+ (Ω being an interval), called the position and dis-
persion parameters, respectively. Also a and d are suitable
functions such that () is a probability density function for
all parameter values. In particular, d is assumed to be a unit
deviance, satisfying d(µ; µ) =  for µ ∈ Ω and d(y; µ) > 
for y ≠ µ. Dispersion models were introduced by Sweeting
() and Jørgensen (; b) who extended the anal-
ysis of deviance for7generalized linearmodels in the sense
of Nelder andWedderburn () to non-linear regression
models with error distribution DM(µ, σ ).
In many cases, the unit deviance d is regular, mean-

ing that it is twice continuously di�erentiable and
∂d/∂µ(µ; µ) >  for µ ∈ Ω. We then de�ne the unit
variance function for µ ∈ Ω by

V(µ) = 
∂d
∂µ

(µ; µ)
. ()

For example, the normal distribution N(µ, σ ) corre-
sponds to the unit deviance d(y; µ) = (y − µ) on R,
with unit variance function V(µ) ≡  and a(y; σ ) =
(πσ )−/ . Note that for  < ρ <  the unit deviance
d(y; µ) = ∣y − µ∣ρ , with a(y; σ ) constant (not depending
on y) provides an example of a dispersion model where d
is not regular.
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�e renormalized saddlepoint approximation for a dis-
persion model with regular unit deviance d is de�ned for
y ∈ Ω by

f (y; µ, σ ) ∼ a(µ, σ )V−

 (y) exp{− 

σ 
d(y; µ)}, ()

where a(µ, σ ) is a normalizing constant, making the
right-hand side of () a probability density function on Ω
with respect to Lebesgue measure. �e ordinary saddle-
point approximation is obtained by the asymptotic approx-
imation a(µ, σ ) ∼ (πσ )−/ as σ  ↓ , and corre-
spondingly, the distribution DM(µ, σ ) is asymptotically
normal N{µ, σ V(µ)} for σ  small, so that µ and σ V(µ)
are the asymptotic mean and variance of Y , respectively.
In this way, dispersion models have properties that resem-
ble those of the normal distribution. In particular the unit
deviance d(y; µ) is o�en a measure of squared distance
between y and µ.

�ere are two main classes of dispersion models,
namely proper dispersion models (PD) and reproductive
exponential dispersion models (ED), as de�ned below.�e
class of additive exponential dispersion models (ED∗) is not
of the dispersion model form (), but is closely related to
reproductive exponential dispersion models. �ese three
types of models cover a comprehensive range of non-
normal distributions, and as shown in Table  they include
many standard statistical families as special cases. �e
exponential and Poisson families are examples of natu-
ral exponential families, which correspond to exponential
dispersion models with σ  = .

Proper Dispersion Models
Jørgensen (a) proposed a special case of (), called a
proper dispersion model, which corresponds to a density of
the form

f (y; µ, σ ) = a(σ
)V−


 (y) exp{− 

σ 
d(y; µ)}, ()

where d is a given regular unit deviance with unit variance
function V(µ). We denote this model by Y ∼ PD(µ, σ ).
Note that the unit deviance d characterizes the proper dis-
persion model (), because the unit variance function ()
is a function of d, while a(σ ), in turn, is a normaliz-
ing constant. It also follows that the normalizing constant
of () is a(µ, σ ) = a(σ ), making the the two sides
of () identical in this case. Conditions under which a
given unit deviance gives rise to a proper dispersionmodel,
and the connection with exactness of Barndor�-Nielsen’s
p∗-formula, are discussed by Jørgensen (b, Chap. ).
Many proper dispersion models are transformation

models when σ  is known. For example, unit deviances

of the form d(y; µ) = h(y − µ) on Ω = R, for a suitable
function h, give rise to so-called location-dispersion mod-
els, where the unit variance function is constant. A spe-
ci�c example is given by the unit deviance d(y; µ) =
log{ + (y − µ)} , which corresponds to the Student t
location family. Another important case corresponds to
unit deviances of the form d(y; µ) = h(y/µ) on Ω =
R+, which give rise to so-called scale-dispersion models.
For example, Jørgensen (b, Chap. ) showed that the
generalized 7inverse Gaussian distribution is a family of
scale-dispersion models with unit deviances

dβ(y; µ) = β log
µ

y
+ ( + β) y

µ
+ ( − β) µ

y
− , ()

for y, µ > , where β ∈ [−, ] is an additional parameter. In
particular, the values β = ± correspond to the gamma and
reciprocal gamma families, respectively, and β =  to the
one-dimensional hyperboloid distribution.�e von Mises
distribution, corresponding to the unit deviance d(y; µ) =
{ − cos (y − µ)} on Ω = (, π) is also a transformation
model when σ  is known, corresponding to the group of
additions modulo π.

�e class of simplex distributions of Barndor�-Nielsen
() contains several proper dispersion models as spe-
cial cases.�e simplest example is given by the probability
density function

f (y; µ, σ ) = 
σ
√
π

{y( − y)}−/

× exp{− (y − µ)

σ y( − y)µ( − µ)
}, ()

where y, µ ∈ (, ) and σ  > .�e transformed Leipnik
distribution, de�ned by the unit deviance

d(y; µ) = log{ + (y − µ)

y( − y)
} for y, µ ∈ (, )

provides a further examples of proper dispersion models.
�is and the simplex distribution are examples of proper
dispersion models that are not transformation models
when σ  is known.

Exponential Dispersion Models
Exponential dispersion models are two-parameter exten-
sions of natural exponential families. A natural exponential
family has densities of the form

f (x; θ) = c(x) exp{θx − κ(θ)}, ()

with respect to a suitable measure ν, usually Lebesgue
or counting measure. Here c(x) is a given function and
κ(θ) = log ∫ c(x)eθx ν(dx) is the corresponding cumu-
lant function.�e canonical parameter θ has domainΘ; the
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Dispersion Models. Table  Main examples of univariate dispersion models

Data type Support Examples Type

Real data R Normal, generalized hyperbolic secant ED

Positive data R+ Exponential, gamma, inverse Gaussian ED

Positive data with zeros R = [,∞) Compound Poisson distribution ED

Proportions (, ) Simplex, Leipnik distributions PD

Directional data [, π) von Mises distribution PD

Count data N = {, , , . . . } Poisson, negative binomial distributions ED∗

Binomial count data {, , . . . , m} Binomial distribution ED∗

largest interval for which κ(θ) is �nite.�e mean of a ran-
dom variable X with distribution () is µ = τ(θ), where
τ(θ) = κ′(θ) (a one-to-one function of θ), and the domain
for µ is Ω = τ(intΘ), where intΘ denotes the interior of
the domain Θ. If necessary, we de�ne the value of µ by
continuity at boundary points of Θ. Examples of natural
exponential families include the exponential, geometric,
Poisson, and logarithmic families.

�e variance of X is V(µ) = τ′ {τ−(µ)}, where
V is known as the variance function of the family ().
�is function characterizes () among all natural expo-
nential families, see for example Morris (), and V is
an important convergence and characterization tool for
natural exponential families, see, e.g., Jørgensen (b,
Chap. ).
An additive exponential dispersion model is a two-

parameter extension of natural exponential families with
densities of the form

f
∗(x; θ, λ) = c∗(x; λ) exp{θx − λκ(θ)}, ()

where the index parameter λ has domain Λ consisting
of those values of λ >  for which λκ(θ) is a cumu-
lant function of some function c∗(x; λ). �e mean and
variance of a random variable X with distribution () are
λµ and λV(µ), respectively. Many discrete distributions
are additive exponential dispersion models, for example
the binomial and negative binomial families. An additive
exponential dispersion model is denoted X ∼ ED∗(µ, λ).
A reproductive exponential dispersion model is de�ned

by applying the transformation Y = X/λ to (), known
as the duality transformation. �e reproductive form is
denoted Y ∼ ED(µ, σ ), corresponding to densities of the
form

f (y; θ, λ) = c(y; λ) exp[λ{θy − κ(θ)}] ()

for a suitable function c(y; λ). Here µ (with domain Ω)
is the mean of Y , σ  = /λ is the dispersion parameter,
and the variance of Y is σ V(µ). Reproductive exponen-
tial dispersion models were proposed by Tweedie (),
and again by Nelder and Wedderburn () as the class
of error distributions for generalized linear models. �e
inverse duality transformation X = λY takes () back into
the form () so that each exponential dispersionmodel has,
in principle, an additive as well as a reproductive form.
Both () and () are natural exponential families when the
index parameter λ is known.
To see the connection with dispersion models as

de�ned by (), we introduce the unit deviance correspond-
ing to (),

d(y; µ) =  [sup
θ

{θy − κ(θ)} − yτ−(µ) + κ {τ
−(µ)}],

()
which is a Kullback-Leibler distance, see Hastie ().
De�ning

a(y; σ ) = c(y; σ−) exp [sup
θ

{θy − κ(θ)}],

we may write the density () in the dispersion model form
(). Consequently, reproductive exponential dispersion
models form a sub-class of dispersion models, whereas
additive exponential dispersion models are not in general
of the form ().

�e overlap between exponential and proper disper-
sion models is small; in fact the normal, gamma and
inverse Gaussian families are the only examples of expo-
nential dispersion models that are also proper dispersion
models.
An additive exponential dispersion model satis�es a

convolution formula, de�ned as follows. If X, . . . ,Xn are
independent random variables, and Xi ∼ ED∗(µ, λi) with
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λi ∈ Λ for i = , . . . ,n, then the distribution of X+ =
X + . . . + Xn is

X+ ∼ ED∗(µ, λ + . . . + λn), ()

where in fact λ + ⋯ + λn ∈ Λ. �is is called the
additive property of an additive exponential dispersion
model.
An additive exponential dispersion model ED∗ (µ, λ)

gives rise to a stochastic process {X(t) : t ∈ Λ ∪ {}}
with stationary and independent increments, called an
additive process.�is process is de�ned by assuming that
X() = , along with the following distribution of the
increments:

X(t + s) − X(t) ∼ ED∗ (µ, s),

for s, t ∈ Λ. An additive process with time domain
Λ = N (the positive integers) is a randomwalk, the simplest
example being the Bernoulli process. An additive process
with time domain Λ = R+ (which requires the distribution
to be in�nitely divisible), is a Lévy process (see7Lévy Pro-
cesses), including examples such as Brownianmotion with
dri� and the Poisson process (see 7Poisson Processes).
Note, in particular, that the average of the process over the
interval (, t) has distribution X(t)/t ∼ ED(µ, t−), which
follows by an application of the duality transformation.
A reproductive exponential dispersion model

ED(µ, σ ) satis�es the following reproductive property,
which follows as a corollary to (). Assume that Y, . . . ,Yn
are independent and Yi ∼ ED (µ, σ /wi) for i = , . . . ,n,
where w, . . . ,wn are positive weights such that wi/σ  ∈ Λ
for all i.�en, with w+ = w + . . . + wn,


w+

n

∑
i=
wiYi ∼ ED(µ, σ 

w+
). ()

Tweedie Exponential Dispersion Models
�e class ofTweediemodels, denotedTwp(µ, σ ), consist of
reproductive exponential dispersion models correspond-
ing to the unit variance functions V(µ) = µp, where p is a
parameter with domain (−∞, ]∪ [,∞] and Ω is de�ned
in Table . Here we let p = ∞ correspond to the vari-
ance function V(µ) = eβµ for some β ∈ R.�ese models
were introduced independently by Tweedie (), Morris
(), Hougaard () and Bar-Lev and Enis (). As
shown in Table , the Tweedie class contains several well-
known families of distributions. For p <  or p > , the
Tweedie models are natural exponential families gener-
ated by extreme or positive stable distributions with index
α = (p− )/(p− ). For p ≠ , , , the unit deviance of the

Dispersion Models. Table  Summary of Tweedie
exponential dispersion models

Distribution family p Support Ω Θ

Extreme stable exponential
family

p <  R R+ R

Normal distribution p =  R R R

Poisson distribution p =  N R+ R

Compound Poisson
distribution

 < p <  R R+ R−

Gamma distribution p =  R+ R+ R−

Positive stable exponential
family

p >  R+ R+ −R

Inverse Gaussian
distribution

p =  R+ R+ −R

Extreme stable exponential
family

p =∞ R R R−

Notation: −R = (−∞, ]

family Twp(µ, σ ) is given by

dp(y; µ) =  [
{max(y, )}−p

( − p)( − p)
− yµ

−p

 − p
+ µ

−p

 − p
],

where y belongs to the support, see Table .
�e Tweedie models are characterized by the following

scaling property:

b Twp(µ, σ ) ∼ Twp(bµ, b−pσ ). ()

for all b > , see Jørgensen et al. () and Jørgensen
(b, Chap. ). �e former authors showed that the
scaling property implies a kind of central limit theorem
(see 7Central Limit �eorems) for exponential disper-
sion models, where Tweedie models appear as limiting
distributions.
For  < p < , the Tweedie models are compound

Poisson distributions, which are continuous non-negative
distributions with an atom at zero. Such models are use-
ful for measurements of for example precipitation, where
wet periods show positive amounts, while dry periods are
recorded as zeros. Similarly, the total claim on an insurance
policy over a �xed time interval (Renshaw ; Jørgensen
and Souza ),may be either positive if claimsweremade
in the period or zero if no claims were made. Other values
of p (except p = ) correspond to continuous distributions
with support either R+ or R.
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Let us apply the inverse duality transformation X = λY

to the Tweedie variableY ∼ Twp(µ, /λ), in order to obtain
the additive form of the Tweedie distribution. By the scal-
ing property () this gives X ∼ Twp(λµ, λ−p), which
shows that the Tweedie exponential dispersion models
have an additive as well as a reproductive form.�e addi-
tive form of the Tweedie model gives rise to a class of
additive processes {X(t) : t ≥ }, de�ned by the following
distribution of the increments:

X(t + s) − X(t) ∼ Twp (sµ, s−p) ,

for s, t > . �is class of Hougaard Lévy processes was
introduced by Jørgensen () and Lee and Whitmore
(). Brownianmotion (see7BrownianMotion andDif-
fusions) with dri� (p = ) and the Poisson process (p = )
mentioned above are examples of Hougaard processes, and
other familiar examples include the gamma process (p = )
and the inverse Gaussian process (p = ).�e Hougaard
processes corresponding to  < p <  are compound
Poisson processes with gamma distributed jumps.

Multivariate Dispersion Models
One way to generalize () to the multivariate case is to
consider a probability density function of the form

f (y; µ, σ ) = a(y; σ ) exp{− 
σ 
d(y; µ)} for y ∈ Rk,

()
where (µ, σ ) ∈ Ω × R+, and Ω is now a domain in
Rk. Here a is a suitable function such that () is a prob-
ability density function, and d is again a unit deviance
satisfying d(µ; µ) =  for µ ∈ Ω and d(y; µ) >  for
y ≠ µ.�e multivariate exponential dispersion models of
Jørgensen (; a) provide examples of (). Other
examples include the multivariate von Mises-Fisher dis-
tribution, the multivariate hyperboloid distribution (see
Jensen ), and some special cases of the multivariate
simplex distributions of Barndor�-Nielsen ().
A more �exible de�nition of multivariate disper-

sion models is obtained by considering models of the
form

f (y; µ,Σ) = a(y;Σ) exp [− 

g {r⊺(y; µ)Σ−r(y; µ)}] ,

()
where Σ is a symmetric positive-de�nite k × kmatrix, g is
an increasing function satisfying g() =  and g′() > ,
and r(y; µ) is a suitably de�ned k-vector of residuals satis-
fying r(µ; µ) =  for µ ∈ Ω, see Jørgensen and Lauritzen
(). An example is the 7multivariate normal distribu-
tions Nk(µ,Σ), which is obtained for r(y; µ) = y− µ and g
the identity function. Further examples include the multi-
variate Laplace and t distributions, along with the class of

elliptically contoured distributions of Fang (). Further
generalizations and examples may be found in Jørgensen
and Lauritzen (), see also Jørgensen and Rajeswaran
().
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Distance is a key concept in many statistical and pattern
recognition methods (e.g., clustering, 7multidimensional
scaling,7correspondence analysis,7principal component
analysis, k-nearest neighbors, etc.). From themathematical
point of view, any set X (whose elements are called points)
is said to be ametric space (Rudin ) if for any twopoints
a, b ∈ X there is an associated real number d(a, b) called
distance if the following properties hold true:

. d(a, b) ≥ , (non-negativity)
. d(a, b) =  ⇐⇒ a = b (de�niteness)
. d(a, b) = d(b, a) (symmetry)
. d(a, c) ≤ d(a, b) + d(b, c), for any b ∈ X (triangle
inequality)

Any function with these properties is called a distance
function, a distance measure, or ametric.
An example of the distancemeasure inmetric spaceRn

is the so-calledMinkowski distance (Ln) de�ned by:

dn(a, b) =
n

¿
ÁÁÀ

n

∑
i=

(ai − bi)n,

where a and b are vectors, elements of Rn.

�e Minkowski metric for n =  is called the
Manhattan or the Cityblock distance (L) and is
given by:

d(a, b) =
n

∑
i=

∣ai − bi∣.

For binary vectors (whose components are restricted to
values  or ) this metric is called the Hamming distance.
A special case of the Minkowski metric for the n =  met-
ric is called the Euclidian distance (L) and it is the most
popular metric:

d(a, b) =

¿
ÁÁÀ

n

∑
i=

(ai − bi).

For n→∞, we have the distance (L∞) de�ned by:

d∞(a, b) = max≤i≤n{∣ai − bi∣}.

As an example, consider a set of points x in R that
have a constant distance r from the origin, that is, (, )
point in R.�en, a set of points x ∈ R having the prop-
erty d(, x) = r is a circle with radius r and origin (, );
a set of points x ∈ R having d(, x) = r is a “diamond”
having vertices at (r, ), (, r), (−r, ) and (,−r); and a
set of points x ∈ R having the property d∞(, x) = r is a
square having vertices at (r, r), (−r, r), (−r,−r), (r,−r).
Although the Euclidean distance is the most widely

used, it is not an appropriate measure when the statistical
properties of variables (attributes of the items) are being
explicitly considered because it assumes that the variables
are uncorrelated.
Also, if we measure the distance between two items,

the Euclidean distance could change with a change in the
scale of di�erent variables. For that purpose, the statisti-
cal distance is used, since it is not a�ected by a change in
scale.
An example of such scale-invariant distance measures

is the squared (weighted) Euclidean distance for stan-
dardized data and the Mahalanobis distance.�e squared
Euclidean distance for standardized data is weighted by /si ,
where si is the standard deviation of the i

th variable:

d
(a, b) =

n

∑
i=

(ai − bi)

si
.

�is distance is also called the Karl Pearson distance.
Another example of a weighted Euclidean distance

is the chi-squared distance used in the 7correspondence
analysis. A very important statistical measure that is
scale invariant is the Mahalanobis distance (Mardia and
Kent ), de�ned by:

d

Mahalanobis(a, b) = (a − b)′Σ−(a − b),
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where a and b are twomultivariate observations, Σ− is the
inverse of the variance-covariance matrix and (a − b)′ is
the transpose of vector (a − b).

�e Mahalanobis distance is designed to take into
account the correlation between all variables (attributes)
of the observations under consideration. For uncorre-
lated variables, the Mahalanobis distance reduces to the
Euclidean distance for standardized data.
As an example, consider a set of points x inR that have

the constant distance r from the origin, that is, (, ).�en,
the set of points having the property dMahalanobis(, x) = r
is an ellipse.�eMahalanobis distance is a positive de�nite
quadratic form x′Ax, where the matrix A = Σ−.
Distance measures or metrics are members of a

broader concept called similarity measures (or dissimi-
larity measures) (�eodoridis and Koutroumbas )
that measure likeness (or a�nity) in the case of the
similarity measure, or di�erence (or lack of a�nity)
in the case of dissimilarity between objects. Similar-
ity measures can be converted to dissimilarity measures
using a monotone decreasing transformation and vice
versa.

�emain di�erence betweenmetrics and broader con-
cepts of similarity/dissimilarity measures is that some of
the properties ()–() do not hold for similarity/dissimi-
larity measures. For example, de�niteness, or the triangle
inequality, usually do not hold for similarity/dissimilarity
measures.

�e cosine similarity and the Pearson’s product
moment coe�cient are two similarity measures that are
not metric.�e cosine similarity is the cosine of an angle
between the vectors x and y from Rn and is given by:

s(x, y) = x′y
∥x∥∥y∥

,

where ∥x∥ and ∥y∥ are norms of the vectors x and y.�is
measure is very popular in information retrieval and text-
mining applications.
In statistical analysis (especially when applied to ecol-

ogy, natural language processing, social sciences, etc.)
there are o�en cases in which similarity or the distance
between two items (e.g., sets, binary vectors) is based on
two-way contingency tables with elements a, b, c, and d,
where a represents the number of elements (attribute val-
ues, variables values) present in both items, b is the number
of elements present in the �rst but absent in the sec-
ond item, c is the number of elements present in the second
but absent in the �rst item, and d is number of elements
absent simultaneously in both items.�e numbers a, b, c,
and d can be de�ned as properties of two sets or two binary
vectors.

Similarity coe�cients (�eodoridis and Koutroumbas
) or associations measures can be de�ned as a combi-
nation of numbers a, b, c, and d. Examples of associations
measures are:

Simple matching coe�cient (a + d)/n,
Dice coe�cient a/(a + b + c),
Jaccard (or Tanimoto) coe�cient a/(a + b + c).

Although association measures, similarity measures, and
correlation coe�cients are not metric, they are applicable
in the analysis where they are consistent with the objective
of the study and where they have meaningful interpreta-
tion (Sharma ).
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Distance sampling is a widely used methodology for
estimating animal density or abundance. Its name derives
from the fact that the information used for inference are
the recorded distances to objects of interest, usually ani-
mals, obtained by surveying lines or points.�e methods



Distance Sampling D 

D

are also particularly suited to plants or immotile objects, as
the assumptions involved (see below for details) are more
easily met. In the case of lines the perpendicular distances
to detected animals are recorded,while in the case of points
the radial distances from the point to detected animals
are recorded. A key underlying concept is the detection
function, usually denoted g(y) (here y represents either a
perpendicular distance from the line or a radial distance
from the point).�is represents the probability of detect-
ing an animal of interest, given that it is at a distance y from
the transect. �is function is closely related to the prob-
ability density function (pdf) of the detected distances,
f (y), as

f (y) = g(y)π(y)
∫
w

 g(y)π(y)dy
, ()

where π(y) is the distribution of distances available for
detection and w is a truncation distance, beyond which
distances are not considered in the analysis. �e above
pdf provides the basis of a likelihood from which the
parameters of the detection function can be estimated. An
important and o�en overlooked consideration is that π(y)
is assumed known.�is is enforced by design, as the ran-
dom placement of transects, independently of the animal
population, leads to a distribution which is uniform in the
case of line transects and triangular in the case of point
transects (Buckland et al. ).
Given the n distances to detected animals, density can

be estimated by

D̂ = nf̂ ()
L

()

in the case of line transects with total transect length L,
where f () is the estimated pdf evaluated at zero distance,
and by

D̂ = nĥ()
kπ

()

in the case of k point transects, where h() is the slope
of the estimated pdf evaluated at zero distance (Buckland
et al. ).�is is a useful result because we can then use
all the statistical tools that are available to estimate a pdf
in order to obtain density estimates. So one can consider
plausible candidate models for the detection function and
then use standardmaximum likelihood to obtain estimates
for the corresponding parameters and therefore density
estimates.

�e most common so�ware to analyze distance sam-
pling data, Distance (�omas et al. ), uses the
semi-parametric key+series adjustment formulation from
Buckland (), in which a number of parametric mod-
els are considered as a �rst approximation and then some
expansion series terms are added to improve the �t to the

data. Standard model selection tools and goodness-of-�t
tests are available for assisting in 7model selection.
Variance estimates can be obtained using a delta

method approximation to combine the individual vari-
ances of the random components in the formulas above
(i.e., n and either f () or h(); for details on obtaining each
component variance, see Buckland et al. ). In some
of the more complex scenarios, one must use resampling
methods based on the non-parametric bootstrap, which
are also available in the so�ware.
Given a su�ciently large number of transects ran-

domly allocated independently of the population of inter-
est, estimators are asymptotically unbiased if () all animals
on the transect are detected, i.e., g() = , () sam-
pling is an instantaneous process (typically it is enough if
animal movement is slow relative to the observer move-
ment), and () distances are measured without error. See
Buckland et al. () for discussion of assumptions. Other
assumptions, for example that all detections are indepen-
dent events, are strictly required as the methods are based
on maximum likelihood, but the methods are extraor-
dinarily robust to their failure (Buckland ). Failure
of the g() =  assumption leads to underestimation
of density. Violation of the movement and measurement
error assumption have similar consequences. Underesti-
mation of distances and undetected responsive movement
toward the observers lead to overestimation of density,
and overestimation of distances and undetectedmovement
away from the observer lead to underestimation of density.
Random movement and random measurement error usu-
ally leads to overestimation of density. Naturally the bias
depends on the extent to which the assumptions are vio-
lated. Most of the current research in the �eld is aimed
at relaxing or avoiding the need for such assumptions.
As there are no free lunches in statistics, these come at
the expense of more elaborate methods, additional data
demands and additional assumptions.
Further details about conventional distance sampling,

including dealing with clustered populations, cue counting
methods and �eld methods aspects, can be found in
Buckland et al. (), while advanced methods, includ-
ing the use ofmultiple covariates in the detection function,
double platform methods for when g() < , spatial mod-
els, automated survey design, and many other specialized
topics, are covered in Buckland et al. ().

About the Authors
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�e distributions of order k are in�nite families of proba-
bility distributions indexed by a positive integer k, which
reduce to the respective classical probability distributions
for k = , and they have many applications. We presently
discuss brie�y the geometric, negative binomial, Poisson,
logarithmic series and binomial distributions of order k.

Geometric Distribution of Order k
Denote by Tk the number of independent Bernoulli tri-
als with success (S) and failure (F) probabilities p and
q =  − p ( < p < ), respectively, until the occurrence of
the kth consecutive success. Philippou and Muwa� ()

observed that a typical element of the event {Tk = x} is an
arrangement

aa . . . ax+x+⋅⋅⋅+xk SS . . . S´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
k

, ()

such that x of the a’s are E = F, x of the a’s are
E = SF, . . . , xk of the a’s are Ek = SS . . . S´¹¹¹¹¹¹¸¹¹¹¹¹¹¶

k−

F, and proceeded

to obtain the following exact formula for the probability
mass function (pmf) of Tk, namely,

f (x) = P(Tk = x)

= px∑(x + x + ⋅ ⋅ ⋅ + xk
x, x, . . . , xk

)(q
p
)
x+x+⋅⋅⋅+xk

, x ≥ k,

()

where the summation is taken over all non-negative inte-
gers x, x, . . . , xk satisfying the condition x + x + ⋅ ⋅ ⋅ +
kxk = x − k. Alternative simpler formulas have been
derived. �e following recurrence for example, due to
Philippou and Makri (), is very e�cient for compu-
tations

f (x) = f (x − ) − qpkf (x −  − k), x > k ()

with initial conditions f (k) = pk and f (x) = qpk for k < x ≤
k. Furthermore, it shows that f (x) attains its maximum
pk for x = k, followed by a plateau of height qpk for x =
k + , k + , . . . , k, and decreases monotonically to  for
x ≥ k + .
Philippou et al. () employed the transformation

xi = mi ( ≤ mi ≤ k) and x = m +∑ki=(i − )mi to show
that∑∞x=k f (x) =  (and hence f (x) is a proper pmf).�ey
named the distribution ofTk geometric distribution of order
k with parameter p and denoted it by Gk(p), since for k = 
it reduces to the classical geometric distribution with pmf
f (x) = qx−p (x ≥ ). It follows from (), by means of the
above transformation and the multinomial theorem, that
the probability generating function (pgf) of Tk is given by

ϕk(w) =
∞
∑
x=k
x
w
f (x) = pkwk( − pw)

 − w + qpkwk+
, ∣ w ∣≤ . ()

�e mean and variance of Tk readily follow from its pgf
and they are given by

E(Tk) =
 − pk

qpk
, Var(Tk) =

 − (k + )qpk − pk+

(qpk)
.

()
A di�erent derivation of () was �rst given by Feller (),
who used the method of partial fractions on ϕk(w) to
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derive the surprisingly good approximation

P(Tk > x) ≃
 − pw

(k +  − kw)qw x+
, ()

where w is the unique positive root of pkwk/ϕk(w).
It is well known that the negative binomial distribution

arises as the distribution of the sum of r independent rv’s
distributed identically as geometric. �is fact motivated
the genesis of the following distribution of order k.

Negative Binomial Distribution of
Order k
Let X,X, . . . ,Xr be independent rv’s distributed identi-
cally as Gk(p) and set Tr,k = ∑ri= Xi. �en, relation ()
implies

ϕr,k(w) =
∞
∑
x=rk
x
w
P(Tr,k = x)

= ( p
kwk( − pw)

 − w + qpkwk+
)
r

, ∣ w ∣≤ . ()

Expanding ϕr,k(w) in a series around , Philippou et al.
() obtained the pmf of Tr,k as

P(Tr,k = x) = px∑(x + x + ⋅ ⋅ ⋅ + xk + r − 
x, x, . . . , xk, r − 

)

× (q
p
)
x+x+⋅⋅⋅+xk

, x ≥ rk, ()

where the summation is taken over all non-negative inte-
gers x, x, . . . , xk satisfying the condition x + x + ⋅ ⋅ ⋅ +
kxk = x − rk. �ey called the distribution of Tr,k nega-
tive binomial distribution of order k with parameter vector

(r, p) and denoted it by NBk(r, p), since for k =  it
reduces to the negative binomial distribution with pmf
f (x) = (x−

r−)p
rqx−r (x ≥ r). For r = , it reduces

to the geometric distribution of order k. Obviously, Tr,k
denotes the waiting time for the occurrence of the rth non-
overlapping success run of length k. Alternative formulas,
simpler than (), have been derived byGodbole () (see
also Antzoulakos and Philippou ()) and Philippou and
Georghiou ().�e latter authors established also the
following e�cient recurrence

g(x) = P(Tr,k = x) =
q/p
x − rk

k

∑
i=

[x − rk + i(r − )]

× pig(x − i), x ≥ rk + , ()

with g(x) =  for  ≤ x ≤ rk −  and f (rk) = prk, which
recaptures () for r = .
LetX,X, . . . ,Xn be independent rv’s distributed iden-

tically as NBk(r, p), and set X = 
n ∑

n
i= Xi. Philippou

() observed that the moment estimator p̂ of p is the
unique admissible root of the equation r(−pk)

(−p)pk = X. In

particular, for k = , p̂ = r+(r+rX)/

X
and it is consistent

for p.
�e fact that the Poisson and the logarithmic series

distributions arise as appropriate limits of the negative
binomial distribution, motivated the following.

Poisson and Logarithmic Series
Distributions of Order k
Let X be a rv distributed as NBk(r, p) and set Yr = X − rk.
(a) Assume that q →  and rq → λ (> ) as r → ∞.

�en, for y = , , . . . ,

lim
r→∞

P(Yr = y) = e−kλ∑
λy+y+⋅⋅⋅+yk

y!y! . . . yk!
= fY(y), ()

where the summation is taken over all non-negative inte-
gers y, y, . . . , yk satisfying the condition y + y + ⋅ ⋅ ⋅ +
kyk = y. �e distribution of Y has been named Poisson
distribution of order k with parameter λ.
(b) Assume that r is positive and real. �en, for

z = , , . . . ,

lim
r→
P(Yr = z ∣ Yr ≥ ) = αp

z∑
(z + z + ⋅ ⋅ ⋅ + zk − )!

z!z! . . . zk!

× (q
p
)
z+z+⋅⋅⋅+zk

= fZ(z), ()

where α = −/k log p, and the summation is taken over
all non-negative integers z, z, . . . , zk satisfying the condi-
tion z + z + ⋅ ⋅ ⋅ + kzk = z.�is result is due to Aki et al.
() who extended the de�nition ofNBk(r, p) to positive
real r.�ey called the distribution of Z logarithmic series
distribution of order k with parameter p.
We end this note with a few words on the binomial

distribution of order k.

Binomial Distribution of Order k
Let Nn,k denote the number of non-overlapping success
runs of length k in n (≥ ) independent trials with success
probability p ( < p < ).�e 7asymptotic normality of
a normalized version of Nn,k was established by von Mises
(see Feller :), where a simpler proof is presented).
Its exact pmf was obtained byHirano () and Philippou
and Makri (), who named the distribution binomial
distribution of order k with parameter vector (n, p).�ey
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found that, for x = , , . . . , [n/k],

P(Nn,k = x) =
k−
∑
i=
∑(x + x + ⋅ ⋅ ⋅ + xk + x

x, x, . . . , xk, x
)pn

× (q
p
)
x+x+⋅⋅⋅+xk

, ()

where [u] denotes the greatest integer in u and the
inner summation is taken over all non-negative integers
x, x, . . . , xk satisfying the condition x + x + ⋅ ⋅ ⋅ + kxk +
i = n − kx. �e following exact formula for the mth
descending factorial moment µ′m of Nn,k was established
by Antzoulakos and Chadjiconstantinidis (),

µ
′
m = m!pkm

min(n−km,m)

∑
j=

(−)j(m
j
)pj

×
[ n−km−j

k
]

∑
i=

(m + i − 
i

)(m + n − k(m + i)
m

)pki. ()

�e above results for the pmf ’s ofTk andNn,k give exact
formulas for the reliability of a consecutive-k-out-of-n:F sys-
tem, which is very important in Engineering. For more on
distributions of order k and their applications, we refer to
Balakrishnan and Koutras ().
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Introduction
Diversity is a concept that appears in various �elds of study.
In the most general situation involving a set of s exhaus-
tive and mutually exclusive events with probabilities (or
proportions) pi (i = , . . . , s), diversity is an attribute that
depends on s and all the individual pi’s. In particular, diver-
sity is typically considered to increase with increasing s
and with increasing evenness (uniformity) among the pi‘s.
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For any given s, diversity is considered to be minimum
for the degenerate distribution P s and maximum for the
completely even (uniform) distribution P s de�ned by

P

s = (, . . . , , , , . . . , ), P s = (/s, . . . , /s). ()

As a clari�cation of these concepts and their measure-
ment, consider a generic measure of diversity D that takes
on the value D(Ps) for the probability distribution Ps =
(p, . . . , ps) with

D (P s ) ≤ D (Ps) ≤ D (P s ) ()

for the P s and P s in (). Furthermore, de�ne the normed
form of D(Ps) as

D
∗(Ps) =

D(Ps) −D (P s )
D (P s ) −D (P s )

∈ [, ] ()

which e�ectively controls for s. From (),

D(Ps) = D (P s ) +D∗(Ps) [D (P s ) −D (P s )] ()

showing that D(Ps) is an increasing function of both
the evenness (uniformity) D∗(Ps) and of D(/s, . . . , /s),
which, for an appropriate measure D, is strictly increasing
in s.
Numerous measures of diversity D and evenness D∗

have been proposed.�is is especially the case in biology
(and ecology) where such measures are frequently used.
In such applications, the concern is with a sample or a
population of sdi�erent species, with pi being the probabil-
ity of the event that a randomly selected specimen belongs
to the ith species for i = , . . . , s.�e Ps = (p, . . . , ps) is
then usually referred to as the species abundance distribu-
tion and s is o�en called the species richness.

Commonly Used Measures
�e most widely used diversity measures appear to be the
following:

D(Ps) = s, ()

D(Ps) =  −
s

∑
i=
p

i , ()

D(Ps) = −
s

∑
i=
pi log pi. ()

where both base − and base −e (natural) logarithms are
being used.�e D is most o�en referred to as the Simp-
son index, a�er Simpson (), although it is sometimes
called the Gini index (e.g., Upton and Cook ). How-
ever, in some historical comments about D and  − D,
Good () suggested that “it is unjust to associate ρ with
any one person” (where ρ =  −D).�e measure of D is
the Shannon’s entropy (Shannon ).

While D has very limited information content, both
D and D can be seen to have a number of desirable
properties. In particular, for both i =  and i = , Di
is (a) zero-indi�erent (expansible), i.e., Di(p, . . . , ps, ) =
Di(pi, . . . , ps), (b) permutation symmetric in the pi’s,
(c) continuous in the pi’s and (d) strictly Schur-concave in
Ps (Marshall and Olkin , ch. ) and also strictly con-
cave (in the usual sense). Also, with Di (P s ) =  for both
i =  and i =  in ()–(),

Di(Ps) = D∗i (Ps)Di (P s ) , i = ,  ()

with the evenness measure D∗i (Ps) for i = ,  (Magurran
, ch. ) and showing that Di(Ps) increases with both
evenness and s sinceD (P s ) = − /s andD (P s ) = log s.

�e D in () has the advantage of having a reasonable
probabilistic meaning, which helps with interpretation of
its numerical values. In terms of a statistical experiment
with s possible events whose probability distribution is
Ps = (p, . . . , ps), D(Ps) is simply the probability that
two independent repetitions of the experiment result in
two di�erent events occurring. In the case of a biological
sample or population, D(Ps) is the probability that two
specimen, selected at random with replacement, belong to
di�erent species. By contrast, theD in () has no such con-
venient probability interpretation. As a measure of diver-
sity, this 7entropy has no real or important, theoretical or
practical, advantage overD. Nevertheless, and for no good
reason, the D, o�en referred to as the Shannon index,
remains a most popular diversity measure, causing some
to lament that “Simpson’s index remains inexplicably less
popular than the Shannon index” (Magurran : ).

Cardinal Measures
Various other diversity measures and their corresponding
evenness measures have been suggested (e.g., Magurran
). Some of these are cardinal measures or so-called
numbers equivalent measures. Such a measure ranges in
value from  for the distribution P s to s for the distribu-
tion P s in (). For some diversity measure D, the numbers
equivalent De is de�ned as being the number of elements
in an equiprobable (completely even or uniform) distribu-
tion for which the value of D equals D(Ps) for any given
Ps = (p, . . . , ps), i.e.,

D(/De(Ps), . . . , /De(Ps)) = D(Ps) ()

where De(Ps) is not necessarily an integer number,
although this expression can only be strictly true in the
integer case.
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From (), (), and (), the numbers equivalent of D
and D (with base −e logarithms) are readily seen to be

D(Ps) = De(Ps) =


 −D(Ps)
= 

s

∑
i=
pi

,

D(Ps) = De(Ps) = eD(Ps). ()

It is clear from () that, for the distributions in (),
D (P s ) = D (P s ) =  and D (P s ) = D (P s ) = s.
Also, by subtracting  from D(Ps), one gets the following
measure (Kvålseth ):

D(Ps) =

s

∑
i=
pi

−  ()

which has a statistical odds interpretation equivalent to
the probability interpretation of D(Ps): it is the odds that
di�erent events will occur during two independent repeti-
tions of a statistical experiment. Or, in the case when two
specimen are randomly selected with replacement from a
biological community (sample or population), D(Ps) is
the odds that the specimen will be of di�erent species.
An interesting and rather intuitive diversity measure

can be formulated by simply adjusting s for the absolute
di�erences between the pi’s as follows:

D(Ps) = s −∑∑
≤i<j≤s

∣pi − pj∣ ()

where, for the distribution in (), D (P s ) =  and
D (P s ) = s. Since the summation term in () can be
shown to be strictly Schur-convex (Marshall and Olkin
: , ), D(Ps) is strictly Schur-concave in Ps.
If the pi’s are ordered such that p[] ≥ p[] ≥ . . . ≥ p[s]

and since

∑∑
≤i<j≤s

∣pi − pj∣ =
s−
∑
i=

s

∑
j=i+

(p[i] − p[ j]) =
s

∑
i=

(s +  − i)p[i]

the D(Ps) in () can also be expressed as

D(Ps) = 
s

∑
i=
ip[i] − . ()

�eD in ()–() has been discovered and re-discovered
as a potential diversity measure (Carmargo ; Kvålseth
; Patil and Taillie ). While Carmargo () pro-
posed D(Ps)/s ∈ [/s, ] as an evenness index for which
the lower bound depends on s, a preferred measure of
evenness would seem from () to be

D
∗
 (Ps) =


s

∑
i=
ip[i]

s − 
∈ [, ]. ()

Families of Measures
Parameterized families of diversity measures have also
been proposed and of which some of the above measures
are special members. Hill () proposed the following
inverse self-weighted arithmetic mean of order β:

D(β)(Ps) = (
s

∑
i=
p

β+
i )

−/β

, −∞ < β <∞ ()

(β = α −  in Hill’s notation). Patil and Taillie ()
proposed

D
(β)(Ps) = ( −

s

∑
i=
p

β+
i )/β, − ≤ β <∞. ()

From () to () and (), it is seen thatD = D(−)+ , D =
D(), and D = D() (in the limiting sense of β →  and
with natural logarithm in ()). Also from () and (),
D = D() and D = D() (in the limit as β → ). It can
also be seen from (), () and () that D(β) is simply the
numbers equivalent of D(β).

Statistical Inferences
Consider now that the pi’s are multinomial sample esti-
mates (and estimators) pi = ni/N for i = , . . . , s and with
sample sizeN =

s

∑
i=
ni. One may then be interested in mak-

ing statistical inferences about the population valueD(Πs)
of some diversity measure D for the corresponding popu-
lation distribution Πs = (π, . . . , πs). In particular, besides
the estimate D(Ps), one may want to construct a con�-
dence interval for D(Πs). When N is reasonably large and
D(Πs) is di�erentiable, it follows from the delta method
Agresti () that D(Ps) has approximately a normal
distribution with mean D(Πs) and estimated variance

σ̂

D =


N

⎡⎢⎢⎢⎢⎣

s

∑
i=
pi ϕ̂


Di − (

s

∑
i=
pi ϕ̂Di)

⎤⎥⎥⎥⎥⎦
()

where

ϕ̂Di =
∂D(Πs)
∂πi

∣
πi=pi

, i = , . . . , s ()

i.e., ϕ̂Di is the partial derivative of D(Πs) with respect to
πi, which is then replaced with pi, for i = , . . . , s.
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From ()–() and for the Di in (), (), (), (), and
(), the following estimated variances are obtained:

σ̂

D =


N

⎡⎢⎢⎢⎢⎣

s

∑
i=
p

i − (

s

∑
i=
p

i )
⎤⎥⎥⎥⎥⎦
, ()

σ̂

D =


N

⎡⎢⎢⎢⎢⎣

s

∑
i=
pi(log pi) − (

s

∑
i=
pi log pi)

⎤⎥⎥⎥⎥⎦
, ()

σ̂

D =



N(
s

∑
i=
pi )



⎡⎢⎢⎢⎢⎣

s

∑
i=
p

i − (

s

∑
i=
p

i )
⎤⎥⎥⎥⎥⎦
, ()

σ̂

D = [D(Ps)]


σ̂

D, σ̂


D = σ̂


D, ()

σ̂

D =


N

⎡⎢⎢⎢⎢⎣

s

∑
i=
i

p[i] − (

s

∑
i=
ip[i])

⎤⎥⎥⎥⎥⎦
()

where D in () and () and hence () and D in () are
assumed to be based on natural logarithms.
For example, consider the multinomial frequencies

ni = , , ,  for which D(P) = ., and
from (), σ̂ D = .. Consequently, an approximate
% con�dence interval for D(Π) becomes . ±
.

√
., or (., .). Similarly, from () and (),

D(P) = . and σ̂ D = . so that an approx-
imate % con�dence interval for D(Π) is . ±
.

√
. or (., .).
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Divisible Statistics
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Suppose νin, i = , . . . ,M, are frequencies of M disjoint
events in a sample of size n. Suppose the probabilities
of these events are pi, i = , . . . ,M. �e statistics of the
form

M

∑
i=
g(νin,npi) or

M

∑
i=
h( νin − npi√

npi
,npi)

are called divisible or additively divisible statistics. �e
total spacewas “divided” into disjoint events, then frequen-
cies of these events were treated, so to say, “individually”
and only then an aggregated sum was formed – hence the
term. It will bemore justi�edwhenwe start speaking about
�ner and �ner divisions of the space.
Examples of divisible statistics are easy to �nd. To some

extent, to attribute to them the name of divisible statistics is
similar to the discovery that we speak prose, as statisticians
could verywell have used and studied themwithout paying
attention or knowing that these were divisible statistics. In
the following examples,

X

nM =

M

∑
i=

(νin − npi)

npi
, LnM =

M

∑
i=

νin ln
νin

npi
,

µn =
M

∑
i=

I{νin > },

where I{A} denotes the indicator function of the event
A, the reader will easily recognize the classical chi-square
goodness of �t statistic, the maximum likelihood statistic
for the 7multinomial distribution and what is o�en called
an “empirical vocabulary” – the number of di�erent events
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in a sample. Versions of this latter statistic are o�en used
in problems of statistical diversity, cryptology and analysis
of texts:

µn() =
M

∑
i=

I{νin = },

µn(k) =
M

∑
i=

I{νin = k}, k = , , . . . .

�e classical theory studies the asymptotic behavior of
divisible statistics when the sample size n → ∞, but the
number of di�erent eventsM stays �xed.
In many problems, however, a di�erent setting is nec-

essary: not only n → ∞, but also M → ∞ at the same
time, so that pi, i = , . . . ,M, form a triangular array of an
increasing number of diminishing probabilities. Indeed, in
statistical analysis of random number generators o�en no
less thanM =  di�erent events are identi�ed and sam-
ples of n = – are generated. In analysis of a corpus
of a language, the number of di�erent words is o�en of the
orderM = –, while the size of texts analyzed is about
n = – word-usages (see, e.g., Baayen ; Simpson
et al. ).
As a rule, however, one cannot access this asymp-

totic range by using the classical results �rst and then
letting M tend to ∞. For example, although it is true
that

X

nM →d χ


M−, n→∞, and

χM− − (M − )
√
(M − )

→d N(, ), M →∞,

where χM− is a chi-square random variable with M − 
degrees of freedom and N(, ) is a standard normal ran-
dom variable, for most cases it is not true that

XnM − (M − )√
(M − )

→d N(, )

if n,M →∞ simultaneously and n/M → const.
One of the frequently used tools to study the asymp-

totic behavior of divisible statistics is the so-called Pois-
sonization (see, e.g., Ivchenko andMedvedev ; Morris
): if sample size N is Poisson(n) random variable
then frequencies νiN , i = , . . . ,M, become independent
Poisson(npi) random variables and for Bn ⊂ R

P{
M

∑
i=
g(νin ,npi) ∈ Bn} =

P {∑Mi= g(νiN ,npi) ∈ Bn ,N = n}
P{N = n}

.

In the numerator of the right side there is now a sum of
independent random variables, which is convenient. Some
trouble is, however, that the probability of N = n tends
to  and some sort of a local limit theorem must be used,

while the probability on the le� side is obviously of a global
nature. In certain problems limit theorems for the process
of partial sums

Zn(m) =
m

∑
i=
g(νin,npi), m = , , . . . ,M,

are needed and the use of Poissonization above, again,
becomes technically unpleasant.
Alternative approach, demonstrated in Khmaladze

(), suggests the use of an “additional” object – the
�ltration {Hmn}Mm=, where each σ-algebra Hmn is gen-
erated by the �rst m frequencies νn, . . . , νmn. �e gain
here lies in the following: in functional limit theorems for
the resulting semi-martingale {Zn(m),Hmn}Mm=, condi-
tional distribution of νm+,n givenHmn plays a central role
(see, e.g., Liptzer and Shiryaev ; Rebolledo ); how-
ever, this distribution is extremely simple – just binomial
distribution b(⋅, ñm+, p̃m+) with parameters

ñm+ = n −
m

∑
i=

νin and p̃m+ = pm+/ ( −
m

∑
i=
pi) .

�is allows to prove the functional limit theorem, that
is, convergence to a Brownian motion (see 7Brownian
Motion and Di�usions), for the martingale part of
{Zn(m),Hmn}Mm= in a simple and natural way.
True that if max pi → , while n,M → ∞, the

mutual dependence of multinomial frequencies νin, i =
, . . . ,M, decreases, but there is an increasing number of
them.�erefore the process {Zn(m),Hmn}Mm= should not
be expected to converge to a process with independent
increments. Centered and normalized in a usual way and
in time t = m/M this process converges to a Gaussian
semi-martingale,

W(t) + K(t), t ∈ [, ],

where W is a Brownian motion and the compensator K,
which accounts for the above mentioned dependence, is a
process with di�erentiable trajectories.

�is result, and its extensions, was established in
Khmaladze () under an assumption that all frequen-
cies νin are asymptotically Poisson random variables. A
very interesting case arises when some of the frequencies
can be asymptotically Gaussian, that is, some probabilities
in our triangular array do not decrease su�ciently quickly.
Indeed, in a typical corpus of a contemporary language,
with word-count of order , some words will occur tens
of thousands of times, while many others only a few hun-
dred times, while still many more will occur only a few
times.
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In this mixed case even an asymptotic expression for
the expected values

E
M

∑
i=
h( νin − npi√

npi
,npi)

becomes an object of research. In particular, asymp-
totic expressions for Eµn(k) may reveal the presence or
absence of well known limiting expressions like Zipf ’s
law or Karlin–Rouault law (see, e.g., Baayen ; Karlin
; Rouault ). Also the central limit theorem (see
7Central Limit�eorems) for the mixed case is yet to be
established. At the moment of writing this article some
work on this was in progress (e.g., Khmaladze ;
Kvizhinadze and Wu ).
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A dummy variable is a binary variable that can take only
two values,  and . It is o�en used in the regression
model to incorporate qualitative (categorical) explanatory
variables, such as gender (male or female), marital status
(single or married), union membership (yes or no), etc. In
the above examples, the dummy variable can be de�ned to
take the value one if the observation relates to a male and
zero for a female (or vice versa), one for single and zero if
married, one for a union member and zero if a nonmem-
ber.�e dummy variable can then be used in a standard
regressionmodel like any other regressor (Green ). As
an example, if we are interested whether earnings are sub-
ject to gender discrimination, the simple regression model
can be de�ned as

Yi = α + βXi + γDi + εi ()

in which the regressand (Y) are earnings and the regressor
(X) is the working hours of an individual. In the model,
one dummy variable is introduced that takes the value one
(Di = ) if the ith individual ismale and zero (Di = ) if the
individual is female.�e parameter γ in Eq. () represents
the di�erence between the expected earnings of men and
women who work the same hours.
In general, the qualitative (categorical) variable can

have k classi�cations (categories).�e examples are ethnic-
ity (i.e., Hispanic, black, or white), region (north, south,
east, and west) in a study of salary levels in a sample of
highly educated employees or the e�ects of company size
(small, medium, or large) on wages. In such cases, in the
standard regression model (k − ) dummy variables are
required, one less than the number of classi�cations. In this
way, the dummy trap (perfect7multicollinearity when the
model cannot be estimated) is avoided. For example, when
analyzing the e�ects of company size on wages in which
there are three types of companies (small, medium, and
large), k = , two dummy variables are required in the
regression model. �us, the regression model () can be
extended to

Yi = α + βXi + γDMi + δDLi + εi ()

where the dummy variable DMi takes the value of one if
the ith individual works in a medium size company and
zero otherwise, while DLi takes the value of one if the ith
individual works in the large company and zero otherwise.
�e small company is taken as a reference category to
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which Eq. () applies.�e dummy variable for the refer-
ence category is not included. In Eq. (), the parameter
γ now represents the expected extra earnings of an indi-
vidual who works in medium size company relative to the
earnings of an individual in the reference category, i.e., in
a small company.
Dummy variables have many applications. For exam-

ple, with dummy variables one can treat seasonality in the
data or capture the e�ect of 7outliers (e.g., abrupt shi�s
in data). Furthermore, in the regression model, a dummy
variable can be used as a regressor variable for coe�cient
stability tests, for obtaining predictions or for imposing
cross-equation constraints (Maddala ). On the other
hand, a dummy variable as a regressand variable is used
in the linear probability model, logit model, and probit
model.
For more details on the topic, readers may refer to the

list of references.
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�e Durbin–Watson test is arguably, next to the method of
7least squares, the most widely applied procedure in all of
statistics; it is routinely provided by most so�ware pack-
ages and almost automatically applied in the analysis of
economic time series when a researcher is �tting a linear
regression model (see 7Linear Regression Models)

y = Xβ + u, ()

where y (T × ) and X (T × K, nonstochastic, rank K)
denote the vector of observations of the dependent and the
matrix of observations of K independent (regressor-) vari-
ables, respectively, β is aK× vector of unknown regression
coe�cients to be estimated, and u (T × ) is an unob-
servable vector of stochastic errors (disturbances, latent

variables) with mean zero and equal variances. In the case
of uncorrelated disturbances it is known from the7Gauss-
Markov-�eorem that the ordinary least squares estimator
β̂ for β, where β̂ = (X′X)−X′y is best linear unbiased
(BLUE) for β. In a time-series context, however, one o�en
suspects that the components ut of u might be correlated
with each other, so it is of much interest to test whether the
latter is indeed the case.
Due to the vastness of the alternative, there is no hope

that a uniformlymost powerful test exists (Anderson )
and one has to focus on more restricted alternatives.�e
one investigated by Durbin and Watson (, , )
stipulates that the ut ’s follow a stationary �rst order autore-
gressive process

ut = ρut− + єt (∣ρ∣ < , єi ∼ iid), t = , . . . ,T ()

so the correlation matrix V of u is given by

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

 ρ ρT−

ρ  ρT−

⋮ ⋮ ⋱ ⋮

ρT− ρt− 

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

()

and the null hypothesis boils down to H : ρ = .�e DW
test statistic is

d =

T

∑
t=

(ût − ût−)

T

∑
t=
ût

= û
′Aû

û′û
, ()

where û = y − Xβ̂ and

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

 − 

−  ⋱

⋱ ⋱ ⋱

⋱  −

 − 

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. ()

It is easily checked that  ≤ d ≤. With positive serial cor-
relation among the ut ’s, neighboring ut ’s and thus ût ’s will
tend to be close to each other, i.e., d will tend to be small.
On the other hand, when ρ is negative, d will be large. A
plausible two-sided test therefore rejects H whenever d
moves too far from , themid-point of its range. One-sided
tests will reject H whenever d is too small (H : ρ > ) or
too large (H : ρ < ).
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Before the era of modern computers, the usefulness
of this rule was compromised by the dependence of the
null distribution on the regressor matrixX. Given T andK
and selected signi�cance levels, Durbin and Watson pro-
vided upper and lower bounds for the critical values; no
conclusion was possible for a test statistic in between (the
“inconclusive range”). Today, exact prob-values are easily
available via some variant of the Imhof-algorithm ().
Also, there exist competitors like the Breusch ()–
Godfrey () test which do not require �xed regressors
or AR()-alternatives.

�e theoretical foundation for the DW test dates back
to Anderson (). He showed that whenever the distur-
bance vector u has density

f (u) = K exp [− 
σ 

(( + ρ
)u′u − ρu′ϕu)] , ()

where K is some constant and ϕ is a symmetric T × T
matrix, a uniformly most powerful test of H : ρ = 
against H : ρ >  is given by

û′ϕû

û′û
> k, ()

provided the columns of X are linear combinations of
eigenvectors of ϕ.�is result is linked to the DW test as
follows:�e inverse of Cov(u) is


σ u
V
− = 

σ є

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

 −ρ 

−ρ  + ρ ⋱

⋱ ⋱ ⋱

⋱  + ρ −ρ

 −ρ 

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

()

= 
σ 

є

[( + ρ)I − ρϕ − ρ(ρ − )C],

where

ϕ = 


⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

  

  ⋱

⋱ ⋱ ⋱

⋱  

  

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and C= diag(,,…,,). �us when we neglect the term
ρ( − ρ)C, the density of u is of the form (), and
from Anderson’s result, an UMP rejection region against
H : ρ >  is obtained from large values of û′ϕû/û′û.
Since A = I − ϕ, this is equivalent to rejecting whenever
d = û′Aû

û′ û
is too small.

A crucial condition for the approximate optimality of
the DW test is that the column space of X be spanned by
eigenvectors of ϕ. Much less is known about the power of
the DW test when this condition fails. In fact, the power
of the DW test can even drop to zero for certain regressors
(Krämer ).�is is so because for regressions without
an intercept, d tends to some constant d̄ as ρ → . If d̄ is
less than the critical level d⋆ corresponding to the given X
matrix and signi�cance level, the limiting power of theDW
test is , otherwise it is zero (neglecting the possibility that
d̄ = d⋆).
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Several de�nitions of econometrics exist, a popular exam-

ple being “Econometrics is the study of the application

of statistical methods to the analysis of economic phe-

nomena.” �e variety of de�nitions is due to econome-

tricians wearing many di�erent hats. First, and foremost,

they are economists, capable of utilizing economic theory

to improve their empirical analyses of the problems they

address. At times they are mathematicians, formulating

economic theory in ways that make it appropriate for sta-

tistical testing. At times they are accountants, concerned

with the problem of �nding and collecting economic data

and relating theoretical economic variables to observable

ones. At times they are applied statisticians, spending hours

with the computer trying to estimate economic relation-

ships or predict economic events. And at times they are

theoretical statisticians, applying their skills to the develop-

ment of statistical techniques appropriate to the empirical

problems characterizing the science of economics. It is to

the last of these roles that the term “econometric theory”

applies, and it is on this aspect of econometrics that most

textbooks on the subject focus.

�e workhorse of econometrics is the linear regres-

sion model (see 7Linear Regression Models), extended
in a wide variety of nonlinear ways. So, for example, the

log of wages might be regressed on explanatory variables

such as years of education and a dummy for gender, with

interest focusing on the slope of years of education, re�ect-

ing the return to investing in education, and the slope

of the gender dummy, measuring discrimination in the

labor market. Because this kind of empirical analysis is an

important element of traditional statistics, one might nat-

urally ask “How does econometrics di�er from statistics?”

�ere are two main di�erences between econometrics and

statistics.�e �rst stems from the fact that most economic

data come from the real world rather than from controlled

experiments, forcing econometricians to develop special

techniques to deal with the unique statistical problems

that accompany such data. �e second di�erence is that

econometricians believe that economic data re�ect strate-

gic behavior by the individuals and �rms being observed,

and so they employmodels of human behavior to structure

their data analyses. Statisticians are less willing to impose

this kind of structure, mainly because doing so usually is

not fully consistent with the data. Econometricians ignore

such inconsistencies, so long as they are not gross, to enable

them to address issues of interest. Some examples can illus-

trate these di�erences, the �rst four below resulting in

Nobel prizes for econometricians.

. Other things equal, females with young children earn

higher wages than females without young children.

Why? Females with children only appear in the labor

market if their wage is large enough to entice them

away from being a homemaker; this means that a sam-

ple of female wage earners is not a random sample

of potential female workers – other things equal, low-

wage earners are under-represented.�is self-selection

phenomenon causes bias in estimates of thewage equa-

tion, a bias that is of consequence because it narrows

the estimated discrimination gap between male and

female wages.

. Economics is all about people making choices in a

world of scarcity. People make choices (and thereby

produce data for the econometrician) by maximizing

an objective function. How do people choose which

transportation mode to use to commute to work? Eco-

nomic theory suggested addressing this question using

the random utility model in which people choose on

the basis of which option provides them with the

greatest utility. Viewing the problem this way greatly

enhanced the development of multinomial logit/probit

analyses, resulting in markedly superior predictions of

the ridership of the San Francisco bay area rapid transit

system, then under construction.

. For many years, in time series data it was thought

that it did not make sense to employ levels and �rst

di�erenced data in the same speci�cation, and statis-

ticians were careful to avoid doing this. But economic

theory suggested that a certain combination of levels

Miodrag Lovric (ed.), International Encyclopedia of Statistical Science, DOI ./----,

© Springer-Verlag Berlin Heidelberg 



 E Econometrics: A Failed Science?

data, representing an economic equilibrium position,

could be compatible with di�erenced data.�is con-

cept of cointegration has changed forever the way in

which time series analysis is undertaken.

. Why would we ever be interested in how volatile some

variable will be in the future? When pricing �nancial

instruments such as options such information is cru-

cial. An econometrician developed a way of address-

ing this problem, creating a major statistical industry,

referred to as ARCH, autoregressive conditional het-

eroskedasticity.

. Supply and demand curves are at the heart of economic

analysis.When we regress quantity on price how do we

know if the result is an estimated supply curve, an esti-

mated demand curve, or garbage (a linear combination

of the two)? To some the solution to this identi�ca-

tion problem in the late s marked the beginning of

econometrics as a separate discipline. (But to others the

founding of the Econometric Society and its journal

Econometrica in the early s marks the beginning

of econometrics.)

. �e interaction of supply and demand illustrates

another special feature of econometric work. Suppose

we are estimating a demand curve and suppose amount

demanded changes due to a bump in the error term in

the demand equation. �is shi�s the demand curve,

changes the intersection of the supply and demand

curves, and so changes price. A regression of quan-

tity on price produces biased estimates because the

explanatory variable price is correlated with the error

term in the demand equation.�is dilemmaof simulta-

neous equation bias is widespread, occurring whenever

variables feed back to one another. Instrumental vari-

able estimation, developed by econometricians, is a

way of avoiding bias in this context.

. When a sporting event is sold out, we don’t know

the actual demand for tickets; all we know is that the

demand was at least as big as the venue’s seating capac-

ity.When estimating the determinants of demandwhat

shouldwe dowith the observations on sold-out games?

Estimation in the context of such limited dependent

variables is another example of special estimation pro-

cedures developed by econometricians.

For a much more detailed overview of economet-

rics, including discussion of its historical development, see

Geweke et al. (). For both students and practitioners,

Kennedy () is a very popular source of information

on econometrics, o�ering intuition, skepticism, insights,

humor, and practical advice. Section ., beginning on p. ,

o�ers general commentary on “What is Econometrics?”

and provides further references.
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�e o�cial beginning of 7econometrics can be traced
to the �rst issue of Econometrica (), the journal
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dedicated to the “advancement of economic theory in its

relation to statistics and mathematics.”�is makes it clear

that the development of economic theory as a discur-

sive process is to be supplemented by quantitative anal-

ysis and that econometrics is a part of economics. �e

earliest major attempts at specifying and estimating eco-

nomic relationships include the famous – and to this day

used – Cobb-Douglas production function (), the �rst

macro-econometric models of Jan Tinbergen ( and

), and various unsuccessful attempts at estimating sup-

ply and demand functions in the s.

�e �rst systematic development of the mathematical

formulation of economic theory, without which rigorous

research in econometrics could not exist, is due to Paul

Samuelson’s Foundations of Economic Analysis ().�e

next step was the development of econometric methods

largely due to the work of the researchers at the Cowles

Commission at the University of Chicago (–).�e

resulting series of monographs included a solution to the

identi�cation problem that allowed separate estimations of

supply and demand functions. An irony of fate is that the

solution of the identi�cation problemwas provided already

by Tinbergen in an overlooked article written in German

and published in Vienna in .�e Cowles Commission

monographs laid foundation to the formulation and esti-

mation of simultaneous equationmodels that swamped the

econometric literature in the s and s. All of this led

W.C. Mitchell, one of the founders of the National Bureau

for Economic Research (NBER), to declare in  that “we

must expect a recasting of old problems into new forms

amenable to statistical attack.”

�e monographs of Cowles Commission would not

have made an impact on the profession of economics

and would not have led to the ensuing “scienti�c revolu-

tion” in economics – had they not given rise to a num-

ber of early popularizers who translated the sophisticated

and technical language of the monographs into a lan-

guage understandable to economists. Prominent among

these were Gerhard Tintner, Henri�eil, Lawrence Klein,

and Denis Sargan who carried the torch of econometric

enlightenment in the s and s.

�e subsequent two decades weremarked by the intro-

duction of the computer technology that enabled imple-

mentation of Monte Carlo experiments, formulation and

estimation of large macro-econometric models, handling

of large micro-data sets, and 7numerical integration of
Bayesian inference. Indeed, at a conference in Princeton in

 computers were reported to have been of only mod-

erate in�uence in various disciplines except economics.

Of course, the use of computers required an accessory

development of so�ware. In this context a breakthrough

was made by Harry Eisenpress who in  compiled a

program for computing maximum likelihood estimates of

the coe�cients of simultaneous equation models.

�e introduction of computer technology really helped

econometrics to take o�. �e macro-econometric mod-

eling e�orts were crowned by the Nobel Prize awarded

to Lawrence Klein in , the upsurge of micro-

econometrics culminated with the award of the Nobel

Prize to James Heckman and Daniel McFadden in ,

and the modern “time series revolution” was blessed by

the award of the Nobel Prize to Robert Engle and Clive

Granger in .

However, the golden years of econometrics were not

without criticism.Articles andbookswith ominous sound-

ing titles made an appearance that did not go unnoticed in

the profession. Following are some of the titles appearing

in the literature:

“Econometrics: Alchemy or Science?” (Hendry )

“Lets Take the ‘Con’ out of Econometrics” (Leamer )

“Data Mining” (Lovell )

“What Will Take the Con out of Econometrics” (McAleer

et al. )

“�e Foundations of Econometrics: Are �ere Any?”

(Swamy et al. )

Economics in Disarray (wiles and Routh )

�e Death of Economics (Ormerod )

�ere were several bases for these criticisms, one of

which was the poor speci�cation and forecasting perfor-

mance of econometricmodels.�e sharpest criticism came

from Sims () who declared that “among academic

macro-economists the conventional methods (of macro-

econometric modeling), have not just been attacked, they

have been discredited.” Sims’ response to the challenge was

the introduction of the vector-autoregressive (VAR)model

formulation (see 7Vector Autoregressive Models).
Another line of criticism, coming from David Hendry,

was about estimation being the focus of econometric prac-

tice. According to Hendry (), “what should have been

a relatively minor aspect of the subject, namely estima-

tion, has been accorded the centre of the stage…the three

golden rules of econometrics are test, test, test !”�e com-

monpractice of “datamining,” (see7DataMining) namely
trying di�erent model formulations until the estimated

parameters conform to the pre-judgment of the investi-

gator, also did not escape criticism. A sarcastic but �tting

description of this practice is due to Leamer () who

noted that “if you torture data long enough, Nature will

confess.”

Hendry () provided further elaboration of this

point by a cute example, “Econometricians have found

their Philosopher’s stone. It is called regression analysis

and it is used for transforming data into ‘signi�cant results’.
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Deception is easily practiced.” As an example, Hendry

came up with his own ‘theory of in�ation’ in which the

price level is a function of a variable C(t) and an auto

regressive disturbance, where C(t) is cumulative rainfall in

theUK.�e �t was spectacular, even better than ifC(t) was

replaced by the quantity of money.

Perhaps the most serious criticism was leveled against

the alleged meager contribution of econometrics to eco-

nomic knowledge. �e earliest criticism on this count

came from Leontief () who in his presidential address

declared that, “in no other �eld of empirical inquiry has so

massive and sophisticated statistical machinery been used

with such indi�erent results.” Blaug () elaborated on

this theme by stating that, “empirical work that fails utterly

to discriminate between competing explanations quickly

degenerates into a sort of mindless instrumentalism and it

is not too much to say that the bulk of empirical work in

modern economics is guilty on that score.”

�e “time series revolution” in econometric practice,

initiated by Engle and Granger in the s, does not help

in the direction of expanding economic knowledge either.

On the contrary the mechanistic modeling of time series

analysis pushes econometrics away from economics.�is

“revolution” is based on the contention – not rejected by

statistical tests – that many economic variables have in�-

nite variances, that is, that they grow without limit in time,

and thus observed relationships maybe purely �ctitious.

�e consoling fact is that while the variables themselves

have in�nite variances, typically the linear combinations

of their �rst di�erences may well have variances that are

�nite. However, there are some serious problems with the

way time series analysis is presented in the text books

and applied in research. With respect to the former, the

standard approach of teaching time series analysis ignores

completely the classical econometrics, whose basic foun-

dation is the regression model. A logical way would be to

explain which of the assumptions of the classical regres-

sion model are likely to be violated when dealing with

economic time series data. �is would then be followed

by discussion of the undesirable consequences of this on

the properties of the least squares estimators and what

to do about it. As it is, there is a complete disassociation

between classical econometrics and time series economet-

rics. A lack of connection between time series analysis and

economics as such is even more remarkable.�e standard

explanation of the long-run path of any economic vari-

ables as being purely determined by the passage of time

plus a stochastic disturbance, with no reference to eco-

nomic factors, is “primitive beyond words” (Kocenda and

Cerny ). As for the so-called “co-integration analysis,”

uncovering that certain economic variables move together

in stable relationships and looking for their economic

interpretation is in contrast to the traditional deductive

approach in which theory comes �rst and is followed by

testing.

A �nal bone of contention regarding econometrics are

the common results of empirical research that con�ict with

each other.�is was pointedly illustrated by Leamer ()

in his comments on the study of the deterrent of capital

punishment…“there was a great outpouring of papers that

showed that the results depend on (i) which variables are

included; (ii) which observations are included; (iii) how

simultaneity is treated, etc.”

�e source of failure of econometrics to satisfy its crit-

ics is undoubtedly due to, “a huge credibility gap between

economic theory, empirical evidence and policy prescrip-

tions” (Phillips ). �e fault is on both sides; on the

side of economic theorists as well as on the side of applied

econometricians. Most economic theorists do not allow

for the stochastic nature of the world, and most applied

researchers tend to be very casual about the stochastic

speci�cations of their models. Most of the work of eco-

nomic theorists deals with deterministic models, while

most of the applied workers treat the stochastic distur-

bance in their models as an a�erthought barely worth

mentioning. �ere are exceptions, of course, and they

should be appreciated. In the �eld of micro-economics,

the shining example of stochastic consciousness are the

labor economists, while in the �eld of macro-economics

the orchid goes to the dynamic stochastic general equi-

librium models (DSGE), the modern successors of the

simultaneous equation models of yesterday. On the whole,

though, the gap between economic theory and empirical

research is daunting. To rescue the reputation of econo-

metrics and to “advance economic theory in relation to

statistics and mathematics” it is, in my opinion, abso-

lutely necessary for economic theory and econometrics

to merge. �ere should be no separation between eco-

nomic theory and econometrics as it by and large exists

today.
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Access to well-developed, cross-cutting, high-quality

shared information is a basic need of an e�ective democ-

racy.�e more information people have about economic

and social conditions and trends in their countries, the bet-

ter able they are to demand from politicians policies that

improveeconomicgrowthanddevelopment.Another issue

is the public’s trust in its government. If people don’t believe

the �gures that their o�cial statistical bodies produce, they

are likely to lose trust in government as a whole, which can

have a negative impact on the democratic process.

So, the challenge is avoiding a gap between the o�-

cial statistics on economic performance and the public’s

perception of their own living conditions. Such a gap has

been evident over a long period in many countries around

the world, but it is especially the case for the developing

countries. Possible reasons for the gap between the o�-

cial statistics and people’s perceptions aremisuse of certain

statistics or the poor quality of o�cial statistics.

Misuse of Certain Statistics
Statistical data produced for one purpose may not be

appropriate for other purposes. A good example is gross

domestic product (GDP), which tells us a nation’s total

income and the total expenditure on its output of goods

and services and mainly is a measure of market produc-

tion. GDP is not well suited as a metric of well-being, but

it has been increasingly used for this purpose. GDP fails

to capture such factors as unpaid work of households, dis-

tribution of income among the population groups, and

depletion of resources, which creates a problem in using

GDP (or GDP per capita) as an indicator of well-being. For

example, if inequality in income distribution among pop-

ulation groups increases enough relative to the increase in

average GDP per capita, thenmost people will be worse o�

even though average income is increasing. Or, if the num-

ber of cars drastically increases, then GDP goes up, but it
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also leads to tra�c jams and an increase in air pollution. In

these examples, from the public’s perspective, an increase

in GDP does not improve their quality of life at all. For

these reasons the original architects of the United Nations

System of National Accounts (SNA) knew that well-being

could not be measured by national income alone.

Low Quality of Official Statistics
Developing countries are more likely to produce o�-

cial statistics of lower quality. Due to economic di�cul-

ties, developing countries struggle with making signi�cant

investments to develop statistical systems that are able to

produce, using internationally recognized methodologies,

a whole set of necessary indicators of economic and social

progress.

�e quality of o�cial statistics might also be low

because existing methodologies are imperfect. For exam-

ple, consider how well statisticians can measure a non-

observed, or shadow, economy.�e economy of any coun-

try consist of two parts, observed and non-observed.�e

share of non-observed (shadow) economy in the GDP can

be signi�cant, especially in developing countries (up to

% and higher). Also, it is well known that, in develop-

ing countries, many city-dwellers and internal migrants

from rural areas are able to survive only because of their

employment in the non-observed economy. �erefore, it

is not possible to ignore a measure of non-observed econ-

omy in terms of both economic growth and development

(well-being). It has to be separately estimated (measured)

and then included in the country’s GDP.�ere are several

methodologies, based on di�erent approaches, for mea-

surement of the non-observed economy: conducting sur-

veys of households on production of goods and services

in the non-observed economy, labor force surveys, anal-

ysis of cash operations, analysis of electricity supply, and

so on. But the problem is that all of the existing method-

ologies formeasurement of the non-observed economy are

not as good as those for the observed economy, and they

should be improved signi�cantly.�e same criticism can

applied to the statistical data on services, which should be

improved as well.

What Should Be Done?
Statistical indicators for economic performance, although

they are well developed, need to be improved in order to

provide accurate monitoring of the evolution of modern

economies (Stiglitz et al. ). Evolution toward a more

complex economy means the growth of the share of ser-

vices and production of a more complex quality of goods.

�e “Going beyondGDP” strategy is very promising as

a better measure of societal well-being, quality of life, and

progress. “Going beyond GDP” does not mean dismissing

GDP and production measures. It means complementing

GDP with statistics on which people’s well-being critically

depends.

Well-being is multidimensional and includes not just

economic but also social, environmental, and governance,

and, as mentioned in (Stiglitz et al. ), the following

dimensions should be considered simultaneously:

. Material living standards (income, consumption, and

wealth)

. Health

. Education

. Personal activities including work

. Political voice and governance

. Social connections and relationships

. Environment (present and future conditions)

. Insecurity, of an economic as well as a physical nature

Real implementation of the “Going beyond GDP” strategy

is a huge challenge for statisticians, and it likely requires a

shi� in emphasis frommeasuring economic production to

measuring people’s well-being.

Ideally, national accounts of well-being should be

developed for the successful monitoring of social progress,

as is already done for monitoring of economic progress

(Michaelson et al. ). Forty-eight indicators of the Mil-

lenniumDevelopment Goals (MDG), in combinationwith

the indicators of SNA, could be a good basis for construc-

tion of the national accounts of well-being.

How can developing countries improve their statistical

products? International organizations and well-developed

countries could play a key role. Strengthening the statis-

tical capacities should become an important part of their

programs of support for developing countries.
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Introduction
In this article, we regard economic statistics as a branch

of applied statistics which deals with the following topics:

() collection of statistics on socioeconomic conditions, ()

compilation of surveys and registered records to produce

various economic indicators, such as consumer price index

or GDP, () evaluation of economic indicators from the

viewpoint of reliability.

Economic statistics is closely related to o�cial statis-

tics, since most of the statistics of the society and economy

are provided by o�cial organizations like national statis-

tical o�ces or intergovernmental organizations such as

United Nations, OECD, and World Bank. On the other

hand, economic statistics is di�erent from econometrics in

a narrow sense. Typically, objective of econometrics lies in

developing the theory and its applications to various eco-

nomic data. In contrast, economic statistics places more

emphasis on quality of data before applying sophisticated

methods to analyze them. In other words, we are more

interested in appropriate interpretation of the data paying

attention to their detailed characteristics.

Here, we describe some typical issues from economic

statistics: censuses, sample surveys, index numbers, system

of national accounts, followed by an illustrative example.

Censuses – Complete Enumeration
Consumers and producers consist of two major compo-

nents in economics. Correspondingly, two fundamental

information of economic statistics are () population and

households, and () �rms and establishments. U.S. Cen-

sus Bureau, http://www.census.gov/econ/, provides de�-

nitions of �rms and establishments among other related

concepts.

To construct reliable statistics on these subjects, the

complete enumeration is required. A 7census is the pro-
cedure of collecting information about all members of a

population. In many countries, population censuses are

carried out periodically. In contrast, information of �rms

and establishments are obtained either by statistical sur-

veys (so-called economic censuses) or by registered infor-

mation collected through some legal requirement.

�e complete enumeration is necessary to provide

accurate information for small areas. In planning the loca-

tion of elementary schools, hospitals or care agencies for

elderly people, local governments need information for

small areas. If the censuses or registration records provide

accurate information, local governments can depend on

them in making important policies.

Another role of the census is that it provides a list of

households or �rms/establishments. Such a list is used as

the sampling frame, and it plays an essential role in many

sampling surveys described in the next section. In this

sense, inaccurate censuses, or administrative records that

are out of date, reduces the reliability of sample surveys,

and eventually increase social costs.

For household surveys, e�cient sampling designs, such

as strati�ed sampling, become di�cult if accurate sam-

pling frame is not available. �e inaccurate sampling

frame can sometimes cause extremely biased estimates for

business surveys due to frequent entry/exit behavior of

�rms/establishments. An example is given later.

Sample Surveys
Since economic conditions vary dynamically, we need

monthly or quarterly indicators, such as consumer price

index or industrial production index.�ese statistics have

to be compiled from sample surveys on households and/or

establishments.�erefore, the accuracy of sampling survey

is crucial in maintaining reliability of economic indicators.

Major factors that a�ect performance of the estimators are:

sampling design (e.g., simple random sampling, strati�ed

sampling, cluster sampling, etc.) and estimation methods

(e.g., linear estimator, ratio estimator, regression estimator,

etc.). See Cochran (), Groves et al. (), Lesser and

Kalsbeek (), and Särndal et al. () for detail.
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�e auxiliary information available from censuses are

used to set up appropriate strata, or to apply a ratio estima-

tion, resulting in more e�cient and inexpensive surveys.

An example of ratio estimator is to use the size of popula-

tionwho are older than  years (Y) to estimate the number

of employees (X). Let the sample means are x̄ and ȳ in a

sample of size n from a population of sizeN. In case of sim-

ple random sampling, the linear estimator is X̂ = Nx̄. On
the other hand, if population Y is obtained from a census

and additional registration records, then the ratio estima-

tor de�ned by X̂r = Y(x̄/ȳ) can be applied. Since X and Y
are correlated, X̂r has a smaller variance than X̂.

More important and di�cult task is that we need to

evaluate the non-sampling errors, such as nonresponse

caused by many reasons, possible bias from a deterio-

rated sampling frame, etc. In the example above, the ratio

estimator may become worse if Y is incorrectly measured.

As for business surveys, about % of establishments

start business and another % shut down annually in case

of Japan. It is clear that maintaining accurate list of estab-

lishments is vital for high quality of economic statistics.

Index Numbers
7Index numbers are widely used to compare levels and
evaluate changes of economic variables over time or among

regions (see Schultze and Mackie ; ILO ). Typi-

cally, the base value equals , but it can be other values.

For example, the real GDP can be regarded as a quantity

index, if we choose its base value as the nominalGDPof the

base year. Most o�en, index numbers are used to compare

economic variables, such as unemployment or prices, over

time. In some cases, however, index numbers may com-

pare geographic areas at a speci�c time. Such an example

is the purchasing power parity, which is an international

comparison of prices among countries.

As for price index and quantity index, the most well-

known formulas are Laspeyres, Paasche, and Fisher. If we

deal with i = , . . . ,n commodities (goods or services),
we need to collect data of prices pit and quantities qit at

time t.�en the three price indexes (base period is t = )
are de�ned as Laspeyres: PL = ∑ pitqi/∑ piqi, Paasche:
PP = ∑ pitqit/∑ piqit , and Fisher: PF =

√
PLPP. Similarly,

quantity indexes are de�ned by interchanging p and q in

the de�nitions.

�ese formulas are, however, too super�cial for practi-

cal purposes. In calculating consumer price index (CPI),

national statistical o�ces of developed countries adopt

much more complicated methods using vast amount of

related data. �e price of a speci�c merchandize (a pack

of milk, for example) varies among stores and areas. More-

over, there are several kinds of milk that consumers pur-

chase in a given period.�e observed prices are averaged

by some method before the price is used as pit in an index

formula like Laspeyres. Hence, we should review and eval-

uate the appropriateness of the speci�c method employed.

�e judgment also depends on the data collection proce-

dure of prices and weights, which varies among national

statistical o�ces.

Since CPI has a rigorous background in economic the-

ory, there is a good amount of reference, including the

de�nition of the true index number. Helped by the theory,

some statistical o�ces provide, although approximately,

the superlative price index, which has enhanced the relia-

bility of CPI.

In other applications of index numbers, however, the

interpretation cannot be so exact, and the quality of an

index is judged by coverage of commodities and reliability

of data sources used in calculating the index. For example,

the Bank of Japan publishes a monthly price index called

Corporate Goods Price Index (CGPI). It is a Laspeyres

price index, but the prices are mixtures of producers prices

and wholesale prices.�us, despite the title, experienced

economists do not regard summary CGPI (for all com-

modities) as a price index but an indicator of business

activities. On the other hand, since the data collection

process guarantees high reliability of CGPI data, collected

prices are quite important for many o�cial statisticians to

calculate other statistics involving prices.

System of National Accounts
�e purpose of the United Nations System of National

Accounts (SNA) is to provide an integrated accounts

of signi�cant economic activities to make international

or temporal comparisons possible (Lequiller and Blades

). �e most important implication of SNA to eco-

nomic statistics is that the system provides the concep-

tual and actual basis to judge and achieve coherence

among all statistical sources available in a country. In this

sense, national accounts are the core of modern economic

statistics.

Since the data from national accounts are so rich and

full, it is not easy for economists to understand the whole

system. To make things more complicated, some impor-

tant changes have been made in the new version called

SNA  followed by a revision (SNA ). �e dif-

ference from the earlier version becomes quite important

for drawing meaningful analytical conclusions when we

are interested in making in�ation forecasts or in assessing

economic growth capabilities.
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Rigorously speaking, the national accounts system

adopted by national statistical o�ces di�er in some extent

from country to country.�erefore, we need to make sure

whether the di�erential in economic growth observed in

the s between the United States and the European

Union is real or not.�e answer is that it just re�ected the

di�erent treatment of prices of the products for informa-

tion and communication technology (ICT), where rapid

technical changes have been taking place.

�e quality of national accounts depends heavily on

the statistical system of the country. To be more speci�c,

GDP and other national accounts are not the result of a

single survey, but the result of combining a mixture of

various data from many sources. Since it is practically

impossible for national accounts to cover all units in a

country, a signi�cant number of adjustments has to be

made. In the process of adjusting those data to achieve

coherence with SNA, quite o�en, some obscure meth-

ods are applied. Hence, it is quite di�cult to obtain a

formal assessment on the accuracy of the GDP, and an

attempt to construct an interval estimation is almostmean-

ingless. National accounts should be regarded at best as

approximations.

Another current issue is increasing publication of quar-

terly accounts in many countries. One of the essential

objectives of economic statistics is to provide appropri-

ate information to policy-makers at the right moment. In

particular, it is requested to provide the newest informa-

tion regarding the business cycle. In this context, tradi-

tional annual national accounts are not useful, and the

demand for quarterly accounts has been increasing. �e

availability and the reliability of the statistics or admin-

istrative records is the key to reliable quarterly GDP,

but in some countries, even monthly GDP are com-

piled by national statistical o�ces or by private research

institutions.

Today, it is well-known that GDP is not a single mea-

sure of well-being, and it has many drawbacks. Yet, GDP

remains to be the most important economic statistics as

it de�nes a standard. To conclude, we should be aware of

the usefulness and limitations of GDP and other economic

statistics.

An Example
In this section, we describe some issues in the statistics

of corporation. Refer to Yoshizoe et al. () for a more

detailed description.

�e Japanese Ministry of Finance publishes Financial

Statement Statistics of Corporations by Industry consisting

of Annual Survey and Quarterly Survey, whose accuracy

is vital for the government to judge the current economic

situation. �e large-scale corporations are quite few in

number (the population ratio is .%), but their in�uence

is predominant (.% in sales, .% in pro�t, and .%
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in �xed assets, in ). Nevertheless, trends of small-scale

corporations are also important, especially in economic

forecasts.

One of the problems is that some statistics related to

small-scale corporations occasionally show unnatural pat-

terns. Figures  and  show “�xed assets per corporation”

of all corporations and those of large-scale corporations,

respectively. Figure  indicates considerable drops each

year from January–March period toApril–June period. On

the other hand, Fig.  for large-scale corporations (enu-

merated completely) does not show noticeable drops. We

found out that the gaps in Fig.  was caused by the sampling

design.

Since the response burden is rather heavy for small cor-

porations, sample corporations are replaced a�er a year.

�us, newly sampled corporations start to respond to the

questionnaires in April–June period. During the survey

period (one year), some corporations go out of business

and drop out of the survey. On the other hand, newly

established corporations which start operating in that year

cannot be included in the survey until the new list of

corporations becomes available. �e fact that these new

entrants are usually smaller in size means that in Quar-

terly Survey, the corporations that survive and respond

throughout the survey period tend to have better business

performance than average.�is in turn implies that, in the

sample, indicators such as �xed capital per corporationwill

gradually have upward bias from April–June to January–

March in the next year. When corporations are selected

from the new list which becomes available inApril, the new

sample represent the population more appropriately.�us,

the sampling design explains a major portion of the gaps

in the statistics.

We also examined the way corporations provide �nan-

cial statements as another possible source of the gap.

While large-scale corporations prepare quarterly state-

ments, most small-scale corporations only prepare annual

statements re�ecting the di�erence of legal requirement.

Moreover, it is o�en said that interim �nancial results are

systematically di�erent from the �nal �nancial statement

even for large corporations. If we look at Fig.  carefully,

we can �nd occasional gaps from January–March to April–

June. �e di�erence between provisional settlement of

account and the �nal statement explains the gaps for larger

corporations, hence a similar systematic behaviormay par-

tially explain the gaps of small-scale corporations. Further

analyses and possible solutions for the gap problem can be

found in the reference given above.
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Introduction
In many statistical problems, for example, hypothesis

testing and con�dence region estimation, it is necessary

to know the distribution functions of statistics of inter-

est. When they are not exactly known, one might like

to have an approximation of the unknown distribution

as accurately as possible. One of the possibilities is the

normal approximation. However, it is proved that normal

approximation has an unimprovable rate of O(n−/) . To
obtain a more accurate approximation for the distribution

function, Fn, of a random variable Xn, Chebyshev ()

expanded the function ψ(t)/ϕ(t) (de�nition given below)
into a power series of (it) and obtained a formal asymp-
totic expansion of Fn. Edgeworth (, ) expanded

χ(t,u) into a power series of u and then, by setting u = ,
obtained another formal expansion that is equivalent to a

rearrangement of the Chebyshev expansion. Although the

two are equivalent in the sense of formal expansion, the

Edgeworth expansion (EE) provides an optimal approx-

imation when only a �nite number of moments of Xn
exist.

Formal Expansion
Suppose that all moments of Xn exist and additionally all

cumulants (also called semi-invariants) νnk of Xn exist. In

this case, the characteristic function ofXn can be written as

ψn(t) = exp(
∞
∑
r=

νnr(it)r

r!
) = ϕ(t) exp(

∞
∑
r=

νnr(it)r

r!
) ,

where ϕ(t) = exp (−iµt − tσ 


), µ = νn and σ  = νn. In

applications, the parameters µ and σ  are independent of

n and νnr , r ≥ , has the order of n−(r−)/.
Expand exp (∑∞r=

νnr(it)rur−
r!

) into a power series in u:

χ(t,u) = exp(
∞
∑
r=

νnr(it)rur−

r!
) =  +

∞
∑
j=
pnj(it)uj, ()

where pnj(x) is a polynomial with powers of x ranging
between j +  and j and coe�cients depending on the
cumulants νnr , r = , , . . . , j + . Some examples:

pn(it) =
(it)νn


, pn(it) =
(it)νn


+ (it)νn


, pn(it)

= (it)νn


+ (it)νnνn


.

Di�erentiating r times with respect to x both sides of

the formula 

π ∫ e
−itxe−t

/dt = √
π
e−x

/ ≡ φ(x), the
density of the standard normal variable, we have



π
∫ (it)re−itx−t

/
dt = (−)r d

r

dxr
φ(x) = Hr(x)φ(x),

where Hr is the r-th Chebyshev–Hermitian polynomial.

From this, one can easily derive that the inverse Fourier

transform of (it)r exp(itµ − tσ /) is σ−rHr ((x − µ)/σ)
φ ((x − µ)/σ).
Write pnj(it) = ∑jr=j+ bnr(it)

r
. By noting that

ψn(t) = ϕ(t)
⎛
⎝
 +

∞
∑
j=
pnj(it)

⎞
⎠
,

the distribution function of Xn can be written as

Fn(x) = Φ (x − µ
σ

) −
∞
∑
j=
Qnj (

x − µ
σ

) φ (x − µ
σ

) ,
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where Qnj(x) = ∑jr=j+ bnrσ
−rHr−(x).�is is called the

formal Edgeworth expansion (FEE) of Fn(x).�e �rst suc-
cess of rigorous theory was done by Cramér ().

Validity of Edgeworth Expansion
�e FEE may not be valid in three senses: () in real appli-

cations, not all orders of moments exist and thus the FEE

is not well-de�ned; () even if all terms of FEE are well-

de�ned, the series may not converge; and () the equality

may not be true even if the series converges. To this end,

one needs to establish a valid approximationwhen only the

�rst k (k ≥ ) moments are �nite. In this case, all terms Qj,
j ≤ k −  in the FEE are well-de�ned and thus, our task
reduces to establishing error bounds for

Rn(x) = Fn(x)−
⎡⎢⎢⎢⎢⎣
Φ (x − µ

σ
) −

k−
∑
j=
Qj (

x − µ
σ

) φ (x − µ
σ

)
⎤⎥⎥⎥⎥⎦
.

()

If the error bound for Rn(x) is given by the form Kg(n, k),
the bound is then called a uniform estimation; if the bound

is of the form Kg(n, k)( + ∣x∣)−k, the bound is then called
a nonuniform estimation, where K is an absolute constant

and g(n, k) →  describing the order of the convergence.
�e quantity in the brackets is called the (k − )-term EE
of Fn(x) or Xn.

Sum of Independent Random Variables
Suppose that for each n, {Xnj, j = , , . . . ,n} is a sequence
of random variables withmeans , variances σ nj, �nite k-th

moments and 7characteristic functions vnj(t) satisfying

lim sup
∣t∣→∞

sup
n



n

n

∑
j=

∣vnj(t)∣ <  ()

(called the Cramér condition), then for the distribution

function Fn(x) of Sn = B−n ∑nj= Xnj, we have

∣Rn(x)∣ ≤ B
⎛
⎝
∑nk= E∣Znjx∣

k

Bkn( + ∣x∣)k
+
∑nj= E∣Wnjx∣k+

Bk+n ( + ∣x∣)k+
⎞
⎠
,

where Bn = ∑nj= σ nj, Znjx = XnjI(∣Xnj∣ > Bn( + ∣x∣) and
Wnjx = XnjI(∣Xnj∣ ≤ Bn(+ ∣x∣). If the r-cumulants of Xnj is
denoted by νjr , then the cumulants of Sn is given by µ = ,
σ  =  and for r ≥ , νnr = B−rn ∑nj= νjr .

When the random variables are independent and iden-

tically distributed (IID) with mean  and variance σ  and

r-th cumulant νr , we have νnr = n−(r−)/νr/σ r and thus

Qnj(x) = n−j/qj(x) the EE of Fn.

Function of Sample Means
Suppose that {Y, . . . ,Yn} is a sequence of iid random
m-vectors with mean vector µ, covariance matrix Σ and

�nite k-th moment. Assume the functionH de�ned on Rm

is k− times continuously di�erentiable in a neighborhood
of µ. By the Taylor expansion of H(Ȳ), one has

√
n (H(Ȳ) −H(µ)) =

k−
∑
r=

√
n

r!
∑

i+⋯+im=r
li ,. . .,im

m

∏
j=
ij!(Ȳ(j) − µ(j))

ij + Rk, ()

where li ,. . .,im = ∂rH(µ)
∂µ
i
()
⋯∂µ im

(m)

, Ȳ(j) and µ(j) are the j-th

components of Ȳ and µ, respectively. If the cumulants are
de�ned by those of the �rst term on the right-hand side of

Eq. (), then the (k−)-term EE for
√
n(H(Ȳ)−H(µ)) is

valid with a uniform bound o(n−(k−)/) if σ  >  and the
Cramélr condition

lim sup
∥t∥→∞

∣Eeit
′Y ∣ < , ()

holds, where σ  = ℓ′Σℓ and the j-th component of ℓ is
∂H(µ)
∂µj

.

Partial Cramér Condition
Condition () may not hold when Y contains a discrete
component and the moment condition may not be mini-

mal when some component of ℓ is . To this end, we have
the following theorem.

�eorem  �e (k − )-term EE of
√
n (H(Ȳ) −H(µ))

is valid with a uniform bound o(n−(k−)/) if the following
conditions hold:

() �e following partial Cramér condition holds

lim sup
∣t∣→∞

E∣E(eitY() ∣Y(), . . . ,Y(m))∣ < .

() �ere is an integer p<m such that ℓ ≠  and

l,. . .,,ip+ ,. . .,im = , provided ip+ + ⋯ + im ≥ , where
ℓ is the �rst component of ℓ.

() E∣Y(j)∣k <∞ for j = , . . . , p and E∣Y(j)∣k/ <∞.

Cornish–Fisher EE
For a constant α ∈ (, ), denote by ξ = ξn,α and z = zα

the quantiles of Fn and Φ ( z−µ
σ

), respectively. In view of
the EE of Fn, one may expect ξ can be approximated by z

of the form

ξ = z +
k−
∑
j=

ηn,jn
−j/ + o(n−(k−)/), ()

which is called the Cornish–Fisher EE of quantiles. Indeed,

the coe�cients ηn,j can be determined by submitting ()
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into the valid EE of Fn, that is,

Fn(ξ) = Φ ( ξ−µ
σ

) −∑k−j= Qn,j (
ξ−µ

σ
) φ ( ξ−µ

σ
) + Rn.

As an example, for the iid case with µ =  and σ = , we
give expressions of the �rst three ηj as follows

η =



ν(z − ), η =

ν


(z − z) − ν


(z − z)

η =
ν


(z − z + ) − νν


(z − z + z)

+ ν


(z − z + ).
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�e term e�ect modi�cation has been applied to two dis-

tinct phenomena. For the �rst phenomenon, e�ect modi-

�cation simply means that some chosen measure of e�ect
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varies across levels of background variables. �is phe-

nomenon is thus more precisely termed e�ect-measure

modi�cation, and in the statistics literature is more o�en

termed heterogeneity or “interaction” (Greenland et al.

), although “interaction” is more o�en used as a syn-

onym for a product term in a regression model (see Inter-
action). For the second phenomenon, e�ect modi�cation
means that the mechanism of e�ect di�ers with back-

ground variables, which is known in the biomedical lit-

erature as dependent action or (again) “interaction.” �e

two phenomena are o�en confused, as re�ected by the

use of the same terms (“e�ect modi�cation” and “inter-

action”) for both. In fact they have only limited points of

contact.

Effect-Measure Modification
(Heterogeneity of Effect)
To make the concepts and distinctions precise, suppose

we are studying the e�ects that changes in a variable X

will have on a subsequent variable Y , in the presence of

a background variable Z that precedes X and Y . For exam-

ple, X might be treatment level such as dose or treatment

arm, Y might be a health outcome variable such as life

expectancy following treatment, and Z might be sex ( =

female,  = male). To measure e�ects, write Yx for the out-

come one would have if administered treatment level x of

X; for example, if X =  for active treatment, X =  for
placebo, then Y is the outcome a subject will have if X = 
is administered, and Y is the outcome a subject will have

if X =  is administered.�e Yx are o�en called potential
outcomes (see Causation and causal inference).
One measure of the e�ect of changing X from  to 

on the outcome is the di�erence Y − Y; for example, if Y
were life expectancy, Y − Y would be the change in life
expectancy. If this di�erence varied with sex in a system-

atic fashion, one could say that the di�erence wasmodi�ed

by sex, or that there was heterogeneity of the di�erence

across sex. Another common measure of e�ect is the ratio

Y/Y; if this ratio varied with sex in a systematic fashion,
one could say that the ratio was modi�ed by sex.

For purely algebraic reasons, two measures may be

modi�ed in very di�erent ways by the same variable. Fur-

thermore, if bothX andZ a�ectY , absence ofmodi�cation

of the di�erence impliesmodi�cation of the ratio, and vice-

versa. For example, suppose for the subjects under study

Y =  and Y =  for all the males, but Y =  and
Y =  for all the females.�en Y − Y =  for males
but Y − Y =  for females, so there is -year modi�-
cation of the di�erence measure by sex. But suppose we

measured the e�ects by expectancy ratios Y/Y, instead
of di�erences. �en Y/Y = / =  for males and

Y/Y = / =  for females as well, so there is no
modi�cation of the ratio measure by sex.

Consider next an example in which Y =  and Y =
 for males, and Y =  and Y =  for females.�en
Y − Y =  for both males and females, so there is no
modi�cation of the di�erence by sex. But Y/Y = / =
 for males and Y/Y = / = . for females, so there
is modi�cation of the ratio by sex.

Finally, suppose Y =  and Y =  for males, and
Y =  and Y =  for females.�en Y − Y =  for
males and Y − Y =  for females, so the Y-di�erence
is smaller among males than among females. But Y/Y =
/ =  for males and Y/Y = / = . for females,
so the Y-ratio is larger among males than among females.

�us, modi�cation can be in the opposite direction for

di�erent measures of e�ect.

Biological Interaction
�e preceding examples show that one should not in

general equate the presence or absence of e�ect-measure

modi�cation to the presence or absence of interactions

in the biological (mechanistic) sense, because e�ect-

measure modi�cation depends entirely on what measure

one chooses to examine, whereas the mechanism is the

same regardless of that choice. Nonetheless, it is possi-

ble to formulate mechanisms of action that imply homo-

geneity (no modi�cation) of a particular measure. For

such a mechanism, the observation of heterogeneity in

that measure can be taken as evidence against the mecha-

nism (assuming of course that the observations are valid).

It would be fallacious however to infer the mechanism

is correct if homogeneity was observed, because many

other mechanisms (some unimagined) would imply the

observation.

A classic example is the simple “independent action”

model for the e�ect of X and Z on Y , in which subjects

a�ected by changes in X are disjoint from subjects a�ected

by changes in Z (Greenland and Poole ; Weinberg

).�is model implies homogeneity (absence of modi-

�cation by Z) of the average X e�ect on Y when that e�ect
is measured by the di�erence in the average Y . In partic-

ular, suppose Y is a disease indicator ( if disease occurs,

 if not).�en the average of Y is the proportion getting

disease (the incidence proportion, o�en called the risk)

and the average Y di�erence is the risk di�erence. �us,

in this context, the independent action model implies that

the risk di�erence for the e�ect of X on Y will be constant

across levels of Z; in other words, the risk di�erence will be

homogeneous across Z, or unmodi�ed by Z.

If both X and Z have e�ects, this homogeneity of the

di�erence forces ratio measures of the e�ect of X on Y
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to be heterogeneous across Z. When additional factors

are present in the model (such as confounders) homo-

geneity of the risk di�erences can also lead to hetero-

geneity of the excess risk ratios (Greenland a).�us,

under the simple independent action model, the indepen-

dence of the X and Z e�ects will cause the measures other

than the risk di�erence to be heterogeneous, or modi�ed,

across Z.

Biological models for the mechanism of X and Z inter-

actions can lead to other patterns. For example, certain

multistage models in which X and Z act at completely

separate stages of a multistage mechanism can lead to

homogeneity of ratios rather than di�erences, as well

as particular dose–response patterns. Special caution is

needed when interpreting observed patterns, however,

because converse relations do not hold: Di�erent plausi-

ble biological models may imply identical patterns of the

e�ect measures (Moolgavkar ).

Synergism and Antagonism
Taking the simple independent-actionmodel as a baseline,

one may o�er the following dependent-action de�nitions

for an outcome indicator Y as a function of the causal

antecedents X and Z. Synergism of X =  and Z =  in
causing Y =  is de�ned as necessity and su�ciency of
X =  and Z =  for causing Y = , i.e., Y =  if and
only if X =  and Z = . We also may say that Y =  in
a given individual would be a synergistic response to X = 
and Z =  if Y =  would have occurred instead if either
X =  or Z =  or both. In potential-outcome notation
whereYxz is an individual’s outcomewhenX = x andZ = z,
this de�nition says synergistic responders have Y =  and
Y = Y = Y = . Antagonism of X =  by Z =  in caus-
ing Y =  is de�ned as necessity and su�ciency of Z =  in
order for X =  to cause Y = .�is de�nition says antago-
nistic responders to X or Z have Y =  or Y =  or both,
and Y = Y = .
With these de�nitions, synergism and antagonism are

not logically distinct concepts, but depend on the coding

of X and Z. For example, switching the labels of “exposed”

and “unexposed” for one factor can change apparent syn-

ergy to apparent antagonism, and vice-versa (Greenland

et al. ; Greenland and Poole ). �e only label-

invariant property is whether the e�ect of X on a given

person is altered by the level of Z, i.e., the action of X

is dependent on Z. If so, by de�nition we have biological

interaction.

Absence of any synergistic or antagonistic interaction

among levels of X and Z implies homogeneity (absence

of modi�cation by Z) of the average X e�ect across lev-
els of Z when the X e�ect is measured by the di�erences

in Y across levels of X (Greenland and Poole ; Green-

land b).�e converse is false, however: Homogeneity

of the di�erence measures (e.g., lack of modi�cation of

the risk di�erence) does not imply absence of synergy or

antagonism, because such homogeneity can arise through

other means (e.g., averaging out of the synergistic and

antagonistic e�ects across the population being examined)

(Greenland et al. ; Greenland and Poole ).

A more restrictive set of de�nitions is based on the

su�cient-component causemodel of causation (Greenland

et al. ; Rothman ; VanderWeele and Robins ).

Here, for two binary indicators X and Z, synergism of the

e�ects of X =  and Z =  is de�ned as the presence of
X =  and Z =  in the same su�cient cause of Y = ,
i.e., the su�cient cause cannot act without both X =  and
Z = . Similarly, antagonism of the X =  e�ect by Z = 
is de�ned as the presence of X =  and Z =  in the same
su�cient cause of Y = .�ese de�nitions are also coding
dependent.

Extensions to Continuous Outcomes
�e use of indicators in the above de�nitions may appear

restrictive but is not. For example, to subsume a continu-

ous outcome T such as death time, we may de�ne Yt as the

indicator for T ≤ t and apply the above de�nitions to each
Yt . Similar devices can be applied to incorporate contin-

uous exposure variables (Greenland b).�e resulting

set of indicators is of course unwieldy, and in applica-

tion has to be simpli�ed by modeling constraints (e.g.,

proportional hazards for T).
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In general, an e�ect size (ES) measures the extent parame-

ters di�er or variables are related. E�ect-size methodology

is barely out of its infancy and yet the e�ect size has already

been proclaimed as the statistical coin of the realm for the

st century. It was primarily due to the diligence of Cohen

(, , , ) that the role and importance of

the ES has attained great prominence in 7power analysis,
statistical analysis, and product and program evaluation.

�e raw score di�erence may be a naïve ES measure in

the context of a two independent samples layout consisting

of a treatment and control group when the intervention is

modeled as shi� in location. It cannot always be prudently

used to assess the magnitude of an intervention, or for that

matter even a naturally occurring phenomenon, if arbi-

trary measures of the dependent variable (e.g., Minnesota

Multiphasic Personality Inventory subscale, Tennessee Self

Concept Scale) are used as a stand-in for latent variables,

as opposed to inherently meaningful dependent variables

(e.g., weight in pounds or kilograms, length of hospital

stay).

�e two primary parametric ES families are () d, a

standardized di�erence between group’s means, and () r,

a measure of the proportion of variance in a variable that

is attributable to the variability of another variable. (�e

Pearson correlation, r, is an ES measure of bivariate asso-

ciation.) Kirk () listed  e�ect size indices among the

d and r families, and the list has grown since then.

Cohen’s () d estimator of population d is the dif-

ference between two sample means divided by the pooled

estimate of the assumed common population standard

deviation:

d = XT − XC
sPooled

whereXT =meanof the treatment group,XC =meanof the
control group, and sPooled is the pooled standard deviation.

In the case of two samples of equal size the point-biserial

correlation (rPB) can be approximately obtained from d:

rPBXX =
d√
d + 

,

where X is a truly dichotomous independent variable

(e.g., treatment group membership or gender) and X is

a continuous dependent variable.

Although his warning to be �exible about such very

general designations in various areas of research is widely

ignored, Cohen provided rule of thumb descriptors of the

magnitude of d: d ≤ . = small, d = . = medium, and
d ≥ . = large. Sawilowsky () de�ned d ≥ . = very
large.

Glass’ ∆ (Glass et al. ) and Hedges’ g (Hedges and

Olkin, ) are indices that are related to d. �ey are

obtained by substituting one group’s standard deviation for

the estimate based on the pooled variance to counter het-

erogeneity of variance (the ∆ES), or substituting each (ni−
) for each ni, in the denominator when pooling variances
for a better estimate of the assumed common population

variance (the g ES). When sample sizes reach n =n ≈ 
these three indices tend to converge at the second decimal.

A bene�t of standardizing the mean di�erence via any of

these three methods is it permits a 7meta-analysis of ESs
from di�erent studies that used the same two levels of an

independent variable, but di�erent measures of the same

latent dependent variable.

In terms of association, r is called the sample coe�-

cient of determination. (R, preferred by some textbook
authors, refers to a hypothetical population parameter;

see King .) A related statistic, radj, is used in mul-

tiple regression to adjust for the number of variables in

the model. Some caution is necessary in its use because

squaring r, which can be positive or negative, yields a direc-

tionless r, and limitations inherent in r apply to r (e.g.,

no causality is implied). To ensure correct interpretation

of r, r (with its sign) should also be reported.

An approximate value of r can be obtained from t:

r
 = t

t + df
, ()

where t = obtained value of the Student t statistic and df =
degrees of freedom. In terms of the two variable general

linear model,

r = η̂

= SSBetween
SSTotal

,
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where SSBetween = sum of squares between groups and
SSTotal = total sum of squares. (η̂ is a sample estimate

of the population η, the proportion of explained vari-

ance.) �e η̂ ES and its bias-adjusted counterpart, ω,

can be extended to one-way and factorial ANOVA and

MANOVA. According to Cohen, a general rule of thumb

is r ≤ . = small, . < r ≤ . = medium, and
r > . = large. Alternately, for rPB or η̂, . = small,
. =medium, and . = large.
Attacks against hypothesis testing in the last quar-

ter of the th century were accelerated with the emer-

gence of the ES. For a response, see Sawilowsky (a).

However, considerable controversy did arise regarding

emerging ES reporting requirements in scholarly jour-

nals. For example, �ompson (:, :) rec-

ommended the ES “can and should be reported and

interpreted in all studies, regardless of whether or not

statistical tests are reported” (), and “even [for] non-

statistically signi�cant e�ects” (). �is advice was

initially, albeit lukewarmly, endorsed by the American

Psychological Association (Wilkinson and APA ; APA

).

An invited debate on this topic was published in the

Journal of Modern Applied Statistical Methods in  (see,

e.g., Sawilowsky b, c) where it was argued that the

ES should only be reported in the presence of a statis-

tically signi�cant hypothesis test. �at is, the evidence

against a null hypothesis must �rst be shown to be sta-

tistically signi�cant before it makes sense to quantify the

ES. Indeed, the typical null hypothesis implies that an

ES = .

Subsequently, the APA () recanted its support for

publishing e�ect sizes in the absence of a statistically sig-

ni�cant test result by at least removing active language

supporting�ompson’s recommendation.�us, the words

of Cohen prevailed: “�e null hypothesis alwaysmeans the

e�ect size is zero...[but] when the null hypothesis is false,

it is false to some speci�c degree, i.e., the e�ect size (ES)

is some speci�c nonzero value in the population” (Cohen

:). (In more current usage “nil hypothesis” would

substitute for “null hypothesis”.)

Nevertheless, this controversy persists. A primary rea-

son is due to a misunderstanding attributable to r being

commonly interpreted via r, even though no statistical

test has been conducted. For example, suppose rXX = ..
�en, r = ., indicating % of the variability in the
X scores are attributable to the X variable. Similarly, if

rXX = ., then r = ., or %. Using r as the ES
measure of the sample data, the X variable is shown to

be sixteen (.
.

= ) times more e�ective in attributing

variance in the X scores than the X variable, even though

no statistical test has been conducted.

Rearranging (), for r ≠ ±, Student’s t is expressed in
terms of r as:

t = rXX√
( − rXX)( + rXX)/df

.

Student’s t can also be expressed in terms of rPB as:

t = rPBXX

¿
ÁÁÀ N − 

( − rPBXX )( + rPBXX )
,

where N = number of scores, and rPBXX ≠ ±. In either
case it is erroneously believed that inherent in calculating

a Pearson correlation for descriptive purposes a hypothe-

sis test result, Student’s t, has likewise been obtained.�is

is not correct, because r (or rPB) is only a measure of
co-relationship, whereas t determines the statistical signi�-

cance of that correlation.�e explained amount of variance

in the dependent variable, r, is only a function of the size

of r, whereas t is obtained based on the size of r as well

as the size of the df . “Although t and r are related, they

are measuring di�erent things” (Gravetter and Wailnau

:). Hence, knowing only the magnitude of r is

insu�cient to inform statistical signi�cance.

�e converse is also true. Conducting a Student’s t

test informs statistical signi�cance, but does not convey

the magnitude of an ES. Also, the result of an experiment

might be statistically signi�cant, but the ES might be too

small to attain practical signi�cance (e.g., no or insu�cient

clinical bene�t).

Additional caution is in order in interpreting the mag-

nitude of an ES. In terms of the explained proportion of

variance ES, consider the Abelson () paradox.�e r

associated with batting average and the outcome of Amer-

ican baseball games was found to be ., not quite
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%, although it is universally accepted that batting average

is the single most important characteristic of a successful

baseball player.�erefore, heed Cohen’s (:) warn-

ing, “�e next time you read that ‘only X% of the variance

is accounted for’ remember Abelson’s Paradox.”

Similarly, in terms of the strength of an e�ect in an

ANOVA layout, consider the Sawilowsky (a) para-

dox. �e  Michelson-Morley interferometer experi-

ment was designed to detect the luminiferous ether. An

e�ect of  kilometers/second (km/s) was hypothesized,

but obtained results were only –. km/s, with a paltry

ES of η̂ = .. What is commonly referred to as the
most famous null result in physics was not  km/s as might

be imagined. Instead, it was actually more than ,
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miles/h, a speed that exceeds Earth’s satellite orbital velo-

city!�e next time you read Eta squared was only “


X
of

%” remember Sawilowsky’s Paradox.

E�ect sizes developed to accompanyparametric hypoth-

esis tests have parametric assumptions (e.g., homoscedas-

ticity, normality), which must not be overlooked. �ere

have been advances in developing nonparametric ESs to

accompany nonparametric tests. For example, see Hedges

and Olkin (, ), Kraemer and Andrews (), and

Newcombe (). Emphasizing con�dence intervals for

ESs, Grissom and Kim () discussed traditional and

robust parametric ESs for contingency tables with nominal

or ordinal outcome categories (phi, risk di�erence, rela-

tive risk, odds ratio, cumulative odds ratio, and generalized

odds ratio), and the nonparametric stochastic superiority

ES for continuous or ordinal data: Pr(Y > Y), where Y
and Y are randomly sampled scores from two di�erent

populations.

For further reading see Algina et al. (), Baugh

(), Bird (), Cohen (, , , ), Cooper

and Findley (), Cortina and Nouri (), Dwyer

(), Fern and Monroe (), Fleiss (), Fowler

(), Grissom and Kim (), Hedges (), Hedges

and Olkin (), Huberty (), Hunter and Schmidt

(), Keselman (), Levin and Robinson (),

Murray and Myors (), O’Grady (), Olejnik and

Algina (, ), Ozer (), Parker (), Preece

(), Prentice and Miller (), Richardson (),

Ronis (), Rosenthal and Rubin (, ), Rosenthal

et al. (), Rosnow andRosenthal (), Sink and Stroh

(), Vaughan and Corballis (), Volker (), and

Wilcox and Muska ().

About the Authors
Biography of Shlomo Sawilowsky is in 7Frequentist
hypothesis testing: A Defence.

Jack Sawilowsky, M. Ed., is a doctoral student in Evalu-

ation and Research atWayne State University. He is an Edi-

torial Assistant for the Journal ofModernApplied Statistical

Methods.

Dr. Robert J. Grissom is Professor Emeritus and

Adjunct Professor, Department of Psychology, San Fran-

cisco State University, San Francisco, California, retiring

early from teaching to focus on research and writing on

e�ect sizes. He was a cofounder and Coordinator of the

Graduate Program in Psychological Research. He received

his doctorate in Experimental Psychology from Prince-

ton University. He has authored and co-authored articles

in edited books, Science magazine, and in methodological

journals, where he is a regular reviewer on e�ect sizes. He

is the senior author, with Dr. John J. Kim, of E�ect Sizes

for Research: A Broad Practical Approach (), published

by Erlbaum; second edition scheduled for publication by

Routledge in .

Cross References
7Power Analysis
7Psychology, Statistics in
7Signi�cance Tests: A Critique
7Statistical Fallacies: Misconceptions, and Myths
7Statistics: Controversies in Practice

References and Further Reading
Abelson RP () A variance explanation paradox: When a little is

a lot. Psychol Bull :–

Algina J, Keselman HJ, Penfield RD () Confidence interval

coverage for Cohen’s effect size statistic. Educ Psychol Meas

():–

American Psychological Association () Publication manual,

th edn. American Psychological Association, Washington, DC

American Psychological Association () Publication manual,

th edn. American Psychological Association, Washington, DC

Baugh F () Correcting effect sizes for score reliability: a

reminder that measurement and substantive issues are linked

inextricably. Educ Psychol Meas :–

Bird KD () Confidence intervals for effect sizes in analysis of

variance. Educ Psychol Meas :–

Cohen J () The statistical power of abnormal-social psycholo-

gical research: a review. J Abnorm Soc Psychol :–

Cohen J () Statistical power analysis for the behavioral sciences.

Academic, San Diego

Cohen J () Eta-squared and partial eta-squared in fixed factor

ANOVA designs. Educ Psychol Meas :–

Cohen J () Statistical power analysis for the behavioral sciences,

rev. edn. Academic, San Diego

Cohen J () Statistical power analysis for the behavioral sciences,

nd edn. Erlbaum, Hillsdale

Cohen J () Things I have learned (so far). Am Psychol :–



Cohen J () A power primer. Psychol Bull :–

Cohen J () The earth is round (p < .). Am Psychol :–

Cooper HM, Findley M () Expect effect sizes: estimates for

statistical power analysis in social psychology. Personal Soc

Psychol Bull :–

Cortina JM, Nouri H () Effect sizes for ANOVA designs. Sage,

Thousand Oaks

Dwyer JH () Analysis of variance and the magnitude of effects:

a general approach. Psychol Bull :–

Fern FE, Monroe KB () Effect-size estimates: issues and prob-

lems in interpretation. J Consum Res :–

Fleiss JL () Measures of effect size for categorical data. In:

Cooper H, Hedges LV (eds) The handbook of research synthesis.

Russell Sage, New York, pp –

Fowler RL () A general method for comparing effect magnitudes

in ANOVA designs. Educ Psychol Meas :–

Glass GV, McGaw B, Smith ML () Meta-analysis in social

research. Sage, Thousand Oaks



Eigenvalue, Eigenvector and Eigenspace E 

E

Gravetter FJ, Wallnau LB () Essentials of statistics for the

behavioral sciences. th edn. Wadsworth/Thompson Learning,

Belmont

Grissom RJ, Kim JJ () Review of assumptions and problems

in the appropriate conceptualization of effect size. Psychol

Methods :–

Grissom RJ, Kim JJ () Effect sizes for research: A broad practical

approach. Erlbaum, Mahwah

Hedges L () Estimation of effect size from a series of indepen-

dent experiments. Psychol Bull :–

Hedges L, Olkin I () Nonparametric estimators of effect size in

meta-analysis. Psychol Bull :–

Hedges L, Olkin I () Statistical methods for meta-analysis.

Academic, New York

Huberty CJ () A history of effect size indices. Educ Psychol Meas

:–

Hunter JE, Schmidt FL () Methods of meta-analysis: correcting

error and bias in research findings. Sage, Newbury Park

Keselman H () A Monte Carlo investigation of three estimates of

treatment magnitude: epsilon squared, eta squared, and omega

squared. Can Psychol Rev :–

King G () How not to lie with statistics: avoiding common

mistakes in quantitative political science. Am J Polit Sci ():

–

Kirk RE () Practical significance: a concept whose time has

come. Educ Psychol Meas :–

Kraemer HC, Andrews G () A non-parametric technique

for meta-analysis effect size calculation. Psychol Bull :

–

Levin JR, Robinson DH () The trouble with interpreting statis-

tically nonsignificant effect sizes in single-study investigations.

J Mod Appl Stat Methods :–

Murray LW, Myors B () How significant is a significant differ-

ence? Problems with the measurement of magnitude of effect.

J Couns Psychol :–

Newcombe RG () Confidence intervals for an effect size mea-

sure based on the Mann–Whitney statistic. Stat Med ():

–

O’Grady KE () Measures of explained variance: cautions and

limitations. Psychol Bull :–

Olejnik S, Algina J () Measures of effect size for comparative

studies: application, interpretations, and limitations. Contemp

Educ Psychol :–

Olejnik S, Algina J () Generalized eta and omega squared statis-

tics: measures of effect size for some common research designs.

Psychol Methods :–

Ozer DJ () Correlation and the coefficient of determination.

Psychol Bull :–

Parker S () The “difference of means” may not be the “effect size”.

Am Psychol :–

Preece PFW () A measure of experimental effect size based on

success rates. Educ Psychol Meas :–

Prentice DA, Miller DT () When small effects are impressive.

Psychol Bull :–

Richardson JTE () Measures of effect size. Behav Res Methods:

Instrum Comput :–

Ronis DL () Comparing the magnitude of effects in ANOVA

designs. Educ Psychol Meas :–

Rosenthal R, Rubin DB () A simple, general purpose dis-

play of magnitude of experimental effect. J Educ Psychol :

–

Rosenthal R, Rubin DB () The counternull value of an effect

size: a new statistic. Psychol Sci :–

Rosnow RL, Rosenthal R () Assessing the effect size of outcome

research. In: Nezu AM, Nezu CM (eds) Evidence-based outcome

research. Oxford University Press, Oxford, pp –

Rosenthal R, Rosnow RL, Rubin DB () Contrasts and effect sizes

in behavioral research: a correlational approach. Cambridge

University Press, United Kingdom

Sawilowsky S () Robust and power analysis of the  ×  × 

ANOVA, rank transformation, random normal scores, and

expected normal scores transformation tests. Unpublished doc-

toral dissertation, University of South Florida

Sawilowsky S (a) Deconstructing arguments from the case

against hypothesis testing. J Mod Appl Stat Methods ():

–

Sawilowsky S (b) You think you’ve got trivials? J Mod Appl Stat

Methods ():–

Sawilowsky S (c) Trivials: the birth, sale, and final production

of meta-analysis. J Mod Appl Stat Methods ():–

Sink CA, Stroh HR () Practical significance: the use of effect

sizes in school counseling research. Prof Sch Couns ():–

Thompson B () AERA editorial policies regarding statistical sig-

nificance testing: three suggested reforms. Educ Res :–

Thompson B () Five methodology errors in educational

research: a pantheon of statistical significance and other faux

pas. In: Thompson B (ed) Advances in social science methodol-

ogy, vol . Sage, Thousand Oaks, CA, pp –

Vaughan GM, Corballis MC () Beyond tests of significance: esti-

mating strength of effects in selected ANOVA designs. Psychol

Bull :–

Volker MA () Reporting effect size estimates in school psychol-

ogy research. Psychol Sch ():–

Wilcox RR, Muska J () Measuring effect size: a non-parametric

analog of ω

. Br J Math Stat Psychol :–

Wilkinson L, the American Psychological Association () Task

force on statistical inference. Statistical methods in psychol-

ogy journals: guidelines and explanations. Am Psychol :

–

Eigenvalue, Eigenvector and
Eigenspace

Pui Lam Leung

Associate Professor, Director

�e Chinese University of Hong Kong, Hong Kong, China

Let A be a n×nmatrix and λ be a scalar.�e characteristic
equation of A is de�ned as

det(A − λIn) = , ()

where In is an identitymatrix of ordern and det denotes the

determinant.�e values of λ that satisfy Eq. () are called

the characteristic roots or eigenvalues ofA. In general, there

aren eigenvalues ofA. If λi is an eigenvalue, then thematrix
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(A − λiIn) is singular and there exist a non-zero vector νi
such that (A − λiIn)νi = . Equivalently,

Aνi = λiνi. ()

νi is called the eigenvector corresponds to the eigen-

value λi. Geometrically, A represents a linear transforma-

tion in n-dimensional space. νi is the direction remains

unchanged or invariant under this transformation. In gen-

eral, there are exactly n eigenvalues ofA.�ese eigenvalues

are not necessarily distinct and may be real or complex.

Note that if νi is the eigenvector corresponds to λi, then

any scalar multiple of νi is also an eigenvector of A.�ere

may be more than one eigenvector correspond to the same

eigenvalue λi, any linear combination of these eigenvectors

will also be an eigenvector.�e linear subspace spanned by

the set of eigenvectors corresponds to the same eigenvalue

together with the zero vector is called an eigenspace.

In statistics, we o�en deal with real symmetric matri-

ces. Many test statistics in Multivariate linear model

are functions of eigenvalues and eigenvectors of certain

matrices. Some basic results concerning eigenvalues and

eigenvectors are listed as follow:

. If A is a real symmetric matrix then its eigenvalues are

all real.

. If A is a n × nmatrix, then the eigenvalues of A and its
transpose A′ are the same.

. IfA andB are n×nmatrices andA is non-singular, then
the eigenvalues of AB and BA are equal.

. If λ is an eigenvalue of A, then λk is an eigenvalue of

Ak, where k is any positive integer.

. If λ is an eigenvalue of a non-singular matrix A, then

λ
−
is an eigenvalue of A−.

. If A is an orthogonal matrix, (i.e., AA′ = I), then all its
eigenvalues have absolute value .

. If A is symmetric, then A is idempotent (i.e., A = A) if
and only if its eigenvalues take values s and s only.

. If A is a positive (non-negative) de�nite matrix, then

all its eigenvalues are positive (non-negative).

. If A is a real symmetric matrix and λi and λj are two

distinct eigenvalues of A, then the two corresponding

vectors νi and νj are orthogonal.

. Let A be a n × n real symmetric matrix and H = (ν,

. . . , νn) be a n × n matrix whose ith column is the
eigenvectors νi of A corresponds to the eigenvalues λi,

then

H
′
AH = D = diag(λ, . . . , λn), ()

where D is a diagonal matrix whose diagonal elements

are λi. Furthermore, Eq. () can be rewritten as

A = HDH′ = λνν
′
 +⋯ + λnνnν

′
n. ()

Equation () is known as the diagonalization ofAwhile

Eq. () is known as the spectral decomposition of A.

Extrema of Quadratic Form
�ere is an important theoremwhich is very useful inMul-

tivariate analysis concerning the minimum andmaximum

of quadratic form.

�eorem Let A be a n × n positive de�nite matrix has
the ordered eigenvalues λ ≥ ⋯ ≥ λn >  and the corre-
sponding eigenvectors are ν, . . . , νn and c is a n×  vector.
�en

. maxc≠
c′Ac
c′c

= λ and themaximum is attained at c = ν.

. minc≠
c′Ac
c′c

= λn and the minimum is attained at

c = νn.

. maxc�ν ,. . .,νk
c′Ac
c′c

= λk+ and the maximum is attained
at c = νk+ for k = , , . . . ,n − . ( c�ν, . . . , νk means c

is orthogonal to ν, . . . , νk).

�is theorem is important since it provides the theory

behind7principal component analysis and7canonical cor-
relation analysis. In principal component analysis, we are

looking for a linear transformation Y = α′X of the origi-
nal variables X such that the variance of Y is maximum. In

canonical correlation analysis, we are looking for a pair of

linear transformationU = α′X andV = β′Y of the original
variables X and Y such that the correlation betweenU and

V is maximum.

Software
Standard mathematical and statistical packages, such as

MATLAB and R, have built-in function to compute eigen-

values and eigenvectors.�e eigenvalues are usually output

in descending order and the corresponding eigenvectors

are normalized to unit length.

Cross References
7Correspondence Analysis
7Multivariate Technique: Robustness
7Principal Component Analysis
7RandomMatrix�eory
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Introduction
Traditional sample survey theory largely focused on

descriptive parameters, such as �nite population means,

totals and quantiles, from samples selected according to

e�cient probability sampling designs (subject to cost con-

straints). Associated inferences consist of point estimation,

standard errors of estimators and large-sample con�dence

intervals based on normal approximations. Inferences,

based on the known probability distribution induced by

the sampling design with the population item values held

�xed but unknown, are essentially non-parametric. Stan-

dard text books on sampling (e.g., Cochran ) pro-

vide excellent accounts of the traditional design-based

approach. Attempts were also made to integrate sampling

theory with mainstream statistical inference based on like-

lihood functions, but retaining the non-parametric set

up. Here we provide a brief account of some methods

for sample survey data, based on non-parametric likeli-

hoods. In particular, we focus on the “empirical likeli-

hood” approach which was �rst introduced in the context

of survey sampling by Hartley and Rao () under the

name “scale-load approach.” Twenty years later, Owen

() introduced it in the main stream statistical infer-

ence, under the name “empirical likelihood.” He developed

a uni�ed theory for the standard case of a random sample

of independent and identically distributed (IID) variables,

and demonstrated several advantages of the approach. In

particular, the shape and orientation of empirical likeli-

hood (EL) con�dence intervals are determined entirely by

the data, and the intervals are range preserving and trans-

formation respecting, unlike the intervals based on normal

approximations. An extensive account of EL, including

various extensions and applications, is given in the excel-

lent book by Owen ().

Scale-Load Approach
Suppose that the �nite population U consists of N

units labeled i = , . . . ,N with associated item val-

ues yi. A sample of units, s, is selected from U with

speci�ed probability p(s). Godambe () obtained the

non-parametric likelihood function based on the full sam-

ple data {(i, yi), i ∈ s} and showed that it is non-
informative in the sense that all possible non-observed

values yi, i /∈ s lead to the same likelihood. �is di�-
culty arises because of the distinctness of labels i associated

with the sample data that makes the sample unique. To get

around this di�culty, Hartley and Rao () suggested

data reduction by ignoring some aspects of the data to

make the sample non-unique and in turn make the associ-

ated likelihood informative.�e reduction of sample data

is not unique and it depends on the situation at hand. A

basic feature of the Hartley–Rao (HR) approach is a spe-

ci�c representation of the �nite population, assuming that

the possible values of the variable y is a �nite set of scale

points y∗ , . . . , y
∗
T for some �nite T.�e associated popula-

tion frequencies or “scale loads” are denoted byN∗ , . . . ,N
∗
T

and the population parameters can be expressed in terms

of the scale loads; for example, the population mean Y can

be expressed as Ȳ =∑
t

p∗t y
∗
t where p

∗
t = N∗t /N and∑

t

p∗t =

. Under simple random sampling without replacement,

the sample labels imay be suppressed from the sample data

in the absence of information relating the label to the corre-

sponding item value, and the resulting nonparametric like-

lihood based on the reduced data {yi, i ∈ s} is given by the
multivariate hyper-geometric distribution that depends on

the scale loadsN∗t and the associated sample scale loads n
∗
t .

�us the likelihood function based on the reduced sam-

ple data is informative, unlike the likelihood based on the

full sample data. If the sampling fraction n/N is negligible,
then the hyper-geometric likelihoodmay be approximated

by the multinomial likelihood with probabilities p∗t and
associated sample frequencies n∗t so that the log-likelihood
function is given by l(p∗) = ∑n∗t log (p∗t ) where the
sum is over the observed non-zero sample scale loads.

�e resulting maximum likelihood estimator (MLE) of the

mean Y is the sample mean y = ∑p̂∗t y∗t = n−∑
i∈s

yi, where

p̂∗t = n∗t /n. Hartley and Rao () also considered ML
estimation when the population mean X of an auxiliary

variable x is known and showed that the MLE is asymptot-

ically equal to the customary linear regression estimator

of Y .�e Hartley–Rao (HR) approach readily extends to

strati�ed simple random sampling by retaining the strata

labels h to re�ect known strata di�erences and then regard-

ing each stratum as a separate population and applying

the scale-load approach to each stratum separately. �e

traditional strati�edmean is theMLE under this approach.

Empirical Likelihood: IID Case
In the case of IID observations y, . . . , yn from some dis-

tribution F(.), Owen () obtained a non-parametric
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(or empirical) likelihood function which puts masses pi =
Pr(y = yi) at the sample points yi and the log-EL func-
tion is given by l(p) = ∑

i

log(pi) which is equivalent

to the HR scale-load log-likelihood function. Maximiz-

ing l(p) subject to pi >  and ∑pi =  gives maximum
empirical likelihood (MEL) estimators of pi and the mean

µ = E(y) as p̂i = /n and µ̂ = ∑p̂iyi. Chen and Qin
() studied EL in the sampling context, assuming simple

random sampling, and considered parameters of the form

θ = N−∑
i∈U

g(yi) for speci�ed functions g(.) and known

auxiliary information of the form N−∑
i∈U

w(xi) = . In the

special case of g(y) = y and w(x) = x − X, their results
are equivalent to those of HR for estimating the mean

Y . By letting g(yi) be the indicator function I(yi ≤ t),
the MEL estimator of the population distribution func-

tion is obtained as F̂(t) = ∑
i∈s

p̂iI(yi ≤ t), where p̂i is the

maximum EL estimator of pi obtained by maximizing the

log-EL function subject to the above restrictions on the pi

and the additional restriction∑
i∈s

piw(xi) = .�e estima-

tor F̂(t) is non-decreasing and hence can be used to obtain
estimators of population quantiles and other functionals,

in particular the population median.

�e EL approach can provide non-parametric con�-

dence intervals on parameters of interest, similar to the

classical parametric likelihood ratio intervals. For example,

the EL intervals on themean µ for the IID case are obtained

by �rst deriving the pro�le EL ratio functionR(µ) and then
treating r(µ) = − logR(µ) as χ , a chi-squared variable

with one degree of freedom, where R(µ) is the maximum
of∏(npi) subject to the previous restrictions on the pi and
the additional constraint∑piyi = µ.�e ( − α)-level EL
interval is given by {µ∣r(µ) ≤ χ (α)} , where χ (α) is the
upper α-point of the distribution of χ .�is result is based

on the fact that r(µ) is approximately distributed as χ in

large samples. As noted earlier, the shape and orientation

of EL intervals are determined entirely by the data, and the

intervals are range preserving and transformation respect-

ing. Moreover, unlike the traditional normal approxima-

tion intervals the EL intervals do not require the evaluation

of standard errors of estimators in the IID case and are par-

ticularly useful if balanced tail error rates are considered

desirable. An important application of EL intervals in audit

sampling is reported by Chen et al. (). Populations

containingmany zero item values are encountered in audit

sampling, where yi denotes the amount of money owed

to a government agency and Y is the average amount of

excessive claims. In somepreviouswork on audit sampling,

parametric likelihood ratio intervals based on parametric

mixture distributions for the variable y were used because

they performed better than the normal approximation-

based intervals in terms of coverage. On the other hand,

the EL intervals compared favorably to the parametric

intervals when the assumed parametric distribution holds,

and performed better than the parametric intervals under

deviations from the assumed parametric distribution, by

providing non-coverage rate below the lower bound on Y

closer to the nominal value and also larger lower bound.

Typically, government agencies use the lower bound for the

collection of excess amounts claimed.

Pseudo-EL: Complex Surveys
�e HR scale load approach or the EL approach does

not readily extend to general sampling design involving

unequal probability sampling. To circumvent this di�-

culty, a pseudo-EL approach has been proposed (Chen and

Sitter ) by regarding the �nite population as a random

sample from an in�nite super-population. �is in turn

leads to the “census” log-EL function lN(p) = ∑
i∈U

log(pi)

which is simply the �nite population total of the log(pi).
From standard sampling theory, an unbiased estimator

of the �nite population total lN(p) is given by l̂(p) =
∑

i∈s

di log(pi), where di = /πi is the design weight associ-

atedwith unit i and πi is the associated probability of inclu-

sion in the sample. �e pseudo empirical log-likelihood

function is de�ned as l̂(p) and then one can proceed as in
section “7Scale-Load Approach” to get point estimators of
�nite population parameters. For example, in the absence

of auxiliary information, the pseudo-MEL estimator of the

�nite population mean Y is given by the well-known ratio

estimator (∑
i∈s

di)
−
(∑
i∈s

diyi). Wu () provided algo-

rithms and R codes for computing the pseudo-MEL esti-

mators. Interval estimation, however, runs into di�culties

under this approach because the pro�le pseudo-EL ratio

function obtained from the pseudo-EL does not lead to

asymptotic χ distribution in large samples. To get around

this di�culty, Wu and Rao () proposed an alterna-

tive pseudo empirical log-likelihood function. It is given

by l̂ mod (p) = n∗∑
i∈s

d̃i log(pi), where d̃i = di/∑
k∈s

dk are the

normalized design weights and n∗ is the “e�ective sam-
ple size” de�ned as the ratio of the sample size n and

the estimated design e�ect; the latter is taken as the ratio

of the estimated variance of the point estimator under

the speci�ed design and under simple random sampling.

�is design e�ect depends on the parameter of interest.

For simple random sampling with replacement, l̂ mod (p)
reduces to the usual empirical log-likelihood function.
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�e pseudo-MEL estimator under the modi�ed function

remains the same as the estimator obtained from the orig-

inal pseudo-EL function. But the modi�cation leads to a

di�erent pseudo-EL ratio function that leads to asymptotic

χ distribution and hence the resulting intervals can be

used. Wu and Rao () proposed a bootstrap calibration

method that bypasses the need of e�ective sample size and

the resulting pseudo-EL intervals are asymptotically valid

and performed well in simulation studies.

In a recent application, the modi�ed pseudo-EL

method, based on the χ approximation, was applied to

adaptive cluster sampling which is o�en used to sample

populations that are sparse but clustered (Salehi et al. ).

Simulation results showed that the resulting con�dence

intervals perform well in terms of coverage whereas the

traditional normal approximation-based intervals perform

poorly in �nite samples because the distribution of the

estimator under 7adaptive sampling is highly skewed.
Various extensions of the EL method for survey data

have been reported, including multiple frame surveys and

imputation for missing data (see 7Imputation). We refer
the reader to a recent review paper (Rao andWu ) on

empirical likelihood methods for survey data.
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Abasic question in Statistics is howwell does the frequency

of an event approach its probability when the number of

repetitions of an experiment with “statistical regularity”
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increases inde�nitely, or how well does the average of the

values of a function at the observed outcomes approach

its expected value. “How well” of course may have di�er-

ent meanings. Empirical process theory has its origin on

this question.�e counterpart in the “probability model”

of averaging the values of a function f at the outcomes of n

repetitions of an experiment, is just Pnf = n−∑ni= f (Xi),
whereXi, the data, are independent, identically distributed

random variables with common probability law P. �e

variables Xi need not be real but may take values in

any measurable space (S,S). �e random measure Pn =
n−∑ni= δXi , where δx denotes unit mass at x (the Dirac

delta) is the “empirical measure,” and Pnf = ∫ fdPn, assigns
to each function its average over the values Xi(ω), and in
particular to each set A the frequency of the occurrences

Xi(ω) ∈ A.�is random measure is o�en understood as a
stochastic process indexed by f ∈ F ,F being a collection of
measurable functions (which can in particular be indica-

tors).�e object of empirical process theory is to study the

properties of the approximation of Pf by Pnf , uniformly in

F , mainly, probabilistic limit theorems for the processes
{(Pn − P)f : f ∈ F} and probability estimates of the
random quantity

∥Pn − P∥F := sup
f ∈F

∣Pnf − Pf ∣.

�is program has a long history. It starts with Bernoulli

and deMoivre in the early s: they studied the approxi-

mation of the probability of an event, PA, by its frequency,

PnA, thus obtaining respectively the Bernoulli law of large

numbers and the de Moivre(-Laplace) normal approxima-

tion of the binomial law.

Next,Glivenko andCantelli, in the s showed, forXi
real valued, that Fn(x) = Pn(−∞, x] converges uniformly
almost surely to the “true” distribution function F(x) =
P(−∞, x], and this was the �rst “uniform” law of large
numbers for the empirical measure. Kolmogorov in the

s gave the limiting distribution of
√
n supx∈R ∣Fn(x) −

F(x)∣, and Dvoretzky–Kiefer–Wolfowitz in the s gave
an inequality of the right order, that applies for all values

of n, for Pr{supx∈R ∣Fn(x) − F(x)∣ > ε}, namely, this is less
than or equal to e−nε

(where the constant  in front of the

exponent was determined by Pascal Pascal Massart (),

cannot be improved, and neither can the exponent).

�e theorem of Kolmogorov is a corollary of Donsker’s

theorem, who viewed the empirical process as a random

function and proved for it a central limit theorem (see

7Central Limit�eorems), that is, a limit theorem for its
probability law de�ned on function space (in this case,

the space of right continuous functions with le� limits,

D(−∞,∞), with a separable metric on it, the Skorokhod
metric, with the law of aGaussian process (theP-Brownian

bridge) as limit). �en, by the “continuous mapping

theorem” H(
√
n(Fn − F)) converges in law to H(GF)

for all functionals H continuous on D, and Kolmogorov’s

theorem follows by taking H( f ) = supx∈R ∣ f (x)∣. [Actu-
ally, Donsker’s theorem is a result of e�orts by at least

Kolmogorov, Skorokhod, Doob, Donsker and, in several

dimensions, Dudley]. �is was mostly done in the mid

s.

Another important area on what we may call the clas-

sical empirical process theory is that of the “strong approx-

imation” in a suitable probability space of the empirical

process for the uniform distribution (see 7Uniform Dis-
tribution in Statistics) on [, ] by Brownian bridges, in the
supremumnorm (“Hungarian constructions”), very useful

e.g., in the study of limit theorem of complicated functions

of the empirical process (Komlos et al. ). Other results

include laws of the iterated logarithm and large devia-

tion principles (Sanov’s theorem).�e book to consult on

the classical theory of empirical processes is Shorack and

Wellner’s ().

�e Glivenko–Cantelli, Donsker, and Dvoretzky–

Kiefer–Wolfowitz results for the empirical distribution

function became the models for the striking generaliza-

tions that constitute modern empirical process theory.�e

�rst is the Vapnik–Červonenkis (V–C) () law of large

numbers. �ese authors gave very sharp combinatorial,

non-random conditions on classes of sets C (classes of
functions F in a subsequent article in ) for the empir-
ical measure to converge to the probability law of the

observations uniformly over the sets in C (or the functions
in F) almost surely, and necessary and su�cient random
conditions on these classes for uniformity to take place. A

little earlier, Blum and DeHardt had given other also very

sharp general conditions (bracketing entropy) for the same

result to hold over classes of functions in Euclidean space,

see DeHardt (). Vapnik–Červonenkis also applied

their work to pattern recognition (see 7Pattern Recog-
nition, Aspects of and 7Statistical Pattern Recognition
Principles).

�e theory greatly gained in scope and applicability

with the work of Dudley (), where Donsker’s cen-

tral limit theorem (also called invariance principle) was

greatly generalized in the spirit of Vapnik–Červonenkis

and Blum–deHardt by proving central limit theorems

for empirical processes that hold uniformly in f ∈ F
and by giving concrete meaningful examples of such

classes, like classes of sets with di�erentiable bound-

aries, or positivity parts of �nite dimensional sets of

functions; measurability problems had to be overcome,

and, more importantly, a relationship had to be provided

between the V–C combinatorial quantities and metric

entropy, which allowed proving asymptotic equicontinuity
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conditions (hence, “uniform tightness”) for the empirical

process over large classes of functions in a way reminis-

cent of how Dudley proved his famous entropy bound for

7Gaussian processes.
�e articles of Vapnik and Červonenkis and Dudley

just mentioned originated the �eld of modern empirical

processes. We now review some of its main developments.

�e most general form of the central limit theorem under

bracketing conditions was obtained by Ossiander ().

�e connection between empirical processes andGaussian

and sub-Gaussian processes and empirical processes was

made more explicit by means of random sign and Gaus-

sian randomization (Pollard ; Koltchinskii  and,

more extensively, in Giné and Zinn (), where, more-

over, the central limit theorem for classes of sets analogue

to the V–C law of large numbers is proved; its conditions

were proved later, in , to be necessary byM. Talagrand,

who continued some aspects of the work of Giné and Zinn

and also gave a “structural” necessary and su�cient con-

dition for the central limit theorem). Talagrand () also

has the last word on Glivenko–Cantelli type theorems.

�e limit theory contains as well laws of the iterated

logarithm, theorems on uniform and universal Donsker

classes (very convenient for applications since in Statis-

tics one does not know the law of the data; see Dudley

; Giné and Zinn ; Sheehy andWellner  and for

the uniform in PGlvienko–Cantelli theorem, Dudley et al.

) and the bootstrap of empirical processes (Giné and

Zinn ) among other types of results.

Particular mention should be made of exponential

inequalities for empirical processes, which may be seen as

Bernstein or Prokhorov exponential inequalities uniform

over large collections of sums of independent randomvari-

ables, indexed by functions. For the special but conspic-

uous Vapnik–Červonekis classes of functions, Alexander

() andMassart () had versions of such inequalities

in the mid s, but Talagrand () obtained a strik-

ing, completely general such inequality, just in terms of the

supremum of ∣f (X)∣ over F and of E supf ∈F ∑
n
i= f

(Xi).
�e constants in his inequality are not speci�c, but in a

series of articles, P. Massart, T. Klein and E. Rio, and O.

Bousquet obtained the best constants.�is inequality has

applications in many areas of Statistics and, in this author’s

view, is a true landmark.

Both, limit theorems and exponential inequalities have

beenextendedtoU-processes,notnecessarilyinthegreatest

generality. See Arcones and Giné () andMajor ().

Modern empirical process theory has already had and

is having a deep impact in pattern recognition and learn-

ing theory, M-estimation, density estimation, and quite

generally, asymptotic and non-parametric statistics. �is

will not be reviewed in this article.

�e books to consult onmodern empirical process the-

ory are those of Pollard (), van der Vaart and Wellner

(), Dudley (); for U-processes, de la Peña and

Giné (); and for Talagrand’s and other inequalities for

empirical processes, Ledoux ().

About the Author
Dr. Evarist Giné is a Professor of Mathematics and (by

courtesy) of Statistics at the University of Connecticut. He

is an Elected member of the International Statistical Insti-

tute, a Fellow of the Institute ofMathematical Statistics and

a corresponding member of the Institut d’Estudis Cata-

lans. He has authored/coauthored more than  articles

in Probability and Mathematical Statistics, as well as two

books: �e Central Limit �eorem for Real and Banach

Valued Random Variables (with A. Araujo, Wiley, ),

and Decoupling, from Dependence to Independence (with

V. de la Peña, Springer, ). He has organized several

meetings and special sessions in Probability and Mathe-

matical Statistics, in particular he was the Program Chair

of the th World Congress of the Bernoulli Society/IMS

Annual Meeting. He has been Associate editor of Annals

of Probability, Stochastic Processes and Applications, and

Revista Matemática Hispano-Americana, and is presently

Associate editor of Bernoulli, Journal of�eoretical Proba-

bility, Electronic Journal and Electronic Communications in

Probability, TEST and Publicacions Matemàtiques.

Cross References
7Exact Goodness-of-Fit Tests Based on Su�ciency
7Khmaladze Transformation
7Strong Approximations in Probability and Statistics
7Testing Exponentiality of Distribution

References and Further Reading
Alexander K () Probability inequalities for empirical processes

and a law of the iterated logarithm. Ann Probab :–

Arcones A, Giné E () Limit theorems for U-processes. Ann

Probab :–

DeHardt J () Generalizations of the Glivenko–Cantelli theorem.

Ann Math Stat :–

de la Peña V, Giné E () Decoupling, from dependence to inde-

pendence. Springer, New York

Donsker MD () Justification and extension of Doob’s heuristic

approach to the Kolmogorov–Smirnov theorems. AnnMath Stat

:–

Dudley RM () Central limit theorems for empirical measures.

Ann Probab :–

Dudley RM () Universal Donsker classes and metric entropy.

Ann Probab :–

Dudley RM () Uniform central limit theorems. Cambridge

University Press, Cambridge

Dudley RM, Giné E, Zinn J () Uniform and universal Glivenko–

Cantelli classes. J Theoret Probab :–



 E Entropy

Giné E, Zinn J () Some limit theorems for empirical processes.

Ann Probab :–

Giné E, Zinn J () Bootstrapping general empirical measures.

Ann Probab :–

Giné E, Zinn J () Gaussian characterization of uniform Donsker

classes of functions. Ann Probab :–

Koltchinskii VI () Functional limit theorems and empirical

entropy, I and II. Teor Veroyatn Mat Statist :–, bf  –

Komlós J, Major P, Tusnády G () An approximation of partial

sums of independent RV’s and the sample DF. I. Z. Wahrsch

Verw Gebiete :–

Ledoux M () The concentration of measure phenomenon.

American mathematical society, Providence, Rhode Island

Major P () An estimate on the supremum of a nice class of

stochastic integrals and U-statistics. Probab Theory Relat Fields

:–

Massart P () Rates of convergence in the central limit theo-

rem for empirical processes. Ann Inst H Poincaré Probab Stat

:–

Massart P () The tight constant in the Dvoretzky-Kiefer-

Wolfowitz inequality. Ann Probab :–

Ossiander M () A central limit theorem under metric entropy

with L bracketing. Ann Probab :–

Pollard D () Limit theorem for empirical processes. Z Warsch

Verb Gebiete :–

Pollard D () Convergence of Stochastic Processes. Springer,

New York

Sheehy A, Wellner JA () Uniform Donsker classes of functions.

Ann Probab :–

Shorack G, Wellner J () Empirical Processes with Applications

to Statistics. Wiley, New York

Talagrand M (a) The Glivenko–Cantelli problem. Ann Probab

:–

Talagrand M (b) Donsker classes and random geometry. Ann

Probab :–

Talagrand M () Donsker classes of sets. Probab Theory Relat

Fields :–

Talagrand M () New concentration inequalities in product

spaces. Invent Math :–

van der Vaart A, Wellner J () Weak convergence and empirical

processes: with applications to statistics. Springer, New York
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Introduction and Definition
Consider that Pn = (p, . . . , pn), or {pi}, is a �nite discrete
probability distribution with pi ≥  for i = , . . . ,n and

n

∑

i=

pi = .�is distribution may be associated with a set of

mutually exclusive and exhaustive events {E, . . . ,En} or
with a randomvariableX taking on a set ofndiscrete values

with probabilities pi(i = , . . . ,n). For such a distribution,
the classical de�nition of entropy is given by

H(Pn) = −
n

∑
i=
pi log pi ()

andgenerally referred toasShannon’s entropya�erShannon

(Shannon ). Two di�erent bases are typically used for

the logarithm in (). In the �eld of information theory, in

whichtheentropyisoffundamentalimportance,thebase−
logarithm is the traditional choice, with the unit of mea-

surement of entropy then being a bit. If the base−e (natural
logarithm) is used, which is mathematically more conve-

nient to work with, the unit of measurement is sometimes

called a nat. Also,  log  =  is the usual convention for ().
Most generally, the entropy in () is considered to be

a measure of the amount of randomness in a system or of

a set of events or of a random variable. Alternatively, the

entropy is considered to express the amount of uncertainty,

surprise, or information content of a set of events or of a

random variable. In information theory, the pi’s in () may

be those of a set of messages (events) or those of a ran-

dom variable X taking on the value i for the ith symbol of

an alphabet for i = , . . . ,n. In thermodynamics and sta-
tistical mechanics, where entropy plays an important role,

the pi in () is the probability of a system being in the ith

quantum state with i = , . . . ,n. Besides such fundamen-
tally important applications, the entropy in () has proved

to be remarkably versatile as a measure of a variety of

attributes in di�erent �elds of study, ranging from psychol-

ogy (e.g., Garner ) to ecology (e.g., Magurran ).

�e wide range of applications of the entropy formula is

due in part to its desirable properties and extensions and

partly perhaps because of the intrigue held by the entropy

concept.

Properties of H
Some of the most important properties of the entropy

functionH in () for any Pn = (p, . . . , pn)may be outlined
as follows:

(P) H is continuous in all its arguments p, . . . , pn.
(P) H is (permutation) symmetric in the pi(i =

, . . . ,n).
(P) H is zero-indi�erent (expansible), i.e., H(p, . . . ,

pn, ) = H(p, . . . , pn).
(P) H(, . . . , , , , . . . , ) =  and H(/n, . . . , /n) is

strictly increasing in n.
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(P) H is strictly Schur-concave in Pn and also strictly
concave (in the usual or Jensen sense).

�ese properties are all readily apparent from the def-

inition in () and would seem to be reasonable for a mea-

sure of randomness. �e strict Schur-concavity property

ensures that H(Pn) increases strictly as the pi’s become
increasingly equal (even or uniform). Stated more pre-

cisely in terms ofmajorization theory (Marshall and Olkin

), if the probability distribution Pn = (p, . . . , pn) is
majorized by the distribution Qn = (q, . . . , qn), denoted
as Pn ≺ Qn, then, because of the strict Schur-concavity of
H, H(Pn) ≥ H(Qn) with strict inequality unless Pn is a
permutation of Qn. From the majorization

P

n = (/n, . . . , /n) ≺ Pn = (p, . . . , pn) ≺ P n
= (, . . . , , , , . . . , ) ()

togetherwith the strict Schur-concavity ofH, it follows that

H (P n ) ≤ H(Pn) ≤ H (P n ) ()

with equalities if, and only if, Pn = P n or Pn = P n
(Marshall and Olkin : , , ).

Another property of H is that of additivity.�us, con-

sider the case of two statistical experiments with their

respective events, or, consider the pair of random vari-

ables (X,Y) with the joint probability distribution {pij}
and the marginal distributions {pi+} and {p+j} for X

and Y , respectively, with pi+ =
J

∑

j=

pij for all i and p+j =

I

∑

i=

pij for all j and with
I

∑

i=

J

∑

j=

pij =
I

∑

i=

pi+ =
J

∑

j=

p+j = .�en,

the following property follows from ():

(P) H is additive, i.e.,

H({pij}) = H({pi+p+j}) = H({pi+}) +H({p+j}) ()

under independence i.e., when the two experiments or

when X and Y are independent.

For the case when pi+ = /I and p+j = /J for all i and
j, () reduces to

H ({ 
IJ
}) = H ({ 

I
}) +H ({ 

J
}) ()

which is sometimes referred to as theweak additivity prop-

erty.

Two famous inequalities involving the entropy func-

tion H in () can be expressed as follows:

(P) For any two probability distributions Pn =
(p, . . . , pn) and Qn = (q, . . . , qn),

−
n

∑
i=
pi log pi ≤ −

n

∑
i=
pi log qi ()

which is referred to as Shannon’s fundamental inequality

and is sometimes called the Gibbs’ inequality.

(P) As a consequence of (),

H({pij}) ≤ H({pi+}) +H({p+j}) ()

which is called the subadditivity property of H and of

which () is the only equality case, which occurs under

independence when pij = pi+p+j for all i and j.
�e entropy in (), as well as other entropy measures,

may be derived by using some of these properties as axioms

or postulates. Such axiomatic characterization approach

starts o� with a set of axioms specifying some properties

that a measure should possess and then showing that a

particular function satis�es those axioms (e.g., Aczél and

Daróczy ; Mathai and Rathie ).

Cross-Entropy (Divergence)
�e inequality in () can also be expressed as

D(Pn : Qn) =
n

∑
i=
pi log(

pi

qi
) ≥  ()

where D(Pn : Qn) is known as the cross-entropy, but
is more commonly called the divergence of Pn from Qn.

Speci�cally, it is called the 7Kullback–Leibler divergence
or information (Kullback and Leibler ). Since D(Pn :
Qn) is not symmetric in Pn andQn, the term directed diver-
gence is sometimes used. It di�ers from the conditional

entropy de�ned as
I

∑

i=

pi+ [−
J

∑

j=

(pij/pi+) log(pij/pi+)] . To

avoid mathematical di�culties with (), the convention

 log  =  is used together with the assumption that qi = 
whenever pi = . From (), D(Pn : Qn) =  if, and only
if, Pn = Qn. It can also easily be seen that D(Pn : Qn) is
strictly convex in Pn for any given Qn and strictly convex

in Qn for any given Pn.

�e D(Pn : Qn) in () and various other measures and
generalizations of divergence (or “distance”) are important

in statistical inferences (see Pardo  for a recent and

extensive treatment of this topic). It is recognized from

the form of the expression in () that it is related to the

likelihood-ratio chi-square statistic G for goodness-of-�t

tests. In particular, if the pi’s are multinomial sample prob-

abilities (proportions) pi = ni/N for i = , . . . ,n with
sample size N =

n

∑

i=

ni and if Πn = (π, . . . , πn) is the

corresponding hypothesized distribution, with mi = Nπi
for i = , . . . ,n, then

G
 = ND(Pn : Πn) = 

n

∑
i=
ni log(

ni

mi
) ()
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which has the asymptotic 7chi-square distribution under
the null hypothesis involving the Πn- distribution and

with the proper degrees of freedom (n −  if Πn involves
no unknown parameters and n − s −  if Πn involves s
unknown parameters that are e�ciently estimated).

One particular divergence (cross-entropy) is that from

the joint distribution {pij} for the random variables X
and Y to their independence distribution {pi+p+j}, which,
from () is given by

D({pij} : {pi+p+j}) =
I

∑
i=

J

∑
j=
pij log(

pij

pi+p+j
) ()

and is known as themutual information between X and Y ,

but is also called transinformation. �is measure re�ects

in a sense the statistical dependence between X and Y ,

with D({pij} : {pi+p+j}) =  if, and only if, X and Y are
independent. It can also clearly be expressed in terms of

individual entropies from () as

D({pij} : {pi+p+j}) = H({pi+}) +H({p+j}) −H({pij})
()

which can also be seen to be non-negative from Property

(P) as expressed in ().

In the case when X and Y are continuous random vari-

ableswith the joint probability density function h(x, y) and
the marginal probability density functions f (x) and g(y),
the equivalent of () becomes

D(h(x, y) : f (x)g(y)) = ∫
∞

−∞
∫

∞

−∞
h(x, y)

log
h(x, y)
f (x)g(y)

dxdy

= −∫
∞

−∞
f (x) log f (x)dx

+ ∫
∞

−∞
∫

∞

−∞
h(x, y)

log
h(x, y)
g(y)

dxdy ()

provided, of course, that the integrals exist.�e �rst right-

side term in () is the continuous analog of the discrete

entropy in (). However, this continuous entropy may be

arbitrarily large, positive or negative.

Parameterized Generalizations
A number of generalizations of the entropy in () have

been proposed by introducing one or more arbitrary real-

valued parameters.�e best known such generalization is

the Rényi entropy of order α (Rényi ) de�ned by

HRα(Pn) =


 − α
log



n

∑
i=
p

α
i , α > , α ≠  ()

with α being an arbitrary parameter. Rényi () de�ned

α ∈ (−∞,∞), but α >  is used in () to avoid mathe-
matical di�culties when some pi = . While he used only
the base − logarithm, the natural logarithm could obvi-
ously also be used in (). Rényi’s entropy has many of the

same properties as Shannon’s entropy in (), including the

additivity in property (P). In the limit as α → , and using
l’Hôpital’s rule, () reduces to () with base − logarithm,
showing that Shannon’s entropy is a special case of Rényi’s

entropy.

�e second early parameterized generalization of

Shannon’s entropy was that of Havrda and Charvát ()

and given by

HHCα(Pn) =


−α − 
(
n

∑
i=
p

α
i − ) , α > , α ≠  ()

of which the entropy in () with base − logarithm is the
limiting case as α → . If  − α is used as the denomina-

tor in (), as is o�en done, then () with base −e (natural)
logarithm would be the limiting case of () as α → .

�ere have been numerous other generalized entropy

formulations (e.g., Arndt , Ch. ; Kapur ; Pardo

, Ch. ). In order to include the great majority of

those formulations within a single parameterized general-

ization, one needs a four-parameter generalized entropy as

introduced by Kvålseth (Kvålseth , ), i.e.,

H
λ
αβδ(Pn) = λ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜
⎝

n

∑

i=

pα
i

n

∑

i=

pδ
i

⎞
⎟⎟⎟
⎠

β

− 

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(a)

 < α <  ≤ δ, βλ > ; or,  ≤ δ ≤  < α, βλ <  (b)

with the parameter restriction in (b) necessary for the

entropy in (a) to be non-negative and strictly Schur-

concave. In order for the expression in (a) to be non-

negative, it is found to be su�cient that (δ − α) βλ >  for
any real-valued α, β, δ, and λ (using the convention c = 
for all real c), but (b) is found to be required for strict
Schur-concavity.

For the particular case when, for instance, λ = λ =
[( − α)β]− and δ = , it follows from (a) that

H
λ
α(Pn) = lim

β→
H

λ
αβ(Pn) =



 − α
loge

⎛
⎜⎜⎜
⎝

n

∑
i=
pα
i

n

∑
i=
pi

⎞
⎟⎟⎟
⎠
, α > 

()

which is Rényi’s entropy of order α for a possibly incomplete

distribution when
n

∑
i=
pi ≤  (Rényi ). �e equivalent
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form of Shannon’s entropy becomes

H
λ
(Pn) = lim

α→
H

λ
α(Pn) =

−
n

∑
i=
pi

n

∑
i=
pilogepi ()

for
n

∑

i=

pi ≤ . L’Hôpital’s rule is used for the limits in

()–(). If, instead of setting λ = λ = [( − α)β]−,
λ = λ = ((−α)β − )− is used in (a), then the spe-
cial cases in ()–() would involve base − logarithms.
Two very simple members of () are the quadratic entropy

 −
n

∑

i=

p i and the cubic entropy  −
n

∑

i=

p i for
n

∑

i=

pi = 

(Kapur and Kesavan : –). Note that, because

of the term
n

∑

i=

p δ
i in (), this general formulation also

includes incomplete distributions (
n

∑

i=

pi < ) and hence

also the entropy of a single event.�us, since the general-

ized entropy, or four-parameter family of entropies, in ()

is zero-indi�erent (see also Property (P)), the entropy of

a single event of probability p becomes

H
λ
αβδ(p, , . . . , ) = λ(p(α−δ)β − )

subject to the parameter restriction in (b) and with two

simple particular cases being  − p (e.g., when λ = , α =
, δ = β = ) and the corresponding odds /p − .
Various parameterized generalizations have also been

proposed for additive and non-additive directed diver-

gence measures. Arndt (), Kapur (), and Pardo

() provide overviews of such generalizations.

While such generalized entropy formulations provide

interesting mathematical exercises and explorations, the

practical utility of such e�orts seem to be somewhat limi-

ted. Unless the added �exibility of such generalizations

prove useful in particular situations, Shannon’s entropy in

() and () is the entropy of choice.
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7 We view this pile of data as an asset to be learned from. The
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Britt Mayo

Introduction
Let P be a convex set of probability distributions de�ned
on a measurable space (X ,B).�e classical de�nition of
entropy as a measure of randomness in p ∈ P is what is
known as Shannon entropy

H(p) = −
n

∑
i=
pi log pi ()

in the case of a7multinomial distribution in n classes with
class probabilities, p, . . . , pn, and

H(p) = −∫ p log p dv ()

in the case of a continuous distribution. �ese measures

were used by Boltzman () and Gibbs (–) in

describing some equilibrium states in thermodynamics

and Shannon () in information theory.

�e function () has been adopted by ecologists as a

diversity measure in discussing relative abundance of dif-

ferent species of animals or plants in a locality. Some early

references are Pielou (), Patil and Taillie (), and

Rao (a, b, c).

While H(p) is de�ned on P , there is another function
C(q∣p), de�ned onP ×P , called cross entropy (CE), not
necessarily symmetric in p and q, designed to examine

how close a surrogate model q is to a true model p. A

well-known CE is Kullback and Leibler () divergence

measure

C(q∣p) =
n

∑
i=
pi log

pi

qi
()

in the discrete case of n class multinomial distributions,

and

C(q∣p) = ∫ p log
p

q
dv ()

in the case of continuous distributions.

In this paper, a general discussion of entropy and cross

entropymeasures, their characterizations, and applications

to problems in statistics are given.

Entropy Functional
We state some general postulates governing an entropy

function H on P , conceived of as a measure of diversity
(or randomness or uncertainty in prediction) as discussed

in Rao (a, ).

A : H(p) ≥  ∀ p ∈ P and H(p) =  i� p is degenerate
()

A : H(λp + µq) − λH(p) − µH(q) = J(p, q : λ, µ) ≥ 
()

∀ p, q ∈ P , λ ≥ , µ ≥ , λ + µ = , and =  i� p = q

While A requires H to be a non-negative function, A
implies that uncertainty increases if we contaminate pwith

another member q, i.e.,H(p) is a strictly concave function
on P . In a paper titled Entropy in this volume, Kvålseth
gives a number of postulates governing H in addition to

A and A and discusses the consequences of each postu-

late. One important di�erence is the additional postulate

requiring symmetry of H in () with respect to p, . . . , pn.

Some of the consequences of the postulate A as stated in

() are as follows:

. In the class of multinomial distributions, H(p) attains
the maximum when all class probabilities are equal if

H is symmetric in p, . . . , pn.

. Dalton and Pielou used the following condition in

characterizing a diversity measure:

H(p, . . . , pi, . . . , pj, . . . , pn)

≤ H(p, . . . , pi + δ, . . . , pj − δ, . . . , pn)

if pi < pi + δ ≤ pj − δ < pj.

�is is implied by A if H is symmetric in p, . . . , pn.

Some examples of entropy functions in the case of

multinomial distributions with p, . . . , pn as class probabil-

ities are:

. −∑pi log pi, Shannon entropy
.  −∑p i , Gini-Simpson entropy
. ( − α)− log∑pα

i , α > , α ≠ , Rényi entropy
. (α − )− ( −∑pα

i ) , Havrda and Charvát entropy
. ∑∑dijpipj, Rao’s () quadratic entropy

where d = . . . = dkk and the (k − ) × (k − ) matrix
(dik + djk − dij − dkk) is non-negative de�nite.



Entropy and Cross Entropy as Diversity and Distance Measures E 

E

Properties of some of these entropy functions are discussed

in Kvålseth in this volume. In the continuous case, some of

the entropy functions are:

. − ∫ p log p dv, Shannon entropy, which may be nega-
tive for some p. For example, if

p =  for all x in (, /), −∫ p log p dv

= −∫
/


 log dv = − log  < 

. ( − α)− log ∫ pαdv, α > , α ≠ , Rényi entropy
. ∫ k(x, y)p(x)p(y)dvxdvy, Rao’s () quadratic

entropy where k is a conditionally negative de�nite

kernel, i.e.,

n

∑
i=

n

∑
j=
k(xi, xj)aiaj < 

for any n and x, . . . , xn and a, . . . , an such that

∑ai = .

Rao’s quadratic entropy in the case of multinomial dis-

tributions is a function of both the class probabilities and

possible di�erences in species in other aspects. It may not

be a symmetric function of class probabilities. For a discus-

sion on the use of Rao’s quadratic entropy as an appropriate

tool in the ecological studies, reference may be made to

papers by Pavoine et al. (), Ricotta and Szeidl ()

and Zoltán (). It may be noted that Rao’s quadratic

entropy reduces to the expression for the variance of the

distribution p if k (x, y) = (x − y).
Maxwell and Boltzmann obtained what is known as

Maxwell-Boltzmann distribution of elementary particles

(such asmolecules) bymaximizing Shannon entropy func-

tion, as in . above, subject to a restriction on p. Rao (,

pp. –) obtained the corresponding model by maxi-

mizing Rényi’s entropy, as in . above, subject to the same

restriction on p. It would be of interest to try other entropy

functions and compare di�erent models.

ANODIV
R. A. Fisher introduced themethod of Analysis of Variance

(ANOVA) for partitioning the variance of a set of mea-

surements into several components such as “between” and

“within” populations, “�rst order and higher order inter-

actions” of factors, etc. Can a similar analysis be done with

other measures of variability such as themean deviation in

the case of quantitative variables and a measure of diver-

sity in the case of qualitative measurements? For instance

we may have n populations of individuals and each indi-

vidual in a population is scored for one of k possible skin

colors. We may ask what is the average diversity of skin

color within populations? What is the di�erence in skin

color between populations as a whole?

�e key to this lies in the choice of a suitable mea-

sure of diversity whether the measurements involved are

qualitative or quantitative satisfying the postulate A

H(λlp + ⋅ ⋅ ⋅ + λkpk) −
k

∑
i=

λiH(pi) = J ({pi},{λi}) ≥ 

()

where the �rst term is the diversity of individuals in the

mixed population, the second term is average diversity

within populations and the di�erence is attributed to diver-

sity between populations.

�e function J in () is called Jensen di�erence

of order , and H satisfying () as a diversity measure of

order . Using () we have one-way ANODIV (Analysis of

Diversity) as in Table .

where P. = ∑λipi. In practice, we estimate H(P.) and
H(Pi) based on observed data and λi as proportional to

sample size ni of observations from the ith population.�e

ratio G = B/T, has been termed as genetic index of diver-
sity in some population studies to interpret di�erences

between populations as in Lewontin (), Nei (),

and Rao (b). It may be noted that G depends on the

choice of a suitable measure of diversity relevant to prob-

lem under consideration. For some applications reference

may be made to Rao (a, b, b).

Now, we investigate the condition on H(P) for carry-
ing out a two-way ANODIV. Let us consider populations

denoted by Pij, i = , . . . , r and j = , . . . , s, where the �rst
index i refers to a locality and the second index j to a spe-

ci�c community. Further, let λiµj be the relative strength of

individuals in locality i and community j, where λi and µj
are all non-negative and∑λi =∑µj = . Wemay ask: how
are the genetic contributions of individuals between local-

ities and between communities as a whole di�erent? Is the

magnitude of genetic di�erences between the communities

di�erent in di�erent localities? Such questions concerning

the rs populations can be answered by a two-wayANODIV

as in Table .

Entropy and Cross Entropy as Diversity and Distance
Measures. Table  One-way ANODIV for k populations

Due to Diversity

Between populations (B) J ({pi},{λi})

Within populations (W) ∑λiH(pi)

Total (T) H(P.)
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Entropy and Cross Entropy as Diversity and Distance
Measures. Table  Two-way ANODIV

Due to Diversity

Localities (L) H(P..) −
r

∑

i=
λiH(Pi.)

Communities (C) H(P..) −
s

∑

j=
µjH(P.j)

Interaction (LC) * by subtraction

Between populations (B) H(P..) −∑λiµjH(Pij)

Within populations (W) ∑∑λiµjH(Pij)

Total (T) H(P..)

In Table , P.. = ∑∑λiµjPij,Pi. = ∑µjPij,P.j = ∑λiPij.

What are the conditions under which the entries in Table 

are non-negative? For B,L, and C to be non-negative,

the functionH(⋅) de�ned onP should be strictly concave.
For the interaction LC to be non-negative

(LC) = − [H(P..) − λiH(Pi.)] +∑µj [H(P.j) − λiH(Pij)]
= −J ({Pi.} : {λi}) +∑µjJ ({Pij} : {λi})
= J ({Pij} : {λiµj}) ≥  ()

or J as de�ned in () on P r is convex. We represent this
condition as C on a diversity measure. If C and C hold,

we call such a diversity measure as of order . Note the

(LC) can also be expressed as

(LC) = − [H(P..) −∑µjH(Pij)] +∑λi[H(Pi.)

−∑µjH(Pij)]

= −J ({P.j} : {µj}) +∑λiJ ({Pij} : {µj}) ()

or J as a function onP s is convex.
We can recursively de�ne higher order Jensen di�er-

ences J from J, J from J and so on, and call H(⋅) for
which J, J, . . . , Ji− are convex as the i

th
order diversity

measure. With such a measure we can carry out ANODIV

for i-way classi�ed data. A diversity measure for which

Jensen di�erences of all orders are convex is called a perfect

diversity measure.

Burbea and Rao (a, b, c) have shown that Shannon

entropy satis�es the conditions C,C, and C, but not

C,C, . . . �e Havrda and Charvát entropy satis�es

C,C, and C for α in the range (, ] when k ≥  and for
α in the range [, ] ∪ (, /) when k =  and C,C, . . .
do not hold except when α =  in which case it reduces to
Gini-Simpson index. Rényi’s entropy satis�es C,C, and

C only for α in (, ). Most of the well known entropy

functions can be used only for two-way ANODIV but not

for higher order ANODIV.

In the case of Rao’s quadratic entropy, Jensen di�er-

ences of all orders are convex, so that ANODIV can be

carried out for any order classi�ed data. It is shown by

Lau () that an entropy with this property is necessarily

Rao’s Quadratic Entropy.

Asymptotic distribution of ratios of entries in the

ANODIV table, which can be used for tests of hypothe-

ses as in ANOVA, can be obtained by bootstrapping as

illustrated in Liu and Rao ().

Entropy Differential Metric
Using Fisher Information matrix, Rao () introduced

a quadratic di�erential metric, known as Fisher-Rao met-

ric, over the parameter space of a family of probability

distributions and proposed the geodesic distance (Rao dis-

tance) induced by the metric as a measure of dissimilarity

between probability distributions. Burbea and Rao (c)

introduced ϕ-entropy functional

Hϕ(p) = −∫ ϕ[p(x)]dv ()

and derived the quadratic di�erentialmetric as theHessian

of ϕ, assuming a parametric family of probability densities

p(x) = p(x, θ, . . . , θn).

�is opens up a wide variety of di�erential metrics. For

instance, the choice of Shannon entropy with

ϕ(p) = p log p ()

in () gives Fisher-Rao metric. �e reader is referred

to Burbea and Rao (b, c) for the details. Maybank

() has written a number of papers on the applica-

tion of Fisher-Rao metric, Rao distance and the associated

Rao Measure.�e possibility of using Burbea-Rao metric,

which o�ers wider possibilities may be explored.

Cross Entropy
Characterization
�ere are situations where the true probability distribu-

tion p is not known but we us a surrogate distribution q

for an analysis of data arising from p, or p is known but it

is easy to generate observations from q to estimate some

quantities such as the probability of large deviations in

p, by a technique known in statistics as importance sam-

pling as explained in section “7Some Applications of CE”.
See also Rubinstein and Kroese (). In such a case we

need to select q fromQ, a chosen family of distributions,
such that q is close to an optimum distribution, using a

suitable measure of closeness. One such measure, called
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cross entropy (CE), used in some problems is Kullback-

Leibler () measure of divergence

C(q∣p) = ∫ p log
p

q
dv. ()

We suggest a few postulates for the choice of CE:

B : C(q∣p) ≥  ∀ p, q ∈ P and C(q∣p) =  only if p = q.
()

B : C(q∣λp + µq) ≤ C(q∣p), λ ≥ , µ ≥ , λ + µ = .
()

�e postulate B is a natural requirement as the mixture

λp+ µq has some component of q which brings q closer to
λp + µq.

�ere are several ways of constructing CEs depend-

ing on its use in solving a given problem. A loss function

approach is as follows: let p be true probability density and

we wish to �nd q such that

∫ l(p(x), q(x))p(x)dx ()

is a minimum, where l is a measure of di�erence between

the likelihoods p(x) and q(x).�e choice

l(p(x), q(x)) = log p(x)
q(x)

()

leads to 7Kullback-Leibler divergence measure

C(q∣p) = ∫ p log
p

q
dv. ()

�e choice

l(p(x), q(x)) = [p(x) − q(x)]

p(x)q(x)
()

introduced by Rao () leads to

∫
(p − q)

pq
pdv =∫

p

q
dv − , ()

which has some interesting properties.

A general version of CE, known as Csizar generalized

measure, is

∫ l(q
p
) pdv

where

l ≥ , l() =  and l′′() > . ()

Rao and Nayak () gave a general method of deriving a

CE from a given entropy function H(p) as

C(q∣p) = lim
λ→

H(q + λ(p − q)) −H(q)
λ

+H(q) −H(p).
()

�e choice ofH(p) as Shannon entropy in () leads to (),
the Kullback-Leibler divergence measure.

Some Applications of CE
A comprehensive account of the use of CE in estimating

probability of large deviations and a variety of stochas-

tic and non-stochastic optimization problems is given in

Rubinstein and Kroese ().

An example of how cross entropy is used is as follows.

Suppose the problem is that of estimating γ = Ep [Φ(x)] ,
the expectation of a function Φ(x) with respect to a given
probability distribution p(x). For instance, if we want to
�nd the probability of x ≥ a, as in the problemof large devi-
ations. we can express it as the expectation of the function

Ix≥a, where I is the indicator function.
A general Monte Carlo technique of estimating γ is to

draw a sample x, . . . , xn from p(x) and estimate γ by

γ̂ = n−∑Φ(xi). ()

Observing that

∫ Φ(x)p(x) dx = ∫ Φ(x)p(x)
q(x)

q(x) dx ()

and

γ = Eq [Φ(x)p(x)
q(x)

] ()

we may draw a sample (x′, . . . , x′n) from q, known as an
importance sampling distribution, and estimate γ by

γ̂ = n−∑Φ (x′i) p (x′i) /q (x′i). ()

�e best choice of q which reduces the variance of γ̂ to

zero is

q
∗(x) = Φ(x)p(x)

γ
. ()

However, the solution depends on the unknown γ. An

alternative is to choose a family of sampling distributions

indexed by a number of parameters

q(x, θ), θ = (θ, . . . , θs) ()

and estimate θ by minimizing C[q(x, θ)∣q∗(x)] with
respect to θ. If we are using KL divergence measure, the

problem reduces to

max
θ
∫ q

∗(x) log q(x, θ)dv ()

which can be solved analytically or by maximizing with

respect to the stochastic counterpart

n

∑
i=

q∗(xi)
q(xi, θ)

log q(x, θ) ()
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with respect to θ, where, x, . . . , xn are observations drawn

from q(x, θ), choosing a �xed value θ of θ. Use of () as

CE reduces the variance of the estimate ().

�e CE method can also be used to �nd the maximum

orminimum of amathematical function f (x) de�ned over
a regionR, subject to some equality and inequality con-
straints as in the Travelling Salesman, pattern recognition

(see7Pattern Recognition, Aspects of and7Statistical Pat-
tern Recognition Principles), and clustering problems.�e

problem is converted to a stochastic problem by choosing a

probability distribution p(x)over the given regionR and a
constant γ, and applying the algorithmused in the problem

of large deviations, Prob [ f (x) > γ].�e probability distri-
bution p(x) and the constant γ are altered step by step till

the large deviation probability becomes negligibly small.

For details, the reader is referred to Rubinstein and Kroese

().

Epilogue
In his paper in this volume on �e Future of Statistics,

Efron mentions that the nature of statistical methods is

constantly changing with the availability of large data sets

and increase in computing power. Early development of

statistical theory and practice during the �rst half of the

last century was based on parametric models for observed

small data sets, and a set of prescribed rules for testing

given hypotheses and estimating parameters of the chosen

model. A critical discussion of these methods is given in

the paper, Has statistics a future? If so, in what form? (with

discussion), by Rao ().

Efron’s bootstrap (see 7Bootstrap Methods) and new
computer intensive methods such as boosting, bagging,

CART, Lasso, Lars, projection pursuit, machine learn-

ing methods as in training 7neural networks, and ran-
dom forests, have put statistical methodology in a di�er-

ent perspective without use of speci�c models for data.

To these may be added the CE approach described in

this paper, which provides a comprehensive computational

algorithm for solving a variety of statistical problems,

such as estimation of large deviations (see 7Large Devi-
ations and Applications), pattern recognition and cluster-

ing, DNA sequence alignment and non-stochastic opti-

mization problems such as�e Travelling Salesman Prob-

lem.

I would like tomention that the aim of statistical analy-

sis is not just to answer speci�c questions posed by the cus-

tomer, but to �nd hidden patterns in given data, described

as 7exploratory data analysis emphasized by Tukey, or
7data mining or bottom-up analysis to use modern ter-
minology. Such an analysis will enable us to frame new

hypotheses leading to possible expansion of knowledge.

Some of these hypotheses could be tested with the exist-

ing data and some of themmay need further acquisition of

data. For further discussion on the need of statistics in solv-

ing problems of the real world, development of statistical

methodology in viewof technological advances in data col-

lection, availability of large data sets, and emergence of new

disciplines like 7bioinformatics raising new problems for
data analysis, and training of statisticians, referencemay be

made to Efron’s paper in this volume and Rao ().
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Environmental monitoring is conducted to provide infor-

mation on status, and changes in status, of an environ-

mental system. O�en monitoring is associated with an

impact, such as a proposed land development activity or

rehabilitation of a habitat. At other times, environmental

monitoring is conducted to assess the success (or failure)

of a new environment management strategy or change in

strategy. Monitoring can also be carried out to provide

information on the overall status of a land or water area

of special interest in �elds such as biodiversity, the wel-

fare of an endangered species or the abundance of a pest

species.

In all these examples, the common theme is that moni-

toring is conducted to provide information.�is informa-

tion may be used in reports and articles that are created to

bring about change in management. Typically, such infor-

mation is numerical – a summary statistic, or a set of

data – or some type of numerical measure. �is is the

role of statistics – statistics is the process used to collect

and summarize data to provide relevant information for

environmental monitoring.

Some underlying principles apply to information col-

lected from environmental monitoring.�e �rst is that in

any monitoring design, the aims and objectives need to be

clearly stated, both in a temporal and a spatial scale.�e

most successful monitoring programmes have aims and

objectives that can be quanti�ed to guide development of

the survey design and data analysis (Gilbert ).

�e survey design for the monitoring programme

should specify how information is to be collected. Various

survey designs can be used, and the important criterion

is that they should provide a sample that is representa-

tive of the population and provide information relevant to

the survey objective.�e population can be considered to

be an area of land or water that has �xed and delineated

boundaries. A reserve or national park is an example of

such a population. Other populations may be a species of

interest, e.g., a bird population. In the example of a bird

species, the populationmay be �nite, although of unknown

size, but the spatial boundaries may be unknown if the

birds are highly mobile. In other applications, de�ning

the population may be very di�cult. For example, when

monitoring the impact of a new industrial development

in a rural area, delineating the area beyond which there is

unlikely to be an e�ect may be very di�cult.

Sample designs that use an element of probability

(probability sampling) are recommended so that sam-

ple survey theory can be used to estimate sample preci-

sion (�ompson ). Examples of designs are simple

random sampling, strati�ed sampling, grid-based sam-

pling and spatially balanced designs (Stevens and Olsen

).

Statistics is used when a modeling approach is needed

to describe the environmental system or for measuring the

size of an environmental e�ect. Examples of an environ-

mental e�ect are the changes (measured in some way) in

environmental status of an area over time, or di�erence

in environmental quality among sites receiving di�erent

management treatments (Manly ).
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�e very nature of environmental monitoring is that

data are collected over time to allow assessment of change.

A special type of statistical analysis is used for such data to

account for the temporal correlation. Repeated measures

analysis and longitudinal analysis are two terms used to

describe di�erent analyses for when environmental sam-

ples are collected from the same population over time

(Manly , Diggle et al. ). A consideration in sur-

veys that are repeated over time is whether the same sites

should be visited on each survey occasion or whether

new sites should be selected and visited at each occasion.

Designs that combine aspects of both are o�en used, where

on each survey occasion, a mix of previous and new sites

are surveyed (See, for example, Skalski ).

A feature of environmentalmonitoring that is designed

to detect any impact resulting from an event is that infor-

mation on the environment in the absence of the impact

needs to be collected. An environmental impact describes

events such as a new industrial development or the imple-

mentation of a new management strategy to protect an

endangered species.�e statistical term for these designs

is before/a�er control/impact (BACI) (Underwood ).

In a BACI study, information is collected before the

impact both at the control sites and at the site(s) of the

future impact. Control sites are those that will not be

a�ected by the impact event. Information is then collected

from control sites and from the actual impact sites. �is

design provides information on the environment in the

absence of the impact temporally (i.e., before the impact)

and spatially (i.e., the control sites). �e BACI statisti-

cal analysis considers whether the di�erence between the

control and impact sites increases or decreases a�er the

impact event.�e analysis provides a way of quantifying

this change in di�erences. Clearly, for some events, the

complete BACI design cannot be used, e.g., unplanned

impacts such as oil spills.

A growing area of statistics is spatial analysis and the

use of geographic information systems (GIS) to map and

describe environmental systems. Environmental monitor-

ing can be designed to provide information on geographic

changes in spatial patterns and distributions. O�en maps

and other well-designed graphical displays can be very

informative. A �nal comment must be made about the

logistical support for environmental monitoring.Monitor-

ing programmes rely on (and o�en assume) data being

collected accurately in the �eld. Whether this is true or

not depends heavily on whether the �eld team have appro-

priate training and support. It is very important to have

consistency in data collection protocols to ensure that any

observed variation in summary statistics over time is a

result of changes in the environmental system and not

simply changes in �eld sta� or their ability. Other consid-

erations are that data need to be recorded accurately and

stored in an accessible way.

Statistics plays a vital role in environmental monitor-

ing because the essential ingredient to monitoring is data.

A well planned, designed and executed monitoring pro-

gramme can provide a wealth of information to guide

future management and help ensure we maintain healthy

environments.
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Many clinical trials have the objective of showing equiv-

alence between two treatments, usually a test treatment
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under development and an existing reference treatment.

In such studies the aim is no longer to detect a di�er-

ence, as in the case when comparing a new treatment with

placebo, but to demonstrate that the two active treatments

are equivalent within a priori stipulated acceptance limits.

Let YT and YR designate the primary clinical outcome of

interest for the test and reference treatment, respectively.

A two-sample situation is considered where it is assumed

that the outcomes are mutually independent and normally

distributed with unknown but common variance σ ,

YTj ∼ N(µT , σ ), j = , . . . ,n, and YRj ∼ N(µR, σ ),
j = , . . . ,n.

For equivalence testing it is reasonable to assume that the

signs of the corresponding population means µT and µR
are the same and, without loss of generality, positive. Let

the interval (δ, δ), δ <  < δ, denote the pre-speci�ed

equivalence range, so that the corresponding test problem

can be formulated as follows:

H : µT − µR ≤ δ or µT − µR ≥ δ vs

H : δ < µT − µR < δ.

A split of the above two-sided test problem into two one-

sided test problems (Schuirmann ) results in

H : µT − µR ≤ δ vs H : µT − µR > δ

and

H : µT − µR ≥ δ vs H : µT − µR < δ.

According to the intersection–union principle (Berger and

Hsu ), H is rejected at signi�cance level α in favor of

H if both hypotheses H and H are rejected at signi�-

cance level α:

Tδ =
YT − YR − δ

σ̂

√


n
+ 

n

> t−α ,n+n− and

Tδ =
YT − YR − δ

σ̂
√



n
+ 

n

< −t−α ,n+n−,

whereYT andYR denote the corresponding samplemeans,

t−α ,n+n− is the ( − α) quantile of the central Student’s
t-distribution with n + n −  degrees of freedom and

σ̂
 = 

n + n − 
⎛
⎝

n

∑
j=

(YTj − YT)
+

n

∑
j=

(YRj − YR)
⎞
⎠

is the pooled estimator of σ .

�is is equivalent to

YT − YR − t−α ,n+n− σ̂

√


n
+ 

n
> δ and

YT − YR + t−α ,n+n− σ̂

√


n
+ 

n
< δ,

and hence to the inclusion of the two-sided ( − α)%
con�dence interval for µT − µR in the equivalence range

[YT − YR − t−α ,n+n− σ̂

√


n
+ 

n
,YT − YR

+ t−α ,n+n− σ̂

√


n
+ 

n
] ⊂ (δ, δ).

In clinical practice the equivalence limits δ and δ
are o�en expressed as fractions of the unknown reference

mean µR ≠ , i.e., δ = fµR and δ = fµR, − < f <  < f.
For example f = −f = −. corresponds to the common
±% criterion.�e test problem for equivalence can then
be formulated as:

H :
µT

µR
≤ θ or

µT

µR
≥ θ vs H : θ <

µT

µR
< θ,

where (θ, θ), θ =  + f, θ =  + f,  < θ <  <
θ, is the corresponding equivalence range for the ratio of

the expected means µT and µR.�e null hypothesis can be

rejected in favor of equivalence, if

Tθ  =
YT − θYR

σ̂

√


n
+ θ

n

> t−α ,n+n− and

Tθ =
YT − θYR

σ̂

√


n
+ θ



n

< −t−α ,n+n−.

Hauschke et al. () have shown that rejection of H
by the two tests Tθ  and Tθ each at level α is equivalent

to inclusion of the ( − α)% con�dence interval for
µT/µR, given by Fieller (), in the equivalence range
(θ, θ), with

[θ l, θu] ⊂ (θ, θ) and Y


R > aR,

where

θ l =
YTYR −

√
aRY



T + aTY


R − aTaR
Y


R − aR
,

θu =
YTYR +

√
aRY



T + aTY


R − aTaR
Y


R − aR
,

aT =
σ̂ 

n
t

−α ,n+n−, aR =

σ̂ 

n
t

−α ,n+n−.

Note that the condition Y


R > aR implies that µR ≠ 

Y


R >
σ̂ 

n
t

−α ,n+n−⇔

∣YR∣

σ̂

√


n

> t−α ,n+n−.
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It should be noted that in clinical trials, a signi�cance

level of α = . is required for equivalence testing

and this refers to the calculation of two-sided % con-

�dence intervals (CPMP ). Hence, equivalence can

be concluded at level α = . if the corresponding

two one-sided test problems can be rejected each at level

α = ..
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Birkhoff’s Ergodic Theorem
Birkho� ’s theorem (see Birkho� ) extends the strong

law of large numbers to stationary processes.�e theorem

is most easily formulated in terms of measure-preserving

transformations: If (Ω,F ,P) is a probability space then
a measurable transformation T : Ω → Ω is measure-

preserving if EX = EX ○ T for every bounded random
variable X de�ned on Ω. In this case P is said to be T-

invariant. Let T be a measure-preserving transformation

of a probability space (Ω,F ,P); then a random variable
X de�ned on (Ω,F) is T-invariant if X = X ○ T almost
surely, and an event F ∈ F is T-invariant if its indicator
function is.�e collection of allT-invariant events F ∈ F is
a σ-algebra, denoted by I .�e measure-preserving trans-
formation T is ergodic if the only bounded, T-invariant

random variables are almost surely constant. Denote by T i

the ith iterate of T, that is, T i+ = T ○ T i.

Birkho�’s �eorem. Let T be a measure-preserving
transformation of a probability space (Ω,F ,P).�en for
every integrable random variable X de�ned on (Ω,F),

lim
n→∞



n

n

∑
i=
X ○ T i = E(X ∣I) almost surely. ()

If T is ergodic, then E(X∣I) = EX almost surely, so in
this case the sample averages converge almost surely to the

expectation EX.

It is not di�cult to see that if T is a measure-preserving

transformation of a probability space (Ω,F ,P) then for
every random variable X de�ned on (Ω,F) the sequence
Xn := X ○ Tn is a stationary sequence, that is, the joint dis-
tribution of X,X, . . . is the same as that of X,X, . . . .

Conversely, if X,X, . . . is a stationary sequence of real

random variables de�ned on some probability space and

if µ is the joint distribution of X,X, . . . , viewed as a

random element of R∞
, then the forward shi� operator

σ is a measure-preserving transformation of the prob-

ability space (R∞
,B∞, µ). Birkho� ’s theorem implies

that if this shi� is ergodic – in which case the station-

ary sequence X,X, . . . is said to be ergodic – then the

sequence X,X, . . . obeys the strong law of large num-

bers. Kolmogorov’s  −  Law implies that if the sequence
X,X, . . . consists of i.i.d. random variables then it is

ergodic, when viewed as a stationary sequence.�us, the
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usual strong law of large numbers for sample averages of

independent, identically distributed random variables is a

corollary of Birkho� ’s theorem. In fact, Birkho� ’s theorem

implies much more: If the sequence X,X, . . . is station-

ary and ergodic, then for any Borel measurable function

F :R∞ → R the sequence

Yn := F(Xn,Xn+, . . . )

is stationary and ergodic, and therefore obeys the strong

law of large numbers provided the �rst moment ∣EY∣ is
�nite.

Consequences of Birkhoff’s Theorem
Ergodic Markov Chains
An immediate consequence of Birkho� ’s theorem is a

strong law of large numbers for additive functionals of

ergodic Markov chains. A Markov chain (see 7Markov
Chains)Xn on a �nite or denumerable state spaceX is said
to be ergodic if all states communicate and all states are pos-

itive recurrent. Each ergodic Markov chain has a unique

stationary probability distribution. If the initial state X is

distributed according to the stationary distribution then

the sequence X,X,X,. . . is stationary and ergodic, and

so the law of large numbers for real-valued functionals

F(Xn) follows directly.Moreover, even if theMarkov chain
is started in an initial distribution ν other than the station-

ary distribution π, the strong law of large numbers must

hold, because the probability measure Pν
governing the

non-stationary chain is absolutely continuous relative to

the probability measure Pπ
governing the stationary chain.

See Revuz () or Meyn and Tweedie () for simi-

lar results concerningMarkov chains on non-denumerable

state spaces.

Birkhoff’s Theorem and Dynamical Systems
Birkho� ’s theorem has important implications for deter-

ministic dynamical systems, especially those governed

by Hamilton’s equations where the Hamiltonian has no

explicit time dependence (see Arnold and Avez ).

According to a fundamental theorem of Liouville, if

{Φt}t≥ is the phase �ow of a Hamiltonian system on the
phase space RN then for each t >  Lebesgue measure on
RN is Φt-invariant. Lebesgue measure cannot be renor-
malized to be a probability measure; however, if the level

surfaces H = E of the Hamiltonian are compact, as is

o�en the case, then Lebesgue measure induces on each

energy surface a Φt-invariant probability measure, called

the Liouville measure.�e ergodic hypothesis of Boltzmann

asserts that the Liouville measure-preserving transforma-

tion Φt is ergodic. When true this implies, by Birkho� ’s

theorem, that “time averages equal space averages.” To date

the ergodic hypothesis has been established only for some

very special Hamiltonian systems.

The Shannon–MacMillan–Breiman Theorem
Let {Xn}n∈Z be a two-sided stationary process valued in a
�nite alphabet A. For each �nite sequence xx⋯xn in A,
denote by p(xx⋯xn) the probability that Xi = xi for each
index i ∈ [,n]. Similarly, denote by p(x∣x−x−⋯x−n) the
conditional probability that X = x given that Xi = xi for
every −n ≤ i ≤ −.�e martingale convergence theorem
implies that for almost every sequence x−x−⋯ (relative

to the joint distribution of the process {Xn}n∈Z) the limit

p(x∣x−x−⋯ ) := lim
n→∞

p(x∣x−x−⋯x−n) ()

exists.�eKolmogorov–Sinai entropy of the stationary pro-

cess {Xn}n∈Z is de�ned to be

h := −E log p(X∣X−X−⋯). ()

Shannon-MacMillan-Breiman �eorem. If the station-
ary process {Xn}n∈Z is ergodic then with probability one,

lim
n→∞

p(XX⋯Xn)/n = e−h ()

�is can be deduced from Birkho� ’s theorem, which

implies directly that with probability one

lim
n→∞



n

n

∑
k=
log p(Xk∣Xk−Xk−⋯ ) = −h. ()

�e Shannon–MacMillan–Breiman theorem is of funda-

mental importance in information theory, for it implies

that entropy limits the “compressibility” of a “message”

generated by a stationary, ergodic source. See Shannon and

Weaver () and Cover and�omas () for further

information.

Kingman’s Subadditive Ergodic Theorem
In the  years since Birkho� ’s paper, dozens of extensions,

generalizations, and other progeny of Birkho� ’s theorem

have been discovered. See Krengel () for an excellent

review. One of these subsequent extensions has proved to

be of singular importance: this is Kingman’s subadditive

ergodic theorem (see Kingman ). Let T be an ergodic,

measure-preserving transformation of a probability space

(Ω,F ,P). A double array {Sk,m}≤k≤m of real random
variables de�ned on (Ω,F) is called a subadditive process
relative to T if

Sk,m ○ T = Sk+,m+, ()

Sk,n ≤ Sk,m + Sm,n, and ()

γ := inf
n≥
n
−
ES,n > −∞. ()



Erlang’s Formulas E 

E

Observe that if Sk,m = ∑mi=k+ X ○ T i where X satis�es
the hypotheses of Birkho� ’s theorem then {Sk,m} is a
subadditive process.

Kingman’s �eorem. If {Sk,m} is a subadditive process
relative to an ergodic, measure-preserving transformation

T of a probability space (Ω,F ,P), then

lim
n→∞

S,n/n = γ µ − almost surely. ()

Kingman’s theorem has myriad uses in the study of

percolation processes and interacting particle systems. See

Liggett () for some of the basic applications.

Subadditive processes also arise naturally in connec-

tion with random walks (see 7Random Walk) on groups
and semigroups. A right random walk on a semigroup G

started at the identity X =  is the sequence Xn of partial
products of a sequence ξ, ξ, . . . of i.i.d.G-valued random

variables, with multiplication on the right:

Xn = ξξ⋯ξn. ()

�e special case where G is a matrix group or semigroup

is of particular importance. Let d be an invariant metric

on G, that is, a metric such that d(x, y) = d(xz, yz) for all
x, y, z ∈ G. For instance, if G is a discrete, �nitely generated
group then one might choose d to be the natural distance

in the Cayley graph; if G is a matrix group then one might

take d to be the distance induced by theRiemannianmetric

on G. In any case, the process

Sk,m := d(ξk+ξk+⋯ξm, )

is subadditive, and so Kingman’s theorem implies that

d(Xn, )/n converges almost surely to a constant γ (possi-

bly +∞). Similarly, if G =Md is the semigroup of all d× d
real matrices and ∥g∥ denotes the usual matrix norm of a
matrix g ∈ G, then

Sk,m := log ∥ξk+ξk+⋯ξm∥

is subadditive, and so Kingman’s theorem implies that if

log ∥ξ∥ has �nite �rst moment then

lim
n→∞

∥Xn∥/n = eγ ()

almost surely. �is is the celebrated Furstenberg–Kesten

theorem (Furstenberg and Kesten ) of randommatrix

theory. See Bougerol and Lacroix () for further devel-

opment of the theory of random matrix products.
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Mathematical calculations on probabilities have been put

in writing mainly since the seventeenth century with the

work of mathematicians like Fermat (–), Pascal

(–), Huygens (–), Bernoulli (–),

Moivre (–), Laplace (–), Gauss (–

), Poisson (–), and Tchébychev (–).

In the twentieth century the work of Markov, Liapounov,
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Khintchine, Kolmogorov, Palm, Wiener, Fisher, Doob,

Neumann, Cramer, Takács, Itó, and Santaló, among many

others, on probability foundations, 7stochastic processes,
and mathematical statistics provided the basis for what it

is called here “Stochastics.”

�ere are two stochastic processes that are fundamen-

tal, and occur over and over again, o�en in surprisingways.

�e deepest results in “Stochastics” seem to be concerned

with their interplay. One, the Wiener process (the Wiener

model of Brownian motion, see 7Brownian Motion and
Di�usions), has been the subject ofmany books.�e other,

the Poisson process (the simplest renewal process, i.e.,

exponential inter-renewal times), has been comparatively

a bitmore neglected. Kingman () redresses the balance

and provides an enjoyable and clearly written introduc-

tion to the structure and properties of 7Poisson processes
in one and more dimensions (the book simultaneously

addresses the beginner and the expert).

When, in  (June ) in Boston, Alexander Graham

Bell accidentally discovered the possibility of telephone

communication he could hardly foresee that by this dis-

covery he had also created the inspiration for 7queueing
theory. In fact, the pioneer work on queueing theory is

in Erlang (). A. K. Erlang was a Danish engineer and

mathematician dealing with the problems and worries of

the telephone communication system of the time, whose

fundamental papers appeared between  and . He

was responsible for the concept of statistical equilibrium,

for the introduction of the so-called balance-of-state equa-

tions, and for the �rst consideration of the optimization

of a queueing system. Rapid progress was made when the

use of queueing theory spread out to many other �elds

in addition to telephone theory, and mathematicians like

William Feller and David Kendall, among many others,

became interested in the mathematics of queues. It would

be di�cult to give a brief outline of the development of

the subject with a proper assignment of credits. Many of

the most meritorious papers responsible for new meth-

ods are now rarely mentioned in the literature, in spite of

the progress that they initiated; the D. V. Lindley’s inte-

gral equation of the single-server queueing system, pub-

lished in (), is an example. Queueing theory (including

queueing networks and complex particle systems) is one of

the most relevant branches of “Stochastics.” Indeed, some

of the today’s most signi�cant problems can be reduced to

resource allocation and resource sharing. When the cus-

tomers are human beings, very o�en patterns of human

behavior and responses have to be brought into the math-

ematical analysis of the corresponding queueing systems.

For instance, Little’s law, a celebrated queueing property,

does not necessarily hold due to the non-linear human’s

perception of waiting. Particularly in the queueing systems

of the service industry, issues linked to quality improve-

ment and innovation are now more than ever very rele-

vant; an introduction to these issues can be founded in

Ramalhoto ().

�e power of the structure and themathematical prop-

erties of the Poisson process (a few key results o�en pro-

duce surprising consequences) have been recognized in

the queueing theory since its foundation in Erlang ().

First Erlang Formula
In , A.K. Erlang (who also laid the foundations of mod-

ern teletra�c theory) from the analysis of the concept of

statistical equilibrium obtained his famous formula (one

of the most used formulas in practice even today) for the

loss probability of theM/G/r/r queueing system (i.e., Pois-
son arrival process, arbitrary service time distribution, r

servers and zero waiting positions) in steady state:

B(r, rρ) = [(rρ)r/r!] [
r

∑
i=

(rρ)i/i!]
−
; r ∈ N, ρ ∈ R+

()

where N and R+ represent the natural numbers and the
positive real numbers, respectively. Here, rρ = λE[S] is the
o�ered load, ρ is the intensity of tra�c, and E[S] = µ− is
the mean service time.�e problem considered by Erlang

can be phrased as follows. Calls arrive at a link as a Pois-

son process of rate λ.�e link comprises r circuits, and a

call is blocked and lost if all r circuits are occupied. Oth-

erwise, the call is accepted and occupies a single circuit

for the holding period of the call. Call holding periods are

independent of each other and of arrival times, and are

identically distributed with unit mean.�is formula gives

the proportion of calls that are lost in theM/G/r/r queue-
ing system in steady state. It is called the st Erlang formula,

the Erlang’s loss formula, or Erlang B formula. In several

telecommunication studies the need arose to extend the

de�nition of the st Erlang formula to non-integral values

of r and to evaluate the derivatives of B(r, rρ) with respect
to r and ρ.�e most commonly used extension of the st

Erlang formula is the analytic continuation

B(r, a)− = ∫
+∞


e
−u( − u/a)rdu ()

where a = rρ (o�ered load). �is is known as the

“continued st Erlang function.” Jagerman () presents

improved computations of the st Erlang formula and its

derivatives, with practical computer programs for imme-

diate application.
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Second Erlang Formula
�e nd Erlang formula (also called the Erlang’s delay for-

mula or Erlang C formula), �rst published by Erlang in

, is de�ned in the M/M/r queueing system (i.e., Pois-
son arrivals, exponential service time, r servers and in�nite

waiting positions) in steady state as follows:

C(r, rρ) = [(rρ)r/r!( − ρ)] [
r−
∑
i=

(rρ)i/i!

+ (rρ)r/r!( − ρ)]
−
; r ∈ N,  < ρ < . ()

It gives the proportion of customers (calls) that are delayed

in theM/M/r queueing system in steady state. Unlike the
st Erlang formula, the nd Erlang formula is not valid for

an arbitrary service time distribution. From () and (), it

is clear that the st and nd Erlang formulas are related as

follows:

C(r, rρ) = [ρ + ( − ρ)B−(r, rρ)]
−
; r ∈ N,  < ρ < . ()

Further results and generalizations of the st and nd

Erlang formulas may be found, for example, in the pro-

ceedings of international telecommunication and teletraf-

�c conferences.

Third Erlang Formula
Let Cd(r, rρ) mean the probability that an arbitrary cus-
tomer on its arrival �nds r or more customers in the

M/M/r/r+d queueing system (i.e., Poisson arrivals, expo-
nential service time distribution, r servers and d waiting

positions) in steady state. �at is to say, Cd(r, rρ) is the
stationary probability that an arriving customer is blocked

(i.e., not immediately served). It gives the proportion of

customers that are delayed or lost in the M/M/r/r + d
queueing system in steady state. It is easy to show that

Cd(r, rρ) can be written as follows:

Cd(r, rρ) = [((rρ)r/r!)
d

∑
i=

ρ
i] ×

[
r−
∑
i=

(rρ)i/i! + ((rρ)r/r!)
d

∑
i=

ρ
i]
−

;

r ∈ N,d ∈ N, ρ ∈ R+
. ()

From () and () it is clear that when d = ,Cd(r, rρ)
coincides with B(r, rρ), the st Erlang formula. From ()
and () it is clear that the limit of Cd(r, rρ) as d goes
to in�nity is the nd Erlang formula (which is de�ned only

for  < ρ < ).�erefore, it is reasonable to call Cd(r, rρ)
the rd Erlang formula (or Erlang’s loss-delay formula).

From () and () it is clear that the rd Erlang formula can

be rewritten in terms of the st Erlang formula as follows:

Cd(r, rρ) =
⎡⎢⎢⎢⎢⎣
B
−(r, rρ)(

d

∑
i=

ρ
i)
−

+  − (
d

∑
i=

ρ
i)
−⎤⎥⎥⎥⎥⎦

−

;

r ∈ N,d ∈ N, ρ ∈ R+
. ()

�e relation () shows the ability of the rd Erlang

formula to make use of the results available for the st

Erlang formula; namely through the relation () it may be

extended to non-integral values of r and d (i.e., the “con-

tinued rd Erlang function”). Monotonicity and convexity

properties of the rd Erlang formula in terms of its param-

eters r,d, ρ, and rρ (o�ered load) are also easy to obtain.

All these properties are useful in the study of the prob-

abilistic behavior of the M/M/r/r + d queueing system
(also called Markovian multi-server �nite-capacity queue

or multi-server Erlang loss-delay queue). Mainly because

most of the relevant system’s characteristics can be rewrit-

ten as very simple functions of the rd Erlang formula. For

instance, it is easy to show that in steady state both the

loss probability and the delay probability depend on r only

through the rd Erlang formula.

Exact Decomposition Formulas for the
Multi-Server Erlang Loss-Delay Queue
For theM/M/r/r + d queueing system in steady state each
random variable (r. v.)N′r,d (the number of customers wait-
ing in the queue),NSr,d, (the number of occupied servers),

Nr,d (the number of customers in the system; waiting or

being served), T′r,d (the waiting time in the queue), and
Tr,d (the total sojourn time in the system; waiting or being

served) is distributed as the sum of two r. v.’s. weighted by

the rd Erlang formula, for r ∈ N,d ∈ N (where the symbol
∼means “distributed as”).

N
′
r,d ∼ ( − Cd(r, rρ))O + Cd(r, rρ)N,d−, ()

where P( = o) =  (i.e., a degenerated r. v.) and N,d− is
the number of customers in theM/M//+(d−) queueing
system in steady state with the same ρ (which has a trun-

cated geometric distribution with parameters d and  − ρ,

denoted here by the symbol G(d,  − ρ)).

NSr,d ∼ ( − Cd(r, rρ))(X∣X < r) + Cd(r, rρ)R, ()

where P(R = r) =  and X is a Poisson r. v. of parameter rρ.

Nr,d ∼ ( − Cd(r, rρ))(X∣X < r) + Cd(r, rρ)(R +N,d−),
()

T
′
r,d ∼ ( − Cd−(r, rρ))O + Cd−(r, rρ)Ed, ()
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where Ed is a “generalized” Erlang r. v. with parameters

G(d − ,  − ρ) and µ, respectively.

Tr,d ∼ ( − Cd−(r, rρ))Sr + Cd−(r, rρ)(Ed + Sr), ()

where Sr is the service time distribution of each server.�e

proof is essentially based on rewriting the respective dis-

tributions (that can be found in Gross and Harris (,

pp. -) or Gross et al. ()) in terms of the rd

Erlang formula. �erefore, in the steady state, the prob-

abilistic behavior of the M/M/r/r + d queueing system
can be obtained in terms of the corresponding probabilis-

tic behavior of the M/M/r/r queueing system and of the
M/M// + (d − ) queueing system, respectively; and its
closeness to each one of these two queueing systems is

measured by the rdErlang formula. Taking limits as d goes

to in�nity in () to () (for  < ρ < ) similar results fol-
low for the M/M/r queueing system, in the steady state,
in terms of the M/M/r/r queueing system, the M/M/
queueing systems and the ndErlang formula, respectively.

Further Models
Due to their analytical tractability the queueing systems

M/M/∞,M/M/, and M/M// + d are by far the most
extensively studied queueing systems in the steady state

as well as in the time-dependent regime. Moreover, the

use of the M/M/∞ queueing system to approximate the

M/M/r/r queueing system (and their generalized cases for
arbitrary service time distributions) has been studied by

several authors, see, for instance, Ramalhoto () and the

references therein.

An extension of the decomposition formulas for the

M/M/r/r + d queueing system with constant retrial rate
is provided in Ramalhoto and Gomez-Corral ().�is

type of queueing system (which, in fact, is a queueing net-

work) is characterized by the feature that if on its arrival the

customer �nds all servers and waiting positions occupied

the customer leaves the service area and enters an orbit,

i.e., the retrial group. In the case r+d < , analytical results
were obtained exactly in the sameway, as before, by rewrit-

ing the corresponding distribution function in terms of the

probability of entering the orbit. It is shown that the distri-

butions of the “number of customers in orbit” (i.e., the orbit

size) and the “total number of servers and waiting posi-

tions occupied” can be expressed also as mixtures of two r.

v.’s weighted by the probability of entering the orbit (which

in the retrial case corresponds to the rd Erlang formula).

Another relevant property of these novel formulas is that

they display the exact in�uence of the M/M/r/r queue
(which is well approximated by the M/M/∞) and the
probability of entering the orbit (in the retrial case) which

somehow captures the e�ect of tra�c intensity. Because the

physics of the decomposition structures presented do not

seem to have much to do with the values of r and d them-

selves empirical decomposition formulas (of similar kind

of the r + d <  case) were proposed and heuristically
explored. Based on them, numerical results for the sta-

tionary distribution of the orbit size were obtained for the

queueing systemsM/M// + ,M/M//,M/M// + ,
andM/M// with constant retrial, respectively. A similar
methodology may be applicable to more complex types of

retrials

�e idea behind this decomposition concept is intu-

itive and simple to understand and use. And it seems to

be suitable for obtaining bounds and other approximations

for time-dependent regime and non-Markovian queueing

systems aswell as for new simulation strategies in queueing

systems.
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Introduction
Statistical models involve unknown quantities, usually

called parameters of the model, and inference about these

parameters provides, in principle, understanding about

plausible data-generating mechanisms. Inference about

these parameters is also a �rst step in assessing the ade-

quacy of the proposedmodel, in predicting future patterns

likely to be observed from this model, and as a basis for

making decisions. Estimation is the process of using the

data to make conclusions about the values of unknown

quantities in a statistical model.

�e theory of point estimation is concernedwith a nar-

rower problem: given a parametric model f (y; θ), that is
a density on a sample space Y , with unknown parame-
ter θ taking values in a parameter space Θ, and a set of

observations from this model, how do we use these obser-

vations to provide a good guess for the true value of θ? In

7nonparametric estimation, Θ is an in�nite-dimensional
space, for example the space of all distribution functions

on R; in parametric estimation Θ is usually a subspace of

a well-behaved parameter space, such as Rp for �xed and
known dimension p.

A point estimate of a parameter or a function θ is not

o�en very useful without an associated statement about the

accuracy of the point estimate, usually provided as an esti-

mated standard error.More formally, the theory of interval

estimation aims to estimate a set of plausible values of θ

consistent with the data.

In the early development of statistical science, meth-

ods for constructing a point estimate were o�en developed

in the context of particular problems, and some statistical

properties of the resulting point estimate were then stud-

ied.�is led to a number of strategies for point estimation,

including the method of moments, the method of 7least
squares, and, with Fisher (), the method of maximum

likelihood estimation; see Aldridge (). Least squares

estimates were used in the early th century in prob-

lems in astronomy (Stigler, ).�e method of moments

was very popular in the early th century, but except in

very complex problems has been superseded bymaximum

likelihood estimation.

A method for estimation is evaluated by assessment

of its statistical properties. Historically, there developed

a very large literature on deciding which properties of

an estimation method were most relevant, and which

methods of estimation satis�ed those properties. Some

properties commonly proposed for “good” estimators are:

unbiased, admissible, minimax, minimum variance, min-

imum mean-squared error, equivariant, consistent, e�-

cient, asymptotically unbiased, asymptotically optimal,

and robust. In the s and s statistical theory empha-

sized optimality of various methods of point estimation

according to some criterion to be speci�ed, such as vari-

ance, mean squared error, or risk.�e conditions for opti-

mal estimation, by any criterion, are rarely satis�ed in a

wide enough range of models to inform statistical practice,

so attention turned to asymptotic optimality. �e maxi-

mum likelihood estimator was shown to be consistent and

asymptotically e�cient, and is now generally computable

with standard so�ware, so is usually the �rst choice of esti-

mation method, at least in parametric families of models.

In the s a theory of robust point estimation was devel-

oped, to formalize the notion that a “good” method of

estimation should be stable under perturbations of the

assumed model.

�eory andmethods for nonparametric estimation of a

wide variety of functional, or in�nite-dimensional, param-

eters has developed very intensively over the past twenty

years and have a prominent role in theoretical andmethod-

ological statistics. In this note however we will concentrate

on �nite-dimensional parametric estimation. �e classic
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text on the theory of point estimation is Lehmann (),

subsequently revised in Lehmann and Casella ().

Casella andBerger () andKnight () provide excel-

lent treatments at a somewhat less advanced level. �e

exposition here draws heavily on Chapter  of Davison

() and Chapter  of Cox and Hinkley ().

Defining Point Estimators
Most methods of points estimation are based on minimiz-

ing some notion of distance between the data and some

aspect of the �tted model. For example, least squares esti-

mators are de�ned to minimize∑ni={yi − µi(θ)}, where
we assume that E(yi) = µi(θ) has a known form, for
example xTi θ for a given p-vector xTi . Least absolute devia-

tion estimators minimize ∑ni= ∣yi − µi(θ)∣.�ere may be
other unknown parameters in the model; for example if

yi is normally distributed with mean µi(θ) the variance
may also be unknown, and a suitable estimator for the vari-

ance is usually taken to be the residual mean square Σ{yi−
µi(θ̂)}/(n − p), where θ̂ is the estimate of the param-

eters in the mean, and θ is assumed to have dimension

p.�is estimator of σ  is unbiased, as de�ned below, and

widely used, but not optimal under conventional distance

measures.

Maximum likelihood estimators are de�ned to maxi-

mize the probability of the observed data, or equivalently

to minimize − log f (y; θ).�ey are de�ned via

L(θ̂ML; y) = sup
θ

L(θ; y),

where L(θ; y) ∝ f (y; θ) is the likelihood function. In
models with smooth di�erentiable likelihoods that have

just one maximum,

∇θ ℓ(θ̂ML; y) = , ()

where ℓ(θ; y) = logL(θ; y).�e maximum likelihood esti-
mator can also be de�ned as an estimate of the value that

minimizes the 7Kullback–Leibler divergence between the
parametric model and the true density for y:

D(f , g) = ∫ log{ g(y)
f (y; θ)

} g(y)dy,

where we temporarily assume that the true density is g(⋅)
but we are �tting the parametric model f (y; θ). In the case
of independent observations y, . . . , yn, the score equation

() can be expressed as

n
−

n

∑
i=

(∂/∂θ) log f (yi; θ̂ML) = ,

which is an empirical version of the derivative of D( f , g)
with respect to θ. In machine learning applications max-

imum likelihood estimators are o�en derived from this

point of view, and D is referred to as the negative log-

entropy loss function.

�e method of moments de�nes point estimators by

equating the theoretical moments of the presumed model

to the observed sample moments. �ese estimators have

been largely superseded by maximum likelihood estima-

tors, but are o�en useful starting points, especially in

rather complex models de�ned, for example, for stochas-

tic systems modeled through sets of partial di�erential

equations. �e other class of models for which method

of moments estimators are sometimes used is in esti-

mating components of variance in normal theory linear

models.

Example  Suppose the vector of observations y is taken in

k groups of size n, and modeled as

yij = µ + bi + єij, j = , . . . ,n; i = i, . . . , k,

where we assume that bi ∼ N (, σ b ), єij ∼ N(, σ ), and
the b’s and є’s are mutually independent. �e analysis of

between and within group sums of squares leads to the

following two statistics:

SSwithin =
k

∑
i=

n

∑
j=

(yij − ȳi.),

SSbetween =
k

∑
i=

n

∑
j=

(ȳi. − ȳ..),

where ȳ indicates averaging over the appropriate subscript.

It is not di�cult to show that

E(SSwithin) = k(n − )σ

,

E(SSbetween) = (k − ) (σ
 + nσ


b ),

which leads to simple method of moments estimators of

σ  and σ b . If there is very little sample variation among

groups, then the estimate of σ b could be negative, as

method of moments does not automatically obey con-

straints in the parameter space. �is example can be

extended to much more complex structure, with several

levels of variation, and possible dependence among some

of the random e�ects.

Point estimators can also be derived from a Bayesian

point of view, although in a fully Bayesian context it is not

necessary andmay not even be wise to summarize the pos-

terior distribution of the parameters by a point estimate.

However, it is relatively straightforward to proceed, assum-

ing the availability of a prior density π(θ), to construct the
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posterior density

π(θ ∣ y) = L(θ; y)π(θ)/∫ L(θ; y)π(θ)dθ,

and then to compute the posterior mode, θ̂π , which max-

imizes π(θ ∣ y), or the posterior median, or mean, or
some other summary statistic. In most practical applica-

tions there will bemuchmore information in the data than

in the prior, and θ̂π will not be very di�erent from the

maximum likelihood estimator. �is can be made more

precise by considering asymptotic properties of Bayesian

posterior distributions, under the sampling model. Empir-

ical Bayes estimators can be obtained by using the data to

estimate the parameters in the prior distribution, as well as

the parameters in the model.

A class of estimators o�en called shrinkage estimators

can be derived byminimizing a7loss function, but impos-
ing a penalty on the resulting estimator of some form.

�e simplest example is the ridge regression estimator (see

7Ridge and Surrogate Ridge Regressions) associated with
7least squares.

Example  Suppose y is an n ×  vector that follows a nor-
mal distribution withmeanXβ and covariancematrix σ I,

where X is an n× pmatrix and β is a p×  vector of regres-
sion coe�cients of interest.�e least squares estimator of

β minimizes (y − Xβ)T(y − Xβ), with solution, if X is of
full column rank,

β̂ = (XTX)−XTy.

If the least squares problems is changed to

min
β

(y − Xβ)T(y − Xβ), subject to β
T

β ≤ t,

then the solution, which alsominimizes the penalized sum

of squares

(y − Xβ)T(y − Xβ) + λβ
T

β,

is

β̂R = (XTX + λI)−XTy;

the individual components β̂j are shrunk towards zero.

�is is sometimes used if number of components of β is

quite large relative to n, as in most settings this would

suggest that the individual components cannot all be well

determined from the data.�ere are a great many exten-

sions of this idea, especially in the literature on �tting

“smooth” functions, rather than well speci�ed paramet-

ric functions, to data. For example, we might replace Xβ

by m(x) + ⋅ ⋅ ⋅ + mp(xp), without specifying very much
about the form of mj. One approach to estimating these

functions is to model them as piecewise polynomial, with

a large number of parameters, and then to shrink the poly-

nomial coe�cients. Empirical Bayes estimators are also

usually shrinkage estimators; typically shrinking to some

central data value, such as the sample mean, rather than

a particular point of interest, such as , in the parameter

space.

Evaluating Point Estimators
It is conventional to refer to a point estimate as the

value computed from a given set of data, and the point

estimator as the function of the observations that will be

used in practice. Many texts distinguish these two ideas

by using upper case letters for random variables, and

lower case letters for observed values of these random

variables.

Example  Suppose we assume that we have a sample

y = (y, . . . , yn) of independent observations of a random
vector Y = (Y, . . . ,Yn) with joint density

f (y; µ, σ ) = √
(π)nσn

exp{− 

σ 
∑(yi − µ)}. ()

�e sample mean µ̂ = (/n)Σyi is an estimate of µ, and the
estimator µ̂ = (/n)ΣYi has a distribution determined by
(); for example E(µ̂) = µ and var(µ̂) = σ /n. Note that
the notation for µ̂ does not distinguish between the esti-

mate and the estimator, but this will usually be clear from

the context.

Suppose more generally that we have a vector of obser-

vations y of a random vector Y from a parametric model

with density f (y; θ) where y ∈ Rn and θ ∈ Rp.

De�nition  An estimator θ̂ = θ̂(y) is unbiased for θ if

E{θ̂(Y)} = θ.

�e estimator is a minimum variance unbiased estimator

if, for any other unbiased estimator θ̃, we have

var(θ̂) ≤ var(θ̃).

�e expectation and variance are calculated under the

model f (y; θ). When θ is a vector, var(θ) is a matrix, and
the variance condition above is generalized to aTvar(θ̂)a ≤
aTvar(θ̃)a for all real vectors a of length p. Minimum vari-
ance unbiased estimators rarely exist; an exception is in

regular exponential familymodels, where theminimal suf-

�cient statistic is a minimum variance unbiased estimator

of its expectation.

An estimator θ̂ is (weakly) consistent for θ if it con-

verges to θ in probability, under the model f (y; θ). A
consistent estimator θ̂ is asymptotically e�cient if the
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asymptotic variance of its limiting distribution is as small

as possible.�e 7Cramér–Rao inequality establishes that
maximum likelihood estimators in regular models are

asymptotically e�cient, and the lower bound on the

asymptotic variance for any consistent estimator is i−(θ),
where i(θ) is the expected Fisher information in the
model, E{−∂ℓ(θ;Y)/∂θ}.
Bayesian treatments of point estimation o�en empha-

size that estimates based on posterior distributions

obtained via proper priors are admissible, meaning that

no non-Bayesian estimators have smaller Bayes risk. Bayes

risk is de�ned with respect to a loss function, so depends

in an intrinsic way on the units of measurement for the

parameter. Admissible estimators are sometimes useful

in decision theoretic contexts, but not o�en in scienti�c

work.

In machine learning contexts where there is the

possibility to �t rather complex models to large data

sets, performance is o�en measured by mean-squared

error, as biased point estimators such as the shrink-

age estimator mentioned above are widely used. �e

phrase “bias-variance tradeo�” refers to the fact that a

biased point estimator can have smaller variance than

an unbiased estimator, but that bias and variance can-

not be simultaneously minimized. Estimates of functional

parameters, such as densities or regression functions, are

o�en compared by means of integrated mean-squared

error.

Example  Suppose Y is a sample of independent, iden-

tically distributed observations each from an unknown

density f (⋅), and the goal is to estimate this density.�e
kernel density estimator of f is de�ned as

f̂ (y) = 

nh

n

∑
i=
K (y − Yi

h
) ,

where h >  is a tuning parameter and K(⋅) is a kernel
function, usually a symmetric probability density function,

such as the density for a N(, ) distribution. �e tun-
ing parameter h controls the smoothness of the estimated

function f̂ (⋅), by controlling the number of sample points
that enter the average in estimating f (y). It can be shown
that the squared bias of f̂ at a single point y is O(h), and
the variance is O(nh)−, so the optimal bandwidth can be
shown to be h ∝ n−/, with the constant of proportion-
ality depending on the point y and the kernel function

K(⋅).
Robust estimators are de�ned, following Huber (),

to be stable under perturbations of the postulated model.

From a data analytic point of view, robust estimators are

not much a�ected by 7outliers, or extremely unusual

data points. �e motivation for this is that such out-

liers may be coding mistakes, or may be irrelevant for

the inference desired. However this varies widely by

application area.

�e theory of estimating equations considers the pri-

mary object of interest as the equation de�ning the

point estimator, rather than the point estimator itself.

For an independent, identically distributed sample y =
(y, . . . , yn), from amodel with parameter θ, an estimating

equation for θ is given by

n

∑
i=
g(yi; θ) = ,

for a function g(⋅) to be chosen. An estimating function is
unbiased if E{g(Y ; θ)} = , and it would be rare to start
with a biased estimating function, as the resulting estima-

tor would not be consistent for θ without further modi-

�cation.�e maximum likelihood estimator is, in regular

models, de�ned by the estimating equation with g(y; θ) =
(∂/∂θ) log f (y; θ), but more general classes of estimat-
ing equations arise naturally in studies of robustness; see

Davison (, Ch. ).
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Estimation problems for random �elds X(t), t ∈ Rn (esti-
mation of the unknownmathematical expectation, estima-

tion of the correlation function, estimation of regression

parameters, extrapolation, interpolation, �ltering, etc) are

similar to the corresponding problems for7stochastic pro-
cesses (random �elds of dimension ). Complications usu-

ally are caused by the form of domain of points {tj} =
D ⊂ Rn, where observations {X(tj)} are given, and by
the dimension of the �eld.�e complications can be over-

come by considering speci�c domains of observations and

particular classes of random �elds.

Say in the domainD ⊂ Rn there are given observations
of the random �eld

X (t) =
q

∑
i=

θ, gi(t) + Y(t),

where gi(t), i = , . . . , q, are known non-random func-
tions, θ i, i = , . . . , q, are unknown parameters, and Y(t)
is a random �eld with EY(t) = . �e problem is to

estimate the regression parameters θ i, i = , . . . , q. �is
problem includes as a particular case (q = , g(t) = ),
the problem of estimation of the unknown mathemati-

cal expectation. Linear unbiased least squares estimates

of the regression parameters can be found by solving the

corresponding linear algebraic equations or linear inte-

gral equations determined with the help of the correlation

function. For the class of isotropic random �elds, formu-

las for estimates of the regression parameters are proposed

by M. I. Yadrenko (Yadrenko ). For example, the esti-

mate θ̂ of the unknown mathematical expectation θ of an

isotropic random �eld X(t) = X(r,u) from observations

on the sphere Sn(r) = {x ∈ Rn, ∥x∥ = r} is of the form

θ̂ = 

ωn
∫
Sn(r)

X(r,u)mn(du),n ≥ ,

where mn(du) is the Lebesgue measure on the sphere
Sn(r), ωn is the square of the surface of the sphere, (r,u)
are spherical coordinates of the point t ∈ Rn.
Consider the extrapolation problem.

. Observations of the mean-square continuous homo-

geneous and isotropic random �eld X(t), t ∈ Rn are given
on the sphere Sn(r) = {x ∈ Rn, ∥x∥ = r}.�e problem is to
determine the optimal mean-square linear estimate X̂(s)
of the unknown value X(s), s ∉ Sn(r), of the random �eld.
It follows from the spectral representation of the �eld that

this estimate is of the form

X̂(s) =
∞
∑
m=

h(m,n)
∑
l=

c
l
m(s)∫

∞



Jm+(n−)/(rλ)

(rλ)(n−)/
Z
l
m(dλ),

where coe�cients clm(s) are determined by a special
algorithm (Yadrenko ). For practical purposes it is

more convenient to have a formula where observations

X(t), t ∈ Sn(r), are used directly.�e composition theo-
rem for spherical harmonics gives us this opportunity. We

can write

X̂(s) = ∫
Sn(r)

c(s, t)X(t)dmn(t),

where the function c(s, t) is determined by the spectral
function Φ(λ) of the �eld X(t) (Yadrenko ).
. An isotropic random �eld X(t), t = (r,u) ∈ Rn is

observed in the sphere VR = {x ∈ Rn, ∥x∥ ≤ R}.�e opti-
mal liner estimate X̂(s) of the unknown value X(s), s =
(ρ, v) ∉ VR, of the �eld has the form

X̂(s) = ∫
VR

C(s, t)X(t)dmn(t),

C(s, t) =
∞
∑
m=

h(m,n)
∑
l=

c
l
m(r)Slin(u),

where coe�cients clm(r) are determined via special inte-
gral equations

bm(ρ, q)Slm(v)=∫
R


bm(r, q)clm(r)rn−dr, m= , , . . . ;

l = , , . . . ,h(m,n), q ∈ [,R].

If, for example, X(t), t = (r,u), is an isotropic random
�eld where bm(r, q) = a∣m∣ exp{−β∣r−q∣}, then it is easy to
see that X̂(ρ, v) = exp{−β∣ρ − R∣}X(R, v), v ∈ Sn.
For methods of solutions of other estimation problems

for random �elds (extrapolation, interpolation, �ltering,

etc.) see Grenander (), Moklyachuk (), Ramm
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(), Ripley (), Rozanov (), Yadrenko (),

and Yaglom ().
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Introduction
Let P be a probability distribution on some space X . A
random sample from P is a collection of independent ran-

dom variables X, . . . ,Xn, all with the same distribution P.

We then also call X, . . . ,Xn independent copies of a pop-

ulation random variable X, where X has distribution P. In

statistics, the probability measure P is not known, and the

aim is to estimate aspects of P using the observed sam-

ple X, . . . ,Xn. Formally, an estimator, say T, is any given

known function of the data, i.e., T = T(X, . . . ,Xn).
Example . Suppose the observations are real-valued, i.e.,

the sample space X is the real line R. An estimator of
the population mean µ := EX is the sample mean µ̂ :=
∑ni= Xi/n.

A statistical model is a collection of probability mea-

suresP . If the true distribution is in the model classP , we
call the model well-speci�ed.

In many situations, it is useful to parametrize the dis-

tributions in P , i.e., to write

P := {Pθ : θ ∈ Θ},

where Θ is the parameter space.�e parameter of interest is

some function of θ, say

γ := g(θ) ∈ Γ.

Example .

Case (i) Suppose X is known to be normally distributed with
unknown mean µ and unknown variance σ  (we write this

as X ∼ N (µ, σ )).�e parameter space is then the collec-
tion of -dimensional parameters θ := (µ, σ ). If one is only
interested in estimating the mean µ, one lets g(µ, σ ) = µ.
�e second parameter σ  is then called a nuisance parame-

ter.

Case (ii) If actually the distribution of X is completely
unknown, we may take

P := {all distributions on R}.

We can let P itself be the parameter space, and the param-
eter of interest is written as function g(P) of the probability
measure P. For example, with µ = EX being the parameter
interest, we have g(P) := ∫ xdP(x).

How to Construct Estimators?
From a mathematical point of view, the construction of an

estimator as function of the data X, . . . ,Xn can be based

on loss and risk. Let g(θ) be the parameter of interest, and
T = T(X, . . . ,Xn) be an estimator. With this estimator,
we associate the loss L(g(θ),T), where L is a given 7loss
function. As T is a random variable, the loss is generally

random as well.�e risk of the estimator T is now de�ned

as

R(θ,T) := EθL(g(θ),T),
where the expectation Eθ is with respect to the probability

measure of an i.id. sample X, . . . ,Xn from Pθ . When the

parameter of interest is real-valued, an important special

case is quadratic loss

L(g(θ),T) = ∣T − g(θ)∣.

�e risk is then the mean square error

MSEθ(T) = Eθ ∣T − g(θ)∣.

�emean square error can be separated into a squared bias

term and a variance term

MSEθ(T) = biasθ(T) + varθ(T),
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where

biasθ(T) := EθT − g(θ),

and

varθ(T) := EθT
 − (EθT).

An estimator T is called unbiased if

EθT = g(θ), ∀ θ.

It is calleduniformminimumvariance unbiased (UMVU) if

it has the smallest variance among all unbiased estimators,

for all values of the parameter.

Once the loss function L(g(θ),T) is speci�ed, onemay
try to �nd the estimator T which has smallest risk R(θ,T).
However, the risk depends on θ, which is unknown!�is

generally means that estimators are not directly compara-

ble. One way to overcome this problem is to require the

estimator to be the best one in the worst possible case:

min
estimators T

max
θ∈Θ

R(θ,T).

�is is called the minimax approach. Another way to treat

the dependence on θ is to assign a priori weights to the var-

ious parameter values.�is is called theBayesian approach.

Formally, let Π be some probability measure on Θ, the

so-called prior.�e Bayes’ risk of the estimator T is then

de�ned as

R(T) := ∫ R(ϑ,T)dΠ(ϑ).

In other words, the unknown parameter is integrated out.

�e minimizer Tbayes of R(T) over all estimators T =
T(X, . . . ,Xn) is called Bayes’ estimator.

�e (minimax, Bayes) risk generally heavily depends

on the model class P .�is means that if the model is mis-
speci�ed, the estimator may not have the optimality prop-

erties one hoped for. A related problem is the robustness of

an estimator: how much does it change if some of the data

points in the sample are perturbed? One o�en decides to

stay on the conservative side, i.e. instead of believing in the

model and aiming at mathematical optimality, one prefers

to be sure to be doing something reasonable. And, last but

not least, there may be practical cost considerations that

prevent one from applying a particular estimator. Here,

cost can also be computation time, e.g., if one needs online

answers.

�e asymptotic approach is to try to construct esti-

mators that are “approximately” “optimal” under mild

assumptions. For example, unbiased estimators o�en do

not even exist. However, for large sample size n, many

estimators are “approximately” unbiased. One then looks

for the one with the smallest asymptotic variance, i.e., the

highest asymptotic e�ciency. Rigorous asymptotic theory

can be mathematically involved, as a certain uniformity in

the parameter θ is required.

The Plug in Principle
In this section, we assume that the sample size allows for

an asymptotic approach, i.e., that n is large enough to base

ideas on e.g. 7laws of large numbers and 7central limit
theorems.We then seeX, . . . ,Xn as the �rst n of an in�nite

sequence.�e plug in principle is mainly based on the law

of large numbers. Consider for example a subset A ⊂ X .
�e probability of this set is P(X ∈ A), or shortly P(A). As,
by the law of large numbers, probabilities can be approx-

imated by frequencies, a sensible estimator of P(A) is the
proportion of observations that fall into A:

P̂n(A) :=


n
#{i ∈ {, . . . ,n} : Xi ∈ A}.

Note that P̂n corresponds to a probabilitymeasure that puts

mass /n at each observation. One calls P̂n the empirical
distribution.

Consider now a parameter of interest γ = g(θ). We
write it as

γ := Q(P),

where Q is a given function on the probability measures

P ∈ P . In other words, g(θ) = Q(Pθ).�e plug in principle
is now to use the estimator

γ̂n := Q(P̂n),

i.e., to replace the unknown probability measure P by the

empirical measure. We remark however that is may hap-

pen thatQ(P̂n) is not de�ned (as generally P̂n is not in the
model class P). In that case, one takes

γ̂n := Qn(P̂n),

where

Qn(P) ≈ Q(P).

Example . Suppose X ∈ R. Let µ = EX = ∫ xdP(x) be the
parameter of interest.�e sample mean is

µ̂n = ∫ xdP̂n(x) =


n

n

∑
i=
Xi.

Example . Let the sample space again be the real line.�e

distribution function of X is

F(x) := P(X ≤ x), x ∈ R.

�e empirical distribution function is

F̂n(x) =


n
#{i ∈ {, . . . ,n} : Xi ≤ x}.
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�e Glivenko–Cantelli�eorem tells us that the law of large

numbers hold, uniformly in x (In fact, byDonsker’s�eorem,√
n(F̂n − F) converges in distribution to B ○ F, where B is a

Brownian bridge.)

sup
x

∣F̂n(x) − F(x)∣→ , n→∞,

with probability one. Suppose we know that F has a den-

sity f with respect to Lebesgue measure, and that we aim at

estimating f at a �xed point x.�en

Q(F) = f (x) = lim
h→

F(x + h) − F(x − h)
h

.

Note that Q(F̂n) does not make sense in this case. Instead,
we take

Qn(F̂n) :=
F̂n(x + hn) − F̂n(x − hn)

hn
,

where the bandwidth hn is “small.” �e choice of hn can

theoretically be based on a trade-o� between bias and

variance.

Maximum Likelihood
Suppose that P = {Pθ : θ ∈ Θ} is a dominated family, i.e.,
there exists a σ-�nite dominating measure ν, such that the

densities

pθ :=
dPθ

dν
, θ ∈ Θ

exist.�e maximum likelihood estimator (MLE) θ̂n of θ is

then de�ned as

θ̂n := argmax
ϑ∈Θ

n

∑
i=
pϑ(Xi),

where “arg” is “argument,” i.e, the locationwhere themaxi-

mum is achieved. It is to be checked in particular cases that

the maximum actually exists.

Example . Suppose the densities w.r.t. Lebesgue mea-

sure are

pθ(x) = θ( + x)−θ+
, x > ,

where θ ∈ Θ = (,∞).�en

log pϑ(x) = log ϑ − (ϑ + ) log( + x).

We denote the derivative w.r.t. ϑ by

sϑ(x) :=
d

dϑ
log pϑ(x) =



ϑ
− log( + x).

We put the derivative∑ni= sϑ(Xi) to zero:

n

θ̂n
−

n

∑
i=
log( + Xi) = .

�is gives θ̂n = / [∑ni= log( + Xi)/n].

When Θ is �nite-dimensional, say Θ ⊂ Rp, then under
general regularity conditions, the MLE is approximately

unbiased and each component has the smallest asymptotic

variance. In fact, then
√
n(θ̂n − θ) is approximately nor-

mally distributed, with mean zero and covariance matrix

I(θ)−, where I(θ) is the p × p Fisher information matrix

I(θ) = Eθ sθ(X)sTθ (X),

with sθ the score function

sθ :=
∂

∂θ
log pθ .

Moreover, I(θ) can be approximated by the matrix of
second derivatives

− ∂

∂ϑ∂ϑT

n

∑
i=
log pϑ(Xi)/n∣

ϑ=θ̂n

.

�ese results however are not for free as they do rely on

regularity conditions.

�e MLE can be seen as plug in estimator:

θ̂n = argmax
ϑ
∫ log pϑdP̂n,

and

θ = argmax
ϑ
∫ log pϑdPθ .

M-Estimators
An M-estimator is of the form

γ̂n := argmin
c∈Γ



n

n

∑
i=

ρc(Xi).

Here, for each c ∈ Γ, ρc : X → R, c ∈ Γ is a given func-
tion, called a loss function (generally to be distinguished

from the loss function considered in Section 7“How to
Construct Estimators?”). �e M-estimator targets at the

parameter

γ := argmin
c∈Γ
Eρc(X).

�is is indicated by the plug-in principle: themean Eρc(X)
is approximated by the average∑ni= ρc(Xi)/n.
Example . Let X = R and also Γ = R.�e sample mean
µ̂ = ∑ni= Xi/n is an M-estimator with ρc(x) = (x − c),
the squared error. In other words, the sample mean is the

least squares estimator. In the same spirit, the samplemedian

(themiddle observation) can be seen as anM-estimator with

ρc(x) = ∣x−c∣. More generally, the empirical (−α)-quantile
F̂−n ( − α) is an M-estimator with

ρc(x) = ρ(x − c), ρ(x) = α∣x∣{x > } + ( − α)∣x∣{x < }.

Example . �e MLE is an M-estimator, with Γ = Θ, and

ρϑ = − log pϑ .
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Non-Parametric and High-Dimensional
Problems
�e non-parametric case is the situation where the param-

eter space Θ is in�nite-dimensional. Closely related is the

case where Θ ⊂ Rp with p > n (or p ≫ n). Construc-

tion of estimators in high-dimensional or nonparametric

models o�en - but not always - requires some complexity

regularization.�is is because a famous statistical rule-of-

thumb, which says that the number of parameters should

not exceed the number of observations, is violated.

Example . Consider a linear regressionmodel (see7Linear
Regression Models)

Y =
p

∑
j=
Zjβj + є,

where Y is a real-valued response variable, Z, . . . ,Zp are p

co-variables, and where є is mean-zero measurement error.

�e coe�cients β = (β, . . . , βp)T form a p-dimensional
unknown parameter. Let Z = (Z, . . . ,Zp) be the p-
dimensional co-variable. Suppose we observe n independent

copies {(Yi,Zi)}ni= of (Y ,Z). Ideally, we would like n≫ p,
in order to estimate the p parameters. If however p ≥ n, one
generally needs a regularization penalty. For example, when

one believes that only a few of the variables are relevant, one

may use the so-called Lasso

β̂n = argmin
β



n

n

∑
i=

∣Yi − (Zβ)i∣ + λn

p

∑
j=

∣βj∣,

where λn >  is a tuning parameter.
Note that we used the standard quadratic loss function

here. Other choicesmay also be applied, for instance quantile

regression:

β̂n = argmin
β



n

n

∑
i=

ρ(Yi − (Zβ)i) + λn

p

∑
j=

∣βj∣,

where, as in Example 

ρ(x) = α∣x∣{x > } + ( − α)∣x∣{x < }.

Example . �e estimator

f̂n(x) :=
F̂n(x + hn) − F̂n(x − hn)

hn
,

considered in Example  is a nonparametric estimator of the

density f at the point x. In this case, the bandwidth hn is

the tuning parameter. More generally, one may apply kernel

estimators

f̂n(x) =


nhn

n

∑
i=
K (x − Xi

hn
) ,

where K is a given kernel. Another possibility is to use a reg-

ularized M-estimator. For example, when X = [, ], one
may consider using

f̂n = argmin
f

{∫



f
(x)dx − 

n

∑
i=
f(Xi)/n

+ λn ∫



∣f̈(x)∣dx},

where λn is again a tuning parameter.

Regularization is not always necessary, it can o�en be

replaced by qualitative constraints such asmonotonicity or

convexity.

Example . Suppose X has density f with respect to

Lebesgue measure, and suppose we know that f is increas-

ing. Let f̂n be the Grenander estimator, i.e., the maximum

likelihood estimator

f̂n = argmax
f increasing



n

n

∑
i=
log f(Xi).

�en under moderate conditions, f̂n is a good approxima-

tion of f for large sample size n.

Further Reading
Estimation is a very broad area is statistics. Classical books

covering this area are Bickel and Doksum () and

Rice (), and for Bayesian methods, Berger ().�e

details for the asymptotic approach (also non- and semi-

parametric) are in van der Vaart (). In van de Geer

() one �nds a treatment of M-estimators, mostly in

a nonparametric context. One can read more about den-

sity estimation in Wand and Jones (), and Silverman

(). �e Lasso is explained in Hastie et al. (),

and the estimator of a monotone density is handled in

Grenander ().
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Introduction
Event history analysis studies a collection of units, each

moving among a �nite (usually small) number of states.

An example is individuals who are moving from unem-

ployment to employment. In this article various examples

of event history applications are presented, the concepts

and advantages of event history analysis are demonstrated,

and practical complications are addressed.

Examples of Continuous-Time,
Discrete-State Processes
Event history analysis is the study of processes that are

characterized in the following general way: () there is a

collection of units (which may be individuals, organiza-

tions, societies, etc.), each moving among a �nite (usually

small) number of states; () these changes (or events) may

occur at any point in time (i.e., they are not restricted to

predetermined points in time); and () there are time-

constant and/or time-varying factors in�uencing the timing

of events. Examples are workers whomove between unem-

ployment and employment; men and women who enter

into consensual unions or marriages; companies that are

founded or closed down; governments that break down;

people who are mobile between di�erent regions or nation

states; consumers who switch from one brand to another;

prisoners who are released and commit another crime;

people who show certain types of verbal and non-verbal

behaviors in social interactions; students who drop out

of school; incidences of racial and ethnic confrontation,

protest, riot, and attack; people who show signs of psy-

choses or neuroses; patients who switch between the states

“healthy” and “diseased,” and so on. In event history analy-

sis, the central characteristics of the underlying stochastic

process are mirrored in the speci�c way theoretical and

mathematical models are built, data are collected, and the

estimation and evaluation of models is done.

Different Observation Plans
In event history analysis the special importance of broader

research design issues has been stressed. In particular,

di�erent observation plans have been used to collect infor-

mation on the continuous-time, discrete-state substantive

process.�ese various schemes produce di�erent types of

data that constrain the statistical analysis in di�erent ways:

cross-sectional data, event count data, event sequence data,

7panel data, and event history data.
�e cross-sectional observation design is still the most

common form of data collection in many �elds. A

cross-sectional sample is only a “snapshot” taken on the

continuous-time, discrete-state substantive process (e.g.,

the jobs of people at the time of the interview). Event his-

tory analysis has shown that one must be very cautious

in drawing inferences about explanatory variables on the

basis of such data because, implicitly or explicitly, social

researchers have to assume that the process under study is

in some kind of equilibrium. Equilibrium means that the

state probabilities are fairly trendless and the relationships

among the variables are quite stable over time.�erefore,

an equilibrium of the process requires that the in�ows to

and the out�ows from each of the discrete states be equal

over time to a large extent. �is is a strong assumption

that is not very o�en justi�ed in the social and behavioral

sciences (see Blossfeld and Rohwer ; Blossfeld et al.

).

A comparatively rare type of data on changes of the

process are event count data.�ey record the number of

di�erent types of events for each unit in an interval (e.g.,

the number of racial and ethnic confrontations, protests,

riots, or attacks in a period of  years). Event sequence data

provide even more information.�ey record the sequence

of speci�c states occupied by each unit over time. Today,

the temporal data most o�en available to the scientist

are panel data. �ey provide information on the same

units of analysis at a series of discrete points in time. In

other words, there is only information on the states of the

units at predetermined survey points and the course of

the process between the survey points remains unknown.

Panel data certainly contain more information than cross-

sectional data, but involve well-known distortions created

by the method itself (e.g., panel bias, attrition of sample).

In addition, causal inferences based on panel approaches

are much more complicated than has been generally

acknowledged (Blossfeld and Rohwer ; Blossfeld et al.

). With regard to the continuous-time, discrete-state

substantive process, panel analysis is particularly sensitive
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to the length of the time intervals between the waves rela-

tive to the speed of the process.�ey can be too short, so

that very few state transitions will be observed, or too long,

so that it is di�cult to establish a time-order between the

events.

�e event oriented observation design records the com-

plete sequence of states occupied by each unit and the tim-

ing of changes among these states. For example, an event

history of job mobility consists of more or less detailed

information about each of the jobs and the exact begin-

ning and ending dates of each job.�us this is the most

complete information one can get on the continuous-time,

discrete-state substantive process. Such event history data

are o�en collected retrospectively with life history studies.

Life history studies are normally cheaper than panel stud-

ies and have the advantage that they code the data into

one framework of codes and meaning. But retrospective

studies also su�er from several limitations (see Blossfeld

and Rohwer ; Blossfeld et al. ). In particular, data

concerningmotivational, attitudinal, cognitive, or a�ective

states are di�cult (or even impossible) to collect retrospec-

tively because the respondents can hardly recall the timing

of changes in these states accurately. Also the retrospective

collection of behavioral data has a high potential for bias

because of its strong reliance on autobiographic memory.

To reduce these problems of data collection, modern panel

studies (e.g., the PSID in theUS, theBHPS in theUK, or the

SOEP in Germany) use amixed design that provides tradi-

tional panel data and retrospectively collects event history

data for the period before the �rst panel wave and between

the successive panel waves.

Event History Analysis
Event history analysis, originally developed as inde-

pendent applications of mathematical probability the-

ory in 7demography (e.g., the classical life table analysis
and the product-limit estimator), reliability engineering,

and 7biostatistics (e.g., the path-breaking semiparametric
regressionmodel for7survival data), has gained increasing
importance in the social and behavioral sciences (see Tuma

and Hannan ; Blossfeld et al. ; Lancaster ;

Blossfeld and Rohwer ; Blossfeld et al. ) since the

s. Due to the development and application of these

methods in various disciplines, the terminology is nor-

mally not easily accessible to the user. Central de�nitions

are therefore given �rst.

Basic Terminology
Event history analysis studies transitions across a set of dis-

crete states, including the length of time intervals between

entry to and exit from speci�c states.�e basic analytical

framework is a state space and a time axis.�e choice of

the time axis or clock (e.g., age, experience, and marriage

duration) used in the analysis must be based on theoretical

considerations and a�ects the statisticalmodel. Dependent

on practical and theoretical reasons, there are event history

methods using a discrete- (Yamaguchi ; Vermunt )

or continuous-time axis (Tuma andHannan ; Blossfeld

et al. ; Lancaster ; Courgeau and Lelièvre ;

Blossfeld and Rohwer ; Blossfeld et al. ). Discrete-

time event history models are, however, special cases of

continuous-timemodels, and are therefore not further dis-

cussed here. An episode, spell, waiting time, or duration –

terms that are used interchangeably in the literature – is

the time span a unit of analysis (e.g., an individual) spends

in a speci�c state.�e states are discrete and usually small

in number.�e de�nition of a set of possible states, called

the state space, is also dependent on substantive consider-

ations. �us, a careful, theoretically driven choice of the

time axis and design of state space are crucial because they

are o�en serious sources of misspeci�cation.

�e most restricted event history model is based on a

process with only a single episode and two states (an ori-

gin state j and a destination state k). An example may be

the duration of �rst marriage until the end of the mar-

riage, for whatever reason (separation, divorce, or death).

In the single episode case each unit of analysis that entered

into the origin state is represented by one episode. Event

history models are called multistate models, if more than

one destination state exists. Models for the special case

with a single origin state but two or more destination

states are also calledmodels with competing events or risks.

For example, a housewife might become “unemployed”

(meaning entering into the state “looking for work”), or

start being “full-time” or “part-time employed.” If more

than one event is possible (i.e., if there are repeated events

or transitions over the observation period), the termmulti-

episode modes is used. For example, an employment career

normally consists of a series of job shi�s.

Censoring
Observations of event histories are o�en censored. Censor-

ing occurs when the information about the duration in the

origin state is incompletely recorded. An episode is fully

censored on the le�, if starting and ending times of a spell

are located before the beginning of an observation period

(e.g., before the �rst panel wave) and it is partially censored

on the le�, if the length of time a unit has already spent

in the origin state is unknown. �is is typically the case

in panel studies, if individuals’ job episodes at the time of

a �rst panel wave are known but no further information

about the history of the job is collected. Le� censoring is
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normally a di�cult problem because it is not possible to

take the e�ects of the unknown episodes into account. It

is only without problems if the assumption of a Markov

process (see7MarkovProcesses) is justi�ed (i.e., if the tran-
sition rates do not depend on the duration in the origin

state).

�e usual kind of censoring, however, is right censor-

ing. In this case the end of the episode is not observed

but the observation of the episode is terminated at an

arbitrary point in time. �is type of censoring typically

occurs in life course studies at the time of the retrospec-

tive interviews or in panel studies at the time of the last

panel wave. Because the timing of the end of the observa-

tion window is normally determined independently from

the substantive process under study, this type of right cen-

soring is unproblematic and can easily be handled with

event history methods. Finally, episodes might be com-

pletely censored on the right. In other words, entry into and

exit from the duration occurs a�er the observation period.

�is type of censoring normally happens in retrospective

life history studies in which individuals of various birth

cohorts can only be observed over very di�erent spans of

life. To avoid sample selection bias, such models have to

take into account variables controlling for the selection, for

example, by including birth cohort dummy variables (see

Yamaguchi ).

The Transition Rate
�e central concept of event history analysis is the tran-

sition rate. Because of the various origins of event his-

tory analysis in the di�erent disciplines, the transition rate

is also called the hazard rate, intensity rate, failure rate,

transition intensity, risk function, or mortality rate:

r (t) = lim
t′→t

Pr (t ≤ T < t′∣T ≥ t) / (t′ − t).

�e transition rate provides a local, time-related descrip-

tion of how the process evolves over time. It can be inter-

preted as the propensity (or intensity) to change from an

origin state to a destination state, at time t. But one should

note that this propensity is de�ned in relation to a risk set

(T ≥ t) at t, i.e., the set of units that still can experience the
event because they have not yet had the event before t.

Statistical Models
�e central idea in event history analysis is to make the

transition rate, which describes a process evolving in time,

dependent on time (t) and on a set of covariates, x:

r (t) = g (t, x) .

�e causal interpretation of the transition rate requires that

we take the temporal order in which the processes evolve

very seriously. In other words, at any given point in time t,

the transition rate r(t) can be made dependent on condi-

tions that happened to occur in the past (i.e., before t), but

not on what is the case at t or in the future a�er t.

�ere are several possibilities to specify the functional

relationship g(.) (see Blossfeld and Rohwer ; Blossfeld

et al. ). For example, the exponentialmodel, whichnor-

mally serves a baseline model, assumes that the transition

rate can vary with di�erent constellations of covariates x,

but that the rates are time constant.�e piecewise-constant

exponential model allows the transition rate to vary across

�xed time periods with period-speci�c e�ects of covari-

ates. �ere are also di�erent parametric models that are

based on speci�c shapes of the time dependence (e.g.,

the Gompertz-Makeham,Weibull, Sickle, Log-logistic, Log-

normal, or Gamma model). If the time shape of the base-

line hazard rate is unspeci�ed, and only possible e�ects

of covariates x are estimated, the model is called a semi-

parametric or partial likelihood model. Finally, there are

alsomodels of unobserved heterogeneity in which the tran-

sition rate can be made dependent on the observed covari-

ates x, the duration t, and a stochastic error term.

Parallel and Interdependent Processes
�e most important scienti�c progress permitted by event

history analysis is based on the opportunity to include

explicitly measured time-varying covariates in transition

ratemodels (see Blossfeld and Rohwer ; Blossfeld et al.

).�ese covariates can change their values over pro-

cess time in an analysis. Time-varying covariates can be

qualitative or quantitative, and may stay constant for �nite

periods of time or change continuously. From a substantive

point of view, time-varying covariates can be conceptu-

alized as observations of the sample path of parallel pro-

cesses. �ese processes can operate at di�erent levels. In

sociology, for example, () there can be parallel processes

at the level of the individual’s di�erent domains of life (e.g.,

onemay ask how upward and downwardmoves in an indi-

vidual’s job career in�uence his/her family trajectory), ()

there may be parallel processes at the level of some few

individuals interacting with each other (e.g., one might

study the e�ect of the career of the husband on his wife’s

labor force participation), () there may be parallel pro-

cesses at the intermediate level (e.g., one can analyze how

organizational growth in�uences career advancement or

changing household structure determines women’s labor

force participation), () there may be parallel processes at

the macro level (e.g., one may be interested in the e�ect of

changes in the business cycle on family formation or career
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advancement), and () there may be any combination of

such processes of type () to (). For example, in the study

of life course, cohort, and period e�ects, time-dependent

covariates at di�erent levels (see below) must be included

simultaneously (7multilevel analysis).
In dealing with such systems of parallel processes,

the issue of reverse causation is o�en addressed in the

methodological literature (see, e.g., Tuma and Hannan

; Blossfeld et al. ; Yamaguchi ). Reverse causa-

tion refers to the (direct or indirect) e�ect of the dependent

process on the independent covariate process(es). Reverse

causation is o�en seen as a problem because the e�ect

of a time-dependent covariate on the transition rate is

confounded with a feedback e�ect of the dependent pro-

cess on the values of the time-dependent covariate. How-

ever, Blossfeld and Rohwer () have developed a causal

approach to the analysis of interdependent processes that

also works in the case of interdependence. For example,

if two interdependent processes, Yt
A
and Yt

B
, are given,

a change in Yt
A
at any (speci�c) point in time t

′
may be

modeled as being dependent on the history of both pro-

cesses up to, but not including t′. Or stated in another
way: What happens with Yt

A
at any point in time t′ is

conditionally independent of what happens with Yt
B
at

t
′
, conditional on the history of the joint process Yt =

(YtA,YtB) up to, but not including, t (“principle of condi-
tional independence”). Of course, the same reasoning can

be applied if one focuses onY
B
t instead of Y

A
t as the “depen-

dent variable.” Beginning with a transition rate model for

the joint process, Yt = (YAt ,YBt ), and assuming the prin-
ciple of conditional independence, the likelihood for this

model can then be factorized into a product of the like-

lihood’s for two separate models: a transition rate model

for Yt
A
, which is dependent on Yt

B
as a time-dependent

covariate, and a transition rate model for Yt
B
, which is

dependent on Yt
A
as a time-dependent covariate. From a

technical point of view, there is therefore no need to dis-

tinguish between de�ned, ancillary, and internal covariates

because all of these time-varying covariate types can be

treated in the estimation procedure. Estimating the e�ects

of time-varying processes on the transition rate can easily

be achieved by applying themethod of episode splitting (see

Blossfeld and Rohwer ; Blossfeld et al. ).

Unobserved Heterogeneity
Unfortunately, researchers are not always able to include

all the important covariates into an event history analy-

sis.�ese unobserved di�erences between subpopulations

can lead to apparent time dependence at the population

level and additional identi�cation problems.�ere exists

a fairly large literature on misspeci�ed models in general.

In particular, there have been several proposals to deal

with unobserved heterogeneity in transition rate models

(so-called frailty models) (see, e.g., Blossfeld and Rohwer

; Blossfeld et al. ).
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Introduction and Simple Case
In the univariate continuous goodness-of-�t problem, the

probability integral transformation (PIT) is used to trans-

form the sample observations into the unit interval when

the distribution to be tested is completely speci�ed (the

simple case); thus reducing the problem to that of testing

uniformity of the transforms. �e asymptotic theory for

the induced empirical process in (,) is well known and so,

that of functionals of it, including the so called EDF tests

that are based on the Empirical Distribution Function (see

7Tests of �t based on the empirical distribution function).
�e empirical process (see 7Empirical Processes),

labeled with the original x is the process

ψn(x) =
√
n{Fn(x) − F(x)},

for x ∈ R, with Fn being the empirical distribution func-
tion constructed from the observed sample x,⋯, xn and
with F the known distribution function to be tested.�is

process is in a : correspondence with the corresponding

process labeled with u ∈ (, ),

ηn(u) =
√
n{Gn(u) − u},

with u = F(x), where Gn stands for the empirical distri-
bution function of the transformed sample u,⋯,un with
the ui’s given by ui = F(xi).
Functionals of the empirical process, that appeared

in literature (mostly) for the continuous goodness-of-

�t problem are Kolmogorov’s statistic, Dn, Cramér-von

Mises, W
n, Anderson-Darling’s, A


n and others like

Kuiper’s Vn, Watson’s U

n, and Pearson’s chi square, χ.

�ese may be described in the (, ) transformed
range as:

Dn = supu∣ηn(u)∣

W

n = ∫




(ηn(u))du

A

n = ∫




(ηn(u))



u( − u)
du,

having well known computable formulas in terms of the

u(i)’s, the now ordered transformed ui’s, from smallest to
largest, with u() =  and u(n+) = , if needed.

Dn = max{D+n,D−n},
D
+
n = maxi {Gn(u(i)) − u(i)} ,
D
−
n = maxi{u(i) −Gn(u(i−))},Gn(u(i)) = i/n,

W

n =

n

∑
i=

[u(i) − (i − )/(n)] + /(n),

A

n = −n −



n

n

∑
i=

(i − )[log(u(i)) + log( − u(n+−i))],

with similar expressions for the other EDF tests (like

Kuiper’s Vn = D+n +D−n).
If the continuous distribution to be tested, has

unknown parameters, the established procedure (using

asymptotics) is to estimate �rst and substitute them in

place of the parameters before employing the PIT, to trans-

form to the unit interval. Under quite general conditions,

asymptotics for the resulting empirical process in (, )
have been reported in literature formany distributions (see

Durbin ; D’Agostino and Stephens  and references

given there).

If the distribution is discrete, the above approach using

asymptotics, has not been followed much. To start, in

the simple case, the PIT does not yield uniform trans-

forms. �ere are however several proposed tests for the

discrete case; some based on the empirical characteristic

function, others on the empirical probability generating

function and others. See for example Kocherlakota and

Kocherlakota (), Rueda et al. (), Nakamura and

Pérez-Abreu (), Rueda and O’Reilly (), Gurtler

and Henze () and references therein. In Spinelli and

Stephens () discrete versions of EDF tests are studied.

All these procedures, yield tests related to the “observed

and expected counts.” Further mention of the discrete case

is made only for “on site” evaluation of 7p-values.
With fast computers available now, the simple goodness-

of-�t problem, either continuous or discrete,may be solved

by computing the p-value of the selected statistic to test the

�t, simply by simulating many independent samples from
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the null hypothetical distribution.�is is done by observ-

ing �rst the value of the test statistic with the initial sample

and then looking the corresponding simulated values of

the test statistic, then �nding the proportion of simulated

values exceeding the initial value of the test statistic.�at

is the p-value.

�is procedure is easier than having to use tables,

and possible �nite-n corrections. Moreover, this simula-

tion procedure applies to the continuous as well as the

discrete case, because the inverse of the PIT (IPIT) is a

proper generator for any distribution.

�e IPIT maps a uniformly distributed random

variable U with the “inverse” of a distribution function

F− yielding a new random variable X = F−(U), whose
distribution function is precisely, F. With the inverse

F−(u), say, taken as the supremum of the x-values such
that F(x) ≤ u.
So in any simple goodness-of-�t problem (continuous

or discrete), given

x = (x, x,⋯, xn),

a sample of independent identically distributed random

variables with common distribution function F, to test the

null hypothesis,

H : F = F,

with F totally known, one proceeds as follows:

For Sn(x) = Sn(x,⋯, xn) the test statistic to be used
for testing H, evaluated at the observed sample, simu-

late from the null distribution F, say , samples (xj,

j = ,⋯, ,) of the same size n and with each, compute
Sn(xj). Finally look at the proportion of simulated values
(the Sn(xj)’s) exceeding Sn(x).�is is the p-value obtained
with the , simulations.

Composite Case: Group Model
Many “composite” goodness-of-�t problems may be

tackled with a strikingly similar Monte-Carlo simula-

tion. �ose problems arise when the null hypotheses

corresponds to a parametric family with a group struc-

ture, where the test statistic Sn is invariant; typically, most

families with location and/or scale parameters only. It was

noticed that when �nding the limiting distribution of the

“empirical process with estimated parameters,” the limiting

process was a zero mean Gaussian process, whose covari-

ance function did not depend on the parameter values

(generally depends on the particular family to be tested).

�is result allowed the use of the limiting distribution for

the EDF test statistic; perhaps using some �nite-n correc-

tion (see e.g., Chap.  in D’Agostino and Stephens ).

�is is the case of most location/scale families.

Under a group model, not only the asymptotic, but the

�nite-n distributions of invariant tests Sn are independent

of the value of the parameters, so one may simply assign

any arbitrary value to them, and simulate tens of thousands

of samples and repeat as in the simple case to evaluate an

exact p-value in situ.

Composite Case: Non-Group Model
�ere are important parametric families where there is

no group structure, and limiting distributions depend

also on the parameter values.�ese include those where

a “shape” parameter is present, as in the case of the

7gamma distribution, the inverse-Gaussian and is the case
of most discrete distributions with unknown parameters.

For these, an attempt has been made to compute not the

p-value, since in general that quantity depends on the

parameter, but rather use the conditional distribution of

the test statistic Sn given some suitable su�cient statistic

to compute a conditional p-value.�is is explained next.

Assume that in the setting H : F(⋅) = F(⋅; θ),
where θ ∈ Θ, Tn is the minimal su�cient statistic.

Not being a group model the test statistic Sn will have a

distribution, under H, that will in general depend on θ.

But having Tn su�cient means that the conditional distri-

bution of Sn given Tn, will not depend on θ, so in order

to base the procedure in a simulation, it will be enough to

have a simulator of samples which are conditionally to Tn,

independent identically distributed. One way to simulate

in that fashion appears in O’Reilly and Gracia-Medrano

(), and is illustrated for the 7inverse Gaussian dis-
tribution. In González-Barrios et al. (), the results

provide means to simulate for the Poisson, binomial and

negative binomial, with unknown parameters (besides the

test derived there that uses enumeration for the conditional

distribution). In Lockhart et al. () a simulator is pro-

vided for the two parameter gamma distribution.�e �rst

reference bases the simulator on the explicit use of the

Rao-Blackwell estimator of the distribution F(⋅; θ). �e
third reference uses the Gibbs sampler to achieve an exact

simulation method.

�e inverse-Gaussian simulator is sketched to illus-

trate. Let the null hypothesis correspond to the inverse-

Gaussian distribution, F(x; µ, λ). Denote the

Rao-Blackwell distribution estimate, based on the sample

x, by F̃n(x), which is a function of the minimal su�cient
statistic,

Tn(x) = (∑
i

xi,∑
i

( 
xi
)) ,

and exists for n > . Its expression appears (corrected) in
Chhikara and Folks ().
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Observe that the statistic Tn has the property of dou-

ble transitivity, which means that the pair (Tn,Xn) is in
a : correspondence with (Tn−,Xn). It implies in partic-
ular that knowing the value of the statistic with a sample

of size n and knowledge of, say, the last observation, one

can �nd the value of the statistic with the corresponding

smaller sample of size (n − ).
A�er observing the sample, denote by s the value of the

goodness of �t test and by tn the value of the minimal suf-

�cient statistic; that is, Sn(x) = s and Tn(x) = tn. In order
to simulate, conditionally to Tn = tn, a conditional sample
(denoted a ∗-sample) proceed as follows:
Obtain randomly un from the U(, ) distribution and

set x⋆n = F̃−n (un), then compute t⋆n− from the knowledge
of tn and taking away form its evaluation the (imposed)

n-th value x⋆n, i.e., obtain t
⋆
n− from the pair (tn, x⋆n). Next

with an independently selected un− from the U(, ), use
the Rao-Blackwell estimate given t⋆n− and de�ne x

⋆
n− =

F̃−n−(un−). Continue �nding t⋆n− from (t⋆n−, x⋆n−), then
looking at the Rao-Blackwell estimate given t⋆n−, use its
inverse to get x⋆n− with an independently selected un−;
and so on until �nding x⋆.
Finally, get x⋆ and x

⋆
 as the solution to yield the

same value for Tn when evaluated at the new ∗-sample
(that is tn).

�e procedure is repeated for tens of thousands of

times getting tens of thousands of ∗-samples which in turn
produces the desired simulated values of the statistic Sn.

�e proportion of simulated values that exceed the origi-

nal s is the conditional p-value, and is exact. With ,

∗-samples and n = , evaluation of the p-value takes
around  s on a conventional PC.

Parametric Bootstrap
Simulations based on parametric bootstrap to get a

p-value, provide an exact procedure in the case of a group

model. In the non-group model, bootstrapping is not the-

oretically exact but very good. Ongoing research is being

done on the closeness of the conditional p-value and the

one found with bootstrap (see7BootstrapMethods). Arti-
cles where bootstrap has been proposed to evaluate the

p-value for particular distributions, show that for large n,

the procedure provides a very good approximation.
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In practice statistical inference for categorical data is based

mainly on large sample approximations of test statistics.
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�is asymptotic theory is valid only if the sample sizes

are reasonably large and well balanced across populations.

To make valid inferences in the presence of small, sparse

or unbalanced data, exact p-values and con�dence inter-

vals, based on the permutational distribution of the test

statistic (Good ) needs to be computed.�emost com-

mon approach to exact inference for categorical data has

been a conditional one (Agresti, ) thus this approach is

mainly discussed here.�is utilizes the distribution of the

su�cient statistic for the parameter of interest, conditional

on the su�cient statistics for the other model parame-

ters (Agresti ).�e su�ciency principle used here is

explained in more detail in Mehta ().

Settings and Notation
�e rest of the article presents a variety of exact meth-

ods for categorical data.�e required settings and notation

are de�ned in this section. Consider a two-way contin-

gency table having I rows and J columns cross–classifying

a row variable X and a column variable Y . Let {nij} cor-
respond to the cell counts ni+ = ∑

j

nij, n+j = ∑
i

nij, and

n = ∑

i,j

nij. Agresti () and Mehta () list three

sampling schemes (settings) that can give rise to cross-

classi�ed categorical data.�ese schemes are namely:

. Full multinomial sampling scheme where the cell

counts {nij} have a 7multinomial distribution gener-
ated by n independent trials with IJ cell probabilities

{πij}.
. Product multinomial sampling where counts {nij} in
row I have a multinomial distribution for all j, with

counts in di�erent rows being independent. Here ni+ =
∑

j

nij, i = , . . . , I are �xed.

. Poisson sampling, where {nij} have a Poisson distribu-
tion with expected value E(nij) = mij where n =∑

i,j

nij

is random.

As Agresti () indicates that all three sampling

models lead to the same inference, for the sake of simplic-

ity the following results are based on sampling scheme ().

Under this scheme, the conditional probability of belong-

ing to the jth column given that observation is in the ith

row is denoted by πj∣i = P(Y = j∣X = i) for i = , . . . , I and
j = , . . . , J.

 ×  Table
Let π and π denote “success” probabilities associatedwith

row  and row  respectively.�en the odds ratio is given

by

θ = π/( − π)
π/( − π)

.

Several authors (Mehta, ; Agresti, , ) showed

that

P(n = k ∣n, n+, n+; θ) =

( n+
k

)( n − n+
n+ − k

)θk

∑

u

( n+
u

)( n − n+
n+ − u

)θu

. ()

Under the null hypothesis of independence (θ = ) the
conditional distribution given in () is hypergeometric. To

test H : θ =  versusH : θ >  the p-value is given
by P = ∑

S

P(t ∣n, n+, n+ ; θ = )where S = {t ; t ≥ n}.

�is test is called the 7Fisher’s Exact test (Fisher, ).

I × J Tables
For I × J tables, statistical independence of X and Y (H)
corresponds to the log-linear model (Bishop et al., )

log(mij) = µ + λi
X + λj

Y
. ()

To testH, model () has to be comparedwith the saturated

model

log(mij) = µ + λi
X + λj

Y + λij
XY
. ()

Corn�eld () showed that the distribution of {nij}
given {ni+} and {n+j} depends only on the odds ratios
(αij) such that

P(nij ∣ {ni+}, {n+j}; αij) =

I−

∏

i=

J−

∏

j=

αij
nij

I−

∏

i=

J−

∏

j=

nij !

. . . . . . ()

where

αij =
πij/πIJ

πiJ/πIj
.

Under H, αij =  for all i and j thus the conditional dis-
tribution of nij given {ni+} and{n+j} underH is multiple
hypergeometric and is given by

P(nij ∣ {ni+}, {n+j}) =
(∏

i

ni+!) (∏
j

n+j!)

n!∏
i=

∏

j=

nij !
.

�e methods for I × J tables can be extended to multiway
tables (Agresti, ).
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Exact Inference for Logistic Models
Consider the case of a single binary response variable (Y)
and several explanatory variables X, . . . ,Xk. In this situ-

ation a logistic model (Hosmer and Lemeshow ()) is

preferred to a log-linear model. �is model is expressed

as log( πi

 − πi
) =

k

∑

j=

βjxij where πi is the probability of

belonging to the research category of interest for the ith

subject, xi, . . . , xik are the values of the k explanatory vari-

ables observed for the ith subject and xi =  for all

i. When {yi} are independent Bernoulli outcomes, Cox
() showed that the su�cient statistics for βj are Tj =
∑

i

yixij; j = , . . . , k and illustrated how to conduct infer-

ence for βj using the conditional distribution of Tj given

{Ti , i ≠ j}.

Other Topics and Available Software
Agresti () discusses less common topics such as exact

con�dence intervals, exact goodness of �t tests, contro-

versies regarding the exact conditional approach, exact

unconditional approach and Bayesian approach. So�ware

support for exact inference for categorical data are avail-

able in SAS, Stata, R, SPSS, StatXact and LogXact.
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In probability theory, the random variables Y, . . . ,YN are

said to be exchangeable (or permutable or symmetric) if

their joint distribution F(y, . . . , yN) is a symmetric func-
tion; that is, if F is invariant under permutation of its

arguments, so that F(z, . . . , zN) = F(y, . . . , yN) when-
ever z, . . . , zN is a permutation of y, . . . , yN . �ere is a

related epidemiologic usage described in the article on

7confounding.
Exchangeable random variables are identically dis-

tributed, and iid variables are exchangeable. In many ways,

sequences of exchangeable random variables play a role

in subjective Bayesian theory analogous to that played

by independent identically distributed (iid) sequences

in frequentist theory. In particular, the assumption that

a sequence of random variables is exchangeable allows

the development of inductive statistical procedures for

inference from observed to unobserved members of the

sequence (Bernardo and Smith ; De Finetti ,

; Draper ; Draper et al. ; Lindley and Novick

).

Now suppose thatY, . . . ,YN are iid given an unknown

parameter θ that indexes their joint distribution. Such

variables will not be unconditionally independent when

θ is a random variable, but will be exchangeable. Sup-

pose, for example, Y, . . . ,YN have a joint density. �e
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unconditional density of Y, . . . ,YN will be

f (y, . . . , yN)= ∫
θ
f (y, . . . , yN ∣θ)dF(θ)

= ∫ ∏
i

f (yi∣θ)dF(θ).

Exchangeability of Y, . . . ,YN follows from the identity of

the marginal densities in the product.

However, given that these densities depend on θ,

the integral and product cannot be interchanged, so that

f (y, . . . , yN) ≠∏
i

f (yi). We thus have that a mixture of iid

sequences is an exchangeable sequence, but not iid except

in trivial cases.

One consequence of this result is that the usual proce-

dures for generating a sequence Y, . . . ,YN of iid random

variables for inference on an unknown parameter (such

as Bernoulli trials of binary data with unknown success

probability) generate an exchangeable sequence when the

parameter is generated randomly and the sequence is con-

sidered unconditionally. From a Bayesian perspective, this

means that, when your uncertainty about the parameter is

integrated with your uncertainty about the realizations of

Y, . . . ,YN , the latter are (for you) exchangeable but depen-

dent even if the realizations are physically independent.

�is subjective dependence is immediately clear if you con-

sider (say) a sequence of  iid (but possibly biased) coin

tosses, with Yi the indicator of heads on toss i.�en, start-

ing from a uniform prior distribution for the chance of

heads θ, you should have Pr(Y = ) =/ before see-
ing any toss, but Pr(Y = ∣Yi =  for i = , . . . , ) =
. a�er seeing the �rst  tosses come up heads (Good

).

A generalization important for statistical modeling is

partial or conditional exchangeability (De Finetti, ,

). For example, suppose that the sequenceY, . . . ,YN is

partitioned into disjoint subsequences.�en the sequence

is said to be partially exchangeable given the partition if

each subsequence can be permuted without changing the

joint distribution. For example, if the Yi represent survival

times within a cohort of male stroke patients, then a judg-

ment of unconditional exchangeability of the Yi would be

unreasonable if the patient ages were known, because age is

a knownpredictor of survival time.Nonetheless, onemight

regard the survival times as partially exchangeable, given

age, if no further prognostically relevant partitioning was

possible based on the available data.

While exchangeability is weaker than iid, �nite subse-

quences of an in�nite exchangeable sequence of Bernoulli

(binary) variates have representations as mixtures of iid

Bernoulli sequences – a partial converse of the fact that

any mixture of iid sequences is an exchangeable sequence.

More precisely, suppose that Y,Y, . . . is an in�nite

sequence of exchangeable Bernoulli variates (that is, every

�nite subsequence of the sequence is exchangeable), and

that θ is the limit of (Y +⋯ + Yn)/n as n goes to in�nity.
De Finetti [, Chapter ] showed that there exists a

distribution function P(θ) for θ such that, for all n,

Pr(Y = y, . . . ,Yn = yn) ≡ Pr(y, . . . , yn)

= ∫
θ

θ
s( − θ)n−sdP(θ),

where s = y + ⋯ + yn. Many Bayesian statisticians �nd
this theorem helpful, because it partially speci�es the form

of the predictive probability Pr(y, . . . , yn)whenY, . . . ,Yn
can be modeled as a subsequence of an in�nite exchange-

able sequence. In this representation, P(θ) is recogniz-
able as a prior distribution for θ, a distribution that may

be developed from what is known about θ before the Yi
are observed. As noted in (Freedman ), however, the

strength of the theorem’s conclusion is easy to overstate:

it does not imply that all binary data must be analyzed

using the representation; it merely says that if you judge

Y,Y, . . . to be an exchangeable sequence, then there is a

prior P(θ) that allows you to use to specify Pr(y, . . . , yn)
as a mixture of iid variables over that prior.

Finite versions of De Finetti’s theorem exist (Diaconis

and Freedman ). If Y, . . . ,Yn is the start of an

exchangeable Bernoulli sequence Y, . . . ,YN and n/N is
small enough, then Pr(y, . . . , yn) may be approximately
represented by the mixture in the theorem, with the

approximation improving as n/N approaches zero.�ere
are further generalizations to exchangeable sequences of

polytomous variates, as well as to exchangeable sequences

of continuous variates (Diaconis and Freedman ).

�e latter generalization requires a prior distribution on

the space of continuous distributions, however, which can

bemuch harder to specify than a prior for a vector ofmulti-

nomial parameters, and which may lead to intractable

computational problems (Draper ).
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Genesis
�e origin of this notion is closely related with so called

problem of points. It may be explained by the simplest

two-person gamebased on tossing a coin according the fol-

lowing rules. In each toss, if the coin comes up heads then

the player A gets a point; otherwise the point goes to the

player B.�e �rst to get  points wins  Francs. Suppose

the game is interrupted in the moment when A reached 

while B  points. How to divide the winnings?

�is problem was posed in th century by a French

man Antoine Gombaud (who named himself Chevalier de

Méré, although he was not a nobleman) and was under-

taken by Blaise Pascal and Luis de Fermat in a series of

letters. Fermat noted that the game would over a�er four

more tosses with possible 
 =  equally likely outcomes

and the fewer ratio is : for player A.�us the player A

should receive . Francs and B . Francs.

Formal Definition and Equivalent
Expressions
Let X = X(ω) be a random variable de�ned on a set Ω
of outcomes endowed with a family A={A : A ⊆ Ω} of
random events and let P = P(A) be a probability measure
on (Ω,A). Expected value of the r.v. X [notation: EX] is

de�ned as the Lebesgue’s integral of the functionX = X(ω)
w.r.t. probability measure P, i.e.

EX = ∫
Ω
X(ω)dP(ω).

(if such integral exists).�e expected value EX may also

be expressed in terms of the distribution of X, i.e. by the

measure PX on (R,B), where B is the family of Borel sets
on the real line R, de�ned by PX(B) = P({ω : X(ω) ∈ B})
for B ∈ B. Namely, EX is the Lebesgue’s integral of the form

EX = ∫
R
xdPX(x). ()

If E ∣X∣ < ∞, then Eq. () may be expressed as the
Riemann–Stielties integral EX = ∫

+∞
−∞ xdF(x) w.r.t. the

cumulative distribution function F(α) = P(X ≤ α).

Computing Rules
If X is a discrete r.v. taking values xi with probabilities pi,

i = , , . . ., then () reduces to

EX =∑i
xipi,

and ifX is a continuous r.v. with density function f (x) then
() reduces to the Riemann integral

EX = ∫
+∞

−∞
xf (x)dx.
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Moreover, if X is nonnegative, then

EX = ∫
∞


[ − F(x)]dx.

Caution Expected value may do not exist. Example:
Cauchy random variable with density f (x) = λ

π[λ+(x−θ)]
for x ∈ R.
An attribute of the expected value If EX = µ then

E(X − µ) ≤ E(X − c) for any c ∈ R with the strict
inequality if c ≠ µ.
Moments of a Random Variable It is worth to add that
if X = X(ω) is a random variable and f is a Borel func-
tion, i.e. a real function of a real variable such that {x :
f (x) ≤ c} ∈ B for all c ∈ R then the composition f [X(ω)]
is also random variable. Special attention is given to ran-

dom variables of the form Y(ω) = f [X(ω)], where f is a
polynomial of type f (x) = xk or (x−EX)k.�e expectation
of the form EXk and E(X−EX)k is called, respectively, the
k-th usual and central moment of the initial random vari-

able X. If EXk (or E(X − EX)k) exists then there exist also
all i-th (both usual and central) moments for i ≤ k.

Basic Properties
. If X(ω) = c for all ω ∈ Ω then EX = c.
. If X is bounded then EX is �nite.

. If X(ω) ≤ X(ω) for all ω ∈ Ω then EX ≤ EX.
. E(αX + βX) = αEX + βEX for all α, β ∈ R.
. E (∑∞n= Xn) = ∑∞n= EXn, providing∑E ∣Xn∣ <∞.
. E (∏ni= Xi) =∏ni= EXi, providing X, . . . ,Xn are inde-
pendent

. g(EX) ≤ E(g(X)) for any convex function g.
. Markov’s inequality: P[f (X) ≥ c] ≤ E[f (X)]

c
for any

nonnegative function g and positive scalar c.

. Weak law of large numbers: For any sequence {Xn} of
independent identically distributed random variables

Xn with �nite expectation EXn = µ and for any c > ,
limn→∞ P (∣ X+. . .+Xnn

− µ∣ < c) = 
. Strong law of large numbers: For any sequence

{Xn} of independent identically distributed random
variables Xn with �nite expectation EXn = µ,

P (limn→∞ X+. . .+Xn
n

= µ) = .

Expected Values of Some Well Known
Discrete and Continuous Distributions
. Zero-one distribution. It corresponds to a random

variable X taking only two values:  and  with corre-

sponding probabilities P(X = ) = p and P(X = ) =
 − p, where  < p < . In this case EX = p.

. Binomial (or Bernoulli) distribution with parameters

n and p, where n is a positive integer while  < p <
. It corresponds to the sum X = X + . . . + Xn

of n independent zero-one random variables with

P(X = ) = p. In this case P(X = k) = (nk) p
k( − p)n−k

for k = , , . . . ,n and EX = np.
. Geometric distribution with parameter p. It corre-

sponds to the time X = n of the �rst success (Xn = 
while Xi =  for all i < n) in the sequence {Xi} of
independent zero-one random variables Xi with the

same probability P(Xi = ). In this case P(X = n) =
p( − p)n− for n = , , . . .. and EX = 

p
.

. Poisson distributionwith a positive parameter λ. It cor-

responds to a discrete random variable X being the

limit of the sequence {Xi} of Bernoulli distributions
with parameters (ni, pi) where limi→∞ ni = ∞ and

limi→∞ nipi = λ. Formally P(X = k) = e−λ λk

k!
for

k = , , . . . In this case EX = λ.

. Uniform distribution on the interval < a, b > . It cor-
responds to a continuous random variable X with the

density function

f (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩



b−a if a ≤ x ≤ b

 if not.

.

In this case EX = a+b

.

. Exponential distribution with a parameter λ > . It
corresponds to a continuous random variable X with

density

f (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

λe−λx
if x ≥ 

 if x < 
.

In this case EX = 

λ
.

. Normal distributionwith parameters µ ∈ R and σ  > .
It corresponds to a continuous random variableX with

density

f (x) = 

σ
√
π
e
− (x−µ)



σ for all x ∈ R.

In this case EX = µ.
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Experimental sciences and industrial research depend on

data to draw inferences and make recommendations. Data

are obtained in essentially two ways: from observational

studies or from experimental; i.e., interventional, stud-

ies.�e distinction between these two types of studies is

important, because only experimental studies can lead to

causal inferences. In order to ensure that proper inferen-

ces can be drawn, any such experiment has to be planned

carefully subject to certain principles of design of experi-

ments.

Steps of Designed Investigations
Any investigation begins with the formulation of a ques-

tion or research hypothesis in the context of a particular

subject matter area, such as agriculture, medicine, indus-

try, etc. For a given situation the researcher has to iden-

tify and characterize the experimental units to be used

in the experiment. �e experimental units are then sub-

jected to di�erent treatments, which are the objective of

the study and about which statistical and scienti�c infer-

ences should be drawn. �ese treatments are employed

in a suitable error-control design adhering to the three

important principles of experimental design as exposited

by R.A. Fisher (, ): 7Randomization, replication,
and local control (blocking). Randomization of the treat-

ment assignment is performed over the entire set or suit-

able subsets (blocks) of the experimental units in order

to eliminate any bias. Replication of the treatments is

essential to assess the experimental error that is needed

to formally draw any statistical inference, such as testing

of hypotheses or estimating con�dence intervals in order

to assess the e�cacy of the treatments. �e randomiza-

tion procedure is also used to derive linear models on

which the statistical analysis of the observations is based,

usually some form of 7analysis of variance (see Hinkel-
mann and Kempthorne ). Based on the analysis of

the data, the results need to be interpreted in the context

of the originally posed research hypothesis.�is may lead

to further investigations of new hypotheses in subsequent

experiments.

Components of Experimental Design
Each experimental design consists of three components:

treatment design, error-control design, and sampling or

observational design.�e treatment design determines the

number and types of treatments to be included in the

experiment.�e treatments may be quantitative or quali-

tative. �ey may have a factorial structure in that each

treatment is determined by a combination of di�erent lev-

els of two or more treatment factors.�e most common

factorial structure has each treatment occurring at two lev-

els, especially for screening experiments. Even that may

lead to a number of treatments too large for practical pur-

poses. In that case a fractional factorial may have to be

considered, where only a suitable subset of all level combi-

nations is included. Once the appropriate treatment design

has been determined, one must consider how to assign

the treatments to the available experimental units; i.e., one

must choose a suitable error-control design. For example, if

the experimental units are essentially uniform, then a com-

pletely randomized design is appropriate, which means

that each treatment is randomly assigned to, say, r exper-

imental units, where r is the number of replications for

each treatment. If, however, the experimental units are

characterized by di�erent extraneous factors, such as loca-

tions in an agricultural experiment or age and gender in

a psychological experiment or type of raw material and

type of machine in an industrial setting, then some form

of block design has to be used. Each combination of dif-

ferent “levels” of the extraneous factors forms a set of

essentially uniform experimental units to which the treat-

ments are then randomly assigned. �e most common

block design is the randomized complete block design,

where each block has as many experimental units as there

are treatments, and each treatment is randomly assigned

to one unit in each block. Other types of block designs

are 7incomplete block designs, where not every treat-
ment can occur in each block. �is poses a number of

combinatorial problems. Still other error-control designs
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employ blocking in two directions, such as subjects and

periods in the form of a Latin square in a psychological

experiment. �e aim of blocking is to generate sets with

uniform experimental units which will result in reduc-

tion of error and, hence, in a more e�cient design. �e

third component of an experimental design is the sam-

pling or observational design. Its function is to determine

what the observational units are. In most experiments

only one observation is obtained from each experimental

unit, in which case experimental and observational units

are identical. On other occasions several observations are

obtained from each experimental unit, for example several

items from an industrial production lot. �is is referred

to as subsampling. In this case experimental and observa-

tional units are not identical. In connection with the error-

control design this then allows the separate estimation of

experimental and observational (measurement) errors.

Modeling Observations
In most cases it is clear what the observations should be,

but in other cases this may need careful consideration in

order to arrive at a useful type of measurement which

will be most meaningful in the context of the formulated

research hypothesis. Following the choice ofmeasurement,

a model for the observations can, in general terms, be

expressed as follows:

Response = f (explanatory variables) + error,

where f is an unknown function and the explanatory vari-

ables refer to treatment and blocking factors as employed

in the treatment and error-control designs, respectively.

More speci�cally, however, using the notion of experimen-

tal unit-treatment additivity and randomization theory

one can derive a linear model of the form

Response = overall mean + block e�ect(s) + treatment
e�ect + error,

where the distributional properties of the error term are

determined essentially by the randomization process (see

Hinkelmann and Kempthorne ).�is model may be

enlarged, where appropriate, by including certain block-

treatment interaction terms depending on the blocking

structure (see Cox ).

Analysis of Data
�e analysis of the observations from a designed exper-

iment is based on the model given above using analysis

of variance techniques. �e analysis of variance table is

used to estimate the error variance component (includ-

ing experimental and observational error) or, in the

case of subsampling, the experimental and observational

error variance components.�e F-test based on the ratio

(treatment mean square/error mean square) or, in case

of subsampling, (treatment mean square/experimental

error mean square) serve as approximation to the ran-

domization test that there are no di�erences among

the treatment e�ects. Other tests may have to be per-

formed to more fully investigate di�erences among treat-

ments by considering speci�c comparisons among the

treatments or treatment e�ect trends or interactions

between treatment factors or block × treatment interac-
tions. �e possibilities are being dictated essentially by

the treatment and error-control designs employed and the

research hypothesis postulated at the beginning of the

experiment.
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�e area of arti�cial intelligence (AI) is concerned with

the design and implementation of computer systems that

exhibit the abilities associated with the human intelligence

(e.g., the ability tomemorize, learn, think, etc.).�eAI area

has seen a great surge of research and rapid development

during the past three or so decades; see, e.g., Luger ()

and the references therein. As a result many branches of

AI (e.g., automatic game playing, automated reasoning and

theorem proving, robotics, arti�cial vision, natural lan-

guage processing (see 7Statistical Natural Language Pro-
cessing), pattern recognition (see 7Pattern Recognition,
Aspects of and 7Statistical Pattern Recognition Princi-
ples), expert systems, etc.) have evolved. Expert systems are

one of the successful branches of AI and most AI branches

include an expert system component in them.

Several de�nitions of expert systems have evolved over

time (see, e.g., Stevens ; Durkin, ; Castillo et al.

).�ese de�nitions, however, can be summarized as

follows: An expert system is a computer system (hardware

and so�ware) that emulates human experts in a given area

of specialization. As such, an expert system attempts to

either completely replace the human experts (e.g., Auto-

mated Teller Machines), help the human experts become

even better experts by providing them with fast answers

to complex problems (e.g., Medical Expert Systems), or

provide decision makers quick answers that enables them

to make wise decisions in the face of uncertainty (e.g.,

Automating the Underwriting of Insurance Applications;

Aggour and Cheetham, ).

Successful expert systems are usually domain speci�c.

One of the earliest expert systems isDENDRAL, developed

in the late s (Shortli�e, ) to infer the structure of

organic molecules from information about their chemi-

cal characteristics. MYCIN is another example of domain

speci�c (medicine) expert systems. It was developed in

the s to diagnose and prescribe treatment for spinal

meningitis and bacterial infections of the blood (Buchanan

and Shortli�e, ). Today expert systems have varied

applications in many �elds such as medicine, education,

business, design, and science (Waterman, ; Feigen-

baum et al., ; Durkin, ). Dozens of commercial

so�ware packages with easy interfaces are now available

which are used to develop expert systems in these �elds

of applications. Several books and papers have been writ-

ten about the subject; see, e.g., Neapolitan (), Ignizio

(), Jensen (), Schneider et al. (), Castillo et al.

(), Jackson (), Pearl (, ), Russell and

Norvig (), Giarratano and Riley (), Cowell et al.

(), and Darwiche ().

�e development of an e�ective and successful expert

system requires team-work and collaboration of humans

from di�erent �elds. First, domain experts (e.g., doctors,

lawyers, businessmanagers, etc.) provide knowledge about

the speci�c domain. For example, medical doctors can

provide information about the relationships among symp-

toms and diseases. Second, knowledge engineers translate

the knowledge provided by the subject-matter specialists

into a language that the expert system can understand.

�ird, during the design, development, and implementa-

tion of an expert system, it is important that the needs of

the end-users are kept inmind and that their input be taken

into consideration throughout the process.

�e information provided by the domain experts is

stored in one of the components of expert systems known

as the Knowledge Base. A knowledge base can consist

of two types of knowledge: deterministic and stochastic.

Deterministic knowledge typically consists of a set of crisp

rules. �e simplest rule takes the form “If A �en B,”

where A is a logical expression, known as the premise or

antecedent of the rule, which is related to input variable(s),

and B is a logical expression, known as the conclusion or

consequent of the rule, which is related to an output vari-

able. An example of a rule is “If PassWord = Correct�en

Access = Permitted,” where the input variable PassWord

can take one of two values (Correct or Incorrect) and

Access is an output variable that can take one of two or

more values (e.g., Permitted or Denied).

Stochastic knowledge usually involves some elements

of uncertainty. For example, the relationships among

symptoms and diseases are not one-to-one. A disease can

cause many symptoms and the same symptom can be

caused by a number of di�erent diseases. It is therefore

necessary to develop some means for dealing with the
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Expert Systems. Fig.  A typical architecture of an expert system

uncertainty and imprecision in the knowledge we receive.

Expert systems that involve only deterministic knowledge

are referred to as deterministic or rule-based expert sys-

tems. Two types of expert systems that can deal with

stochastic or imprecise knowledge are fuzzy expert systems

and probabilistic expert systems.

Fuzzy systems, �rst introduced by Zadeh (), are

based on fuzzy logic instead of Boolean logic.�e knowl-

edge base of a fuzzy expert system consists of a set of fuzzy

rules and a set of membership functions de�ned on the

input variables. Fuzzy rules are similar in form to the crisp

rules except that the premise of the fuzzy rule describes the

degree of truth for the rule and the membership functions

are applied to their actual values to determine the degree

of truth for each rules conclusion.�e edited book by Siler

and Buckley () is a good source of many papers and

references on fuzzy expert systems.

In probabilistic expert system, the uncertainty is

measured in terms of probabilities. �us, the knowledge

base of a probabilistic expert system consists of the joint

probability distribution function (pdf) of all variables.�is

joint pdf, however, can be speci�ed by a set of conditional

probability distributions, one for each variable. Each con-

ditional pdf gives the probability for each value of the vari-

able given the values of a set of associated variables known

as its parents.�e speci�cations of these conditional distri-

butions can be either given by the domain experts and/or

learned from the available data.

To emulate the performance of the human experts in

a given domain of application, expert systems consist of

several components and sub components. A typical archi-

tecture of an expert system is depicted in Fig. , which is

adapted from Castillo et al. (), and explained below.

Knowledge can be provided directly by the subject-matter

experts, but it can also be learned from historical data.

�e data, when available, are stored in a data base and

the knowledge learned from data is done by the learning

subsystem. �e �ow of knowledge from either source is

controlled by the knowledge acquisition subsystem. Before

the knowledge is added to the knowledge base, it must be

checked for consistency by the coherence control subsystem

to prevent incoherent knowledge from reaching the knowl-

edge base.

�rough the User Interface subsystem, Information

Acquisition subsystem collects information or inquiries

from the end-users. �is information together with the

knowledge in the knowledge base are used by the Infer-

ence Engine to draw conclusions.�e inference engine and

knowledge base are then the most important components

of an expert system.
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�e inference engine is the brain of an expert system.

It contains the decision-making logic of the expert sys-

tem which allows the expert system to draw conclusions

and provide expert answers (e.g., diagnose a disease). In

deterministic expert systems, the inference is made based

on Boolean or classic logic. In advanced expert systems,

the inference engine can also enhance the knowledge base

by adding a set of concluded rules using various infer-

ence strategies such asModus Ponens,Modus Tollens, Rule

Chaining, etc.

In fuzzy expert systems, the inference is made based

on fuzzy logic; see, e.g., Schneider et al. (). Given real-

izations of a speci�ed set of variables, the inference engine

of probabilistic expert systems computes the conditional

probabilities for each values of the other variables given the

realization of speci�ed set of variables.�is is known as the

propagation of uncertainty.

In the process of drawing conclusions, the inference

engine may need to store temporary information, which

is stored in the Working Memory. Finally, if actions are

needed, they are speci�ed by the inference engine through

the Action Execution subsystem and the actions and con-

clusions are explained to the users through theExplanation

subsystem.
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Introduction
Nonparametric statistical methods based on ranks are

commonly used to test for di�erences among alternatives

and to extract overall rankings. But depending on the

method used to analyze the ranked data, inconsistencies

can occur and di�erent conclusions can be reached. Recent

advances (Bargagliotti and Orrison ; Bargagliotti and

Saari ; Haunsperger and Saari ; Haunsperger ;

Saari ) prove that all possible inconsistencies among
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outcomes for these methods are caused by hidden symme-

tries within the data.

To analyze how methods utilize and interpret di�erent

data con�gurations, decompose a nonparametric method

into a two step process.�e �rst step is where the method

uses a uniquely de�ned procedure to convert ranked data

into an overall ranking.�e second step uses a test statis-

tic (based on the procedure ranked outcome) to determine

whether there are signi�cant di�erences among alterna-

tives. Di�erences and even con�icting results can occur at

each step when analyzing the same ranked data set.�ese

peculiarities can complicate the choice of an appropriate

method in a given situation.

To demonstrate, consider the general setting in which

ranked performance data are collected on a set of three

alternatives where larger values indicate a better perfor-

mance:

A B C

  

  

  

  

  

()

With the Kruskal–Wallis procedure (Kruskal and

Wallis ), which computes the rank-sum for each alter-

native, these data de�ne the tied ranking A ∼ B ∼ C. In
contrast, Bhapkar’s V procedure (Bhapkar ) analyzes

ranked data by considering all possible -tuples of the form

(ai, bj, cm) for i, j,m = , . . . , . For each -tuple, the V
procedure assigns a point to the alternative with the high-

est rank; the tally for each alternative is the sum of the

assigned points and the V procedure ranking is based on

these tallies.With the Eq.  data, the V procedure yields the

A ≻ B ≻ C ranking, which con�icts with the Krusal–Wallis
ranking.

A still di�erent outcome arises with pairwise com-

parison procedures such as the Mann–Whitney (Whit-

ney ) or Wilcoxon (Wilcoxon ) (see 7Wilcoxon–
Mann–WhitneyTest).�ese rules also are based on all pos-

sible tuples, but now, for a speci�ed pair, an alternative

receives a point for each tuple where it is ranked above its

opponent.�e Eq.  data lead to the A ≻ B,B ≻ C,C ≻ A
cyclic rankings, which con�ict with those from the earlier

approaches.

In this article, we show that subtle symmetry structures

hidden within the data explain why di�erent outcomes

can be obtained by di�erent nonparametric ranking pro-

cedures for the same data set. Namely, we show how and

why di�erent nonparametricmethods interpret data struc-

tures di�erently and why this causes the inconsistencies

experienced by di�erent methods.

Same Data, Different Methods, Different
Outcomes
Two forms of ranked data can be constructed: full ranked

data and block ranked data. An entry in a full ranked data

set describes the datum’s ranking relative to all others in

the set; an entry in a block ranked data set describes the

datum’s ranking relative to all others within the block. For

example, Eq.  illustrates a full ranked data set with the

overall ordering of all the entries:

A B C

  

  

  

()

while Eq.  ranks the entries within each row, so a row is

considered a block:

A B C

  

  

  

()

Standard methods of analysis for the full ranked data set

include, but are not limited to, the Kruskal–Wallis, Mann–

Whitney, and Bhapkar’s V tests. When analyzing the block

ranked data, the Friedman (Friedman ) or Anderson

tests (Anderson ) are commonly employed. Each of

these nonparametricmethods is susceptible to ranking and

statistical paradoxes. We explain how certain data con-

�gurations cause either ranking or statistical signi�cance

paradoxes.

For the purpose of clarity, our examples and analysis

emphasize the three-sample setting with the three alter-

natives A, B, and C. All symmetries for the three samples

thus come from S – the space of all ways to permute these

alternatives. Two natural symmetries, the Z orbit and the
Z orbit of a triplet, are what cause the di�erences among
nonparametric procedures.

�e set of permuted rankings de�ned by the Z orbit
of the ranking A ≻ B ≻ C is:

{A ≻ B ≻ C, B ≻ C ≻ A, C ≻ A ≻ B}. ()
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while the other “rotational symmetry” set is generated with

the ranking A ≻ C ≻ B:

{A ≻ C ≻ B, C ≻ B ≻ A, B ≻ A ≻ C}. ()

Either con�guration is constructed by moving the top

ranked alternative in one triplet to be bottom ranked in

the next triplet.�us each alternative is in �rst, second, and

third place precisely once over the triplet of rankings.

Data sets that feature one of these Z structures (but
not the Z structure described below) require combining
three rotational parts:

A B C

  

  

  

,

A B C

  

  

  

,

A B C

  

  

  

()

�e �rst array arranges the row data in the expected A ≻
B ≻ C, B ≻ C ≻ A, C ≻ A ≻ B order of a Z orbit. Notice
how the top de�ning row of the next two sets also manifest

this cycle; e.g., the top rows also de�ne the A ≻ B ≻ C,
B ≻ C ≻ A, C ≻ A ≻ B order. �e rest of each block
array continues the Z cyclic structure. �us each set of
three rows re�ects the Z symmetry, and the three sets are
connected with a Z symmetry.

�e importance of the rotational symmetry is captured

by�eorem .

�eorem  Bargagliotti and Saari () Let A,B,C rep-

resent the three alternatives. For a data component that

introduces a rotational symmetry (Eq.  or ), all three-

sample procedures yield a completely tied outcome. �e

pairwise procedure outcomes for such a component, how-

ever, form a cycle where, for each pair, the tally of tuples

is the same. Such a component is strictly responsible for all

non-transitive paired comparison behavior.

To illustrate with the Eq.  pure rotational data, the

Kruskal–Wallis and V procedures have the ranking A ∼
B ∼ C, but the paired comparisons yield the A ≻ B,

B ≻ C, C ≻ A cycle. Components within a data set yield-
ing these rotational con�gurations are totally responsible

for all possible paired comparison paradoxes (for methods

such as the Mann–Whitney and the Wilcoxon) including

cyclic e�ects and all possible disagreements with the three-

sample Kruskal–Wallis test. All three-sample procedures

essentially ignore rotation con�gurations present in data

and consider the alternatives as tied.

�e “inversion symmetry” of theZ orbit consists of the
ranking of a triplet and its inverted version. As an illus-

tration, the Z orbit of the ranking A ≻ B ≻ C is the
set:

{A ≻ B ≻ C, C ≻ B ≻ A} ()

�e two other sets generated by the Z orbit are

{A ≻ C ≻ B, B ≻ C ≻ A}, {B ≻ A ≻ C, C ≻ A ≻ B} ()

An example capturing the inversion structure with no

rotational symmetry is:

A B C

  

  

  

  

()

In this example, the rows have opposing rankings, while

the �rst and fourth rows and the second and third rows

reverse each other. (See Bargagliotti and Saari () for

examples that do not have the same number of rows with

one ranking as with its reversal.)

�e following theorem captures the importance of the

inversion symmetry for ranking procedures.

�eorem  Bargagliotti and Saari () Consider the

three alternatives A,B,C. For a data component that creates

a inversion symmetry (e.g., Eqs. , ), the Kruskal–Wallis

and the pairwise procedures yield a tied outcome, but the

ranking for all other three-sample procedures is not a tie.

All possible di�erences among three-sample procedures are

caused by this inversion symmetry.

To illustrate with the pure inversion data in Eq. (), the

Kruskal–Wallis and pairwise procedures have the A ∼ B ∼
C ranking, while the V procedure outputs A ∼ B ≻ C. For
any data set, components causing an inversion symmetry

are treated as a tie by the Kruskal–Wallis and paired com-

parison methods, but they in�uence, and can even change

the rankings, of all other three-sample procedures. Indeed,

the rotational and inversion symmetries are responsible for

all possible di�erences in this class of nonparametric pro-

cedures.�us components causing rotational symmetries

create di�erences between paired comparison and three-

sample approaches, while inversion symmetries cause all

possible di�erences among three-sample procedures; only

the Kruskal–Wallis test is immune to these symmetries

Bargagliotti and Saari ().
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�ese symmetries also cause signi�cant di�erences

when testing among alternatives with block ranked data;

we illustrate this behavior with the Friedman and the

Anderson tests.�e Friedman test statistics is given by

Q =
n∑kj=(r̄.j − r̄)



n(k−) ∑
n
i=∑kj=(rij − r̄)

()

where n is the number of blocks, k is the number of alter-

natives, r̄.j is the mean of the rankings for alternative j, rij
is the ith ranking for alternative j, and r̄ is the grand mean

of the rankings.�e Anderson statistic is de�ned as

A = k − 
n

n

∑
i=

k

∑
j=

(nij −
n

k
)


()

where nij is the number of times alternative j was assigned

rank i by the respondents, n is the number of blocks, and

k is the number of alternatives. Both statistics follow a χ

distribution with k −  and (k − ) degrees of freedom
respectively.

As both tests are over three-samples, the above theo-

rems assert that all di�erences are displayed by the inver-

sion, Z symmetries that are embedded within data sets.
As this suggests examining di�erence over a pure inver-

sion block set, consider the following data set where the

number of rows with a given ranking equals the number of

rows with the inverted ranking.

Ranking Number of Voters

A ≻ B ≻ C 

C ≻ B ≻ A 

B ≻ A ≻ C 

C ≻ A ≻ B 

A ≻ C ≻ B 

B ≻ C ≻ A 

()

�e e�ects of this inversion symmetry on tests is re�ected

by the following statement:

Example  For the data set in Eq. , the Anderson test

statistic, A, equals . resulting in a p-value of . while

the Friedman statistic, Q, equals  with associated p-value

of . At the . signi�cance level, the Anderson test considers

the three alternatives signi�cantly di�erent but the Friedman

test does not.

It is the inversion symmetry structures embedded

within data that can cause these tests to yield con�icting

outcomes.�is is because the Friedman test is based on the

average ranks of each alternativewhile theAnderson statis-

tic is more sensitive to inversion symmetry structures as its

outcome is based on how o�en each alternative is in �rst,

second, and third place.�e tests disagree when the block

data reports similar means but vastly di�erent marginal

distributions for each alternative caused by the inversion

symmetries. In Eq. , each alternative receives an average

weighted score of  overall but the data has the following

distribution:

Alternative First Place Second Place �ird Place

A   

B   

C   

()

As this table displays, although the average score for each

alternative is the same, the distribution of rankings (caused

by the inversion symmetry) is quite di�erent. With this

relatively small data set of  observations, the Anderson

test “picks up” on this di�erence in distribution while

the Friedman test does not (see Bargagliotti and Orrison

() for a mathematical characterization of these types

of paradoxes).

�ese examples illustrate how di�erent nonparametric

methods interpret the speci�c data con�gurations. Dif-

ferent tests and procedures emphasize or deemphasize

certain symmetry con�gurations in the data, which can

lead to con�icting outcomes. But by decomposing the

data space in terms of the relevant symmetry con�gu-

rations, it becomes possible to determine how di�erent

nonparametric methods interpret speci�c sets of data (see

Bargagliotti and Saari () for the full data decompo-

sition and Marden () and Bargagliotti and Orrison

() for the block data decomposition). Depending on

the situation, certain methods may be more desirable to

use than others. For instance, if a certain data structure that

is not viewed as being important in�uences the outcomes

of a speci�ed method, then the method may not be an

appropriate choice. Conversely, if a method ignores a type

of data structure that is accepted as being valuable while

another method does not, then this information provides

support for adopting the second method.

Conclusion
Although nonparametric statistical methods based on

ranks are commonly used to test for di�erences among

alternatives and to extract overall rankings, di�erentmeth-

ods can lead to di�erent conclusions.�ese paradoxes and

inconsistencies can occur at both the ranking procedure
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step or the test statistic step; they are based on how the

methods ignore, or react, to certain data structures. For

three alternatives, these structures are completely captured

by the rotational and inversion symmetries (Bargagliotti

and Saari ; Saari ).

By understanding what types of data cause statisti-

cal methods to have di�erent outcomes, we have better

understanding of how di�erent methods work.�is pro-

vides insight about which nonparametric method should

be applied in a given situation and o�ers guidelines for

the construction of new methods that utilize desired data

structures.
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Exploratory data analysis (EDA) is a term �rst utilized

by John Tukey (), and is intended to contrast with

the more traditional statistical approach to data analysis

that starts with hypothesis testing and model building.

Instead of using con�rmatory data analysis (CDA) meth-

ods to verify or refute suspected hypotheses, Tukey ()

advocated the use of basic descriptive statistics and visu-

alization methods to generate information that would lead

to the development of hypotheses to test.�e objectives of

EDA (see Velleman andHoaglin ) are therefore to pro-

vide statistical summaries of the data as a pre-processing

step before building a model or testing hypotheses. �e

EDA phase enables new hypotheses to be suggested about

the causes of the relationships in the data, and provides

an opportunity to determine whether the assumption that

various models rely upon are valid for the particular

dataset. It provides us with a very rapid feel for the data: the

shape of its distributions, the presence of 7outliers (which
may represent errors in the data which need to be cor-

rected prior to hypothesis testing and model building, or

may be accurate exceptions), and the measures of central

tendency and spread that are so critical for understanding

the character of the data.

�e most common methods employed in EDA are the

�ve-number summaries of the data, consisting of the min-

imum and maximum value of each variable, the median,
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Exploratory Data Analysis. Table  Basic graphical methods of Exploratory Data Analysis

Box Plot (Box-and-Whiskers plot) Graphical display of five number summaries of data, showing quartiles, as well as
minimum and maximum values. The graphical representation shows the distribution as
well as existence of outliers.

Stem Plot (Stem-and-leaf display) Graphical display showing the distribution of the data created by sorting the data, and
then using the leading digits from each data value as the “stems” and the subsequent
digits as the “leaves.” A vertical line separates the leaves from each stem. The digits to the
right of the vertical line each represent one observation. The stems should be selected so
that they create evenly distributed “bins” for the resulting histogram.

Bubble Charts Graphical display of showing colored bubbles of different sizes in a -dimensional space.
A bubble chart is therefore able to represent four variables simultaneously, with two
variables represented by the x and y axes, one (nominal) variable represented by the color
of a bubble, and one (ordinal) variable represented by the size of the bubble.

Radar/Spider Plots Graphical display of multivariate data with each variable represented as an axis stemming
from a central origin at an angle given by /n for n variables (n ≥ ). A multivariate data
point is usually represented in a unique color and shown as a “spider web” woven through
the relevant points of each axis.

Scatterplot matrices Graphical display of multivariate data with the cell in row i and column j of the matrix
containing a scatterplot of variable i versus variable j.

and the �rst and third quartiles, o�en represented as a

box-plot (see 7Summarizing Data with Boxplots). Other
plots of the data are also commonly employed, such as his-

tograms, scatter plots, stem-and-leaf plots, all designed to

explore the relationships that might exist in the data, and

the distributions of the variables, including the presence of

outliers. A number of graphical EDAmethods are summa-

rized in Table .

In addition to graphing of variables, simple statistical

measures such as the correlations between variables, as

well as multi-way frequency tables are o�en constructed

to explore the dependence between variables and explore

possible causal e�ects. Tukey () proposed a number

of other useful measures to characterize a data sample,

including the median polish (see Emerson and Hoaglin,

) which sweeps out row and column medians from

a two-way table to expose each datum composed of a

common median plus individual row and column e�ects.

Tukey () also proposed methods for estimating the

linear relationships in the data that are robust in the pres-

ence of 7outliers by �tting regression lines through the
median points of three bins for example, as well asmethods

for smoothing noisy time series to expose the underly-

ing trends. �ese methods aim to reveal the true nature

of the underlying data, counteracting the e�ect of outliers,

and therefore providing a more robust and accurate pic-

ture of the data prior to model building and hypothesis

testing.

Beyond the basic EDA methods advocated by Tukey

(), which pre-dated the current era of powerful com-

putational methods, in recent years a greater arsenal of

EDA methods have become available to assist with the

exploration of a dataset and to reveal the relationships

that may lead to a more successful model development

phase.�ese methods include cluster analysis (Hair ),

7multidimensional scaling (Borg and Groenen ), and
methods such as self-organizing feature maps (Koho-

nen ; Deboeck and Kohonen ) that reduce high

dimensional data to low dimensional maps of the most

prominent features.

�e approach that Tukey proposed in  seems com-

monsense nowadays – before building a model or testing

hypotheses, take the time to understand the data, to verify

its accuracy, and to explore it with a view to generating the

right questions to ask a model. At the time though, it was

a signi�cant departure from the prevailing statistical prac-

tices of con�rmatory data analysis.�ese days, it is a phi-

losophy that is underscored in more recent developments

in 7data mining (Maimon and Rokach ), where the
importance of EDA as a pre-processing steps is seen as crit-

ical to avoid the “garbage in – garbage out” consequences

of blindly developing models (see Pyle ).
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Exponential smoothing techniques are simple tools for

smoothing and forecasting a time series (that is, a sequence

of measurements of a variable observed at equidis-

tant points in time). Smoothing a time series aims at

eliminating the irrelevant noise and extracting the general

path followed by the series. Forecasting means prediction

of future values of the time series. Exponential smooth-

ing techniques apply recursive computing schemes, which

update the previous forecasts with each new, incoming

observation.�ey can be applied online since they only use

past observations which are already available at the corre-

sponding point in time. Although exponential smoothing

techniques are sometimes regarded as naive prediction

methods, they are o�en used in practice because of their

good performance, as illustrated e.g. in Chapter  of

Makridakis et al. (). We speak of exponential smooth-

ing techniques in plural because di�erent variants exist

which have been designed for di�erent scenarios.

Suppose we observe a variable y at equidistant points

in time, which are denoted by t ∈ N. �e sequence of
measurements of y is called a time series and denoted by

(yt : t ∈ N). Simple exponential smoothing computes the
smoothed value ỹt at time t according to the following

recursive scheme:

ỹt = αyt + ( − α)ỹt− , ()

where α ∈ (, ) is a smoothing parameter. �e smaller
we choose the value of α, the less weight is given to the

most recent observation and the more weight is given to

the smoothed value ỹt− at the previous time t − . As a
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consequence, the series (ỹt : t ∈ N) will be smoother.
�is is illustrated in Fig. , which depicts the number of

sea miles covered by Columbus on each day of his �rst

passage to America, as well as the results of exponential

smoothing for several values of the smoothing parameter

α ∈ {., ., .}. Obviously, the smaller we choose the
weight α of the most recent observation, the less variable

(smoother) is the resulting sequence of smoothed values.

Recursion () needs a starting value ỹk , which can be

obtained for instance as the average of the �rst k obser-

vations y, . . . , yk, where k ≥  is the length of a period
used for initialization. Recursion () is run for the times

t = k + , . . . therea�er.
Successive replacement of ỹt− by αyt− + ( − α)ỹt−,

of ỹt− by αyt− + ( − α)ỹt−, etc., in () allows to express
ỹt as a weighted average of the previous observations

yt−, . . . , yk+ and the starting value ỹk :

ỹt = αyt+α(−α)yt−+. . .+α(−α)t−k−yk++(−α)t−kỹk .
()

Note that the weights α, α( − α), . . . , α( − α)t−k−,
(−α)t−k sum to . Equation  shows that the weight of the
preceding observation yt−h is α(−α)h and thus decreases
geometrically in the time lag h, which stands in the expo-

nent.�is explains the name exponential smoothing.

Simple exponential smoothing can be justi�ed by the

assumption that the mean level of the time series is locally

almost constant at neighboring points in time. Applying

weighted least squares for estimation of the level at time t

from the observations yt−h, h = , , . . ., available at time
t (and the starting value) with geometrically decreasing

weights α( − α)h leads to the above Eqns.  and . �e
assumption of an almost constant level also explains how

to use recursion () to predict future values yt+ , . . .. �e
h-step ahead forecast ŷt+h∣t of yt+h from the observations
up to time t, which can be derived from simple exponential

smoothing, equals the smoothed value at time t,

ŷt+h∣t = ỹt , h = , , . . . . ()

�is simple prediction does not depend on the forecast

horizon h.�is is reasonable for a time series with a con-

stant level, but it will result in bad forecasts for series with a

trend. Double exponential smoothing incorporates a trend

variable bt representing the local slope of the trend at time

t into the recursions to overcome this de�ciency:

ỹt = α yt + ( − α) (ỹt− + bt−)

bt = β (ỹt − ỹt−) + ( − β) bt−.
()

bt can be regarded as an estimate of the local slope of the

trend at time t. Now this slope is assumed to be locally

almost constant at neighboring points in time.�e incre-

ment ỹt − ỹt− of the estimated level is a simple and highly
variable estimate of the slope at time t. �e parameters

α ∈ (, ) and β ∈ (, ) are smoothing parameters regulat-
ing the amount of smoothing applied for the calculation of

the smoothed slope bt and the smoothed level ỹt at time t.

Starting values ỹk and bk for the recursions () can be

obtained by �tting an ordinary least squares regression line

to an initial period, as described byBowerman et al. ().

Regressing yt versus the time t, for t = , . . . , k, yields an
intercept â and a slope b̂ resulting in

ỹk = â + b̂k ,

bk = b̂.

An h-step-ahead forecast of yt+h given the data up to time
t can be obtained from recursion () as

ŷt+h∣t = ỹt + hbt , h = , , . . . . ()

�ese forecasts form a straight line, starting at ỹt and with

slope equal to the most recent estimate bt .

Figure  illustrates the results of double exponen-

tial smoothing applied to a time series representing the

monthly consumer price index in Spain from January 

till December , as well as the results of double expo-

nential smoothing using several combinations of smooth-

ing parameters. If values of α and β about . are chosen

for these data, we get quite good -step ahead predictions,
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whereas the sequence of predictions is too sti� and does

not adapt quickly to the bends of this time series if both α

and β are small.

�e seasonalHolt-Wintersmethod is a further extension

of the above procedure to incorporate periodic seasonality.

For thiswe decompose the smoothed values ỹt into the sum

of a trend component ℓt and a seasonal component st ,

ỹt = ℓt + st .

�e trend - consisting of the local level ℓt and the local

slope bt - and the seasonal component st are smoothed

separately by the recursions

ℓt = α (yt − st−m) + ( − α) (ℓt− + bt−)

bt = β (ℓt − ℓt−) + ( − β) bt−

st = γ (yt − ℓt) + ( − γ) st−m,

()

with m being the period of the seasonality. Note that ℓt is

calculated from the observations corrected for seasonality.

h-step ahead forecasts are obtained by means of

ŷt+h∣t = ℓt + hbt + st−m+i, h = jm + i,
i = , , . . . ,m, j = , , . . . .

�e performance of all these exponential smoothing

techniques depends on the smoothing parameters α, β and

γ, which are sometimes set arbitrarily to values between

. and .. Alternatively, they can be chosen byminimiz-

ing the sum of the squared -step ahead prediction errors

∑nt=k+(yt − ŷt−∣)

or another error criterion.

Many modi�cations and improvements of exponential

smoothing schemes have been suggested in the literature.

Robustness against aberrant values (7outliers) is an impor-
tant issue because these have large e�ects on the outcome

of exponential smoothing. Gelper et al. () modify the

recursions and replace the incoming observations by a

cleaned value whenever it lies outside some prediction

bounds, using the Huber function.

�ere is a direct relation between exponential smooth-

ing techniques and certain ARIMAmodels and state space

models, like local constant or local linearmodels, forwhich

an appropriately designed exponential smoothing tech-

nique leads to optimum forecasts in the mean square error

sense. �is connection can be used for selecting an ade-

quate exponential smoothing scheme, see Ord et al. ()

or Hyndman et al. (). Model selection procedures

are important in the context of exponential smoothing

since besides the schemes for additive seasonal and trend

components outlined above there are also schemes for

multiplicative components and for combinations of both,

see Hyndman and Khandakar (). Gardner ()

provides an overview on recent work in the �eld of expo-

nential smoothing, see also Hyndman et al. ().
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Exponential Family Models
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An exponential family is a parametric model for a data set

y whose distribution can be expressed by a density (or for

discrete data: probability function) of type

f (y; θ) = eθ′ t(y)
h(y) /C(θ)

where θ′ t is the scalar product of a k-dimensional canon-
ical parameter vector θ and a k-dimensional canonical

statistic t = t(y), that is

θ
′
t =

k

∑
j=

θ j tj(y),

and the two factors C and h are two functions, the former

interpretable as a norming constant (integral or sum). As

a �rst simple example, consider a sample y = (y, ..., yn)
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from an exponential distribution with intensity parameter

θ > , whose density is

f (y; θ) = θ
n
e
−θ ∑ yi , all yi > 

andwhich is essentially already in exponential family form,

with t(y) = −∑ yi, h(y) =  if all yi ≥ , else h(y) = ,
and C(θ) = θ−n. As a second simple example, let y be the
number of successes in n Bernoulli trials with a probability

 < p <  for success,�e probability for y = , , . . . ,n is

f (y; p) = (n
y
) py ( − p)n−y = eθ y(n

y
)/( + eθ)n ,

when parametrized by θ = log p

−p (the logit transform of
p) instead of p. A sample from the Gaussian (Normal) dis-

tribution,with its two parameters, is an examplewith k = .
Its canonical statistic has the components ∑ yi and ∑ yi
(except for constant factors).

Very many statistical models have these features in

common. Other distributions providing basic examples of

exponential families are the Poisson, the Geometric, the

Multinomial, the Multivariate normal, the Gamma and

the Beta families. Of more statistical importance, how-

ever, are all those statistical models which can be con-

structed with these building blocks without leaving the

exponential families: the Gaussian linear models (i.e. Lin-

ear regression models and ANOVA type models), Logistic

regression models (see 7Logistic Regression), Multino-
mial or Poisson-based log-linear models for contingency

tables, Graphical models (discrete or Gaussian, speci�ed

by conditional independencies), and the basic setting for

7Generalized linear models. Somewhat more specialized
examples are Rasch’s models for item analysis (in educa-

tion testing), some basic models for spatial 7Poisson pro-
cesses, without or with spatial interaction, and exponential

random graph models (ERGM) for social networks.

We think of the vector t and the parameter θ as both in

e�ect k-dimensional (not less).�is implies that t is min-

imal su�cient for θ. To some extent, the importance of

these models is explained by a general characterization of

a distribution family with a minimal su�cient statistic of

dimension independent of the sample size, when the lat-

ter increases (and satisfying a couple of other regularity

conditions), as necessarily being an exponential family.

We say that the family is full if the canonical parameter

space is maximal, that is if it contains all possible θ-values.

A full exponential family in its canonical parametrization

has several nice properties. Some families with pathologi-

cal properties at the boundary of the parameter space are

excluded by the (not quite necessary) requirement that

the canonical parameter space be open. Such families are

called regular, andmost families in practical use satisfy this

demand. Here is a selection of properties of full or regular

exponential families:

● log C is strictly convex and in�nitely di�erentiable,

and its �rst and second derivatives are the mean value

vector µt(θ)(=Eθ(t)) and the variance-covariance
matrix Vt(θ) for t.

● �e parameter space for θ is a convex subset of Rk.

● �e log-likelihood function logL(θ) is a strictly con-
cave function.

● �e maximum likelihood estimate is the unique root

of the likelihood equation system (when a maximum

exists – a concave function can have an in�nite supre-

mum).

● �e likelihood equation has the simple form t = µt(θ).
● �e observed and expected (Fisher) informations in θ

are the same, namelyVt(θ)(= Varθ(t)), and its inverse
is the large sample variance of the MLE of θ.

● An equivalent alternative parametrization of themodel

is by the mean value vector µt .

● If u and v are subvectors of t, which together form t,

then the conditional model for v given u is also an

exponential family, for each u, and with the canonical

parameter θv (the subvector of θ corresponding to v).

● An equivalent alternative parametrization of the orig-

inal family is the mixed parametrization, formed by

µu(θ) and θv together.�is parametrization is infor-

mation orthogonal, that is the information matrix is

block diagonal.

● A parametric model having an unbiased e�cient esti-

mator, in the sense of equality in the 7Cramér–Rao
inequality, is necessarily an exponential family inmean

value parametrization, with its mean value parame-

ter µt(θ) estimated by the corresponding canonical
statistic t.

● Exponential families arewell suited for the saddle point

approximation of the density of the maximum like-

lihood estimator (also called the p
∗
formula or the

magical formula).�is approximation is typically quite

e�cient even for small samples. For the MLE θ̂ of the

canonical parameter, with true value θ, the approxi-

mation is

f (θ̂; θ) ≈

√
det{Vt(θ̂)}

√
π

L(θ)
L(θ̂)

,

where det{} denotes the determinant of the informa-
tion matrix (that was Vt for θ).

�e properties listed above indicate that full exponen-

tial families form nice statistical models. In some appli-

cations, however, we need to go a bit outside this model

class. One type of such situations goes under the natural

name Curved exponential families. In this case, the family
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is not full, but the canonical parameter is speci�ed to lie in a

curved subspace of the canonical parameter space. Impor-

tant examples are the Behrens–Fisher model (two normal

samples with the mean values prescribed to be the same,

but not their variances), and the model called Seemingly

unrelated regressions (the SUR model, popular in econo-

metrics). To some extent the nice properties of the full fam-

ily remain, but in important respects they do not.�emin-

imum su�cient statistic is of a higher dimension than the

parameter of the curved model, and this typically causes

problems. For example, the likelihood equations do not

always have a unique root in the models mentioned above.

�e number of parameters in a multivariate Gaussian

distribution model may be reduced by setting to zero a

correlation or covariance between two of the variables.

However, this would only seemingly be a simpli�cation,

because themodel would turn into a curved family, and the

minimal su�cient statistic would not be reduced. Instead,

for a real simpli�cation the zero should be inserted among

the canonical parameters, that is in the inverse of the

covariance matrix, corresponding to the speci�cation of a

conditional independence (so-called covariance selection

modeling).

Another type of situation is when an exponential fam-

ily is thought of as a model for some data x, but these data

are not observable in the form desired. Instead, only some

function y= y(x) is observed, implying a loss of infor-
mation. Such situations are known as incomplete data.

Examples are grouped and censored data, data from a

mixture of two or more distributions, non-Gaussian dis-

tributed x observed with Gaussian noise, missing data in

multivariate analysis. Some speci�c distributions can be

described in this way, for example the Negative binomial,

the Cauchy and the t distributions.�e theory starts from

the observation that the conditional distribution of x given

y is an exponential family that only di�ers from that for

x in its norming constant, say Cy(θ) instead of C(θ). It
follows that the density for y can be written f (y, θ) =
Cy(θ)/C(θ), and next that the likelihood equations are
Eθ(t∣y)= µt(θ), whichmeans that the complete data statis-
tic t has been replaced by its conditional expected value,

given the observed data y. Similarly, the Fisher information

is nowVarθ(Eθ(t∣y)), instead of the complete data formula
Varθ(t).

�e unique root property does not hold for the incom-

plete data likelihood equations. Typically an iterative

method of solution is needed.�e EM algorithm is o�en

well suited for this, and is particularly simple for incom-

plete data from exponential families: Given θ(i)
a�er i

steps, calculate Eθ(i)(t∣y), insert its value in the likelihood
equation (le� hand side above, as a replacement for t),

and solve for θ, to get θ(i+)
. �e rate of convergence

is determined by the loss of information relative to

the complete data, as calculated from the information

matrices.

Exponential families with t(yi) = yi for an individual
observation i are called linear. Examples are the Bino-

mial, the Poisson, the Exponential, and the Gaussian with

known variance. Such families play a basic role in the class

of Generalized Linear Models. In such a model, the obser-

vations yi follow a linear exponential family, with varying

parameter θ i. �e form of the family relates θ i with the

mean value µyi . Furthermore, µyi is described by some

predictor or regressor variables, via a link function.

● Some jointly observed explanatory (continuous or

class) variables, xi say, are tried to explain (linearly)

the systematic part of the variability in y, via a linear

predictor function η(x)= βTx with unknown coe�-

cients β.

● �e mean value µy need not be the linear predictor

(as in a linear Gaussian model), but the mean value is

linked to the predictor η by a speci�ed link function g,

η = g(µ).
● �e observations yi follow a linear exponential family,

with varying parameter θ i. �e form of the family

relates θ i with the mean value µyi .

When the link is the canonical link themodel is a full expo-

nential family, otherwise it is a curved family. Sometimes

an additional variance parameter must be introduced (as

with the Gaussian). In that case, the model will at least be a

(full or curved) exponential family for each �xed value of

the variance parameter.
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Introduction
Extreme Value distributions arise as limiting distributions

for maximum or minimum (extreme values) of a sample

of independent and identically distributed random vari-

ables, as the sample size increases. Extreme Value�eory

(EVT) is the theory of modelling and measuring events

which occur with very small probability. �is implies its

usefulness in risk modelling as risky events per de�nition

happen with low probability.�us, these distributions are

important in statistics.�ese models, along with the Gen-

eralized Extreme Value distribution, are widely used in

risk management, �nance, insurance, economics, hydrol-

ogy, material sciences, telecommunications, and many

other industries dealing with extreme events.�e class of

Extreme Value Distributions (EVD’s) essentially involves

three types of extreme value distributions, types I, II and

III, de�ned below.

De�nition  (Extreme Value Distributions for maxima).

�e following are the standard Extreme Value distribution

functions:

(i) Gumbel (type I): Λ(x) = exp{− exp(−x)}, x ∈ R;

(ii) Fréchet (type II):Φα(x) =
⎧⎪⎪⎨⎪⎪⎩

, x ≤ ;
exp{−x−α}, x > , α > ;

(iii) Weibull (type III):

Ψα(x) =
⎧⎪⎪⎨⎪⎪⎩

exp{−(−x)α}, x ≤ , α > ;
, x > .

�e EVD families can be generalized with the

incorporation of location (λ) and scale (δ) parameters,

leading to

Λ(x; λ, δ) = Λ((x − λ)/δ),
Φα(x; λ, δ) = Φα((x − λ)/δ),
Ψα(x; λ, δ) = Ψα((x − λ)/δ), λ ∈ R, δ > .

Among these three families of distribution functions,

the type I is the most commonly referred in discus-

sions of extreme values. Indeed, the Gumbel distribution

{Λ(x; λ, δ) = Λ((x − λ)/δ); λ ∈ R, δ > }, is o�en coined
“the” extreme value distribution.

Proposition  (Moments andMode of EVD). �emean,

variance and mode of the EVD as in de�nition  are,

respectively:

(i) Gumbel – Λ: E[X] = γ = . . . . = Euler′s
constant; Var[X] = π/; Mode = ;

(ii) Fréchet – Φα : E[X] = Γ( − /α), for α > ;

Var[X] = Γ( − /α) − Γ( − /α), for α > ;
Mode = ( + /α)−/α ;

(iii) Weibull – Ψα : E[X] = −Γ( + /α); Var[X] = Γ( +
/α)− Γ(+ /α); Mode = −(− /α)−/α , for α > ,
and Mode = , for  < α ≤ ;

here Γ denotes the gamma function Γ(s) := ∫
∞

xs−e−xdx,

s > .

De�nition  (Extreme Value Distributions for minima).

�e standard converse EVD’s for minima are de�ned as:

Λ
∗(x) =  − Λ(−x), Φ∗α(x) =  − Φα(−x) and Ψ∗α (x) =
 − Ψα(−x).

Emil Gumbel

�e Gumbel distribution, named a�er one of the pio-

neer scientists in practical applications of the Extreme
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Value �eory (EVT), the German mathematician Emil

Gumbel (–), has been extensively used in various

�elds including hydrology for modeling extreme events.

Gumbel applied EVT on real world problems in engineer-

ing and inmeteorological phenomena such as annual �ood

�ows (Gumbel ):

7 “It seems that the rivers know the theory. It only remains to

convince the engineers of the validity of this analysis.”

Maurice Fréchet

�e EVD of type II was named a�er Maurice Fréchet

(–), a French mathematician who devised one

possible limiting distribution for a sequence of maxima,

provided convenient scale normalization (Fréchet ).

In applications to �nance, the Fréchet distribution has

been of great use apropos to the adequate modeling of

market-returns which are o�en heavy-tailed.

Waloddi Weibull

�e EVD of type III was named a�er Waloddi

Weibull (–), a Swedish engineer and scientist well-

known for his work on strength of materials and fatigue

analysis (Weibull ). Even though the 7Weibull distri-
bution was originally developed to address the problems

for minima arising in material sciences, it is widely used

in many other areas thanks to its �exibility. If α = , the
Weibull distribution function for minima, Ψ∗α , in De�ni-
tion , reduces to the Exponentialmodel, whereas for α = 
itmimics the Rayleigh distributionwhich ismainly used in

the telecommunications �eld. Furthermore, Ψ
∗
α resembles

the Normal distribution when α = ..
Owing to the equality for a randomsample (X, . . . ,Xn)

min(X , . . . ,Xn) = −max(−X , . . . ,−Xn)

it su�ces to consider henceforth only the EVD’s for max-

ima featuring in De�nition . In probability theory and

statistics, the Generalized Extreme Value (GEV) distri-

bution is a family of continuous probability distributions

developed under the extreme value theory in order to

combine the Gumbel, Fréchet and Weibull families. �e

GEV distribution arises from the extreme value theo-

rem (Fisher-Tippett  and Gnedenko ) as the lim-

iting distribution of properly normalized maxima of a

sequence of independent and identically distributed (i.i.d.)

random variables. Because of this, the GEV distribution

is fairly used as an approximation to model the max-

ima of long (�nite) sequences of random variables. In

some �elds of application the GEV distribution is in fact

known as the Fisher-Tippett distribution, named a�er Sir

Ronald Aylmer Fisher (–) and Leonard Henry

Caleb Tippett (–) who recognized the only three

possible limiting functions outlined above in De�nition .

Extreme Value Theory and Max-Stability
Richard von Mises (–) studied the EVT in ,

giving in particular the von Mises su�cient conditions on

the hazard rate (assuming the density exists) in order to

give a situation in which EVT behavior occurs, leading to

one of the above three types of limit laws that is, giving an

extremal domain of attractionD(G) for the extreme-value
distributionG. Later on, andmotivated by a storm surge in

the North Sea ( January– February ) which caused

extensive �ooding andmany deaths, the Netherlands Gov-

ernment gave top priority to understanding the causes of

such tragedies with a view to risk mitigation. Since it is

the maximum sea level which is the danger, EVT became a

Netherlands scienti�c priority. A relevant work in the �eld

is the doctoral thesis of Laurens de Haan in .

�e fundamental extreme value theorem (Fisher-

Tippett ; Gnedenko ) ascertains the Generalized
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Extreme Value distribution in the von Mises-Jenkinson

parametrization (von Mises ; Jenkinson ) as an

uni�ed version of all possible non-degenerate weak limits

of partial maxima of sequences comprising i.i.d. random

variables X,X, . . ..�at is:

�eorem  (Fisher-Tippett ; Gnedenko ). If

there exist normalizing constants an >  and bn ∈ R such
that

lim
n→∞

P {a−n (max(X , . . . ,Xn) − bn) ≤ x} = G(x),

for some non-degenerate distribution function G, then it is

possible to rede�ne the normalizing constants in such a way

that

G(x) = Gξ(x) := exp(−( + ξx)−/ξ),

for all x such that + ξx > , with extreme value index ξ ∈ R.
Taking ξ → , then Gξ(x) reduces to Λ(x) for all x ∈ R (cf.
De�nition ).�us the distribution function F belongs to the

domain of attraction of Gξ , which is denoted by F ∈ D(Gξ).

Remark  Note that, as n → ∞, the max(X , . . . ,Xn)
detached of any normalization converges in distribution

to a degenerate law assigning probability one to the right

endpoint of F, xF := sup{x : F(x) < }.
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For ξ < , ξ =  and ξ > , the Gξ distribution

function reduces to Weibull, Gumbel and Fréchet distri-

butions, respectively. More precisely,

Λ(x) ≡ G(x),
Φα(x) ≡ G/α(α(x − )),

and

Ψα(x) ≡ G−/α(α( + x)).

For exhaustive details on EVD see Chapter  of Johnson

et al. ().

Proposition  (Moments andMode of GEV).�e mean,

variance and mode of the GEV as in�eorem  are, respec-

tively:

E[X] = − 
ξ
[ − ξ( − ξ)], for ξ < ;Var[X] = 

ξ
[Γ( − ξ)

− Γ( − ξ)], for ξ < /;

Mode = 
ξ
[( + ξ)−ξ − ], for ξ ≠ .

Proposition  (Skewness of GEV). �e skewness co-

e�cient of GEV distribution, de�ned as skewGξ
:= E[{X −

E[X]}]/{Var[X]}/, is equal to zero at ξ ≃ −..
Moreover, skewGξ

> , for ξ > ξ, and skewGξ
< , for ξ <

ξ. Furthermore, for the Gumbel distribution, skewG ≃ ..

�e Fréchet domain of attraction contains distri-

butions with polynomially decay tails. All distribution

functions belonging to Weibull domain of attraction are

light-tailed with �nite right endpoint. �e intermediate

case ξ =  is of particular interest in many applied sci-
ences where extremes are relevant, not only because of the

simplicity of inference within the Gumbel domain D(G)
but also for the great variety of distributions possessing

an exponential tail whether having �nite right endpoint

or not. In fact, separating statistical inference procedures

according to the most suitable domain of attraction for

the sampled distribution has become an usual practice. In

this respect we refer to Neves and Fraga Alves () and

references therein.

De�nition  (Univariate Max-Stable Distributions). A

random variable X with distribution function F is max-

stable if there are normalizing sequences {an > } and {bn ∈
R} such that the independent copies X ,X,⋯,Xn satisfy the
equality in distributionmax(X,⋯,Xn)d=anX + bn. Equiva-
lently, F is a max-stable distribution function if [F(x)]n =
F((x − bn)/an), all n ∈ N.

�e class GEV, up to location and scale parameters,

{Gξ(x; λ, δ) = Gξ((x − λ)/δ), λ ∈ R, δ > }, represents
the only possible max-stable distributions.

Additional information can be found in Kotz and

Nadarajah (), a monograph which describes in an

organized manner the central ideas and results of prob-

abilistic extreme-value theory and related extreme-value

distributions – both univariate andmultivariate – and their

applications, and it is aimed mainly at a novice in the �eld.

DeHaan and Ferreira () constitutes an excellent intro-

duction to EVT at the graduate level, however requiring

some mathematical maturity in regular variation, 7point
processes, empirical distribution functions, and Brown-

ian motion. Reference Books in Extreme Value �eory
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and in real world applications of EVD’s and Extremal

Domains ofAttraction are: Embrechts et al. (), Beirlant

et al. (), David and Nagaraja (), Gumbel (),

Castillo et al. () and Reiss and�omas ().
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Extremes of Gaussian Processes

Sinisa Stamatovic

Professor

University of Montenegro, Podgorica, Montenegro

One of the oldest, most di�cult, andmost important prob-

lems in the theory of random processes has been the

precise calculation of the probability

P
⎛
⎝
sup
t∈[,T]

X(t) > u
⎞
⎠

()

where X(t) is a random process. �is problem is espe-
cially attractive for a Gaussian process. Even today, there

is no explicit formula of the probability () in the general

Gaussian situation, despite the fact that the set of �nite

dimensional distributions of a Gaussian process has a sim-

ple form. Because of this, there are multitudes of approxi-

mations and techniques of deriving approximations to (),

particularly when u is large. 7Gaussian processes appear
in various �elds (�nance, hydrology, climatology, etc.) and

�nding the probability of attaining high level is particularly

signi�cant.
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Extremes of Gaussian processes are well established

in probability theory and mathematical statistics. Further-

more, besides the already mentioned problem, this theory

addresses the following problems, among others: predic-

tion of extremes, the moments of the number of crossings,

and limit theorems for high excursions. �e ruin proba-

bility with Gaussian process as input and the extremes of

Gaussian process in random environment are two contem-

porary directions in the theory of extremes. To acquaint

the reader with extremes of Gaussian processes we recom-

mend monographs (Leadbetter et al., ; Lifshits ;

Piterbarg ) and review articles (Alder ; Albeverio

and Piterbarg ; Piterbarg and Fatalov ).

We will focus on one important part of the theory. J.

Pickands III suggested a natural and elegant way of com-

puting the asymptotic behavior of the probability () when

u →∞, see Pickands (), Piterbarg and Fatalov (),
Piterbarg (). Today his method is generalized for a

wide class of Gaussian processes and �elds. Approximation

is based on the Bonferroni inequality, so Pickands’ method

is known as a double sum method. We will extract two

central theorems. First, we will consider a stationary, cen-

tered Gaussian process X(t), t ≥ . Assume also that its
covariance function r(t) satis�es the conditions

r(t) =  − ∣t∣α + o(∣t∣α), t → 

for some  < α ≤  and

r(t) < , t > .

Let χ(t) be a fractional Brownian motion with a shi�,

Eχ(t) = −∣t∣α

and

cov(χ(t), χ(x)) = ∣t∣α + ∣s∣α − ∣t − s∣α .
�eorem 

P
⎛
⎝
sup
t∈[,p]

X(t) > u
⎞
⎠
= Hαpu



α Ψ(u)( + o()),

as u→∞, where

Ψ(u) = √
π

∞

∫
u

exp(− z



)dz,

Hα = lim
T→∞

Hα(T)
T

,Hα(T) = E exp
⎛
⎝
sup
t∈[,T]

χ(t)
⎞
⎠
.

Let X(t), t ∈ [,T] be a centered Gaussian process with
continuous trajectories. Denote by σ (t) and r(t, s) corre-
sponding variance and correlation functions. Suppose that

variance function attains its maximum at a unique point

t, t ∈ (,T). We introduce the following assumptions:

D For some positive numbers a and β,

σ(t) =  − a∣t − t∣β( + o()), t − t → .

D For the correlation function r(t, s)

r(t, s) =  − ∣t − s∣α( + o()), t → t, s→ t,

where  < α ≤ .
D For some G and γ > 

E(X(t) − X(s)) ≤ G∣t − s∣γ .

�eorem  Assume that the conditions D,D,D hold.
Under these conditions:

A. if β > α, then

P
⎛
⎝
sup
t∈[,T]

X(t) > u
⎞
⎠
= HαΓ(/β)

βa


β

u


α
− 

β Ψ(u)( + o()),

u→∞,

B. if β = α, then

P
⎛
⎝
sup
t∈[,T]

X(t) > u
⎞
⎠
= HaαΨ(u)( + o()), u→∞,

where

H
a
α(S)=E exp

⎛
⎝
sup

t∈[−S,S]
(χ(t) − a∣t∣α)

⎞
⎠
, H

a
α = lim

S→∞
H
a
α(S),

C. if β < α, then

P
⎛
⎝
sup
t∈[,T]

X(t) > u
⎞
⎠
= Ψ(u)( + o()), u→∞.

�eorem  gives us asymptotic formulas for distribu-

tions of Kolmogorov-Smirnov type statistics that appear in

goodness-of-�t tests for parameter families of distributions

F(x; θ). Let θN be the maximum likelihood estimate for θ.

It is well known that the empirical process

ζN(x) =
√
N(FN(x) − FN(x, θN))

weakly converges (under some regularity conditions) to

some Gaussian centered process ζ(t) with a covariance
function

cov(ζ(x), ζ(y)) = F(x) ∧ F(y) − F(x)F(y)

−
⎛
⎝

x

∫
−∞

G(z)dz
⎞
⎠

T

J
− −

⎛
⎝

y

∫
−∞

G(z)dz
⎞
⎠

T

.

Here F(x) = F(x, θ), θ is the true value of the parame-

ter, vector G(z) is of the form

G(z) = ( ∂

∂θ i
ln f (z, θ), i = , , . . . , q)

T

,
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q is the dimension of the parameter θ, f is the density of F

with respect to the Lebesgue measure,

J =
⎛
⎝

∞

∫
−∞

∂

∂θ i
ln f (z, θ)

∂

∂θ j
ln f (z, θ)dz, i, j = , , . . . , q

⎞
⎠

is the Fisher’s information matrix. By�eorem  we can

�nd the asymptotic behavior of P(sup
x∈R

ζ(x) > u) and

P(sup
x∈R

∣ζ(x)∣ > u) as u → ∞ if we know the behavior of

variance and covariance of the process ζ(x) near the max-
imum point of the variance. We will present an asymptotic

formula obtained by V. Fatalov, for testing hypothesis

H : F(x) ∈ {Φ (x − a
σ

) , ∣a∣ <∞,  < σ <∞} ,

both parameters are unknown. Suppose H is true.�en

the covariance function of the process ζ(x) is equal to

r(t, s) = t ∧ s − ts − φ(Φ−(t))(φ(Φ−(s))
( + , Φ−(t)Φ−(s)),

where t = F(x), s = F(y), Φ(t) is the standard normal dis-
tribution function and φ(t) is the standard normal density
function.�anks to the�eorem ,

P
⎛
⎝
sup
t∈[,]

∣ζ(t)∣ > u
⎞
⎠
= 

√
π

π − 
exp(− π

π − 
u
)

( + o()), u→∞.
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George W. Snedecor (–) promoted the develop-
ment of statistics in the USA by contributing to the foun-
dation of a department of statistics at Iowa StateUniversity,
reputed to be the �rst one in the country, and helping with
his writings the di�ussion and application of Sir Ronald
A. Fisher’s (–) work on the 7analysis of variance
and covariance (Fisher , ).
Snedecor named “F” the distribution of the ratio of

independent estimates of the variance in a normal setting
as a tribute to Fisher, and now that distribution is known
as the Snedecor F. It is a continuous skew probability dis-
tribution with range [,+∞), depending on two parame-
ters denoted ν, ν in the sequel. In statistical applications,
ν and ν are positive integers.

Definition of the F Distribution
Let Y and Y be two independent random variables dis-
tributed as chi-square, with ν and ν degrees of freedom,
respectively (abbreviated Yi ∼ χνi ).�e distribution of the

ratio Z =
Y/ν
Y/ν

is called the F distribution with ν and ν

degrees of freedom.
�e notation Z ∼Fν ,ν expresses that Z has the F dis-

tribution with ν and ν degrees of freedom.�e role of ν
and ν in this de�nition is o�en emphasized by saying that
ν are the degrees of freedom of the numerator, and ν are
the degrees of freedom of the denominator.

Remark  Let s = 
n− ∑

n
i=(Xi − X̄)

 denote the usual
estimator of the variance σ  obtained from X,X, . . . ,Xn
i.i.d. Normal(µ, σ ), X̄ = 

n ∑
n
i= Xi. Since s

 is distributed
as σ  χn−/(n − ) (this means that (n − )s/σ  ∼ χn−),
then the ratio of two such independent estimators of the
same variance has the F distribution that, for this rea-
son, is o�en referred to as the distribution of the variance
ratio.

�is leads to an immediate application of the F dis-
tribution: Assume that s and s are the estimators of the
variances of two normal populations with variances σ  and
σ  respectively, computed from independent samples of
sizes n and n respectively. �en the ratio F = s /s is
distributed as σ 

σ 
Fn−,n−.

When σ  = σ  , F ∼ Fn−,n−. On the other hand,
when σ  > σ  or σ  < σ  , F is expected to be respectively
larger or smaller than a random variable with distribution
Fn−,n−, and this suggests the use of F to test the null
hypothesis σ  = σ  : the null hypothesis is rejected when
F is signi�cantly large or small.

Remark  �e joint probability density of the i.i.d.
Normal(, ) variablesX,X, . . . ,Xn in x = (x, x, . . . , xn)
is ∏ni=

√
π
e−x


i / = 

(π)n/ e
−∥x∥/, with ∥x∥ = ∑ni= x


i

equal to the Euclidean norm of x. Since it depends on x
only through its norm, it follows that the new coordinates
X∗ ,X∗ , . . . ,X∗n of X = (X,X, . . . ,Xn) in any orthonor-
mal basis of Rn have the same joint density and therefore
are i.i.d. Normal(, ).

IfR denotes the subspace generated by the �rst p vec-
tors of the newbasis, andR� is its orthogonal complement,
then the angle Ψ of X withR� has tangent

tanΨ =

¿
Á
ÁÀY∗
Y∗
, with Y∗ =

p

∑
i=

(X∗i )

∼ χp,Y

∗


=
n

∑
i=p+

(X∗i )

∼ χn−p,

and hence

Z :=
n − p
p
tan Ψ ∼ Fp,n−p.

�is geometrical interpretation of the F distribution is
closely related to the F test in the analysis of variance
(Sche�e ).
Important applications of F distribution include: F test

for testing equality of two population variances, F test for
�t of regression models, and Sche�e’s method of multiple
comparison.

Miodrag Lovric (ed.), International Encyclopedia of Statistical Science, DOI ./----,
© Springer-Verlag Berlin Heidelberg 
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The Density and Distribution Function
of Fν ,ν
Let Yi ∼ χν , i = , . In order to compute the probability
density ofZ = Y/ν

Y/ν ∼ Fν ,ν , introduce the random angle Ψ
by Z =

ν
ν
tan Ψ, and start by computing the distribution

of C = cos Ψ = ( + tan Ψ)− = ν
νZ+ν

=
Y

Y+Y :

P{C ≤ c} = P{Y ≥ ( c − )Y}

= ∫

∞


f(y) ∫

∞

( c−)y
f(y)dydy,

where fi(t) = e−t/ tνi/−
νi/Γ(νi/)

is the density of the χ distribu-
tion with νi degrees of freedom.
By replacing the analytical expressions of the χ densi-

ties in

fC(c) :=
d
dc
P{C ≤ c} = ∫

∞


f(t)

t
c
f (( c − ) t)dt

one gets

fC(c) = ∫
∞



e−t/tν/−

ν/Γ(ν/)

×
t
c
e−(/c−)t/(/c − )ν/−tν/−

ν/Γ(ν/)
dt

=
(/c − )ν/−

c(ν+ν)/Γ(ν/)Γ(ν/)

× ∫

∞


e−t/ct(ν+ν)/−dt

= cν/−( − c)ν/− Γ((ν + ν)/)
Γ(ν/)Γ(ν/)

=
cν/−( − c)ν/−

B(ν/, ν/)
.

�is last expression, obtained by using the well-known
relation B(x, y) =

Γ(x)Γ(y)
Γ(x,y) between Euler’s Beta and

Gamma functions, shows that cos Ψ has the 7Beta dis-
tribution with parameters (ν/, ν/) and consequently
sin Ψ = − cos Ψ has the Beta distribution with parame-
ters (ν/, ν/) and density fS(s) = sν/−(−s)ν/−

B(ν/,ν/) .
�e distribution function of Z ∼Fν ,ν is

Fν ,ν(z) = P{Z ≤ z} = P{tan
 Ψ ≤

ν
ν
z}

= P{cos Ψ ≥
ν

νz + ν
}

= P{sin Ψ ≤
νz

νz + ν
} = ∫

ν z
ν z+ν


fS(s)ds

=
B (

νz
νz+ν

; ν
 ,

ν
 )

B (
ν
 ,

ν
 )

,

where B(t; a, b) = ∫
t
 s
a−

( − s)b−ds denotes the incom-
plete Beta function with parameters a, b evaluated in t. It
may be noticed that the distribution function of Fν ,ν eval-
uated at z is the same as the distribution function of a
Beta(ν/, ν/) random variable evaluated at νz

νz+ν
.

By di�erentiating the c.d.f. the density of the F distri-
bution is obtained:

fν ,ν(z) =
νν

(νz + ν)
fS (

νz
νz + ν

)

=

√
νν
 νν


zB(ν/, ν/)

√
zν

(νz + ν)ν+ν
.

Figures  and  show graphs of fν ,ν for several values of
the parameters.

Some Properties of F Distribution
�e moments of Y ∼ χν are EYk = k

Γ( ν
+k)
Γ( ν

 )
for k > − ν

 ,
and in�nite otherwise.�erefore, from the expression of
Z =

νY
νY

as the ratio of independent random variables

Yi ∼ χνi we get EZ
k
= (

ν
ν
)
k
EYk EY−k = (

νk
νk
) k Γ(

ν
 +k)

Γ( ν
 )

×

−k Γ(
ν
 −k)

Γ( ν
 )

= (
ν
ν
)
k Γ( ν

 +k)Γ(
ν
 −k)

Γ( ν
 )Γ(

ν
 )

, provided k < ν/. If
this last restriction does not hold, the moment is in�nite.
In particular,

EZ =
ν

ν − 
for ν > ,

VarZ =
(ν + ν − )ν

ν(ν − )(ν − )
for ν > .

Other descriptive parameters are the mode
(ν − )ν
ν(ν + )

for

ν > , the skewness coe�cient


√
(ν + ν − )

√
ν − 

√
ν(ν + ν − )(ν − )

for ν >  and the kurtosis

(ν − ) ((ν − ) + ν (ν + ) + ν(ν − )(ν + ))
ν(ν − )(ν − )(ν + ν − )

− 

for ν > .

On Numerical Computations
�ere exist many tables of the F distribution, but the sim-
pler way to obtain the numerical values of the density, the
distribution function or its inverse, is to use the facilities
provided by statistical so�ware.�e pictures here included
and the numerical computations required by them were
made by using the free so�ware “R” (R Development Core
Team ).
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Background
Factor analysis was invented in  by Professor Charles
Spearman at University College London. Spearman was a
psychologist and, for half century, factor analysis largely
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remained the preserve of psychologists. Latent class analy-
sis was developed by Paul Lazarsfeld at Columbia Univer-
sity inNewYork in the nineteen ��ies andwas designed for
use by sociologists. Yet both of these techniques, and others
like them, are essentially statistical and are now recognized
as sharing a common conceptual framework which can be
used in awide variety of �elds. It was not until the late nine-
teen thirties that statisticians, such as M. S. Bartlett, made
serious contributions to the �eld.
Both factor analysis and latent class analysis are exam-

ples of the application of what would now be called latent
variable models. Statistics deals with things that vary and
in statistical theory such quantities are represented by ran-
dom variables. Inmost �elds these variables are observable
and statistical analysis works with the observed values
of such variables. But there are some important applica-
tions where we are interested in variables which cannot be
observed. Such variables are called latent variables. In prac-
tice these o�en arise in the social sciences and include such
things as human intelligence and political attitudes.
A latent variable model provides the link between the

latent variables, which cannot be observed, and the mani-
fest variables which can be observed.�e purpose of the
analysis is to determine how many latent variables are
needed to explain the correlations between the manifest
variable, to interpret them and, sometimes, to predict the
values of the latent variables which have given rise to the
manifest variables.

The Linear Factor Model
�e basic idea behind factor analysis and other latent vari-
able models is that of regression, or conditional expec-
tation. We may regress each of the manifest (observed)
variables on the set of latent variables (or factors).�us, if
we have p manifest variables, denoted by x, x, . . . xp and
q factors, denoted by f, f, . . . fq, the model may be written

xi = α+αf+αf+ . . . αq fq+ei ( i = , , . . . , p) ()

where, without loss of generality, the f s are assumed to have
zero means and unit standard deviations.�e error term
ei is also assumed to have zero mean and standard devia-
tion, σi. We o�en assume that all distributions are normal,
in which case we refer to this as the normal linear factor
model.

�ere are p linear equations here but the model can-
not be �tted like the standard linear regression model (see
7Linear Regression Models) because the number of fac-
tors is unknown and the values of the fs are not known,
by de�nition. We, therefore, have to use indirect methods
which depend on the fact that the correlation coe�cients

between the xs depend only on the αs and the σs. In prac-
tice, e�cient computer programs are available which take
care of the �tting.

The Latent Class Model
In a latent class model the manifest and latent variables are
both categorical, o�en binary, instead of continuous.�us
the xsmay consist of binary answers to a series of questions
of the YES/NO variety.�ese are o�en coded  and  so
that the manifest variable, xi takes one of the two values
 and . On the basis of these data we may wish to place
individuals into one of several categories. In such cases the
model is usually expressed in terms of probabilities. For
example, for the ith manifest variable we may specify that

Pr[xi = ] =
exp − αi − αif
 + exp − αi − αif

()

Because xi is binary, the le� hand side of the equation may
also bewritten,E(xi)�e reason for this somewhat strange
expression is that probabilities necessarily lie between 
and .�e link with the linear expression of the previous
section is made clearer if we write it in terms of the logit
function. In that case we have

logitE[xi] = αi + αif . ()

�is becomes a latent class model if we let f be a binary
variable; this is a way of letting the probability on the le�
hand side of the equation take just two values.

Other Latent Variable Models
Prior to the last step, we actually had a latent pro�le model
with one continuous factor, f . Further latent variables
could have been added to the right hand side in exactly the
sameway as with the general linear factormodel. Similarly,
we could have had a continuous variable on the le� hand
side with discrete variables on the right hand side. Beyond
this, in principle, there could be mixtures of continuous
and/or categorical variables on both sides of the equation.
Much recent work is on what are called linear struc-

tural relations models where the interest is in the assumed
(linear) relationships among the latent variables.

The Literature
�ere is an enormous literature on factor analysis and
latent variable models, much of it very old and di�cult to
follow.�is is not helped by the fact that much of the work
has been published in books or journals appropriate to the
disciplinary origins of the material and the level of mathe-
matical expertise expected of the readers. One of the very
few broad treatments from a statistical angle is given in:
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Bartholomew,D.J. andKnott,M. ()LatentVariable
Models and Factor Analysis, nd edition, Kendall’s Library
of Statistics , Arnold.

�e references given there will lead on to many other
aspects of the �eld, some of which have been touched on
above.
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Statistically designed experiments are an important tool
in data analysis. �e objective of such experimentation
is to estimate the e�ect of each experimental factor on a
response variable and to determine how the e�ect of one
factor varies over the levels of other factors. Each mea-
surement or observation is made on an item denoted as
an experimental unit. Although some ideas of the several
varying factors simultaneously appeared in England in the
nineteenth century, the �rst major systematic discussion
on factorial designs was given by Sir Ronald Fisher in his
seminal book�eDesign of Experiments (Chap. ) in .
A factorial experiment is an experiment in which

several factors (such as fertilizers or antibiotics) are applied
to each experimental unit and each factor is applied at
two, or more, levels. �e levels may be quantitative (as
with amounts of some ingredient) or qualitative (where
the level refers to di�erent varieties of wheat) but in either
case are represented by elements of a �nite set, usually by
, , , . . . , ki −  where the ith factor occurs at ki levels. A
factorial experiment in which t independent factors are
tested, and in which the ith factor has ki levels is labeled
a k × k × ⋯ × kt factorial experiment. If k = k = ⋯ =

kt = k, then the experiment is designated as a kt symmet-
rical factorial experiment. An important feature of a com-
plete factorial experiment is that all possible factor-level
combinations are included in the design of the experiment.
Each controllable experimental variable, such as tem-

perature or diet, in a factorial experiment is termed a
factor.�e e�ect of a factor on the response variable is the
change in the average response between two experimental
conditions. When the e�ect is computed as the di�erence
between the average response at a given level of one factor
and the overall average based on all of its levels a�er aver-
aging over the levels of all the other factors, it is labeled
the main e�ect of that factor.�e di�erence in the e�ects
of factors at di�erent levels of other factors represents the
interaction between factors. We can estimate the e�ect of
each factor, independently of the others (the main e�ect),
and the e�ect of the interaction of two (or more) factors
(the interaction e�ect).
A factorial experiment allows for estimation of exper-

imental error in two ways. �e experiment can be repli-
cated, or the sparsity-of-e�ects principle can o�en be



 F False Discovery Rate

exploited. Replication is more common for small experi-
ments and is a very reliable way of assessing experimental
error. When the number of factors is large, replication
of the design can become operationally di�cult. In these
cases, it is common to only run a single replicate of the
design and to assume that factor interactions of more than
a certain order (say, between three or more factors) are
negligible. A single replicate factorial design is a factorial
experiment inwhich every treatment combination appears
precisely once in the design. As with any statistical exper-
iment, the experimental runs in a factorial experiment
should be randomized to reduce the impact that bias could
have on the experimental result. In practice, this can be a
large operational challenge.
Factorial experiments also can be run in block designs,

where blocks refer to groups of experimental units or test
runs (such as batches of rawmaterial) that aremore homo-
geneous within a block than between blocks. Combina-
tions of the levels of two or more factors are de�ned as
treatment combinations. If the number of treatment com-
binations is not too large, it is o�en possible to run the
experiment in block designs in which some information
is available within blocks on all factorial e�ects (i.e., main
e�ects and interactions). Such e�ects are said to be par-
tially confounded with blocks. However, factorial experi-
ments with many factors, or with factors at many levels,
involve large numbers of treatment combinations.�e use
of designs that require a number of replicates of each treat-
ment combination then becomes impractical. To overcome
this problem, designs using a single replicate are frequently
used. Information on all or part of some of the facto-
rial e�ects will consequently no longer be available from
comparisons within blocks; these e�ects, or some compo-
nents of them, will be said to be totally confounded with
blocks.
Any number of factor levels can be used in a facto-

rial experiment provided there is an adequate number of
experimental units. However, the number of experimen-
tal runs required for three-level (or more) factorial designs
will be considerably greater than for their two-level coun-
terparts. Factorial designs are therefore less attractive if a
researcher wishes to consider more than two levels. When
the number of test runs required by a complete factorial
experiment cannot be run due to time or cost constraints,
a good alternative is to use fractional factorial experiments.
�ese types of designs reduce the number of test runs.

Cross References
7Design of Experiments: A Pattern of Progress
7Interaction

7Research Designs
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Multiple Hypothesis Testing
In hypothesis testing, statistical signi�cance is typically
based on calculations involving7p-values and Type I error
rates. A p-value calculated from a single statistical hypoth-
esis test can be used to determine whether there is sta-
tistically signi�cant evidence against the null hypothesis.
�e upper threshold applied to the p-value in making
this determination (o�en % in the scienti�c literature)
determines the Type I error rate; i.e., the probability of
making a Type I error when the null hypothesis is true.
Multiple hypothesis testing is concernedwith testing several
statistical hypotheses simultaneously. De�ning statistical
signi�cance is a more complex problem in this setting.
A longstanding de�nition of statistical signi�cance

for multiple hypothesis tests involves the probability of
making one or more Type I errors among the family of
hypothesis tests, called the family-wise error rate. However,
there exist other well established formulations of statisti-
cal signi�cance for multiple hypothesis tests.�e Bayesian
framework for classi�cation naturally allows one to calcu-
late the probability that each null hypothesis is true given
the observed data (Efron et al. ; Storey ), and sev-
eral frequentist de�nitions of multiple hypothesis testing
signi�cance are also well established (Sha�er ).
Soric () proposed a framework for quantifying the

statistical signi�cance ofmultiple hypothesis tests based on
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the proportion of Type I errors among all hypothesis tests
called statistically signi�cant. He called statistically signif-
icant hypothesis tests discoveries and proposed that one be
concerned about the rate of false discoveries when testing
multiple hypotheses. (A false discovery, Type I error, and
false positive are all equivalent. Whereas the false positive
rate and Type I error rate are equal, the false discovery rate
is an entirely di�erent quantity.)�is false discovery rate is
robust to the false positive paradox and is particularly use-
ful in exploratory analyses, where one is more concerned
with havingmostly true �ndings among a set of statistically
signi�cant discoveries rather than guarding against one or
more false positives. Benjamini and Hochberg () pro-
vided the �rst implementation of false discovery rates with
known operating characteristics.�e idea of quantifying
the rate of false discoveries is directly related to several pre-
existing ideas, such as Bayesian misclassi�cation rates and
the positive predictive value (Storey ).

Applications
In recent years, there has been a substantial increase in
the size of data sets collected in a number of scienti�c
�elds, including genomics, astrophysics, neurobiology, and
epidemiology. �is has been due in part to an increase
in computational abilities and the invention of various
technologies, such as high-throughput biological devices.
�e analysis of high-dimensional data sets o�en involves
performing simultaneous hypothesis tests on each of thou-
sands or millions of measured variables. Classical multiple
hypothesis testing methods utilizing the family-wise error
rate were developed for performing just a few tests, where
the goal is to guard against any single false positive occur-
ring. However, in the high-dimensional setting, a more
common goal is to identify as many true positive �nd-
ings as possible, while incurring a relatively low number of
false positives.�e false discovery rate is designed to quan-
tify this type of trade-o�, making it particularly useful for
performing many hypothesis tests on high-dimensional
data sets.
Hypothesis testing in high-dimensional genomics data

sets has been particularly in�uential in increasing the
popularity of false discovery rates (Storey and Tibshirani
). For example, DNAmicroarraysmeasure the expres-
sion levels of thousands of genes from a single biological
sample. It is o�en the case that microarrays are applied to
samples collected from two or more biological conditions,
such as from multiple treatments or over a time course. A
common goal in these studies is to identify genes that are
di�erentially expressed among the biological conditions,
which involves performing a hypothesis tests on each gene.

In addition to incurring false positives, failing to iden-
tify truly di�erentially expressed genes is a major concern,
leading to the false discovery rate being in widespread use
in this area. In a notably di�erent area of application, the
false discovery rate was utilized in an astrophysics study to
detect acoustic oscillations on the distribution of matter in
present time, which had implications towards con�rming
the Big Bang theory of the creation of the universe (Lindsay
et al. ).�e body of scienti�c problems to which the
false discovery rate is applied continues to grow.

Mathematical Definitions
Although multiple hypothesis testing with false discovery
rates can be formulated in a very general sense (Storey
; Storey et al. ), it is useful to consider the sim-
pli�ed case where m hypothesis tests are performed with
corresponding p-values p, p, . . . , pm. �e typical proce-
dure is to call hypotheses statistically signi�cant whenever
their corresponding p-values are less than or equal to some
threshold t, where  < t ≤ .�is threshold can be �xed
or data-dependent, and the procedure for determining the
threshold involves quantifying a desired error rate.
Table  describes the various outcomes that occurwhen

applying this approach to determining which of the m
hypothesis tests are statistically signi�cant. Speci�cally, V
is the number of Type I errors (equivalently false positives
or false discoveries) and R is the total number of hypoth-
esis tests called signi�cant (equivalently total discoveries).
�e family-wise error rate (FWER) is de�ned to be

FWER = Pr(V ≥ ),

and the false discovery rate (FDR) is usually de�ned to be
(Benjamini and Hochberg ):

FDR = E [
V
R ∨ 

] = E [
V
R
∣R > ]Pr(R > ).

�e e�ect of “R ∨ ” in the denominator of the �rst expec-
tation is to set V/R =  when R = . As demonstrated by
Benjamini andHochberg (), the FDRo�ers a less strict

False Discovery Rate. Table  Possible outcomes from m

hypothesis tests based on applying a significance threshold
t ∈ (, ] to their corresponding p-values

Not significant
(p-value > t)

Significant
(p-value ≤ t) Total

Null true U V m

Alternative true T S m

W R m
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multiple testing criterion than the FWER, allowing it to be
more appropriate for some applications.
Two other false discovery rate de�nitions have been

proposed in the literature, where the main di�erence is in
how the R =  event is handled.�ese quantities are called
the positive false discovery rate (pFDR) and the marginal
false discovery rate (mFDR), and they are de�ned as follows
(Storey , ):

pFDR = E [
V
R
∣R > ] ,

mFDR =
E [V]
E [R]

.

Note that pFDR = mFDR =  whenever all null hypotheses
are true, whereas FDR can always bemade arbitrarily small
because of the extra term Pr(R > ). Some have pointed
out that this extra term in the FDR de�nition may lead to
misinterpreted results, and pFDR ormFDR o�er more sci-
enti�cally relevant values (Storey ; Zaykin et al. ),
while others have argued that FDR is preferable because it
allows for the traditional “strong control” criterion to be
met (Benjamini and Hochberg ). All three quantities
can be utilized in practice, and they are all similar when
the number of hypothesis tests is particularly large.

Control and Estimation
�ere are two approaches to utilizing false discovery rates
in a conservative manner when determining multiple test-
ing signi�cance. One approach is to �x the acceptable
FDR level beforehand, and �nd a data-dependent thresh-
olding rule so that the expected FDR of this rule over
repeated studies is less than or equal to the pre-chosen
level.�is property is called FDR control (Benjamini and
Hochberg ; Sha�er ). Another approach is to �x
the p-value threshold at a particular value and then form
a point estimate of the FDR whose expectation is greater
than or equal to the true FDR at that particular threshold
(Storey ).�e latter approach has been useful in that
it places multiple testing in the more standard context of
point estimation, whereas the derivation of algorithms in
the former approach may be less tractable. Indeed, it has
been shown that the point estimation approach provides a
comprehensive and uni�ed framework (Storey et al. ).
For the �rst approach, (Benjamini and Hochberg

) proved that the algorithm below for determin-
ing a data based p-value threshold controls the FDR at
level α when the p-values corresponding to true null
hypotheses are independent and identically distributed
(i.i.d.) Uniform(,). Other p-value threshold determin-
ing algorithms for FDR control have been subsequently
studied (e.g., Benjamini and Liu ). �is algorithm

was originally introduced by Simes () to control the
FWER when all p-values are independent and all null
hypotheses are true, although it also provides control
of the FDR for any con�guration of true and false null
hypotheses.

FDR Controlling Algorithm (Simes, ;
Benjamini and Hochberg, )

. Let p() ≤ . . . ≤p(m) be the ordered, observed p-values.

. Calculate k̂ = max{ ≤ k ≤ m : p(k) ≤ α ⋅ k/m}.

. If k̂ exists, then reject null hypotheses corresponding
to p() ≤ . . . ≤ p

( k̂ ). Otherwise, reject nothing.

To formulate the point estimation approach, let
FDR(t) denote the FDR when calling null hypotheses sig-
ni�cant whenever pi ≤ t, for i = , , . . . ,m. For t ∈ (, ],
we de�ne the following7stochastic processes based on the
notation in Table :

V(t) = #{true null pi : pi ≤ t},
R(t) = #{pi : pi ≤ t}.

In terms of these, we have

FDR(t) = E [
V(t)
R(t) ∨ 

] .

For �xed t, Storey () provided a family of conser-
vatively biased point estimates of FDR(t):

F̂DR(t) =
m̂(λ) ⋅ t
[R(t) ∨ ]

.

�e term m̂(λ) is an estimate of m, the number of
true null hypotheses.�is estimate depends on the tuning
parameter λ, and it is de�ned as

m̂(λ) =
m − R(λ)
( − λ)

.

It can be shown that E[m̂(λ)]≥m when the p-values
corresponding to the true null hypotheses are Uni-
form(,) distributed (or stochastically greater).�ere is an
inherent bias/variance trade-o� in the choice of λ. In most
cases, when λ gets smaller, the bias of m̂(λ) gets larger,
but the variance gets smaller.�erefore, λ can be chosen to
try to balance this trade-o�. Storey and Tibshirani ()
provide an intuitive motivation for the m̂(λ) estimator,
as well as amethod for smoothing over the m̂(λ) to obtain
a tuning parameter free m̂ estimator. Sometimes instead
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of m, the quantity π = m/m is estimated, where simply
π̂(λ) = m̂(λ)/m.
To motivate the overall estimator F̂DR(t) = m̂(λ) ⋅

t/[R(t) ∨ ], it may be noted that m̂(λ) ⋅ t ≈ V(t) and
[R(t) ∨ ] ≈ R(t). It has been shown under a variety of
assumptions, including those of Benjamini and Hochberg
(), that the desired property E [F̂DR(t)] ≥ FDR(t)
holds.
Storey et al. () have shown that the two major

approaches to false discovery rates can be uni�ed through
the estimator F̂DR(t). Essentially, the original FDR con-
trolling algorithm can be obtained by setting m̂ = m and
utilizing the p-value threshold t∗α = max{t : F̂DR(t) ≤ α}.
By allowing for the di�erent estimators m̂(λ), a family of
FDR controlling procedures can be derived in thismanner.
In the asymptotic setting where the number of hypothe-
sis tests m is large, it has also been shown that the two
approaches are essentially equivalent.

Q-Values
In single hypothesis testing, it is common to report the
p-value as a measure of signi�cance.�e “q-value” is the
FDR based measure of signi�cance that can be calculated
simultaneously for multiple hypothesis tests. Initially it
seems that the q-value should capture the FDR incurred
when the signi�cance threshold is set at the p-value itself,
FDR(pi). However, unlike Type I error rates, the FDR is
not necessarily strictly increasing with an increasing sig-
ni�cance threshold. To accommodate this property, the
q-value is de�ned to be the minimum FDR (or pFDR) at
which the test is called signi�cant (Storey , ):

q-value(pi) = min
t≥pi
FDR(t) or

q-value(pi) = min
t≥pi
pFDR(t).

To estimate this in practice, a simple plug-in estimate is
formed, for example:

q̂-value(pi) = min
t≥pi
F̂DR(t).

Various theoretical properties have been shown for these
estimates under certain conditions, notably that the esti-
mated q-values of the entire set of tests are simultaneously
conservative as the number of hypothesis tests grows large
(Storey et al. ).

Bayesian Derivation
�e pFDRhas been shown to be exactly equal to a Bayesian
derived quantity measuring the probability that a signi�-
cant test is a true null hypothesis. Suppose that (a)Hi =  or
 according towhether the ith null hypothesis is true or not,

(b) Hi
i.i.d.
∼ Bernoulli( − π) so that Pr(Hi = ) = π and

Pr(Hi = ) = −π, and (c) Pi∣Hi
i.i.d.
∼ (−Hi) ⋅G+Hi ⋅G,

where G is the null distribution and G is the alterna-
tive distribution. Storey (, ) showed that in this
scenario

pFDR(t)= E [ V(t)R(t) ∣R(t) > ]

= Pr(Hi = ∣Pi ≤ t),

where Pr(Hi = ∣Pi ≤ t) is the same for each i because of
the i.i.d. assumptions. Under these modeling assumptions,
it follows that q-value(pi) = mint≥pi Pr(Hi = ∣Pi ≤ t),
which is a Bayesian analogue of the p-value – or rather
a “Bayesian posterior Type I error rate.” Related concepts
were suggested as early as  (Morton ). In this sce-
nario, it also follows that pFDR(t) = ∫ Pr(Hi = ∣Pi =
pi)dG(pi∣pi ≤ t), where G = πG + ( − π)G.�is con-
nects the pFDR to the posterior error probability Pr(Hi =
∣Pi = pi), making this latter quantity sometimes inter-
preted as a local false discovery rate (Efron et al. ; Storey
).

Dependence
Most of the existing procedures for utilizing false dis-
covery rates in practice involve assumptions about the
p-values being independent or weakly dependent. An
area of current research is aimed at performing multi-
ple hypothesis tests when there is dependence among the
hypothesis tests, speci�cally at the level of the data col-
lected for each test or the p-values calculated for each
test. Recent proposals suggest modifying FDR controlling
algorithms or extending their theoretical characterizations
(Benjamini and Yekutieli ), modifying the null distri-
bution utilized in calculating p-values (Devlin and Roeder
; Efron ), or accounting for dependence at the
level of the originally observed data in the model �tting
(Leek and Storey , ).
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Introduction
Multilocation trials o�en follow classical on-station agro-
nomic and breeding trials to test developed varieties under
varying local conditions. O�en these trials are imposed
on farmer �elds or set up as demonstration trials only
to be viewed and ultimately to be adopted by rural poor
farmers. On-farm trials involving the participation or use
of farmers’ �elds have been applied in various studies,
including: taungya and intercropping trials; mother–baby
breeding trials aimed at selecting for speci�c traits in breed;
augmented block designs (ABD) with emphasis on tech-
nology or selection of best or adaptable variety of crop
under conditions of urgency and insu�cient quantities of
plantingmaterials; crop livestock systems involving farmer
management practices and animal preferences; and in the
evaluation of adaptation and adoption of technologies.
�ese trials are characterized by a high degree of variabil-
ity within and between farmer �elds (Mutsaers et al. ;
Nokoe ; Odong ). Statistical issues of primary
concern embrace the need for trial locations under farmer
conditions, and why and how farmers may be involved to
ensure acceptability and analyzability of selected designs.
From an intuitive but nonstatistical point of view, the

involvement of all stakeholders (end user, researcher, com-
munity, donor) in the design of a trial, and the testing of tri-
als under real-farm conditions utilizing options including
maximum farmermanagement, is a sure way of enhancing
adaptability and adoption. For breeders, there is a consid-
erable advantage in time as duration from on-station to
on-farm and then release is considerably shortened and
results mademore certain and output acceptable. On-farm
research (OFR) has been variously classi�ed, but generally
could be grouped according to the level of farmer involve-
ment.�e class of interest in this entry is that involving the
active participation of the farmer right from the design to
the execution phases.
As an example, a participatory on-farm trial involving

a crop–livestock system involved the following steps:

● Farmers and research institutions established formal
collaborative linkages.

● Farmers discussed needs and prevailing cultural prac-
tices with researchers.
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● Researchers and farmers evaluated intervention strate-
gies.

● Statisticians guided selection of farmers and treatment
allocations.

● Farmers randomly assigned inferior treatments allowed
to change over time.

Arising from the above that is relevant from the point of
view of designs is the fact that farmers are involved in the
choice of treatments, blocks, and consequently the sam-
pling or experimental designs.�e implication is that block
sizes are rarely of the same size or homogeneous, while
considerable variability in some factors (such as variation
in planting times) is common. In addition, it is common
practice to have several standard controls (farmer prac-
tices), while in crop yield assessments the entire (not net
or inner) plots are observed. Since, farmer di�erences are
confounded in treatment, comparison of on-farm trials
extend beyond di�erences in treatment e�ects. Mutsaers
et al. () point out that testing under farmer-�eld
conditions and with their involvement provides a realis-
tic assessment of the technologies or innovations under
evaluation. Furthermore, the large number of farmers
required is essential for capturing the expectedly high vari-
ation among farmer practices and sites.�is large number
should not be seen as a disadvantage, as the trade-o� is
the potentially high rate of adaptation and adoption of
promising technologies (Nokoe , ).
We shall consider general approaches aimed at the

e�ective construction and analysis of farmer participatory
designs.

The Design
Basic experimental principles (7randomization, replica-
tion, blocking, scope, and experimental error minimiza-
tion) hold for participatory designs. �e enforcement of
these principles enables objectivity, estimation of standard
errors, and e�ective comparison of treatment e�ects.

Identifying the Blocks
On-farm trials expectedly involve the use of block
designs. �e usual practice is to assume as blocks vil-
lages/communities (singly or cluster) and farm sites.�is
practice of assigning or identifying blocks is not very
appropriate, though convenient. A preferred procedure
would involve the use of statistical methods such as
principal component and cluster analysis for construct-
ing clusters. Classi�cation variables must be relevant to
the principal objectives of the study and would include
socioeconomic, demographic, agronomic, and historical
variables among others. It is emphasized that clusters are

based on nontreatment characteristics that have the poten-
tial of in�uencing yields. As expected, the resulting blocks
would not necessarily be contiguous, and that several farm
sites from di�erent villages, possibly distant-apart, may
belong to the same block. Examples include classi�ca-
tion of farm sites in an agroforestry and socioeconomic
study and classi�cation of farmers on the basis of soil type
and cultural practices adopted. An alternative procedure,
the post-model-based approach, would involve �tting a
model (including discriminant functions) and then cre-
ating groups on the basis of limits of expected values, to
which individuals may then be assigned.

Standard Block Structures
�e block sizes may be equal (with each block receiving
the same number of treatments) or balanced/unbalanced
incomplete. Balanced complete block structure would gen-
erally imply treatments and pairs appear the same number
of times in the experiment, and are present in all blocks.
For incomplete block structures, several variants are avail-
able. �ese include alpha and cyclic incomplete block
structures, and may be balanced with pairs of treatments
appearing the same number of times in the experiment.
Discussions on such designs arewell documented (see, e.g.,
Cox and Reid ; and basic texts on designs). When
block sizes are unequal, a fully balanced structure is not
imaginable. Expectedly, in participatory designs, natural
block structures are usually of the unequal and unbalanced
type.

Augmented Block Structures
In recent times, block structures augmented with addi-
tional treatments, which are usually not replicated, are
common in use. Augmented block designs (ABD) involve
enlargement of blocks of a design (with treatments already
assigned) to accommodate new treatments which appear
usually once in the entire experiment (Federer ).�e
design allows for a wide range of technologies to be tested
without necessarily straining resources or sti�ing farmers’
interest [e.g., “ lines” in an on-farm situation is fea-
sible]. Pinney () provides an illustrated example for
participatory agroforestry research.

Mother–Baby Structures
�ese block structures involve several blocks of varying
sizes (Figure ), with usually the larger sized one (the
mother) having all or accommodating more treatments
than the other blocks (baby/babies). �e mother could
also constitute a full trial with necessary replicates, and
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   plete or incomplete blocks
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Farmer Participatory Research Designs. Fig.  Treatment and Allocation to Blocks in Mother–Baby Trial

could represent an on-station or researcher-managed com-
ponent of the trial. Babies may also be complete or incom-
plete blocks or as single experimental units with clusters
of babies constituting blocks.�e �nal block structure is
arrived at a�er determining the number and sizes of the
clusters.

Choice, Number of Treatments and
Treatment Structures
�e choice and number of treatments are made by con-
sensus and on factors involved.�e number need not be
small as popularized in earlier works on OFR. However,
the guiding principles are wide coverage (in the alloca-
tion of the treatments to the blocks), the willingness of the
participating farmers, and availability of resources for the
trial at the farmer/site level.�e structure could be a single
factor (say already packaged technologies or crop variety),
factorial, or nested involving two or more factors. For fac-
torial treatment structures, an alternative is the sequential
or stepwise (step-up or step-down) arrangements. Step-
wise allocation of treatments enable fewer number of treat-
ments constituted from a number of factors, but the order
of factor levels is crucial and needs to be well determined
with all stakeholders. An example of factorial and corre-
sponding stepwise is given in Table , where only four out
of eight treatments are required for the stepwise (step-up
and step-down options).
It is recommended that the decision to include a level

of a factor, and at what step in the stepwise structure, must
be determined jointly with all stakeholders.�e sequence
of factor levels a�ects and restricts the type of contrasts

or comparisons that could reasonably be made (see, e.g.,
Mutsaers et al. ). It is also important the inability to
estimate interactions is a major drawback of stepwise
structures.

Observations and Measurements
Each farmer site represents di�erent environments. Obser-
vations or measurements should therefore cover all other
variables likely to account for the expectedly high vari-
ability. In crop trials with the response variable of interest
being yield per hectare, there may be a need to include as
many covariates (e.g., stand at establishment at plot level;
soil depth, slope at �eld level; rainfall and labor cost at
village level) and regressors (e.g., shade, labor size) as pos-
sible. In addition it is the gross and not the net plot that is
observed.One basic advantage of suchmeasurements from
gross instead of usually uniform micro-net plot (as in on-
station trials) is that yields are more likely to be realistic.
Studies have shown that conversion of yield frommicro to
farmer level on the basis of small uniform on-station plot
sizes considerably overestimates the real or farmer yield
(Odulaja and Nokoe ).

Analytical Options
Several analytical options may be adapted from conven-
tional 7analysis of variance and regression modeling.�e
particular option to use will be in�uenced by the desired
objective, the hypotheses of interests, and the nature of the
response variables. �e response variables may be conti-
nous (normally or non-normally distributed) or discrete
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Farmer Participatory Research Designs. Table  Breakdown of treatment structure using factorial and stepwise procedures

Treatment code Maize variety Fertilizer use Planting density Step

Factorial 

 Local Local Farmers own 

 Local Local Recommended 

 Local Recommended Farmers own 

 Local Recommended Recommended 

 Recommended Local Farmers own 

 Recommended Local Recommended 

 Recommended Recommended Farmers own 

 Recommended Recommended Recommended 

Stepwise (step-up)

 Local Local Farmers own 

 Recommended Local Farmers own 

 Recommended Recommended Farmers own 

 Recommended Recommended Recommended 

Stepwise (step-down)

 Recommended Recommended Recommended 

 Recommended Local Recommended 

 Recommended Local Farmers own 

 Local Local Farmers own 

(counts, ordinal, binary outcomes) or nominal outcomes.
�e options are brie�y outlined.

Simple Analysis (Adjusted by Local
Controls)
Treatments in farmer/village blocks are adjusted by
farmer/village’s own treatment (control) either directly
(e.g., di�erence in response) or used as covariate (espe-
cially in situations where the farmer site is not a block).

Stability Analysis
Adaptability (stability) analysis made popular by
Hildebrand in the s for genotype by environment
interaction can readily be adapted. �is is a regression-
based method used initially in genotype by environment
interaction studies, where the treatment response is �t-
ted to site mean and the estimated slope examined (see

Example of output in Table ). In the example, Variety dif-
ferences were small; while high yields were associated with
Fertilizer input. In particular, tropical zea streak resistance
(TZSR) with Fertilizer input should be recommended –
stable yields (with slope close to ) imply same yield may
be expected across all sites for this treatment combination.
It may also be noted that Local/ associated with certain
sites (i.e., high yields of local with L fertilizer expected
at some locations).
An alternative and enhanced procedure is through the

use of biplot and AMMI (additive main e�ect multiplica-
tive analysis) models (See, e.g., text ofMilliken and Johnson
 or notes on Matmodel So�ware by Gauch). AMMI
involves the partitioning of variance. For data presented in
a contingency table format, biplot may also be obtained via
the method of 7correspondence analysis which involves
the partitioning of the chi-square.
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Analysis of variance (ANOVA) with mixed models,
where the error structure is adequately catered for and
Contrasts, can be e�ectively used. In the mixed model
scenario blocks, farmers, sites, etc., are usually treated as

Farmer Participatory Research Designs. Table  A simple
regression based stability analysis for on-farm trial

Extracted output

Fit Yield for variety, fertilizer, etc., as function of site mean
(index). Comment on regression slopes.

Variety Mean slope, b P > t

Local . . .

TZSR . . .

Fertilizer

 . . .

 . . < .

Treatment

Local/  . . .

Local/ . . .

TZSR/ . . .

TZSR/ . . .

Conclusions: Variety differences low; high yields associated
with Fertilizer input. TZSR with Fertilizer recommended

random e�ects being respectively a random sample from a
large bulk. In particular, mixed modeling is most appro-
priate for augmented block designs (ABDs) and mother
baby trials (MBTs) (Nokoe ), as it enables recovery of
both inter-block and inter-treatment variation (Wol�nger
et al. ). In ABDs, replicated lines are treated as �xed
while non-replicated lines are considered as random.
Regression modeling is recommended for several sit-

uations where the design is not balanced, and/or when
several auxiliary variables are available. �ese covari-
ates or regressors, when included in the model, lead to
considerable improvement in �t (Mutsaers et al. ;
Carsky et al. ) and reduction of experimental error.
Categorical response variables, which constitute a sub-

stantial percentage of response variables, have not been
modeled appropriately in several studies. �ese are bet-
ter �tted by appropriate categorical modeling procedures,
including the logistic and loglinear models (Bellon and
Reeves ; Agresti ). An example of a trial with
categorical responses is given in Table  (experimental set-
ting and results) and Table  (partial data). In Table , the
reader is to note the di�erent types of response variables
in the same data set – nominal (site history, indicating
previous crop on farm site), ordinal (size of �nger of plan-
tains coded –), and binary (size of plantain bunch and
acceptability of product). It is important to indicate that a
mixture of categorical and continuous variables is common
in participatory design analysis.

Farmer Participatory Research Designs. Table  Partial data for plantain trial with categorical input and output variables

Zone Farm Site Treatment Site Crop History Weevil History Bunch Size Finger Size Market Acceptability

East  A Fallow High Small  Acceptable

 B Fallow High Normal  Not

 C Fallow High Normal  Not

 D Plantain Moderate Normal  Acceptable

 A Fallow High Small  Acceptable

 E Fallow Moderate Small  Not

 D Maize High Normal  Not

 C Plantain Low Normal  Acceptable

West  C Maize Moderate Small  Not

 B Plantain High Normal  Not

 E Plantain Low Small  Acceptable
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Farmer Participatory Research Designs. Table  A summary of the plantain on-farm trial with categorical response variables

The experimental setting and variables Models fitted and conclusions

Four Agro-Ecological zones across West/ Central/Eastern
Africa involved
Six plantain cultivars A, B, C, D, E, and F evaluated against
local cultivar
Only four cultivars allocated to farmers;
each farmer provided four sites, one for each of the four
allocated cultivars. Farmers local planted along with each
cultivar or separately (as they wished)
Previous field history recorded as:

Fal – Fallow prior to trial
Maz – Maize planted previous year
Pla – Field already with plantain

Weevil history (previous year when plantain had been
cultivated):

H – High Weevil population
M – Medium Weevil population
L – Low Medium population

Response variables (assessed against local variety by
farmers and chief )

Bunch size: Binary - normal, small
Finger size: Ordinal -  (least) to  (highest)
Marketabilty: Binary - accept(able), not

Logistic model for bunch size, marketability as function of field
history, weevil history, and other covariates, and regressors that
may be available
Cumulative logit model fitted to finger size
Main conclusions:

. Weevil history is the most important determinant of
marketability

. For bunch size, only finger size was significant at p = ..
At % level of significance, study identified Weevil history and
finger size as significant determinants of bunch size.

Conclusion
Participatory research designs can be planned and exe-
cuted with scienti�cally veri�able results as outcome.
It is emphasized that the understanding and active involve-
ment of the farmer or end user are nontrivial considera-
tions that need to be strictly adhered to for a successful
research design aimed at addressing the needs of the usu-
ally poor rural farmer in developing countries. Adoption
and adaptation of improved technologies are enhanced if
all stakeholders are involved in the entire process. Blocking
is a key ingredient in participatory designs, while the use
of several regressors and covariates facilitate proper han-
dling of the expectedly large variation between and within
farm sites and farmer practices.�e cocktail of analytical
options requires adequate knowledge of statistical designs
and the use of appropriate statistical so�ware.
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The Current Status
Are the federal statistical agencies in the United States
meeting theirmandates?Overall, the answer is yes. Surveys
that are required for policy purposes in health, education,
labor, and other areas are being conducted with well-tested
statistical designs that so far have reasonable margins of
error.�e decennial census, even with an under and over
count meets the needs of the Constitution and thousands
of federal, state and local data users. Measures, including
labor force data, gross domestic product, the system of
national accounts, health, education, and income estimates
are excellently covered by the federal statistical agencies.
Estimates of the population are reasonable even in situa-
tions where high immigration and/or internal migration,

that have disproportionate in�uence, take place.�e agen-
cies are very sensitive of the need tomaintain the con�den-
tiality of respondents. Based on the above, it sounds as if
the federal statistical system in the United States is healthy
and on track; yet what about the future?

Ongoing and Upcoming Issues
Many new problems are facing the statistical agencies in
the United States, and it will take enormous e�ort to solve
them. Indeed, the agencies are fully aware of them and
understand that there is a need for innovative thinking.
An example of the type of innovation that has already
taken place is the U.S. Census Bureau’s American Commu-
nity Survey.�is is a replacement for the decennial census
long form, and at the same time as an ongoing annual
survey of about three million housing units, is unique.
�e ability to have data available every year for national,
state, and local geographies is an important step for a
dynamic country such as the United States. Another inno-
vative set of data is the U.S. Census Bureau’s Longitudinal
Employer–Household Employer Dynamic. Using a math-
ematical model to insure non-disclosure, data are available
for detailed employment statistics at very local geographic
levels.
An issue that is becoming critical and is being looked

at closely is the declining response rates in key federal sur-
veys that measure employment, income, consumer expen-
ditures, health and education, for example. Surveys that
were achieving rates in the middle to high % range
are now attaining response rates well below that. Clearly,
the continuing decline in non-response will have seri-
ous e�ects on the usefulness of data collected. Either the
statistical error will become so high so as to make the
estimates of limited value, or, perhaps even worse, with
biases due to non-response, the data may lose most of
its value. Clearly the statistical agencies are aware of the
problem and much research is being conducted to deter-
mine if address-listing techniques, for example, can be
of use in conjunction with telephone interviewing. Some
work has been accomplished in the areas of non-response
and statistical and non-statistical biases but much more is
required.�e issue of conducting telephone surveys (see
7Telephone Sampling: Frames and Selection Techniques),
given the elimination of land lines on the part of house-
holds and their turning to the increasing use of cell phones,
must be addressed.

�e data retrieval world has been transformed by the
world-wide-web.�e concept of charging for governmen-
tal data is no longer realistic given the assumption on
the part of users that all data should be free on-line.
Also, search engines such as Google have enabled users
to retrieve diverse information as an integrated “package.”
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However, data integration across federal statistical agen-
cies is for the most part limited. For example, there is no
way to analyze and reconcile the many di�erent measures
of income between and sometimes even within an agency.
Each agency creates its own web site and its own data dis-
semination system with little or no regard to the fact that
the user has to go to a over a dozen sites and learn a dozen
approaches to data retrieval to get a complete review of the
socio-economic data of the United States. Indeed, if the
user wants to integrate the data, it’s much easier, but more
expensive to go to a private sector vendor to do the work
for you. At a time when the web is there for the speci�c
purpose to retrieve information easily, freely, and compre-
hensively, this approach is outdated. �e time has come
for an integration of data processing and retrieval systems.
�is should be accomplished even though the structure of
the federal statistical system in the United States is highly
decentralized.�e concept of a single system in the case of
the United States, and probablymost countries, is mislead-
ing. In reality what you have is a confederation of agencies
for the most part reporting to di�erent jurisdictions and
quite independent of each other. In the United States, there
is very limited administrative record data sharing and with
separate Internet sites mentioned above, little integration
of tabulated data sets. Each agency has its own budget and
except for the purchasing of surveys from the U.S. Census
Bureau, little in the way of �nancial interaction. Unfor-
tunately, because of this lack of centralization, the agen-
cies don’t have great in�uence with the Congress. (�is is
not the case during the decennial census cycle where the
apportionment of Congressional seats can impact a mem-
ber of the House of Representatives. Other data series such
as employment and in�ation are also closely looked at.)
�is lack of in�uence can be a problem for an agency that
each year must request funding for its programs. Would a
centralized single agency help solve this? An agency large
enough to be noticed by Congress and the Administration
as being critical to the overall health of the nation would
have a better opportunity of receiving the needed resources
to implement innovative statistical techniques.
To perhaps overstate the case, the days of taking cen-

suses and surveys may soon be coming to an end. We may
be at the crossroads of having to rely, for the verymost part,
on administrative records.�e use of administrative record
data brings up issues of con�dentiality on the part of agen-
cies and the sensitivity to the privacy needs of the public.
Yet these data may have to become the basis for measuring
health, education, employment, expenditure, transporta-
tion, energy use and many more statistical needs on the
part of the federal government. Using administrative data
will call for public/private sector coordinated analyses and
the allocation of talent and research dollars. If the use of

administrative data becomes the norm, it is not too outré
to see a time when no data will be real – put another
way, they will be modeled estimates based on the original
data series. As previously mentioned, we already see such
a transformation in the U.S. Census Bureau’s Longitudinal
Employer-Household Employer Dynamic program pro-
duced at the local level. Indeed, once the block group level
data from the American Community Survey are analyzed,
we may also see some move in the same direction.
Over the next few years,much of the senior sta�s of sta-

tistical agencies will be of retirement age. At the same time,
it’s di�cult for agencies to hire new personnel and hold on
to talented statisticians and economists that have entered
the federal statistical system.�e private sector o�ers both
higher salaries and the opportunity to diversify. Indeed,
the problem of “stove-piping” within statistical agencies,
where talented people are expected to stay in one place for
an overly extended period of time, is counter-productive.
�ere is a need to develop a system whereby people can
move not only within an agency, but also across agen-
cies. Such a system of diverse training will be required so
that personnel can develop the skills needed to address the
concerns that have been mentioned in this review.

�e challenges reviewed above are only the beginning.
In order to properly measure the e�ects of the current
and probably future economic crises in the United States,
timely and relevant data are needed for those who have to
make informed decisions a�ecting all Americans.
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Introduction
�e origin of Generalized Fiducial Inference can be
traced back to R. A. Fisher (Fisher , , ) who
introduced the concept of a �ducial distribution for a
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parameter, and proposed the use of this �ducial distribu-
tion, in place of the Bayesian posterior distribution, for
interval estimation of this parameter. In the case of a one-
parameter family of distributions, Fisher gave the follow-
ing de�nition for a �ducial density f (θ∣x) of the parameter
based on a single observation x for the case where the cdf
F(x∣θ) is a monotonic decreasing function of θ:

f (θ/x) = −
∂F(x∣θ)
∂θ

. ()

In simple situations, especially in one parameter families
of distributions, Fisher’s �ducial intervals turned out to
coincide with classical con�dence intervals. For multipa-
rameter families of distributions, the �ducial approach led
to con�dence sets whose frequentist coverage probabili-
ties were close to the claimed con�dence levels but they
were not exact in the frequentist sense. Fisher’s proposal
led tomajor discussions among the prominent statisticians
of the ’s, ’s and ’s (e.g., Dempster , ; Fraser
a, b, , ; Je�reys ; Lindley ; Stevens
). Many of these discussions focused on the nonex-
actness of the con�dence sets and also nonuniqueness of
�ducial distributions. �e latter part of the th century
has seen only a handful of publications Barnard ();
Dawid and Stone (); Dawid et al. (); Salome ();
Wilkinson () as the �ducial approach fell into disfavor
and became a topic of historical interest only.
Recently, the work of Tsui andWeerahandi (, )

and Weerahandi (, , ) on generalized con-
�dence intervals and the work of Chiang () on the
surrogate variable method for obtaining con�dence inter-
vals for variance components, led to the realization that
there was a connection between these new procedures and
�ducial inference.�is realization evolved through a series
of works (Hannig b; Hannig et al. b; Iyer and
Patterson ; Iyer et al. ; Patterson et al. ).
�e strengths and limitations of the �ducial approach is
becoming to be better understood, see, especially, Hannig
(b). In particular, the asymptotic exactness of �du-
cial con�dence sets, under fairly general conditions, was
established in Hannig et al. (b); Hannig (a,b).
Subsequently Hannig et al. (); Iyer et al. ();

McNally et al. (); Wang and Iyer (, a,b)
applied this �ducial approach to derive con�dence pro-
cedures in many important practical problems. Hannig
(b) extended the initial ideas and proposed aGeneral-
ized Fiducial Inference procedure that could be applied to
arbitrary classes of models, both parametric and nonpara-
metric, both continuous and discrete. �ese applications
include Bioequivalence Hannig et al. (a), Variance

Components Lidong et al. (), Problems of Metrol-
ogy Hannig et al. (, ); Wang and Iyer (,
a, b), Interlaboratory Experiments and International
KeyComparison Experiments Iyer et al. (),Maximum
Mean of a Multivariate Normal Distribution Wandler and
Hannig (), Mixture of a Normal and Cauchy Glagov-
skiy (), Wavelet Regression Hannig and Lee (),
7Logistic Regression and LD Lidong et al. ().
Recently, other authors have also contributed to research
on �ducial methods and related topics (e.g., Berger and
Sun ; Wang ; Xu and Li ).

Generalized Fiducial Distribution
�e idea underlying Generalized Fiducial Inference comes
from an extended application of Fisher’s �ducial argument,
which is brie�y described as follows. Generalized Fiducial
Inference begins with expressing the relationship between
the data, X, and the parameters, θ, as

X = G(θ,U), ()

where G(⋅, ⋅) is termed structural equation, and U is the
random component of the structural equation whose dis-
tribution is completely known.�e data X are assumed to
be created by generating a random variableU and plugging
it into the structural equation ().
For simplicity, this section only considers the case

where the structural relation () can be inverted and the
inverseG−(⋅, ⋅) always exists.�us, for any observed x and
for any arbitrary u, θ is obtained as θ = G−(x,u). Fisher’s
Fiducial Argument leads one to de�ne the �ducial distri-
bution for θ as the distribution of G−(x,U⋆) where U⋆

is an independent copy of U. Equivalently, a sample from
the �ducial distribution of θ can be obtained by generat-
ingU⋆i , i = , . . . ,N and using θ i = G− (x,U⋆i ) . Estimates
and con�dence intervals for θ can be obtained based on
this sample.
Hannig (b) has generalized this to situations

whereG is not invertible.�e resulting �ducial distribution
is called a Generalized Fiducial Distribution. To explain
the idea we begin with Eq.  but do not assume that G is
invertible with respect to θ.�e inverse G−(⋅, ⋅) may not
exist for one of the following two reasons: for any partic-
ular u, either there is no θ satisfying (), or there is more
than one θ satisfying ().
For the �rst situation, Hannig (b) suggests remov-

ing the o�ending values of u from the sample space and
then re-normalizing the probabilities. Such an approach
has also been used by Fraser () in his work on struc-
tural inference. Speci�cally, we generate u conditional on
the event that the inverse G−(⋅, ⋅) exists. �e rationale
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for this choice is that we know our data x were gener-
ated with some θ and u, which implies there is at least
one solution θ satisfying () when the “true” u is con-
sidered.�erefore, we restrict our attention to only those
values of u for which G−(⋅, ⋅) exists. However, this set
has probability zero in many practical situations leading
to non-uniqueness due to the Borel paradox (Casella and
Berger , Section ..).�e Borel paradox is the fact
that when conditioning on an event of probability zero, one
can obtain any answer.

�e second situation can be dealt with either by select-
ing one of the solutions or by the use of the mechanics
underlying Dempster-Shafer calculus Dempster (). In
any case, Hannig (a) proved that this non-uniqueness
disappears asymptotically under very general assumptions.
Hannig (b) proposes the following formal de�ni-

tion of the generalized �ducial recipe. Let X ∈ Rn be a
random vector with a distribution indexed by a parame-
ter θ ∈ Θ. Recall that the data generating mechanism for
X is expressed by () whereG is a jointly measurable func-
tion andU is a random variable or vector with a completely
known distribution independent of any parameters. We
de�ne for any measurable set A ∈ Rn a set-valued function

Q(A,u) = {θ : G(θ,u) ∈ A}. ()

�e function Q(A,u) is the generalized inverse of the
functionG. AssumeQ(A,u) is a measurable function of u.
Suppose that a data set was generated using () and it

has been observed that the sample value x ∈ A. Clearly the
values of θ and u used to generate the observed data will
satisfy G(θ,u) ∈ A.�is leads to the following de�nition
of a generalized �ducial distribution for θ:

Q(A,U⋆) ∣ {Q(A,U⋆) ≠ /}, ()

where U⋆ is an independent copy of U.
�e object de�ned in () is a random set of parame-

ters (such as an interval or a polygon) with distribution
conditioned on the set being nonempty. It is well-de�ned
provided that P(Q(A,U⋆) ≠ /) > . Otherwise additional
care needs to be taken to interpret this distribution (c.f.,
Hannig b). In applications, one can de�ne a distribu-
tion on the parameter space by selecting one point out of
Q(A,U⋆).

Examples
�e following examples provide simple illustrations of the
de�nition of a generalized �ducial distribution.
Example  Suppose U = (U,U) where Ui are i.i.d.
N(, ) and X = (X,X) = G(µ,U) = (µ + U, µ + U)

for some µ ∈ R. So Xi are iid N(µ, ). Given a realiza-
tion x = (x, x) of X, the set-valued function Q maps
u = (u,u) ∈ R to a subset of R and is given by

Q(x,u) =
⎧⎪⎪
⎨
⎪⎪⎩

{x − e} if x − x = u − u,
/ if x − x ≠ u − u.

By de�nition, a generalized �ducial distribution for µ is the
distribution of x − U⋆ conditional on U⋆ − U⋆ = x − x
whereU⋆ = (U⋆ ,U⋆ ) is an independent copy ofU. Hence
a generalized �ducial distribution for µ is N(x̄, /) where
x̄ = (x + x)/.
Example  Suppose U = (U, . . . ,Un) is a vector of i.i.d.
uniform (, ) random variables Ui. Let p ∈ [, ]. Let
X = (X, . . . ,Xn) be de�ned by Xi = I(Ui < p). So Xi
are iid Bernoulli random variables with success probabil-
ity p. Suppose x = (x, . . . , xn) is a realization of X. Let
s = ∑ni= xi be the observed number of ’s. �e mapping
Q : [, ]n → [, ] is given by

Q(x,u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[,u:n] if s = ,
(u:n, ] if s = n,
(us:n,us+:n] if s = , . . . ,n −  and

∑
n
i= I(xi = )I(ui ≤ us:n) = s,

/ otherwise.

Here ur:n denotes the rth order statistic among u, . . . ,un.
So a generalized �ducial distribution for p is given by
the distribution of Q(x,U⋆) conditional on the event
Q(x,U⋆) ≠ /. By the exchangeability of U⋆ , . . . ,U⋆n it fol-
lows that the stated conditional distribution of Q(x,U⋆)
is the same as the distribution of [,U⋆:n] when s = ,
(U⋆s:n,U⋆s+:n] for  < s < n, and (U⋆n:n, ] for s = n.
Next, we present a general recipe that is useful in many

practical situations.
Example  Let us assume that the observationsX, . . . ,Xn
are i.i.d. univariate with distribution function F(x, ξ) and
density f (x, ξ), where ξ is a p-dimensional parameter.
Denote the generalized inverse of the distribution function
by F−(ξ,u) and use the structural equation

Xi = F−(ξ,Ui) for i = , . . . ,n. ()

If all the partial derivatives of F(x, ξ) with respect to ξ are
continuous and the Jacobian

det(
d
dξ

(F(xi , ξ), . . . ,F(xip , ξ))) ≠ 
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for al distinct x, . . . , xp, then Hannig (b) shows that
the generalized �ducial distribution () is

r(ξ) =
fX(x∣ξ)J(x, ξ)

∫Ξ fX(x∣ξ′)J(x, ξ′)dξ′
, ()

where

J(x, ξ) = ∑
i=(i ,. . .,ip)

RRRRRRRRRRRRRR

det ( ddξ (F(xi , ξ), . . . ,F(xip , ξ)))

f (xi , ξ)⋯f (xi,p, ξ)

RRRRRRRRRRRRRR

.

()
�is provides a form of generalized �ducial distribution
that is usable in many practical applications, see many
of the papers mentioned in introduction. Moreover, if
n = p =  () and () simplify to the Fisher’s original
de�nition ().
Equation  is visually similar to Bayes posterior. How-

ever, the role of the prior is taken by the function J(x, ξ).
�us unless J(x, ξ) = k(x)l(ξ) where k and l are measur-
able functions, the generalized �ducial distribution is not a
posterior distribution with respect to any prior. A classical
example of such a situation is in Grundy ().
Moreover, (np)

−J(x, ξ) is a 7U-statistic and therefore
it o�en converges a.s. to

πξ(ξ) = Eξ

RRRRRRRRRRRRRR

det ( ddξ (F(X, ξ), . . . ,F(Xp, ξ)))

f (X, ξ)⋯f (Xp, ξ)

RRRRRRRRRRRRRR

At �rst glance πξ(ξ) could be viewed as an interesting
non-subjective prior. Unfortunately, this prior is not usable
in practice, because the expectation in the de�nition of
π(ξ) is taken with respect to the true parameter ξ which
is unknown. However, since (np)

−J(x, ξ) is an estimator of
πξ(ξ), the generalized �ducial distribution () could be
interpreted as an empirical Bayes posterior.
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Financial Return Distributions

Matthias Fischer
University of Erlangen-Nürnberg, Erlangen, Germany

Describing past and forecasting future asset prices has
been attracting the attention of several generations of
researchers. Rather than analyzing the asset prices Pt at
times t = , . . . ,T themselves, one usually focusses on
the corresponding log-returns de�ned by Rct = log(Pt) −
log(Pt−) for t = , . . . ,T. Considering prices (and con-
sequently log-returns) as realizations of random variables,
it seems natural to identify the underlying data-generating
probability distribution.�e search for an adequate model
for the distribution of stock market returns dates back
to the beginning of the twentieth century: Following
Courtault et al. (), “�e date March , , should
be considered as the birthdate of mathematical �nance. On
that day, a French postgraduate student, Louis Bachélier,
successfully defended at the Sorbonne his thesis�éorie de
la Spéculation. […]�is pioneering analysis of the stock and
option markets contains several ideas of enormous value
in both �nance and probability. In particular, the theory of
Brownian motion (see 7Brownian Motion and Di�usions),
was initiated and used for the mathematical modelling of
price movements and the evaluation of contingent claims in
�nancial markets”.
Whereas Bachélier () rests upon normally dis-

tributed return distributions, the history of heavy tails in
�nance began in : Assuming independence of succes-
sive increments and the validity of the principle of scaling
invariance, Mandelbrot () advocates the (Lévy) stable
distributions for price changes, supported by Fama ()
and Fielitz (). In fact, tails of stable distributions are
very heavy, following a power-law distribution with an
exponent α < . In contrast, empirical studies indicate that
tails of most �nancial time series have to be modeled with
α >  (see, e.g., Lau et al.  or Pagan ). In particular,
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Akgiray et al. () support this conjecture for German
stock market returns. Rejecting the stable hypothesis, sev-
eral proposals came up in the subsequent years: Praetz
(), Kon () or Akgiray and Booth () favour
�nite mixtures of normal distributions, whereas, e.g., Ball
and Torous () propose an in�nite number of normal
distributions mixtures with Poisson probabilities.
Since the early seventies of the last century, the

Student-t distribution increases in popularity (see, e.g.,
Blattberg and Gonedes ). Depending on the shape
and tail parameter ν, moments of the Student-t distri-
bution exist only up to a certain order depending on ν,
whereas the 7moment-generating function doesn’t exist.
In order to increase its �exibility regarding 7skewness,
peakedness and tail behavior, several generalized Student-t
versions followed up within the past years (see, e.g.,
McDonald and Newey ; �eodossiou ; Hansen
et al.  or Adcock and Meade ). Finally, if
both (semi-)heavy tails and existence of the correspond-
ing moment-generating function are required, di�erent
multi-parametric distribution families with exponential
tail behavior were successfully applied to �nancial returns:
Among them, the generalized logistic distribution family
(see, e.g., Bookstaber andMcDonald ; McDonald 
orMcDonald and Bookstaber ), the generalized hyper-
bolic secant distribution families (see, e.g., Fischer ,
) and the generalized hyperbolic distribution family
(see, e.g., Eberlein andKeller ; Barndor�-Nielsen ;
Küchler et al.  and Prause ) which in turn includes
a subfamily (in the limit) where one tail has polynomial
and the other exponential tails, see Aas and Ha� ().
Selecting a suitable probability distribution for a given

return data sample is by far not an easy task. In gen-
eral, there is no information about the tail behavior of
the unknown distribution or, conversely, about the order
up to which the corresponding moments exit. Discussions
as to whether moments, in particular variances, do exist
or not, have a long tradition in �nancial literature (see,
for instance, Tucker ). In order to check whether cer-
tain moments do exist or not, Granger and Orr ()
introduced the so-called running-variance plot. Alterna-
tively, the test statistic of Yu () – which is determined
by the range of the sample interquartile and the sample
standard deviation – may come to application. Recently,
Pisarenko and Sornette () came up with a test statistic
to discriminate between exponential and polynomial tail
behavior.
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First Exit Time Problem

ChristosH. Skiadas , Charilaos Skiadas
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�e �rst exit time distribution for a stochastic process is
the distribution of the times at which particles following
this process cross a certain (o�en linear) barrier. It is o�en
referred to also as hitting time. It is closely related to the
probability density function p(xt , t) of a stochastic process
xt over time t.
For a linear horizontal barrier located at a, the �rst exit

time density function relation is given by: g(t) = ∣a∣
t
p(a, t).

For other types barriers (e.g., quadratic), a tangent
approximation may be used to obtain a satisfactory esti-
mate as is presented below.

�e probability density function may be computed in
some cases using the Fokker-Planck equation. In particu-
lar in the one-dimensional di�usion problem expressed by
a stochastic di�erential equation of the form:

dxt = σdwt ,

where σ is the variance and wt is the standard Wiener
process, the corresponding Fokker-Planck equation for
the probability density function p(xt , t) associated to the
above stochastic di�erential equation has the form:

∂p(xt , t)
∂t

=
σ 


∂p(xt , t)

∂xt

�is partial di�erential equation form is also known as
the one-dimensional heat equation �rst solved by Joseph
Fourier (). Later on Fick (a; b) applied this
equation to express one-dimensional di�usion in solids.
Albert Einstein () proposed the same form for the one-
dimensional di�usion for solving the Brownian motion
process (see7BrownianMotion andDi�usions). It was the
�rst derivation and application of a probabilistic-stochastic
theory to the classical Brownian motion problem that is
the movement of a particle or a molecule into a liquid. He
resulted in giving the development over space and time of
this particle. One year later Smoluchowski () proposed
also a theory for solving the Brownian motion problem.
Solving this partial di�erential equation with the

boundary conditions, p(xt ,  : , ) = δ(xt , ) and
∂p(xt , t : , t)

∂x
=  as xt → ∞ the probability density

function pt for the stochastic process results:

p(xt , t) =


σ
√
πt
e
−
x t
σ t .

First Exit Time Problem. Fig.  Linear barrier
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The First Exit Time Density Function
�e �nding of a density function expressing the distri-
bution of the �rst exit time of particles escaping from a
boundary is due to Schrödinger () and Smoluchowski
() in two papers published in the same journal issue.
Later on Siegert () gave an interpretation closer to our
modernnotationwhereas Jennen (), Lerche () and
Jennen and Lerche () gave the most interesting �rst
exit density function form. For the simple case presented
earlier the proposed form is:

g(t) =
∣a∣
t
p(a, t) =

∣a∣
σ
√
πt

e
−
a

σ t .

Jennen () proposed a more general form using a tan-
gent approximation of the �rst exit density. Application of
this theory to the mortality modeling leads to the follow-
ing form (earlier work can be found in Janssen and Skiadas
() and Skiadas and Skiadas ():

g(t) =
∣Ht − tH′t ∣

t
p(t) =

∣Ht − tH′t ∣

σ
√
πt

e
−
(Ht)

σ t .

First Exit Time Problem. Fig.  Curved barrier

�e last form is associated to the following stochastic
process Skiadas ():

dxt = µtdt + σdwt

where µt is a function of time and there exists a function
Ht related to µt with the di�erential equation: µt = dHt/dt.

�e associated Fokker–Planck equation is:

∂p(xt , t)
∂t

= −µt
∂p(xt , t)
∂xt

+
σ 


∂p(xt , t)

∂xt

and the solution is given by:

p(t) =


σ
√
πt

e
−
(Ht)

σ t .

Two realizations are provided in Figs.  and . In the �rst
case the �rst exit time probability density function is pro-
vided and stochastic simulations are done for a linear bar-
rier located at α. Figure  illustrates the case when a curved
barrier is present.

About the Author
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Cross References
7Brownian Motion and Di�usions
7First-Hitting-Time Based�reshold Regression
7RandomWalk
7Stochastic Processes

References and Further Reading
Einstein A () Über die von der molekularkinetischen Theorie

der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten
suspendierten Teilchen. Annalen der Physik :–

Fick A () Über Diffusion. Poggendorff ’s Annalen. :–
Fick A () On liquid diffusion. Philos Mag J Sci :–
Fourier J () Theorie Analytique de la Chaleur. Firmin Didot,

Paris
Fourier J () The analytical theory of heat. Cambridge University

Press, New York
Janssen J, Skiadas CH () Dynamic modelling of life-table data.

Appl Stoch Model Data Anal ():–
Jennen C () Second-order approximation for Brownian first exit

distributions. Ann Probab :–
Jennen C, Lerche HR () First exit densities of Brownian motion

through one-sided moving boundaries. Z Wahrsch uerw Gebi-
ete :–

Lerche HR () Boundary crossing of Brownian motion. Springer-
Verlag, Berlin

Schrödinger E () Zur theorie der fall - und steigversuche an
teilchenn mit Brownsche bewegung. Phys Zeit :–

Siegert AJF () On the first passage time probability problem.
Phys Rev :–

Skiadas CH () Exact solutions of stochastic differential equa-
tions: Gompertz, generalized logistic and revised exponential.
Meth Comput Appl Probab ():–



First-Hitting-Time Based Threshold Regression F 

F

Skiadas CH, Skiadas C () A modeling approach to life table data.
In Skiadas CH (ed) Recent advances in stochastic modeling and
data analysis. World Scientific, Singapore, pp –

Skiadas C, Skiadas CH () Development, simulation and appli-
cation of first exit time densities to life table data. Comm Stat
Theor Meth ():–

Smoluchowski M () Zur kinetischen theorie der Brownschen
molekularbewegung und der suspensionen. Ann D Phys :–


Smoluchowski M () Notizüber die berechning der Brownschen
molekular-bewegung bei der ehrenhaft-millikanchen versuch-
sanordnung. Phys Zeit :–

First-Hitting-Time Based
Threshold Regression

XinHe, Mei-Ling Ting Lee
Assistant Professor
University of Maryland, College Park, MD, USA
Professor, Director, Biostatistics and Risk Assessment
Center (BRAC)
University of Maryland, College Park, MD, USA

First-hitting-time (FHT) based threshold regression (TR)
model is a relatively new methodology for analyzing
7survival data where the time-to-event is modeled as the
�rst time the stochastic process of interest hits a boundary
threshold. FHTmodels have been applied in analyzing the
failure time of engineering systems, the length of hospital
stay, the survival time of AIDS patients, and the duration
of industrial strikes, etc.

First-Hitting-Time (FHT) Model
A �rst-hitting-time (FHT) model has two basic compo-
nents, namely a stochastic process {Y(t), t ∈ T , y ∈ Y}

with initial value Y() = y, where T is the time space and
Y is the state space of the process; and a boundary set B,
whereB ⊂ Y . Assume that the initial value of the process y
lies outside the boundary set B, then the �rst hitting time
can be de�ned by the random variable

S = inf{t : Y(t) ∈ B},

where S is the �rst time the sample path of the stochastic
process reaches the boundary set B. In a medical con-
text, the stochastic process {Y(t)}may describe a subject’s
latent health condition or disease status over time t.�e
boundary set B represents a medical end point, such as
death, or disease onset. Although the boundary set B is
set to be �xed in time in basic FHT models, it may vary
with time in some applications. �e stochastic process
{Y(t)} in the FHTmodel may take many forms.�e most

commonly used process is aWiener di�usion process with
a positive initial value and a negative dri� parameter.
Alternative processes including the gamma process, the
Ornstein-Uhlenbeck (OU) process, and the semi-Markov
process have also been investigated. For a review, see Lee
and Whitmore () and Aalen et al. ().

Threshold Regression
�reshold regression (TR) is an extension of the �rst-
hitting-time model by adding regression structures to it
so as to accommodate important covariates.�e threshold
regression model does not required the proportional haz-
ards assumption andhence it provides an alternativemodel
for analyzing time-to-event data. �e unknown parame-
ters in the stochastic process {Y(t)} and the boundary
set B are connected to covariates using suitable regres-
sion link functions. For example, the initial state y and the
dri� parameter µ of aWiener di�usion process {Y(t)} can
be linked to covariates using general link functions of the
form

y = g(x)

and
µ = g(x),

where x is the vector of covariates (Lee et al. ; Lee
and Whitmore ). Pennell et al. () proposed a TR
model with Bayesian randome�ects to account for unmea-
sured covariates in both the initial state and the dri�.
Yu et al. () incorporated penalized regression and
regression splines to TR models to accommodate semi-
parametric nonlinear covariate e�ects.

Analytical Time Scale
In stead of calendar time, in many applications involv-
ing time-dependent cumulative e�ects, an alternative time
scale can be better used in describing the stochastic pro-
cess. Let r(t∣x) denote a monotonic transformation of cal-
endar time t to analytical time r (or referred to as process
time) with r(∣x) = . In a medical context, the analyti-
cal timemay be some time-dependentmeasure to describe
cumulative toxic exposure or the progression of disease.
�e process {Y(r)} de�ned in terms of analytical time r
can be expressed as a subordinated process {Y[r(t)]} in
terms of calendar time t. Lee and Whitmore (, )
examined the connection between subordinated stochastic
processes and analytical time.
Whitmore et al. () proposed a bivariate Wiener

model inwhich failure is governed by a latent processwhile
auxiliary readings are available from a correlated marker
process. Lee et al. () extended this model to bivari-
ate threshold regression by including CD cell counts as
a marker process in the context of AIDS clinical trials.
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Tong et al. () generalized the bivariate TR model to
current status data. Using Markov decomposition meth-
ods, Lee et al. () generalized threshold regression to
include time-dependent covariates. Lee and Whitmore
() discussed the connections between TR and propor-
tional hazard regressions and demonstrated that propor-
tional hazard functions can be generated by TR models.

About the Author
Professor Lee was named the Mosteller Statistician of
the Year in  by the American Statistical Association,
Boston Chapter. She is Elected member of the Interna-
tional Statistical Institute (), and Elected Fellow of:
Royal Statistical Society (), American Statistical Asso-
ciation () and the Institute of Mathematical Statistics
(). Professor Lee is the Founding Editor andEditor-in-
Chief of the international journal Lifetime Data Analysis.
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Fisher Exact Test

Peter Sprent
Emeritus Professor
University of Dundee, Dundee, UK

�e Fisher Exact test was proposed by Fisher () in the
��h edition of Statistical Methods for Research Workers. It
is a test for independence as opposed to association in ×
contingency tables.
A typical situation where such tables arise is where

we have counts of individuals categorized by each of two
dichotomous attributes, e.g., one attribute may be religious
a�liation dichotomized into Christian and non-Christian
and the other marital status recorded as married or single.
Another example is thatwhere one of the attributes that

are dichotomized corresponds to treatments, e.g., Drug A
prescribed, or Drug B prescribed, and the other attribute
is the responses to those treatments, e.g., patient condition
improves or patient condition does not improve.
In the latter situation if  patients are givenDrug A and

 patients are given drug Bwemight observe the following
counts in cells of a  ×  table:

Improvement No improvement Row total

Drug A   

Drug B   

Column totals   

Fisher pointed out that if we assume row and col-
umn totals are �xed then once we know the entry in any
cell of the table (e.g., here  in the top le� cell) then the
entries in the remaining three cells are all �xed by the con-
straint that the marginal totals are �xed. �is is usually
expressed by saying the table has one degree of freedom.
What Fisher noted is that under the hypothesis of inde-
pendence, if we assume the marginal totals �xed then
the distribution of the numbers in the �rst cell (or any
other cell) has a hypergeometric distribution under inde-
pendence for any of the common models associated with
such a table as described, for example in Agresti () or
Sprent and Smeeton ().�ese commonmodels are ()
that responses to each drug, for example, are binomially
distributed with a common value for the binomial param-
eter p or () have a common Poisson distribution, or ()



Fisher-Tippett Theorem F 

F

the four cell counts are a sample from a 7multinomial
distribution.
If a general a  ×  contingency table has cell entries

nij (i, j = , ) and row totals ni+ and column totals n+j and
grand total of all  cell entries is n, then the hypergeometric
distribution for the observed cell values has an associated
probability

(n+)!(n+)!(n+)!(n+)!
(n)!(n)!(n)!(n)!n!

To perform the test one calculates these probabilities for
all possible n consistent with the �xed marginal totals
and computes the P-value as the sum of all such proba-
bilities that are less than or equal to that associated with
the observed con�guration. For the numerical example
given above n may take any integral value between 
and  and the following table gives the corresponding
hypergeometric probabilities:

n Hypergeometric probability

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

From this table we see that the observed n =  has
associated probability p = . and the only other out-
comes with this or a lower probability correspond to n =
,  or .�us the test P-value is P = . + . +
. + . = ..

�is low P-value provides very strong evidence of asso-
ciation, i.e., that the drugs di�er in e�ectiveness.
In practice, except for very small samples appropri-

ate statistical so�ware is required to compute P. When
the expected numbers in each cell assuming independence
are not too small the standard chi-squared test for con-
tingency tables gives a close approximation to the exact

test P-value especially if Yates’s correction (see Sprent and
Smeeton ) is used.

�e exact test procedure was extended by Freeman and
Halton () to tables with any speci�ed numbers of rows
and columns.
Some statisticians have argued that it is inappropriate

to condition the test statistics on �xed marginal totals, but
it is now widely accepted that in most, though not per-
haps in all, situations arising in practice such conditioning
is appropriate.
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Fisher-Tippett Theorem

Bojan Basrak
University of Zagreb, Zagreb, Croatia

In , Fisher and Tippett presented a theorem which
can be considered as a founding stone of the extreme
value theory. �ey identi�ed all 7extreme value distribu-
tions, which means all possible nondegenerate limit laws
for properly centered and scaled partial maxima Mn =

max{X, . . . ,Xn}, where (Xn) is a sequence of indepen-
dent and identically distributed random variables. More
precisely, if there exist real sequences (an) and (bn)where
an >  for all n, such that the random variables

Mn − bn
an

as n→∞,



 F Five-Number Summaries

converge in distribution to a nondegenerate random vari-
able with a distribution function G, then G is called an
extreme value distribution.�e theorem states thatG (per-
mitting centering and scaling) necessarily belongs to one
of the following three classes: Fréchet, Gumbel, andWeibull
distributions.
Rigorous proofs of the theorem appearing in contem-

porary literature are due to Gnedenko in , and works
of de Haan and Weissman in s.�e class of 7extreme
value distributions coincides with the class of max–stable
distributions, i.e. those distributions of the random vari-
able X, for which there exist real constants cn >  and
dn for each n ≥ , such that (Mn − dn)/cn has the same
distribution as X .
To determine whether partial maxima of a given fam-

ily of random variables, a�er scaling and centering, has
asymptotically one of those distributions is one of themain
tasks of extreme value analysis. Many of such questions are
answered using the notion of regular variation which was
introduced inmathematical analysis byKaramata, a couple
of years a�er the publication of Fisher–Tippett theorem.
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Five-Number Summaries

Mirjana Čižmešija
Professor, Faculty of Economics and Business
University of Zagreb, Zagreb, Croatia

�e �ve-number summary (′S) is a technique of
exploratory data analyses developed with the aim of inves-
tigating one or more data sets. It consists of �ve descrip-
tive measures (Anderson ): minimum value (xmin),
�rst quartile (Q), median (Me), third quartile (Q), and
maximum value (xmax).�e graphical presentation of the
�ve-number summary is the box-and-whisker plot (box-
plot) developed by John Tukey (Levine ). In deter-
mining the ′S, the data set of observations on a single
variable must be arranged from the smallest to the largest
value, and therefore the ′S are arranged as follows: xmin ≤
Q ≤ Me ≤ Q ≤ xmax. Each of these �ve parameters is
important in descriptive statistics for providing informa-
tion about the dispersion and skew of data sets. 7Outliers
in the data set may be detected in the box-plot. In mea-
suring dispersion, the distance between the minimum and
maximum value is important (particularly in �nancial
analyses).

�e di�erence between the �rst and third quartile is
the range of the middle % of the data in the data set
(interquartile range).�ese di�erences and the di�erences
between quartiles and the median are important in detect-
ing the shape of the data set. In a symmetrical distri-
bution, the di�erence between the �rst quartile and the
minimum value is the same as the di�erence between the
maximum value and the third quartile, and the di�erence
between the median and the �rst quartile is the same as
the di�erence between the third quartile and the median.
In a right-skewed distribution, the di�erence between the
�rst quartile and the minimum value is smaller than the

10

xmax

Q1 Q3Me

15 20 25 30 35

xmin

Five-Number Summaries. Fig.  Box-plot
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di�erence between themaximumvalue and the third quar-
tile, and the di�erence between the median and the �rst
quartile is smaller than the di�erence between the third
quartile and the median. In a le�-skewed distribution, the
di�erence between the �rst quartile and the minimum
value is greater than the di�erence between the maximum
value and the third quartile and the di�erence between
the median and the �rst quartile is greater than the dif-
ference between the third quartile and the median. �e
�ve-number summary is a useful tool in comparing the
dispersion of two or more data sets.
For example, the following data set

, , , , , , , , , 

can be described as ′S :

xmin = , Q = , Me = , , Q = , xmax = 

and graphically displayed by the box-plot in the Fig. .
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Introduction
Forecasting is concerned with making statements about
the as yet unknown.�ere are many ways that people go
about deriving forecasts.�is entry is concerned primar-
ily with procedures that have performed well in empirical
studies that contrast the accuracy of alternative methods.

Evidence about forecasting procedures has been cod-
i�ed as condition-action statements, rules, guidelines or,
as we refer to them, principles. At the time of writing
there are  principles. �ink of them as being like a
safety checklist for a commercial airliner – if the forecast
is important, it is important to check all relevant items on
the list. Most of these principles were derived as gener-
alized �ndings from empirical comparisons of alternative
forecasting methods. Interestingly, the empirical evidence
sometimes con�icts with common beliefs about how to
forecast.
Primarily due to the strong emphasis placed on empir-

ical comparisons of alternative methods, researchers have
made many advances in forecasting since .�e most
in�uential paper in this regard is theM-competition paper
(Makridakis et al. ).�is was based on a study inwhich
di�erent forecasters were invited to use what they thought
to be the best method to forecast many time series. Entry
into the competition required that methods were fully dis-
closed. Entrants submitted their forecasts to an umpire
who calculated the errors for each method.�is was only
one in a series of M-competition studies, the most recent
beingMakridakis andHibon (). For a summary of the
progress that has been made in forecasting since , see
Armstrong ().
We brie�y describe valid forecasting methods, pro-

vide guidelines for the selection of methods, and present
the Forecasting Canon of nine overarching principles.�e
Forecasting Canon provides a gentle introduction for those
who do not need to become forecasting experts but who
nevertheless rightly believe that proper knowledge about
forecasting would help them to improve their decision
making.�ose who wish to knowmore can �nd what they
seek inPrinciples of Forecasting: AHandbook for Practition-
ers and Researchers, and at the Principles of Forecasting
Internet site (ForPrin.com).

Forecasting Methods
As shown in Fig. , the Forecasting Methodology Tree, fore-
casting methods can be classi�ed into those that are based
primarily on judgmental sources of information and those
that use statistical data. �ere is overlap between some
judgmental and statistical approaches.
If available data are inadequate for quantitative analysis

or qualitative information is likely to increase the accu-
racy, relevance, or acceptability of forecasts, one way to
make forecasts is to ask experts to think about a situation
and predict what will happen. If experts’ forecasts are not
derived using structured forecasting methods, their fore-
casting method is referred to as unaided judgment.�is is
the most commonly used method. It is fast, inexpensive
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when few forecasts are needed, and may be appropriate
when small changes are expected. It is most likely to be
useful when the forecaster knows the situation well and
gets good feedback about the accuracy of his forecasts
(e.g., weather forecasting, betting on sports, and bidding
in bridge games).
Expert forecasting refers to forecasts obtained in a

structured way from two ormore experts.�emost appro-
priate method depends on the conditions (e.g., time con-
straints, dispersal of knowledge, access to experts, expert
motivation, need for con�dentiality). In general, diverse
experts should be recruited, questions should be chosen
carefully and tested, and procedures for combining across
experts (e.g., the use of medians) should be speci�ed in
advance.

�e nominal group technique (NGT) tries to account
for some of the drawbacks of traditional meetings by
imposing a structure on the interactions of the experts.
�is process consists of three steps: First, group members
work independently and generate individual forecasts.�e
group then conducts an unstructured discussion to delib-
erate on the problem. Finally, group members work inde-
pendently and provide their �nal individual forecasts.�e
NGT forecast is the mean or median of the �nal individual
estimates.
Where group pressures are a concern or physical prox-

imity is not feasible, the Delphi method, which involves at
least two rounds of anonymous interaction, may be use-
ful. Instead of direct interaction, individual forecasts and
arguments are summarized and reported as feedback to
participants a�er each round. Taking into account this
information, participants provide a revised forecast for the
next round. �e Delphi forecast is the mean or median
of the individual forecasts in the �nal round. Rowe and
Wright () found that Delphi improved accuracy over
unstructured groups in �ve studies, harmed accuracy in
one, and the comparison was inconclusive in two. Delphi
is most suitable if experts are expected to possess di�erent
information, but it can be conducted as a simple one-round
survey for situations inwhich experts possess similar infor-
mation. A free version of the Delphi so�ware is available at
ForPrin.com.
In situations where dispersed information frequently

becomes available, prediction markets can be useful for
providing continuously updated numerical or probabil-
ity forecasts. In a prediction market, mutually anony-
mous participants reveal information by trading contracts
whose prices re�ect the aggregated group opinion. Incen-
tives to participate in a market may be monetary or non-
monetary. Although prediction markets seem promising,
to date there has been no published 7meta-analysis of the

method’s accuracy. For a discussion of the relative advan-
tages of prediction markets and Delphi, see Green et al.
().
With structured analogies, experts identify situations

that are analogous to a target situation, identify similarities
and di�erences to the target situation, and determine an
overall similarity rating.�e outcome or decision implied
by each expert’s top-rated analogy is used as the structured
analogies forecast. Green and Armstrong () analyzed
structured analogies for the di�cult problem of forecast-
ing decisions people will make in con�ict situations.When
experts were able to identify two or more analogies and
their closest analogy was from direct experience, %
of structured analogies forecasts were accurate compared
to % of experts’ unaided judgment forecasts, the latter
being little better than guessing.
Decomposition involves breaking down a forecasting

problem into components that are easier to forecast.�e
components may either be multiplicative (e.g., to forecast
a brand’s sales, one could estimate total market sales and
market share) or additive (estimates could be made for
each type of product when forecasting new product sales
for a division). Decomposition is most likely to be use-
ful in situations involving high uncertainty, such as when
predicting large numbers. MacGregor () summarized
results from three studies involving  tests and found that
judgmental decomposition led to a % reduction in error
under high levels of uncertainty.
Judgmental bootstrapping derives amodel from knowl-

edge of experts’ forecasts and the information experts used
to make their forecasts. �is is typically done by regres-
sion analysis. It is useful when expert judgments have
validity but data are scarce (e.g., forecasting new prod-
ucts) and outcomes are di�cult to observe (e.g., predicting
performance of executives). Once developed, judgmental
bootstrapping models are a low-cost forecasting method.
Armstrong (a) found judgmental bootstrapping to be
more accurate than unaided judgment in  of  compar-
isons. Two tests found no di�erence, and one found a small
loss in accuracy.
Expert systems are based on rules for forecasting that

are derived from the reasoning experts use when mak-
ing forecasts. �ey can be developed using knowledge
fromdiverse sources such as surveys, interviews of experts,
protocol analysis in which the expert explains what he is
doing as he makes forecasts, and research papers. Collopy
et al. () summarized evidence from  comparisons
that included expert systems. Expert systems were more
accurate than unaided judgment in six comparisons, sim-
ilar in one, and less accurate in another. Expert systems
were less accurate than judgmental bootstrapping in two
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comparisons and similar in two. Expert systems weremore
accurate than econometric models in one comparison and
as accurate in two.
It may be possible to ask people directly to predict

how they would behave in various situations. However,
this requires that people have valid intentions or expecta-
tions about how they would behave. Both are most useful
when () responses can be obtained from a representative
sample, () responses are based on good knowledge, ()
people have no reason to lie, and () new information is
unlikely to change behavior. Intentions are more limited
than expectations in that they are most useful when ()
the event is important, () the behavior is planned, and
() the respondent can ful�ll the plan (e.g., their behav-
ior is not dependent on the agreement of others). Better
yet, in situations in which it is feasible to do so, conduct
an experiment by changing key causal variables in a sys-
tematic way, such that the independent variables are not
correlated with one another. Estimate relationships from
responses to the changes and use these estimates to derive
forecasts.
Role playing involves asking people to think and behave

in ways that are consistent with a role and situation
described to them. Role playing for the purpose of pre-
dicting the behavior of people with di�erent roles who
are interacting with each other is called simulated interac-
tion. Role players are assigned roles and asked to act out
prospective interactions in a realistic manner. �e deci-
sions are used as forecasts of the actual decision. Green
() found that % of simulated interaction forecasts
were accurate for eight diverse con�ict situations. By com-
parison, % of forecasts from the traditional approach –
expert judgments unaided by structured techniques – were
accurate. Game theory experts’ forecasts were no better,
also %, and both unaided judgment and game theory
forecasts were little better than chance at % accurate.
Conjoint analysis is a method for eliciting people’s pref-

erences for di�erent possible o�erings (e.g., for alternative
mobile phone designs or for di�erent political platforms)
by using combinations of features (e.g., size, camera, and
screen of amobile phone.)�e possibilities can be set up as
experiments where each variable is unrelated to the other
variable. Regression-like analyses are then used to predict
the most desirable design.
Extrapolation models use time-series data on the sit-

uation of interest (e.g., data on automobile sales from
–) or relevant cross-sectional data. For example,
exponential smoothing, which relies on the principle that
more recent data is weighted more heavily, can be used
to extrapolate over time. Quantitative extrapolation meth-
ods do not harness people’s knowledge about the data but

assume that the causal forces that have shaped history will
continue. If this assumption turns out to be wrong, fore-
cast errors can be large. As a consequence, one should
only extrapolate trends when they correspond to the prior
expectations of domain experts. Armstrong (b) pro-
vides guidance on the use of extrapolation.
Quantitative analogies are similar to structured analo-

gies. Experts identify analogous situations for which time-
series or cross-sectional data are available, and rate the
similarity of each analogy to the data-poor target situation.
�ese inputs are used to derive a forecast.�is method is
useful in situations with little historical data. For example,
one could average data from cinemas in suburbs iden-
ti�ed by experts as similar to a new (target) suburb in
order to forecast demand for cinema seats in the target
suburb.
Rule-based forecasting is an expert system for combin-

ing expert domain knowledge and statistical techniques
for extrapolating time series. Most series features can be
identi�ed automatically, but experts are needed to identify
some features, particularly causal forces acting on trends.
Collopy and Armstrong () found rule-based forecast-
ing to be more accurate than extrapolation methods.
If data are available on variables that might a�ect

the situation of interest, causal models are possible.�e-
ory, prior research, and expert domain knowledge provide
information about relationships between the variable to be
forecasted and explanatory variables. Since causal mod-
els can relate planning and decision-making to forecasts,
they are useful if one wants to create forecasts that are con-
ditional upon di�erent states of the environment. More
important, causalmodels can be used to forecast the e�ects
of di�erent policies.
Regression analysis involves estimating causal model

coe�cients from historical data. Models consist of one or
more regression equations used to represent the relation-
ship between a dependent variable and explanatory vari-
ables. Regression models are useful in situations with few
variables and many reliable observations where the causal
factors vary independently of one another. Important prin-
ciples for developing regression (econometric) models are
to () use prior knowledge and theory, not statistical �t,
for selecting variables and for specifying the directions of
e�ects () use simple models, and () discard variables if
the estimated relationship con�icts with theory or prior
evidence.
Real-world forecasting problems are, however, more

likely to involve few observations and many relevant vari-
ables. In such situations, the index method can be used.
Index scores are calculated by adding the values of the
explanatory variables, which may be assessed subjectively,
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for example as zero or one, or may be normalized quan-
titative data. If there is good prior domain knowledge,
explanatory variables may be weighted relative to their
importance. Index scores can be used as forecasts of the
relative likelihood of an event. �ey can also be used to
predict numerical outcomes, for example by regressing
index scores against historical data.
Segmentation is useful when a heterogeneous whole

can be divided into homogenous parts that act in di�er-
ent ways in response to changes, and that can be fore-
casted more accurately than the whole. For example, in
the airline industry, price has di�erent e�ects on busi-
ness and personal travelers. Appropriate forecasting meth-
ods can be used to forecast individual segments. For
example, separate regression models can be estimated for
each segment. Armstrong (:) reported on three
comparative studies on segmentation. Segments were fore-
casted either by extrapolation or regression analysis. Seg-
mentation improved accuracy for all three studies.

Selection of Methods
�e Forecasting Method Selection Tree, shown in Fig .,
provides guidance on selecting the best forecasting
method for a given problem. �e Tree has been derived
from evidence-based principles. Guidance is provided in
response to the user’s answers to questions about the avail-
ability of data and state of knowledge about the situa-
tion for which forecasts are required. �e �rst question
is whether su�cient objective data are available to per-
form statistical analyses. If not, the forecaster should use
judgmental methods.
In deciding among judgmental procedures, one must

assess whether the future is likely to be substantially dif-
ferent from the past, whether the situation involves deci-
sion makers who have con�icting interests, and whether
policy analysis is required. Other considerations a�ect-
ing the selection process are whether forecasts are made
for recurrent and well-known problems, whether domain
knowledge is available, and whether information about
similar types of problems is available.
If, on the other hand, much objective data are available

and it is possible to use quantitativemethods, the forecaster
�rst has to assess whether there is useful knowledge about
causal relationships, whether cross-sectional or time-series
data are available, and whether large changes are involved.
In situations with little knowledge about empirical rela-
tionships, the next issues are to assess whether policy
analysis is involved and whether there is expert domain
knowledge about the situation. If there is good prior
knowledge about empirical relationships and the future
can be expected to substantially di�er from the past, the

number of variables and presence or absence of inter-
correlation between them, and the number of observa-
tions determine which causal method to use. For example,
regression models that rely on non-experimental data can
typically use no more than three or four variables – even
with massive sample sizes. For problems involving many
causal variables, variable weights should not be estimated
from the dataset. Instead it is useful to draw on indepen-
dent sources of evidence (such as empirical studies and
prior expert knowledge) for assessing the impact of each
variable on the situation.

�e Forecasting Method Selection Tree provides guid-
ance but on its own, the guidance is not comprehensive.
Forecasters may have di�culty identifying the conditions
that apply. In such situations, one should use di�erent
methods that draw on di�erent information and combine
their forecasts according to pre-speci�ed rules. Armstrong
(c) conducted a meta-analysis of  studies and esti-
mated that the combined forecast yielded a % reduction
in error compared to the average error of the compo-
nents; the reductions of forecast error ranged from % to
%. In addition, the combined forecasts were o�en more
accurate than the most accurate component. Studies since
that meta-analysis suggest that under favorable conditions
(many forecasts available for a number of di�erent valid
methods and data sources when forecasting for an uncer-
tain situation), the error reductions from combining are
much larger. Simple averages are a good starting point but
di�erential weights may be used if there is strong evidence
about the relative accuracy of the method. Combining
forecasts is especially useful if the forecaster wants to avoid
large errors and if there is uncertainty which method will
be most accurate.

�e �nal issue is whether there is important infor-
mation that has not been incorporated in the forecasting
methods.�is includes situations in which recent events
are not re�ected in the data, experts possess good domain
knowledge about future events or changes, or key variables
could not be included in themodel. In the absence of these
conditions, one should not adjust the forecast. If important
information has been omitted and adjustments are needed,
one should use a structured approach. �at is, provide
written instructions, solicit written adjustments, request
adjustments from a group of experts, ask for adjustments
to be made prior to seeing the forecast, record reasons for
the revisions, and examine prior forecast errors.

Forecasting Canon
�e Forecasting Canon provides a summary of evidence-
based forecasting knowledge, in this case in the form of
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nine overarching principles that can help to improve fore-
cast accuracy.�e principles are o�en ignored by organiza-
tions, so attention to them o�ers substantial opportunities
for gain.

Match the Forecasting Method to the
Situation
Conditions for forecasting problems vary. No single best
method works for all situations.�e Forecasting Method
Selection Tree (Fig. ) can help identify appropriate fore-
casting methods for a given problem. �e recommenda-
tions in the Selection Tree are based on expert judgment
grounded in research studies. Interestingly, generalizations
based on empirical evidence sometimes con�ict with com-
mon beliefs about which forecasting method is best.

Use Domain Knowledge
Managers and analysts typically have useful knowledge
about situations. While this domain knowledge can be
important for forecasting, it is o�en ignored. Methods that
are not well designed to incorporate domain knowledge
include exponential smoothing, stepwise regression,7data
mining and 7neural networks.
Managers’ expectations are particularly important

when their knowledge about the direction of the trend in
a time series con�icts with historical trends in the data
(called “contrary series”). If one ignores domain knowl-
edge about contrary series, large errors are likely.
A simple rule can be used to obtain much of the ben-

e�t of domain knowledge: when one encounters a con-
trary series, do not extrapolate a trend. Instead, extrapolate
the latest value – this approach is known as the naive or
no-change model.

Structure the Problem
One of the basic strategies in management research is to
break a problem into manageable pieces, solve each piece,
then put them back together.�is decomposition strategy
is e�ective for forecasting, especially when there is more
knowledge about the pieces than about the whole. Decom-
position is particularly useful when the forecasting task
involves extreme (very large or very small) numbers.
When contrary series are involved and the components

of the series can be forecasted more accurately than the
global series, using causal forces to decompose the problem
increases forecasting accuracy. For example, to forecast the
number of people who die on the highways each year, fore-
cast the number of passenger miles driven (a series that is
expected to grow) and the death rate per million passen-
ger miles (a series that is expected to decrease) and then
multiply these forecasts.

Model the Experts’ Forecasts
Expert systems represent forecasts made by experts and
can reduce the costs of repetitive forecasts while improving
accuracy. However, expert systems are expensive to
develop.
An inexpensive alternative to expert systems is judg-

mental bootstrapping.�e general proposition borders on
the preposterous; it is that a simple model of the man will
be more accurate than the man.�e reasoning is that the
model applies the man’s rules more consistently than the
man can.

Represent the Problem Realistically
Start with the situation and develop a realistic representa-
tion.�is generalization con�icts with common practice,
in which one starts with a model and attempt to general-
ize to the situation. Realistic representations are especially
important when forecasts based on unaided judgment fail.
Simulated interaction is especially useful for developing a
realistic representation of a problem.

Use Causal Models When You Have Good
Information
Good information means that the forecaster () under-
stands the factors that have an in�uence on the variable to
forecast and () possesses enough data to estimate a regres-
sion model. To satisfy the �rst condition, the analyst can
obtain knowledge about the situation from domain knowl-
edge and fromprior research.�us, for example, an analyst
can draw upon quantitative summaries of research (meta-
analyses) on price or advertising elasticities when develop-
ing a sales-forecasting model. An important advantage of
causal models is that they reveal the e�ects of alternative
decisions on the outcome, such as the e�ects of di�er-
ent prices on sales. Index models are a good alternative
when there are many variables and insu�cient data for
regression analysis.

Use Simple Quantitative Methods
Complex models are o�en misled by noise in the data,
especially in uncertain situations. �us, using simple
methods is important when there is much uncertainty
about the situation. Simplemodels are easier to understand
than complex models, and are less prone to mistakes.�ey
are also more accurate than complex models when fore-
casting for complex and uncertain situations – which is the
typical situation for the social sciences.

Be Conservative When Uncertain
One shouldmake conservative forecasts for uncertain situ-
ations. For cross-sectional data, this means staying close to
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the typical behavior (o�en called the “base rate”). In time
series, one should stay close to the historical average. If
the historical trend is subject to variations, discontinuities,
and reversals, one should be cautious with extrapolating
the historical trend. Only when a historical time series
show a long steady trend with little variation should one
extrapolate the trend into the future.

Combine Forecasts
Combining is especially e�ective when di�erent forecast-
ing methods are available. Ideally, one should use as many
as �ve di�erentmethods, and combine their forecasts using
a predeterminedmechanical rule. Lacking strong evidence
that some methods are more accurate than others, one
should use a simple average of forecasts.

Conclusion
�is entry gives an overview of methods and principles
that are known to reduce forecast error. �e Forecast-
ing Method Selection Tree provides guidance for which
method to use under given conditions. �e Forecasting
Canon can be used as a simple checklist to improve forecast
accuracy. Further information and support for evidence-
based forecasting is available from the Principles of Fore-
casting handbook and from the ForecastingPrinciples.com
Internet site.
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Processes
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Temple University, Philadelphia, PA, USA

One of the most important objectives in the analysis of a
time series is to forecast its future values. Let us consider
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the time seriesZt from the general ARIMA(p, d, q) process

ϕ(B)( − B)dŻt = θ(B)at , ()

where Żt = (Zt − µ) if d =  and Żt = Zt when d ≠ ,
ϕ(B) = (−ϕB−⋯−ϕpBp), θ(B) = (−θB−⋯−θqBq),
ϕ(B) =  and θ(B) =  share no common roots that lie
outside of the unit circle, and the series at is a Gaussian
N (, σ a) white noise process.

Minimum Mean Square Error Forecasts
and Forecast Limits
Our objective is to derive a forecast with as small an error
as possible.�us, our optimum forecast will be the forecast
that has the minimum mean square forecast error. Let us
consider the case when d =  in Eq. (), and express the
process in the moving average representation

Żt = ψ(b)at =
∞
∑
j=

ψjat−j, ()

where ψ(B) =
∞
∑
j=

ψjB j = θ(B)/ϕ(B), and ψ = .

More speci�cally, theψj can be obtained from equating the
coe�cients of B j on the both sides of

( − ϕB −⋯ − ϕpBp)( + ψB + ψB +⋯)

= ( − θB −⋯ − θqBq). ()

For t = n + ℓ, we have Żn+ℓ =
∞
∑
j=

ψjan+ℓ−j. Suppose that

at time t = n we have the observations Żn, Żn−, Żn−, . . .
and wish to forecast ℓ-step ahead future values of Żn+ℓ as a
linear combination of the observations Żn, Żn−, Żn−, . . . .
Since Żt for t ≤ n can all be written in the form of (), we
can let the minimum mean square error forecast ˆ̇Zn(ℓ) of
Żn+ℓ be

ˆ̇Zn(ℓ) = ψ∗ℓ an + ψ∗ℓ+an− + ψ∗ℓ+an− +⋯ ()

where the ψ∗j are to be determined.�e mean square error
of the forecast is

E[Żn+ℓ − ˆ̇Zn(ℓ)]

= σ a

ℓ−
∑
j=

ψj + σ a
∞
∑
j=

[ψℓ+j − ψ∗ℓ+j]
,

which is easily seen to be minimized when ψ∗ℓ+j = ψℓ+j.
Hence,
ˆ̇Zn(ℓ) = ψℓan+ψℓ+an−+ψℓ+an−+⋯ = E(Żn+ℓ ∣Żt , t ≤ n).

()
ˆ̇Zn(ℓ) is usually read as the ℓ-step ahead forecast of Żn+ℓ at
the forecast origin n.

�e forecast error is

en(ℓ) = Żn+ℓ − ˆ̇Zn(ℓ) =
ℓ−
∑
j=

ψjan+ℓ−j. ()

Because E(en(ℓ)) =  the forecast is unbiased with the
error variance

Var(en(ℓ)) = σ a
ℓ−
∑
j=

ψj . ()

For a normal process, the ( − α)% forecast limits are

ˆ̇Zn(ℓ) ±Nα/

⎡
⎢
⎢
⎢
⎢
⎣

 +
ℓ−
∑
j=

ψj
⎤
⎥
⎥
⎥
⎥
⎦

/

σa, ()

whereNα/ is the standard normal deviate such that P(N >

Nα/) = α/.
For a general ARIMAmodel in () with d ≠  the mov-

ing average representation does not exist because when we
obtain the ψj from equating the coe�cients of Bj on the
both sides of

( − ϕB −⋯ − ϕpBp)( − B)d( + ψB + ψB +⋯)

= ( − θB −⋯ − θqBq), ()

the resulting series of ψj coe�cients is not convergent.
However, for practical purposes, one can use Eq. () to �nd
a �nite number of the ψj coe�cients.�e minimummean
square error forecast is also given by E(Żn+ℓ ∣Żt , t ≤ n)
directly through the use of Eq. (), and Eqs. (), (), and
() hold also for the general ARIMAprocess.�emain dif-
ference between the ARMA and ARIMA processes is that

lim
ℓ→∞

ℓ−
∑
j=

ψj exists for a stationary ARMA process but does

not exist for a nonstationary ARIMA process. Hence, the
eventual forecast limits for a stationary process approach
two horizontal lines. For a nonstationary process since
ℓ−
∑
j=

ψj increases as ℓ increases, the forecast limits become

wider and wider. It implies that the forecaster becomes less
certain about the result as the forecast lead time gets larger.

Computation of Forecasts
�e general ARIMA process in Eq. () can be written as

(−ΨB−⋯−Ψp+dB
p+d

)Żt = (−θB−⋯−θqBq)at , ()

where (−ΨB−⋯−Ψp+dBp+d) = ϕ(B)(−B)d. For t = n+ℓ
we have

Żn+ℓ = ΨZn+ℓ− +⋯ + Ψp+dZn+ℓ−p−d + an+ℓ
− θan+ℓ− −⋯ − θqan+ℓ−q.

Taking the conditional expectation at time origin n, we get

ˆ̇Zn(ℓ) = Ψ ˆ̇Zn(ℓ − ) +⋯ + Ψp+d ˆ̇Zn(ℓ − p − d) + ân(ℓ)
− θân(ℓ − ) −⋯ − θqân(ℓ − q), ()
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where

ˆ̇Zn( j)= E(Żn+j∣Żt , t ≤ n), j ≥ ,

ˆ̇Zn( j)= Żn+j, j ≤ ,

ân( j) = , j ≥ ,
and

ân( j) = Żn+j − ˆ̇Zn+j−() = an+j, j ≤ .

Updating Forecasts
Note that from Eq. (), we have

en(ℓ + ) = Żn+ℓ+ − ˆ̇Zn(ℓ + )

=
ℓ

∑
j=

ψjan+ℓ+−j = en+(ℓ) + ψℓan+

= Żn+ℓ+ − ˆ̇Zn+(ℓ) + ψℓan+.

Hence, we obtain the equation for updating forecasts,

ˆ̇Zn+(ℓ) = ˆ̇Zn(ℓ + ) + ψℓ[Żn+ − ˆ̇Zn()]. ()

Eventual Forecast Functions
When ℓ > q, ˆ̇Zn(ℓ) in Eq. () becomes

Ψ(B) ˆ̇Zn(ℓ) = , ()

where Ψ(B) = ϕ(B)(−B)d = −ΨB−⋯−Ψp+dBp+d, and
B ˆ̇Zn(ℓ) = ˆ̇Zn(ℓ − ).�us, we can use the di�erence equa-
tion result to obtain the eventual forecast function.�at is,

if Ψ(B) =
K
∏
i=

( − RiB)mi with
K
∑
i=
mi = (p + d), then

ˆ̇Zn(ℓ) =
K

∑
i=

(

mi−
∑
j=
cijℓj)Rℓi , ()

for ℓ ≥ (q − p − d + ) where cij are constants that are
functions of time origin n and known data.

An illustrative example: ( − ϕB)(Zt − µ) = ( − θB)at .

a. Computation of Ẑn(ℓ)
For t = n + ℓ,Zn+ℓ = µ + ϕ(Zn+ℓ− − µ) + an+ℓ −

θan+ℓ−.
Hence

Ẑn() = E(Zn+∣Zt , t ≤ n) = µ + ϕ(Zn − µ) − θat ,

and

Ẑn(ℓ) = E(Zn+ℓ ∣Zt , t ≤ n)
= µ + ϕ[Ẑn(ℓ − ) − µ]
= µ + ϕℓ (Zn − µ) − ϕ

ℓ−
 θan, ℓ ≥ .

b. �e Forecast Error Variance and Forecast Limits
From Eq. (), ( − ϕB)( + ψB + ψB + ⋯) =

( − θB), and equating the coe�cients of B j on both
sides, we get ψj = ϕ

j−
 (ϕ − θ), j ≥ . So

Ẑn(ℓ) ±Nα/

⎡
⎢
⎢
⎢
⎢
⎣

 +
ℓ−
∑
j=

[ϕj− (ϕ − θ)]

⎤
⎥
⎥
⎥
⎥
⎦

/

σa.

de�nes the forecast limits.
c. �e Eventual Forecast Function

Since ( − ϕB)(Ẑn(ℓ) − µ) = , ℓ ≥ , and ∣ϕ∣ < 
we have Ẑn(ℓ) = µ + cϕℓ → µ as ℓ → ∞. For more
detailed discussions and illustrative examples on time
series forecasting, we refer readers to Box, Jenkins, and
Reinsel (), and Wei ().

About the Author
For biography see the entry 7Time Series Regression.
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What Can Be Forecast?
Forecasting is required in many situations: deciding
whether to build another power generation plant in the
next  years requires forecasts of future demand; schedul-
ing sta� in a call centre next week requires forecasts of call
volume; stocking an inventory requires forecasts of stock
requirements. Forecasts can be required several years in
advance (for the case of capital investments), or only a
few minutes beforehand (for telecommunication routing).
Whatever the circumstances or time horizons involved,
forecasting is an important aid in e�ective and e�cient
planning.
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Some things are easier to forecast than others.�e time
of the sunrise tomorrowmorning can be forecast very pre-
cisely. On the other hand, currency exchange rates are very
di�cult to forecast with any accuracy.�e predictability of
an event or a quantity depends on how well we understand
the factors that contribute to it, andhowmuchunexplained
variability is involved.
Forecasting situations vary widely in their time hori-

zons, factors determining actual outcomes, types of data
patterns, andmany other aspects. Forecastingmethods can
be very simple such as using themost recent observation as
a forecast (which is called the “naïve method”), or highly
complex such as 7neural networks and econometric sys-
tems of simultaneous equations. �e choice of method
depends on what data are available and the predictability
of the quantity to be forecast.

Forecasting Methods
Forecasting methods fall into two major categories: quan-
titative and qualitative methods.

Quantitative forecasting can be applied when two condi-
tions are satis�ed:
. numerical information about the past is available;
. it is reasonable to assume that some aspects of the
past patterns will continue into the future.

�ere is a wide range of quantitative forecasting meth-
ods, o�en developed within speci�c disciplines for
speci�c purposes. Eachmethod has its own properties,
accuracies, and costs that must be considered when
choosing a speci�c method.

Qualitative forecasting methods are used when one or both
of the above conditions does not hold. �ey are also
used to adjust quantitative forecasts, taking account of
information that was not able to be incorporated into
the formal statisticalmodel.�ese are not purely guess-
work – there are well-developed structured approaches
to obtaining good judgmental forecasts. However, as
qualitative methods are non-statistical, they will not be
considered further in this article.

Explanatory Versus Time Series Forecasting
Quantitative forecasts can be largely divided into two
classes: time series and explanatory models. Explanatory
models assume that the variable to be forecasted exhibits
an explanatory relationship with one or more other vari-
ables. For example, we may model the electricity demand
(ED) of a hot region during the summer period as

ED = f (current temperature, strength of economy,
population, time of day, day of week, error). ()

�e relationship is not exact – there will always be changes
in electricity demand that can not be accounted for by the
variables in themodel.�e “error” term on the right allows
for random variation and the e�ects of relevant variables
not included in the model. Models in this class include
regression models, additive models, and some kinds of
neural networks.

�e purpose of the explanatorymodel is to describe the
form of the relationship and use it to forecast future values
of the forecast variable. Under this model, any change in
inputs will a�ect the output of the system in a predictable
way, assuming that the explanatory relationship does not
change.
In contrast, time series forecasting uses only informa-

tion on the variable to be forecast, and makes no attempt
to discover the factors a�ecting its behavior. For example,

EDt+ = f (EDt , EDt−, EDt−, EDt−, . . . , error), ()

where t is the present hour, t +  is the next hour, t −  is
the previous hour, t −  is two hours ago, and so on. Here,
prediction of the future is based on past values of a variable
and/or past errors, but not on explanatory variables which
may a�ect the system. Time series models used for fore-
casting include ARIMA models, exponential smoothing
and structural models.

�ere are several reasons for using a time series fore-
cast rather than an explanatorymodel for forecasting. First,
the system may not be understood, and even if it was
understood it may be extremely di�cult to measure the
relationships assumed to govern its behavior. Second, it is
necessary to predict the various explanatory variables in
order to be able to forecast the variable of interest, and
this may be too di�cult.�ird, the main concern may be
only to predict what will happen and not to know why it
happens.
A third type of forecasting model uses both time series

and explanatory variables. For example,

EDt+ = f (EDt , current temperature, time of
day, day of week, error). ()

�ese types of models have been given various names
in di�erent disciplines. �ey are known as dynamic
regression models, panel data models, longitudinal mod-
els, transfer function models, and linear system models
(assuming f is linear).

The Basic Steps in a Forecasting Task
�ere are usually �ve basic steps in any forecasting task.

Step : Problem de�nition. O�en this is most di�cult part
of forecasting. De�ning the problem carefully requires
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an understanding of how the forecasts will be used,
who requires the forecasts, and how the forecasting
function �ts within the organization requiring the
forecasts. A forecaster needs to spend time talking to
everyonewhowill be involved in collecting data,main-
taining databases, and using the forecasts for future
planning.

Step : Gathering information.�ere are always at least two
kinds of information required: (a) statistical data, and
(b) the accumulated expertise of the people who collect
the data and use the forecasts. O�en, a di�culty will be
obtaining enough historical data to be able to �t a good
statistical model. However, occasionally, very old data
will not be so useful due to changes in the system being
forecast.

Step : Preliminary (exploratory) analysis. Always start by
graphing the data. Are there consistent patterns?
Is there a signi�cant trend? Is seasonality
important? Is there evidence of the presence of busi-
ness cycles? Are there any 7outliers in the data that
need to be explained by those with expert knowledge?
How strong are the relationships among the variables
available for analysis?

Step : Choosing and �tting models. Which model to use
depends on the availability of historical data, the
strength of relationships between the forecast variable
and any explanatory variables, and the way the fore-
casts are to be used. It is common to compare two or
three potential models.

Step : Using and evaluating a forecasting model. Once a
model has been selected and its parameters estimated,
the model is to be used to make forecasts. �e per-
formance of the model can only be properly evaluated
a�er the data for the forecast period have become avail-
able. A number of methods have been developed to
help in assessing the accuracy of forecasts as discussed
in the next section.

Forecast Distributions
All forecasting is about estimating some aspects of the con-
ditional distribution of a random variable. For example, if
we are interested in monthly sales denoted by yt for month
t, then forecasting concerns the distribution of yt+h con-
ditional on the values of y, . . . , yt along with any other
information available. Let It denote all other information
available at time t.�en we call the distribution of (yt+h ∣

y, . . . , yt ,It) the forecast distribution.
Typically, a forecast consists of a single number (known

as a “point forecast”).�is can be considered an estimate of
the mean or median of the forecast distribution. It is o�en
useful to provide information about forecast uncertainty

as well in the form of a prediction interval. For exam-
ple, if the forecast distribution is normal with mean ŷt+h
and variance σ t+h, then a % prediction interval for yt+h
is ŷt+h ± .σ t+h. Prediction intervals in forecasting are
sometimes called “interval forecasts.”
For some problems, it is also useful to estimate the fore-

cast distribution rather than assume normality or some
other parametric form.�is is called “density forecasting.”

Evaluating Forecast Accuracy
It is important to evaluate forecast accuracy using genuine
forecasts.�at is, it is invalid to look at how well a model
�ts the historical data; the accuracy of forecasts can only
be determined by considering how well a model performs
on new data that were not used when �tting the model.
When choosing models, it is common to use a portion of
the available data for testing, and use the rest of the data
for �tting the model.�en the testing data can be used to
measure how well the model is likely to forecast on new
data.

�e issue of measuring the accuracy of forecasts from
di�erent methods has been the subject of much attention.
We summarize some of the approaches here. A more thor-
ough discussion is given byHyndman and Koehler ().
In the following discussion, ŷt denotes a forecast of yt . We
only consider the evaluation of point forecasts.�ere are
alsomethods available for evaluating interval forecasts and
density forecasts (Corradi and Swanson ).

Scale-Dependent Errors
�e forecast error is simply et = yt−ŷt which is on the same
scale as the data. Accuracy measures that are based on et
are therefore scale-dependent and cannot be used to make
comparisons between series that are on di�erent scales.

�e two most commonly used scale-dependent mea-
sures are based on the absolute error or squared errors:

Mean absolute error (MAE)= mean(∣et ∣),

Mean squared error (MSE) = mean (et ) .

When comparing forecast methods on a single series, the
MAE is popular as it is easy to understand and compute.

Percentage Errors
�e percentage error is given by pt = et/yt . Percent-
age errors have the advantage of being scale-independent,
and so are frequently used to compare forecast perfor-
mance between di�erent data sets. �e most commonly
used measure is:

Mean absolute percentage error (MAPE) = mean(∣pt ∣)
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Measures based on percentage errors have the disadvan-
tage of being in�nite or unde�ned if yt =  for any t in
the period of interest, and having an extremely skewed
distribution when any yt is close to zero. Another prob-
lem with percentage errors that is o�en overlooked is
that they assume a meaningful zero. For example, a per-
centage error makes no sense when measuring the accu-
racy of temperature forecasts on the Fahrenheit or Celsius
scales.

�ey also have the disadvantage that they put a heav-
ier penalty on positive errors than on negative errors.�is
observation led to the use of the so-called “symmetric”
MAPE proposed by Armstrong (, p. ), which was
used in the M forecasting competition (Makridakis and
Hibon ). It is de�ned by

Symmetric mean absolute percentage error (sMAPE)
= mean ( ∣yt − ŷt ∣/(yt + ŷt)) .

However, if yt is zero, ŷt is also likely to be close to zero.
�us, the measure still involves division by a number close
to zero. Also, the value of sMAPE can be negative, so it
is not really a measure of “absolute percentage errors” at
all. Hyndman and Koehler () recommend that the
sMAPE not be used.

Scaled Errors
�eMASEwas proposed byHyndman andKoehler ()
as an alternative to the MAPE or sMAPE when compar-
ing forecast accuracy across series on di�erent scales.�ey
proposed scaling the errors based on the in-sample MAE
from the naïve forecast method. �us, a scaled error is
de�ned as

qt =
et


n − 

n

∑
i=

∣yi − yi−∣
,

which is independent of the scale of the data. A scaled error
is less than one if it arises from a better forecast than the
average one-step naïve forecast computed in-sample. Con-
versely, it is greater than one if the forecast is worse than
the average one-step naïve forecast computed in-sample.
�emean absolute scaled error is simply

MASE = mean(∣qt ∣).
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Introduction
Since its introduction by Sir Alec Je�reys in , deoxyri-
bonucleic acid (DNA) pro�ling, or DNA �ngerprinting,
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has become one of the most important tools in foren-
sic human identi�cation. DNA contains unique genetic
information of each organism and can be found in blood,
semen, hair/hair root, bone, and body �uids such as saliva
and sweat.�eoretically, every individual except for identi-
cal twins can be identi�ed by one’s unique DNA sequence.
However, due to technical limitations, current human
identi�cation is not based on fully sequencing the whole
genome. Instead, only a number of genetic markers are
used, and so the identi�cation cannot be established with-
out any doubt. Statistics thereby plays an important role
in assessing the uncertainty in forensic identi�cation and
evaluating the weight of DNA evidence.

Random Match Probability
Suppose a crimewas committed and a blood stain has been
found in the crime scene and a suspect has been identi�ed.
�e DNA pro�les obtained from the crime stain and the
blood specimen of the suspect will be compared. A DNA
pro�le is a set of numbers representing the genetic charac-
teristics of the forensic sample, o�en at nine or more DNA
regions called loci. If a perfect match is found between the
two DNA pro�les, the suspect would not be excluded as
a possible contributor to the crime stain. To evaluate the
weight of the DNA evidence, the probability that another
personwould have the sameDNApro�le will be computed
and reported in the courtroom. �e smaller the random
match probability, the stronger is the evidence to convict
the suspect.
A common assumption adopted in the evaluation of

the random match probability is that the population is in
Hardy–Weinberg equilibrium (HWE), which means the
two alleles of a genotype at a particular locus are statis-
tically independent of each other. For example, suppose
at a particular locus the alleles found in the pro�les of
the crime stain and the suspect are in common, say, AiAj.
�e random match probability at this particular locus can
be obtained using the product rule as pipj for i ≠ j and
p i for i = j, where pi and pj are the allele frequencies
of Ai and Aj, respectively. Under the assumption of link-
age equilibrium, i.e., independence of alleles across all loci,
multiplying the individual probabilities over all loci will
give the overall random match probability, which is o�en
found as small as one in a million or one in a billion in
practice.
In some cases, the suspect is unavailable for typing and

a close relative of the suspect is typed instead. In some
other cases, the suspect is typed, but the prosecution about
who le� the crime stain involves a close relative of the sus-
pect. Extensions of the formulas to handle these situations
as well as the violation of Hardy–Weinberg and linkage
equilibrium are extensively discussed in the literature.

Paternity Determination
Another application of DNA pro�ling is in kinship deter-
mination, which refers to the con�rmation of a speci�c
biological relationship between two individuals. In par-
ticular, a paternity test determines whether a man is the
biological father of an individual. For a standard trio case
in which the mother, her child, and the alleged father are
typed with DNA pro�les denoted byM,C, and AF respec-
tively, the weight of evidence that the alleged father is
the biological father of the child is o�en expressed as a
likelihood ratio (LR) of the following hypotheses:

Hp : Alleged father is the biological father of the child.

Hd :�e biological father is a random unrelated man.

�e LR, also termed as the paternity index (PI) in the
context of paternity testing, takes the form

LR = PI =
P (Evidence∣Hp)
P (Evidence∣Hd)

=
P (M,C,AF∣Hp)
P (M,C,AF∣Hd)

.

Using some results on conditional probability and the fact
that the genotypes of the mother and the alleged father are
not a�ected by the hypotheses, the index can be simpli-
�ed to

PI =
P (C∣M,AF,Hp)
P (C∣M,Hd)

.

Suppose the genotypes at a particular locus are obtained
as C = AA, M = AA, and AF = AA. Since the
mother has half chance to pass the allele A to the child
and the alleged father also has half chance to pass the allele
A to the child under Hp, the numerator of the PI is given
by P (C∣M,AF,Hp) = (/) (/) = /. Similarly, the
denominator can be obtained as P (C∣M,Hd) = p (/) =
p/ and as a result, PI = /(p). �e overall paternity
index can then be obtained by multiplying the individual
PIs over all loci.
It may sometimes be argued that the alleged father is

not the biological father of the child, but his relative (say,
brother) is, thereby resulting in the following hypotheses:

Hp : Alleged father is the biological father of the child.
Hd : A relative (brother) of the alleged father is the

biological father of the child.

�e PI can still be computed by using the formula PI =
/[F +  ( − F) p], where F is the kinship coe�cient
between the alleged father and his relative. �e kinship
coe�cient is a measure of the relatedness between two
individuals, representing the probability that two ran-
domly sampled genes from each of them are identical.
In particular, F = / for full siblings and, therefore, in
this case, PI = /( + p), which is substantially smaller
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than /(p), indicating that DNA pro�ling performs less
e�ective in distinguishing paternity among relatives.

DNA Mixture
In practical crime cases, it is not uncommon that the bio-
logical traces collected from the crime scene are obtained
as mixed stains, especially in rape cases. In general, the
evaluation and interpretation of the mixed DNA sam-
ple can be very complicated due to many factors includ-
ing unknown number of contributors and missing alleles.
Here, we consider a simple two-person mixture problem
in which the DNA mixture is assumed to be contributed
by the victim and only one perpetrator. Suppose that, at a
particular locus, the mixture sample contains alleles M =

{A,A,A} , the victim has genotype V = AA, and the
suspect has genotype S = AA.�e following two compet-
ing hypotheses, the prosecution and defense hypotheses,
about who contributes to the crime stain are considered:

Hp :�e victim and the suspect are the contributors.
Hd :�e victim and an unknown person are the

contributors.

�e weight of the evidence can be evaluated by

LR =
P (Evidence∣Hp)
P (Evidence∣Hd)

=
P (M,V , S∣Hp)
P (M,V , S∣Hd)

=
P (M∣V , S,Hp)
P (M∣V ,Hd)

where the last expression is obtained a�er some simpli�-
cations. Obviously in this case, P (M∣V , S,Hp) =  as the
mixture M is contributed by the victim and the suspect
under Hp. Under Hd, the unknown person must have at
least one A allele but cannot have alleles not present in
the mixture M = {A,A,A} .�erefore, there are only
three possible genotypes for the unknown person at this
locus:AA,AA, andAA. Under HWE, P (M∣V ,Hd) =
pp + pp + p  and therefore the LR is obtained as

LR =


pp + pp + p 
In the above example, the LR can be easily computed
because there are only three possible genotypes for the
only unknown person. In general for multiple perpetra-
tor cases, the following general defense hypothesis may be
considered:

Hd :�e contributors are the victim and x unknown
individuals.

For x = , there are  possible genotype con�gurations
of the two unknown individuals and it is cumbersome to
list them all. Over the years, general method and formulas

for evaluating the LR have been developed in the litera-
ture to deal with complicated mixture problems, includ-
ing situations with the presence of relatives or population
substructures.
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Introduction
Probability theory is that part of mathematics that is
concerned with the description and modeling of random
phenomena, or in a more general – but not unanimously
accepted – sense, of any kind of uncertainty. Probability
is assigned to random events, expressing their tendency
to occur in a random experiment, or more generally to
propositions, characterizing the degree of belief in their
truth.
Probability is the fundamental concept underlying

most statistical analyses that go beyond a mere description
of the observed data. In statistical inference, where conclu-
sions from a random sample have to be drawn about the
properties of the underlying population, arguments based
on probability allow to cope with the sampling error and
therefore control the inference error, which is necessar-
ily present in any generalization from a part to the whole.
Statistical modeling aims at separating regularities (struc-
ture explainable by a model) from randomness.�ere, the
sampling error and all the variation that is not explained
by the chosen optimal model are comprised in an error
probability as a residual category.

Different Interpretations and Their
Consequences for Statistical Inference
�e concept of probability has a very long history (see, e.g.,
Vallverdú ). Originally, the term had a more philo-
sophical meaning, describing the degree of certainty or
the persuasive power of an argument.�e beginnings of
a more mathematical treatment of probability are related
to considerations of symmetry in games of chance (see,
e.g., Hald ). �e scope of the theory was extended
by Bernoulli (), who applied similar symmetry con-
siderations in the study of epistemic probability in civil,
moral, and economic problems. In this connection he
proved his “law of large numbers,” which can be seen as
the �rst theorem of mathematical statistics, and as a cor-
nerstone of the frequentist interpretation of probability,
which understands the probability of an event as the limit
of its relative frequency in an in�nite sequence of inde-
pendent repetitions of a random experiment. Typically,
the frequentist (or aleatoric) point of view is objectivist in
the sense that it relates probability to random phenomena
only and perceives probability as a property of the random
experiment (e.g., rolling a dice) under consideration.

In contrast, the second of the twomost common inter-
pretations (see, e.g., Peterson (), for more details),
the subjective, personalistic, or epistemic viewpoint, per-
ceives probability as a property of the subject confronted
with uncertainty. Consequently, here probability can be
assigned to anything the very subject is uncertain about,
and the question of whether or not there is an underly-
ing random process vanishes. For the interpretation, in
the tradition of Savage () a �ctive scenario is used
where preferences between actions are described. In par-
ticular, the probability of an event is understood as the
price atwhich the subject is indi�erent between buying and
selling a security paying  when the event occurs (and 
otherwise).

�e interpretation of probability predetermines to a
considerable extent the choice of the statistical inference
methods to learn the unknown parameters ϑ of a statis-
tical model from the data.�e frequentist perceives ϑ as
an unknown but �xed quantity and seeks methods that are
optimal under �ctive in�nite repetitions of the statistical
experiment, while for the subjectivist it is straightforward
to express his or her uncertainty about ϑ by a (prior)
probability distribution, which is then, in the light of new
data, updated by the so-called Bayes’ rule to obtain the
(posterior) probability distribution describing all her/his
knowledge about ϑ (Bayesian inference).

Kolmorgorov’s Axioms
While the interpretation of probability is quite impor-
tant for statistical applications, the mathematical theory of
probability can be developed almost independently of the
interpretation of probability.�e foundations of the mod-
ern theory of probabilitywere laid byKolmogorov () in
measure theory: Probability is axiomatized as a normalized
measure.
More speci�cally (see, e.g., Merkle () and Rudas

() for more details), let Ω be the set of elementary
events under consideration (Ω is usually called sample
space).�e events of interest are described as sets of ele-
mentary events: it is assumed that they build a σ-algebra
A of subsets of Ω (i.e.,A ⊆ P (Ω) is nonempty and closed
under complementation and countable union). A proba-
bility measure on (Ω,A) is a function P : A → [, ] such
that P (Ω) =  and

P(
∞
⋃
n=
En) =

∞
∑
n=
P (En) ()

for all sequences of pairwise disjoint events E,E, . . . ∈ A.
When Ω is uncountable, a Borel σ-algebra is usually
selected as the setA of events of interest, because the nat-
ural choiceA = P (Ω) would place too strong limitations
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on the probability measure P, at least under the axiom of
choice (see, e.g., Solovay ()).
Kolmogorov supplemented his axioms by two further

basic de�nitions: the de�nition of independence of events
and the de�nition of conditional probability P(A∣B) (i.e.,
the probability of event A given an event B).
From the axioms, fundamental theorems with a strong

impact on statistics have been derived on the behavior of
independent repetitions of a random experiment (see, e.g.,
Billingsley () and Schervish () for more details).
�ey include di�erent 7laws of large numbers (see above),
the central limit theorem (see 7Central Limit�eorems),
distinguishing the Gaussian distribution as a standard dis-
tribution for analyzing large samples, and the Glivenko–
Cantelli theorem (see 7Glivenko-Cantelli�eorems), for-
mulating convergence of the so-called empirical distribu-
tion function to its theoretical counterpart, which means,
loosely speaking, that the true probability distribution can
be rediscovered in a large sample and thus can be learned
from data.

Current Discussion and Challenges
In statistical methodology, for a long time Kolmogorov’s
measure-theoretic axiomatization of probability theory
remained almost undisputed: only countable additivity ()
was criticized by some proponents of the subjective inter-
pretation of probability, such as De Finetti (–). If
countable additivity is replaced by the weaker assumption
of �nite additivity (i.e., P (E ∪ E) = P (E) + P (E) for
all pairs of disjoint events E,E ∈ A), then it is always
possible to assign a probability to any set of elementary
events (i.e., the natural choice A = P (Ω) does not pose
problems anymore). However, without countable additiv-
ity many mathematical results of measure theory are not
valid anymore.
In recent years, the traditional concept of probability

has been questioned in a more fundamental way, espe-
cially from the subjectivist point of view. On the basis of
severe problems encountered when trying tomodel uncer-
tain expert knowledge in arti�cial intelligence, the role
of probability as the exclusive methodology for handling
uncertainty has been rejected (see, e.g., the introduction
of Klir and Wierman ()). It is argued that traditional
probability is only a one-dimensional, too reductionis-
tic view on the multidimensional phenomenon of uncer-
tainty. Similar conclusions (see, e.g., Hsu et al. ())
have been drawn in economic decision theory following
Ellsberg’s seminal experiments (Ellsberg ), where the
extent of ambiguity (or non-stochastic uncertainty) has
been distinguished as a constitutive component of decision
making.

Such insights have been the driving force for the
development of the theory of imprecise probability (see,
e.g., Coolen et al. () for a brief survey), com-
prising approaches that formalize the probability of an
event A as an interval [P(A),P(A)], with the di�er-
ence between P(A) and P(A) expressing the extent of
ambiguity. Here P and P are non-additive set-functions,
o�en called lower and upper probabilities. In particular,
Walley () has partially extended De Finetti’s frame-
work (De Finetti –) to a behavioral theory of
imprecise probability, based on an interpretation of proba-
bility as possibly di�ering buying and selling prices, while
Weichselberger () has developed a theory of interval-
probability by generalizing Kolmogorov’s axioms.
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7Survival data are o�en clustered; it follows that the inde-
pendence assumption between event times does not hold.
Such survival data occur, for instance, in cancer clinical tri-
als, where patients share the same hospital environment.
�e shared frailty model can take such clustering in the
data into account and provides information on the within
cluster dependence. In such a model, the frailty is a mea-
sure for the relative risk shared by all observations in the
same cluster. �e model, a conditional hazard model, is
given by

hij(t) = h(t)ui exp (xtijβ)

= h(t) exp (xtijβ + wi)

where hij(t) is the conditional (on ui or wi) hazard func-
tion for the jth observation ( j= , . . . ,ni) in the ith clus-
ter (i= , . . . , s): h(t) is the baseline hazard, β is the
�xed e�ects vector of dimension p, xij is the vector of
covariates and wi (ui) is the random e�ect (frailty) for
the ith cluster. �e wi’s (ui’s) are the actual values of a
sample from a density fW(.) ( fU(.)). Clustered survival
data will be denoted by the observed (event or censor-
ing) times y = (y, . . . , ysns)

t and the censoring indicators

(δ, . . . , δsns)
t . Textbooks references dealing with shared

frailty models include Hougaard () and Duchateau
and Janssen ().

�e one-parameter gamma density function fU(u) =
u/θ− exp(−u/θ)

θ /θ Γ(/θ) (with mean one and variance θ) is o�en
used as frailty density as it simpli�es model �tting, espe-
cially if a parametric baseline hazard (parameterized by ξ)
is assumed.�e marginal likelihood for the ith cluster of
the gamma frailty model can easily be obtained by �rst
writing the conditional likelihood for the ith cluster and
by then integrating out the gamma distributed frailty.With
ζ = (ξ, θ, β), we have

Lmarg ,i(ζ) =
∞

∫


ni
∏
j=

(h(yij)ui exp (xtijβ))
δij

exp(−H(yij)ui exp (xtijβ)) ×
u/θ−i

θ /θΓ(/θ)
exp (−ui/θ)dui

�ere exists a closed form for this expression. Taking
the logarithm and summing over the s clusters we obtain
(Klein ; Duchateau and Janssen , Chap. )

lmarg(ζ) =
s

∑
i=

[di log θ − log Γ(/θ) + log Γ(/θ + di)

− (/θ + di) log
⎛

⎝
 + θ

ni
∑
j=
Hij,c(yij)

⎞

⎠

+

ni
∑
j=

δij (xtijβ + logh(yij)) ] ()

where Hij,c(yij) = H(yij) exp (xtijβ) and di = ∑
ni
j= δij,

the number of events in the ith cluster. �e marginal
loglikelihood does no longer contain the frailties and
can therefore be maximized to obtain parameters esti-
mates ζ̂. �e asymptotic variance-covariance matrix can
also be obtained using the marginal loglikelihood expres-
sion. �e preferred model in survival analysis is a (con-
ditional) hazards model with unspeci�ed baseline hazard
(a semiparametric model, a Cox model). Leaving h(.)
and H(.) in () unspeci�ed we obtain a semiparametric
gamma frailty model. For such model direct maximiza-
tion of the marginal likelihood is not possible. Both the
EM-algorithm (Klein ) and penalized likelihoodmax-
imization (�erneau et al. ) have been proposed to �t
suchmodels; both approaches use the fact that closed form
expressions can be obtained for the expected values of the
frailties.
An alternative representation of the marginal likeli-

hood () for the parametric gamma frailty model is based
on the Laplace transform of the gamma frailty density
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L(s) = E (exp(−Us)) = ( + θs)−/θ . With tni =

(t, . . . , tni) and Hi,c (tni) = ∑
ni
j=Hij,c (ti), the joint sur-

vival function for the ith cluster is given by

Si,f (tni) = ∫
∞


exp (−uiHi,c (tni)) fUi(ui)dui

= L (Hi,c (tni)) = ( + θHi,c (tni))
−/θ

�e likelihood contribution of the ith cluster, with yni =
(yi, . . . , yini) and the �rst l observations uncensored, is
then

(−)l
∂l

∂t . . . ∂tl
Si,f (yni) = (−)l L(l) (Hi,c (yni))

l

∏
j=
h (yij) exp (xtijβ) ()

For the gamma frailty model the explicit form of () is

ni
∏
j=
hδij
xij ,c (yij) ( + θHi,c (yni))

−/θ−di
di−
∏
l=

( + lθ)

with∏di−l= ( + lθ) =  for di = .
For frailty densities di�erent from the gamma frailty

density, for which the Laplace transform exists, expres-
sion () is the key to obtain the appropriate marginal
loglikelihood expression. Frequently used frailty densi-
ties, such as the inverse Gaussian and the positive stable
densities (Hougaard a), have indeed simple Laplace
transforms. More complex two-parameter frailty densi-
ties are the power variance function densities (Hougaard
b) and the compound Poisson densities (Aalen ).
Although the lognormal density is also used as frailty den-
sity, it does not have a simple Laplace transform; its use
mainly stems from mixed models ideas (McGilchrist and
Aisbett ), and di�erent techniques, such as7numerical
integration, have to be used to �t this model (Bellamy et al.
).

�e choice of the frailty density determines the type
of dependence between the observations within a clus-
ter. A global dependence measure is Kendall’s τ (Kendall
). For two randomly chosen clusters i and k of size two
with event times (Ti,Ti) and (Tk,Tk) and no covari-
ates, τ is de�ned as E [sign((Ti − Tk)(Ti − Tk))]where
sign(x) = −, ,  for x < , x = , x > . Kendall’s τ
can be expressed as a function of the Laplace transform.
Global dependencemeasures do not allow us to investigate
how dependence changes over time. An important local
dependence measure is the cross ratio function (Clayton
). An interesting feature of this function is its rela-
tion with a local version of Kendall’s τ (see Duchateau
and Janssen , Chap. ). �e positive stable distribu-
tion and the 7gamma distribution characterize early and

late dependence respectively, with the 7inverse Gaussian
distribution taking a position in between the two.
So far we discussed the shared frailty model, which is

the most simple model to handle within cluster depen-
dence. �e shared frailty model can be extended in dif-
ferent ways. First, a frailty term can be assigned to each
subject, resulting in a univariate frailty model which can
be used to model overdispersion (Aalen ). Another
extension is the correlated frailty model in which the sub-
jects in a cluster do not share the same frailty termalthough
their respective frailties are correlated (Yashin and Iachine
). Finally the model can be extended to multifrailty
and multilevel frailty models. In a multifrailty model, two
di�erent frailties occur in one and the same cluster. A good
example is the study of the heterogeneity of a prognos-
tic index over hospitals in cancer clinical trials, with each
hospital (cluster) containing a frailty term for the hospi-
tal e�ect and a frailty term for the prognostic index e�ect
(Legrand et al. ). Multilevel frailty models have two or
more nesting levels, with a set of smaller clusters contained
in a large cluster. Fitting suchmodels is discussed in Ripatti
and Palmgren () and Rondeau et al. ().

Cross References
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Fraud in Statistics
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Moscow, Russia

Fraud is an intentional distortion of the truth, whether it is
a deliberate omission or false elimination, or an exaggera-
tion or fabrication.

�e aim of one who commits fraud is always self-
bene�t and self-interest. �e main reasons for fraud are
immorality, impunity, and anarchy, and the methods are
deception and betrayal. From these it gives rise to the
gravest of crimes – violation of law, murder, mutinies
and wars.�e tools to overcome fraud are law and order,
auditing and control, morals, science, prosecution, and
adequate punishment.
Fraud is a man-made phenomenon.�e substance of

fraud is unknown in the natural world. A lack of knowl-
edge or limited knowledge, unpremeditated actions as well
as unobserved phenomena (including deliberate, but legal
and justi�ed by jury’s verdict, but still obviously criminal
actions and perjuries) on the modern level of social men-
tality do not belong to the substance of fraud, and they are
de�nitely not a subject for a scienti�c research.
Science, as opposed to jurisprudence, is much more

liberal (despite some exceptions for genius of Galileo
Galilei, Giordano Bruno, Jan Hus and Nicolaus Coperni-
cus).

�e most e�cient tool for not only revealing but
also overcoming fraud in economy (and further in socio-
economic activity) is statistics. Its accurate methods of
observation and auditing, powerful databases and knowl-
edge bases, advanced so�ware, and technical provision, as
well as the intellectual culture veri�ed by hundreds of years

of qualitative data collection and data processing, allow
the guarantee of controlled completeness, credibility, and
accessibility for a wide range of people.
Being the world’s most powerful information system

with regulated branches in center and local areas con-
trolled by hundred of quality criteria including those pro-
vided by IMF, the modern statistics is by its nature, as any
other meter device is free from necessity to lie but at the
same time it is surrounded by various kinds of lies and in
turn re�ects them, and as any other domain of empirical
knowledge cannot be free of it.
Fraud in statistics is distortion of data, resulting from

two di�erent types of causes: ) distortion of random
errors, caused by poor observation and calculation, the
characteristics of which are analyzed in another chapter
in this text ) deliberate (premeditated) distortion of data,
resulting from di�erent kinds of systematic causes and
giving rise to e�ects beyond the statistics domain; these
cannot be eliminated by methods or techniques.

�e main sources of the data distortions (or in simple
words – improper data re�ections) are unknown, unob-
servable, and immeasurable phenomena. Such phenomena
are not and cannot be discussed due to the objective rea-
sons by observed phenomena; they are actually published
and re�ected in an incomplete and distorted form and thus
they rather characterize themselves but do not re�ect the
real situation.

�e most widespread sources of distortion in modern
statistics are:

– evasion from participation in the preparation and sub-
mission of the obligatory current statistical reports;

– failure of respondents to answer 7questionnaire for
periodical and random statistical samplings;

– use of obsolete registers of individuals as well as legal
entities, omissions, including deliberate omissions of
the observed units and the reports units;

– underestimation (or overestimation) of the statistical
data registration and reporting.

�e particular type of data distortion in modern statis-
tics, statistical estimates, connected with substitution of
concepts or estimates obtained with use of inadequate
techniques and algorithms that cannot be veri�ed by the
existing criteria of their credibility or with the application
of other control methods, which are suitable for solving
similar class of problems.

�e biggest domains of fraud in statistics today are
activities that cannot be prohibited and there is littlemeans
to prevent these activities.�ey are as follows:
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– all types of illegal activities, including terrorism, coun-
terfeiting, money laundering, corruption, smuggling,
drug dealing, arms tra�cking, illegal mining of rare
metals, tra�cking of toxic agents illegal organ trans-
plants, and child abduction;

– illegal activity of individuals and legal entities;
– illegal business of unregistered organizations, institu-
tions, and individuals;

– production and rendering services for self-consumption
by households and individuals;

– unrecorded and omitted by statistical observations
types of activities, statistical errors, rounding, errors
and discrepancies, underestimated or overestimated
estimates;

– second-hand activity, tolling, venture enterprises,
intellectual activity; intermediate consumption, subsi-
dies for production; o�shore activity;

– transactions charges, fees, tips, VAT return, barter, pay-
ment in goods for labour, single payments, taxes, losses,
including anthropogenic impacts;

– doctoring, imputed value, royalty, goodwill, repeat
count of rawmaterials, commodities, services and cap-
itals;

– other reasons, their identi�cation is imposed and
acceptable within the limits of standards and methods
of e�ective statistical reporting and accounts.

�e demonstrative example of fraud is �ctitious esti-
mates of capitalization of the world markets which, against
the background of their real assets estimates () would
not exceed $ trillion USD, and today account for over
$ trillion of USD.

�e phantom of fraud in the modern world is also
represented by estimates of banks assets. According to
these estimates by US Statistics on Banking,  (table
) which is considered as the most reliable one, the
aggregate assets of all , of American banks in 
were estimated for $. trillion USD (the precise sum is
$,. billion of USD), whilst according to public infor-
mation the allied assets of JP Morgan Bank solely at the
same year were estimated for $. trillion USD, Goldman
and Sachs – $ trillion USD, and HSBC – $ trillion
USD, which exceeded their accounted real equity capital
by – times or more.
Another example of fraud is tax evasion, in particular

VAT, the size of which reaches one-third of its total volume
in the world, including over $ billion USD per year in
England or $ billion USD in the United States.
However, there are no ideal measurements or abso-

lutely precise estimations in science and life. Even those
which seem to be absolutely accurate values obtained from

the variables such as lengths, speed, weight, and temper-
ature (degrees), are just conventional but not the absolute
truth itself.
On the other hand, not all inaccurate values (estimates)

are distorted ones and hence not all distorted values are
false. In accordance with existing criteria in statistics, the
inaccurate estimates are such and only distorted estimates
that deteriorate the true core of measured phenomena and
turn it into its opposite, that is to say, a lie. Inaccurate and
reasonably distorted estimates, which by the way prevail
in modern statistics (actually they prevailed in the past,
too), are called approximated and they are widely used
with reserve of some errors as acceptable asymptotic or
approximations estimates.
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Isaac Newton, Gottfried Leibniz, Jakob Bernoulli, Johann
Bernoulli, Abraham DeMoivre, Daniel Bernoulli, Leon-
hard Euler, Joseph Lagrange, Pierre Laplace, Siméon
Poisson, Jean Fourier, Friedrich Bessel, Carl Jacobi,
Carl Gauss, Augustin Cauchy, Gustav Dirichlet, Georg
Riemann, Michel Chasles, Augustus DeMorgan, Lambert
Quetelet, Joseph Liouville, Pafnuty Chebyshev, Charles
Hermite, andAndreiMarkov. It was thework of thesemen,
among others, that led to the development of the grand
theorems, the mathematical inerrancies.
True, they were initially prompted by real world prob-

lems, such as winning games of chance or determining
actuarial odds; and esoteric problems, such as proving
the existence of a Divine plan by con�rming a slightly
greater proportion of male births to ensure the survival
of the species. However, the grand theorems ascended to
their elevated place in history because they are elegant,
not because they were particularly useful in solving the
problems for which they were created.
Moreover, they dictated the types of problems that

are considered worthy, relegating those not subsumed
under the cleverness of what mankind can solve as being
intractable and designated as an eternal mystery of the
universe.�eir importance was buttressed by their utility
for the few problems that they could solve, not for the
problems that needed to be solved. Nunnally () wrote
mathematics “is purely an abstract enterprise that need
have nothing to do with the real world…�us the state-
ment iggle wug drang �ous could be a legitimatemathemat-
ical statement in a set of rules stating that when any iggle is
wugged it drang a �ous…Of course… [this] might not be
of any practical use” (p. –).
Woodward () observed “since the beginning of the

eighteenth century almost every mathematician of note
has been a contributor to or an expositor of the theory of
probability” (p. ). But the focus on probability eventually
moved away from populations and the grand theorems,
and settled on just very large samples, such as, e.g., the
work of Charles Darwin and Francis Galton.
Darwin collected his data between December , 

and February ,  while on the Cherokee class ten
gun brig-sloop H. M. S. Beagle, sailing under the com-
mand of Captain Robert Fitzroy. Most of Darwin’s data
were obtained in St. Jago (Santiago) in the Cape Verde
Islands from January  – February . Galton () col-
lected  discreet data points on , people.�ey were
measured in a cubicle  feet wide and  feet long with
the assistance of Serjeant Williams, Mr. Gammage the
optician, and a doorkeeper who made himself useful.
�e data were obtained in the anthropometric laboratory

at the International Health Exhibition and subsequently
deposited at the South Kensington Museum.
Darwin’s and Galton’s lack of mathematical training

limited their ability to quantify and analyze their tro-
phies, but that limitation was resolved with the brilliance
of Karl (née Carl) Pearson.With their data in hand, and the
more immediate problem of huge data sets from the biolo-
gist/zoologistWalterWeldon, Pearson set towork. By ,
he provided the rigor that had eluded his colleagues with
the discovery of both r and χ, and the world was at peace.
Well, at least scholars, the intelligencia, and their paparazzi
were comforted.
K. Pearson () assuredly knew the limitations of the

grand theorems. A�er all, he quipped

7 “As I understand De Moivre the ‘Original Design’ is the
mean occurrence on an indefinite number of trials…The
Deity fixed the ‘means’ and ‘chance’ provided the fluctua-
tions…There is much value in the idea of the ultimate laws
of the universe being statistical laws… [but] it is not an
exactly dignified conception of the Deity to suppose him
occupied solely with first moments and neglecting second
and higher moments!” (p. )

But, alas and alack, as the �rst champion of statistics,
K. Pearson was the inheritor of the grand theorems. As a
co-founding editor of Biometrika he strove to stay above
controversy byminimizing, if not ignoring, ordinary prob-
lems. And indeed there are those who still pine for the days
of yore with its grand theorems, as Tukey () nostalgi-
cally noted “Once upon a time the calculation of the �rst
four moments was an honorable art in statistics” (p. ).
But the ordinary person readily intuited that real world

problems are not asymptotic in nature. William Gosset’s
Monte Carlo study published in  with numbers writ-
ten on pieces of poster board was conducted because he
wasn’t suremathematicians could help himwith real, small
samples problems.
How could the recipe of his employer, Arthur Guin-

ness, be improved? How many barrels of malt or hops are
needed to approximate a population, or at least a large
number? ? ? Are  barrels close to in�nity?�is chemist
(whose sole credential was his undergraduate dual major
in chemistry andmathematics fromNew College, Oxford)
sounded all the great mathematical minds of his day, who
assured him that he could rely on the grand theorems, and
that he need not trouble himself with matters above his
pay grade. Daydreams, it seems he was told, were more
pro�table than the time spent fretting on how large is large.
Gosset (“Student”) neither wrote the t formula in the

form that it appears in undergraduate textbooks today, nor
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did he create the experimental design in which it would
be applied. Ronald Fisher provided both the design and
the null hypothesis that brought Gosset’s Monte Carlo
experiments and intuitive mathematics to fruition.�en,
Pearson, Gosset, and Fisher became a quintet with
the addition of Jerzy Neyman and Egon Pearson, who
cemented the frequentist approach to hypothesis testing
with the creation of an alternative hypothesis. Not sat-
is�ed, Neyman later re-expressed frequentist hypothesis
testing into con�dence intervals based on the same theory
of probability.
Doubts were immediately raised, such as Bowley

(), who asked and answered, “I am not at all sure that
the ‘con�dence’ is not a ‘con�dence trick’… Does it really
take us any further?... I think it does not” (p. ). Many
scholars have adopted the shortcut to notoriety by rush-
ing to follow in Bowley’s footsteps, proclaiming the sky is
falling on hypothesis testing.
But K. Pearson’s development of the χ test is surely

listed among the greatest practical achievements of three
millennia of mathematical inquiry. He captured the abil-
ity, regardless of the direct object, to quantify the di�erence
betweenhumanobservation and expectation. Remarkable!
Was it wrong? Of course. Fisher had to modify the degrees
of freedom. Again, remarkable! Was it still wrong? Of
course. Frank Yates had to modify the method for small
values of expectation. Once again, remarkable! Was it nev-
ertheless wrong? Of course.�e correction was found to
sap statistical power. Where does the χ test stand today?
Statistical so�ware can produce exact p values regardless
of how small the expectation per cell. Remarkable!
Has society, therefore, improved with advent of the

evolution of the χ test? Most assuredly not:

7 We live in a χ society due to political correctness that
dictates equality of outcome instead of equality of oppor-
tunity. The test of independence version of this statistic is
accepted sans voire dire by many legal systems as the sin-
gle most important arbiter of truth, justice, and salvation.
It has been asserted that any statistical difference between
(often even nonrandomly selected) samples of ethnicity,
gender, or other demographic as compared with (often
even inaccurate, incomplete, and outdated) census data is
primae faciea evidence of institutional racism, sexism, or
other ism. A plaintiff allegation that is supportable by a
significant χ is often accepted by the court (judges and
juries) praesumptio iuris et de iure. (Sawilowsky ).

But is this really the fault of the χ test? Any device can be
lethal in the hands of a lunatic, as Mosteller () warned,

“I fear that the �rst act ofmost social scientists upon seeing
a contingency table is to compute a chi-square for it” (p. ).
What discipline has not followed an evolutionary path?

Has agriculture, archeology, architecture, anthropology,
biology, botany, chemistry, computer science, education,
engineering, genetics, medicine, nursing, pharmacology,
physics, psychology, sociology, and zoology always been
as they exist today? Do we blame statistics for its ignoble
development more so because the content disciplines were
dependent on it?

�ere have been antagonists of Fisher–Neyman/
Pearson hypothesis testing for three quarters of a century
since Bowley. And it is understandable with the following
analogy:
I had a summer job in , working in Florida for a

major manufacturer of �berglass yachts.�e hulls of the
larger boats were made by laminating two / hull pieces
together. �e exterior paint was sprayed inside the two
molds and set to dry. Next, �berglass chop mixed with
resin and methyl ethyl ketone peroxide was sprayed into
themold, laminators worked out the air bubbles, and it was
set to harden.

�e two / hull shells were then aligned, and held
in place with many C clamps with the aid of a power-
ful air compressor.�is was necessary because over time
the molds changed in shape and they no longer matched.
A small, temporary seam was laminated inside the hull
to keep the two parts together. When the clamps were
released, one could almost see the two / hulls trembling,
working against the thin �berglass seam to separate and go
their separate ways.
My job was to be lowered inside the hull, and lay

down a successively wider series of �berglass mats and
resign/catalyst, to strengthen the seam. On one boat I had
laminated perhaps �ve or six of the required ten mats
when it was quitting time.�e crew chief told me I could
continue the next day where I had le� o�.
To my chagrin, when I arrive early the next day I

discovered that the night shi� personnel had taken my
hull down the production line, and the boat by now had
�oors, carpet, sink, and other amenities already installed,
obviating the ability to bond the �nal �berglass mats
to strengthen the hull’s seam. I protested to my crew
chief, who nonchalantly replied not to worry myself about
such things. “A�er all,” he said, “the naval architects who
designed the boat allowed considerable tolerance that
should handle situations such as this.” I made that my last
day on the job at that company, and since then I’ve o�en
wondered how that yacht fared in the middle of the Gulf
of Mexico.
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So too, the juxtaposition of Fisher’s null with Neyman
and E. Pearson’s alternative leads to trembling, each part
of the statistical hypothesis seemingly working against
each other to go their separate ways. But this was not
the end of the development of the frequentist theory.
It surpassed E. Pearson (), who admitted “through
the lack of close contact with my partner during the
last  years, it would be a little di�cult to say where
precisely the Neyman and Pearson theory stands today”
(p. ). �e same sentiment was also expressed by those
who followed the age of the pioneers, such as Savage
() who echoed, “What I, and many other statisti-
cians, call the Neyman-Pearson view may, for all I know,
never have been held by Professor Neyman or by Pro-
fessor Pearson” (p. ). Wilks () concluded that by
now the “modern statistical method is a science in itself ”
(p. ).
In truth,many of the foibles in hypothesis testing, since

being admitted to the country club of mature disciplines,
are traceable back to the statistician, not to the statistics.
Fallacies, misconceptions, and myths abound. Which of
the disciplines listed above are immune to this, and why is
there an expectation that statistics should fare any better?
Yes, even under the best of circumstances there are

those who have no use for hypothesis testing. Ernst
Rutherford (cited in N T J Bailey ) said, “If your
experiment needs statistics, you ought to have done a
better experiment” (p. ). But, Albert Einstein (cited in
Shankland ) countered, “I thank you very much for
sending me your careful study about the [Dayton] Miller
experiments.�ose experiments, conducted with so much
care,merit, of course, a very careful statistical investigation,”
(p. , italics added for emphasis).
Much of the criticism against hypothesis testing would

presumably vanish if workers heeded the advice of Finney
(), who advised “when you are experienced enough
to make your own statistical analyses, be sure you choose
the right technique and not merely any one that you can
remember!” (p. ). �e sciences, physical and social,
should be placated withMcNemar’s () advice that “the
student should be warned that he cannot expect miracles
to be wrought by the use of statistical tools” (p. ).
Proper selection of statistical tests based on their small

samples properties, along with an understanding of their
respective null and alternative hypotheses, research design,
random sampling, nominal α, Type I and II errors, statisti-
cal power, and e�ect size would eliminate attacks against
hypothesis testing from all save perhaps those who, as
Bross () characterized it, base their science on “a
Bayesian t-test using an informationless prior” (p. ). Has
the world bene�tted from frequentist hypothesis testing?

7 The question is silly. No reputable quantitative physical,
behavioral, or social scientist would overlook the breadth
and depth of scholarly knowledge and its impact on soci-
ety that has accrued from over a century of hypothesis
testing. The definitive evidence: William Sealy Gosset cre-
ated the t test to make better beer. (Sawilowsky ,
p. )
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Introduction
Signi�cance testing of precise (or sharp) hypotheses is an
old and controversial problem: it has been central in sta-
tistical inference. Both frequentist and Bayesian schools
of inference have presented solutions to this problem, not

always prioritizing the consideration of fundamental issues
such as themeaning of precise hypotheses or the inferential
rationale for testing them.�e Full Bayesian Signi�cance
Test, FBST, is an alternative solution to the problem, which
attempts to ease some of the questions met by frequentist
and standard Bayes tests based on Bayes factors. FBST was
introduced by Pereira and Stern () and reviewed by
Pereira et al. ().

�e discussion here is restricted to univariate parame-
ter and (su�cient statistic) sample spaces;

Θ ⊂R and X ⊂R

A sharp hypothesis H is then a statement of the form
H : θ = θ where θ ∈ Θ. �e posterior probability
(density) for θ is obtained a�er the observation of x ∈ X.
While a frequentist looks for the set, C, of sample points
at least as inconsistent with θ as x is, a Bayesian could
look for the tangential set T of parameter points that are
more consistent with x than θ is.�is understanding can
be interpreted as a partial duality between sampling and
Bayesian theories. �e evidence in favor of H is for fre-
quentists the usual p-value, while for Bayesian it should be
ev =  − ev:

pv = Pr{x ∈ C∣θ} and ev =  − ev =  − Pr{θ ∈ T∣x}.

�e larger pv and ev, the stronger the evidence favoringH.
In the general case, the posterior distribution is suf-

�cient for ev to be calculated, without any complication
due to dimensionality of neither the parameter nor of
the sample space. �is feature ceases the need for nui-
sance parameters elimination, a problem that disturbs
some statisticians (Basu ). If one feels that the goal of
measuring consistency between data and a null hypoth-
esis should not involve prior opinion about the param-
eter, the normalized likelihood, if available, may replace
the posterior distribution. �e computation of ev needs
no asymptotic methods, although numerical optimization
and integration may be needed.

�e fact that the frequentist and Bayesian measures
of evidence, pv and ev, are probability values – there-
fore de�ned in a zero to one scale – does not easily help
to answer the question “How small is signi�cant?”. For
7p-values, the NP lemma settles the question by means
of subjective arbitration of critical values. For Bayesian
assessment of signi�cance through evaluation of ev, deci-
sion theory again clears the picture. Madruga et al. ()
show that there exist loss functions the minimization of
which render a test of signi�cance based on ev into a formal
Bayes test.
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�e FBST has successfully solved several relevant
problems of statistical inference: see Pereira et al. ()
for a list of publications.

FBST Definition
Signi�cance FBSTwas created under the assumption that a
signi�cance test of a sharp hypothesis had to be performed.
At this point, a formal de�nition of a sharp hypothesis is
presented.
Consider general statistical spaces, where Θ ⊂ R

m is
the parameter space and X ⊂R

k is the sample space.

De�nition  A sharp hypothesis H states that θ belongs
to a sub-manifold ΘH of smaller dimension
than Θ.

�e subset ΘH has null Lebesgue measure whenever H
is sharp. A probability density on the parameter space is
an ordering system, notwithstanding having every point
probability zero. In the FBST construction, all sets of same
nature are treated accordingly in the same way. As a conse-
quence, the sets that de�ne sharp hypotheses keep having
nil probabilities. As opposed to changing the nature ofH by
assigning positive probability to it, the tangential set T of
points, having posterior density values higher than any θ in
ΘH , is considered.H is rejected if the posterior probability
of T is large.�e formalization of these ideas is presented
below.
Let us consider a standard parametric statisticalmodel;

i.e., for an integer m, the parameter is θ ∈ Θ ⊂ R
m, g(●)

a probability prior density over Θ, x is the observation (a
scalar or a vector), and Lx(●) is the likelihood generated by
data x. Posterior to the observation of x, the sole relevant
entity for the evaluation of the Bayesian evidence ev is the
posterior probability density for θ given x, denoted by

gx(θ) = g(θ∣x)∝ g(θ)Lx(θ).

Of course, one is restricted to the case where the poste-
rior probability distribution over Θ is absolutely continu-
ous; i.e., gx(θ) is a density over Θ. For simplicity,H is used
for ΘH in the sequel.

De�nition  (evidence) Consider a sharp hypothesisH :
θ ∈ ΘH and

g∗ = supH gx(θ) and T = {θ ∈ Θ : gx(θ) > g∗}.

�e Bayesian evidence value against H is de�ned as the
posterior probability of the tangential set, i.e.,

ev = Pr{θ ∈ T∣x} = ∫
T
gx(θ)dθ.

One must note that the evidence value supporting H,
ev =  − ev, is not an evidence against A, the alternative

hypothesis (which is not sharp anyway). Equivalently, ev is
not evidence in favor of A, although it is against H.

De�nition  (test) �e FBST (Full Bayesian Signi�cance
Test) is the procedure that rejects H whenever ev =  − ev
is small.

�e following example illustrates the use of the FBST and
two standard tests, McNemar and Je�reys’ Bayes Factor.
Irony et al. () discuss this inference problem intro-
duced by McNemar ().

Example  McNemar vs. FBST Two professors, Ed and
Joe, from the Department of Dentistry evaluated the skills
of  students in dental �llings preparation. Each student
was evaluated by both professors. �e evaluation result
could be approval (A) or disapproval (F).�e Department
wants to check whether the professors are equally exigent.
Table  presents the data.

�is is a four-fold classi�cation with probabilities
p, p, p, and p. Using standard notation, the hypoth-
esis to be tested is H : p⋅ = p⋅ which is equivalent to
H : p = p (against A : p ≠ p). In order to have
the likelihood function readily available, we will consider
a uniform prior, i.e., a Dirichlet density with parameter
(, , , ).

�e McNemar exact signi�cance for this data set is
pv = .. Recall that this test is based in a partial likeli-
hood function, a binomial with p = p(p + p)− and
n = . With the normal approximation, the pv become
. with the partial likelihood used by McNemar, the
FBST evidence is ev = ..�e value of the Bayes Fac-
tor under the same uniform prior is BF = .. If one
assigns probability / to the sharp hypothesis H, its pos-
terior probability attains π = .. Hence, the posterior
probability π barely di�ers from /, the probability pre-
viously assigned to H, while pv and ev seem to be more
conclusive against H. While, in the three dimension full
model, ev = . may seem to be a not low value and
the test cannot be performed without a criterion. In other

Full Bayesian Significant Test (FBST). Table  Results of the
evaluation of  students

Joe

Ed A F Total

A   

F   

Total   
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words, a decision is not made until ev is compared to a
“critical value.”�e derivation of such a criterion – result-
ing from the identi�cation of the FBST as a genuine Bayes
procedure – is the subject of Madruga et al. ().

�e strong disagreement among the values of ev, pv,
and BF seldom occurs in situations where Θ is a sub-
set of the real line. �e speculation is that this is related
to the elimination of nuisance parameters: By condition-
ing in McNemar case and by marginalization in the Bayes
Factor case. In higher dimension, elimination of nuisance
parameters seems to be problematic, as pointed by Basu
().

FBST Theory
From a theoretical perspective, on the other hand, it may
be propounded that if the computation of ev is to have any
inferential meaning, then it ought to proceed to a declara-
tion of signi�cance (or not). To this – in a sense – simulta-
neously NPW and Fisherian viewpoint can be opposed the
identi�cation of ev as an estimator of the indicator function
ϕ = I(θ ∈ ΘH). In fact, Madruga et al. () show that
there are loss functions the minimization of which makes
ev a Bayes estimator of ϕ (see Hwang et al. ).
Madruga et al. () prove that the FBST procedure is

the posterior minimization of an expected loss λ de�ned
as follows:

λ(Rejection of H, θ) = a{ − I[θ ∈ T]} and

λ(Acceptance of H, θ) = b + dI[θ ∈ T].

Here, a, b and d are positive real numbers. �e opera-
tional FBST procedure is given by the criterion according
to which H is to be rejected if, and only if, the evidence ev
is smaller than c = (b+d)/(a+d). One should notice that
the evidence ev is the Bayesian formal test statistic and that
positive probability for H is never required. A complete
discussion of the above approach can be found in Pereira
et al. ().

Final Remarks
�e following list states several desirable properties
attended by ev:

. ev is a probability value derived from the posterior
distribution on the full parameter space.

. Both ev and FBST possesses versions which are invari-
ant for alternative parameterizations.

. �e need of approximations in the computation of ev is
restricted to numerical maximization and integration.

. FBST does not violate the Likelihood Principle.

. FBST neither requires nuisance parameters elimina-
tion nor the assignment of positive prior probabilities
to sets of zero Lebesgue measure.

. FBST is a formal Bayes test and therefore has critical
values obtained from considered loss functions.

. ev is a possibilistic support for sharp hypotheses, com-
plying with the Onus Probandi juridical principle (In
Dubio Pro Reo rule), Stern ().

. Derived from the full posterior distribution, ev is a
homogeneous computation calculus with the same two
steps: constrained optimization and integration with
the posterior density.

. Computing time was not a great burden whenever
FBST was used. �e sophisticated numerical algo-
rithms used could be considered a more serious obsta-
cle to the popularization of the FBST.

ev was developed to be the Bayesian pv alternative, while
maintaining the most desirable (known or perceived)
properties in practical use.�e list presented above seems
to respond successfully to the challenge: the FBST is con-
ceptually simple and elegant, theoretically coherent, and
easily implemented for any statistical model, as long as the
necessary computational procedures for numerical opti-
mization and integration are available.
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Functional data analysis (FDA) refers to the statistical anal-
ysis of data samples consisting of random functions or
surfaces, where each function is viewed as one sample ele-
ment. Typically, the random functions contained in the
sample are considered to be independent and smooth.
FDA methodology is essentially nonparametric, utilizes
smoothing methods, and allows for �exible modeling.
�e underlying random processes generating the data
are sometimes assumed to be (non-stationary) 7Gaussian
processes.
Functional data are ubiquitous and may involve sam-

ples of density functions (Kneip and Utikal ) or
hazard functions (Chiou and Müller ). Application
areas include growth curves, econometrics, evolutionary
biology, genetics and general kinds of longitudinal data.
FDA methodology features functional principal compo-
nent analysis (Rice and Silverman ), warping and curve
registration (Gervini and Gasser ) and functional
regression (Ramsay and Dalzell ).�eoretical founda-
tions and asymptotic analysis of FDA are closely tied to
perturbation theory of linear operators in Hilbert space
(Bosq ). Finite sample implementations o�en require
to address ill-posed problems with suitable regularization.

A broad overview of applied aspects of FDA can be found
in the textbook Ramsay and Silverman ().

�e basic statistical methodologies of ANOVA, regres-
sion, correlation, classi�cation and clustering that are
available for scalar and vector data have spurred anal-
ogous developments for functional data. An additional
aspect is that the time axis itself may be subject to random
distortions and adequate functional models sometimes
need to re�ect such time-warping. Another issue is that
o�en the random trajectories are not directly observed.
Instead, for each sample function one has available mea-
surements on a time grid that may range from very dense
to extremely sparse. Sparse and randomly distributedmea-
surement times are frequently encountered in longitudinal
studies. Additional contamination of the measurements of
the trajectory levels by errors is also common.�ese situa-
tions require careful modeling of the relationship between
the recorded observations and the assumed underlying
functional trajectories (Rice andWu ; James and Sugar
; Yao et al. ). Initial analysis of functional data
includes exploratory plotting of the observed functions in
a “spaghetti plot” to obtain an initial idea of functional
shapes, check for 7outliers and identify “landmarks.” Pre-
processing may include outlier removal and curve align-
ment (registration) to adjust for time-warping.
Basic objects in FDA are the mean function µ and

the covariance function G. For square integrable random
functions X(t),

µ(t) = E(Y(t)), G(s, t) = cov{X(s),X(t)} , s, t ∈ T ,
()

with auto-covariance operator (Af )(t) = ∫T f (s)G(s, t)ds.
�is linear operator of Hilbert-Schmidt type has orthonor-
mal eigenfunctions ϕk, k = , , . . . , with associated
ordered eigenvalues λ ≥ λ ≥ . . . , such that A ϕk = λk ϕk.
�e foundation for functional principal component analy-
sis is the Karhunen-Loève representation of random func-

tions X(t) = µ(t) +
∞
∑
k=
Ak ϕk(t), where Ak = ∫T (Y(t) −

µ(t))ϕk(t)dt are uncorrelated centered random variables
with var(Ak) = λk.
Estimators employing smoothing methods (local least

squares or splines) have been developed for various sam-
pling schemes (sparse, dense, with errors) to obtain a
data-based version of this representation, where one reg-
ularizes by truncating at a �nite number K of included
components.�e idea is to borrow strength from the entire
sample of functions rather than estimating each function
separately.�e functional data are then represented by the
subject-speci�c vectors of score estimates Âk, k = , . . . ,K,
which can be used to represent individual trajectories and
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for subsequent statistical analysis. Useful representations
are alternatively obtained with pre-speci�ed �xed basis
functions, notably B-splines and wavelets.
Functional regression models may include one or sev-

eral functions among the predictors, responses, or both.
For pairs (X,Y)with centered randompredictor functions
X and scalar responses Y , the linear model is

E(Y ∣X) = ∫
T
X(s)β(s) ds.

�e regression parameter function β is usually represented
in a suitable basis, for example the eigenbasis, with coef-
�cient estimates determined by 7least squares or similar
criteria. A variant, which is also applicable for classi�ca-
tion purposes, is the generalized functional linear model
E(Y ∣X) = g{µ + ∫T X(s)β(s) ds} with link function g.
�e link function (and an additional variance function if
applicable) is adapted to the (o�en discrete) distribution
of Y ; the components of the model can be estimated by
quasi-likelihood.

�e class of useful functional regression models is
large. A �exible extension of the functional linear model is
the functional additive model.Writing centered predictors
as X = ∑

∞
k= Akϕk, it is given by

E(Y ∣X) =
∞
∑
k=
fk(Ak)ϕk

for smooth functions fk with E(fk(Ak)) = . Of practi-
cal relevance are models with varying domains, with more
than one predictor function, and functional (autoregres-
sive) time series models. In addition to the functional
trajectories themselves, their derivatives are of interest to
study the dynamics of the underlying processes.
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Introduction
Given a sample X, . . . ,Xn of i.i.d. random variables with
common distribution function (df) F and empirical df Fn,
a statistic S(X, . . . ,Xn) is called a statistical functional if
it can be written in terms of a functional T, independent
of n, such that S(X, . . . ,Xn) = T(Fn) for all n ≥ .�e
domain of T contains at least the population df F and the
empirical df Fn for all n ≥ . In this setting the statistic
T(Fn) estimates the parameter T(F).

�e sample mean is a statistical functional since
X = /n∑n Xi = ∫ xdFn(x) = T(Fn) which estimates
the parameter T(F) = ∫ xdF(x). �e statistical func-
tional corresponding to the sample median is T(Fn) =

F−n (/) = med{X, . . . ,Xn} estimating the population
median T(F) = F−(/). Most statistics of interest are
statistical functionals.�ey can be de�ned explicitly, such
as T and T, or implicitly, such as maximum likelihood
type estimators or M-estimators which are solutions of
equations in θ of the form ∫ ψ(x, θ)dFn(x) = .
Statistical functionals were introduced by von Mises

(), who proposed the use of a functional derivative
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called the Volterra derivative along with the correspond-
ing Taylor expansion to obtain the asymptotic distribution
of a statistic. However, the technical details were obscure
with intractable notation and complicated regularity
conditions. Consequently, the results appeared di�cult to
implement, and the von Mises theory was neglected until
the late s and s with the surge of7robust statistics
associated mainly with the work of Huber (, ) and
Hampel (, ). For these new statistics, the statistical
functional setting was found to be optimal for the study of
robustness properties and the vonMises approach seemed
to provide a natural environment for deriving the asymp-
totic distribution of the proposed robust estimates. During
these robustness years the functional analysis concepts of
di�erentiability and continuity were used to investigate the
robustness aspects of the new statistics in addition to the
asymptotics. In particular, the introduction of the in�u-
ence function made a connection between robustness and
classical asymptotics.

The Influence Function
Given a statistical functional T and a df F, the in�u-
ence function of T at F is the real valued function IFT ,F
de�ned by

IFT ,F(x) = lim
t→+

T(( − t)F + t∆x) − T(F)
t

,

where ∆x is the d.f. of the pointmass one at x.�is function
is normalized by setting IF(x) = IFT ,F(x) − EF(IFT ,F(X))
so that EF(IF(X)) = .
�e in�uence function has played an important role in
robust statistics. It was introduced by Hampel (), who
observed that for large n , IFT ,F(x) measures the e�ect
on T(Fn) of a single additional observation with value x.
A bounded in�uence function indicates robustness of the
statistic. For example, for the sample mean T(Fn) as
de�ned above, the in�uence function is IF(x) = x−T(F).
For the sample median T(Fn), if f = F′, we have

IF(x) = [ − /(f (T(F))] I{x<(T(F)}(x)

+ [/(f (T(F))] I{x≥T(F)}(x).

Hence, the sample median with bounded in�uence func-
tion is more robust than the sample mean whose in�uence
function is not bounded. A complete treatment of the
robustness measures derived from the in�uence function
can be found in Hampel et al. ().
In the framework of statistical functionals, the in�u-

ence function can be viewed as a weak form of a functional
derivative. Stronger derivatives were de�ned to analyze the
asymptotic behavior of a statistic, but in all these deriva-
tives the in�uence function is the crucial ingredient. It also

provides a link between robustness and asymptotics as will
be shown below.

Functional Derivatives
Consider a statistical functionalT with domain an open set
which lies in a normed vector space and contains a df F.
A continuous linear functional T′F is the derivative of T at
F when

lim
t→

T(F + tH) − T(F) − T′F(tH)

t
= , ()

for H in subsets of the domain of T.

If () holds pointwise for eachH, thenT′F is theGâteaux
derivative.
If () holds uniformly for all H in compact subsets of

the domain of T, then T′F is the Hadamard derivative.
If () holds uniformly for all H in bounded subsets of

the domain of T, then T′F is the Fréchet derivative.

Clearly Fréchet di�erentiability implies Hadamard dif-
ferentiability, which implies Gâteaux di�erentiability. In
all cases, the in�uence function is the central ingredient
for any derivative since T′F(H) = ∫ IFT ,F(x)dH(x). Now,
consider the Taylor expansion of T at F:

T(F + tF) − T(F) = T′F(tH) + Rem

with

Rem = Rem(T,H, t) = o(t).

�is remainder tends to zero either pointwise or uniformly
according to whether F is Gâteaux, Hadamard, or Fréchet
di�erentiable. For Hadamard derivatives see Reeds ()
or Fernholz () and for Fréchet derivatives see Huber
() or Ser�ing ().
When t = /

√
n and H =

√
n (Fn − F), the linear term

of the Taylor expansion of T is

∫ IFT ,F(x)d(Fn − F)(x) =

n

n

∑

IF(Xi),

where IF has been normalized, and the von Mises expan-
sion of T at F is

T(Fn) = T(F) +

n

n

∑

IF(Xi) + Rem

or
√
n(T(Fn) − T(F)) =


√
n

n

∑

IF(Xi) +

√
n Rem.

WhenT isHadamard or Fréchet di�erentiable,
√
nRem→ 

in probability, so that under certain regularity conditions
for F we have the 7asymptotic normality,
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√
n(T(Fn) − T(F))

D
Ð→N(, σ ).

In this case the in�uence function gives the asymptotic
variance σ  = EF[IF(X)].

Remarks
�e derivative used by von Mises for these calculations
was similar to the Gâteaux derivative, so several strong
regularity conditions had to be imposed on T to obtain
its asymptotic normality. With the Hadamard or Fréchet
derivatives these extra conditions are not needed.
It is important to note that the in�uence function plays

a key role in these vonMises calculations.Note also that the
in�uence function provides a link between robustness and
asymptotics, and for this reason the von Mises approach
via the in�uence function has become a useful method for
obtaining asymptotic normality results.

�e use of the Hadamard and Fréchet derivatives
translates the problem of asymptotics into a problem of
functional di�erentiability. Since Hadamard and Fréchet
derivatives enjoy the chain rule property, we can show
that a statistic T(Fn) is asymptotically normal if the func-
tional T is a composition of Hadamard or Fréchet di�eren-
tiable functional components, where each component has
a simple form. For references see Reeds () or Fernholz
().

Higher Order Derivatives
�e in�uence function is also called the �rst kernel since
higher order derivatives can be de�ned for a real valued
function T. If we set φ(x) = IF(x) for the �rst kernel, the
second kernel is

φ(x, y) =
∂

∂s ∂t
T(F( − s − t) + t∆x + s∆y)∣t=,s=,

and in general, the kernel of order k is

φk(x, x, . . . , xk) =
∂k

∂t ∂t . . . ∂tk
T(F ( −

k

∑

ti)

+ t∆x + . . . + tk∆xk)∣
(,. . .,)

.

�ese kernels constitute the main ingredients for general
Fréchet, Hadamard or Gâteaux higher order derivatives
of T at F and for the corresponding higher order Taylor
expansions. Hence, for k ≥  the k-th order von Mises
expansion of T(Fn) at F is:

T(Fn) − T(F) =

n∑i

φ(Xi) +

n ∑i,j

φ(Xi,Xj) +⋯

+

k!nk ∑

i ,. . .,ik
φk(Xi , . . . ,Xik) + Remk,

where, under certain di�erentiability conditions for T, the
remainder of order k satis�es Remk = oP(n−k/).
Higher order vonMises expansions were used to study

the asymptotic distribution of a statistic when it is not nor-
mal (see vonMises ; Filippova ; Reeds ).�ese
expansions are also useful to study the bias of a statistic
since EF(T(Fn)) = T(F) + EF(Rem), where

Rem =

n∑i,j

φ(Xi,Xj) +⋯

+

k!nk ∑

i ,. . .,ik
φk(Xi , . . . ,Xik) + Remk.

Results in this direction can be found in Sen () and
Fernholz ().

Multivariate Functionals
�e formal von Mises calculations outlined above can be
carried out for functionals of p variables a�er generaliz-
ing some basic rules of elementary calculus for the case
of functional derivatives. �us, if T : Rp → R and we
have p samples of sizes n,n, . . . ,np from the populations
F, . . . ,Fp respectively, we can consider the corresponding
empirical df ’s Fn , . . . ,Fnp . �en, the multivariate statis-
tical functional T(Fn , . . . ,Fnp) has p �rst order partial
derivatives given by the corresponding multivariate in�u-
ence function φ = (φ, φ, . . . , φp) , where for  ≤ i ≤ p
the components are

φi(x)=
∂T(F, . . . ,Fi−, ( − ε)Fi + ε∆x,Fi+, . . . ,Fp)

∂ε
∣
ε=
.

Higher order partial derivatives can be found with the
corresponding higher order von Mises expansions. For
details, examples, and applications see Filippova (),
Reeds (), and Fernholz ().

Statistical Functionals and the Bootstrap
Statistical functionals played a key role in the development
of the bootstrap (see 7Bootstrap Methods) introduced by
Efron ().�e “plug in” principle of Efron is essentially
the study of a statistic in the setting of statistical func-
tionals. A�er the bootstrap was introduced, the functional
derivatives provided the answer for one of the basic asymp-
totic questions regarding the consistency of the bootstrap
estimators T (F∗n ). Does the bootstrap work when the von
Mises method works?�at is, does
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√
n(T(Fn) − T(F))

D
Ð→N(, σ ) imply

√
n (T (F∗n ) − T(Fn))

D
Ð→N(, σ ) ?

�e a�rmative answer was given by R. Gill () where
he used von Mises expansions with Hadamard derivatives
to show the asymptotic consistency of the bootstrap.

Smoothed Versions of Statistical
Functionals
Using the convolution of Fn with a smooth df kernel
sequence Kn we can obtain the smoothed version F̃n(x) =

n ∑

n
i= Kn(x − Xi) of Fn. For a given statistical functional

T(Fn) estimating T(F), we can consider the correspond-
ing smoothed functional T(F̃n) which, for continuous
populations, may give a better estimate for T(F). Some
robustness aspects of T(F̃n) can be analyzed through
the in�uence function of T, and under reasonable reg-
ularity conditions for Kn, the 7asymptotic normality of
the smoothed version T(F̃n) can be obtained when T is
Hadamard di�erentiable. See Fernholz (, ).
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Probability and Statistics with Fuzziness
Fuzzy logic and fuzzy sets theory �rst discussed in  by
Zadeh (Zadeh ). In classical sets theory, classi�cations
are precise and the subject either belongs to a set or not. On
the contrary, in fuzzy sets theory, the subject located in the
border both belongs and does not belong to a set simul-
taneously. As a mathematical representation, in classical



Fuzzy Logic in Statistical Data Analysis F 

F

set theory, if the object is the member of a set, it takes
the membership value of ; otherwise it takes the mem-
bership value of . However, in fuzzy logic, objects could
have membership degrees between  and . In fuzzy logic,
for example, a -year-old person could be the member
of both the “young people” set with a membership degree
of . and the “not young people” set with a membership
degree of ..

�e relation between “fuzzy sets theory” and “statistics
and probability theory” is and important research areas.
In probability theory, realization of events is based on the
classical – logic, i.e., an event occurs or does not occur.
When the boundaries of classes that re�ect the events are
precise, such logic is valid. For example, when a dice has
been rolled, the event of “coming up  or ” is a precise
event and it has a precise probability. But the event of
“coming up a little number” is an imprecise event since its
boundaries can not be stated; consequently, its probability
can not be designated. In such situations, using probabil-
ity theory together with fuzzy logic and fuzzy sets theory
provides more admissible results.
Another important utilization of fuzzy logic and fuzzy

sets theory is in statistical data analysis.With improvement
of fuzzy sets theory, many studies have been made to com-
bine statistical analysis methods and fuzzy sets theory. An
analysis in which fuzzy logic is used is more robust than
the classical logic. Furthermore, more reliable results can
be obtained by a fuzzy approach (Rubin ).

�ere are many instances where fuzzy logic is used in
statistical data analysis, including clustering, classi�cation,
regression, 7principal component analysis (PCA), inde-
pendent component analysis (ICA), 7multidimensional
scaling, 7time series, hypothesis tests, and con�dence
intervals (Coppi et al. ; Pop ; Taheri ; Mares
).

Fuzzy Clustering and Classification
Bellman et al. () and Ruspini () are the pioneers
who used fuzzy sets theory in cluster analysis. A�erwards,
many approaches were proposed on the use of fuzzy logic
in cluster analysis. �e most widely used approaches are
based on fuzzy partitioning.
Fuzzy partitioning:�e fuzzy partitioning of the data

set X = x, x, . . . , xn into fuzzy clusters C,C, . . . ,Cc( <
c < n) is denoted by the matrix Uf = (uij) = (µCi(xj)),
which satis�es the conditions given below:

 ≤ uij ≤ , ∀i ∈ {, , . . . , c}, ∀j ∈ {, , . . . ,n}, ()

 <
n

∑
j=
uij < n, ∀i ∈ {, , . . . , c} ()

where uij is the membership degree of the element xj to
the cluster Ci. In most cases, the following normaliza-
tion condition as well as () and () is required for fuzzy
partitioning:

c

∑
i=
uij = , ∀j ∈ {, , . . . ,n}. ()

�e �rst solution algorithms for the clustering approach
based on fuzzy partitioning were proposed byDunn ()
and improved by Bezdek ().
In the most widely used fuzzy c-means (FCM) algo-

rithm, the optimal fuzzy partitioning is obtained by mini-
mizing the following function:

Jf (Uf , v, . . . , vc) =
c

∑
i=

n

∑
j=
umij d(vi, xj)

 ()

where c is the predetermined number of clusters, d(vi, xj)
is the distance between the cluster center vi and the object
xj, and m(m > ) is the fuzziness index. �e solution
of ()–() is found through the iterative computation of
membership degrees and cluster centers:

uij =
d(vi, xj)−/(m−)
c
∑
t=
d(vt , xj)−/(m−)

, i = , . . . , c; j = , . . . ,n ()

vi =

n
∑
j=
umij xj

n
∑
j=
umij
, i = , . . . , c ()

�e FCM algorithm is successful in �nding spherical-
shaped cluster structures.�e Gustafson-Kessel algorithm
based on FCM can �nd ellipsoidal cluster structures by
using a covariance matrix. Fuzzy maximum likelihood
estimation (FMLE) and the expectation maximization
(EM) algorithms are also widely used fuzzy clustering
algorithms (Doring et al. ).
Another approach for using fuzzy logic in cluster anal-

ysis is based on fuzzy neighborhood relations (FDBSCAN,
FJP, FN-DBSCAN). In such an approach, the data are han-
dled as fuzzy points and the classes are formed as crisp
level sets based on the fuzziness level. Di�erent clustering
structures are obtained in di�erent fuzziness levels. �is
approach could also be conceived as hierarchical cluster-
ing.�e main point is to �nd the optimal hierarchy level
and the optimal cluster structure convenient to this hier-
archy level. In the fuzzy joint points based algorithms such
as FJP, NRFJP, MFJP, such a problem has been solved by
using an integrated cluster validity mechanism (Nasibov
and Ulutagay ). �e superiority of such algorithms
over the FCM-based algorithms is not only the possibility
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for �nding arbitrarily shaped rather than only spherical-
shaped clusters, but also not needing to determine the
number of clusters in advance. On the other hand, using a
fuzzy neighborhood relation among data can increase the
robustness of clustering algorithm (Nasibov and Ulutagay
).
Classi�cation is referred to as a supervised classi�-

cation while clustering is referred to as an unsupervised
classi�cation. In a fuzzy supervised classi�cation, the fuzzy
partitionX of elements is given in advance. Onemust spec-
ify the class of a datum x∗ which is handled a�erward. To
do this, many approaches are used, including fuzzy infer-
ence system (FIS), fuzzy linear discriminant analysis, fuzzy
k-nearest neighbors, and fuzzy-Bayesian classi�er.

Fuzzy Regression
Fuzzy regression analysis is done by applying fuzzy logic
techniques to classical regression models.�ere is no need
for the assumptions of classical regression to hold for fuzzy
regression. Moreover, fuzzy regression does not require
normally distributed data, stability tests, or large samples.
Classical regression analysis is able to respond to the needs
of numerical science working with precise information.
But in the social sciences, in which the personal percep-
tions are important, it is not easy to estimate the assumed
appropriate and consistent estimators, because the con-
cerned data are composed of imprecise, i.e., fuzzy data. In
such situations, fuzzy logic can provide approximate ideas
to reach adequate conclusions. �ere are various fuzzy
regression models based on either fuzziness of the val-
ues of independent/dependent variables or fuzziness of the
regression function (Näther ).
Usually, the fuzzy regression equation is as follows:

ỹi = b̃ ⊕ b̃ ⊙ x̃i ⊕ . . . ⊕ b̃p ⊙ x̃ip, i = , . . . ,n ()

where ⊕ and ⊙ are addition and multiplication processes
on fuzzy numbers, (b̃, b̃, . . . , b̃p) are fuzzy regression
coe�cients, ỹi is fuzzy response, and (x̃i, x̃i, . . . , x̃ip) are
fuzzy explanatory variables.

�e �rst study of fuzzy logic in regression analysis was
made by Tanaka as fuzzy linear regression model (Tanaka
et al. , , ). InTanaka’s approach, regression line
is formed as a fuzzy linear function of data. Linear pro-
gramming has been used to determine the parameters of
this fuzzy function.
Another approach to fuzzy logic in regression analysis

minimizes the sum of squares error between the observed
and the predicted data which take fuzzy values. In deter-
mining the distance between fuzzy data, various fuzzy
distances can be used and various models can be con-
structed (Diamond ; D’Urso ; Kim and Bishu
; Nasibov ).

As a third approach, Fuzzy c-Regression Models
(FcRM), which arose from the technique of fuzzy clus-
tering application on regression, can be speci�ed. �is
approach, also called the switching regression, was pro-
posed by Hathaway and Bezdek (Hathaway and Bezdek
). In this approach, all data are partitioned into distinct
clusters since it is easier to express the structurewith partial
lines instead of a single regression function. �e process
works as in the FCM algorithm.�e only di�erence is that,
not only the membership degrees, but also the parame-
ters of regression lines of the clusters are updated instead
of cluster centers.�e optimal value of the parameters has
been found using the weighted least squares approach. For
synthesis of the results, Fuzzy Inference Systems (FIS) such
asMamdani, Takagi-Sugeno-Kang (TSK), etc., can be used
(Jang et al. ).

Fuzzy Principal Component Analysis
7Principal component analysis (PCA) is a preferred anal-
ysis method to reduce the dimension of the feature space
and to extract information. PCA determines the linear
combinations that describe maximum variability among
the original data measurements. However, it is in�uenced
by7outliers, loss of data, and poor linear combinations. To
resolve this problem, PCA models are created using fuzzy
logic and the results are handledmore e�ciently than clas-
sical principal component analysis (Sarbu and Pop ).
As with fuzzy regression, whole data sets are divided into
fuzzy subsets in order to create better PCA models.�us,
the in�uence of outliers, which have minimum member-
ship degree to clusters, is reduced.

�e fuzzy covariance matrix for cluster Ai is con-
structed as follows:

C(i)kl =

n
∑
j=

[Ai(xj)](xjk − x̄k)(xjl − x̄l)

n
∑
j=

[Ai(xj)]
, ()

whereAi(xj) indicates themembership degree of an object
xj to the cluster Ai and is inversely proportional with the
distance between the object and the independent compo-
nent.
One of the �rst studies about the fuzzy PCA was per-

formed by Yabuuch andWatada in the construction of the
principal component model using fuzzy logic for the ele-
ments in the fuzzy groups (Yabuuch andWatada ).�e
fuzzy PCA allows us to analyze the features of vague data
samples. Hence, the fuzzy PCA gives more reliable results.
A�erwards, the local fuzzy PCA method is used to reduce
the dimension of feature vectors e�ectively. In thismethod,
data space is partitioned into clusters using fuzzy clustering
and thenPCA is applied by constructing a fuzzy covariance
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matrix (Lee ). In the study performed by Hsieh and
Yang, fuzzy clustering is applied to �nd the hidden infor-
mation in a DNA sequence by combining PCA and fuzzy
adaptive resonance theory (fuzzy-ART) (Hsieh et al. ).

Fuzzy Independent Component Analysis
�e recently developed andwidely used independent com-
ponent analysis (ICA)method is used to �nd linear formof
non-Gaussian and statistically independent variables, and
to extract information from databases (Hyvarinen et al.
). ICA is closely related to the blind source separation
(BSS) method.�e measurements x = (x, x, . . . , xn) of
m unknown source signals (s = (s, s, . . . , sm)) composed
by unknown linear mixtures (A) are performed:

x = As. ()

For the computational ease, m = n is assumed. Hence,
the matrix A is estimated by using the advantage of being
an independent and non-Gaussian of source data and,
using the matrix W (inverse of A), source signals can be
calculated from the equation below:

s =Wx. ()

�e most widely used ICA algorithm is the Fast-ICA
algorithm in terms of ease of use and speed. Honda et al.
() improved the Fast-ICA algorithm as the fuzzy Fast-
ICA algorithm. In the fuzzy Fast-ICA algorithm, the Fuzzy
c-Varieties (FCV) clustering method, which separates data
into linear clusters using linear variability, is applied and
then the local independent components in the fuzzy clus-
ters are estimated by Fast-ICA algorithm.
Honda and Ichihashi () have also proposed the

fuzzy local ICA model as the improved version of the
local ICA model. In the fuzzy local ICA model, fuzzy
clustering, PCA, and multiple regression analysis are used
simultaneously.
Gait biometrics have great advantages in comparison

with the widely used biometrics such as face, �ngerprint,
and iris. In order to recognize gait, Lu et al. have devel-
oped a simple method based on human silhouette using
genetic fuzzy vector machine (GFVM) and independent
component analysis (Lu and Zhang ).

Fuzzy Time Series
�e term “fuzzy time series” was �rst coined by Song and
Chissom (Song and Chissom ab, ).
LetY(t) ∈ R(t = . . . , , , , . . .) be the universe of dis-

course on which fuzzy sets fi(t)(i = , , . . .) are de�ned.
Let F(t) be a collection on fi(t)(i = , , . . .).�en, F(t)
is called a fuzzy time series on Y(t)(t = . . . , , , , . . .).
In other words, fuzzy time series F(t) is a chronologi-
cal sequence of imprecise or fuzzy data ordered by time.

Fuzzy time series are regarded as realizations of fuzzy ran-
dom processes. In the fuzzy time series, fuzzy data as well
as time-dependent dynamic relation can be considered as
fuzzy:

F(t) = F(t − ) ○ R̃(t − , t) ()

nth-order fuzzy time series forecasting model, can be rep-
resented as follows:

F(t − ),F(t − ), . . . ,F(t − n)→ F(t) ()

For modeling of fuzzy time series, fuzzy ARMA, ARIMA
processes, or fuzzy arti�cial neural networks are applied
(Tseng et al. ; Zhang et al. ). Fuzzy time series
can be analyzed and forecast by specifying an underlying
fuzzy random process with the aid of generally applicable
numerical methods.

Statistical Hypothesis Tests and
Confidence Intervals
�e main purpose of the traditional hypothesis test is to
separate θ ∈ Θ parameter space into two regions such
as ω and Θ/ω.�e null and alternative hypotheses are as
follows:

⎧⎪⎪
⎨
⎪⎪⎩

H : θ ∈ ω (null hypothesis)
H : θ ∈ Θ/ω, (alternative hypothesis)

()

If the boundaries of ω and Θ/ω regions are assumed to
be fuzzy, the fuzzy hypothesis test can be constructed as
follows (Coppi et al. ):

⎧⎪⎪
⎨
⎪⎪⎩

H : µω(θ), (null hypothesis)
H : µΘ/ω(θ), (alternative hypothesis)

()

Data handled in daily life are usually imprecise, i.e., fuzzy.
For instance, water level of the river may not be fully mea-
sured due to �uctuations. In such a case, the well-known
crisp hypothesis tests will not give reliable results.
Di�erent approaches related to statistical hypothesis

tests have been developed using fuzzy sets theory. First,
Casals et al. (ab) and Casals and Gil () have devel-
oped the 7Neyman-Pearson Lemma and Bayes method
for statistical hypothesis tests with fuzzy data. �ere are
two approaches to analyze statistical hypothesis tests: ()
observations are ordinary (crisp) and hypotheses are fuzzy
(Arnold ), () both observations and hypotheses are
fuzzy (Wu ).�ere may be some problems in applying
classical statistical hypothesis to fuzzy observations. For
instance, θ might be “approximately one” or θ might be
“very large” and so on, where θ is any tested parameter.
Bayes methodmight be useful for such types of hypothesis
tests (Taheri and Behboodian ). However, if the fuzzy
data are observed, the most appropriate method will be to
apply fuzzy set theory to establish the statistical model.
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In some approaches to using fuzzy logic in hypoth-
esis tests, the estimators as fuzzy numbers are obtained
using con�dence intervals. If the estimator is a fuzzy num-
ber, the test statistic in hypothesis testing will also be a
fuzzy number.�us, the critical value at the hypothesis test
is a fuzzy number. �e result of this approach might be
more realistic than a crisp hypothesis test (Buckley ).
�ese results may be evaluated with probability theory
(Hryniewicz ).
Fuzzy sets theory through the fuzzy random variables

is applied to statistical con�dence intervals for unknown
fuzzy parameters. When the sample size is su�ciently
large, an approximate fuzzy con�dence interval could be
constructed through a central limit theorem (Wu ). In
case of fuzzy data, an interval estimation problem is formu-
lated and the relation between fuzzy numbers and random
intervals is found in (Coral et al. ; Gil ).
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Fuzzy Set Theory and Probability
Theory: What is the Relationship?

Lotfi A. Zadeh
Professor Emeritus
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Relationship between probability theory and fuzzy set the-
ory is associated with a long history of discussion and

debate. My �rst paper on fuzzy sets was published in 
(Zadeh ). In a paper published in , Loginov sug-
gested that the membership function of a fuzzy set may
be interpreted as a conditional probability (Loginov ).
Subsequently, related links to probability theory were
suggested and analyzed by many others (Coletti and
Scozzafava ; Freeling ; Hisdal a, b; Nurmi
; Ross et al. ; Singpurwalla and Booker ;
Stallings ; �omas ; Viertl ; Yager ).
Among such links are links to set-valued random vari-
ables (Goodmanm and Nguyen ; Orlov ; Wang
and Sanchez ) and to the Dempster–Shafer theory
(Dempster ; Shafer ). A more detailed discussion
of these links may be found in my l paper “Probabil-
ity theory and fuzzy logic are complementary rather than
competitive,” (Zadeh ).
In reality, probability theory and fuzzy set theory are

distinct theories with di�erent agendas. Scienti�c theo-
ries originate in perceptions. Primitive perceptions such as
perceptions of distance, direction, weight, loudness, color,
etc. crystallize in early childhood. Among basic percep-
tions which crystallize at later stages of development are
those of likelihood, count, class, similarity and possibil-
ity. Fundamentally, probability theory may be viewed as a
formalization of perceptions of likelihood and count; fuzzy
set theory may be viewed as a formalization of percep-
tions of class and similarity; and possibility theory may
be viewed as a formalization of perception of possibility.
It should be noted that perceptions of likelihood and pos-
sibility are distinct. Fuzzy set theory and possibility theory
are closely related (Zadeh ). A key to a better under-
standing of the nature of the relationship between proba-
bility theory and fuzzy set theory is the observation that
probability theory is rooted in perceptions of likelihood
and count while fuzzy set theory is rooted in perceptions
of class and similarity.
In debates over the nature of the relationship between

probability theory and fuzzy set theory, there are four
schools of thought. �e prevailing view within the
Bayesian community is that probability theory is su�cient
for dealing with uncertainty and imprecision of any kind,
implying that there is no need for fuzzy set theory. An elo-
quent spokesman for this school of thought is an eminent
Bayesian, Professor Dennis Lindley. Here is an excerpt of
what he had to say on this subject.

7 The only satisfactory description of uncertainty is probability.

By this I mean that every uncertainty statement must be in

the form of a probability; that several uncertainties must be

combined using the rules of probability; and that the calculus

of probabilities is adequate to handle all situations involving
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uncertainty… probability is the only sensible description of

uncertainty and is adequate for all problems involving uncer-

tainty. All othermethods are inadequate…anything that can

be done with fuzzy logic, belief functions, upper and lower

probabilities, or anyotheralternative toprobability canbetter

be done with probability (Lindley ).

�e second school of thought is that probability the-
ory and fuzzy set theory are distinct theories which are
complementary rather than competitive.�is is the view
that is articulated in my l Technometrics paper (Zadeh
).�e third school of thought is that standard proba-
bility theory, call it PT, is in need of generalization through
addition to PT of concepts and techniques drawn from
fuzzy set theory and,more generally, from fuzzy logic, with
the understanding that fuzzy set theory is a branch of fuzzy
logic. Basically, fuzzy logic, FL, is a precise system of rea-
soning, computation and deduction inwhich the objects of
discourse are fuzzy sets, that is, classes in which member-
ship is a matter of degree.�us, in fuzzy logic everything
is, or is allowed to be, a matter of degree.
It is important to observe that any bivalent-logic-based

theory, T, may be generalized through addition of con-
cepts and techniques drawn from fuzzy logic. Such gen-
eralization is referred to as FL-generalization. �e view
that standard probability theory, PT, can be enriched
through FL-generalization is articulated in my  paper
“Toward a perception-based theory of probabilistic rea-
soning” (Zadeh ),  paper “Toward a general-
ized theory of uncertainty (GTU) – an outline” (Zadeh
) and  paper “Generalized theory of uncertainty
(GTU) – principal concepts and ideas” (Zadeh ).�e
result of FL-generalization, call it PTp, is a generalized
theory of probability which has a key capability – the capa-
bility to deal with informationwhich is described in a natu-
ral language and, more particularly, with perception-based
probabilities and relations which are described in a natural
language. What is not widely recognized is that many, per-
haps most, real-world probabilities are perception-based.
Examples: What is the probability that Obama will suc-
ceed in solving the �nancial crisis? What is the probability
that there will be a signi�cant increase in the price of oil
in the near future? Such probabilities are perception-based
and non-numerical. Standard probability theory provides
no facilities for computation and reasoning with non-
numerical, perception-based probabilities.

�e fourth school of thought is that FL-generalization
of probability theory should be accompanied by a shi� in
the foundations of probability theory frombivalent logic to
fuzzy logic.�is is a radical view which is put forth in my

 paper “Probability theory and fuzzy logic – a radical
view” (Zadeh ).
Is probability theory su�cient for dealing with any

kind of uncertainty and imprecision? Professor Lindley’s
answer is: Yes. In a paper published in  entitled “Is
probability theory su�cient for dealing with uncertainty
in AI: A negative view,” (Zadeh ) I argued that the
answer is: No. In contradiction to Professor Lindley’s asser-
tion, here are some simple examples of problems which do
not lend themselves to solution through the use of standard
probability theory.

In these examples X is a real-valued variable.
X is larger than approximately a
X is smaller than approximately b

What is the probability that X is approximately c?

Usually X is larger than approximately a
Usually X is smaller than approximately b

What is the probability that X is approximately c?

Usually X is much larger than approximately a
Usually X is much smaller than approximately b

What is the probability that X is approximately c?
What is the expected value of X?

Usually it takes Robert about an hour to get home
from work
Robert le� work at about  pm

What is the probability that Robert is home at :l pm?

In these examples, question-relevant information is
described in natural language. What these examples
underscore is that, as was alluded to earlier, standard prob-
ability theory does not provide methods of deduction and
computation with information described in natural lan-
guage. Lack of this capability is a serious limitation of
standard probability theory, PT. To add this capability to
PT it is necessary to FL-generalize PT through addition to
PT of concepts and techniques drawn from fuzzy logic.
What would be gained by going beyond FL-generalizat

ion of PT, and shi�ing the foundations of PT from bivalent
logic to fuzzy logic?�ere is a compelling reason for such
a shi�. At this juncture, most scienti�c theories, including
probability theory, are based on bivalent logic. In bivalent-
logic-based theories, the basic concepts are de�ned as biva-
lent concepts, with no shades of truth allowed. In reality,
most basic concepts are fuzzy, that is, are amatter of degree.
For example, in probability theory the concept of indepen-
dence is de�ned as a bivalent concept, meaning that two
events A and B are either independent or not independent,
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with no degrees of independence allowed. But what is quite
obvious is that the concept of independence is fuzzy rather
than bivalent.�e same applies to the concepts of event,
stationarity and more generally, to most other basic con-
cepts within probability theory. A shi� in the foundations
of probability theory would involve a rede�nition of biva-
lent concepts as fuzzy concepts. Such rede�nition would
enhance the ability of probability theory to serve as amodel
of reality.
What is widely unrecognized at this juncture is

that (a) the capability of probability theory to deal
with real-world problems can be enhanced through FL-
generalization. Even more widely unrecognized is that (b)
the ability of probability theory to serve as a model of
reality can be further enhanced through a shi� in the foun-
dations of probability theory from bivalent logic to fuzzy
logic. But as wemove further into the age of machine intel-
ligence and automated decision-making the need for (a)
and (b) will become increasingly apparent. I believe that
eventually (a) and (b) will gain acceptance.
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Fuzzy Sets: An Introduction

Madan Lal Puri
Professor Emeritus
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Some of the basic properties and implications of the con-
cepts of fuzzy set theory are presented. �e notion of a
fuzzy set is seen to provide a convenient point of depar-
ture for the construction of a conceptual framework which
parallels in many respects the framework used in the case
of ordinary sets but is more general than the latter. �e
material presented is from the basic paper of Zadeh ()
who introduced the notion of fuzzy sets.�e reader is also
referred to Rosenfeld () for a brief survey of some of
the concepts of fuzzy set theory and its application to pat-
tern recognition (see7PatternRecognition, Aspects of and
7Statistical Pattern Recognition Principles).

Introduction
In everyday life we o�en deal with imprecisely de�ned
properties or quantities–e.g., “a few books,” “a long story,”
“a popular teacher,” “a tall man,” etc. More o�en than not,
the classes of objects which we encounter in the real physi-
cal world do not have precisely de�ned criteria ofmember-
ship. For example, consider the class of animals.�is class

clearly includes dogs, horses, birds, etc. as itsmembers, and
clearly excludes rocks, �uids, plants, etc. However, such
objects as star�sh, bacteria, etc. have an ambiguous status
with respect to the class of animals.�e same kind of ambi-
guity arises in the case of a number such as  in relation to
the “class” of all numbers which are much greater than .
Clearly, the class of all real numbers which are much

greater than , or “the class of tall men” do not consti-
tute classes in the usual mathematical sense of these terms.
Yet, the fact remains that such imprecisely de�ned “classes”
play an important role in human thinking, particularly,
in the domain of pattern recognition, communication of
information, decision theory, control theory and medical
diagnosis, among others.

�e purpose of this note is to provide in a preliminary
way some of the basic properties and implications of a con-
cept which is being used more and more in dealing with
the type of “classes”mentioned above.�e concept in ques-
tion is that of a “fuzzy set” with a continuum of grades of
membership, the concept introduced by Zadeh () in
order to allow imprecisely de�ned notions to be properly
formulated and manipulated.
Over the past – years there has been a tremendous

growth of literature on fuzzy sets amounting bynow to over
, papers and several textbooks; there is even a journal
devoted to this subject.

�is note is intended to provide a brief survey of some
of the basic concepts of fuzzy sets and related topics.
We begin with some basic de�nitions.

Definitions
LetX be a space of points (objects), with a generic element
of X denoted by x.�us, X = {x}.
A fuzzy set (class)A inX is characterized by amember-

ship (characteristic) function fA(x) which associates with
each point x in X a real number in the interval [, ], with
the value of fA(x) at x representing the “grade of member-
ship” or “the degree of membership” of x in A. �e key
idea in fuzzy set theory is that an element has a “degree
of membership” in a fuzzy set, and we usually assume that
this degree is a real number between  and .�e nearer the
value of fA(x) to unity, the higher the degree of member-
ship of x in A. In the case of the “fuzzy set” of tall men,
the elements are men, and their degrees of membership
depend on their heights; e.g., a man who is  � tall might
have degree , a man who is   � tall might have degree ,
and men of intermediate heights might have intermediate
degrees. Analogous remarks apply to such fuzzy sets as the
set of young women, the set of rich people, the set of �rst
ratemathematicians, and so on.WhenA is a set in the ordi-
nary sense of the term, its membership function can take
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on only two values  and , with fA(x) =  if x ∈ A or 
if x /∈ A.�us, in this case, fA(x) reduces to the familiar
characteristic function or indicator function of a so-called
crisp set A.
It may be noted that the notion of a fuzzy set is com-

pletely nonstatistical in nature, and the rules which are
commonly used for manipulating fuzzy set memberships
are not the same as the rules formanipulating probabilities.

The Algebra of Fuzzy Subsets
�e rules for combining and manipulating fuzzy subsets
of X (Blurrian algebra) should reduce to the rules of
ordinary subset algebra when subsets are crisp.�is moti-
vates the fuzzy subset algebra introduced by Zadeh (),
where ≤ , sup (∨) and inf (∧) play the roles of ⊆ , ∪, and ∩,
respectively. We say that

. A fuzzy set is empty i� (if and only if) its membership
function is ≡  on X .

. Two fuzzy sets A and B are equal (and we write A = B)
i� fA(x) = fB(x) ∀ x ∈ X . (Instead of writing fA(x) =
fB(x) ∀ x ∈ X , we shall write fA = fB).

. �e complement of a fuzzy set A is denoted by A′ and
is de�ned as f ′A =  − fA.

. A ⊂ B i� fA ≤ fB .
. �e union of two fuzzy sets A and B with respect
to respective membership functions fA(x) and fB(x)
is a fuzzy set C, (and we write C = A ∪ B) whose
membership function is related to those of A and B by

fC(x) = max[ fA(x), fB(x)] ∀ x ∈ X i.e., fC = fA∨fB.
(I)

(Note that the union has the associative property, i.e.,
A∪(B∪C) = (A∪B)∪C. Also note that amore intuitive
way of de�ning the union is the following:�e union
of A and B is the smallest fuzzy set containing both A
and B. More precisely, if D is any fuzzy set which con-
tains both A and B, then it also contains the union of
A and B.)

. �e intersection of two fuzzy sets A and B with respect
to their respective membership functions fA(x) and
fB(x) is a fuzzy set C (written as C = A ∩ B) whose
membership function fC is related to those of A and B
by fC(x) = min[ fA(x), fB(x)] ∀ x ∈ X i.e.,

fC = fA ∧ fB .

As in the case of union, it is easy to show that the
intersection of A and B is the largest fuzzy set which
is contained in both A and B.

. A and B are disjoint ifA∩B = C is empty, i.e., fC(x) ≡ 
∀ x ∈ X .

Note that ∩, like union, has the associative property.
Also note that the notion of “belonging” which plays a
fundamental role in the case of ordinary sets, does not
have the same role in the case of fuzzy sets.�us, it is
not meaningful to speak of a point x “belonging” to a
fuzzy set A except in the trivial sense of fA(x) being
positive. Less trivially, one can introduce two levels α
and β ( < α < , β < α,  < β < ) and agree to
say that () x ∈ A if fA(x) ≥ α, () x /∈ A if fA(x) ≤

β; and () x has an intermediate status relative to A, if
β < fA(x) < α.�is leads to a three valued logic with
three truth values: T ( fA(x) ≥ α), F ( fA(x) ≤ β), and
U (β < fA(x) < α). Note that the empty and universal
(fuzzy) subsets are just the constant functions  and ;
they are in fact non-fuzzy!

0

fB

3 4

1

2
fA (x),fB (x)

fAfB

fA

(Curve segments  and  comprise the membership
function of the union (heavy lines). Curve segments
 and  comprise the membership function of the
intersection).
It is clear that these de�nitions are the extensions of

the de�nitions of ⊆ , ∪ and ∩ for ordinary sets. It is also
trivial to verify that they have properties analogous to
those of ⊆ , ∪ and ∩, e.g., A ∪ B is the ∩ of all fuzzy
sets C ∋ A ⊂ C and B ⊂ C; and A ∩ B is the union
of all fuzzy sets C ∋ C ⊂ A and C ⊂ B. Evidently ⊆ is
a partial order relation, and ∪ and ∩ are commutative,
associative and distributive over each other. It is also
easy to extend many of the basic identities which hold
for ordinary sets to fuzzy sets. As examples, we have the
De Morgan’s Laws:

(A ∪ B)′ = A′ ∩ B′ ()
(A ∩ B)′ = A′ ∪ B′. ()

To prove (), for example, note that the le� hand side

=  −max[ fA , fB]

= min [ − fA ,  − fB] = min [ fA′ , fB′]

= Right hand side.
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�is can easily be veri�ed by testing it for two possi-
ble cases: fA(x) > fB(x) and fA(x) < fB(x). Essentially
fuzzy sets in X constitute a distributive lattice with a 
and  (Birko�, ).

. �e algebraic product of A and B is denoted by AB, and
is de�ned in terms of membership functions of A and
B by the relation fAB = fA ⋅ fB. Clearly AB ⊂ A ∩ B.

. �e algebraic sum of A and B is denoted by A + B and
is de�ned as

fA+B = fA + fB

provided fA + fB ≤ .
�us, unlike the algebraic product, the algebraic

sum is meaningful only if fA(x) + fB(x) ≤  ∀ x ∈ X.
. �e absolute di�erence of A and B is denoted by ∣A−B∣

and is de�ned as f∣A−B∣ = ∣fA − fB∣. Note that in the case
of ordinary sets, ∣A − B∣ reduces to the relative com-
plement of A ∩ B in A ∪ B. (∣A − B∣ is the symmetric
di�erence A△ B = (A − B) ∪ (B − A)).

. �e dual of algebraic product is the sum A ⊕ B =

(A′B′)′ = A + B − AB. (Note that for ordinary sets ∩
and the algebraic product are equivalent operations, as
are ∪ and ⊕.)

Convex Combination
By a convex combination of two vectors f and g is usu-
ally meant a linear combination of f and g of the form λf+
( − λ)g where  ≤ λ ≤ .�e mode of combining f and g
can be generalized to fuzzy sets in the following manner:
Let A, B and C be arbitrary fuzzy sets.�e convex com-

bination A, B and C is denoted by (A,B;C) and is de�ned
by the relation

(A,B;C) = CA + C′B

where C′ is the complement of C. In terms of membership
functions, this means

f(A,B;C)(x) = fC(x)fA(x) + [ − fC(x)] fB(x), x ∈ X .

A basic property of the convex combination of A, B and C
is expressed as

A ∩ B ⊂ (A,B;C) ⊂ A ∪ B ∀ C.

�is is an immediate consequence of

min[ fA(x), fB(x)] ≤ λfA(x) + ( − λ)fB(x)
≤ max[ fA(x), fB(x)], x ∈ X

which holds for all λ in [, ]. It is interesting to observe
that given any fuzzy set C satisfying A ∩ B ⊂ C ⊂ A ∪ B,
one can always �nd a fuzzy set D ∋ C = (A,B;D). �e

membership function of this set D is given by

fD(x) =
fC(x) − fB(x)
fA(x) − fB(x)

, x ∈ X .

Functions
What about functions? Let f be a function from X into T,
and letA be a fuzzy subset ofX withmembership function
µA.�en, the image of A under f is de�ned in terms of its
membership function µA by

[ f (µA)](y) ≡

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

sup
f (x)=y

µA(x)∀ y ∈ T i.e., sup
x∈inf−(y)

µA(x)∀ y ∈T

 if f −(y) = /.

Similarly if B is a fuzzy subset of T, then the preimage
or inverse image of B under f is de�ned in terms of its
membership function µB by

[ f −(µB)](x) ≡ µB( f (x)) ∀ x ∈ X i.e., f −(µB)≡ µB ○ f .

Explanation
Let f : X → T. Let B be a fuzzy set in T with membership
µB(y).�e inverse mapping f − induces a fuzzy set A inX
whose membership function is de�ned by

µA(x) = µB(y), y ∈ T

for all x in X which are mapped by f into y.
Consider now the converse problem. Let A be a fuzzy

set in X , and as before, let f : X → T. Question: What is
the membership function for the fuzzy set B in T which is
induced by this mapping? If f is not  : , then an ambi-
guity arises when two or more distinct points in X , say
x and x, with di�erent grades of membership in A, are
mapped into the same point y in T. In this case, the ques-
tion is:What grade of membership in B should be assigned
to y? To resolve this ambiguity, we agree to assign the
larger of the grades of membership to y. More generally,
the membership function for B will be de�ned by

µB( y) = max
x∈f −(y)

µA(x), y ∈ T

where f −(y) = {x; x ∈ X; f (X) = y}. Evidently these def-
initions generalize the standard de�nitions of the image
and the preimage of a subset, and one can verify that these
de�nitions are compatible with fuzzy subset algebra in the
usual ways, e.g., one can show that f and f − have the
following properties:

(a) f − (∨
i∈I
µAi) = ∨

i∈I
f −(µAi)

(b) f − (∧
i∈I
µAi) = ∧

i∈I
f −(µAi)
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also

(c) f (∨
i∈I
µAi) = ∨

i∈I
f (µAi)

(d) f (∧
i∈I
µAi) ≤ ∧

i∈I
f (µAi)

(e) f (µA) ≤ f (µA); f −(µB) = f
−
(µB).

means complement.

(f) f ( f −(µB)) ≤ µB; f −( f (µA)) ≥ µA.

Proof (a): f − (∨
i∈I
µA) = (∨

i∈I
µAi) ○ f = ∨

i∈I
(µAi ○ f ) =

∨
i∈I
f −(µAi) and so on.

(c)

f [∨
i
µAi] (y) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

sup
f (x)=y

[∨
i
µAi] (x)

 if x = f −(y) = /

=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∨
i
sup

x∈f −(y)
[µAi(x)] = ∨i f (µAi)



Fuzzy Relations
�e concept of a relation has a natural extension to fuzzy
sets and plays an important role in the theory of such sets
and their applications, just as it does in the case of ordi-
nary sets. Ordinarily, a relation is de�ned as a set of ordered
pairs, e.g., the set of all ordered pairs of real numbers x and
y such that x ≥ y. In the context of fuzzy sets, a fuzzy rela-
tion in X is a fuzzy set in the product space X × X , e.g.,
the relation denoted by x ≫ y; x, y ∈ R may be regarded
as a fuzzy set A in R, with the membership function of
A, fA(x, y) having the following (subjective) representative
values: fA(, ) = ; fA(, ) = ., fA(, ) = , etc.
More generally, one can de�ne an n–ary fuzzy relation

inX as a fuzzy set A in the product spaceX ×X × . . .×X .
For such relations, the membership function is of the form
fA(x, . . . , xn) where xi ∈ X , i = , . . . ,n.
In the case of binary fuzzy relations, the composition

of two fuzzy relations A and B is denoted by B ○ A, and
is de�ned as a fuzzy relation in X whose membership
function is related to those of A and B by

fB○A(x, y) = sup
v
min[ fA(x, v), fB(v, y)]

= ∨
v
[ fA(x, v) ∧ fB(v, y)]

∀ x, y and v inX . (Note also that this generalizes the usual
de�nition.) Note that the operation of composition has the
associative property: A ○ (B ○ C) = (A ○ B) ○ C.

Convexity
A fuzzy set A is convex i� the sets Γα de�ned by

Γα = {x; fA(x) ≥ α} ()

are convex for all α in the interval (, ].
An alternative and more direct de�nition of convexity

is the following: A fuzzy set A is convex i�

fA[λx + ( − λ)x] ≥ min[ fA(x), fA(x)] ()

for all x and x in X and all λ in [, ].
Note that this de�nition does not imply that the func-

tion fA(x)must be a convex function of x.
It can be seen that the two de�nitions are equivalent

(see Zadeh ).
A basic property of convex fuzzy sets is:

�eorem If A and B are fuzzy convex, then A ∧ B is also
fuzzy convex.

Boundedness
A fuzzy setA is bounded i� the sets Γα = {x; fA(x) ≥ α} are
bounded for all α > ; i.e., for all α > , ∃ a �nite R(α) ∋
∥x∥ ≤ R(α) for all x in Γα .
If A is a bounded set, then for all ε > , ∃ a hyper-

plane H ∋ fA(x) ≤ ε ∀ x on the side of H which does
not contain the origin. For example consider the set Γε =

{x; fA(x) ≥ ε}. By hypothesis this set is contained in a
sphere S of radius R(ε). LetH be any hyperplane support-
ing S. �en, all points on the side of H which does not
contain the origin lie outside or on S, and hence for all such
points fA(x) ≤ ε.

Preliminary
As a preliminary, let A and B be two bounded fuzzy sets
and letH be a hypersurface inR(n) de�ned by the equation
h(x) =  with all points for which h(x) ≥  being on one
side of H and all points for which h(x) ≤  being on the
other side. Let KH be a number dependent onH ∋ fA(x) ≤
KH on one side of H and fB(x) ≤ KB on the other side. Let
MH = inf KH .�e number DH =  −M is called the degree
of separation of A and B by H.
In general one is concerned not with a given hypersur-

face H, but with a family of hypersurfaces {Hλ}, with λ
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ranging over R(m). �e problem then is to �nd a mem-
ber of this family which realizes the highest degree of
separation.
A special case of this problem is one where the Hλ are

hyperplanes inR(n), with λ ranging overR(n). In this case
we de�ne the degree of separation of A and B by

D =  −M where M = inf
H
MH .

Separation of Convex Fuzzy Sets
�e classical separation theorem for ordinary convex sets
states, in essence, that if A and B are disjoint convex sets,
then there exists a separating hyperplane H such that A is
on one side of H and B is on the other side.�is theorem
can be extended to convex fuzzy sets, without requiring
that A and B be disjoint, since the condition of disjoint-
edness is much too restrictive in the case of fuzzy sets. It
turns out that the answer is in the a�rmative.

�eorem Let A and B be bounded convex fuzzy sets
in R(n), with maximal grades MA and MB respectively
i.e., MA = supx fA(x), MB = supxMB(x). Let M be
the maximal grade for the intersection A ∩ B (i.e., M =

supxmin[ fA(x), fB(x)]).�en D =  −M. (D is called the
degree of separation of A and B by the hyperplane H).

In other words, the theorem states that the highest
degree of separation of two convex fuzzy sets that can be
achieved with a hyperplane in R(n) is one minus the maxi-
mal grade in the intersectionA∩B. Zadeh has applied these
types of results in the problems of optimization, pattern
discrimination, etc.

Concluding Remarks
�e concepts of fuzzy sets and fuzzy functions have been
found useful in many applications, notably in pattern
recognition, clustering, information retrieval and systems
analysis, among other areas (cf. Negoita and Ralescu ).
Motivated by some of these applications and related prob-
lems, Puri and Ralescu (, ) introduced the integra-
tion on fuzzy sets and di�erentials of fuzzy functions.�is
led to the study of fuzzy random variables, their expec-
tations, concept of normality for fuzzy random variables
and di�erent limit theorems for fuzzy random variables
(cf. Puri and Ralescu (, , ), Klement, Puri and
Ralescu (, ), and Proske and Puri (a, b and
the references cited in these papers).

About the Author
Professor Puri was ranked the fourth most proli�c statis-
tician in the world for his writings in the top statistical

journals in a  report by the Natural Sciences and Engi-
neering Research Council of Canada. Among statisticians
in universities which do not have separate departments of
statistics, Puri was ranked number one in the world by the
same report. Puri has received a great many honors for
his outstanding contributions to statistics and we mention
only a few. Professor Puri twice received the Senior U.S.
Scientist Award fromGermany’s Alexander vonHumboldt
Foundation, and he was honored by the German gov-
ernment in recognition of past achievements in research
and teaching. Madan Puri has been named the recipient
of the  Gottfried E. Noether Senior Scholar Award
(an annual, international prize honoring the outstanding
statisticians across the globe), for “outstanding contribu-
tions to the methodology and/or theory and teaching of
nonparametric statistics that have had substantial, sus-
tained impact on the subject, its practical applications and
its pedagogy.” For many years Professor Puri has been
highly cited researcher in mathematics according to ISI
Web of knowledge ISI HighlyCited. com According to For
many years Professor Puri has been highly cited researcher
in mathematics according to ISI Web of Knowledge ISI
HighlyCited.Com Professor Puri, his greatest honor came
in  when under the editorship of Professors Peter Hall,
Marc Hallin, and George Roussas, the International Sci-
ence Publishers published “Selected Collected Works of
Madan L. Puri,” a series of three volumes, each containing
about  pages.
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Relationship?
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References and Further Reading
Klement EP, Puri ML, Ralescu DA () Law of large numbers and

central limit theorem for fuzzy random variables. Cybern Syst
Anal :–

Klement EP, Puri ML, Ralescu DA () Limit theorems for fuzzy
random variables. Proc R Soc London :–

Negoita CV, Ralescu DA () Applications of fuzzy sets to system
analysis. Wiley, New York

Proske F, Puri ML (a) Central limit theorem for Banach
space valued fuzzy random variables. Proc Am Math Soc :
–

Proske F, Puri ML (b) Strong law of large numbers for Banach
space valued fuzzy random variables. J Theor Probab :–

Puri ML, Ralescu DA () Integration on fuzzy sets. Adv Appl
Math :–

Puri ML, Ralescu DA () Differentials of fuzzy functions. J Math
Anal Appl :–



Fuzzy Sets: An Introduction F 

F

Puri ML, Ralescu DA () The concept of normality for fuzzy
random variables. Ann Probab :–

Puri ML, Ralescu DA () Fuzzy random variables. J Math Anal
Appl :–

Puri ML, Ralescu DA () Limit theorems for fuzzy martingales.
J Math Anal Appl :–

Rozenfeld A () How many are a few? Fuzzy sets, fuzzy numbers,
and fuzzy mathematics. Math Intell :–

Singpurwalla ND, Booker JM () Membership functions and
probability measures of fuzzy sets. J Am Stat Assoc :
–

Zadeh LA () Fuzzy sets. Inform Contr :–





G
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Introduction
For the gamma random variable X there is the probability
function

Pr(X = x; s, a, ρ) =


aΓ(ρ)
(
x − s

a
)

ρ−
exp(

s − x

a
)

(s < x <∞; a, ρ > ),

where a scale, ρ shape, and s location parameter. �e
gamma distribution is unimodal but may be inverse
J-shaped.�e moments are

Mean : µ
′
 = aρ + s, variance : µ = a


ρ,

Skewness :
√

β = µ/µ
/
 = /

√
ρ,

Kurtosis : β = µ/µ

 =  + /ρ.

If a = , and s = , the distribution becomes the exponential
distribution. If s = , a = , and ρ = ν/, the distribu-
tion becomes the familiar χν distribution with ν degree of
freedom.

Pχ
ν
χ =

χ
ν
−e−χ/

ν/Γ(ν/)
χ ≥ .

Also the gamma distribution is a Type III in the Pearson
manifold of distributions.

�e Fig.  shows distribution functions of s = , a = 
and ρ = ,  and .

Estimation
�e maximum likelihood estimators â and ρ̂ for the two
parameter gamma distribution (s = ) are the solution to
the two equations

ln(ρ̂) − ψ(ρ̂) = ln(A/G) (ψ(x) = d ln Γ(x)/dx)
ρ̂â = A

whereA = ∑Xj/n, andG =
n
√
X,X,⋯,Xn. For the three

parameter case, the equations to be solved are

ψ(ρ̂) + ln(ŝ) = n−
n

∑
j=
ln(Xj − ŝ),

n
−

N

∑
j=

(Xj − ŝ) = âρ̂,

n
−

N

∑
j=

(Xj − ŝ)
−
= (â(ρ̂ − ))−.

We must be aware that the moments of maximum likeli-
hood estimators exist if ρ >  for the mean, ρ >  for the
variance, ρ >  for skewness and ρ >  for kurtosis.

�e moment estimators in the  parameter case are
simple in form and are

a
∗

ρ
∗
= m, a

∗
p
∗
= m,

where m is the sample mean, m = ∑
n
j=(Xj)/n =

X̄ and m = ∑
n
j=(Xj − X̄)


/n for a random sample

X,X,⋯,Xn. For the three parameter gamma distribution
we use /

√
ρ∗=sample skewness to determine ρ.

Properties of Estimators
Johnson et al. () states “Estimation of parameters of
gamma distribution has also received extensive attention
in the literature in the last two decades. �e contribu-
tions of Bowman and Shenton and of A.C. Cohen and
his coworkers should be particularly mentioned. Bowman
and Shenton () monograph provides detailed analy-
sis of maximum likelihood estimators for two-parameter
gamma distribution with emphasis on the shape param-
eter and presents valuable information on distributions
and moments of these estimators, including their joint
distributions. Careful discussion of estimation problems
associated with the three-parameter gamma density is also
presented.⋯⋯�e authors also deal with the moments of
themoments estimators.�e list of references in themono-
graph covers the development of the authors’ work on this
area from  onward.”
Cohen and Whitten () introduced mixed maxi-

mum likelihood approach, including the use of the smallest
term of the sample; this approach avoids the di�culty that

Miodrag Lovric (ed.), International Encyclopedia of Statistical Science, DOI ./----,
© Springer-Verlag Berlin Heidelberg 
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Gamma Distribution. Table  Gamma distribution sampling
and negative skewness (µ/µ

/
 )

√
b > 

√
b < 

ρ n S F S̄ S F S̄

  , ,    

  ,     

  , , ,   

  ,  ,   

  , , ,  , 

  ,  ,   

Sgives the number of solutions subscribing to the tolerance. F gives the
number of failures. S- gives the number of cases when no solution was
found after  iterates.

the usual maximum likelihood method, which moments
only exist if ρ >  for the mean, ρ >  for the variance.
ρ >  for skewness and ρ >  for kurtosis. Balakrishanan
and Cohen () introduced estimators with an emphasis
on modi�ed estimators and censored samples.
For the details of methods to solve the equations see

Bowman and Shenton () and Johnson et al. ().

Negative Skewness in Gamma Sampling
With various values of ρ, samples of size  and  were
taken and skewness

√
b analyzed. In Table  the analysis is

given showing the frequency of negative skewness.
We note: (a) No solutions were found when the sam-

ple skewness was negative. �e failure rate in this case
increases with large ρ and small n. (b) For small n, the fail-
ure rate (F) is high for both small and large ρ. (c) For large

ρ, the abortive rate (S̄) is high, anddoubtlesswould become
higher with more stringent tolerance.
A modi�ed model has been given by Cheng and

Traylor () for which negative skewness is included in
as a possibility.�e new modi�ed gamma distribution is

g(x; µ, σ, λ) =


σλΓ(λ)
{λ

−
[ +

λ(λ − µ)

σ
]}

λ−−

exp{−


λ
[ +

λ(x − µ)

σ
]} .

(σ > ; λ ≠  and  + λ(x − µ)/σ > )

In our notation

ρ = /λ
, a = σ ∣ λ ∣, s = µ − σλ

−.

Moreover
√

β = /
√

ρ = skewness.

Multiple Parameter Distributions and
Mixtures
Everett and Hand () study mixtures of Poisson distri-
butions, and binomial distributions, giving, possible solu-
tions. Bowman and Shenton refer to Poisson mixtures
(, , ). A global approach to the subject is due
to Karlis and Xekalaki () enlarging the concept of the
Poissonian.�e generalization of ideas could be applied to
continuous univariate distributions.
Other works may be mentioned such as Bowman

and Shenton (), distribution of ratio of gamma vari-
ate, Hirose (), three parameter gamma distribution,
Revfeim (), inverse gamma.

Conclusion
�e extensive paper of Karlis andXekalaki () opens up
many new concepts for research. Simulation studies using
computer facilities provide a powerful tool. In addition
there is the remarkable power of symbolic codes such as
Maple, Mathematica, etc.

About the Author
For biographies of both authors see the entry 7Omnibus
Test for Departures from Normality.

Cross References
7Bivariate Distributions
7Chi-Square Distribution
7Dispersion Models
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7Multivariate Statistical Distributions
7RelationshipsAmongUnivariate Statistical Distributions
7Statistical Distributions: An Overview
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A Gaussian process (GP) speci�es a distribution for val-
ues over a set (typically Rn) which could be an interval
of time or a region of space, but could also be more arbi-
trary, such as the space of a set of explanatory variables. It
is o�en used for modeling quantities that are spatially or
temporally correlated, such as rainfall. In this way it dif-
fers from standard statistical models where the data are
assumed to be independent given the model; here the data
are assumed to be correlated and the correlation structure
is part of the model as well. Applications are widespread,
including time series, geostatistics (where it �rst appeared
as kriging), and general approximation of functions. GPs
have also become popular inmachine learning, where they
are used for regression and classi�cation tasks.
A Gaussian process is a continuously-de�ned process

such that its values at any �nite collection of locations
jointly have a multivariate Gaussian distribution (e.g.,
Cressie ). �is model is highly �exible and can be
used for nonparametric modeling. In practice, two com-
mon simplifying assumptions are o�en made: stationarity
and isotropy.�e idea of stationarity is that the distribu-
tion of the process does not depend on location, i.e., all
points have the same mean and marginal variance, and
the joint distribution of any �nite collection of points is
invariant to translation. Sometimes the marginal mean of
the �eld is not constant, so the mean is modeled separately
(such as with a linear model or a low-order polynomial)
and then the de-trended �eld is treated as a stationary GP.
A stationary �eld can also be isotropic, in that the covari-
ance between any two points depends only on the dis-
tance between them (rather than also depending on the
orientation).
Examples of Gaussian Processes include the Wiener

process and the Ornstein-Uhlenbeck process (Cox and
Miller ). AWiener process is amean-zero process such
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that all increments of the process (the di�erence in values
at two points) are independent and normally distributed
with mean zero and variance proportional to the length of
the increment. A generalization allows for a dri� term µ.
�is process can be represented via a stochastic di�erential
equation:

dW(t) = µdt + σZ(t)
√
dt,

where W(t) is the value of the process at time t ∈ R,
σ  is a variance term, and Z(t) are independent standard
normals. An Ornstein-Uhlenbeck process is related, but
it is a mean-reverting process, so the distribution of its
increments depends on the current value of the process:

dX(t) = −βX(t)dt + σZ(t)
√
dt = −βX(t)dt + dW(t),

where W(t) is a Wiener process and β controls the rate
of mean reversion. An Ornstein-Uhlenbeck process is sta-
tionary, while a Wiener process is not.
If we observe a Gaussian process X(s) at a set of loca-

tions s, . . . , sn ∈ S , we can write its distribution in terms of
itsmean function µ(s) and its covariance functionC(si, sj)
as:

X ∼MVN (µ,Σ),

whereX = (X(s), . . . ,X(sn)), µ = (µ(s), . . . , µ(sn)) and
Σ is the variance-covariancematrix with elementsC(si, sj).
Under the typical assumptions of stationarity and isotropy,
µ(si) = µ for all i, and the elements of the covariance
matrix simplify to:

C(si, sj) = θρ(d/θ),

where θ is themarginal variance, d is the distance between
si and sj, ρ(⋅) is a correlation function, and θ speci�es
the range of spatial dependence.�e correlation function
must be nonnegative de�nite. Common parameterizations
of the correlation for spatial and functional applications
include:

spherical
correlogram

ρ(d) = ( − 
d +


d

) I{≤d≤}(d)

exponential
correlogram

ρ(d) = e−d

Gaussian
correlogram

ρ(d) = e−d


Matérn class ρ(d) = [(d/)νKν(d)] /Γ(ν)

where I{≤d≤}(d) is the indicator function which is one
when  ≤ d ≤  and zero otherwise, Kν is a modi�ed
Bessel function of the second kind and ν is a smoothness
parameter.�e relationship between the smoothness of the
realizations and the behavior of the correlation function

near zero is given in (Stein ), along with further dis-
cussion of theoretical and practical properties of di�erent
choices of correlation functions. In the Bayesian paradigm,
conjugate priors exist for the simplerGPmodels (Hjort and
Omre ), and7Markov chainMonte Carlo can be used
for the general case.
With the above formulation, the process interpolates

the data. It is straightforward to include an additive ran-
dom noise term in the model. An equivalent formulation
arose in geostatistics, by thinking of including additional
variability from a separate small-scale process, with the
resulting term referred to as the nugget (Cressie ).
In practice, a convenient way of obtaining a Gaus-

sian process is by convolving a white noise process with
a smoothing kernel (Barry and Ver Hoef ; Higdon
). For locations s ∈ S , let W be a Wiener process,
and let k(⋅; ϕ) be a kernel, possibly depending on a low
dimensional parameter ϕ.�en we can obtain a Gaussian
process by:

X(s) = ∫
S
k(u − s; ϕ)dW(u) . ()

�e resulting covariance function depends only on the
displacement vector ds,s′ = s − s′, for s, s′ ∈ S, i.e.,

cov(X(s),X(s′)) = ∫
S
k(u − s; ϕ)k(u − s′; ϕ)du

= ∫
S
k(u − ds,s′ ; ϕ)k(u; ϕ)du.

Under suitable regularity conditions, there is a one to
one relationship between the smoothing kernel k and the
covariance function, based on the convolution theorem
for Fourier transforms. A discrete approximation of Eq. 
can be obtained by �xing a �nite number of well-spaced
background points, s, . . . , sM :

X(s) ≈
M

∑
i=
k(si − s; ϕ)w(si),

where w(s) is a white noise process.
�e GP model can be extended to settings with a

spatially-correlated multivariate response by employing
methods such as cokriging (Wackernagel ).�ere are
a variety of extensions for dealing with nonstationarity via
approaches such as deformations (Sampson and Guttorp
), evolving convolutions (Higdon et al. ), or parti-
tioning (Gramacy ).
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Gauss-Markov Theorem

John S. Chipman
Regents’ Professor of Economics Emeritus
University of Minnesota, Minneapolis, MN, USA

�e so-called Gauss-Markov theorem states that under
certain conditions, 7least-squares estimators are “best
linear unbiased estimators” (“BLUE”), “best” meaning
having minimum variance in the class of unbiased
linear estimators.

�e linear regression model (see 7Linear Regression
Models) yt = ∑kj= xtjβj+ εt (t = , , . . . ,n)may be written
as

y = Xβ + ε, E{ε} = , E{εε
′
} = σ


V ()

(the prime denoting transposition), where y is an n×  vec-
tor of observations on a variable of interest, X is an n × k
matrix (generally assumed to have rank k) of n observa-
tions on k < n explanatory variables xij (i = , , . . . ,n;
j = , , . . . , k), and ε is a vector of random errors; β is
an unknown k ×  vector and σ  >  an unknown scalar;
V (assumed known) is generally assumed to be positive-
de�nite. (�ese rank assumptions will be relaxed below.)
In the simplest case of independent observations, one takes
V = I (the identity matrix of order n). (Gauss [, §§,
, , ] took V to be a diagonal matrix of weights, fol-
lowed by Markov [, p. ; , p. ]. Aitken []
generalizedV to be a positive-de�nite matrix.) It is desired
to obtain an estimator of β.
A (generalized) least-squares (GLS) estimate b of β is

one thatminimizes the (weighted) sumof squares e′V−e =
(y − Xb)′V−(y − Xb) of the residuals e = y − Xb. It is not
hard to prove that thisminimization is accomplished if and
only if b is a solution of X′V−Xb = X′V−y (the gener-
alized “normal equations”). Such a solution always exists.
(It is unique if and only if X has rank k.)�is becomes an
ordinary least-squares (OLS) estimate ifV = I, and then the
above become the ordinary normal equations.
A Gauss-Markov (GM) estimator of β in the model ()

is an a�ne estimator β̂ = Ay + c which, among all a�ne
estimators satisfying the condition of unbiasedness, namely

E{β̂}=AXβ + c= β for all β, i.e., AX = I and c= , ()

has its variance E{Aεε′A′} = σ AVA′ minimized. Now,
from the matrix Cauchy-Schwarz inequality (whereM ⪰ 
means that x′Mx ≧  for all x) it follows that

AVA
′
⪰ AX(X

′
V
−
X)

−
X
′
A
′, with equality ⇐⇒

A = AX(X
′
V
−
X)

−
X
′
V
−. ()

Together with () this implies that theminimizingA is pre-
cisely (X′V−X)−X′V−, which provides the formula for
the GM or GLS estimator β̂ = (X′V−X)−X′V−y = b.
In themodel (), an unbiased a�ne estimator of β exists

if and only if rank(X) = k. To generalize the above results
to the case rank(X) < k, one may employ either a set of
imposed linear restrictions on β (see Pringle and Rayner
, pp. –), or else a concept due to Bose ()
of a (linearly) estimable functional ψ = (ψ,ψ, . . . ,ψk),
de�ned by the condition that there exists a vector a =

(a, a, . . . , an) such that E{ay} = ψβ identically in β.
Clearly this implies ψ = aX, i.e., that the set of linearly
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estimable functionals coincides with the row space of X.
�is leads to the following result: An a�ne estimator β̂ =

Ay+c furnishes an unbiased estimator of any estimable func-

tionψβ in the regressionmodel () if and only if X satis�es the

two restrictions XAX = X and Xc = .�is generalizes con-
dition (). Likewise, the second condition of () generalizes
to XAV = (XAV)′.
It may be noted that in the special case V = I the lat-

ter two conditions are conditions () and () of Penrose (cf.
Pringle and Rayner , pp. –) de�ning a unique “gener-
alized inverse” A = X† of X, the other two being AXA = A

and AX = (AX)′. A matrix A satisfying just XAX = X is
sometimes called a weak generalized inverse or “g-inverse”
of X, denoted A = X−. Rao () proposed the develop-
ment of a “uni�ed theory of linear estimation” generalizing
the Gauss-Markov theory to take care of de�cient rank of
either X or V , or both. Goldman and Zelen (,�eo-
rem ) had already proposed the use of (X′V†X)†X′V†y,
and Mitra and Rao (, p. ) had proved that a suf-
�cient condition for the formula (X′V−X)−X′V−y to be
valid is that the column space of X be contained in that
of V , i.e., C(X) ⊆ C(V). Independently, the same for-
mula for the GM estimator was introduced by Zyskind
and Martin (,�eorem ). (As explained by Zyskind
[, p. ], Zyskind and Martin [, pp. –],
and Pringle and Rayner [, pp. –], singular vari-
ance matrices arise naturally in the 7analysis of variance;
they also arise in econometrics, where Basmann’s ()
“generalized classical linear (GCL) estimator” has the form
(Z′VZ)−Z′Vy where Z is n × ν of rank ν and V = V− is
an idempotent matrix of rank r, requiring r ≧ ν for “iden-
ti�ability”). Rao and Mitra (, p. ) later obtained a
complete characterization

β̂ = [X
′
(V + cXX

′
)
−
X]

−
X
′
(V + cXX

′
)
−
y, c > , or

c =  provided C(X) ⊆ C(V). ()

�e result () thus provides the desired generalization of
the GM theorem to the case of singular V . Important
additional results were supplied by Mitra () and Rao
().
It was pointed out by Rao (, p. ; , pp. –

) that the condition ψ = aX is no longer necessary for
estimability if V is singular, since there will be linear func-
tions of y “which are zero with probability  that can be
added to any estimator without altering its value but violat-
ing [the above] condition.” AssumingV to be of rank r ≦ n
he obtained the needed general condition that there exist
an n×(n− r)matrixN such thatN′y =  (with probability
) and a  × (n − r) vector ρ, such that ψ = (a − ρN′)X.

Anderson () showed that if both X and V are of
full rank, and P = [P,P] is an n × n orthogonal matrix
diagonalizing V to P′VP = Λ, where P is n × k, and if X =

PK for some K, then (X′V−X)−X′V−y = (X′X)−X′y.
�is is the basic result underlying the 7Durbin-Watson
test. [Intuitively, the condition X = PK states that in
time-series analysis, the columns of X (for suitable choice
of V, and of P including a constant column) are low-
frequency sinusoidal functions of time.] Magness and
McGuire () independently showed that the condition
X = PK is both necessary and su�cient for the GM esti-
mator to beOLS.�ese results were generalized byZyskind
() to the case in which rank(X) ≦ k and rank(V) ≦ n.
Zyskind also proved the necessity and su�ciency of the
simpler condition that there exist a matrix W such that
VX = XW, i.e., thatC(VX) ⊆ C(X) (see alsoKruskal ).
When X and V have full rank, the condition implies that
C(VX) = C(X). For important generalizations seeWatson
(, ) and Mitra and Moore ().
An interesting special case of Zyskind’s result was

established independently by McElroy (). If X has a
column of ones (for the constant term), then the set of
positive-de�nite Vs satisfying Zyskind’s condition VX =

XW for someW is given by V = λ[vij], where vii =  and
vij = ρ for i ≠ j and −/(n − ) < ρ < .

Historical Notes
�e terminology “Gauss-Markov theorem” appears to
derive from Lehmann ().�e theorem had previously
been referred to by Neyman (, pp. –) andDavid
and Neyman () as the “Marko� theorem on least
squares,” based onChap. VII ofMarkov (). R. A. Fisher
pointed out (Neyman , p. ) that “this was in essence
the system of Gauss.” Later, Neyman (, p. ), who
referred to Gauss (), said that the principle “was devel-
oped byGauss, but not in a very clear way. It was developed
and put into practical formby…Marko�….” Considerably
later, Plackett (, p. ) concluded that “it is implicit
that [Gauss] is seeking unbiased estimates.” Seal (, pp.
–) went further and stated this categorically, but with-
out speci�c reference to Gauss. However, Sprott (, pp.
–) has claimed that the concept of unbiasedness of
a linear estimator is not to be found in Gauss; rather, that
Gauss (, §) based himself on a concept of “error con-
sistency,” namely that limε→ β̂ = β. In his words (but in
the present notation) Gauss said: (, p. ): “if k < n,
each unknown β, β, . . . can be expressed as a function of
y, y, . . . in an in�nity of ways, and these values will in gen-
eral be di�erent; they would coincide if, contrary to our
hypothesis, the observations were perfectly exact.” In the
case of the a�ne estimator β̂ = Ay + c = A(Xβ + ε) + c,
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if this equation is to hold “exactly” (without error, i.e., for
ε = ) this leads directly to the two conditions on the right
in (). Clearly these conditions are equivalent to those for
unbiasedness on the le�, as also shown by Sprott (p. ).
It is perhaps only in this sense that the latter condition can
be said to be “implicit” in Gauss.
Gauss (, §) went on to show (in the case of unit

weights V = I), as Plackett (, p. ) points out,
that the diagonal elements of AA′ (the variances of the
β̂i divided by σ ) are minimized when X′XA = X′; this
result is of course a special case of the matrix Cauchy-
Schwarz inequality (). Gauss (, §§–) chose s =
∑
n
i= e


i /(n − k) as an estimator of σ  (for V = I), showing

that he was well aware of the concept of unbiasedness, yet
chose not to use it for the estimation of β.
Already in  Gauss had considered maximum-

likelihood estimation of β for the special case in which
X is a column of ones, hence the least-squares estima-
tor of β (now a scalar) is the sample mean. He concluded
(Gauss , §; , pp. –; , §, pp. –;
, pp. –) that in order for this estimator to maxi-
mize the likelihood, the density function of εt would have
to be of the form f (εt) = (h/

√
π) e−h

 ε
t , where h is the

“precision” (today denoted /σ
√
), i.e., would have to be

normal (“Gaussian”); see also Stigler (, p. ), Stewart
(Gauss , pp. , ). However, he later expressed a
strong preference for his  distribution-free criterion.
See Gauss (, p. ), Eisenhart (, p. ), Sheynin
(, p. ), Stigler (, pp. –), Stewart (Gauss
, pp. –), and an  letter of Gauss to Bessel
quoted by Markov (, p. ) (Edgeworth’s translation
of which is reproduced in Plackett , p. ), describing
his earlier ground as a “metaphysic.”
We may also discuss Gauss’s role in the development

of the method of least squares itself. �e �rst published
treatment of this method was that of Legendre (,
Appendix). In his letters, Gauss claimed to have developed
and used the method of least squares before Legendre.�e
validity of this claim, questioned by Stigler (, pp. –
), has received support from Stewart (Gauss , pp.
–) and Sheynin (). Plackett (, pp. –)
reports that Gauss had completed his �eory of Motion–
his �rst work on least squares – in , but “had di�culty
in �nding a publisher” unless he translated it into Latin.
Stewart (Gauss , p. n) explains that “owing to the
conquest of the German states by Napoleon, Gauss’s pub-
lisher required him to translate his manuscript, which was
started in  and �nished in , from the original into
Latin” (see also Eisenhart , p. ).�usGauss’s contri-
bution of the method of least squares itself did not appear
until .

Markov opened his Chapter VII on least squares (,
p. n; , p. n) by stating that his view concerning
the various attempts to justify the method had been set
forth in an earlier work (Markov ; , p. ; Sheynin
; see also Sheynin ). �ere he had based his
approach to estimation – “without assuming any de�nite
law of probability for the errors” – on three propositions: .
“we consider only such approximate equalities which…do
not contain any constant error” – which may be inter-
preted as following Gauss’s error-consistency principle;
. “to each approximate equalitywe assign a certainweight”
which is “inversely proportional to the expectations of the
squares of the errors,” i.e., their variance; and . “we deter-
mine such an equality whose weight is maximal.” �en:
“To my mind, only this justi�cation of the method of least
squares is rational; it was indicated by Gauss. I consider it
rational mainly because it does not obscure the conjectural
nature of themethod. Keeping to this substantiation, we do
not ascribe the ability of providing the most probable, or
the most plausible results to the method of least squares
and only consider it as a general procedure furnishing
approximate values of the unknowns along with a hypo-
thetical estimation of the results obtained.”�is di�dent
acceptance of the method contrasts with the enthusiastic
advocacy of it by his follower Neyman.
Markov’s contribution must of course be judged by

what he actually did, not on what he set out to do. First he
de�nes what he means by a “constant error” (, p. ;
, p. ). If a scalar parameter a is unknown, if x is a
“possible outcome” of an observation on it, and if “approx-
imate values” xt of it are observed, with probabilities qt ,
then the a− xt are called the errors of observation, and the
constant error is de�ned as E(a − x) = ∑

n
t= qi(a − xi) =

a−∑
n
t= qtxt [= a−E(x)].�us, “absence of constant error”

(a frequent phrase of Markov’s) is actually equivalent to
unbiasedness. (Neyman [, p. ] stated: “Marko� was
not a statistician, he was a mathematician. What I shall
say will be exactly equivalent to what he says but it will
have a form more familiar to statisticians.”�us, Markov’s
[and Gauss’s] error-consistency was translated by Neyman
into unbiasedness.) Markov then introduces “actual obser-
vations” a′, a′′, . . . of a, generated by random variables
u′,u′′, . . ., and further introduces the symbol ∓∣ (similar
to the contemporary ≈, and not to be confused with the
inequality sign ≠) such that a∓∣ a′ means that the symbol
on the right represents an observation which approximates
the unknown quantity represented by the symbol on the
le�. It is evident from Markov’s analysis that if u′ is a ran-
dom variable generating the observation a′, then a∓∣ u′

implies that E(u′) = a (cf. Markov , p. ; , pp.
–).



 G Gauss-Markov Theorem

Markov proceeds (, §§–, pp. –; ,
§–, pp. –) to take up (in our notation) the spe-
cial case of a single unknown parameter β, hence k = 
in (). From his subsequent analysis it becomes apparent
that he implicitly assumes that xt =  for t = , . . . . ,n,
hence his model is that of a weighted sample mean, i.e.,
yt = β+εt whereV in () is a diagonal matrix with diagonal
elements vtt . His “approximate equality” for the estimator
β̂ (a concept he does not use) is given by β ≈ ∑

n
t= atyt ; in

his notation,

a∓∣ λ
′
a
′
+ λ

′′
a
′′
+ . . . + λ

(n)
a
(n) ()

(Markov , p. ; , p. ), where his λ’s corre-
spond to our a’s and his a’s to our y’s, but his a to our
β. At this point Markov speci�cally invokes unbiasedness
when he states (, p. ; , p. ) that since ()
must be “free of constant error” – which implies that the
random variables u′,u′′, . . . corresponding to the observa-
tions a′, a′′, . . . all have expectation a, which he writes as
a∓∣ a′, a∓∣ a′′, . . . (Markov , p. ; , p. ) – “the
mathematical expectation of [the expression on the right in
()] is equal to (λ′ + λ′′ + . . . + λ(n)

)a for arbitrary choice
of [the λ’s],” hence (, p. ; , p. ) the sum of the
λ’s must be equal to . In the notation of (), the condition
AX = I now becomes aX = , or ∑nt= at = .�is covers
proposition  above.
Nowwe consider propositions  and . Referring to the

line below () above, it is desired to minimize the vari-
ance E{aεε′a′} = σ aVa′ = σ ∑

n
t= a


t vtt . Markov (,

p. ; , p. ) denotes this by k∑nt= λ(t)λ(t)
/p(t) =

k/P, where k = σ  and P = /∑nt= a

t vtt is the “weight”

to be maximized, subject to the unbiasedness condition
∑
n
t= at =  (, p. ; , p. ). He shows there that
this maximum is attained when ai/aj = vii/vjj.�us, the
desired estimator is β̂ = ∑

n
t=(yt/vtt)/∑

n
t=(/vtt) (for-

mula ()) [his notation replacing “β̂ =” by “β ∓
∣”], and

the weight reduces to P = ∑nt= /vtt (formula ()).
Markov also treats the general case (, §§–;

, §§–).�e unbiasedness conditionsE (∑nt= aityt)
= βi are displayed explicitly (, p. ; , p. ),
from which he derives the above result () in his formula
(∗) (, pp. –; , p. ). To treat minimum
variance, he departs from Gauss’s method and employs
k Lagrangean multipliers µj, using the transformation
X∗ = V−/X to handle the variances of the yts (,
p. ; , p.  (formula [A]), so as to reach his result
(* ∗ *).
As we have seen above, while Gauss formulated the

least-squares problem in terms of diagonal V (and he pre-
sumably used weighted least squares in his astronomical

calculations) his theorems were limited to the caseV = I of
independent observations. Plackett (, p. ) famously
stated that “Marko�, who refers to Gauss’s work, may per-
haps have clari�ed assumptions implicit there but proved
nothing new” – an opinion that has been accepted as
authoritative. However, it is clear that Markov extended
Gauss’s theorems to diagonal V (dependent observations).
And while not abandoning Gauss’s error consistency, he
introduced unbiasedness explicitly when needed to obtain
condition (). And Neyman played a major role in formu-
lating best unbiasedness as a principle of estimation.
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Let y be a random variable such that E(y) = µ, or y = µ + є,
where є is a random error with E(є) = . Suppose that
µ = xβ + ⋯ + xpβp, where x, . . . , xp are p variables and
β, . . . , βp are p unknown parameters.�e model

y = xβ +⋯ + xpβp + є, ()

is the well-known multiple linear regression model (see
7Linear Regression Models). Here y is called dependent
(or response) variable, x, . . . , xp are called independent
(or explanatory) variables or regressors, and β, . . . , βp are
called regression coe�cients. Letting

(y, x, . . . , xp), . . . , (yn, xn, . . . , xnp)

be a sequence of the observations of Y and x, . . . , xp, we
have

yi = xiβ +⋯ + xipβp + єi, i = , . . . ,n, ()

where є, . . . , єn are the corresponding random errors.
Denote yn = (y, . . . , yn)T , Xn = (x, . . . , xp) with xj =
(xj, . . . , xnj)T for j = , . . . , p, β = (β, . . . , βp)T , and
єn = (є, . . . , єn)T , where aT denotes the transpose of a
vector a. () can therefore be expressed as

yn = Xnβ + єn. ()

For convenience, Xn is assumed to be nonrandom with
rank p through this article (see Rao () for the case that

the rank of Xn is less than p). It is noted that if x, . . . , xp
in () are random variables, it is usually assumed that
E(y∣x, . . . , xp) = xβ +⋯+ xpβp, which replaces the E(y)
given above.
A well known method for estimating β in () is Least

Squares. Its theoretical foundationwas laid byGauss ()
andMarkov () among others. Assuming that є, . . . , єn
are uncorrelated with zero means and constant variance
σ , the least squares estimator β̂n of β can be obtained
by minimizing (yn − Xnb)

T
(yn − Xnb) among all possi-

ble b ∈ Rp. It can be shown that β̂n = (XTnXn)
−
XTn yn.

It is easy to verify that E(β̂n) = β so that β̂n is an unbi-
ased estimator of β. De�ne the residual as rn = yn − ŷn
with ŷn = Xn β̂n, the �tted (or predicted) vector. Since
E (rTn rn) = (n− p)σ , an unbiased estimator of σ  is given
by σ̂ n = rTn rn/(n − p). As shown in Rao () or Seber
and Lee (), cT β̂n is the best linear unbiased estimate
of cTβ for any constant vector c. If in addition є, . . . , єn
are independent with common third and fourth moments,
σ̂ n can be shown to be the unique nonnegative quadratic
unbiased estimator of σ  with minimum variance (Seber
and Lee ()). If we further assume that є, . . . , єn are
independently and identically N(, σ ) distributed, it can
be shown that β̂n is actually the maximum likelihood esti-
mator of β. It can also be proved that β̂n is distributed as
N (β, σ  (XTnXn)

−
)), (n − p)σ̂ n is distributed as σ  χn−p,

and, in additions, β̂n is independent of σ̂ n . However the
maximum likelihood estimator of σ  is (n−p)σ̂ /n instead
of σ̂ , which is biased for estimating σ  but is asymptoti-
cally equal to σ̂  as n → ∞ for a �xed p. It is noted that
if XTnXn is nearly singular, a ridge estimator may be used
to estimate β. Although ridge estimators are biased but
a properly chosen one will have a smaller mean squared
error than the least squares estimator in such a case.
Wenowconsider how to test the hypothesisH : Γβ = c

with a known q × p matrix Γ of rank q and a known
q ×  vector c for the model (). Assume that є, . . . , єn are
independently and identicallyN(, σ ) distributed. To test
H, an F-test can be employed with the test statistic

F = ((Γβ̂n − c)
T
[Γ (XTnXn)

−
ΓT]

−
(Γβ̂n − c)/q) /σ̂


n ,

which is actually equivalent to the likelihood ratio test
statistic (see, e.g., Seber and Lee () and Rao et al.
()). It can be shown that F ∼ Fq,n−p under H, where
Fq,n−p denotes the central F distribution with degrees of
freedom q and n−p, respectively. For a level of signi�cance
α, H is rejected if F > Fq,n−p;−α . Here Fq,n−p;−α denotes
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the (−α)-quantile of Fq,n−p. For discussion onmore gen-
eral testing of hypotheses, see Seber and Lee () and
Rao et al. () among others, which also explore how to
construct con�dence regions for parameters. In addition, a
number of practical examples can be found in Draper and
Smith ().
So far it has been assumed that the random errors have

constant variance σ . We now assume that E(єn) = ,
cov(єn) = σ V and V is a known n × n positive def-
inite matrix. To estimate β in (), the generalized least
squares method is used instead and the resulting estimator
is β̃n = (XTnV

−Xn)
−
XTnV

−yn, which is the same as the
least squares estimator of β for the model ỹn = X̃nβ + є̃n

with ỹn = V
−/yn, X̃n = V

−/Xn and є̃n = V−/єn. In this
case, it can be shown that an unbiased estimator of σ  is
given by σ̃ n = (yn −Xn β̃n)

TV−(yn −Xn β̃n)/(n−p). If we
further assume that єn ∼ N(, σ V), it can be veri�ed that
β̃n and (n−p)σ̃ n/n are themaximum likelihood estimators
of β and σ , respectively.�e hypothesis testing and inter-
val estimation of parameters can be carried out similar to
those previous described.

�e model () can be generalized to

YnGn = XnBHn + ZnΘQn + En, ()

where Yn is an n×m randommatrix,Gn is anm×kmatrix,
Xn, Hn, Zn and Qn are respectively n × p, q × k, n × u and
v × k matrices, B is a p × q matrix of unknown parame-
ters, Θ is a u × v random matrix, and En is an n × kmatrix
of random errors with zero means. �is model is linear
in parameters and is fairly general.�e following models
are its special cases: multiple 7linear regression models,
linear random e�ects models,7linear mixedmodels, anal-
ysis of variance (ANOVA) models (see 7Analysis of Vari-
ance), multivariate analysis of variance (MANOVA) mod-
els (see 7Multivariate Analysis of Variance (MANOVA)),
7analysis of covariance (ANCOVA) models, multivariate
analysis of covariance (MANCOVA)models, response sur-
face regressionmodels and growth curvemodels.�us this
model is named as a general linear model. It is noted that
the model () may be extended to allow for change points
to occur. Such an example can be found in Seber and Lee
() among others.
For simplicity, we limit our attention to the case that

G−n exists.�en () can be written as

Yn = XnBHnG
−
n + ZnΘQnG−n + EnG

−
n

= XnBH̃n + ZnΘQ̃n + Ẽn

with H̃n = HnG
−
n , Q̃n = QnG

−
n , and Ẽn = EnG

−
n . Yn =

XnBH̃n + ZnΘQ̃n + Ẽn is also a commonly used expres-
sion for a general linear model. Denote the Kronecker
product of matrices A and A by A ⊗ A and de�ne a
τς-dimensional vector vec(A) of a τ × ς matrix A by
stacking its column vectors.�en the general linear model
() can be rewritten as

(In ⊗G
T
n) vec (Y

T
n ) = (Xn ⊗H

T
n ) vec (B

T
)

+ (Zn ⊗Q
T
n) vec (Θ

T
)

+ vec (E
T
n) , ()

or

(G
T
n ⊗ In) vec (Yn) = (H

T
n ⊗ Xn) vec (B)

+ (Q
T
n ⊗ Zn) vec (Θ)

+ vec (En) . ()

Denote En = (e, . . . , en)T . If e, . . . , en are independently
and identically distributed with zero mean vector and
covariance matrix Σ, it can be shown that vec (ETn ) has
zero mean vector and covariance matrix In ⊗ Σ, and hence
vec (En)has zeromean vector and covariancematrixΣ⊗In,
where In is an n × n identity matrix.
Least squares method (see 7Least Squares) may be

used to estimate the parameters in () directly in terms of
() or (). For example, if Yn = XnBHn +En and n ≥ m+ p,
the least squares method can be used to estimate B. Note
that the estimation may not be unique if the rank of Hn
is not q. A least squares estimator of B is given by v̂ecBn =
[(HnΣ

−HTn )
+
⊗ (XTnXn)

−
] (HnΣ

−
⊗ XTn ) vec (Yn),

where A+ denotes the Moore-Penrose inverse of a matrix
A. If in addition q = k = m and Hn = Im, it fol-
lows that v̂ecBn = [In ⊗ (XTnXn)

−
XTn ] vec (Yn), i.e., B̂n =

(XTnXn)
−
XTnYn.�e residual is de�ned asΥn = Yn−XnB̂n.

If vec (En) has zero mean vector and covariance matrix
Σ ⊗ In, it can be shown that B̂n and Σ̂n = ΥTn Υn/(n − p)
are unbiased estimators of B and Σ, respectively. Now
assume that e, . . . , en are independently and identi-
cally N(,Σ) distributed. �en it can be proved that
B̂n is the maximum likelihood estimator of B with
the distribution N (B, (XTnXn)

−
⊗ Σ), (n − p)Σ̂n is

Wm(n − p,Σ) distributed, and, moreover, B̂n is indepen-
dent of Σ̂n, where Wk(ℓ, Ψ) denotes the Wishart distri-
bution with ℓ degrees of freedom and k × k covariance
matrix Ψ. Related references include Rao (), Mardia
et al. (), Muirhead () and Fang and Zhang ().
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�e last two references also considered the case that the
random errors are elliptically distributed.
When the random errors are not normally distributed

but the error distributions are known up to some distri-
bution parameters, maximum likelihood methods may be
employed for estimating unknown parameters. If one sus-
pects that there may be some departures from the under-
lying assumptions on error distributions or there may
be some 7outliers in the data, one may consider to use
weighted least squares method, M-estimation method, or
other robust estimation methods to estimate the parame-
ters (see Seber and Lee () and Rao et al. () among
others).
In addition to those mentioned above, some com-

monly used general linear model techniques and tools
include:
● Shrinkage estimation, heterogeneous linear estima-
tion, Stein-rule estimation, multiway classi�cation.

● Bonferroni simultaneous con�dence intervals, Turkey’s
simultaneous comparisons, Sche�é multiple compar-
isons.

● Multivariate analysis of variance table, union-
intersection approach, t-test, F-test, likelihood ratio
test, Wilks’s lambda statistic, Hotelling’s T test,
Pillai’s trace, Hotelling-Lawley trace, Roy’s greatest
root, sphericity test, invariant test, pro�le analysis,
goodness-of-�t test.

● Classical prediction, optimal heterogeneous predic-
tion, optimal homogeneous prediction, prediction
regions, Stein-rule predictor, partial least squares, prin-
cipal components regression, Kalman �lter.

● Multiple correlation coe�cient, partial correlation
coe�cient, Q-Q plot, high-leverage point, studen-
tized residual, Cook’s distance, variance ratio, anal-
ysis of residuals, partial regression plots, variable
selection procedures including forward selection,
backward elimination, stepwise regression, cross-
validation, Mallows’ Cp, information theoretic criteria,
LASSO, SCAD.

● Imputation, Yate’s procedure, Bartlett’s ANCOVA.
● Canonical form, data centering and scaling, Cholesky
decompositionmethod, orthogonal-triangular decom-
position, recursive algorithm.

● Generalized variance, total least squares, orthogonal
design matrix, hierarchical design, Bayesian method.

�e problems associated with the general linear mod-
els include estimability of B and/or Θ, testability of
hypotheses on B and/or Θ, estimation of B and/or

Θ under some linear constraints, hypothesis testing of
hypotheses on B and/or Θ under some linear constraints,
construction of con�dence regions, simultaneous testing,
multiple comparisons, homogeneity of covariance matri-
ces, collinearity, estimation of covariance, asymptotics,
variable selection, high-dimensionality problem (e.g., n <<
p in ()), under�tting, over�tting, optimal design, cen-
sored data, missing observations, outliers, model assump-
tions, transformation, outside sample predictions, and
e�ciency.
Standard so�ware pacakages including SAS, R, S-PLUS,

SPSS and MATLAB may be used to solve statistical infer-
ence problems for general linear models.
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In real life phenomenon we experience largest observa-
tions (maximum extreme) or smallest observation (min-
imum extreme), such as “How tall should one design an
embankment so that the sea reaches this level only once in
 years?”; “What is the lowest value theDow Jones Indus-
trial Average can reach in the next three years?”; “Howhigh
a drug concentration in the bloodstream can go before
causing toxicity?”, among others.
To characterize and understand the behavior of these

extremes, we usually use probabilistic extreme value the-
ory. Such theory deals with the stochastic behavior of
the minimum and maximum of independent identically
distributed random variables. Here, we shall give a brief
introduction of the generalized extreme value family of
probability distribution that �ts the subject observations.
�is family of probability distribution function (pdf) con-
sists of three famous classical pdfs, namely theGumbel, the
Frechet, and the Weibull.
Extreme value theory has been successfully applied to

address problems in �oods, wind gusts, hurricanes, relia-
bility, earthquakes, stock market crashes, survival analysis,
rain fall, health sciences, drug evaluation, �nancial sys-
tems, among others. Some brief useful references on the
theory are Abdelhafez and�omas (), Achcar (),
Ahsanullah (), Campell and Tsokos (a), Cheng
et al. (), Cohen (), Daniels (), Davidovich
(), De Haan (), Engelhardt and Bain (),
Engelund and Rackwitz (), Frechet (), Galam-
bos (), Galambos (), Gumbel (), Gumbel
(), Gumbel (a, b, c), Gumbel andGoldstein (),
Hassanein (), Hosking (), Jenkinson (), Mann
et al. (), von Mises (), von Mises (), Pickands

(), Pickands (), and Weibull (a), and appli-
cations Ahmad et al. (), Aitkin and Clayton (),
Al-Abbasi and Fahmi (), Azuz (), Barnett (),
Beran et al. (), Broussard and Booth (), Buishand
(), Buishand (), Campbell and Tsokos (a, b)
Changery (), Chowbury et al. (), Coles and Pan
(), Coles and Tawn (), Coles and Tawn (), De
Hann and Resnick (), Diebold et al. (), Eldredge
(), Embrechts et al. (), Epstein (), Fahmi and
Al-Abbasi (), Frenkel and Kontorova (), Fuller
(), Goka (), Greenwood (), Greis and Wood
(), Gumbel (), Gumbel (), Gumbel (),
Harris (), Henery (), Hisel (), Hosking and
Wallis (), Jain and Singh (), Joe (), Kimball
(), Longuet-Higgins (), Marshall (), Nisan
(), Nordquist (), Okubo and Narita (), and
Weibull (b).
Extreme Value �eory (EVT) is the study of prob-

abilistic extremes and focuses primarily on the asymp-
totic behavior as the sample size approaches in�nity. Let
X,X, . . . ,Xn be a sequence of independent random vari-
ables having a common cumulative probability distribu-
tion F.�e model focuses on the statistical behavior of

Mn = max{X,X, . . . ,Xn},

whereXi usually represent values of a processmeasured on
a regular time scale. For example, hourly measurements of
stock prices or plasma drug concentration over a certain
period; so that Mn represents the maximum of the pro-
cess over n time units of observation. If n is the number
of observations in a day, thenMn corresponds to the daily
maximum.

�e probability distribution of Mn can be derived
exactly for all values of n, that is,

Pr{Mn ≤ z} = Pr{X ≤ z, . . . ,Xn ≤ z}
= Pr{X ≤ z} . . . Pr{Xn ≤ z} = Fn(z) ()

�e di�culty that arises in practice is the fact that the
cumulative probability distribution F is unknown. One
possibility is to use standard statistical techniques to esti-
mate F from observed data, and then substitute this esti-
mate into (). But very small discrepancies in the estimate
of F can lead to substantial discrepancies for Fn. �is
leads to an approach based on asymptotic argument which
requires determiningwhat possible limit probability distri-
butions are possible forMn as n → ∞.�e question then
is “what are the possible limit distributions in the extreme
case?”
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We study the limiting probability distributions of
Mn − bn

an
where an and bn are sequences of normaliz-

ing coe�cients such that Fn (Mn − bn
an

) leads to a non-

degenerate probability distribution as n→∞. Speci�cally,

we seek {an > } and {bn} such that Pr{
Mn − bn

an
≤ z} →

G(z) where G(z) does not depend on n.
Extremal Types�eorem: If there exist sequences of con-
stants {an > } and {bn} such that, as n → ∞,

Pr{Mn − bn
an

≤ z}→ G(z)whereG is a non-generate prob-

ability distribution function, then G belongs to one of the
following families:

G(z) = exp{− exp [−(
z − b

a
)]} , −∞ < z < +∞ ()

G(z) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

, z < b

exp{−(
z − b

a
)

−∂
} , z ≥ b

()

G(z) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

exp{− [−(
z − b

a
)

∂

]} , z ≤ b

, z > b
()

For parameters a(scale) > , b(location) and, in ()
and (), ∂(shape) > .
Combining the three classes of probability distribu-

tions results in what we refer to as theGeneralized Extreme
Value (GEV) family of probability distribution.�e GEV
cumulative probability distribution can be written as

G(z) = exp{− [ + ξ (
z − µ

σ
)]

−/ξ

} ,

 + ξ (
z − µ

σ
) > , −∞ < ξ < +∞, σ >  ()

�e equation above is the generalized extreme value
family of distributions. �is was obtained independently
by von Mises (, ), and Jenkinson () and
Hosking (). Equation  can also be written as

G(z)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp{− [ + ξ (
z − µ

σ
)]
−/ξ

} , −∞ < z ≤ µ −
σ

ξ
, ξ < ;

µ −
σ

ξ
≤ z < +∞, ξ > ;

exp{− exp{−
z − µ

σ
}} , −∞ < z < +∞, ξ = .

()

From the GEV Eq. , if we take limit ξ → , we obtain
the Emil Gumbel (–), cumulative probability dis-
tribution (CPD), which is the same as exponential CPD

(). Gumbel developed the subject cdf for studying the
extreme observations of climate and hydrology (Gumbel
, ).�e Gumbel pdf is also known as the double
exponential and log-Weibull pdf.
For the largest extremes (maximum) the Gumbel pdf

is given by

f (z)=

σ
exp [−(

z − µ

σ
) − exp(−

z − µ

σ
)] , −∞< z <+∞

()
where the scale parameter σ > , location parameter µ. For
the smallest extremes (minimum) the Gumbel pdf is of the
form,

f (z) =

σ
exp [(

z − µ

σ
) − exp(−

z − µ

σ
)] ,

−∞ < z < +∞, σ >  ()

Cumulative Distribution Function
�e corresponding Gumbel cdfs for maximum and mini-
mum are given by

F(z)= exp{− exp ( z−µ
σ

)} , −∞ < z < +∞, σ > ,

and

F(z)= − exp{− exp (z−µ
σ
)} , −∞< z <+∞, σ > ,

()
respectively.
To apply the subject pdfs using real data, we need to

solve numerically the following equation to obtain maxi-
mum likelihood estimation of the true parameter µ and σ ,
that is

µ̂ = −σ̂ log [

n

n

∑
i=
exp(

−zi

σ̂
)]

σ̂ −

n

n

∑
i=
zi +

n

∑
i=
zi exp(−

zi

σ̂
)

n

∑
i=
exp(− zi

σ̂
)

= . ()

Furthermore, we can use these estimates µ̂ and σ̂ to
obtain a % con�dence interval for µ and σ , that is

⎛

⎝
µ̂ − .

√
.σ̂ 

n
, µ̂ + .

√
.σ̂ 

n

⎞

⎠
()

and

⎛

⎝
σ̂ − .

√
.σ̂ 

n
, σ̂ + .

√
.σ̂ 

n

⎞

⎠
. ()

�e CPD de�ned in Eq.  which can also be obtained
for GEV CPD where ξ > , was initially discovered by
Maurice Frechet (–). It is especially applicable to
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heavy-tailed pdf.�e Frechet pdf has wide ranging appli-
cations in engineering, environmental modeling, �nance
and other areas. Recent applications include prediction of
solar proton peak �uxes and modeling interfacial dam-
age in microelectronic packages andmaterial properties of
constituent particles in an aluminum alloy.

�e three parameter Frechet pdf is given by

f (z) =
ξ

σ
(

σ

z − µ
)

ξ+

exp
⎧⎪⎪
⎨
⎪⎪⎩

−(
σ

z − µ
)

ξ⎫⎪⎪
⎬
⎪⎪⎭

,

µ > , ξ > , σ > . ()

�e corresponding cdf of () is given by

F(z) = exp
⎧⎪⎪
⎨
⎪⎪⎩

−(
σ

z − µ
)

ξ⎫⎪⎪
⎬
⎪⎪⎭

, µ, ξ, σ > , ()

where µ, ξ and σ are the location, shape and scale parame-
ter, respectively.
To apply the above pdf to real data, we need to obtain

the maximum likelihood estimate of the parameters µ, σ
and ξ by numerically solving the following system of like-
lihood equations

n

ξ̂
+

n
n

∑
i=

(ti − µ̂)
− ξ̂ log(ti − µ̂)

n

∑
i=

(ti − µ̂)− ξ̂

=
n

∑
i=
log(ti − µ̂) ()

nξ̂
n

∑
i=

(ti − µ̂)
−( ξ̂+)

n

∑
i=

(ti − µ̂)− ξ̂

= (ξ̂ + )
n

∑
i=


ti − µ̂

()

and

σ̂ = {

n

n

∑
i=

(ti − µ̂)
− ξ̂

}

−/ ξ̂

. ()

�e CDF de�ned in the family of probability distribu-
tions was developed by Waloddi Weibull (–) and
carried his name. It can also be obtained from the GEV for
ξ < . Weibull did signi�cant pioneering work on relia-
bility, providing a statistical treatment of fatigue, strength,
and lifetime in engineering design (Ahmad et al. ;
Weibull b). It is also applicable in environmental mod-
eling, �nance and other areas. Recent applications include
evaluation the magnitude of future earthquakes in the
Paci�c, Argentina, Japan and in the Indian subcontinent.

�e pdf of the three - parameter Weibull is given by

f (z) =
ξ

σ
(

σ

z − µ
)

ξ−

exp
⎧⎪⎪
⎨
⎪⎪⎩

−(
σ

z − µ
)

ξ⎫⎪⎪
⎬
⎪⎪⎭

, z, µ, ξ, σ > .

()

Its CDF is given by

F(z) =  − exp{−(
σ

z − µ
)} , z, µ, ξ, σ > . ()

Similarly, to apply the subject pdf we need to obtain a
maximum likelihood estimate of the three parameters, µ, σ
and ξ that are inherent in the Weibull pdf. We can obtain
such estimates by solving numerical the following system
of likelihood equations,

n

ξ̂
+

n

∑
i=
log(ti − µ̂)=

n
n

∑
i=

(ti − µ̂)
ξ̂ log(ti − µ̂)

n

∑
i=

(ti−µ̂)− ξ̂

()

nξ̂
n

∑
i=

(ti − µ̂)
−( ξ̂−)

n

∑
i=

(ti − µ̂)− ξ̂

=(ξ̂ − )
n

∑
i=


ti − µ̂

()

and

σ̂ = {

n

n

∑
i=

(ti − µ̂)
− ξ̂

}

/ ξ̂

. ()

About the Author
For biography see the entry 7Mathematical and Statistical
Modeling of Global Warming.

Cross References
7Extreme Value Distributions
7Generalized Weibull Distributions
7Multivariate Statistical Distributions
7Statistical Distributions: An Overview
7Statistics of Extremes
7Weibull Distribution

References and Further Reading
Abdelhafez MEM, Thomas DR () Approximate prediction limits

for the Weibull and extreme value regression models. Egyptian
Stat J :–

Achcar JA () A useful reparametrization for the extreme value
distribution. Comput Stat Quart :–

Ahmad MI, Sinclair CD, Spurr BD () Assessment of flood fre-
quency models using empirical distribution function statistics.
Water Resour Res :–

Ahsanullah M () Inference and prediction problems of the
Gumbel distribution based on smallest location parameters.
Statistician :–

Aitkin M, Clayton D () The fitting of exponential, Weibull, and
extreme value distributions to complex censored survival data
using GLIM. Appl Stat :–

Al-Abbasi JN, Fahmi KJ () GEMPAK: a Fortran- program
for calculating Gumbel’s first, third and mixture upper earth-
quake magnitude distribution employing maximum likelihood
estimation. Comput Geosci :–



 G Generalized Extreme Value Family of Probability Distributions

Azuz PM () Application of the statistical theory of extreme
value to the analysis of maximum pit depth data for aluminum.
Corrosion :–

Barnett V () Ranked set sample design for environmental inves-
tigations. Environ Ecolog Stat :–

Beran M, Hosking JRM, Arnell N () Comment on “Two-
component extreme value distribution for flood analysis”
by Fabio Rossi, Mauro Fiorentino. Pasquale Versace Water
Resources Res :–

Broussard JP, Booth GG () The behavior of extreme values in
Germany’s stock index futures: An application to intradaily
margin setting. Eur J Oper Res :–

Buishand TA () The effect of seasonal variation and serial
correlation on the extreme value distribution of rainfall data.
J Climate Appl Meteor :–

Buishand TA () Statistics of extremes in climatology. Stat Neerl
:–

Campell JW, Tsokos CP (a) The asymptotic distribution of
maximum in bivariate samples. J Am Stat Assoc :–

Campbell JW, Tsokos CP (b) The asymptotic distribution of
maxima in bivariate samples. J Am Stat Assoc :–

Changery MJ () Historical extreme winds for the United States-
Atlantic and Gulf of Mexico coastlines. U.S. Nuclear Regulatory
Commission, NUREG/CR-

Cheng S, Peng L, Qi Y () Almost sure convergence in extreme
value theory. Math Nachr :–

Chowbury JU, Stedinger JR, Lu LH () Goodness-of-fit tests for
regional generalized extreme value flood distributions. Water
Resour Res :–

Cohen JP () Large sample theory for fitting an approximating
Gumbel model to maxima. Sankhya A :–

Coles SG, Pan F () The analysis of extreme value pollution levels:
A case study. J R Stat :–

Coles SG, Tawn JA () Statistical methods for multivariate
extremes: an application to structural design. Appl Stat :–

Coles SG, Tawn JA () A Bayesian analysis of extreme stock data.
Appl Stat :–

Daniels HE () A property of the distribution of extremes.
Biometrika :–

Davidovich MI () On convergence of the Weibull-Gnedenko
distribution to the extreme value distribution. Vestnik Akad
Nauk Belaruss Ser Mat Fiz, No. , Minsk, –

De Haan L () On regular variation and its application to the weak
convergence of sample extremes. Mathmatical Center Tracts, ,
Mathematisch Centrum. Amsterdam

De Hann L, Resnick SI () Sea and wind: Multivariate extreme at
work. Extremes :–

Diebold FX, Schuermann T, Stroughair JD () Pitfalls and oppor-
tunities in the use of extreme value theory in risk management.
Draft Report

Eldredge GG () Analysis of corrosion pitting by extreme value
statistics and its application to oil well tubing caliper surveys.
Corrosion :–

Embrechts P, Kluppelberg C, Mikosch T () Modeling extremal
events for insurance and finance. Spring, Berlin

Engelhardt M, Bain LJ () Some complete and censored results
for the Weibull or extreme-value distribution. Technometrics
:–

Engelund S, Rackwitz R () On predictive distribution function
for the three asymptotic extreme value distributions. Struct Saf
:–

Epstein B () Application to the theory of extreme values in
fracture problems. J Am Stat Assoc :–

Fahmi KJ, Al-Abbasi JN () Application of a mixture distribu-
tion of extreme values to earthquake magnitudes in Iraq and
conterminous regions. Geophys J R Astron Soc :–

Frechet M () Sur la loi de probabilite de l’ecart maximum. Ann
Soc Polon Math Cravovie :–

Frenkel JI, Kontorova TA () A statistical theory of the brittle
strength of real crystals. J Phys USSR :–

Fuller WE () Flood flows. Trans Am Soc Civ Eng :
Galambos J () Extreme value theory in applied probability. Math

Scient :–
Galambos J () The asymptotic theory of extreme order statistics,

nd edn. Krieger, Malabar
Goka T () Application of extreme-value theory to relia-

bility physics of electronic parts and on-orbit single event
phenomena. Paper presented at the Conference on Extreme
Value Theory and Its Applications, May –, , National
Institute of Standards, Gainthersburg

Greenwood M () The statistical study of infectious diseases.
J R Stat Soc A :–

Greis NP, Wood EF () Regional flood frequency estimation and
network design. Water Resources Res :–

Gumbel EJ () Les valeurs extremes des distribution statistuques.
Ann l’Inst R Soc London A :–

Gumbel EJ () The return period of flood flows. Ann Math Statist
:–

Gumbel EJ () Floods estimated by probability methods. Engrg
News-Record :–

Gumbel EJ (a) The Statistical Forecast of Floods. Bulletin No.
, –, Ohio Water Resources Board

Gumbel EJ () Statistics of extremes. Columbia University Press,
New York

Gumbel EJ (a) Statistical estimation of the endurance limit – an
application of extreme-value theory. In: Sarhan AE, Greenberg
BG (eds) Contributions to order statistic. Wiley, New York, pp
–

Gumbel EJ (b) Statistical theory of extreme value (main results).
In: Sarhan AE, Greenberg BG) Contributions to order statistics,
Chapter . Wiley, New York

Gumbel EJ (c) Multivariate extremal distributions. Proceeed-
ings of Session ISI, vol :–

Gumbel EJ, Goldstein N () Empirical bivariate extremal distri-
butions. J Am Stat Assoc :–

Harris B () Order Statistics and their use in testing and estima-
tion, vol . Washington

Hassanein KM () Simultaneous estimation of the parameters of
the extreme value distribution by sample quantiles. Technomet-
rics :–

Henery RJ () An extreme-value model for predicting the results
of horse reaces. Appl Statist :–

Hisel KW (ed) () Extreme values: floods and droughts. Proceed-
ings of International Conference on Stochastic and Statistical
Methods in Hydrology and Environmental Enginerring, vol ,
, Kluwer



Generalized Hyperbolic Distributions G 

G

Hosking JRM () Maximum-likelihood estimation of the param-
eters of the generalized extreme-value distribution. Appl Stat
:–

Hosking JRM, Wallis JR () The effect of intersite dependence
on regional flood frequency analysis. Water Resources Res :
–

Jain D, Singh VP () Estimating parameters of EV distribution
for flood frequency analysis. Water Resour Res :–

Jenkinson AF () Statistics of extremes, Technical Note No. ,
World Meteorological Organization, Chapter , pp. –

Joe H () Multivariate extreme value distributions with applica-
tions to environmental data. Canad J Stat Probab Lett :–

Kimball BF () Practical applications of the theory of extreme
values. J Am Stat Assoc :–

Longuet-Higgins MS () On the statistical distribution of the
heights of sea waves. J Mar Res :–

Mann NR, Scheduer EM, Fertig KW () A new goodness-of-fit
test for the two parameterWeibull or extreme-value distribution
with unknown parameters. Comm Stat :–

Marshall RJ () A spatial-temporal model for storm rainfall.
J Hydrol :–

Nisan E () Extreme value distribution in estimation of insur-
ance premiums. ASA Proceedings of Business and Economic
Statistics Section, pp –

Nordquist JM () Theory of largest values, applied to earthquake
magnitude. Trans Am Geophys Union :–

Okubo T, Narita N () On the distribution of extreme winds
expected in Japan. National Bureau of Standards Special Pub-
lication, –, pp

Pickands J () Multivariate extreme value distributions. Pro-
ceedings of rd Session of the ISI. Buenos Aires, vol , pp
–

Pickands J () Statistical inference using extreme order statistics.
Ann Stat :–

von Mises R () Uber die Variationsbreite einer Beobach-
tungsreihe. Sitzungsber Berlin Math Ges :–

von Mises R () La distribution de las plus grande de n valeurs.
Rev Math Union Interbalk :–. Reproduced in Selected
Papers of Richard von Mises, II (), Am Math Soc –

Weibull W (a) A statistical theory of the strength of materials.
Ing Vet Akad Handlingar 

Weibull W (b) The phenomenon of rupture in solids. Ing Vet
Akad Handlingar :

Generalized Hyperbolic
Distributions
Matthias Fischer
University of Erlangen-Nürnberg, Erlangen, Germany

�e (univariate) generalized hyperbolic distribution (GHD)
family was intensively discussed originally by Barndor�-
Nielsen (, ) and arose as speci�c normal

mean-variancemixture: Assuming thatX follows a normal
distribution with randommean µ+Uβ (µ, β ∈ R) and ran-
dom variance U, where U in turn is assumed to follow a
generalized inverse Gaussian (GIG) distribution (see, e.g.,
Jørgensen ) with parameters λ ∈ R, χ ≡ δ,ψ ≡ α−β

for α, δ > , ∣β∣ < α, the corresponding GH density on R
derives as

f (x; µ, δ, α, β, λ) = [(
√

α − β)
λ

(
√

δ + (x − µ))
λ− 

Kλ− 
(α

√
δ + (x − µ))]/

[
√
πα

λ−  δ
λKλ(δ

√
α − β)e

−β(x−µ)
],

where Kλ(x) = 
 ∫

∞
 tλ−e−


 x(t+t

−)dt denotes the modi-
�ed Bessel function of the third kind (see Abramowitz and
Stegun ). �e GHD is symmetric around the loca-
tion parameter µ if the skewness parameter β is zero.�e
parameter δ describes the scale, whereas α and λ govern
both peakedness and tail behavior, respectively. Note that
the GHD has heavier tails than the normal distribution.
�e tail behavior is like that of an exponential function
times a power of ∣x∣ (see, e.g., Barndor�-Nielsen ).
An included subfamily where one tail has polynomial and
the other exponential tail behavior is discussed by Aas
and Ha� (). Despite its heavier tails, the moment-
generating function of a GH variable X still exists and is
given by

M(u) ≡ E(e
uX

) = exp(uµ) ⋅ (
α − β

α − ((β + u))
)

λ


⋅

Kλ(δ
√

α − (β + u))

Kλ(δ
√

α − β)
, ∣β + u∣ < α.

Hence, mean, variance and higher moments can be
derived in a straightforward manner (see, Barndor�-
Nielsen and Blæsild  and Blæsild ). Above that,
the GHD is both in�nitely divisible (see Barndor�-Nielsen
and Halgreen ) and self-decomposable (see Halgreen
). Random numbers from a GH population can be
generated using an e�cient algorithm of Atkinson ().
Maximum likelihood estimation of the unknown parame-
ters based on i.i.d samples from a GHDmight be challeng-
ing to some extent because of the �atness of the likelihood
function in λ (see Prause ). Barndor�-Nielsen (),
for instance, provides an example of two di�erent GH
families (with di�erent λ’s) whose density are practically
identical over the range covering .% of their mass.
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�is is one of the reasons why two speci�c subclasses gain
special attraction within the GH-family.
Firstly, the hyperbolic (HYP) distribution family

(λ = ) whose name derives from the fact that for such a
distribution the graph of the log-density is a hyperbola.
Hyperbolic distributions were originally motivated as a
distributional model for particle sizes of a sand sample
from aeolian sand deposits (see Bagnold and Barndor�-
Nielsen ) but were also successfully applied in tur-
bulence (see Barndor�-Nielsen et al. ) and �nance
(see Eberlein and Keller , Bibby and Sørensen  or
Küchler et al. ). Goodness-of �t tests for the hyperbolic
distributions were proposed by Puig and Stephens ().
Secondly, the normal inverse Gaussian family (NIG)

(λ = − /) which shows similar �t and �exibility but,
in contrast to the hyperbolic distribution, has the fea-
ture of being closed under convolution.�is can be used,
for instance, to price di�erent kind of options (see, e.g.,
Albrecher and Predota ). Barndor�-Nielsen ()
and Rydberg () discuss7Lévy processes based onNIG
distributions as a model for stock returns. Bayesian esti-
mation of NIG distributions can be found in Karlis and
Lillestöl (). Occasionally, the so-called hyperboloid
distributions (λ = ) are focussed (see, e.g., Blæsild ).
Beyond that, both normal distribution (δ →∞, δ/α → σ )
and Student-t distribution (λ = − ν/, α = β → , δ =

√
ν)

are included as limiting cases within the GHD family.
As in the one-dimensional case, the multivariate gener-
alized hyperbolic distribution results as a speci�c normal
mean-variance mixture distribution and appeared �rst in
Barndo�-Nielsen (, ) with intensive discussion in
Blæsild (). Making use of the mixture representation,
Protassov () and Hu () discuss the EM-based
estimation maximum likelihood parameter estimation.
Applications to �nance are provided by Prause () and
Hu (), for example.

Cross References
7Inverse Gaussian Distribution
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History
Generalized Linear Models (GLM) is a covering algo-
rithm allowing for the estimation of a number of otherwise
distinct statistical regression models within a single
framework. First developed by John Nelder and R.W.M.
Wedderburn in , the algorithm and overall GLM
methodology has proved to be of substantial value to statis-
ticians in terms of the scope of models under its domain
as well as the number of accompanying model statistics
facilitating an analysis of �t. In the early days of statisti-
cal computing - from  to  - the GLM estimation
algorithm also provided a substantial savings of comput-
ing memory compared to what was required using stan-
dard maximum likelihood techniques. Prior to Nelder and
Wedderburn’s e�orts, GLM models were typically esti-
mated using a Newton-Raphson type full maximum like-
lihood method, with the exception of the Gaussian model.
Commonly known as normal or linear regression, the
Gaussian model is usually estimated using a least squares
algorithm. GLM, as we shall observe, is a generalization
of ordinary least squares regression, employing a weighted
least squares algorithm that iteratively solves for parameter
estimates and standard errors.
In , Nelder coordinated a project to develop a spe-

cialized statistical application called GLIM, an acronym
forGeneralized Linear InteractiveModeling. Sponsored by
the Royal Statistical Society and Rothamsted Experimental
Station, GLIMprovided themeans for statisticians to easily
estimate GLM models, as well as other more complicated
models which could be constructed using the GLM frame-
work. GLIM soon became one of the most used statistical
applications worldwide, and was the �rst major statistical
application to fully exploit the PC environment in .
However, it was discontinued in . Presently, nearly
all leading general purpose statistical packages o�er GLM
modeling capabilities; e.g., SAS, R, Stata, S-Plus, Genstat,
and SPSS.

Theory
Generalized linear models so�ware, as we shall see, allows
the user to estimate a variety ofmodels fromwithin a single
framework, as well as providing the capability of chang-
ing models with minimal e�ort. GLM so�ware also comes
with a host of standard residual and �t statistics, which
greatly assist researchers with assessing the comparative
worth of models.
Key features of a generalized linear model include ()

having a response, or dependent variable, selected from
the single parameter exponential family of probability
distributions, () having a link function that linearizes
the relationship between the �tted value and explana-
tory predictors, and () having the ability to be estimated
using an Iteratively Re-weighted Least Squares (IRLS)
algorithm.

�e exponential family probability function upon
which GLMs are based can be expressed as

f (yi; θ i, ϕ) = exp{(yiθ i − b(θ i))/αi(ϕ) − c(yi; ϕ)} ()

where the distribution is a function of the unknown data,
y, which may be conditioned by explanatory predictors,
for given parameters θ and ϕ. For generalized linear mod-
els, the probability distribution is re-parameterized such
that the distribution is a function of unknown parame-
ters based on known data. In this form the distribution
is termed a likelihood function, the goal of which is to
determine the parameters making the data most likely.
Statistician’s log-transform the likelihood function in order
to convert it to an additive rather than the multiplica-
tive scale. Doing so greatly facilitates estimation based on
the function.�e log-likelihood function is central to all
maximum likelihood estimation algorithms. It is also the
basis of the deviance function, which was traditionally
employed in GLM algorithms as both the basis of conver-
gence and as a goodness-of-�t statistic.�e log-likelihood
is de�ned as

L(θ i; yi, ϕ) =
n

∑
i=

{(yiθ i − b(θ i))/αi(ϕ) − c(yi; ϕ)} ()

where θ is the link function, b(θ) the cumulant, αi(ϕ)

the scale, and c(y; ϕ) the normalization term, guarantee-
ing that the distribution sums to one.�e �rst derivative
of the cumulant with respect to θ, b′(θ), is the mean of the
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function, µ; the second derivative, b′′(θ), is the variance,
V(µ).�e deviance function is given as


n

∑
i=

{L(yi; yi) − L(yi, µi)} ()

Table  presents the standard probability distribution
functions (PDF) belonging to the GLM family.
Each of the distributions in Table  are members

of the exponential family. It should be noted, however,
that the three continuous GLM distributions are usu-
ally parameterized with two rather than one parameter:
Gaussian, gamma, and inverse Gaussian. Within the GLM
framework though, the scale parameter is not estimated,
although it is possible to point-estimate the scale value
from the dispersion statistic, which is typically displayed
in GLM model output. Binomial and count models have
the scale value set at .. As a consequence, α(ϕ) and ϕ
are many times excluded when presenting the GLM-based
exponential log-likelihood.
Table  provides the formulae for the deviance and

log-likelihoods of each GLM family. Also provided is the
variance for each family function. �e �rst line of each
GLM distribution or family shows the deviance, with the
next two providing the log-likelihood functions parame-
terized in terms of µ and x′β respectively.�e x′β param-
eterization is used when models are estimated using a full
maximum likelihood algorithm.

Generalized Linear Models. Table  GLM families: canonical

Family Characteristics

Continuous distributions
Gaussian

Gamma
Inverse gaussian

Standard normal or linear
regression
Positive-only continuous
Positive-only continuous

Count
Poisson
Negative binomial (NB-C)

Equidispersed count
Count, with the ancillary
parameter a constant

Binary - Bernoulli

Logistic

Binomial distribution with
m = .
Binary (/) response

Binomial

Logistic (grouped)

Proportional (y/m) :
y =number of ’s
m= cases having same
covariate pattern

Note that the link and cumulant functions for each of
the above GLM log-likelihood functions can easily be
abstracted from the equations, which are formatted in
terms of the exponential family form as de�ned in Eq. .
For example, the link and cumulant of the Bernoulli
distribution, upon which 7logistic regression is based, are
respectively ln(µ/( − µ)) and − ln( − µ). With the link
function de�ned in this manner, the linear predictor for
the canonical Bernoulli model (logit) is expressed as:

θ i = x
′
iβ = ln(µi/( − µi)) = β + βx + βx +⋯ + βnxn.

()
In GLM terminology, x′β is also referred to as η, and

the link as g(µ). For links directly derived from the GLM
family PDF, the following terms are identical:

θ = x
′
iβ = η = g(µ). ()

�e link function may be inverted such that µ is
de�ned in terms of η. �e resulting function is called
the inverse link function, or g−(η). For the above logit
link, η = ln(µ/( − µ)). µ is therefore de�ned, for each
observation in the logistic model, as

µi = /( + exp(−ηi)) = (exp(ηi))/( + exp(ηi)) ()

or

µi = / ( + exp (−x′iβ)) = (exp (x′iβ)) / ( + exp (x
′
iβ))

()
Another key feature of generalized linear models is

the ability to use the GLM algorithm to estimate non-
canonical models; i.e., models in which the link function
is not directly derived from the underlying pdf, i.e., x′β
or η is not de�ned in terms of the value of θ given in the
above listing of log-likelihood functions.�eoretically any
type of link function can be associated with a GLM log-
likelihood, although many might not be appropriate for
the given data. A power link is sometimes used for non-
binomial models the power, p, in µp, is allowed to vary.
�e statistician employs a value for the power that leads to
a minimal value for the deviance. Powers typically range
from  to −, with µ being the square link, µ the log,
µ the identity, and µ− and µ− the inverse and inverse
quadratic link functions, respectively. Intermediate links
are also used, e.g., µ., the square root link. �e normal
linear model has an identity link, with the linear predictor
being identical to the �tted value.

�e probit and log-linked negative binomial (NB-)
models are two commonly used non-canonical linked
regression models.�e probit link is o�en used with the
7binomial distribution for probit models. Although the
probit link is not directly derived from the binomial PDF,
the estimates of the GLM-based probit model are identical
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Generalized Linear Models. Table  GLM variance, deviance, and log-likelihood functions

Family Variance, deviance, log-likelihood (µ∣xβ)

Gaussian ∑(y − µ)

 ∑{(yµ − µ/)/σ − y/σ −  ln(πσ)}

∑{[y(xβ) − (xβ)/]/σ − y/σ −  ln(πσ)}

Bernoulli ∑{y ln(y/µ) + ( − y) ln(( − y)/( − µ))}

µ( − µ) ∑{y ln(µ/( − µ)) + ln( − µ)}

∑{y(xβ) − ln( + exp(xβ))}

Binomial ∑{y ln(y/µ) + (m − y) ln((m − y)/(m − µ))}

µ( − µ/m) ∑{y ln(µ/m) + (m − y) ln( − µ/m) + ln Γ(m + ) − ln Γ(y + ) + ln Γ(m − y + )}

∑{y ln((exp(xβ))/( + exp(xβ))) − (m − y) ln(exp(xβ) + ) + ln Γ(m + ) − ln Γ(y + ) + ln Γ(m − y + )}

Poisson ∑{y ln(y/µ) − (y − µ)}

µ ∑{y ln(µ) − µ − ln Γ(y + )}

∑{y(xβ) − exp(xβ) − ln Γ(y + )}

NB ∑{y ln(y/µ) − (y + /α) ln(( + αy)/( + αµ))}

µ + αµ
∑{y ln((αµ)/( + αµ)) − (/α) ln( + αµ) + ln Γ(y + /α) − ln Γ(y + ) − ln Γ(/α)}

∑{y ln((α exp(xβ))/( + α exp(xβ))) − (ln( + α exp(xβ)))/α + ln Γ(y + /α) − ln Γ(y + ) − ln Γ(/α)}

NBC ∑{y ln(y/µ) − (y + /α) ln(( + αy)/( + αµ))}

µ + αµ
∑{y ln(αµ/( + αµ)) − (/α) ln( + αµ) + ln Γ(y + /α) − ln Γ(y + ) − ln Γ(/α)}

∑{y(xβ) + (/α) ln( − exp(xβ)) + ln Γ(y + /α) − ln Γ(y + ) − ln Γ(/α)}

Gamma ∑{(y − µ)/µ − ln(y/µ)}

µ
∑{((y/µ) + ln(µ))/ − ϕ + ln(y)( − ϕ)/ϕ − ln(ϕ)/ϕ − ln Γ(/ϕ)}

∑{(y(xβ) − ln(xβ))/ − ϕ + ln(y)( − ϕ)/ϕ − ln(ϕ)/ϕ − ln Γ(/ϕ)}

Inv Gauss ∑{(y − µ)/(yµ)}

µ
∑{(y/(µ) − /µ)/ − σ + /(−yσ) −  ln(πyσ)}

∑{y/(xβ) −
√
xβ/ − σ + /(−yσ) −  ln(πyσ)}

to those produced using full maximum likelihood meth-
ods. �e canonical negative binomial (NB-C) is not the
traditional negative binomial used to model overdispersed
Poisson data. Rather, the use of the log link with the nega-
tive binomial (LNB) family duplicates estimates produced
by full maximum likelihood NB- commands. However,
like all non-canonical models, the standard errors of the
LNB are slightly di�erent from those of a full maximum
likelihood NB-, unless the traditional GLM algorithm in
Table  is amended to produce an observed information
matrix that is characteristic of full maximum likelihood

estimation. �e information derived from the algorithm
given in Table  uses an expected information matrix,
upon which standard errors are based. Applications such
as Stata’s glm command, SAS’s Genmod procedure, and
R’s glm() and glm.nb() functions allow the user to select
which information is to be used for standard errors.

�e negative binomial family was not added to com-
mercial GLM so�ware until  (Stata), and is in fact
a member of the GLM family only if its ancillary or
heterogeneity, parameter is entered into the algorithm as
a constant. Setting the ancillary parameter, α, to a value
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that minimizes the Pearson dispersion statistic closely
approximates the value of α estimated using a full maxi-
mum likelihood command. SAS, Stata, and R provide the
capability for a user to estimate α using a maximum like-
lihood subroutine, placing the value determined into the
GLM algorithm as a constant.�e resulting estimates and
standard errors are identical to a full NB- estimation.
�ese applications also provide the capability of allowing
the so�ware to do this automatically.

Generalized Linear Models. Table  Foremost
non-canonical models

Family-link Function

Continuous distributions
Lognormal
Log-gamma
Log-inverse gaussian

Positive continuous
Exponential survival model
Steep initial peak; long slow
tail

Bernoulli/binomial:
Probit
Complementary loglog

Loglog

Normal
Asymmetric distribution: >.
elongated
Asymmetric distribution: <.
elongated

Negative binomial
Log (NB) Overdispersed Poisson

�e ability to incorporate non-canonical links into
GLM models greatly extends the scope of models which
may be estimated using its algorithm. Commonly used
non-canonical models are shown in Table .

�e link, inverse link, and �rst derivative of the link
for the canonical functions of the standard GLM families,
as well as themost used non-canonical functions, are given
in Table .

IRLS Algorithm
Generalized linear models have traditionally been mod-
eled using an Iteratively Re-Weighted Least Squares (IRLS)
algorithm. IRLS is a version of maximum likelihood
called Fisher Scoring, and can take a variety of forms. A
schematic version of the IRLS algorithm is given in Table .

Goodness-of-Fit
GLM models are traditionally evaluated as to their �t
based on the deviance and Pearson Chi, or χ, statis-
tics. Lower values of these statistics indicate a better �t-
ted model. Recently, statisticians have also employed the
Akaike (AIC) and Bayesian (BIC) Information Criterion
statistics as measures of �t. Lower values of the AIC and
BIC statistics also indicate better �tted models.�e Pear-
son Chi, AIC, and BIC statistics are de�ned in Table ,
and are calculated a�er a model has been estimated.

�e Pearson dispersion statistic is used with Poisson,
negative binomial, and binomial models as an indicator of
excessive correlation in the data. Likelihood basedmodels,

Generalized Linear Models. Table  GLM link functions (* canonical)

Link name Link Inverse link st Derivative

Gaussian
*Identity µ η 

Binomial (Bernoulli: m = )

*Logit
Probit
Cloglog

ln(µ/(m − µ))

Φ−(µ/m)

ln(− ln( − µ/m))

m/( + exp(−η))

mΦ(η)

m( − exp(− exp(η)))

m/(µ(m − µ))

m/ϕ{Φ−(µ/m)}

(m( − µ/m) ln( − µ/m))−

Poisson
*Log ln(µ) exp(η) /µ

Neg Bin
*NB-C
Log

ln(µ/(µ + /α))

ln(µ)
exp(η)/(α( − exp(η)))

exp(η)

/(µ + αµ)

/µ

Gamma
*Inverse /µ /η −/µ

Inverse Gaussian
*Inv Quad /µ /

√
η −/µ
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Generalized Linear Models. Table  Generic GLM
estimating algorithm (expected information matrix)

µ = (y +mean(y))/ // Initialize µ; non-binomial

µ = (y + .)/(n + ) // Initialize µ; binomial

η = g(µ) // Initialize η; link

WHILE (abs(∆ Dev)>tolerance){
w = /(Vg′)
z = η + (y − µ)g′

β = (X′wX)−X′wz
η = x′β
µ = g−(η)

Dev = Dev
Dev = Deviance function
∆ Dev = Dev-Dev

}

//
//
//
//
//
//

//
//

Loop
Weight
Working response
Estimation of parameters
Linear predictor,η
Fit, µ; inverse link

Deviance or LL
Check for difference

Chi = ∑(y − µ)/V(µ) // Pearson χ

AIC = (−LL + p)/n // AIC GOF statistic

BIC = − ⋅ LL + p ⋅ lnn // BIC GOF statistic

Where p = number of model predictors + intercept
n = number of observations in model
LL = log-likelihood function

V = variance; g(µ) = link; g−(η) = inverse link; g′ = ∂η/∂µ

being derived from a PDF, assume that observations are
independent. When they are not, correlation is observed
in the data. Values of the Pearson dispersion greater than
. indicate more correlation in the data than is warranted
by the assumptions of the underlying distribution. Some
statisticians have used the deviance statistic on which to
base the dispersion, but simulation studies have demon-
strated that Pearson is the correct statistic. See 7Modeling
count data in this volume for additional information.
From the outset, generalized linear models so�ware

has o�ered users a number of useful residuals which can be
used to assess the internal structure of the modeled data.
Pearson and deviance residuals are the two most recog-
nized GLM residuals associated with GLM so�ware. Both
are observation-based statistics, providing the proportion-
ate contribution of an observation to the overall Pearson
Chi and deviance �t statistics.�e two residuals are given,
for each observation, as:

Pearson (y − µ)/
√
V(µ) ()

deviance sgn(y − µ)
√
deviance ()

�e Pearson Chi and deviance �t can also be calcu-
lated on the basis of their residuals by taking the square of

each of the residuals respectively, and summing them over
all observations in the model. However, they are seldom
calculated in such a manner.
Both the Pearson and deviance residuals are usually

employed in standardized form.�e standardized versions
of the Pearson and deviance residuals are given by divid-
ing the respective statistic by

√
 − h where h is the hat

matrix diagonal. Standardized Pearson residuals are nor-
malized to a standard deviation of . and are adjusted
to account for the correlation between y and µ.�e stan-
dardized deviance residuals are the most commonly used
residuals for assessing the internal shape of the modeled
data.
Another residual now �nding widespread use is the

Anscombe residual. First implemented into GLM so�ware
in , it now enjoys use in many major so�ware applica-
tions.�e Anscombe residuals are de�ned speci�cally for
each family, with the intent of normalizing the residuals
as much as possible. �e general formula for Anscombe
residuals is given as

∫

µ

y
dµV

−/
(µ) ()

with V−/(µ) as the inverse cube of the variance. �e
Anscombe residual for the binomial family is displayed as

A(y) − A(µ)

µ( − µ)−/
√
 − h
m

()

with A() equal to . ⋅ (Incomplete Beta (/, /, z),
z taking the value of µ or y. A standard use of this statistic is
to graph it on either the �tted value, or the linear predictor.
Values of the Anscombe residual are close to those of the
standardized deviance residuals.

Application
Consider data from the  Titanic disaster. Information
was collected on the survival status, gender, age, and ticket
class of the various passengers. With age ( = adult;  =
child) and sex ( = male; -female), and class ( = st;  =
nd;  = rd) with rd class as the reference, a simple
binary 7logistic regression can be run using a GLM com-
mand (Stata).�e type ofmodel to be estimated is declared
using the family() and link() functions. eform indicates
that the coe�cients are to be exponentiated, resulting in
odds ratios for the logistic model. Note the fact that st
class passengers had a near  times greater odds of sur-
vival than did rd class passengers.�e statistics displayed
in the model output are fairly typical of that displayed in
GLM so�ware applications.
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.glm survived age sex class1 class2, fam(bin) eform

Generalized linear models No. of obs = 1316
Optimization : ML Residual df = 1311

Scale parameter = 1
Deviance = 1276.200769 (1/df) Deviance = .973456
Pearson = 1356.674662 (1/df) Pearson = 1.03484

Variance function: V(u) = u*(1-u) [Bernoulli]
Link function : g(u) = ln(u/(1-u)) [Logit]

AIC = .9773562
Log likelihood = -638.1003845 BIC = -8139.863
------------------------------------------------------------------------

| OIM
survived | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
---------+--------------------------------------------------------------

age | .3479809 .0844397 -4.35 0.000 .2162749 .5598924
sex | .0935308 .0135855 -16.31 0.000 .0703585 .1243347

class1 | 5.84959 .9986265 10.35 0.000 4.186109 8.174107
class2 | 2.129343 .3731801 4.31 0.000 1.510315 3.002091

------------------------------------------------------------------------

Using R, the same model would be speci�ed by

glm(survived ∼ age + sex + class1 +
class2, family=binomial, link=logit,
data=titanic).

About the Author
For biography see the entry 7Logistic Regression.
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QL Estimation for Independent Data
For i = , . . . ,K, let Yi denote the response variable for
the ith individual, and xi = (xi, . . . , xiv, . . . , xip)′ be the
associated p−dimensional covariate vector. Also, let β be
the p−dimensional vector of regression e�ects of xi on yi.
Further suppose that the responses are collected from K
independent individuals. It is understandable that if the
probability distribution of Yi is not known, then one can
not use the well known likelihood approach to estimate the
underlying regression parameter β. Next suppose that only
twomoments of the data, that is, themean and the variance
functions of the response variable Yi for all i = , . . . ,K,
are known, and for a known functional form a(⋅), these
moments are given by

E[Yi] = a
′
(θ i) and var[Yi] = a′′(θ i), ()

where for a link function h(⋅), θ i = h (x′iβ) , and a
′
(θ i)

and a′′(θ i) are the �rst and second order derivatives of
a(θ i), respectively, with respect to θ i. For the estimation
of the regression parameter vector β under this indepen-
dence set up, Wedderburn () (see also McCullagh
()) proposed to solve the so-called quasi-likelihood
(QL) estimating equation given by

K

∑
i=

[
∂a′(θ i)

∂β

( yi − a
′
(θ i))

a′′(θ i)
] = . ()

Let β̂QL be the QL estimator of β obtained from (). It is
known that this estimator is consistent and highly e�cient.
In fact, for Poisson and binary data, for example, β̂QL is
equivalent to themaximum likelihood (ML) estimator and
hence it turns out to be an optimal estimator.

Illustration for the Poisson Case
For the Poisson data, one uses

a(θ i) = exp(θ i) ()

with identity link function h(⋅), that is, θ i = x′iβ.�is gives
the mean and the variance functions as

var(Yi) = a′′(θ i) = E(Yi) = a
′
(θ i) = µi (say) = exp (x′iβ) ,

yielding by (), the QL estimating equation for β as

K

∑
i=
xi( yi − µi) = . ()

Note that as the Poisson density is given by f ( yi∣xi) =

yi !
exp[ yilog(µi) − µi], with µi = exp(θ i) = exp (x′iβ) ,

it follows that the log likelihood function of β has the form
logL(β) = −∑

K
i= log( yi!) + ∑

K
i=[ yiθ i − a(θ i)], yielding

the likelihood equation for β as

∂logL
∂β

=
K

∑
i=

[ yi − a
′
(θ i)]

∂θ i

∂β
=
K

∑
i=
xi( yi − µi) = , ()

which is the same as the QL estimating Eq. .�us, if the
likelihood function were known, then the ML estimate of
β would be the same as the QL estimate β̂QL.

Illustration for the Binary Case
For the binary data, one uses

a
′
(θ i) =

exp(θ i)

 + exp(θ i)
= µi and a′′(θ i) = µi( − µi), ()

with θ i = x
′
iβ.�e QL estimating Eq.  for the binary data,

however, provides the same formula () as in the Poisson
case, except that now for the binary case µi = exp(θ i)

+exp(θ i) ,
whereas for the Poisson case µi = exp(θ i).
As far as the ML estimation for the binary case is

concerned, one �rst writes the binary density given by
f ( yi∣xi) = µi

yi( − µi)−yi . Next by writing the log likeli-
hood function as logL(β) = ∑

K
i= yiµi+∑

K
i=(−yi)(−µi),

one obtains the same likelihood estimating equation as in
(), except that here µi =

exp(x′
i
β)

+exp(x′
i
β) , under the binary

model. Since the QL estimating Eq.  is the same as the
ML estimating Eq. , it then follows that the ML and QL
estimates for β would also be the same for the binary data.
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GQL Estimation: A Generalization of the
QL Estimation to the Correlated Data
As opposed to the independence set up, we now consider
yi as a vector of T repeated binary or count responses,
collected from the i−th individual, for all i = , . . . ,K.
Let yi = ( yi, . . . , yit , . . . , yiT)′, where yit represents the
response recorded at time t for the ith individual. Also,
let xit = (xit, . . . , xitv, . . . , xitp)′ be the p−dimensional
covariate vector corresponding to the scalar yit , and β be
the p−dimensional regression e�ects of xit on yit for all
i = , . . . ,K, and all t = , . . . ,T. Suppose that µit and σitt
be the mean and the variance of Yit , that is µit = E[Yit]
and var[Yit] = σitt . Note that both µit and σitt are func-
tions of β. But, when the variance is a function of mean,
it is su�cient to estimate β involved in the mean function
only, by treating β involved in the variance function to be
known. Further note that since the T repeated responses of
an individual are likely to correlated, the estimate of β to
be obtained by ignoring the correlations, that is, the solu-
tion of the independence assumption based QL estimating
equation

K

∑
i=

T

∑
t=

[
∂µit

∂β

( yi − µit)

σitt
] = , ()

for β, will be consistent but ine�cient. As a remedy to
this ine�cient estimation problem, Sutradhar () has
proposed a generalization of the QL estimation approach,
where β is now obtained by solving the GQL estimating
equation given by

K

∑
i=

∂µ′i
∂β
Σi−(ρ)( yi − µi) = , ()

where µi = (µi, . . . , µit , . . . , µiT)′ is the mean vector
of Yi, and Σi(ρ) is the covariance matrix of Yi that
can be expressed as Σi(ρ) = A



i Ci(ρ)A



i , with Ai =

diag[σi, . . . , σitt , . . . , σiTT] and Ci(ρ) as the correlation
matrix of Yi, ρ being a correlation index parameter.
Note that the use of the GQL estimating Eq.  requires

the structure of the correlation matrix Ci(ρ) to be known,
which is, however, unknown in practice. To overcome
this di�culty, Sutradhar () has suggested a general
stationary auto-correlation structure given by

Ci(ρ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

 ρ ρ ⋯ ρT−

ρ  ρ ⋯ ρT−

⋮ ⋮ ⋮ ⋮

ρT− ρT− ρT− ⋯ 

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ()

(see also Sutradhar and Das (, Sect. )), for all i =
, . . . ,K, where for ℓ = , . . . ,T − , ρℓ represents the
lag ℓ auto-correlation. As far as the estimation of the lag
correlations is concerned, they may be consistently esti-
mated by using the well known method of moments. For
ℓ = ∣u − t∣, u ≠ t, u, t = , . . . ,T, the moment estimator for
the autocorrelation of lag ℓ, ρℓ , has the formula

ρ̂ℓ =
∑
K
i=∑

T−ℓ
t= ỹit ỹi,t+ℓ/K(T − ℓ)

∑
K
i=∑

T
t= ỹ


it/KT

, ()

(Sutradhar and Kovacevic (, Eq. (.), Sutradhar
()), where ỹit is the standardized residual, de�ned as
ỹit = ( yit − µit)/{σitt}


 .

�e GQL estimating Eq.  for β and the moment esti-
mate of ρℓ by () are solved iteratively until convergence.
�e �nal estimate of β obtained from this iterative pro-
cess is referred to as the GQL estimate of β, and may be
denoted by β̂GQL.�is estimator β̂GQL is consistent for β

and also highly e�cient, the ML estimator being fully e�-
cient which is however impossible or extremely complex to
obtain in the correlated data set up.
With regard to the generality of the stationary auto-

correlation matrix Ci(ρ) in (), one may show that this
matrix, in fact, represents the correlations of many sta-
tionary dynamic such as stationary auto-regressive order
 (AR()), stationary moving average order  (MA()), and
stationary equi-correlations (EQC) models. For example,
consider the stationary AR() model given by

yit = ρ ∗ yi,t− + dit , ()

(McKenzie (), Sutradhar ()) where it is assumed
that for given yi,t−, ρ∗yi,t− denotes the so-called binomial
thinning operation (McKenzie ).�at is,

ρ ∗ yi,t− =
yi,t−

∑
j=
bj(ρ) = zi,t−, say, ()

with Pr[bj(ρ) = ] = ρ and Pr[bj(ρ) = ] =  − ρ.
Furthermore, it is assumed in () that yi follows the Pois-
son distribution with mean parameter µi⋅, that is, yi ∼

Poi(µi⋅), where µi⋅ = exp (x′i⋅β) with stationary covariate
vector xi⋅ such that xit = xi⋅ for all t = , . . . ,T. Further,
in (), dit ∼ P(µi⋅( − ρ)) and is independent of zi,t−.
�is model in () yields the mean, variance and auto-
correlations of the data as shown in Table . �e Table 
also contains the MA() and EQC models and their basic
properties including the correlation structures.
It is clear fromTable  that the correlation structures for

all three processes can be represented by Ci(ρ) in (). By
following Qaqish (), one may write similar but di�er-
ent dynamicmodels for the repeated binary data, with their
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Generalized Quasi-Likelihood (GQL) Inferences. Table  A
class of stationary correlation models for longitudinal count
data and basic properties

Model Dynamic relationship
Mean-variance
& correlations

AR() yit = ρ ∗ yi,t− + dit , t = , . . . E[Yit] = µi⋅

yi ∼ Poi(µi⋅) var[Yit] = µi⋅

dit ∼ P(µi⋅( − ρ)), t = , . . . corr[Yit , Yi,t+ℓ] = ρℓ

= ρℓ

MA() yit = ρ ∗ di,t− + dit , t = , . . . E[Yit] = µi⋅

yi = di ∼ Poi(µi⋅/( + ρ)) var[Yit] = µi⋅

dit ∼ P(µi⋅/( + ρ)), t = , . . . corr[Yit , Yi,t+ℓ] = ρℓ

=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ρ

+ρ
for ℓ = 

 otherwise,

EQC yit = ρ ∗ yi + dit , t = , . . . E[Yit] = µi⋅

yi ∼ Poi(µi⋅) var[Yit] = µi⋅

dit ∼ P(µi⋅( − ρ)), t = , . . . corr[Yit , Yi,t+ℓ] = ρℓ

= ρ

correlation structures represented by Ci(ρ). �us, if the
count or binary data follow this type of auto-correlations
model, onemay then certainly estimate the regression vec-
tor consistently and e�ciently by solving the general auto-
correlations matrix based GQL estimating Eq. , where the
lag correlations are estimated by () consistently.
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�e Rayleigh distribution is one of the most popular dis-
tributions in analyzing skewed data.�e Rayleigh distri-
bution was originally proposed in the �elds of acoustics
and optics by LordRayleigh (or by his less glamorous name
J.W. Strutt), way back in , and it became widely known
since then in oceanography, and in communication theory
for describing instantaneous peak power of received radio
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signals. It has received a considerable attention from engi-
neers and physicists for modeling wave propagation, radi-
ation, synthetic aperture radar images, and other related
phenomena.
A Rayleigh random variable X has cumulative distri-

bution function (cdf)

F(x; λ) =  − e−(λx) , x ≥ , λ > , ()

and probability density function (pdf)

f (x; λ) = λx e−(λx) , x ≥ , λ > , ()

where λ is an inverse scale parameter. From (), we obtain
immediately the kth raw moment of X to be

E(X
r
) =
Γ ( r + )

λr
. ()

Using Eq. , we compute the mean, variance, skewness
and coe�cient of kurtosis, respectively, as:

µ =

√
π


λ
− ≈ . λ

−, σ

= ( −

π


) λ

−

≈ . λ
−

α =

√

π(π − )
( − π)/

≈ ., α =
 − π

( − π)
≈ ..

()

Since the cdf of the Rayleigh distribution is in closed
form, it has been used very e�ectively for analyzing cen-
sored lifetime data. It has a linearly increasing hazard rate
given by hX(x) = λx. Due to the monotone property of
the hazard rate, the Rayleigh distribution has been used as
a model for the lifetimes of components that age rapidly
with time.

�e likelihood function based on a complete sample
X,X, . . . ,Xn of size n from the Rayleigh distribution is

L(x, . . . , xn; λ)∝ λ
n

(
n

∏
i=
xi) e

−∑ni=(λ xi) . ()

�erefore, to obtain the maximum likelihood estimate
(MLE) of λ, we can maximize () directly with respect to λ

and get the MLE of λ as

λ̂ = {
n

∑
n
i= x


i

}

/

.

By setting E(X) = X, we get the method of moment
estimator of λ (see ()) as λ∗ = ./X. From the
fact that λXi ∼ χ (7chi-square distribution with two
degrees of freedom), it follows that nλ/λ̂ has χn distri-
bution.�is implies that a (−α)% con�dence interval

for λ is derived to be

⎛
⎜
⎝

¿
Á
ÁÀ χn(α/)λ̂

n
,

¿
Á
ÁÀ χn( − α/)λ̂

n

⎞
⎟
⎠
,

where χn(α) represents αth percentile of the χn
distribution.
Burr () introduced twelve di�erent forms of cumu-

lative distribution functions for modeling data. Among
those twelve distribution functions, Burr-TypeX and Burr-
Type XII received themaximum attention. Recently, Surles
and Padgett () considered the two parameter Burr
Type X distribution by introducing a shape parameter and
correctly named it as the generalized Rayleigh (GR) dis-
tribution. If the random variable X has a two parameter
GR distribution, then it has the cumulative distribution
function (cdf);

F(x; α, λ) = ( − e−(λx)
)

α

; x > , α > , λ > ,

and probability density function (pdf)

f (x; α, λ) = αλ

xe
−(λx)

( − e−(λx)
)

α−
;

x > , α > , λ > , ()

where α and λ are shape and inverse scale parameters,
respectively. We denote the GR distribution with shape
parameter α and inverse scale parameter λ as GR(α, λ).
Several aspects of the one-parameter (λ = ) Burr-Type X
distribution were studied by Ahmad et al. (), Raqab
() and Surles and Padgett (). When α = , the
GR distribution reduces to the one-parameter Rayleigh
distribution with cdf and pdf given in () and ().
If α ≤ 

 , the density function in () is a decreasing
function and for α > 

 , it is a right skewed unimodal func-
tion.�emode of the density function is equal to x

λ
, where

x is the solution of the non-linear equation

 − x − e−x


( − αx) = .

Clearly the mode is a decreasing function of λ as expected
and it is an increasing function of α. Di�erent forms of the
density functions are presented in Fig. . It is clear from
Fig.  that the GR density functions resemble the gamma
and Weibull density functions.�e median of a GR ran-

dom variable occurs at [− 
λ
ln( − ( )


α )]



and is also a

decreasing function of λ but an increasing function of α.
�e hazard function of X is given by

h(x; α, λ) =
αλxe−(λx)

( − e−(λx)
)

α−

 − ( − e−(λx))
α .
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Generalized Rayleigh Distribution. Fig.  The density func-

tions of the GR distribution for different shape parameters

If α = , the hazard function becomes λx, a linear func-
tion of x. From Mudholkar et al. (), it follows that if
α ≤ 

 , the hazard function of GR(α, λ) is bathtub type
and for α > 

 , it is increasing.
�e hazard functions for di�erent values of α are plot-

ted in Fig. . For α ≤ 
 , it decreases from∞ to a positive

constant and then it increases to ∞. For α > 
 , it is an

increasing function and it increases from  to ∞. It is
known that for shape parameter greater than , the haz-
ard functions of gamma and Weibull are all increasing
functions. �e hazard function of 7gamma distribution
increases from  to . While for 7Weibull distribution
it increases from  to ∞. For α > 

 , the hazard func-
tion of the GR distribution behaves like the hazard func-
tion of the Weibull distribution, whose shape parameter is
greater than . In this respect the GR distribution behaves
more like a Weibull distribution than gamma distribution.
�erefore, if the data are coming from an environment
where the failure rate is gradually increasing without any
bound, the GR distribution can also be used instead of a
Weibull distribution. As indicated in Fig. , the GR den-
sity functions are always right skewed and they can be used
quite e�ectively to analyze skewed data sets.
In the context of estimating the model parameters, let

x, x, . . . , xn be a random sample of size n from GR(α, λ),
then the log-likelihood function L(α, λ) can be written as:

L(α, λ)∝ n lnα + n lnλ +
n

∑
i=
ln xi − λ


n

∑
i=
x

i + (α − )

Hazard function
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n

∑
i=
ln( − e−(λxi)). ()

�e normal equations become:

∂L

∂α
=
n

α
+

n

∑
i=
ln( − e−(λxi)) = , ()

∂L

∂λ
=
n

λ
− λ

n

∑
i=
x

i + λ(α − )

n

∑
i=

xi e
−(λxi)

ln( − e−(λxi))
= . ()

From (), we obtain the MLE of α as a function of λ,
say α̂(λ), as

α̃(λ) =
n

∑
n
i= −ln( − e−(λxi))

= .

Substituting α̃(λ) in (), we obtain the pro�le function
g(λ) = L(α̃(λ), λ). By setting λ = µ, the MLE of λ, say λ̃

can be obtained as a �xed point solution of the following
equation

h(µ) = µ, ()

where

h(µ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
n
i=

x
i
e−µx


i

−e−µx

i

∑
n
i= ln( − e−µx


i )
+

n

n

∑
i=
x

i +

n

n

∑
i=

xi e
−µx

i

 − e−µxi

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

If µ̃ is a solution of (), then λ̃ =
√
µ̃. Very simple

iterative procedure can be used to solve ().
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Toobtain the Bayesian estimates of the two parameters,
we assume that α and λ are independent and that

α ∼ G(a, b) and λ ∼ GEP(a, b), ()

where G(a, b) denotes the gamma distribution with mean
a
b
, and GEP(a, b) denotes the generalized exponential
power distribution with density function

π(λ)∝ λ
a−e

−b λ I(λ>)

where a, b, a, b are chosen to re�ect prior knowledge
about α and λ.

�e likelihood function of α and λ for the given com-
plete sample X = (X,X, . . . ,Xn) can be expressed as:

L(α, λ∣x)∝ α
n

λ
n exp{n ln x − nλ


x

− (α − )Dn(λ)},

()
where Dn(λ) = −∑

n
i= ln( − e

−(λxi)), ln x = 
n ∑

n
i= ln xi

and x = 
n ∑

n
i= x


i . By combining () and (), we obtain

the joint posterior density of α and λ

π(α, λ ∣x)∝ hλ(a + n, b + n x) gα(a + n,Dn(λ) + b)

exp{Dn(λ)},

where gα denotes the gamma density for α and hλ denotes
the generalized exponential power density for λ. �e
marginal posterior density of λ is given by

π(λ ∣x) ∝ hλ(a + n, b + n x) W(λ), ()

where W(λ) = (Dn(λ) + b)
−(a+n) exp{Dn(λ)}. From

() and using importance sampling, we can express the
Bayes estimate of λ as

E(λ∣x) =
E()[λ W(λ)]

E()[W(λ)]
,

where E() denotes the expectation with respect to
GEP(a + n, b + n x).
Since the marginal posterior density of α given λ and

x is gα(a + n,Dn(λ) + b) , the marginal posterior of α is
equal to Eλ∣x[gα(a + n, Dn(λ) + b)], it follows that

π(α∣x) =
E()[W(λ) gα(a + n,Dn(λ) + b)]

E()[W(λ)]
.

Using the fact that E(α ∣ λ, x) = (a +n)/(Dλ +b), we
obtain the Bayes estimate of α as

E(α∣x) =
E()[W(λ) (a + n)/(Dn(λ) + b)]

E()[W(λ)]
.

If X follows GR(α, λ), then

E(X

) =


λ

(ψ(α + ) − ψ()) ,

and

E(X

) − (E(X


))

=


λ
(ψ

′
() − ψ

′
(α + )) .

Here ψ(.) and ψ′(.) denote the digamma and
polygamma functions, respectively. Let us de�ne U and V
as follows:

U =

n

n

∑
i=
x

i , V =


n

n

∑
i=
x

i −U

.

�e method of moment’s estimator (MME) of α can
be obtained as the solution of the following non-linear
equation:

V

U
=

ψ′() − ψ′(α + )
(ψ(α + ) − ψ())

.

We denote the estimate of α as α̂MME. Once α̂MME is
obtained, we obtain the MME of λ, say λ̂MME as

λ̂MME =

√
ψ(α̂MME + ) − ψ()

U
.

It is not possible to obtain exact variances of α̂MME and
λ̂MME.�e asymptotic variances of α̂MME and λ̂MME can be
obtained from the normality asymptotic property of these
estimates.
For other methods of estimation, one may refer to Kundu
and Raqab ().
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Generalized Weibull Distributions

Chin Diew Lai
Professor in Statistics
Massey University, Palmerston North, New Zealand

Introduction
�e 7Weibull distribution has been found very useful in
�tting reliability, survival and warranty data and thus it
is one of the most important continuous distributions in
applications. A drawback of the Weibull distribution as
far as lifetime analysis is concerned, is the monotonic
behavior of its hazard (failure) rate function. In real life
applications, empirical hazard rate curves o�en exhibit
non-monotonic shapes such as a bathtub, upside-down
bathtub (unimodal) and others. �us there is a genuine
desire to search for some generalizations or modi�cations
of theWeibull distribution that can providemore �exibility
in lifetime modelling.
Let T be the lifetime random variable with f (t), F(t)

being its probability density function (pdf) and cumulative
distribution function (cdf), respectively.

�e hazard rate (failure rate) function is de�ned as

h(t) =
f (t)

 − F(t)
=
f (t)

R(t)
, ()

where R(t) = − F(t) is the reliability or survival function
of T.�e cumulative hazard rate function is de�ned as

H(t) = ∫
t


h(x)dx. ()

It is easy to show that the reliability function can be
expressed as

R(t) = e
−H(t). ()

It is easy to see that the cumulative hazard rate function
completely determines the lifetime distribution and itmust
satis�es the following three conditions in order to yield a
proper lifetime distribution:
(I) H(t) is nondecreasing for all t ≥ 
(II) H() = 
(III) lim

t→∞
H(t) =∞.

We will see that () provides a convenient and important
tool to construct Weibull-type lifetime distributions. Lai
and Xie (, Chapter ) gives a comprehensive account
on Weibull related distribitions.

Standard Weibull Distribution
�e standard Weibull distribution is given by

R(t) = exp(−λt
α
), λ, α > ; t ≥ . ()

It follows from () that H(t) = λtα . By a simple di�eren-
tiation, we obtain the hazard rate function h(t) = λαtα−,
which is increasing (decreasing) if α >  (α < ). We now
see that despite its many applications, theWeibull distribu-
tion lacks �exibility for many reliability applications. For
other properties of the Weibull distribution, we refer our
readers to Murthy et al. () for details.

Generalizations
�ere are many ways to generalize a Weibull distribution.
Indeed, we now have many such generalizations or exten-
sions in the literature. �ere is no clear guideline upon
which one may identify a distribution as a generalized
Weibull distribution.
On the basis of how a lifetime distribution is gener-

ated, we now attempt to classify generalized Weibull dis-
tributions into seven classes although these classes are not
necessarily mutually exclusive.

C: Distributions arise from a transformation of the
Weibull random variable X, such as (a) linear transforma-
tion, (b) power transformation, (c) non-linear transforma-
tion; (d) log transformation or (e) inverse transformation.
For example, Y = logX, then Y is a log Weibull (also
known as the type  extreme value distribution). IfY = X−,
then Y has an inverse Weibull distribution with R(t) =

 − exp{−λt−α
}, t > .

C: Families of generalized Weibull distributions with
two or more parameters that contains () as a special case.
For example, the modi�edWeibull of Lai et al. () with

R(t) = exp{−atαeλt
}, λ ≥ , α, a > , t ≥  ()

is such an example. Formoments of the above distribution,
see Nadarajah ().
C: Families of distributions that converge to a

standard Weibull or a generalized Weibull in C when
one of their parameters tends to zero. For example, �e
generalized Weibull of Modhalkar et al. () de�ned by
survival function:

R(t) =  −
⎡
⎢
⎢
⎢
⎢
⎣

 − ( − λ (
t

β
)

α

)

/λ⎤
⎥
⎥
⎥
⎥
⎦

, α, β > ; t ≥ . ()
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As λ → , R(t) → exp{− ( t
β
)

α
}. Another example, the

beta integrated distribution of Lai et al. () with R(t) =
exp{−αty( − dt)c}. Set c = λ/d and let d →  we obtain
the distribution given by ().
C: Power transformations of either the cumulative

distribution function or the survival function of the
Weibull or a generalized Weibull. For example, the expo-
nentiatedWeibull of Mudholkar and Srivastava () and
the generalized modi�ed Weibull of Carrasco et al. ()
are the two prime examples.
C:�e survival function of a generalized Weibull is a

function of the survival function of theWeibull. For exam-
ple, the distribution of Marshall and Olkin () and the
distribution of Hjorth ().
C: Involving two or more Weibull distributions: (a)

�nite mixtures; (b) n-fold competing risk (equivalent to
independent components being arranged in a series struc-
ture); (c) n-fold multiplicative models; and (d) n-fold sec-
tional models. See Murthy et al. () for further details.
�e class also includes mixtures of two di�erent general-
ized Weibulls, for example, Bebbington et al. (b).
C:�e class of distributions that are expressed as in

() with the cumulative hazard rate function having a sim-
ple form. Of course, this class contains many generalized
Weibull distributions that appear in the literature.

Some Important Generalized Weibull
Families
We now present several families that have relatively simple
survival functions. In addition, they can give rise to non-
monotonic hazard rate functions of various shapes such as
bathtub, upside-down bathtub (unimodal), or a modi�ed
bathtub.

Generalized Modified Weibull Family
�e distribution studied by Carrasco et al. () has the
survival function given by

R(t) = −(−exp{−atαeλt
})

β , λ ≥ , α, a > ; β > ; t ≥ .
()

Clearly, it is a simple extension of the modi�ed Weibull
distribution of Lai et al. () since () reduces to ()
when β = . In fact, it includes several other distributions
such as type  extreme value, the exponentiated Weibull of
Mudholkar and Srivastava () as given in () below,
and others. An important feature of this lifetime distribu-
tion is its �exibility in providing hazard rates of various
shapes.

Generalized Weibull-Gompertz Distribution
Nadarajah () proposed a generalization of Weibull
with four parameters having survival function given as
below:

R(t) = exp{−atb(ect
d

− )}, a,d > ; b, c ≥ ; t ≥ . ()

Since it includes the Gompertz (or Gompertz-Makem) as
its special case when b = , we may refer it as the gener-
alized Weibull-Gompertz distribution. Clearly, it contains
several distributions listed in Table  of Pham and Lai
(). Again, it can prescribe increasing, decreasing or
bathtub shaped hazard rate functions.

Generalized Power Weibull Family
Nikulin and Haghighi () proposed a three-parameter
family lifetime distributions

R(t) = exp{ − ( + (t/β)
α
)

θ
}, t ≥ ; α, β > ; θ > . ()

Its hazard rate function h(t) can give rise to increasing,
decreasing, bathtub or upside-down bathtub shapes.

Flexible Weibull Distribution
Bebbington et al. (a) obtained a generalization of the
Weibull having a simple and yet �exible cumulative hazard
rate function H:

R(t) = exp{−(eαt−β/t
)}; α, β > ; t ≥ . ()

It was shown that F has an increasing hazard rate if
αβ > / and a modi�ed bathtub (N or roller-coaster
shape) hazard rate if αβ ≤ /. Note that there are few
generalized Weibull distributions that have this shape.

Exponentiated Weibull Family
Mudholkar and Srivastava () proposed a simple gen-
eralization of Weibull by raising the cdf of the Weibull to
the power of θ giving

R(t) =  − [ − exp(−t/β)
α
]

θ , t ≥ ; α, β > , θ ≥ . ()

�e distribution is found to be very �exible for reliability
modelling as it canmodel increasing (decreasing), bathtub
(upside-down) shaped hazard rate distributions.
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Introduction
�e values of the probability mass function (pmf) for the
geometric distribution are in geometric progression:

Pr[X = x] = pq
x,  < p < , q =  − p, x = , , , . . . .

()
It is thewaiting time distribution that was studied by Pascal
() and Montmort () concerning the number of
failures (tails) in a sequence of throws of a coin before
obtaining the �rst success (head) (p is the probability of
a head).

�e distribution is important in Markov chain models
(see 7Markov Chains), e.g., in meteorological models for
precipitation amounts and for weather cycles, in the esti-
mation of animal abundance, in the analysis of runs of one
botanical species in transects through mixtures of plants,
and in surveillance for congenital malformations. Here it
is sometimes called the Furry distribution.

�e sum of k = , , , . . . geometric random variables,
for example the waiting time for k heads in a sequence of
throws of a coin, gives a negative binomial random vari-
able.�is approach enabled Montmort () to solve the
Problem of Points which was of intense interest in gam-
bling circles at the time. Meyer () used it to �nd the
probability of x male births in a sequence of births con-
taining a �xed number k of female births, assuming that
the probability q of a male birth is constant.�e distribu-
tion is sometimes called the Pascal distribution or binomial
waiting-time distribution when k is an integer and the
distribution is shi�ed k units from the origin to support
k, k + , . . ..

�e pmf of the negative binomial distribution is

Pr[X = x] =

⎛
⎜
⎜
⎝

k + x − 

k − 

⎞
⎟
⎟
⎠

p
k
q
x,

 < p < , q =  − p, x = , , , . . . . ()

Whereas binomial pmf ’s are given by the terms of the bino-
mial expansion ( − π + π)n, negative binomial pmf ’s are
given by the terms of the negative binomial expansion
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pk( − q)−k = pk [ + kq + k(k+)
 q +⋯]. �e integer

restriction on k is not necessary, provided that k > .
A popular alternative parameterization takes P = q/p,

i.e., p = /( + P), giving the pmf

Pr[X = x] =

⎛
⎜
⎜
⎝

k + x − 

k − 

⎞
⎟
⎟
⎠

(

 + P

)
k

(
P

 + P
)
x

,

P > , k > , x = , , , . . . . ()

�e probability generating function (pgf) is

G(z) = (
 − q
 − qz

)

k

= ( + P − Pz)−k ()

and the mean and variance are

µ = k(−p)/p = kP, µ = k(−p)/p = kP(+P) > µ.
()

�e distribution is overdispersed. Taking k =  gives the
corresponding formulae for the geometric distribution.
A parameterization used in the ecological literature is

a = P,m = kP, giving the pgf ( + a − az)−m/a, and
µ = m, µ = m( + a). �is is equivalent to Cameron
and Trivedi’s () NB model with λ = kP, P = P giving
µ = λ, µ = λ( + P), i.e., the variance is a linear func-
tion of the mean. For Cameron and Trivedi’s NB model,
λ = kP, k = k, giving µ = λ, µ = λ + λ/k, i.e., the vari-
ance is a quadratic function of themean.�e NB andNB
models are used by econometricians for negative binomial
regression when 7Poisson regression for large data sets
with explanatory variables is inadequate because it cannot
handle overdispersion.

Derivations
�e negative binomial distribution is both a mixed Pois-
son and a generalized Poisson distribution. Consider with
Greenwood and Yule () a mixture of Poisson distribu-
tions whose parameter θ has a 7gamma distribution with
probability density function

f (θ) = {β
αΓ(α)}

−
θ

α− exp(−θ/β), θ > , α > , β > .

�en the outcome is a negative binomial distribution

Pr[X = x]= {βαΓ(α)}− ∫
∞
 θα−e−θ/β

(θxe−θ
/x!)dθ

=

⎛
⎜
⎜
⎝

α + x − 

α − 

⎞
⎟
⎟
⎠

(
β

β+)
x
( 

β+)
α
. ()

�e Poisson parameter θ represents the expected num-
ber of accidents for an individual; this is assumed to vary
between individuals according to a gamma distribution.

�is “contagion” model has been applied, for example, to
car accidents, personal injuries, aircra� failures, medical
visits during spells of illness.
In the generalized Poisson derivation of Lüders ()

and Quenouille () the negative binomial distribution
arises from the sum Y of a Poisson (θ) number N of inde-
pendent random variables X,X, . . . ,XN , all having the
same logarithmic distribution with parameter λ.�e pgf
of Y is then

G(s) = exp [θ {
ln( − λz)

ln( − λ)
− }] = (

 − λ

 − λz
)

−θ/ ln(−λ)
.

()
�is is called an Arfwedson process, also a Poisson sum
(Poisson-stopped sum) of logarithmic rv’s. It incorporates
heterogeneity and has been used extensively to analyse
ecological data, e.g., larval counts, plant densities, migra-
tion data.
A limiting form of the Pólya-Eggenberger urn model

also yields the negative binomial distribution.
In 7queueing theory the geometric distribution is

the equilibrium queue-length distribution for the M/M/
queue. �e negative binomial is the equilibrium queue-
length distribution for the M/M/ queue given Bhat’s
() form of balking.
Certain important 7stochastic processes give rise to

the negative binomial distribution, e.g., Yule’s () simple
birth process with nonzero initial population, Kendall’s
() simple birth-death-and-immigration process with
zero initial population, McKendrick’s ()
time-homogeneous birth-and-immigration process with
zero initial population, Lundberg’s () nonhomoge-
neous process with zero initial population known as
the Pólya process, and Kendall’s () nonhomogeneous
birth-and-death process with zero death rate.
Because it arises in somanyways the negative binomial

distribution is o�en used to analyse overdispersed data
when no particular derivation is agreed upon, e.g., haemo-
cytometer counts, consumer expenditure, product choice,
lost sales, lending-library data, family sizes, DNA adduct
counts. Given a good empirical �t to data, interpretation
of the �t can be problematical.

Properties
�e characteristic function (cf) is

G(e
it
) = (

 − q
 − qeit

)

k

= ( + P − Peit)−k. ()
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�e factorial 7moment generating function is ( − Pt)−k,
giving

µ
′
[r] =

(k + r − )!
(k − )!

P
r , r = , , . . . , ()

and the factorial cumulant generating function is −k ln(−
Pt), giving κ[r] = k(r − )!Pr , r = , , . . .. Replace-
ment of n by (−k) and π by (−P) in the formulae for the
moment properties of the binomial distribution gives the
corresponding negative binomial formulae.

�e uncorrected moment generating function is
pk( − qet)−k, the central moment generating function is
e−kqt/ppk(−qet)−k, and the cumulant generating function
is k ln p − k ln( − qet).
In particular

µ = κ = kP, µ = κ = kP( + P) =
kq

p
,

µ = κ = kP( + P)( + P) =
kq( + q)
p

,

µ = kP( + P) + kP( + P)( + P + P)

=
kq

p
+
kq(p + q)

p
,

√
β =

 + P
{kP( + P)}/

=
 + q
√
kq
,

β =  +
( + P + P)
kP( + P)

=  +
p + q
kq

, ()

�e index of dispersion is p− =  + P; the coe�cient of
variation is (kq)−/ = {( + P)/(kP)}/.
From

Pr[X = x + ]
Pr[X = x]

=
(k + x)P

(x + )Q
, Q =  + P ()

it follows that Pr[X = x+ ] < Pr[X = x] if x > kP−Q, and
Pr[X = x] ≥ Pr[X = x− ] if x ≤ kP− P.�us if (k− )P is
not an integer, then there is a single mode at X where X is
the integer part of (k−)P; when (k−)P is an integer, then
there are two equal modes at X = (k− )P and X = kP−Q.
�e mode is at X =  when kP < Q, i.e., kq < .

�e generalized Poisson derivation implies that the
distribution is in�nitely divisible.
If k< , then pxpx+/px+ >  (where px = Pr[X = x])

and the probabilities are log-convex; if k > , then
pxpx+/p


x+ <  and the probabilities are log-concave.

�ese log-convexity/log-concavity properties imply that
the distribution has a decreasing failure (hazard) rate
for k <  and an increasing failure (hazard) rate for
k > . For k =  the failure rate is constant. �is no-
memory (Markovian, non-aging) property characterizes
the geometric distribution, making it a discrete analogue

of the (continuous) exponential distribution. It is impor-
tant in reliability theory; also it enables geometric ran-
dom variables to be computer generated easily. For other
characterizations of the geometric distribution and the
comparatively few characterizations of the negative bino-
mial distribution see Johnson et al. ().
If X and X are independent negative binomial ran-

dom variables with the same series parameter q and power
parameters k and k, then X + X has a negative bino-
mial distribution with pgf ( + P − Pz)−k−k = pk+k

( − qz)−k−k . When k →∞ and P → , with kP = θ con-
stant, the negative binomial distribution tends to a Poisson
distribution with parameter θ. It tends to normality when
kP →∞.

Estimation
�e parameter of the geometric the distribution is easy
to estimate; here the �rst moment equation is also the
maximum likelihood equation and P̂ = ( − p̂)/p̂ = x̄.
When both parameters of the negative binomial distri-

bution are unknown there is a choice of estimation meth-
ods. For the Method of Moments the sample mean x̄ and
sample variance s are equated to their population values,
giving k̃P̃ = x̄ and k̃P̃(+ P̃) = ∑(x − x̄)/(n− ) = s, i.e.,
P̃ = s/x̄ −  and k̃ = x̄/(s − x̄).
In theMethod ofMean-and-Zero-Frequency the observed

and expected numbers of zero values are used as well as
the �rst moment equation. Let f be the proportion of

zero values.�en the equations are f = ( + P†)−k
†
and

k†P† = x̄, giving P†/ln( + P†) = −x̄/ln f; this can be
solved for P† by iteration.

�eMethod of Maximum Likelihood equations are

k̂P̂ = x̄ and ln( + P̂) =
∞
∑
j=

⎧⎪⎪
⎨
⎪⎪⎩

(k̂ + j − )−
∞
∑
i=j
fj

⎫⎪⎪
⎬
⎪⎪⎭

; ()

their solution requires iteration but this may be slow if
the initial estimates are poor.�e importance of the nega-
tive binomial distribution has led to much research on its
inference in the past  decades. �is includes rapid esti-
mation methods for the initial estimates, the properties
of the maximum likelihood estimators, Bayesian estima-
tion, computer studies of the relative e�ciences of di�erent
estimationmethods, and goodness-of-�t tests; see Johnson
et al. ().

About the Author
For biography see the entry7Univariate Discrete Distribu-
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Geometric Mean

Stevan Stević
Professor, Faculty of Economics, Brčko
University of East Sarajevo, Republic of Srpska, Bosnia
and Herzegovina

According to Sir �omas �omas Heath (, p. ) in
Pythagoras’s time, there were three means, the arithmetic,
the geometric, and the subcontrary, and the “name of the
third (‘subcontrary’) was changed by Archytas and Hippa-
sus to harmonic.” In English, the term geometrical mean
can be found as early as in  in the E. Halley’s paper
(Halley –, p. ).�e geometric mean is a mea-
sure of central tendency that is “primarily employedwithin
the context of certain types of analysis on business and
economics” (Sheskin , p. ), such as an average of
7index numbers, ratios, and percent changes over time.
For example, Fisher “ideal index” is the geometric mean
of the Laspeyres index and the Paasche index. Geomet-
ric mean is also being used in modern 7portfolio the-
ory and investment analysis (see, for example, Elton et al.
, p. ), and in calculation of compound annual
growth rate.

�e geometric mean of n positive numbers x, x, ..., xn
is de�ned as positive nth root of their product:

x̄G =
n
√
x ⋅ x ⋅ . . . ⋅ xn = (

n

Π
i=
xi)

/n
()

For example, the geometric mean of two numbers,
 and , is the square root of their product, i.e.,
x̄G =


√
 ⋅  = . It is important to emphasize that the calcu-

lation of geometricmean is either insoluble ormeaningless
if a data set contains negative numbers.

�e geometric mean given in () can be expressed in a
logarithmic form as

ln x̄G = (

n

n

∑
i=
ln xi) ,

or

x̄G = exp(

n

n

∑
i=
ln xi) .

Just like the arithmetic and harmonic means, the geo-
metric mean is under in�uence of each observation in the
data set. It has an advantage over the arithmetic mean in
that it is less a�ected by very small or very large values in
skewed data.
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�e arithmetic–geometric–harmonic means inequal-
ity states that for any positive real numbers x, x, . . . , xn

x̄ =
x + x + . . . + xn

n
≥ x̄G =

n
√
x ⋅ x ⋅ . . . ⋅ xn

≥ x̄H =
n


x
+ 
x
+ . . . + 

xn

()

In () equality holds if and only if all the elements of the
data set are equal. Interested reader can �nd  di�erent
proofs of the above inequality in Bullen ().
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Geostatistics and Kriging
Predictors
ShigeruMase
Professor
Tokyo Institute of Technology, Tokyo, Japan

What Is Geostatistics?
Spatial statistics deals with spatial data. Geostatistics can
be considered as a branch of spatial statistics. Its main

objective is to interpolate values of a random �eld contin-
uously from its sparsely observed data.
In the s, South African gold mining engineer

D.G. Krige introduced several statistical methods to pre-
dict average gold mine grade. Inspired by his work, French
mathematician G. Matheron initiated a regression-based
spatial prediction method for random �eld data in s.
He coined the term kriging (or, more frequently, Kriging)
for his method, rewarding Krige’s pioneering work. Actu-
ally, the kriging is a central tool of geostatistics and has
been used almost synonymously.
Started as a mining technology, geostatistics has

become now an indispensable statistical tool for various
application �elds where main objects spread continuously
over a space. Examples are environmental sciences, ecol-
ogy, forestry, epidemiology, oceanology, agriculture, �sh-
ery research, meteorology, civil engineering, and so on.

Kriging Predictions
�e probabilistic framework of geostatistics is a random
�eld Z(x), x ∈ D ⊂ Rd, the dimension d being
two or three typically. �e data is a collection of values
Z(x),Z(x), . . . ,Z(xn) where xi ∈ D may be regularly
spaced or not. In Krige’s case, xi are locations of boring
cores and Z(xi)’s are corresponding gold grades. A krig-
ing predictor Ẑ(x) of the valueZ(x) at arbitrary location
x ∈ D is a liner combination of observed data:

Ẑ(x) = wZ(x) + wZ(x) +⋯ + wnZ(xn). ()

As a result, one can plot the contour of predicted surfaces
Ẑ(x), x ∈ D.
Actually, it is usual to assume the second-order station-

arity ofZ(x), that is, () themean µ = E{Z(x)} is constant,
and () the covariance function depends only on the loca-
tion di�erence, i.e., C(x − y) = Cov(Z(x),Z(y)). Coe�-
cients {wi} of () are determined so that the mean squared
kriging prediction error σ E(x) = E∣Ẑ(x) − Z(x)∣

σ

E(x) = C()−

n

∑
i=
wiC(x−xi)+

n

∑
i,j=
wiwjC(xi−xj) ()

should be minimized under the unbiasedness condition
E{Ẑ(x)} = µ, that is,

n

∑
i=
wi = . ()

A fortiori, the kriging predictor recovers the original data
at every x = xi, i = , , . . . ,n. By the way, from a histor-
ical reason, the word “estimator” instead of “predictor” is
preferred in the literature.



 G Geostatistics and Kriging Predictors

In geostatistical literature, the notion of the intrinsic
stationarity has been preferred to the second-order station-
arity. A random �eld Z is said to be intrinsic stationary if
() E{Z(x) − Z(y)} =  and () E∣Z(x) − Z(y)∣ depends
only on the di�erence x − y.�e function γ(h) = E∣Z(x +
h)−Z(x)∣/ is called the (semi-)variogram of Z. Note that
it is not assumed the existence of E{Z(x)}. If Z is second-
order stationary, then it is intrinsic stationary and there is
the relation

γ(h) = C() − C(h).

γ(x) is non-negative, even and γ() = . Variogram func-
tionsmay be unbounded contrary to covariance functions.
Its characteristic property is the conditional non-positive
de�niteness: for every {xi} and {wi} with∑i wi = 

n

∑
i,j=
wiwjγ(xi − xj) ≤ .

In terms of variogram functions, the kriging prediction
error can be expressed as

σ

E(x) = −γ()+

n

∑
i=
wiγ(xi−x)−

n

∑
i,j=
wiwjγ(xi−xj) ()

if the unbiasedness condition () is satis�ed. �e use of
variograms instead of covariances intends to eliminate
possible linear trends.

�e followings are three frequently used covariance
function models. �ey are all isotropic models, that is,
depend only on the modulus h = ∣h∣:

spherical
model

Csph(h) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

b( −
∣h∣
a

+
∣h∣

a
) ( ≤ ∣h∣ ≤ a)

 (a < ∣h∣)

,

exponential
model

Cexp(h) = b exp(−∣h∣/a) (a, b > ),

Gaussian
model

Cgau(h) = b exp(−h/a) (a, b > ).

�e parameter a is called the range, from which values of
the function are exactly or nearly equal to zero.�e param-
eter b is called the sill, the maximal value of the function.
Sometimes covariance functions have jumps at  showing
a nugget e�ect, a pure random noise.

Kriging Equations
�ere are three types of standard kriging predictors:

. Simple kriging:�e common mean µ is assumed to be
known.

. Ordinary kriging:�e common mean µ is assumed to
be unknown.

. Universal kriging: �e mean function (trend) µ(x)
is assumed to be a linear combination of given basis
functions (say, spatial polynomials).

For example, coe�cients {wi} of the ordinary kriging pre-
dictor are calculated by solving the following ordinary
kriging equation (if expressed in terms of variograms):

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

γ(x − x) . . . γ(x − xn) 

⋮ ⋱ ⋮ ⋮

γ(xn − x) . . . γ(xn − xn) 

 . . .  

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

w

⋮

wn

λ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

γ(x − x)

⋮

γ(xn − x)



⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

()

where λ is the Lagrange multiplier for the constraint
∑i wi = .�e prediction error σ E(x) is expressed as:

σ

E(x) = −γ() + λ +

n

∑
i=
wiγ(xi − x). ()

Block Kriging
Sometimes, one wants to predict spatial averages

Z(D) =


∣D∣
∫
D

Z(x)dx

for a block D.�e corresponding block kriging predictor
Ẑ(D) is also an unbiased linear combination of point data
{Z(xi)}. Note that, ifZ has a constantmean µ, thenZ(D)
has also the mean µ. Furthermore,

Cov(Z(D),Z(x)) =


∣D∣
∫
D

Cov(Z(x),Z(y))dy. ()

One can derive the simple or ordinary block kriging equa-
tion and its prediction error formula analogously as in ()
and ().
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Geostatistics and Kriging Predictors. Fig.  Mesh data of populations of Tokyo metropolitan area (,/km), block-to-point

kriging result using the spherical model, the exponential model, and the Gaussian model from left to right

Actually, one can consider following four situations:

point-to-point kriging: Ẑ(x) = ∑
n
i= wiZ(xi)

point-to-block kriging: Ẑ(D) = ∑
n
i= wiZ(xi)

block-to-point kriging: Ẑ(x) = ∑
n
i= wiZ(Di)

block-to-block kriging: Ẑ(D) = ∑ni= wiZ(Di)

�e standard procedure to derive kriging predictor coef-
�cients is almost the same, at least formally, except for
numerical di�culties. For example, the block-to-point or
block-to-block kriging equations contain a lot of block data
covariances such as

Cov(Z(Di),Z(Dj)) =


∣Di ∣∣Dj ∣
∬

Di×Dj

Cov(Z(x),Z(y))dxdy.

as well as () which should be computed using numerical
integrations (see 7Numerical Integration). Figure  shows
a block-to-point prediction result (Mase et al. ()).

Covariance or Variogram Model Fittings
In order to apply the kriging method, one has to esti-
mate the type and the parameters (usually the mean, the
range, and the sill) of covariance or variogram models.
�is model �tting is the most di�cult part of the kriging
method.�e standard method is the least squared �tting
of an isotropic variogram model γθ(h) to the scatter plot
(sample variogram) of (∣xi − xj∣, ∣Z(xi) − Z(xj)∣) called
the variogram cloud. In practice, distances ∣xi −xj∣ are clas-
si�ed into small consecutive intervals and corresponding
values ∣Z(xi) − Z(xj)∣ are averaged per intervals in order
to increase robustness.
Another method is the maximum likelihood �tting of

a covariance function model Cθ(h) assuming the Gaus-
sianity of random �eld Z(x).�is procedure needs no data
grouping and can be applied even to non-isotropic mod-
els. Let Z be a second-order stationary Gaussian random
�eld with mean µ and covariance function Cθ(x). �en

the data vector Z = (Z(x),⋯,Z(xn))t is Gaussian with
mean vector µ = (µ,⋯, µ)t and covariance matrix Σθ =

(Cθ(xi − xj))ij .�erefore, the log-likelihood of Z is

l(µ, θ)= −
n


log(π) −



log ∣Σθ ∣−



(Z − µ)tΣ−θ (Z − µ).

By maximizing l(µ, θ), we can get the maximum likeli-
hood estimators of µ and θ.

Multivariate Kriging Method
Sometimes there may be an auxiliary random �eld data
{Z(yj)} (or even more) in addition to the main data
{Z(xi)}. Locations {xi} may or may not be identical to
{yj}. If we assume the second-order stationarity of the
multivariate random �eld (Z(x),Z(x)), we can con-
struct the cokriging predictor Ẑ(x) as

Ẑ(x) =∑
i

w
()
i Z(xi) +∑

j

w
()
j Z(yi).

Two sets of coe�cients {w()
i } and {w

()
j } can be deter-

mined as before. If the number of auxiliary data is too
large, one can lessen the resulting numerical complexity by
restricting {Z(yj)} to those closer to x. In particular, the
collocated kriging uses only Z(x) if it is available as data.
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Glivenko-Cantelli Theorems
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The Glivenko-Cantelli Theorem
Let X, . . . , Xn, . . . be a sequence of independent iden-
tically distributed (i.i.d.) random variables with a com-
mon distribution function F(x). Introduce the empirical
distribution function:

Fn(x) =

n

n

∑
i=
I {Xi < x}

where I{⋅} is the indicator function. By the strong law of
large numbers (SLLN) for any �xed point x ∈ R, we have

Fn(x)→ F(x) a.s., as n→∞

�e Glivenko-Cantelli theorem states that this conver-
gence is uniform.

�eorem  (Glivenko-Cantelli): As n→∞

sup
x∈R

∣Fn(x) − F(x)∣→  a.s.

�eorem  was proved by V.I. Glivenko Birkho� ()
in the case of continuous F(x) and by
F.P. Cantelli Borovkov () in the general case. In math-
ematical statistics, the Glivenko-Cantelli theorem can be
interpreted as follows based on independent observations
x, . . . , xn of the random variable ξ one can approximate
the distribution function F(x) of ξ arbitrarily close by the
empirical distribution function:

Fn(x) =

n

n

∑
i=
I {xi < x} .

�is is a very important fact. Because of this fact, the
Glivenko-Cantelli theorem is commonly referred to as a
central or fundamental result of mathematical statistics.

�e proof of the theorem is based on the SLLN (see,
for instance Bradley (), Cantelli ()).�e following
extension of�eorem  is valid.

�eorem  Let X, . . . ,Xn, . . . be a stationary and ergodic
sequence of random variables with a common distribution

function F(x).�en as n→∞

sup
x∈R

∣Fn(x) − F(x)∣→  a.s.

�e proof of�eorem  is almost the same as the proof
of�eorem  except for a single di�erence: instead of using
SLLN in the proof of�eorem  one should use Birkho� ’s
ergodic theorem Dudley ().�eorem  remains true
for all stationary sequences of mixing random variables
(see for mixing conditions Dudley et al. ()) since such
sequences are ergodic.
We can reformulate the Gllivenko-Cantelli theorem

using empirical measures. Denote by P(A) a distribution
of X.�e empirical distribution is de�ned as:

Pn(A) =

n

n

∑
i=
I {Xi ∈ A} . ()

ByAwe denote a class of all semi intervals [a,b) with �nite
or in�nite endpoints.�e following result takes place.

�eorem  Let X, . . . ,Xn, . . . be a sequence of i.i.d. ran-
dom variables with the common distribution P(A).�en as

n→∞

sup
A∈A

∣Pn(A) − P(A)∣→  a.s.

�eorems  and  are equivalent since they imply each
other.
For some improvements of the Glivenko-Cantelli the-

orem, such as the law of the iterated logarithm see, for
instance Bradley ().

Generalizations of Glivenko-Cantelli
Theorem
�e Glivenko-Cantelli theorem gave a start to investiga-
tions on convergence of empirical measures and processes
in �nite and in�nite dimensional spaces.
Let X, . . . ,Xn, . . . be a sequence of i.i.d. random vec-

tors with values in Rk and with a common distribution
function F(t). De�ne the empirical distribution func-
tion as:

Fn(t) =

n

n

∑
i=
I {X

()
i < t, . . . ,X(k)

i < tk}

where Xi = (Xi , . . . ,X
k
i ) and t = (t, . . . , tk).
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�e generalization of�eorem  is the following.

�eorem  As n→∞

sup
t∈Rk

∣Fn(t) − F(t)∣→  a.s.

Now by P(B) we denote a distribution corresponding
to distribution function F(t) and by B a class of all mea-
surable convex sets inRk.�e empirical distribution Pn(B)
is de�ned as in ().

�eorem  Let X, . . . ,Xn, . . . be a sequence of i.i.d. ran-
dom variables with values in Rk and with the common dis-

tribution P(B), which is absolutely continuous with respect

to the Lebesque measure in Rk.�en as n→∞

sup
B∈B

∣Pn(B) − P(B)∣→  a.s.

�eorem  is a consequence of results by Ranga Rao
Glivenko () (see also Appendix I in Bradley ()).
In in�nite dimensional spaces the situation is more

complicated. Now, assume that (X ,C) is a measurable
space and let X, . . . ,Xn, . . . be a sequence of i.i.d. random
variables with values in X with a common distribution
P ∈ P (here P is a set of all distributions on X ) and again
we denote by Pn(B) the empirical distribution de�ned as
in ().
In separable metric spaces X , Varadarajan Ranga Rao

() proved almost surely weak convergence of empirical
distributions, i.e., as n→∞

Pn(B)→ P(B) for all Borel sets B ∈ χ such that P(∂B) =  a.s.

where ∂B is a boundary of B.
In general, in in�nite dimensional spaces uniform con-

vergence is not valid even over the class of all half-spaces
(see Sazonov ()). Generalizations of the Glivenko-
Cantelli theorem in linear spaces X are mostly devoted to
studying the almost certain convergence properties of the
following two values:

∆(V) = sup
B∈V

∣Pn(B) − P(B)∣

∆(F) = sup
f ∈F

∣Pn(f ) − P(f )∣

whereV is a class of sets,F is a class of functions f : X →
R and P(f ) = ∫ f dP for any distribution P.
Generalizing the Glivenko-Cantelli theorem several

notions such asGlivenko-Cantelli class, universalGlivenko-
Cantelli class, and uniform Glivenko-Cantelli class of sets
or functions were introduced.

�e class of sets V is called a Glivenko-Cantelli class of
sets, if as n→∞ the following holds:

∆(V)→  a.s. ()

�e class of sets V is called a universal Glivenko-
Cantelli class of sets, if () holds for any P ∈ P .

�e class of sets V is called a uniform Glivenko-
Cantelli class of sets, if as n→∞ the following holds:

sup
P∈P
∆(V)→  a.s.

�e corresponding classes for the sets of functions can
be de�ned similarly.
One of the problems in in�nite dimensional spaces

is a measurability problem in non-separable spaces. We
will give two theorems and in one of them this problem
will appear. Before giving results we need to introduce
necessary notions and notation.
We denote byN(ε,F , ∥⋅∥) the covering number, which

is de�ned as theminimal number of balls {g : ∥g− f ∥ < ε}

of radius ε needed to cover F . Given two functions l and
u, the bracket [l,u] is a set of all functions f such that l ≤
f ≤ u. An ε-bracket is a bracket [l,u] with ∥l − u∥ < ε.
�eminimumnumber of ε-brackets needed to coverF we
denote by N[](ε,F , ∥ ⋅ ∥). Note that logN(ε,F , ∥ ⋅ ∥) and
logN[](ε,F , ∥ ⋅ ∥) are called an 7entropy and an entropy
with bracketing, respectively. An envelope function of F
is any function F(x) such that ∣f (x)∣ ≤ F(x) for any x and
f ∈ F . As a norm ∥ ⋅ ∥ we use a L(P)-norm i.e.

∣∣f ∣∣L(P) = ∫ ∣f ∣dP.

A class F of measurable functions f : X → R on
probability space(X ,C,P) is called P-measurable if the
function

(X, . . . ,Xn)→ sup
f ∈F

∣
n

∑
i=
eif (Xi)∣

is measurable on the completion of (X n,Cn,Pn) for every
n and every vector (e, . . . , en) ∈ Rn. By P∗ we denote the
outer probability.
Now we can formulate the following theorems (for the

proofs see Varadarajan ()).

�eorem  Let F be a class of measurable functions such

that N[](ε,F ,L(P)) < ∞ for every ε > .�en F is the
Glivenko-Cantelli class.

�eorem  Let F be a P-measurable class of measurable

functions with envelope F such that P∗(F) <∞. Let FM be

the class of functions fI{F ≤ M} when f range over F . If

logN(ε,FM ,L(Pn)) = oP∗(n) for every ε andM > , then
as n→∞

∆(F)→  P∗ − a.s.

i.e., F is the Glivenko-Cantelli class.
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For other results in in�nite dimensional spaces we
refer to Shorack and Wellner ; Dudley ; Dud-
ley et al. ; Vapnik and Červoninkis ; Vapnik and
Červoninkis ; Talagrand ; TØpsoe ; van der
Vaart and Wellner  (see also references therein).
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Graphical Analysis of Variance

G. E. P. Box
Professor Emeritus
University of Wisconsin, Madison, WI, USA

Walter Shewhart said:
“Original data should be presented in a way that would

preserve the evidence in the original data,” (, p. ).

Frank Anscombe said:
“A computer shouldmake both calculation and graphs.

Both kinds of output contribute to understanding,” (,
p. ).

And Yogi Berra said:
“You can see a lot by just looking.”

A Simple Comparative Experiment
As an illustration of graphical analysis of variance, Table a
shows coagulation times for samples of blood drawn from
 animals randomly allocated to four di�erent diets A, B,
C, D. Table b shows an 7analysis of variance for the data.
While the standard analysis of variance shown in

Table b yielding F values and p values is very useful,
the additional graphical analysis in Table c can lead to a
deeper understanding.�is is because it puts the brain of
the experimenter in direct contact with the data. In the
graphical analysis of variance of Table c the coagulation
data are represented by dots. �e residual dots are cal-
culated and plotted in the usual way. However the plots
of the deviations of the treatment means from the grand
mean are multiplied by a scale factor. If νR is the degrees
of freedom for the residuals and νT is the degrees of
freedom for the treatment means, then the scale factor

is
√

νR

νT
in this example

√



= .. �e scale factor

is such that if there were no di�erences between treat-
ment means, the expected value of natural variance for
the treatments would be the same as that for the residu-
als. By the natural variance is meant the sum of squares
of the dot deviations divided by the number of dots (not
the degrees of freedom). �is measure of the spread is
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appropriate because it is equated to what the eye actu-
ally sees (�e ratio of natural variances of the dot plots
produces the usual F-value). �e analysis asks the ques-
tion, “Might the scaled treatment deviations just as well
be part of the noise?” In this example the treatment dot

Graphical Analysis of Variance. Table a Coagulation times

for blood drawn from  animals randomly allocated to four
diets

Diets (Treatments)

A B C D

() () () ()

() () () ()

() () () ()

() () () ()

() () () ()

() () () ()

Treatment averages    

Grand average    

Difference − + + −

Graphical Analysis of Variance. Table b Analysis of Variance

(ANOVA) Table. Blood Coagulation example

Sources of
variation

Sum of
squares

Degrees of
freedom

Mean
square

Between
treatments ST =  νT =  mT = . F, = .

Within
treatments SR =  νR =  mR = .

p < .

Total SD =  νD = 

deviations −., ., . and −. are obtained by multi-
plying the treatment deviations −,+,+,− by ..�e
graphical analysis supports the �nding that the di�erences
in the treatments are unlikely due to chance. But it does
more.�e graphical analysis helps the analyst appreciate
the nature of the di�erences and similarities produced by
the treatments, something that the ANOVA table does not
do well. It also directs attention to the individual residuals
and any large deviations that might call for further study.
For this example it makes clear that there is nothing sus-
picious about the distribution of the residuals. Also that
the treatments A and D are almost certainly alike in their
e�ects but C is markedly di�erent. Experimenters some-
times believe that a high level of signi�cance necessarily
implies that treatment e�ects are accurately determined
and separated.�e graphical analysis discourages overre-
action to high signi�cance levels, and reveals “very nearly”
signi�cant di�erences.

A Latin Square
�e following Latin square design was run to �nd out if
the amount of carbon monoxide exuded by an automo-
bile could be reduced by adding small amounts of additives
A, B, C or D to the gasoline.�e additives were tested with
four di�erent drivers and four di�erent cars over a di�cult
�xed course.�e design was used to help eliminate from
the additive comparisons possible di�erences produced by
drivers and cars. In this arrangement the additives were
randomly allocated to the symbols A, B, C, D; the drivers
to the symbols I, II, III, IV and the cars to the symbols , ,
,  as in Table a.

�e standard analysis and the corresponding graphical
analysis are shown in Table b, c. In this particular exper-
iment, apparently there were di�erences between drivers
but not between additives and cars.

A Split Plot Experiment
Two considerations important in choosing any statistical
arrangement are convenience and e�ciency. In industrial
experimentation the split plot design is o�en conve-
nient and is sometimes the only practical possibility. (�e

Graphical Analysis of Variance. Table c Graphical Analysis of Variance
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nomenclature is from agricultural experimentation where
split plots were �rst used.) In particular this is so whenever

Graphical Analysis of Variance. Table a The  ×  Latin
squared: automobile emission data

Drivers Cars Averages

    Cars Drivers Additives

I A B D C :  I:  A: 

   

II D C A B :  II:  B: 

   

III B D C A :  III:  C: 

   

IV C A B D :  IV:  D: 

   

Grand Average: 

Graphical Analysis of Variance. Table b Analysis of

variance: Latin square example

Source of
variation

Sum of
squares

Degrees of
freedom

Mean
square F p

Cars Sc =   mc = . F, = . .

Drivers SD =   mD = . F, = . <.

Additives ST =   mT = . F, = . .

Residuals SR =   mR = .

Total Sv =  

there are certain factors that are di�cult to change and
others that are easy. Table a shows the data from an
experiment designed to study the corrosion resistance of
steel bars subjected to heat treatment with four di�erent
coatings C ,C,C,C arranged randomly within each of
the six heats at furnace temperatures of , , ,
, ,  ○C. In this experiment changing the furnace
temperature was di�cult but re-arranging the positions
of the coated bars in the furnace was easy. A fully ran-
domized experiment would have required changing the
temperature up to  times. �is would have been very
inconvenient and costly. Notice that there are two error
sources - between heats (whole plots) and coatings (sub-
plots).

�e entries in the analysis of variance in Table b
may be calculated as if there was no split plotting.
Table c shows separately the analyzes for whole plots
and sub-plots.�ey are conveniently arranged under two

Graphical Analysis of Variance. Table a Split plot design to

study the corrosion resistance of steel bars treated with four
different coatings randomly positioned in a furnace and

baked at different temperatures

Corrosion: data rearranged in rows and columns coatings

Heats C C C C Averages

     . .

    .

     . .

    .

     . .

    .

Average . . . . – .

Graphical Analysis of Variance. Table c Graphical ANOVA for the Latin square example
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Graphical Analysis of Variance. Table b ANOVA for corrosion resistance data. The parallel column layout identifies appropriate

errors for whole-plots and subplots effects

Heats (whole plots) Coatings (subplots)

Source df SS MS Source df SS MS

Average, I    C    F, = .

Temperature    F, = . T × C    F, = .

Error EW    Error Es   

Note: The convention is used that a single asterisk indicates statistical significance at the % level and two asterisks statistical significance
at the % level.

Graphical Analysis of Variance. Table c Graphical ANOVA, corrosion data

Heats  whole plots

1
T P = 0.02

P < 0.01

P = 0.02

–100 –50

2 13 4

T3C4

C

C × T

0 50 100

2 3

Coatings Sub-plots

σs

σw

headings: Heats (whole plots) and Coatings (sub-plots).
Notice the relatively small variances for coatings (sub-
plots) as compared with that for heats (whole plots) and
the detection of interaction between coatings and temper-
atures. �is clearly shows the advantage of the split plot
design since it was the comparison coatings that were of
main interest.
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“George Box, a legend in statistics, is one of the
most respected living statisticians. His contributions to
statistics are outstanding and he has made fundamental
contributions in areas such as design and analysis of exper-
iments, response surface methodology and time series
analysis...Professor Box has created a school of industrial
statisticianswho span industry, academia and government;
his followers are in every major corner of the world.”
(University of Waterloo, News Release, th Convocation,
, http://newsrelease.uwaterloo.ca/news.php?id=).
“All models are wrong, but some are useful.�e quo-

tation comes from George Box, one of the great statistical
minds of the th century” (RonWasserstein “George Box:
a model statistician”, Signi�cance, (), ).
“George Box is truly one of the towering �gures in

the history of industrial experimentation” (Geo� Vining,
“George’s Contributions to Industrial Experimentation”,
Quality and Productivity Research Conference, Madison,
).
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Graphical Markov models are multivariate statistical
models which are currently under vigorous development

and which combine two simple but most powerful
notions, generating processes in single and joint response
variables and conditional independences captured by
graphs.

�e development of graphical Markov models started
in –, extending early work in – by geneti-
cist Sewall Wright. Wright used graphs, in which nodes
represent variables and arrows capture dependence, to
describe hypotheses about stepwise processes in single
responses that could have generated his data.
He developed a method, called path analysis, to

estimate linear dependences and to judge whether the
hypotheses are well compatible with his data that he sum-
marized in terms of simple and partial correlations. With
this approach he was far ahead of his time, since corre-
sponding formal statistical methods for estimation and
tests of goodness of �t were developed much later and
graphs that capture independences much later than tests
of goodness of �t.
It remains a primary objective of graphical Markov

models to uncover graphical representations that lead to
an understanding of data generating processes. Such pro-
cesses are no longer restricted to linear relations but con-
tain linear dependences as special cases. A probabilistic
data generating process is a recursive sequence of condi-
tional distributions in which response variables may be
vector variables that contain discrete or continuous com-
ponents. �ereby, each conditional distribution speci�es
both the type of dependence of response Ya, say, on its
disjoint explanatory variable vector Yb and the type of
undirected associations of the components of Ya.
Graphical Markov models generalize sequences in sin-

gle responses and single explanatory variables that have
been named 7Markov chains, a�er probabilist Andrey
A. Markov. Markov recognized in – that seem-
ingly complex joint probability distributions may be
radically simpli�ed by using the notion of conditional
independence.
In a Markov chain of random variables Y, . . . ,Yi, . . .,

Yd, the joint distribution is built up by starting with the
density of fd of Yd, by considering with fd−∣d conditional
dependence of Yd− on Yd, then taking conditional inde-
pendence of Yd− from Yd given Yd− into account by
formulating fd−∣d−,d = fd−∣d−, by continuing such that,
with fi∣i+,. . .d = fi∣i+, response Yi is conditionally indepen-
dent ofYi+, . . . ,Yd givenYi+ (written compactly in terms
of nodes as i ⊥⊥ {i + , . . . ,d}∣i + ) and �nally having with
f∣,. . .,d = f∣ just Y as explanatory variable of response Y.

�e directed graph that captures the independences in
such a Markov chain is a single directed path of arrows,
with an arrow starting at node d and pointing to node d− 
and ending with an arrow starting at node  and pointing
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to node .�us, for d =  and node set N = {, , , , },
the graph of a Markov chain is

≺ ≺ ≺ ≺ .

�e graph corresponds to the factorization of the joint
density fN given by

fN = f∣ f∣ f∣ f∣ f.

�e three de�ning local independence statements implied
by the above factorization or by the corresponding path of
dependences are  ⊥⊥ {, , }∣,  ⊥⊥ {, }∣ and  ⊥⊥ ∣. One
also says that in the generating process, each response i
remembers of its past just the nearest neighbor i + .
It remains an important secondary objective of graph-

ical Markov models, that some type of graph is to capture
the independence structure of interest for fN , that is a set
of all independence statements satis�ed by fV and that is
implied by a given graph. In principle, all independence
statements that arise from a given set of statements de�n-
ing a graph, may be derived from basic laws of probability.
�us, the above Markov chain implies for instance

 ⊥⊥ ∣, {, } ⊥⊥ {, }∣, or  ⊥⊥ ∣{, , }.

For many variables, methods formulated for graphs alone
considerably simplify the task of decidingwhether an inde-
pendence statement is implied or not. �ese are called
separation criteria; see Geiger et al. (), Lauritzen et al.
() and Marchetti and Wermuth () for criteria on
directed acyclic graphs.
Directed acyclic graph are the most direct generaliza-

tion of Markov chains.�ey have an ordered sequence of
single nodes representing responses that may generate fN ,
but each response may remember any subset or all of the
variables in its past. Directed acyclic graphs are known as
Bayesian networks when the node set consists of discrete
random variables that correspond to features of observable
units, but it may also include decisions or parameters.
For ordered sequences of vector responses, the graphs

are chains of joint responses and the associations and inde-
pendences of the individual components of each response
are represented by undirected edges being present or miss-
ing; see Cox and Wermuth (, ), Lauritzen (),
Edwards (), Drton (), Marchetti and Lupparelli
(), Wermuth and Cox (), Whittaker ().

�e following small example of a well-�ttingmultivari-
ate regression chain is for a set of data of Jochen Hardt,
University of Mainz, on n =  adult, female patients
who agreed to be interviewed at the o�ces of their gen-
eral practitioners about di�erent aspects of their child-
hood. Variables A,B are binary, the others are based on
quantitative measurements. Each of Ya and Yc have three
components and Yb has two.

�e graph is constructed a�er checking for nonlinear
and interactive e�ects by using the results of a sequence of
linear and logistic regressions (see 7Logistic Regression).
�ese show that the estimated dependencies, not displayed
here, are in the direction hypothesized by the researchers.
�e background variable Yc does not improve prediction
of Ya given the more speci�c information about childhood
of Yb .

�e resulting factorization is fN = fa∣b fb∣c fc . �e
independences de�ning the regression chain graph are
S ⊥⊥ U∣{a, b}, a ⊥⊥ c∣b, b ⊥⊥ BP∣Q and Q ⊥⊥ P∣B, where relations
within a are modeled using a covariance graph, those
within b using a concentration graph.
For a complete linking of chain graphs and corre-

sponding densities fN , it is necessary to assure that inde-
pendence statements satis�ed by fN combine in the same
way as for the graphs.�is requires special additional prop-
erties of the graphs, of the process by which the joint
densities fN are generated or directly of fV ; for discussions
of special properties see Dawid (), Lauritzen (),
Studený (), Kang and Tian (), San Martin et al.
(), Wermuth ().

S, mother’s
love

T, constraints
by mother

U, role
reversal

R, family
distress

A, sexual
abuse

ba

P, age

B, schooling

c

Q, family
status

It is the outstanding feature of many graphical Markov
models that consequences of a givenmodel can be derived,
for instance regarding implications a�er marginalizing
over some variables, in setM, or a�er conditioning on oth-
ers, in set C. In particular, graphs can be obtained for node
set N′ = N/{C,M} which capture precisely the indepen-
dence structure implied by a generating graph in node set
N for fN′∣C the density of Y ′N given YC, of the distribution
of the variables in the reduced node set N′.
Such graphs are named independence-preserving,

when they can be used to derive the independence struc-
ture that would have resulted from the generating graph by
conditioning on a larger node set {C, c} or by marginaliz-
ing over a larger node set {M,m}.

�ree corresponding types of independence-preser-
ving graphs are known which result from a given gener-
ating directed acyclic graph by using the same sets C,M:
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graphs of the much larger class of MC-graphs of Koster
(), maximal ancestral graphs (MAGs) of Richardson
and Spirtes () and summary graphs of Wermuth
(); see Sadeghi () for a proof of Markov equiva-
lence that is for showing that the three corresponding but
di�erent types of graph capture the same independence
structure.
More importantly, graphical criteria on the summary

graph show when a generating conditional dependence
of Yi on Yk, say, in fN remains undistorted in fN′∣C
parametrised, as in a MAGmodel, in terms of conditional
dependences withinN′ andwhen it bemay be severely dis-
torted; see also Wermuth and Cox (). Some of these
distortions cannot be avoided for generating processes
with randomized allocation of individuals to the levels of
Yk, but possibly by changingC orM.�us, these results are
relevant for controlled clinical trials, formeta analyzes and,
more generally, for the planning stage of studies designed
to replicate some of the given results of a larger study using
a subset of the variables or a subpopulation.
More results on Markov equivalence, on estimation

and goodness of �t tests, more direct applications as well
as uses of the results concerning distortions and causal
interpretations of graphical Markov models are expected
in the near future; see also Drton et al. (), Cox (),
Cox and Wermuth (). Comparative evaluations will
be needed of alternative computational methods that are
in use now for very large sets of data; see Balzarini (),
Edwards et al. (), Dobra (), Meinshausen and
Buhlmann (), Wainwright and Jordan ().
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Nonresponse in Simple Random
Sampling
�e existence of missing observations is a very impor-
tant aspect to be considered in the applications of survey
sampling; see Rueda and González () for example. In
human populations they may be motivated by a refusal
of some interviewed persons to give the true value of Y .
Hansen and Hurwitz () proposed to select a subsam-
ple among the nonrespondents; see Cochran ().�is
feature depends heavily on the proposed subsampling rule.
Alternative sampling rules to Hansen–Hurwitz’s rule have
been proposed; see for example Srinath () and Bouza
().�eoretically, we deal with a particular case of dou-
ble sampling (DS). It is described, when the sampling
design is simple random sampling, as follows:

Step  Select a sample s from U and evaluate Y among
the respondents (determine {yi : i ∈ s ⊂ U, ∣s∣ = n}).

Step  Determine n′ = θn,  < θ < ; ∣s∣ = n with
s = s/s.

Step  Select a subsample s′ of size n′ from s and
evaluateY among the units in s′ {yi : i ∈ s′ ⊂ s, s ⊂ U} .

Step  Compute y =

n
∑

i=
yi

n
, y′ =

n′
∑

i=
yi

n
, and the estimate

of µ y = n
n
y +

n
n
y′ = wy + wy

′

.

�is estimator is unbiased for the population mean.
Using the techniques provided by double sampling (see
Cochran ), the expected error of the estimator is given

by EV(y) = σ 

n
+ W( − θ)σ 

θ
. Commonly, Hansen–

Hurwitz’s rule is presented in textbooks (e.g., Cochran
), where θ = /K is the subsampling parameter and

EV(y) = σ 

n
+ W(K − )σ 

n
.

For other designs the DS procedure is used, and partic-
ular alternative estimators, when missing observations are
present, must be derived. See, for example, a proposal for
product-type estimators in Bouza ().

Nonresponse in Ranked Set Sampling
An alternative sampling design is ranked set sampling
(RSS). It was �rst proposed by McIntyre (). Volume 
of the Handbook of Statistics dedicated a section to RSS;
see Patil et al. ().�e basic procedure of RSS works as
follows:

Step  Select m samples of size m using SRS with
replacement independently.

Step  Each unit in the s(t), t = , . . . ,m, is ranked and
the 7order statistics (OS) Y(:t), . . . ,Y(m:m) measured.

Step  Repeat the procedure r times and compute
r

∑

j=

m

∑

i=
Y(i:i)j/rm = µ(s).

Each sampled unit may be ranked without measur-
ing Y using some judgment or an auxiliary variable. See
David and Levine (). Note that we measure the OS
of order t (t = , . . . ,m) in each tth sample in each cycle
( j = , . . . , r) but the ranks do not intervene in the selec-
tion of the sample. As the procedure is repeated r times
the sample size is n = rm and the estimator of the mean
is unbiased. �e error of it is V[µ(s)] =

n

∑

t=
σ 
(i)/n

 =

V[µ(s)] −
n

∑

t=
∆
(i)/n

, where µ(i) − µ = ∆(i). Hence, it is

smaller than the error of y.
In the presence of missing observations and the use of

DS for dealingwith the nonresponses, a subsample strategy
is to select a subsample s′ of sizem(i, ) from each si, i =
, . . . , r.�e development of the corresponding theory of

Miodrag Lovric (ed.), International Encyclopedia of Statistical Science, DOI ./----,
© Springer-Verlag Berlin Heidelberg 
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DS for RSS can be consulted in Al-Saleh and Al-Kadiri
(). Bouza (a) proposed to use

µrss(nr) =
r

∑

k=
M(i)/r,

where

M(i) = w(i, )
⎡⎢⎢⎢⎢⎣

m(i,)

∑
u=

Y ′(i,u)/m(i, )
⎤⎥⎥⎥⎥⎦

+ w(i, ) [
m

∑
u=
Y∗(i,u)/m(i, )] .

De�ning w(i, t) = m(i, t)/m, Y ′(i,u) as the value of Y in
theuth unit of s′, andY∗(i,u) = yu(u) if the unit with rank
u in the u-ranked set responds and zero otherwise.�e use
of DS showed that the estimator is unbiased and that the

expected variance is EV[µrss(nr)] = V+G, whereV = σ 

n
+

W( − θ)σ 
nθ

and G = ∆ − ∆, de�ning ∆ =
m

∑

j=
(µ(j) −

µ)/m and ∆ =
r

∑

i=
E [

m(i,)
∑

j=
(µ(j) − µ)] /n. Hence, the use

of RSS is more accurate than the use os srswr also when
the nonrespondent sample is subsampled for solving the
existence of missing observations in the sample.
Other results in this line are in progress; see for exam-

ple Bouza ().
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In the time of Pythagoras, there were only three means
(Bakker ; Brown ; Hu�man ), the arithmetic,
the geometric, and third that was called subcontrary, but
the “name of which was changed to harmonic by Archytas
of Tarentum and Hippasus and their followers, because it
manifestly embraced the ratios of what is harmonic and
melodic” (Hu�man , p. ). �e harmonic mean
is a measure of location used mainly in particular cir-
cumstances – when the data consists of a set of rates,
such as prices ($/kilo), speeds (mph), or productivity (out-
put/manhour). lt is de�ned as the reciprocal of the arith-
metic mean of the reciprocals of the values.

�e harmonic mean of n numbers x, x, . . . , xn is
calculated in the following way:

x̄H = n

x
+ 
x
+ . . . + 

xn

= n
n
∑
i=


xi

.
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H

As a simple example, the harmonic mean of three
numbers, , , and  is equal to

x̄H = 

 +


 +




= 


= ..

�e harmonic mean in this example is less then the
arithmetic mean, .. �is can be generalized by say-
ing that for any data set that shows variability and does
not contain zero value, the harmonic mean will always be
smaller than both the arithmetic mean and the geometric
mean (for the precise inequality statement see the entry
7Geometric Mean).
Like the arithmetic and geometric means, harmonic

mean is based on all observations. If any value of the data
set equals zero, the harmonic mean cannot be calculated.
Harmonic mean is sensitive to 7outliers when they have
much smaller values than the rest of the data, and largely
insensitive to outliers that havemuch larger values than the
other data (the reciprocal of a large number is small, and
the reciprocal of a small number is large, relatively).

�e interested readers are urged to consult Ferger
(), Francis (), Haans (), and Hand ()
about the problems and confusion with the proper usage
of the harmonic mean. Probably they will support the fol-
lowing claim given by Ya-Lun Chou () “Because of the
absolute necessity of using the harmonic mean in some
cases and the confusion between the application of the
arithmetic and harmonic averages, the harmonic mean
deserves more attention than it receives in most elemen-
tary textbooks.”
It is important to notice that extreme care must be

taken when averages of rates are calculated. Since a rate
is always expressed in terms of the ratio of two units
(e.g., miles/gallon or price/kg), the criterion for choosing
between arithmetic and harmonic means can be stated as
follows (Ferger ; Francis ):

. Harmonic mean is appropriate if the rates are being
averaged over constant numerator units.

. Arithmetic mean should be used if the rates are being
averaged over constant denominator units.

Example  We want to compare average productivity (in
items/day) of two production lines which are both produc-
ing the same items. Following abovementioned rule, the
arithmeticmean should be used if the productivity for each
line is measured over, say,  day (i.e., the same time, thus
making the denominator units constant for both lines).
However, if the productivity for each line is measured over,
say, the production of a single item (i.e., the same quantity,
thus making the numerator units constant for both lines),
the harmonic mean is appropriate.

Suppose that three workers, A, B, and C, in a textile
factory can make , , and  T-shirts per hour, respec-
tively.�eir productivity can be recorded in either one of
the following ways.
Format 
Worker A:  per hour
Worker B:  per hour
Worker C:  per hour

Format 
Worker A:  min per T-shirt
Worker B:  min per T-shirt
Worker C:  min per T-shirt

In the �rst format, it is only appropriate to use the arith-
metic mean to �nd the average productivity since time
(denominator in the rate expression items/h) is held as a
constant.�e question here is: what is the average output
per  h?�erefore, the average productivity equals  (/)
T-shirts per hour. �is means, that if  T-shirts are pro-
duced, on average, the output of all three workers will be
 T-shirts in an hour.
However, in the second format, production (nomina-

tor in unit/h) is treated as constant and time as a variable.
According to the postulated rule, only the harmonic mean
will re�ect the true average productivity. Now the question
is: what is the average time required to complete one unit
of product?�us,

x̄H = 

 +


 +



=  min per T-shirt.

Using the suggested rule, it is easy to solve the e�-
ciency paradox introduced by David Hand (, see also
Haans []), where two groups of engineers are in dis-
agreement about the average fuel e�ciency of a set of cars.
One group, coming from England, measured e�ciency on
a miles per gallon scale, the other, coming from France,
on a gallons per mile scale. When the arithmetic means
are applied to both rates, English and French engineers
come to the illogical, opposite conclusions. �e paradox
disappears if the average of the data in the gallons per mile
scale is calculated by the harmonicmean.�e reason is that
the numerator of the e�ciency rate (gallon/mile) has to be
treated as a constant, since the question is howmanymiles
can be passed with a single gallon.

Cross References
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Hazard Ratio Estimator
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In survival analysis, statistical models are frequently spec-
i�ed via the hazard function α(t). A simple model for the
relation between the hazard functions in two groups (e.g., a
treatment group  and a control group ) is the proportional
hazards model where

α(t) = θα(t), ()

and θ is the treatment e�ect. For a parametrically speci-
�ed baseline hazard, α(t), both the treatment e�ect and
the parameters in the baseline hazard are usually estimated
using maximum likelihood. In a semi-parametric model
where the baseline hazard is le� unspeci�ed several esti-
mators for θ are available: the maximum partial likelihood
estimator, cf. Cox (), a class of rank estimators, and
some ad hoc estimators.
Assume that the available data are (Xij,Dij; i =

, . . . ,nj, j = , ) where the Xij are the times of observa-
tion: a failure time if the corresponding indicator Dij is ,
a right-censoring time if Dij is .�e Cox estimator, θ̂, is
then the solution to the equation

O = E(θ) ()

where, for j = , ,Oj = ∑i Dij and

E(θ) =∑
ij

Y(Xij)θ
Y(Xij) + Y(Xij)θ

Dij.

Here, Yj(t) = ∑i I(Xij ≥ t) is the number at risk at time t−
in group j, j = , . Notice that () expresses that for θ = θ̂,
the observed number, O, of failures in group  should be
equal to a corresponding “expected" number, E(θ) under
the proportional hazards assumption.
A class of explicit “rank” estimators, discussed by

Andersen et al. (, Chap. V) is, for a givenweight process
L(t), given by

θ̂L =
∑ni= L(Xi)

Di
Y(Xi)

∑ni= L(Xi)
Di

Y(Xi)

. ()

For L(t) = I(t ≤ t∗), θ̂L is simply the ratio between
the Nelson-Aalen estimators for the cumulative hazards
in groups  and  evaluated at t∗. �e Cox estimator, θ̂
given by () is always less dispersed than any θ̂L given
by ().Using an estimator θ̂L and its estimated variance, the
hypothesis θ =  of no treatment e�ect may be tested.�is
gives all the standard linear non-parametric two-sample
tests for 7survival data and, in particular, the weight pro-
cess given by

L(t) = Y(t)Y(t)
Y(t) + Y(t)

,

gives the logrank test.
Another explicit ad hoc estimator, discussed by

Breslow (), is given by

θ̃ = O/E()
O/E()

with

E(θ) =∑
ij

Y(Xij)
Y(Xij) + Y(Xij)θ

Dij.

�e estimator θ̃ is generally inconsistent when θ ≠  but
it has gained some popularity due to its simplicity and
close connection to the logrank test which is also based on
the observed, O and O, and expected, E() and E(),
numbers of failures.
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In many applications of survival analysis the interest
focuses on how covariates may a�ect the outcome. In
clinical trials, adjustment of treatment e�ects for e�ects
of other explanatory variables may be crucial if the ran-
domized groups are unbalanced with respect to important
prognostic factors, and in epidemiological cohort studies
reliable e�ects of exposure may be obtained only if some
adjustment is made for confounding variables. In these
situations, a regression model is useful.
Most regression models for 7survival data are set

up via the hazard function, e.g., Andersen et al. (,
Chap. VII), and the most important such model is the Cox
() proportional hazards regression model.

Cox Regression Model
In its simplest form the Cox model states the hazard func-
tion for an individual, i, with covariatesZi = (Zi, . . . ,Zip)′
to be

αi(t;Zi) = α(t) exp(β′Zi) ()

where β = (β, . . . , βp)′ is a vector of unknown regression
coe�cients and α(t), the baseline hazard, is the hazard
function for individuals with all covariates equal to .�us,
the baseline hazard describes the common shape of the
survival timedistributions for all individualswhile thehaz-
ard ratio function exp(β′Zi) gives the level of each individ-
ual’s hazard.�e interpretation of the parameter, βj for a
dichotomous Zij ∈ {, } is that exp(βj) is the hazard ratio
for individuals with Zij =  compared to those with Zij = 
all other covariates being the same for the two individuals.
Similar interpretations hold for parameters corresponding
to covariates taking more than two values. �e model is
semi-parametric in the sense that the hazard ratio part is
modeled parametrically while the baseline hazard is le�
unspeci�ed.

Assume that the available data are (Xi,Di,Zi; i =
, . . . ,n) where the Xi are the times of observation: a
failure time if the corresponding indicator Di is , a right-
censoring time if Di is .�e regression coe�cients β are
then estimated by maximizing the Cox partial likelihood

L(β) =
n

∏
i=

[ exp(β′Zi)
∑j∈Ri exp(β′Zj)

]
Di

()

where Ri = { j : Xj ≥ Xi}, the risk set at time Xi, is the set of
individuals still alive and uncensored at that time. Further-
more, the cumulative baseline hazardA(t) is estimated by
the Breslow estimator

Â(t) = ∑
Xi≤t
Di/∑

j∈Ri
exp(β̂

′

Zj). ()

In large samples, β̂ is approximately normally distributed
with the proper mean and with a covariance which is esti-
mated by the information matrix based on (), see e.g.,
Andersen et al. (, Chap. VII).�is means that approx-
imate con�dence intervals for the hazard ratio parameters
can be calculated and that the usual large sample test
statistics based on () are available. Also, the asymptotic
distribution of the Breslow estimator is normal; however,
this estimate is most o�en used as a tool for estimating
survival probabilities for individuals with given covariates,
Z. Such an estimate may be obtained by the product
integral Ŝ(t;Z) of exp(β̂

′

Z)Â(t).�e joint asymptotic
distribution of β̂ and the Breslow estimator then yields
an approximate normal distribution for Ŝ(t;Z) in large
samples.
A number of useful extensions of this simple Cox

model are available.�us, in some cases the covariates are
time-dependent, e.g., a covariate might indicate whether
or not a given event had occurred by time t, or a time-
dependent covariate might consist of repeated recordings
of somemeasurement likely to a�ect the prognosis. In such
cases the regression coe�cients β are estimated replacing
exp(β′Zj) in () by exp[β′Zj(Xi)]. Also a simple exten-
sion of the Breslow estimator () applies in this case.
Another extension of () is the strati�ed Cox model

where individuals are grouped into strata each ofwhich has
a separate baseline hazard.�ismodel has important appli-
cations for checking the assumptions of (). �e model
assumption of proportional hazards may also be tested in
a number of ways, the simplest possibility being to add
interaction terms of the form Zijf (t) between Zij and time
where f (t) is some speci�ed function. Also various forms
of residuals as for normal linear models may be used for
model checking in (). In () it is �nally assumed that a
quantitative covariate a�ects the hazard log-linearly.�is
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assumption may also be checked in several ways and alter-
native models with other hazard ratio functions r(β′Zi)
may be used.

Other Hazard Models
�ough the Coxmodel is the regressionmodel for survival
data which is appliedmost frequently, other hazard regres-
sion models, e.g., parametric regression models also play
important roles in practice. Examples include models with
a multiplicative structure, i.e., models like () but with a
parametric speci�cation, α(t) = α(t; θ), of the baseline
hazard. A multiplicative model with important epidemi-
ological applications is the Poisson regression model (see
7Poisson Regression) with a piecewise constant baseline
hazard. In large data sets with categorical covariates this
model has the advantage that a su�ciency reduction to the
number of failures and the amount of person-time at risk
in each cell de�ned by the covariates and the division of
time into intervals is possible.�is is in contrast to the Cox
regression model () where each individual data record is
needed when �tting the model.
An alternative to the multiplicative structure is pro-

vided by additive hazard models and the main such exam-
ple is Aalen’s additive model

αi(t;Zi) = β(t) + β(t)′Zi. ()

Here, both the baseline hazard, β(t) and the regression
functions β(t), . . . , βp(t) are le� completely unspeci�ed
and estimated non-parametrically much like the Nelson-
Aalen estimator. Semi-parametric versions of () also exist,
that is models where some or all regression functions
βj(t), j = , . . . , p, are constant. Such models, as well
as more general and �exible models containing both ()
and () as special cases are discussed by Martinussen and
Scheike ().
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�row a ball fast enough toward the horizon and it falls
into orbit. Run fast enough to in�nity on the positive real
axis carrying a bucket leaking probability and you create
a heavy-tailed probability distribution (HTD). Sample an
HTD and you encounter not one but an in�nite supply
of instances in which an observation far exceeds all pre-
decessors. De�ning this phenomenon mathematically is a
matter of deciding how fast to run. Run too fast and you
wind up with tails levering their probability so very far out
that you wait through extremely many ordinary samples
before encountering the next “big one” and its a whopper!
�e following de�nition, popular although not pleasing
everyone, is slow enough to provide a rich source of HTD
but fast enough to capture most of the desired properties.

Definition of HTD
A probability distribution speci�ed through its cumu-
lative distribution function F on the real line is heavy

right-tailed if and only if for every t >  the ratio  − F(x)
e−tx

has an in�nite limit as x tends to in�nity. Such an F has
right-tail probabilities −F(x) decaying to zero ever more
slowly than any exponential distribution.Aprobability dis-
tribution is heavy le�-tailed if F(−x) is heavy right-tailed.



Heavy-Tailed Distributions H 

H

A probability distribution is heavy-tailed if it is heavy-
tailed in at least one direction. An interesting class of HTD
has Pareto-like tails.

 − F(x) ∼ x−p, as x →∞ ()

for some p > . Pareto distributions are the case F(x) =
 − x−p for all x > . By comparison, for a standard normal

distributed random variable Z we have P(Z > z) ∼ e
−z/

z
as z tends to in�nity, de�nitely not heavy-tailed.

HTD in Actual Use
Many processes appear to occasionally but inde�nitely
produce far larger (or smaller) values than everything seen
before, themuchwildermarket swing, the unusually heavy
burst of Internet activity.�is may be attributed to speci�c
causes, e.g., growth of large pools of risky investments, but
such pools may themselves be cause for market swings to
behave as samples fromHTD.Now alert to the possibilities
we are witness to a great many examples of empirical data
looking for all the world like HTD.Most of these examples
come fromdata-rich applications such as �nancial transac-
tions, communications, spatial data, and the like. Resnick
() is a serious undertaking of this kind.

�e link between heavy-tailed distributions and the
phenomenon of out-sized samples is su�ciently colorful
to have inspired some tendency to heavy-tailed this and
that. HTD may refer to a probability distribution on any
spacewhose “tail” probabilities (in some sense) are large, or
to a random process whose distribution is HTD.�e term
heavy-tailed is sometimes applied also to particular ran-
dom processes incorporating time or spatial dependencies
but nonetheless exhibiting outsized observations.

�is outsized samples phenomenon may be studied
from a sequential view (a running account of data arrivals)
or instead through distributional results saying that for a
large sample the data will likely exhibit outsized values.

Remarks
With HTD we are puzzling over ideas outside the more
regular world of normal distributions and their spawn.
New thinking is continually required. We see remarkable
progress in thesematters.�ere are features of heavy-tailed
behavior thatmight be highlighted, among them the role of
conditioning. A good example to raise this point is found
in the stationary symmetric a stable (SaS) process de�ned
by the following stochastic integral integral with respect
to a symmetric alpha stable (SαS) Lévy motion Z on the
interval [−π/, π/] with  < α < 

X(t) = ∫ eitλdZ(λ), t ∈ R.

�rough a series construction of this integral onemay build
the jumps of dZ out of the consecutive arrivals of a unit
rate Poisson process on the half line. If jumps of dZ are
each multiplied by a standard normal deviate, these being
independent and identically distributed independently of
Z, the distribution of the processX is unchanged except for
scale. If we then condition on the jumps of the original dZ
the result is that process X has conditionally a stationary
normal distribution (with discrete spectral measure). Uti-
lizing this fact and Bayesian-like calculations it is found for
d >  that the conditional expectations E(X(t) ∣ X(t − d))
and E(X(t) ∣ X(t − d),X(t − d)) are both �nite almost
surely (LePage  includes ). Such is the depen-
dency in this particular heavy-tail process that even one
or two observations remove heavy-tails from considera-
tion.�is shows us that unconditional distributions may
not play quite the accustomed role in heavy-tailed pro-
cesses, for as observations are brought into the picture it is
not always just a matter of using them to form estimates
to be plugged into unconditional distributions of inter-
est. Returning to SαS in any dimension one has a similar
conditionally normal construction. Bayesian-like thinking
can produce good estimators and predictors amenable to
7Markov Chain Monte Carlo without the need to solve
for stable densities as some practitioners attempt in these
problems.

�e foregoing example is closely tied with what might
be termed “granularity” of heavy tail random phenom-
ena. I refer here to the central role played by individual
extremes and in particular their capacity not only shi� a
trajectory but to radically alter the random experience. An
example would be a surge of water great enough to precip-
itate the opening of a channel, eventually to alter an entire
watercourse. Such can be achieved by models rooted in
normal distributions and kin, but the necessarily volatile
variances needed in that approach may sometimes only
prove a distraction as set against direct description via the
jumpy Poisson-like moves of heavy tail models. �e two
approaches do however appear to overlap considerably and
we may expect a continuing supply of insights from their
continuing interaction.
Worth mentioning also are heavy tail models of small

scale events, for if you think about it the whole line (or
space) can be compressed into arbitrarily small intervals
(or patches) carrying heavy tail phenomena along with
them.
We seek ways to model these rarities, how and why

they tend to come, whether isolated or clustered, how fore-
told, their in�uence on various random behaviors and how
we are informed by theory relative to a host of practical
questions.
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Resources
As mentioned above, HTD are increasingly being stud-
ied in connection with applications as diverse as dispersal
of contaminants, river �ow, large �nancial movements,
bursts of insurance claims, internet tra�c surges, and bot-
tlenecks in queuing systems. �ese mostly arise in large
systems ripe for study in the information rich environment
of today. What is emerging focuses on probability models
whose random constituents have tails su�ciently heavy as
to produce e�ects like those alluded to above. �e main
objectives cannot be perfectly organized, but permit me to
include only a few from the many excellent sources:

(a) Understanding the properties of existing statistical
models when random components are heavy tailed,
in particular propagation of heavy tail behaviors
through systems (Adler, Feldman, Gallagher ).

(b) Developing models to match behaviors seen in
the applied contexts above, in particular periods
of benign behavior punctuated by great excursions
(Resnick ).

(c) Extending and adapting statistical methods with
which to e�ectively �t and guide statistical infer-
ence in heavy-tailed models (Calder and Davis )
(LePage, Podgorski, Ryznar ).

(d) Learning howapotential for future instabilitiesmight
be recognized in a system currently benign but
revealing its character through other behaviors (var-
ious forms of the Hill estimator, see Resnick ).

(e) Developing theories of extreme behavior transcend-
ing the perspectives of specialized models Resnick
().

(f) Discovering new classes of probability distributions
issuing from models or solving mathematical prob-
lems by linking their solution to heavy tailed variants
of familiar processes such as di�usions (Baeumer,
Meeschaert, Nane ).
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�e trade-o� between return and risk plays an important
role in many �nancial models such as 7Portfolio theory
and option pricing. So, economic theories in time series
usually have implications on the conditionalmean dynam-
ics of underlying economic variables as well as on the
volatility as the measure of risk.
Many models that are commonly used in empirical

�nance to describe returns and volatility are linear.�ere
are, however, indications that 7nonlinear models may be
more appropriate (as it can be seen, for instance, in Franses
and van Dijk ). In order to model real data, a noncon-
stant error variance has to be incorporated.
A model that allows the possibility of nonconstant

error variance is called a heteroscedastic model. A model
of this kind was de�ned by Engle (). He estimated the
means and variances of in�ation in the UK. (Engle men-
tioned heteroscedastic time series previously in his paper
Engle ().) His approach was as follows.
If the random variable Yt that describes the state of

(economic) space is dependent on the previous state of
space, its conditional density function will be f (yt ∣yt−).
�e forecast of today’s value based on the past informa-
tion is E(Yt ∣Yt−) and the variance of one-period forecast
is Var(Yt ∣Yt−). �is means that the forecast may be a
random variable.
Consider the �rst-order autoregression

Yt = γYt− + εt , t ∈ D,
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whereD is the set of integers and (εt) is a white noise with
Var(εt) = σ ε for any t ∈ D.�e unconditional mean of Yt
is zero, while the conditional mean is γYt−.�e uncondi-

tional variance of Yt is
σ ε
 − γ

and the conditional variance

is σ ε , and themore general class ofmodels seems desirable.
A preferable model is

Yt = εtσt
σ t = α + αYt− ,

with E(εt) = , Var(εt) = , and εt is independent of
past realizations of Yt−i, i = , , . . .. �is is an example
of an autoregressive conditional heteroscedastic (ARCH)
model. Specially, it is the ARCH() process.�e variance
function can be expressed more generally as

σ t = h(Yt−,Yt−, . . . ,Yt−p, α) ,

where p is the order of the ARCH process and α is a vector
of parameters.
If we set the information set available at time t

to be Ft−, i.e., Ft− denotes the σ-�eld generated by
{Yt−,Yt−, . . .}, it will be

Var(Yt ∣Ft−) = E (Yt ∣Ft−) = σ t =

= α + αYt− + αYt− +⋯ + αpYt−p .

If the normal distribution is speci�ed, we will have the
conditional density

Yt ∣Ft− ∼ N (, σ t ) .

�e ARCH model has a variety of characteristics that
make it attractive for economic applications in particu-
lar. For instance, a large error through Yt−i gives rise to
the variance, which tends to be followed by another large
error.�is phenomenon of volatility clustering is common
in many �nancial time series.
When the conditional density is normal (with zero

mean), the ARCHmodel has the following properties.
�e pth-order linear ARCH process, with α > ,

α, . . . , αp ≥ , is the second-order stationary (covariance
stationary) if and only if the associated characteristic equa-
tion has all roots outside the unit circle. �e stationary
variance is given by E (Yt ) = α/ ( −∑pj= αj).
Besides this o�en used condition, the next necessary

and su�cient condition for the second-order stationarity
of Yt is valid.

�e same pth-order linear ARCH process is the
second-order stationary if and only if

α +⋯ + αp <  .

Also, the last equation is a su�cient condition for strict
stationarity and ergodicity of Yt . (For more details, see, for
instance, Li et al. .)
It may be desirable to test whether the ARCHmodel is

an appropriate one. In that case the Lagrangemultiplier test
can be applied. Generally, for time series data, the presence
of heteroscedasticity would be tested at �rst.
A natural generalization of the ARCH process is to

allow for the past conditional variance in the current con-
ditional variance equation. �is kind of generalization
was done independently by Bollerslev () and Taylor
(). It is named the generalized autoregressive condi-
tional heteroscedastic time series (GARCH). Volatility of
the GARCH(p, q) is de�ned by

σ t = α + αYt− + αYt− +⋯ + αqYt−q
+ βσ t− +⋯ + βpσ t−p ,

where

p ≥  , q > 
α >  , αi ≥  , i = , . . . , q ,
βj ≥  , j = , . . . , p .

�e necessary and su�cient condition for the second-
order stationarity of the GARCH(p, q) is

q

∑
i=

αi +
p

∑
j=

βj <  .

Clearly, when p = , the model reduces to the
ARCH(q).
It is important to note that the regions of strict station-

arity of thesemodels are, in general,much larger than those
of the second-order stationarity.�e necessary and su�-
cient conditions for the strong stationarity of GARCH also
can be displayed.
To estimate the unknown parameters of the GARCH

(ARCH), one can use the Gaussian quasi-maximum like-
lihood and sometimes some other methods like the least
square estimator. Note that some numeric procedure is
necessary when quasi-maximum likelihood is applied. Sta-
tistical properties of the estimators will depend on the
model itself.
If

q

∑
i=

αi +
p

∑
j=

βj =  ,

we deal with the so-called integrated GARCH(p, q) or the
IGARCH(p, q) process.
To accommodate the asymmetric relation between

many �nancial variables and their volatility and to relax
the restriction on the coe�cients in the model, EGARCH
(exponential GARCH) was proposed. It was done by
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Nelson ().�e conditional variance of this model sat-
is�es the equation

ln (σ t ) = γ +
∞

∑
j=
µjg(at−−j) ,

where γ is a constant, µ = , at =
Yt
σt
, and the function g is

chosen to allow for asymmetric changes depending on the
sign of at .�e coe�cients µj are o�en assumed to relate
to an autoregressive moving average speci�cation of the
attached GARCH.
Sometimes the conditionalmeanE(Yt ∣Ft−) is allowed

to be a constant, i.e.,

Yt = µ + εt

along with a GARCH(p, q) model for the conditional
variance

Var (Yt ∣Ft−) = E (εt ∣Ft−) = σ t

= ω +
q

∑
i=

αiεt−i +
p

∑
j=

βjσ t−−j ,

where ω > , αi ≥ , βj ≥ . In this model, the tendency for
large (small) residuals to be followed by other large (small)
residuals but of unpredictable sign is ful�lled.
Many real time series data have the fatter (heavier)

tails than are compatible with the normal distribution.One
possible way to model these data with GARCH is to use
t-distribution.
Bollerslev () set the GARCH allowing for condi-

tionally t-distributed errors.
�e normally conditionally distributed errors of the

ARCH, and even in the GARCH, make the model
leptokurtic. t-distributionmakes it fatter tailed. Somemix-
tures of normal distributions are also used. Fitting the dis-
tribution of the error in the GARCH is a widely discussed
theme.
To determine the order of the model, one can use the

autocorrelation and partial autocorrelation functions of
the data, or, better stilt, sample autocorrelation and sample
partial autocorrelation functions.

�e requirement of heteroscedastic time series is evi-
dent not only in economy but also in some other disci-
plines, for instance, in chemistry (Tsay ) and so on.
Nowadays, plenty of heteroscedastic time series can be

seen, e.g., one dimensional and multidimensional, which
together are usually called GARCH-Zoo.
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Introduction
One of the classical linear regression model assumptions
(see 7Linear Regression Models) is that random errors
ui have a common variance σ .�at does not mean that
each error observation has the same size, but simply that
each error observation has the same probability distribu-
tion with zero mean and constant variance, σ . When this
assumption is violated, we are talking about heteroscedas-
ticity. It can be de�ned as a systematic pattern in errors,
which means that errors are drawn from di�erent proba-
bility distributions with di�erent variances, that is,

var(ui) = σ i i = , , . . . ,n. ()

�e heteroscedasticity that results as a violation of the
above-mentioned assumption of the classical linear regres-
sion model is known as a pure heteroscedasticity. It occurs
when the regression model is correctly speci�ed. Another
reason for heteroscedasticity could be the model speci�ca-
tion error, especially when a variable is omitted.�at kind
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of heteroscedasticity is known as impure heteroscedastic-
ity. In that case, the corrective measure would be to �nd
and include that variable in the model.

�e existence of di�erent variances of random errors
or the problem of heteroscedasticity is most common for
cross-section data that include data with di�erent sizes.
�e bigger the di�erence between sizes of dependent vari-
able observations, the higher the probability that the ran-
dom errors will have di�erent variances, and therefore will
be heteroscedastic.
Heteroscedasticity can take many di�erent forms.�e

most common one is when the error variance is related to
an exogenous variable Z. �at variable could be some of
the explanatory variables in the model, but it can be also
some variable outside the model. In the regression model:

Yi = β + βXi + βXi + ui, ()

the variance of the stochastic term ui can be expressed as:

var(ui) = σ i Z

i . ()

�e variable Z is called the proportionality factor, since
the value of the error variance is changing proportion-
ally to the squared Zi.�e higher the value of Z for some
observation, the higher the variance of error is. Usually
Z is a measure of the size of each observation. Note that
the heteroscedasticity is not only a characteristic which is
strictly valid for cross-section data. For time series data
that express trend in the movement of a dependent vari-
able, it is logical to expect that there would be also a trend
in themovement of the random error.�e heteroscedastic-
ity can also arise if there are big changes in the movement
of the dependent variable. One of the reasons for het-
eroscedasticity could be a dramatic change in the quality
of data collection.

Figure  illustrates the problem of heteroscedastic-
ity.�e probability density function f (Y∣X) at point X
shows that there is a high probability thatY will be close to
E(Y). As we move towards point X, the probability den-
sity function is more spread f (Y∣X) that is, we are less
sure where Y could be found.

Consequences of Heteroscedasticity
● In the presence of pure heteroscedasticity, OLS esti-
mators β̂ remain unbiased, which means E(β̂) = β.
In other words, if we run regression many times using
di�erent data, then the average of all estimated β̂ will
give the real parameter value. However, in the case
of impure heteroscedasticity, the consequences for the
OLS estimators are more serious and OLS estimators
are no longer unbiased.

● OLS estimators do not have the minimum variance
anymore (they are not e�cient).

● �e standard errors of the OLS estimators computed in
a usual way are incorrect and biased.�is implies that
con�dence intervals and hypothesis tests that use these
standard errors might be misleading.

● If the standard errors are biased, we cannot draw infer-
ences based on t statistics or F statistics or LM statistics.

Detection of Heteroscedasticity
�ere are several tests that can be used to detect the pres-
ence of heteroscedasticity in the data.�ey can be divided
into two groups:

. Informal (graphical) test.�is is a good starting point.
�e squared residuals are plotted against explanatory
variables, or, in the case of the multiple regression
model, against the dependent variable. If there is any
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systematic pattern, it can be an indicator of possible
heteroscedasticity.

. Formal tests
● Park test. It is designed for dealing with propor-
tional heteroscedasticity. �e Park test proceeds
in the following way: the natural logarithm of the
squared OLS residuals is regressed on the natural
logarithm of the selected proportional factor (Z).
With t-test we test the signi�cance of the Z param-
eter and if it statistically signi�cant, it is an evidence
of heteroscedasticity.

● White test. It is more general than the Park test.�e
test consists of regressing the squared residuals on
all explanatory variables and their cross-products.
�is is an LM test, thus the test statistic is nR.
�e problem arises when the number of explana-
tory variables is large, thus leading to the problem
of 7multicollinearity or even of loss of degrees of
freedom, not to be able to estimate the model.

● Breusch–Pagan test. It is very similar to White test,
but it overcomes its shortcomings since the squared
residuals are regressed on selected explanatory
variables, those that cause the problem of het-
eroscedasticity.

● Goldfeld–Quandt test. It orders the X observations
in descending order and divides them into two sub-
groups, one with potential higher variance and the
other one with potential smaller variance. �en
the ratio of these two variances is calculated and
compared to the critical value of F distribution.

�e choice of the most appropriate test for heteroscedas-
ticity is determined by how explicit we want to be about
the form of heteroscedasticity.

Remedial Measures
As already stated, the problem with heteroscedasticity is
that we cannot rely on the t-statistics, because the standard
error estimators are biased. Various solutions are suggested
for this problem:

. �e method of weighted least squares (WLS)
. Obtaining heteroscedasticity-corrected standard errors
. Redesigning the model

�e WLS method can be used in the case when het-
eroscedasticity is caused by the proportionality factor, Z.
It consists of the following steps:

. Dividing each variable in the original regressionmodel
by the proportionality factor Zi (this dividing will turn
residuals into a white noise process ui) and then, rerun

the regression. �e second regression model will not
su�er from heteroscedasticity.
For example, suppose we want to estimate the

regressionmodel () and the variance of the error term
takes the form (). Dividing the regression model by
the proportionality factor Zi, we obtain the following
second regression model:

Yi/Zi = β/Zi + βXi/Zi + βXi/Zi + u∗i ()

�e error term of the transformed regression model,
u∗i , has now a constant variance, and thus the regres-
sion model can be estimated by OLS.

. �e major problem, when using this method, consists
of de�ning Zi and choosing the functional form of Zi,
since di�erent functional forms require di�erent trans-
formations.Wrong choice of the proportionality factor
(or weight) can produce biased estimators of the stan-
dard errors. IfZi is not any of the explanatory variables,
then we must include a constant term in the above
model, otherwise a constant is already included.
We should be very cautious when interpreting the

estimated coe�cients of the model (), since it can be
noted that the coe�cient β, which is a slope coe�cient
in model () now becomes an intercept in model ().
�e opposite happens with coe�cient β.
Another problem related to WLS is the functional

formof the relationship between proportionality factor
and error variance. Until now, a direct proportional-
ity of error variance to explanatory variable has been
assumed. But, it is possible that error variance can be
expressed as a linear relation of explanatory variables.
Let’s assume that this relation is:

σ i = α + αXi + u∗i . ()

�en, applying OLS we estimate the residuals from
Eq.  as:

û∗i = α + αXi. ()

Now, the weight is 
√

û∗i
, and we divide all the vari-

ables in the original model with this weight. Finally, we
test if the new error term is homoscedastic or not.

Obtaining heteroscedasticity-corrected standard errors is
the most popular remedy, which improves the estimation
of the standard errors using OLS coe�cient estimates. It
is very convenient when the form of heteroscedasticity is
unknown.

�e standard errors, as more accurate, are then used
for recalculating the t-statistics using the same means
taht remain unchanged. Typically, the corrected standard
errors will be larger, thus leading to lower t-statistics.�e
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approach of corrected standard errors is the most suitable
to large samples and is a part of some good statistical so�-
ware packages. However, it does not work very well with
small samples.
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Hierarchical clustering algorithms can be characterized as
greedy (Horowitz and Sahni ). A sequence of irre-
versible algorithm steps is used to construct the desired
data structure. Assume that a pair of clusters, including
possibly singletons, is merged or agglomerated at each step
of the algorithm.�en the following are equivalent views of
the same output structure constructed on n objects: a set of
n −  partitions, starting with the �ne partition consisting
of n classes and ending with the trivial partition consist-
ing of just one class, the entire object set; a binary tree
(one or two child nodes at each non-terminal node) com-
monly referred to as a dendrogram; a partially ordered set

(poset) which is a subset of the power set of the n objects;
and an ultrametric topology on the n objects. For back-
ground, the reader is referred to Benzécri et al. (),
Lerman (), Murtagh and Heck (), Jain and Dubes
(), Arabie et al. (), Mirkin (), Gordon (),
Jain et al. (), and Xu and Wunsch ().
One could say with justice that Sibson (), Rohlf

() and Defays () are part of the prehistory of clus-
tering. �eir O(n) implementations of the single link
method and of a (non-unique) complete link method have
been widely cited.
In the early s a range of signi�cant improvements

were made to the Lance-Williams, or related, dissimilar-
ity update schema (de Rham ; Juan ), which had
been inwide use since themid-s.Murtagh (, )
presents a survey of these algorithmic improvements.�e
algorithms, which have the potential for exactly replicat-
ing results found in the classical but more computationally
expensive way, are based on the construction of nearest
neighbor chains and reciprocal or mutual NNs (NN-chains
and RNNs).
A NN-chain consists of an arbitrary point (a in Fig. );

followed by its NN (b in Fig. ); followed by the NN from
among the remaining points (c, d, and e in Fig. ) of this
second point; and so on until we necessarily have some pair
of points which can be termed reciprocal or mutual NNs.
(Such a pair of RNNs may be the �rst two points in the
chain; and we have assumed that no two dissimilarities are
equal.)
In constructing aNN-chain, irrespective of the starting

point, we may agglomerate a pair of RNNs as soon as they
are found. What guarantees that we can arrive at the same
hierarchy as if we used traditional “stored dissimilarities”
or “stored data” algorithms (Anderberg )? Essentially
this is the same condition as that under which no inver-
sions or reversals are produced by the clustering method.
�is would be where s is agglomerated at a lower criterion
value (i.e., dissimilarity) than was the case at the previous
agglomeration between q and r. Our ambient space has
thus contracted because of the agglomeration.�is is due
to the algorithmused – in particular the agglomeration cri-
terion – and it is something we would normally wish to
avoid.

edcba

Hierarchical Clustering. Fig.  Five points, showing NNs and
RNNs
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�is is formulated as:

Inversion impossible if:
d(i, j) < d(i, k) or d(j, k) Ô⇒ d(i, j) < d(i ∪ j, k)

�is is Bruynooghe’s reducibility property (Bruynooghe
; see also Murtagh, , ). Using the Lance-
Williams dissimilarity update formula, it can be shown that
the minimum variance method does not give rise to inver-
sions; neither do the (single, complete, average) linkage
methods; but the median and centroid methods cannot be
guaranteed not to have inversions.
To return to Fig. , if we are dealing with a clustering

criterion which precludes inversions, then c and d can jus-
ti�ably be agglomerated, since no other point (for example,
b or e) could have been agglomerated to either of these.

�e processing required, following an agglomeration,
is to update the NNs of points such as b in Fig.  (and
on account of such points, this algorithm was dubbed
algorithme des célibataires, the bachelors’ algorithm, in de
Rham ).�e following is a summary of the algorithm:

NN-Chain Algorithm
Step  Select a point (i.e., an object in the input data

set) arbitrarily.
Step  Grow the NN-chain from this point until a

pair of RNNs are obtained.
Step  Agglomerate these points (replacing with a

cluster point, or updating the dissimilarity
matrix).

Step  From the point which preceded the RNNs (or
from any other arbitrary point if the �rst two
points chosen in Steps  and  constituted a
pair of RNNs), return to Step  until only one
point remains.

In Murtagh (, ) and Day and Edelsbrunner
(), one �nds discussions of O(n) time and O(n)
space implementations of Ward’s minimum variance (or
error sum of squares) method and of the centroid and
median methods.�e latter two methods are termed the
UPGMC and WPGMC criteria (respectively, unweighted
and weighted pair-group method using centroids) by
Sneath and Sokal (). Now, a problem with the clus-
ter criteria used by these latter two methods is that the
reducibility property is not satis�ed by them.�is means
that the hierarchy constructed may not be unique as a
result of inversions or reversals (non-monotonic varia-
tion) in the clustering criterion value determined in the
sequence of agglomerations.
Murtagh () describesO(n) time andO(n) space

implementations for the single link method, the complete
link method and for the weighted and unweighted group

average methods (WPGMA and UPGMA).�is approach
is quite general vis à vis the dissimilarity used and can
also be used for hierarchical clusteringmethods other than
those mentioned.
Day and Edelsbrunner () prove the exact O(n)

time complexity of the centroid andmedianmethods using
an argument related to the combinatorial problem of opti-
mally packing hyperspheres into an m-dimensional vol-
ume.�ey also address the question of metrics: results are
valid in a wide class of distances including those associated
with the Minkowski metrics.

�e construction and maintenance of the nearest
neighbor chain as well as the carrying out of agglomer-
ations whenever reciprocal nearest neighbors meet, both
o�er possibilities for parallelization, and implementation
in a distributed fashion. Work in chemoinformatics and
information retrieval can be found inWillett (), Gillet
et al. () and Gri�ths et al. (). Ward’s minimum
variance criterion is favored.
For in depth discussion of data encoding and normal-

ization as a preliminary stage of hierarchical clustering, see
Murtagh (). Finally, as an entry point into the ultra-
metric view of clustering, and how hierarchical clustering
can support constant time, or O(), proximity search in
spaces of arbitrarily high ambient dimensionality, thereby
setting aside Bellman’s famous curse of dimensionality, see
Murtagh ().
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Huygens (the last-mentioned playing a central role in the
data analysis methodology of Benzécri.)
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Hodges-Lehmann Estimators

Scott L. Hershberger
Global Director of Survey Design
Harris Intractive, New York, NY, USA

�e Hodges-Lehmann estimator provides, in the one-
sample case, an estimate of the center of a distribution, and
in the two-sample case, an estimate of the di�erence in the
centers of two distributions.

�e one-sample estimator is de�ned as the median of
the set of n (n + )/Walsh averages. Each Walsh average
is the arithmetic average of two observations. For exam-
ple, consider the set of  observations (, , , , ). Table 
shows the computation of the  ( + /) =  Walsh
averages.

�e median of the Walsh averages is the one-sample
Hodges-Lehmann estimator of the center of the distribu-
tion. In this example, the median of the  Walsh averages
(the Hodges-Lehmann estimator) is . Note that in this
case, the Hodges-Lehmann estimator is equal to the sim-
plemedian of the original �ve observations, which is also .
Of course, the Hodges-Lehmann estimator does not have
to necessarily equal the sample median. While both the
median and Hodges-Lehmann estimator are both prefer-
able to the sample mean for nonsymmetric distributions,
the Hodges-Lehmann estimator has larger asymptotic rel-
ative e�ciency with respect to the mean than the median;
i.e., . versus ..
It possible to construct a ( − α) % con�dence inter-

val for the Hodges-Lehmann estimator. For an approxi-
mate ( − α) % con�dence interval �rst �nd the value
of Wα/ as the α/ percentile of the distribution of
the Wilcoxon test statistic. �en if Wα/ = K∗, then the
K∗th smallest to the K∗th largest of the Walsh averages
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Hodges-Lehmann Estimators. Table  Computation of walsh averages

    

 ( + )/ =  ( + )/ =  ( + )/ = . ( + )/ =  ( + )/ = 

 ( + )/ =  ( + )/ = . ( + )/ =  ( + )/ = 

 ( + )/ =  ( + )/ = . ( + )/ = .

 ( + )/ =  ( + )/ = 

 ( + )/ = 

Hodges-Lehmann Estimators. Table  Computation of pairwise differences

x/y     

 ( − ) = − ( − ) = − ( − ) = − ( − ) = − ( − ) = −

 ( − ) =  ( − ) = − ( − ) = − ( − ) = − ( − ) = −

 ( − ) =  ( − ) =  ( − ) = − ( − ) = − ( − ) = −

 ( − ) =  ( − ) =  ( − ) = − ( − ) = − ( − ) = −

 ( − ) =  ( − ) =  ( − ) =  ( − ) =  ( − ) = 

determines the ( − α) % con�dence interval. Values of
Wα/ for �nding approximate %, %, and % con-
�dence intervals are found from readily available tables.
For example, for the  Walsh averages given above, the
% con�dence interval for the Hodges-Lehmann estima-
tor of  has a lower bound of  and upper bound of .
For sample sizes of about  or more, K∗ can be calculated
approximately as

K∗ = n (n + )


−
⎛
⎝
z−α/ ×

√
n (n + ) (n + )


⎞
⎠
,

rounded up to the next integer value, where z−α/ is the
appropriate value from the standard normal distribution
for the ( − α) % percentile.

�e two-sampleHodges-Lehmann estimator is de�ned
as the median of n × n pairwise di�erences between
samples X and Y , yj − xk, j = , . . . ,n, k = , . . . ,n. For
example, consider the two samples, x = (, , , , ) and
y = (, , , , ). Table  shows the computation of the
 ×  pairwise di�erences.

�e median of the  pairwise di�erences is −; thus
the Hodges-Lehmann estimator of the center location
di�erence between the two samples is −. By compar-
ison, the mean di�erence between the two samples is
/ − / = −..

�e con�dence interval for the Hodges-Lehmann esti-
mator of the center location di�erence is also based

on the n × m pairwise di�erences. For an approximate
( − α) % con�dence interval �rst calculate

K =Wα/ −
n (n + )


,

whereWα/ is the α/ percentile of the distribution of
theMann-Whitney test statistic.�eKth smallest to theKth
largest of the n × n pairwise di�erences then determine
the ( − α) % con�dence interval. Values of Wα/ for
�nding approximate %, %, and % con�dence inter-
vals are found from readily available tables. For example,
for the  pairwise di�erences given above, the % con-
�dence interval for the Hodges-Lehmann estimator of −
has a lower bound of − and upper bound of .
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Horvitz–Thompson Estimator

TapabrataMaiti
Professor
Michigan State University, East Lansing, MI, USA

Introduction and Definition
�e Horvitz–�ompson (H–T) estimator is attributed to
D.G. Horvitz and D.J.�ompson to estimate a �nite popu-
lation total when a sample is selected with unequal proba-
bilities without replacement. LetU = (,⋯, i,⋯,N) denote
a �nite universe of N elements and s be a sample of size n.
Let πi(>) be the inclusion probability, the probability that
the i-th unit is in the sample and πij(>) is the probabil-
ity that both the units i and j are in the sample. If p(s) is
the probability of selecting a sample s, then πi = ∑s∋i p(s)
and πij = ∑s∋i,j p(s).�e inclusion probabilities satis�es
the following relations:

N

∑
i=

πi = n;
N

∑
j≠i

πij = (n − )πi;
N

∑
i=
∑
j>i

πij =


n(n − )

Let yi be the response attached to i-th unit (i = ,⋯,N)
and the target is to estimate the �nite population total
T = ∑Ni= yi. �e Horvitz–�ompson () estimator of
the population total is

t =∑
i∈s

yi
πi

�e higher the selection probability πi of unit i, the less
weight ( πi ) the corresponding value yi is given. �e
Hansen and Hurwitz () estimator was constructed
similarly for unequal probability sampling with replace-
ment.�e H–H estimator uses probability of selection of
a unit instead the inclusion probabilities. If p,⋯, pN are
selection probabilities with∑Ni= pi = , and n independent
draws are made to select a sample with replacement then
the inclusion probability for i-th unit is

πi =  − ( − pi)n

For n = , πi = pi, but they are not same in general.

Properties of the H–T Estimator
�e H–T estimator t is an unbiased estimator of the popu-
lation total T, with variance

V(t) =
N

∑
i=

 − πi
πi
yi + 

N

∑
i=

N

∑
j>i

πij − πiπj
πiπj

yiyj

Following the relation∑j≠i(πij−πiπj) = −πi(−πi) for
a �xed sample size design, the variance can be expressed as

V(t) =
N

∑
i=

N

∑
j>i

(πiπj − πij)(
yi
πi
−
yj
πj

)


�is form of variance is known as Yates–Grundy form (Sen
; Yates and Grundy ).�e variance estimators are

V̂(t) =
n

∑
i=

 − πi
πi

yi + 
n

∑
i=

n

∑
j>i

πij − πiπj
πiπjπij

yiyj

for the variance V and

V̂(t) =
n

∑
i=

n

∑
j>i

(πiπj − πij)
πij

( yi
πi
−
yj
πj

)


for the variance V. Both of these variance estimators are
unbiased.

Example Consider a 7simple random sample without
replacement of size n.�e inclusion probabilities are πi =
n
N and πij = n(n−)

N(N−) .�e H–T estimator for the popula-

tion total is Nȳ where ȳ = 
n ∑s yi.�e variance is N

 −f
n S



where S = 
N− ∑

N
i= (yi − T

N )
 and f = n

N , known as the
sampling fraction.�e variance estimator isN −fn s

 where
s = 

n− ∑s(yi−ȳ)
. Note that both the variance estimators

take same form in this design.
Due to wide variation of (πiπj − πij), even some-

times being negative, both the variance estimators V̂ and
V̂ can be negative for some sampling designs. Rao and
Singh () compared the coe�cient of variation for these
two variance estimators using Brewer’s sample selection
method (Brewer ) and found that the Yates–Grundy
form of variance estimator is more stable than the other.
Consequently, applying H–T estimator one should be
carefully selecting a sampling design where the inclusion
probabilities are chosen cautiously in relation to response
variable; otherwise may end up with silly outcome as the
famous “elephant” example of Basu ().
Hajek () provided the necessary and su�cient

condition for the 7asymptotic normality of the H–T esti-
mator under rejective sampling. Berger () extended
the asymptotic normality result for general sampling
design and also provided the rate of convergence. Berger
() used the asymptotic framework as follows: Let
{n,⋯,nk,⋯} and {N,⋯,Nk,⋯} be sequences of sample
size and population size respectively, where both nk andNk
increase as k→∞.
Särnal et al. () provided a very generalized treat-

ment to the H–T estimator and called as π estimator.
�is general form of estimator also applies to unequal
probability sampling design with replacement. �e gen-
eralized concept has further been illustrated by Overton
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and Stehman ().�e H–T estimator has been adapted
in model based inference by Kott () and Särnal et al.
(). Kott () particularly derived the �nite popula-
tion correction for the H–T estimator under usual super
population model. On the other hand, Särnal et al. ()
adopted H–T estimator for predicting the population total
under the super population model and then used the
design perspective for statistical inference.�e estimator
is popularly known as GREG (generalized regression) pre-
dictor and the approach is known as model-assisted, as
opposed to model-based approach. For a super population
model ζ with p covariate x = (x,⋯, xp)T ,

Eζ(yi) = xTi β
Vζ(yi) = σ i

the GREG predictor for population total T is

tGREG =∑
s
gis
yi
πi

where

gis =  + (
N

∑
i=

xi −∑
s

xi
πi

)
T

(∑
s

xixTi
πiσ i

)
− xi

σ i
�e approximate variance of GREG predictor is

V(tGREG) ≐ −
N

∑
i=

N

∑
j=

(πiπj − πij)
Ei
πi
Ej
πj

where Ei = yi − xTi B,B = (∑Ni=
xixTi

σ i
)
−
∑Ni=

xiyi
σ i
.

An approximated variance estimator is

V̂(tGREG) ≐ −∑
s
∑
s

πiπj − πij
πij

gisei
πi
gjsej
πj

where ei = yi − xTi B̂, B̂ = (∑s
xixTi
σ i πi

)
−
∑s

xiyi
σ i πi
.

�e formulae get simpli�ed with variance structure
σ i = λTxi for known λ.
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�e univariate t statistic is well-known to most data ana-
lysts. If a random sample of n observations is taken from a
normal distributionwithmean µ and variance σ , the form
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of the statistic is given by

t = x − µ
s/
√
n
, ()

where x is the sample mean and s is the sample standard
deviation. �is statistic has a Student t-distribution with
(n−) degrees of freedom. Squaring the statistic, we obtain

t = n(x − µ)′(s)−(x − µ).

�is value can be de�ned as the squared Euclidean distance
between x and µ.
A multivariate analogue to the t statistic can easily

be constructed. Suppose a random sample of n obser-
vation vectors, given by x, x, . . . , xn, where x′i =
(xi, xi, . . . , xip)′, is taken from a p-variate multivariate
normal distribution (see 7Multivariate Normal Distribu-
tions) with mean vector u and covariance matrix, Σ.�en
the multivariate version of the t statistic in () is given by

T = n(x − µ)′S−(x − µ), ()

where x= 
n

n

∑

i= 
xi is the sample mean and S =

n

∑

i=
(xi − x)

(xi − x)′/(n − ) is the sample covariance matrix.
�e statistic in () and its sampling distribution was

�rst developed by Harold Hotelling (), and it is com-
monly referred to as Hotelling’s T statistic. It was �rst
introduced for usage in testing the null hypothesis that the
mean vector, µ, of a multivariate normal distribution is
equal to a speci�c vector µ, i.e., H : µ = µ, against
the alternative hypothesis that it is not equal to this vec-
tor, i.e., HA : µ ≠ µ.�us, it can be used as the statistic
for a multivariate one-sample test of hypothesis.

�e null distribution of the T statistic in () is given
by a central F distribution and the distribution under the
alternative hypothesis is a non-central F distribution. For
the above one-sample hypothesis the null distribution is
given by

T ∼ (n − )p
n − p

F(p,n−p), ()

where F(p,n−p) is an F-distribution with p and (n − p)
degrees of freedom. Note that the limiting form of this
F-distribution is a7chi-square distribution with p degrees
of freedom.�is is the form of the asymptotic distribution
of the T statistic.

�e T statistic has many interesting properties. First,
it is invariant under all nonsingular linear transformations
of the data given by

z = Ax + b,

where x is a sampled multivariate normal observation, b
is a known vector of constants, and A is a non-singular
matrix of known values.�is invariance property means

that the T results are independent of scale and origin
changes to the data so that the T statistic based on z is
identical to the T statistic based on x. From this one can
conclude that testing the hypothesisH : µz = µz is equiv-
alent to testing the hypothesis H : µx = µx , where µz is
the population mean of the z data and µx is the popula-
tion mean of the x data. Second, the hypothesis test based
on the T statistic is the uniformly most powerful invari-
ant test.�is means that in the class of all invariant tests
there is no test that has greater ability to detect a true null
hypothesis than the T statistic. �ird, the T statistic is
equivalent to the likelihood ratio statistic for this hypoth-
esis.�us, the optimal and distributional properties of the
likelihood ratio test hold for the T statistic.
When two di�erent multivariate normal populations,

with means µ and µ, have equal covariance matrices, the
T statistic can be used to test a two-sample null hypothesis
of the form H : µ = µ. With independent samples of
sizes n and n, respectively, from each population, the T

statistic for the test procedure is based on the di�erence of
the samplemean vectors, (x−x), and the pooled estimate
of the common covariancematrix.�e form of the statistic
is given by

T = nn
(n + n)

(x − x)′S−p (x − x), ()

where n and n are the sizes of the two independent
samples, x and x are the corresponding sample means
and Sp = [(n − )S + (n − )S] /(n + n − ) is the
pooled sample covariance matrix corresponding to the
sample covariance matrices, S and S. Similarly, the null
distribution for this T statistic is given by

T ∼ (n + n − p − )
(n + n − )p

F(p,n+n−p−). ()

�e quadratic form of (), given by

D = (x − x)′S−p (x − x), ()

is known as the squared sample Mahalanobis distance
between the vectors x and x.�is statistic was developed
by P.C. Mahalanobis () at about the same time that
Hotelling developed the T statistic. Its square root is used
as an estimate of the distance between the twomeans of the
populations relative to the common covariance matrix.

�e T test statistic in () is also equivalent to the like-
lihood ratio test statistic for a two-population mean test. A
form of the statistic was used by Fisher () as a means
for classifying a new observation x into one of two groups
and is known as Fisher’s linear discriminant function (e.g.,
see Johnson and Wichern ).
In addition to its use in multivariate analysis, the T

statistic also has been applied extensively in the area of
multivariate statistical process control (MVSPC).�is �rst
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occurred in  when Harold Hotelling used the statistic
to solve problems concerning bombsights (Hotelling ).
Since the advent of inexpensive computing power became
available in the ’s, the T statistic has become one of
the most popular charting statistics for use in monitoring
the many variables of a multivariate process (see Mason
and Young ).
In this short entry, we have discussed only a few of the

numerous applications of Hotelling’s T statistic in multi-
variate analysis. Many more are available and information
on them can be obtained in most applied multivariate
statistics textbooks.
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Hyperbolic Secant Distributions
and Generalizations
Matthias Fischer
University of Erlangen-Nürnberg, Erlangen, Germany

�e hyperbolic secant distribution (HSD) has its origin in
Fisher (), Dodd (), Roa () and Perks ().
Someof its properties are developed byTalacko (, ,
). Given two independent standard normal variables
Y and Y, the variable X ≡ ln ∣Y/Y∣ is said to follow a
hyperbolic secant distribution. Analogue to the 7logistic

distribution, probability density, cumulative distribution
function and quantile function of X admit a closed form,
namely

f (x) = 
π(ex + e−x)

, F(x) =  arctan(e
x)

π
and

F−(p) = ln(tan(πp


)) , x ∈ R.

Obviously, the density is symmetric around zero and
has mode at zero with f ()= /π. Since the moment-
generating function of a HSD is given by M(t)= (cos
(πt/))− for ∣t∣ < π/, all moments exist. In particular,
E(Xi)=  for odd i, Var(X)= π/ and E(X)= π/.
Consequently, the kurtosis coe�cient (i.e., the fourth
standardized moment) of a HSD calculates asm = , indi-
cating that the HSD has heavier tails and higher peaked-
ness than the normal distribution (m = ) and than the
logistic distribution (m = .).
Basically, two major generalized hyperbolic distribu-

tions emerged.
�e �rst one has its roots in the work of Baten ()

who derived the probability density function ofX+. . .+Xn
where each Xi follows a HSD for �nite n ∈ N as well as
for n = ∞. More generally, Harkness & Harkness ()
discuss distribution families with characteristic function
sech(t)ρ , ρ >  which can be identi�ed as ρ-th con-
volution of a hyperbolic secant variable. �is symmetric
distribution family is commonly termed as generalized
hyperbolic secant (GHS) distribution with kurtosis para-
meter ρ. A corresponding skewGHS distribution is known
in the statistical literature as NEF-GHS or Laha–Lukacs
distribution (e.g., Morris ) or as Meixner distribution
in the mathematical and �nancial literature (e.g., Meixner
 or Schoutens ).

�e second generalization dates back to Perks ()
who discussed probability densities of the form

f (x) = a + ae
−x + ae−x + . . . + ame−mx

b + be−x + be−x + . . . + bne−nx

with parameters ai, bj such that f is a proper probabil-
ity density. Setting m= , a = , a =  and n= , b = ,
b = , this equation reduces to the density of a HSD. More
generally, Talacko (, ) focused on m= , a = 
and n= , b = b. It took about  years until Talacko’s
generalized secant hyperbolic (GSH) distribution was re-
examined byVaughan () andKlein and Fischer ()
under a slightly di�erent parameterization. Skew versions
of the GSH distribution where introduced and successfully
applied to �nancial return data in Fischer (, ) and
Palmitesta and Provasi ().
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Its Application in Statistics
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An important discrete distribution encountered in sampling
situations is the hypergeometric distribution. Suppose that

a �nite population of N items contains two types of
items in which K items are of one kind (say defec-
tive) and N − K items are of a di�erent kind (say
non-defective). If n items are drawn at random in succes-
sion, without replacement, then X denoting the number
of defective items selected follows a hypergeometric distri-
bution.�e probability of the event DD⋯DxD′x+⋯D′n
denoting x successive defectives items and n− x successive
non-defective items is given by

P (DD⋯DxD′x+⋯D′n) =
CN−nK−x

CNK
,

max{,n − (N − K)} ≤ x ≤ min{n,K}, ()

whereCnx is the number of combinations of x items that can
be chosen froma group of n items and is equal to n!/[x!(n−
x)!]. �e probability of any other particular sequence in
the sample space is also the same as (). Interested readers
may refer to Joarder and Al-Sabah ().
Since there are Cnx outcomes having x defective items

and (n−x) non-defective items out of at most n elements
in the sample space, the probability of x successes in n trials
is given by

P(X = x) = C
n
xCN−nK−x

CNK
,

max{,n − (N − K)} ≤ x ≤ min{n,K}, ()

(cf. Kendall and Stuart , p. ).�e probability of x
successes in n trials is commonly written as

P(X = x) = C
K
x CN−Kn−x

CNn
,

max{,n − (N − K)} ≤ x ≤ min{n,K}. ()

Vandermonde’s identity justi�es the equivalence of the two
forms in () and ().�e proof of () is available in most
textbooks on statistics (e.g., Johnson ) and discrete
mathematics (e.g., Barnett ). �ere are CKx ways of
choosing x of the K items (say defective items) and CN−Kn−x
ways of choosing (n−x)of the (N−K)non-defective items,
and hence there are CKx CN−Kn−x ways of choosing x defectives
and (n−x) non-defective items. Since there areCNn ways of
choosing n of the N elements, assuming CNn sample points
are equally likely, the probability of having x defective items
in the sample is given by ().

�e name hypergeometric is derived from a series
introduced by the Swiss mathematician and physicist,
Leonard Euler, in . �e probabilities in () are the
successive terms of

(N − n)!(N − K)!
N!(N − K − n)! F(−n,−K;N − K − n + ; ), ()
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where F(a, a; b; x) is the generalized hypergeometric
function (Johnson et al. , p. ).
Suppose that a random sample of n =  items is selected

from a lot of N =  items in which there are K = 
defective items (distinguishable or indistinguishable) and 
non-defective items (distinguishable or indistinguishable).
Let Di (i = , , ) be the event that we have a defec-
tive item in the ith selection, and Ni (i = , , ) be the
event that we have a non-defective item in the ith selec-
tion. Also let X be the number of defective items selected
in the sample.�e elements of the sample space are given
by DDD,DDN,DND,DNN,NDD, NDN,
andNND. By (), the probabilities are given by ., .,
., ., ., . and . respectively. Note that elements
in the sample space are not equiprobable. �e probabil-
ity of having two defective items in the sample is given by
P(X = ) = . + . + . = .. If n is large, it is not
feasible to write out the sample space but one can use ()
directly.
Note that if the items in each of the two categories

are distinguishable, or labeled to make them distinguish-
able, the sample space can be written out with all distin-
guishable items. �en the sample outcomes are equally
likely or equiprobable resulting in a Simple Random Sam-
pling. In the above example, let the defective items be
labeled as D,D and D while the non-defective items be
labeled as N  and N to make the items in the popula-
tion distinguishable.�en CNn =  elements in the sample
space are given by DDD, DDN , DDN, DDN ,
DDN, DN N, DDN , DDN, DN N, and D

N N each with the probability ., and hence P(X = ) =
.. In case CNn is large, it is not feasible to write out the
sample space but one can use () directly.
Suppose that n items are drawn at random, with

replacement, and X denotes the number of defective items
selected.�e probability that any item is defective at any
draw is p = K/N (say). �en with arguments similar to
above, the probability of having x defectives and (n − x)
non-defectives in any of theCnx sequence is given by pxqn−x

so that P(X = x) = Cnxpxqn−x. Now if N → ∞, and
p = K/N, it is easy to prove that () has a limiting value
of Cnxpxqn−x.�is shows the equivalence of binomial and
hypergeometric distribution in the limit.

�e mean and variance of hypergeometric distribu-
tion are given by np and ( − f )npq respectively, where
p = K/N, q = −p, and f is the �nite population correction
factor de�ned by (N − )f = N −n.�e mode of the distri-
bution is the greatest integer not exceeding (n + )(K + )

N + 
.

�e coe�cient of skewness and that of kurtosis are given by

(N − K)(N − n)(N − )/

[nK(N − K)(N − n)]/(N − )
, ()

and

N(N − )
n(N − )(N − )(N − n)

[N(N + ) − n(N − n)
K(N − K)

+ n(N − n)(N + )
N

− ], ()

respectively (Evans et al. , p. ).
�e maximum likelihood estimator of the number of

defectives K in a lot is the greatest integer not exceed-
ing x(N + )/n; if x(N + )/n is an integer, then
[x(N+)/n]− also maximizes the likelihood function
(Johnson et al. , p. ).

�e distribution has got a number of important appli-
cations in the real world. In the industrial quality control,
lots of size N containing a proportion of p defectives are
sampled by using samples of �xed size n.�e number of
defectivesX per sample follows a hypergeometric distribu-
tion. If X ≤ c (the acceptance number), the lot is accepted;
otherwise it is rejected. �e design of suitable sampling
plans requires the calculation of con�dence intervals of
Np, given N,n and c. Tables of these have been pub-
lished by Chung and DeLury () and Owen (). It is
worth mentioning that in many cases binomial or Poisson
approximations to the hypergeometric distribution su�ce.
Another useful application is the estimation of the size

of the animal populations from capture–recapture data.
�is kind of application dates back to Peterson (),
quoted byChapman (). Consider, for example, the esti-
mation of the number N of animals in a population. A
sample of size K is captured, tagged and then released into
the population. A�er a while a new catch of n animals is
made, the number of tagged animals (X) in the sample is
noted. Assume that the two catches are random samples
from the population of all animals. Indeed, if we assume
that there were no births or deaths, then the proportion of
tagged animals in the sample (X/n) is approximately the
same as that in the population (K/N).�at is, an estimate
of N is N̂ = nK/X. It may be noted that this estimate max-
imizes the probability of observed value of X. Evidently,
X has a hypergeometric distribution with probability mass
function given by () or ().

�e hypergeometric distribution can be approximated
by Poisson distribution with parameter λ if K,N and n all
tend to in�nity for K/N small and nK/N tending to λ. It
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can also be approximated by normal distribution if n is
large, but x/N is not too small. A concise description of
many other types of hypergeometric distribution and their
properties are available in Johnson et al. ().
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Consider a vector Y of random variables having a distri-
bution F(y; θ) that depends on an unknown parameter
vector θ. θ is identi�able by observation of Y if distinct
values θ  and θ for θ yield distinct distributions for Y ,
that is, if θ  ≠ θ implies F(y; θ ) ≠ F(y; θ) for some y
(Bickel and Doksum ). A function g(θ) is identi�able
by observation of Y if g(θ ) ≠ g(θ) implies F(y; θ ) ≠
F(y; θ) for some y. Note that θ is identi�able if and only
if all functions of θ are identi�able.

�ere is some variation in the de�nition of identi�-

ability, the preceding being the most general and central

to topics such as 7Bias analysis. Variants typically employ
the density f (y; θ) or the expectation E(Y ; θ) in place of
the distribution.�e latter variants may explicitly involve a

designmatrixX of regressors; for example, E(Y ;X, θ).�e
basic concept, however, is that θ [or g(θ)] is a function of
the Y distribution, and hence observations from the dis-
tribution of Y can be used to discriminate among distinct
values of θ [or g(θ)].

�e term estimable is sometimes used as a synonym for
identi�able, but is also used in more speci�c ways, espe-

cially in the context of linear models. For example, Sche�é

() de�nes a linear function c′θ of θ to be estimable if
there exists an unbiased estimator of c′θ that is a linear
function of the observed realizations of Y .�is property
has also been referred to as linear estimability. In epidemi-

ology, estimability of g(θ) is sometimes used to mean that
g(θ) can be consistently estimated from observable real-
izations of Y . Several other de�nitions have been given,
e.g., see Lehman (), McCullagh andNelder (), and

Seber and Wild ().

About the Author
For biography see the entry 7Confounding and Con-
founder Control.

Cross References
7Best Linear Unbiased Estimation in Linear Models
7Bias Analysis
7Mixture Models

References and Further Reading
Bickel PJ, Doksum KA () Mathematical statistics. Holden-Day,

Oakland

Lehmann EL () Theory of point estimation. Wiley, New York

McCullagh P, Nelder JA () Generalized linear models. Chapman

and Hall, New York

Scheffé H () The analysis of variance. Wiley, New York

Seber GAF, Wild CJ () Nonlinear regression. Wiley, New York

Imprecise Probability

Frank P. A. Coolen

, Matthias C. M. Troffaes


,

Thomas Augustin



Durham University, Durham, UK

Ludwig Maximilians University, Munich, Germany

Overview
Quanti�cation of uncertainty is mostly done by the use

of precise probabilities: for each event A, a single (clas-
sical, precise) probability P(A) is used, typically satisfy-
ing Kolmogorov’s axioms (Augustin and Cattaneo ).

Whilst this has been very successful in many applications,

it has long been recognized to have severe limitations.

Classical probability requires a very high level of preci-

sion and consistency of information, and thus it is o�en

too restrictive to cope carefullywith themulti-dimensional

nature of uncertainty. Perhaps the most straightforward

restriction is that the quality of underlying knowledge can-

not be adequately represented using a single probability

measure. An increasingly popular and successful gener-

alization is available through the use of lower and upper
probabilities, denoted by P(A) and P(A) respectively, with
 ≤ P(A) ≤ P(A) ≤ , or, more generally, by lower and
upper expectations (previsions) (Smith ; Walley ;

Williams ). �e special case with P(A) = P(A) for

Miodrag Lovric (ed.), International Encyclopedia of Statistical Science, DOI ./----,
© Springer-Verlag Berlin Heidelberg 
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all events A provides precise probability, whilst P(A) = 
and P(A) =  represents complete lack of knowledge about
A, with a �exible continuum in between. Some approaches,
summarized under the name nonadditive probabilities [],
directly use one of these set-functions, assuming the other

one to be naturally de�ned such that P(Ac) =  − P(A),
with Ac

the complement of A. Other related concepts
understand the corresponding intervals [P(A),P(A)] for
all events as the basic entity (Weichselberger , ).

Informally, P(A) can be interpreted as re�ecting the evi-
dence certainly in favour of event A, and  − P(A) as
re�ecting the evidence against A hence in favour of Ac

.

�e idea to use imprecise probability, and related con-

cepts, is quite natural and has a long history (see Hampel

 for an extensive historical overview of nonadditive

probabilities), and the �rst formal treatment dates back

at least to the middle of the nineteenth century (Boole

). In the last twenty years the theory has gathered

strong momentum, initiated by comprehensive founda-

tions put forward byWalley () (seeMiranda () for

a recent survey), who coined the term imprecise probability,
by Kuznetsov (), and by Weichselberger (, ),

who uses the term interval probability. Walley’s theory
extends the traditional subjective probability theory via

buying and selling prices for gambles, whereas Weichsel-

berger’s approach generalizes Kolmogorov’s axioms with-

out imposing an interpretation. Usually assumed consis-

tency conditions relate imprecise probability assignments

to non-empty closed convex sets of classical probability

distributions.�erefore, as a welcome by-product, the the-

ory also provides a formal framework for models used

in frequentist robust statistics (Augustin and Hable )

and robust Bayesian approaches (Rios Insua and Ruggeri

). Included are also concepts based on so-called

two-monotone (Huber and Strassen ) and totally

monotone capacities, which have become very popular in

arti�cial intelligence under the name (Dempster–Shafer)

belief functions (Dempster ; Shafer ). Moreover,

there is a strong connection (de Cooman and Hermans

) to Shafer and Vovk’s notion of game-theoretic prob-

ability (Shafer and Vovk ).

�e term “imprecise probability” – although an unfor-

tunate misnomer as lower and upper probability enable

more accurate quanti�cation of uncertainty than precise

probability – appears to have been established over the

last two decades, and actually brings together a variety of

di�erent theories. In applications, clear advantages over

the established theory of precise probability have been

demonstrated (see sections “7Applications in Statistics
and Decision�eory” and “7Further Applications” ).�is
justi�es the further development of imprecise probability,

particularly toward building a complete methodological

framework for applications in statistics, decision support,

and related �elds. Imprecise probability provides impor-

tant newmethods that promise greater �exibility for uncer-

tainty quanti�cation. Its advantages include the possibility

to deal with con�icting evidence, to base inferences on

weaker assumptions than needed for precise probabilis-

tic methods, and to allow for simpler and more realistic

elicitation of subjective information, as imprecise probabil-

ity does not require experts to represent their judgements

through a full probability distribution, which o�en does

not re�ect their beliefs appropriately.

�e Society for Imprecise Probability: �eories and

Applications (www.sipta.org) organizes conferences, work-

shops and summer schools, and provides useful intro-

ductory information sources and contacts through its

web-page.

�e increased attention to imprecise probability during

the last two decades has led to many new methods for sta-

tistical inference and decision support, with applications in

a wide variety of areas.

Applications in Statistics and Decision
Theory
FollowingWalley (),many of the imprecise probability-

based contributions to statistics follow a generalized

Bayesian approach. Typically, a standard precise paramet-

ric sampling model with a set of prior distributions is

used. In particular, the use of models from the exponen-

tial family is popular in conjunction with classes of con-

jugate priors. Walley’s Imprecise Dirichlet Model (IDM)

for inference in case of multinomial data (Walley )

has attracted particular attention (Bernard ). One

successful application area for the IDM is classi�cation

(Za�alon ), where the use of lower and upper proba-

bilities makes the learning process more stable and enables

in a quite natural way an item to be explicitly not classi-

�ed into a unique category, indicating that no clear deci-

sion for a single category can be made on the basis of

the information available. In these models, updating to

take new information into account is e�ectively done by

updating all elements of the set of prior distributions as in

Bayesian statistics with precise prior distributions, leading

to a set of posterior distributions which forms the basis for

inferences. From the technical perspective this procedure

is therefore closely related to robust Bayesian inference,

but, by reporting the indeterminacy resulting from lim-

ited information, use and interpretation of the resulting

imprecise posterior goes far beyond a simple sensitivity

and robustness analysis.
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Other approaches to statistical inference with impre-

cise probabilities have been developed, which tend tomove

further away from the precise probabilistic approaches.

Examples of such approaches are Nonparametric Predic-

tive Inference (Coolen ), generalizations of the fre-

quentist approach, see e.g., Augustin () for hypotheses

testing and Hable () for estimation, as well as several

approaches based on logical probability (Kyburg ; Levi

; Weichselberger ).

Imprecise probabilities have also proven their use in

decision support (Tro�aes ), where, in tradition of

Ellsberg’s experiments (Ellsberg ), ambiguity (or non-

stochastic uncertainty) plays a crucial role (Hsu et al.

). If only little information is available about a vari-

able, then it is o�en more natural to refuse to determine

a unique optimal decision, when gains and losses depend

on that variable. Imprecise probability theory grasps this

in a rigorous manner, resulting in a set of possibly optimal

decisions, rather than providing only a single, arbitrarily

chosen, optimal decision from this set. Imprecise probabil-

ity theory is especially useful in critical decision problems

where gains and losses heavily depend on variables which

are not completely known, such as for instance in pollution

control (Chevé and Congar ) and medical diagnosis

(Za�alon et al. ).

Further Applications
Recent collections of papers (Augustin et al. ; Coolen-

Schrijner et al. ; de Cooman et al. ) give an

impression of the huge variety of �elds of potential appli-

cation. In arti�cial intelligence, for example in pattern

recognition (Loquin and Strauss , see also 7Pattern
Recognition, Aspects of and 7Statistical Pattern Recog-
nition Principles) and information fusion (Benavoli and

Antonucci ), uncertain expert knowledge can be rep-

resented more accurately by means of imprecise proba-

bility. Because imprecise probability methods can process

information without having to add unjusti�ed assump-

tions, they are of great importance in risk and safety eval-

uations, design engineering (Aughenbaugh and Paredis

) and reliability (Coolen and Utkin ).�e ongo-

ing intensive debate on bounded rationality makes reliable

decision theory based on imprecise probability particu-

larly attractive in microeconomics and in social choice

theory. In �nance, imprecise probability is gaining strong

in�uence given its very close connection to risk measures

(Artzner et al. ; Vicig ). Imprecise probability also

yields deeper insight into asset pricing (Richmond et al.

).�e study of7Markov chains with imprecise transi-
tion probabilities (deCooman et al. ) is also important

for many areas of application.

Challenges
Imprecise probability and its applications in statistical

inference and decision support o�er a wide range of

research challenges. On foundations, key aspects such as

updating have not yet been fully explored, and di�erent

approaches have di�erent conditioning rules. �e rela-

tion between imprecision and information requires further

study, and many of the most frequently used statistical

methods (such as complex regression models) have not

yet been fully generalized to deal with imprecise prob-

ability. In cases where generalizations are easily found,

it may be unclear which of many possible approaches

is most suitable. Of course, early developments of new

theoretic frameworks tend to include illustrative appli-

cations to mostly text-book style problems. �e next

stage required toward widely applicable methods involves

upscaling, where in particular computational aspects pro-

vide many challenges. Even methods such as simulation,

mostly straightforward with precise probabilities, become

non-trivial with imprecise probabilities.

For applications which require the use of subjec-

tive information, elicitation of expert judgements is less

demanding when lower and upper probabilities are used,

but while practical aspects of elicitation have been widely

studied this has, thus far, only included very few studies

involving imprecise probabilities.

In decision making, algorithms to �nd optimal solu-

tions need to be improved and implemented for large-scale

applications. As many problems have a sequential nature,

ways of representing sequential solutions e�ciently also

need to be developed, the more so as classical techniques

such as backward induction and dynamic programming

o�en cannot be extended directly.
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Overview
Reliability analysis is an important application area of

statistics and probability theory in engineering, with sev-

eral speci�c features which o�en complicate application of

standard methods. Such features include data censoring,

for example due to maintenance activities, lack of knowl-

edge and information on dependence between random

quantities, for example if failures occur due to competing

risks, and required use of expert judgements, for exam-

ple when new or upgraded versions of units are used.

While mathematical approaches for dealing with such

issues have been presented within the framework of statis-

tics using precise probabilities, the use of imprecise prob-

ability (Coolen et al. ) provides exciting new ways

for dealing with such challenges in reliability. One of the

�rst approaches that generalized probability in reliabil-

ity was fuzzy reliability theory (Cai ), but this su�ers

from vagueness about axioms and rules for combination of

information, and lack of clear interpretation of the results.

We restrict attention to generalized uncertainty quanti�-

cation in reliability via lower and upper probabilities, also

known as “imprecise probability” (Walley ) or “inter-

val probability” (Weichselberger , ). During the

last two decades, imprecise probability (Coolen et al. )

has received increasing attention, and interesting applica-

tions have been reported. It is widely accepted that, by

generalizing precise probability theory in amathematically

sound manner, with clear axioms and interpretations, this

theory provides a better approach to generalized uncer-

tainty quanti�cation then its current alternatives.

In classical probability theory, a single probability

P(A) ∈ [, ] is used to quantify uncertainty about eventA.
Imprecise probability theory (Walley ; Weichselberger

, ) generalizes this by using lower probability

P(A) and upper probability P(A) such that  ≤ P(A) ≤
P(A) ≤ , where the di�erence between P(A) and P(A)
represents lack of perfect information about the uncer-

tainty involving event A, see Coolen et al. () for a
further introduction. For reliability, attractive features of

this generalization include that one does not need to make

strong assumptions in order to derive at precise probabil-

ities for all situations. For example, one may have partial

information about dependence of failure times for di�erent

components, or one may have to rely on expert judge-

ment with an only limited elicitation possible due to time

constraints. All kinds of partial information that might be

available in practice can be formulated as constraints on

underlying probabilities, which can be satis�ed by sets of

probabilities.

Applications
A recent extensive introduction to imprecise reliability,

together with a discussion of many applications, has been

presented by Utkin and Coolen (). As an example of

an imprecise reliability application, Fetz and Tonon ()

consider bounds for the probability of failure of a series

systemwhenno information is available about dependence

between failure probabilities of di�erent modes.�ey con-

sider several models, including random sets and p-boxes,

and they provide a detailed list of references to the litera-

ture on such topics.�ey also discuss some computational

methods, which is an important aspect of application of

imprecise reliability to medium or larger size practical

problems.

One of the possible ways in which output from impre-

cise probability methods can be useful is in the study

of sensitivity of model outputs with respect to varia-

tions in input parameters. An interesting recent study by

Oberguggenberger et al. () presents such an approach

to a large-scale modeling problem to assess reliability in an

aerospace engineering application, comparing the use of

classical probabilities and a variety of imprecise probability

methods.

Imprecise probabilistic approaches to statistics are

of great value to reliability problems. Recent examples

include the use of Walley’s imprecise Dirichlet model

(Walley ) for system reliability without detailed

assumptions on dependence of components (Tro�aes and

Coolen ), and system reliability from the perspec-

tive of nonparametric predictive inference (Coolen ).

Another recent development is combination of imprecise

Bayesian methods for some parameters with a general-

ized maximum likelihood approach for other parameters

in an inferential problem, where the former can be used

to explicitly deal with incomplete expert judgements while

the latter can be appropriate on aspects of the problem for

which data are available but no strong expert opinions.�is

has been explored for so�ware reliability growth models,

using the maximum likelihood approach for the temporal

growth aspect together with imprecise Bayesian methods
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for the parameters modeling the stationary aspects of the

model (Utkin et al. ).

Challenges
Imprecise reliability is a relatively new area of research,

withmethods presented that are inspired by practical prob-

lems but that are not yet suitable for applications of sub-

stantial size. �e main challenges are in upscaling the

methods to become useful for practical problems, together

with aspects of implementation which include considera-

tion of elicitation and model choice.�e combination of

substantial optimization problems and statisticalmodeling

and updating may also lead to a level of complexity that

requires attention to methods for computation, for exam-

ple it is not clear how modern simulation-based methods,

that are for example popular in 7Bayesian statistics, can
best be used or adapted for imprecise approaches.

�e models for imprecise reliability that have been

presented so far are still pretty basic, and for example

inclusion of covariates requires further research. Gener-

ally, imprecise approaches can be found that generalize

the established methods in varying ways, so in addition to

developing new methods one must �nd ways to decide on

how useful they are, which requires careful consideration

of fundamental aspects of uncertainty and information.

Hybrid methods, which combine imprecise models where

useful to model indeterminacy with precise models where

possible due to su�cient data or information, provide

exciting opportunities for research, with issues that must

be addressed including interpretation of results, choice of

models and methods, and computation.
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Missing data is a di�cult problem that degrades the qual-

ity of empirical studies.�ere are no foolproof methods,

so the best approach is to seek to avoid missing values

by careful design and prevention strategies, such as avoid-

ing excessive respondent burden and strong e�orts to elicit

responses. Despite our best attempts to limit levels of non-

response, missing values inevitably occur. For example,

individuals in a sample survey refuse to answer items that

are sensitive or di�cult to answer; in a longitudinal study,

individuals drop out prior to the end to a study because

of relocation, or study fatigue. Analysis methods for data
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subject to missing values are thus needed. A limited objec-

tive is to provide valid point estimates of population quan-

tities from the incomplete data. Since good statistical anal-

yses usually also require an assessment of statistical uncer-

tainty of estimates through con�dence intervals or test of

hypotheses, it is also important that such inferences re�ect

the loss of information arising from missing data, so that,

for example nominal % con�dence intervals cover the

true population quantity at least approximately % of the

time, in repeated sampling.

Imputation is a method for the analysis of data with

missing values, where missing values are replaced by esti-

mates and the �lled-in data are analyzed by complete-data

methods. O�en a single value is imputed (single imputa-

tion). Multiple imputation imputes more than one set of

imputations of the missing values, allowing the assessment

of imputation uncertainty.

A common alternative to imputation in public use �les

is to include incomplete cases in a data set, with miss-

ing value codes to indicate which values are missing. A

drawback of this procedure is that di�erent users may get

di�erent answers for the same research question, because

they use di�erent methods for dealing with the missing

values. Most statistical so�ware discards cases that have

missing values on any of the variables included in the anal-

ysis, leading to complete-case analysis or listwise deletion

(Little and Rubin , Chap. ). �e information con-

tained in observed variables in the incomplete cases is thus

lost, and the complete cases may not be representative of

the original sample.

Imputation is a method that allows incomplete cases

to be included in the analysis. In fact, the main reason for

imputation is not to recover the information in themissing

values, which is lost and usually not recoverable, but rather

to allow the information in observed values in the incom-

plete cases to be retained. If there is little information to

be recovered in the cases with missing values, as for exam-

ple cases in regression for which the outcome variable is

missing, then imputation is not very useful.

A common naive imputation approach imputes miss-

ing values by their simple unconditional sample means

(i.e., marginal means). �is can yield satisfactory point

estimates of unconditional means and totals, but it yields

inconsistent estimates of other parameters, for example

variances or regression coe�cients (Kalton and Kasprzyk

; Little and Rubin , Sect. .). Inferences (tests and

con�dence intervals) based on the �lled-in data are seri-

ously distorted by bias and overstated precision.�us the

method cannot be generally recommended.

An improvement over unconditional mean imputation

is conditional mean imputation, in which each missing
value is replaced by an estimate of its conditional mean

given the values of observed values. For example, in the

case of univariate nonresponse with Y, . . . ,Yp− fully
observed and Yp sometimes missing, one approach is to

classify cases into cells based on similar values of observed

variables, and then to impute missing values of Yp by the

within-cell mean from the complete cases in that cell. A

more general approach is regression imputation, in which

the regression of Yp on Y, . . . ,Yp− is estimated from the
complete cases, including interactions as needed, and the

resulting prediction equation is used to impute the esti-

mated conditional mean for each missing value of Yp. For

a general pattern of missing data, the missing values for

each case can be imputed from the regression of the miss-

ing variables on the observed variables, computed using

the set of complete cases. Iterative versions of this method

lead (with some important adjustments) tomaximum like-

lihood estimates under multivariate normality (Little and

Rubin , Sect. .).

Although conditional mean imputation incorporates

information from the observed variables and yields best

predictions of the missing values in the sense of mean

squared error, it leads to distorted estimates of quantities

that are not linear in the data, such as percentiles, corre-

lations and other measures of association, variances and

other measures of variability. A solution to this problem is

to use random draws rather than best predictions to pre-

serve the distribution of variables in the �lled-in data set.

An example is stochastic regression imputation, in which
each missing value is replaced by its regression prediction

plus a random error with variance equal to the estimated

residual variance. Other imputation methods impute val-

ues observed in the dataset. One such method is the hot-
deck, as used by the Census Bureau for imputing income
in the Current Population Survey (CPS) (Hanson ).

Each nonrespondent is matched to a respondent based on

variables that are observed for both; the missing items for

the nonrespondent are then replaced by the respondent’s

values. For the CPS, matching is achieved by classify-

ing respondents and nonrespondents into adjustment cells

based on the observed variables. When no match can be

found for a nonrespondent based on all of the variables, the

CPS hot-deck searches for amatch at a lower level of detail,

by omitting some variables and collapsing the categories of

others. Amore general approach to hot-deck imputation is

to de�ne a distance function based on the variables that are

observed for both nonrespondents and respondents.�e

missing values for each nonrespondent are then imputed

from a respondent that is close to the nonrespondent in

terms of the distance function. For a review of hot-deck

methods see Andridge and Little ().

A serious defect with imputation is that it invents data.

More speci�cally, a single imputed value cannot represent
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all of the uncertainty about which value to impute, so

analyses that treat imputed values just like observed val-

ues generally underestimate uncertainty, even if nonre-

sponse is modeled correctly and random imputations are

created.

Two approaches to this de�ciency are (a) to apply a

replication method of variance estimation, and recom-

pute the imputations on each replicate sample (Fay ,

Rao , Efron ), and (b) multiple imputation (MI)

(Rubin , ). Instead of imputing a single set of

draws for the missing values, a set of M (say M = )
datasets are created, each containing di�erent sets of draws

of themissing values from their predictive distribution.We

then apply the analysis to each of theM datasets and com-
bine the results in a simple way. In particular, for scalar

estimants, the MI estimate is the average of the estimates
from theM datasets, and the variance of the estimate is the
average of the variances from the �ve datasets plus + /M
times the sample variance of the estimates over the M
datasets (�e factor + /M is a small-M correction).�e
last quantity here estimates the contribution to the vari-

ance from imputation uncertainty, missed by single impu-

tation methods. Another bene�t of multiple imputation is

that the averaging over datasets results in more e�cient

point estimates than does single random imputation.O�en

MI is not much more di�cult than doing a single imputa-
tion – the additional computing from repeating an analysis

M times is not a major burden and methods for combin-
ing inferences are straightforward. Multiple imputation is

available for the multivariate normal model in a variety of

so�ware packages (e.g., Proc MI in SAS), and more �ex-
ible sequential multiple imputation methods are available

in IVEware (http://www.isr.umich.edu/src/smp/ive/) and

MICE (http://www.multiple-imputation.com/).

Most approaches imputation to date have assumed that

the missing data are MAR (Rubin , Little and Rubin

, Sect. .), which means that di�erences in the dis-

tribution of the missing variables for respondents and

nonrespondents can be captured using observed variables.

Non-MAR models are needed when missingness depends

on the missing values. For example, suppose a subject in

an income survey refused to report an income amount

because the amount itself is high (or low). If missingness

of the income amount is associated with the amount, a�er

controlling for observed covariates (such as age, educa-

tion or occupation) then the mechanism is not MAR, and

methods for imputing income based on MAR models are

subject to bias. A correct analysis must be based on the

full likelihood from a model for the joint distribution of

the data and indicators for the missing values.7Sensitivity
analysis is the preferred approach to assess the impact

of non-MAR missing values (e.g., Little and Rubin ,

Chap. ).
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Introduction
Blocking is the division of experimental material into

blocks or sets of homogeneous experimental units. Proper

blocking can control the source of variability which is not

of primary interest and thus can reduce the experimen-

tal error. If the number of treatments is the same as the

block size, a randomized block design can be used. How-

ever, if the number of treatments exceeds the block size, an

incomplete block design (IBD) should be considered.

An IBD of size (v, k, r) is an arrangement of v treat-
ments set out in b blocks, each of size k(< v) such that
each treatment occurs in r blocks where vr = bk and no
treatment occurs more than once in any block.�e follow-

ing is an IBD of size (v, k, r) = (, , ) (Note that all IBDs
in this article are displayed with blocks as columns.):

 

 

 

 

 

 

An IBD is said to be r/s-resolvable if the blocks can
be divided into s replicate sets (of blocks) and each set is
an IBD of size (v, k, r/s). A -resolvable IBD is a resolv-
able IBD (see the above example). �e following is a

-resolvable IBD of size (v, k, r) = (, , ):

  

  

  

  

  

  

  

  

�e books of John andWilliams () andRaghavarao

and Padgett () give a more complete treatment on the

subject.

A Criterion for Comparing IBDs
Associated with each IBD is its (treatment) concurrence
matrixNN′ = {λij}where λij (i, j = , . . . , v) is the number
of blocks in which treatment i and j both appear. Obvi-
ously, λii = r. When λij = λ for all i ≠ j, the IBD is
called a balanced IBD (BIBD). Below is an IBD of size

(v, k, r) = (, , ):

   

   

   

�e concurrence matrix of this IBD is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

     

     

     

     

     

     

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

As∑ λij is constant (=vkr),∑ λij isminimized if λij’s (i ≠ j)
di�er by at most . IBDs with this property were called reg-

ular graph designs (RGDs) by John and Mitchell ()

who conjectured that D-, A- and E- optimal IBDs are
also RGDs.�us, RGDs include BIBDs, i.e., IBDs whose

λij’s (i ≠ j) do not di�er and all near-BIBDs whose λij’s

(i ≠ j) di�er by . RGD is an important class of IBDs not
only because it has been conjectured that optimal IBDs are

RGDs but also because most IBDs used by researchers in

practice are actually RGDs.�is fact has promptedNguyen

() to search for RGDs as the �rst step in constructing

optimal IBDs.

A common criterion for comparing IBDs of the same

size is the e�ciency factor de�ned as E = (v − )/∑ e−i
where ei’s are the v −  nonzero eigenvalues of r−C and
C = rI − k−NN′

is the information matrix for the adjusted

treatment e�ects. Here, we assume that the IBD is con-
nected, i.e., rank(C) = v−. An IBDwhich has themaximal
value of E is said to be A-optimal (John and Williams
, Sect. .). �e upper bounds for the e�ciency fac-

tor of an IBD have been discussed extensively in Sect. .

of John andWilliams ().�ese upper bounds are used

to establish the stopping rule for any IBD algorithm.

IBDs with High Efficiency Factors
�is section introduces BIBDs and some classes of

computer-generated IBDs. �ese designs have become

more popular among designers of experiments as with the

advent of the computer, the �exibility and goodness of the

design have succeeded ease of analysis as their criteria in

design selection.

�e parameters (v, b, k, r, λ) of a BIBD satisfy two rela-
tionships: (i) bk = vr and (ii) r(k− ) = λ(v− ).�ese two
relationships, however, are necessary but not su�cient for
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a BIBD to exist. For any combination of v and k (k < v), an
unreduced BIBD can be constructed by taking all b = (vk)
combinations of v treatments k at a time.�e blocks of a
BIBD for v = b = , r = k =  and λ =  are (), (),
(), () and (). Another well-known class of

BIBDs which is resolvable and requires a smaller number

of blocks and replications is balanced lattice. An s × s bal-
anced lattice is a resolvable BIBD of size v = s, b = s(s+ ),
k = s, r = s+, and λ =  constructed from a complete set of
s× s mutually orthogonal Latin squares. Chapters  and  of
Raghavarao andPadgett () describe the combinatorics

of BIBDs and lattice designs in detail.

Cyclic IBDs are IBDs generated by the cyclic develop-
ment of one or more suitably chosen initial blocks. Cyclic

IBDs account for a large number of BIBDs in literature

(see Table . of Raghavarao and Padgett ) .�ey also

provide e�cient alternatives to many partially BIBDs cata-

logued in Clatworthy (). Chap.  of John andWilliams

() gives a summary of cyclic IBDs. When the num-

ber of replications r is equal to or is a multiple of the
block size k, cyclic IBDs render automatic elimination of
heterogeneity in two directions (see Sect. . of John and

Williams ).�e following is a cyclic BIBD for v = ,
b = , k = , r =  and λ =  generated by two initial
blocks (, , ) and (, , ).

             

             

             

Patterson andWilliams (a) introduced a new class

of resolvable IBDs called α-design. α-designs are avail-
able for many (r, k, s) combinations where r is the number
of replicates, k is the block size and s is the number of
blocks per replicate (the number of treatments v = ks).
An α-design was generated by an r × k array α with ele-
ments in set of residues mod s.�us, the construction of
an α-design (or a cyclic IBD) resorts to the construction
of an array α (or one or more initial blocks). Chapter  of
John and Williams () gives a summary of resolvable

IBDs including α-designs. α-designs and cyclic IBDs can
be generated by the CycDesignN so�ware (http://www.

cycdesign.co.nz/) and the Gendex DOE toolkit (http://

designcomputing.net/gendex/).

Cyclic solutions are not always optimal. Following is a

non-cyclic solution for an IBD of size (v, k, r) = (, , ).
�is optimal IBD with E = . was constructed by the
algorithm of Nguyen ().

         

         

         

         

         

         

Two Tools for IBD Construction
To construct certain IBDs with a large number of treat-

ments e�ortlessly, we have to note a relationship between

() an IBD and its dual and () a -replicate resolvable
IBD and its contraction. An IBD is optimal if its dual (or
contraction) is optimal (see Sects. . and . of John and

Williams ). A dual of an IBD D of size (v, k, r) is an
IBD D′ of size (v′, k′, r′) = (b, r, k) obtained by swapping
the treatments and blocks symbols in the original design.

For example, the dual of the IBD of size (v, k, r) = (, , )
displayed in section “7Introduction” is the IBD of size
(v′, k′, r′) = (, , ) displayed in section “7A Criterion
for Comparing IBDs”.

Patterson and Williams (b) showed that a -

replicate resolvable IBD D of size (v, k, r) = (ks, k, ) is
uniquely determined by its contraction, a symmetrical IBD
D∗ of size (v∗, k∗, r∗) = (s, k, k).�e following -replicate
resolvable IBD of size (v, k, r) = (, , ) was obtained
from a symmetrical IBD of size (v∗, k∗, r∗) = (, , ) in
section “7Introduction”:

     

     

     

     

     

     

     

     

Since the original designs in these two examples are

optimal, their derived designs are also optimal. Additional

examples on the use of these tools are given in Nguyen

() and Sects. . and . of John and Williams ().

Some Applications of IBDs
IBDs are related to several more complex combinato-

rial structures. As such they can be used to build these

structures.�e apparent application of IBDs is to use the

blocks of an IBD as the column component of a row-

column design (RCD). �ese designs are used for elim-

ination of heterogeneity in two directions. Nguyen and

Williams () andNguyen () suggested amethod for

constructing optimal RCDs by permuting the treatments
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within the blocks of an IBDused as the column component

of the RCD.�e following is an optimal RCD for  treat-

ments, each replicated four times, set out in a  ×  array
obtained by permuting the treatments within the blocks of

the IBD of size (v, k, r) = (, , ) in section 7“IBDs with
High E�ciency Factors”:

         

         

         

         

         

         

�is optimal RCD with E = . has been rec-

ommended for a taste test experiment involving  food

products.�e columns represent the tasters and the rows

represent the order in which the products are introduced

to the tasters.

Supersaturated designs are designs in which the num-

ber of factors m > n −  where n is the number of
runs. Nguyen () and Liu and Zhang () described

a method of constructing optimal -level supersaturated

designs from cyclic BIBDs.�e following optimal super-

saturated design for  factors in eight runs was obtained

from the cyclic BIBD in section “7IBDs with High E�-
ciency Factors”. Each factor (column) of this design cor-

responds to a block of this BIBD.�e treatments in each

block of this BIBD are used to allocate the high level of a

factor to a run:

             

−  − − −   − − −  −  

 −  − − −   − − −  − 

  −  − − −   − − −  −

−   −  − − −   − − − 

− −   −  −  −   − − −

− − −   −  −  −   − −

 − − −   − − −  −   −

IBDs have also been used to construct -level response

surface designs (Box and Behnken  and Nguyen and

Borkowski ) and orthogonal and near-orthogonal

arrays (Nguyen and Liu ). Other novel applications of

IBDs can be found in Chapts.  and  of Raghavarao and

Padgett ().
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In many longitudinal and multivariate settings, not all

measurements planned are taken in actual practice. It is

important to re�ect on the nature and implications of such
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incompleteness, or missingness, and properly accommo-

date it in the modeling process.

When referring to the missing-value process we will

use terminology of Little and Rubin (, Chap. ). A

non-response process is said to be missing completely at
random (MCAR) if the missingness is independent of

both unobserved and observed data and missing at ran-
dom (MAR) if, conditional on the observed data, the

missingness is independent of the unobserved measure-

ments. A process that is neitherMCARnorMAR is termed

non-random (MNAR).
Given MAR, a valid analysis that ignores the missing

value mechanism can be obtained, within a likelihood or

Bayesian framework, provided the parameters describing

the measurement process are functionally independent of

the missingness model parameters, the so-called parame-

ter distinctness condition.�is situation is termed ignor-

able by Rubin () and Little and Rubin () and leads

to considerable simpli�cation in the analysis (Verbeke and

Molenberghs ). �ere is a strong trend, nowadays,

to prefer this kind of analyses, in the likelihood context

also termed direct-likelihood analysis, over ad hoc meth-
ods such as last observation carried forward (LOCF), com-
plete case analysis (CC), or simple forms of 7imputation
(Molenberghs and Kenward ). Practically, it means

conventional tools for longitudinal and multivariate data,

such as the linear and generalized linear mixed-e�ects

models (Verbeke and Molenberghs ; Molenberghs

and Verbeke ) can be used in exactly the same way

as with complete data. So�ware tools like the SAS proce-

dures MIXED, NLMIXED, and GLIMMIX facilitate this

paradigm shi�.

In spite of direct likelihood’s elegance, fundamen-

tal model assessment and model selection issues remain.

Such issues, occurring under MAR and even more under

MNAR, are the central theme of this paper.

Indeed, one can never fully rule out MNAR, in which

case the missingness mechanism needs to be modeled

alongside the mechanism generating the responses. In the

light of this, one approach could be to estimate from the

available data the parameters of a model representing a

MNAR mechanism. It is typically di�cult to justify the

particular choice of missingness model, and the data do

not necessarily contain information on the parameters of

the particular model chosen (Molenberghs and Kenward

). For example, di�erent MNAR models may �t the

observed data equally well, but have quite di�erent impli-

cations for the unobserved measurements, and hence for

the conclusions to be drawn from the respective analyses.

Without additional information one can only distinguish

between such models using their �t to the observed data,

and so goodness-of-�t tools typically do not provide a rel-

evant means of choosing between such models. It follows

that there is an important role for sensitivity analysis in

assessing inferences from incomplete data (Verbeke and

Molenberghs ; Molenberghs and Verbeke ; and

Molenberghs and Kenward ).
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Definition
An index number can be de�ned as a single indicator rep-

resenting the change in the value of a variable relative to

its value at some base date or state referred to as the base

period. �e index is o�en conventionally scaled so that

its base value is .�e variables considered represent a

number of concepts including prices, quantity, volumes,

value of a commodity, or other general economic variable

such as national income, or gross output, cost of living,

value of stock exchange etc. It constitutes a convenient way

to standardize the measurement of numbers so that they

are directly comparable.

Index numbers are used in several instances.�e most

commonly used include price indexes, quantity indexes,

value indexes, or special-purpose indexes etc. Some of
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the most widely known and used indexes include the

Consumer Price Index (CPI), the Producer Price Index

(PPI), the HumanDevelopment Index (HDI), etc.�e CPI

describes the change in prices of a basket of goods pur-

chased by a representative consumer relative to a base

period while the PPI is its equivalent but on the producer

side. Stock market indexes, on the other hand report on

the change in the prices of stocks on di�erent markets.

�ese include the Dow Jones Industrial Average, which is

published daily, and that describes the overall change in

common stock prices of  large companies during the

day, while the Standard and Poor’s  Stock Average is

based on a  most important �rms which stocks trade

on the New York Stock Exchange divided by a factor that

is adjusted for stock splits. �ere are equivalent of these

indexes in other countries and cities such as the CAC  in

Paris, the DAX in Frankfurt, the FTSE  in London, and

the Nikkei  in Tokyo.

Since the development of indices has been dominated

by price indices and that many of the developments do

also apply to other types of indexes, the remaining of the

text will concentrate and use examples of these kinds of

indexes.

Types of Indexes
When the measurements over time and/or space are on a

single variable, for example, the price of a certain commod-

ity, the index is called a simple index number. �us, the

index of a variable for any year t is de�ned as:

It =
Xt

X
× ,

where I is the index number at period t,Xt andX being the
values of the variable at time t and base period respectively.
For example, if a commodity costs twice as much in 

as it did in , its index number would be  relative to

.

When the measurements over time and/or space are

on the multiple aspects of a concept such as the level

of economic development, general disparities, or for two

or more items, the index is called composite index. �e

index related to the concept for any year t, in this
case, is de�ned as:

It = f (ωi,
Xi
t

Xi


) ,

where I is the index number at period t, Xt and X the val-
ues of the concept at time t and base period respectively, f
a functional form (might be a product or sum), and ωi the

weight of component (aspect) i.�e well-known Laspeyres
price index is a special case of the above with the weights

being values (prices time quantities) of di�erent products

(goods or services) in the basket during the base period as

follows: LP = ωi
n

∑
i=

Pi
t

Pi


, with ωi =
Pi
Q

i


n

∑
i=

Pi

Qi


and P the prices

andQ quantities at respective periods.�e Laspeyres price
index is therefore a weighted average of the relative prices

of di�erent goods being part of a basket between periods

 and t.

Elementary Indexes
Elementary indexes also called unweighted indexes are

those that compare the prices in di�erent periods without

using weights.�ey are called elementary because they are

computed for a single good (product, item, concept etc.).

In fact, the computation of price indexes for a single good

does not require the use of weights since only one type

of good is being aggregated. Below are some well-known

elementary price indices.

The Dutot Index
Developed by the French economist Charles de Ferrare

Dutot in , this index is a ratio of average prices as

follows:

DP =



n

n

∑
i=
Pi
t



n

n

∑
i=
Pi


=

n

∑
i=
Pi
t

n

∑
i=
Pi


.

The Carli Index
Developed by the Italian economist Rinaldo Carli in ,

this index is an arithmetic average of price ratios as follows:

CP =


n

n

∑
i=

Pi
t

Pi


.

The Jevons Index
Developed by the English economist Stanley Jevons in

, this index is a geometric average of prices as follows:

JP =
n

∏
i=

( Pi
t

Pi


)
/n

.

Because in some instances, prices or price ratios need to be

aggregated to derive price indices, arithmetic or geomet-

ric means (see 7Geometric Mean) are used. �e debate
over the correct method for computing price indexes

namely on the use of arithmetic or geometric averages

and whether to weight the index and by which quanti-

ties goes back as far as the s.�ree pioneers on price

indexes development exchanged a lot on this. Laspeyres
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argued for an arithmetic average weighted by quanti-

ties in the �rst period even if he did not use that him-

self in practice. Paasche was of the same opinion as

Laspeyres on the use of arithmetic means but di�ered

on the weights as he privileged the use of weights from

the current period as opposed to Laspeyres who used

those of the base period. Unlike the other two economists,

Jevons was defending geometric averaging.�e debates on

these issues still exist nowadays and have been studied for

centuries.

To illustrate the debate on arithmetic versus geomet-

ric means, let’s consider the prices of two goods A and B
from period  to t. If the price of good A doubles between
 to t, the index will rise from  to . If in the mean-
time the price of good B decreases by half during the same
period, the related index will decrease from  to .�e

average prices level of the two goods in t will be  result-
ing in an average price change of %. Using geometric

means, the average price change (square root of the prod-

uct of the indexes in t) will be , meaning no change
in average prices. As can be observed from this exam-

ple, the choice of the aggregation method will in�uence

the index.�e geometric means assure that expenditures

shares are constant.�e argument against arithmetic aver-

ages and in favor of geometric ones can be summarized in

the fact that buyers substitute towards those goods whose

relative price has fallen. �e geometric means takes into

account substitutions holding expenditures shares con-

stants while the arithmetic means assumes that quantities

remain constants.

Fixed-Weights Indexes
Fixed-weights indexes are those indexes that use weights

derived for a given period in their calculation. In prac-

tice, the computation of price indexes entails only col-

lecting prices in the current period (t) as the indices are
explained as a function of the ratios of prices of the items

between the current and the base periods. �ese ratios

are then aggregated using either arithmetic or geometric

means. Once this decided upon, there is still the issue of

the weights to be used. �ese weights can be computed

either for the base period or the current one.�e Laspeyres

index commonly used to compute the CPI in o�cial statis-

tics of countries across the world uses weights from the

base period while the Paasche index uses weights from

the current period. While both are �xed-weights indices,

the Laspeyres is very attractive in practice because at t the
weights in period  (the base) can be derived from the

expenditures from household budget surveys as they have

already been observed in the past. Below are some widely

used �xed-weights indexes.

The Laspeyres Index
Developed by the German economist Ernst Louis Étienne

Laspeyres in , this index is a weighted arithmetic aver-

age of price ratios with weights derived from the base

period as follows:

LP =

n

∑
i=
Pi
t Qi


n

∑
i=
Pi
 Q

i


= ωi
n

∑
i=

Pi
t

Pi


, with ωi =
Pi
 Qi



n

∑
i=
Pi
 Q

i


.

The Paasche Index
Developed by the German Statistician/economist

Hermann Paasche in , this index is a weighted arith-

metic average of price ratios with weights derived from the

current (t) period as follows:

PP =

n

∑
i=
Pi
t Qi

t

n

∑
i=
Pi
 Q

i
t

.

By virtue of the use of the base period weights, the

Laspeyres index is known to overstate price changes. In

fact, according to economic theory, consumers substitute

goods that are becoming more expensive with less expen-

sive ones while the index assumes that the basket of goods

and services chosen in the base period remains �xed.�is

index ends up using an outdated �xed structure that does

not take into accounts the substitution e�ect.�e Paasche

index understates price changes for the same reason. To

deal with this problem, Fisher came upwith a proposal that

lies between the two previous ones.

Chained Indexes
To overcome the problem related to the use of outdated

�xed weights structures, indexes are o�en chained using

updated weights. In the case of the Laspeyres price index,

its chained version will take the following form:

LCP =

n

∑
i=

Pi
 Q

i


n

∑
i=

Pi

Qi


⋅

n

∑
i=

Pi
 Q

i


n

∑
i=

Pi

Qi


⋅ . . . ⋅

n

∑
i=

Pi
t Qi

t−

n

∑
i=

Pi
t− Q

i
t−

⋅ . . . ⋅

n

∑
i=

Pi
s Qi

s−

n

∑
i=

Pi
s− Q

i
s−

where s is the number of periods over which the chain
index extends.�is has been and remains the practice in

the computation of o�cial CPIs of many of the countries

across the world.

The Fisher Index
Developed by the American economist Irving Fisher in

/, this index is a geometric mean of Laspeyres and
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Paasche indexes as follows:

FP = (LP ⋅PP)/ .

Non-Fixed-Weights Indexes
�e non-�xed weights indexes include the following:

The Marshall-Edgeworth Index
Developed by Alfred Marshall () and Edgeworth

(), this index is a weighted relative of current prices

with weights being arithmetic averages of current and base

period quantities as follows:

MEP =

n

∑
i=

⌊Pi
t ⋅



⋅ (Qi

 +Qi
t)⌋

n

∑
i=

⌊Pi
 ⋅



⋅ (Qi

 +Qi
t)⌋
.

�is formulation has however a major drawback as it can

be problematic when comparing the price levels of a small

entity versus a large one as the quantities of the large entity

might dominate those of the small.

Superlative Indexes
Superlative indexes provide close approximations of the

true cost of living index.�ey produce similar results and

constitute an exact approximation for a �exible functional

form that can provide a second order approximation to

other twice di�erentiable functions around the same point

(Diewert ).

�e Fisher index is a superlative index and is also called

“Fisher Ideal Price Index.” Another superlative index is the

Tornqvist Index. Beside the fact that the Fisher index is

superior theoretically to the Laspeyres and the Paasche,

it has a number of desirable properties from the National

Accounts perspective. In fact, it is reversible over time

that is the index showing the change between period 

and t is the reciprocal of the index showing the change
between period t and . Moreover, it also has the prop-
erty of reversibility of factors by which the product of the

price and quantity indexes is equal to the change in current

values.�e other indexes do not have these properties.

The Tornqvist Index
Developed by Tornqvist in , this index is a weighted

geometric mean of price ratios with weights being average

expenditures shares on each good as follows:

TP =
n

∏
i=

( Pi
t

Pi


)





⎡⎢⎢⎢⎢⎢⎢⎢⎣

Pi ⋅Q
i


n
∑
i=

Pi ⋅Q
i


+ Pit ⋅Q
i
t

n
∑
i=

Pit ⋅Qi
t

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .

Other Composite Indexes
A composite index is a comprehensive single number rep-

resenting a vast array of measurements on the multiple

aspects of a conceptual entity such as general price level,

cost of living, level of economic development, general

disparities, statistical development etc. Representatives of

these kinds of indices are the HDI, the General Index

of Development (GID), Physical Quality of Life Index

(PQLI), Index of Social Progress (ISP) etc.

�ere are several advantages related to the develop-

ment of composite indexes. �e advantages of compos-

ite indices include: excellent communication tools for use

with practically any constituency including the media,

general public, and decision makers; the provision of sin-

gle targets that facilitate the focus of attention; facilita-

tion of the necessary negotiations about practical value

and usefulness due to simplicity; provision of a means to

simplify complex,multidimensional phenomena andmea-

sures; easy measure and visual representation of overall

trends in several distinct indicators over time or across

space; and provision of a means to compare diverse phe-

nomena and assessing their relative importance, status or

standing on the basis of some common scale of measure-

ment across time and space. On the other hand, there

are also some disadvantages.�ese include sending mis-

leading policy messages if composite indices are poorly

constructed or misinterpreted; possibility of inviting sim-

plistic policy conclusions; misused to support desired pol-

icy, if the construction process is not transparent and lacks

sound statistical or conceptual principles; selection of indi-

cators andweights could be the target of political challenge;

and leading to inappropriate policies of dimensions of

performance that are di�cult to measure.

�e bottom line of the relevance of composite indi-

cators is that they are needed as a starting point for

initiating discussions and attracting public interest to the

phenomenon at stake as they provide a very simple and

useful way of presenting complex multidimensional phe-

nomena into an easily understandable measure. Never-

theless, one as to be cautious in its development as the

index is meant to be used for important decision-making

and expression of views on the considered phenomenon.

�erefore, constituencies a�ected by its use should ascer-

tain their relevance.

Areas of Research
Several issues on index numbers theory and practice are

still worth exploring for future research.�ese include the

use of geometric versus arithmetic means, the use or not

of weights and fromwhich time, approximation of the cost
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of living index, aggregation formulas, change in quality,

introduction of new goods etc.

�ere is a wealth of literature on index construc-

tion and applications, desirable properties of index num-

bers and the relationship between index numbers and

economic theory. For further details concerning the dis-

cussed matter, the reader may refer, inter alia, to the below
references.

Acknowledgments
Disclaimer:�e views expressed in this paper are personal

to the author and do not necessarily represent those of the

United Nations Economic Commission for Africa or its

subsidiary organs.

About the Author
For biography see the entry 7Role of Statistics:

Developing Country Perspective.

Cross References
7Business Statistics
7Economic Statistics
7National Account Statistics

References and Further Reading
Booysen F () An overview and evaluation of composite indices

of development. Soc Indic Res :–. Netherlands

Deaton A () Getting prices right: what should be done? J Econ

Perspect ():–. Winter

Diewert E () Exact and superlative index numbers. J Econ

:–

Diewert E () Superlative index numbers and consistency in

aggregation. Econometrica ():–

Diewert E () Index numbers. In: Eatwell J, Milgate M,

Newman P (eds) The new palgrave: a dictionary of economics,

vol . MacMillan, London, pp –

Diewert E () Index number issues in the consumer price index.

J Econ Perspect ():–. Winter

Drewnowski J () Social indicators and welfare measurement:

remarks on methodology. J Dev Stud :–

Edgeworth FY () The plurality of index-numbers. The Economic

Journal, vol () pp –

Morris MD () Measuring the conditions of world poor: the

physical quality of life index. Perganon Policy Studies, p .

Perganon Press, New York, pp –

Nardo M, Saisana M, Saltelli A, Tarantola S, Hoffman A,

Giovannini E () Handbook on constructing composite

indicators: methodology and user guide. OECD Statistics Work-

ing Papers, OECD, Paris

Salzman J () Methodological choices encountered in the con-

struction of composite indices of economic and social well-

being. Centre for the study of Living Standards, Ottawa,

Ontario

Turvey R () Consumer price index manual: theory and practice.

International Labor Organization, Geneva, p 

Industrial Statistics

Ursula Gather
,
, Sonja Kuhnt


, Thomas

Mühlenstädt



Rector of TU Dortmund University, Dortmund,

Germany

Faculty of Statistics

TU Dortmund University, Dortmund, Germany

Industrial statistics deals with the assurance and improve-

ment of quality in industrial (production-) processes and

products.

Quality Assurance
One of the most important considerations regarding

a production process is the assurance of a stable and

steady quality of the process output, i.e., the process is

under control. Otherwise, if the process shows erratic and
undesired behavior, it is out of control. An underlying
random variable Y measuring the quality of the pro-
cess, is o�en assumed to have a distribution Pθ , with θ
being a parameter(-vector), possibly mean and variance

θ = (µ, σ ).

Acceptance Sampling
7Acceptance sampling aims at accepting or rejecting a lot
of products by inspecting only a small proportion of the

items (Kenett and Zacks ). Items are chosen according

to an acceptance sampling scheme and rated as either con-

forming or nonconforming to given quality speci�cations.

An important characterization of an acceptance sampling

plan is given by the operating characteristic (OC) func-

tion, which yields the probability of accepting a lot with

proportion p of defective items.

Control Charts
By observing series of samples ym,, . . . , ym,g , of size g ∈
N, m = , , , . . . , one wants to check if the process is
under control. A control chart is a graphical tool which

plots a summary statistic of the samples against the sam-

ple number (Montgomery ). To determine whether

the process is out of control, control limits ((ucl, lcl)) are
calculated. If the control limits are exceeded the process

is rated out of control and thus the reason for the devia-

tion has to be investigated.�e control limits are estimated

from samples, for which it is known that the process was

under control.�e summary statistic usedmost frequently

is the arithmetic mean: ȳm := 

g ∑
g
i= ym,i.
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�e performance of the control chart can also be

described by the OC-function. Possible extensions of

7control charts are control charts withmemory,multivari-
ate control charts or control charts for the variance of the

process.

Process Capability Indices
Process capability indices summarize the behavior of a

process with a single number in order to have a simple

decision rule to determine if the process performance can

be accepted or not. Well known process capability indices

are the Cp and the Cpk index:

Cp :=
ucl − lcl
σ

, Cpk := min(
µ − lcl
σ

,
ucl − µ
σ

), ()

using the same notation as before. Here, the ucl and lcl are
most frequently de�ned by the desired properties for the

product. In practice, µ and σ are estimated by the arith-
metic mean ȳ = 

n ∑
n
i= yi and the empirical standard devi-

ation s =
√



n− ∑
n
i=(yi − ȳ), and then substituted into

the formulae. For the Cp index, the mean µ of the process
is not included in the formula.�is re�ects the assump-

tion that the position of a process is (o�en) easy to adjust,

while the variation of the process is di�cult to control

and hence should be the only value to be used for judg-

ing a process.�e Cpk index also considers the location of

the process. For both indices, higher values represent a

better process. For the Cp index, this means that the vari-

ation of the process compared to the range of the control

limits is small, while for the Cpk the location of the process

has to be inside the control limits as well.�ere are many

possible extensions of the concept of process capability

indices for situations like one sided process speci�cations

or skew distributions of Y , e.g., see Kotz and Lovelace
().

Quality Improvement
If a new process is under investigation, good con�gura-

tions of the process are wanted. Here the random variable

Y representing the process depends on some covariates
x ∈ Rk

. A con�guration of x which optimizes Y in
some suitable way is searched for. �is can be maximiz-

ing/minimizing Y , or searching for an x which results
in the smallest deviation of Y from a nominal value T.
In industrial statistics, methods for this kind of problem

are o�en summarized under the topic of 7response sur-
face methodology (RSM, Myers et al. ). Formally, this

usually results in a regression model:

Y(x) = f (x) + ε, ()

where f (x) is an unknown function f : Rk → R and
ε a random variable representing process variation with
expectation E(ε) =  and constant variance var(ε) = σ .
Given some data y = y(x), . . . , yn = y(xn) with
x, . . . , xn ∈ Rk

an estimate f̂ is calculated and used for
optimizing Y .

Design of Experiments (DoE)
A powerful tool for improving process quality is called

design of experiments, which refers to statistically plan-

ning experiments. DoE leads to a design matrix X =
[x, . . . , xn]′ for n runs of the experiments to be conducted,
where each row of X speci�es the settings of the covari-
ates for one run.�e choice of X depends on a number of
issues, e.g. the purpose and scope of the experiment, the

assumed statistical model and the desired degree of preci-

sion of the results and conclusions. Standard designs such

as fractional factorial designs and response surface designs

exist, primarily for use in situations where the estimation

of a regression model is desired.

Robust Parameter Design/Taguchi Methods
Taguchi (e.g., see Myers et al. ) was one of the �rst to

consider not only the mean f of the process under investi-
gation but also the variance of Y . It is assumed that there
are some control variables x ∈ Rk

which are easy to adjust

inmass production settings but also noise variables z ∈ Rd
,

which are adjustable in a laboratory but not during mass

production, e.g., �uctuations in raw materials. In order to

reduce the in�uence of noise factors on the process, a con-

�guration for the control variables x is investigated, which
not only optimizes themean of Y but also results in a small
variation of Y . As these two aims are not always achiev-
able at the same time, strategies for �nding compromises

have to be applied. Crucial for achieving this is the use of

suitable experimental designs like crossed designs, which

combine a design for the control variables and a design for

the noise variables.

Further Topics
Six Sigma
7Six Sigma is a methodology for implementing process
improvements in companies. Applying Six Sigma implies

using a speci�c organizational form. One of the most

important aspects of Six Sigma is its focus on projects.

A project should consist of a “potential breakthrough”

for product or service improvement, Montgomery and

Woodall (). Each project is strictly organized by the

DMAIC cycle: De�ne, Measure, Analyze, Improve and

Control, which makes research projects more traceable.
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Another key aspect of Six Sigma is its belt system, divid-

ing the educational status of an employee into three classes:

green belt (lowest level), black belt or master black belt

(highest level).

�e name Six Sigma is taken from reliability theory.

Consider a process with nominal value T and symmetrical
control limits lcl,ucl. A Gaussian random variable Y with
mean µ = T and variance σ = (ucl − lcl)/ has a prob-
ability of . percent of being within the control limits.

�is re�ects the claim of Six Sigma to achieve processes

which have only a very small probability of being outside

the control limits.

Reliability Analysis
Reliability analysis deals with the analysis of how reliably

a product is performing its task (Kenett and Zacks ).

A product which functions for a long time without any

defects is said to be reliable. A central concept is the reli-

ability function R(t): R(t) := Probability that the product
is working according to its speci�cations a�er t time units.
In order to estimate the reliability function, a sample of

products is investigated and the failure times are noted.

As this can be very time consuming, accelerated life test-

ing is o�en used, where the product is set under higher

stress than under normal conditions. Reliability analysis

is not only applied to products but also, for example, to

so�ware.

Computer Experiments
Inmany industrial research situations, a real world process

can be replaced by simulation models, which reproduce

the real process in a so�ware environment. As a result,

huge cost reductions can be achieved. However, care has

to be taken, as computer experiments are very di�erent

fromconventional experiments.Most of the time, the com-

puter experiment is deterministic and a single run is very

time consuming.�us the computer experiment should be

planned carefully (Fang et al. ). Designs for computer

experiments are summarized as space �lling designs while

models for a computer experiment should interpolate the

observations as no random error is observed. Further-

more, validating the computer experiment as replacement

for the real world experiment is crucial in order to assure

that valid results for real world applications are derived

from the computer experiment.
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One of the outstanding features of sample surveys is that

the samples are o�en drawn with unequal probabilities, at

least at one stage of the sampling process. �e selection

probabilities are generally known for the sampled units in

the form of the sampling weights (inverse of the sampling

probability and possibly adjusted for nonresponse or cal-

ibration). �e sampling weights are in common use for

randomization-based inference on �nite population quan-

tities of interest, by weighting the sample observations by

the corresponding sampling weights.�is is discussed and

illustrated in every text book on sample surveys. In this

paper we focus on model-based inference.

In what follows we distinguish between the model

holding for the population outcomes, herea�er the popula-
tion model, and the (conditional) sample model holding for
the sample outcomes. When the selection probabilities are

correlated with the outcome values even a�er condition-

ing on the model covariates, the sampling is informative
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and the twomodels can be very di�erent, in which case the

sampling process cannot be ignored in the modeling pro-

cess. To see this, denote the population model by fU(y∣x),
where y is the outcome variable and x is a set of covariates.
Following Pfe�ermann et al. (), the sample model is

de�ned as

fs(yi∣xi)
def= f (yi∣xi, i ∈ s) =

Pr(i ∈ s∣yi, xi)fU(yi∣xi)
Pr(i ∈ s∣xi)

= EU(πi∣yi, xi)fU(yi∣xi)
EU(πi∣xi)

, ()

where πi = Pr(i ∈ s) is the sample inclusion probability and
EU(⋅) de�nes the expectation under the populationmodel.
NotethatPr(i ∈ s∣yi, xi) isgenerallynotthesameasπi,which

may depend on all the population values {yi, xi}, i ∈ U
and possibly also on the values zi of design variables z,
which are not included in the model but are used for the

sample selection. By (), if Pr(i ∈ s∣yi, xi) ≠ Pr(i ∈ s∣xi),
the population and the sample models are di�erent and

�tting the population model to the sample data ignoring

the sampling process may bias the inference very severely.

In the rest of this paper we review approaches that account

for the sampling e�ects under informative probability sam-

pling. See Pfe�ermann and Sverchkov () for a more

comprehensive discussion with examples.

�e �rst approach utilizes the fact that if for every x,
Pr(i ∈ s∣yi, xi) = Pr(i ∈ s∣xi)∀yi, the population and
the sample models are the same.�erefore the sampling

e�ects can be accounted for by including among themodel

covariates all the design variables and interactions that are

related to the outcome values and a�ect the sample selec-

tion probabilities. See, e.g., Gelman (). However, this

paradigm is not always practical because there may be too

many variables to include in the model and some or all

of them may not be known or accessible to the modeler.

Notice also that by including these variables among the

model covariates, the resulting model may no longer be

of scienti�c interest, requiring integrating them out of the

model at a later stage, which can be complicated and not

always feasible.

Alternatively, one could include in the model the sam-

pling weights as surrogates for the design variables as pro-

posed by Rubin ().�e use of his strategy may again

distort the interpretation of the model requiring therefore

integrating out the sampling weights at a second stage.�is

is a feasible procedure for estimating the sample model

because the integration is then with respect to the con-

ditional sample distribution of the sampled weights given

the covariates, which can be assessed from the observed

weights and the covariates. However, for estimating the

population model the integration of the sampling weights

must be with respect to the population model of the

weights given the covariates. Notice also that the vector of

sampling weights may not be an adequate summary of all

the design variables used for the sample selection.

A third approach, and the one in common use, is to

estimate the population model by weighting the sample

observations in the model-based estimating equations by

the sampling weights. When the estimating equations are

de�ned by the score function, the use of this approach is

known in the sampling literature as “pseudo likelihood”

estimation.�e use of this approach is limited, however,

mostly to point estimation, and probabilistic inference

such as the construction of con�dence intervals or the

application of hypothesis testing generally require large

samples normality assumptions.�e inference is based on

the randomization distribution and as such, it does not

permit conditioning on the selected sample, for example,

conditioning on the observed covariates, or on the selected

clusters in a multi-level model. In addition, the use of

this approach does not lend itself to prediction problems

other than the prediction of the �nite population quan-

tities from which the sample is taken, and the estimators

o�en have large variances, depending on the dispersion

of the weights. See Pfe�ermann and Sverchkov () for

further discussion on the use of this approach with many

references.

A fourth approach is based on the relationship between

the populationmodel and the samplemodel in (). Follow-

ing Pfe�ermann and Sverchkov (),

fU(yi∣xi) =
Es(wi∣yi, xi)fs(yi∣xi)

Es(wi∣xi)
, ()

where wi = /πi and Es(⋅) is the expectation under
the sample model. �us, one can identify and esti-

mate the population model by �tting the sample model

fs(yi∣xi) to the sample data and estimating the expec-
tation Es(wi∣yi, xi), again using the sample data. For
example, suppose that the population model is governed

by the vector parameter θ = (θ, θ, . . . , θk)′ and let
dUi = (dUi,,dUi,, . . . , , dUi,k)′ = ∂ log fU(yi∣xi; θ)/∂θ
be the ith score function. Assuming that the con-
ditional expectations Es(wi∣yi, xi) are known or have
been estimated and that the expectations Es(wi∣xi) =
∫y Es(wi∣y, xi)fs(y∣xi; θ)dy are di�erentiable with respect
to θ, it follows from () that if the sample outcomes are
independent (see Remark  below), the sample likelihood

equations are,

Ws(θ)= ∑
i∈s
Es{[∂ log fs(yi∣xi; θ)/∂θ]∣xi}

= ∑
i∈s
Es{[dUi + ∂ logEs(wi∣xi)/∂θ]∣xi} = .

()
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�erefore, θ can be estimated by solving the equations
in ().

Remark . Pfe�ermann et al. () showed that under
some general regularity conditions if the population mea-

surements are independent, the sample measurements are

“asymptotically independent” with respect to the sample

model.�e asymptotic framework requires that the pop-

ulation size increases but the sample size stays �xed.�e

result is shown to hold for many sampling schemes with

unequal probabilities in common use.

Instead of basing the likelihood on the sample distri-

bution, one could use instead the “full likelihood” based

on the joint distribution of the sample outcomes and the

sample membership indicators Ii = () for i ∈ s(i /∈ s).
Let I = (I, . . . , IN)′ and denote x = {xi, i ∈ U}.�en,

f (I, ys∣x) =∏
i∈s
Pr(i ∈ s∣yi, xi)fU(yi∣xi)∏

j/∈s
[ − Pr(j ∈ s∣xj)],

()

where Pr(i ∈ s∣xi) = ∫ Pr(i ∈ s∣yi, xi)fU(yi∣xi)dyi; see, e.g.,
Gelman et al. (), Pfe�ermann and Sverchkov ()

and Little ().�e use of () has the theoretical advan-

tage of employing the information on the sample selection

probabilities for units outside the sample, but it requires

knowledge of the covariates for every unit in the popula-

tion, unlike the use of (). Other estimation approaches are

considered in Breckling et al. () and Pfe�ermann and

Sverchkov ().

So far we considered model estimation but the sam-

ple distribution enables also to predict missing population

values. For this we de�ne the sample-complement model,

fc( yi∣xi)
def= f ( yi∣xi, i /∈ s)=

Pr(i /∈ s∣yi, xi)fU(yi∣xi)
Pr(i /∈ s∣xi)

= ⋯

= Es[(wi − )∣yi, xi] fs(yi∣xi)
Es[(wi − )∣xi]

,

()

with the last equation obtained in Sverchkov and

Pfe�ermann (). �e sample-complement model is

again a function of the sample model fs(yi∣xi) and the
expectation Es(wi∣yi, xi), and thus can be estimated from
the sample.

Remark .When predicting the outcome value for a spe-
ci�c nonsampled unit (say, a unit with a given set of

covariates), or the mean of a given nonsampled area in

a small area estimation problem, and the sampling pro-

cess is informative, there seems to be no alternative but

to base the prediction on the sample-complement model.

Classical randomization based inference is suited for esti-

mating parameters of the �nite population from which the

sample is drawn, but not for prediction problems. Sver-

chkov and Pfe�ermann () illustrate how many of the

classical randomization-based estimators of �nite popu-

lation totals, such as the 7Horvitz-�ompson estimator,
Hajek/Brewer estimator and the GREG, are obtained as

special cases of the application of the sample-complement

model.�e authors develop also a method for estimating

the MSE of the prediction errors. Small area estimation

under informative sampling of areas and within the areas

is considered in Pfe�ermann and Sverchkov ().
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Fitting liner regression models usually uses the 7least
squares method. �e �tted model may be largely in�u-

enced by a few observations.�ese observations are called

in�uential observations. It is necessary to de�ne a criterion

to �nd out these observations.�eymay include important

information.

�e analysis of residuals may reveal various functional

forms to be suitable for the regressionmodel. Some appro-

priate criteria to measure the in�uence of the model were

studied for detecting in�uential data.

We consider the following linear model:

Y = Xβ + e, ()

where E(e) = , Var(e) = σ In, and In denotes the identity
matrix of order n, Y is an n×  vector of responses, X is an
n × p (n > p) matrix of known constants of rank p, and β
is a p ×  parameter vector.
Several authors have studied the in�uence on the �tted

regression linewhen the data are deleted. Let β̂ be the usual
least squares estimator of β based on the full data and let β̂

A
be an alternative least squares estimator based on a subset

of the data.�e empirical in�uence function for β̂, namely,
IFA, is de�ned to be

IFA = β̂ − β. ()

For a given positive de�nite matrix M and a nonzero

scale factor c, Cook and Weisberg () de�ned the dis-
tance DA(M, c) between β̂ and β̂

A
as follows:

DA(M, c) = (IFA)′M(IFA)/c. ()

�ey suggested that the matrix M can be chosen to

re�ect speci�c interests.�ey also pointed out that in some

applications, measuring the in�uence of cases on the �tted

values, Ŷ = Xβ̂, may be more appropriate than measuring
the in�uence on β̂.�eymentioned an example to describe
the fact that if prediction is the primary goal, it may be

convenient to work with a reparameterized model where

the regression coe�cients are not of interest.�ey tried to

treat their measurement of the in�uence on the �tted val-

ues Xβ̂ and used the empirical in�uence function for Ŷ ,
denoted by X(IFA).

Welsch () pointed out that in an earlier paper,

Cook () chose to measure in�uence by

Di =
(β̂ − β̂(i))′X′X(β̂ − β̂(i))

sp
, ()

where s is the residualmean square for full data and β̂
(i)
is

the least squares estimator of β based on the data set with
the ith component in Y deleted.
Welsch () gave an example to explain that when

all of the observations but one lie on a line, () can give

potentially confusing information since it may indicate

that some observations on the line are more in�uential

than the one observation not on the line.�is is counter-

intuitive since the deletion of this one observation leads

to a perfect �t.�erefore, �nding a more reasonable mea-

surement is very important. We shall consider the case

of one-at-a-time data deletion, since, for the case of dele-

tion of a subset, computations can be similarly carried out

(Cook and Weisberg ; Gray and Ling ).

Gupta andHuang () derived a suitable choice ofM
and c in () to measure the in�uence and bias are derived
as follows:

D(i) =
(β̂ − β̂(i))′X′(i)X(i)(β̂ − β̂(i))

s (i)p
, ()

where X(i) denotes the data set with the ith component in
X deleted, and s (i) is the residual mean square for the ith
component in Y deleted.
Gupta and Huang’s statistic D(i) in () measures the

in�uence on residuals and on Xβ̂. It should be pointed out
that the large in�uence on Xβ̂ should have much in�uence
on β̂ though the converse may not hold.
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Information theory is a branch of mathematics based on

probability theory and statistical theory. �e founder of

information theory, Claude Shannon, created the “math-

ematical theory of communication” and the successors of

Shannon thoroughly developed �rm mathematical con-

structions for descriptions of communication processes

ensuring data reliable compression, transmission and pro-

tection (Blahut , ; Cover and �omas ;

Rissanen ).

Modern information theory is characterized as a “uni-

fying theory with profound intersection with probability,

statistics, computer science, and other �elds” Verdú (),

it has main applications in communication engineering,

neurobiology, psychology, linguistics, electrical engineer-

ing, data analysis, and statistical inference.

What might statisticians learn from information the-

ory? Basic concepts like 7entropy, mutual information,
and 7Kullback-Leibler divergence (also called informa-
tional divergence, or relative entropy, or discrimination

information), along with many various generalizations of

them, certainly play an important role in statistics. �e

de�nitions of these notions are given in publications cited

below Blahut (), Cover (), Csiszár (), Liese

(), Pardo ().�e elements of large deviations the-

ory (see 7Large Deviations and Applications), limit theo-
rems, hypothesis testing, estimation of parameters, some

modern principles of statistical inference such as the max-

imum entropy principle, model selection methodologies

like AIC and the principle of minimum description length,

are explained with usage of information theory methodol-

ogy inAhlswede (), Kullback (), Pardo (), and

Rissanen ().

Statistical theory shares with information theory the

common optimal methods of usage of considered ran-

dom data. Interaction of information theory and statis-

tics creates the opportunity for formulating and solv-

ing of many interesting speci�c theoretical and practical

problems Ahlswede (), Barron (), Rényi ().

Information theoretic proofs have been given to various

limit theorems of probability theory Kendall (), Linnik

().

A speci�c scienti�c �eld established by a series ofworks

of information theory experts is the hypotheses testing

with �nite statistics Hellman ().

One of new directions of statistical studies initiated by

information theorists is development of statistical infer-

ence, in particular of hypothesis testing, for models of

two or many similar stochastic objects Ahlswede (),

Haroutunian et al. ().

Speci�c applications of the information theory mod-

els to design of statistical experiments are summarized by

M.Malytov in the supplement to the Russian translation of

Ahlswede ().

�e early stages of information theory development

involved the participation of such mathematicians as C.

Shannon, N. Wiener, A. Kolmogorov, J. Wolfowitz, A.

Rényi and their disciples. Leaders of the next generation

were R. Gallager, A. Wyner, R. Dobrushin, M. Pinsker, J.

Ziv, R. Ahlswede, T. Berger, R. Blahut, T. Cover, I. Csiszár,

T. S. Han, and others. But in recent years much develop-

ment of information theory in connection with statistics

has taken place in general in work of specialists in elec-

trical engineering.�e most active last years have been S.

Verdú , V. Poor, N. Merhav, S. Shamai (Shitz), R. Yeung,

and many others.

Major information and theoretic journals and scien-

ti�c meetings regularly incorporate publication of results

of statistical investigations.
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Instrumental variables (IV) estimation can provide consis-

tent estimates of a linear equation’s parameters when ordi-

nary7least squares (OLS) is biased because an explanatory
variable in the equation is correlated with the equation’s

disturbance. �e necessary ingredient for consistent IV

estimation is a “valid” instrument, which is a variable cor-

related with the o�ending explanatory variable but uncor-

related with the equation’s disturbance term. IV estimation

was �rst used to overcome biases in OLS by Phillip Wright

(Wright ).

If the attractive large sample properties of the instru-

mental variable estimator are to be well approximated in

�nite samples, the correlation between the instrument and
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the troublesome explanatory variable must be su�ciently

high (Nelson and Startz ). Instruments lacking such

correlation are called “weak.” IV can consistently estimate

an equation’s parameters if there is for each troublesome

explanatory variable at least one valid instrument that is

not itself a variable in the model.

Suppose the equation of interest is

Y = Xβ + ε.

IV estimation is desirable when E(X′ε) ≠ . If Z is a
matrix of instruments with the same dimensions, kxn, asX
(explanatory variables uncorrelated with the disturbances,

i.e., non-troublesome explanatory variables, can serve as

their own instruments), then the IV estimator is

β̃ = (Z′X)−Z′Y. ()

When there are multiple candidate instruments for use

as the instrument for a troublesome explanatory variable,

any linear combination of the candidate instruments can,

in principle, serve as the instrument in β̃.
Conventional practice is to form the variables in Z in a

speci�c way: (i) regress each variable in X on all of the can-

didate instruments plus any non-troublesome explanatory

variables usingOLS; and (ii) set each explanatory variable’s

instrument equal to the explanatory variable’s �tted val-

ues from (i). When the instruments are constructed in this

fashion, so that Z = X̂, the IV estimator can be expressed
as

β̃ = (X̂′X̂)−X̂′Y, ()

which is the OLS estimator of the equation with the actual

values of the explanatory variables replaced by their �t-

ted values.�e estimator in () is called the two-stage least
squares (SLS) estimator; the �rst stage is the regression of
each element of X on the m candidate instruments (Plus
any non-troublesome explanatory variables, and the sec-

ond stage is the OLS regression indicated by (). When the

number of candidate instruments, m, equals k (the num-
ber of explanatory variables in the equation of interest) the

equation of interest is said to be exactly identi�ed.�e SLS
estimator has onlym − k �nite moments.

�ere are other IV estimators of the form () besides

SLS. �e limited information maximum likelihood

(LIML) estimator simultaneously estimates the �rst stage

equations for the troublesome variables and the equation

of interest by maximum likelihood, assuming the distur-

bances are normally distributed. LIML is an IV estimator.

Indeed, when the equation of interest is exactly identi�ed,

LIML is equivalent to SLS. �e LIML estimator is also

generally asymptotically equivalent to SLS, but LIML has

no �nite moments. Despite its lack of moments, when the

number of observations is small andm is appreciably larger

than k, LIML has been found to perform better than SLS
(Davidson and MacKinnon ). Fuller () proposed

an IV estimator that performs better than SLS or LIML

when instruments are weak (Hahn et al. ).

IV estimation is also applied to non-linear regression

models as part of a generalized method of moments esti-

mation.�e lack of correlation between an instrument and

amodel’s disturbances provides amoment restriction to be

exploited in estimation: E(Z′ε) = .
An equation’s explanatory variables can be correlated

with the disturbances because an explanatory variable

is omitted, mis-measured, or endogenous, or because

an explanatory variable is a lagged dependent variable.

IV estimation can, in principle, overcome any of these

problems. But IV estimation is not a panacea. At least

one valid instrument must be at hand for each trouble-

some explanatory variable, and the cloud of uncertainty

about instruments’ validity that hovers over IV estimates

is hardly ever entirely dispelled.

�ere are steps one can take to partially assess the claim

that one’s instruments are valid.When an equation is over-

identi�ed (m > k), one can formally test whether all of
the instruments agree about what the parameter’s actual

value (this is called an over-identi�cation test). But fail-

ing to reject this null hypothesis is consistent with all of

the instruments being valid and with none of them being
valid. Only if an instrument has been randomly assigned

or if other data besides the sample in hand establish the

validity of an instrument can one be secure about valid-

ity. Nonetheless, even in the case of exact identi�cation,

one can buttress con�dence in the validity of an instru-

ment by formally testing speci�c proposals about how an

invalidating correlation between the disturbance and the

instrument occurs or by appealing to either economic the-

ory or intuition. One can also check to see whether the sign

on the instrumental variable in the �rst stage regression of

SLS accords with the intuitive or theoretical rationale for

the instrument’s validity. A signi�cant negative coe�cient

in the �rst stagewhen one expects a positive sign undercuts

one’s faith in the instrument.

Weak instruments pose two problems: () the IV esti-

mator can be almost as seriously biased as OLS in even

very large samples; and () t- and F-tests based on the IV
estimator can su�er serious size distortions. Weakness can

be tested for formally using the �rst stage regression from

SLS. In the case of a single troublesome explanatory vari-

able, the classic F-statistic for the null hypothesis that vari-
ables appearing in Z, but not inX, have coe�cients of zero
in the �rst stage is a statistic for testing the null hypoth-

esis that the instruments are weak, but its distribution is

non-standard. Stock and Yogo () o�er suitable critical

values. For examples, they o�er critical values both for the
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null hypothesis that the bias of SLS is greater than %

of that of OLS and for the null hypothesis that the size

distortion in a nominally % signi�cance level is greater

than %. When there are several troublesome variables,

the appropriate test statistic is Cragg and Donald’s multi-

variate extension of the F-test (Cragg and Donald ).
Stock and Yogo provide critical values for the case of two

troublesome variables.

When instruments are weak, estimation with Fuller’s

IV estimator is robust, even in moderate sized sam-

ples. When instruments are weak and the disturbances

homoskedastic, a conditional likelihood ratio test pro-

posed by Moreira () provides optimal two-sided tests

for hypotheses about linear combinations of an equation’s

coe�cients. Moreira’s critical regions can also be used

to construct con�dence intervals that are robust to weak

instruments.

When the coe�cient on an explanatory variable in a

linear equation is itself a random variable, the interpre-

tation of the IV estimator becomes more arcane. In such

“heterogeneous response” cases, the IV estimator con-

verges in probability to a weighted average of the realiza-

tions of the random coe�cient for a speci�c subset of the
population. In the most common of such applications, a
binary instrumental variable is used to estimate the het-

erogeneous e�ect of a binary treatment variable. Imbens

andAngrist () named the estimand of IV estimation in

this case the “local average treatment e�ect” (LATE).�ey

show that the local average treatment e�ect is the mean

e�ect on Y of the binary explanatory variable X (X = 
indicates treatment) for those people who would have X = 
if Z were zero and would have X =  if Z were one. IV esti-
mation consistently estimates the LATE if the instrument:

() is not itself an explanatory variable for Y , given X; ()
is, in essence, randomly assigned, and () does not both

increaseX for some people and decreaseX for others. (�e
last is a constraint not required when the estimated coef-

�cient is not random.) Sometimes the LATE is what one

wants to know sometimes it is not – one might actually

be interested in the mean e�ect of X on Y for a di�erent
subgroup of the population or for the whole population;

special care must be taken when estimating heterogeneous

responses by IV methods.
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In attempting to analyze insurance losses arising in

connection with health coverages as well as property and

casualty insurance situations involving homeowner and

automobile coverages, it is imperative to understand that
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a portfolio of insurance business is very complicated in

terms of the nature of its past and future risk-based behav-

ior.�ere aremany deterministic and stochastic in�uences

at play, and the precise prediction of the future claims expe-

rience necessitates that all such in�uences and their e�ects

be identi�ed.�e role of probability and statistics is vitally

important in this regard, not only in terms of providing the

required statistical methodology to properly analyze any

data collected by the business, but also in assessingwhether

a quantitative (i.e., theoretical) model is able to accurately

predict the claims experience of a portfolio of insurance

business.

First of all, in situations when the underlying data

are very extensive and have been collected in the most

appropriate form for its intended purpose, it is indeed

possible to answer many of the questions which arise

in general insurance using observed claim size distribu-

tions and/or observed claim counts. However, it is quite

o�en the case that data are far from extensive and may

not actually be in the most convenient form for analy-

sis. In such circumstances, calculations are only possi-

ble if certain (mathematical) assumptions are made. In

other words, a quantitative model is formulated involv-

ing the use of theoretical probability distributions. More-

over, even in situations where the data are extensive,

the use of theoretical distributions may still be essential.

Several reasons emphasizing the importance of their use

include:

. Knowledge of their convenient and established prop-

erties, which facilitate the analysis of many problems

. �e fact that the distribution is completely summarized

by a relatively small number of parameters (which

characterize its location, spread, and shape) and it is

not necessary to work with a lengthy set of observed

data

. �e fact that they enable one to make statistical infer-

ences concerning the behavior of insurance portfolios

. �eir tractability in terms of mathematical manipula-

tion, permitting the development of useful theoretical

results.

�e Central Limit�eorem justi�es why normal dis-

tributions play such an important role in statistics. In par-

ticular, the well-known law of large numbers is employed

in the literature on risk management and insurance to

explain pooling of losses as an insurance mechanism. For

most classes of general insurance, the claim size distri-

bution is markedly skew with a long tail to the right. If

an insurer were to experience a large number of claims

with respect to a particular block of business, its total pay-

out (i.e., aggregate claims) might, however, be expected

to be approximately normal distributed, being the sum of

a large number of individual claims. �is assumption is

certainly reasonable for many purposes.�ere may, how-

ever, be problems associated with the extreme tails of

the distribution, and these tails are particularly impor-

tant for reinsurance purposes. Serious consequences could

result from an insurance business basing �nancial risk

management decisions on a model which understates the

probability and scope of large losses. As a result, other

parametric models, such as the gamma, log-normal, and

Pareto distributions, are o�en much better suited to cap-

ture the positively skewed nature of the claim size dis-

tribution, and would therefore be much safer to use for

estimating reinsurance premiums with regard to very large

claims.

�e most common and certainly best known of the

claim frequencymodels used in practice is the Poisson dis-

tribution (see7PoissonDistribution and Its Application in
Statistics). In particular, the compound Poisson model for

aggregate claims is far and away the most tractable ana-

lytically of all the compound models, as it is useful in a

wide variety of insurance applications. It is also consis-

tent with various theoretical considerations including the

notion of in�nite divisibility, which has practical implica-

tions in relation to the subdivision of insurance portfo-

lios and business growth. On the other hand, the Poisson

model inherently assumes that the individual risks within

a portfolio of business are homogeneous from the point

of view of risk characteristics, and this unfortunately leads

to an inadequate �t to insurance data in some coverages.

Consequently, perhaps the most important application of

the negative binomial distribution, as far as general insur-

ance applications are concerned, is in connection with the

distribution of claim frequencies when the risks are het-

erogeneous, providing a signi�cantly improved �t to that

of the Poisson distribution.

In reference to the probability models above, it is also

critical to realize that the parameters of a distribution are

seldom known a priori. As a result, they need to be esti-

mated from claims data before the distribution can be

applied to a particular problem. O�entimes, several di�er-

ent functions of the observed data will suggest themselves

as possible estimators, and one needs to decide which one

to use. �e following criteria provide a good basis for

determination:

. �e estimator should be unbiased, so that its expecta-
tion is equal to the true value of the parameter,

. �e estimator should be consistent, so that for an esti-
mate based on a large number of observations, there is
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a remote probability that its value will di�er seriously

from the true value of the parameter,

. �e estimator should be e�cient, so that its variance is
minimal.

Statisticians have developed a variety of di�erent proce-

dures for obtaining point estimates of parameters, includ-

ing themethod ofmoments,7least squares, andmaximum
likelihood. In simple situations, the various methods o�en

produce identical results. When sample sizes are large,

they all tend to provide more or less the same answers,

even in more complicated cases. In other instances, how-

ever, markedly di�erent results can emerge, and the three

criteria above are frequently used by risk practitioners

in deciding which estimator to use for a given insurance

application.

In conclusion, thorough treatments of these top-

ics can be found in several reference texts including

Boland (), Bowers et al. (), Daykin et al. (),

Dickson (), Hossack et al. (), Kaas et al. (),

and Klugman et al. ().
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In the current age of “information revolution,” statisti-

cal information is critical for the development of society

and the competitiveness of an economic system. Over the

last few decades, statistical information has become the

cornerstone of public decision making processes across

the globe. To address the contemporary multidimensional

issues of sustaining economic and social development

amidst overriding changes at the national, regional and

global level, statistical information systems, both o�cial

and commercial, have adopted a uni�ed approach to inte-

grate varied statistical information sources and tool-sets

to achieve a coherent framework for production, refer-

ence and dissemination activities. In other words, statis-

tical authorities have developed a seamless network in

which users have transparent access to statistical informa-

tion from a variety of sources, which are popularly known

as integrated statistical databases.

An integrated statistical database (ISD) refers to amal-

gamation of data from varied sources through statistical

integration. Statistical integration implies a framework of

applications, techniques and technologies (Willis Oluoch-

Kosura ) for combining data from di�erent sources

in order to provide the user with a uni�ed view of the

data (Lenzerini ) or the process of combining data
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from separate sources for making use of the informa-

tion in estimating accurately the missing values in any

of the single datasets or an approach for enhancing the

information content of separate statistical collections by

ensuring consistency (Colledge ). �ese databases

could be augmented with summary measures of regional

and neighborhood characteristics. Integrated data o�er a

potent and �exible platform for analyzing various dimen-

sions of economic behavior and the consequence of public

policies.�is integrated platform provides reliable, robust

tools, processes andprocedures for transforming disparate,

unre�ned data into understandable, credible and easily

accessible information for action (Polach and Rodgers

), which could be attributed to the stupendous suc-

cess of the Information and Communication Technology

(ICT) Revolution in manipulating data repositories for the

purpose of bridging the information de�cit.

Integrated statistical databases produce and dissemi-

nate information out of data through the process called

“information life cycle” (Gregory E. Farmakis et al. )

which transforms elementary data collected from a mul-

titude of di�erent sources, into valid and valuable infor-

mation, suitable for statistical analysis and delivers them

to information consumers, with di�erent and o�en ad

hoc requirements. Being conceptually di�erent from other

databases and statistical warehouses, an integrated sta-

tistical database is “a set of measurable transformations

from an abstract sample space into a Euclidean space with

known norm.�is set of variables is accompanied by its

underline structure (variance-covariance matrix, hierar-

chies) and its metadata speci�cations.�ese speci�cations

refer both to the data set as a whole and to the individual

variables separately, describe and where possible quan-

tify the individualities of the statistical data set like the

sampling scheme, non-response, editing, etc.” (Gregory

E. Farmakis et al. ).

As an example, an integrated economic statistical

database for a particular country or region could com-

prise statistical reconciliation of the systems of national

accounts, balance of payments, government �nancial

statistics and other monetary and �nancial statistics.

Conventionally, for an integrated economic statistical

database, statistical integration involves three-dimensional

processes – horizontal, vertical and temporal (Carol A.

Hert et al. ). For horizontal integration, the vari-

ous primary statistics on production, trade, labor and

consumption need to be reconciled before they enter

macroeconomic accounts (national accounts and balance

of payments). Vertical integration is about reconciling pri-

mary statistics and macroeconomic accounts as well as

national and international economic statistics. Temporal

integration refers to reconciliation of short-term and struc-

tural economic statistics produced at di�erent points in

time but referring to the same phase in the business

cycle.

An integrated statistical database involves primarily

three important issues, namely, conceptual issues, statisti-

cal production issues and institutional issues. Apart from

numerical consistency, ISD should also provide a frame-

work for coordination of data in order to facilitate concep-

tual consistency based upon certain universally accepted

concepts, de�nitions, classi�cations, and accounting rules.

�ese classi�cations are applied to appropriately de�ned

statistical units for the coherence of statistics produced.

Usually a comprehensive registration process is used as

a platform for structuring di�erent units and assign-

ing respective classi�cations for those units. Finally, a

proper institutional arrangement is envisaged to e�ectively

coordinate the mechanisms of the whole system.

With the current surge in regional economic integra-

tion witnessed in the proliferation of regional economic

blocs across the world economy, integrated statistical

databases have become an important platform for dissem-

ination of statistical information. Good quality statistics

constitute the cornerstone of success of any uni�ed eco-

nomic andmonetary policy framework at the regional level

(Fasano and Iqbal ). �is, therefore, makes the har-

monizing of statistical standards at the national level and

developing of new statistics at the regional level imperative.

�e experience of Eurostat and Afristat in Europe and sub-

Saharan Africa, respectively provide examples of two such

successful regional ventures.

�e sixmember states of theGulf CooperationCouncil

(GCC)–Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, and

United Arab Emirates (UAE)–have intensi�ed regional

economic integration through establishing a common

market and are on the way to a complete monetary union

by  based on economic convergence. In order to syn-

ergize the economic and monetary policies of the mem-

ber states for the ful�llment of the convergence criteria,

members are putting in place various measures to develop

comparable economic data for member countries and data

for the region as a whole. E�orts to coordinate statistical

activity to achieve cross-country comparability are being

taken in the Gulf States, particularly in the form of bian-

nual meetings of the heads of statistical agencies. �is

group is developing a common vision, and each country

is making an e�ort to bring key economic indicators up to

international standards, which should contribute to greater

comparability (Al-Mansouri and Dziobek ). In this

context, the purchasing power parity (PPP) data, generated

by the International Comparison Program for the six GCC
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countries, are being used as a valuable tool for monitoring

of economic convergence. In addition, the GCC Secre-

tariat publishes a statistical bulletin–a starting point for a

regional program of data dissemination. In this regard, the

member countries are striving for an integrated statistical

database for the GCC called Gulfstat in the near future. In

April , the heads of national statistical o�ces of the

six countries agreed to intensify the program of statistical

coordination and to consider in particular the institutional

structure of statistics serving the monetary union. In prin-

ciple, the heads agreed to conduct a regionally coordinated

household survey in  and a population census in .

�e survey and the census will provide source data for

regional economic statistics.
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In ordinary English, the term “interaction” usually con-

notes some type of causal interaction among two or more

factors in producing an e�ect (7Causation and Causal
Inference). Formal versions of these ideas are discussed

in the article 7E�ect Modi�cation and Biological Interac-
tion.�e present article concerns instead the common use

of the term “interaction” in the statistics literature without

explicit reference to causality.

In the context of regression modeling, the phrase

“interaction term” or “interaction” is most o�en used as

a synonym for a model term involving the product of two

or more variables. Consider a 7logistic regression to pre-
dict a man’s actual sexual preference A (A =  for men, 
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for women) fromhis self-reported preferenceR in an inter-
view, with G indicating the interviewer’s gender (G =  for
male,  for female):

P(A = ∣R,G) = expit(α + βR + γG + δ ⋅ R ⋅G),

where expit(x) = ex/( + ex) is the logistic function.
Such a model can be useful for correction of misreporting.

�e term δ ⋅ R ⋅G is o�en called an “interaction,” although
sometimes the product R ⋅ G is called the “interaction
term” and the coe�cient δ is called the “interaction” of
R and G. Nonetheless, δ ⋅ R ⋅ G is more accurately called
a “product term,” for presumably neither self-report nor

interviewer status have any causal e�ect on actual pref-

erence, and thus cannot interact causally or modify each

other’s e�ect (because there is no e�ect to modify).

If δ ≠ , the product term implies that the regression of
A on R depends onG: For male interviewers the regression
of A on R is

P(A = ∣R,G = ) = expit(α + βR + γ ⋅  + δ ⋅ R ⋅ )
= expit(α + γ + (β + δ)R)

whereas for female interviewers the regression of A on R is

P(A = ∣R,G = ) = expit(α + βR + γ ⋅  + δ ⋅ R ⋅ )
= expit(α + βR).

�us we can say that the gender of the interviewer a�ects

or modi�es the logistic regression of actual preference

on self-report. Nonetheless, since neither interviewer gen-

der nor self-report a�ect actual preference (biologically or

otherwise), they have no biologic interaction.

When both the factors in the regression causally a�ect

the outcome, it is common to take the presence of a prod-

uct term in a model as implying biologic interaction, and

conversely to take absence of a product term as implying

no biologic interaction. Outside of linear models, neither

inference is even remotely correct:�e size and even direc-

tion of the product term can change with choice regression

model (e.g., linear versus logistic), whereas biologic inter-

action is a natural phenomenon oblivious to the model

chosen for analysis (Greenland et al. ; Rothman ).

�e chief connection is that absence of biologic interac-

tion leads to an absence of a product term in a linear causal

model (structural equation) for risks (Greenland andPoole

; VanderWeele and Robins ). On the other hand,

by de�nition, the presence of a product term in a causal

model corresponds to e�ect modi�cation when the coef-

�cients of the model are taken as measures of e�ect. See

7E�ectModi�cation andBiological Interaction for further
explanation.
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Interactive and Dynamic
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Interactive and dynamic statistical graphics allow data ana-
lysts from all statistical disciplines to quickly carry out

multiple visual investigations with the goal of obtaining

insights into relationships for all kinds of data – from sim-

ple to complex. O�en, there are no previously established

hypotheses for these data, or the data set may be too big

and heterogeneous for simple summaries and statistical

models.
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Interactive graphics and dynamic graphics are two

closely related, but di�erent, terms. On one hand, interac-

tive graphics allow a data analyst to interact with graph-

ical displays, typically via a computer. Depending on

keystrokes, movements of the mouse, or clicks on the

mouse buttons, di�erent follow-up graphics will be pro-

duced. On the other hand, dynamic graphics display a

sequence of plots without any additional user interac-

tion. �is can be some continuous rotation of a point

cloud or updating plots in real time, based on additional

data obtained from simulations or via data streams. O�en,

these two methods are used side-by-side for the investi-

gation of the same data set. Interactive and dynamic sta-

tistical graphics play an important role in the context of

7Exploratory Data Analysis (EDA) and visual datamining
(VDM).

Main Concepts of Interactive and
Dynamic Statistical Graphics
Interactive and dynamic statistical graphics commonly

make use of multiple, but relatively simple, plots. Fre-

quently used plots for quantitative variables include:

● Scatterplots, where di�erent symbols are plotted at
horizontal (x−) and vertical (y−) positions in a two-
dimensional plot area to represent the values of two

quantitative variables

● Scatterplot Matrices (for more than two quantitative
variables), where multiple scatterplots are arranged in

a systematic way in a matrix

● Parallel Coordinate Plots,where a d-dimensional obser-
vation is represented by a continuous line drawn

through d parallel coordinate axes

● Histograms, where area is used to display frequencies
or percentages for multiple classes or intervals

● Spinograms (that are similar to histograms) where
height is kept constant but width di�ers to represent

the frequency or percentage for each class

In case of additional categorical variables (such as gender,

race, nationality, etc.) di�erent colors or plotting sym-

bols are used in the previously mentioned plots to dis-

tinguish among the di�erent groups represented by these

variables.

Categorical variables themselves can be displayed via:

● Bar Charts, where bar length is proportional to the
observed frequencies or percentages

● Spine Plots (that are similar to bar charts), where bar
length is kept constant and bar width di�ers

● Mosaic Plots, a complex hierarchical structure that
allows to display several categorical variables and

visually explore questions such as independence of

these variables

● Pie Charts, where angular areas in a circle are used to
display frequencies or percentages

For data with a geographic (spatial) context, choropleth
maps are a common component of interactive displays.

�e main idea behind interactive graphics is to link
multiple graphical displays and brush (or highlight) sub-
sets of observations in these linked displays. For example,

for a given data set (age, income, gender, educational level,

ethnicity, nationality, and geographic subregion), consider

the following scenarios:

Scenario : In order to compare the income of individ-
uals with a doctoral degree to those with no completed

degree, then for a scatterplot showing age and income, one

might want to brush di�erent educational levels in a bar

chart.

Scenario : In order to compare men’s and women’s
income who are at a certain age and educational level, one

might want to brush gender in another bar chart.

Scenario : In order to investigate the e�ect of ethnic-
ity, nationality, or geographic subregion (in case a map is

linked to the other displays) that may further a�ect the

relationship between age and income, additional brushing

can be performed in various linked plots.

Interactive and dynamic graphics o�en reveal the

unexpected. For example, when distinguishing between

female workers with young children and female work-

ers without young children, a data analyst may observe

that on average female workers with young children earn

more money than female workers without young children

as further discussed in the 7Econometrics entry of this
encyclopedia.

In addition to linking and brushing, some other tech-

niques frequently can be found in applications of inter-

active and dynamic statistical graphics.�ese techniques

include focusing on a subset of the data (via zooming into
a small plot area in case of overplotting of multiple nearby

points or lines, or via slicing a high-dimensional data set
into sections or slices), rescaling the data (e.g., by taking
the log, standardizing the data, or mapping the data to a

– scale), and reformatting the data (e.g., by swapping the
axes in a scatterplot or changing the order of the axes in

a parallel coordinate plot). Rotations are used to give the
illusion of a third dimension, and even more, to �nd inter-

esting views that do not align with the main coordinate

axes and therefore cannot be seen in a scatterplot matrix.

Projections o�en are used in sophisticatedways (such as the
grand tour, a continuous sequence of projections) to dis-
play high-dimensional data on a -dimensional computer

screen.
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Interactive and Dynamic Statistical Graphics. Fig.  Data from a CTS study explored in Mondrian. The Job Category const-
floorsheet has been brushed to further investigate the Gender, Race, and Age variables for this category

Software for Interactive and Dynamic
Statistical Graphics
PRIM- (Picturing, Rotation, Isolation and Masking in up
to nine dimensions), developed in the early s, is the

landmark example of so�ware for interactive and dynamic

statistical graphics. Many of the so�ware packages devel-

oped over the following decades (and even developed these

days) contain features that can be traced back to PRIM-.
�ere are three main families of so�ware packages for

interactive and dynamic statistical graphics that are freely

available and widely used in the statistical research

community:

● �e REGARD/MANET/Mondrian family was initiated
in the late ’s. Mondrian can be freely downloaded
from http://rosuda.org/mondrian/. �e R package

iplots is closely related to this family.
● �e HyperVision/ExplorN/CrystalVision family also
was initiated in the late s. CrystalVision can be
freely downloaded from http://www.galaxy.gmu.edu/

pub/so%Fware

● �e Data Viewer/XGobi/GGobi family was already ini-
tiated in the mid s. GGobi can be freely down-
loaded from http://ggobi.org.�e R package rggobi is
closely related to this family.

All of these so�ware packages are based on the main

concepts presented in the previous section. Linking and

linked brushing are key components. To point out di�er-

ences among these packages, Mondrian et al. have their
strengths for categorical data and maps. GGobi et al. have
their strengths for higher-dimensional quantitative data, in

particularwith respect to the grand tour. CrystalVision et al.
have their main focus on parallel coordinate plots.

Web-based applications of interactive and dynamic

statistical graphics that are based on linked micromaps
(which are series of small maps linked to multiple

statistical displays) can be found at the National Can-
cer Institute (NCI) State Cancer Pro�les Web page at
http://statecancerpro%dles.cancer.gov/micromaps/ and

at the Utah State University (USU)West Nile Virus Micro-
maps Web page at http://webcat.gis.usu.edu:.ý.ý/index.
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Interactive and Dynamic Statistical Graphics. Fig.  Histogram and bar charts interactively converted to spinogram and spine
plots to better compare proportions

html. �e Gapminder Foundation provides access to
more than  factors of global development via its

impressive interactive and dynamic Web-based so�ware

at http://www.gapminder.org/.

An Interactive Graphical Example
Some of the concepts from the previous sections will

be demonstrated using a medical data set from a carpal

tunnel syndrome (CTS) study. CTS is a common diag-

nosis of the upper extremity that may a�ect up to %

of the US population - and up to % in some spe-

ci�c industries. Figure  shows some graphical displays

for some of the variables of this study: Bar charts of

Job Category (where clercomplaboth represents o�ce
and technical workers, including computer and laboratory

workers; const�oorsheet represents construction workers,
carpenters, �oorlayers, and sheetmetal workers; and food-
house represents service jobs, including housekeepers and
food service workers), Gender ( = male,  = female),
Race ( =Caucasians,  = others, includingAfricanAmer-
icans, Asians, and Native Americans), and Telephone
( = self-administered, = telephone interview), and a his-

togram of Age.�e main window in the upper le� allows
the user to interactively select additional variables, create

plots, and perform statisticalmodeling. Currently, theJob
Category const�oorsheet has been brushed in red (via
a mouse click) and it turns out that most of the peo-

ple in this Job Category are Caucasian male workers
aged –. Via mouse clicks and menus in these plots,

the histogram is converted into a spinogram and three

of the bar charts are converted into spine plots (Fig. ).

While moving the mouse over the various bars, a user

can read for example that about % of all male work-

ers but only about % of all female workers work in the

const�oorsheet Job Category in this study. Similarly,
about % of all – year olds, but only about %

of all – year olds work in this Job Category -
the percentage almost steadily decreasing by Age. About
% of the data for this CTS study were collected via

telephone interviews (Telephone = ) while the remain-
ing data were collected via self-administered question-

naires. In Fig. , Telephone =  has been brushed in red
(via a mouse click) in the bottom plot. A mosaic plot is

shown in the top plot.�e �rst horizontal split separates

Job Category (cler-comp-lab-oth, const�oorsheet, and
foodhouse from le� to right), the �rst vertical split sep-
arates Gender (male top and female bottom), and the
second horizontal split separates Race (Caucasians le�



 I Interactive and Dynamic Statistical Graphics

Interactive and Dynamic Statistical Graphics. Fig.  Mosaic plot for Job Category/Gender/Race (top) and spinograms of

CTS severity for left and right hands (middle), based on the fact whether the data were obtained via a telephone survey (brushed
in red in the bottom spine plot) or via a self-administered questionnaire

and others right). It is apparent that the need to conduct

a telephone interview highly depends on the combina-

tion of Job Category/Gender/Race. However, the
main response variables of this study, the severity of CTS

(ranging from  to ) are not particularly a�ected by the

data collection method as can be seen in the two spino-

grams in the middle plots. For each severity level of CTS,

about –% of the study participants submitted their

data via telephone interviews.

�e next stages of an interactive exploratory analy-

sis could be to determine whether there is a relation-

ship between the severity of CTS for the le� hand and

the right hand or how closely the diagnosis of a particu-

lar medical expert (RightRater1 and LeftRater1
in Fig. ) matches the joint diagnosis of three experts

(RightConsensus and LeftConsensus in Fig. ).
It should be noted that the plots created by most current

so�ware packages for interactive and dynamic graphics are

crude plots with no titles, labels, or legends. It will take

an additional step to transform selected graphics from an

interactive exploratory session into graphics that can be

used for presentations or publications.

Further Reading and Viewing
�is encyclopedia entry is a brief summary of Symanzik

(). Interested readers should refer to Symanzik ()

for further details and for a detailed list of references that

covers about  years of developments in the �eld of inter-

active and dynamic statistical graphics. Cook and Swayne

() and�eus and Urbanek () are recently pub-

lished textbooks that focus on interactive and dynamic

graphics via GGobi/rggobi and Mondrian/iplots, respec-
tively. Additional details on iplots can be found in�eus
and Urbanek ().�e Gapminder so�ware is further
discussed in Rosling and Johansson (). �e Video

Library of the Sections on Statistical Computing and Sta-
tistical Graphics of the American Statistical Association
(ASA) contains  graphics videos covering the period

from  to . Recently, these videos have been con-

verted to digital format and can be watched for free

at http://stat-graphics.org/movies/. �e data underlying

the �gures of this article have been analyzed in more

detail in Dale et al. () and have been reused by per-

mission. �e original study was supported by Centers

for Disease Control and Prevention, National Institute
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for Occupational Safety and Health, Grant number

ROH-.
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Data collected over the Internet (Internet surveys) includes

e-mail surveys and Web surveys. In e-mail surveys the

7questionnaire is completed o�-line. �e respondent
returns the questionnaire as an email attachment and

responses are given in Word or Excel format, or via other

so�ware that may be available to the respondent. In Web

surveys the questionnaire is presented to respondents as a

set ofWeb pages, answers being submitted immediately by

clicking a submit/next button.�us,Web surveys are com-

pleted on-line. Many methodological problems are com-

mon to both e-mail and Web surveys.�e key advantages

of Internet surveys are said to include easy access to a large

group of potential respondents, low cost (costs not specif-

ically related to the number of interviews) and timeliness.

However, despite such appealing characteristics, there are

serious methodological problems and even the extent of

the above-mentioned advantages has yet to be fully veri�ed

in terms of actual bene�t.

�e University of Ljubljana (Vasja Vehovar), Bergamo

University (Silvia Bi�gnandi), Linkoeping University

(Gosta Forsman), ZUMA (Wol�ng Bandilla) have been

working as partners in the WebSm (WebSurvey Method-

ology) European project. As part of the project they

have set up a website which publishes literature, so�-

ware references and relevant comments within a well-

organized framework (website: www.websm.org; Lozar

Manfreda and Vehovar ). Since , the group cre-

ated in the context of this project has been meeting in

informal workshops, under the heading of Internet Sur-

vey Methodology (ISM).�e most recent Internet Survey

Methodology Workshop (ISM), organized by S. Bi�g-

nandi, was held in Bergamo from September –th, ,

and brought together highly-quali�ed specialists involved

in analyzing and dealing with Internet survey research

results.

One of the major trends in Internet survey methodol-

ogy is a growing importance of Web surveys across di�er-

ent application �elds. Initially, themain �eld of application

was in the area of social surveys, with just a handful of

papers related to7business statistics; nowadays social sur-
veys and business statistics are equally represented, with

increasingly greater attention paid to o�cial statistics. New

research on methodological issues is emerging, together

with complex research strategies. �e original focus was

on response rates and questionnaire design and these top-

ics have remained of key importance, although they are

now studied via more sophisticated approaches (exam-

ples would be mixedmode, complex design, questionnaire

usability).�ese days, in fact, a great deal of attention is

devoted to problems arising from the use of mixed mode,

estimation, panels, and the use of incentives.

�e major research areas of prime importance are: ()

survey questionnaire design; () methodological aspects,
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especially: (a) timeliness; (b) response rate improvement,

(c) participant recruitment and statistical inference.

With regard to point () (web questionnaire design),

since web surveys are self-administered, user-friendliness

and limited questionnaire length are highly important.

Visual elements, pictures, color and sound are all tools

that can make the questionnaire more attractive, although

further research is required in order to understand

whether, and how, such tools improve survey participa-

tion and quality, and what the potential disadvantages

and problems may be (for example, technical limita-

tions and information overload). For a discussion on

web questionnaire design see Couper () and Dillman

().

�e �rst methodological aspect quoted at point (),

timeliness, requires study to establish whether this is of

e�ective bene�t to surveys. Timeliness therefore should be

analyzed with reference both to the whole survey period

length and to participation behavior within the survey

period, as well as to the reminders timetable and mode.

Some studies have shown that response times to Internet or

Web surveys are di�erent to other modes (e.g., Bi�gnandi

and Pratesi , ). Other research has highlighted

that while there is no gain in shorter survey periods using

Internet surveys, reactions to �rst contact and reminders

are more timely.

With regard to the second methodological aspect

quoted at point (), a crucial point in web surveys is that

they mostly achieve low response rates. Some studies con-

centrate on keeping respondents focused on the relevant

parts of the computer screen, and keeping distraction to

a minimum (eye-tracking analysis is used for such pur-

poses). An interesting strategy for improving response

rates is to use mixed modes. However, new problems arise

with the mixed approach, since mode e�ects are to be

taken into account in analyzing survey results. Occur-

rence and treatment of mixed-mode e�ects need further

investigation.

As to the third methodological aspect quoted at

point () (participants recruitment and statistical infer-

ence), the problem is how to select a representative sample,

or, if a sample is not representative, how to correct data so

as to obtain statistically representative results.

Web surveys are substantially a�ected by coverage,

because not everymember of a target populationmay have

access to the Internet.Moreover, it is o�en di�cult to select

a proper probability sample because a sampling frame is

lacking and the subpopulation with Internet access may

not represent the population of interest. In general, good

frames should provide a list of sampling units from which

a sample can be selected and su�cient information on the

basis of which the sample units can be uniquely identi-

�ed in the �eld. In general, well-de�ned sampling frames

are not available for most Internet surveys. At present,

attempts to widen the scope of Internet-based samples

beyond the population of active Internet users are unusual,

being a task that is di�cult to achieve. �us, in such

surveys, the respondents are a selective sample of the pop-

ulation;moreover, they are obviously themost skilled com-

puter users andmay therefore bemuch quicker than others

in understanding and answering Internet interview ques-

tions. Because they may respond di�erently, one needs to

�nd a way to generalize from such a sample to a target pop-

ulation. Major problems arise in household surveys, since

many households are not Internet users and therefore can-

not be recruited via Internet. In addition, even those with

Internet access are potentially not expert in using theWeb.

�erefore, despite being set up for the Internet (possibly

in an “ad hoc” way), they probably show di�ering survey

behavior.

Scienti�cally meaningful results can only be obtained

if proper probability samples are selected and the selection

probabilities are known and positive for every member

of the population. Unfortunately, many web surveys rely

on a process of self-selection of respondents.�e survey

is simply put on the web. Respondents are those people

who happen to have Internet access, visit the website and

decide to participate in the survey. If an invitation for

participation to the survey is sent, this invitation cannot

reach the whole target population.�e survey researcher

is not in control of the selection process.�ese surveys are

called self-selection surveys. See, for instance, Bethlehem

().

Due to imperfect frames in Web surveys, traditional

probabilistic samples are in many cases not easy to imple-

ment. In order to bypass the problem of frame cover-

age, a number of Internet-based panels are maintained.

Internet-based panels (so-called access panels) are con-

structed bywide participation requests onwell-visited sites

and Internet portals. �us, they are also based on self-

selection. Many access panels consist of volunteers and it

is impossible to evaluate how well these volunteers repre-

sent the general population; in any case, they represent a

non-probability sample and no statistical inference applies.

However, recent research attempts to tackle the task of how

to apply probabilistic recruitment to panels and how to

draw inferences from them. Put brie�y, trends inWeb sur-

vey frames are moving in two directions. One is towards

the improvement of frames by enlarging and complet-

ing the list of web users; such an approach might �nd

greatest success with business frames and closed popula-

tions.�e second direction is in the treatment of panels by
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using special recruitment approaches and/or methodolo-

gies for handling results in the light of adequate auxiliary

variables.

At the time of registration, basic demographic variables

are recorded. A large database of potential respondents is

created in this way. For future surveys, samples are selected

from this database. Only panel members can participate

in these Web panel surveys.�e target population is how-

ever unclear. One can only say that it consists of people

who have an Internet connection, who have a non-zero

probability of being confronted with the invitation, and

who decide to participate in the panel. Research in the

Netherlands has shown that panel members di�er from

the general population. Access panels have the advantage

that values of basic demographic variables are available

for all participants. So the distribution of these variables

in the survey can be compared with their distribution in

the population. Over- or under-representation of speci�c

groups can be corrected via weighting adjustment tech-

niques. However, there is no guarantee that this leads to

unbiased estimates.

To allow for the unbiased estimation of the popula-

tion distribution, a reference survey can be conducted that

is based on a true probability sample from the entire tar-

get population. Such a reference survey can be small in

terms of the number of questions asked. It can be limited

to so-called “webographic” or “psychographic” questions.

Preferably, the sample size of the reference survey should

be large enough to allow for precise estimations. A small

sample size results in large standard errors of estimates

(Bethlehem ).

Since most access panels are based on self-selection,

it is impossible to compute unbiased estimates of popula-

tion characteristics. In order to apply statistical inference

properly, probability sampling, in combinationwith a vari-

ety of data collection modes, can be applied for panel

recruitment. For example, a sample is selected from the

general population and respondents are recruited using,

perhaps, CAPI or CATI. Respondents without access to

the Internet are provided with Internet facilities. A prob-

abilistic sampling design can be achieved using speci�c

methods, such as random digit dialing (RDD). Some

probability-based Internet panels have already been con-

structed in this way (for instance, Huggins and Krotki

).

Another approach to correcting a lack of representa-

tivity is to apply propensity scoring methodology. Propen-

sity scores (based on the Rosenbaum and Rubin method-

ology) have been used to reweight web survey results

(Schonlau et al. ; Bi�gnandi and Pratesi , 

and ISI, Berlin, August ).
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Intervention analysis is the application of modeling pro-

cedures for incorporating the e�ects of exogenous forces

or interventions in time series analysis. �ese inter-

ventions, like policy changes, strikes, �oods, and price

changes, cause unusual changes in time series, result-

ing in unexpected, extraordinary observations known as

7outliers. Speci�cally, four types of outliers resulting from
interventions, additive outliers (AO), innovational outliers

(IO), temporary changes (TC), and level shi�s (LS), have

generated a lot of interest in literature. �ey pose non-

stationarity challenges, which cannot be represented by

the usual Box and Jenkins () autoregressive integrated

moving average (ARIMA) models alone.

�e most popular modeling procedures are those

where “intervention” detection and estimation is

paramount. Box and Tiao () pioneered this type of

analysis in their quest to solve the Los Angeles pollution

problem. Important extensions and contributions have

beenmade byChang et al. (), Chen and Liu (), and

Chareka et al. (). Others, like Kirkendall () and

Abraham and Chuang (), propose the use of robust

procedures where model estimation is insensitive to the

e�ects of the interventions.

Intervention Model
An intervention model for a time series{Yt} according to
Box and Tiao () is of the dynamic form

Yt = f (κ,Xt , t) + Zt ()

where Yt = F(Yt) is some appropriate transformation of
Yt such as logYt or

√
Yt , f (κ,Xt , t) is a function incor-

porating the e�ects of exogenous variables Xt , in particular
interventions, κ is a set of unknown parameters, and Zt is
the stochastic background or noise.

�eNoisemodelZt = π(B) = θ(B)
ϕ(B)α(B) is the usual Box

and Jenkins () ARIMA models, while the outliers or

exogenous variables Xt themselves follow dynamic models

like the following:

f (δ,ω,Xt , t) =
k

∑
j=

ω(B)
δ(B)

X(i)t

where κ parameters are denoted by δ and ω. �is inter-
vention model can then be simpli�ed to the general trans-

fer function model given by

Yt = Zt +
ω(B)
δ(B)

X(i)t ()

where Zt = π(B) as above and

X(i)t =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

, t = i

, otherwise
()

which is an indicator variable taking values  or  denoting

nonoccurrence and occurrence of an intervention, respec-

tively. For simplicity of derivation, a single exogenous vari-

able at a time has been considered below for each of the

four outlier models.

. �e additive outlier (AO) is usually referred to as a gross
error a�ecting the tth observation as shown in Fig. .
�e AO model where δ =  in the general form

Yt = Zt +
ω

 − δB
X(i)t ()

is represented by

Yt = Zt + ωX(i)t ()

with the residual model given by et = ωπ(B)X(i)t + at .
. �e level shi� (LS) shown in Fig.  is an abrupt but

permanent shi� by ω in the series caused by an inter-
vention and takes on the maximum value of δ =  in
Eq.  so that the model becomes

Yt = Zt +
ω
 − B

X(i)t ()

�e resulting residual model is et = ω π(B)
−B X(i)t + at

. �e temporary change (TC) shown in Fig.  is an inter-
vention that occurs when  < δ <  and takes up
the general form in Eq. .�e resulting outlier has an

e�ect ω at time t, which dies out gradually and has the
residual model et = ω π(B)

−δBX
(i)
t + at (see Chen and Liu

).

. �e innovational outlier (IO) shown in Fig.  is an
extraordinary shock at time t in�uencing Yt ,Yt+ . . .
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through the dynamic system resulting in the model

Yt = π(B) (ωX(i)t + at) ()

with residuals given by et = ωX(i)t +at .�e underlying
ARIMA model a�ects the overall innovational e�ect

and can result in a gradual change, a permanent level

shi� or a seasonal level shi�.

Stages in Intervention Analysis
�ere are four main stages in intervention analysis appli-

cable to both long and short memory time series. �ese

are intervention or outlier detection, model estimation,

model diagnostics, and forecasting. However, the major

challenge in intervention analysis is determining whether

an intervention has actually occurred and what type it is,

as described below.

Intervention/Outlier Detection
. Plot the data to get a picture of the type of series and

possible outliers in the data.

. Assume that the underlying autoregressive moving

average (ARMA) series {Yt} contains no outliers and
use maximum likelihood estimation or 7least squares
procedures to estimate its parameters.

. State the hypothesis being tested, which is

H : ω =  against H : ω ≠ 

. Compute the residuals, the impact ω and the test statis-
tic like the popular Chang et al. () likelihood ratio

test statistic given by

T = max {∣tn()∣, . . . , ∣tn(n)∣}

= max{ ∣ω̂()∣
sn()

, . . . ,
∣ω̂(n)∣
sn(n)

} ()

where sn(i) is an estimate of the standard error of
ω̂(i); ω̂(i) is the estimated intervention or impact
at time t = i; the Chareka et al. () statistic
Cn = Tnn−dn

cn
, which by extreme value theory converges

to the Gumbel distribution Λ(x) = exp(−e−x), −∞ <
x < ∞; or the Abraham and Chuang ()s statistic
Qk(t) ≈ ∑t+k−

i=t ei /(− hii), which asymptotically is χ.
. Determine the critical values to use in the test.�ese

can be Chang et al. () critical values simulated in

SPLUS, R, or others using distribution-free methods

for each particular series and each outlier type at di�er-

ent levels of signi�cance; Chareka et al. () critical

values of the Gumbel distribution ., ., and

. for α = ., ., and ., which can be used for

all outliers as shown in recent research; while χ criti-
cal values, which can be used for Abraham andChuang

() test for the AO and the IO.

. Determine whether observations are outliers and

remove each outlier from the series by subtracting the

value of the impact ωi.�en apply the ARIMAmodel-

ing procedure to obtain the most adequate model and

use it for forecasting future values of the series.

Robust Model Estimation
Model estimation and forecasting are the main goals of

robust estimation procedures, which are insensitive to the

e�ect of interventions. �e E-M algorithm is one option

proposed by Abraham and Chuang (). Each obser-

vation in Yt is assumed to have two states, namely, the

observable state and the outlier or unobservable state

where Yt is viewed as incomplete data and X = (Y,X(i)t )
is complete data.�e algorithm involves maximizing the

incomplete data’s likelihood function using the conditional

expectation of the complete data in each iteration, resulting

in parameter converging if the likelihood function meets

the set conditions.

State space modeling using the Kalman �lter as

described in Kirkendall () is another robust approach,

which is based on the Markov property of 7Gaussian pro-
cesses that allows the likelihood function and the7Akaike
Information Criteria to be calculated recursively for a

given set of parameters.�e Kalman �lter model consists

of the state equation Xt = Xt− + wt and the measure-

ment equation Yt = Xt + vt with normally distributed wt

and vt .�e standard Kalman recursions are applied, and
using criteria such as Bayes’ rule, the observations are clas-

si�ed into steady state or outlier models and the various

parameters are determined by minimizing the likelihood

functions with respect to the parameters.

Cross References
7Kalman Filtering
7Outliers
7Time Series
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A sampling plan that has two (or more) stages of selecting

study units is called a two-stage (multistage) cluster sam-

ple. A sample of the primary sampling units (the clusters)
is selected at the �rst stage and a sample of the component

sampling units is selected from each cluster at the second

stage and so on throughout any subsequent stages. In a

broader context, if observations on a set of study units are

arranged in classes, categories, groups or clusters and some
of the cluster means vary signi�cantly, the within clus-

ter observations will tend to be more homogeneous than

those fromdi�erent clusters and in this sense theywill tend

to be correlated. �e intraclass correlation coe�cient ρI

quanti�es the propensity for observations on units within

the same cluster to be more homogeneous than those in

di�erent clusters. Early writers referred to the groups of

observations as classes, hence the terminology intraclass

correlation coe�cient, but the evolving widespread use of

cluster samples (see 7Cluster Sampling) in both survey
sampling and designed experiments has made the term

“cluster”more popular; nevertheless, “intraclass” is used by

most authors in referring to within cluster correlation.

Consider a �nite set of M observations yij on each of
N clusters where i = , , . . . ,N and j = , , . . . ,M; for
ease of notation but without loss of generality the present

discussion is restricted to the case of all clusters having an

equal number of observations. Further note that the obser-

vations are in arbitrary order within the clusters. Let µ
represent the �nite set mean of all NM observations and

ν =
N

∑
i=

M

∑
j=

(yij − µ)/(NM) denote the corresponding

variance. Further, let va =
N

∑
i=

(yi⋅ − µ)/N represent

the variance among the cluster means and vw =
N

∑
i=

M

∑
j=

(yij − yi⋅)
/(NM) represent the within cluster vari-

ancewhere yi⋅ =
M

∑
j=
yij/M. A computational formula for the

intraclass correlation coe�cient can be expressed as (Koch

)

ρI =

N

∑
=
∑
j≠j′

(yij − µ) (yij′ − µ)

NM (M − ) v
=
va − vw/(M − )

v

where−/(M − ) ≤ ρI ≤  and the lower bound is attained
when the cluster means yi⋅ are all equal so that va =  and
the upper bound is attainedwhen the clustermeans are not

all equal but there is no within cluster variation so vw = 
and v = va. AsM →∞, ρI simpli�es to

 ≤ ρI =  − vw/v ≤ .

In this form, the intraclass correlation coe�cient is seen to

be the additive complement of the proportion of the total
variance that is attributable to variability among observa-

tions within clusters, or simply, ρI = va/v, the proportion
of the total variance that is attributable to the component

of variance for among cluster means. As in Koch (), an
estimator of interest for ρI is that for a two stage random

sample of size n from a set ofN clusters and a sample of size
m from each of the selected clusters where both N andM
are very large relative to n and m (e.g., N = , , n = ,
M = , andm = ); this estimator is

rI = (sa − sw)/[sa + (m − ) sw]

where sa = m
n

∑
k=

(yk⋅ − y⋅⋅)
/(n − ) and sw =

n

∑
k=

m

∑
l=

(ykl−

yk⋅)
/ [n (m − )] , respectively, are the among and within

cluster mean squares; yk⋅ is the sample mean for observa-
tions in the kth cluster and y⋅⋅ is the overall sample mean.
�e observations can be represented by the two-stage

nested “random e�ects” model ykl = µ + ck + ekl where µ is
the overall mean,M and N are both very large and n/N .=
m/M .= ; the cluster e�ects {ck} and the residual errors
{ekl} are mutually uncorrelated random variables with
E (ck) = , var (ck) = va, E (ekl) =  and var (ekl) = vw. If
the {ck} and {ekl} also have mutually independent nor-
mal distributions, then Q = (n − ) sa/(mva + vw) has
the χ(n − ) distribution; Q = n (m − ) sw/vw has the
χ [n (m − )] distribution; and Q and Q are indepen-
dent. A  ( − α)% con�dence interval for ρI is (Sche�e

)

(sa/sw) − F
(sa/sw) + (m − )F

≤ ρI ≤
(sa/sw) − F

(sa/sw) + (m − )F
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where F = Fα [(n − ) , n (m − )] and F = F−α
[(n − ) , n (m − )] with α + α = α. For the case with
m =M and N very large, there is a random sample of clus-
ters but all observations are used within the clusters in the

sample so no subsampling is conducted at the second stage.

In this situation, the sample is called a single-stage cluster
sample and formulation of con�dence intervals is based on
large sample approximations.

A well-known use of the intraclass correlation is to

measure observer reliability (Fleiss ). Suppose each

of a sample of m observers follows a standard protocol
to independently and in random order measure the waist

circumference (WC) of each of a sample of n subjects (clus-
ters). �e two stage nested random e�ects model men-

tioned above is appropriate for the resulting data and the sa
and sw can be obtained as mean squares in an 7analysis of
variance (ANOVA) and used to calculate rI as a quantita-
tive assessment of inter-observer correlation. Now, suppose
a single observer measures the waist circumference (WC)

on each subject in a sample of n subjects on p occasions
where the observer is unaware of values of previous mea-

surements on a given subject. Calculation of rI from the
two-stage nested random e�ects ANOVA is again of inter-

est but in this case to assess intra-observer correlation.�e
closer rI is to zero the stronger the evidence the observer
can not reliably measure WC and conversely the closer it
is to one the stronger the evidence the observer can reli-
ably measure WC. Analogously, if multiple observers are
used with each observer making replicate measurements,

then a three-stage nested randome�ectsmodel can be used

to estimate variance components required for calculating

both inter- and intra-observer correlation coe�cients.

Intraclass correlation has been used for many years to

investigate hereditary properties of human characteristics

(Fisher , ). In twin studies, for example, the clus-

ters are de�ned as twin pairs and there are m =  sibs
per cluster; hence, the estimator of ρI simpli�es to rI =
(sa − sw)/(sa + sw). �e closer rI is to zero the stronger
the evidence a characteristic of interest is not heritable and
conversely the closer it is to one the stronger the evidence

it is heritable. Monozygotic (MZ) twins develop from a
single fertilized egg and therefore share virtually all their

genetic similarities whereas dizygotic (DZ) twins develop

from two fertilized eggs and share on average half their

similarities just as non-twin siblings. A characteristic yij
can be modeled as yij = µ + gi + si + eij where µ is the over-
all mean, the {gi} and {si} are random genetic e�ects and
shared environment e�ects, respectively, and the {eij} are
residual errors including unshared environmental e�ects.

Let G and S denote the estimator of the proportion of total
variance for y that is attributable to genetics and shared

environment, respectively; further, let rMZ = G + S and
rDZ = .G + S represent the calculated intraclass correla-
tion coe�cients for the monozygotic and dizygotic twins,

respectively.�en, the genetic or heritability coe�cient is

H =  (rMZ − rDZ) .
For a sample of clusters, the required sample size for

the total number of subjects needs to be larger than for

a corresponding 7simple random sample to account for
greater variability inherent in cluster based estimators. If

nS is the required number of subjects under simple random
sampling, [nCS = (DEFF)nS] will be the required total
number of subjects under cluster sampling where DEFF ≥
, called the design e�ect by authors such as Kish ()
and Cochran (), is the ratio of an estimator’s variance

using cluster sampling to its variance using simple ran-

dom sampling.�e design e�ect also can be expressed as

DEFF = [ + (m − ) ρI]wherem is the average cluster size
and ρI is the intraclass correlation coe�cient.

Intraclass correlation plays a fundamental role inmany

experimental designs that parallel its importance in survey

sampling studies. For example, cluster or group randomized
trials (Green ; Murray ) randomly allocate clus-
ters rather than individual subjects to intervention con-

ditions.�us, community level randomization plans may

be employed in trials to compare e�ectiveness of smok-

ing cessation interventions where di�erent combinations

of advertisements, group lectures and drugs to attenuate

nicotine craving are randomly allocated to communities.

A subsample of subjects is selectedwithin each community

and, for logistic purposes, all participating subjects within

a community receive the same protocol for intervention.

Following the notation established above and recognizing

that the number of clusters determines the residual degrees

of freedom used to test the di�erence between two inter-

ventions, the usual formula for estimating the required

total number of subjects per intervention is

nCS = NGm = {(zα + zβ)
 (σ ) [ + (m − ) ρI]}/∆

where NG is the number of clusters per intervention; zα

and zβ are the  ( − α/) and  ( − β) percentiles
of the standard normal distribution as is appropriate for

a two-directional test with signi�cance level α and for
power = ( − β); σ  is the applicable variance; and ∆ is the
anticipated outcome di�erence between groups. For these

trials, it is of interest to compare interventions with respect

to change in response between two observation times such

as baseline to end of study.�e variance for such changes

can be expressed as σ t ( − ρt) where σ t is the outcome
variance at a particular time t, ρt is the correlation between

the outcome observations at two speci�ed times, and ρI is
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the intraclass correlation coe�cient for change from base-

line.�e total required number of subjects in this context is

nCS = NGm = {(zα + zβ)
 (σ t ) ( − ρt)

× [ + (m − ) ρI]} /∆.
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Introduction
�e inverse Gaussian distribution (IG) (also known

as Wald distribution) is a two-parameter continuous
distribution given by its density function

f (x; µ, λ) =
√

λ
π

x−/ exp{− λ
µx

(x − µ)} , x > .

�e parameter µ >  is the mean and λ >  is the shape
parameter. For a random variable (r.v.) X with inverse
Gaussian distribution we write X ∼ IG(µ, λ).

�e inverse Gaussian distribution describes the distri-

bution of the time a Brownian motion (see 7Brownian
Motion and Di�usions) with positive dri� takes to reach

a given positive level. To be precise, let Xt = νt + σWt be

a Brownian motion with dri� ν >  (hereWt is the stan-

dard Brownian motion). Let Ta be the �rst passage time

for a �xed level a >  by Xt .�en Ta has inverse Gaussian

distribution, Ta ∼ IG ( a
ν ,

a
σ  ) .

�e inverse Gaussian distribution was �rst derived by

E. Schrödinger in . It belongs to the wider family of

Tweedie distributions.

Characteristics of IG Distribution
�e cumulative distribution function (c.d.f.) of IG is

F(x) = Φ
⎛
⎝

√
λ
x
( x
µ
− )

⎞
⎠

+ exp(λ
µ

)Φ
⎛
⎝
−
√

λ
x
( x
µ
+ )

⎞
⎠
,

where Φ() is cumulative distribution function of the stan-
dard normal distribution.�e characteristic function of IG

is

ϕ(t) = exp
⎧⎪⎪⎨⎪⎪⎩

λ
µ
⎛
⎝
 −

√
 − µ

it
λ

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
and the 7moment generating function is

m(t) = exp
⎧⎪⎪⎨⎪⎪⎩

λ
µ
⎛
⎝
 −

√
 − µ

t
λ

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
.
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Using the latter, the �rst four raw moments (i.e., αn ≡
E(Xn) = ∂nm(t)

∂tn ∣t=) of the IG distribution are calculated as

α = µ,

α = µ + µ

λ ,

α = µ + µ

λ + µ

λ ,

α = µ + µ

λ + µ

λ + µ

λ .

Accordingly, themean, variance, skewness, and kurtosis

are obtained as

E(X) = µ,

Var(X) = µ

λ ,

Skewness (X) = 
√

µ
λ ,

Kurtosis (X) =  µλ .

Summation of IG-Distributed Random
Variables
An important property of the IG distribution is that, with

certain limitations, the sum of random variables with IG

distribution is again IG distributed. More precisely, if Xi

are independent and Xi ∼ IG (µwi, λwi ) then
n

∑
i=

Xi ∼ IG(µw, λw),

where w = ∑n
i= wi. It follows, by taking wi ≡ /n, that the

inverse Gaussian distribution is in�nitely divisible.

Estimation of Parameters
Let X, . . . ,Xn be a random sample from the IG distribu-

tion IG(µ, λ). �en the maximum likelihood estimators
for the parameters µ and λ are

µ̂ = ∑
n
i= Xi

n
,



λ̂
= 
n

n

∑
i=

( 
Xi

− 
µ̂
) .

�e statistics µ̂ and λ̂ are independent and their distribu-
tions are given by

µ̂ ∼ IG(µ,nλ), n
λ̂
∼ χn−.

Simulation from IG Distribution
In order to generate random numbers from the inverse

Gaussian distribution, the following algorithm can be

used:

. Generate a random number z from a standard normal
distribution N(, ). Let y = z.

. Calculate x = µ + µy
λ − µ

λ

√
µλy + µy.

. Generate a random number u from a uniform distri-
bution U(, ).

. If u ≤ µ
µ+x then return x, else return µ

/x.
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Introduction and Applications
�e inverse sampling, �rst proposed by Haldane (),

suggests one continues to sample subjects until a pre-

speci�ed number of events of interest is observed. In con-

trast to the commonly used binomial samplingwherein the

sample size is pre�xed and the number of events of inter-

est observed is random, the number of events of interest

observed is pre�xed for inverse sampling and the sam-

ple size is a random variable follows a negative binomial

distribution.�erefore, inverse sampling is also known as

negative binomial sampling. It is generally considered to be
more appropriate than the usual binomial sampling when

the subjects come sequentially, when the response proba-

bility is rare, and when maximum likelihood estimators of

some epidemiologicalmeasures are unde�ned under bino-

mial sampling. For instance, in epidemiological investiga-

tions, the estimation of the prevalence of a given disease

on public health in a community or the variation of a dis-

ease distribution between geographical regions to locate

the potential causes is one of the aims of biostatisticians,

epidemiologists or medical researchers. �e prevalence
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here is referred to the population proportion of subjects

having the disease. Usually, the estimation is done under

the assumed case-binomial sampling. However, when the

underlying disease is rare, the probability of obtaining

only a few or zero cases in a sample under binomial sam-

pling can be large or non-negligible. So the estimate of

the population prevalence under binomial sampling can

be subjected to a large relative error (Cochran ). To

ensure that a reasonable number of cases are obtained, we

may consider the use of inverse sampling.

Inverse sampling has long been appealing to practi-

tioners and statisticians in various medical, biological and

engineering research areas. For example, Smith et al. ()

studied the level of HIV- mRNA-expressing (positive)

mononuclear cells within the esophageal mucosa of

patients with acquired immune de�ciency syndrome

(AIDS) and esophageal disease. Since the process of iden-

tifying positive cells could be quite tedious, they mea-

sured the prevalence of positive cells via inverse sam-

pling. Brie�y, in each slide of biopsy specimens non-

overlapping microscopic �elds were examined until a �eld

containing positive cells was found. Other applications of

inverse sampling can be also found in haematological study

(Haldane ), botanical study of plant diseases (Mad-

den et al. ) and case-control study involving a rare

exposure of maternal congenital heart disease (Kikuchi

). In so�ware engineering, Singh et al. () used the

method of inverse sampling to develop a statistical proce-

dure for quantifying the reliability of a piece of so�ware.

�eir proposed procedure substantially reduced the aver-

age number of executions run over the traditional binomial

sampling.

Statistical Model and Inference
Suppose that we consider a study under inverse sampling,

in which we continue to collect subjects until the pre-

determined number r (≥) of index subjects with certain
attributes of interested are obtained. Let Y be the number
of subjects without the attributes of interest �nally accu-

mulated in the sample before we obtain the �rst r index
subjects. We denote the proportion p as the correspond-
ing probability that a randomly chosen subject with the

attributes of interest, where  < p < . As a result, the
randomvariableY follows a negative binomial distribution
with parameters r and p with probability mass function

f (y∣p) = Pr(Y = y∣p)

=
⎛
⎜⎜
⎝

r + y − 

y

⎞
⎟⎟
⎠
pr( − p)y, y = , , ,⋯.

In practice, p is usually the parameter of interest and
di�erent methods are proposed to estimate p. Two com-
monly used estimators of p are the maximum likelihood
estimator (MLE) and the uniformly minimum variance

unbiased estimator (UMVUE).�e MLE of p is given by

p̂ = r
N
,

where N = r + Y is the total number of trials required to
obtain the predetermined number r. It can be shown that
the variance of p̂ is

Var(p̂) = p( − p)
r

.

Note that the MLE is actually a biased estimator of p and
an UMVUE of p can be obtained by

p̃ = r − 
N − 

.

�e variance of p̃ can be shown to be

Var(p̃) = (r − )( − p){
r−
∑
k=

(−p)k

( − p)k(r − k)

− ( −p
 − p

)
r

log(p)} − p

and an unbiased estimator of Var(p̃) for r >  is given by

V̂ar(p̃) = p̃( − p̃)
N − 

.

For interval estimation of p, there are di�erent types
of con�dence intervals available in the literature. For

example, Wald-type con�dence interval based on MLE

or UMVUE (Lui ), exact con�dence interval due to

Casella andBerger (), con�dence interval based on the

fact that (r+Y)p follows a χ distributionwith r degrees
of freedom (Bennett ), score con�dence interval, likeli-

hood ratio based con�dence interval saddle-point approx-

imation based con�dence interval. For a detail review on

di�erent con�dence intervals for parameter p and compar-
ative study among these methods, one may refer the Tian

et al. ().

Extensions to two negative binomial proportions com-

parison have been recently studied. For instance, Tang et al.

() proposed di�erent asymptotic procedures for test-

ing negative binomial proportion ratio. Tang et al. ()

considered exact unconditional procedures for risk ratio

under standard inverse sampling. Tian et al. () derived

an asymptotically reliable saddle-point approximate con�-

dence interval for risk ratio under inverse sampling. Tang

and Tian (, ) proposed various asymptotic and

approximate con�dence intervals for proportion di�erence

under inverse sampling.



 I Inversion of Bayes’ Formula for Events

About the Authors
For the biography of H. K. T. Ng see the entry 7Censoring
Methodology.

M. L. Tang is an Associate Professor in the Depart-

ment of Mathematics at the Hong Kong Baptist Univer-

sity. He received his Ph.D. degree in Biostatistics ()

from UCLA, USA. He is an elected member of Interna-

tional statistical Institute (ISI). He is currently an Asso-

ciate Editor of Communications in Statistics, Advances

and Applicationos in Statistical Sciences, Journal of Prob-

ability and Statistics, and �e Open Medical Informatics

Journal.

Cross References
7Binomial Distribution
7Estimation
7Geometric and Negative Binomial Distributions
7Proportions, Inferences, and Comparisons
7Saddlepoint Approximations

References and Further Reading
Bennett BM () On the use of the negative binomial in epidemi-

ology. Biometrical J :–

Casella G, Berger RL () Statistical inference. Duxbury, Belmont

Cochran WG () Sampling techniques, rd edn. Wiley, New York

Haldane JBS () On a method of estimating frequencies,

Biometrika :–

Kikuchi DA () Inverse sampling in case control studies involving

a rare exposure. Biometrical J :–

Lui KJ () Statistical estimation of epidemiological risk. Wiley,

New York

Madden LV, Hughes G, Munkvold GP () Plant disease incidence:

inverse sampling, sequential sampling, and confidence intervals

when observed mean incidence is zero. Crop Prot :–

Singh B, Viveros R, Parnas DL () Estimating software reliability

using inverse sampling. CRL Report , McMaster University,

Hamilton

Smith PD, Fox CH, Masur H, Winter HS, Alling DW () Quanti-

tative analysis of mononuclear cells expressing human immun-

odeficiency virus type  RNA in esophageal mucosa. J Exp Med

:–

Tang ML, Liao Y, Ng HKT, Chan PS () On tests of rate

ratio under standard inverse sampling. Comput Meth Prog Bio

:–

Tang ML, Liao Y, Ng HKT () Testing rate ratio under inverse

sampling. Biometrical J :–

Tang ML, Tian M () Asymptotic confidence interval construc-

tion for risk difference under inverse sampling. Comput Stat

Data An :–

Tang ML, Tian M () Approximate confidence interval construc-

tion for risk difference under inverse sampling. Stat Comput

:–

Tian M, Tang ML, Ng HKT, Chan PS () Confidence inter-

val estimators for risk ratio under inverse sampling. Stat Med

:–

Tian M, Tang ML, Ng HKT, Chan PS () A comparative study

of confidence intervals for negative binomial proportion. J Stat

Comput Sim :–

Inversion of Bayes’ Formula for
Events
KaiWang Ng

Professor and Head

�e University of Hong Kong, Hong Kong, China

In standard notation, let {H,H, ⋯ ,Hm} and

{A,A, ⋯ ,An} be two distinct partitions of the sample
space, or equivalently two sets of events satisfying three

properties: (i) each event is non-void, (ii) events in the

same set are mutually exclusive (i.e., P(Hj∪Hk) = P(Hj)+
P(Hk) for j ≠ k), and (iii) each set is collectively exhaustive,
(i.e., P (∪m

i=Hj) = ).�e Bayes’ formula in general form is,
for j = , ⋯ ,m, i = , ⋯ ,n,

P(Hj∣Ai) =
P(Ai∣Hj)P(Hj)

P(Ai)
=

P(Ai∣Hj)P(Hj)
∑m

k= P(Ai∣Hk)P(Hk)
,

()

where the last substitution is by virtue of the so-called

formula of total probability,

P(Ai) =
m

∑
k=

P(Ai∣Hk)P(Hk), i = , ⋯ ,n, ()

which is valid due to properties (i) to (iii).

In Bayesian inference, which is the �rst paradigm

of statistical inference in history, {H,H, ⋯ ,Hm} are
antecedent events viewed as competing hypotheses and

P(Ai∣Hj) is the probability that the event Ai occurs as an

outcome of the jth hypothesis. �e investigator assigns
P(Hj), called the prior probability, to the jth hypothesis
based on available information to him/her or in accor-

dance with his/her belief on the odds of the competing

hypotheses. Given that Ai occurs, Bayes’ formula () gives

the revised probability, called the posterior probability, of
the jth competing hypothesis.
We put all the above probabilities in the combined

two-way table on the top of next page, (Table ). Where

the posteriors Pij = P(Hj∣Ai) and the likelihoods Lij =
P(Ai∣Hj) are respectively in the upper part and lower part
of the (i, j) cell, while the priors pj = P(Hj) and the Bayes’
factors qi = P(Ai) are in the two margins.
Now consider the question whether we can prescribe

the posterior probabilities which we want to get in the end

and work out the prior probabilities. In terms of the table,

the question is equivalent to �nding the values onmargins,

given all pairs of values in the cells.

A practical need leading to the above question, which

seems to be the �rst, arises in the Data Augmentation
Algorithm of Tanner and Wong () for Bayesian infer-
ence in probability density function (pdf) setting; see also
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Inversion of Bayes’ Formula for Events. Table 
```````````P(Ai∣Hj)

P(Hj∣Ai) H ⋯ Hj ⋯ Hm P(Ai)

A

PPPPPPPL

P ⋯
PPPPPPPLj

Pj ⋯
XXXXXXXXXLm

Pm q

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Ai

PPPPPPPLi

Pi ⋯
PPPPPPPLij

Pij ⋯
PPPPPPPLim

Pim qi

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

An

PPPPPPPLn

Pn ⋯
PPPPPPPLnj

Pnj ⋯
XXXXXXXXXLnm

Pnm qn

P(Hj) p ⋯ pj ⋯ pm 

Tanner (, Chap. ) for more detail. But it was not rec-

ognized as an inversion of Bayes’ formula until the author

of this article revisited the integral equation for which the

Algorithm aimed to solve by successive substitution; see

Tan et al. (, pp. –, ) for a detailed account and Ng

(a, b) for original reference. Beyond the context of

Bayesian inference, the inversion of Bayes’ formula (IBF) is
mathematically equivalent to de-conditioning (DC) in the
sense of �nding unconditional probabilities given the con-

ditional ones. Note that IBF is also used for “Inverse Bayes
Formulae” as in Ng (b, a) in reference to those
de-conditioning formulae in pdf setting. If the inversion is

through an algorithm, as discussed by Ng () for those

cases of the above two-way table where rij are de�ned only
in certain cells in haphazard patterns, we shall call it an IBF
Algorithm, or a DC Algorithm.
Note that the given values in the cells are assumed to be

froman existing set of joint probabilities,P(Ai∩Hj), which
are not known to us.�is assumption is called compatibil-
ity or consistency and needs be con�rmed in applications;
see Arnold et al. (). If we have found all pj or all qi,
we can construct P(Ai ∩ Hj) and hence reconstruct all
the P(Hj∣Ai) and P(Ai∣Hj). If the given Pij and Lij are not
identical to the reconstructed conditional probabilities, they
are not compatible by contradiction; otherwise we have a
constructive proof that they are. Sowhen an IBF or IBF algo-
rithm is available, checking compatibility is just a natural

�ow of the a�ermath-checking and hence we shall omit

this trivial part in the article.

Although Ai and Hj are non-void events, their inter-

section Ai ∩ Hj may be void and hence the conditional

probabilities concerning them may be zero.�is does not

matter at all in Bayes’ formula, but it does in its inversion

because probability ratios are the key quantities. We sum-

marize in the following lemma some self-explaining results

which we shall need in the sequel.

Lemma  (Preliminary facts) �e following are true if

Ai and Hj satisfy the aforesaid properties (i)-(iii) and if

Pij = P(Hj∣Ai) and Lij = P(Ai∣Hj) as assumed in the
table.

(a) In each cell of the table,Pij and Lij are simultaneously
both zero if and only if Ai ∩Hj = / and both positive
if and only ifAi∩Hj ≠ /.�us the ratio rij = Pij/Lij is
well-de�ned in at least one cell in each row and each

column, resulting in a system of equations,

pj/qi = rij ≡Pij/Lij, i= , , ⋯ ,n; j= , ⋯ ,m, ()

for them + n −  e�ective unknowns, namely pj and
qi subject to constraints ∑m

j= pj =  and ∑n
i= qi = ,

in as many number of equations as the number of

well-de�ned rij.
(b) If {pj} are determined, so are {qi} by (), and vice

versa. Furthermore, we may always swap the roles

of rows and columns for purpose of de-conditioning

without loss of generality.

(c) �e {pj} are uniquely determined if their relative
proportions can be obtained; in this case we shall

say they are completely proportionable. For example,
given the complete set of proportions relative to a

common denominator pj∗ , (p/pj∗ , ⋯ , p(j∗−)/pj∗ , ,
p(j∗+)/pj∗ , ⋯ , pm/pj∗), we can express pj in terms
of the proportions:

pj =
pj
pj∗

⎧⎪⎪⎨⎪⎪⎩

m

∑
j=

pj
pj∗

⎫⎪⎪⎬⎪⎪⎭

−

, j = , , ⋯ ,m. ()

Furthermore, if the complete consecutive ratios

(p/p, p/p, ⋯ , pm−/pm) are given, we can obtain
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the proportions against a common denominator by

chained multiplications; for instance,

p
pm

=
m−
∏
j = 

pj
pj+
,
p
pm

=
m−
∏
j = 

pj
pj+
, ⋯ pm−

pm
=

m−
∏

j=m−

pj
pj+
.

()

Finally, the analogous results concerning qi, i =
, ⋯ ,n, are also valid.

(d) If in a particular row i, a subset of the ratios,
rij , rij , ⋯ , rijk , are de�ned, the proportions between
the correspondingmarginal probabilities, pj , pj , ⋯ ,
pjk , are readily available and we shall say that
pj , pj , ⋯ , and pjk are proportionable in row i;
in notation, [pj(i)pj(i)⋯(i)pjk], where the order
is immaterial, or [j(i)j(i)⋯(i)jk] for short. For
example, the proportions relative to pjk are:

pj/pjk = rij/rijk , pj/pjk =rij/rijk , ⋯ , pjk−/pjk
= rijk−/rijk . ()

�e analogous conclusion about a subset of qi at a
particular column j is also valid.

So the key of inversion of Bayes’ formula is to deter-

mine the relative proportions of themarginal probabilities.

Now if there is one row where all ratios are de�ned, all {pj}
are completely proportionable in that row according to (),

hence determining all pj. And similarly for the qi.

Proposition  (IBF: completely de�ned ratios in one row
or column) If Pij and Lij are compatible, the following
hold:

(a) If there is a particular row, say the i∗th row, where all
ratios ri∗ j are de�ned, we have

pj = ri∗ j
⎧⎪⎪⎨⎪⎪⎩

m

∑
j=

ri∗ j
⎫⎪⎪⎬⎪⎪⎭

−

, j = , ⋯ ,m;

qi =
ri∗ j
rij

⎧⎪⎪⎨⎪⎪⎩

m

∑
j=

ri∗ j
⎫⎪⎪⎬⎪⎪⎭

−

, i = , ⋯ ,n. ()

(b) If there is a particular column, say the j∗th column,
where all ratios rij∗ are de�ned, we have

qi = r−ij∗ {
n

∑
i=

r−ij∗}
−
, i = , ⋯ ,n;

pj = rijr−ij∗ {
n

∑
i=

r−ij∗}
−
, j = , ⋯ ,m. ()

(c) Under the so-called positivity condition where all
rij are de�ned, the following are valid:

pj = /
n

∑
i=

r−ij = rij
⎧⎪⎪⎨⎪⎪⎩

m

∑
j=

rij
⎫⎪⎪⎬⎪⎪⎭

−

, j = , ⋯ ,m,

regardless any i = , ⋯ ,n; ()

qi = /
m

∑
j=

rij = r−ij {
n

∑
i=

r−ij }
−
, i = , ⋯ ,n,

regardless any j = , ⋯ ,m. ()

Proof For part (a), we have all the proportions pj/pm =
ri∗ j/ri∗m according to Lemma (d). By substituting them in
() and simplifying we get the �rst identity, and then the

second, of (). For part (b), �ip over the ratio in () for the

particular j = j∗, obtaining qi/pj∗ = r−ij∗ , and proceed as in
the proof for part (a). Since the assumption in (c) implies

that () is true for every i∗ = , ⋯ ,n, we immediately have
the second identity of () and the �rst identity in ().�e

same assumption implies () for every j∗ = , ⋯ ,m, so we
have the second identity in () and the �rst identity of ().

�ere are situations where each row and each column

has one unde�ned rij, or more, so that Proposition  does
not apply. We can still consider making {pj} completely
proportionable using more than one row, and all qi using
more than one column.�is process, however, would lead

to algorithms instead of nice and neat formulae as in

Proposition . In view of Lemma (b), we shall concentrate

on �nding pj.

Proposition  (IBF: at least one ratio unde�ned in every
row and every column) If Pij and Lij are compatible, the
following hold:

(a) Let (pj , pj , ⋯ , pjm ) be any permutation of {pj}. If
pj and pj are proportionable in row i, pj and pj
proportionable in row i, ⋯ , pj(m−) and pjm propor-
tionable in row i(m−), or in notation,

[ pj(i)pj(i)pj(i)⋯pj(m−)(i(m−))pjm], ()

then {pj} are completely proportionable. For example,
the consecutive proportions are given by

pj
pj

=
ri j
ri j
,
pj
pj

=
ri j
ri j
, ⋯ ,

pj(m−)
pjm

=
ri(m−) j(m−)
ri(m−) jm

, ()

and we can then determine {pj} by () and (). In
practice, as shown in examples below, a common

denominator would suggest itself for less work of

�nding the proportions.
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Inversion of Bayes Formula for Events. Table 

p p p p p p Lemma (d) Available proportions

q r r [()] p/p = r/r

q r r r [()()] p/p = r/r, p/p = r/r

q r

q r r [()] p/p = r/r

q r

q r r [()] Done in row 

q r r [()] p/p = (r/r)(p/p),

p/p = (p/p)(p/p).

(b) �e solution for {pj} is not unique if the following sit-
uation happens a�er going down the table row by row

in search for proportionable {pj}:
�e process ends up with two or more subsets

of {pj} whose union equals the whole set of {pj} and
which satisfy two conditions: (i) each member of one

subset is found not proportionable with any mem-

ber of another subset and (ii) members within the

same subset are proportionable unless the subset is

a singleton.

Proof (a) is straightforward. In (b), �rst consider the case

of two subsets. We can assign an arbitrary weight, a ( <
a < ), to the sum of one subset and  − a to the sum of
the other, producing a solution for {pj}.�en we have {qi}
by Lemma (b). Other cases of more than two subsets are

similar.

In the following examples, all well-de�ned rij = Pij/Lij
are shown, while an empty cell means that the ratio is

not de�ned for a pair of zeros. We need only demonstrate

�nding {pj}.

Example  (IBF for haphazard patterns of well-de�ned
ratios) For a haphazard pattern, we can apply Lemma

(d) rowby row to accumulate available proportions of {pj},
with the aid of a work-sheet as illustrated in Table .

�e �rst column on the right side of the table (Table )

shows proportionable columns by each row.�e results in

this column suggest using p as the common denomina-
tor, because it is directly proportionable to more pj than
any other choice.�en on the next column, we accumu-

late available proportions relative to p.�e results from

row  to row  are straightforward. Row  provides pro-

portion p/p = r/r, which is multiplied by (p/p) (of
row ) to yield p/p.�en p/p from row  and the newly
found p/p yields p/p. At this point, all  proportions to
p are ready to yield the  marginal probabilities by () in
Lemma (c).

Now suppose the last row is dropped and we are deal-

ingwith a × table.�e above process stops at the th row
and there are two subsets, [()] and [()()()], as
stipulated in part (b) of proposition . Although the pro-

portions within subsets are determined as before, there are

in�nitely many possible proportions, a : ( − a),  < a < ,
to be allocated to the two subsets, each being as good as

another in reproducing the supposedly compatible Pij and

Lij which de�ne rij.

Example  (IBF for zigzag paths of well-de�ned ratios) �e

two examples (Table ) are quite straightforward in reach-

ing (), so we don’t need a work-sheet as in the last

example.

For the le� table, we have [p()p()p] with con-
secutive ratios, p/p = r/r and p/p = r/r.
Next, we have [p()p()p()p] with consecutive
ratios, p/p = r/r, p/p = r/r and p/p =
r/r. So we can plug in () and then () to get all pi.
An alternative route is [p()p()p()p()p()p].
For the right table, we can abbreviate the situation as

[p()p()p()p()p()p], which obviously pro-
vides consecutive ratios of p to p and is thus com-
pletely proportionable. Note that an alternative route is

[ p()p()p()p()p()p].
�e Bayes’ formula was developed in a manuscript

by Reverend �omas Bayes and, a�er his death in ,
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Inversion of Bayes Formula for Events. Table 

p p p p p p p p p p p p

q r q r

q r q r r

q r r r q r r

q r r q r r

q r r r r q r r

q r q r r r

q r q r

was submitted by his friend to the Royal Society for

posthumous publication in . It is still a puzzle as why

Bayes, who “was for twenty years a Fellow of the Royal

Society” (Fisher , p. ), did not submit his �ne essay.

Fisher (, p. ) wrote: “it seems clear that Bayes had

recognized that the postulate proposed in his argument

(though not used in his central theorem)would be thought

disputable by a critical reader, and there can be little doubt

that this was the reason why his treatise was not o�ered

for publication in his own lifetime.” Stigler () provided

another conjecture. �e mathematicians at Bayes’ time,

and of his standing, would usually ponder and explore all

possible converses and corollaries of a theorem of impor-

tance, especially a theoremof one’s own. And the converses

as described above are well within Bayes’ capacity and do

not require any new mathematics invented a�er his time.

It is a conjecture of the author of this article that, a�er

�nishing the manuscript, Bayes recognized, or sensed, the

inversion of his formula. His prior probabilities, therefore,

could be perceived as the results of reverse-engineering. So

he had to think about the implications of the argument and

needed more time to re-write his essay (hand-written with

feather and ink at that time).
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Itô Integral

Boris L. Rozovskĭı

Ford Foundation Professor of Applied Mathematics

Brown University, Providence, RI, USA

It was established in the �rst half of the twentieths century

that Brownian motion (Wiener process, see 7Brownian
Motion and Di�usions) B ( s) is of fundamental impor-
tance for stochastic modeling of many real life processes

ranging from di�usion of pollen on a water surface to

volatility of �nancial markets. Further development of

stochastic modeling brought up more complicated math-

ematical tools, including integrals with respect to Brow-

nian motion.�e task of constructing such an integral is

not trivial. Since Brownian motion is not di�erentiable

at any point and its quadratic variation is in�nite, the

classical Riemann-Stielltjes integral does not provide an

appropriate framework. �e �rst successful construction

of stochastic integral

It ( f ) = ∫
t


f (s) dB (s)

with respect to Brownian motion was proposed by

N. Wiener. Wiener’s integral was de�ned for determinis-

tic functions f (s) ∈ L[,∞). Wiener has also established
an important isometry

E(∫
t


f (s)dB (s))



= ∫
t


f  (s) ds. ()

In –, K. Itô extended theWiener integral to a large

class, written J , of random functions f (t) .�e elements
of classJ must be non-anticipating. Roughly speaking, the
lattermeans that f (t)must be a reasonably nice (appropri-
ately measurable) function of t and/or the path of B (s) for
s ≤ t. In other words, the integrand at point t may depend
only on the “past” and “present” of B (s) but not on the
“future”. In addition, the elements of J must be square-
integrable, which means that E (∫

∞


f  (s) ds) < ∞.
A function f (t) from classJ is called simple if there exists
a partition  = s ≤ s ≤ ... such that f (s) = f (si) for
s ∈ [si, si+).�e Itô integral for a simple function f (s) is
de�ned by

It ( f ) := ∫
t


f (s) dB (s) =∑

si≤t
f (si) (B (si+) − B (si)).

()

It is not di�cult to see that if f is a simple function from
class J , then

E ∣∫
∞


f (s)dB (s)∣



= ∫
∞


E ∣ f (s)∣ ds. ()

By making use of property (), Itô extended his inte-

gral to any f (s) such that for some sequence fn of simple
functions

E∫
∞


∣ f (s) − fn (s)∣ dsÐ→ .

Other important properties of Itô’s integral include: (a)

E ∫
∞


f (s)dB (s) = ; (b) It ( f ) is a continuous function
of twith probability ; (c) It ( f ) is a continuousmartingale.
Note, that in contrast to the Riemann integral, Itô

integral is sensitive to shi�s of the argument of f in
the right hand part of (). In particular, if f (s) is a
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smooth deterministic function, s∗i = (si+ + si) /, and
maxi ∣si+ − si∣Ð→ , then

∑ si≤tf (B (s∗i )) (B (si+) − B (si))

Ð→ ∫
t


f (B (s)) ○ dB (s) :=

∫
t


f (B (s)) dB (s) + 


∫

t


f ′ (B (s)) ds.

�e chain rule for functions of Brownian motion,

usually referred to as the Itô formula, is given by

f (B(t)) − f (B(s)) = ∫
t

s
f ′ (B(r))dB (r)

+ 

∫

t

s
f ′′ (B (r)) dr.

Write Xt = X exp{σB (t) + µt − σ t/}, where X,
σ and µ are constants. �is process is called geometric
Brownian motion. It plays fundamental role in modeling

of the dynamics of �nancial assets. By Itô formula, one

can show that Xt is a solution of the following stochastic

di�erential equation:

dXt = µXtdt + σXtdB (t). ()

�e ratio dXt/Xt models the rate of return on the asset Xt ,

µ is the mean rate of return, and σ represents the volatility
of the asset.�e Black-Scholes option pricing formula is

based on Eq. ().
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Introduction
�e jackknife method was introduced by Quenouille
() for reducing a bias of a correlation estimator. Tukey
() extended his idea tomake con�dence intervals. Fur-
ther, Efron () proposed the bootstrap method (see
7Bootstrap Methods) as an extension of the jackknife
inference. Using these resampling methods, we can make
statistical inferences without assuming underlying distri-
bution of the data.
Let X, . . . ,Xn be independently and identically dis-

tributed random variables with distribution function Fθ .
Quenouille () proposed a technique for reducing the
bias, splitting the sample into two half-samples, and in 
he extended this technique which split the sample into g
groups of size h, where n = gh. Let θ̂n be an estimator of
a parameter θ based on n observations, and θ̂(i)

(g−)h be the
corresponding estimator based on (g−)h observations for
i = ,⋯, g. Let us de�ne

θ̃(i) = g θ̂n − (g − )θ̂(i)
(g−)h.

Using θ̃(i), Quenouille discussed the bias reduction. Tukey
() called θ̃(i) a pseudo-value and proposed a con�-
dence interval, using the idea that

√g(θ̃n − θ)
√

∑
g
i=(θ̃(i) − θ̃n)/(g − )

should have approximate t-distribution with g −  degrees
of freedom, where θ̃n = ∑

g
i= θ̃(i)/g. His idea was based

on the conjecture that θ̃(i)(i = ,⋯, g) could be treated
as approximately independent and identically distributed
random variables. A�er their introduction of the jackknife
method, many papers discussed applications to statistical
inferences. Let us discuss the bias reduction, and variance
and higher order moment estimation.

Bias Reduction
Let us consider an estimator θ̂n = θ̂n(X,⋯,Xn) of the
parameter θ, and

θ̂(i)n− = θ̂n−(X,⋯,Xi−,Xi+,⋯,Xn)

denotes a corresponding estimator based on n −  obser-
vations with Xi omitted.�en a bias corrected estimator is
given by

θ̃J = nθ̂n − (n − )θn

where θn = ∑
n
i= θ̂(i)n−/n. Let us assume that θ̂n has the

following bias

E(θ̂n) − θ =
a(F)
n

+
a(F)
n

+O(n−)

where a(F) and a(F) depend on F but not on n.�en we
can show that

E(θ̃J) − θ = −
a(F)
n(n − )

+O(n−) = O(n−).

Variance Estimation
�e most popular jackknife variance estimator of Var(θ̂n)

is given by

VJ() =
n − 
n

n

∑
i=

(θ̂(i)n− − θ̂n)

,

which is called a delete- jackknife variance estimator. If
the estimator θ̂n is smooth enough, VJ() is asymptotically
consistent. But if the estimator is not smooth, it may be
inconsistent.�e best known example is the sample quan-
tile (see Miller ()). To recover this inconsistency, Shao
() and Shao andWu () proposed the delete-d jack-
knife variance estimator. Let d be an integer less than n and
Sn,d to be the collection of subsets of {, . . . ,n} with size d.
For any δ = {i, . . . , id} ∈ Sn,d, let θ̂(δ)n−d be the value of
θ̂n when Xi , . . . ,Xid are deleted from the sample.�en the
delete-d jackknife variance estimator is given by

VJ(d) =
n − d
dN ∑

δ
(θ̂(δ)n−d − θ̂n)


,

where N = (
n
d) and∑δ is the summation over all the sub-

sets in Sn,d. For the estimators of the sample quantile, Shao

Miodrag Lovric (ed.), International Encyclopedia of Statistical Science, DOI ./----,
© Springer-Verlag Berlin Heidelberg 
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and Wu () proved that VJ(d) is consistent and asymp-
totically unbiased when n//d →  and n − d → ∞.
When the estimator is smooth enough, like 7U-statistics,
Maesono () has proved that vJ(d−) ≤ vJ(d) for any
sample point (x, . . . , xn). Efron and Stein () showed
that the jackknife variance estimator VJ() has a positive
bias.�en the bias of the delete-d jackknife variance esti-
mator is at least as large as the bias of the delete- estimator
in the case of the smooth original estimator.

Higher Order Moment Estimation
Let us consider the followingANOVA- orH-decomposition
(Hoe�ding):

θ̂n = θ + n−δ + n−
n

∑
i=

g(Xi) + n− ∑
≤i<j≤n

g(Xi,Xj)

+ n− ∑
≤i<j<k≤n

g(Xi,Xj,Xk) +⋯ ()

where E[g(X)] = , E[g(X,X)∣X] = E[g(X,X,
X)∣X,X] =  a.s. Using the von Mises expansion
or H-decomposition, we can show that many statistics
satisfy the equation (). �e jackknife variance estimator
nVJ() is consistent to E [g (X)], which is a main term
of an asymptotic variance. Hinkley () and Efron and
Stein () studied bias reductions of the jackknife vari-
ance estimator VJ(), using an estimator of E [g(X,X)].
Lai and Wang () obtained an Edgeworth expansion
which includes higher order moments. n−/ term of the
expansion is

κ = E [g (X)] + E[g(X)g(X)g(X,X)].

In order to estimate these moments, we need pseudo
values of g(Xi) and g(Xi,Xj).�ey are given by

ĝ(Xi) = nθ̂n − (n − )θ̂(i)n−

and

ĝ(Xi,Xj) = (n − ){nθ̂n − (n − ) (θ̂(i)n− + θ̂(j)n−)

+ (n − )θ̂(i,j)n− }

where θ̂(i,j)n− is a corresponding statistic based on n − 
observations with Xi and Xj omitted. For these pseudo
values, we can show that

ĝ(Xi) = g(Xi) +Op(n−) and
ĝ(Xi,Xj) = g(Xi,Xj) +Op(n−)

and then we have


n(n − ) ∑
≤i<j≤n

ĝ(Xi,Xj)
P
Ð→ E [g(Xi,Xj)]

and


n

n

∑
i=

ĝ (Xi) +


n(n − ) ∑
≤i<j≤n

ĝ(Xi)ĝ(Xj)

× ĝ(Xi,Xj)
P
Ð→ κ.

Similarly, a pseudo value of g(Xi,Xj,Xk) is given by

ĝ(Xi,Xj,Xk) = (n − )(n − ){nθ̂n − (n − )

× (θ̂(i)n− + θ̂(j)n− + θ̂(k)n−)

+ (n − ) (θ̂(i,j)n− + θ̂(j,k)n− + θ̂(i,k)n− )

− (n − )θ̂(i,j,k)n− }

where θ̂(i,j,k)n− is a corresponding statistic based on n − 
observations with Xi,Xj and Xk omitted. Using the pseudo
values ĝ, ĝ and ĝ, we can make consistent estimators
of the higher order moments which appear in the fourth
cumulant κ.
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James–Stein Estimator in the Original
Problem
�e James–Stein estimator was developed in the seminal
work of Charles Stein in  (Stein ), and James and
Stein in  (James and Stein ).�ey showed that the
ordinary least squares estimator (in a special situation as
described below) is dominated by the James–Stein esti-
mator if the dimension of the parameter vector is greater
than two. Many statisticians were �rst not believing this
phenomenon o�en called Stein’s phenomenon or Stein’s
paradox. One has to realize that the James–Stein estima-
tor is a nonlinear estimator and therefore falls outside the
class of linear estimators (linear in the data y). Second it
is a biased estimator and domination of the ordinary least
squares is de�ned in terms of the scalarmean squared error
criterion (MSE).�e situation that was studied by James
and Stein is the following: consider a parameter vector
β = (β, . . . , βp) of dimension p which is the mean of a
mutivariate normal distribution (see 7Multivariate Nor-
malDistributions)with p×p covariancematrix σ Ip, where
I is the identity matrix of dimension p (ones on the diago-
nal, zero elsewhere). Now consider a sample y of size n = 
of that multivariate normal distribution:

y ∼ Np(β, σ Ip) . ()

It is then clear that the components of y, yj, j = , . . . , p, are
independent normally distributed random variables with
mean βj and known homoscedastic variance σ .�e ordi-
nary least squares estimator, which equals the maximum
likelihood estimator in the normal case, is simply

β̂ML = y . ()

To see this, simply write the problem as a regressionmodel:

y = Ipβ + є , ()

where є ∼ N(, σ Ip) and apply the usual ordinary least
squares formula:

β̂OLS = (I′pIp)
− I′py = y . ()

Now consider the scalar mean squared error of all compo-
nents of an estimator β̂ of β. It is de�ned as

MSE(β, β̂) = E(β̂ − β)′(β̂ − β) =
p

∑
j=

E(β̂j − βj)
 . ()

It is easily seen that for the OLS (or ML) estimator, we get

MSE(β, β̂) =
p

∑
j=

E(yj − βj)

= pσ  . ()

James and Stein now showed that the estimator

β̂JS = ( −
(p − )σ 

y′y
) y =

⎛

⎝
 −

(p − )σ 

∑
p
j= y


j

⎞

⎠
y ()

dominates the OLS (ML) with respect to theMSE criterion
above which means that it always has lower MSE than the
OLS independent of the true β if p > .�erefore the OLS
is inadmissible in that case. We can write the JS estimator
also as a function of the OLS or ML estimator:

⎛

⎝
 −

(p − )σ 

β̂′ML β̂ML

⎞

⎠
β̂ML . ()

Note, that if (p − )σ  < ∑p
j= y


j , the JS estimator shrinks

the estimator y towards the origin .�at it why it is some-
times called a shrinkage estimator. James and Stein then
showed that, if p > ,

MSE(β̂JS, β) = pσ  − (p − )σ  exp(−
β′β
σ 

) ⋅ F , ()

where F = F(β, σ , p) is some positive complicated sum. It
is easily seen thatMSE(β̂JS, β) is lower thanMSE(β̂OLS, β)
if p > . Since F is zero if β = , theMSE(β̂JS, β) reaches its
minimum at β =  with the value pσ −(p−)σ  = σ . In
fact, a number of modi�cations are possible. For example
the Stein type estimator

β̂JS = ( −
cσ 

y′y
) y =

⎛

⎝
 −

cσ 

∑
p
j= y


j

⎞

⎠
()

canbeshowntodominatetheOLSas longas < c < (p−)
for p > . Note, that for p ≤ , the OLS is admissible.
Another modi�cation is to use some “guess” vector for β,
lets say, µ.�en the JS estimator can be formulated as

β̂JS =
⎛

⎝
 −

(p − )σ 

∑
p
j=(yj − µj)

⎞

⎠
(y − µ) + µ . ()
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�en the improvement of the JS estimator is small if
(β − µ)′(β − µ) is big and big if our guess was good,
i.e., (β − µ)′(β − µ) is small.
Summarizing the result of James and Stein we can say

that, when there are three or more unrelated measure-
ments of parameters, the MSE as de�ned above can be
reduced by using a combined estimator as the JS estima-
tor. But this may not be true for each single component
of β. �at is, the estimate may be bad for a single com-
ponent and only better if we look at all components as a
whole, i.e., if we look at the sumof all singleMSEmeasures.
�is is an important aspect to be considered when apply-
ing such type of estimators. For each single component the
OLS is admissible. A second aspect is that σ  is assumed
to be known in all formulas.�ird, the JS estimator itself is
inadmissible.

The James–Stein Estimator as an
Empirical Bayes Estimator
In the following we think of β as random variable with
prior density

β ∼ N(, τIp) , ()

where τ is a scalar value.�e Bayes estimator can then be
derived as

β̂B =
τ

τ + σ 
y = ( −

σ 

τ + σ 
) y . ()

Now consider the case that τ is unknown. But instead of
estimating τ, one can estimate the ratio

σ 

τ + σ 
()

as a whole. It can be shown that (again assuming σ  to be
known)

(p − )σ 

y′y
()

is an unbiased estimator of the ratio above. If this estimator
is substituted into (), the JS estimator is obtained.

Further Modifications
Further modi�cations have been made by M. E. Bock in
 (Bock ) for the case that y ∼ N(β, Σ) where Σ is
an arbitrary p × p symmetric positive de�nite covariance
matrix.�e JS estimator in this case is

β̂ = ( −
p∗ − 
y′Σ−y

) y , ()

where p∗ is de�ned as

p∗ =
trace(Σ)
λmax(Σ)

, ()

with λmax(Σ) the maximum eigenvalue of Σ.
Another modi�cation is the positive–part JS estima-

tor introduced by Baranchik in  (Baranchik ). It is
given by

β̂JS+ = ( −
(p − )σ 

y′y
)

+

y ()

where the + sign is de�ned as

z+ =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x, x ≥ 

, x < 
. ()

�us, the e�ect that the factor in brackets can be negative
if y′y is small can be avoided.�e JS+ estimator dominates
the JS estimator but is itself inadmissible since it is not a
smooth estimator.�e other mentioned modi�cations can
also be applied to this estimator.

Stein Type Estimators in Regression
In the usual regression setup

y = Xβ + є , ()

where X is a T ×K matrix of covariates, Stein-type estima-
tors are de�ned as

β̂ST = ( −
cs

b′X′Xb
) b , ()

where b is the ordinary least squares estimator

b = (X′X)
−X′y , ()

s is the usual sum of squared residuals

s = (y − Xb)′(y − Xb) , ()

and c is some constant. See e.g., Judge et al. (). It can
be shown that the estimator is minimax if

 ≤ c ≤


T − K + 
{trace(X′X)

−
⋅


λmax[(X′X)−]

− } .

()
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Jarque-Bera Test

CarlosM. Jarque
Inter American Development Bank, Paris, France

Testing Normality of Observations
In statistical analysis the assumption of data coming from
a normal distribution is o�en made. In fact, up until the
end of the nineteenth century, many people were con-
vinced that there was no need for curves other than the
normal distribution. Later, by the beginning of the twen-
tieth century, most informed opinion had accepted that
populations might be non-normal.�is led to the devel-
opment of other distribution functions and very impor-
tantly to normality testing (see Jarque and Bera (), and
Ord ()). Presently, testing the normality of observa-
tions has become a standard feature in statistical work.�e
Jarque-Bera test is a goodness-of-�t test of departure from
normality, based on the sample skewness and kurtosis.
Consider having v, . . . , vN observations and the wish

to test if they come from a normal distribution. �e test
statistic JB is de�ned as

JB =
N

(W

+
(K − )


)

where N is the number of observations, W is the sample
skewness, and K is the sample kurtosis, de�ned as

W =
µ̂
σ̂ 

=
µ̂

(σ̂ )/

K =
µ̂
σ̂ 

=
µ̂

(σ̂ )
.

In this formula µ̂ and µ̂ are the estimates of the third and
fourth central moments, respectively, and v is the sample
mean:

µ̂ =

N

N

∑
i=

(vi − v̄)

µ̂ =

N

N

∑
i=

(vi − v̄).

In turn, σ̂  is the estimate of the second central moment,
i.e., the sample variance

σ̂  =

N

N

∑
i=

(vi − v̄).

�e hypothesis tested is if skewness is  and kurtosis is ,
which are the values for a normal distribution. �e test
statistic JB follows asymptotically 7Chi-Square distribu-
tion with two degrees of freedom. Normality is rejected if
JB is large. It has maximum asymptotic local power. For
small sample sizes, signi�cance points for α = . and
α = . are given in the table below or may be obtainedas
a routine in most statistical computer so�wares (Table ).

Testing Normality of Unobserved
Regression Residuals
Now consider the linear regression model (see 7Linear
Regression Models) yi = x′iβ + ui for i = , . . . ,N, where
yi is the dependent variable, x′i a  by K vector of observa-
tions on K �xed regressors (X,X, . . . ,XK), ui is the ith
unobservable residual or disturbance, and β is a K by  vec-
tor of unknown parameters. Assume the model contains a
constant term so X =  for all i.
A traditional assumption is statistical and economet-

ric work is that ui is normally distributed (with zero mean
and constant variance σ ). �is model has wide, every-
day application. It is used to model phenomena in many
sectors: economic, �nancial, social, technological, natural
sciences, etc.�e consequences of ui not being normally

Jarque-Bera Test. Table  Normality of observations;
significance points for JB normality test

N α = . α = . N α = . α = .

 . .  . .

 . .  . .

 . .  . .

 . .  . .

 . .  . .

 . .  . .

 . . ∞ . .

 . .

Source: Jarque and Bera ()
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distributed are many, in terms of validity of inferential
processes (e.g., traditional t and F-tests are sensitive to
non-normality); e�ciency of estimates used (the ordi-
nary least squares estimator of β may be very sensitive to
non-normality, particularly in long tailed distributions);
and e�ciency in forecasting techniques.�is may lead to
research and studies that arrive at wrong conclusions and
to incorrect decision making, be it a policy prescription or
a scienti�c �nding.
As shown in Jarque and Bera (), formulating the

distribution of ui as a member of the Pearson Family of
Distributions and applying the LagrangeMultiplier princi-
ple to test for normality ofui within this overarching family
of distributions, then the JB statistic is obtained. In this
case, the test would be computed using the OLS residuals
û, . . . , ûN (i.e., substitute vi for ûi in JB), where ûi = yi−x′ib
and where b in the OLS estimate of β

b = (X′X)
−X′y and with y = (y, . . . , yN)′ and

X′ = (x, . . . , xN) .

�e JB test applied with OLS residuals is simple to
compute and has maximum local asymptotic power. It is
asymptotically distributed as Chi-Square with two degrees
of freedom. For small samples, in any regressionmodel, the
approximation to the �nite sample distribution of the test
can be easily obtained by computer simulation. Regression
residual normality is rejected for large values of JB. Natu-
rally the test may also be applied even if the distribution of
ui is outside the Pearson Family of Distributions. Due to
its simplicity and good power properties it has wide use in
statistical regression analysis.
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Jump Regression Analysis
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Nonparametric regression analysis provides statistical
tools for estimating regression curves or surfaces from
noisy data. Conventional nonparametric regression pro-
cedures, however, are only appropriate for estimating
continuous regression functions. When the underlying
regression function has jumps, functions estimated by the
conventional procedures are not statistically consistent at
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the jump positions. Recently, regression analysis for esti-
mating jump regression functions is under rapid develop-
ment (Qiu ), which is brie�y introduced here.

-D Jump Regression Analysis
In one-dimensional (-D) cases, the jump regression analy-
sis (JRA)model has the form

yi = f (xi) + εi, for i = , , . . . ,n, ()

where {yi, i = , , . . . ,n} are observations of the response
variable y at design points {xi, i = , , . . . ,n}, f is an
unknown regression function, and {εi, i = , , . . . ,n} are
random errors. For simplicity, we assume that the design
interval is [, ]. In (), f is assumed to have the expression

f (x) = g(x) +
p

∑
j=

djI(x > sj), for x ∈ [, ], ()

where g is a continuous function in the entire design inter-
val, p is the number of jump points, {sj, j = , , . . . , p} are
the jump positions, and {dj, j = , , . . . , p} are the corre-
sponding jump magnitudes. If p = , then f is continuous
in the entire design interval. In (), the function g is called
the continuity part of f , and the summation∑p

j= djI(x > sj)
is called the jump part of f .�emajor goal of JRA is to esti-
mate g, p, {sj, j = , , . . . , p} and {dj, j = , , . . . , p} from
the observed data {(xi, yi), i = , , . . . ,n}.
A natural jump detection criterion is

Mn(x) =


nhn

n

∑
i=

YiK (
xi − x
hn

) −


nhn

n

∑
i=

YiK (
xi − x
hn

) ,

()
where hn is a positive bandwidth parameter, K and K
are two density kernel functions with supports [, ] and
[−, ), respectively. Obviously, Mn(x) is a di�erence of
two one-sided kernel estimators.�e �rst kernel estimator
in equation () is right-sided; it is a weighted average of the
observations in the right-sided neighborhood [x, x + hn].
Similarly, the second kernel estimator in () is le�-sided; it
is a weighted average of the observations in the le�-sided
neighborhood [x−hn, x). Intuitively,Mn(x)would be large
if x is a jump point, and small otherwise. So, if we know
that there is only one jump point (i.e., p = ) in the design
interval [, ], then the jump point s can be estimated by
the maximizer of ∣Mn(x)∣ over x ∈ [hn,  − hn], denoted as
ŝ, and d can be estimated byMn(̂s). In cases when p > 
and p is known, the jump positions {sj, j = , , . . . , p} and
the jump magnitudes {dj, j = , , . . . , p} can be estimated
in a similar way. Let s∗j be the maximizer of ∣Mn(x)∣ over
the range

x ∈ [hn,  − hn]/(

j−

⋃
ℓ=

[s∗ℓ − hn, s∗ℓ + hn])

for j = , , . . . , p.�e7order statistics of{s∗j , j = , , . . . , p}
are denoted by s∗

() ≤ s∗
() ≤ . . . ≤ s∗

(p).�en we de�ne

ŝj = s∗
(j) and d̂j =Mn (s∗(j)), for j = , , . . . , p.
When the number of jumps p is unknown, people

o�en use a threshold value un and �ag all design points
in {xi : ∣Mn(xi)∣ ≥ un} as candidate jumps. �en, cer-
tain deceptive candidate jumps need to be deleted using
a modi�cation procedure (cf., Qiu , Sect. ..). An
alternative approach is to perform a series of hypothesis
tests for H : p = j versus H : p > j, for j = , , . . ., until
the �rst “fail to reject H” (cf., Qiu , Sect. ..).

�e jump detection criterion Mn(x) in () can be
regarded as an estimator of the �rst-order derivative f ′(x)
of f . It is based on local constant kernel estimation of the
one-sided limits f−(x) and f+(x). Alternative jump detec-
tion criteria, based on other estimators of f ′(x) or based
on estimators of both the �rst-order and the second-order
derivatives of f , also exist. See Joo and Qiu () for a
recent discussion on this topic and on estimation of the
continuity part g a�er jump points being detected.

-D Jump Regression Analysis
In two-dimensional (-D) cases, the regression model
becomes

Zi = f (xi, yi) + εi, i = , , . . . ,n, ()

where n is the sample size, {(xi, yi), i = , , . . . ,n} are
the design points in the design space, f is the -D regres-
sion function, {Zi, i = , , . . . ,n} are n observations of
the response variable Z, and {εi, i = , , . . . ,n} are ran-
dom errors. For simplicity, we assume that the design
space is the unit square [, ] × [, ]. In such cases, jump
positions of f are curves in the design space, which are
called the jump location curves (JLCs). Because jumps are
an important structure of f , -D JRA is mainly for esti-
mating JLCs and for estimating f with the jumps at the
JLCs preserved, which are referred to as jump detection
and jump-preserving surface estimation, respectively, in the
literature (cf., Qiu , Chaps.  and ).
Early -D jump detection methods assume that the

number of JLCs is known; they are usually the generalized
versions of their -D counterparts, based on estimation
of certain �rst-order directional derivatives of f . In Qiu
and Yandell (), Qiu and Yandell describe the JLCs as
a pointset in the design space, and suggest estimating the
JLCs by another pointset in the same design space. Since
points in a pointset need not form curves, the connection
among the points of a pointset is much more �exible than
the connection among the points on curves, which makes
detection of arbitrary JLCs possible. For instance, Qiu and
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Yandell () suggest �agging a design point as a candi-
date jump point if the estimated gradient magnitude of f at
this point is larger than a threshold. In that paper, we also
suggest two modi�cation procedures to remove certain
deceptive jump candidates. Various other jump detection
procedures, based on estimation of the �rst-order deriva-
tives of f , or the second-order derivatives of f , or both, have
been proposed in the literature. See Sun andQiu () for
a recent discussion on this topic.
In the literature, there are two types of jump-preserving

surface estimation methods. Methods of the �rst type usu-
ally estimate the surface a�er jumps are detected (Qiu
). Around the detected jumps, the surface estimator
at a given point is o�en de�ned by a weighted average
of the observations whose design points are located on
the same side of the estimated JLC as the given point in
a neighborhood of the point. Potential jumps can thus
be preserved in the estimated surface. �e second type
of methods estimates the surface without detecting the
jumps explicitly, using the so-called adaptive local smooth-
ing. Adaptive local smoothing procedures obtain certain
evidence of jumps from the observed data directly, and
adapt to such evidence properly to preserve jumps while
removing noise (Gijbels et al. ).

-D Jump Regression Analysis and Image
Processing
Model () can be used in cases with arbitrary -D design
points. In certain applications (e.g., image processing),
design points are regularly spaced in the -D design space.
In such cases, a simpler model would be

Zij = f (xi, yj) + εij, i = , , . . . ,n; j = , , . . . ,n, ()

where {Zij, i = , , . . . ,n; j = , , . . . , n} are observa-
tions of the response variable Z observed at design points
{(xi, yj), i = , , . . . ,n; j = , , . . . ,n}, and {εij, i =
, , . . . ,n; j = , , . . . ,n} are random errors.
Model () is ideal for describing a monochrome dig-

ital image. In the setup of a monochrome digital image,
xi denotes the ith row of pixels, yj denotes the jth column
of pixels, f is the image intensity function, f (xi, yj) is the
true image intensity level at the (i, j)th pixel, εij denotes
the noise at the (i, j)th pixel, and Zij is the observed image
intensity level at the (i, j)th pixel.�e image intensity func-
tion f o�en has jumps at the outlines of objects.�erefore,
-D JRA can provide a powerful statistical tool for image

processing. In the image processing literature, positions at
which f has jumps are called step edges, and positions at
which the �rst-order derivatives of f have jumps are called
roof edges (cf., Qiu , Chap. ). Edge detection and
edge-preserving image restoration are two major prob-
lems in image processing, which are essentially the same
problems as jump detection and jump-preserving surface
estimation in -D JRA. See Qiu () for a recent dis-
cussion about the connections and di�erences between the
two areas.
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�eoretically, a Kalman �lter is an estimator for what
is called the linear quadratic Gaussian (LQG) problem,
which is the problem of estimating the instantaneous
“state” of a linear dynamic system perturbed by Gaus-
sian white noise, by using measurements linearly related
to the state, but corrupted by Gaussian white noise. �e
resulting estimator is statistically optimal with respect to
any quadratic function of estimation error. R. E. Kalman
introduced the “�lter” in  (Kalman ).
Practically, the Kalman �lter is certainly one of the

greater discoveries in the history of statistical estima-
tion theory, and one of the greatest discoveries in the
twentieth century. It has enabled humankind to do many
things that could not have been done without it, and it
has become as indispensable as silicon in the makeup of
many electronic systems.�e Kalman �lter’s most imme-
diate applications have been for the control of complex
dynamic systems, such as continuous manufacturing pro-
cesses, aircra�, ships, spacecra�, and satellites.
In order to control a dynamic system, one must �rst

know what the system is doing. For these applications, it
is not always possible or desirable to measure every vari-
able that one wants to control.�e Kalman �lter provides
a means for inferring the missing information from indi-
rect (and noisy) measurements. In such situations, the
Kalman �lter is used to estimate the complete state vector
from partial state measurements and is called an observer.
�e Kalman �lter is also used to predict the outcome of
dynamic systems that people are not likely to control, such
as the �ow of rivers during �ood conditions, the trajecto-
ries of celestial bodies, or the prices of traded commodities.
Kalman�ltering is an algorithmmade frommathemat-

ical models. �e Kalman �lter makes it easier to solve a
problem, but it does not solve the problem all by itself. As
with any algorithm, it is important to understand its use
and function before it can be applied e�ectively.

�e Kalman �lter is a recursive algorithm. It has been
called “ideally suited to digital computer implementation,”
in part because it uses a �nite representation of the estima-
tion problem-by a �nite number of variables (Gelb et al.
). It does, however, assume that these variables are
real numbers with in�nite precision. Some of the problems
encountered in its use arise from the distinction between
�nite dimension and �nite information, and the distinc-
tion between �nite and manageable problem sizes.�ese
are all issues on the practical side of Kalman �ltering that
must be considered along with the theory.
It is a complete statistical characterization of an esti-

mation problem.�e Kalman �lter is much more than an
estimator, because it propagates the entire probability dis-
tribution of the variables it is tasked to estimate.�is is a
complete characterization of the current state of knowl-
edge of the dynamic system, including the in�uence of
all past measurements.�ese probability distributions are
also useful for statistical analysis and predictive design of
sensor systems.
In a limited context, the Kalman �lter is a learning

process. It uses a model of the estimation problem that
distinguishes between phenomena (what we are able to
observe), noumena (what is really going on), and the state
of knowledge about the noumena that we can deduce from
the phenomena.�at state of knowledge is represented by
probability distributions. To the extent that those proba-
bility distributions represent knowledge of the real world,
and the cumulative processing of knowledge is learning,
this is a learning process. It is a fairly simple one, but quite
e�ective in many applications. Figure  depicts the essen-
tial subjects forming the foundations for Kalman �ltering
theory. Although this shows Kalman �ltering as the apex
of a pyramid, it is but part of the foundations of another
discipline-modern control theory-and a proper subset of
statistical decision theory (Grewal and Andrews ).
Applications of Kalman �ltering encompass many

�elds. As a tool, the algorithm is used almost exclusively
for estimation and performance analysis of estimators and
as observers for control of a dynamical system. Except for
a few fundamental physical constants, there is hardly any-
thing in the universe that is truly constant. �e orbital
parameters of the asteroid Ceres are not constant, and

Miodrag Lovric (ed.), International Encyclopedia of Statistical Science, DOI ./----,
© Springer-Verlag Berlin Heidelberg 
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even the “�xed” stars and continents aremoving. Nearly all
physical systems are dynamic to some degree. If we want
very precise estimates of their characteristics over time,
then we must take their dynamics into consideration.
We do not always know the dynamics very precisely.

Given this state of partial ignorance, the best we can do is
express ignorance more precisely-using probabilities.�e
Kalman �lter allows us to estimate the state of such systems
with certain types of randombehavior by using such statis-
tical information. A few examples of common estimation
problems are shown in Table .�e third column lists some
sensor types that we might use to estimate the state of the
corresponding dynamic systems. �e objective of design
analysis is to determine how best to use these sensor types
for a given set of design criteria.�ese criteria are typically
related to estimation accuracy and system cost.
Because the Kalman �lter uses a complete descrip-

tion of the probability distribution of its estimation errors
to determine the optimal �ltering gains, this probability
distribution may be used to assess its performance as a
function of the design parameters of an estimation sys-
tem, such as the types of sensors to be used, the locations
and orientations of the various sensor types with respect to
the system to be estimated, the allowable noise characteris-
tics of the sensors, the pre�ltering methods for smoothing
sensor noise, the data sampling rates for the various sen-
sor types, and the level of model simpli�cation to reduce
implementation requirements.

�is analytical capability of the Kalman �lter enables
system designers to assign “error budgets” to subsystems of
an estimation systemand to trade o� the budget allocations
to optimize cost or other measures of performance while
achieving a required level of estimation accuracy. Further-
more, it acts like an observer by which all the states not
measured by the sensors can be constructed for use in the
control system applications.

Linear Estimation
Linear estimation addresses the problem of estimating the
state of a linear stochastic system by using measurements

or sensor outputs that are linear functions of the state. We
suppose that the stochastic systems can be represented by
the types of plant and measurement models (for contin-
uous and discrete time) shown as equations in Table ,
with dimensions of the vector and matrix quantities.�e
measurement and plant noise vk and wk, respectively, are
assumed to be zero-mean 7Gaussian processes, and the
initial value xo is a Gaussian random variable with known
mean x and known covariance matrix P. Although the
noise sequenceswk and vk are assumed to be uncorrelated,
this restriction can be removed, modifying the estimator
equations accordingly.
A summary of equations for the discrete-time Kalman

estimator are shown in Table , where Qk,Rk are process
and measurement noise covariances, Φk is the state transi-
tion matrix, Hk is the measurement sensitivity matrix, Kk

is the Kalman gain. Pk(−),Pk(+) are covariances before
and a�er measurement updates.

Implementation Methods
�e Kalman �lter’s theoretical performance has been
characterized by the covariance matrix of estimation
uncertainty, which is computed as the solution of a matrix
Riccati di�erential and di�erence equation. A relationship
between optimal deterministic control and optimal esti-
mation problems has been described via the separation
principle.
Soon a�er the Kalman �lter was �rst implemented

on computers, it was discovered that the observed mean-
square estimation errors were o�en much larger than the
values predicted by the covariancematrix, even with simu-
lated data.�e variances of the �lter estimation errors were
observed to diverge from their theoretical values, and the
solutions obtained for the Riccati equations were observed
to have negative variances. Riccati equations should have
positive or zero variances.
Currentwork on theKalman�lter primarily focuses on

development of robust and numerically stable implemen-
tation methods. Numerical stability refers to robustness
against roundo� errors. Numerically stable implementa-
tion methods are called square root �ltering because they
use factors of the covariance matrix of estimation uncer-
tainty or its inverse, called the information matrix.
Numerical solution of the Riccati equation tends to

be more robust against roundo� errors if Cholesky fac-
tors of a symmetrical nonnegative de�nite matrix P is a
matrix C such that CCT = P. Cholesky decomposition
algorithms solve for C that is either upper triangular or
lower triangular. Another method is modi�ed Cholesky
decomposition. Here, algorithms solve for diagonal factors
and either a lower triangular factorL or anupper triangular
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Kalman Filtering. Table  Examples of estimation problems

Application Dynamic system Sensor types

Process control Chemical plant Pressure, temperature, flow rate, gas analyzer

Flood prediction River system Water level, rain gauge, weather radar

Tracking Spacecraft Radar, imaging system

Navigation Ships Sextant

Aircraft, missiles Log

Smart bombs Gyroscope

Automobiles Accelerometer

Golf carts Global Positioning System (GPS) receiver

Satellites GPS receiver

Space shuttle GPS receiver, Inertial Navig. Systems (INS)

Kalman Filtering. Table  Linear plant and measurement models

Model Continuous time Discrete time

Plant x(t) = F(t)x(t) +w(t) xk = Φk−xk− +wk−

Measurement z(t) = H(t)x(t) + v(t) zk = Hkxk + vk
Plant noise E⟨w(t)⟩ = 

E⟨w(t)wT(s)⟩ = δ(t − s)Q(t)

E⟨wk⟩ = 

E ⟨wkwT
i ⟩ = ∆(k − i)Qk

Observation noise E⟨v(t)⟩ = 

E⟨v(t)vT(s)⟩ = δ(t − s)R(t)

E⟨vk⟩ = 

E ⟨vkvTi ⟩ = ∆(k − i)Rk

(Linear model) Symbol Dimensions Symbol Dimensions

Dimensions of vectors and matrices x,w n ×  Φ,Q n × n

z, v ℓ ×  H ℓ × n

R ℓ × ℓ ∆, δ Scalar

factorU such that P = UDuU
T = LDLL

T whereDL andDu

are diagonal factors with nonnegative diagonal elements.
Another implementation method uses square root infor-
mation �lters that use a symmetric product factorization of
the informationmatrix P−. Another implementation with
improved numerical properties is the “sigmaRho �lter.”
Individual terms of the covariance matrix can be inter-
preted as Pij = σiσjρij where Pij is the ijth of the covariance
matrix, σi is the standard deviation of the estimate of the
ith state component, and ρij is the correlation coe�cient
between ith and jth state component (Grewal and Kain
).

Alternative Kalman �lter implementations use these
factors of the covariance matrix (or its inverse) in three
types of �lter operations: () temporal updates, () obser-
vation updates, and () combined updates (temporal and
observation).�e basic algorithm methods used in these
alternative Kalman �lter implementations fall into four
general categories. �e �rst three of these categories are
concerned with decomposing matrices into triangular fac-
tors and maintaining the triangular form of the factors
through all the Kalman �ltering operation.�e fourth cat-
egory includes standardmatrix operations (multiplication,
inversion, etc.) that have been specialized for triangular
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Kalman Filtering. Table  Discrete-time Kalman filter equations

System dynamic model xk = Φk−xk− +wk−, wk ∼ N(,Qk)

Measurement model zk = Hkxk = vk , vk ∼ N(, Rk)

Initial conditions E⟨x⟩ = x̂, E ⟨̃xx̃T⟩ = P

Independence assumption E ⟨wkvTj ⟩ =  for all k and j

State estimate extrapolation x̂k(−) = Φk−x̂k−(+)

Error covariance extrapolation Pk(−) = Φk−Pk−(+)ΦT
k− + Qk−

State estimate observational update x̂(+) = x̂k(−) + Kk[zk − Hk x̂k(−)]

Error covariance update Pk(+) = [I − KkHk]Pk(−)

Kalman gain matrix Kk = Pk(−)HT
k [HkPk(−)HT

k + Rk]
−

matrices.�ese implementation methods have succeeded
where the conventional Kalman �lter implementations
have failed (Grewal and Andrews ).
Even though uses are being explored in virtually every

discipline, research is particularly intense on successful
implementation of Kalman �ltering to global position-
ing systems (GPS), inertial navigation systems (INS), and
guidance and navigation. GPS is a satellite-based system
that has demonstrated unprecedented levels of position-
ing accuracy, leading to its extensive use in both military
and civil arenas. �e central problem for GPS receivers
is the precise estimation of position, velocity, and time,
based on noisy observations of satellite signals.�is pro-
vides an ideal setting for the use of Kalman �ltering. GPS
technology is used in automobile, aircra�, missiles, ships,
agriculture, and surveying. Currently, the Federal Aviation
Agency (FAA) is sponsoring research on the development
of wide-area augmentation system (WAAS) for precision
landing and navigation of commercial aircra� (Grewal
et al. ).
Kalman �lters are used in bioengineering, tra�c sys-

tems, photogrammetry, and myriad process controls.�e
Kalman �lter is observer, parameter identi�er in model-
ing, predictor, �lter, and smoother in a wide variety of
applications. It has become integral to twenty-�rst century
technology (Grewal and Kain ; Grewal et al. ).
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Kaplan-Meier Estimator
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�e Kaplan-Meier estimator estimates the distribution
function of a lifetime T based on a sample of randomly
right censored observations. In survival analysis the life-
time T is a nonnegative random variable describing the
time until a certain event of interest happens. In medical
applications examples of such events are the time till death
of a patient su�ering from a speci�c disease, the time till
recovery of a disease a�er the start of the treatment, or the
time till remission a�er the curing of a patient. A typical
di�culty in survival analysis is that the observationsmight
be incomplete. For example, when studying the time till
death of a patient with a speci�c disease, the patient might
die from another cause. As a consequence the lifetime of
this patient is not observed, and is only known to be larger
than the time till the patient was “censored” by the other
cause of death. Such a type of censoring mechanism is
called right randomcensorship.Other areas of applications
in which one encounters this type of data are reliability in
industry and analysis of duration data in economics, to just
name a few.
Let T,T,⋯,Tn denote n independent and identically

distributed random variables, all having the same distri-
bution as the lifetime T. Denote by F(t) = P{T ≤ t} the
cumulative distribution function ofT. Due to the right ran-
dom censoring, the lifetime T might be censored by a cen-
soring time C, having cumulative distribution function G.
Associated at each lifetime Ti there is a censoring time Ci.
Under a right random censorship model the observations
consist of the pairs

(Zi, δi) where Zi = min(Ti,Ci) and
δi = I{Ti ≤ Ci} i = ,⋯,n.

�e indicator random variable δ = I{T ≤ C} takes value 
when the lifetime T is observed, and is  when the cen-
soring time is observed instead. A crucial assumption in
this model is that the lifetime Ti (also o�en called sur-
vival time) is independent of the censoring time Ci for all
individuals. An observation (Zi, δi) is called uncensored
when δi =  and hence the survival time Ti for individ-
ual i has been observed. When δi =  the observed time
is the censoring time Ci and one only has the incomplete
observation that Ti > Ci.
Kaplan and Meier () studied how to estimate the

survival function S(t) =  − F(t) = P{T > t}, based

on observations (Z, δ),⋯, (Zn, δn) from n patients.�e
estimation method does not make any assumptions about
a speci�c form of the cumulative distribution functions F
and G, and is therefore a nonparametric estimate. When
there are no tied observations the estimate is de�ned as

Ŝ(t)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∏
j:Z( j)≤t

( n − j

n − j + 
)

δ( j)

if t < Z(n)

 if t ≥ Z(n),

where Z() ≤ Z()⋯ ≤ Z(n) denote the ordered Zi’s, and
δ(i) is the indicator variable associated with Z(i). In case of
a tie between a censored and an uncensored observation,
the convention is that the uncensored observation hap-
pened just before the censored observation. An equivalent
expression, for t < Z(n), is

Ŝ(t) = ∏
j:Z(j)≤t

( −
δ( j)

n − j + 
).

In case of n complete observations, δ(i) =  for all indi-
viduals, and the Kaplan-Meier estimate reduces to Sn(t) =
−#{ j : Zj ≤ t}/n, i.e., oneminus the empirical cumulative
distribution function. �e latter estimate is a decreasing
step function with downward jumps of size /n at each
observation Zj = Tj.
Suppose now that there are tied observations, and that

there are only r distinct observations. Denote by Z() ≤
Z() ≤ Z(r) the r ordered di�erent observations, and by
dj the number of times that Z(j) has been observed.�en,
for t < Z(r), the Kaplan-Meier estimate is de�ned as

∏
j:Z( j)≤t

( −
dj

nj
)

δ( j)

,

where nj denotes the number of individuals in the sample
that are at risk at time point Z( j), i.e., the set of individ-
uals that are still “alive” just before the time point Z( j).
�e Kaplan-Meier estimate is also called the product-limit
estimate.
In studies of life tables (see 7Life Table), the actuar-

ial estimate for the survival function was already around
much earlier. One of the �rst references for the product-
limit estimate, obtained as a limiting case of the actuarial
estimate, is Bähmer ().

�e Kaplan-Meier estimate of the survival function
S =  − F is a decreasing step function, which jumps at
the uncensored observations but remains constant when
passing a censored observation. In contrast to the empir-
ical estimate Sn based on a complete sample of size n, the
sizes of the jumps are random.
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�e construction of the Kaplan-Meier estimate Ŝ(t)
also has a very simple interpretation due to Efron ().
�e mass /n that is normally attached to each observation
in the empirical estimate for S, is now for a censored obser-
vation redistributed equally over all observations that are
larger than the considered one.
Kaplan andMeier () give the maximum likelihood

derivation of the product-limit estimate and discuss mean
and variance properties of it. An estimate for the vari-
ance of Ŝ(t)was already established byGreenwood ().
Greenwood’s formula estimates the variance of Ŝ(t) by

V̂ar (̂S(t)) = (̂S(t)) ∑
j:Z(j)≤t

dj

nj(nj − dj)
.

�is estimate can be used to construct con�dence intervals.
�e theoretical properties of the Kaplan-Meier esti-

mate have been studied extensively. For example, weak
convergence of the process

√
n (̂S(t) − S(t)) to a Gaussian

process was established by Breslow and Crowley (),
and uniform strong consistency of the Kaplan-Meier
estimate was proven by Winter et al. ().

�e Kaplan-Meier estimate is implemented in most
statistical so�ware packages, and is a standard statistical
tool in survival analysis.
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Introduction
When two (or more) observers are independently classify-
ing items or observations into the same set of k mutually
exclusive and exhaustive categories, it may be of interest
to use a measure that summarizes the extent to which the
observers agree in their classi�cations.�e Kappa coe�-
cient �rst proposed by Cohen () is one such measure.
In order to de�ne this measure, let pij be the propor-

tion of items assigned to category i by Observer  and
to category j by Observer . Furthermore, let pi+ be the
proportion of items assigned to category i by Observer 
and p+j the proportion of items assigned to category j by
Observer . If these proportions or sample probabilities are
represented in terms of a two-way contingency table with
k rows and k columns, then pij becomes the probability in
the cell corresponding to row i and column j. With row i

being the same as column i for i = , . . . , k, the diagonal of
this table with probabilities pii (i = , . . . , k) represents the
agreement probabilities, whereas the o�-diagonal entries
represent the disagreement probabilities.

�e observed probability of agreement Pao =
k

∑
i=
pii

could, of course, be used as an agreement measure. How-
ever, since there may be some agreement between the two
observers based purely on chance, it seems reasonable that
a measure of interobserver agreement should also account
for the agreement expected by chance. By de�ning chance-

expected agreement probability as Pac =
k

∑
i=
pi+p+i and

based on independent classi�cations between the two
observers, Cohen () introduced the Kappa coe�-
cient as

K = Pao − Pac

 − Pac
()

where K ≤ , with K =  in the case of perfect agreement,
K =  when the observed agreement probability equals
that due to chance, and K <  if the observed agreement
probability is less than the chance-expected one.
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Kappa can alternatively be expressed in terms of the
observed probability of disagreement Pdo and the chance-
expected probability of disagreement Pdc as

K =  − Pdo

Pdc

; Pdo =
k

∑
i=

k

∑
j=

i≠j

pij, Pdc =
k

∑
i=

k

∑
j=

i≠j

pi+p+j ()

�e form of K in () is the most frequently used one. How-
ever, it should be pointed out that the normalization used
in (), i.e., using the dominator  − Pac such that K ≤ , is
not unique. In fact, there are in�nitely many such normal-
izations.�us, for any given marginal probability distribu-
tions {pi+} and {p+j}, one could, for example, instead of

the denominator in (), use
k

∑
i=

( 

pα
i+ +



pα
+i)

/α
− Pac for

any real value of α. For α → −∞, this alternative denomi-

nator would become
k

∑
i=
min{pi+, p+i} − Pac. No such non-

uniqueness issue would arise by using the form of K in
().�is K also has the simple interpretation of being the
proportional di�erence between the chance and observed
disagreement probabilities, i.e., the relative extent to which
Pdo is less than Pdc.

Weighted Kappa
In the case when the k >  categories are ordinal, or
also possibly in some cases involving nominal categories,
some disagreements may be considered more serious than
others. Consequently, the weighted Kappa (Kw)was intro-
duced (Cohen ). In terms of the set of nonnegative
agreement weights vij ∈ [, ] and disagreement weights
wij ∈ [, ] for all i and j, Kw can be de�ned as

Kw =

k

∑
i=

k

∑
j=
vijpij −

k

∑
i=

k

∑
j=
vijpi+p+j

 −
k

∑
i=

k

∑
j=
vijpi+p+j

()

=  −

k

∑
i=

k

∑
j=
wijpij

k

∑
i=

k

∑
j=
wijpi+p+j

()

where wij =  − vij,wij = wji for all i and j, and wij = 
for all i = j. Of course, when wij is the same for all i ≠ j,
Kw reduces to K in () – (). From (), which seems to be
the most intuitive and preferred form of Kw, it is clear that
Kw ≤ , with Kw =  if, and only if, pij =  for all i ≠ j

(i.e., if all disagreement cells have zero probability),Kw = 
under independence (i.e., pij = pi+p+j for all i and j), and
Kw may also take on negative values. Unless there are par-
ticular justi�cations to the contrary, themost logical choice

of weights would seem to be wij = ∣i − j∣/(k − ) or wij =
(i − j)/(k − ) for all i and j.

Specific Category Kappa
Besides measuring the overall agreement between two
observers, it may be of interest to determine their extent
of agreement on speci�c categories. As �rst proposed by
Spitzer et al. () (see also (Fleiss et al. )), suchmea-
surement required the original k × k table to be collapsed
into  ×  tables, one for each speci�c category.�us, to
measure the agreement on a speci�c category s, the orig-
inal k × k table would need to be collapsed into a  × 
table with one category being the original s category and
the other category being “all others”.�e agreement mea-
surement Ks was then obtained by computing the value of
K in () based on the collapsed  ×  table.
As an alternative way of obtaining the agreement Ks

on the speci�c category s, without the need to collapse the
original k×k table, Kvålseth () proposed the speci�c –
category Kappa as

Ks =
pss − ps+p+s
ps − ps+p+s

, ps =
ps+ + p+s


()

�e Ks can alternatively be expressed as

Ks =  −
∑∑

Ds

pij

∑∑
Ds

pi+p+j
()

where∑∑
Ds

denotes the summation over all disagreement

cells for category s, i.e.,

Ds = {(s, j) for all j ≠ s and (i, s) for all i ≠ s} ()

From (), Ks is the proportional di�erence between the
chance - expected disagreement and the observed dis-
agreement for the speci�c category s. Note that K in ()
and () are weighted arithmetic means of Ks in () and (),
respectively, for s = , . . . , k, with the weights being based
on the denominators in () – ().
When Ks is expressed as in (), an extension to the

case when disagreements should be unequally weighted is
rather obvious.�us, for disagreement weights wij ∈ [, ]
for all i and j, with wij =  for all i = j, the follow-
ing weighted speci�c – category Kappa has been proposed
(Kvålseth ):

Kws =  −
∑∑

Ds

wijpij

∑∑
Ds

wijpi+p+j
()

whereDs is the set of disagreement cells in ().Whenwij is
the same for all (i, j) ∈ Ds, () reduces to (). Note also that
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Kw in () is a weighted arithmetic mean of the Kws for s =
, . . . , k, with the weights based on the denominator in ().

�e possible values of Ks and Kws range from  (when
the disagreement probabilities for category s are all zero),
through  (under the independence psj = ps+p+j for
all j and pis = pi+p+s for all i), and to negative values
when observed disagreement exceeds chance - expected
disagreement for category s.

Conditional and Asymmetric Kappa
Light () considered the agreement between two
observers for only those items (observations) thatObserver
 assigned to category i, with the conditional Kappa de�ned
as

K
(i)
∣ =

pii/pi+ − p+i
 − p+i

()

�is measure can also be expressed as

K
(i)
∣ =  −

k

∑
j=
j≠i

pij

k

∑
j=
j≠i

pi+p+j

()

which immediately suggests the following weighted form
(Kvålseth ):

K
(i)
∣,w =  −

k

∑
j=
j≠i

wijpij

k

∑
j=
j≠i

wijpi+p+j

()

Whereas K in () – () and Kw in () – () treat the two
observers equivalently, i.e., these measures are e�ectively
symmetric, asymmetric versions of Kappa may be de�ned
in terms of the weighted means of the measures in () –
() as

K∣ =
k

∑
i=

pi+K
(i)
∣ , K∣,w =

k

∑
i=

pi+K
(i)
∣,w ()

Such measures as in () may be appropriate if Observer 
is to be designated as the “standard” against which clas-
si�cations by Observer  are to be compared (Kvålseth
).

Statistical Inferences
Consider now that the above Kappa coe�cients are esti-
mates (and estimators) based on sample probabilities (pro-
portions) pij = nij/N for i = , . . . , k and j = , . . . , k and

sample sizeN =
k

∑
i=

k

∑
j=
nij, with {πij} being the correspond-

ing population probabilities. It may then be of interest to
make statistical inferences, especially con�dence - interval
construction, about the corresponding {πij} – based pop-
ulation coe�cients or measures. Such approximate infer-
ences can bemade based on the delta method (Bishop et al.
).
Consequently, under multinomial sampling and when

N is reasonably large, the various Kappa coe�cients intro-
duced above are approximately normally distributed with
means equal to the corresponding population coe�cients
andwith variances that can be determined as follows. Since
thoseKappa coe�cients can all be expressed in terms ofKw

in () by special choices among the set of weights {wij}, it is
su�cient to determine the variance of (the estimator) Kw.
For instance, in the case of Ks in () and Kws in (), one
can simply set wij =  in () for all cells that do not belong
to Ds in ().�us, the estimated variance of Kw has been
given in (Kvålseth ) as

Var(Kw) = (NFw)
−{

k

∑
i=

k

∑
j=

pijE

ij

− [Kw − ( − Fw)( − Kw)] } (a)

where

Eij =  − wij − ( − wi+ − w+j)( − Kw) (b)

wi+ =
k

∑
j=

wijp+j, w+j =
k

∑
i=

wijpi+, Fw =
k

∑
i=

k

∑
j=

wijpi+p+j.

(c)
Note that Fw is the dominator of Kw in ().

Example As an example of this inference procedure, con-
sider the (�ctitious) probabilities (proportions) in Table .
In the case of category , e.g., it follows from () or ()

and Table  that the interobserver agreement K = ..

Kappa Coefficient of Agreement. Table  Results from two
observers’ classifications with three categories

Observer 

Observer     Total

 . . . .

 . . . .

 . . . .

Total . . . .
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If, however, the categories in Table  are ordinal and the
weights wij = ∣i − j∣/(k − ) are used, it is found from () –
() and Table , with D consisting of the cells (,), (,),
(,), and (,), that Kw = .. Similarly, K = .,K =
., Kw = ., and Kw = ., whereas, from () – (),
K = . and Kw = ..
In order to construct a con�dence interval for the pop-

ulation equivalent of Kw, () can be used by (a) setting
wij =  for those cells that do not belong to D in (), i.e.,
the cells (,), (,), (,) and (,) and (b) replacing Kw

and Fw with Kws and Fws (the denominator of Kws).�us,
with Kw = − ./. = . (and Fw = .),
it is found from (b) – (c) that E = ., E =
., . . . ,E = . so that, from (a), if the data in
Table  are based on sample size N = , it is found that
Var(Kw) = .. Consequently, an approximate %
con�dence interval for the population equivalent of Kw

becomes . ± .
√
., or (., .). By compari-

son, setting w = w = w = w =  and all other wij = ,
it is found in (Kvålseth ) that a % con�dence inter-
val for the population equivalent of the unweighted K is
(., .).

Concluding Comment
While the overall Kappa and its weighted form in () – ()
are themost popularmeasures of interobserver agreement,
they are not without some criticism or controversy. In
particular, they depend strongly on the marginal distribu-
tions {pi+} and {p+j} so that, when those distributions
are highly uneven (non-uniform), values of Kappa tend
to be unreasonably small. Also, since the pii (i = , . . . , k)
are included in the marginal distributions, the agreement
probabilities enter into both the overall probability of
agreement as observed and as expected by chance.

About the Author
For biography see the entry 7Entropy.
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Kendall’s Tau
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Kendall’s Tau is a nonparametric measure of the degree of
correlation. It was introduced by Maurice Kendall in 
(Kendall ).
Kendall’s Taumeasures the strength of the relationship

between two ordinal level variables. Together with Spear-
man’s rank correlation coe�cient, they are two widely
accepted measures of rank correlations and more popular
rank correlation statistics.
It is required that the two variables, X and Y ,

are paired observations. �en, provided both variables
are at least ordinal, it would be possible to calculate
the correlation between them. In general, application
of the product-moment correlation coe�cient is limited
by the requirement that the trend must be linear. A less
restrictive measure of correlation is based on the proba-
bilistic notion that the correlation between variablesX and
Y is strong if on average, there is a high probability that an
increase in X will be accompanied by an increase in Y (or
decrease in Y).�en the only limitation imposed on the
trend line is that it should be either continually increasing
or continually decreasing.
One of the properties of coe�cients that adopt this

notion of correlation, like Kendall’s Tau coe�cient, is that
the de�nition of the correlation depends only on the ranks
of the data values and not on the numerical values. To this
end, they can be applied either to data from scaled variables
that has been converted to ranks, or to ordered categorical
variables.
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Formula for Calculation of Kendall’s Tau
Coefficient, (Hollander and Wolfe )
For any sample of n paired observations of a bivariate vari-

ables (X,Y), there are m = n(n − )


possible comparisons
of points (Xi,Yi) and (Xj,Yj). A pair of observation data
set (Xi,Yi), (Xj,Yj) is called concordant if Xj − Xi and
Yj −Yi has the same sign. Otherwise, if they have opposite
signs, the pair is called discordant. If Xi = Xj, or Yi = Yj or
both, the comparison is called a “tie.” Ties are not counted
as concordant or discordant.
If C is the number of pairs that are concordant and D

is the number of pairs that are discordant, then the value
Tau of Kendall’s Tau is

Tau = C −D

m

�e quantity S = C −D is known as Kendall S. A predomi-
nance of concordant pairs resulting in a large positive value
of S indicates a strong positive relationship between X and
Y ; a predominance of discordant pairs resulting in a large
negative value of S indicates a strong negative relationship
between X and Y .

�e denominator m is a normalizing coe�cient such
that the Kendall’s Tau coe�cient can assume values
between − and +: − ≤ Tau ≤ .

�e interpretation of Kendall’s Tau value is similar as
for the other correlation coe�cients: when the value is +,
then the two rankings are the same (the concordance
between two variables is perfect); when the value is −,
the discordance is perfect (the ranking of one of vari-
ables is reverse to the other); and �nally any other value
between − and + is interpreted as a sign of the level
of relationship, a positive relationship (Kendall’s Tau > ,
both variables increase together), or a negative relationship
(Kendall’s Tau < , the rank of one variable increases, the
other one decreases); the value  is an indication for non
relationship.
If there are a large number of ties, then the dominator

has to be corrected by
√

(m − nx)(m − ny)where nx is the
number of ties involving X and ny is the number of ties
involving Y .
For inferential purposes, Kendall’s Tau coe�cient

is used to test the hypothesis that X and Y are
independent, Tau= , against one of the alternatives:
Tau ≠ , Tau > , Tau < . Critical values are tabulated,
Daniel (), Abdi ().�e problem of ties is consid-
ered also by Sillitto (), Burr ().
In large samples, the statistic

 × Kendall’s Tau ×
√
n(n − )

√
(n + )

has approximately a normal distribution with mean  and
standard deviation , and therefore can be used as a test
statistic for testing the null hypothesis of zero correlation.
It can be used also to calculate the con�dence intervals
(Noether ).

Kendall’s Tau and Spearman’s Rho
Kendall’s Tau is equivalent to Spearman’s Rho, with regard
to the underlying assumptions. But they di�er in their
underlying logic and also computational formulas are quite
di�erent. �e relationship between the two measures is
given by

− ≤ {( × Kendall’s Tau) − ( × Spearman’s Rho)} ≤ +.

�eir values are very similar in most cases, and when dis-
crepancies occur, it is probably safer to interpret the lower
value.More importantly, Kendall’sTau and Spearman’sRho
imply di�erent interpretations. Spearman’s Rho is consid-
ered as the regular Pearson’s correlation coe�cient in terms
of the proportion of variability accounted for, whereas
Kendall’s Tau represents a probability, i.e., the di�erence
between the probabilities that the observed data are in the
same order versus the probability that the observed data
are not in the same order.

�e distribution of Kendall’s Tau has better statistical
properties. In most of the situations, the interpretations of
Kendall’s Tau and Spearman’s rank correlation coe�cient
are very similar and thus invariably lead to the same infer-
ences. In fact neither statistics has any advantage in being
easier to apply (since both are freely available in statistical
packages) or easier to interpret. However Kendall’s statis-
tics structure is much simpler than that of the Spearman
coe�cient and has the advantage that it can be extended to
explore the in�uence of a third variable on the relationship.

�ere are two di�erent variations of Kendall’s Tau that
make adjustment for ties: Tau b and Tau c.�ese measures
di�er only as to how tied ranks are handled.

Kendall’s Tau-b
Kendall’s Tau-b is a nonparametric measure of correlation
for ordinal or ranked variables that take ties into account.
�e sign of the coe�cient indicates the direction of the
relationship, and its absolute value indicates the strength,
with larger absolute values indicating stronger relation-
ships. Possible values ranges from − to .�e calculation
formula for Kendall’s Tau-b is given by the following:

Tau − b = C −D√
(C +D + X)(C +D + Y)

whereX is the number of pairs tied only on theX variable,
Y is the number of pairs tied only on theY variable.When
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there are no ties, the values of Kendall’s Tau and Kendall’s
Tau b are identical.

�e Kendall’s Tau-b has properties similar to the prop-
erties of the Spearman Rho. Because it does estimate a pop-
ulation parameter, many statisticians prefer the Kendall’s
Tau-b to the Spearman rank correlation coe�cient.

Kendall’s Tau-c
Kendall’s Tau-c, is a variant of Tau-b used for situations
of unequal-sized sets of ordered categories. It equals the
excess of concordant over discordant pairs, multiplied by a
term representing an adjustment for the size of the table. It
is also called Kendall–Stuart Tau-c (or Stuart’s Tau-c) and
is calculated by formula

Tau − c = m × (C −D)
n(m − )

wherem is the smaller of the number of rows and columns,
and n is the sample size.
Kendall’s Tau-b and Kendall’s Tau-c are superior to

other measures of ordinal correlation when a test of
signi�cance is required.
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Background
Consider the problem of testing the null hypothesis that a
set of random variables Xi, i = , . . . ,n, is a random sample
from a speci�ed continuous distribution function (d.f.) F.
Under the null hypothesis, the empirical d.f.

Fn(x) =

n

n

∑
i=

I{Xi ≤ x}

must “agree” with F. One way to measure this agreement
is to use omnibus test statistics from the empirical process
(see 7Empirical Processes)

vn(x) =
√
n(Fn(x) − F(x)).

�e time transformed uniform empirical process

un(t) = vn(x), t = F(x)

is an empirical process based on random variables Ui =
F(Xi), i = , . . . ,n, that are uniformly distributed on
[, ] under the null hypothesis. Hence, although the
construction of un depends on F, the null distribu-
tion of this process does not depend on F any more
(Kolmogorov (), Doob ()). From this sprang a
principle, universally accepted in goodness of �t test-
ing theory, that one should choose tests of the above
hypothesis based on statistics A(vn,F) which can be rep-
resented as statistics B(un) just from un. Any such statis-
tic, like, for example, weighted Cramér-von Mise statistics
∫ vn(x)α(F(x))dF(x), or Kolmogorov-Smirnov statistics
maxx ∣vn(x)∣/α(F(x)), will have a null distribution free
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from F, and hence this distribution can be calculated once
and used for many di�erent F – still a very desirable prop-
erty in present times, in spite of great advantages in com-
putational power. It is called the distribution free property
of the test statistic.
However, as �rst clari�ed by Gikhman () and Kac

et al. (), this property is lost even asymptotically as
soon as one is �tting a family of parametric d.f.’s. More pre-
cisely, suppose one is given a parametric family of d.f.’s Fθ ,
θ a k-dimensional Euclidean parameter, and one wishes to
test the hypothesis that Xi, i = , . . . ,n, is a random sam-
ple from some Fθ . Denoting θ̂n a n/-consistent estimator
of θ, the relevant process here is the parametric empirical
process

v̂n(x)=
√
n(Fn(x) − F

θ̂n
(x)).

To describe the e�ect of estimation of θ on v̂n, let Ḟθ(x) =
∂Fθ(x)/∂θ and yT denote the transpose of a k-vector y.
Under simple regularity conditions,

v̂n(x) =
√
n(Fn(x) − F

θ̂n
(x))

= vn(x) − Ḟθ(x)T
√
n(θ̂n − θ) + oP().

If additionally, for a k-vector of square integrable func-
tions ψ,

√
n(θ̂n − θ) = ∫ ψdvn + oP(),

then v̂n converges weakly to a mean zero Gaussian pro-
cess v̂, di�erent from the weak limit of vn, with a covari-
ance function that depends on the unknown parameter
θ via Fθ and ψ in a complicated fashion (Durbin (),
Khmaladze ()). Critical values of any test based on
this process are di�cult to �nd even for large samples.
�us the goodness of �t testing theory was in danger of
being fragmented into large number of particular cases and
becoming computationally heavy and complex.

Khmaladze Transformation
To overcome this shortcoming, Khmaladze devised a
transformation of v̂n whose asymptotic null distribution
under the parametric null hypothesis is distribution free
while at the same time this transformed process stays in
one-to-one correspondence with the process v̂n without
the loss of any “statistical information.”
To describe this transformation, let fθ denote density

of Fθ and ψθ = ∂ log fθ/∂θ and let v denote the limit in
distribution of empirical process vn. Equip the process v̂
with �ltration H = {Hx,−∞ < x < ∞}, where each
σ-�eld Hx = σ{v(y), y ≤ x, ∫ ψθdv} is generated not
only by the “past" of v but also ∫ ψθdv, which contains a

“little bit of a future" as well.�is �ltration is not an intrin-
sic part of the testing problem as it is usually formulated
in statistics. Nevertheless, Khmaladze () suggested to
use it, because then it is natural to speak about martingale
part {w,H} of the resulting semi-martingale {v̂,H}. Let
hTθ (x) = (,ψθ(x)) be “extended" score function and let
Γx,θ be covariance matrix of ∫x hθdv.�en this martingale
part has the form

w(x) = v(x) − ∫
x

hθ(y)Γ−y,θ ∫
y
hθdv dFθ(y). ()

�e change of time t = Fθ(x)will transform it to a standard
Brownianmotion (see7BrownianMotion andDi�usions)
on [, ] – a convenient limiting process, with the distri-
bution independent from Fθ .�e substitution of v̂n in ()
produces a version of empirical process wn, which, basi-
cally, is the Khmaladze transform (KhT hence forth). It
was shown to possess the following asymptotic proper-
ties: it will not change, regardless of which function ψ, or
which estimator θ̂n, was used in v̂n; it stays in one-to-one
correspondence with v̂n, if θ̂n is the maximum likelihood
estimator; and also the centering of empirical distribution
function Fn in empirical process is unnecessary. Hence, the
�nal form of KhT for parametric hypothesis is

wn,θ(x) =
√
n [Fn(x) − ∫

x

hθ(y)Γ−y,θ ∫
y
hθdFn dFθ(y)] .

If the hypothesis is true, a�er time transformation t =
Fθ(x), the processes wn,θ and w

n,θ̂n
converge weakly to

standard Brownian motion. Consequently a class of tests
based on time transformed w

n,θ̂n
are asymptotically distri-

bution free.
A slightly di�erent point of view on wn,θ is that its

increment

dwn,θ(x) =
√
n [dFn(x) − hθ(x)Γ−x,θ ∫

x
hθdFn dFθ(x)]

is (normalized) di�erence between dFn(x) and its linear
regression on Fn(x) and ∫x hθdFn.
If θ is known, i.e., if the hypothesis is simple, then wn,θ

reduces to what is called in the theory of empirical pro-
cesses the basic martingale (see, e.g., Shorack and Wellner
()).
It is well known that the analog of Kolmogorov test

is not distribution free when �tting a multivariate d.f.
Khmaladze (, ) developed an analog of KhT in this
case also, using the notion of so called scanning martin-
gales.
Tsigroshvili (), and in some cases Khmaladze and

Koul (), show that the KhT is well de�ned even if the
matrix Γx,θ is not of full rank.
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Some power properties of tests based on thew
n,θ̂n
were

investigated in a number of publications, including Janssen
& Ünlü (), Koul and Sakhanenko () and Nikitin
().

�e speci�c form of wn,θ and the practicality of its
use for some particular parametric families was studied,
e.g., in Koul and Sakhanenko () and Haywood and
Khmaladze ().

KhT for Counting Processes
IfN(t), t ≥ , is a point process (see7Point Processes) then
Aalen () used an appropriate �ltration and the cor-
responding random intensity function λ(t) to create the
martingale

M(t) = N(t) − ∫
t


λ(s)ds.

�is in turn gave rise to broad and successful theory, espe-
cially in survival analysis with randomly censored obser-
vations, as explained in the monograph by Andersen et al.
(). However, if the λ = λθ depends on unspeci�ed
parameter, which needs to be estimated usingN itself, then
the process M̂(t) is not a martingale any more and su�ers
from the same problems as the process v̂n.
Again, by including the estimator θ̂ in the �l-

tration used, the KhT for M̂(t) was constructed in
Maglaperidze et al. (), Nikabadze and Stute (),
and later in O’Quigley (), Sun et al. () and
Scheike and Martinussen ().

KhT in Regression
�e transformation was taken into new direction of the
quantile regression problems in Koenker and Xiao (),
where some additional problems were resolved.�e prac-
ticality of the approach was demonstrated by the so�-
ware, created by Roger Koenker and his colleagues. Recent
extension to the case of autoregression is presented in
discussion paper Koenker and Xiao ().
In the classical mean regression set up with covariateX

and response Y , Y = µ(X) + є, where error є is indepen-
dent of X, Eє = , and µ(x) = E(Y ∣X = x). Let (Xi,Yi),
i = ,⋯,n, be a random sample from this model.
Here the two testing problems are of interest. One is

the goodness-of-�t of an error d.f. and the second is the
problem of lack-of-�t of a parametric regression function
mθ(x). In parametric regression model, tests for the �rst
problem are based on the residual empirical process ν̂n(x)
of the residuals є̂i = Yi − m

θ̂n
(Xi), i = ,⋯,n, where

θ̂n is a n/-consistent estimator of θ. Khmaladze and

Koul () develops the KhT of v̂n. Similar results were
obtained for nonparametric regression models in Khmal-
adze andKoul (). It is shown, somewhat unexpectedly,
that in nonparametric regression models, KhT not only
leads to an asymptotically distribution free process, but
also tests based on it have larger power than the tests based
on ν̂n with non-parametric residuals Yi − m̂n(Xi).
Tests of lack-of-�t are typically based on the partial

sum processes of the form
n

∑
i=

g(є̂i)I{Xi ≤ x},

for some known function g. However, again their limiting
distribution depend on the formof the regression function,
on the estimator θ̂n used and on the particular value of the
parameter. Starting with Stute et al. () this tradition
was changed andKhTwas introduced for these partial sum
processes, which again, led to the process converging to
standard Brownian motion. Khmaladze and Koul ()
studied the analog of KhT for partial sum process when
design variable is multi-dimensional.
Extension to some time series models are discussed in

Koul and Stute (), Bai () and Koul (). Koul
and Song (, , ), Dette and Hetzler (,
) illustrate use of KhT in some other problems in the
context of interval censored data, Berkson measurement
error regression models and �tting a parametric model to
the conditional variance function.
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Kolmogorov-Smirnov Test

RaulH. C. Lopes
Research Fellow
Brunel University, Uxbridge, UK
Professor of Computer Science at UFES, Vitoria
Brazil

Applications of Statistics are frequently concernedwith the
question of whether two sets of data come from the same
distribution function, or, alternatively, of whether a prob-
abilistic model is adequate for a data set. As an example,
someone might be interested in evaluating the quality of
a computer random numbers generator, by testing if the
sample is uniformly distributed. A test like that is gener-
ally called a goodness-of-�t test. Examples of it are the χ

test and the Kolmogorov-Smirnov test.
Generally given a sample X = x, x, . . . , xn− and a

probability distrbution function P(x) the target would be
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to test the Null Hypothesis H that P is the sample’s dis-
tribution function. When testing with two data sets the
Null Hypothesis H states that they both have the same
distribution functions.

�e choice of a statistical test must take into account at
least two factors: () whether the data is continuous or dis-
crete, () and if the comparison to be performed uses two
data sets or a one set against a �tting probability model.
Testing that a set of computer generated pseudo-random
real numbers follows a uniformly distributed model is an
example of testing a continuous data set against a proba-
bilistic model, while comparing the amount of Vitamin C
in two di�erent brands of orange juice would �t a compar-
ison of two continuous data sets.

�e χ test was designed to test discrete data sets
against a probability model. However, it could be applied
in the test of the computer random numbers generator by
discretising the sample. Given the set X = x, x, . . . , xn−
of generated numbers, a set of k intervals (bins)

(−∞, z), (z, z), . . . , (zk−,∞)

could be used to de�ne a discrete function

Xj = i, when xj ∈ (zi−, zi).

Kolmogorov () and Smirnov () proved a result,
also Schmid (), that is the basis for a much more
e�cient goodness-of-�t test when continuous data is
involved.�e test starts with the de�nition of a function
FX,n(x) that gives the fraction of points xi, i ∈ (, . . . ,n−),
in a sample X that are below x as follows (E.W. Dijkstra’s
uniform notation for quanti�ers is used, with # i : P(xi)
denoting the number of elements in the set satisfying the
property P(xi), for all possible i.):

FX,n(x) =
#i : xi ≤ x

n

Assuming that another sample Y = y, y, . . . , ym− is
given, then its function can be de�ned:

FY ,m(y) =
#i : yi ≤ y

m

And any statistic could be used to measure the dif-
ference between X and Y , by measuring the di�erence
between FX,n(x) and FY ,m(x). Even the area between the
curves de�ned by these functions could be used. �e
Kolmogorov-Smirnov distance, is de�ned as the maxi-
mum absolute value of the di�erence between FX,n(x) and
FY ,m(x) for all possible values of x:

D = max x : −∞ < x <∞ : FX,n(x) − FY ,m(x)

In a test trying to �t one sample with a probabilis-
tic model de�ned by the function P(x), the distance, also
called Kolmogorov-Smirnov statistic, would be de�ned as

D = max x : −∞ < x <∞ : FX,n(x) − P(x)

�e distribution of the Kolmogorov-Smirnov statistic
in the case of a Null Hypothesis test can be computed,
giving a signi�cance level for the observed value. For that
purpose, let D⋆ be the following function of the observed
value:

D
⋆(d) = [

√
ne + . + ./

√
ne]d

In the de�nition of D⋆, the quantity ne is de�ned as
follows:

● ne is the number of points in the sample, when doing a
one-sample test.

● ne = n∗m
n+m , in the case of a two-sample test, with n and

m being the sizes of the samples.

�e signi�cance level can then be computed using the
function Q below (Stephens ):

Q(d) = 
∞
∑
i=

(−)i−e−i
d

Given a d, computed by the Kolmogorov-Smirnov dis-
tance, the signi�cance level of d, which comes to be the
probability that the null hypotheses (that the two distribu-
tions are the same) is invalid, is given by

Probability(D > d) = Q(D⋆(d))

�e Kolmogorov-Smirnov test o�ers several advan-
tages over the χ test:

● It can be applied to continuous data.
● �e distribution of its statistic is invariant under
re-parametrisation and it can be easily implemented by
computers.

● It can be extended to multivariate data.

Several statistics packages implement theKolmogorov-
Smirnov test.�e package R (Crawley ), freely avail-
able (So�ware and documentation from http://www.r-
project.org) for most operating systems, o�ers a
Kolmogorov-Smirnov test in the function ks.test.
Adapting goodness-of-�t tests to multivariate data is

considered a challenge. In particular, tests based on bin-
ning su�er from what has been described as the “curse
of multi-dimensionality”: the multi-dimensional space is
essentially empty and binning tests tend to be ine�ective
even with large data sets.
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Peacock in (Peacock ) introduced an extension
of the Kolmogorov-Smirnov test to multivariate data.
�e idea consists in taking into account the distribu-
tion function of the two samples in all possible order-
ings, d −  orderings when d dimensional data is being
considered. Given n points, in a two-dimensional space,
Peacock proposed to compute the distribution functions
in the n quadrants of the plane de�ned by all pairs
(xi, yi), xi and yi being coordinates of all points of two
given samples. �is gives an algorithm of Ω(n) com-
plexity. Fasano e Franceschini introduced in (Fasano
and Franceschini ) an approximation of the Pea-
cock’s test that computes the statistic over all quadrants
centred in each point of the given samples. �eir test
can be computed in time Ω(n). Lopes et alii intro-
duced an algorithm (Available, under GPL license, from
http://www.inf.ufes.br/ raul/cern.dks.tar.bz) based on
range-counting trees that computes this last statistic in
O(n lgn), which is a lower-bound for the test (Lopes et al.
).
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Kullback-Leibler divergence (Kullback and Leibler )
is an information-based measure of disparity among
probability distributions. Given distributions P and Q

de�ned over X, with Q absolutely continuous with respect
to P, the Kullback-Leibler divergence of Q from P is
the P-expectation of − log{P/Q}. So, DKL(P,Q) =
−∫

X
log(Q(x)/P(x))dP.�is quantity can be seen as the

di�erence between the cross-entropy for Q on P, H(P,Q) =
−∫

X
log(Q(x))dP, and the self-entropy (Shannon ) of

P, H(P) = H(P,P) = −∫
X
log(P(x))dP. Since H(P,Q)

is the P-expectation of the number of bits of information,
beyond those encoded in Q, that are needed to identify
points in X, DKL(P,Q) = H(P) −H(P,Q) is the expected
di�erence, from the perspective of P, between the informa-
tion encoded in P and the information encoded in Q.

DKL has a number of features that make it plausible as
a measure of probabilistic divergence. Here are some of its
key properties:

Premetric. DKL(P,Q) ≥ , with identity if and only if
P = Q a.e. with respect to P.

Convexity. DKL(P,Q) is convex in both P and Q.

Chain Rule. Given joint distributions P(x, y) and
Q(x, y), de�ne the KL-divergence conditional on x as
DKL(P(y∣x),Q(y∣x)) = ∫

X
DKL(P(y∣x),Q(y∣x))dPx

where Px is P’s x-marginal.�en,
DKL(P(x, y),Q(x, y))
= DKL(Px,Qx) +DKL(P(y∣x), Q(y∣x)).

Independence. When X and Y are independent in both
P and Q the Chain Rule assumes the simple form
DKL(P(x, y),Q(x, y)) = DKL(Px,Qx) + DKL(Py,Qy),
which re�ects the well-known idea that independent
information is additive.

It should be emphasized that KL-divergence is not a
genuine metric: it is not symmetric and fails the trian-
gle inequality. �us, talk of Kullback-Leibler “distance”
is misleading. While one can create a symmetric diver-
gence measure by setting D∗KL(P,Q)= /DKL(P,Q)+ /
DKL(Q,P), this still fails the triangle inequality.

�ere is a close relationship between KL-divergence
and a number of other statistical concepts. Consider, for
example, mutual information. Given a joint distribution
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P(x, y) on X × Y with marginals PX and PY , the mutual
information of X and Y with respect to P is de�ned as
IP(X,Y) = −∫

X×Y log(P(x, y)/[PX(x) ⋅ PY(y)])dP. If we
let P�(x, y) = PX(x) ⋅ PY(y) be the factorization of P, then
IP(X,Y) = D(P,P�). �us, according to KL-divergence,
mutual information measures the dissimilarity of a joint
distribution from its factorization.

�ere is also a connection between KL-divergence and
maximum likelihood estimation. Let lx(θ) = p(x∣θ) be
a likelihood function with parameter θ ∈ Θ, and imag-
ine that enough data has been collected to make a cer-
tain empirical distribution f (x) seem reasonable. In MLE
one o�en hopes to �nd an estimate for θ that maximizes
expected log-likelihood relative to one’s data, i.e., we seek
θˆ = argmaxθEf [log(p(x∣θ)]. To �nd this quantity it
su�ces to minimize the KL-divergence between f (x) and
p(x∣θ )̂ since

argminθ DKL( f , p(⋅∣θ )̂)

= argminθ − ∫
X
f (x) ⋅ log(p(x∣θ )̂/f (x))dx

= argminθ[H( f , f )−H( f , p(⋅∣θ )̂)]
= argmaxθH( f , p(⋅∣θ )̂)
= argmaxθEf [log(p(x∣θ))].

In short, MLE minimizes Kullback-Leibler divergence
from the empirical distribution.
Kullback-Leibler also plays a role in 7model selec-

tion. Indeed, Akaike () uses DKL as the basis for
his “information criterion” (AIC). Here, we imagine an
unknown true distribution P(x) over a sample space X,
and a set Πθ of models each element of which speci�es
a parameterized set of distributions π(x∣θ) over X. �e
models in Πθ are meant to approximate P, and the aim
is to �nd the best approximation in light of data drawn
from P. For each π and θ, DKL(P, π(x∣θ)) measures the
information lost when π(x∣θ) is used to approximate P.
If θ were known, one could minimize information loss
by choosing π to minimize DKL(P, π(x∣θ)). But, since θ

is unknown one must estimate. For each body of data
y and each π, let θ ŷ be the MLE estimate for θ given
y, and consider DKL(P, π(x∣θ ŷ)) as a random variable
of y. Akaike maintained that one should choose the model
that minimizes the expected value of this quantity, so
that one chooses π to minimize Ey[DKL(P, π(x∣θ ŷ))] =
Ey[H(P,P) − H(P, π(⋅∣θ ŷ))].�is is equivalent to max-
imizing EyEx[log(π(x∣θ ŷ))]. Akaike proved that k −
log(lx(θ )̂) is an unbiased estimate of this quantity for
large samples, where θˆ is theMLE estimate of θ and k is the
number of estimated parameters. In this way, some have
claimed, the policy ofminimizingKL-divergence leads one

to value simplicity in models since the “k” term functions
as a kind of penalty for complexity. (see Sober ).

KL-divergence also �gures prominently in Bayesian
approaches experimental design, where it is treated as a
utility function. �e objective in such work is to design
experiments that maximize KL-divergence between the
prior and posterior. �e results of such experiments are
interpreted as having a high degree of informational con-
tent. Lindley () and De Groot () are essential
references here.
Bayesians have also appealed to KL-divergence to pro-

vide a rationale for Bayesian conditioning and related
belief update rules, e.g., the probability kinematics of
Je�rey (). For example, Diaconis and Zabell ()
show that the posterior probabilities prescribed byBayesian
conditioning or by probability kinematics minimize KL-
divergence from the perspective of the prior.�us, in the
sense of information divergence captured by DKL, these
forms of updating introduce the least amount of new
information consistent with the data received.
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Pearson () de�ned β = m/m 
 (where mi is the ith

moment with respect to the mean) to compare other dis-
tributions to the normal distribution, for which β = . He
called η = β −  the “degree of kurtosis” and mentioned
that it “measures whether the frequency towards the mean
is emphasized more or less than that required by the Gaus-
sian law.” In Greek, kurtosmeans convex, and kurtosis had
been previously used to denote curvature both in math-
ematics and medicine. Pearson’s development of the idea
of kurtosis during the years previous to  is examined
by Fiori and Zenga (). “Coe�cient of kurtosis” is the
name usually given to β.
A sample estimator of β is b = (∑(x − x)/n)/s.

Statistical so�ware frequently include an adjusted version
of the estimator of η:

n(n + )
(n − )(n − )(n − )

[∑(x − x)]
s

− (n − )(n − )
(n − )(n − )

.

�e adjustment reduces the bias, at least in the case of
nearly normal distributions. Byers () proved that b ≤
n −  + /(n − ). Simulation results indicate that when
β is large for the population of origin, b will be small on
average if the sample size is small.
Currently the word kurtosis is understood in a broader

sense, not limited to β. Balanda and MacGillivray ()
conclude that kurtosis is best de�ned as “the location- and
scale-free movement of probability mass from the shoul-
ders of a distribution into its center and tails.” which can
be formalized inmany ways. Kurtosis is associated to both,
the center and the tails of a distribution. Kurtosis is invari-
ant under linear transformations or change of units of
the variable. High kurtosis is linked to high concentration
of mass in the center and/or the tails of the distribution.
Heavy tails is a topic of interest in the analysis of �nancial
data.

Several kurtosis measures have been de�ned.
L-kurtosis (Hosking ) is popular in the �eld of hydrol-
ogy.�ere are othermeasures de�ned in terms of distances
between quantiles, ratios of spreadmeasures, comparisons
of sum of distances to the median, and expected values
of functions of the standardized variable other than the
fourth power that corresponds to β.
Ruppert () proposed the use of the in�uence func-

tion to analyze kurtosis measures and points out that even
those de�ned with the intention of measuring peakedness
or tail weight alone, end up measuring both. �ere are
measures that are more sensitive to the tails of the distri-
bution than others: β gives high importance to the tails
because it is de�ned in terms of the fourth power of the
deviations from the mean. For example, the value of β is
. for the uniform distribution and ., ., . and .
for the SU(, δ) distribution with δ = , , , . respec-
tively. For the same distributions, the values of L-kurtosis
are ,.,., . and ..�e upper bound for L-
kurtosis is , while β is unbounded. �e estimator b is
sensitive to 7outliers; one single outlier can dramatically
change its value.
Another approach to the study of kurtosis is the com-

parison of cumulative distribution functions. Van Zwet
() de�ned the convexity criterion (≺S): two symmet-
ric distributions with cumulative distribution functions F
and G are ordered and F ≺S G if G−(F(x)) is convex to
the right of the common point of symmetry. If F ≺S G, the
value of β for F is not larger than its value for G.�e fol-
lowing distributions are ordered according to the convexity
criterion:

U-shaped ≺S Uniform ≺S Normal ≺S Logistic ≺S Laplace.

Some families of distributions are ordered according to
the convexity criterion, with the order associated (either
directly or inversely) to the value of their parameter.
Among those families are beta(α, α), Tukey(λ), Johnson’s
SU(, δ), and the symmetric two-sided power family
TSP(α). Balanda and MacGillivray () de�ned the
spread-spread functions to compare non-necessarily sym-
metric distributions. Additional ordering criteria have
been de�ned. Any new measure of kurtosis that is de�ned
needs to order distributions in agreementwith some order-
ing based ondistribution functions.�e numerical value of
a kurtosis measure can be obtained for most distributions
but not all distributions are ordered according to a CDF
based ordering criterion. For example, the Laplace and
t-Student() distributions have known values for β ( and
 respectively). However, they are not ≺S ordered because
G−(F(x)) is neither convex, nor concave for x > . In par-
ticular, not all the distributions are ordered with respect
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to the normal distribution according to the convexity
criterion; but uniform ≺S unimodal distributions.

�ere are several ways of measuring kurtosis, there is
also more than one way of thinking about peak and tails.
One simple way of visualizing peak and tails in a unimodal
probability distribution is to superimpose, on f (x), a uni-
form density function with the same median and variance
(Kotz and Seier ).
High kurtosis a�ects the behavior of inferential tools.

Van Zwet () proved that, when working with sym-
metric distributions, the median is more e�cient than the
mean as estimator of the center when the distribution has
very high kurtosis.�e variance of the sample variance is
related to β. Simulations indicate that the power of some
tests for the equality of variances diminishes (for small
samples) when the distribution of the variable has high
kurtosis.
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Large deviations is concerned with the study of rare events
and of small probabilities. LetXi,  ≤ i ≤ n, be independent
identically distributed (i.i.d.) real random variables with
expectationm, and X̄n = (X + . . . +Xn)/n their empirical
mean.�e law of large numbers shows that, for any Borel
set A ⊂ R not containing m in its closure, P(X̄n ∈ A) → 
as n → ∞, but does not tell us how fast the probability
vanishes. Large deviations theory gives us the rate of decay,
which is exponential in n. Cramér’s theorem states that,

P(X̄n ∈ A) = exp (−n( inf{I(x); x ∈ A} + o()))

as n → ∞, for all interval A.�e rate function I can be
computed as the Legendre conjugate of the logarithmic
moment generating function of X,

I(x) = sup{λx − lnE exp(λX); λ ∈ R},

and is called the Cramér transform of the common law
of the Xi’s.�e natural assumption is the �niteness of the
7moment generating function in a neighborhood of the
origin, i.e., the property of exponential tails. �e func-
tion I : R→ [,+∞] is convex with I(m) = .

● In the Gaussian case Xi ∼ N (m, σ ), we �nd I(x) =
(x −m)/(σ ).

● In the Bernoulli case P(Xi = ) = p =  − P(Xi = ),
we �nd the entropy function I(x)=x ln(x/p) + ( − x)
ln(−x)/(−p) for x ∈ [, ], and I(x) = +∞otherwise.

To emphasize the importance of rare events, let us
mention a consequence, the Erdös–Rényi law: consider an
in�nite sequence Xi, i ≥ , of Bernoulli i.i.d. variables with
parameter p, and let Rn denote the length of the longest
consecutive run, contained within the �rst n tosses, in
which the fraction of s is at least a (a > p). Erdös and
Rényi proved that, almost surely as n→∞,

Rn/ lnnÐ→ I(a)−,

with the function I from the Bernoulli case above.�ough
it may look paradoxical, large deviations are at the core
of this event of full probability.�is result is the basis of
7bioinformatics applications like sequence matching, and
of statistical tests for sequence randomness.

�e theory does not only apply to independent vari-
ables, but allows for many variations, including weakly
dependent variables in a general state space, Markov or
7Gaussian processes, large deviations from 7ergodic the-
orems, non-asymptotic bounds, asymptotic expansions
(Edgeworth expansions), etc.
Here is the formal de�nition. Given a Polish space

(i.e., a separable complete metric space) X , let {Pn} be
a sequence of Borel probability measures on X , let an be
a positive sequence tending to in�nity, and �nally let I :
X → [,+∞] be a lower semicontinuous functional on X.
We say that the sequence {Pn} satis�es a large deviation
principle with speed an and rate I, if for each measurable
set E ⊂ X

− inf
x∈E○
I(x) ≤ lim

n
a−n lnPn(E)

≤ lim
n
a−n lnPn(E) ≤ − inf

x∈Ē
I(x)

where Ē andE○ denote respectively the closure and interior
of E.�e rate function can be obtained as

I(x) = − lim
δ↘

lim
n→∞ a

−
n lnPn(B(x, δ)),

with B(x, δ) the ball of center x and radius δ.
Sanov’s theorem and sampling with replacement: let µ

be a probability measure on a set Σ that we assume �nite
for simplicity, with µ(y) >  for all y ∈ Σ. Let Yi, i ≥ , an
i.i.d. sequence with law µ, and Nn the score vector of the
n-sample,

Nn(y) =
n

∑
i=
y(Yi).

By the law of large numbers,Nn/n→ µ almost surely. From
the 7multinomial distribution, one can check that, for all
ν such that nν is a possible score vector for the n-sample,

(n + )−∣Σ∣e−nH(ν∣µ) ≤ P(n−Nn = ν) ≤ e−nH(ν∣µ),

where H(ν∣µ) = ∑y∈Σ ν(y) ln ν(y)
µ(y) is the relative entropy

of ν with respect to µ.�e large deviations theorem holds
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for the empirical distribution of a general n-sample, with
speed n and rate I(ν) = H(ν∣µ) given by the natu-
ral generalization of the above formula. �is result, due
to Sanov, has many consequences in information the-
ory and statistical mechanics (Dembo and Zeitouni ;
den Hollander ), and for exponential families in
statistics. Applications in statistics also include point esti-
mation (by giving the exponential rate of convergence
of M-estimators) and for hypothesis testing (Bahadur
e�ciency) (Kester ), and concentration inequalities
(Dembo and Zeitouni ).

�e Freidlin–Wentzell theory deals with di�usion pro-
cesses with small noise,

dXє
t = b (Xє

t )dt +
√
є σ (Xє

t )dBt , Xє
 = y.

�e coe�cients b, σ are uniformly lipshitz functions, and
B is a standard Brownian motion (see 7Brownian Motion
and Di�usions).�e sequence Xє can be viewed as є ↘ 
as a small random perturbation of the ordinary di�erential
equation

dxt = b(xt)dt , x = y.
Indeed, Xє → x in the supremum norm on bounded time-
intervals. Freidlin andWentzell have shown that, on a �nite
time interval [,T], the sequenceXє with values in the path
space obeys the LDP with speed є− and rate function

I(ϕ) = 
 ∫

T


σ(ϕ(t))−( ˙ϕ(t) − b(ϕ(t)))


dt

if ϕ is absolutely continuous with square-integrable deriva-
tive and ϕ() = y; I(ϕ) =∞ otherwise. (To �t in the above
formal de�nition, take a sequence є = єn ↘ , and for Pn
the law of Xєn .)

�e Freidlin–Wentzell theory has applications in
physics (metastability phenomena) and engineering (track-
ing loops, statistical analysis of signals, stabilization of sys-
tems, and algorithms) (Freidlin andWentzell ; Dembo
and Zeitouni ; Olivieri and Vares ).
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Laws of Large Numbers

Andrew Rosalsky
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�e laws of large numbers (LLNs) provide bounds on the
�uctuation behavior of sums of random variables and, as
we will discuss herein, lie at the very foundation of sta-
tistical science. �ey have a history going back over 
years.�e literature on the LLNs is of epic proportions, as
this concept is indispensable in probability and statistical
theory and their application.
Probability theory, like some other areas of mathemat-

ics such as geometry for example, is a subject arising from
an attempt to provide a rigorous mathematical model for
real world phenomena. In the case of probability theory,
the real world phenomena are chance behavior of biologi-
cal processes or physical systems such as gambling games
and their associated monetary gains or losses.

�e probability of an event is the abstract counterpart
to the notion of the long-run relative frequency of the
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occurence of the event through in�nitelymany replications
of the experiment. For example, if a quality control engi-
neer asserts that the probability is . that a widget pro-
duced by her production team meets speci�cations, then
she is asserting that in the long-run, % of those widgets
meet speci�cations.�e phrase “in the long-run” requires
the notion of limit as the sample size approaches in�nity.
�e long-run relative frequency approach for describing
the probability of an event is natural and intuitive but, nev-
ertheless, it raises serious mathematical questions. Does
the limiting relative frequency always exist as the sample
size approaches in�nity and is the limit the same irrespec-
tive of the sequence of experimental outcomes? It is easy
to see that the answers are negative. Indeed, in the above
example, depending on the sequence of experimental out-
comes, the proportion of widgets meeting speci�cations
could �uctuate repeatedly from near  to near  as the
number of widgets sampled approaches in�nity. So in what
sense can it be asserted that the limit exists and is .?
To provide an answer to this question, one needs to apply
a LLN.

�e LLNs are of two types, viz., weak LLNs (WLLNs)
and strong LLNs (SLLNs). Each type involves a di�erent
mode of convergence. In general, a WLLN (resp., a SLLN)
involves convergence in probability (resp., convergence
almost surely (a.s.)). �e de�nitions of these two modes
of convergence will now be reviewed.
Let {Un,n ≥ } be a sequence of random variables

de�ned on a probability space (Ω,F ,P) and let c ∈ R. We
say thatUn converges in probability to c (denotedUn

P→ c) if

lim
n→∞P(∣Un − c∣ > ε) =  for all ε > .

We say that Un converges a.s. to c (denoted Un → c a.s.) if

P({ω ∈ Ω : lim
n→∞Un(ω) = c}) = .

If Un → c a.s., then Un
P→ c; the converse is not true in

general.
�e celebrated Kolmogorov SLLN (see, e.g., Chow

and Teicher [], p. ) is the following result. Let
{Xn,n ≥ } be a sequence of independent and identically
distributed (i.i.d.) random variables and let c ∈ R.�en

∑ni= Xi
n

→ c a.s. if and only if EX = c. ()

Using statistical terminology, the su�ciency half of ()
asserts that the sample mean converges a.s. to the popula-
tionmean as the sample size n approaches in�nity provided
the population mean exists and is �nite.�is result is of

fundamental importance in statistical science. It follows
from () that

if EX = c ∈ R, then ∑
n
i= Xi
n

P→ c; ()

this result is the KhintchineWLLN (see, e.g., Petrov [],
p. ).
Next, suppose {An,n ≥ } is a sequence of independent

events all with the same probability p. A special case of the
Kolmogorov SLLN is the limit result

p̂n → p a.s. ()

where p̂n = ∑ni= IAi/n is the proportion of {A, . . . ,An} to
occur, n ≥ . (Here IAi is the indicator function of Ai, i ≥ .)
�is result is the �rst SLLN ever proved and was discov-
ered by Emile Borel in . Hence, with probability , the
sample proportion p̂n approaches the population propor-
tion p as the sample size n → ∞. It is this SLLN which
thus provides the theoretical justi�cation for the long-run
relative frequency approach to interpreting probabilities.
Note, however, that the convergence in () is not point-
wise on Ω but, rather, is pointwise on some subset of Ω
having probability . Consequently, any interpretation of
p = P(A) via () necessitates that one has a priori an
intuitive understanding of the notion of an event having
probability .

�e SLLN () is a key component in the proof of the
Glivenko–Cantelli theorem (see7Glivenko-Cantelli�eo-
rems) which, roughly speaking, asserts that with probabil-
ity , a population distribution function can be uniformly
approximated by a sample (or empirical) distribution func-
tion as the sample size approaches in�nity. �is result is
referred to by Rényi (, p. ) as the fundamental the-
orem of mathematical statistics and by Loève (, p. )
as the central statistical theorem.
In , Jacob Bernoulli (–) proved the �rst

WLLN

p̂n
P→ p. ()

Bernoulli’s renowned book Ars Conjectandi (�e Art of
Conjecturing) was published posthumously in , and it is
here where the proof of his WLLN was �rst published. It is
interesting to note that there is over a  year gap between
the WLLN () of Bernoulli and the corresponding SLLN
() of Borel.
An interesting example is the following modi�cation

of one of Stout (, p. ). Suppose that the quality con-
trol engineer referred to above would like to estimate the
proportion p of widgets produced by her production team



 L Laws of Large Numbers

that meet speci�cations. She estimates p by using the pro-
portion p̂n of the �rst n widgets produced that meet speci-
�cations and she is interested in knowing if there will ever
be a point in the sequence of examined widgets such that
with probability (at least) a speci�ed large value, p̂n will be
within ε of p and stay within ε of p as the sampling contin-
ues (where ε >  is a prescribed tolerance).�e answer is
a�rmative since () is equivalent to the assertion that for
a given ε >  and δ > , there exists a positive integer Nε,δ
such that

P (∩∞n=Nε,δ [∣p̂n − p∣ ≤ ε]) ≥  − δ.

�at is, the probability is arbitrarily close to  that p̂n will be
arbitrarily close to p simultaneously for all n beyond some
point. If one applied instead the WLLN (), then it could
only be asserted that for a given ε >  and δ > , there
exists a positive integer Nε,δ such that

P(∣p̂n − p∣ ≤ ε) ≥  − δ for all n ≥ Nε,δ .

�ere are numerous other versions of the LLNs and we
will discuss only a few of them. Note that the expressions
in () and () can be rewritten, respectively, as

∑ni= Xi − nc
n

→  a.s. and ∑
n
i= Xi − nc
n

P→ 

thereby suggesting the following de�nitions. A sequence
of random variables {Xn,n ≥ } is said to obey a general
SLLN (resp., WLLN) with centering sequence {an,n ≥ }
and norming sequence {bn,n ≥ } (where  < bn →∞) if

∑ni= Xi − an
bn

→  a.s. (resp., ∑
n
i= Xi − an
bn

P→ ) .

A famous result of Marcinkiewicz and Zygmund (see,
e.g., Chow and Teicher (), p. ) extended the Kol-
mogorov SLLN as follows. Let {Xn,n ≥ } be a sequence of
i.i.d. random variables and let  < p < .�en

∑ni= Xi − nc
n/p

→  a.s. for some c ∈ R if and only

if E∣X∣p <∞.

In such a case, necessarily c = EX if p ≥  whereas c is
arbitrary if p < .
Feller () extended the Marcinkiewicz–Zygmund

SLLN to the case of a more general norming sequence
{bn,n ≥ } satisfying suitable growth conditions.

�e followingWLLN is ascribed to Feller by Chow and
Teicher (, p. ). If {Xn,n ≥ } is a sequence of i.i.d.
random variables, then there exist real numbers an,n ≥ 
such that

∑ni= Xi − an
n

P→  ()

if and only if

nP(∣X∣ > n)→  as n→∞. ()

In such a case, an − nE(XI[∣X ∣≤n])→  as n→∞.
�e condition () is weaker than E∣X∣ < ∞. If {Xn,

n ≥ } is a sequence of i.i.d. random variables where X has
probability density function

f (x) =
⎧⎪⎪⎨⎪⎪⎩

c
x log ∣x∣ , ∣x∣ ≥ e
, ∣x∣ < e

where c is a constant, then E∣X∣ = ∞ and the SLLN
∑ni= Xi/n → c a.s. fails for every c ∈ R but () and hence
the WLLN () hold with an = ,n ≥ .
Klass and Teicher () extended the Feller WLLN

to the case of a more general norming sequence
{bn,n ≥ } thereby obtaining a WLLN analog of Feller’s
() extension of the Marcinkiewicz–Zygmund SLLN.
Good references for studying the LLNs are the books

by Révész (), Stout (), Loève (), Chow and
Teicher (), and Petrov (). While the LLNs have
been studied extensively in the case of independent sum-
mands, some of the LLNs presented in these books involve
summands obeying a dependence structure other than that
of independence.
A large literature of investigation on the LLNs for

sequences of Banach space valued random elements has
emerged beginning with the pioneering work of Mourier
(). See themonograph byTaylor () for background
material and results up to . Excellent references are the
books by Vakhania, Tarieladze, and Chobanyan () and
Ledoux and Talagrand (). More recent results are pro-
vided by Adler et al. (), Cantrell and Rosalsky (),
and the references in these two articles.
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Learning Statistics in a Foreign
Language

KhidirM. Abdelbasit
Sultan Qaboos University, Muscat, Sultanate of Oman

Background
�e Sultanate of Oman is an Arabic-speaking country,
where the medium of instruction in pre-university edu-
cation is Arabic. In Sultan Qaboos University (SQU) all

sciences (including Statistics) are taught in English. �e
reason is that most of the scienti�c literature is in English
and teaching in the native language may leave graduates
at a disadvantage. Since only few instructors speak Ara-
bic, the university adopts a policy of no communication
in Arabic in classes and o�ce hours. Students are required
to achieve a minimum level in English (about . IELTS
score) before they start their study program. Very few stu-
dents achieve that level on entry and the majority spends
about two semesters doing English only.

Language and Cultural Problems
It is to be expected that students from a non-English-
speaking background will face serious di�culties when
learning in English especially in the �rst year or two. Most
of the literature discusses problems faced by foreign stu-
dents pursuing study programs in an English-speaking
country, or a minority in a multi-cultural society (see
for example Coutis P. and Wood L., Hubbard R, Koh E).
Such students live (at least while studying) in an English-
speaking community with which they have to interact on a
daily basis.�ese di�culties are more serious for our stu-
dents who are studying in their own countrywhere English
is not the o�cial language.�ey hardly use English outside
classrooms and avoid talking in class as much as they can.

My SQU Experience
Statistical concepts and methods are most e�ectively
taught through real-life examples that the students appre-
ciate and understand. We use the most popular textbooks
in the USA for our courses. �ese textbooks use this
approach with US students in mind. Our main prob-
lems are:

● Most of the examples and exercises used are com-
pletely alien to our students.�e discussions meant to
maintain the students’ interest only serve to put ours
o�. With limited English they have serious di�culties
understanding what is explained and hence tend not to
listen to what the instructor is saying.�ey do not read
the textbooks because they contain pages and pages of
lengthy explanations and discussions they cannot fol-
low. A direct e�ect is that students may �nd the subject
boring and quickly lose interest.�eir attention then
turns to the art of passing tests instead of acquiring the
intended knowledge and skills. To pass their tests they
use both their class and study times looking through
examples, concentrating on what formula to use and
where to plug the numbers they have to get the answer.
�is way they manage to do the mechanics fairly well,
but the concepts are almost entirely missed.
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● �e problem is worse with introductory probability
courses where games of chance are extensively used
as illustrative examples in textbooks. Most of our stu-
dents have never seen a deck of playing cards and some
may even be o�ended by discussing card games in a
classroom.

�e burden of �nding strategies to overcome these di�cul-
ties falls on the instructor. Statistical terms and concepts
such as parameter/statistic, sampling distribution, unbi-
asedness, consistency, su�ciency, and ideas underlying
hypothesis testing are not easy to get across even in the stu-
dents’ own language. To do that in a foreign language is a
real challenge. For the Statistics program to be successful,
all (or at least most of the) instructors involved should be
up to this challenge.�is is a time-consuming task with lit-
tle reward, other than self satisfaction. In SQU the problem
is compounded further by the fact that most of the instruc-
tors are expatriates on short-term contracts who are more
likely to use their time for personal career advancement,
rather than time-consuming community service jobs.

What Can Be Done?
For our �rst Statistics course we produced a manual that
contains very brief notes and many samples of previous
quizzes, tests, and examinations. It contains a good col-
lection of problems from local culture to motivate the
students.�e manual was well received by the students, to
the extent that students prefer to practice with examples
from the manual rather than the textbook.
Textbooks written in English that are brief and to the

point are needed.�ese should include examples and exer-
cises from the students’ own culture. A student trying
to understand a speci�c point gets distracted by lengthy
explanations and discouraged by thick textbooks to begin
with. In a classroom where students’ faces clearly indicate
that you have got nothing across, it is natural to try explain-
ing more using more examples. In the end of semester
evaluation of a course I taught, a student once wrote “�e
instructor explains things more than needed. He makes
simple points di�cult.”�is indicates that, when teaching
in a foreign language, lengthy oral or written explanations
are not helpful. A better strategywill be to explain concepts
and techniques brie�y and provide plenty of examples and
exercises that will help the students absorb the material by
osmosis. �e basic statistical concepts can only be e�ec-
tively communicated to students in their own language.
For this reason textbooks should contain a good glossary
where technical terms and concepts are explained using the
local language.

I expect such textbooks to go a long way to enhance
students’ understanding of Statistics. An international
project can be initiated to produce an introductory statis-
tics textbook, with di�erent versions intended for di�erent
geographical areas.�e English material will be the same;
the examples vary, to some extent, from area to area and
glossaries in local languages. Universities in the develop-
ing world, naturally, look at western universities asmodels,
and international (western) involvement in such a project
is needed for it to succeed.�e project will be a major con-
tribution to the promotion of understanding Statistics and
excellence in statistical education in developing countries.
�e international statistical institute takes pride in sup-
porting statistical progress in the developing world. �is
project can lay the foundation for this progress and hence
is worth serious consideration by the institute.

Cross References
7Online Statistics Education
7Promoting, Fostering and Development of Statistics in
Developing Countries
7Selection of Appropriate Statistical Methods in Develop-
ing Countries
7Statistical Literacy, Reasoning, and�inking
7Statistics Education

References and Further Reading
Coutis P, Wood L () Teaching statistics and academic language

in culturally diverse classrooms. http://www.math.uoc.gr/
~ictm/Proceedings/pap.pdf

Hubbard R () Teaching statistics to students who are learning
in a foreign language. ICOTS 

Koh E () Teaching statistics to students with limited language
skills using MINITAB http://archives.math.utk.edu/ICTCM/
VOL/C/paper.pdf

Least Absolute Residuals
Procedure
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Honorary Reader in Econometrics
Victoria University of Manchester, Manchester, UK

For i = , , . . . ,n, let {xi, xi, . . . , xiq, yi} represent the ith
observation on a set of q +  variables and suppose that we
wish to �t a linear model of the form

yi = xiβ + xiβ +⋯ + xiqβq + єi
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to these n observations. �en, for p > , the Lp-norm
�tting procedure chooses values for b, b, . . . , bq to min-
imise the Lp-norm of the residuals [∑ni= ∣ei∣p]

/p where, for
i = , , . . . ,n, the ith residual is de�ned by

ei = yi − xib − xib − ... − xiqbq.

�e most familiar Lp-norm �tting procedure, known
as the 7least squares procedure, sets p =  and chooses
values for b, b, . . . , bq tominimize the sum of the squared
residuals∑ni= ei .
A second choice, to be discussed in the present article,

sets p =  and chooses b, b, . . . , bq to minimize the sum
of the absolute residuals∑ni= ∣ei∣.
A third choice sets p =∞ and chooses b, b, . . . , bq to

minimize the largest absolute residualmaxni=∣ei∣.
Setting ui = ei and vi =  if ei ≥  and ui = 

and vi = −ei if ei < , we �nd that ei = ui − vi so that
the least absolute residuals (LAR) �tting problem chooses
b, b, . . . , bq to minimize the sum of the absolute residuals

n

∑
i=

(ui + vi)

subject to

xib + xib +⋯ + xiqbq +Ui − vi = yi for i = , , . . . ,n

and Ui ≥ , vi ≥  for i = , , . . . ,n.
�e LAR �tting problem thus takes the form of a linear
programming problem and is o�en solved by means of a
variant of the dual simplex procedure.
Gauss has noted (when q = ) that solutions of this

problem are characterized by the presence of a set of q
zero residuals. Such solutions are robust to the presence of
outlying observations. Indeed, they remain constant under
variations in the other n − q observations provided that
these variations do not cause any of the residuals to change
their signs.

�e LAR �tting procedure corresponds to the maxi-
mum likelihood estimator when the є-disturbances follow
a double exponential (Laplacian) distribution.�is estima-
tor is more robust to the presence of outlying observations
than is the standard least squares estimator which maxi-
mizes the likelihood function when the є-disturbances are
normal (Gaussian).Nevertheless, theLAR estimator has an
asymptotic normal distribution as it is amember ofHuber’s
class ofM-estimators.

�ere are many variants of the basic LAR proce-
dure but the one of greatest historical interest is that
proposed in  by the Croatian Jesuit scientist Rugjer
(or Rudjer) Josip Bošković (–) (Latin: Rogerius
JosephusBoscovich; Italian: RuggieroGiuseppeBoscovich).

In his variant of the standard LAR procedure, there are two
explanatory variables of which the �rst is constant xi = 
and the values of b and b are constrained to satisfy the
adding-up condition ∑ni=(yi − b − xib) =  usually
associated with the least squares procedure developed by
Gauss in  and published by Legendre in . Com-
puter algorithms implementing this variant of the LAR
procedure with q ≥  variables are still to be found in the
literature.
For an account of recent developments in this area,

see the series of volumes edited by Dodge (, ,
, ). For a detailed history of the LAR procedure,
analyzing the contributions of Bošković, Laplace, Gauss,
Edgeworth, Turner, Bowley and Rhodes, see Farebrother
(). And, for a discussion of the geometrical and
mechanical representation of the least squares and LAR
�tting procedures, see Farebrother ().
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Least Squares (LS) problem involves some algebraic and
numerical techniques used in “solving” overdetermined
systems F(x) ≈ b of equations, where b ∈ Rn while F(x)
is a column of the form

F(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(x)

f(x)

⋯

fm−(x)

fm(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with entries fi = fi(x), i = , . . . n, where x = (x, . . . , xp)T .
�e LS problem is linear when each fi is a linear function,
and nonlinear – if not.
Linear LS problem refers to a system Ax = b of linear

equations. Such a system is overdetermined if n > p. If b ∉
range(A) the system has no proper solution and will be
denoted by Ax ≈ b. In this situation we are seeking for a
solution of some optimization problem.�e name “Least
Squares” is justi�ed by the l-norm commonly used as a
measure of imprecision.

�e LS problem has a clear statistical interpretation in
regression terms. Consider the usual regression model

yi = fi(xi, . . . , xip; β, . . . , βp) + ei for i = , . . . ,n ()

where xij, i = , . . . n, j = , . . . p, are some constants given
by experimental design, fi, i = , . . . n, are given functions
depending on unknown parameters βj, j = , . . . , p, while
yi, i = , . . . ,n, are values of these functions, observed with
some random errors ei. We want to estimate the unknown
parameters βi on the basis of the data set {xij, yi}.

In linear regression each fi is a linear function of type
fi = ∑p

j= cij(x, . . . , xn)βj and the model () may be
presented in vector-matrix notation as

y = Xβ + e,

where y = (y, . . . , yn)T , e = (e, . . . , en)T and β =
(β, . . . , βp)T , while X is a n × p matrix with entries xij.
If e, . . . , en are not correlated with mean zero and a com-
mon (perhaps unknown) variance then the problem of
Best Linear Unbiased Estimation (BLUE) of β reduces to
�nding a vector β̂ that minimizes the norm ∣∣y − Xβ̂ ∣∣


=

(y − Xβ̂)T(y − Xβ̂)
Such a vector is said to be the ordinary LS solution of

the overparametrized system Xβ ≈ y. On the other hand
the last one reduces to solving the consistent system

XTXβ = XTy

of linear equations called normal equations. In particular,
if rank(X) = p then the system has a unique solution of the
form

β̂ = (XTX)−XTy.

For linear regression yi = α+βxi+ei with one regressor
x the BLU estimators of the parameters α and β may be
presented in the convenient form as

β̂ = nsxy
nsx

and α̂ = y − β̂x,

where

nsxy =∑
i
xiyi −

(∑i xi) (∑i yi)
n

,

nsx =∑
i
xi −

(∑i xi)

n
, x = ∑i xi

n
and y = ∑i yi

n

For its computation we only need to use a simple pocket
calculator.

Example �e following table presents the number of resi-
dents in thousands (x) and the unemployment rate in% (y)
for some cities of Poland. Estimate the parameters β and α.

xi       

yi . . . . . . .

In this case∑i xi = , , ∑i yi = ., ∑i xi = , 
and ∑i xiyi = , .�erefore nsx = , . and nsxy =
−.�us β̂ = −. and α̂ = . and hence f (x) =
−.x + ..
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If the variance–covariance matrix of the error vector e
coincides (except a multiplicative scalar σ ) with a positive
de�nite matrix V then the Best Linear Unbiased estima-
tion reduces to the minimization of (y −Xβ̂)TV(y −Xβ̂),
called the weighed LS problem. Moreover, if rank(X) = p
then its solution is given in the form

β̂ = (XTV−X)−XTV−y.

It is worth to add that a nonlinear LS problem is more
complicated and its explicit solution is usually not known.
Instead of this some algorithms are suggested.
Total least squares problem. �e problem has been

posed in recent years in numerical analysis as an alterna-
tive for the LS problem in the casewhen all data are a�ected
by errors.
Consider an overdetermined system of n linear equa-

tionsAx ≈ b with k unknown x.�e TLS problem consists
in minimizing the Frobenius norm

∣∣[A, b] − [Â, b̂]∣∣F
for all Â ∈ Rn×k and b̂ ∈ range(Â), where the Frobenius
norm is de�ned by ∣∣(aij)∣∣F = ∑i,j aij. Once a minimizing
[Â, b̂] is found, then any x satisfying Âx = b̂ is called a TLS
solution of the initial system Ax ≈ b.

�e trouble is that the minimization problem may
not be solvable, or its solution may not be unique. As an
example one can set

A =
⎡⎢⎢⎢⎢⎢⎣

 

 

⎤⎥⎥⎥⎥⎥⎦
and b =

⎡⎢⎢⎢⎢⎢⎣





⎤⎥⎥⎥⎥⎥⎦
.

It is known that the TLS solution (if exists) is always
better than the ordinary LS in the sense that the cor-
rection b − Ax̂ has smaller l-norm. �e main tool in
solving the TLS problems is the following Singular Value
Decomposition:
For any matrix A of n × k with real entries there

exist orthonormal matrices P = [p, . . . , pn] and

Q = [q, . . . , qk] such that

PTAQ = diag(σ, . . . , σm), where σ ≥ ⋯ ≥ σm and
m = min{n, k}.
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Introduction
Lévy processes have become increasingly popular in engi-
neering (reliability, dams, telecommunication) andmathe-
matical �nance.�eir applications in reliability stems from
the fact that they provide a realistic model for the degrada-
tion of devices, while their applications in the mathemati-
cal theory of dams as they provide a basis for describing
the water input of dams. �eir popularity in �nance is
because they describe the �nancialmarkets in amore accu-
rate way than the celebrated Black–Scholes model. �e
latter model assumes that the rate of returns on assets
are normally distributed, thus the process describing the
asset price over time is continuous process. In reality, the
asset prices have jumps or spikes, and the asset returns
exhibit fat tails and 7skewness, which negates the nor-
mality assumption inherited in the Black–Scholes model.
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Because of the de�ciencies in the Black–Scholes model
researchers in mathematical �nance have been trying to
�ndmore suitable models for asset prices. Certain types of
Lévy processes have been found to provide a good model
for creep of concrete, fatigue crack growth, corroded steel
gates, and chloride ingress into concrete. Furthermore, cer-
tain types of Lévy processes have been used to model the
water input in dams.
In this entry, we will review Lévy processes and give

important examples of such processes and state some
references to their applications.

Lévy Processes
A stochastic process X = {Xt , t ≥ } that has right con-
tinuous sample paths with le� limits is said to be a Lévy
process if the following hold:

. X has stationary increments, i.e., for every s, t ≥ , the
distribution of Xt+s − Xt is independent of t.

. X has independent increments, i.e., for every t, s≥ ,
Xt+s − Xt is independent of ( Xu,u ≤ t).

. X is stochastically continuous, i.e., for every t ≥  and
є > :

lims→tP(∣Xt − Xs∣ > є) = .
�at is to say a Lévy process is a stochastically continu-
ous process with stationary and independent increments
whose sample paths are right continuous with le� hand
limits.
If Φ(z) is the characteristic function of a Lévy process,

then its characteristic component φ(z) def= ln Φ(z)
t is of the

form

{iza − z
b

+ ∫

R
[exp(izx) −  − izxI{∣x∣<}]ν(dx)}

where a ∈ R, b ∈ R+ and ν is a measure on R satisfying
ν({}) = , ∫R( ∧ x

)ν(dx) <∞.
�e measure ν characterizes the size and frequency of

the jumps. If the measure is in�nite, then the process has
in�nitelymany jumps of very small sizes in any small inter-
val.�e constant a de�ned above is called the dri� term of
the process, and b is the variance (volatility) term.

�e Lévy–It
^
o decomposition identify any Lévy process

as the sum of three independent processes, it is stated as
follows:
Given any a ∈ R, b ∈ R+ and measure ν on R satisfying

ν({}) = , ∫R(∧x
)ν(dx) <∞, there exists a probability

space (Ω, ,P) on which a Lévy process X is de�ned.�e

process X is the sum of three independent processes
()
X ,

()
X , and

()
X , where

()
X is a Brownianmotionwith dri� a and

volatility b (in the sense de�ned below),
()
X is a compound

Poisson process, and
()
X is a square integrable martingale.

�e characteristic components of
()
X ,

()
X , and

()
X (denoted

by
()
φ (z),

()
φ (z) and

()
φ (z), respectively) are as follows:

()
φ (z) = iza − zb

 ,
()
φ (z)= ∫{∣x∣≥}(exp(izx) − )ν(dx),
()
φ (z)= ∫{∣x∣<}(exp(izx) −  − izx)ν(dx).

Examples of the Lévy Processes
The Brownian Motion
A Lévy process is said to be a Brownian motion (see
7Brownian Motion and Di�usions) with dri� µ, and
volatility rate σ , if µ = a, b = σ , and ν (R)= . Brow-
nian motion is the only nondeterministic Lévy processes
with continuous sample paths.

The Inverse Brownian Process
Let X be a Brownian motion with µ >  and volatility rate
σ . For any x > , let Tx = inf{t : Xt > x}.�en Tx is an
increasing Lévy process (called inverse Brownianmotion),
its Lévy measure is given by

υ(dx) = √
πσ x

exp(−xµ


σ 
) .

The Compound Poisson Process
�e compound Poisson process (see 7Poisson Processes)
is a Lévy process where b =  and ν is a �nite measure.

The Gamma Process
�e gamma process is a nonnegative increasing Lévy pro-
cess X, where b =  , a − ∫  xν(dx) =  and its Lévy
measure is given by

ν(dx) = α
x
exp(−x/β)dx, x > 

where α, β > . It follows that the mean term (E(X ))
and the variance term (V(X )) for the process are equal
to αβ and αβ, respectively.

�e following is a simulated sample path of a gamma
process, where α =  and β = . (Fig. ).

The Variance Gamma Process
�e variance gamma process is a Lévy process that can be
represented as either the di�erence between two indepen-
dent gamma processes or as a Brownian process subordi-
nated by a gamma process.�e latter is accomplished by a
random time change, replacing the time of the Brownian
process by a gamma process, with a mean term equal to .
�e variance gamma process has three parameters: µ – the
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Brownian process dri� term, σ – the volatility of the
Brownian process, and ν – the variance term of the the
gamma process.

�e following are two simulated sample paths, one for
a Brownian motion with a dri� term µ = . and volatility
term σ = . and the other is for a variance gamma process
with the same values for the dri� term and the volatility
terms and ν =  (Fig. ).
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Life expectancy is de�ned as the average number of years
a person is expected to live from age x, as determined by
statistics.
Statistics on life expectancy are derived from a mathe-

matical model known as the 7life table. In order to calcu-
late this indicator, the mortality rate at each age is assumed
to be constant. Life expectancy (ex) can be evaluated at
any age and, in a hypothetical stationary population, can
be written in discrete form as:

ex =
Tx
lx

where x is age; Tx is the number of person-years lived
aged x and over; and lx is the number of survivors at age
x according to the life table.
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Life expectancy can be calculated for combined sexes
or separately for males and females.�ere can be signi�-
cant di�erences between sexes.
Life expectancy at birth (e) is the average number of

years a newborn child can expect to live if currentmortality
trends remain constant:

e =
T
l

where T is the total size of the population and l is the
number of births (the original number of persons in the
birth cohort).
Life expectancy declines with age. Life expectancy at

birth is highly in�uenced by infant mortality rate. �e
paradox of the life table refers to a situation where life
expectancy at birth increases for several years a�er birth
(e < e < . . .e and even beyond).�e paradox re�ects the
higher rates of infant and child mortality in populations
in pre-transition and middle stages of the demographic
transition.
Life expectancy at birth is a summary measure of mor-

tality in a population. It is a frequently used indicator
of health standards and socio-economic living standards.
Life expectancy is also one of the most commonly used
indicators of social development. �is indicator is easily
comparable through time and between areas, including
countries. Inequalities in life expectancy usually indicate
inequalities in health and socio-economic development.
Life expectancy rose throughout human history. In

ancient Greece and Rome, the average life expectancy
was below  years; between the years  and ,
life expectancy at birth rose from about  years to a
global average of  years, and to more than  years in
the richest countries (Riley ). Furthermore, in most
industrialized countries, in the early twenty-�rst century,
life expectancy averaged at about  years (WHO).�ese
changes, called the “health transition,” are essentially the
result of improvements in public health, medicine, and
nutrition.
Life expectancy varies signi�cantly across regions and

continents: from life expectancies of about  years in
some central African populations to life expectancies of
 years and above in many European countries. �e
more developed regions have an average life expectancy of
 years, while the population of less developed regions
is at birth expected to live an average  years less. �e
two continents that display the most extreme di�erences
in life expectancies are North America (. years) and
Africa (. years) where, as of recently, the gap between
life expectancies amounts to  years (UN, –
 data).

Countries with the highest life expectancies in the
world ( years) are Australia, Iceland, Italy, Switzerland,
and Japan ( years); Japanese men and women live an
average of  and  years, respectively (WHO ).
In countries with a high rate of HIV infection, prin-

cipally in Sub-Saharan Africa, the average life expectancy
is  years and below. Some of the world’s lowest life
expectancies are in Sierra Leone ( years), Afghanistan
( years), Lesotho ( years), and Zimbabwe ( years).
In nearly all countries, women live longer than men.

�e world’s average life expectancy at birth is  years for
males and  years for females; the gap is about �ve years.
�e female-to-male gap is expected to narrow in the more
developed regions andwiden in the less developed regions.
�e Russian Federation has the greatest di�erence in life
expectancies between the sexes ( years less for men),
whereas in Tonga, life expectancy for males exceeds that
for females by  years (WHO ).
Life expectancy is assumed to rise continuously.

According to estimation by the UN, global life expectancy
at birth is likely to rise to an average  years by –.
By , life expectancy is expected to vary across countries
from  to  years. Long-range United Nations popula-
tion projections predict that by , on average, people
can expect to live more than  years, from  (Liberia) up
to  years (Japan).
For more details on the calculation of life expectancy,

including continuous notation, see Key�tz (, )
and Preston et al. ().
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�e life table is a classical tabular representation of central
features of the distribution functionF of a positive variable,
say X, which normally is taken to represent the lifetime of
a newborn individual.�e life table was introduced well
before modern conventions concerning statistical distri-
butions were developed, and it comes with some special
terminology and notation, as follows. Suppose that F has a

density f (x) = d
dx
F(x) and de�ne the force of mortality or

death intensity at age x as the function

µ(x) = − d
dx
ln{ − F(x)} = f (x)

{ − F(x)} .

Heuristically, it is interpreted by the relation µ(x)dx =
P{x < X < x + dx∣X > x}. Conversely F(x) =

 − exp{−
x

∫

µ(s)ds} .�e survivor function is de�ned as

ℓ(x) = ℓ(){ − F(x)}, normally with ℓ() = , . In
mortality applications ℓ(x) is the expected number of sur-
vivors to exact age x out of an original cohort of , 
newborn babies.�e survival probability is

tpx = P{X > x + t∣X > x} = ℓ(x + t)/ℓ(x)

= exp{−∫
t


µ(x + s)ds},

and the non-survival probability is (the converse) tqx =
 −tpx. For t =  one writes qx = qx and px = px. In partic-
ular, we get ℓ(x + ) = ℓ(x)px.�is is a practical recursion
formula that permits us to compute all values of ℓ(x) once
we know the values of px for all relevant x.

�e life expectancy is eo = EX = ∫ ∞ ℓ(x)dx/ℓ()
(�e subscript  in eo indicates that the expected value is
computed at age  (i.e., for newborn individuals) and the
superscript o indicates that the computation is made in

the continuous mode.).�e remaining life expectancy at
age x is:

eox = E(X − x∣X > x) = ∫
∞


ℓ(x + t)dt/ℓ(x),

i.e., it is the expected lifetime remaining to someone who
has attained age x.
To turn to the statistical estimation of these various

quantities, suppose that the function µ(x) is piecewise
constant, which means that we take it to equal some con-
stant, say µj, over each interval (xj, xj+) for some partition
{xj} of the age axis. For a collection {Xi} of independent
observations of X, let Dj be the number of Xi that fall in
the interval (xj, xj+). In mortality applications, this is the
number of deaths observed in the given interval. For the
cohort of the initially newborn, Dj is the number of indi-
viduals whodie in the interval (called the occurrences in the
interval). If individual i dies in the interval, he or she will
of course have lived for Xi − xj time units during the inter-
val. Individuals who survive the interval, will have lived for
xj+ − xj time units in the interval, and individuals who
do not survive to age xj, will not have lived during this
interval at all. When we aggregate the time units lived in
(xj, xj+) over all individuals, we get a total Rj which is
called the exposures for the interval, the idea being that
individuals are exposed to the risk of death for as long as
they live in the interval. In the simple case where there are
no relations between the individual parameters µj, the col-
lection {Dj,Rj} constitutes a statistically su�cient set of
observations with a likelihood Λ that satis�es the relation
ln Λ = ∑j{−µjRj+Dj ln µj}which is easily seen to bemax-
imized by µ̂j = Dj/Rj.�e latter fraction is therefore the
maximum-likelihood estimator for µj (In some connec-
tions an age schedule of mortality will be speci�ed, such as
the classical Gompertz–Makeham function µx = a + bcx,
which does represent a relationship between the intensity
values at the di�erent ages x, normally for single-year age
groups.Maximum likelihood estimators can then be found
by plugging this functional speci�cation of the intensities
into the likelihood function, �nding the values â, b̂, and
ĉ that maximize Λ, and using â + b̂ĉx for the intensity in
the rest of the life table computations. Methods that do not
amount tomaximum likelihood estimationwill sometimes
be used because they involve simpler computations. With
some luck they provide starting values for the iterative pro-
cess that must usually be applied to produce the maximum
likelihood estimators. For an example, see Forsén ()).
�is whole schema can be extended trivially to cover cen-
soring (withdrawals) provided the censoringmechanism is
unrelated to the mortality process.
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If the force of mortality is constant over a single-year
age interval (x, x + ), say, and is estimated by µ̂x in this
interval, then p̂x = e−µ̂x is an estimator of the single-year
survival probability px.�is allows us to estimate the sur-
vival function recursively for all corresponding ages, using
ℓ̂(x + ) = ℓ̂(x)p̂x for x = , , . . . , and the rest of the
life table computations follow suit. Life table construction
consists in the estimation of the parameters and the tab-
ulation of functions like those above from empirical data.
�e data can be for age at death for individuals, as in the
example indicated above, but they can also be observa-
tions of duration until recovery from an illness, of intervals
between births, of time until breakdown of some piece of
machinery, or of any other positive duration variable.
So far we have argued as if the life table is computed for

a group of mutually independent individuals who have all
been observed in parallel, essentially a cohort that is fol-
lowed from a signi�cant common starting point (namely
from birth in our mortality example) and which is dimin-
ished over time due to decrements (attrition) caused by
the risk in question and also subject to reduction due to
censoring (withdrawals).�e corresponding table is then
called a cohort life table. It is more common, however, to
estimate a {px} schedule from data collected for the mem-
bers of a population during a limited time period and to
use the mechanics of life-table construction to produce a
period life table from the px values.
Life table techniques are described in detail in most

introductory textbooks in actuarial statistics,7biostatistics,
7demography, and epidemiology. See, e.g., Chiang (),
Elandt-Johnson and Johnson (), Manton and Stallard
(), Preston et al. (). For the history of the
topic, consult Seal (), Smith and Key�tz (), and
Dupâquier ().
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Introduction
�e likelihood function in a statistical model is propor-
tional to the density function for the random variable to
be observed in the model. Most o�en in applications of
likelihood we have a parametric model f (y; θ), where the
parameter θ is assumed to take values in a subset of Rk,
and the variable y is assumed to take values in a subset of
Rn: the likelihood function is de�ned by

L(θ) = L(θ; y) = cf (y; θ), ()

where c can depend on y but not on θ. In more gen-
eral settings where the model is semi-parametric or non-
parametric the explicit de�nition is more di�cult, because
the density needs to be de�ned relative to a dominating
measure, whichmay not exist: seeVan derVaart () and
Murphy andVan derVaart ().�is article will consider
only �nite-dimensional parametric models.
Within the context of the given parametric model, the

likelihood function measures the relative plausibility of
various values of θ, for a given observed data point y. Val-
ues of the likelihood function are only meaningful relative
to each other, and for this reason are sometimes stan-
dardized by the maximum value of the likelihood func-
tion, although other reference points might be of interest
depending on the context.
If ourmodel is f (y; θ) = (ny)θy(−θ)n−y, y = , , . . . ,n;

θ ∈ [, ], then the likelihood function is (any function
proportional to)

L(θ; y) = θy( − θ)n−y
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and can be plotted as a function of θ for any �xed value
of y. �e likelihood function is maximized at θ = y/n.
�is model might be appropriate for a sampling scheme
which recorded the number of successes amongn indepen-
dent trials that result in success or failure, each trial having
the same probability of success, θ. Another example is the
likelihood function for the mean and variance parameters
when sampling from a normal distribution with mean µ
and variance σ :

L(θ; y) = exp{−n log σ − (/σ )Σ(yi − µ)},

where θ = (µ, σ ).�is could also be plotted as a function
of µ and σ  for a given sample y, . . . , yn, and it is not dif-
�cult to show that this likelihood function only depends
on the sample through the sample mean y = n−Σyi and
sample variance s = (n − )−Σ(yi − y), or equivalently
through Σyi and Σyi . It is a general property of likelihood
functions that they depend on the data only through the
minimal su�cient statistic.

Inference
�e likelihood function was de�ned in a seminal paper
of Fisher (), and has since become the basis for most
methods of statistical inference. One version of likelihood
inference, suggested by Fisher, is to use some rule such
as L(θ̂)/L(θ) > k to de�ne a range of “likely” or “plau-
sible” values of θ. Many authors, including Royall ()
and Edwards (), have promoted the use of plots of
the likelihood function, along with interval estimates of
plausible values.�is approach is somewhat limited, how-
ever, as it requires that θ have dimension  or possibly ,
or that a likelihood function can be constructed that only
depends on a component of θ that is of interest; see section
“7Nuisance Parameters” below.
In general, we would wish to calibrate our inference

for θ by referring to the probabilistic properties of the
inferential method. One way to do this is to introduce a
probability measure on the unknown parameter θ, typi-
cally called a prior distribution, and use Bayes’ rule for
conditional probabilities to conclude

π(θ ∣ y) = L(θ; y)π(θ)/∫
θ
L(θ; y)π(θ)dθ,

where π(θ) is the density for the prior measure, and π(θ ∣
y) provides a probabilistic assessment of θ a�er observing
Y = y in the model f (y; θ). We could then make con-
clusions of the form, “having observed  successes in 
trials, and assuming π(θ) = , the posterior probability
that θ > . is .,” and so on.

�is is a very brief description of Bayesian inference, in
which probability statements refer to that generated from

the prior through the likelihood to the posterior. A major
di�culty with this approach is the choice of prior prob-
ability function. In some applications there may be an
accumulation of previous data that can be incorporated
into a probability distribution, but in general there is not,
and some rather ad hoc choices are o�en made. Another
di�culty is themeaning to be attached to probability state-
ments about the parameter.
Inference based on the likelihood function can also be

calibrated with reference to the probability model f (y; θ),
by examining the distribution ofL(θ;Y) as a random func-
tion, or more usually, by examining the distribution of
various derived quantities.�is is the basis for likelihood
inference from a frequentist point of view. In particular,
it can be shown that  log{L(θ̂;Y)/L(θ;Y)}, where θ̂ =
θ̂(Y) is the value of θ at which L(θ;Y) is maximized, is
approximately distributed as a χk random variable, where
k is the dimension of θ. To make this precise requires an
asymptotic theory for likelihood, which is based on a cen-
tral limit theorem (see 7Central Limit�eorems) for the
score function

U(θ;Y) = ∂
∂θ
logL(θ;Y).

If Y = (Y, . . . ,Yn) has independent components, then
U(θ) is a sum of n independent components, which under
mild regularity conditions will be asymptotically normal.
To obtain the χ result quoted above it is also necessary to
investigate the convergence of θ̂ to the true value govern-
ing the model f (y; θ). Showing this convergence, usually
in probability, but sometimes almost surely, can be di�-
cult: see Scholz () for a summary of some of the issues
that arise.
Assuming that θ̂ is consistent for θ, and that L(θ;Y)

has su�cient regularity, the follow asymptotic results can
be established:

(θ̂ − θ)T i(θ)(θ̂ − θ) d→ χk, ()

U(θ)T i−(θ)U(θ) d→ χk, ()

{ℓ(θ̂) − ℓ(θ)} d→ χk, ()

where i(θ) = E{−ℓ′′(θ;Y); θ} is the expected Fisher infor-
mation function, ℓ(θ) = logL(θ) is the log-likelihood
function, and χk is the 7chi-square distribution with k
degrees of freedom.

�ese results are all versions of a more general result
that the log-likelihood function converges to the quadratic
form corresponding to a multivariate normal distribution
(see 7Multivariate Normal Distributions), under suitably
stated limiting conditions. �ere is a similar asymptotic
result showing that the posterior density is asymptotically
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normal, and in fact asymptotically free of the prior distri-
bution, although this result requires that the prior distribu-
tion be a proper probability density, i.e., has integral over
the parameter space equal to .

Nuisance Parameters
In models where the dimension of θ is large, plotting the
likelihood function is not possible, and inference based on
the multivariate normal distribution for θ̂ or the χk dis-
tribution of the log-likelihood ratio doesn’t lead easily to
interval estimates for components of θ. However it is pos-
sible to use the likelihood function to construct inference
for parameters of interest, using variousmethods that have
been proposed to eliminate nuisance parameters.
Suppose in the model f (y; θ) that θ = (ψ, λ), where ψ

is a k-dimensional parameter of interest (which will o�en
be ).�e pro�le log-likelihood function of ψ is

ℓP(ψ) = ℓ(ψ, λ̂ψ),

where λ̂ψ is the constrainedmaximum likelihood estimate:
it maximizes the likelihood function L(ψ, λ) when ψ is
held �xed.�e pro�le log-likelihood function is also called
the concentrated log-likelihood function, especially in
econometrics. If the parameter of interest is not expressed
explicitly as a subvector of θ, then the constrained maxi-
mum likelihood estimate is found using Lagrange multi-
pliers.
It can be veri�ed under suitable smoothness conditions

that results similar to those at ( – ) hold as well for the
pro�le log-likelihood function: in particular

{ℓP(ψ̂) − ℓP(ψ)} = {ℓ(ψ̂, λ̂) − ℓ(ψ, λ̂ψ)}
d→ χk ,

�is method of eliminating nuisance parameters is not
completely satisfactory, especially when there are many
nuisance parameters: in particular it doesn’t allow for
errors in estimation of λ. For example the pro�le likeli-
hood approach to estimation of σ  in the linear regression
model (see 7Linear Regression Models) y ∼ N(Xβ, σ )
will lead to the estimator σ̂  = Σ(yi − ŷi)/n, whereas the
estimator usually preferred has divisor n−p, where p is the
dimension of β.

�us a large literature has developed on improvements
to the pro�le log-likelihood. For Bayesian inference such
improvements are “automatically” included in the formu-
lation of the marginal posterior density for ψ:

πM(ψ ∣ y)∝ ∫ π(ψ, λ ∣ y)dλ,

but it is typically quite di�cult to specify priors for possibly
high-dimensional nuisance parameters. For non-Bayesian

inference most modi�cations to the pro�le log-likelihood
are derived by considering conditional or marginal infer-
ence in models that admit factorizations, at least approxi-
mately, like the following:

f (y; θ) = f(y;ψ)f(y ∣ y; λ), or
f (y; θ) = f(y ∣ y;ψ)f(y; λ).

A discussion of conditional inference and density factori-
sations is given in Reid ().�is literature is closely tied
to that on higher order asymptotic theory for likelihood.
�e latter theory builds on saddlepoint and Laplace expan-
sions to derive more accurate versions of (–): see, for
example, Severini () and Brazzale et al. (). �e
direct likelihood approach of Royall () and others does
not generalize very well to the nuisance parameter setting,
although Royall and Tsou () present some results in
this direction.

Extensions to Likelihood
�e likelihood function is such an important aspect of
inference based on models that it has been extended to
“likelihood-like” functions formore complex data settings.
Examples include nonparametric and semi-parametric
likelihoods: the most famous semi-parametric likelihood
is the proportional hazards model of Cox (). But
many other extensions have been suggested: to empiri-
cal likelihood (Owen ), which is a type of nonpara-
metric likelihood supported on the observed sample; to
quasi-likelihood (McCullagh ) which starts from the
score function U(θ) and works backwards to an infer-
ence function; to bootstrap likelihood (Davison et al. );
and many modi�cations of pro�le likelihood (Barndor�-
Nielsen andCox ; Fraser ).�ere is recent interest
for multi-dimensional responses Yi in composite likeli-
hoods, which are products of lower dimensional condi-
tional or marginal distributions (Varin ). Reid ()
concluded a review article on likelihood by stating:

7 From either a Bayesian or frequentist perspective, the like-
lihood function plays an essential role in inference. The
maximum likelihood estimator, once regarded on an equal
footing among competing point estimators, is now typi-
cally the estimator of choice, although some refinement
is needed in problems with large numbers of nuisance
parameters. The likelihood ratio statistic is the basis for
most tests of hypotheses and interval estimates. The emer-
gence of the centrality of the likelihood function for infer-
ence, partly due to the large increase in computing power,
is one of the central developments in the theory of statistics
during the latter half of the twentieth century.
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Further Reading
�e book by Cox and Hinkley () gives a detailed
account of likelihood inference and principles of statis-
tical inference; see also Cox (). �ere are several
book-length treatments of likelihood inference, including
Edwards (), Azzalini (), Pawitan (), and Sev-
erini (): this last discusses higher order asymptotic
theory in detail, as does Barndor�-Nielsen andCox (),
and Brazzale, Davison and Reid (). A short review
paper is Reid (). An excellent overview of consis-
tency results for maximum likelihood estimators is Scholz
(); see also Lehmann andCasella (). Foundational
issues surrounding likelihood inference are discussed in
Berger and Wolpert ().
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Limit �eorems of Probability �eory is a broad name
referring to the most essential and extensive research area
in Probability �eory which, at the same time, has the
greatest impact on the numerous applications of the latter.
By its very nature, Probability �eory is concerned

with asymptotic (limiting) laws that emerge in a long series
of observations on random events. Because of this, in the
early twentieth century even the very de�nition of prob-
ability of an event was given by a group of specialists
(R. von Mises and some others) as the limit of the rela-
tive frequency of the occurrence of this event in a long
row of independent random experiments. �e “stability”
of this frequency (i.e., that such a limit always exists) was
postulated. A�er the s, Kolmogorov’s axiomatic con-
struction of probability theory has prevailed. One of the
main assertions in this axiomatic theory is the Law of Large
Numbers (LLN) on the convergence of the averages of large
numbers of random variables to their expectation. �is
law implies the aforementioned stability of the relative fre-
quencies and their convergence to the probability of the
corresponding event.

�e LLN is the simplest limit theorem (LT) of probabil-
ity theory, elucidating the physical meaning of probability.
�e LLN is stated as follows: if X,X,X, . . . is a sequence
of i.i.d. random variables,

Sn :=
n

∑
j=
Xj,

and the expectation a := EX exists then n−Sn
a.s.Ð→ a

(almost surely, i.e., with probability ).�us the value na
can be called the �rst order approximation for the sums Sn.
�e Central Limit�eorem (CLT) gives one a more precise
approximation for Sn. It says that, if σ  := E(X − a) <∞,
then the distribution of the standardized sum ζn := (Sn −
na)/σ

√
n converges, as n → ∞, to the standard normal

(Gaussian) law.�at is, for all x,

P(ζn < x)→ Φ(x) := √
π

x

∫
−∞

e−t
/dt.

�e quantity nEξ + ζσ
√
n, where ζ is a standard normal

random variable (so that P(ζ < x) = Φ(x)), can be called
the second order approximation for Sn.

�e �rst LLN (for the Bernoulli scheme) was proved
by Jacob Bernoulli in the late s (published posthu-
mously in ). �e �rst CLT (also for the Bernoulli
scheme) was established by A. de Moivre (�rst published
in  and referred nowadays to as the deMoivre–Laplace
theorem). In the beginning of the nineteenth century,
P.S. Laplace and C.F. Gauss contributed to the generaliza-
tion of these assertions and appreciation of their enormous
applied importance (in particular, for the theory of errors
of observations), while later in that century further break-
throughs in both methodology and applicability range
of the CLT were achieved by P.L. Chebyshev () and
A.M. Lyapunov ().

�e main directions in which the two aforementioned
main LTs have been extended and re�ned since then are:

. Relaxing the assumption EX < ∞. When the sec-
ond moment is in�nite, one needs to assume that the
“tail” P(x) := P(X > x) + P(X < −x) is a func-
tion regularly varying at in�nity such that the limit
lim
x→∞P(X > x)/P(x) exists.�en the distribution of the
normalized sum Sn/σ(n), where σ(n) := P−(n−),
P− being the generalized inverse of the function P, and
we assume that Eξ =  when the expectation is �nite,
converges to one of the so-called stable laws as n→∞.
�e7characteristic functions of these laws have simple
closed-form representations.

. Relaxing the assumption that the Xj’s are identically
distributed and proceeding to study the so-called tri-
angular array scheme, where the distributions of the
summands Xj = Xj,n forming the sum Sn depend not
only on j but on n as well. In this case, the class of all
limit laws for the distribution of Sn (under suitable nor-
malization) is substantially wider: it coincides with the
class of the so-called in�nitely divisible distributions.
An important special case here is the Poisson limit the-
orem on convergence in distribution of the number of
occurrences of rare events to a Poisson law.

. Relaxing the assumption of independence of the Xj’s.
Several types of “weak dependence” assumptions onXj
under which the LLN and CLT still hold true have
been suggested and investigated.One should alsomen-
tion here the so-called ergodic theorems (see7Ergodic
�eorem) for a wide class of random sequences and
processes.

. Re�nement of the main LTs and derivation of asymp-
totic expansions. For instance, in the CLT, bounds of
the rate of convergence P(ζn < x) − Φ(x) →  and
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asymptotic expansions for this di�erence (in the pow-
ers of n−/ in the case of i.i.d. summands) have been
obtained under broad assumptions.

. Studying large deviation probabilities for the sums Sn
(theorems on rare events). If x → ∞ together with n
then the CLT can only assert that P(ζn > x) → .
�eorems on large deviation probabilities aim to �nd a
function P(x,n) such that

P(ζn > x)
P(x,n) →  as n→∞, x →∞.

�e nature of the function P(x,n) essentially depends
on the rate of decay of P(X > x) as x →∞ and on the
“deviation zone,” i.e., on the asymptotic behavior of the
ratio x/n as n→∞.

. Considering observations X, . . . ,Xn of a more com-
plex nature – �rst of all, multivariate random vectors.
If Xj ∈ Rd then the role of the limit law in the CLT
will be played by a d-dimensional normal (Gaussian)
distribution with the covariance matrix E(X − EX)
(X − EX)T .

�e variety of application areas of the LLN and CLT
is enormous. �us, Mathematical Statistics is based on
these LTs. Let X∗n := (X, . . . ,Xn) be a sample from
a distribution F and F∗n (u) the corresponding empirical
distribution function.�e fundamental Glivenko–Cantelli
theorem (see 7Glivenko-Cantelli �eorems) stating that
supu ∣F

∗
n (u)− F(u)∣

a.s.Ð→  as n→∞ is of the same nature
as the LLN and basically means that the unknown distri-
bution F can be estimated arbitrary well from the random
sample X∗n of a large enough size n.

�e existence of consistent estimators for the unknown
parameters a = Eξ and σ  = E(X − a) also follows from
the LLN since, as n→∞,

a∗ : = 
n

n

∑
j=
Xj

a.s.Ð→ a, (σ )∗ := 
n

n

∑
j=

(Xj − a∗)

= 
n

n

∑
j=
Xj − (a∗) a.s.Ð→ σ .

Under additional moment assumptions on the distri-
bution F, one can also construct asymptotic con�dence
intervals for the parameters a and σ , as the distributions
of the quantities

√
n(a∗ − a) and

√
n((σ )∗ − σ ) con-

verge, as n → ∞, to the normal ones.�e same can also
be said about other parameters that are “smooth” enough
functionals of the unknown distribution F.

�e theorem on the 7asymptotic normality and
asymptotic e�ciency of maximum likelihood estimators
is another classical example of LTs’ applications in mathe-
matical statistics (see e.g., Borovkov ). Furthermore, in

estimation theory and hypotheses testing, one also needs
theorems on large deviation probabilities for the respec-
tive statistics, as it is statistical procedures with small error
probabilities that are o�en required in applications.
It is worth noting that summation of random variables

is by no means the only situation in which LTs appear in
Probability�eory.
Generally speaking, the main objective of Probabil-

ity�eory in applications is �nding appropriate stochastic
models for objects under study and then determining the
distributions or parameters one is interested in. As a rule,
the explicit form of these distributions and parameters is
not known. LTs can be used to �nd suitable approximations
to the characteristics in question.
At least two possible approaches to this problem should

be noted here.

. Suppose that the unknown distribution Fθ depends on
a parameter θ such that, as θ approaches some “critical”
value θ, the distributions Fθ become “degenerate” in
one sense or another.�en, in a number of cases, one
can �nd an approximation for Fθ which is valid for the
values of θ that are close to θ. For instance, in actuarial
studies,7queueing theory and some other applications
one of the main problems is concerned with the dis-
tribution of S := sup

k≥
(Sk − θk), under the assumption

that EX = . If θ >  then S is a proper random vari-
able. If, however, θ →  then S a.s.Ð→ ∞. Here we deal
with the so-called “transient phenomena.” It turns out
that if σ  := Var (X) <∞ then there exists the limit

lim
θ↓
P(θS > x) = e−x/σ  , x > .

�is (Kingman–Prokhorov) LT enables one to �nd
approximations for the distribution of S in situations
where θ is small.

. Sometimes one can estimate the “tails” of the unknown
distributions, i.e., their asymptotic behavior at in�nity.
�is is of importance in those applications where one
needs to evaluate the probabilities of rare events. If the
equation Eeµ(X−θ) =  has a solution µ >  then, in
the above example, one has

P(S > x) ∼ ce−µx, x →∞,

where c is a known constant. If the distribution F of X
is subexponential (in this case, Eeµ(X−θ) = ∞ for any
µ > ) then

P(S > x) ∼ 
θ ∫

∞

x
( − F(t)) dt, x →∞.
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�isLTenablesone to�ndapproximations forP(S > x)
for large x.
For both approaches, the obtained approximations

can be re�ned.

An important part of Probability�eory is concerned
with LTs for random processes. �eir main objective is
to �nd conditions under which random processes con-
verge, in some sense, to some limit process. An extension
of the CLT to that context is the so-called Functional
CLT (a.k.a. the Donsker–Prokhorov invariance princi-
ple) which states that, as n → ∞, the processes
{ζn(t) := (S⌊nt⌋ − ant)/σ

√
n}t∈[,] converge in distribu-

tion to the standard Wiener process {w(t)}t∈[,].�e LTs
(including large deviation theorems) for a broad class of
functionals of the sequence (7random walk) {S, . . . , Sn}
can also be classi�ed as LTs for 7stochastic processes.
�e same can be said about Law of iterated logarithm
which states that, for an arbitrary ε > , the random walk
{Sk}∞k= crosses the boundary (−ε)σ

√
k ln ln k in�nitely

many times but crosses the boundary ( + ε)σ
√
k ln ln k

�nitely many times with probability . Similar results hold
true for trajectories of Wiener processes {w(t)}t∈[,] and
{w(t)}t∈[,∞).
In mathematical statistics a closely related to func-

tional CLT result says that the so-called “empirical process”
{√n(F∗n (u) − F(u))}u∈(−∞,∞) converges in distribution

to {w(F(u))}u∈(−∞,∞), where w(t) := w(t) − tw() is
the Brownian bridge process.�is LT implies7asymptotic
normality of a great many estimators that can be repre-
sented as smooth functionals of the empirical distribution
function F∗n (u).

�ere are many other areas in Probability �eory
and its applications where various LTs appear and are
extensively used. For instance, convergence theorems
for 7martingales, asymptotics of extinction probability
of a branching processes and conditional (under non-
extinction condition) LTs on a number of particles etc.

About the Author
Professor Borovkov is Head of Probability and Statis-
tics Department of the Sobolev Institute of Mathematics,
Novosibirsk (RussianAcademy of Sciences), since .He
is Head of Probability and Statistics Chair at the Novosi-
birsk University since . He is Concelour of Russian
Academy of Sciences and fullmember of RussianAcademy
of Sciences (Academician) (). He was awarded the
State Prize of the USSR (), the Markov Prize of the
Russian Academy of Sciences () and Government
Prize in Education (). Professor Borovkov is Editor-
in-Chief of the journal “SiberianAdvances inMathematics”

and Associated Editor of journals “�eory of Probabil-
ity and its Applications,” “Siberian Mathematical Journal,”
“Mathematical Methods of Statistics,” “Electronic Journal of
Probability.”

Cross References
7Almost Sure Convergence of Random Variables
7Approximations to Distributions
7Asymptotic Normality
7Asymptotic Relative E�ciency in Estimation
7Asymptotic Relative E�ciency in Testing
7Central Limit�eorems
7Empirical Processes
7Ergodic�eorem
7Glivenko-Cantelli�eorems
7Large Deviations and Applications
7Laws of Large Numbers
7Martingale Central Limit�eorem
7Probability�eory: An Outline
7RandomMatrix�eory
7Strong Approximations in Probability and Statistics
7Weak Convergence of Probability Measures

References and Further Reading
Billingsley P () Convergence of probability measures. Wiley,

New York
Borovkov AA () Mathematical statistics. Gordon & Breach,

Amsterdam
Gnedenko BV, Kolmogorov AN () Limit distributions for sums

of independent random variables. Addison-Wesley, Cambridge
Lévy P () Théorie de l’Addition des Variables Aléatories.

Gauthier-Villars, Paris
Loève M (–) Probability theory, vols I and II, th edn.

Springer, New York
Petrov VV () Limit theorems of probability theory: sequences of

independent random variables. Clarendon/Oxford University
Press, New York

Linear Mixed Models

GeertMolenberghs
Professor
Universiteit Hasselt & Katholieke Universiteit Leuven,
Leuven, Belgium

In observational studies, repeated measurements may be
taken at almost arbitrary time points, resulting in an
extremely large number of time points at which only one
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or only a few measurements have been taken. Many of the
parametric covariance models described so far may then
contain toomany parameters tomake them useful in prac-
tice, while other,more parsimonious,modelsmay be based
on assumptions which are too simplistic to be realistic.
A general, and very �exible, class of parametric models for
continuous longitudinal data is formulated as follows:

yi∣bi ∼ N(Xiβ + Zibi,Σi), ()
bi ∼ N(,D), ()

where Xi and Zi are (ni × p) and (ni × q) dimensional
matrices of known covariates, β is a p-dimensional vec-
tor of regression parameters, called the �xed e�ects, D is
a general (q × q) covariance matrix, and Σi is a (ni × ni)
covariance matrix which depends on i only through its
dimension ni, i.e., the set of unknown parameters in Σi will
not depend upon i. Finally, bi is a vector of subject-speci�c
or random e�ects.

�e above model can be interpreted as a linear regres-
sion model (see 7Linear Regression Models) for the vec-
tor yi of repeated measurements for each unit separately,
where some of the regression parameters are speci�c (ran-
dom e�ects, bi), while others are not (�xed e�ects, β).�e
distributional assumptions in () with respect to the ran-
dom e�ects can be motivated as follows. First, E(bi) = 
implies that the mean of yi still equals Xiβ, such that the
�xed e�ects in the random-e�ects model () can also be
interpreted marginally. Not only do they re�ect the e�ect
of changing covariates within speci�c units, they alsomea-
sure the marginal e�ect in the population of changing the
same covariates. Second, the normality assumption imme-
diately implies that, marginally, yi also follows a normal
distribution with mean vector Xiβ and with covariance
matrix Vi = ZiDZ′i + Σi.
Note that the random e�ects in () implicitly imply the

marginal covariance matrix Vi of yi to be of the very spe-
ci�c form Vi = ZiDZ′i + Σi. Let us consider two examples
under the assumption of conditional independence, i.e.,
assuming Σi = σ Ini . First, consider the case where the
random e�ects are univariate and represent unit-speci�c
intercepts. �is corresponds to covariates Zi which are
ni-dimensional vectors containing only ones.

�e marginal model implied by expressions () and
() is

yi ∼ N(Xiβ,Vi), Vi = ZiDZ′i + Σi

which can be viewed as a multivariate linear regression
model, with a very particular parameterization of the
covariance matrix Vi.

With respect to the estimation of unit-speci�c param-
eters bi, the posterior distribution of bi given the observed
data yi can be shown to be (multivariate) normal with
mean vector equal to DZ′iV

−
i (α)(yi − Xiβ). Replacing β

and α by their maximum likelihood estimates, we obtain
the so-called empirical Bayes estimates b̂i for the bi. A key
property of these EB estimates is shrinkage, which is best
illustrated by considering the prediction ŷi ≡ Xi β̂ +Zib̂i of
the ith pro�le. It can easily be shown that

ŷi = ΣiV−i Xi β̂ + (Ini − ΣiV−i ) yi,

which can be interpreted as a weighted average of the
population-averaged pro�le Xi β̂ and the observed data yi,
with weights ΣiV−i and Ini −ΣiV−i , respectively. Note that
the “numerator” of ΣiV−i represents within-unit variabil-
ity and the “denominator” is the overall covariance matrix
Vi. Hence, much weight will be given to the overall average
pro�le if the within-unit variability is large in comparison
to the between-unit variability (modeled by the random
e�ects), whereasmuchweight will be given to the observed
data if the opposite is true.�is phenomenon is referred to
as shrinkage toward the average pro�leXi β̂. An immediate
consequence of shrinkage is that the EB estimates show less
variability than actually present in the random-e�ects dis-
tribution, i.e., for any linear combination λ of the random
e�ects,

var(λ′b̂i)≤ var(λ′bi) = λ′Dλ.
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7 I did not want proof, because the theoretical exigencies of
the problem would afford that. What I wanted was to be
started in the right direction.

(F. Galton)

�e linear regressionmodel of statistics is any functional
relationship y = f (x, β, ε) involving a dependent real-
valued variable y, independent variables x, model param-
eters β and random variables ε, such that a measure of
central tendency for y in relation to x termed the regression
function is linear in β. Possible regression functions include
the conditional mean E(y∣x, β) (as when β is itself random
as in Bayesian approaches), conditional medians, quantiles
or other forms. Perhaps y is corn yield from a given plot
of earth and variables x include levels of water, sunlight,
fertilization, discrete variables identifying the genetic vari-
ety of seed, and combinations of these intended to model
interactive e�ects they may have on y. �e form of this
linkage is speci�ed by a function f known to the experi-
menter, one that depends upon parameters β whose values
are not known, and also upon unseen random errors ε
about which statistical assumptions are made.�ese mod-
els prove surprisingly �exible, as when localized linear
regression models are knit together to estimate a regres-
sion function nonlinear in β. Draper and Smith () is
a plainly written elementary introduction to linear regres-
sion models, Rao () is one of many established general
references at the calculus level.

Aspects of Data, Model and Notation
Suppose a time varying sound signal is the superposition
of sine waves of unknown amplitudes at two �xed known
frequencies embedded in white noise background y[t] =
β+β sin[.t]+β sin[.t]+ε.Wewrite β+βx+βx+ε
for β = (β, β, β), x = (x, x, x), x ≡ , x(t) =
sin[.t], x(t) = sin[.t], t ≥ . A natural choice of regres-
sion function is m(x, β) = E(y∣x, β) = β + βx + βx
provided Eε ≡ . In the classical linear regression model
one assumes for di�erent instances “i” of observation that
random errors satisfy Eεi ≡ , Eεiεk ≡ σ  > , i = k ≤
n, Eεiεk ≡  otherwise. Errors in linear regression mod-
els typically depend upon instances i at which we select
observations and may in some formulations depend also
on the values of x associated with instance i (perhaps the
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errors are correlated and that correlation depends upon
the x values). What we observe are yi and associated val-
ues of the independent variables x. �at is, we observe
(yi, , sin[.ti], sin[.ti]), i ≤ n.�e linear model on data
may be expressed y = xβ+εwith y = column vector {yi, i ≤
n}, likewise for ε, and matrix x (the design matrix) whose
n entries are xik = xk[ti].

Terminology
Independent variables, as employed in this context, is
misleading. It derives from language used in connec-
tion with mathematical equations and does not refer to
statistically independent random variables. Independent
variables may be of any dimension, in some applications
functions or surfaces. If y is not scalar-valued the model
is instead a multivariate linear regression. In some ver-
sions either x, β or both may also be random and subject
to statistical models. Do not confuse multivariate linear
regression with multiple linear regression which refers to
a model having more than one non-constant independent
variable.

General Remarks on Fitting Linear
Regression Models to Data
Early work (the classical linear model) emphasized inde-
pendent identically distributed (i.i.d.) additive normal
errors in linear regression where 7least squares has par-
ticular advantages (connections with 7multivariate nor-
mal distributions are discussed below). In that setup least
squares would arguably be a principle method of �tting
linear regression models to data, perhaps with modi�ca-
tions such as Lasso or other constrained optimizations that
achieve reduced sampling variations of coe�cient estima-
tors while introducing bias (Efron et al. ). Absent a
breakthrough enlarging the applicability of the classical
linear model other methods gain traction such as Bayesian
methods (7Markov Chain Monte Carlo having enabled
their calculation); Non-parametric methods (good perfor-
mance relative to more relaxed assumptions about errors);
Iteratively Reweighted least squares (having under some
conditions behavior like maximum likelihood estimators
without knowing the precise form of the likelihood).�e
Dantzig selector is good news for dealing with far fewer
observations than independent variables when a relatively
small fraction of them matter (Candès and Tao ).

Background
C.F. Gauss may have used least squares as early as . In
 he was able to predict the apparent position at which

asteroid Ceres would re-appear from behind the sun a�er
it had been lost to view following discovery only  days
before. Gauss’ prediction was well removed from all others
and he soon followed upwith numerous other high-caliber
successes, each achieved by �tting relatively simple models
motivated by Keppler’s Laws, work at which he was very
adept and quick.�ese were �ts to imperfect, sometimes
limited, yet fairly precise data. Legendre () published
a substantive account of least squares following which the
method became widely adopted in astronomy and other
�elds. See Stigler ().
By contrast Galton (), working with what might

today be described as “low correlation” data, discovered
deep truths not already known by �tting a straight line.
No theoretical model previously available had prepared
Galton for these discoveries which were made in a study
of his own data w = standard score of weight of parental
sweet pea seed(s), y = standard score of seed weights(s)
of their immediate issue. Each sweet pea seed has but one
parent and the distributions of x and y the same. Work-
ing at a time when correlation and its role in regression
were yet unknown, Galton found to his astonishment a
nearly perfect straight line tracking points (parental seed
weight w, median �lial seed weight m(w)). Since for this
data sy ∼ sw this was the least squares line (also the regres-
sion line since the data was bivariate normal) and its slope
was rsy/sw = r (the correlation). Medians m(w) being
essentially equal to means of y for eachw greatly facilitated
calculations owing to his choice to select equal numbers
of parent seeds at weights ,±,±,± standard deviations
from the mean of w. Galton gave the name co-relation
(later correlation) to the slope ∼ . of this line and
for a brief time thought it might be a universal constant.
Although the correlation was small, this slope nonetheless
gavemeasure to the previously vague principle of reversion
(later regression, as when larger parental examples beget
o�spring typically not quite so large). Galton deduced the
general principle that if  < r <  then for a value w > Ew
the relation Ew < m(w) < w follows. Having sensibly
selected equal numbers of parental seeds at intervals may
have helped him observe that points (w, y) departed on
each vertical from the regression line by statistically inde-
pendentN(, θ) random residuals whose variance θ > 
was the same for all w. Of course this likewise amazed him
and by  he had identi�ed all these properties as a con-
sequence of bivariate normal observations (w, y), (Galton
).
Echoes of those long ago events reverberate today in

our many statistical models “driven,” as we now proclaim,
by random errors subject to ever broadening statistical
modeling. In the beginning it was very close to truth.
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Aspects of Linear Regression Models
Data of the real world seldomconformexactly to any deter-
ministic mathematical model y = f (x, β) and through the
device of incorporating random errors we have now an
established paradigm for �tting models to data (x, y) by
statistically estimating model parameters. In consequence
we obtain methods for such purposes as predicting what
will be the average response y to particular given inputs
x; providing margins of error (and prediction error) for
various quantities being estimated or predicted, tests of
hypotheses and the like. It is important to note in all this
that more than one statistical model may apply to a given
problem, the function f and the other model components
di�ering among them. Two statistical modelsmay disagree
substantially in structure and yet neither, either or both
may produce useful results. In this respect statistical mod-
eling is more a matter of how much we gain from using
a statistical model and whether we trust and can agree
upon the assumptions placed on the model, at least as a
practical expedient. In some cases the regression function
conforms precisely to underlying mathematical relation-
ships but that does not re�ect the majority of statistical
practice. It may be that a given statistical model, although
far from being an underlying truth, confers advantage by
capturing some portion of the variation of y vis-a-vis x.�e
method principle components,which seeks to �nd relatively
small numbers of linear combinations of the independent
variables that together account for most of the variation
of y, illustrates this point well. In one application elec-
tromagnetic theory was used to generate by computer an
elaborate database of theoretical responses of an induced
electromagnetic �eld near a metal surface to various com-
binations of �aws in the metal.�e role of principle com-
ponents and linear modeling was to establish a simple
model re�ecting those �ndings so that a portable device
could be devised to make detections in real time based on
the model.
If there is any weakness to the statistical approach

it lies in the fact that margins of error, statistical tests
and the like can be seriously incorrect even if the predic-
tions a�orded by a model have apparent value. Refer to
Hinkelmann and Kempthorne (), Berk (),
Freedman (), Freedman ().

Classical Linear Regression Model
and Least Squares
�e classical linear regression model may be expressed y =
xβ + ε, an abbreviated matrix formulation of the system of
equations in which random errors ε are assumed to satisfy

EεI ≡ ,Eε i ≡ σ  > , i ≤ n :

yi = xiβ +⋯ + xipβp + εi, i ≤ n. ()

�e interpretation is that response yi is observed
for the ith sample in conjunction with numerical values
(xi, . . . , xip) of the independent variables. If these errors
{εI} are jointly normally distributed (and therefore sta-
tistically independent having been assumed to be uncor-
related) and if the matrix xtrx is non-singular then the
maximum likelihood (ML) estimates of the model coef-
�cients {βk, k ≤ p} are produced by ordinary least squares
(LS) as follows:

βML = βLS = (xtrx)−xtry = β +Mε ()

forM = (xtrx)−xtr with xtr denotingmatrix transpose of x
and (xtrx)− thematrix inverse.�ese coe�cient estimates
βLS are linear functions in y and satisfy the Gauss–Markov
properties ()():

E(βLS)k = βk, k ≤ p. ()

and, among all unbiased estimators β∗k (of βk) that are
linear in y,

E((βLS)k − βk) ≤ E (β∗k − βk)
 , for every k ≤ p. ()

Least squares estimator () is frequently employed
without the assumption of normality owing to the fact that
properties ()() must hold in that case as well. Many sta-
tistical distributions F, t, chi-square have important roles in
connection with model () either as exact distributions for
quantities of interest (normality assumed) or more gener-
ally as limit distributions when data are suitably enriched.

Algebraic Properties of Least Squares
Setting all randomness assumptions aside we may exam-
ine the algebraic properties of least squares. If y = xβ + ε
then βLS = My = M(xβ + ε) = β + Mε as in (). �at
is, the least squares estimate of model coe�cients acts on
xβ + ε returning β plus the result of applying least squares
to ε.�is has nothing to do with the model being correct
or ε being error but is purely algebraic. If ε itself has the
form xb + e then Mε = b +Me. Another useful observa-
tion is that if x has �rst column identically one, as would
typically be the case for a model with constant term, then
each row Mk, k > , of M satis�es .Mk =  (i.e., Mk is a
contrast) so (βLS)k = βk + Mk.ε and Mk.(ε + c) = Mk.ε
so ε may as well be assumed to be centered for k > .
�ere are many of these interesting algebraic properties
such as s(y−xβLS) = (−R)s(y)where s(.) denotes the
sample standard deviation and R is themultiple correlation
de�ned as the correlation between y and the �tted val-
ues xβLS. Yet another algebraic identity, this one involving
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an interplay of permutations with projections, is exploited
to help establish for exchangeable errors ε, and contrasts
v, a permutation bootstrap of least squares residuals that
consistently estimates the conditional sampling distribution
of v.(βLS − β) conditional on the 7order statistics of ε.
(See LePage and Podgorski ). Freedman and Lane in
 advocated tests based on permutation bootstrap of
residuals as a descriptive method.

Generalized Least Squares
If errors ε are N(,Σ) distributed for a covariance matrix
Σ known up to a constant multiple then the maximum
likelihood estimates of coe�cients β are produced by a gen-
eralized least squares solution retaining properties ()()
(any positive multiple of Σ will produce the same result)
given by:

βML = (xtrΣ−x)−xtrΣ−y = β + (xtrΣ−x)−xtrΣ−ε. ()

Generalized least squares solution () retains prop-
erties ()() even if normality is not assumed. It must
not be confused with 7generalized linear models which
refers to models equating moments of y to nonlinear func-
tions of xβ.
A very large body of work has been devoted to linear

regression models and the closely related subject areas of
experimental design,7analysis of variance, principle com-
ponent analysis and their consequent distribution theory.

Reproducing Kernel Generalized Linear
Regression Model
Parzen (, Sect. ) developed the reproducing kernel
framework extending generalized least squares to spaces
of arbitrary �nite or in�nite dimension when the ran-
dom error function ε = {ε(t), t ∈ T} has zero means
Eε(t) ≡  and a covariance function K(s, t) = Eε(s)ε(t)
that is assumed known up to some positive constant mul-
tiple. In this formulation:

y(t) = m(t) + ε(t), t ∈ T,
m(t) = Ey(t) = Σiβiwi(t), t ∈ T,

where wi(.) are known linearly independent functions in
the reproducing kernel Hilbert (RKHS) space H(K) of the
kernel K. For reasons having to do with singularity of
Gaussian measures it is assumed that the series de�ning
m is convergent in H(K). Parzen extends to that context
and solves the problem of best linear unbiased estima-
tion of the model coe�cients β and more generally of
estimable linear functions of them, developing con�dence
regions, prediction intervals, exact or approximate distri-
butions, tests and other matters of interest, and establish-
ing the Gauss–Markov properties ()().�e RKHS setup

has been examined from an on-line learning perspective
(Vovk ).

Joint Normal Distributed (x, y) as
Motivation for the Linear Regression
Model and Least Squares
For the moment, think of (x, y) as following a multivariate
normal distribution, as might be the case under process
control or in natural systems. �e (regular) conditional
expectation of y relative to x is then, for some β:

E(y∣x) = Ey + E((y − Ey)∣x) = Ey + x.β for every x

and the discrepancies y − E(y∣x) are for each x distributed
N(, σ ) for a �xed σ , independent for di�erent x.

Comparing Two Basic Linear Regression
Models
Freedman () compares the analysis of two super�cially
similar but di�ering models:
Errors model:Model () above.
Samplingmodel:Data (xi, . . . , xip, yi), i ≤ n represent

a random sample from a �nite population (e.g., an actual
physical population).
In the sampling model, {εi} are simply the residual

discrepancies y-xβLS of a least squares �t of linear model
xβ to the population. Galton’s seed study is an exam-
ple of this if we regard his data (w, y) as resulting from
equal probability without-replacement random sampling
of a population of pairs (w, y) with w restricted to be at
,±,±,± standard deviations from themean. Both with
and without-replacement equal-probability sampling are
considered by Freedman. Unlike the errors model there
is no assumption in the sampling model that the popula-
tion linear regressionmodel is in anyway correct, although
least squares may not be recommended if the population
residuals depart signi�cantly from i.i.d. normal. Our only
purpose is to estimate the coe�cients of the population LS
�t of the model using LS �t of the model to our sample,
give estimates of the likely proximity of our sample least
squares �t to the population �t and estimate the quality of
the population �t (e.g., multiple correlation).
Freedman () established the applicability of Efron’s

Bootstrap to each of the two models above but under dif-
ferent assumptions. His results for the sampling model are
a textbook application of Bootstrap since a description of
the sampling theory of least squares estimates for the sam-
pling model has complexities largely, as had been said, out
of the way when the Bootstrap approach is used. It would
be an interesting exercise to examine data, such as Galton’s
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seed data, analyzing it by the two di�erent models, obtain-
ing con�dence intervals for the estimated coe�cients of a
straight line �t in each case to see how closely they agree.

Balancing Good Fit Against
Reproducibility
A balance in the linear regression model is necessary.
Including too many independent variables in order to
assure a close �t of the model to the data is called over-
�tting. Models over-�t in this manner tend not to work
with fresh data, for example to predict y from a fresh choice
of the values of the independent variables. Galton’s regres-
sion line, although it did not a�ord very accurate predic-
tions of y from w, owing to the modest correlation ∼ .,
was arguably best for his bi-variate normal data (w, y).
Tossing in another independent variable such as w for a
parabolic �t would have over-�t the data, possibly spoiling
discovery of the principle of regression to mediocrity.
A model might well be used even when it is under-

stood that incorporating additional independent variables
will yield a better �t to data and a model closer to truth.
How could this be? If the more parsimonious choice of
x accounts for enough of the variation of y in relation to
the variables of interest to be useful and if its fewer coe�-
cients β are estimated more reliably perhaps. Intentional
use of a simpler model might do a reasonably good job
of giving us the estimates we need but at the same time
violate assumptions about the errors thereby invalidat-
ing con�dence intervals and tests. Gauss needed to come
close to identifying the location at which Ceres would
appear. Going for too much accuracy by complicating the
model risked over�tting owing to the limited number of
observations available.
One possible resolution to this tradeo� between reli-

able estimation of a few model coe�cients, versus the risk
that by doing so too much model related material is le�
in the error term, is to include all of several hierarchically
ordered layers of independent variables, more thanmay be
needed, then remove those that the data suggests are not
required to explain the greater share of the variation of y
(Raudenbush and Bryk ). New results on data com-
pression (Candès and Tao ) may o�er fresh ideas for
reliably removing, in some cases, less relevant independent
variables without �rst arranging them in a hierarchy.

Regression to Mediocrity Versus
Reversion to Mediocrity or Beyond
Regression (when applicable) is o�en used to prove that a
high performing group on some scoring, i.e., X > c > EX,
will not average so highly on another scoring Y , as they do
on X, i.e., E(Y ∣X > c) < E(X∣X > c). Termed reversion

to mediocrity or beyond by Samuels () this property
is easily come by when X,Y have the same distribution.
�e following result and brief proof are Samuels’ except
for clari�cations made here (italics).�ese comments are
addressed only to the formal mathematical proof of the
paper.

Proposition Let random variables X,Y be identically
distributed with �nite mean EX and �x any c >
max(,EX). If P(X > c and Y > c) < P(Y > c) then there
is reversion to mediocrity or beyond for that c.

Proof For any given c > max(,EX) de�ne the di�erence
J of indicator random variables J = (X > c) − (Y > c). J is
zero unless one indicator is  and the other . YJ is less or
equal cJ = c on J =  (i.e., on X > c,Y ≤ c) and YJ is strictly
less than cJ = −c on J = − (i.e., on X ≤ c,Y > c). Since
the event J = − has positive probability by assumption, the
previous implies E YJ < c EJ and so

EY(X > c) = E(Y(Y > c) + YJ) = EX(X > c) + E YJ
< EX(X > c) + cEJ = EX(X > c),

yielding E(Y ∣X > c) < E(X∣X > c). ◻
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Suppose x(n) = (x, . . . , xn) is a sample from a stochastic
process x = {x, x, ...}. Let pn(x(n); θ) denote the joint
density function of x(n), where θєΩ ⊂ Rk is a parameter.
De�ne the log-likelihood ratio Λn = [ pn(x(n);θn)pn(x(n);θ) ], where
θn = θ + n−  h, and h is a (k × ) vector.�e joint density
pn(x(n); θ) belongs to a local asymptotic normal (LAN)
family if Λn satis�es

Λn = n−

 htSn(θ) − n− ( 


htJn(θ)h) + op() ()

where Sn(θ) = dlnpn(x(n);θ)
dθ , Jn(θ) = − d

 lnpn(x(n);θ)
dθdθ t , and

(i)n−

 Sn(θ) dÐ→ Nk(,F(θ)), (ii)n−Jn(θ) pÐ→ F(θ),

()

F(θ) being the limiting Fisher information matrix. Here,
F(θ) ia assumed to be non-random. See LaCam and Yang
() for a review of the LAN family.
For the LAN family de�ned by () and (), it is well

known that, under some regularity conditions, the maxi-
mum likelihood (ML) estimator θ̂n is consistent asymp-
totically normal and e�cient estimator of θ with

√
n(θ̂n − θ) dÐ→ Nk(,F−(θ)). ()

A large class of models involving the classical i.i.d. (inde-
pendent and identically distributed) observations are cov-
ered by the LAN framework. Many time series models and
7Markov processes also are included in the LAN family.
If the limiting Fisher information matrix F(θ) is non-

degenerate random, we obtain a generalization of the LAN
family for which the limit distribution of the ML estima-
tor in () will be a mixture of normals (and hence non-
normal). If Λn satis�es () and () with F(θ) random, the
density pn(x(n); θ) belongs to a local asymptotic mixed
normal (LAMN) family. See Basawa and Scott () for
a discussion of the LAMN family and related asymptotic
inference questions for this family.
For the LAMN family, one can replace the norm

√
n by

a random norm J


n (θ) to get the limiting normal distribu-

tion, viz.,
J


n (θ)(θ̂n − θ) dÐ→ N(, I), ()

where I is the identity matrix.
Two examples belonging to the LAMN family are given

below:

Example  Variance mixture of normals

Suppose, conditionally on V = v, (x, x, . . . , xn)
are i.i.d. N(θ, v−) random variables, and V is an expo-
nential random variable with mean . �e marginal
joint density of x(n) is then given by pn(x(n); θ) ∝

[ + 


n

∑

(xi − θ)]

−( n +)
. It can be veri�ed that F(θ) is

an exponential random variable with mean .�e ML esti-
mator θ̂n = x and

√
n(x − θ) dÐ→ t(). It is interesting to

note that the variance of the limit distribution of x is∞!

Example  Autoregressive process

Consider a �rst-order autoregressive process {xt}
de�ned by xt = θxt− + et , t = , , . . . , with x = , where
{et} are assumed to be i.i.d. N(, ) random variables.
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We then have pn(x(n); θ) ∝ exp [− 
n

∑

(xt − θxt−)].

For the stationary case, ∣θ∣ < , this model belongs
to the LAN family. However, for ∣θ∣ > , the model
belongs to the LAMN family. For any θ, the ML esti-

mator θ̂n = (
n

∑

xixi−)(

n

∑

xi−)

−
. One can verify that

√
n(θ̂n − θ) dÐ→ N(, ( − θ)−), for ∣θ∣ < , and

(θ − )−θn(θ̂n − θ) dÐ→ Cauchy, for ∣θ∣ > .
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A random variable X with realization x belongs to the
location-scale family when its cumulative distribution is a
function only of (x − a)/b:

FX(x ∣ a, b) = Pr(X ≤ x∣a, b) = F(x − a
b

) ; a ∈ R, b > ;

where F(⋅) is a distribution having no other parameters.
Di�erent F(⋅)’s correspond to di�erent members of the
family. (a, b) is called the location–scale parameter, a being
the location parameter and b being the scale parameter. For
�xed b =  we have a subfamily which is a location family
with parameter a, and for �xed a =  we have a scale family
with parameter b.�e variable

Y = X − a
b

is called the reduced or standardized variable. It has a = 
and b = . If the distribution of X is absolutely continuous
with density function

fX(x ∣ a, b) =
dFX(x ∣ a, b)

d x
then (a, b) is a location scale-parameter for the distribu-
tion of X if (and only if)

fX(x ∣ a, b) =

b
f(x − a

b
)

for some density f (⋅), called the reduced density. All distri-
butions in a given family have the same shape, i.e., the same
skewness and the same kurtosis.WhenY hasmean µY and
standard deviation σY then, the mean of X is E(X) = a +
b µY and the standard deviation of X is

√
Var(X) = b σY .

�e location parameter a, a ∈ R is responsible for
the distribution’s position on the abscissa. An enlargement
(reduction) of a causes a movement of the distribution to
the right (le�).�e location parameter is either a measure
of central tendency e.g., the mean, median and mode or it
is an upper or lower threshold parameter.�e scale param-
eter b, b > , is responsible for the dispersion or variation
of the variate X. Increasing (decreasing) b results in an
enlargement (reduction) of the spread and a correspond-
ing reduction (enlargement) of the density. b may be the
standard deviation, the full or half length of the support,
or the length of a central ( − α)–interval.

�e location-scale family has a great number of
members:

● Arc-sine distribution
● Special cases of the beta distribution like the rectan-
gular, the asymmetric triangular, the U–shaped or the
power–function distributions

● Cauchy and half–Cauchy distributions
● Special cases of the χ–distribution like the half–
normal, theRayleigh and theMaxwell–Boltzmann
distributions

● Ordinary and raised cosine distributions
● Exponential and re�ected exponential distributions
● Extreme value distribution of the maximum and the
minimum, each of type I

● Hyperbolic secant distribution
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● Laplace distribution
● Logistic and half–logistic distributions
● Normal and half–normal distributions
● Parabolic distributions
● Rectangular or uniform distribution
● Semi–elliptical distribution
● Symmetric triangular distribution
● Teissier distribution with reduced density f (y) =

[ exp(y) − ] exp[ + y − exp(y)], y ≥ 
● V–shaped distribution

For each of the above mentioned distributions we can
design a special probability paper. Conventionally, the
abscissa is for the realization of the variate and the ordinate,
called the probability axis, displays the values of the cumu-
lative distribution function, but its underlying scaling is
according to the percentile function. �e ordinate value
belonging to a given sample data on the abscissa is called
plotting position; for its choice see Barnett (, ),
Blom (), Kimball ().When the sample comes from
the probability paper’s distribution the plotted data will
randomly scatter around a straight line, thus, we have a
graphical goodness-�t-test.Whenwe �t the straight line by
eye we may read o� estimates for a and b as the abscissa or
di�erence on the abscissa for certain percentiles. A more
objective method is to �t a least-squares line to the data,
and the estimates of a and b will be the the parameters of
this line.

�e latter approach takes the order statisticsXi:n, X:n ≤
X:n ≤ . . . ≤ Xn:n as regressand and the mean of the
reduced order statistics αi:n := E(Yi:n) as regressor, which
under these circumstances acts as plotting position. �e
regression model reads:

Xi:n = a + b αi:n + εi,

where εi is a random variable expressing the di�erence
betweenXi:n and its mean E(Xi:n) = a+b αi:n. As the order
statistics Xi:n and – as a consequence – the disturbance
terms εi are neither homoscedastic nor uncorrelated we
have to use – according to Lloyd () – the general-least-
squares method to �nd best linear unbiased estimators of
a and b. Introducing the following vectors and matrices:

x :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

X:n

X:n

⋮

Xn:n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

,  :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝





⋮



⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

, α :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

α:n

α:n

⋮

αn:n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

, ε :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

ε

ε

⋮

εn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

, θ :=
⎛

⎜
⎜

⎝

a

b

⎞

⎟
⎟

⎠

,

A := ( α)

the regression model now reads

x = A θ + ε

with variance–covariance matrix

Var(x) = b B.

�e GLS estimator of θ is

θ̂ = (A′ΩA)−A′Ω x

and its variance–covariance matrix reads

Var( θ̂ ) = b (A′ΩA)−.

�e vector α and the matrix B are not always easy to �nd.
For only a few location–scale distributions like the expo-
nential, the re�ected exponential, the extreme value, the
logistic and the rectangular distributions we have closed-
form expressions, in all other cases we have to evalu-
ate the integrals de�ning E(Yi:n) and E(Yi:n Yj:n). For
more details on linear estimation and probability plot-
ting for location-scale distributions and for distributions
which can be transformed to location–scale type see Rinne
(). Maximum likelihood estimation for location–scale
distributions is treated by Mi ().
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�e logistic-normal distribution arises by assuming that
the logit (or logistic transformation) of a proportion has
a normal distribution, with an obvious extension to a vec-
tor of proportions through taking a logistic transformation
of a multivariate normal distribution, see Aitchison and
Shen (). In the univariate case, this provides a family of
distributions on (, ) that is distinct from the 7beta dis-
tribution, while the multivariate version is an alternative
to the Dirichlet distribution. Note that in the multivariate
case there is no unique way to de�ne the set of logits for
the multinomial proportions (just as in multinomial logit
models, see Agresti ) and di�erent formulations may
be appropriate in particular applications (Aitchison ).
�e univariate distribution has been used, o�en implicitly,
in random e�ects models for binary data and the multi-
variate version was pioneered by Aitchison for statistical
diagnosis/discrimination (Aitchison and Begg ), the
Bayesian analysis of contingency tables and the analysis of
compositional data (Aitchison , ).

�e use of the logistic-normal distribution is most eas-
ily seen in the analysis of binary data where the logit model
(based on a logistic tolerance distribution) is extended
to the logit-normal model. For grouped binary data with

responses ri out of mi trials (i = , . . . ,n), the response
probabilities, Pi, are assumed to have a logistic-normal dis-
tribution with logit(Pi) = log(Pi/( − Pi)) ∼ N(µi, σ ),
where µi is modelled as a linear function of explanatory
variables, x, . . . , xp.�e resulting model can be summa-
rized as

Ri∣Pi ∼ Binomial(mi,Pi)
logit(Pi)∣Z = ηi + σZ = β + βxi +⋯ + βpxip + σZ

Z ∼ N(, )

�is is a simple extension of the basic logit model with
the inclusion of a single normally distributed random
e�ect in the linear predictor, an example of a general-
ized linear mixed model, see McCulloch and Searle ().
Maximum likelihood estimation for this model is compli-
cated by the fact that the likelihood has no closed form
and involves integration over the normal density, which
requires numerical methods using Gaussian quadrature;
routines now exist as part of generalized linear mixed
model �tting in all major so�ware packages, such as SAS,
R, Stata and Genstat. Approximate moment-based estima-
tion methods make use of the fact that if σ  is small then,
as derived in Williams (),

E[Ri] = miπi and
Var(Ri) = miπi( − π)[ + σ (mi − )πi( − πi)]

where logit(πi) = ηi.�e form of the variance function
shows that this model is overdispersed compared to the
binomial, that is it exhibits greater variability; the ran-
dom e�ect Z allows for unexplained variation across the
grouped observations. However, note that for binary data
(mi = ) it is not possible to have overdispersion arising in
this way.
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Logistic regression is the most common method used to
model binary response data. When the response is binary,
it typically takes the form of /, with  generally indicat-
ing a success and  a failure.However, the actual values that
 and  can take vary widely, depending on the purpose of
the study. For example, for a study of the odds of failure in a
school setting,  may have the value of fail, and  of not-fail,
or pass. �e important point is that  indicates the fore-
most subject of interest forwhich a binary response study is
designed. Modeling a binary response variable using nor-
mal linear regression introduces substantial bias into the
parameter estimates. �e standard linear model assumes
that the response and error terms are normally or Gaus-
sian distributed, that the variance, σ , is constant across
observations, and that observations in the model are inde-
pendent. When a binary variable is modeled using this
method, the �rst two of the above assumptions are violated.
Analogical to the normal regression model being based
on the Gaussian probability distribution function (pdf ),
a binary response model is derived from a Bernoulli dis-
tribution, which is a subset of the binomial pdf with the
binomial denominator taking the value of .�e Bernoulli
pdf may be expressed as:

f (yi; πi) = π yi
i ( − πi)−yi . ()

Binary logistic regression derives from the canonical
form of the Bernoulli distribution. �e Bernoulli pdf is
a member of the exponential family of probability distri-
butions, which has properties allowing for a much easier

estimation of its parameters than traditional Newton–
Raphson-based maximum likelihood estimation (MLE)
methods.
In  Nelder and Wedderbrun discovered that it

was possible to construct a single algorithm for estimat-
ing models based on the exponential family of distri-
butions. �e algorithm was termed 7Generalized linear
models (GLM), and became a standard method to esti-
mate binary response models such as logistic, probit, and
complimentary-loglog regression, count response mod-
els such as Poisson and negative binomial regression, and
continuous response models such as gamma and inverse
Gaussian regression.�e standard normalmodel, or Gaus-
sian regression, is also a generalized linear model, andmay
be estimated under its algorithm.�e formof the exponen-
tial distribution appropriate for generalized linear models
may be expressed as

f (yi; θ i, ϕ) = exp{(yiθ i − b(θ i))/α(ϕ) + c(yi; ϕ)}, ()

with θ representing the link function, α(ϕ) the scale
parameter, b(θ) the cumulant, and c(y; ϕ) the normaliza-
tion term, which guarantees that the probability function
sums to . �e link, a monotonically increasing func-
tion, linearizes the relationship of the expected mean and
explanatory predictors. �e scale, for binary and count
models, is constrained to a value of , and the cumulant is
used to calculate the model mean and variance functions.
�e mean is given as the �rst derivative of the cumulant
with respect to θ, b′(θ); the variance is given as the second
derivative, b′′(θ). Taken together, the above four terms
de�ne a speci�c GLM model.
We may structure the Bernoulli distribution () into

exponential family form () as:

f (yi; πi) = exp{yi ln(πi/( − πi)) + ln( − πi)}. ()

�e link function is therefore ln(π/(−π)), and cumu-
lant − ln( − π) or ln(/( − π)). For the Bernoulli, π is
de�ned as the probability of success.�e �rst derivative of
the cumulant is π, the second derivative, π( − π).�ese
two values are, respectively, the mean and variance func-
tions of the Bernoulli pdf . Recalling that the logistic model
is the canonical form of the distribution, meaning that it is
the form that is directly derived from the pdf , the values
expressed in (), and the values we gave for the mean and
variance, are the values for the logistic model.
Estimation of statistical models using the GLM algo-

rithm, as well asMLE, are both based on the log-likelihood
function.�e likelihood is simply a re-parameterization of
the pdf which seeks to estimate π, for example, rather than
y.�e log-likelihood is formed from the likelihood by tak-
ing the natural log of the function, allowing summation
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across observations during the estimation process rather
than multiplication.

�e traditional GLM symbol for the mean, µ, is typ-
ically substituted for π, when GLM is used to estimate a
logisticmodel. In that form, the log-likelihood function for
the binary-logistic model is given as:

L(µi; yi) =
n

∑
i=

{yi ln(µi/( − µi)) + ln( − µi)}, ()

or

L(µi; yi) =
n

∑
i=

{yi ln(µi) + ( − yi) ln( − µi)}. ()

�e Bernoulli-logistic log-likelihood function is essen-
tial to logistic regression. When GLM is used to esti-
mate logistic models, many so�ware algorithms use the
deviance rather than the log-likelihood function as the
basis of convergence.�e deviance, which can be used as
a goodness-of-�t statistic, is de�ned as twice the di�erence
of the saturated log-likelihood and model log-likelihood.
For logistic model, the deviance is expressed as

D = 
n

∑
i=

{yi ln(yi/µi)+(−yi) ln((−yi)/(− µi))}. ()

Whether estimated using maximum likelihood techniques
or asGLM, the value of µ for each observation in themodel
is calculated on the basis of the linear predictor, x′β. For the
normal model, the predicted �t, ŷ, is identical to x′β, the
right side of (). However, for logistic models, the response
is expressed in terms of the link function, ln(µi/( − µi)).
We have, therefore,

x′iβ = ln(µi/(− µi)) = β + βx + βx +⋯+ βnxn. ()

�e value of µi, for each observation in the logistic model,
is calculated as

µi = / ( + exp (−x′iβ)) = exp (x′iβ) / ( + exp (x′iβ)) .
()

�e functions to the right of µ are commonly used ways
of expressing the logistic inverse link function, which con-
verts the linear predictor to the �tted value. For the logistic
model, µ is a probability.
When logistic regression is estimated using a Newton-

Raphson type ofMLE algorithm, the log-likelihood func-
tion as parameterized to x′β rather than µ.�e estimated
�t is then determined by taking the �rst derivative of the
log-likelihood function with respect to β, setting it to zero,
and solving.�e �rst derivative of the log-likelihood func-
tion is commonly referred to as the gradient, or score
function.�e second derivative of the log-likelihood with
respect to β produces the Hessian matrix, from which the
standard errors of the predictor parameter estimates are

derived. �e logistic gradient and hessian functions are
given as

∂L(β)
∂β

=
n

∑
i=

(yi − µi)xi ()

∂L(β)
∂β∂β′

= −
n

∑
i=

{xix′i µi( − µi)} ()

One of the primary values of using the logistic regression
model is the ability to interpret the exponentiated param-
eter estimates as odds ratios. Note that the link function
is the log of the odds of µ, ln(µ/( − µ)), where the odds
are understood as the success of µ over its failure,  − µ.
�e log-odds is commonly referred to as the logit function.
An example will help clarify the relationship, as well as the
interpretation of the odds ratio.
We use data from the  Titanic accident, compar-

ing the odds of survival for adult passengers to children.
A tabulation of the data is given as:

Age (Child vs Adult)

Survived child adults Total

no   

yes   

Total  , ,

�e odds of survival for adult passengers is /, or
..�e odds of survival for children is /, or ..
�e ratio of the odds of survival for adults to the odds of
survival for children is (/)/(/), or ..
�is value is referred to as the odds ratio, or ratio of the two
component odds relationships. Using a logistic regression
procedure to estimate the odds ratio of age produces the
following results

survived
Odds
Ratio

Std.
Err. z P> ∣z∣

[% Conf.
Interval]

age . . −. . . .

With  = adult and  = child, the estimated odds ratio
may be interpreted as:

7 The odds of an adult surviving were about half the odds of a

child surviving.

By inverting the estimated odds ratio above, we may
conclude that children had [/.∼ .] some % – or
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nearly two times – greater odds of surviving than did
adults.
For continuous predictors, a one-unit increase in a pre-

dictor value indicates the change in odds expressed by
the displayed odds ratio. For example, if age was recorded
as a continuous predictor in the Titanic data, and the
odds ratio was calculated as ., we would interpret the
relationship as:

7 Theoddsof surviving isoneandahalfpercentgreater for each

increasing year of age.

Non-exponentiated logistic regression parameter esti-
mates are interpreted as log-odds relationships, which
carry little meaning in ordinary discourse. Logistic mod-
els are typically interpreted in terms of odds ratios, unless
a researcher is interested in estimating predicted prob-
abilities for given patterns of model covariates; i.e., in
estimating µ.
Logistic regression may also be used for grouped or

proportional data. For these models the response consists
of a numerator, indicating the number of successes (s)
for a speci�c covariate pattern, and the denominator (m),
the number of observations having the speci�c covariate
pattern.�e response y/m is binomially distributed as:

f (yi; πi,mi) = (mi
yi

)π yi
i ( − πi)mi−yi , ()

with a corresponding log-likelihood function expressed as

L(µi; yi,mi) =
n

∑
i=

{yi ln(µi/( − µi)) +mi ln( − µi)

+ (mi
yi

)}. ()

Taking derivatives of the cumulant, −mi ln( − µi), as
we did for the binary response model, produces a mean of
µi = miπi and variance, µi( − µi/mi).
Consider the data below:

y cases x x x

    

    

    

    

    

    

y indicates the number of times a speci�c pattern of covari-
ates is successful. Cases is the number of observations

having the speci�c covariate pattern.�e �rst observation
in the table informs us that there are three cases having
predictor values of x = , x = , and x = . Of those
three cases, one has a value of y equal to , the other two
have values of . All current commercial so�ware appli-
cations estimate this type of logistic model using GLM
methodology.

y
Odds
ratio

OIM
std. err. z P > ∣z∣

[% conf.
interval]

x . . . . . .

x . . −. . . .

x . . −. . . .

�e data in the above table may be restructured so that
it is in individual observation format, rather than grouped.
�e new table would have ten observations, having the
same logic as described. Modeling would result in iden-
tical parameter estimates. It is not uncommon to �nd an
individual-based data set of, for example, , observa-
tions, being grouped into – rows or observations as
above described. Data in tables is nearly always expressed
in grouped format.
Logisticmodels are subject to a variety of �t tests. Some

of the more popular tests include the Hosmer-Lemeshow
goodness-of-�t test, ROC analysis, various information
criteria tests, link tests, and residual analysis.�eHosmer–
Lemeshow test, once well used, is now only used with
caution. �e test is heavily in�uenced by the manner in
which tied data is classi�ed. Comparing observed with
expected probabilities across levels, it is now preferred to
construct tables of risk having di�erent numbers of lev-
els. If there is consistency in results across tables, then the
statistic is more trustworthy.
Information criteria tests, e.g., Akaike informationCri-

teria (see 7Akaike’s Information Criterion and 7Akaike’s
Information Criterion: Background, Derivation, Proper-
ties, and Re�nements) (AIC) and Bayesian Information
Criteria (BIC) are the most used of this type of test. Infor-
mation tests are comparative, with lower values indicating
the preferred model. Recent research indicates that AIC
and BIC both are biased when data is correlated to any
degree. Statisticians have attempted to develop enhance-
ments of these two tests, but have not been entirely suc-
cessful.�e best advice is to use several di�erent types of
tests, aiming for consistency of results.
Several types of residual analyses are typically recom-

mended for logistic models. �e references below pro-
vide extensive discussion of these methods, together with
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appropriate caveats. However, it appears well established
that m-asymptotic residual analyses is most appropri-
ate for logistic models having no continuous predictors.
m-asymptotics is based on grouping observations with
the same covariate pattern, in a similar manner to the
grouped or binomial logistic regression discussed earlier.
�e Hilbe () and Hosmer and Lemeshow () ref-
erences below provide guidance on how best to construct
and interpret this type of residual.
Logistic models have been expanded to include cat-

egorical responses, e.g., proportional odds models and
multinomial logistic regression. �ey have also been
enhanced to include the modeling of panel and corre-
lated data, e.g., generalized estimating equations, �xed and
random e�ects, and mixed e�ects logistic models.
Finally, exact logistic regression models have recently

been developed to allow the modeling of perfectly pre-
dicted data, as well as small and unbalanced datasets.
In these cases, logistic models which are estimated using
GLM or full maximum likelihood will not converge. Exact
models employ entirely di�erent methods of estimation,
based on large numbers of permutations.
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�e logistic distribution is a location-scale family distri-
bution with a very similar shape to the normal (Gaussian)
distribution but with somewhat heavier tails. �e distri-
bution has applications in reliability and survival analysis.
�e cumulative distribution function has been used for
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modelling growth functions and as a tolerance distribu-
tion in the analysis of binary data, leading to the widely
used logit model. For a detailed discussion of the proper-
ties of the logistic and related distributions, see Johnson
et al. ().

�e probability density function is

f (x) = 
τ

exp{−(x − µ)/τ}
[ + exp{−(x − µ)/τ}]

, −∞ < x <∞ ()

and the cumulative distribution function is

F(x) = 
[ + exp{−(x − µ)/τ}] , −∞ < x <∞ .

�e distribution is symmetric about the mean µ and has
variance τπ/, so that when comparing the standard
logistic distribution (µ = , τ = ) with the standard nor-
mal distribution, N(, ), it is important to allow for the
di�erent variances.�e suitably scaled logistic distribution
has a very similar shape to the normal, although the kur-
tosis is . which is somewhat larger than the value of 
for the normal, indicating the heavier tails of the logistic
distribution.
In survival analysis, one advantage of the logistic

distribution, over the normal, is that both right- and le�-
censoring can be easily handled.�e survivor and hazard
functions are given by

S(x) = 
[ + exp{(x − µ)/τ}] , −∞ < x <∞

h(x)= 
τ


[ + exp{−(x − µ)/τ}] .

�e hazard function has the same logistic form and is
monotonically increasing, so themodel is only appropriate
for ageing systemswith an increasing failure rate over time.
In modelling the dependence of failure times on explana-
tory variables, if we use a linear regression model for µ,
then the �tted model has an accelerated failure time inter-
pretation for the e�ect of the variables. Fitting of thismodel
to right- and le�-censored data is described in Aitkin et al.
().
One obvious extension for modelling failure times, T,

is to assume a logistic model for logT, giving a log-logistic
model for T analagous to the lognormal model.�e result-
ing hazard function based on the logistic distribution in
() is

h(t) = α
θ

(t/θ)α−

 + (t/θ)α , t, θ, α > 

where θ = eµ and α = /τ. For α ≤  the hazard is
monotone decreasing, and for α >  it has a single max-
imum as for the lognormal distribution; hazards of this
form may be appropriate in the analysis of data such as

heart transplant survival – there may be an initial period
of increasing hazard associated with rejection, followed by
decreasing hazard as the patient survives the procedure
and the transplanted organ is accepted.
For the standard logistic distribution (µ = , τ = ),

the probability density and the cumulative distribution
functions are related through the very simple identity

f (x) = F(x) [ − F(x)]

which in turn, by elementary calculus, implies that

logit(F(x)) := loge [
F(x)
 − F(x)] = x ()

and uniquely characterizes the standard logistic distribu-
tion. Equation () provides a very simple way for sim-
ulating from the standard logistic distribution by setting
X = loge[U/( − U)] where U ∼ U(, ); for the general
logistic distribution in () we take τX + µ.

�e logit transformation is now very familiar in mod-
elling probabilities for binary responses. Its use goes back
to Berkson (), who suggested the use of the logis-
tic distribution to replace the normal distribution as the
underlying tolerance distribution in quantal bio-assays,
where various dose levels are given to groups of subjects
(animals) and a simple binary response (e.g., cure, death,
etc.) is recorded for each individual (giving r-out-of-n type
response data for the groups).�e use of the normal dis-
tribution in this context had been pioneered by Finney
through his work on 7probit analysis and the same meth-
ods mapped across to the logit analysis, see Finney ()
for a historical treatment of this area. �e probability of
response, P(d), at a particular dose level d is modelled by
a linear logit model

logit(P(d)) = loge [
P(d)
 − P(d)] = β + βd

which, by the identity (), implies a logistic tolerance dis-
tribution with parameters µ = −β/β and τ = /∣β∣.
�e logit transformation is computationally convenient
and has the nice interpretation of modelling the log-
odds of a response. �is goes across to general logis-
tic regression models for binary data where parameter
e�ects are on the log-odds scale and for a two-level factor
the �tted e�ect corresponds to a log-odds-ratio. Approx-
imate methods for parameter estimation involve using
the empirical logits of the observed proportions. How-
ever, maximum likelihood estimates are easily obtained
with standard generalized linear model �tting so�ware,
using a binomial response distribution with a logit link
function for the response probability; this uses the itera-
tively reweighted least-squares Fisher-scoring algorithm of



 L Lorenz Curve

Nelder and Wedderburn (), although Newton-based
algorithms for maximum likelihood estimation of the logit
model appeared well before the unifying treatment of
7generalized linearmodels. A comprehensive treatment of
7logistic regression including models and applications is
given in Agresti () and Hilbe ().
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Definition and Properties
It is a general rule that income distributions are skewed.
Although various distributionmodels, such as the Lognor-
mal and the Pareto have been proposed, they are usually
applied in speci�c situations. For general studies, more
wide-ranging tools have to be applied, the �rst and most
common tool of which is the Lorenz curve. Lorenz ()
developed it in order to analyze the distribution of income
and wealth within populations, describing it in the follow-
ing way:

7 Plot along one axis accumulated percentages of the popula-

tion from poorest to richest, and along the other, wealth held

by these percentages of the population.

�e Lorenz curve L(p) is de�ned as a function of the
proportion p of the population. L(p) is a curve starting
from the origin and ending at point (, ) with the follow-
ing additional properties (I) L(p) is monotone increasing,
(II) L(p) ≤ p, (III) L(p) convex, (IV) L()=  and L()= .
�e Lorenz curve is convex because the income share of the
poor is less than their proportion of the population (Fig. ).

�e Lorenz curve satis�es the general rules:

7 A unique Lorenz curve corresponds to every distribution. The

contrary does not hold, but every Lorenz L(p) is a common

curve for a whole class of distributions F(θ x) where θ is an

arbitrary constant.

�e higher the curve, the less inequality in the income
distribution. If all individuals receive the same income,
then the Lorenz curve coincides with the diagonal from
(, ) to (, ). Increasing inequality lowers the Lorenz
curve, which can converge towards the lower right corner
of the square.
Consider two Lorenz curves LX(p) and LY(p). If

LX(p) ≥ LY(p) for all p, then the distribution correspond-
ing to LX(p) has lower inequality than the distribution
corresponding to LY(p) and is said to Lorenz dominate the
other. Figure  shows an example of Lorenz curves.

�e inequality can be of a di�erent type, the corre-
sponding Lorenz curves may intersect, and for these no
Lorenz ordering holds.�is case is seen in Fig. . Under
such circumstances, alternative inequality measures have
to be de�ned, the most frequently used being the Gini
index, G, introduced by Gini ().�is index is the ratio
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(G = .)

between the area between the diagonal and the Lorenz
curve and the whole area under the diagonal.�is de�ni-
tion yields Gini indices satisfying the inequality  ≤ G ≤ .

�e higher the G value, the greater the inequality in the
income distribution.

Income Redistributions
It is a well-known fact that progressive taxation reduces
inequality. Similar e�ects can be obtained by appropriate
transfer policies, �ndings based on the following general
theorem (Fellman ; Jakobsson ; Kakwani ):

�eorem Let u(x) be a continuous monotone increasing
function and assume that µY = E (u(X)) exists.�en the
Lorenz curve LY(p) for Y = u(X) exists and

(I) LY(p) ≥ LX(p) if
u(x)
x
is monotone decreasing

(II) LY(p) = LX(p) if
u(x)
x
is constant

(III) LY(p) ≤ LX(p) if
u(x)
x
is monotone increasing.

For progressive taxation rules, u(x)
x
measures the pro-

portion of post-tax income to initial income and is a
monotone-decreasing function satisfying condition (I),
and the Gini index is reduced. Hemming and Keen ()
gave an alternative condition for the Lorenz dominance,

which is that u(x)
x
crosses the µY

µX
level once from above.

If the taxation rule is a �at tax, then (II) holds and the
Lorenz curve and the Gini index remain. �e third case
in �eorem  indicates that the ratio u(x)

x
is increasing

and the Gini index increases, but this case has only minor
practical importance.
A crucial study concerning income distributions and

redistributions is the monograph by Lambert ().
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Loss functions occur at several places in statistics. Here
we attach importance to decision theory (see 7Decision
�eory: An Introduction, and 7Decision �eory: An
Overview) and regression. For both �elds the same loss
functions can be used. But the interpretation is di�erent.
Decision theory gives a general framework to de�ne

and understand statistics as a mathematical discipline.�e
loss function is the essential component in decision theory.
�e loss function judges a decisionwith respect to the truth
by a real value greater or equal to zero. In case the decision
coincides with the truth then there is no loss.�erefore the
value of the loss function is zero then, otherwise the value
gives the loss which is su�ered by the decision unequal
the truth.�e larger the value the larger the loss which is
su�ered.
To describe this more exactly let Θ be the known set

of all outcomes for the problem under consideration on
which we have information by data. We assume that one
of the values θ ∈ Θ is the true value. Each d ∈ Θ is a possi-
ble decision.�e decision d is chosen according to a rule,
more exactly according to a function with values in Θ and

de�ned on the set of all possible data. Since the true value θ
is unknown the loss function L has to be de�ned on Θ×Θ,
i.e.,

L : Θ ×Θ → [,∞).

�e �rst variable describes the true value, say, and the
second one the decision.�us L(θ, a) is the loss which is
su�ered if θ is the true value and a is the decision.�ere-
fore, each (up to technical conditions) function L : Θ ×
Θ → [,∞) with the property

L(θ, θ) =  for all θ ∈ Θ

is a possible loss function. �e loss function has to be
chosen by the statistician according to the problem under
consideration.
Next, we describe examples for loss functions. First

let us consider a test problem. �en Θ is divided in two
disjoint subsets Θ and Θ describing the null hypothesis
and the alternative set, Θ = Θ + Θ.�en the usual loss
function is given by

L(θ, ϑ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

 if θ, ϑ ∈ Θ or θ, ϑ ∈ Θ

 if θ ∈ Θ, ϑ ∈ Θ or θ ∈ Θ, ϑ ∈ Θ
.

For point estimation problems we assume that Θ is a
normed linear space and let ∣ ⋅ ∣ be its norm. Such a space
is typical for estimating a location parameter.�en the loss
L(θ, ϑ) = ∣θ − ϑ∣, θ, ϑ ∈ Θ, can be used. Next, let us con-
sider the speci�c case Θ=R.�en L(θ, ϑ) = ℓ(θ − ϑ) is a
typical form for loss functions, where ℓ : IR → [,∞) is
nonincreasing on (−∞, ] and nondecreasing on [,∞)
with ℓ() = . ℓ is also called loss function. An important
class of such functions is given by choosing ℓ(t) = ∣t∣p,
where p >  is a �xed constant.�ere are two prominent
cases, for p =  we get the classical square loss and for p = 
the robust L-loss. Another class of robust losses are the
famous Huber losses

ℓ(t) = t/, if ∣t∣ ≤ γ, and ℓ(t) = γ∣t∣ − γ/, if ∣t∣ > γ,

where γ >  is a �xed constant. Up to now we have shown
symmetrical losses, i.e., L(θ, ϑ) = L(ϑ, θ).�ere are many
problems in which underestimating of the true value θ
has to be di�erently judged than overestimating. For such
problems Varian () introduced LinEx losses

ℓ(t) = b(exp(at) − at − ),

where a, b >  can be chosen suitably. Here underestimat-
ing is judged exponentially and overestimating linearly.
For other estimation problems corresponding losses

are used. For instance, let us consider the estimation of a
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scale parameter and let Θ = (,∞).�en it is usual to con-
sider losses of the form L(θ, ϑ) = ℓ(ϑ/θ), where ℓmust be
chosen suitably. It is, however, more convenient to write
ℓ(ln ϑ − ln θ).�en ℓ can be chosen as above.
In theoretical works the assumed properties for loss

functions can be quite di�erent. Classically it was assumed
that the loss is convex (see 7Rao–Blackwell �eorem).
If the space Θ is not bounded, then it seems to be more
convenient in practice to assume that the loss is bounded
which is also assumed in some branches of statistics. In
case the loss is not continuous then it must be carefully
de�ned to get no counter intuitive results in practice, see
Bischo� ().
In case a density of the underlying distribution of the

data is known up to an unknown parameter the class of
divergence losses can be de�ned. Speci�c cases of these
losses are the Hellinger and the Kulback-Leibler loss.
In regression, however, the loss is used in a di�er-

ent way. Here it is assumed that the unknown location
parameter is an element of a known class F of real valued
functions. Given n observations (data) y, . . . , yn observed
at design points t, . . . , tn of the experimental region a
loss function is used to determine an estimation for the
unknown regression function by the ‘best approximation’,

i.e., the function in F that minimizes ∑ni= ℓ (r
f
i ) , f ∈ F ,

where r fi = yi − f (ti) is the residual in the ith design point.
Here ℓ is also called loss function and can be chosen as
described above. For instance, the least squares estimation
is obtained if ℓ(t) = t.
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Margin of error is a term that probably originated in the
popular reporting of results of 7public opinion polls but
has made its way into more professional usage. It usu-
ally represents half of the length of a con�dence interval
(most usually a % con�dence interval, though it could
in theory be any con�dence interval) for a proportion or
percentage, calculated under the assumption of simple ran-
dom sampling. �e sample value of the proportion, p̂, is
used as an estimate of the population proportion π, and
the standard error (se) is estimated as

√
p̂( − p̂)/n.�en

a % con�dence interval is given as p̂± .× se and the
margin of error is .× se. For example, if an opinion
poll gives a result of % of  respondents in favor of
a proposition (a proportion of .), then the estimated se
of the proportion is

√
(. × .)/ = . and that

is expressed as . percentage points.�en the margin of
error would be presented as . × . = . percentage
points.

�e fact that themargin of error is o�en reported in the
popular press represents progress froma timewhen sample
results were not quali�ed at all by notions of sample-to-
sample variability. Such reporting, however, is frequently
subject to misinterpretation, though reporters o�en cau-
tion against such misinterpretation. First, like the con-
�dence interval, the margin of error does not represent
anything about the probability that the results are close to
truth. A % con�dence interval merely says that, with the
procedure as carried out repeatedly by drawing a sample
from this population, % of the time the stated interval
would cover the true population parameter. �ere is no
information whether this current interval does or does not
cover the population parameter and similarly the margin
of error gives no information whether it covers the true
population percentage. Second, the procedure assumes
simple random sampling, but frequently the sampling for
a survey is more complicated than that and hence the

standard error calculated under the assumption of simple
random sampling is an underestimate.�ird, themargin of
error is frequently calculated for the sample as a whole, but
when interest centers on a subgroup of respondents (e.g.,
the percentage of females who prefer a particular candi-
date) the sample size is smaller and a fresh margin of error
should be calculated for the subgroup, though it frequently
is not. And �nally, and perhaps most importantly, there is
a tendency to assume that the margin of error takes into
account all possible “errors” when in fact it deals only with
sampling error. Nonsampling errors, such as noncoverage,
nonresponse, or inaccurate responses are not taken into
account via a con�dence interval or the margin of error
and may indeed be of much larger magnitude than the
sampling error measured by the standard error.

About the Author
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Definition
Suppose that we have vectors of random variables [v,w] =
[v, v, . . . , vI ,w, . . . ,wJ] in R(I+J). Denote as the joint
density function: fv,w, which obeys: fv,w(v,w) ≥  and
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∫
∞
−∞ . . . ∫

∞
−∞ fv,w(v,w)dv . . . dvIdw . . . dwI = .�en the

probability of the set [Av,Bw] is given by

P(Av,Bw) = ∫ . . .∫
Av ,Bw

fv,w(v,w)dvdw.

�emarginal density fv is obtained as

fv(v) = ∫
∞

−∞
. . .∫

∞

−∞
fv,w(v,w)dw . . . dwI .

�emarginal probability of the set Av is then obtained as,

P(Av) = ∫ . . .∫
Av
fv(v)dv.

We have assumed that the random variables are continu-
ous. When they are discrete, integrals are substituted by
sums. We proceed to present an important application of
marginal probabilities for measuring the probability of a
model.

Measuring the Evidence in Favor of a
Model
In Statistics, a parametricmodel, is denoted as f (x, . . . , xn∣
θ, . . . , θk), where x = (x, . . . , xn) is the vector of n obser-
vations and θ = (θ, . . . , θk) is the vector of k parameters.
For instance we may have n =  observations normally
distributed and the vector of parameters is (θ, θ) the
location and scale respectively, denoted by fNormal(x∣θ) =

∏
n
i=

√
πθ

exp (− 
θ

(xi − θ)).
Assume now that there is reason to suspect that the

location is zero. As a second example, it may be suspected
that the sampling model which usually has been assumed
Normally distributed, is instead a Cauchy, fCauchy(X∣θ) =

∏
n



πθ


(+( xi−θ
θ

)

)
. �e �rst problem is a hypothesis test

denoted by

H : θ =  VS H : θ ≠ ,

and the second problem is amodel selection problem:

M : fNormal VSM : fCauchy.

How to measure the evidence in favor of H or M?
Instead ofmaximized likelihoods as it is done in traditional
statistics, in 7Bayesian statistics the central concept is the
evidence ormarginal probability density

mj(x) = ∫ fj(x∣θj)π(θj)dθj,

where j denotes either model or hypothesis j and π(θ)
denotes the prior for the parameters under model or
hypothesis j.
Marginal probabilities embodies the likelihood of a

model or hypothesis in great generality and can be claimed
it is the natural probabilistic quantity to compare models.

Marginal Probability of a Model
Once the marginal densities of the model j, for j = , . . . , J
models have been calculated and assuming the priormodel
probabilities P(Mj), j = , . . . , J with ∑Jj= P(Mj) =  then,
using Bayes�eorem, the marginal probability of a model
P(Mj∣x) can be calculated as,

P(Mj∣x) =
mj(x) ⋅ P(Mj)

∑
n
i=mi(x) ⋅ P(Mi)

.

We have then the following formula for any two models or
hypotheses:

P(Mj∣x)
P(Mi∣x)

=
P(Mj)
P(Mi)

×
mj(x)
mi(x)

,

or in words: Posterior Odds equals Prior Odds times Bayes
Factor, where the Bayes Factor ofMj overMi is

Bj,i =
mj(x)
mi(x)

,

Je�reys ().
In contrast to 7p-values, which have interpretations

heavily dependent on the sample size n, and its de�ni-
tion is not the same as the scienti�c question, the posterior
probabilities and Bayes Factors address the scienti�c ques-
tion: “how probable is model or hypothesis j as compared
with model or hypothesis i?,” and the interpretation is the
same for any sample size, Berger and Pericchi (). Bayes
Factors and Marginal Posterior Model Probabilities have
several advantages, like for example large sample consis-
tency, that is as the sample size grows the Posterior Model
Probability of the sampling model tends to one. Further-
more, if the goal is to predict future observations yf it isnot
necessary to select onemodel as the predictingmodel since
wemay predict by the so called BayesianModel Averaging,
which if quadratic loss is assumed, the optimal predictor
takes the form,

E[Yf ∣x] =
J

∑
j=
E[Yf∣x,Mj] × P(Mj∣x),

where E[Yf ∣x,Mj] is the expected value of a future obser-
vation under the model or hypothesisMj.

Intrinsic Priors for Model Selection and
Hypothesis Testing
Having said some of the advantages of the marginal prob-
abilities of models, the question arises: how to assign the
conditional priors π(θ j)? In the two examples abovewhich
priors are sensible to use?�e problem is not a simple one
since it is not possible to use the usual Uniformpriors since
then the Bayes Factors are undetermined. To solve this
problem with some generality, Berger and Pericchi ()
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introduced the concepts of Intrinsic Bayes Factors and
Intrinsic Priors. Start by splitting the sample in two sub-
samples x = [x(l),x(-l)] where the training sample x(l) is as
small as possible such that for j= , . . . , J : <mj(x(l))<∞.
�us starting with an improper prior πN(θ j), which does
not integrate to one (for example the Uniform), by using
the minimal training sample x(l), all the conditional prior
densities π(θ j∣x(l)) become proper. So we may form the
Bayes Factor using the training sample x(l) as

Bji(x(l)) =
mj(x( − l)∣x(l))
mi(x( − l)∣x(l))

.

�is however depends on the particular training sample
x(l). So some sort of average of Bayes Factor is necessary.
In Berger and Pericchi () it is shown that the average
should be the arithmetic average. It is also found a theo-
retical prior that is an approximation to the procedure just
described as the sample size grows.�is is called an Intrin-
sic Prior. In the examples above: (i) in the normal case,
assuming for simplicity that the variance is known and
θ =  then it turns out that the Intrinsic Prior is Normal
centered at the null hypothesis θ =  and with variance .
On the other hand in the Normal versus Cauchy example,
it turns out that the improper prior π(θ, θ) = /θ is
the appropriate prior for comparing the models. For other
examples of Intrinsic Priors see for instance, Berger and
Pericchi (a,b, ), and Moreno et al. ().
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Marine science is a wide �eld of research, including
hydrography, chemistry, biological oceanography and �sh-
ery science. Onemay consider that the longer-term aspects
of global warming and issues with pollution monitoring
are the most critical statistical modeling issues. Somewhat
subjectively, the next in line are probably issues which
relate to the sustainable use of marine resources, com-
monly called �shery science. Statistics enters all of the
above sub�elds but the most elaborate models have been
developed for �shery science and aspects of these will
mainly be described here. Within marine research it was
quite common up through about  to use models of
the biological processes set up using di�erential equations,
but had no error component and basically transformed
observed data through an arbitrary computational mech-
anism into desired measures of population size, growth,
yield potential and so forth (Baranov ; Beverton and
Holt ; Gulland ).
Data in �shery science are quite noisy for several rea-

sons. One source of variation is measurement error and
one should expect considerable variability in data which
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are almost always collected indirectly. �us one cannot
observe the marine community through simple popula-
tion measurements but only with surveys (bottom trawl,
divers etc) or sampling of catch, both of which will provide
measures which only relate indirectly to the corresponding
stock parameters, are o�en biased and always quite vari-
able.�e second source of variation is due to the biological
processes themselves, all of which have natural variation.
A typical such process is the recruitment process, i.e., the
production of a new yearclass by the mature component
of the stock in question. Even for biology, this process is
incredibly variable and it is quite hard to extract meaning-
ful signals out of the noise. Unfortunately this process is the
single most important process with regard to sustainable
utilization (Beverton and Holt , ).
As is to be expected, noisy input data will lead to

variation in estimates of stock sizes, productivity and pre-
dictions (Patterson et al. ). As is well-known to statis-
ticians, it is therefore important not only to obtain point
estimates but also estimates of variability. In addition to
the general noise issue, �sheries data are almost never i.i.d.
and examples show how ignoring this can easily lead to
incorrect estimates of stock size, state of utilization and
predictions (Myers and Cadigan ).
Bayesian approaches have been used to estimate stock

sizes (Patterson ). A particular virtue of Bayesian anal-
ysis in this context is the potential to treat natural mor-
tality more sensibly than in other models. �e natural
mortality rate, M, is traditionally treated as a constant in
parametric models and it turns out that this is very hard
to estimate unless data are quite exceptional. �us, M is
commonly assumed to be a known constant and di�erent
values are tested to evaluate the e�ect of di�erent assump-
tions. �e Bayesian approach simply sets a prior on the
naturalmortality like all other parameters and the resulting
computations extend all the way into predictions. Other
methods typically encounter problems in the prediction
phase where it is di�cult to encompass the uncertainty in
M in the estimate of prediction uncertainty.
One approach to extracting general information on

di�cult biological parameters is to consider several stocks
and even several species. For the stock-recruit question it
is clear when many stocks are considered that the typi-
cal behavior is such that the stock tend to produce less at
low stock sizes, but this signal can rarely be seen for indi-
vidual stocks. Formalizing such analyses needs to include
parameters (as random e�ects) for each stock and com-
bining them reduces the noise enough to provide patterns
which otherwise could not be seen (see e.g., Myers et al.
).
In addition to the overall view of sustainable use of

resources, many smaller statistical models are commonly

considered. For example, one can model growth alone,
typically using a nonlinear model, sometimes incor-
porating environmental e�ects and/or random e�ects
(Miller ; Taylor and Stefansson ; Brandão et al.
; Gudmundsson ).
Special e�orts have been undertaken to make the use

of nonlinear and/or random e�ects models easier for the
user (Skaug ; Skaug and Fournier ). Although
developed for �shery science, these are generic C++-based
model-building languages which undertake automatic dif-
ferentiation transparently to the user (Fournier ).
Most of the above models have been developed for

“data-rich” scenarios but models designed for less infor-
mative data sets abound. Traditionally these include simple
models which were non-statistical and were simply a static
model of equilibrium catch but a more time-series orien-
tated approach was set up by Collie and Sissenwine ().
In some cases these simple population models have been
extended to formal random e�ects models (Conser ;
Trenkel ).
At the other extreme of the complexity scale, several

multispecies models have been developed, some of which
are formal statistical models (Taylor et al. ), though
most are somewhat ad-hoc and do not take a statisti-
cal approach (Helgason and Gislason ; Fulton et al.
; Pauly et al. ). Simple mathematical descriptions
of species interactions are not su�cient here since it is
almost always essential to take into account spatial vari-
ation in species overlap, di�erent nursery and spawning
areas and so forth. For these reasons a useful multispecies
model needs to take into account multiple areas, migra-
tion and maturation along with several other processes
(Stefansson and Palsson ). To become statistical mod-
els, these need to be set up in the usual statistical man-
ner with likelihood functions, parameters to be formally
estimated, methods to estimate uncertainty and take into
account the large number of di�erent data sources available
through appropriate weighting or comparisons (Richards
; Stefansson , ).
In the year , the single most promising venue

of further research concerns the use of random e�ects
in nonlinear �sheries models. Several of these have been
described by Venables and Dichmont () and some
examples go a few decades back in time as seen above,
o�en in debated implementations (de Valpine andHilborn
). How this can be implemented in the context of
complex multispecies models remains to be seen.
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Introduction
Suppose that π is a probability measure on the probability
space (S,A), h is a measurable function from S → R, and
one is interested in the calculation of the expectation

h̄ = ∫ hdπ

assuming that the integral exists. In many problems, espe-
cially when the sample space S is multivariate or when the
normalizing constant of π is not easily calculable, �nding
the value of this integral is not feasible either by numerial
methods of integration (such as themethod of quadrature)
or by classical Monte Carlo methods (such as the method
of rejection sampling). In such instances, it is usually possi-
ble to �nd h̄ by Markov chain Monte Carlo, or MCMC for
short, a method that stems from Metropolis et al. ()
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in connection with work related to the hydrogen bomb
project. It found early and wide use in computational sta-
tistical mechanics and quantum �eld theory where it was
used to sample the coordinates of a point in phase space.
Applications and developments of this method in statis-
tics, in particular for problems arising in 7Bayesian statis-
tics, can be traced to Hastings (), Geman and Geman
(), Tanner and Wong () and Gelfand and Smith
().

�e idea behind MCMC is to generate a sequence of
draws {ψ(g), g ≥ } that follow a Markov chain (see
7MarkovChains)with the property that the unique invari-
ant distribution of this Markov chain is the target distribu-
tion π.�en, a�er ignoring the �rst n draws to remove the
e�ect of the initial value ψ(), the sample

{ψ(n+), ...,ψ(n+M)
}

forM large, is taken as an approximate sample from π and
h̄ estimated by the sample average

M−
M

∑
g=
h(ψ(n+g))

Laws of large numbers for Markov chains show that

M−
M

∑
g=
h(ψ(n+g)) → ∫ hdπ

as the simulation sample size M goes to in�nity (Tierney
; Chib and Greenberg ; Chen et al. ; Liu ;
Robert and Casella ).
A key reason for the interest in MCMC methods is

that, somewhat surprisingly, it is straightforward to con-
struct one ormoreMarkov chains whose limiting invariant
distribution is the desired target distribution. A leading
method is the Metropolis–Hasting (M-H) method.

Metropolis–Hastings method
In theMetropolis–Hastingsmethod, as theHastings ()
extension of the Metropolis et al. () method is called,
the Markov chain simulation is constructed by a recursive
two step process.
Let π(ψ) be a probabiliy measure that is dominated by

a sigma-�nite measure µ. Let the density of π with respect
to µ be denoted by p(⋅). Let q(ψ,ψ†) denote a condi-
tional density forψ† givenψ with respect to µ.�is density
q(ψ, ⋅) is referred to as the proposal or candidate generat-
ing density.�en, the Markov chain in the M-H algorithm
is constructed in two steps as follows.

Step  Sample a proposal value ψ† from q(ψ(g),ψ)

and calculate the quantity (the acceptance probability or the
probability of move)

α(ψ,ψ†) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

min [ p(ψ†)q(ψ† ,ψ)
p(ψ)q(ψ,ψ†) , ] if p(ψ)q(ψ,ψ†) > ;

 otherwise .

Step  Set

ψ(g+)
=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ψ† with prob α(ψ(g),ψ†)
ψ(g) with prob  − α(ψ(g),ψ†)

If the proposal value is rejected then the next sam-
pled value is taken to be the current value which means
that when a rejection occurs the current value is repeated
and the chain stays at the current value. Given the new
value, the same two step process is repeated and the whole
process iterated a large number of times.
Given the form of the acceptance probability α(ψ,ψ′)

it is clear that the M-H algorithm does not require knowl-
edge of the normalizing constant of p(⋅). Furthermore,
if the proposal density satis�es the symmetry condition
q(ψ,ψ′) = q(ψ′,ψ), the acceptance probability reduces
to p(ψ′)/p(ψ); hence, if p(ψ′) ≥ p(ψ), the chain moves
to ψ′, otherwise it moves to ψ′ with probability given by
p(ψ′)/p(ψ). �e latter is the algorithm originally pro-
posed by Metropolis et al. ().
A full expository discussion of this algorithm, along

with a derivation of themethod from the logic of reversibil-
ity, is provided by Chib and Greenberg ().

�e M-H method delivers variates from π under quite
general conditions. A weak requirement for a law of large
numbers for sample averages based on the M-H output
involve positivity and continuity of q(ψ,ψ′) for (ψ,ψ′)
and connectedness of the support of the target distribution.
In addition, if π is bounded then conditions for ergod-
icity, required to establish the central limit theorem (see
7Central Limit�eorems), are satis�ed (Tierney ).
It is important that the proposal density be chosen to

ensure that the chain makes large moves through the sup-
port of the invariant distribution without staying at one
place for many iterations. Generally, the empirical behav-
ior of the M-H output is monitored by the autocorrelation
time of each component of ψ de�ned as

{ + 
M

∑
s=

ρks},

where ρks is the sample autocorrelation at lag s for the
kth component of ψ, and by the acceptance rate which
is the proportion of times a move is made as the sam-
pling proceeds. Because independence sampling produces
an autocorrelation time that is theoretically equal to one,
one tries to tune the M-H algorithm to get values close to
one, if possible.
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Di�erent proposal densities give rise to speci�c ver-
sions of theM-H algorithm, eachwith the correct invariant
distribution π. One family of candidate-generating densi-
ties is given by q(ψ,ψ′) = q(ψ′ − ψ).�e candidate ψ′ is
thus drawn according to the process ψ′ = ψ + z, where z
follows the distribution q, and is referred to as the random
walk M-H chain.�e random walk M-H chain is perhaps
the simplest version of the M-H algorithm and is quite
popular in applications. One has to be careful, however, in
setting the variance of z because if it is too large it is possi-
ble that the chainmay remain stuck at a particular value for
many iterations while if it is too small the chain will tend
to make small moves and move ine�ciently through the
support of the target distribution. Hastings () consid-
ers a second family of candidate-generating densities that
are given by the form q(ψ,ψ′) = q(ψ′). Proposal values
are thus drawn independently of the current location ψ.

Multiple-Block M-H
In applications when the dimension of ψ is large it is
usually necessary to construct the Markov chain simula-
tion by �rst grouping the variables ψ into smaller blocks.
Suppose that two blocks are adequate and that ψ is writ-
ten as (ψ,ψ), with ψk ∈ Ωk ⊆ R

dk . In that case the
M-H algorithm requires the speci�cation of two proposal
densities,

q (ψ,ψ
†
 ∣ψ) ; q (ψ,ψ

†
 ∣ψ),

one for each block ψk, where the proposal density qk may
depend on the current value of the remaining block. Also,
de�ne

α (ψ,ψ
†
 ∣ψ) = min

⎧⎪⎪
⎨
⎪⎪⎩

p (ψ† ,ψ) q (ψ† ,ψ∣ψ)

p(ψ,ψ)q (ψ,ψ
†
 ∣ψ)

, 
⎫⎪⎪
⎬
⎪⎪⎭

and

α (ψ,ψ
†
 ∣ψ) = min

⎧⎪⎪
⎨
⎪⎪⎩

p (ψ,ψ
†
) q (ψ† ,ψ∣ψ)

p(ψ,ψ)q (ψ,ψ
†
 ∣ψ)

, 
⎫⎪⎪
⎬
⎪⎪⎭

,

as the probability of move for block ψk conditioned on the
other block.�en, one cycle of the algorithm is completed
by updating each block using a M-H step with the above
probability of move, given the most current value of the
other block.

Gibbs Sampling
A special case of the multiple-block M-H method is the
Gibbs sampling method which was introduced by Geman
and Geman () in the context of image-processing and
broadened for use in Bayesian problems by Gelfand and

Smith (). To describe this algorithm, suppose that
the parameters are grouped into two blocks (ψ,ψ) and
each block is sampled according to the full conditional
distribution of block ψk,

p(ψ∣ψ) ; p(ψ∣ψ)

de�ned as the conditional distribution under π ofψk given
the other block. In parallel with the multiple-block M-H
algorithm, the most current value of the other block is
used in sampling the full conditional distribution. Deriva-
tion of these full conditional distributions is usually quite
simple since, by 7Bayes’ theorem, each full conditional is
proportional to p(ψ,ψ), the joint distribution of the two
blocks. In addition, the introduction of latent or auxiliary
variables can sometimes simplify the calculation and sam-
pling of the full conditional distributions. Albert and Chib
() develop such an approach for the Bayesian analysis
of categorical response data.

Concluding Remarks
Some of the recent theoretical work on MCMC methods
is related to the question of the rates of convergence (Cai
; Fort et al. ; Jarner and Tweedie ; Douc
et al. ) and in the development of adaptive MCMC
methods (Atchade and Rosenthal; Andrieu and Moulines
; ).

�e importance of MCMC methods in statistics and
in particular Bayesian statistics cannot be overstated.�e
remarkable growth of Bayesian thinking over the last
 years was made possible largely by the innovative use of
MCMC methods. So�ware programs such as WINBUGS
and the various MCMC packages in R have contributed
to the use of MCMC methods in applications across the
sciences and social sciences (Congdon ) and these
applications are likely to continue unabated.
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Introduction
Markov chains, which comprise Markov chains and
7Markov processes, have been successfully applied in
areas as divers as biology, �nance,manufacturing, telecom-
munications, physics and transport planning, and even for
experts it is impossible to have an overview on the full
richness of Markovian theory. Roughly speaking, Markov
chains are used for modeling how a system moves from
one state to another at each time point. Transitions are
random and governed by a conditional probability distri-
bution which assigns a probability to the move into a new
state, given the current state of the system. �is depen-
dence represents the memory of the system. A basic exam-
ple of aMarkov chain is the so-called randomwalk de�ned
as follows. Let Xt ∈ N, for t ∈ N, be a sequence of random
variables with initial value X = . Furthermore assume
thatP(Xt+ = Xt+∣Xt ≥ ) = p = −P(Xt+ = Xt−∣Xt ≥ ).
�e sequence X = {Xt : t ∈ N} is an example of a Markov
chain (for a detailed de�nition see below) and the aspects
of X one is usually interested in in Markov chain theory is
(i) whether X returns to  in a �nite number of steps (this
holds for  ≤ p ≤ /), (ii) the expected number of steps
until the chain returns to  (which is �nite for  ≤ p < /),
and (iii) the limiting behavior of Xt .
In the following we present some realistic examples.

A useful model in modeling infectious diseases assumes
that there are four possible states: Susceptible (S), Infected
(I), Immune (A), Dead (R). Possible transitions are from
S to I, S or R; from I to A or R; from A to A or R; from R
to R only.�e transitions probabilities, from S to I, S to R
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and the loop S to S, must sum to one and can depend on
characteristics of the individualsmodeled, like age, gender,
life style, etc. All individuals start in S, and move at each
time unit (say a day). Given observations of the sequence
of visited states (called trajectory) for a sample of individu-
als, with their personal characteristics, one can estimate the
transition probabilities, by 7logistic regression, for exam-
ple.�is model assumes that the transition probability at
time t from one state A to state B, only depends on the
state A, and not on the trajectory that lead to A.�is might
not be realistic, as for example a perdurance in the dis-
eased state I overmany days, could increase the probability
of transition to R. It is possible to model a system with
longer memory, and thus leave the simplest setting of a
Markov Chain (though one can formulate such a model
still as a Markov Chain over a more complex state space
which includes the length of stay in the current state). A
second example refers to �nance. Here we follow the daily
value in Euro of a stock. �e state space is continuous,
and one can model the transitions from state x Euro to y
Euro with an appropriate Normal density with mean x− y.
�e time series of the value of the stock might well show
a longer memory, which one would typically model with
some autoregressive terms, leading to more complex pro-
cess again. As a further example, consider the set of all
web pages on the Internet as the state space of a giant
Markov chain, where the user clicks from one page to
the next, according to a transition probability. A Markov
Chain has been used to model such a process.�e tran-
sitions from the current web page to the next web page
can be modeled as a mixture of two terms: with proba-
bility λ the user follows one of the links present in the
current web page and among these uniformly; with prob-
ability  − λ the user chooses another web page at random
among all other ones. Typically λ = .. Again, one could
discuss how correct the assumption is, that only the current
web page determines the transition probability to the next
one. �e modeler has to critically validate such hypoth-
esis before trusting results based on the Markov Chain
model, or chains with higher order of memory. In general
a stochastic process has the Markov property if the prob-
ability to enter a state in the future is independent of the
states visited in the past given the current state. Finally,
Markov Chain Monte Carlo (MCMC) algorithms (see
7Markov Chain Monte Carlo) are Markov chains, where
at each iteration, a new state is visited according to a tran-
sition probability that depends on the current state.�ese
stochastic algorithm are used to sample from a distribu-
tion on the state space, which is the marginal distribution
of the chain in the limit, when enough iterations have been
performed.

In the literature the term Markov processes is used
for Markov chains for both discrete- and continuous time
cases, which is the setting of this paper. Standard textbooks
on Markov chains are Kijima (), Meyn and Tweedie
(), Nummelin (), Revuz (). In this paper we
follow (Iosifescu ) and use the term ‘Markov chain’ for
the discrete time case and the term ‘Markov process’ for
the continuous time case. General references on Markov
chains are Feller (), Gilks et al. (), Haeggstroem
(), Kemeny and Snell (), Seneta ().

Discrete Time Markov Chains
Consider a sequence of random variables X = {Xt : t ∈
N} de�ned on a common underlying probability space
(Ω,F ,P)with state discrete space (S,S), i.e., Xt isF −S-
measurable for t ∈ N.�e de�ning property of a Markov
chain is that the distribution of Xt+ depends on the past
only through the immediate predecessor Xt , i.e., given
X,X, . . . ,Xt it holds that

P(Xt+ = x∣X = x,X = x, . . .Xt− = xt−,Xt = y)
= P(Xt+ = x∣Xt = y),

where x, y and all other xi are element of the given state
space S. If P(Xt+ = x∣Xt = y) does not depend on t,
the chain is called homogenous and it is called inhomoge-
neous otherwise. Provided that S is at most countable, the
transition probabilities of a homogeneous Markov Chain
are given by P = (px,y)S×S, where px,y = P(Xt+ =

y∣Xt = x) is the probability of a transition from x to
y. �e matrix P is called the one-step transition proba-
bility matrix of the Markov chain. For the introductory
7random walk example the transition matrix is given by
pi,i+ = p, pi,i− = p − , for i ≥ , po, =  and oth-
erwise zero, for i ∈ Z. �e row sums are one and the
k-th power of the transition matrix represent the proba-
bility to move between states in k time units.
In order to fully de�ne a Markov Chain it is necessary

to assign an initial distribution µ = (P(X = s) : s ∈ S).
�e marginal distribution at time t can then be computed,
for example, as

P(Xt = x) =∑
s∈S
p(t)s,x P(X = s),

where p(t)s,x denotes the s, x element of the t-th power of the
transition matrix. Note that given an initial distribution µ
and a transition matrix P, the distribution of the Markov
chain X is uniquely de�ned.
A Markov chain is said to be aperiodic if for each pair

of states i, j the greatest common divisor of the set of all t
such that p(t)ij >  is one. Note that the random walk in
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our introductory example fails to be aperiodic as any path
from starting in  and returning there has a length that is
a multiple of .
A distribution (πi : i ∈ S) is called a stationary

distribution of P if
πP = π.

A key topic in Markov chain theory is the study of the lim-
iting behavior ofX. Again, with initial distribution µ,X has
limiting distribution ν for initial distribution µ if

lim
t→∞

µPt = ν. ()

Note that any limiting distribution is a stationary distri-
bution. A case of particular interest is that when X has
a unique stationary distribution, which is then also the
unique limiting distribution and thus describes the limit
behavior of the Markov chain. If P fails to be aperiodic,
then the limit in () may not exists and should be replaced
by the Cesaro limit

lim
t→∞


t

t

∑
k=
µPk = ν,

which always exists for �nite Markov chains.
A Markov chain is called ergodic if the limit in () is

independent of the initial distribution. Consequently, an
ergodic Markov chain has a unique limiting distribution
and this limiting distribution is also a stationary distri-
bution, and since any stationary distribution is a limiting
distribution it is also unique.
A Markov chain is called irreducible if for any pair of

states i, j ∈ S, there exists a path from i to j that X will
follow with positive probability. In words, any state can be
reached from any other state with positive probability. An
irreducible Markov chain is called recurrent if the number
of steps from a state i to the �rst visit of a state j, denoted by
τi,j, is almost surely �nite for all i, j ∈ S, and it is called pos-
itive recurrent if E[τi,i] <∞ for at least one i ∈ S. Note that
for p = / the random walk is recurrent and for p < / it
is positive recurrent.

�e terminology developed so far allows to present the
main result of Markov chain theory: Any aperiodic, irre-
ducible and positive recurrent Markov chain P possesses a
unique stationary distribution π which is the unique prob-
ability vector solving πP = π (and which is also the unique
limiting distribution).�is7ergodic theorem is one of the
central results and it has been established in many vari-
ations and extensions, see the references. Also, e�cient
algorithms for computing π have been a focus of research
as for Markov chains on large state-spaces computing π is
a non-trivial task.

An important topic of the statistics of Markov chains
is to estimate the (one-step) transition probabilities. Con-
sider a discrete time, homogeneous Markov chain with
�nite state space S = {, , . . . ,m}, observed at time points
, , , . . . ,T on the trajectory s, s, s, . . . , sT . We wish to
estimate the transition probabilities pi,j by maximum like-
lihood.�e likelihood is

P(X = s)
′T−
∏
t=

P(Xt = st+∣Xy = st)

= P(X = s)
m

∏
i=

m

∏
j=
pk(i,j)i,j

where k(i, j) is the number of transitions from i to j in the
observed trajectory. Ignoring the initial factor, the maxi-
mum likelihood estimator of pi,j is found to be equal to
p̂i,j =

k(i,j)
k(i,⋅) , where k(i, ⋅) is the number of transitions

out from state i. Standard likelihood asymptotic applies,
despite the data are dependent, as k(i, ⋅) → ∞, which will
happen if the chain is ergodic.�e asymptotic variance of
the maximum likelihood estimates can be approximated
as var(p̂i,j) ∼ p̂i,j( − p̂i,j)/k(i, ⋅). �e covariances are
zero, except cov(p̂i,j, p̂i,j′) ∼ −p̂i,jp̂i,j′/k(i, ⋅) for j ≠ j′. If
the trajectory is short, the initial distribution should be
considered. A possible model is to use the stationary dis-
tribution π(s), which depend on the unknown transition
probabilities. Hence numerical maximization is needed to
obtain the maximum likelihood estimates. In certain med-
ical applications, an alternative asymptotic regime can be
of interest, when many (k) short trajectories are observed,
and k → ∞. In this case the initial distribution cannot be
neglected.

Markov Chains and Markov Processes
Let {Xt : t ≥ } denote the (continuous time) Markov
process on state space (S,S) with transition matrix P(t),
i.e.,

(P(t))ij = P(Xt+s = j∣Xs = i), s ≥ , i, j ∈ S.

Under some mild regularity conditions is holds that the
generator matrix Q, de�ned as

d
dt

∣
t=
P(t) = Q,

exists for P(t). �e stationary distribution of a Markov
process can be found as the unique probability π that solves
πQ = , seeAnderson (). A generatormatrixQ is called
uniformizable with rate µ if µ = supj ∣qjj∣ < ∞. While
any �nite dimensional generator matrix is uniformizable
a classical example of a Markov process on denumerable
state space that fails to have this property is the M/M/∞
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queue. Note that if Q is uniformizable with rate µ, then Q
is uniformizable with rate η for any η > µ. Let Q be uni-
formizable with rate µ and introduce the Markov chain Pµ
as follows

[Pµ]ij =
⎧⎪⎪
⎨
⎪⎪⎩

qij/µ i /= j
 + qii/µ i = j,

()

for i, j ∈ S, or, in shorthand notation,

Pµ = I +

µ
Q,

then it holds that

P(t) = e−µt
∞
∑
n=

(µt)n

n!
(Pµ)n, t ≥ . ()

Moreover, the stationary distribution of Pµ and P(t) coin-
cide.�e Markov chain Xµ = {Xµn : n ≥ } with transition
probability matrix Pµ is called the sampled chain.�e rela-
tionship between X and Xµ can be expressed as follows.
Let Nµ(t) denote a Poisson process (see 7Poisson Pro-
cesses) with rate µ, then XµNµ(t) and Xt are equal in dis-
tribution for all t ≥ . From the above it becomes clear that
the analysis of the stationary behavior of a (uniformizable)
continuous timeMarkov chain reduces to that of a discrete
time Markov chain.
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Professor Emeritus
University of Florida, Gainesville, FL, USA

�e class of Markov Processes is characterized by a special
stochastic dependence known as the Markov Dependence
that was introduced in  by A.A. Markov while extend-
ing in a natural way the concept of stochastic independence
that will preserve, for example, the asymptotic proper-
ties of sums of random variables such as the law of large
numbers. One of his �rst applications of this dependence
was in investigation of the way the vowels and consonants
alternate in literary works in the Russian literature. �is
dependence that Markov introduced, dealt with what we
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call today a discrete-parameter Markov Chain with a �nite
number of states, and it can be stated as follows: a sequence
{Xn; n = , , . . . } of real-valued random variables given
on a probability space (Ω,F , P), each taking on a �nite
number of values, satis�es

P[Xn+ = xn+∣X,X, . . . ,Xn] = P[Xn+ = xn+∣Xn]. ()

Roughly speaking, () states that any prediction of Xn+
knowing

X,X, . . . ,Xn,

can be achieved by using Xn alone.
�is concept was further extended (as shown in what

follows), for the continuous-parameter Markov processes by
A.N. Kolmogorov in . Further essential developments
in the theory of continuous-parameter Markov Processes
were due to W. Feller, J.L. Doob, G.A. Hunt, and E.B.
Dynkin.
In order to introduce a continuous-parameter Markov

Process, one needs the following setting. Let T ≡

[,+∞)⊂R be the parameter set of the process, referred to
in the sequel as time, whereRdenotes the one-dimensional
Euclidean space; let X = {Xt , Ft , t ∈ T} be the process
given on the probability space (Ω,F , P) that takes values
in a topological space (S ,E), where E is a Borel �eld of
S , that is, a σ-�eld generated by open sets in S .�e pro-
cess X is adapted to the increasing family {Ft , t ∈ T} of
σ-�elds ofF , whereF contains all P-null sets. All Xt ’s are
E-measurable. Here,Xt is adapted toFt means that all ran-
dom events related to Xt are contained in Ft for every value
t of the parameter of the process, that is, Xt isFt-measurable
in addition of being E-measurable. In order to describe the
Markov dependence for the process X, the following two
σ-�elds are needed: ∀t, t ∈ T, F pastt = σ({Xs, s ∈ [, t]})
and F futuret = σ({Xs, s ∈ [t,+∞)}). Here, the past and
the future are relative to the instant t that is considered
as the present. Now the process X = {Xt ,Ft , t ∈ T} is
called aMarkov Process if and only if one of the following
equivalent conditions is satis�ed:

(i) ∀t, t ∈ T, A ∈ Ft , B ∈ F futuret :
P(A ∩ B∣Xt) = P(A∣Xt)P(B∣Xt).

(ii) ∀t, t ∈ T, B ∈ F futuret :
P(B∣Ft) = P(B∣Xt).

(iii) ∀t, t ∈ T, A ∈ Ft :

P (A∣F futuret ) = P(A∣Xt).

()

Observe that (ii) in () is the analog of () stating
that the probability of an event in the future of the Markov
process X depends only on the probability of the present

state of the process and it is independent of the past his-
tory of the process.�ere are numerous phenomena occur-
ring in physical sciences, social sciences, econometrics,
the world of �nance, to name just a few, that can all be
modelled by Markov processes. Among Markov processes
there is a very important subclass of the so-called strong
Markov processes. �is proper subclass of Markov pro-
cesses is obtained by randomizing the parameter of the
process.�is randomization of the parameter leads to the
so-called optional times of the process and the Markov
property () is replaced by the strong Markov property,
where in () deterministic time t is replaced by an optional
time of the process. �e most important example of a
strongMarkov process is the BrownianMotion Process (see
7Brownian Motion and Di�usions) that models the phys-
ical phenomenon known as the Brownian Movement of
particles. Another important class of processes – Di�u-
sion processes, are strong Markov Processes with continuous
paths.
One of the most important properties of Markov pro-

cesses is that times between transitions from one state to
another, are random variables that are conditionally inde-
pendent of each other given the successive states being visited,
and each such sojourn time has an exponential distribution
with the parameter dependent on the state being visited.�is
property coupled with the property that successive states
visited by the process form a Markov chain (see 7Markov
Chains), clearly describe the structure of a Markov pro-
cess. Other important examples of Markov processes are
7Poisson processes, Compound Poisson processes, �e
7Random Walk, Birth and Death processes, to men-
tion just a few. �e last mentioned class of Markov pro-
cesses has many applications in biology, 7demography,
and 7queueing theory.
For further details and proofs of all facts men-

tioned here, a reader may consult the enclosed list of
references.
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Martingale Central Limit Theorem

Petra Posedel
Faculty of Economics and Business
University of Zagreb, Zagreb, Croatia

�e martingale central limit theorem (MCLT) links the
notions of martingales and the Lindeberg–Feller classical
central limit theorem (CLT, see7Central Limit�eorems)
for independent summands.
Perhaps the greatest achievement of modern proba-

bility is the uni�ed theory of limit results for sums of
independent random variables, such as the law of large
numbers, the central limit theorem, and the law of the
iterated logarithm. In comparison to the classical strong
law of large numbers, the classical CLT says something
also about the rate of this convergence. We recall the CLT
for the case of independent, but not necessarily identically
distributed random variables. Suppose that {Xi , i ≥ } is
a sequence of zero-mean independent random variables
such thatVar[Xn] = σ n <∞, n ≥ . Let Sn = ∑ni= Xi , n ≥ 
and setVar[Sn] = sn. If the Lindeberg condition holds, i.e.,
∑
n
i= E[Xi {∣Xi ∣≥єsn}]

sn
Ð→  as n → ∞, for all є > , and

{.} denoting the indicator function, then
Sn
sn

D
Ð→ N(, ),

where N(, ) denotes the standard normal random
variable.
Limit theorems have applicability far beyond the

corresponding results for sums of independent random
variables. Namely, since sums of independent random
variables centered at their expectations have a speci�c
dependence structure (i.e., are martingales), there is inter-
est in extending the results to sums of dependent random
variables.
In order to de�ne martingales and state the MCLT

attributed to Brown (), one needs the following setting.

Let (Ω, F , P) be a probability space and let {Fn, n ≥ }
be an increasing sequence of σ-�elds of F sets.

De�nition  A sequence {Yn, n ≥ } of random variables
on Ω is said to be a martingale with respect to {Fn , n ≥ }
if () Yn is measurable with respect to Fn, () E∣Yn∣ < ∞,
and () E[Yn ∣Fm] = Ym a.s. for all m < n, m, n ≥ .

In order to highlight the dependence structure of
the underlying random variables, one should note that
condition () is weaker than independence since it
cannot be deduced which structure conditional higher-
ordermomentsmay have given the past.�emathematical
theory of martingales may be regarded as an extension
of the independence theory, and it too has its origins in
limit results, beginning with Bernstein () and Lévy’s
() early central limit theorems. �ese authors intro-
duced themartingale in the form of consecutive sums with
a view to generalizing limit results for sums of indepen-
dent random variables. However, it was the subsequent
work of Doob, including the proof of the celebrated mar-
tingale convergence theorem, that completely changed the
direction of the subject, and his book (Doob ), popu-
larly called in academia the Holy Bible for stochastic pro-
cesses, has remained a major in�uence for nearly three
decades.

�e main result that follows applies the CLT to
sequences of random variables that are martingales. If
{Sn, Fn} is a martingale, it seems natural to replace
Var[Sn] in the CLT by the sum of conditional variances.
Secondly, the norming by /n is very restrictive. For a
sequence of independent, but not identically distributed
random variables, it seems appropriate to norm by a dif-
ferent constant, and for a sequence of dependent random
variables norming by another random variable should be
considered. �e limit theory for martingales essentially
covers that for the categories of processes with indepen-
dent increments and7Markov processes. Using stochastic
processes that are martingales for analyzing limit results,
one has at their disposal all the machinery from martin-
gale theory. �is reason makes martingales considerably
attractive for inference purposes. A standard reference on
martingales is Williams ().

�eorem  Let {Sn, Fn , n ≥ } be a zero-mean mar-
tingale with S = , whose increments have �nite variance.
Write

Sn =
n

∑
i=
Xi, Vn =

n

∑
i=
E [Xi ∣Fi−] , and

sn = E [V

n] = E [S


n] . ()
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If

Vn
sn

P
Ð→  and

n

∑
i=
E [Xi {∣Xi ∣≥єsn}]

sn
P
Ð→  ()

as n → ∞, for all є > , and {.} denoting the indicator
function, then

Sn
sn

D
Ð→ N(, ), ()

where N(, ) denotes the standard normal random
variable.

Roughly speaking, () says that the sum of martingale
di�erences, when scaled appropriately, is approximately
normally distributed provided the conditional variances
are su�ciently well behaved.�e theorem seems relevant
in any context in which conditional expectations, given
the past, have a simple and possibly explicit form. Var-
ious results on sums of independent random variables
in fact require only orthogonality of the increments, i.e.,
E[XiXj] = , i ≠ j, and this property holds for martingales
whose increments have �nite variance.�e MCLT reduces
to the su�ciency part of the standard Lindeberg–Feller
result in the case of independent random variables.

�e interpretation ofVn is highlighted and particularly
interesting for inference purposes. Let X , X, . . . be a
sequence of observations of a stochastic process whose
distribution depends on a (single) parameter θ, and
let Ln(θ) be the likelihood function associated with
X, X, . . . . Under very mild conditions, score func-
tions Sn = ∂ logLn(θ)/∂θ form a martingale whose con-
ditional variance Vn = In(θ) is a generalized form of
the standard Fisher information, as shown in Hall and
Heyde (). Namely, suppose that the likelihood func-
tion L(θ) is di�erentiable with respect to θ and that
Eθ[∂ logL(θ)/∂θ] <∞.
Let θ be a true parameter vector. We have

Sn =
∂ logLn(θ)

∂θ
=

n

∑
i=
xi(θ),

xi(θ) =
∂
∂θ

[logLi(θ) − logLi−(θ)],

and thus Eθ[xi(θ)∣Fi−] =  a.s., so that {Sn, Fn , n ≥ }

is a square-integrable martingale. Set Vn =
n

∑
i=
Eθ

[xi (θ)∣Fi−] . �e quantity Vn reduces to the standard
Fisher information In(θ) in the case where the observa-
tions {Xi, i ≥ } are independent random variables. If the
behavior of Vn is very erratic, then so is that of Sn , and it
may not be possible to obtain a CLT.
So, if we have a reasonably large sample, we can assume

that estimators obtained from estimating functions that are

martingales, have an approximately normal distribution,
which can be used for testing and constructing con�dence
intervals. A standard reference for themore general theory
of martingale estimating functions is Sørensen ().
Billingsley (), and independently Ibragimov (),

proved the central limit theorem for martingales with sta-
tionary and ergodic di�erences. For such martingales the
conditional variance Vn is asymptotically constant, i.e.,
Vn
sn

P
Ð→ . Brown () showed that the �rst part of condi-

tion () and not stationarity or ergodicity is crucial for such
a result to hold. Further extensions in view of other central
limit theorems for double arrays are based on Dvoretzky
() and McLeish (), where limit results employ a
double sequence schema {Xn,j,  ≤ j ≤ kn <∞, n ≥ } and

furnish conditions for the row sums Sn =
kn
∑
j=
Xn,j to con-

verge in distributions to a mixture of normal distributions
with means zero. A large variety of negligibility assump-
tions have beenmade about di�erencesXn,j during the for-
mulation of martingale central limit theorems.�e classic
condition of negligibility in the theory of sums of inde-
pendent random variables asks the Xn,j to be uniformly
asymptotically negligible.
A comprehensive review on mainly one-dimensional

martingales can be found in Helland (). Multivari-
ate versions of the central limit theorem for martingales
satisfying di�erent conditions or applicable to di�erent
frameworks, can be found in Hutton and Nelson (),
Sørensen (), Küchler and Sørensen (), Crimaldi
and Pratelli (), and Hubalek and Posedel ().

Cross References
7Central Limit�eorems
7Markov Processes
7Martingales
7Statistical Inference for Stochastic Processes
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�e fundamental theorem of asset pricing (�e term fun-
damental theoremof asset pricingwas introduced inDybvig
and Ross []. It is used for theorems establishing the
equivalence of an economic modeling condition such as
no-arbitrage to the existence of themathematicalmodeling
condition existence of equivalent martingale measures.)
links the martingale property of (discounted) asset price
processes under a particular class of probability measures
to the ‘fairness’ (in this context no arbitrage condition) of
�nancial markets. In elementary models one such result
is In an arbitrage-free complete �nancial market model,
there exists a unique equivalentmartingalemeasure, see e.g.,
Bingham and Kiesel ().
So despitemartingales have been around formore than

three and a half centuries they are still at the forefront
of applied mathematics and have not lost their original

motivation of describing the notion of fairness in games
of chance. �e Oxford English Dictionary lists under the
word martingale (we refer to Mansuy [] for a inter-
esting account of the etymology of the word): A system of
gambling which consists in doubling the stake when losing
in order to recoup oneself ().
Indeed, the archetype of a martingale is the capital of a

player during a fair gambling game, where the capital stays
“constant on average”; a supermartingale is “decreasing on
average,” and models an unfavourable game; a submartin-
gale is “increasing on average,” and models a favorable
game.
Gambling games have been studied since time immemo-

rial – indeed, the Pascal–Fermat correspondence of 
which started the subject was on a problem (de Méré’s
problem) related to gambling.�e doubling strategy above
has been known at least since .�e term “martingale”
in our sense is due to J. Ville (–) in his thesis
in . Martingales were studied by Paul Lévy (–
) from  on (see obituary Loève ()) and by
J.L. Doob (–) from  on.�e �rst systematic
exposition was Doob (). Nowadays many very read-
able accounts exist, see Neveu (), Williams () and
Williams ().
Martingales are of central importance in any mod-

elling framework which uses 7stochastic processes, be
it in discrete or continuous time. �e concept has been
central to the theory of stochastic processes, stochas-
tic analysis, in mathematical statistics, information the-
ory, and in parts of mathematical physics, see Kallenberg
() and Meyer () for further details.�e Martin-
gale gambling insight ‘You can’t beat the system’ estab-
lishes properties of martingale transforms and lays the
foundation of stochastic integrals, Øksendal (). Mar-
tingale stopping results establish optimality criteria which
help develop optimal strategies for decision problems
(and exercising �nancial options), see Chow () and
Shiryaev ().
We can here only give a few fundamental de�nitions

and results and point to the vast literature for many more
exiting results.
For the de�nition, let I be a suitable (discrete or con-

tinuous) index set and assume that an index t is always
taken from I. Given a stochastic basis (Ω,F , IP, IF =

{Ft}) (where the �ltration IF models the �ow of informa-
tion) we call a process X = (Xt) a martingale relative to
({Ft}, IP) if

(i) X is adapted (to {Ft}).
(ii) IE ∣Xt ∣ <∞ for all t.
(iii) For s ≤ t we have IE[Xt ∣Fs] = Xs IP − a.s..
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X is a supermartingale if in place of (ii)

IE[Xt ∣Fs] ≤ Xs IP − a.s.;

X is a submartingale if in place of (iii)

IE[Xt ∣Fs] ≥ Xs IP − a.s..

Basic examples are themean-zero7randomwalk: Sn =
∑Xi, with Xi independent, where for IE(Xi) =  Sn is a
martingale (submartingales: positive mean; supermartin-
gale: negativemean) and stock prices: Sn = Sζ⋯ζn with ζi
independent positive r.vs with existing �rst moment. (See
Williams () andWilliams () for manymore exam-
ples). In continuous time the central example is that of
Brownian motion, see Revuz and Yor (), Karatzas and
Shreve (), which of course is a central process formany
branches of probability (see also 7Brownian Motion and
Di�usions).
Now think of a gambling game, or series of speculative

investments, in discrete time. �ere is no play at time ;
there are plays at times n = , , . . ., and

∆Xn := Xn − Xn−

represents our net winnings per unit stake at play n.�us
if Xn is a martingale, the game is “fair on average.”
Call a process C = (Cn)∞n= predictable if Cn is Fn−-

measurable for all n ≥ . �ink of Cn as your stake on
play n (C is not de�ned, as there is no play at time ).
Predictability says that you have to decide how much to
stake on play n based on the history before time n (i.e., up
to and including play n − ). Your winnings on game n are
Cn∆Xn = Cn(Xn − Xn−). Your total (net) winnings up to
time n are

Yn =
n

∑
k=
Ck∆Xk =

n

∑
k=
Ck(Xk − Xk−).

�is constitutes theMartingale transform of X by C.
�e central theorem for betting and applications in

�nance says that “You can’t beat the system!,” i.e., if X is a
martingale then the martingale transform is a martingale
(under some mild regularity conditions on C). So in the
martingale case, predictability of C means we can’t fore-
see the future (which is realistic and fair). So we expect to
gain nothing – as we should, see e.g., Neveu (). Like-
wise one can analyze di�erent strategies to stop the game,
then Doob’s stopping time principle reassures that it is not
possible to beat the system, see e.g., Williams ().
Martingale transforms were introduced and studied

by Burkholder (). �ey are the discrete analogs of
stochastic integrals and dominate the mathematical the-
ory of �nance in discrete time, see Shreve (), just
as stochastic integrals dominate the theory in continu-
ous time, see Harrison and Pliska ().�e various links

between mathematical �nance and martingale theory are
discussed in Musiela and Rutkowski () and Karatzas
and Shreve ().
Martingale-convergence results are among the most

important results in probability (arguably in mathemat-
ics). Hall and Heyde () and Chow () are excellent
sources, but Doob () lays the foundations. Martingale
techniques play a central role in many parts of probability,
consult Rogers (), Revuz and Yor (), Karatzas and
Shreve () or Kallenberg () for excellent accounts.
Martingales appear in time series theory and sequential
analysis, see Lai () and Hamilton ().
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Introduction
Do we scienti�cally understand the concept of “Global
Warming”? A very basic de�nition of “Global Warm-

ing” is an increase in temperature at the surface of the
earth supposedly caused by the greenhouse e�ect, car-
bon dioxide, CO (greenhouse gas). �e online encyclo-
pedia, Wikipedia, de�nes the phenomenon of “GLOBAL
WARMING” as the increase in the average temperature of
the earth’s near surface air and oceans in the recent decades
and its projected continuation.
For the past  years this has been a media chaos: pro

and concerned skeptics. �e Intergovernmental Panel of
the United States on Climate Change (IPCC) – “Climate
Change ” claimed that the following are some of the
causes of Global Warming:

● Increase in temperature – Increase in sea level
● Unpredictable pattern in rainfall
● Increase in extreme weather events
● Increase in river �ows
● Etc.

Furthermore, the award winning documentary nar-
rated by Vice President Gore strongly supports the IPCC
�ndings. However, the ABC news program / “Give
Me a Break,” raises several questions and disputes the pro-
cess by which IPCC stated their �ndings. A number of
professional organizations, the American Meteorological
Society, American Geographical Union, AAAS, supported
the subject matter. �e U.S. National Academics blame
global warming on human activities.

�e concerned skeptics raise several points of inter-
est concerning Global Warming. Great Britain’s Channel
 Documentary entitled “�e Great Global Warming Swin-
dle” disputes several of the aspects of Vice President former
documentary. NASA scientists reveal through their scien-
ti�c experiments and studies that the increase in atmo-
spheric temperature is due to the fact that sea spots are
hotter than previously thought. �eir �ndings are also
reported by the Danish National Space Center, DNSC, on
similar investigations conducted by NASA. DNSC stated
that there is absolutely nothing we can do to correct this
situation.TimesWashington Bureau Chief, Bill Adair, states
that “Global Warming has been called the most dire issue
facing the planet and yet, if you are not a scientist, it can
be di�cult to sort out the truth.”�eWall Street Journal in
a leading article “Global Warming is -year-old News,”
stated that “the various kind of evidence examined by the
National Research Council, NRC, led it to conclude that the
observed disparity between the surface and atmospheric
temperature trends during the -year period is probably
at least partially real.” It further stated that “uncertainties
in all aspects exist- cannot draw any conclusion concerning
GlobalWarming.” However, theNRC study concludedwith
an important statement that “major advances in scienti�c
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methodswill be necessary before these questions onGlobal
Warming can be resolved.”
Furthermore, the temperature increase that we are

experiencing are in�nitesimal, during the past  years –
the mean global surface air temperature increased by
approximately .○F (.○F). Dr. �omas G. Moore,
Senior Fellow at the Hoover Institute at Stanford Uni-
versity, in his article entitled “Climate of Fear: Why We
Shouldn’tWorryAboutGlobalWarming” is not concerned
with such small changes in temperatures. Furthermore, in
his interviewwithNewsweek, he saidmore people die from
cold than from warmth and an increase of a few degrees
could prevent thousands of deaths.
It is well known that carbon dioxide, CO, and sur-

face/atmospheric temperatures are the primary cause of
“GLOBAL WARMING.” Jim Verhult, Perspective Editor,
St. Petersburg Times, writes, “carbon dioxide is invisible –
no color, no odor, no taste. It puts out �res, puts the �zz
in seltzer and it is to plants what oxygen is to us. It’s hard
to think of it as a poison.”�e U.S.A. is emitting approx-
imately . billion metric tons of CO in the atmo-
sphere, which makes us the world leader; however, by the
end of , the Republic of China became the new leader.
Temperatures and CO are related in that as CO emis-
sions increase, the gasses start to absorb toomuch sunlight
and this interaction warms up the globe.�us, the rise in
temperature and the debate of “GLOBALWARMING.”
While working on the subject matter, an article

appeared on the front page of the St. Petersburg Times
on January , .�is article, entitled “Global Warm-
ing: Meet your New Adversary,” was written by David
Adams. �e highlight of this article was a section called
“By the Numbers,” which stated some information con-
cerning the continental United States:  hottest year;
U.S. top global warming polluter; % increase of CO
since ; % of CO emissions by ;  number of
days U.S. �re season has increased; and  million people
that will be displaced due to global warming. Our data for
the continental U.S. does not support the �rst four statis-
tics, we have no data for the ��h, and the sixth is quite
hypothetical.�e �nal assertion, with “” representing the
number of federal bills passed by the Congress to cap
America’s global warming pollution.�us, it is very impor-
tant that we perform sophisticated statistical analysis and
modeling to fully understand the subject matter. Also, very
recently, the Supreme Court of the U.S., in one of its most
important environmental decisions, ruled that the Envi-
ronmental Protection Agency (EPA) has the authority to
regulate the greenhouse gases that contribute to global cli-
mate changes unless it can provide a scienti�c basis for its
refusal.

We believe that a contributing factor in creating these
controversies among scientists (and this is passed onto
the policymakers and the media) is a lack of precise
and accurate statistical analysis and modeling of histor-
ical data with an appropriate degree of con�dence. �e
problem of “GLOBALWARMING” is very complex with a
very large number of contributing entities with signi�cant
interactions. �e complexity of the subject matter can
be seen in the attached diagram “A Schematic View”
(Fig. ). We believe that statisticians/mathematicians can
help to create a better understanding of the subject prob-
lem that hopefully will lead to the formulation of legislative
policies.

�us, to scienti�cally make an e�ort to understand
“GlobalWarming,” wemust study themarriage ofCO and
atmosphere temperature, individually and together, using
available historical data. Here we shall brie�y present some
parametric statistical analysis, forecasting models for CO
and atmospheric temperature, Ta along with a di�erential
equation, that give the rate of change of CO as a function
of time. Scientists can utilize these preliminary analysis
andmodels to further the study of GlobalWarming. Addi-
tional information can be found in Tsokos (a, b), and
Tsokos b.

Atmospheric Temperature, Ta
Here we shall utilize historical temperature data recorded
in the Continental United States from  to , to
parametrically identify the probability density of the sub-
ject data and to develop a forecasting model to predict
short and long term values of Ta.

�e probability density function, pdf, ofTa is the three-
parameter lognormal pdf. It is given by

f (t; µ, θ, σ) =
exp{− 


[ ln(t − θ) − µ]}

(t − θ)σ
√
π

, t ≥ θ, σ , µ > ,

()
where µ, σ and θ, are the scale, shape and location param-
eters, respectively.
For the given Ta data the maximum likelihood estima-

tion of population parameter, µ, σ and θ are µ̂ = ., σ̂ =

. and θ̂ = ..�us, the actual pdf that we will be
working with is given by

f (t; µ̂, θ̂, σ̂)=
exp{− 


[ ln(t − .)− .]}

(t − .) ⋅ .
√
π

, t ≥ ..

()
Having identi�ed the pdf that probabilistically charac-

terizes the behavior of the atmospheric Ta, we can obtain
the expected value of Ta, all the useful basic statistics along
with being able to obtain con�dence limits on the true Ta.



Mathematical and Statistical Modeling of Global Warming M 

M

Bunker

Flux from oceans to atmosphere

Terrestrial photosynthesis

Respiration

Respiration from decomposers Respiration from soils

Copyright  2008, Professor CPT, USF. All rights reserved.

Burial of organic carbon Burial of limestone carbon

Burial of organic carbon and
limestone carbon

Destruction of soil carbon

Destruction of biomass

Deforestation

Flux from atmosphere to oceans

Deforestation and
destruction

Solid fuels Cement Gas fuel Liquid fuel Gas flare

Mathematical and Statistical Modeling of Global Warming. Fig.  Carbon dioxide (CO ) in the atmosphere in USA “A Schematic
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Such a pdf should be applicable in other countries around
the world.

�e subject data, Ta, is actually a stochastic realization
and is given as nonstationary time series.�e development
of the multiplicative seasonal autoregressive integrated
moving average, ARIMA model is de�ned by

Φp(Bs)ϕ( − B)d( − Bs)Dxt = θq(B)ΓQ(Bs)εt , ()

where p is the order of the autoregressive process; d is the
order of regular di�erencing; q is the order of the moving
average process; P is the order of the seasonal autoregres-
sive process; D is the order of the seasonal di�erencing; Q
is the order of the seasonably moving average process; and
s refers to the seasonal period, and

ϕp(B) = ( − ϕB − ϕB −⋯ − ϕpBp)
θq(B) = ( − θB − θB −⋯ − θqBq)
ΦP(Bs) =  −ΦBs −ΦBs −⋯ −ΦPBPs

ΓQ(Bs) =  − ΓBs − ΓBs −⋯ − ΓQBQs.

�e developing process of () using the actual data is com-
plicated and here we present the �nal useful form of the
model. �e reader is referred to Shih and Tsokos (,
) for details.

�e estimated forecasting model for the atmospheric
data is given by

x̂t = .xt− − .xt− − .xt− + .xt−
− .xt− + .xt− + .xt−
+ .xt− + .xt− − .xt−
+ .xt− − .εt− − .Γεt−
+ .εt−. ()

�e mean of the residuals, r, the variance, S r , the stan-
dard deviation, Sr , standard error, SE, and themean square
error,MSE, are presented below for one unit of time ahead
forecasting.

r S 
r Sr SE MSE

−. . . . .

�ese numerical results give an indication of the qual-
ity of the developed model.

Carbon Dioxide, CO
Parametric Analysis
�e other most important entity in Global Warming is
CO. �e complexity of CO in the atmosphere is illus-
trated by the schematic diagram that was introduced. To
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better understand CO, we need to probabilistically deter-
mine the best probability distribution, pdf, that charac-
terizes its behavior. Presently, scientists working on the
subject matter make the assumption that CO in the atmo-
sphere follows the classical Gaussian pdf and that is not
the best possible �t of the actual data and could lead to
misleading decisions.�e actual data that we are using was
collected in the Island of Hawaii/Mauna Loa from  to
.�rough goodness-of-�t statistical testing, the best
�t of theCO data thatwe can study its behavior probabilis-
tically is the three-parameter Weibull pdf.�e cumulative
three-parameter Weibull probability distribution is given
by

F(x) =  − exp{− (
x − γ

β
)

α
}, γ ≤ x <∞, δ > , β >  ()

where α, β, and γ are the shape, scale, and location param-
eter.�e nth moment, mean and variance are given by

mn = βnΓ(+ n
α
), µ = βΓ(+ 

α
) and σ  = βΓ(+ 

α
)− µ,

respectively, where Γ is the gamma function.�e approx-
imate maximum likelihood estimates of the true parame-
ters, α, β and γ for the Hawaii data are given by

α̂ = ., β̂ = ., and γ̂ = ..

�us, the cumulative pdf that we can use to probabilis-
tically characterize the CO behavior and answer related
questions is given by:

F(x) =  − exp{− (
x − .
.

)
.

}. ()

For additional details of the subject area see Shih and
Tsokos ().

Forecasting Model of CO
Here we present a forecasting model of CO in the atmo-
sphere. Having such a model will allow us to accurately
predict the amount of CO in the atmosphere, and make
appropriate decisions as needed. �e actual CO data as
a function of time results in a nonstationary time series.
For details in the development of this model, see Shih and
Tsokos ().�e best forecasting model that we devel-
oped is anARIMAmodel with second order autoregressive
process, with a �rst order moving average process and a

-month seasonal e�ect. Its �nal form is given by

CÔA = .xt− + .xt− + .xt− + .xt−
− .xt− − .xt− − .xt−
− .xt− + .xt− + .xt−
+ .xt− − .xt− + .xt−
+ .xt− + .xt− − .εt−.

A similar statistical model can be developed for CO emis-
sion, Shih and Tsokos ().

A Differential Equation of CO in the
Atmosphere
�e main attributable variables in CO in the atmosphere
are:

E: CO emission (fossil fuel combination)
D: Deforestation and destruction
R: Terrestrial plant respiration
S: Respiration
O: the �ux from oceans to atmosphere
P: terrestrial photosynthesis
A: the �ux from atmosphere to oceans
B: Burial of organic carbon and limestone carbon

One important question that we would like to know is
the rate of change ofCO as a function of time.�e general
form of the di�erential equation of the subject matter is of
the form:

d(CO)
dt

= f (E,D,R, S,O,P,A,B)

or

COA = ∫ (E +D + R + S + (O − A) − P − B)dt.

Here, B,P and R are constants, thus

COA = ∫ (kEE + kDD + kRR + kSS + kO−A(O − A)

+ kPP − kBB)dt.

Using the available data we can estimate the functional
analytical form of all the attributable variables that appear



Mathematical and Statistical Modeling of Global Warming M 

M

in the integrand.�us, the �nal working form of CO in
the atmosphere is given by

CO =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kE{−t + . × e
− 

 }

+kD(.t + .t)

+kS{ − .( +
t

)

+ .( + t


)


−( + t

)

+  × t}

+KA−O{.t − .t

+.t} − kP ∫ Pdt − kB ∫ Bdt

.

Having aworkable formof the di�erential equation, we can
develop the necessary algorithm to track the in�uence the
attributable variables will have in estimating the change of
rate of CO as a function of time.

Conclusion
Finally, is the “Global Warming” phenomenon real? Yes.
However, it is not as urgent as some environmentalists
claim. For example, our statistical analytical models pre-
dict that in the next  years, , we will have an increase
of carbon dioxide in the atmosphere in the continental U.S.
of approximately %. In developing a strategic legislative
plan, we must address the economic impact it will have in
our society. In our present global economic crisis, intro-
ducing legislation to address Global Warming issues will
present additional critical economic problems. In a global
context we must consider about  economic develop-
ing countries that have minimal to no strategic plans in
e�ect that collect the necessary information that addresses
the subject matter in their country. Furthermore, we have
approximately  undeveloped countries that have mini-
mum understanding about the concept of global warm-
ing. �us, talking about developing global strategies and
policies about “Global Warming” is quite premature.
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In �eld experiments we design the �eld plots. In case
we �nd one or more observations missing due to natural
calamity or destroyed by a pest or eaten by animals, it is
cumbersome to estimate the missing value or values as in
�eld trials it is practically impossible to repeat the exper-
iment under identical conditions. So we have no option
except to make best use of the data available. Yates ()
suggested amethod: “Substitute x for themissing value and
then choose x so as to minimize the error sum of squares.”
Actually, the substituted value does not recover the best

information, however, it gives the best estimate according
to a criterion based on the least square method. For the
randomized block experiment

x =
pP + qQ − T
(p − ) (q − )

, ()

where

p = number of treatments;
q = number of blocks;
P = total of all plots receiving the same treatment as
the missing plot;

Q = total of all plots in the same block as the missing
plot; and

T = total of all plots.

For the Latin Square Design, the corresponding formula is

x =
p (Pr + Pc + Pt) − T

(p − ) (q − )
, ()

where

p = number of rows or columns of treatments;
Pr = total of row containing the missing plot;
Pc = total of column containing the missing plot;
Pt = total of treatment contained in the missing plot;

and
T = grand total.

In case more than one plot yields are missing, we sub-
stitute the average yield of available plots in all except one
of these and substitute x in this plot.We estimate x by Yate’s
method and use this value to estimate the yields of other
plots one by one.
Next we discuss the maximum entropy method. If

x, x, . . . , xn are known yields and x is the missing yield.
We obtain the maximum entropy estimate refer to Kapur
and Kesavan () for x by maximizing:

−
n

∑
i=

xi
T + x

log
xi
T + x

−
x

T + x
log

x
T + x

. ()

�us we get

x̂ = [xx x
x
 . . . x

xn
n ]


T , ()

where T =
n

∑
i=
xi.

�e value given by () is called maximum entropy mean of
x, x, . . . , xn.
Similarly, if two values x and y are missing, x and y are

determined from

x̂ = [xx x
x
 . . . x

xn
n ]



T + y , ()

ŷ = [xx x
x
 . . . x

xn
n ]



T + x . ()

�e solution of () and () is

x̂ = ŷ = [xx x
x
 . . . x

xn
n ]



T . ()

Hence all the missing values have the same estimate and
this does not change if themissing values are estimated one
by one.

�ere are three following drawbacks of the estimate
given by ()
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() x̂ is rather unnatural. In fact x̂ is always greater than
arithmetic mean of x, x, . . . , xn.

() If two values are missing, the maximum entropy esti-
mated for each is the same as given by ().

() �is is not very useful for estimating missing values in
design of experiments.

�e �rst drawback can be overcome by using general-
ized measure of entropy instead of Shannon entropy. If we
use Burg’s measure given by

B(P) =
n

∑
i=
log pi. ()

�en we get the estimate

x̂ =
x + x + . . . + xn

n
= x. ()

In fact we choose a value x̂, which is as equal to
x, x, . . . , xn as possible and so we maximize a measure
of equality. Since there are many measures of equality,
therefore our estimate will also depend on the measure of
equality we choose.

�e second drawback can be understood by consider-
ing the fact that the information theoretic estimate for a
missing value depends on:

(a) �e information available to us
(b) �e purpose for which missing value is to be used.

As for the third drawback, according to the principle
of maximum entropy, we should use all the information
given to us and avoid scrupulously using any information
not given to us. In design of experiments, we are given
information about the structure of the design, whichwe are
not using this knowledge in estimating the missing values.
Consequently, the estimate is not accurate; however, infor-
mation theoretic model de�ned and studied byHooda and
Kumar () can be applied to estimate the missing value
xij in contingency tables. Accordingly, the value xij is to be
chosen to minimize the measure of dependence D.
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Mean, median and mode indicate central point of distri-
bution or data set. Let PX denotes distribution of a random
variable X. Any reasonable rule O = O(PX) indicating a
pointO to be the center of PX should satisfy the following
postulates:

A If P(a ≤ X ≤ b) =  then a ≤ O(PX) ≤ b
AO(PX+c) = O(PX)+c for any constant c [transitivity]
AO(PcX) = cO(PX) for any constant c [homogeneity]

�e mean is a synonym of the �rst moment, i.e. the
expected value EX. For a continuous random variable X it
may be expressed in terms of density function f (x), as the
integral EX = ∫

+∞
−∞ xf (x)dx. In discrete case it is de�ned

as the sum of type EX = ∑i xipi, where xi is a possible
value of X, i ∈ I, while pi = P(X = xi) is its probability.
�e mean ful�ls all the above postulates and, moreover, an
extra condition
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AM E(X − EX) ≤ E(X − c) for any c ∈ R

It is worth to add that mean may not exist.
�e median Me = Me(X) is a scalar α de�ned by con-

ditions PX(X ≤ α) ≥ 
 and PX(X ≥ α) ≥ 

 . In terms
of the cumulative distribution function F = FX it means
that F(α) ≥ 

 and limx↑α F(α) ≤ 
 . In particular, if X

is continuous with density f , then the desired conditions
reduces to ∫

α
−∞ f (x)dx ≥


 and ∫

∞
α f (x)dx ≥ 

 . In dis-

crete case it can be expressed in the form ∑
{i:xi≤α}

pi ≥



and ∑
{i:xi≥α}

pi ≥


.�emedian also satis�es the conditions

A − A and, moreover

AMe E ∣X −MeX∣ ≤ E ∣X − c∣ for any c ∈ R.

�e mode Mo = Mo(X) of a random variable X is
de�ned in terms of its density function f (continuos case)
or its probability mass function pi = P(X = xi) (discrete
case). Namely,Me(X) = argmax f (x), or is an element x
in the set of possible values {xi : i ∈ I} that P(X = x) =

max{pi : i ∈ I}.�e mode also satis�es the conditionsA−
A. It is worth to add that mode may not be unique.�ere
exist bimodal and multimodal distributions. Moreover the
set of possible modes may be interval.
In the context of data set, represented by a sequence

x = (x, . . . , xn) of observations, the postulates A − A
may be reformulated as follows:

SO(xi , . . . , xin) = O(x, . . . , xn) for any permutation
i, .., in of the indices , . . . ,n

Smin{x, . . . , xn} ≤ O(x, . . . , xn) ≤ max{x, . . . , xn}
SO(x + c, . . . , xn + c) = O(x, . . . , xn) +c
SO(cx, . . . , cxn) = cO(x, . . . , xn).

In this case the mean, median and mode are de�ned as
follows.

�e mean of the data x = (x, . . . , xn), denoted usually
by x, is the usual arithmetic average x = 

n ∑ xi.�e mean
not only satis�es all conditions S − S but also possesses
the property

SM∑ni=(xi − x)

≤ ∑

n
i=(xi − c)

 for all c ∈ R.

Now let us arrange the elements of the sequence x =

(x, . . . , xn) in the not decreasing order x[] ≤ x[] ≤ . . . ≤
x[n].�e median of the data set x = (x, . . . , xn) is de�ned
by the formula

Me(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x[ n+ ], if n is odd


 (x[ n ] + x[ n +]) if n is even.

�e median satis�es the conditions S − S and, more-
over,

SMe∑ni= ∣xi −Me(x)∣ ≤ ∑
n
i= ∣xi − c∣ for all c ∈ R.

�e mode of the data x = (x, . . . , xn), denoted by
Mo(x), is the value in the set that occurs most o�en.
For instance if x = (, , , , , , ) then x ↑=

(, , , , , , ). For such dataMe(x) = x[] =  and
Mo(x) = .
It is worth to add that the mean is very sensitive for

outlying observations.
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Mean, Median, Mode: An
Introduction
S. N. Gupta
University of South Paci�c, Suva, Fiji

Introduction
Mean, median and mode are three statistical measures
commonly used to summarize data sets.�ey are known
by the common name average. In its broadest sense, an
average is simply any single value that is representative of
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many numbers. Averages are also called measures of cen-
tral tendency because an average is usually located near the
center of the data set. Some examples: average age of the
players of a cricket team, average reaction time of a par-
ticular chemical, average amount spent by a customer in a
shopping mall, etc.

The Mean
�e mean, also known as arithmetic mean, is the most
widely used average and is de�ned as the sum of the obser-
vations divided by the number of observations. �e for-
mula for computing mean is: x̄ = (∑x)/n, where x̄ is
the symbol for mean (pronounced “x-bar”), x is the sym-
bol for variable, ∑x is the sum of observations (i.e., the
sum of the values of the variable x) and n is the number
of observations.
Although, there are also other kinds of means (such

as the 7harmonic mean and the 7geometric mean), the
arithmetic mean is by far the most popular. For this rea-
son, the word arithmetic is rarely used in practice and we
simply refer to the “mean.”

Example  �e ages (in weeks) of �ve babies are , , , 
and . Find the mean.

Solution: �e mean of the set is given by x̄ =

n
∑x =

 +  +  +  + 


=


= . weeks.

Calculation of Mean for Discrete Frequency Distribution
Sometimes, it is convenient to represent the data in form
of a frequency distribution. In such cases the formula for

mean is: x̄ = ∑
fx

∑ f
, where f is the frequency,∑ f is the sum

of the frequencies, ∑ fx is the sum of each observation
multiplied by its frequency.

Example  Data for numbers of children in  families
are given below. Find the mean.

No. of children (x):     

Frequency ( f ):     

Solution:

x     

f      ∑ f = 

fx      ∑ fx = 

�e mean x̄ = ∑
fx

∑ f
=



= . children per family.

Calculation of Mean for Grouped Frequency Distribution
It is not possible to calculate exact mean in grouped
frequency distribution, because some information is lost
when the data are grouped. So, only an approximate value
ofmean is obtained based on the assumption that all obser-
vations in a class interval occur at themidpoint (xm) of that
interval.�us, the formula of Example  can be used a�er
replacing x by xm.

Example  �e following is the distribution of the num-
ber of �sh caught by  �shermen in a village. Find the
mean number of �sh caught by a �sherman.

No. of �sh caught: – – – –

No. of �shermen:    

Solution:

No. of �sh Midpoint
caught (xm) f fxm

–   

–   

–   

–   

∑ f =  ∑ f xm = 

�erefore, the mean is x̄ = ∑
f xm
∑ f

=



= . �sh per

�sherman.
Weighted Mean
When weights (measures of relative importance) are
assigned to observations, weighted means are used. If an
observation x is assigned a weight w, the weighted mean is
given by x̄ =∑wx/∑w.

The Median
�e median is another kind of average. It is de�ned as the
centre value when the data are arranged in order of magni-
tude.�us, the median is a value such that % of the data
are below median and % are above median.
Calculation of Median for Raw Data
�e observations are �rst arranged in ascending order of
magnitude. If there are n observations, the median is

. �e value of the [(n + )/]th observation, when n is
odd.

. �e mean of the [n/]th and [(n/) + ]th observa-
tions, when n is even.
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Example  Find the median for the following data set:

, , , , , , .

Solution: Arranging the data in ascending order we have

, , , , , , .

Here, n= , which is odd. �erefore, median =
n + 


th score=  + 

th score=th score=.

Example  Find the median for the data:

, , , , , , , , , .

Solution: Here, n = , which is even. Arranging the data
in ascending order we have

, , , , , , , , , .

�erefore, median= 

[
n

th score + (

n

+) th score]

=


[


th score + (



+ ) th score]

=


[th score + th score]

=


[ + ] = .

Calculation of Median for Discrete Frequency Distribution
�e same basic formulae as used for raw data are used, but
cumulative frequencies are calculated for convenience of
locating the observations at speci�c numbers.

Example  Data for the number of books purchased by
 customers are given below. Find the median.

No. of books (x):    

No. of customers ( f ) :    

Solution:

No. of books (x)    

No. of customers ( f )    

Cumulative frequency (c.f .)    

Here n =∑ f =  (even).�erefore,

median = 

[


th score + (



+ ) th score]

=


[th score + th score] = 


[ + ] = .

Calculation of Median for Grouped Frequency Distribution
In a grouped distribution, exact median cannot be
obtained because some information is lost in grouping.

Here, we �rst locate the median class and then obtain an
estimate of themedian by the formula:

median = l +
(
n

− c)

f
(l − l)

where, l, l are the lower and upper boundaries of the
median class, f is the frequency of themedian class, n is the
sum of all frequencies and c is the cumulative frequency of
the class immediately preceding the median class.

Example  Find the median for the data of Example 
above.
Solution: Construct a table for class boundaries and cumu-
lative frequencies:

Class Class boundaries f c.f .

– .–.  

– .–.  

– .–.  

– .–.  

n = 

Here, n/ = . �e median will lie in the class having
cumulative frequency (c.f .) just larger than .�emedian
class is –.�us, l = ., l = ., c = , f = .

Hence, median = . + (
 − 


) ×  = . + . =
..

The Mode
�emode is the most frequent value i.e., the value that has
the largest frequency. A major drawback of mode is that a
data set may have more than one mode or no mode at all.
Also the mode may not always be a central value as in the
Example (a) below.

Example  Find mode in the following data sets:

(a) , , , , , , , , , , .

(b) , , , , , , , , , .

(c) , , , , , , , , , .

Solution
(a) One mode at , (b) Two modes at  and , (c) No
mode as each value occurs only once. For grouped fre-
quency distribution, the mode can be estimated by taking
the mid-point of the modal class corresponding to the
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largest frequency. One advantage of mode is that it can be
calculated for both kinds of data, qualitative and quantita-
tive, whereas mean and median can be calculated for only
quantitative data. E.g., A group consists of �ve Hindus, six
Muslims and nine Christians. Here, Christianity is most
frequent and so it is the mode of this data set.

Remarks If a distribution is symmetrical then mean =
median = mode. For skewed distributions a thumb rule
(though not without exceptions) is that if the distribution
is skewed to the right thenmean >median >mode and the
inequalities are reversed if the distribution is skewed to the
le�.
To sum up, there is no general rule to determine which

average is most appropriate for a given situation. Each of
them may be better under di�erent situations. Mean is the
most widely used average followed bymedian.�emedian
is better when the data set includes 7outliers or is open
ended.Mode is simple to locate and is preferred for �nding
the most popular item e.g. most popular drink or the most
common size of shoes etc.
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�eories and applications that use Mean Residual Life
(MRL) extend across a myriad of helpful �elds, while

the methods di�er considerably from one application to
the next. Accelerated stress testing, fuzzy set engineer-
ing modeling, mixtures, insurance assessment of human
life expectancy, maintenance and replacement of bridges,
replacement of safety signi�cant components in power
plants, and evaluation of degradation signals in systems are
just a few examples of applications of MRL function analy-
sis. Note that MRL is also called “expected remaining life,”
plus other phrase variations. For a random lifetime X, the
MRL is the conditional expectation E(X − t∣X > t), where
t ≥ .�e MRL function can be simply represented with
the reliability function R(t) = P(X > t) =  − F(t) as:

e(t) = E(X − t∣X > t) =

∞
∫
t
R(x)dx

R(t)

where R(t) >  for e(t) to be well de�ned. When R() = 
and t = , the MRL equals the average lifetime. When
R(t) = , then e(t) is de�ned to be .�e empirical MRL
is calculated by substituting either the standard empirical
estimate of R(t) or, when censoring occurs, by substitut-
ing the Kaplan-Meier estimate ofR(t) (see7Kaplan-Meier
Estimator). To use the Kaplan-Meier estimate when the
�nal observation is censored requires a modi�cation to
de�ne the empirical reliability function as eventually .

�e reliability function can also be represented as a
function of the MRL as:

R(t) = (
e()
e(t)

) exp− ∫
t
 [ 

e(x) ]dx .

Note that the MRL function can exist, while the hazard
rate function might not exist, or vice versa, the hazard
rate function can exist while the MRL function might not.
CompareGuess andProschan () plusHall andWellner
() for comments. When both functions exist, and the
MRL function is di�erentiable, the hazard rate function is
a function of the MRL:

h(t) =
 + e ′(t)
e(t)

where e′(t) is the �rst derivative of the MRL function.
�e breadth of applications for the MRL function is

astounding.As examples, Chiang () andDeevey ()
cite the use of theMRL for annuities via expected life tables
(see 7Life Table) in ancient Roman culture. Bhattacharjee
() suggests how to use the MRL to decide when to
sell an item that has maintenance costs, which has copi-
ous natural applications, such as to real estate. Steele ()
and Guess et al. () illustrate a con�dence interval for
the range of values where one MRL function dominates
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another and use it to reveal an opportunity to increase
the pro�tability of a process that manufactures engineered
medium density �berboard. See also the insightful results
on MRL functions of mixtures, 7order statistics, and
coherent systems from Navarro and Hernandez ().
Another topic of extensive research over the years is testing
classes of MRL functions. For more on those tests, see ref-
erences in Hollander and Proschan (), Hollander and
Wolfe () or Anis et al. (), for example. A brief list
of other MRL papers, among many wide-ranging papers
available, includes Peiravi and Dehqanmongabadi (),
Zhao and Elsayed (), Bradley andGupta (), Asadi
and Ebrahimi (), Oakes and Dasu (), Berger et al.
(), Guess and Park (), and Guess et al. (). We
would recommend many other useful papers, but space
severely limits our list.
While we do not give a complete inventory, note that

R packages like evd, ismev, and loc�t possess capabili-
ties such as MRL plotting and/or computing the MRL for
censored data; compare Sha�er et al. (). Another free-
ware, Dataplot, the so�ware for the NIST website, does
a MRL plot, but calls it a “conditional mean exceedance”
plot, see Heckert and Filliben (). For-pro�t statisti-
cal so�ware, such as JMP, MINITAB, PASW (formerly
SPSS), SAS, etc., can be appropriately utilized for comput-
ing the MRL, using the basic formulas above (PASW and
others use the phrase “life tables,” which o�en contain a
column for MRL). Pathak et al. () illustrate the use
of MATLAB for computing several di�erent lifetime data
functions including theMRL. Steele () computesMRL
via Maple.
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Foundations of Probability: Fields and
Sigma-Fields
Since Kolmogorov’s axioms, Probability theory is a legiti-
mate part of Mathematics, with foundations that belong to
Measure theory. Although a traditional probabilist works
solely with countably additive measures on sigma �elds,
the concepts of countable additivity and in�nitemodels are
by no means natural. As Kolmogorov [ p. ] points
out, “. . . in describing any observable random process we
can obtain only �nite �elds of probability. In�nite �elds of
probability occur only as idealized models of real random
processes.”
To build a probability model, we need �rst to have a

non-empty set Ω which is interpreted as a set of all possible
outcomes of a statistical experiment.�en we de�ne which
subsets of Ω will be assigned a probability.�e familyF of
all such subsets has to satisfy

() Ω ∈ F ,
() B ∈ F Ô⇒ B′ ∈ F ,
() B,B ∈ F Ô⇒ B ∪ B ∈ F ,

and then we say that F is a �eld. If () is replaced by
stronger requirement

(’) B,B, . . . ∈ F Ô⇒
∞
⋃
i=
Bi ∈ F

then we say that F is a sigma �eld.
�e family P(Ω) of all subsets of Ω is a �eld, and it is

the largest �eld that can bemade of subsets of Ω – it clearly
contains all other possible �elds.�e smallest such �eld is
F = {/, Ω}; it is a subset of any other �eld.

�e intersection of any family of �elds is again a �eld.
�e union of a family of �elds need not be a �eld. Both
statements hold for sigma-�elds, too.
Given a collection A of subsets of Ω, the intersection

of all �elds (sigma-�elds) that contain A is called a �eld
(sigma-�eld) generated byA.
Having a non-empty set Ω and a �eldF of its subsets, a

�nitely additive probability measure is a function P : F →
R+ such that

(a) P(Ω) = .
(b) P(A) ≥  for every A ∈ F .

(c) P(A ∪ B) = P(A) + P(B) whenever A,B ∈ F and
A ∩ B = / (�nite additivity).

If (c) is replaced by the condition of countable additivity

(c’) For any countable collection A,A, . . . of sets in F ,
such that Ai ∩ Aj = / for any Ai ≠ Aj and such that
A ∪A ∪⋯ ∈ F (the latter condition is needless ifF
is a sigma-�eld):

P(
+∞
⋃
i=
Ai) =

+∞
∑
i=
P(Ai)

then P is called (a countably additive) probability mea-
sure, or just probability. �e triplet (Ω,F ,P) is called a
probability space. By Carathéodory extension theorem, any
countably additive probabilitymeasure P de�ned on a �eld
F extends uniquely to a countably additive probability
measure on the sigma �eld generated by F ; hence, if P
is countably additive, we may always assume that F is a
sigma-�eld.
A set B ⊂ Ω is called a null set if B ⊂ A for some A ∈ F

with P(A) = . Let N be a collection of all null sets in
(Ω,F ,P). IfN ⊂ F , the sigma-�eld F is called complete.
For any sigma-�eld F there exists a complete sigma-�eld
F̄ , called a completion ofF , and de�ned as the sigma �eld
generated by F ∪N .
A general positive measure µ is a set function de�ned

on (Ω,F) with values in R+ ∪ {+∞}, which satis�es (b),
(c) or (c’), and µ(/) = . If µ(Ω) < +∞, the measure is
called �nite and can be normalized to a probability mea-
sure by P(A) = µ(A)/µ(Ω) for all A ∈ F . If Ω can be rep-
resented as a countable union of measurable sets of �nite
measure, then a measure is called sigma-�nite. �e most
commonly used measure in Mathematics is the Lebesgue
measure λ on R, with the property that λ([a, b]) = b − a
for any a < b.�is measure is not �nite, as λ(R) = +∞,
but it is sigma-�nite.
If there exists a countable set S ⊂ Ω such that µ(S′) =

, the measure µ is called discrete. Unless the measure is
discrete, the sigma-�eld F is usually taken to be strictly
smaller than P(Ω), to ensure that it will be possible to
assign some value of the measure to each set in F .�is is
motivated by existence of non-measurable sets in R (sets
that cannot be assigned any value of Lebesgue measure).
Non-measurable sets cannot be e�ectively constructed and
their existence is a consequence of Axiom of Choice [see
Solovay ()].�e described construction of a probabil-
ity space ensures that a probability can be assigned to all
sets of interest.
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�e countable (vs. �nite) additivity has a role to exclude
from considerationmeasures that are too complicated, and
also to enable applicability of fundamental theorems (for
details on �nitely additive measures see Yosida and Hewitt
()).Within axioms (a)-(b)-(c), the countable additivity
is equivalent to continuity of probability, a property that can
be described in two dual (equivalent) forms:

. If A ⊂ A ⊂ ⋯ ⊂ . . ., then P(
+∞
⋃
n=
An) = lim

n→+∞
P(An);

. If A ⊃ A ⊃ ⋯ ⊃ . . ., then P(
+∞
⋂
n=
An) = lim

n→+∞
P(An);

Random Variables and Their
Distributions
Let (Ω,F ,P) be a probability space (usually called abstract
probability space). Let X be a mapping from Ω to some
other space S. A purpose of introducing such mappings
can be twofold. First, in some simple models like tossing
a coin, we prefer to have a numerical model that can also
serve as a model for any experiment with two outcomes.
Hence, instead of Ω = {H,T}, we can think of S = {, }
as a set of possible outcomes, which are in fact labels for
any two outcomes in a real world experiment. Second, in
large scale models, we think of Ω as being a set of possi-
ble states of a system, but to study the whole system can be
too di�cult task, so by mapping we wish to isolate one or
several characteristics of Ω.
While Ω can be a set without any mathematical struc-

ture, S is usually a set of real numbers, a set in Rd, or a
set of functions. To be able to assign probabilities to events
of the form {ω ∈ Ω ∣ X(ω) ∈ B} = X−(B), we have to
de�ne a sigma-�eld B on S, that will accommodate all sets
B of interest. If S is a topological space, usual choices are
for B to be generated by open sets in S (Borel sigma-�eld),
or to be generated by all sets of the form f −(U), where
U ⊂ S is an open set and f is a continuous function S ↦ R
(Baire sigma-�eld). Since for any continuous f and openU,
the set f −(U) is open, the Baire �eld is a subset of corre-
sponding Borel �eld. In metric spaces (and, in particular,
in Rd, d ≥ ) the two sigma �elds coincide.
A mapping X : Ω ↦ S is called (Ω,F) − (S,B) –

measurable if X−(B) ∈ F for any B ∈ B.�e term ran-
dom variable is reserved for such a mapping in the case
when S is a subset of R. Otherwise, X can have values in
Rd, when it is called a random vector, or in some functional
space, when it is called a random process, where trajectories
X(ω) = f (ω, ⋅) depend on a numerical argument usu-
ally interpreted as time, or a random �eld if trajectories are

functions of arguments that are not numbers. In general,X
can be called a random element.

�e central issue in a study of random elements is the
probability measure µ = µX induced by X on the space
(S,B) by µX(B) = P(X−(B)), B ∈ B, which is called the
probability distribution of X. In fact, X is considered to be
de�ned by its distribution; the mapping by itself is not of
interest in Probability. In this way, each random element
X is associated with two probability triplets: (Ω,F ,P) and
(S,B, µ). If a model considers only random variables that
map Ω into S, then the �rst triplet can be discarded, or
more formally, (Ω,F ,P) can be identi�ed with (S,B, µ).

�e collection of sets {X−(B)}B∈B is a sigma-�eld
contained in F , which is called a sigma-�eld generated by
X, in notation σ(X). It is considered in applications as
a complete information about X, as it contains all rele-
vant events in Ω from whose realizations we may deduce
whether or not X ∈ B, for any B ∈ B. In particular, if B
contains all singletons {x}, then we know the value of X.
If there is another sigma-�eld G such that

σ(X) ⊂ G ⊂ F , then we say that X is G-measurable. In
particular, if X is σ(U)-measurable, where U is another
random element and if σ(X) contains all sets of the form
X−({s}), s ∈ S, then X is a function of U.

�e de�nition of a sigma-�eld does not provide any
practical algorithm that can be used to decide whether or
not a particular set belongs to a sigma �eld. For example,
suppose that we have a Borel sigma-�led B on some topo-
logical space S, and we need to knowwhether or not B ∈ B,
for a given B ⊂ S.�en we need to either produce a for-
mula that shows how to get B as a result of countably many
unions, intersections and complements starting with open
and closed sets, or to prove that such a formula does not
exist.�is is rarely obvious or straightforward, and some-
times it can require a considerable work. In cases when
we want to show that a certain family of sets belongs to a
given sigma-�elds, the Dynkin’s so-called “π − λ theorem”
is very useful. A collection C of subsets of a set S is called a
π-system if A ∈ C,B ∈ C Ô⇒ A ∩ B ∈ C. It is called a λ-
system if it has the following three properties: () S ∈ C; ()
A,B ∈ C and B ⊂ A Ô⇒ A/B ∈ C; () For any sequence
of sets An ∈ C with An ⊂ An+ (increasing sets), it holds
that∑+∞

i= An ∈ C.�en we have the following.

Dynkin’s π − λ �eorem Let A be a π-system, B a
λ-system andA ⊂ B.�en σ(A) ⊂ B.

Integration
Let X be a random variable that maps (Ω,F ,P) into
(R,B, µ), where R is the set of reals, B is a Borel
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sigma-algebra and µ is the distribution of X. �e expec-
tation of X is de�ned as

EX = ∫
Ω
X(ω)dP(ω) = ∫

R
xdµ(x),

provided the integrals exist in the Lebesgue sense. By the
construction of Lebesgue integral, E X exists if and only
if E ∣X∣ exists; in that case we say that X is integrable. To
emphasize that the expectation is with respect to measure
P, the notation EPX can be used.
Let f be a measurable function R → R (in R we

assume the Borel sigma-�eld if not speci�ed otherwise).
�en f (X) is again a random variable, that is, the mapping
ω ↦ f (X(ω)) is (Ω,F) − (R,B) -measurable, and

E f (X) = ∫
Ω
f (X(ω))dP(ω) = ∫

R
f (x)dµ(x),

if the integral on the right hand side exists, and then we
say that f is integrable. Expectations can be de�ned in the
same way in more general spaces of values of f or X, for
instance in Rd,d >  or in any normed vector space.

Radon-Nikodym �eorem Suppose that P and Q are
positive countably additive and sigma-�nite measures (not
necessarily probabilities) on the same space (Ω,F). We
say that P is absolutely continuous with respect to Q (in
notation P << Q) if P(B) =  for all B ∈ F with Q(B) = .
If P ≪ Q, then there exists a non-negative measurable

function f such that

P(A) = ∫
Ω
IA(ω)f (ω)dQ(ω), and

∫
Ω
g(ω)dP(ω) = ∫

Ω
g(ω)f (ω)dQ(ω),

for any measurable g. �e function f is called a Radon-
Nikodym derivative, in notation f = dP

dQ , and it is Q-almost
surely unique.
If Q is the Lebesgue measure and P a probability mea-

sure on R, then the function f is called a density of P
or of a corresponding random variable with the distribu-
tion P; distributions P onR that are absolutely continuous
with respect to Lebesgue measure are called continuous
distributions.
If both P and Q are probabilities and P ≪ Q, then

the 7Radon-Nikodym theorem yields that there exists a
random variable Λ ≥  with EQΛ =  such that

P(A) = EQIAΛ and EPX = EQXΛ

for any random variable X.

Cross References
7Axioms of Probability
7Foundations of Probability

7Probability�eory: An Outline
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A (nonlinear) measurement error model (MEM) consists
of three parts: () a regression model relating an observable
regressor variable z and an unobservable regressor variable
ξ (the variables are independent and generally vector val-
ued) to a response variable y, which is considered here to
be observable without measurement errors; () ameasure-
ment model relating the unobservable ξ to an observable
surrogate variable x; and () a distributional model for ξ.

Parts of MEM
�e regression model can be described by a conditional dis-
tribution of y given (z, ξ) and given an unknown param-
eter vector θ. As usual this distribution is represented by
a probability density function f (y∣z, ξ; θ) with respect to
some underlying measure on the Borel σ-�eld of R. We
restrict our attention to distributions that belong to the
exponential family, i.e., we assume f to be of the form

f (y∣z, ξ; β, φ) = exp(
yη − c(η)

φ
+ a(y, φ)) ()

with
η = η(z, ξ; β). ()

Here β is the regression parameter vector, φ a scalar dis-
persion parameter such that θ = (βT , φ)T , and a, c, and η
are known functions.�is class comprises the class of gen-
eralized linearmodels, where η = η(β+zTβz+ξTβξ), β =

(β, βTx , βTξ )
T .
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�e classical measurement model assumes that the
observed variable x di�ers from the latent ξ by a measure-
ment error variable δ that is independent of z, ξ, and y:

x = ξ + δ ()

with Eδ = . Here we assume that δ ∼ N(, Σδ) with Σδ
known.�e observable data are independent realizations
of the model (xi, yi), i = , . . . ,n.
Under the Berkson measurement model, the latent vari-

able ξ di�ers from the observed x by a centered measure-
ment error δ that is independent of z, x, and y:

ξ = x + δ. ()

�us, the values of x are �xed in advance, whereas the
unknown true values, ξ, are �uctuating.

�e distributional model for ξ either states that the ξ
are unknown constants (functional case) or that ξ is a ran-
dom variable (structural case) with a distribution given by
a density h(ξ; γ), where γ is a vector of nuisance parame-
ters describing the distribution of ξ. In the structural case,
we typically assume that

ξ ∼ N(µξ , Σξ), ()

although sometimes it is assumed that ξ follows a mixture
of normal distributions. In the sequel, for the structural
case we assume γ to be known. If not, it can o�en be esti-
mated in advance (i.e., pre-estimated) without considering
the regression model and the data yi. For example, if ξ is
normal, then µξ and Σξ can be estimated by x and Sx − Σδ ,
respectively, where x and Sx are the empirical mean vec-
tor and the empirical covariance matrix of the data xi,
respectively.

�e goal of measurement error modeling is to obtain
nearly unbiased estimates of the regression parameter β by
�tting a model for y in terms of (z, x). Attainment of this
goal requires careful analysis. Substituting x for ξ in the
model () – (), but making no adjustments in the usual
�ttingmethods for this substitution, leads to estimates that
are biased, sometimes seriously.
In the structural case, the regression calibration (RC)

estimator can be constructed by substituting E(ξ∣x) for
unobservable ξ. In both functional and structural cases,
another, the simulation-extrapolation (SIMEX) estimator,
becomes very popular.�ese estimators are not consistent
in general, although they o�en reduce the bias signi�-
cantly; see Carroll et al. ().

Polynomial and Poisson Model
Wemention two important examples of the classical MEM
() – () where for simplicity the latent variable is scalar and

the observable regressor z is absent.�e polynomial model
is given by

y = β + βξ + ... + βkξ
k
+ ε,

where ε ∼ N (, σ ε ) and ε is independent of ξ. Here

η =
k

∑
r=

βrξr , c(η) =



η,

and φ = σ ε . Both cases are possible: (a) the measure-
ment error variance σ δ is known and (b) the ratio σ ε /σ δ is
known; for the latter case see Shklyar (). In the partic-
ular case of k = , we obtain the linear model; an overview
of methods in this MEM is given in Cheng and Van Ness
().
In the loglinear Poisson model we have y ∼ Po(λ) with

λ = exp(β + βξ); then η = log λ, c(η) = eη , and φ = .

Methods of Consistent Estimation in
Classical MEM
Now, we deal with the general model () – (). We dis-
tinguish between two types of estimators, functional and
structural.�e lattermakes use the distribution of ξ, which
thereforemust be given, at least up to the unknown param-
eter, vector γ.�e former does not need the distribution of
ξ and works even when ξ is not random (functional case).

Functional Method: Corrected Score
If the variable ξwere observable, one could estimate β (and
also φ) by the method of maximum likelihood (ML).�e
corresponding likelihood score function for β is given by

ψ(y, z, ξ; β, φ) =
∂ log f (y∣z, ξ; β, φ)

∂β
=
y − c′(η)

φ
∂η
∂β
.

We want to construct an unbiased estimating function
for β in the observed variables. For this purpose, we need
to �nd functions g and g of z, x, and β such that

E[g(z, x; β)∣z, ξ] =
∂η
∂β
, E[g(z, x; β)∣z, ξ] = c′(η)

∂η
∂β
.

�en

ψC(y, z, x; β) = yg(z, x; β) − g(z, x; β)

is termed the corrected score function.�eCorrected Score
(CS) estimator β̂C of β is the solution to

n

∑
i=

ψC(yi, zi, xi; β̂C) = .

�e functions g and g do not always exist. Stefanski ()
gives the conditions for their existence and shows how to
�nd them if they exist.�e CS estimator is consistent in
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both functional and structural cases. It was �rst proposed
by Stefanski () and Nakamura ().
An alternative functionalmethod, particularly adapted

to 7generalized linear models, is the conditional score
method; see Stefanski and Carroll ().

Structural Methods: Quasi-Likelihood and
Maximum Likelihood
�e conditional mean and conditional variance of y given
(z, ξ) are, respectively,

E(y∣z, ξ) = m∗(z, ξ; β) = c′(η), V(y∣z, ξ)
= v∗(z, ξ; β) = φc′′(η).

�en the conditional mean and conditional variance of y
given the observable variables are

m(z, x; β) = E(y∣z, x) = E[m∗(z, ξ; β)∣x],
v(z, x; β) = V(y∣z, x) = V[m∗(z, ξ; β)∣x]

+ E[v∗(z, ξ; β)∣x].

For the quasi-likelihood (QL) estimator, we construct
the quasi-score function

ψQ(y, z, x; β) = [y −m(z, x; β)]v(z, x; β)−
∂m(z, x; β)

∂β
.

Here we drop the parameter φ considering it to be known.
We also suppress the nuisance parameter γ in the argument
of the functions m and v, although m and v depend on γ.
Indeed, in order to compute m and v, we need the con-
ditional distribution of ξ given x, which depends on the
distribution of ξ with its parameter γ. For instance, assume
() where the elements of µξ and Σξ make up the compo-
nents of the parameter vector γ.�en ξ∣x ∼ N(µ(x),T)
with

µ(x) = µξ + Σξ(Σξ + Σδ)
−
(x − µξ),

T = Σδ − Σδ(Σξ + Σδ)
−Σδ .

�e QL estimator β̂Q of β is the solution to
n

∑
i=

ψQ(yi, zi, xi; β̂C) = .

�e equation has a unique solution for large n, but it may
have multiple roots if n is not large. Heyde and Morton
() develop methods to deal with this case.
Maximum likelihood is based on the conditional joint

density of x, y given z. �us, while QL relies only on
the error-free mean and variance functions, ML relies on
the whole error-free model distribution.�erefore, ML is
more sensitive than QL with respect to a potential model
misspeci�cation because QL is always consistent as long as

at least the mean function (along with the density of ξ) has
been correctly speci�ed. In addition, the likelihood func-
tion is generally much more di�cult to compute than the
quasi-score function.�is o�en justi�es the use of the rel-
atively less e�cient QL instead of the more e�cient ML
method.

Efficiency Comparison
ForCS andQL, β̂ is asymptotically normal with asymptotic
covariance matrix (ACM) ΣC and ΣQ, respectively. In the
structural model, it is natural to compare the relative e�-
ciencies of β̂C and β̂Q by comparing their ACMs. In case
there are no nuisance parameters, it turns out that

ΣC ≥ ΣQ ()

in the sense of the Loewner order for symmetric matri-
ces. Moreover, under mild conditions the strict inequality
holds.

�ese results hold true if the nuisance parameters γ are
known. If, however, they have to be estimated in advance,
() need not be true anymore. For the Poisson and poly-
nomial structural models, Kukush et al. () prove that
() still holds even if the nuisance parameters are pre-
estimated. Recently Kukush et al. () have shown that
QL can be modi�ed so that, in general, ΣC ≥ ΣQ; for this
purpose the γ must be estimated together with β and not
in advance.

Estimation in Berkson Model
Now, we deal with the model (), (), and (). Substituting
x for ξ in the regressionmodel () – () is equivalent to RC.
�erefore, it leads to estimates with a typically small bias.
A more precise method is ML. �e conditional joint

density of x and y given z has a simpler form compared
with the classical MEM.�at is whyML is more reliable in
the Berkson model.

Nonparametric Estimation
We mention two nonparametric problems overviewed in
Carroll et al. (), Ch. : the estimation of the density
ρ of a random variable ξ, and the nonparametric estima-
tion of a regression function f , both when ξ is measured
with error. In these problems under normally distributed
measurement error, the best mean squared error of an
estimator of ρ(x) or f (x) converges to  at a rate no
faster than the exceedingly slow rate of logarithmic order.
However, under a more heavy-tailed measurement error,
estimators can perform well for a reasonable sample size.
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Broadly de�ned, measurement of economic progress
focuses on quantitative analysis of the standard of living
or quality of life and their determinants.�e analysis con-
cerns many elements of the standard living such as its
material components, human capital, including education
andhealth, inequality and other factors [see, among others,
Barro and Sala-i Martin (), Howitt and Weil (),
Steckel (), and references therein].

�eoretical foundation for empirical analysis of deter-
minants of economic growth is provided by the Solow
growth model. �e human capital-augmented version of
the model with the Cobb-Douglas production function
[see Mankiw et al. ()] assumes that, for country i
at time t, the aggregate output Yi(t) satis�es Yi(t) =

Ki(t)αHi(t)β
(Ai(t)Li(t))−α−β , where Ki(t) is physical

capital, Hi(t) is human capital, Li(t) is labor supply and
Ai(t) is a productivity parameter (the e�ciency level of
each worker or the level of technology). �e variables L
and A are assumed to obey Li(t) = Li()eni t and A(t) =

A()egt , where ni and g are, respectively, the population
growth rate and the rate of technological progress. Physical
and human capital are assumed to follow continuous-time
accumulation equationsdKi(t)/dt = sK ,iYi(t)−δKi(t) and
dHi(t)/dt = sH,iYi(t)−δH(t)with the depreciation rate δ
and the savings rates sK ,i and sH,i. Under the above assump-
tions, the growth model leads to the regressions γi = a +
a log yi()+a log(ni +g+ δ)+a log sK ,i +a log sH,i +єi,
where γi = (log yi(t) − log yi())/t is the growth rate of
output per worker yi(t) = Yi(t)/Li(t) between time 
and t [see, among others, Barro and Sala-i Martin (),
Durlauf et al. ()]. Cross-country growth regressions
typically include additional regressors Zi and focus on esti-
mating models in the form γi = aXi + bZi + єi, where
a = (a, a, ..., a) ∈ R, b = (b, b, ..., bm) ∈ Rm,
the components of Xi = (, log yi(), log(ni + g +

δ), log sK ,i, log sH,i)′ are the growth determinants in the
Solow model and Zi ∈Rm is the vector of growth determi-
nants outside the Solow growth theory.

�e statistical analysis of economic progress and its
determinants presents a number of challenges due to
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the necessity of using proxy measures and corresponding
weights for di�erent components of the standard of liv-
ing and factors a�ecting it.�e material standard of living
is typically measured as per capita Gross Domestic Prod-
uct (GDP) adjusted for changes in price levels. Proxies for
education and human capital used in growth economics
include school-enrollment rates at the secondary and pri-
mary levels, literacy rates, average years of secondary and
higher schooling and outcomes on internationally compa-
rable examinations. Many works in the literature have also
used student-teacher ratios as a measure of quality of edu-
cation.�e two most widely used measures of health are
life expectancy at birth or age  and average height used as a
proxy for nutritional conditions during the growing years.
Barro () and Barro and Sala-i Martin () �nd

that the growth rate of real per capita GDP is positively
related to initial human capital, including education and
health, proxied by school-enrollment rates, upper-level
schooling and life expectancy and negatively related to the
initial level of real per capita GDP. �e results in Barro
() also indicate statistically signi�cant negative e�ects
of political instability (measured using the number of rev-
olutions and coups per year and the number of political
assassinations per million population per year) on growth.
Other factors used in the analysis in Barro () and Barro
and Sala-i Martin () include fertility and the ratio of
real government consumption to real GDP (with statis-
tically signi�cant negative e�ects on growth), investment
ratio, in�ation rate aswell as proxies formarket distortions,
maintenance of the rule of law, measures for democracy,
international openness, the terms of trade, indicators for
economic systems and countries in sub-Saharian Africa
and Latin America and other variables.
A number of works in theoretical and empirical growth

economics have focused on the development and analysis
of performance of models with endogenous technological
progress. Many recent studies have also studied the factors
that lead to the observed di�erences in the determinants
of economic growth in di�erent countries, including cap-
ital components, technology and e�ciency. In particular,
several works have emphasized the role of geographical
di�erences, cultural factors, economic policies and insti-
tutions as fundamental causes of the di�erences in growth
determinants (Howitt and Weil ).
Statistical study of economic growth determinants is

complicated by relatively small samples of available obser-
vations, measurement errors in key variables, such as
GDP, heterogeneity in observations and estimated param-
eters, dependence in data and large number of potential
growth regressors under analysis. Related issues in the
analysis of economic growth concern di�culty of causal

interpretation of estimation results, robustness of the con-
clusions to alternativemeasures of variables in the analysis,
and open-endedness of growth theories that imply that
several key factors matter for growth at the same time.
Levine and Renelt () focus on the analysis of robust-
ness of conclusions obtained using cross-country growth
regressions.�ey propose assessing the robustness of the
variable Z of interest using the variation of the coe�-
cient b in cross-country regressions γi = aXi + bZi +
cVi + єi, where Xi is the vector of variables that always
appear in the regressions (e.g., the investment share of
GDP, initial level of income, a proxy for the initial level
of human capital such as the school enrollment rate, and
the rate of population growth in country i), and Vi is a
vector of additional control variables taken from the pool
of variables available. Departing from the extreme bounds
approach in Levine and Renelt () that requires the
estimate of the coe�cient of interest b to be statistically
signi�cant for any choice of control variables V, several
recent works [see Sala-i Martin et al. (), Ch.  in
Barro and Sala-i Martin (), and references therein]
propose alternative less stringent procedures to robustness
analysis. Several recent works on the analysis of economic
growth and related areas emphasize importance of models
incorporating disasters and crises and probability distribu-
tions generating 7outliers and extreme observations, such
as those with heavy-tailed and power-law densities [see
Barro (), Gabaix () and Ibragimov ()].
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�e measurement and comparison of uncertainty associ-
ated with a random phenomenon have been a problem
attracting a lot of researchers in Science and Engineer-
ing over the last few decades. Given a system whose exact
description is unknown its 7entropy is the amount of
information needed to exactly specify the state of the
system. �e Shannon’s entropy, introduced by Shannon
(), has been extensively used in literature as a
quantitative measure of uncertainty. If A,A, . . . ,An are
mutually exclusive events, with respective probabilities
p, p, . . . , pn, the Shannon’s entropy is de�ned as

Hn(P) = −
n

∑
i=
pi log pi. ()

Earlier development in this area was centered on char-
acterizing the Shannon’s entropy using di�erent sets of
postulates. �e classic monographs by Ash (), Aczel
and Daroczy () and Behra () review most of the
works on this aspect. Another important aspect of interest
is that of identifying distributions for which the Shan-
non’s entropy ismaximumsubject to certain restrictions on

the underlying random variable. Depending on the con-
ditions imposed, several maximum entropy distributions
have been derived. For instance, if X is a random variable
in the support of the set of non-negative real numbers, the
maximum entropy distribution under the condition that
the arithmetic men is �xed is the exponential distribution.
�e book by Kapur () covers most of the results in this
area.
For a continuous non-negative random variableX with

probability density function f (x) the continuous analogue
of () takes the form

H( f ) = −∫
∞

−∞
f (x) log f (x)dx. ()

Several modi�cations of the Shannon’s entropy has
been proposed and extensively studied. Renyi () de�ne
the entropy of order α as

Hα(P) =

 − α

log

n

∑
i=
pα
i

n

∑
i=
pi
, α ≠ , α >  ()

where P = (P,. . . . . .Pn) is such that pi ≥ , and
n

∑
i−
pi = .

As α → , () reduces to (). Khinchin () general-
ized the Shannon’s entropy by choosing a convex function
φ(.), with φ() =  and de�ned the measure

Hφ( f ) = −∫
∞

−∞
f (x)φ[ f (x)]dx. ()

Nanda and Paul () studied () for two particular
choices of φ in the form

Hβ
 ( f ) =


β − 

[ − ∫
α


f β

(x)dx] ()

and

Hβ
 ( f ) =


 − β

⎡
⎢
⎢
⎢
⎢
⎣

log
∞

∫


f β
(x)dx

⎤
⎥
⎥
⎥
⎥
⎦

()

where the support of f is the set of non-negative reals and
β >  with β ≠ . As β → , () and () reduces to the
Shannon’s entropy given in ().
Recently Rao et al. () introduced cumulative resid-

ual entropy de�ned by

E(X) = −∫
∞


F(x) logF(x)dx

which is proposed as an alternative measure of uncer-
tainty based on the cumulative survival function F(x)=
P(X > x). For various properties and applications of this
measure we refer to Rao () and Asadi and Zohrevand
().
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�ere are several other concepts closely related
to the Shannon’s entropy. Kullback and Leibler ()
de�nes the directed divergence (also known as rela-
tive entropy or cross entropy) between two distributions
P = (p, p, . . . , pn) and Q= (q, q, . . . , qn) with

pi, qi ≥ 
n

∑
i=
pi =

n

∑
i=
qi = 

as

Dn(P,Q) =
n

∑
i=
pi log

pi
qi
. ()

Kannappan and Rathie () and Mathai and Rathie
() have obtained characterization results based on cer-
tain postulates which naturally leads to ().�e continuous
analogue of () turns out to be

D( f , g) = ∫
α

−∞
f (x) log

f (x)
g(x)

dx ()

where f (x) and g(x) are probability density functions
corresponding to two probability measures P and Q.

�e concept of a�nity between two distributions was
introduced and studied in a series of works by Matusita
[seeMatusita ()].�ismeasure has beenwidely used as
a useful tool for discrimination amongdistributions. A�n-
ity is symmetric in distributions and has direct relationship
with error probability when classi�cation or discrimina-
tion is concerned. For two discrete distributions P and Q
considered above theMatusita’s a�nity (Mathai andRathie
) between P and Q is de�ned as

δ(P,Q) =
n

∑
i=

(piqi)/. ()

If X and Y are non-negative random variables and if f (x)
and g(x) are the corresponding probability density func-
tions, the a�nity between f and g takes the form

δ( f , g) = ∫
∞



√
f (x)g(x)dx ()

δ( f , g) lies between  and .
Majernik () has shown that

H( f , g) = [ − δ( f , g)]

where H( f , g) is the Hellinger’s distance de�ned by

H( f , g) = ∫
∞


[
√
f (x) −

√
g(x)]


dx. ()

A�nity is a special case of the Cherno� distance con-
sidered in Akahira () de�ned by

C(F,G) = − log [∫ f α
(x)g−αdx] ,  < α < . ()

It may be noticed that when α =


() reduces to

− log δ ( f , g) , where δ ( f , g) is the a�nity de�ned in ().
�e concept of inaccuracy was introduced by

Kerridge (). Suppose that an experimenter asserts that
the probability for the ith eventuality is qi whereas the true
probability is pi, then the inaccuracy of the observer, as
proposed by Kerridge, can be measured by

(P,Q) = −
n

∑
i=
pi log qi ()

where P and Q are two discrete probability distributions,
considered earlier.
Nath () extended the Kerridge’s concept to the

continuous situation. If F(x) is the actual distribution
function corresponding to the observations and G(x) is
the distribution assigned by the experimenter and f (x) and
g(x) are the corresponding density functions the inaccu-
racy measure is de�ned as

(F,G) = −∫
α


f (x) log g(x)dx. ()

�is measure has extensively been used as a useful tool for
measurement of error in experimental results. In express-
ing statements about probabilities of various events in an
experiment, two kinds of errors are possible: one result-
ing from the lack of enough information or vagueness in
experimental results and the other from incorrect infor-
mation. In fact, () can be written as

(F,G) = −∫
∞


f (x) log f (x)dx +∫

∞


f (x) log

f (x)
f (x)

dx.

()

�e �rst term on the right side of () represents the
error due to uncertainty which is the Shannon’s entropy
while the second term is the Kullback–Leibler measure,
de�ned in () representing the error due to wrongly spec-
ifying the distribution as G(x). In this sense the measure
of inaccuracy can accommodate the error due to lack of
information as well as that due to incorrect information.
In many practical situations, complete data may not be

observable due to various reasons. For instance, in lifetime
studies the interest may be on the life time of a unit a�er
a speci�ed time, say t. If X is the random variable repre-
senting the life time of a component the random variable
of interest is X− t∣X > t. Ebrahimi () de�nes the resid-
ual entropy function as the Shannon’s entropy associated
with the residual life distribution, namely

H( f , t) = −∫
∞

t

f (x)
F(t)

log
f (x)
F(x)

, F(t) > . ()
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In terms of the hazard rate h(x) =
f (x)
F(x)

, () can also be

written as

H( f , t) =  −

F(t) ∫

∞

t
f (x) logh(x)dx. ()

Ebrahimi points out that () can be used as a potential
measure of stability of components in the reliability con-
text.�e problem of ordering life time distributions using
this concept has been addressed in Ebrahimi and Kirmani
(). Belzunce et al. () has shown that the resid-
ual entropy function determines the distributions uniquely
if H( f , t) is increasing in t. Characterization of probabil-
ity distributions using the functional form of the residual
entropy function have been the theme addressed in Nair
and Rajesh (), Sankaran and Gupta (), Asadi and
Ebrahimi () and Abraham and Sankaran ().
Recently Nanda and Paul () has extended the def-

inition of the Renyi entropy de�ned by () and () to the
truncated situation. It is established that under certain con-
ditions the Renyi’s residual entropy function determines
the distribution uniquely.�ey have also looked into the
problem of characterization of probability distributions
using the same.
Ebrahimi and Kirmani () has modi�ed the de�-

nition of the Kullback–Leibler measure to the truncated
situation to accommodate the current age of a system.
Recently Smitha et al. () have extended the de�nition
of a�nity to the truncated situation and has obtained char-
acterization results for probability distributions under the
assumption of proportional hazardmodel. Nair and Gupta
() extended the de�nition of the measure of inaccu-
racy to the truncated situation and has characterized the
generalized Pareto distributions using the functional form
of the inaccuracy measure.
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Measures of Agreement

Elisabeth Svensson
Örebro University, Örebro, Sweden

Agreement in repeated assessments is a fundamental
requirement for quality of data from assessments on
7rating scales. Scale assessments produce ordinal data, the
ordered categories representing only a rank order of the
intensity of a particular variable and not a numerical value
in a mathematical sense, even when the assessments are
numerically labeled.

�emain quality concepts of scale assessments are reli-
ability and validity. Reliability refers to the extent to which
repeated measurements of the same object yield the same
result, which means agreement. In intra-rater reliability
studies the agreement in test-retest assessments is evalu-
ated. Inter-rater reliability refers to the level of agreement
between two raters judging the same object.

�e percentage agreement (PA) in assessments is the
basic agreement measure and is also called overall agree-
ment or raw agreement. When PA < % the reasons for
disagreement can be evaluated by a statistical approach by
Svensson that takes account of the rank-invariant proper-
ties of ordinal data.�e approachmakes it possible to iden-
tify and measure systematic disagreement, when present,
separately from disagreement caused by individual vari-
ability in assessments. Di�erent frequency distributions
of the two sets of ordinal assessments indicate that the
two assessments disagree systematically regarding the use
of the scale categories. When higher categories are more
frequently used in one set of assessments, X, than in the
other, Y , there is a systematic disagreement in position.

�e measure Relative Position, RP, estimates the param-
eter of a systematic disagreement in position de�ned by
γ = P(X < Y) − P(Y < X).
A systematic disagreement in how the two assessments

are concentrated to the scale categories is measured by the
Relative Concentration, RC, estimating the parameter of a
systematic shi� in concentration δ = P(Xl < Yk < Xl) −
P(Yl < Xk < Yl).

�e measure of individual variability, the relative
rank variance,  ≤ RV ≤  is de�ned RV =

n

m

∑
i=

m

∑
j=
xij[R

(X)
ij − R(Y)ij ]


where R(X)ij is the mean aug-

mented rank of the observations in the ijth cell of anm×m
square contingency table according to the assessments X.
In the aug-rank approach R(X)i,j− < R

(X)
i,j and R

(Y)
i−,j < R

(Y)
i,j .

RV =  means that the observed disagreement is com-
pletely explained by the measures of systematic disagree-
ment. In that case the two sets of aug-ranks are equal and
the paired distribution is the rank-transformable pattern of
agreement (see 7Ranks).

�e advantage of separating the observed disagree-
ment in the components of systematic and individual
disagreements is that it is possible to improve the rat-
ing scales and/or the users of the scale. Systematic dis-
agreement is population based and reveals a system-
atic change in conditions between test-.retest assessments
or that raters interpret the scale categories di�erently.
Large individual variability is a sign of poor quality of
the rating scale as it allows for uncertainty in repeated
assessments.

�e Cohen’s coe�cient kappa (κ) is a commonly
used measure of agreement adjusted for the chance
expected agreement. �ere are limitations with kappa.
�e maximum level of kappa, κ = , requires equally
skilled raters, in other words lack of systematic disagree-
ment (bias).�e value of weighted kappa depends on the
choice of weights, and the weighting procedure ignores the
rank-invariant properties of ordinal data.�e kappa value
increases when the number of categories decreases, and
depends also on how the observations are distributed on
the di�erent categories, the prevalence. �erefore kappa
values from di�erent studies are not comparable.

�e calculations of Cronbach’s alfa and other so-
called reliability coe�cients are based on the assumption
of quantitative, normally distributed data, which is not
achievable in data from rating scales.

�ere is also a widespread misuse of correlation in
reliability studies.�e correlation coe�cient measures the
degree of association between two variables and does not
measure the level of agreement, see Fig. .�e PA is %,
and the observed disagreement is mainly explained by a
systematic disagreement in position.�e negative RP value
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A. The observed pattern B. The rank-transformable
pattern of agreement

X C1 C2 C3 C4 total X total
Y Y

C4 1 1 2 2 2

C3 2 2 14 18 1 17 18

C2 1 1 11 3 16 16 16

C1 2 8 3 1 14 3 11 14

total 3 11 17 19 50 3 11 17 19 50

C1 C2 C3 C4

C4

C3

C2

C1

Measures of Agreement. Fig.  The frequency distribution of  pairs of assessments on a scale with four ordered categories,

C < C < C < C and the corresponding rank-transformable pattern of agreement, defined by the marginal distributions

(−.) and the constructed RTPA shows that the assess-
ments Y systematically used a lower category than did X.
A slight additional individual variability, RV = . is
observed.�e Spearman rank-order correlation coe�cient
is . in A and . in B, ignoring the fact that the assess-
ments are systematically biased and unreliable.�e same
holds for the coe�cient kappa (−.).
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Let X and Y be continuous random variables with joint
distribution function (DF) H and marginal DFs F and G.
�ree well-known measures of dependence are

. Pearson’s correlation:

ρ =


σXσY
Cov(X,Y)

=


σXσY ∫
∞

−∞
∫

∞

−∞
[H(x, y) − F(x)G(y)]dxdy

where σx, σy andCov(X,Y) are the standard deviations
and covariance of X and Y , respectively

. Spearman’s correlation: s=  ∫
∞
−∞ ∫

∞
−∞[H(x, y) −

F(x)G(y)]dF(x)dG(y),
. Kendall’s correlation: τ =  ∫

∞
−∞ ∫

∞
−∞H(x, y)dH

(x, y)− 

Pearson correlation measures the strength of linear
relationship between X and Y and has well-studied the-
oretical properties. However, it can be unduly in�uenced
by 7outliers, unequal variances, non-normality, and non-
linearity. Spearman’s correlation re�ects the monotone
association between X and Y and measures the correla-
tion between F(X) and G(Y). Kendall’s correlation is the
probability of concordance minus the probability of dis-
cordance. Spearman’s and Kendall’s correlations remain
invariant under a monotone transformation. However,
Pearson’s correlation remains only invariant under a loca-
tion and scale change.
Using the probability integral transformations u =

F(x) and v = G(y), the copula (see also 7Copulas) of X
and Y is de�ned as C(u, v) = H(F−(u),G−(v)). Hence,

ρ =


σXσY ∫∫I
[C(u, v) − uv]dF−(u)dG−(v),

s = ∫∫
I
[C(u, v) − uv]dudv,

τ = ∫∫
I
C(u, v)dC(u, v) − 

where I is the unit square. Schweizer andWol� () note
that C(u, v)− uv is the signed volume between the surface
z = C(u, v) and Z = uv (the independence copula).
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Copula representation of ρ clearly shows its depen-
dence on the marginal distributions. �erefore, it is not
a measure of nonparametric dependence. Daniels ()
shows that − ≤ τ − s ≤ . Nelsen () studies the
relationship between s and τ for several families of cop-
ulas and Fredricks and Nelsen () show that the ratio
τ/s approaches / as H approaches independence.
Hoe�ding () and Frechét () show that for all

(x, y) ∈ R the joint DF is bounded: H(x, y) ≤ H(x, y) ≤
H(x, y) where H(x, y) = max(,F(x) + G(y) − ) and
H(x, y) = min(F(x),G(y)) are distribution functions.
Perfect negative correlation is obtained when H is con-
centrated on the line F(x) + G(y) =  whereas perfect
positive correlation is obtained when H is concentrated
on the line F(x) = G(y). In fact, H(x, y) = F(x)G(y)
for all (x, y) ∈ R re�ects independence of X and Y . Let
C(x, y) = max(,u + v − ), C(x, y) = min(u, v) and
C(x, y) denote the Frechét lower, upper and indepen-
dence copulas, respectively. Similarly, C(u, v) ≤ C(u, v) ≤
C(u, v).
Using Hoe�ding lemma ()

Cov(X,Y) = ∫
∞

−∞
∫

∞

−∞
[H(x, y) − F(x)G(y)]dxdy,

one can show ρ ≤ ρ ≤ ρ where ρ and ρ are the
correlation coe�cients associated withH andH, respec-
tively. Depending on the marginal distributions the range
of ρ may be much smaller than ∣ρ∣ ≤ . For example,
for the bivariate log-normal distribution with unit vari-
ances, one can show ρ ∈ (−., ). Lancaster ()
uses Chebyshev-Hermite polynomial to obtain the corre-
lation coe�cient of transformed bivariate random vectors.
Freeman and Modarres () obtain the form of the
correlation a�er a 7Box-Cox transformation.
Moran () states that the necessary and su�cient

conditions for ρ to assume extreme values of + and− are

. X d
= aY + b for constants

. F(µ + x) =  − F(µ − x) where µ is the mean of
X. Normal, uniform, double exponential and logistic
distributions satisfy these conditions

Rényi () considers a set of conditions that a
symmetric nonparametric measure of dependence should
satisfy. Schweizer and Wol� () note that Rényi’s con-
ditions are too strong and suggest that any suitably nor-
malized distance measure such as the Lp distance provides
a symmetric measure of nonparametric dependence.�ey
show that these distances, according to a modi�ed set of
Rényi conditions, enjoy many useful properties. Let Lp =
(Kp ∫∫I ∣C(u, v) − uv∣

pdudv)/p where Kp is chosen such
that Lp remains in (, ). We have

. L =  ∫∫I ∣C(u, v) − uv∣dudv

. L = ( ∫∫I(C(u, v) − uv)
dudv)

/

. L∞ =  Sup I ∣C(u, v) − uv∣

In fact Hoe�ding () and Blum et al. () base a
nonparametric test of independence between X and Y on
L∞.Modarres () studies several tests of independence,
including a measure based on the likelihood of cut-points.
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De-noising a time series, that is a sequence of observations
of a variable measured at equidistant points in time, or an
image, that is a rectangular array of pixels, is a common
task nowadays.�e objective is to extract a varying level
(a “signal”) representing the path followed by the time
series or the true image which is overlaid by irrelevant
noise.
Linear �lters like moving averages are computationally

simple and eliminate normal noise e�ciently. However,
their output is heavily a�ected by strongly deviating obser-
vations (called7outliers, spikes or impulses), which can be
caused for instance by measurement artifacts. Moreover,
linear �lters do not preserve abrupt changes (also called
step changes or jumps) in the signal or edges in an image.
Tukey () suggests median �lters, also called running
medians, for these purposes.
We focus on the time series setting in the following.

Let y, . . . , yN be observations of a variable at equidistant
points in time. De-noising these data for extraction of
the time-varying mean level underlying these data (the
signal) can be accomplished by moving a time window
yt−k, . . . , yt , . . . , yt+k of length n = k+  through the series
for estimation of the level µt in the center of the window.
Whereas a moving average calculates the arithmetic aver-
age of the data in the time window for this, a running
median uses the median of these values. If the window
width is �xed throughout, we get estimates of the levels
µk+, . . . , µN−k at instances not very close to the start or the
end of the time series.�e levels at the start or the end of
the time series can be estimated for instance by extrapo-
lation of the results from the �rst and last window or by
adding the �rst and the last observed value a su�cient
number of times.
Figure  depicts observations of the arterial blood pres-

sure of a patient in intensive care measured once a minute,
as well as the outputs of a moving average and a running
median, both with window width n = .�e moving aver-
age is strongly a�ected by a fewmeasurement artifacts, and
it smooths the sudden increase at t = . �e running
median eliminates the spikes and preserves the shi�.
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Median Filters and Extensions. Fig.  Measurements of the

arterial blood pressure of a patient and outputs of a running
median and a moving average, both with window width n = 

A possible disadvantage of running medians is that
they implicitly rely on the assumption that the level is
almost constant within each time window. While increas-
ing the window width improves the reduction of noise if
the signal is locally constant, this is no longer the case in
trend periods. Davies et al. () investigate application
of robust regression to a moving time window to improve
the approximation of trends in the presence of 7outliers.
Many further re�nements of robust �lters for signal extrac-
tion from time series or images and di�erent rules for
choosing a (possibly locally adaptive) window width from
the data have been suggested in the literature. See Gather
et al. () for an overview on robust signal extraction
from time series.
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Statistical science plays an important role in medical
research. Indeed a major part of the key to the progress
in medicine from the th century to the present day has
been the collection and valid interpretation of empirical
evidence provided by the application of statistical methods
to medical studies. And during the last few decades, the
use of statistical techniques in medical research has grown
more rapidly than in any other �eld of application. Indeed,
some branches of statistics have been especially stimulated
by their applications in medical investigations, notably
the analysis of 7survival data (see, for example, Collett
). But why has statistics (and statisticians) become so
important in medicine? Some possible answers are:

● Medical practice and medical research generate large
amounts of data. Such data can be full of uncertainty
and variation and extracting the “signal,” i.e. the sub-
stantive medical message in the data, form the ‘noise’
is usually anything but trivial.

● Medical research o�en involves asking questions that
have strong statistical overtones, for example: ‘How
common is a particular disease?’; ‘Which people have
the greatest chance of contracting some condition or
other?’; ‘What is the probability that a patient diag-
nosed with breast cancer will survive more than �ve
years?’

● �e evaluation of competing treatments or preventa-
tive measures relies heavily on statistical concepts in
both the design and analysis phase.

In a short article such as this it is impossible to cover
all areas of medicine in which statistical methodology is
of particular importance and so we shall concentrate on
only three namely, clinical trials, imaging and molecular
biology. (For a more comprehensive account of the use of
statistics in medicine see Everitt and Palmer ()).

Clinical Trials
If a doctor claims that a certain type of psychotherapy
will cure patients of their depression, or that taking large
doses of vitamin C can prevent and even cure the common
cold, how should these claims be assessed? What sort of
evidence do we need to decide that claims made for the

e�cacy of clinical treatments are valid? One thing is cer-
tain: We should not rely either on the views of ‘experts’
unless they provide sound empirical evidence (measure-
ments, observations, i.e., data) to support their views, nor
should we credit the anecdotal evidence of people who
have had the treatment and, in some cases, been ‘miracu-
lously’ cured. (And it should be remembered that the plural
of anecdote is not evidence.) Such ‘wonder’ treatments,
which are o�en exposed as ine�ectual when exposed to
more rigorous examination, are particularly prevalent for
those complaints for which conventional medicine has lit-
tle to o�er (see the discussion of alternative therapies in
Chapter  of Everitt ).

�ere is clearly a need for some form of carefully con-
trolled procedure for determining the relative e�ects of
di�erent treatments and this need has been met in the
th and st centuries by the development of the clinical
trial, a medical experiment designed to evaluate which (if
any) of two or more treatments is the more e�ective.�e
quintessential components of a clinical trial, the use of a
control group and, in particular the use of7randomization
as a way of allocating participants in the trial to treat-
ment and control groups, were laid down in the �rst half
of the th century.�e randomization principle in clin-
ical trials was indeed perhaps the greatest contribution
made by arguably the greatest statistician of the th cen-
tury, Sir Ronald Aylmer Fisher. Randomization achieves
the following:

● It provides an impartial method, free of personal bias,
for the assignment of participants to treatment and
control groups. �is means that treatment compar-
isons will not be invalidated by the way the clinician
might chose to allocate the participants if le� to his or
her own judgment.

● It tends to balance treatment groups in terms of extra-
neous factors that might in�uence the outcome of
treatment, even in terms of those factors the investi-
gator may be unaware of.

Nowadays some ,–, clinical trials are under-
taken in all areas of medicine form the treatment of acne
to the prevention of cancer and the randomized controlled
clinical trial is perhaps the outstanding contribution of
statistics to th century medical research. And in the st
century statisticians have applied themselves to develop-
ing methods of analysis for such trials that can deal with
the di�cult problems of patient drop-out, the longitudinal
aspects ofmost trials and the variety ofmeasurement types
used in such trials (see Everitt and Pickles ).
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Imaging
Examples of medical imaging systems include conven-
tional radiology (X-rays), positron-emission tomography
(PET), magnetic resonance imaging (MRI) and functional
magnetic resonance imaging (fMRI). A signi�cant advan-
tage o�en claimed for medical imaging is its ability to
visualize structures or processes in the patient without the
need for intrusive procedures, for example, surgery; but
this may also be a disadvantage and the question that may
need to be asked is how well do the conclusions from an
imaging experiment correspond to the physical properties
that might have been found from an intrusive procedure?
Imaging studies generate large amounts of data and a

host of statistical techniques have been employed to ana-
lyze such data and to extract as much information as pos-
sible from what is in many cases very ‘noisy’ data. Autore-
gressivemodels, linearmixed e�ectsmodels, �nitemixture
models and Gaussian random �eld theory have all been
applied to mixture data with varying degrees of success.
Some important references are Besag (), Silverman
et al. () and Lange ().

Molecular Biology
Molecular biology is the branch of biology that studies
the structure and function of biological macromolecules
of a cell and especially their genetic role. A central goal of
molecular biology is to decipher the genetic information
and understand the regulation of protein synthesis and
interaction in the cellular process. Advances in biotechnol-
ogy have allowed the cloning and sequencing of DNA and
the massive amounts of data generated have given rise to
the new �eld of7bioinformatics which deals with the anal-
ysis of such data. A variety of statistical methods have been
used in this area; for example, hiddenMarkovmodels have
been used to model dependencies in DNA sequences and
for gene �nding (see Schliep et al. ) and data mining
techniques (see7Data Mining), in particular, cluster anal-
ysis (see, for example, Everitt et al. ) have been used to
identify sets of genes according to their expression in a set
of samples, and to cluster samples (see7Cluster Sampling)
into homogeneous groups (see Toh and Honimoto ).
Statistical methods are an essential part of all medi-

cal studies and increasingly sophisticated techniques now
o�en get a mention in papers published in the medical lit-
erature. Some of these have beenmentioned above but oth-
erswhich are equally important are Bayesianmodeling (see
Congdon ) and generalized estimating equations (see
Everitt and Pickles ). In these days of evidence-based
medicine (Sackett et al. ), collaboration betweenmed-
ical researchers and statisticians is essential to the success
of almost all research in medicine.
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Historical Background
�e term statistics has at least three, related, meanings. It
may refer to data in raw form, or to summaries thereof,
or to the analysis of uncertainty associated with data.�e
phrase medical statistics, therefore, may reasonably be
applied to the specialization to medical science of any of
these understandings of statistics.
Raw medical statistics date back at least to the London

Bills of Mortality, collected weekly between  and 
in order to provide an early warning of plague.�e early
demographic work of John Graunt (–) was based
on these Bills. �e summaries of vital statistics under-
taken byWilliam Farr (–), working at the General
Registry O�ce of England and Wales, became the basis
of many important health reforms. However, the found-
ing editors of the journal Statistics in Medicine described
modern medical statistics as “the deployment of the ideas,
principles and methods of statistics to stimulate deeper
understanding in medicine” (Colton et al. ), empha-
sizing the third understanding of the term.

�e history of the link between statistics and medicine
includes key �gures in the development of statistics
itself. For example, Arbuthnot (–) and Bernoulli
(–), o�en cited in the early use of signi�cance
tests, were each quali�ed in both mathematics and in
medicine. Many individuals have contributed to the emer-
gence of medical statistics as a scienti�c discipline in its
own right. �e French writers, Pinel (–), Louis
(–) and Gavarret (–) and the Danish
physician, Heiberg (–) provided early impetus.
Subsequently, Pearl (–) and Greenwood (–
) established research programmes in medical statis-
tics in theUSA and theUK respectively. In , Hill (–
) published the highly in�uential book, Principles of
Medical Statistics, Hill (), of which twelve editions
were published over the next  years. Two other impor-
tant contributions of Hill were arguably the �rst modern
randomized clinical trial on the e�ect of streptomycin in
tuberculosis, and his discussion of criteria for causality
in epidemiological studies. A useful source for informa-
tion on the history of medical statistics is the Lind Library
[http://www.jameslindlibrary.org].

The Nature of Medical Statistics
Much activity in medical statistics is necessarily collabo-
rative. Over the course of a career, statisticians engaged in
medical research are likely to work closely with physicians,
nurses, laboratory scientists and other specialists. Com-
munication across disciplines can present challenges but,
in addition to its scienti�c merit, also frequently stimu-
lates worthwhile methodological and theoretical research.
Further, since medical research o�en raises ethical issues,
these too must be considered by medical statisticians. Hill
() stressed that the statistician “cannot sit in an arm-
chair, remote and Olympian, comfortably divesting him-
self of all ethical responsibility.”
A dominant characteristic of the statistical meth-

ods arising in medical statistics is that they must make
allowance for known variability. Comparisons of groups
should adjust for systematic discrepancies between groups,
for instance in terms of demographics. �is has been
re�ected for many years by the high pro�le given to regres-
sionmethodology, which allowsmultiple explanatory vari-
ables to be incorporated. A more recent manifestation is
in the monitoring of medical performance, where qual-
ity control procedures developed for industrial application
have been modi�ed to allow for predictable heterogeneity
in medical outcomes (Grigg et al. ).

Illustrative Methodological
Developments
In , Cox identi�ed three important periods in the
development of modern statistical methodology.�e �rst
was linked to developments in agriculture, the second to
industrial applications, and the third to medical research.
Developments linked to medical research �ourished in the
s; where earlier statistical methodology placed par-
ticular emphasis on normally distributed data, there was
a need for methods more suited to survival (or time-
to-event) and categorical data. A distinguished example of
the former is Cox’s own pioneering paper (Cox ), pre-
senting a semiparametric regression model for 7survival
data that did not require full speci�cation of an underly-
ing survival distribution. In addition, and in contrast to
virtually all other regression methods then available, this
model allowed the incorporation of explanatory variables
that varied over time. A wealth of subsequent extensions
to this already very general methodology followed, many
facilitated by Aalen’s () reformulation of the problem
in a counting process framework [see also Andersen et al.
()].
An important application of statistical models for cate-

gorical data was to7case- control studies.�ese epidemio-
logical investigations of the relationship between a disease



 M Medical Statistics

D and exposure E, a possible risk factor, involve sepa-
rate sampling of diseased and disease-free groups, from
which information on E and other disease risk factors is
obtained. Binary 7logistic regression would seem to pro-
vide a natural tool for the analysis of these studies, but for
the fact that it focuses on pr(D∣E) whereas the sampling
is from the distribution pr(E∣D). Building on a series of
earlier papers, Prentice and Pyke () established how a
prospective logistic regressionmodel for pr(D∣E) could be
used with case-control data to provide valid estimates of
the odds-ratio parameters.�is rapidly became the stan-
dard methodology for the analysis of case-control studies
(Breslow ).

Study Design
�e design of medical studies is also a major area of
activity for medical statisticians.�e paradigmatic design
is perhaps the Phase III clinical trial, of which a key
aspect is o�en randomized treatment assignment. While
7randomization can provide a basis for statistical infer-
ence, its primary motivation in trials is to enable state-
ments of causality, critical for Phase III trials where the aim
is to establish treatment e�cacy. Nevertheless, the need
for, and methods of, randomization continue to generate
discussion, since randomization can be seen to sacri�ce
potential individual advantage for collective gain. Other
design questions arise in Phase I trials that establish the
tolerability of treatments and basic pharmacokinetics, and
Phase II trials aimed at �nding potentially e�cacious treat-
ments or dosages.
For ethical reasons, ongoingmonitoring of data during

a clinical trial is o�en needed, and this has been an area
of methodological investigation within medical statistics
since the pioneering work of Armitage () (a compre-
hensive discussionmay be found in Jennison and Turnbull
()). �ere is also an increasing role for statisticians
on formal committees that monitor trial data and safety,
where their expertise is combined with that of physicians,
ethicists, and community representatives to ensure the
ethical conduct of trials more generally.
In the s, two important variations on the stan-

dard case-control design emerged, namely case-cohort
studies (Prentice ) and two stage case-control designs
(Breslow and Cain ); both have proved very useful
in epidemiology. Epidemiological cohorts where individ-
uals are followed to observe disease incidence, or clinical
cohorts for which information on patients with speci�ed
conditions is collected routinely – both usually imple-
mented over long periods of time – also continue to present
design and analysis challenges to the medical statistician.

More Recent Topics of Interest
Typically, medical studies are conducted not only to
discover statistical associations, but also in the hopes of
suggesting interventions that could bene�t individuals or
populations.�is has led to a preference for investigations
incorporating randomization or multiple waves of obser-
vation, based on the idea that cause should precede e�ect.
Randomized or not, information gathered repeatedly on
the same subjects is known as longitudinal data, and its
analysis has become a major subdiscipline within medi-
cal statistics. Two distinct approaches to longitudinal data
analysis have risen to prominence: likelihood-based mod-
els (incorporating both classical and Bayesian schools of
thought) and estimating-equation techniques.
A consequence of this emphasis on studies monitor-

ing subjects over several months (or even years) has been
an increased awareness that data, as collected, are o�en
quite di�erent from what was intended at the design stage.
�is may be due to subjects refusing treatment, or choos-
ing an alternate therapy, or dropping out of the investi-
gations altogether. Likelihood approaches to longitudinal
data may be extended to incorporate an explicit model
for the observation process (Henderson et al. ), while
estimating equations can be modi�ed with subject- or
observation-speci�cweights (Robins et al. ) to account
for departures from the study design. Non-compliance,
dynamic treatment regimes, and incomplete data are all
areas of active methodological research within medical
statistics.
Two other major areas of current interest are meta-

analysis and genetic or genomic applications. Meta-
analysis is o�en taken to refer to the technical aspects of
combining information from di�erent studies that address
the same research question, although the term is some-
times used to describe the more general systematic review,
which includes broader issues such as study selection.
Study heterogeneity is an important aspect of 7meta-
analysis that the statistician must address. �e size and
complexity of genetic and genomic data present major
statistical and computational challenges, notably due to
hypothesis test multiplicity.

Conclusion
Medicine remains a major area of application driving
methodological research in statistics, and the demand
for medical statisticians is considerable. A comprehensive
introduction to the area can be found in Armitage et al.
() and a less technical introduction is Matthews and
Farewell ().



Meta-Analysis M 

M

About the Author
Prior to moving to the MRC Bistatistics Unit, Vern
Farewell held professorial positions at the University of
Washington, the University of Waterloo and University
College London. He has published over  papers in the
statistical and medical literature and is co-author of the
four editions of the bookUsing and UnderstandingMedical
Statistics. Since , he has been Editor of Statistics in
Medicine.

Cross References
7Biostatistics
7Case-Control Studies
7Clinical Trials: An Overview
7Clinical Trials: Some Aspects of Public Interest
7Hazard Regression Models
7Logistic Regression
7Medical Research, Statistics in
7Meta-Analysis
7Modeling Survival Data
7Psychiatry, Statistics in
7Statistical Analysis of Longitudinal and Correlated Data
7Statistical Genetics
7Statistical Methods in Epidemiology
7Statistics, History of
7Statistics: An Overview
7Survival Data

References and Further Reading
Aalen OO () Nonparametric inference for a family of counting

processes. Ann Stat :–
Andersen PK, Borgan O, Gill RD, Keiding N () Statistical models

based on counting processes. Springer, New York
Armitage P () Sequential medical trials. Blackwell, Oxford
Armitage P, Berry G, Matthews JNS () Statistical methods in

medical research. Blackwell Science, Oxford
Breslow NE () Statistics in epidemiology: the case control study.

J Am Stat Assoc :–
Breslow NE, Cain KC () Logistic regression for two-stage case-

control data. Biometrika :–
Colton T, Freedman L, Johnson T () Editorial. Stat Med :–
Cox DR () Regression models and life tables (with discussion).

J R Stat Soc B :–
Cox DR () Present position and potential developments: some

personal views: design of experiments and regression. J R Stat
Soc A :–

Grigg OA, Farewell VT, Spiegelhalter DJ () Use of risk adjusted
CUSUM and RSPRT charts for monitoring in medical contexts.
Stat Meth Med Res :–

Henderson R, Diggle P, Dobson A () Joint modelling of repeated
measurements and event time data. Biostatistics :–

Hill AB () Medical ethics and controlled trials. Br Med J :
–

Hill AB () Principles of medical statistics. Lancet, London

Jennison C, Turnbull BW () Group sequential methods
with applications to clinical trials. Chapman and Hall/CRC,
New York

Matthews DE, Farewell VT () Using and understanding medical
statistics. Karger, Basel

Prentice RL () A case-cohort design for epidemiologic cohort
studies and disease prevention trials. Biometrika :–

Prentice RL, Pyke R () Logistic disease incidence models and
case-control studies. Biometrika :–

Robins JM, Rotnitsky A, Zhao LP () Analysis of semiparamet-
ric regression models for repeated outcomes in the presence of
missing data. J Am Stat Assoc :–

Meta-Analysis

Elena Kulinskaya, StephanMorgenthaler,
Robert G. Staudte
Professor, Aviva Chair in Statistics
University of East Anglia, Norwich, UK
Professor, Chair of Applied Statistics
Ecole Polytechnique Fédérale de Lausanne, Lausanne,
Switzerland
Professor and Head of Department of Mathematics and
Statistics
La Trobe University, Bundoora, VIC, Australia

Introduction
Given several studies on the same topic, a meta-analysis
synthesizes the information in them so as to obtain a more
precise result.�e proper procedure of conducting a sys-
tematic review of literature, the selection of which studies
to include and the issues of publication bias and other pos-
sible biases are important aspects not covered here and we
refer the interested reader to Cooper and Hedges ()
and Higgins and Green (). We assume all studies
estimate the same e�ect, which is o�en a comparison of
outcomes for control and treatment groups via clinical tri-
als. Examples for two binomial samples with parameters
(n, p), (n, p) are the risk di�erence p − p, relative risk
p/p and odds ratio { p/( − p)}/{ p/( − p)}. Other
examples comparing normal samples are the di�erence in
means µ− µ, or e�ect sizes such as the standardized mean
di�erence, or Cohen’s-d d = (µ−µ)/σ fromCohen (),
where σ  is an assumed common variance, and Glass’s
g = (µ−µ)/σ fromGlass (), where σ  is the variance
of the control group.



 M Meta-Analysis

Traditional Meta-Analysis Methodology
We are given K independent studies, in which the
estimated e�ects θ̂k based on Nk observations are
asymptotically normal such that θ̂k is for large enough
Nk approximately normally distributed with mean θk and
variance σ k /Nk.�is is denoted θ̂k ∼ AN (θk, σ k /Nk) for
each k = , . . . ,K. Examples satisfying the above assump-
tions are the risk di�erence, the log-relative risk, the log-
odds ratio and the Cohen’s-d.�e goal is to combine the
estimators θ̂k in some way so as to estimate a represen-
tative θ for all K studies, or even more ambitiously, for
all potential studies of this type.�us there is the concep-
tual question of how to de�ne a representative θ, and the
inferential problem of how to �nd a con�dence interval
for it.

Confidence Intervals for Effects
Note that for each individual study, one can already
form large sample con�dence intervals for individual θk,
k= , . . . ,K. For known σk, a (−α)% large-sample con-
�dence interval for θk is [Lk,Uk]= [θ̂k − z−α/σk/N

/
k , θ̂k

+ z−α/σk/N
/
k ] , where zβ =Φ−(β) is the β quantile

of the standard normal distribution. If σk is unknown,
and there exists estimators σ̂k with σ̂k/σk →  in
probability as Nk→∞, then the same can be said for
[Lk,Uk]= [θ̂k − z−α/ σ̂k/N

/
k , θ̂k + z−α/ σ̂k/N

/
k ] .

Unequal Fixed Effects Model (UFEM)
Standard meta-analysis proceeds by choosing a weight wk
for each study and combines the estimated θ̂k through
weighted means. If we interpret θk as the true e�ect for
the study k and if this e�ect is of interest in its own right,
then the following de�nition can be adopted. Consider a
representative e�ect for the K studies de�ned by θw =

∑k wkθk/W with W = ∑j wj. �is weighted e�ect is the
quantity that wewant to estimate bymeta-analysis.�ere is
a good dose of arbitraryness in this procedure, because the
weighted e�ect does not necessarily have a readily inter-
preted meaning. An exception occurs if the weights are all
equal to one, in which case θw is simply the average of the
study e�ects.

�e weights are, however, o�en chosen to be propor-
tional to the reciprocals of the variances in order to give
more weight to θk that are estimated more accurately.
If this is the choice, it follows that wk = Nk/σ k and
θ̂w = ∑k wk θ̂k/W satis�es θ̂w ∼ AN(θw,W−

).�erefore
a ( − α)% large-sample con�dence interval for θw is
given by [L,U] = [θ̂w − z−α/W−/, θ̂w + z−α/W−/

].

In practice the weights usually need to be estimated,
(wk by ŵk andW by Ŵ = ∑k ŵk), but a large sample con-
�dence interval for θw can be obtained by substituting θ̂ŵ
for θ̂w and Ŵ forW in the above interval.

Fixed Effects Model (FEM)
When statisticians speak of the �xed e�ects model they
usually mean equal �xed e�ects which makes the very
strong assumption that all θk = θ.�is has the appeal of
simplicity.�e UFEM just described includes the FEM as
a special case. In particular the target parameter θw reduces
to θw = θ and thus becomes a meaningful quantity no
matter what weights are chosen.
However, one of the preferred choices still uses the

weights inversely proportional to the variance, because in
this case ∑k wk θ̂k/W has the smallest asymptotic vari-
ance amongst all unbiased (for θ) linear combinations of
the individual study estimators of θ.�e same con�dence
interval given above for θw is used for θ.�e methodology
for the UFEM and FEMmodels is the same, but the target
parameter θw of the UFEM has a di�erent interpretation.

Random Effects Model (REM)
�e REM assumes that the true e�ects θk, k = , . . . ,K are
the realized values of sampling from a normal population
with mean θ and variance γ for some unknown inter-
study variance γ, and further that the above results for
the UFEM are all conditional on the given θk, k = , . . . ,K.
�e justi�cation for this assumption is that the K studies
are a ‘random sample’ of all possible studies on this topic.
Inference for θ can now be interpreted as saying something
about the larger population of possible studies.
Formally, the REM assumes θ, . . . , θK are a sam-

ple from N(θ, γ), with both parameters unknown; and
θ̂k∣θk ∼ AN (θk, σ k /Nk) for each k. If the conditional
distribution of θ̂k, given θk, were exactly normal, then
the unconditional distribution of θ̂k would be exactly
θ̂k ∼ N (θ, γ + σ k /Nk) . However, in general the uncon-
ditional distributions are only asymptotically normal θ̂k ∼
AN (θ, γ + σ k /Nk) . It is evident that one needs an esti-
mate γ̂ of γ in order to use the inverse variance weights
approach described earlier, and this methodology will be
described below.

Choosing between Fixed and Random Effects
Models
Qualitative Grounds
If one assumes the K studies are a random sample from
a larger population of potential studies and that the true
e�ects θk are each N(θ, γ) then θ is the target e�ect, and
γ is a measure of inter-study variability of the e�ect. In
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this case choose the REM. If there is reason to believe that
the θk are di�erent, but not the result of random sampling,
then use the UFEM. In this case, it may be possible to
explain a good part of the variation in the e�ects θk by
meta-regression. �e di�erences between the studies can
sometimes be captured by variables that describe the cir-
cumstances of each study and by regressing the θ̂k on such
variables, these di�erences can be explained and corrected.
Meta-regression may thus turn a UFEM into a FEM. In
both models, the target is θw = ∑k wkθk/W. If there is
reason to believe all θk = θ, (the homogeneous case), use
the FEMwith target θ. For the FEM and UFEM inferential
conclusions only apply to the K studies.

Quantitative Grounds
It is clear that if γ =  in the REM, or all θk = θ
in the UFEM, one obtains the FEM. It is a special case
of both. One way to test the null hypothesis of homo-
geneity (all θk = θ) is to use Cochran’s Q, de�ned by
Q = ∑k wk(θ̂k − θ̂w) , where wk are the inverse vari-
ance weights and θ̂w = ∑k wk θ̂k/W. One can show that

under the null hypothesis of homogeneity, and when each
θ̂k is normally distributed, Q ∼ χK−, so a level α test of
homogeneity rejectswhenQ ≥ χK−,−α . Further, under the
UFEMmodel, the statisticQ has a non-central chisquared
distribution Q ∼ χK−(λ), where λ = ∑k wk(θk − θw).
�is result and others allowing for the weaker assumption
θk ∼ AN (θk , σ k /Nk) and estimated weights are derived in
Sect. ., Kulinskaya et al. (). In the asymptotic case,
the χ distributions are only approximate. Testing for het-
erogeneity is strongly discouraged in Higgins and Green
() in favor of the quanti�cation of inherently present
heterogeneity.

Inference for the REM
Let Mr = ∑k w

r
k for inverse variance weights wk , and a =

M −M/M. It can be shown that for this model E[Q] =
K −  + aγ. �is “justi�es” the DerSimonian and Laird
() estimator γ̂DL = {Q − (K − )}+/a, where {. . . }+

means set the quantity in brackets equal to  if it is nega-
tive and otherwise leave it. Using this estimator and θ̂k ∼
AN (θ, γ + w−k ), we have newweightsw∗k = (γ + w−k )

−
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Meta-Analysis. Fig.  The data of eleven independent studies of antibiotic treatment to prevent recurrent urinary tract infection
are presented in this forest plot. The confidence intervals for the individual studies are shown on the right-hand side. The lozenge
at the bottom shows the combined confidence interval, the result of the meta-analysis
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and estimator θ̂∗ = ∑k w
∗
k θ̂k/W∗

∼ AN(θ,{W∗
}
−
),

whereW∗
= ∑k w

∗
k . In practice w

∗
k is usually estimated by

ŵ∗k = / (γ̂DL + ŵ
−
k ) . Anotherestimator of γ is proposed

in Biggersta� and Tweedie ().

Meta-Regression
In some cases there is information regarding the K studies
which may explain the inter-study variance. In this case
the estimated e�ects θ̂k can be considered as responses to
be regressed on explanatory variables x, . . . , xp, also called
moderators.�us one has yk = β + βxk + ⋅ ⋅ ⋅ + βpxkp + єk,
where yk is the estimated e�ect θ̂k (or a transformed e�ect),
and єk is the random error in the kth study, k = , . . . ,K.
Weighted least squares (with known or estimated weights)
can be used to estimate the coe�cients.When the variance
stabilizing transformation is applied to estimated e�ects,
generalized linear models techniques (see 7Generalized
Linear Models) with Gaussian family of distributions can
be used, see Chap.  of Kulinskaya et al. ().

Example
As illustration, consider a series of  studies of antibiotic
treatment to prevent recurrent urinary tract infection.�e
sources of the data, the data themselves, and the con�dence
intervals are shown in Fig. .�ese studies are part of those
reviewed by Albert et al. () and have been discussed
in Chap.  (p. ) of Kulinskaya et al. ().�e total
sample sizes range from N =  to N = .�e parameter
of interest is the risk di�erence p−p between the placebo
group and the treated groups.�e studies show a more or
less strong bene�t of the treatment, while themeta-analysis
gives a fairly convincing result.�is depiction of results is
known as a forest plot.

Additional Literature
�e traditional approach is general, only requiring asymp-
totically normal e�ects and estimates for theweights.How-
ever the methodology is overly simple, because it assumes
known weights, when in fact they usually need to be esti-
mated. Recent studies indicate that typical sample sizes are
woefully inadequate in order for the approximations that
assume known weights to be reliable (Malzahn et al. ;
Viechtbauer ). One way of overcoming this problem
is to employ variance stabilization of the estimated e�ects
before applying the traditional approach, see Kulinskaya
et al. (). For further reading we recommend the clas-
sical work Hedges and Olkin (), as well as the recent
books Böhning et al. (), Borenstern et al. (),
Hartung et al. () and Whitehead ().

About the Authors
Prof. Elena Kulinskaya is a recently appointed Aviva Chair
in Statistics, University of East Anglia. Previously she
has been Director of the Statistical Advisory Service at
Imperial College London (–). She is also a Vis-
iting Professor at �e Center for Lifespan and Chronic
Illness Research (CLiCIR), University of Hertfordshire.
She has a long standing interest in statistical evidence
and its applications in meta-analysis. She has authored
and co-authored  papers, including numerous theoret-
ical and applied papers on meta-analysis, and a recent
book on meta analysis (Meta-analysis: A Guide to Cali-
brating and Combining Statistical Evidence, Wiley, )
co-authored with Stephan Morgenthaler and R.G. Staudte
and dedicated to a new approach based on variance
stabilization.
Dr. Stephan Morgenthaler is Professor of Applied

Statistics in the Institute of Mathematics Ecole Poly-
technique Fédérale de Lausanne in Switzerland. He has
authored, co-authored and edited more than  papers
and eight books. He is a member of the ISI and a Fellow
of the American Statistical Association. He served as a
vice-president of ISI from  to .
Dr. Robert G. Staudte is Professor and Head, Depart-

ment of Mathematics and Statistics, La Trobe University,
Melbourne, Australia. He has authored and co-authored
more than  papers and four books, including Robust
Estimation and Testing, Wiley , co-authored with
Professor Simon J. Sheather; and Meta Analysis: a Guide
to Calibrating and Combining Statistical Evidence, Wiley
, co-authored with Professors Elena Kulinskaya and
Stephan Morgenthaler. He was Associate Editor of the
Journal of Statistical Planning and Inference (–).

Cross References
7Clinical Trials: Some Aspects of Public Interest
7E�ect Size
7Forecasting Principles
7Medical Statistics
7Psychology, Statistics in
7P-Values, Combining of
7Time Series Models to Determine the Death Rate of a
Given Disease

References and Further Reading
Albert X, Huertas I, Pereiró I, Sanfelix J, Gosalbes V, Perrota C

() Antibiotics for preventing recurrent urinary tract infec-
tion in non-pregnant women (Cochran Review). In: The
Cochran Library, Issue . Wiley, Chichester, UK

Biggerstaff BJ, Tweedie RL () Incorporating variability in esti-
mates of heterogeneity in the random effects model in meta-
analysis. Statistics in Medicine :–



Method Comparison Studies M 

M

Böhning D, Kuhnert R, Rattanasiri S () Meta-analysis of Binary
data using profile likelihood. Chapman and Hall/CRC Statistics.
CRC, Boca Raton, FL

Borenstern M, Hedges LV, Higgins JPT, Rothstein H () Intro-
duction to meta analysis. Wiley, London

Cohen J () Statistical power analysis for the behavioral sciences,
nd edn. Lawrence Earlbaum Associates, Hillsdale, NJ

Cooper H, Hedges LV (eds) () The handbook of research syn-
thesis. Russell Sage Foundation, New York

DerSimonian R, Laird N () Meta-analysis in clinical trials.
control Clin Trials :–

Glass GV () Primary, secondary and meta-analysis of research.
Educ Res :–

Hartung J, Knapp G, Sinha BK () Statistical meta analysis with
applications. Wiley, Chichester

Hedges LV, Olkin I () Statistical methods for meta-analysis.
Academic, Orlando

Higgins JPT, Green S (eds) () Cochrane handbook for sys-
tematic review of interventions version ... The Cochrane
Collaboration: available on www.cochrane-handbook.org

Kulinskaya E, Morgenthaler S, Staudte RG () Meta analysis: a
guide to calibrating and combining statistical evidence. Wiley,
Chichester

Malzahn U, Bohning D, Holling H () Nonparametric estimation
of heterogeneity variance for the standardized difference used
in meta-analysis. Biometrika ():–

Viechtbauer W () Hypothesis tests for population heterogeneity
in meta-analysis. Br J Math Stat Psychol :–

Whitehead A () Meta-analysis of controlled clinical trials.
Applied statistics. Wiley, Chichester

Method Comparison Studies

Graham Dunn
Professor of Biomedical Statistics and Head of the Health
Methodology Research Group
University of Manchester, Manchester, UK

We are here concerned with the comparison of the perfor-
mance to two ormoremeasurement devices or procedures.
At its simplest, a method comparison study involves the
measurement of a given characteristic on a sample of sub-
jects or specimens by two di�erent methods. One possible
question is then whether measurements taken by the two
di�erent methods are interchangeable. Another is whether
one of the two methods is more or less precise than the
other. A third, more di�cult task, is to calibrate one set
of fallible measurements (using Device A, for example)
against another set of fallible measurements produced by
device B. A potentially-serious problem in all of these
situations is the possibility that the measurement errors

arsing from the use of these two devices may be corre-
lated. A slightly more complicated study involves replica-
tion of each of the sets of measurements taken using the
two di�erent procedures or devices, usually carried out
on the naïve assumption that the measurement errors of
the within-device replicates will be uncorrelated and that
replication will enable the investigator to obtain an unbi-
ased estimate of the instruments’ precisions (based on the
standard deviations of the replicates).
Let’s return to the simplest situation – measurement of

a given characteristic on a sample of subjects by two dif-
ferent methods that are assumed to provide independent
measurement errors. Are the two methods interchange-
able? How closely do the measurements agree with each
other? Is this agreement good enough for all our practi-
cal purposes? A method suggested by Bland and Altman
() is to determine limits of agreement. One simply sub-
tracts the measurement arising from one method from the
corresponding measurement using the other.�e average
of these di�erences tells us about the possibility of relative
bias (and the so-called Bland-Altman plot – a graph of the
di�erence against the average of the two measurements –
may tell us that the bias is changing with the amount of the
characteristic beingmeasured, but it is not % fool-proof
since a relationship between the di�erence between and the
average of the two measures may arise from di�erences in
the instruments’ precisions).�e standard deviation of the
di�erences tells us about the variability of the di�erence
of the two measurement errors.�e % limits of agree-
ment are simply de�ned as the range of di�erences between
the .th and .th percentiles or, assuming normality,
approximately two standard deviations either side of the
mean. If the measurement errors for the two methods are
positively correlated then the variability of the di�erences
will be less than one would expect if they were uncorre-
lated and the limits of agreement will be too small. If the
measurement methods use di�erent scales (comparison of
temperatures in ○C and ○F, for example) then this sim-
ple procedure will break down and the limits of agreement
will fail to tell the investigator that the two methods are
interchangeable (a�er suitable rescaling).
One might be tempted to plot results using one of the

methods (in ○F, for example) against the other (in ○C)
and carry out a simple regression to calibrate one against
the other. But the hitch is that both methods are sub-
ject to error (the classical errors-in-variables problem) and
the estimate of the regression coe�cient would be biased
(attenuated towards zero). If one knows the ratio of the
variances of the measurement errors for the two methods
then it is possible to use orthogonal regression, widely-
known as Deming’s regression, to solve the problem.�e
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catch is that one does not normally have an unbiased esti-
mate of the ratio of these two variances – the problem again
arising from the lack of independence (i.e., correlation) of
any replicate measures used to determine these variances
(Carroll and Ruppert ).
A third relatively simple approach is to look for and

make use of an instrumental variable (IV) through IV
or 7two-stage least squares (SLS) regression methods.
Here we need a variable (not necessarily a third measure-
ment of the characteristic, but it may be) that is reasonably
highly correlated with the characteristic being measured
but can be justi�ably assumed to be uncorrelated with the
associated measurement errors. If we label the measure-
ments using the two methods as X and Y, and the corre-
sponding values of the instrumental variable as Z, then the
instrumental variable estimator of the slope of Y on X is
given by the ratio Cov(Y,Z)/Cov(X,Z) – see Dunn (,
). From here it’s a relatively simple move into factor
analysis models for data arising from the comparison of
three or methods (Dunn ).
Statistical analyses for the data arising from more

the informative designs, with more realistic measure-
ment models (heteroscedasticity of measurement errors,
for example), is beyond the scope of this article but the
methods are described in considerable detail in Dunn
().�e methods typically involve so�ware developed
for covariance structure modelling. Analogous methods
for the comparison of binary measurements (diagnostic
tests) can also be found in Dunn ().
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Methods of Moments Estimation

Martin L. Hazelton
Chair of Statistics
Massey University, Palmerston North, New Zealand

�e method of moments is a technique for estimating the
parameters of a statistical model. It works by �nding val-
ues of the parameters that result in a match between the
sample moments and the population moments (as implied
by the model). �is methodology can be traced back to
Pearson () who used it to �t a simple mixture model.
It is sometimes regarded as a poor cousin of maximum
likelihood estimation since the latter has superior theoret-
ical properties in many settings. Nonetheless, the method
of moments and generalizations thereof continue to be of
use in practice for certain (challenging) types of estimation
problem because of their conceptual and computational
simplicity.
Consider a statistical model de�ned in terms of a

parameter vector θ = (θ, . . . , θp)T. We denote by µk =

E[Xk] the kth moment about zero of a random variable X
generated by our model.�is moment will be a function
of θ, and so we will write µk = µk(θ) to emphasize this
dependence.
Suppose that we have a (univariate) random sample

X, . . . ,Xn from the model, which we want to use to esti-
mate the components of θ. From this we can compute
the kth sample moment, µ̂k = n−∑ni= X

k
i .�e rationale

for the method of moments is that the sample moments
are natural estimators of the corresponding model-based
moments, and so a good estimate of θ will reproduce these
observed moments. In practice it is usual (although not
essential) to use moments of the lowest possible orders
in order to obtain parameter estimates. �e method of
moments estimator θ̂ is hence de�ned to be the solution
of the system of equations

µk(θ) = µ̂k k = , , . . . , q

where q is the smallest integer for which this system has a
unique solution.
As an example, suppose thatX, . . . ,Xn are drawn from

a 7gamma distribution with shape parameter α and scale
parameter β. �en µ = αβ and µ = α(α + )β. �e
method of moments estimators α̂ and β̂ therefore satisfy
the pair of equations

α̂β̂ = µ̂
α̂(α̂ + )β̂ = µ̂.
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Solving these we obtain

α̂ =
µ̂

µ̂ − µ̂
and β̂ =

µ̂ − µ̂
µ̂

.

Method of moments estimators are, in general, consistent.
To see this, note that the (weak) law of large numbers
ensures that the sample moments converge in probabil-
ity to their population counterparts. It then follows that
if µk(θ) is a continuous function of θ for k = , . . . , q
then the method of moments estimators will converge
in probability to their true values. However, method of
moments estimators are less e�cient thanmaximum likeli-
hood estimators, at least in cases where standard regularity
conditions hold and the two estimators di�er. Further-
more, unlike maximum likelihood estimation, the method
of moments can produce infeasible parameter estimates in
practice. For example, if X, . . . ,Xn are drawn from a uni-
formdistribution (see7UniformDistribution in Statistics)
on [, θ] then themethod ofmoments estimator is θ̂ = X̄,
but this estimate is infeasible if max{Xi} > X̄.
Despite the theoretical advantages of maximum like-

lihood estimation, the method of moments remains an
important tool in many practical situations. One reason
for this is that method of moments estimates are straight-
forward to compute, which is not always the case for
maximum likelihood estimates. (For example, the max-
imum likelihood estimators for the gamma distribution
parameters considered above are only available implicitly
as the solution to the non-linear likelihood equations.)
Furthermore, estimation by the method of moments does
not require knowledge of the full data generating process.
�is has led to various extensions of the basic method
of moments that can be applied in complex modeling
situations.
One such extension is the generalized method of

moments Hansen () which is a type of generalized
estimating equation methodology, widely used in econo-
metrics. �is technique works by utilizing sample and
population moment conditions (or “orthogonality condi-
tions”) of the statistical model, and can provide estimates
of parameters of interest in amodel evenwhenothermodel
parameters remain unspeci�ed. Another useful extension
is the simulated method of moments (e.g., Gelman ).
�is technique can be employed when the model is so
complex that neither the density function for the data nor
the theoretical moments are available in closed form. It
therefore provides a means of �ttingmicro-simulation and
mechanistic stochastic models (Diggle and Gratton ).
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Minimum Variance Unbiased
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�e term minimum variance unbiased refers to a property
of statistical decision rules.
Idea. Any statistical experiment may be perceived as

a random channel transforming a deterministic quantity
θ (parameter) into a random quantity X (observation).
Point estimation is a reverse process of regaining θ from
X according to a rule θ̂ = δ(X) called estimator. Formally,
estimator is a function from the set X , of possible values
of X, into the set Θ, of possible values of θ. As a measure
of imprecision of such estimator one can use the function
Rδ(θ) = Eθ(δ(X) − θ) called the Mean Squared Error. It
may be rewritten in the form

varθ δ(X) + [b(θ)], where b(θ) = Eθ δ(X) − θ
is the bias of δ.
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If b(θ) =  for all θ then θ̂ = δ(X) is said to be unbi-
ased.Minimizing the MSE among the unbiased estimators
reduces to minimizing its variance. Any estimator δ real-
izing this minimum (if such exists) is said to be aminimum
variance unbiased estimator (MVUE). Searching for such
estimator or verifying whether it is a MVUE needs some
special statistical tools.
Example  (Urn problem). An urn containsN balls, where
any ball is black or white, while the number θ of black balls
is unknown. To search θ we draw without replacement n
balls. Let k be the number of black balls in the sample.
Estimate θ.
A potential number X of black balls in the sample has

the hypergeometric distribution (see 7Hypergeometric
Distribution and Its Application in Statistics) taking values
k with probabilities

Pθ(X = k) = pθ ,k =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(θ
k)(

N−θ
n−k )

(Nn )
if k ∈ [max(,n −N + θ),
min(n, θ)] ()

 otherwise.

Since EX = nθ
N , the rule θ̂ = N

n X is an unbiased esti-
mator of θ.�is is, formally, not acceptable unless n is a
divisor of N, because θ̂ takes values outside the parameter
set.�us one can seek for an acceptable unbiased estimator.
According to the formula () we get

p,k =
⎧⎪⎪
⎨
⎪⎪⎩

, if k = 
, otherwise,

and

p,k =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

N−n
N , if k = 
n
N , if k = 
, otherwise.

�us any unbiased estimator θ̂ = θ̂(X)must satisfy the
conditions θ̂(X) =  if X =  and Nn if X = .�erefore the
desired estimator exists if and only if n is a divisor on N.
Basic Concepts. Let X = (X, . . . ,Xn) be a random

vector, interpreted as a potential observation in a statisti-
cal experiment. Assume that distribution P of the vector
belongs to a family P = {Pθ : θ ∈ Θ}, where θ is an
unknown parameter identifying P.�erea�er by distribu-
tion we shall mean density or probability mass function.
Any potential estimator of θ is a function T = t(X) called
a statistic. If T involves the entire information on θ then
one can reduce the problem by considering only these
estimators which depends on X through T.

We say that a statistic T is su�cient for θ if the
conditional probability Pθ(X/T) does not depend on θ.
Determining a su�cient statistic directly from this de�-
nition may be a laborious task. It may be simpli�ed by
the well known Fisher-Neyman factorization criterion.
A statistic T = t(X) is su�cient for θ, if and only if,
Pθ may be presented in the form Pθ(x) = gθ[t(x)]h(θ).
A su�cient statistic T is minimal if it is a function of any
other su�cient statistic. In particular, the vector statistic
T = [t(X), . . . , tk(X)] in so called exponential family
Pθ(x) = C(θ) exp [∑

k
j= Qj(θ)tj(x)]h(x), for θ ∈ Θ, is

su�cient.
We say that a statistic T is complete if for any (mea-

surable) function f the condition Eθ f (T) =  for all
θ implies that P[ f (T) = ] = . It is known that any
complete su�cient statistic (if exists) isminimal but amin-
imal su�cient statistic may not be complete. Moreover the
above su�cient statistic in the exponential family distri-
butions is complete providing Θ contains a k-dimensional
rectangle.
Now let us consider a family of densities {p(x, θ) :

θ ∈ Θ}, whereΘ is an open interval of a real line, satisfying
some regularity conditions. Function I = I(θ) de�ned by

the formula I(θ) = E [ ∂ log p(X,θ)∂θ ]

is said to be Fisher

information.
Advanced Tools. Let X = (X, . . . ,Xn) be a random

vectorwith a distributionP belonging to a familyP = {Pθ :
θ ∈ Θ} and let T = t(X) be a su�cient statistic for θ. In
searching MVUE’s one can use the following results.

7Rao-Blackwell theorem: If U = u(X) is an unbiased
estimator of a parametric function g(θ) then the condi-
tional expectationE[U/T] is also unbiased and its variance
is not greater than var(U).
Lehmann-Sche�é theorem: If T is, moreover, com-

plete then any statistic h(T) is a MVUE of its expectation.
�is MVUE is unique (with probability ).
Rao-Cramer inequality: Let {p(x, θ) : θ ∈ Θ}, where

Θ is an open interval of a real line, be a family of densities
satisfying some regularity conditions, such that I(θ) > 
for all θ.�en for any statistic U = u(X) the inequality
varθ(U) ≥ 

I(θ) is met.
It is worth to add that the equality in the Rao-Cramer

inequality is attained if and only if the family P of dis-
tributions is exponential. However this condition is not
necessary for existing a MVUE; for instance, if X, . . . ,Xn
are i.i.d. according to the normal lawN (α


 , ). In this case

the attainable minimum variance is α
n + α

n + 
n while


I(θ) =

α
n .
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Example  (Bernoulli trials). Let X, . . . ,Xn be indepen-
dent and identically distributed zero-one distributions
with probability P(Xi = ) = θ, where θ is unknown for
i = , . . . ,n. In this case the family P = {Pθ : θ ∈ (, )} is
exponential with complete su�cient statistic X = 

n∑i Xi.
Since EX = θ, the statistic X is the unique MVUE of θ.
In this case the Fisher information takes the form I(θ) =
n

θ(−θ) while varθ(X) =
θ(−θ)
n .�us the lower bound 

I(θ)
in the Rao-Cramer inequality is attained. It is worth to
note that, similarly as in Example , this unique MVUE
takes, with positive probability, the values  and , which
lie outside the parameter set (, ) .
Minimum Variance Invariant Unbiased Estimator.

If distribution of the observation vector depends on sev-
eral parameters, some of them may be out of our interest
and play the role of nuisance parameters. Such a situation
occurs, for instance, in linear models. In this case the class
of all unbiased estimators is usually too large for handle.
�en we may seek for an estimator which is invariant with
respect to a class of transformations of observations or its
variance does not depend on the nuisance parameters. An
estimator minimizing variance in such a reduced class is
called a minimum variance invariant unbiased estimator.
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Misuse and Misunderstandings of
Statistics
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Introduction
Because of the advent of high speed computers statistics
has become more visible. Almost any discipline has an
element of statistics in it. In fact one cannot publish inmost
journals when the statistics used or misused is not stated.
Newspapers, magazines, etc are now awash with one form
or other of “statistics”. Now it is fashionable to take data,
shove it into a computer and come out with nice tables,
graphs and 7p-values. Clearly such practices are a gross
7misuse of statistics and do a disservice to the subject.
�ere is no wonder we are in the company of “lies, damned
lies and statistics.”

So What Is Statistics?
�ere are several de�nitions of statistics, some not so
�attering:

. �e American heritage dictionary says: Statistics is the
mathematics of collection, organization and interpre-
tation of numerical data.

. Brase and Brase, in their beginning level statistics text-
book de�ne statistics as the science of how to collect,
organize, analyze and interpret numerical information
from data.

. Evan Esar says statistics is the only science that enables
di�erent experts using the same �gures to draw di�er-
ent conclusions.

�e �rst two capture the essence of statistics. Ms. Esar cap-
tures the abuse that is possible. However, these de�nitions
do not capture the true essence of statistics and that is:
to make a deduction in the face of uncertainty. �e true
essence of statistics is captured when it is stated that statis-
tics is the science that tells whether something we observe
can be generalized or applied to a new or di�erent but sim-
ilar situation (the author of this statement is unknown).
�at is I observe a group of people in a community and
found that % have cancer, can I generalized to say that
the cancer rate in that community is %? Of course not
without �rst saying how the sample was observed. �e
other de�nitions come into play then. I need to know how
the data was collected/observed, how it was organized,
analyzed, and then the interpretation.
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In this author’s opinion most of the problems, misun-
derstandings and misrepresentations in statistics originate
from the observation – collection process. Invariably the
data is observed/collected before thought is put in what to
do with it. So therefore the inference which is �nally made
does not take account of how the data was observed in the
�rst. Maybe in the everyday sense it is natural to observe
�rst and then ask what to do with the data observed. How-
ever in complex tasks the research questions need to be
asked �rst.�en thought put into how to collect the rel-
evant data, organize and analyze it and make the inference
supporting the research question or refuting it. Hence in
large scale work, e�ort should be put in the “how to col-
lect” the data stage. If this is done, only the relevant data
will be collected, and there will be savings on resources,
time and money.
In most instances the way data is collected, the data

type collected determines the types of analysis that can be
carried out. Data collection is an expensive, time consum-
ing activity. It is unfortunate that lots of time and e�ort
are wasted on collecting data only to �nd out that the
data is not useful or the exercise could have been done
in an easier and cheaper manner. Should  experiments
be performed or can  be su�cient? Unfortunately more
data does not necessarily equate to more valid or better
results. In fact the opposite could be the case. Hence the
design of the experiment or data collection, the estimation
of the necessary sample sizes taking into consideration the
error, precision and last but not least the use to which the
results will be put, such as, will the results be generalized,
should be well thought out at the very beginning of the
study.
Another area where statistics has a bad name is the

pictorial representation of results.�e saying goes that “a
picture is worth a thousandwords.” Simple clear graphs can
help bring out the important aspects of the study. However

there is room for abuse. More o�en than not attention is
not paid to the scale of the graph. For example in compar-
ing two teaching programs, what impression is graph (a)
conveying? Are our students actually better? It is the duty
of statisticians to point out at every opportunity the pitfalls
that need to be avoided when reading graphs.
With the advent of fast computers computations that

were near impossible or would take ages to accomplish a
few years ago, now takes only seconds of computer time.
Coupled with this is the fact that there are very good
and easy to use so�ware. Are computers taking the place
of statisticians, especially applied statisticians? �ere is a
lot more to data analysis than calculations.�e computer
is there to remove the drudgery out of number crunch-
ing. What calculations to perform, that is what analysis to
do and foremost, the check of the validity of assumption
under which the procedures are valid, is the domain of the
statistician.

Conclusion
In my view statistics is simply whether one can general-
ize ones observation to a di�erent or future situation.�e
di�culty is how the “observation” was obtained – data
collection – and the generalization made – summarized,
analyzed and interpreted. In all these the expert input of a
statistician is invaluable.
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Misuse of Statistics
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Statistics as an academic discipline is widely held as a sci-
ence that is related to experiments and the quanti�cation
of uncertainty. �is is true, but if used without caution,
statistics can add more uncertainty to an already murky
problem. A rich source on this topic would be “How to
Lie with Statistics Turns Fi�y,” a -page Special Section of
Statistical Science (, p. –).
Misuses of statistics at a non-technical level can be

roughly grouped in the following three categories, o�en
with the three types of misuses feeding each other in a
complicated, dynamic fashion.

. Data Quality: A complete statistical project consists of
the following components: (a) data collection, (b) data
preprocessing, (c) data exploration, (d) data analysis
and statistical modeling, and (e) summary report.�e
process is not entirely linear and o�en goes from one
middle step back to another, and roughly –% of
the project e�ort is needed on data quality to ensure
that the entire process will not go o� the rails.
In their  article, “How to Lie with Bad Data,”

De Veaux and Hand pointed out that “Data can be bad
in an in�nite variety of ways.”�is is not an exaggera-
tion. Fortunately, statistical design of experiments and
survey methodology, if done right, are capable of pro-
ducing data with high-quality. In the real world, the
problem is that the majority of data are collected in
non-controlled environments without much statistical
guidance. Consequently, data might have been cor-
rupted, distorted, wrong-headed, ill-de�ned, and with
loads of missing values – the list goes on forever. De
Veaux and Hand () provided suggestions on how
to detect data errors and how to improve data quality.
�e suggestions are very useful for practitioners.
In journals and real-world applications, statisti-

cal reports o�en shine with tremendous amounts of
energy on exotic models but with questionable e�ort
(and insu�cient details) on data quality. Statistics as
a science is supposed to provide a guiding light for
research workers and decision-makers. Without good
data, exotic statistical models are unlikely to help.�e
situation is like a person who is nearly blinded by

cataracts and tries to sharpen the lenses for better
vision.�e e�ort will be futile unless an operation is
conducted to take away the clouding.
A related note on data quality is the 7outliers and

unusual numbers in the data. Resistant and robust sta-
tistical procedures are o�en used to handle this kind of
problem. But if the data was not collected in controlled
experiments, then the e�orts are mostly misguided.
Furthermore, outliers o�en are the most interesting
numbers that may reveal surprising features of the
study. Blind applications of 7robust statistics thus can
be counterproductive if not altogether misleading.

. Statistical tests and 7p-values: A continuing source of
mistake is the confusing of statistical signi�cance with
practical signi�cance.Mathematically, if the sample size
increases inde�nitely, then the power of the statistical
test will increase as well. Consequently, even a tiny dif-
ference between observed and the predicted values can
be statistically highly signi�cant. Certain large scale
examples regarding the confusion of practical signi�-
cance are discussed inWang (, pp. –, –, ).
Other cautions on the misuse of statistical tests can be
found in Freedman et al. () and in the “What Can
Go Wrong” sections of De Veaux et al. (, pp. ,
, , –, –, –, ) which dis-
cuss “no peeking at the data” and other caveats on the
tests of signi�cance.
Freedman (a) further pointed out a potential

problem in research journals when publications are
“driven by the search for signi�cance.” �e problem
can be rather acute when research grants or academic
careers hinge on publications. In short, researchers
may conduct many tests, ignore contradictory results
and only submit �ndings that meet the % cuto�.
A possibility to deal with this problem, according to
Freedman (a), is a journal requirement to docu-
ment search e�orts in the research process.

. Statistical Inference of Cause-and-E�ect: Causal infer-
ence is a foundation of science and is indeed a very
tricky business. As an example, Aristotle maintained
that cabbages produce caterpillars daily – awell-known
assertion only to be refuted by controlled experiments
carried out by Francesco Redi in . For new comers
to the �eld of statistics, it may be ba�ing that much
of the practice of modern statistics is still Aristotelian
in nature. For instance, a rough estimate indicates
that in clinical research, “% of observational studies
fail to replicate or the initial e�ects are much smaller
on retest” (Young et al. ; a la Ioannidis ).



 M Misuse of Statistics

Freedman (a) further discussed the related con-
troversies and a diverse set of large-scale contradictory
studies.�e problem should be a concern to the statis-
tical community as our trade is indeedwidely used. For
example, in the study of coronary heart disease, there
are more than , statistical articles published each
year (Ayres , p. ), and this is only the tip of the
iceberg.
A potential problem with statistical causality is

the use of regression models, directed graphs, path
analysis, structural equations, and other law-like rela-
tionships. Take the example of regression; on a
two-dimensional scatterplot, it is easy to see thatmath-
ematically it does not matter whether we put a variable
on the le� or the right of the equation. Any so�ware
package would produce the estimates of the slope and
the intercept, plus a host of diagnostic statistics that
o�en says the model is an excellent �t. Compounding
the problem of causal inference, a third variablemay be
the reason behind the phenomenon as displayed by the
scatterplot. For instance, a scatterplot can be drawn to
show that the incidence of polio (Y-variable) increases
when so�-drink sales (X-variable) increases, but in
fact a lurking variable (warm weather) is the driving
force behind the rise (Freedman et al. , p. ).

�e problem quickly turns worse in higher-
dimensional spaces. Try the following example in a
regression class: draw  or  right triangles and then
measure the values of (X,X,Y), with X,X being
the adjacent sides of the ○ angle. �e Pythagorean
�eorem says that Y =

√
X  + X  . In an experiment

(Wang , p. –), students of regression came up
with all kinds of equations with R of –.%.�e
equations all passed stringent tests of diagnostic statis-
tics, but none of them comes close to the Pythagorean
equation. A further twist makes the problem statisti-
cally intractable when the legs of the triangles are not
orthogonal (Wang , p. –).
For causal inference, the misgivings of statistical

models happen not only in the observational stud-
ies, but also in the analysis of experimental data.
In an in-depth discussion, Freedman (b) exam-
ined the 7Kaplan-Meier estimator and proportional-
hazards models which are frequently used to analyze
data from randomized controlled experiments. Speci�-
cally, Freedman investigated journal papers on the e�-
cacy of screening for lung cancer (NewEngland Journal
of Medicine), the impact of negative religious feelings
on survival (Archives of Internal Medicine), and the
e�cacy of hormone replacement therapy (New Eng-
land Journal of Medicine and Journal of the American

Medical Association). Freedman discussed reverse cau-
sation plus a host of other issues such asmeasurements,
omitted variables, and the justi�cation of the mod-
els. Freedman concluded that “the models are rarely
informative,” that “as far as the model is concerned,
the7randomization is irrelevant,” that “randomization
does not justify the model,” and that it “is a mistake” to
apply the models in the �rst place.
In yet another example, Freedman (c) investi-

gated 7logistic regression in the experimental setting
for drawing conclusions on cause-and-e�ect. Again,
Freedman noted that the model is not justi�ed by
randomization. He further questioned “Why would
the logit speci�cation be correct rather than the pro-
bit – or anything else? What justi�es the choice of
covariates? Why are they exogenous? If the model is
wrong, what is β̂ supposed to be estimating?” Further-
more, in a summary of a vast variety of investigations,
Freedman (a) concluded that “Experimental data
are frequently analyzed through the prism of models.
�is is a mistake.”
Taken together, Freedman et al. (, , ,

), Freedman (, a, b, c), Wang (,
p. –), and a very long list of references all indicate
that sophisticated statistical models are o�en detached
from the underlying mechanism that generated the
data. In other words, many law-like equations pro-
duced by statistical models are as structure-less as
Amoeba Regression (Wang ) and need to be viewed
with caution. �is is indeed a big disappointment to
countless researchers who spend their lives on statis-
tical models (see, e.g., Pearl , p. ), but this is a
truth that we have to face.

Nevertheless, the models should be treasured for a num-
ber of reasons. To begin with, recall Newton’s theory on
celestial mechanics. �e story is well-known and is rele-
vant to statistical modeling in the following ways: ()�e
Newtonian theory relies on observational studies, yet its
prediction accuracy rivals most of the tightly controlled
experiments. In other words, there is nothing wrong with
observational studies, as long as they are accurate and they
are consistent in subsequent studies. () Statistical models
represent the intellectual accomplishment of the statisti-
cal community that may one day produce useful results
on both experimental data and observational studies. His-
tory is the witness that ivory tower research o�en produces
surprising results decades or hundreds of years later. And
when the model is correct, the consequences can be enor-
mous. Take the example of proportional-hazards model,
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even Freedman (b, p. ) acknowledged that “Pre-
cise measures of the covariates are not essential” and that if
the model “is right or close to right, it works pretty well.”
() If used for descriptive or exploratory purposes, fancy
statistical models may indeed reveal unexpected features
in the data. For certain examples on non-parametric struc-
tural equations and counterfactual analysis, see references
in Pearl (). For another example on hot spot detection,
see Wang et al. ().
As a matter of fact, in the past  years or so, statis-

tical models have taken a new life in the realm of 7data
mining, predictive modeling, and statistical learning (see,
e.g., Wang et al. ). In these applications, the con-
cerns are not cause-and-e�ect or the speci�c mechanism
that generates the data. Instead, the focus is the predic-
tion accuracy that can bemeasured by pro�t, false positive,
false negative, and by other criteria to assess the model
utility. �is is a sharp departure from causation to pre-
diction.�e great news is that the new applications have
been ranked by the MIT Technology Review as one of
the ten emerging technologies that will change the world –
and it is arguable that the successes of this new technology
will eventually feedback to traditional statistics for other
breakthroughs. In fact, countless examples with ingenious
twists have already happened (see, e.g., Ayres ). It is a
triumph of statistical models.
A cautionary note is that statistical learning and the

new breed of predictive modeling can easily go wrong and
misinformation can propagate with unprecedented speed
in the modern age of internet blogging and social net-
works. Newcomers to the �eld should consult, for exam-
ples, “Top  Data Mining Mistakes” (Elder ) and
“Myths and Pitfalls of Data Mining” (Khabaza ). For
unsupervised learning, onemaywant to read “�e Practice
of Cluster Analysis” (Kettenring, ) and “A Perspec-
tive on Cluster Analysis” (Kettenring ). For super-
vised learning, given a dozen or thousands of predictors,
statistical tools are frequently used to generate predictor
importance scores, but these scores are o�en wildly di�er-
ent from one algorithm to the next (see e.g., Wang et al.
, Sect. ).
For yet another example, a model such as a Neural

Network may produce higher pro�t and higher predic-
tion accuracy than other tools, yet the model may also
be more volatile in repeated uses and hence pose consid-
erable hazards in the long run. 7Sensitivity analysis and
similar techniques are thus needed to prevent misleading
conclusions (see, e.g., Wang et al. ).

�e hallmark of empirical science is its replicabil-
ity. Much of the current statistical practice, unfortunately,
does not really meet this criterion. Just look at how many

authors are unwilling to disclose their data and how many
journals are unwilling to archive the datasets and the code
(see also Freedman, a, c). Exceptions include Amer-
ican Economic Review, American Economic Journals and
Science.
Data disclosure reduces the cost of research and cost

of replicating results. It also deters unprofessional conduct
and improves collective �ndings of the research commu-
nity. Certain online journals (see e.g., http://www.bentley.
edu/csbigs/csbigs-v-n.cfm) post both the research arti-
cle and the data side-by-side. If more journals are willing
to make available the datasets used in their publications,
the situation of misuse and misconduct of statistics will be
greatly improved.
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�e notion of mixed membership arises naturally in the
context of multivariate data analysis (see 7Multivariate
Data Analysis: An Overview) when attributes collected
on individuals or objects originate from a mixture of dif-
ferent categories or components. Consider, for example,
an individual with both European and Asian ancestry
whose mixed origins correspond to a statement of mixed
membership: “/ European and / Asian ancestry.”�is
description is conceptually very di�erent from a proba-
bility statement of “% chance of being European and

% chance of being Asian”.�e assumption that individ-
uals or objects may combine attributes from several basis
categories in a stochastic manner, according to their pro-
portions of membership in each category, is a distinctive
feature of mixed membership models. In most applica-
tions, the number and the nature of the basis categories,
as well as individual membership frequencies, are typically
considered latent or unknown. Mixed membership mod-
els are closely related to latent class and �nite 7mixture
models in general. Variants of these models have recently
gained popularity in many �elds, from genetics to com-
puter science.

Early Developments
Mixedmembership models arose independently in at least
three di�erent substantive areas: medical diagnosis and
health, genetics, and computer science. Woodbury et al.
() proposed one of the earliest mixed membership
models in the context of disease classi�cation, known as
the Grade of Membership or GoM model. �e work of
Woodbury and colleagues on the GoM model is summa-
rized in the volume Statistical Applications Using Fuzzy Sets
(Manton et al. ).
Pritchard et al. () introduced a variant of the

mixed membership model which became known in genet-
ics as the admixture model for multilocus genotype data
and produced remarkable results in a number of applica-
tions. For example, in a study of human population struc-
ture, Rosenberg et al. () used admixture models to
analyze genotypes from  autosomal microsatellite loci
in , individuals from  populations. Findings from
this analysis indicated a typology structure that was very
close to the “traditional” �ve main racial groups.
Among the �rst mixed membership models developed

in computer science and machine learning for analyz-
ing words in text documents were a multivariate analy-
sis method named Probabilistic Latent Semantic Analysis
(Hofmann ) and its random e�ects extension by Blei
et al. (a, b).�e latter model became known as Latent
Dirichlet Allocation (LDA) due to the imposed Dirichlet
distribution assumption for themixture proportions. Vari-
ants of LDA model in computer science are o�en referred
to asunsupervised generative topicmodels. Blei et al. (a,
b) and Barnard et al. () used LDA to combine di�erent
sources of information in the context of analyzing complex
documents that includedwords inmain text, photographic
images, and image annotations. Erosheva et al. () ana-
lyzed words in abstracts and references in bibliographies
from a set of research reports published in the Proceed-
ing of the National Academy of Sciences (PNAS), exploring
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an internal mixed membership structure of articles and
comparing it with the formal PNAS disciplinary classi�-
cations. Blei and La�erty () developed another mixed
membership model replacing the Dirichlet assumption
with a more �exible logistic normal distribution for the
mixture proportions. Mixed membership developments
in machine learning have spurred a number of applica-
tions and further developments of this class of models
in psychology and cognitive sciences where they became
known as topic models for semantic representations (Grif-
�ths et al. ).

Basic Structure
�e basic structure of a mixed membership model fol-
lows from the speci�cation of assumptions at the popula-
tion, individual, and latent variable levels, and the choice
of a sampling scheme for generating individual attributes
(Erosheva et al. ). Variations in these assumptions
can provide us with di�erent mixed membership mod-
els, including the GoM, admixture, and generative topic
models referred to above.
Assume K basis subpopulations. For each subpopula-

tion k = , . . . ,K, specify f (xj∣θkj), a probability distribu-
tion for attribute xj, conditional on a vector of parameters
θkj. Denote individual-level membership score vector by
λ = (λ, . . . , λK), representing the mixture proportions in
each subpopulation. Given λ, the subject-speci�c condi-
tional distribution for jth attribute is

Pr(xj∣λ) = ∑k λkf (xj∣θkj).

In addition, assume that attributes xj are independent,
conditional on membership scores. Assume membership
scores, the latent variables, are random realizations from
some underlying distribution Dα , parameterized by α.
Finally, specify a sampling scheme by picking the num-
ber of observed distinct attributes, J, and the number of
independent replications for each attribute, R.
Combining these assumptions, the marginal probabil-

ity of observed responses {x(r) , . . . , x
(r)
J }

R

r=
, given model

parameters α and θ, is

Pr ({x(r) , . . . , x
(r)
J }

R

r=
∣α, θ)

= ∫
⎛

⎝

J

∏
j=

R

∏
r=

K

∑
k=

λk f (x
(r)
j ∣θkj)

⎞

⎠
dDα(λ). ()

In general, the number of observed attributes need
not be the same across subjects, and the number of

replications need not be the same across attributes. In addi-
tion, instead of placing a probability distribution on mem-
bership scores, some mixed membership model variants
may treat latent variables as �xed but unknown constants.
Finally, other extensions can be developed by specifying
further dependence structures among sampled individu-
als or attributes thatmay be driven by particular data forms
as, e.g., in relational or network data (Airoldi et al. b;
Chang and Blei ; Xing et al. ).

Estimation
A number of estimation methods have been developed for
mixed membership models that are, broadly speaking, of
two types: those that treat membership scores as �xed and
those that treat them as random.�e �rst group includes
the numerical methods introduced by Hofmann (),
and joint maximum likelihood type methods described
in Manton et al. () and Cooil and Varki (), and
related likelihood approaches in Pottho� et al. () and
Varki et al. (). �e statistical properties of the esti-
mators in these approaches, such as consistency, identi-
�ability, and uniqueness of solutions, are yet to be fully
understood (Haberman ) – empirical evidence sug-
gests that the likelihood function is o�en multi-modal
and can have bothersome ridges.�e second group uses
Bayesian hierarchical structure for direct computation of
the posterior distribution, e.g., with Gibbs sampling based
on simpli�ed assumptions (Pritchard et al. ; Grif-
�ths and Steyvers ) or with fully Bayesian MCMC
sampling (Erosheva ). Variational methods used by
Blei et al. (a, b), or expectation-propagation meth-
ods developed by Minka and La�erty (), can be used
to approximate the posterior distribution. �e Bayesian
hierarchicalmethods solve some of the statistical and com-
putational problems, and variationalmethods in particular
scale well for higher dimensions. Many other aspects of
working with mixed membership models remain as open
challenges, e.g., dimensionality selection (Airoldi et al.
a).

Relationship to Other Methods of
Multivariate Analysis
It is natural to compare mixed membership models with
other latent variable methods, and, in particular, with fac-
tor analysis and latent class models (Bartholomew and
Knott ). For example, the GoM model for binary out-
comes can be thought of as a constrained factor analy-
sis model: E(x∣λ) = Aλ, where x is a column-vector of
observed attributes x = (x, . . . , xJ)′, λ = (λ, . . . , λK)′ is a
column-vector of factor (i.e., membership) scores, andA is
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a J×Kmatrix of factor loadings.�e respective constraints
in this factor model are λ′IK =  and AIK = IK , where IK is
a K-dimensional vector of s.
Mixed membership models can also address objec-

tives similar to those in 7Correspondence Analysis and
Multidimensional Scaling methods for contingency tables.
�us, one could create a low-dimensional map from a
contingency table data and graphically examine member-
ship scores (representing table rows or individuals) in the
convex space de�ned by basis or extreme pro�les (repre-
senting columns or attributes) to address questions such
as whether some table rows have similar distribution over
the table columns categories.
Finally, there is a special relationship between the sets

of mixed membership and latent class models, where each
set ofmodels can be thought of as a special case of the other.
Manton et al. () and Pottho� et al. () described
howGoMmodel can be thought of as an extension of latent
class models. On the other hand, Haberman () �rst
pointed out that GoM model can be viewed as a special
case of latent class models. �e fundamental representa-
tion theorem of equivalence between mixed membership
and population-level mixture models clari�es this nonin-
tuitive relationship (Erosheva et al. ).
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Introduction
Mixture distributions are convex combinations of “compo-
nent” distributions. In statistics, these are standard tools
for modeling heterogeneity in the sense that di�erent ele-
ments of a sample may belong to di�erent components.
However, they may also be used simply as �exible instru-
ments for achieving a good �t to data when standard
distributions fail. As good so�ware for �tting mixtures
is available, these play an increasingly important role in
nearly every �eld of statistics.
It is convenient to explain �nite mixtures (i.e., �nite

convex combinations) as theoretical models for cluster
analysis (see 7Cluster Analysis: An Introduction), but of
course the range of applicability is not at all restricted to
the clustering context. Suppose that a feature vector X is
observed in a heterogeneous population, which consists
of k homogeneous subpopulations, the “components.” It
is assumed that for i = , . . . , k, X is distributed in the
i-th component according to a (discrete or continuous)
density f (x, θ i) (the “component density”), and all com-
ponent densities belong to a common parametric family
{ f (x, θ), θ ∈ Θ}, the “component model.” �e relative
proportion of the i-th component in the whole popula-
tion is pi, p + ⋅ ⋅ ⋅ + pk = . Now suppose that an item
is drawn randomly from the population.�en it belongs
to the i-th component with probability pi, and the con-
ditional probability that X falls in some set A is Pr (X ∈

A ∣ θ i), calculated from the density f (x, θ i). Consequently,
the marginal probability is

Pr (X ∈ A ∣ P) = p Pr (X ∈ A ∣ θ)+⋅ ⋅ ⋅+pk Pr (X ∈ A ∣ θk)

with density

f (x, P) = pf (x, θ) + ⋅ ⋅ ⋅ + pkf (x, θk), ()

a “simple �nite mixture” with parameter P = ((p, . . . , pk),
(θ, . . . , θk)). �e components pi of P are called “mix-
ing weights,” the θ i “component parameters.” For �xed
k, let Pk be the set of all vectors P of this type, with θ i
∈ Θ and nonnegative mixing weights summing up to one.
�en Pk parameterizes all mixtures with not more than k
components. If all mixing weights are positive and com-
ponent densities are di�erent, then k is the exact number
of components. �e set of all simple �nite mixtures is
parameterized by P�n, the union of all Pk.

�is model can be extended in various ways. For
example, all component densities may contain additional
common parameters (variance parameters, say), they may
depend on covariables (mixtures of regression models),
and also the mixing weights may depend on covariables.
Mixtures of time series models are also considered. Here I
shall concentrate on simple mixtures, as all relevant con-
cepts can be explained very easily in this setting. �ese
need not be �nite convex combinations; there is an alter-
native and more general de�nition of simple mixtures:
Observe that the parameter P can be considered as a dis-
crete probability distribution on Θ which assigns prob-
ability mass pi to the parameter θ i. �en Eq.  is an
integral with respect to this distribution, and if ξ is an
arbitrary probability distribution on Θ, a mixture can be
de�ned by

f (x, ξ) = ∫
Θ
f (x, θ)dξ(θ) . ()

It can be considered as the distribution of a two-stage
experiment: First, choose a parameter θ according to the
distribution ξ, then choose x according to f (x, θ). Here, ξ
is called a “mixing distribution,” andmixturemodels of this
type can be parameterized over every set Ξ of probability
distributions on Θ.
In statistical applications of mixture models, a non-

trivial key issue is identi�ability, meaning that di�erent
parameters describe di�erent mixtures. In a trivial sense,
models parameterized over vectors P are never identi�-
able: All vectors that correspond to the same probability
distribution on Θ describe the same mixture model. For
example, any permutation of the sequence of components
leaves the mixing distribution unchanged, or components
may be added with zero mixing weights.�erefore iden-
ti�ability can only mean that parameters that correspond
to di�erent mixing distributions describe di�erent mix-
ture models. However, also in this sense identi�ability
is o�en violated. For example, the mixture of two uni-
form distributions with supports [, .] and [., ] and
equal mixing weights is the uniform distribution with sup-
port [, ]. On the other hand, �nite mixtures of many
standard families (normal, Poisson, ...) are identi�able,
see for example Titterington et al. (). Identi�abil-
ity of mixtures of regression models has been treated
among others by Hennig (). A standard general ref-
erence for �nite mixture models is McLachlan and Peel
().

Statistical Problems
Consider a mixture model with parameter η (vector or
probability measure). In the simplest case, one has i.i.d.
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data x, . . . , xn from f (x, η), from which one wants to
gain information about η. Typical questions are estima-
tion of (parameters of) η, or mixture diagnostics: Is there
strong evidence for a mixture (in contrast to homogene-
ity in the sense that η is concentrated at some single
parameter θ)? What is the (minimum) number of mixture
components?
A variety of techniques has been developed.�e data

provide at least implicitly an estimate of the mixture, and
Eqs.  and  show that mixture andmixing distribution are
related by a linear (integral) equation. Approximate solu-
tion techniques have been applied for obtaining estimators,
and moment estimators have been developed on basis of
this structure. Distance estimators exhibit nice proper-
ties. Traditionally, mixture diagnostics has been handled
by graphical methods. More recent approaches for esti-
mation and diagnostics are based on Bayesian or likeli-
hood techniques; likelihood methods will be addressed
below. Although Bayesian methods have some advan-
tages over likelihood methods, they are not straightfor-
ward (for example, usually no “natural” conjugate pri-
ors are available, therefore posteriors are simulated using
MCMC. Choice of “noninformative” priors is not obvi-
ous, as improper priors usually lead to improper pos-
teriors. Nonidenti�ability of Pk causes the problem of
“label switching”). A nice reference for Bayesian methods
is Frühwirth-Schnatter ().
Let me close this section with a short discussion of

robustness. Robustness with respect to 7outliers is treated
byHennig (). Another problem is thatmixturemodels
are extremely nonrobustwith respect tomisspeci�cation of
the component model. Estimating the component model
in a fully nonparametric way is of course not possible,
but manageable alternatives are for example mixtures of
log-concave distributions. Let me point out, however, that
issues like nonrobustness and nonidenti�ability only cause
problems if the task is to interpret the model parameters
somehow. If the aim is only to obtain a better data �t, one
need not worry about them.

Likelihood Methods
In the above setting, l(η) = log( f (x, η)) + ⋅ ⋅ ⋅ +

log( f (xn, η)) is the log likelihood function. It may have
some undesirable properties: First, the log likelihood is
o�en unbounded. For example, consider mixtures of nor-
mals. If the expectation of one component is �xed at some
data point and the variance goes to zero, the likelihood
goes to in�nity. Singularities usually occur at the bound-
ary of the parameter space. Second, the likelihood function
is usually not unimodal, although this depends on the

parameterization. For example, if the parameter is a prob-
ability distribution as in Eq.  and if the parameter space Ξ
is a convex set (with respect to the usual linear combina-
tion of measures), the log likelihood function is concave.
If it is bounded, there is a nice theory of “nonparamet-
ric likelihood estimation” (Lindsay ), and “the” “non-
parametric maximum likelihood estimator” is in some
sense uniquely de�ned and can be calculated numerically
(Böhning ; Schlattmann ).
Nonparametricmethods, however, work in lowdimen-

sional component models, whereas “parametric” estima-
tion techniques like the Expectation-Maximization (EM)
method work in nearly any dimensional.�e EM is a local
maximizer for mixture likelihoods in Pk. Here the mix-
ture likelihood is usually multimodal; moreover, it can be
very �at. Analytic expressions for likelihood maxima usu-
ally do not exist, they have to be calculated numerically.
On the other hand, even for unbounded likelihoods, it is
known from asymptotic theory, that the simple heuristics
of searching for a large local maximum in the interior of
the parameter space may lead to reasonable estimators.
However, one must be aware that there exist “spurious”
large localmaxima that are statisticallymeaningless.More-
over, except from simple cases, there is no manageable
asymptotics for likelihood ratio.
Some of the problems of pure likelihood approaches

can be overcome by considering penalized likelihoods.
However, here one has the problem of choosing a penal-
ization parameter. Moreover, the EM algorithm is a basic
tool for a number of estimation problems, and it has a very
simple structure for simple �nitemixtures.�erefore it will
be outlined in the next section.

EM Algorithm
�e EM algorithm is a local maximization technique for
the log likelihood in Pk. It starts from the complete-data
log-likelihood. Suppose that for observation xi the (�c-
tive) component membership is known. It is de�ned by a
vector zi ∈ Rk with zij = , if xi belongs to j-th compo-
nent, and zero elsewhere. As a random variable Zi, it has
a 7multinomial distribution with parameters k, p, . . . , pk.
�en the complete data likelihood and log likelihood of
P, respectively, are Lc(P) = ∏

n
i=∏

k
j=( pj f (xi, θ j))zij

and lc(P) = log(Lc(P)) = ∑
n
i=∑

k
j= zij log pj +

∑
n
i=∑

k
j= zij log f (xi, θ j).

�e EM needs a starting value P, and then proceeds
as an iteration between an “E-step” and an “M-step” until
“convergence.”�e �rst E-step consists in calculating the
conditional expectation EP(lc(P) ∣ x, . . . , xn) of lc(P) for
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arbitrary P, given the data, under P. As the only random-
ness is in the zij, we obtain

EP(lc(P) ∣ x, . . . , xn) =
n

∑
i=

k

∑
j=

τj(xi∣P) log pj

+
n

∑
i=

k

∑
j=

τj(xi∣P) log f (xi, θ j),

where

τj(xi∣P) = PrP(Zij =  ∣ xi) =
pjf (xi, θ j)
f (xi, P)

is the conditional probability that the i-th observation
belongs to component j, given the data, with respect to P.
In the following M-step, EP(lc(P) ∣ x, . . . , xn) is max-

imized with respect to P. As it is the sum of terms depend-
ing on the mixing weights and on the parameters only,
respectively, both parts can be maximized separately. It
is easily shown that the maximum in the pj is achieved
for p()j = (/n)∑ni= τj(xi∣P), j = , . . . ,n. For compo-
nent densities from exponential families, similar simple
solutions exist for the θ j, therefore both the E-step and
the M-step can be carried out here analytically. It can be
shown that () the log-likelihood is not decreasing during
the iteration of the EM, and () that under some regu-
larity conditions it converges to a stationary point of the
likelihood function. However, this may also be a saddle
point.
It remains to de�ne the stopping rule and the starting

point(s). Both are crucial, and the reader is referred to the
literature.�ere are also techniques that prevent from con-
vergence to singularities or spurious maxima. A �nal nice
issue of the EM is that it yields a simple tool for classi�ca-
tion of data points: If P̂ is an estimator, then τj(xi∣P̂) is the
posterior probability that xi belongs to class j with respect
to the “prior” P̂. �e Bayesian classi�cation rule assigns
observation i to the class j that maximizes τj(xi∣P̂), and the
τj(xi∣P̂)measure the plausibility of such a clustering.

Number of Components, Testing and
Asymptotics
Even if one has an estimator in each Pk from the EM,
the question is how to assess the number of components
(i.e., how to choose k). Usually information criteria like
AIC and BIC are recommended. An alternative is to per-
form a sequence of tests of k against k +  components, for
k = ,  . . . .

�ere are several tests for homogeneity, i.e., for the
“component model”, as for example goodness of �t or dis-
persion score tests. For testing k against k components, a
likelihood ratio test may be performed. However, the usual

χ-asymptotics fails, so critical values have to be simu-
lated. Moreover, the distribution of the test statistic usually
depends on the speci�c parameter under the null hypoth-
esis. �erefore some sort of bootstrap (see 7Bootstrap
Methods) is needed, and as estimators have to be calcu-
lated numerically, likelihood ratio tests are computation-
ally intensive.
Let me close with some remarks on asymptotics.

Whereas 7asymptotic normality of estimators is guaran-
teed under some conditions, the usual asymptotics for the
likelihood ratio test fails. �e reason is that under the
null hypothesis, the parameter P is on the boundary of
the parameter space, it is not identi�able and the Fisher
information matrix in P is singular. �ere is an asymp-
totic theory under certain restrictive assumptions, but it is
usually hard to calculate critical values from it.
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Introduction
In applications there are usually severalmodels for describ-
ing a population from a given sample of observations and
one is thus confronted with the problem of model selec-
tion. For example, di�erent distributions can be �tted to
a given sample of univariate observations; in polynomial
regression one has to decide which degree of the polyno-
mial to use; in multivariate regression one has to select
which covariates to include in the model; in �tting an
autoregressive model to a stationary time series one must
choose which order to use.
When the set of models under consideration is nested,

as is the case in polynomial regression, the �t of the model
to the sample improves as the complexity of themodel (e.g.,
the number of parameters) increases but, at some stage,
its �t to the population deteriorates. �at is because the
model increasinglymoulds itself to the features of the sam-
ple rather than to the “true model,” namely the one that
characterizes the population. �e same tendency occurs
even if the models are not nested; increasing the complex-
ity eventually leads to deterioration.�us model selection
needs to take both goodness of the �t and the complexity
of the competing models into account.
Reference books on model selection include Linhart

and Zucchini (), Burnham and Anderson (),
Miller (), Claeskens and Hjort (). An introduc-
tory article is Zucchini ().

Information Criteria – Frequentist
Approach
�e set of models considered for selection can be thought
of as approximating models which, in general, will di�er
from the true model.�e answer to the question “Which
approximation is best?” depends, of course, on how we
decide tomeasure the quality of the �t. Using the Kullback-
Leibler distance for this leads to the popular 7Akaike
Information Criterion (AIC, Akaike ):

AIC(M) =  log(L(θ̂)) − p,

where M is the model, L the likelihood, and θ̂ the max-
imum likelihood estimator of the vector of the model’s

p parameters. �e �rst term of the AIC measures the �t
of the model to the observed sample; the �t improves as
the number of parameters in the model is increased. But
improving the �t of the model to the sample does not nec-
essarily improve its �t to the population.�e second term
is a penalty term that compensates for the complexity of
the model. One selects the model that maximizes the AIC.
Note, however, that in much of the literature the AIC is
de�ned as minus the above expression, in which case one
selects the model that minimizes it.
A model selection criterion is a formula that allows

one to compare models. As is the case with the AIC,
such criteria generally comprise two components: one that
quanti�es the �t to the data, and one that penalizes com-
plexity. Examples include Mallows’ Cp criterion for use in
7linear regression models, Takeuchi’s model-robust infor-
mation criterion TIC, and re�nements of the AIC such as
the ‘corrected AIC’ for selection in linear regression and
autoregressive time series models, the network informa-
tion criterion NIC, which is a version of AIC that can be
applied to model selection in 7neural networks, and the
generalized information criterion GIC for use with in�u-
ence functions. Several of these criteria have versions that
are applicable in situations where there are outlying obser-
vations, leading to robust model selection criteria; other
extensions can deal with missing observations.
Alternative related approaches to model selection that

do not take the form of an information criterion are boot-
strap (see, e.g., Zucchini ) and cross-validation. For the
latter the idea is to partition the sample in two parts: the
calibration set, that is used to �t the model, and the vali-
dation sample, that is used to assess the �t of the model, or
the accuracy of its predictions.�e popular “leave-one-out
cross-validation” uses only one observation in the valida-
tion set, but each observation has a turn at comprising the
validation set. In a model selection context, we select the
model that gives the best results (smallest estimation or
prediction error) averaged over the validation sets. As this
approach can be computationally demanding, suggestions
have beenmade to reduce the computational load. In “�ve-
fold cross-validation” the sample is randomly split in �ve
parts of about equal size. One of the �ve parts is used as
validation set and the other four parts as the calibration set.
�e process is repeated until each of the �ve sets is used as
validation set.

Bayesian Approach
�e Bayesian regards the models available for selection as
candidate models rather than approximating models; each
of them has the potential of being the true model. One
begins by assigning to each of them a prior probability,
P(M), that it is the true model and then, using 7Bayes’
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theorem, computes the posterior probability of it being
so:

P(M∣Data) =
P(Data ∣M)P(M)

P(Data )
.

�e model with the highest posterior probability is
selected. �e computation of P(Data ∣M) and P(Data )
can be very demanding and usually involves the use
of Markov chain Monte Carlo (MCMC) methods (see
7Markov Chain Monte Carlo) because, among other
things, one needs to ‘integrate out’ the distribution of the
parameters ofM (see e.g., Wasserman ).
Under certain assumptions and approximations (in

particular the Laplace approximation), and taking all can-
didate models as a priori equally likely to be true, this leads
to the Bayesian Information Criterion (BIC), also known
as the Schwarz criterion (Schwarz ):

BIC(M) =  log(L(θ̂)) − p log(n),

where n is the sample size and p the number of unknown
parameters in the model. Note that although the BIC is
based on an entirely di�erent approach it di�ers from the
AIC only in the penalty term.

�e di�erence between the frequentist and Bayesian
approaches can be summarized as follows. �e former
addresses the question “Which model is best, in the sense
of least wrong?” and the latter the question “Which model
is most likely to be true?”.

�e Deviance Information Criterion (Spiegelhalter
et al. ) is an alternative Bayesian method for model
selection. While explicit formulae are o�en di�cult to
obtain, its computation is simple for situations where
MCMC simulations are used to generate samples from a
posterior distribution.

�e principle of minimum description length (MDL)
is also related to the BIC. �is method tries to measure
the complexity of the models and selects the model that is
the least complex.�e MDL tries to minimize the sum of
the description length of the model, plus the description
length of the data when �tted to the model. Minimizing
the description length of the data corresponds tomaximiz-
ing the log likelihood of the model.�e description length
of the model is not uniquely de�ned but, under certain
assumptions, MDL reduces to BIC, though this does not
hold in general (Rissanen ). Other versions of MDL
come closer to approximating the full Bayesian posterior
P(M∣) Data. See Grünwald () for more details.

Selecting a Selection Criterion
Di�erent selection criteria o�en lead to di�erent selec-
tions.�ere is no clear-cut answer to the question of which
criterion should be used. Some practitioners stick to a sin-
gle criterion; others take account of the orderings indicated

by two or three di�erent criteria (e.g., AIC and BIC) and
then select the one that leads to the model which seems
most plausible, interpretable or simply convenient in the
context of the application.
An alternative approach is to tailor the criterion to the

particular objectives of the study, i.e., to construct it in such
away that selection favors themodel that best estimates the
quantity of interest. �e Focussed Information Criterion
(FIC, Claeskens and Hjort ) is designed to do this; it
is based on the premise that a good estimator has a small
mean squared error (MSE).�e FIC is constructed as an
estimator of the MSE of the estimator of the quantity of
interest. �e model with the smallest value of the FIC is
the best.
Issues such as consistency and e�ciency can also play

a role in the decision regarding which criterion to use.
An information criterion is called consistent if it is able to
select the true model from the candidate models, as the
sample size tends to in�nity. In a weak version, this holds
with probability tending to one; for strong consistency, the
selection of the true model is almost surely. It is impor-
tant to realize that the notion of consistency only makes
sense in situations where one can assume that the true
model belongs to the set of models available for selection.
�us will not be the case in situations in which researchers
“believe that the system they study is in�nitely compli-
cated, or there is no way to measure all the important
variables” (McQuarrie and Tsai ).�e BIC is a consis-
tent criterion, as is the Hannan-Quinn criterion that uses
log log(n) instead of log(n) in the penalty term.
An information criterion is called e�cient if the ratio of

the expected mean squared error (or expected prediction
error) under the selected model and the expected mean
squared error (or expected prediction error) under its the-
oretical minimizer converges to one in probability. For a
study of the e�ciency of a model selection criterion, we
do not need to make the assumption that the true model
is one of the models in the search list.�e AIC, corrected
AIC, and Mallows’s Cp are examples of e�cient criteria. It
can be shown that the BIC and the Hannan-Quinn crite-
rion are not e�cient.�is is an observation that holds in
general: consistency and e�ciency cannot occur together.

Model Selection in High Dimensional
Models
In some applications, e.g., in radiology and biomedical
imaging, the number of unknown parameters in themodel
is larger than the sample size, and so classical model selec-
tion procedures (e.g., AIC, BIC) fail because the parame-
ters cannot be estimated using the method of maximum
likelihood. For these so-called high-dimensional models
regularized or penalized methods have been suggested in
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the literature.�e popular Lasso estimator, introduced by
Tibshirani (), adds an l penalty for the coe�cients in
the estimation process.�is has as a particular advantage
that it not only can shrink the coe�cients towards zero,
but also sets some parameters equal to zero, which cor-
responds to variable selection. Several extensions to the
basic Lasso exist, and theoretical properties include con-
sistency under certain conditions. �e Dantzig selector
(Candes and Tao ) is another type of method for use
with high-dimensional models.

Post-model Selection Inference
Estimators that are obtained in a model that has been
selected by means of a model selection procedure, are
referred to as estimators-post-selection or post-model-
selection estimators. Since the data are used to select the
model, the selected model that one works with, is ran-
dom. �is is the main cause of inferences to be wrong
when ignoring model selection and pretending that the
selected model had been given beforehand. For example,
by ignoring the fact that model selection has taken place,
the estimated variance of an estimator is likely to be too
small, and con�dence and prediction intervals are likely to
be too narrow. Literature on this topic includes Pötscher
(), Hjort and Claeskens (), Shen et al. (), Leeb
and Pötscher ().
Model selection can be regarded as the special case

of model averaging in which the selected model takes on
the weight one and all other models have weight zero.
However, regarding it as such does not solve the prob-
lem because selection depends on the data, and so the
weights in the estimator-post-selection are random. �is
results in non-normal limiting distributions of estimators-
post-selection, and requires adjusted inference techniques
to take the randomness of the model selection process
into account.�e problem of correct post-model selection
inference has yet to be solved.
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Stochastic Models for Spatial Data
Diggle and Ribeiro () and Mase () describe geo-
statistics as a branch of spatial statistics that deals with
statistical methods for the analysis of spatially referenced
data with the following properties. Firstly, values Yi, i =
, . . . ,n, are observed at a discrete set of sampling locations
xi within some spatial region S ⊂ Rd, d ≥ . Secondly,
each observed valueYi is either ameasurement of, or is sta-
tistically related to, the value of an underlying continuous
spatial phenomenon,Z (x), at the corresponding sampling
location xi. �e term model-based geostatistics refers to

geostatistical methods that rely on a stochastic model.�e
observed phenomenon is viewed as a realization of a con-
tinuous stochastic process in space, a so-called random
�eld.
Such a random �eld Z (x) is fully determined by spec-

ifying all multivariate distributions, i.e., P(Z (x) ≤ z, . . . ,
Z (xn) ≤ zn) for arbitrary n ∈ N and x, . . . , xn ∈ S .
Since a full characterization of a random �eld is usu-
ally hopeless, the mean function m (x) = E (Z (x)) and
the covariance function K (xi, xj) = Cov (Z (xi) ,Z (xj))
play a prominent role.�ereby,m (x) represents the trend
while K (xi, xj) de�nes the dependence structure of the
random �eld. It is typical that the assumption of weak
(second-order) isotropy is made about the random �eld,
i.e., its mean function is constant and its covariance
function K (x, x) depends on x and x only through
h = ∥x − x∥, where ∥.∥ denotes the Euclidean dis-
tance. In this case K is called an isotropic autocovariance
function. �e covariance function is directly related to
smoothness properties of the random �eld such as mean
square continuity and di�erentiability. A widely used para-
metric family of isotropic autocovariance functions is the
Matern family

Kσ  ,θ (h) = σ 
⎛

⎝
( − ϑ) +

ϑ
κ−Γ (κ)

⎛

⎝

κ

 h

ϑ
⎞

⎠

κ

Kκ
⎛

⎝

κ

 h

ϑ
⎞

⎠

⎞

⎠
,

where Kκ denotes the modi�ed Bessel function of order
κ > , ϑ >  is a called the “range parameter” controlling
how fast the covariance decays as the distance h gets large,
ϑ ∈ [, ] is called the “nugget parameter” and describes
a measurement error, σ  controls the variance and θ =

(ϑ, ϑ, κ) denotes the vector of correlation parameters.
�e parameter κ controls the smoothness of the corre-
sponding process. A thorough mathematical introduction
to the theory of random �elds is given in Stein () and
Yaglom ().

�e most important geostatistical model is the linear
Gaussian model

Yi = f (xk)
T β + Z (xi) , i = , . . . ,n, ()

where Z (x) is a weakly isotropic zero-meanGaussian ran-
dom �eld with autocovariance function Kσ  ,θ , f is a vec-
tor of location-dependent explanatory variables and β =

(β, . . . , βp)T is the vector of regression parameters. �e
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likelihood function for the linear Gaussian model is

p (Y ∣ β, σ , θ) = (π)−
n
 ∣σ Σθ ∣

−  exp{−

σ 

(Y − Fβ)T

Σ−θ (Y − Fβ)} ,

where Σθ denotes the correlation matrix, F is the design
matrix and Y = (Y, . . . ,Yn)T is the vector of observa-
tions.�e maximum likelihood estimates for β and σ  in
the linear Gaussian model are

β̂ = (FTΣ−θ F)
−
FTΣ−θ Y, ()

σ̂  =

n
(Z − Fβ̂)

T
Σ−θ (Z − Fβ̂) . ()

Plugging these estimates into the log-likelihood, we arrive
at the so-called pro�led log-likelihood, which just contains
the parameters θ

log p (Y ∣ β̂, σ̂ , θ) = −
n

(log (π) + ) −



log ∣Σθ ∣

−
n

log (σ̂ ) .

To obtain θ̂ we have to maximize the latter equation for θ
numerically. Note that this maximization problem is a lot
simpler than the maximization of the complete likelihood
where β and σ  are additional unknowns, especially when
p is large. Spatial prediction, which is o�en the goal in
geostatistics, is performed based on the estimated parame-
ters.�e plug-in predictive distribution for the value of the
random �eld at an unobserved location x is Gaussian

Y ∣ Y , σ̂ , θ̂ ∼ N (kTK−Y + sT β̂, σ̂  − kTK−k + σ̂ sT

(FTK−F)
−
s) , ()

whereK = σ̂ Σθ̂ , s = f (x)−FTK−k, k = Cov (Z,Z (x)),
Z = (Z (x) , . . . ,Z (xn))T .
Weak isotropy is a rather strong assumption and envi-

ronmental processes are typically not direction indepen-
dent but show an anisotropic behavior. A popular exten-
sion to isotropic random �elds is to consider random �elds
that become isotropic a�er a linear transformation of the
coordinates (Schabenberger and Gotway ).�is spe-
cial variant of anisotropy is called geometric anisotropy.
Let Z (x) be an isotropic random �eld on Rd with auto-
covariance function K and mean µ. For the random
�eld Z (x) = Z (Tx), where T ∈ Rd×d, we get that
E (Z (x)) = µ and the corresponding autocovariance func-
tion is Cov (Z (x) ,Z (x)) = K (∥T (x − x)∥). When
correcting for geometric anisotropy we need to revert the

coordinate transformation. Z (T−x) has the same mean
as Z (x) but isotropic autocovariance function K. When
correcting for stretching and rotation of the coordinates we
have

T− =
⎛
⎜
⎜
⎝

 

 λ

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

cosφ − sin φ

sin φ cosφ

⎞
⎟
⎟
⎠

.

Here, λ and φ are called the anisotropy ratio and anisotropy
angle, respectively. All the models that we consider in
this chapter can be extended to account for geometric
anisotropy by introducing these two parameters.

Bayesian Kriging
�e �rst steps towards Bayesian modeling and prediction
in geostatistics were made by Kitanidis () and Omre
() who developed a Bayesian version of universal krig-
ing. One of the advantages of the Bayesian approach,
besides its ability to deal with the uncertainty about the
model parameters, is the possibility toworkwith only a few
measurements. Assume a Gaussian random �eld model in
the form of the form Eq.  with known covariance matrix
K but unknown parameter vector β. From Bayesian analy-
sis we know that it is natural to assume a prior of the form
β ∼ N (mb, σ Vb) for β, where Vb is a positive semide�-
nite matrix. It can be shown that the posterior distribution
for β is

β ∣ Z ∼ N (β̃, σ V β̃) ,

where β̃ = V β̃ (σ FTK−Z +V−
b mb) and V β̃ = (σ FT

K−F +V−
b )

−. �e predictive distribution of Z (x) is
also Gaussian and given by

Z (x) ∣ Z ∼ N (kTK−Z + sT β̃, σ  − kTK−k + σ sTV β̃s) ,

where F, s and k are de�ned as in Section “7Stochastic
Models for Spatial Data”. From the above representa-
tion of the Bayesian kriging predictor it becomes clear
that Bayesian kriging bridges the gap between simple
and universal kriging. We get simple kriging in case
of complete knowledge of the trend, which corresponds
to Vb = , whereas we get the universal kriging
predictor if we have no knowledge of β (V−b = 
in the sense that the smallest eigenvalue of Vb con-
verges to in�nity). Interestingly, the Bayesian universal
kriging predictor has a smaller or equal variance than
the classical universal kriging predictor (see Eq. ) since
(FTK−F + σ−V−

b )
−

⪯ (FTK−F)−, where ⪯ denotes
the Loewner partial ordering.
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Bayesian universal kriging is not fully Bayesian because
K is assumed known. Diggle and Ribeiro () summa-
rize the results for a fully Bayesian analysis of Gaussian
random�eldmodels of the formEq. , whereKσ  ,θ = σ Σϑ
and ϑ is the range parameter of an isotropic autocorrela-
tion function model.

Transformed Gaussian Kriging
Probably the most simple way to extend the Gaussian ran-
dom �eld model is to assume that a di�erentiable transfor-
mation of the original random �eld, Z (x) = g (Z (x)), is
Gaussian.�e mean of the transformed �eld is unknown
and parameterized by β, E (Z (x)) = f (x)T β. If we
assume that the transformation function g and the covari-
ance function K of Y (x) are known, the optimal predictor
for Z (x) can be derived using the results from Section
“7Stochastic Models for Spatial Data”. However, in prac-
tice neitherK nor g is known andwe have to estimate them
from the data.
A family of one-parameter transformation functions gλ

that is widely used in statistics is the so-called Box-Cox
family

gλ (z) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

zλ−
λ , λ ≠ ,

log (z) , λ = .

�e 7Box-Cox transformation is valid for positive-valued
random �elds and is able to model moderately skewed,
unimodal data.

�e likelihood of the data Y in the transformed Gaus-
sian model can be written as

p (Y ∣ Θ) = Jλ(Y) (π)
− n ∣σ Σθ ∣

−  exp [−

σ 

(gλ(Y)−

Fβ)T Σ−θ (gλ (Y) − Fβ)] ,

where, Θ = (β, θ, σ , λ), Jλ(Y) is the determinant of the
Jacobian of the transformation, gλ (Y) = (gλ (Y) , . . . ,
gλ (Yn)) and λ is the transformation parameter. De
Oliveira et al. () point out that the interpretation of β
changes with the value of λ, and the same is true for the
covariance parameters σ  and θ, to a lesser extent though.
To estimate the parameters λ and θ, we make use of the
pro�le likelihood approach that we have already encoun-
tered in Section “7Stochastic Models for Spatial Data”. For
�xed values of λ and θ, the maximum likelihood estimates
for β and σ  are given by Eqs.  and  with Y replaced by
gλ (Y). Again, the estimates for λ and θ cannot be written
in closed form andmust be found numerically by plugging
β̂ and σ̂  in the likelihood for numerical maximization.

�e estimated parameters Θ̂ are subsequently used for
spatial prediction. To perform a plug-in prediction we
make use of the conditional distribution of the Gaussian
variable Y ∣ Y , Θ̂ and back-transform it to the original
scale by g−λ . A Bayesian approach to spatial prediction
in the transformed Gaussian model is proposed in De
Oliveira et al. ().

�e copula-based geostatistical model (Kazianka and
Pilz ) also works with transformations of themarginal
distributions of the random �eld and is a generalization of
transformed Gaussian kriging. In this approach all multi-
variate distributions of the random �eld are described by
a copula (Sempi ) and a family of univariate marginal
distributions. Due to the additional �exibility introduced
by the choice of the copula and of the marginal distribu-
tion, these models are able to deal with extreme observa-
tions and multi-modal data.

Generalized Linear Geostatistical Models
7Generalized linear models (McCullagh and Nelder )
provide a unifying framework for regression modeling of
both continuous and discrete data. Diggle and Ribeiro
() extend the classical generalized linear model to
what they call the generalized linear geostatistical model
(GLGM).�e responses Yi, i = , . . . ,n, corresponding to
location xi are assumed to follow a family of univariate dis-
tributions indexed by their expectation, µi, and to be con-
ditionally independent given Z = (Z (x) , . . . ,Z (xn)).
�e µi are speci�ed through

h (µi) = f (xi)T β + Z (xi) ,

where Z (x) is a Gaussian random �eld with autocovari-
ance function Kθ and h is a pre-de�ned link function.
�e two most frequently applied GLGMs are the Poisson
log-linear model, where Yi is assumed to follow a Poisson
distribution and the link function is the logarithm, and the
binomial logistic-linear model, where Yi is assumed to fol-
low a Bernoulli distribution with probability µi = p (xi)
and h (µi) = log (p (xi) / ( − p (xi))).�ese models are
suitable for representing spatially referenced count data
and binary data, respectively.
Since maximum likelihood estimation of the parame-

ters is di�cult, a Markov chain Monte Carlo (Robert and
Casella ) approach (see7MarkovChainMonteCarlo)
is proposed to sample from the posteriors of the model
parameters as well as from the predictive distributions at
unobserved locations x.�e algorithm proceeds by sam-
pling fromZ ∣ Y , β, θ, from θ ∣ Z and from β ∣ Z,Y with the
help of Metropolis-Hastings updates. At iteration t +  and
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actual sample (Zt , θ t , βt ,Zt (x)), perform the following
steps:

● Update Z. For i = , . . . ,n, sample a new proposal
Z′ (xi) from the conditional Gaussian distribution
p (Z (xi) ∣ θ t ,Zt−i), where Z

t
−i denotes Z

t
= (Zt (x) ,

. . . ,Zt (xn)) with its ith element removed. Accept

Z′ (xi) with probability r = min{,
p(Yi ∣ βt ,Z′(xi))
p(Yi ∣ βt ,Zt(xi))}.

● Update θ. Sample a new proposal θ′ from a proposal
distribution J (θ ∣ θ t). Accept the new proposal with

probability r = min{, p(Z
t+ ∣ θ′)J(θ t ∣ θ′)

p(Zt+ ∣ θ t)J(θ′∣ θ t)}.

● Update β. Sample a new proposal β′ from a proposal
distribution J (β ∣ βt). Accept the new proposal with

probability r = min{, ∏
n
i= p(Yi ∣ Z

t+(xi),β′)J(βt ∣ β′)
∏n
i= p(Yi ∣ Zt+(xi),βt)J(β′∣ βt)}

● Draw a sample Zt+ (x) from the conditional Gaus-
sian distribution Z (x) ∣ Zt+, θ t+.

If point predictions for Z (x) are needed, theMonte Carlo
approximation to the expected value of Z (x) ∣ Y can be
used, i.e., E (Z (x) ∣ Y) ≈ 

M ∑
M
t= Z

t
(x), whereM is the

number of simulations.
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Count models are a subset of discrete response regression
models. Count data are distributed as non-negative inte-
gers, are intrinsically heteroskedastic, right skewed, and
have a variance that increases with the mean. Example
count data include such situations as length of hospital stay,
the number of a certain species of �sh per de�ned area in
the ocean, the number of lights displayed by �re�ies over
speci�ed time periods, or the classic case of the number
of deaths among Prussian soldiers resulting from being
kicked by a horse during the Crimean War.

7Poisson regression is the basic model from which a
variety of count models are based. It is derived from the
Poissonprobabilitymassfunction,whichcanbeexpressedas

f (yi; λi) =
e−ti λi(tiλi)yi

yi!
, y = , , , . . . ; µ >  ()

with yi as the count response, λi as the predicted count
or rate parameter, and ti the area or time in which counts
enter the model. When λi is understood as applying to
individual counts without consideration of size or time,
ti = . When ti > , it is commonly referred to as an
exposure, and is modeled as an o�set.
Estimation of the Poisson model is based on the log-

likelihood parameterization of the Poisson probability dis-
tribution, which is aimed at determining parameter values
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making the data most likely. In exponential family form it
is given as:

L(µi; yi) =
n

∑
i=

{yi ln(µi) − µi − ln(yi!)}, ()

where µi is typically used to symbolize the predicted counts
in place of λi. Equation , or the deviance function based
on it, is used when the Poisson model is estimated as a
generalized linear model (GLM) (see 7Generalized Lin-
ear Models). When estimation employs a full maximum
likelihood algorithm, µi is expressed in terms of the linear
predictor, x′β. As such it appears as

µi = exp(xiβ). ()

In this form, the Poisson log-likelihood function is
expressed as

L(β; yi) =
n

∑
i=

{yi(xiβ) − exp(xiβ) − ln(yi!)}. ()

A key feature of the Poisson model is the equality of
the mean and variance functions. When the variance of
a Poisson model exceeds its mean, the model is termed
overdispersed. Simulation studies have demonstrated that
overdispersion is indicatedwhen the Pearson χ dispersion
is greater than . (Hilbe ). �e dispersion statistic
is de�ned as the Pearson χ divided by the model resid-
ual degrees of freedom. Overdispersion, common to most
Poisson models, biases the parameter estimates and �t-
ted values. When Poisson overdispersion is real, and not
merely apparent (Hilbe ), a count model other than
Poisson is required.
Severalmethods have been used to accommodate Pois-

son overdispersion. Two common methods are quasi-
Poisson and negative binomial regression. Quasi-Poisson
models have generally been understood in two distinct
manners. �e traditional manner has the Poisson vari-
ance being multiplied by a constant term. �e second,
employed in the glm() function that is downloaded by
default when installing R so�ware, is to multiply the stan-
dard errors by the square root of the Pearson disper-
sion statistic. �is method of adjustment to the variance
has traditionally been referred to as scaling. Using R’s
quasipoisson() function is the same as what is known
in standard GLM terminology as the scaling of standard
errors.

�e traditional negative binomial model is a Poisson-
gamma mixture model with a second ancillary or
heterogeneity parameter, α.�emixture nature of the vari-
ance is re�ected in its form, µi + αµ i , or µi( + αµi).
�e Poisson variance is µi, and the two parameter gamma
variance is µ i /ν. ν is inverted so that α = /ν, which allows

for a direct relationship between µi, and ν. As a Poisson-
gamma mixture model, counts are Poisson distributed as
they enter into the model. α is the shape (gamma) of the
manner counts enter into the model as well as a measure
of the amount of Poisson overdispersion in the data.

�e negative binomial probability mass function (see
7Geometric and Negative Binomial Distributions) may be
formulated as

f (yi; µi, α) = (
yi + /α − 
/α − 

)

(/( + αµi))/α
(αµi/( + αµi))

y
i , ()

with a log-likelihood function speci�ed as

L(µi; yi, α)=
n
∑
i=

{yi ln ( αµi
+αµi

) − ( α ) ln( + αµi)

+ ln Γ(yi + 
α ) − ln Γ(yi + ) − ln Γ(


α )}.

()
In terms of µ = exp(x′β), the parameterization employed
formaximum likelihood estimation, the negative binomial
log-likelihood appears as

L(β; yi, α) =
n

∑
i=

{yi ln (
α exp (x′iβ)

 + α exp (x′iβ)
) − (


α
)

ln ( + α exp (x′iβ))

+ ln Γ(yi +

α
) − ln Γ(yi + ) − ln Γ(


α
)}.

()

�is form of negative binomial has been termed NB,
due to the quadratic nature of its variance function. It
should be noted that the NB model reduces to the Pois-
son when α = . When α = , the model is geometric,
taking the shape of the discrete correlate of the contin-
uous negative exponential distribution. Several �t tests
exist that evaluate whether data should be modeled as
Poisson or NB based on the degree to which α di�ers
from .
When exponentiated, Poisson andNB parameter esti-

mates may be interpreted as incidence rate ratios. For
example, given a random sample of , patient observa-
tions from the German Health Survey for the year ,
the following Poisson model output explains the years
expected number of doctor visits on the basis of gender
and marital status, both recorded as binary (/) variables,
and the continuous predictor, age.
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Docvis IRR OIM std. err. z P > ∣z∣ [% Conf. interval]

Female . . . . . .

Married . . −. . . .

Age . . . . . .

�e estimates may be interpreted as

7 Females are expected to visit the doctor some % more
times during the year than males, holding marital status
and age constant.

Married patients are expected to visit the doctor some
% fewer times during the year than unmarried patients,
holding gender and age constant.

For a one year increase in age, the rate of visits to
the doctor increases by some %, with marital status and
gender held constant.

It is important to understand that the canonical form
of the negative binomial, when considered as a GLM, is
not NB. Nor is the canonical negative binomial model,
NB-C, appropriate to evaluate the amount of Poisson
overdispersion in a data situation.�e NB-C parameteri-
zation of the negative binomial is directly derived from the
negative binomial log-likelihood as expressed in Eq. . As
such, the link function is calculated as ln(αµ/( + αµ)).
�e inverse link function, or mean, expressed in terms of
x′β, is /(α(exp(−x′β) − )).
When estimated as a GLM, NB-C can be amended to

NB form by substituting ln(µ) and exp(x′β) respectively
for the two above expressions. Additional amendments
need to be made to have the GLM-estimated NB dis-
play the same parameter standard errors as are calculated
using full maximum likelihood estimation.�e NB-C log-
likelihood, expressed in terms of µ, is identical to that of
the NB function. However, when parameterized as x′β,
the two di�er, with the NB-C appearing as

L(β; yi, α) =
n

∑
i=

{yi(xiβ) + (/α) ln( − exp(xiβ))

+ ln Γ(yi + /α) − ln Γ(yi + ) − ln Γ(/α)}
()

�e NB-C model better �ts certain types of count data
than NB, or any other variety of count model. However,
since its �tted values are not on the log scale, comparisons
cannot be made to Poisson or NB.

�e NB model, in a similar manner to the Poisson,
can also be overdispersed if the model variance exceeds
its nominal variance. In such a case one must attempt to
determine the source of the extra correlation and model it
accordingly.

�e extra correlation that can exist in count data, but
which cannot be accommodated by simple adjustments to
the Poisson and negative binomial algorithms, has stim-
ulated the creation of a number of enhancements to the
two base count models.�e di�erences in these enhanced
models relates to the attempt of identifying the various
sources of overdispersion.
For instance, both the Poisson and negative binomial

models assume that there exists the possibility of having
zero counts. If a given set of count data excludes that possi-
bility, the resultant Poisson or negative binomialmodelwill
likely be overdispersed. Modifying the loglikelihood func-
tion of these twomodels in order to adjust for the non-zero
distribution of counts will eliminate the overdispersion,
if there are no other sources of extra correlation. Such
models are called, respectively, zero-truncated Poisson and
zero-truncated negative binomial models.
Likewise, if the data consists of far more zero counts

that allowed by the distributional assumptions of the Pois-
son or negative binomial models, a zero-in�ated set of
models may need to be designed. Zero-in�ated models are
7mixture models, with one part consisting of a / binary
response model, usually a 7logistic regression, where the
probability of a zero count is estimated in di�erence to a
non-zero-count. A second component is generally com-
prised of a Poisson or negative binomial model that esti-
mates the full range of count data, adjusting for the overlap
in estimated zero counts.�e point is to () determine the
estimates that account for zero counts, and () to estimate
the adjusted count model data.
Hurdle models are another type mixture model

designed for excessive zero counts. However, unlike the
zero-in�ated models, the hurdle-binary model estimates
the probability of being a non-zero count in comparison to
a zero count; the hurdle-count component is estimated on
the basis of a zero-truncated countmodel. Zero-truncated,
zero-in�ated, and hurdle models all address abnormal
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Modeling Count Data. Table  Models to adjust for violations
of Poisson/NB distributional assumptions

Response Example models

: no zeros Zero-truncated models (ZTP; ZTNB)

: excessive zeros Zero-inflated (ZIP; ZINB; ZAP; ZANB);
hurdle models

: truncated Truncated count models

: censored Econometric and survival censored
count models

: panel GEE; fixed, random, and mixed effects
count models

: separable Sample selection, finite mixture models

: two-responses Bivariate count models

: other Quantile, exact, and Bayesian count
models

Modeling Count Data. Table  Methods to directly adjust the
variance (from Hilbe )

Variance function Example models

: µ Poisson

: µ(Φ) Quasi-Poisson; scaled SE; robust SE

: µ( + α) Linear NB (NB)

: µ( + µ) Geometric

: µ( + αµ) Standard NB (NB); quadratic NB

: µ( + (αν)µ) Heterogeneous NB (NH-H)

: µ( + αµρ) Generalized NB (NB-P)

: V[R]V′ Generalized estimating equations

zero-count situations, which violate essential Poisson and
negative binomial assumptions.
Other violations of the distributional assumptions of

Poisson and negative binomial probability distributions
exist. Table  below summarizes major types of violations
that have resulted in the creation of specialized count
models.
Alternative count models have also been constructed

based on an adjustment to the Poisson variance function, µ.
We have previously addressed two of these. Table  pro-
vides a summary of major types of adjustments.

�ree texts speci�cally devoted to describing the the-
ory and variety of count models are regarded as the stan-
dard resources on the subject. Other texts dealing with
discrete responsemodels in general, as well as texts on gen-
eralized linear models (see Generalized Linear Models),
also have descriptions of many of the models mentioned
in this article.

About the Author
For biography see the entry 7Logistic Regression.

Cross References
7Dispersion Models
7Generalized Linear Models
7Geometric and Negative Binomial Distributions
7Poisson Distribution and Its Application in Statistics
7Poisson Regression
7Robust Regression Estimation in Generalized Linear
Models
7Statistical Methods in Epidemiology

References and Further Reading
Cameron AC, Trivedi PK () Regression analysis of count data.

Cambridge University Press, New York
Hilbe JM () Negative binomial regression. Cambridge Univer-

sity Press, Cambridge, UK
Hilbe JM () Negative binomial regression, nd edn. Cambridge

University Press, Cambridge, UK
Winkelmann R () Econometric analysis of count data, th edn.

Springer, Heidelberg

Modeling Randomness Using
System Dynamics Concepts

Mahender Singh, FrankM. Guess, TimothyM.
Young, Lefei Liu
Research Director of Supply Chain 
Massachusetts Institute of Technology, Cambridge,
MA, USA
Professor
University of Tennessee, Knoxville, TN, USA
University of South Carolina, Columbia, SC, USA

L. J. Savage () and others understood the importance
of better computational tools for utilizing Bayesian insights
data in real life applications long ago. Such computational
tools and so�ware are now available that use subjective
(or so�) data as well as quantitative (or hard) data. But
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despite the availability of new tools and buildup of mas-
sive databases, the increased complexity and integration of
economic and other systems involving people poses a sig-
ni�cant challenge to a solely statistical driven view of the
system. More importantly, evidence suggests that relying
solely on standard statistical models is inadequate to rep-
resent real life systems e�ectively for management insights
and decisions.
Unpredictability characterizes most real life systems

due to non-linear relationships and multiple time-delayed
feedback loops between interconnected elements. Senge
() describes it as dynamic complexity – “situations
where the cause and e�ect are subtle, and the e�ects
over time of interventions are not obvious.” As a result,
such systems are unsuitable for quantitative “only” repre-
sentations without some subjective expert views. System
Dynamics models o�er a helpful alternative to model-
ing randomness that is based on hard data and so� data
that models a real world system; see for example Sterman
() and his references.
According to , Forrester () three types of data

are required to develop the foundation of an e�ective
model: numerical, written and mental data; compare, also,
Sterman () discussion on these points. In most cases,
however, only a small fraction of the data needed to model
a real world systemmay be available in the form of numer-
ical data. Perhaps, the most important data to build a
model, namely the mental data, is di�cult to represent
only numerically. But due to heavy in�uence of quantita-
tive bias in model development, some modelers disregard
key qualitative information in favor of information that
can be estimated statistically. Sterman () considers
this reasoning counterintuitive and counterproductive in
practice with realistic systems. He states that “omitting
structures and variables known to be important because
numerical data are unavailable is actually less scienti�c and
less accurate than using your best judgment to estimate
their values.” �is is in line with Forrester’s views ()
asserting that, “to omit such variables is equivalent to say-
ing they have zero e�ect - probably the only value that is
known to be wrong!” A suitable approach in such cases is
to iteratively improve the accuracy and reliability of data by
leveraging deeper insights into the system and interaction
between various variables over time, along with sensitivity
analysis of various contingencies.
A key to understanding a dynamic real world system

is to identify and study the causal loops (or sub-systems)
of the system. An analysis of the structure-behavior rela-
tionship in a model can uncover causal loops that are pri-
marily responsible for the observed behavior of the model,
i.e., identify the “dominant” loop. �e dominant loop is

the most in�uential structure in determining the overall
behavior of a system depending on the speci�c conditions
of a system. It is possible for any loop to be the dominant
loop at a point in time but then as conditions change the
same loop can be displaced by another loop as the dom-
inant loop in a di�erent time frame. Due to the shi�ing
dominance of the loops in determining system perfor-
mance over time, it is necessary that a system is explored
to isolate the interactions between the variables that form
various causal loops. Clearly, collecting such information
is challenging on many fronts. First, the sheer volume of
data required tomap a real world system is a challenge; sec-
ondly, this kind of information is o�en qualitative in nature
(mental, experiential or judgment) and hence not easy to
capture; and thirdly, the information keeps changing over
time.
Viewing system performance as a series of connected

dominant loop behaviors is a fundamentally di�erent way
to study a system. In e�ect, this point of view suggests that
it may not be possible or necessary to �nd the “one best”
single representation to describe the system’s performance
over time. Instead, we can now treat the system as a com-
posite structure that may be formed by the amalgamation
of a number of di�erent sub representations that collec-
tively describe the system performance. �is perspective
alleviates the unnecessary di�culty that is imposed on a
single representation to capture the logic of possibly dis-
connected patterns. Indeed, this approach has its own chal-
lenges in terms of how to superimpose the various patterns
to model reality.
Note both Bayesian and System Dynamics have very

helpful roles to play in the analysis of real life systems that
do not yield easily to purely hard data or classical mod-
els. Accordingly, one can consider an integrated approach
where a Bayesian model provides speci�c input to a Sys-
temDynamicsmodel to complement the capabilities of the
two approaches. A System Dynamics model enhanced by
Bayesian inference will allowmodelers to iteratively incor-
porate various data types into a comprehensive model and
study the behavior of a system over time. �is approach
allows for the inclusion of both hard data and so� data into
the model. Since the modeling process is iterative, the sub-
jective views can be augmented or replaced with hard data
as such information is acquired and improved over time.
When appropriate data are available, it can be used as input
to the System Dynamics model of various contingencies,
such as “fear” curves, “hope” curves, or mixtures of them
from a Bayesian perspective.When such data are not avail-
able, varied contingencies can still be incorporated as sub-
jective expert views, but with the advantage that sensitivity
analyses can be done to measure the impact on the system
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performance over time under di�erent assumptions. One
can test better which subjective views might lead to more
realistic insights using a system dynamic model. So�ware
that helps in such modeling includes Vensim, Powersim,
and ithink; compare Sterman ().
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7Survival Data are measurements in time from a well
de�ned origin until a particular event occurs. �e event
is usually death (e.g., lifetime from birth to death), but it
could also be a change of state (e.g., occurrence of a disease
or time to failure of an electrical component).
Of central importance to the study of risk is the proba-

bility that a system will perform and maintain its function
(remain in a state) during a speci�ed time interval (, t).
Let F(t) = P(T ≤ t) be the cumulative distribution func-
tion for the probability that a system fails before time t and
conversely R(t) =  − F(t) be the survival function for
the system. Data from survival studies are o�en censored
(the system has not failed during the study) so that survival
times are larger than censored survival times. For exam-
ple, if the response variable is the lifetime of an individual
(or component), then the censored data are represented
as (yi, δi) where the indicator variable δ is equal to  if
the event occurred during the study, and  if the event
occurred a�er the study; i.e., ti = yi if δi =  and ti > yi
if δi = . Further, if f (t)dt is the probability of failure in

the in�nitesimal interval (t, t + dt), then rate of a failure
among items that have survived to time t is

h(t) =
f (t)
R(t)

=
−d lnR(t)
dt

. ()

�e function h(t) is called the hazard function and is the
conditional probability of failure, conditioned upon sur-
vival up to time t.�e log likelihood function of (yi, δi) is

lnL = δi ln f (yi) + ( − δi) lnR(yi), ()

and the cumulative hazard rate is

H(t) = ∫
t


h(x)dx. ()

�e survival rate,R(t), is equivalent toR(t) = exp(−H(t)).
Examining the hazard function, it follows that

. If h(t) increases with age,H(t) is an increasing failure
rate.�is would be the case for an object that wears out
over time.

. If h(t) decreases with age, H(t) is a decreasing fail-
ure rate. Examples of these phenomena include infant
mortality and burn-in periods for engines.

. If h(t) is constant with age, H(t) is a constant failure
rate. In this situation failure time does not depend on
age.

Note that h(t) is a conditional probability density func-
tion since it is the proportion of items in service that fail per
unit time.�is di�ers from the probability density function
f (t), which is the proportion of the initial number of items
that fail per unit time.
Distributions for failure times are o�en determined in

terms of their hazard function.�e exponential distribu-
tion function has a constant hazard function.�e lognor-
mal distribution function with standard deviation greater
than  has a hazard function that increases for small t, and
then decreases. �e lognormal hazard function for stan-
dard deviation less than  has maximum at t =  and is
o�en used to describe length of time for repairs (rather
than modeling times to failure).

�e 7Weibull distribution is o�en used to describe
failure times. Its hazard function depends on the shape
parameter m.�e hazard function decreases when m < ,
increases when m >  and is constant when m = . Appli-
cations for this model include structured components in
a system that fails when the weakest components fail, and
for failure experiences that follow a bathtub curve. A bath-
tub failure time curve (convex function) has three stages:
decreasing (e.g., infant mortality), constant (e.g., useful
region), and increasing (e.g., wear out region).�is curve
is formed by changing m over the three regions.�e basic
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Modeling Survival Data. Table  Basic probability functions used to model survival data

Parametric

Name Cumulative distribution function Hazard function

Exponential F(t) =  − exp(−λt) λ >  λ

Weibull F(t) =  − exp(−λtm) λ >  mλ

Gumbel F(t) =  − exp(−m(exp(λt) − )) λ, m >  mλ exp(λt)

Gompertz F(t) =  − exp(
m

λ
( − exp(λt))) λ, m >  m exp(λt)

Nonparametric

aPiecewise constant rates of change
n

∑
i=

λiI{ti− < t < ti}

bKaplan–Meier
∧
F(t) =  − π

ti≤t
( −

di

ri
)

di

ri(ti+ − ti)

cNelson–Aalen
∧
H(t) =∑

ti≤t
( −

di

ri
)

aThe time axis is split into intervals such that t < t < . . . < tn resulting in a non-continuous hazard function with jumps at the interval end points.
The notation I{A} is  if an event occurs in interval A, and is zero otherwise.
bThe set ti ≤ . . . ≤ tn are the ordered event times where ri are the number of individuals at risk at time ti and di are the total number of individuals
either experiencing the event or were censored at time ti .
cThe Nelson-Aalen statistic is an estimate of the cumulative hazard rate. It is based on the Poisson distribution.

probability functions used to model 7survival data are in
Table . �ese distributions are le� skewed with support
on (,∞) for continuous distributions and support on the
counting numbers (,n] for discrete distributions.
Nonparametric approaches have also been developed

for estimating the survival function. A �rst approachmight
be the development of an empirical function such as:

R̂(t) =
Number of individuals with event times ≥ t
Number of individuals in the data set

. ()

Unfortunately, this estimate requires that there are no
censored observations. For example, an individual whose
survival time is censored before time t cannot be used
when computing the empirical function at t. �is issue
is addressed by introducing the 7Kaplan–Meier estima-
tor [see Kaplan and Meier ()]. Further, the variance
of the Kaplan–Meier statistic can be estimated and con-
�dence intervals can be constructed based on the normal
distribution. Closely related to the Kaplan-Meier estimator
is theNelson–Aalen estimator (Nelson ; Aalen ) of
the cumulative hazard rate function.�e estimated vari-
ance and con�dence interval can also be computed for this
function.
Although the models already discussed assume that

the occurrences of hazards are independent and identi-
cally distributed, o�en there are known risk factors such

as environmental conditions and operating characteristics
that a�ect the quality of a system.
In many problems a researcher is not only interested

in the probability of survival, but how a set of explana-
tory variables a�ect the survival rate. Cox () proposed
the proportional hazard model that allows for the pres-
ence of covariates and the partial likelihood estimation
procedure for estimating the parameters in the model.�e
proportional hazard model is of the form:

λ(t∣Z) = λ(t) exp(ZTβ) ()

where
λ(t) is the hazard function of unspeci�ed shape

(the subscript  implies all covariates are zero at time t).
Z is a vector of risk factors measured on each

individual.
β is a vector of parameters describing the relative

risk associated with the factors.
λ(t∣Z) is the hazard function at time t conditioned

on the covariates.
�e proportional hazard model is semi-parametric

because no assumptions are made about the base hazard
function but the e�ect of the risk factors is assumed to be
linear on the log of the hazard function; i.e., λ(t) is an
in�nite dimensional parameter and β is �nite dimensional.
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�e proportionality assumption implies that if an indi-
vidual has a risk of an event twice that of another individ-
ual, then the level of risk will remain twice as high for all
time. �e usual application of the model is to study the
e�ect of the covariates on risk when absolute risk is less
important. For example, consider a systemwhere two types
of actions can be taken, let

Z =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

 if the high risk action is taken

 if the low risk action is taken

and let β be the relative risk associated with Z.�e relative
risk of the two types of actions is computed from the hazard
ratio:

λ(t∣Z = )
λ(t∣Z = )

= exp β, ()

the instantaneous risk conditioned on survival at time t.
In this problem the model describes relative risks and
removes the e�ect of time. In a more general context, the
ratio of hazards is the di�erence of covariates assuming the
intercept is independent of time.
In many applications λ(t) is unknown and cannot be

estimated from the data. For example, the proportional
hazard model is o�en used in credit risk modeling for
corporate bonds based on interest rates and market con-
ditions. A nonparametric estimation procedure for the
conditional proportional hazard function is based on the
exponential regression model:

λ(t∣Z)
λ(t)

= exp(ZTβ)

where the underlying survival function is estimated with a
Kaplan–Meier estimator, a measure of time until failure.
If, however, the absolute risk is also important (usually

in prediction problems), then the Nelson–Aalen estimate
is preferred over the Kaplan–Meier estimator. �e state
space time series model [see Commandeur and Koopman
()] is useful for predicting risk over time and by using
the Kalman Filter, can also include time varying covariates.

�e proportional hazard model assumes event times
are independent, conditioned on the covariates. �e
7frailty model relaxes this assumption by allowing for the
presence of unknown covariates (random e�ects model).
In this model event times are conditionally independent
when values are given for the frailty variable. A frailty
model that describes unexplained heterogeneity resulting
from unobserved risk factors has a hazard function of the
form

λTji(t) = wjiλ(t) exp (Z
T
i β
i
) ()

where
Tji is the time to failure (event) j for individual i,

and
wji is the frailty variable.

In this model the frailty variable is constant over
time, is shared by subjects within a subgroup, and acts
multiplicatively on the hazard rates of all members of the
subgroup.�e two sources of variation for this model are:

. Individual random variation described by the hazard
function.

. Group variation described by the frailty variable.

�e log likelihood function, Eq. , for this model can be
expressed in simple form if the hazard function has aGom-
pertz distribution and the frailty variable has a 7gamma
distribution. Other commonly used distributions for the
frailty variable are the gamma, compound Poisson, and
the lognormal. Estimators for situations where the likeli-
hood function does not have an explicit representation are
derived from the penalized partial likelihood function or
from algorithms such as EM or Gibbs sampling.
Survival models have also been extended to multivari-

ate conditional frailty survival functions. In the univariate
setting, frailty varies from individual to individual whereas
in the multivariate setting, frailty is shared with individu-
als in a subgroup. Consider, for example, the multivariate
survival function conditioned on the frailty variable w:

s(t, . . . , tk∣w) = exp [ − w(Λ(t), . . . ,Λk(tk))], ()

where Λi(ti) is the cumulative hazard rate for group i. By
integrating over w, the survival function is:

s(t, . . . , tk) = E exp [ − w(Λ(t), . . . ,Λk(tk))], ()

the Laplace transform of w. Because of the simplicity
of computing derivatives from the Laplace transform,
this method is o�en used to derive frailty distributions.
�e most o�en assumed distributions are those from the
gamma family. See Hougaard () for a complete dis-
cussion on modeling multivariate survival data.

Conclusion
�is paper presents a discussion for analyzing and model-
ing time series survival data.�emodels are then extended
to include covariates primarily based upon regression
modeling, and �nally generalized to include multivariate
models. Current research is focused on the development
of multivariate time series models for survival data.
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Models for Z+-Valued Time Series
Based on Thinning
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Introduction
Developing models for integer-valued time series has
received increasing attention in the past two decades.
Integer-valued time series are useful in modeling depen-
dent count data.�ey are also useful in the simulation of
dependent discrete random variables with speci�ed distri-
bution and correlation structure.
Lawrance and Lewis () andGaver and Lewis ()

were the �rst authors to construct autoregressive processes
with non-Gaussian marginals. �is has essentially moti-
vated all the research on integer-valued time series. �e
present review is far frombeing exhaustive. Our focus is on
models for Z+-valued �rst-order autoregressive processes
INAR().Wewill consider �ve approacheswhich are based
on “thinning” for developing these models.

First construction
To introduce integer-valued autoregressive moving aver-
age processes, McKenzie (, ) and Al-Osh and
Alzaid () used the binomial thinning operator ⊙ of
Steutel and van Harn (). �e operation ⊙ is de�ned
as follows: if X is a Z+−valued random variable (rv) and
α ∈ (, ), then

α ⊙ X =
X

∑
i=
Yi,

where {Yi} is a sequence of i.i.d. Bernoulli(α) rv′s inde-
pendent of X. A sequence {Xn} is said to be an INAR()
process if for any n ∈ Z,

Xn = α ⊙ Xn− + εn, ()

where ⊙ is as in () and {εn} is a sequence of i.i.d.
Z+−valued rv′s such that εn is independent of η ⊙ Xn−
and the thinning η⊙Xn− is performed independently for
each n.McKenzie () constructed stationaryGeometric
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andNegative Binomial INAR() processes andAl-Osh and
Alzaid () and independently McKenzie () studied
the Poisson INAR() process.

Second Construction
Du and Li () generalized the model () by introducing
the INAR(p) process

Xn =
p

∑
i=

αi ⊙ Xn−i + εn, ()

where all the thinning processes are independent and for
j < n,

cov(Xj, εn) = .

�ey proved that () has a unique stationary Z+−valued
solution {Xn}n∈Z if the roots of

λp −
p

∑
i=

αiλp−i = 

are inside the unit circle. �e main feature of the work
of Du and Li () is that it allows for models whose
autocorrelation function (ACF)mimics that of the Normal
ARIMAmodels.
Latour () generalized Du and Li () model by

introducing the general INAR(p) process (GINAR(p)),

Xn =
p

∑
i=

αi ○ Xn−i + εn,

where

αi ○ Xn−i =
Xn−i
∑
i=
Y(n,i)
i

{Y(n,j)
j } is a sequence of nonnegative i.i.d.rv’s indepen-

dent of the X’s with �nite mean αj > , j = , , . . . , p
and �nite variance βj and the innovation, εn, is assumed to
have a �nite mean µε and �nite variance σ ε . Latour ()
proved the existence of a stationary GINAR(p) process if
∑
p
j= αj < . He also showed that a stationary GINAR(p)
process, centered around its mean µX , admits a standard
AR(p) representation with the spectral density

f (λ) =
µX∑

p
j= βj + σ ε

π ∣α (exp(−iλ))∣
, λ ∈ [−π, π],

where

α(t) =  −
p

∑
j=

αjtj.

Third Construction
In the third approach the INAR() stationary time series
model takes the form

Xn = An(Xn−, η) + εn, ()

where {εn} are i.i.d.r.v.’s from the same family as the
marginal distribution of {Xn} andAn(Xn−, η) is a random
contraction operation performed on Xn− which reduces
it by the “amount η.” Let Gθ(⋅; λi) be the distribution
of Zi, i = ,  and assume that Z and Z are indepen-
dent and Gθ(⋅; λ) ∗ Gθ(⋅; λ) = Gθ(⋅; λ + λ), where
∗ is the convolution operator. Let G(⋅; x, λ, λ) be the
conditional distribution of Z given Z + Z = x. �e
distribution of the random operator A(X, η) given X =

x, is de�ned as G(⋅; x, ηλ, ( − η) λ). �e distribution of
A(X, η) isGθ(⋅; ηλ)when the distribution ofX isGθ(⋅; λ).
Now, if the distributions of X and ε are respectively
Gθ(⋅; λ) andGθ(⋅; ( − η) λ), then {Xn} of () is stationary
with marginal distributionGθ(⋅; λ).�is construction was
employed by Al-Osh and Alzaid () for the Binomial
marginal andAlzaid andAl-Osh () for theGeneralized
Poissonmarginal.�is construction was generalized to the
case when X is in�nitely divisible by Joe () and to
the case when X is in the class of Exponential Dispersion
Models by Jørgensen and Song ().

Fourth Construction
�is construction is based on the expectation thinning
operator K(η)⊛ of Zhu and Joe (). �e expectation
thinning operator K(η)⊛ is de�ned as follows: if X is a
Z+−valued rv and η ∈ (, ), then

K(η)⊛ X =
X

∑
i=
Ki(η),

where Ki(η) are i.i.d.r.v.’s and the family {K(α) :  ≤

α ≤ } is self-generalized, i.e., E {K(η)⊛ X ∣X = x} = ηx
and K(η′)⊛K(η) = K(ηη′).�e corresponding INAR()
stationary time series model takes the form

Xn
d
= K(η)⊛ Xn− + є(η) =

Xn−
∑
i=
Ki(η) + є(η).

�e marginal distribution of Xn must be generalized
discrete self-decomposable with respect to K, that is,
PXn(z)/PXn(PK(α)(z)) must be a proper probability gen-
erating function (PGF) for every α ∈ [, ].�e ACF at lagk
is ρ(k) = ηk. �e expectation thinning K(η)⊛ governs
the serial dependence. Several families of self-generalized
r.v.’s {K(η)} are known and the corresponding station-
ary distributions of {Xn} are overdispersed with respect
to Poisson (e.g., Generalized Poisson, Negative Binomial,
Poisson-Inverse Gaussian). When a marginal distribution
is possible for more than one self-generalized family then
di�erent {K(η)} lead to di�ering amounts of conditional
heteroscedasticity.
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Fifth Construction
�e ��h approach makes use of the thinning operator ⊙F
of van Harn et al. () and van Harn and Steutel ()
which is de�ned as follows. Let F := (Ft , t ≥ ) be a con-
tinuous composition semigroup of PGF’s such that Ft() ≠
, δ = δ(F) = − lnF′() > ,F+(z) = z. and F∞−(z) = .
�e in�nitesimal generator U of F is given for ∣z∣ ≤  by

U(z) = lim
t→+

Ft(z) − z
t

= a{H(z) − z} ,

where a is a constant and H(z) = ∑∞
n= hnz

n is a PGF of a
Z+ valued rv with h =  andH′() ≤ . For a Z+ valued rv
X and η ∈ (, )

η ⊙F X =
X

∑
i=
Yi,

where {Yi} is a sequence of i.i.d.r.v.’s independent of X
with common PGF F− ln η ∈ F .�e correspondingF−�rst
order integer-valued autoregressive (F−INAR()) model
takes the form

Xn = η ⊙F Xn− + εn, ()

where {εn} is a sequence of i.i.d. Z+ valued rv’s such that
εn is independent of η⊙F Xn− and the thinning η⊙F Xn−
is performed independently for each n. Note that {Xn} is
a Markov chain (see 7Markov Chains). In terms of PGF’s
() reads

PXn(z) = PXn−(F− ln η(z))Pε(z). ()

A distribution on Z+ with PGF P(z) is F-self-
decomposable (van Harn et al. ()) if for any t there
exists a PGF Pt(z) such

P(z) = P(Ft(z))Pt(z).

Aly and Bouzar () proved that any F-self-decompo
sable distribution can arise as the marginal distribution
of a stationary F−INAR() model. On assuming that the
second moments of each of H(⋅), ε and Xn are �nite for
any n ≥ , Aly and Bouzar () proved that () the
regression of Xn on Xn− is linear, () the variance of
Xn given Xn− is linear, () the ACF at lag k, ρ(Xn−k,Xn) =
ηδk√V(Xn−k)/V(Xn). Moreover, if {Xn} is stationary,
then ρ(k) = ρ(Xn−k,Xn) = ηδk.
We consider some important stationary time series

models based on the composition semigroup

F(θ)
t (z) =  −

θe−θ t
( − z)

θ + θ( − e−θ t)( − z)
, t ≥ , ∣z∣ ≤ ,

θ =  − θ,  ≤ θ < 

of van Harn et al. (). Note that when θ = , F()t (z) =
 − e−t + e−tz and the corresponding thinning is the Bino-
mial thinning of Steutel and van Harn (). In this case
() becomes

PX(z) = PX( − η + ηz)Pε(z). ()

Particular INAR() of () are the Poisson (Al-Osh and
Alzaid ; McKenzie ), the Geometric and the Neg-
ative Binomial (McKenzie ), the Mittag-Le�er (Pil-
lai and Jayakumar ) and the discrete Linnik (Aly
and Bouzar ). Particular INAR() time series models
when  < θ <  are the Geometric, the Negative Binomial
and the Poisson Geometric (Aly and Bouzar ) and the
Negative Binomial (Al-Osh and Aly ).

Remarks
We mention some methods of parameter estimation.�e
most direct approach is usingmoment estimation based on
the Yule-Walker equations. �e conditional least squares
method with some modi�cations, e.g., a two-stage proce-
dure, in order to be able to estimate all the parameters (see,
for example, Brännäs andQuoreshi )may be used. Joe
and Zhu () used the method of maximum likelihood
a�er using a recursive method to calculate the probabil-
ity mass function of the innovation. Neal and Subba Rao
() used the MCMC approach for parameter estima-
tion. For additional references on parameter estimation
we refer to Brännäs (), Jung and Tremayne (),
Silva and Silva () and the references contained therein.
Finally, we note that Hall and Scotto () studied the
extremes of integer-valued time series.
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Moderate Deviations
Consider the familiar simple set up for the central
limit theorem (CLT, see 7Central Limit �eorems). Let
X,X, . . . be independently and identically distributed
real random variables with common distribution function
F(x). Let Yn = 

n (X +⋯ + Xn),n= , , . . . . Suppose that

∫ xF(dx) = ,∫ xF(dx) = l ()

�en the central limit theorem states that

P(∣Yn∣ >
a

√
n
)→ [ −Φ(a)] ()

where Φ(x) = √
π ∫

x
−∞ exp (−t


/)dt and a > .

In other words, the CLT gives an approximation to the
two-sided deviation of size a√

n of Yn and the approxima-
tion is a number in (/, ). Deviations of the this type are
called ordinary deviations.
However, one needs to study deviations larger than

ordinary deviations to understand �ner properties of the
distributions of Yn and to approximate expectations of
other functions of Yn.�us a deviation of magnitude λn
will be called a excessive deviation if nλn → ∞. In the
particular case of λn = λ where λ is a constant, it is
called a large deviation (see also 7Large Deviations and
Applications).
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�e following, due to Cramér (), Cherno� (),
Bahadur and Rao (), etc., is a classical result on large
deviations. Let

∫ exp (tx)F(dx) <∞ for t in someneighborhoodof .
()

�en

n
logP(∣Yn∣ > λ)→ −I(λ) ()

where
I(λ) = sup

t
(tλ − log ϕ(t)) ()

and  < I(λ) ≤ ∞. �is result is usually read as “the
probability of large deviations tends to zero exponen-
tially.” For sequences of random variables {Yn} distributed
in more general spaces like Rk,C([, ]),D([, ]), etc.
(i.e.,7stochastic processes), there is no preferred direction
for deviations.�e appropriate generalization of the large
deviation result () is the large deviation principle, which
states that for all Borel sets A

− I(A) ≤ limn

n
logP(Yn ∈ A) ≤ −I(A) ()

where A,A denote the interior and closure of A, and

I(A) = inf
λ∈A
I(λ) ()

for some function I(λ)whose level sets {λ : I(λ) ≤ K} are
compact for K < ∞.�e function I(x) is called the large
deviation rate function.
When the moment generating function condition ()

holds, Cramér () has further shown that

P(∣Yn∣ > λn) ∼


√
πnλn

exp(
−nλn


) ()

when nλn →  and nλn → ∞.�is excludes large devi-
ations (λn = λ), but it gives a rate for the probability (and
not just the logarithm of the probability) of a class of exces-
sive deviations and is therefore called a strong excessive
deviation result.
Rubin and Sethuraman (a) called deviations λn

with λn = c
√
log n
n where c is a constant asmoderate devia-

tions. Moderate deviations found their �rst applications in
Bayes risk e�ciency which was introduced in Rubin and
Sethuraman (b). Cramér’s result in () reduces to

P(∣Yn∣ > c

√
logn
n

) ∼


c
√
π logn

n−c
/ ()

and holds under the moment generating function con-
dition (). Rubin and Sethuraman (a) showed that

the moderate deviation result () holds under the weaker
condition

E(∣X∣c
++δ

) <∞ for some δ > . ()

�ey also showed that when () holds we have

E(∣X∣c
+−δ

) <∞ for all δ > . ()

Slastnikov () showed that the strong moderate devia-
tion result () if and only if

lim
t→∞

t+c(log(t))−(+c)/P(∣X∣ > t) = . ()

Since () was called a strong excessive deviation result,
we should call () as a strong moderate deviation result.
Analogous to the logarithmic large deviation result () is
the logarithmic moderate deviation result which states that


log(n)

logP(∣Yn∣ ≥ c

√
log(n)
n

) ∼ n−c
/ ()

whichmay be the only possible result formore complicated
random variables {Yn} than are notmeans of i.i.d. random
variables,
For random variables {Yn} which take values in

Rk,C([, ]),D([, )] etc., we can, under some condi-
tions, establish the moderate deviation principle which
states

− J(A) ≤ limn


log(n)
P(

√
n

log(n)
Yn ∈ A) ≤ −J(A)

()
where J(A) = inf x∈A J(x) for some function J(x) whose
level sets are compact.�e function J(x) is then called the
moderate deviation rate function.�is is analogous to the
large deviation principle ().
Following the paper of Rubin and Sethuraman (a),

there is a vast literature on moderate deviations for a large
class of random variables {Yn} that arise in a multitude of
contexts.�e asymptotic distribution of {Yn} can be more
general than Gaussian. We will give just a brief summary
below.
We stated the de�nition of two-sided moderate devi-

ations and quoted Slastnikov’s necessary and su�cient
condition. One can also consider one-sided moderate
deviations results and the necessary and su�cient condi-
tions are slightly di�erent and these are given in Slastnikov
(). Without assuming á priori that the mean and vari-
ance of the i.i.d. random variables X,X . . . are  and 
respectively, one can ask for necessary and su�cient con-
ditions for moderate deviations. �is problem has been
completely addressed in Amosova (). Another variant
of moderate deviations has been studied in Davis ().
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�e case where {Yn} is the sum of triangular arrays
of independent random variables or a U-statistic were
begun in Rubin and Sethuraman (). Ghosh ()
studied moderate deviations for sums of m-dependent
random variables. Michel () gave results on rates of
convergence in the strong moderate deviation result ().
Gut () considered moderate deviations for random
variables with multiple indices. Dembo () considered
moderate deviations for 7martingales.
Moderate deviations in general topological spaces with

applications in Statistical Physics and other areas can be
found in Borovkov and Mogulskii (), (), Deo and
Babu (), De Acosta (), Liming (), Djellout and
Guillin ().
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Moderating and mediating variables, or simply modera-
tors and mediators, are related but distinct concepts in
both general statistics and its application in psychol-
ogy. A moderating variable is a variable that a�ects the
relationship between two other variables. �is e�ect is
usually referred to as an interaction.�e simplest case of an
interaction can occur in 7analysis of variance (ANOVA).
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For example, we tested whether there is a signi�cant di�er-
ence in the level of anxiety (as measured with an appropri-
ate standardized psychological test) between married and
unmarried participants (i.e., variable marital status).�e
e�ect was not statistically signi�cant. However, when we
enter the third variable – gender (female/male) – it appears
that, on average, unmarried males are signi�cantly more
anxious than married males, while for females the e�ect is
the reverse. Figure  represents the results from two mod-
els described above. In the le�-hand panel, we can see that,
on average, there are no di�erences between married and
unmarried participants in the level of anxiety. From the
right-hand panel, we can conclude that gender moderates
the e�ect of marital status on the level of anxiety: married
males and unmarried females are signi�cantly less anxious
than the other two groups (unmarried males and married
females).
We can generalize the previous example to more com-

plex models, with two independent variables having more
than just two levels for comparison, or evenwithmore than
two independent variables. If all variables in the model
are continuous variables, we would apply multiple regres-
sion analysis, but the phenomenon of a moderating e�ect
would remain the same, in essence. For example, we con-
�rmed a positive relationship between the hours of learning
and the result in an assessment test. Yet, music loudness
during learning can moderate test results. We can imag-
ine this as if a hand on the volume knob of an ampli�er

rotates clockwise and turns the volume up, students get all
the worse results the longer they learn. Depending on the
music volume level, the relationship between the hours of
learning and the knowledge assessment changes continu-
ously.�is outcome is presented in Fig. . On the le�-hand
side, we can observe a positive in�uence of the hours of
learning on the results in the assessment test, while on the
right-hand side, we can see howmusic loudnessmoderates
this relationship.

�e general linear form with one dependent, one inde-
pendent, and one moderating variable is as
follows:

Y = β + βX + βX + β(X × X) + ε,

where β evaluates the interaction between X and X.
Mediating variables typically emerge in multiple

regression analysis, where the in�uence of some indepen-
dent variable (predictor) on the dependent variable (crite-
rion) is not direct, but mediated through the third variable.
For example, the correlation between ageing and the num-
ber of work accidents in the car industry appears to be
strong and negative. Nevertheless, the missing link in this
picture is work experience: it a�ects injury rate, and is itself
a�ected by the age of worker.
In regression modeling, one can distinguish between

complete mediation and incomplete mediation. In practice,
if the e�ects of ageing on the number of work injuries
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would not di�er statistically from zero when work experi-
ence is included in the model, then mediation is complete.
Otherwise, if this e�ect still exists (in the statistical sense),
then mediation is incomplete. Complete and incomplete
mediation are presented in Fig. .
In principle, a mediating variable �attens the e�ect of

an independent variable on the dependent variable. �e
opposite phenomenon would occur if the mediator vari-
able would increase the e�ect.�is is called suppression. It
is a controversial concept in statistical theory and practice,
but contemporary applied approaches take a more neutral
position, and consider that suppressionmay provide better
insights into the relationships between relevant variables.

�e simplest case of linear regression with one depen-
dent, one independent, and one mediating variable is
de�ned by the following equations:

Y = β + βX + ε
M = γ + γX + ε
Y = β′ + β′X + βM + ε ,

where of particular interest are β , which is called the
total e�ect, and β′ , named the direct e�ect. If suppression
does not take place, which would occur if β′ > β, then
we can continue the analysis with a standard regression
model. First, we ascertain whether mediation is complete
or incomplete, depending on whether the direct e�ect

drops to zero (β′ ≈ ). �e most important step in
the analysis is the inference about the indirect e�ect, or the
amount of mediation. It is de�ned as the reduction in the
e�ect of the initial variable on themodel outcome (β−β′).
In simple hierarchical regression models, the di�erence of
the coe�cients is exactly the same as the product of the
e�ect of the independent variable on the mediating vari-
able multiplied by the e�ect of the mediating variable on
the dependent variable. In the general case, this equality
only approximately holds.
Mediation and moderation can co-occur in statisti-

cal models.�is is o�en the case in psychology.Mediated
moderation takes place when the independent variable is
actually an interaction (X = XA × XB).�us, the media-
tor acts between interacting variables (XA and XB) and the
dependent variable (Y). For example, the e�ect of inter-
acting variable hours of learning and music loudness on
the dependent variable result in an assessment test can be
mediated by the importance of the test, as rated by the par-
ticipants. Conversely, moderated mediation is realized in
two forms: (a) the e�ect of the independent variable on
the mediator is a�ected by a moderator (γ varies; as if the
e�ect of ageing on work experience is moderated by a par-
ticular personality trait, likeH. J. Eysenck’sNeuroticism), or
(b) a moderator may interact with the mediating variable
(β varies; as if the work experience and the level of anxiety
would interact and mediate between ageing and number of
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work accidents). If moderated mediation exists, inference
about its type must be given.
Finally, special attention is required in moderation

and mediation analyses since both can be in�uenced by
7multicollinearity, which makes estimates of regression
coe�cients unstable. In addition, in an analysis with a
moderating term – i.e., an interaction e�ect – the product
of the variables can be strongly related to either the inde-
pendent or themoderating variable, or both of them. If two
variables are collinear, one of them can be centred to its
mean. In this way, half of its value will become negative,
and consequently, collinearity will decrease. Another pos-
sibility is to regress the independent variable with a mod-
erator or mediator, and then to use the residuals or unex-
plained values, of the independent variable in the main
analysis.�us, the independent variable will be orthogonal
to themoderating ormediating variable, with zero correla-
tion, which will bring collinearity under control. However,
in applying the previous two remedies, and others that
are available, one must choose a conservative approach.
�e risk of emphasizing, or even inventing, what is not
present in the data ought to be as little as possible. In any
circumstances, the ultimate way of securing more reliable
estimates is simply to obtain enough data.
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�e moment generating function (mgf) of a real valued
random variable X with distribution F(x) = P(X ≤ x) is
de�ned by

MX(t) = E [etX] = ∫ etxdF(x). ()
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For distributions with a density function f = F′, MX can
also be interpreted as a (two-sided) Laplace transform of
f . In order that MX exists and is �nite for t ∈ (−a, a) and
some a > , all moments µj = E [Xj] must be �nite and
such that∑ µjtj/j! is a convergent series. We then have

MX(t) =
∞
∑
j=

µj
j!
tj ()

so that

µj =M
(j)
X () =

dj

dtj
MX(t) ∣t= ()

which explains the name moment generating function. A
counter example where MX does not exist in any open
neighborhood of the origin is the Cauchy distribution,
since there even µ is not de�ned.�e lognormal distribu-
tion is an example where all µj are �nite but the series in ()
does not converge. In cases where X >  andMX(t) = ∞
for t ≠ , the mgf of −X may be used (see e.g., Severini
() for further results). Related to MX are the char-
acteristic function ϕX(t) = MX(it) and the probability
generating function HX(z) = E(zX) for which MX(t) =

HX(et). Note however that, in contrast to MX , ϕX(t) =

E [exp(itX)] always exists. A furhter important function
is the cumulant generating function KX(t) = logMX(t)
which can be written as power series

KX(t) =
∞
∑
j=

κj
j!
tj ()

where κj are cumulants.�e �rst two cumulants are κ =
µ = E(X) and κ = σ  = var(X). In contrast to the raw
moments µj, higher order cumulants κj (j ≥ ) do not
depend on the location µ and scale σ . For vector valued
random variables X = (X, ...,Xk)′ ∈ Rk, MX is de�ned
in an analogous manner by MX(t) = E [exp (t′X)] =

E [exp (∑kj= tjXj)].�is implies

∂j+j+⋯+jk

∂tj ∂t
j
 ⋅ ⋅ ⋅ ∂t

jk


MX() = E [X
j
 X

j
 ⋅ ⋅ ⋅ X

jk
k ] ()

and corresponding expressions for joint cumulants as
derivatives of KX . In particular,

∂

∂ti∂tj
KX() = cov(Xi,Xj). ()

An important property is uniqueness: ifMX(t) exists and
is �nite in an open interval around the origin, then there is
exactly one distribution function with this moment gen-
erating function. For instance, if κj =  for j ≥ , then
X ∈ R is normally distributed with expected value µ = κ

Moment Generating Function. Table  MX(t) for some
important distributions

Distribution MX(t)

Binomial with n trials, success
probability p =  − q

[q + pet]n

Geometric distribution with
success probability p =  − q

pet ( − qet)−

Poisson with expected value λ exp [λ (et − )]

Uniform on [a, b] t−(b − a)− (etb − eta)

Normal N(µ, σ) exp (µt + 

σt)

Multivariate Normal N(µ, Σ) exp (µ′t + 


t′Σt)

Chi-square χ
k ( − t)−

k


Exponential with expected value
λ−

( − tλ−)−

Cauchy distribution not defined

and variance σ  = κ. �e moment generating func-
tion is very practical when handling sums of indepen-
dent random variables. If X and Y are independent with
existing moment generating function, then MX+Y(t) =

MX(t)MY(t) (and vice versa). For the cumulant generat-
ing function this means KX+Y(t) = KX(t) + KY(t). For
limit theorems, the following result is useful: Let Xn be
a sequence of random variables with moment generating
functions MXn(t) which converge to the moment gener-
ating function MX(t) of a random variable X. �en Xn
converges toX in distribution.�is together with the addi-
tivity property of the cumulant generating function can be
used for a simple proof of the central limit theorem (see
7Central Limit�eorems).

�e empirical counterparts of MX , KX and ϕX ,
de�ned by

mn(t) = n−
n

∑
i=
exp(tXi), ()

kn(t) = logmn(t) and φn(t) = logmn(it), are o�en use-
ful for statistical inference. For instance, testing the null
hypothesis that X and Y are independent can be done by
testingMX+Y ≡ MXMY or φX+Y ≡ φXφY (see e.g., Csörgő
; Feuerverger ). Testing normality of a random
sample X, ...,Xn is the same as testing Ho : ∂/∂tKX(t) ≡
 (see Ghosh ; Fang et al. ). For further appli-
cations of empirical moment and cumulant generating
functions see e.g., Csörgő (, ), Epps et al. (),
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Feuerverger (), Feuerverger andMcDunnough (),
Knight and Satchell (), Ghosh and Beran (, ).
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Monte Carlo methods are now an essential part of the
statistician’s toolbox, to the point of being more familiar

to graduate students than the measure theoretic notions
upon which they are based! We recall in this note some
of the advances made in the design of Monte Carlo tech-
niques towards their use in Statistics, referring to Robert
and Casella (, ) for an in-depth coverage.

The Basic Monte Carlo Principle and Its
Extensions
�e most appealing feature of Monte Carlo methods [for a
statistician] is that they rely on sampling and on probability
notions, which are the bread and butter of our profession.
Indeed, the foundation of Monte Carlo approximations is
identical to the validation of empirical moment estimators
in that the average


T

T

∑
t=
h(xt), xt ∼ f (x), ()

is converging to the expectation Ef [h(X)] when T goes to
in�nity. Furthermore, the precision of this approximation
is exactly of the same kind as the precision of a statistical
estimate, in that it usually evolves as O(

√
T).�erefore,

once a sample x, . . . , xT is produced according to a dis-
tribution density f , all standard statistical tools, including
bootstrap (see 7Bootstrap Methods), apply to this sample
(with the further appeal that more data points can be pro-
duced if deemed necessary). As illustrated by Fig. , the
variability due to a singleMonte Carlo experimentmust be
accounted for, when drawing conclusions about its output
and evaluations of the overall variability of the sequence
of approximations are provided in Kendall et al. ().
But the ease with which such methods are analyzed and
the systematic resort to statistical intuition explain in part
why Monte Carlo methods are privileged over numerical
methods.

�e representation of integrals as expectations
Ef [h(X)] is far from unique and there exist therefore
many possible approaches to the above approximation.
�is range of choices corresponds to the importance sam-
pling strategies (Rubinstein ) inMonte Carlo, based on
the obvious identity

Ef [h(X)] = Eg[h(X)f (X)/g(X)]

provided the support of the density g includes the support
of f . Some choices of g may however lead to appallingly
poor performances of the resultingMonte Carlo estimates,
in that the variance of the resulting empirical average
may be in�nite, a danger worth highlighting since o�en
neglected while having a major impact on the quality of
the approximations. From a statistical perspective, there
exist some natural choices for the importance function
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Monte Carlo Methods in Statistics. Fig.  Monte Carlo evaluation () of the expectation E[X/( + X + X)] as a function of the

number of simulation when X ∼ N (µ, ) using (left) one simulation run and (right)  independent runs for (top) µ =  and
(bottom) µ = .

g, based on Fisher information and analytical approxima-
tions to the likelihood function like the Laplace approxi-
mation (Rue et al. ), even though it is more robust to
replace the normal distribution in the Laplace approxima-
tion with a t distribution.�e special case of Bayes factors
(Andrieu et al. ) (Andrieu et al. )

B(x) = ∫
Θ
f (x∣θ)π(θ)dθ/∫

Θ
f (x∣θ)π(θ)dθ,

which drive Bayesian testing andmodel choice, and of their
approximation has led to a speci�c class of importance
sampling techniques known as bridge sampling (Chen et al.
) where the optimal importance function is made
of a mixture of the posterior distributions corresponding
to both models (assuming both parameter spaces can be
mapped into the same Θ). We want to stress here that
an alternative approximation of marginal likelihoods rely-
ing on the use of harmonic means (Gelfand and Dey ;
Newton and Ra�ery ) and of direct simulations from
a posterior density has repeatedly been used in the liter-
ature, despite o�en su�ering from in�nite variance (and

thus numerical instability). Another potentially very e�-
cient approximation of Bayes factors is provided by Chib’s
() representation, based on parametric estimates to the
posterior distribution.

MCMC Methods
Markov chain Monte Carlo (MCMC) methods (see
7Markov Chain Monte Carlo) have been proposed many
years (Metropolis et al. ) before their impact in Statis-
tics was truly felt. However, onceGelfand and Smith ()
stressed the ultimate feasibility of producing a Markov
chain (see 7Markov Chains) with a given stationary dis-
tribution f , either via a Gibbs sampler that simulates
each conditional distribution of f in its turn, or via a
Metropolis–Hastings algorithmbased on a proposal q(y∣x)
with acceptance probability [for a move from x to y]

min{, f (y)q(x∣y)/f (x)q(y∣x)},

then the spectrum of manageable models grew immensely
and almost instantaneously.
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Due to parallel developments at the time on graphical
and hierarchical Bayesian models, like generalized linear
mixed models (Zeger and Karim ), the wealth of mul-
tivariate models with available conditional distributions
(and hence the potential of implementing the Gibbs sam-
pler) was far from negligible, especially when the avail-
ability of latent variables became quasi universal due to
the slice sampling representations (Damien et al. ;
Neal ). (Although the adoption of Gibbs samplers has
primarily taken place within 7Bayesian statistics, there is
nothing that prevents an arti�cial augmentation of the data
through such techniques.)
For instance, if the density f (x) ∝ exp(−x/)/( +

x + x) is known up to a normalizing constant, f is
the marginal (in x) of the joint distribution g(x,u) ∝

exp(−x/)I(u( + x + x) ≤ ), when u is restricted
to (, ).�e corresponding slice sampler then consists in
simulating

U∣X = x ∼ U(, /( + x + x))

and
X∣U = u ∼ N (, )I( + x + x ≤ /u),

the later being a truncated normal distribution. As shown
by Fig. , the outcome of the resulting Gibbs sampler per-
fectly �ts the target density, while the convergence of the
expectation of X under f has a behavior quite comparable
with the iid setting.
While the Gibbs sampler �rst appears as the natural

solution to solve a simulation problem in complex models
if only because it stems from the true target f , as exhib-
ited by the widespread use of BUGS (Lunn et al. ),
which mostly focus on this approach, the in�nite vari-
ations o�ered by the Metropolis–Hastings schemes o�er
much more e�cient solutions when the proposal q(y∣x)
is appropriately chosen. �e basic choice of a random
walk proposal (see 7Random Walk) q(y∣x) being then a
normal density centered in x) can be improved by exploit-
ing some features of the target as in Langevin algorithms
(see Andrieu et al.  Sect. ..) and Hamiltonian or
hybrid alternatives (Duane et al. ; Neal ) that build
upon gradients. More recent proposals include particle
learning about the target and sequential improvement of
the proposal (Douc et al. ; Rosenthal ; Andrieu
et al. ). Fig.  reproduces Fig.  for a random walk
Metropolis–Hastings algorithm whose scale is calibrated
towards an acceptance rate of .. �e range of the con-
vergence paths is clearly wider than for the Gibbs sampler,
but the fact that this is a generic algorithm applying to
any target (instead of a specialized version as for the Gibbs
sampler) must be borne in mind.

Another major improvement generated by a statistical
imperative is the development of variable dimension gen-
erators that stemmed fromBayesianmodel choice require-
ments, the most important example being the reversible
jump algorithm in Green () which had a signi�cant
impact on the study of graphical models (Brooks et al.
).

Some Uses of Monte Carlo in Statistics
�e impact of Monte Carlo methods on Statistics has not
been truly felt until the early s, with the publication
of Rubinstein () and Ripley (), but Monte Carlo
methods have now become invaluable in Statistics because
they allow to address optimization, integration and explo-
ration problems that would otherwise be unreachable. For
instance, the calibration of many tests and the derivation
of their acceptance regions can only be achieved by simu-
lation techniques.While integration issues are o�en linked
with the Bayesian approach – since Bayes estimates are
posterior expectations like

∫ h(θ)π(θ∣x)dθ

and Bayes tests also involve integration, as mentioned ear-
lier with the Bayes factors, and optimization di�culties
with the likelihood perspective, this classi�cation is by
no way tight – as for instance when likelihoods involve
unmanageable integrals – and all �elds of Statistics, from
design to econometrics, from genomics to psychometry
and environmics, have now to rely onMonte Carlo approx-
imations. A whole new range of statistical methodologies
have entirely integrated the simulation aspects. Examples
include the bootstrap methodology (Efron ), where
multilevel resampling is not conceivable without a com-
puter, indirect inference (Gouriéroux et al. ), which
construct a pseudo-likelihood from simulations, MCEM
(Cappé and Moulines ), where the E-step of the EM
algorithm is replaced with a Monte Carlo approximation,
or the more recent approximated Bayesian computation
(ABC) used in population genetics (Beaumont et al. ),
where the likelihood is not manageable but the underlying
model can be simulated from.
In the past ��een years, the collection of real problems

that Statistics can [a�ord to] handle has truly undergone
a quantum leap. Monte Carlo methods and in particu-
lar MCMC techniques have forever changed the empha-
sis from “closed form” solutions to algorithmic ones,
expanded our impact to solving “real” applied problems
while convincing scientists from other �elds that statisti-
cal solutions were indeed available, and led us into a world
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Monte Carlo Methods in Statistics. Fig.  (left) Gibbs sampling approximation to the distribution f(x)∝ exp(−x/)/(+x+x)
against the true density; (right) range of convergence of the approximation to Ef [X] =  against the number of iterations using

 independent runs of the Gibbs sampler, along with a single Gibbs run
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Monte Carlo Methods in Statistics. Fig.  (left) Random walk Metropolis–Hastings sampling approximation to the distribution
f(x) ∝ exp(−x/)/( + x + x) against the true density for a scale of . corresponding to an acceptance rate of .; (right)

range of convergence of the approximation to Ef [X] =  against the number of iterations using  independent runs of the
Metropolis–Hastings sampler, along with a single Metropolis–Hastings run

where “exact” may mean “simulated.”�e size of the data
sets and of the models currently handled thanks to those
tools, for example in genomics or in climatology, is some-
thing that could not have been conceived  years ago,
when Ulam and von Neumann invented the Monte Carlo
method.
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Introduction
�e�ree Doors Problem, orMonty Hall Problem, is famil-
iar to statisticians as a paradox in elementary probabil-
ity theory o�en found in elementary probability texts
(especially in their exercises sections). In that context it
is usually meant to be solved by careful (and elemen-
tary) application of7Bayes’ theorem.However, in di�erent
forms, it is much discussed and argued about and written
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about by psychologists, game-theorists and mathemati-
cal economists, educationalists, journalists, lay persons,
blog-writers, wikipedia editors.
In this article I will brie�y survey the history of the

problem and some of the approaches to it which have been
proposed. My take-home message to you, dear reader, is
that one should distinguish two levels to the problem.

�ere is an informally stated problem which you could
pose to a friend at a party; and there aremany concrete ver-
sions or realizations of the problem, which are actually the
result of mathematical or probabilistic or statistical mod-
eling.�is modeling o�en involves adding supplementary
assumptions chosen tomake the problemwell posed in the
terms of themodeler.�emodeler �nds those assumptions
perfectly natural. His or her students are supposed to guess
those assumptions from various key words (like: “indistin-
guishable,” “unknown”) strategically placed in the problem
re-statement. Teaching statistics is o�en about teaching
the students to read the teacher’s mind. Mathematical
(probabilistic, statistical) modeling is, unfortunately, o�en
solution driven rather than problem driven.

�e very same criticism can, and should, be leveled at
this very article! By cunningly presenting the history of
�e�ree Doors Problem from my rather special point of
view, I have engineered complex reality so as to convert
the�ree Doors Problem into an illustration ofmy personal
Philosophy of Science, my Philosophy of Statistics.

�is means that I have re-engineered the�ree Doors
Problem into an example of the point of view that Applied
Statisticians should always be wary of the lure of Solution-
driven Science. Applied Statisticians are trained to know
Applied Statistics, and are trained to know how to con-
vert real world problems into statistics problems. �at is
�ne. But the best Applied Statisticians know that Applied
Statistics is not the only game in town.Applied Statisticians
are merely some particular kind of Scientists.�ey know
lots about modeling uncertainty, and about learning from
more or less random data, but probably not much about
anything else.�e Real Scientist knows that there is not a
universal disciplinary approach to every problem.�e Real
Statistical Scientist modestly and persuasively and realisti-
cally o�ers what his or her discipline has to o�er in synergy
with others.
To summarize, we must distinguish between:

() the �ree-Doors-Problem Problem [sic], which is to
make sense of some real world question of a real
person.

() a large number of solutions to thismeta-problem, i.e.,
the many�ree-Doors-Problem Problems, which are
competingmathematizations of themeta-problem ().

Each of the solutions at level () can well have a number of
di�erent solutions: nice ones and ugly ones; correct ones
and incorrect ones. In this article, I will discuss three level
() solutions, i.e., three di�erent Monty Hall problems; and
try to give three short correct and attractive solutions.
Now read on. Be critical, use your intellect, don’t

believe anything on authority, and certainly not on mine.
Especially, don’t forget the problem at meta-level (−), not
listed above.
C’est la vie.

Starting Point
I shall start not with the historical roots of the prob-
lem, but with the question which made the�ree Doors
Problem famous, even reaching the front page of the
New York Times.
Marilyn vos Savant (a woman allegedly with the high-

est IQ in the world) posed the �ree Door Problem or
MontyHall Problem in her “AskMarilyn” column in Parade
magazine (September :), as posed to her by a corre-
spondent, aMr. CraigWhitaker. It was, quoting vos Savant
literally, the following:

7 Suppose you’re on a game show, and you’re given the choice

of three doors: Behind one door is a car; behind the others,

goats. You pick a door, say No. , and the host, who knows

what’s behind the doors, opens another door, say No. , which

has a goat. He then says to you, “Do you want to pick door

No. ?” Is it to your advantage to switch your choice?

Apparently, the problem refers to a real AmericanTVquiz-
show, with a real presenter, called Monty Hall.

�e literature on theMontyHall Problem is enormous.
At the end of this article I shall simply list two references
which for me have been especially valuable: a paper by Je�
Rosenthal () and a book by Jason Rosenhouse ().
�e latter has a huge reference list and discusses the pre-
and post-history of vos Savant’s problem.
Brie�y regarding the pre-history, one may trace the

problem back through a  letter to the editor in the
journal �e American Statistician by biostatistician Steve
Selkin, to a problem called �e �ree Prisoners Problem
posed by StephenGardner in hisMathematical Games col-
umn in Scienti�c American in , and from there back
to Bertrand’s Box Problem in his  text on Probability
�eory.�e internet encyclopediawikipedia.org dis-
cussion pages (in many languages) are a fabulous though
every-changing resource. Almost everything that I write
here was learnt from those pages.
Despite making homage here to the two cited authors

Rosenthal () and Rosenhouse () for their won-
derful work, I emphasize that I strongly disagree with
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both Rosenhouse (“the canonical problem”) andRosenthal
(“the original problem”) on what the essential Monty Hall
problem is. I am more angry with certain other authors,
who will remain nameless but for the sake of argument
I’ll just call Morgan et al. for unilaterally declaring in�e
American Statistician in  their Monty Hall problem to
be the only possible sensible problem, for calling everyone
who solved di�erent problems stupid, and for getting an
incorrect theorem (I refer to their result about the situa-
tion when we do not know the quiz-master’s probability
of opening a particular door when he has a choice, and
put a uniform prior on this probability.) published in the
peer-reviewed literature.
Deciding unilaterally (Rosenhouse ) that a cer-

tain formulation is canonical is asking for a schism and
for excommunication. Calling a particular version original
(Rosenthal ) is asking for a historical contradiction.
In view of the pre-history of the problem, the notion is not
well de�ned. Monty Hall is part of folk-culture, culture is
alive, the Monty Hall problem is not owned by a particular
kind of mathematician who looks at such a problem from
a particular point of view, and who adds for them “natural”
extra assumptions which merely have the role of allowing
their solution to work. Presenting any “canonical” or “orig-
inal” Monty Hall problem together with a solution, is an
example of solution driven science – you have learnt a clever
trick and want to show that it solves lots of problems.

Three Monty Hall Problems
I will concentrate on three di�erent particular Monty Hall
problems. One of them (Q-) is simply to answer the ques-
tion literally posed by Marilyn vos Savant, “would you
switch?”.�e other two (Q-, Q-) are popular mathema-
tizations, particularly popular among experts or teachers
of elementary probability theory: one asks for the uncon-
ditional probability that “always switching” would gets the
car, the other asks for the conditional probability given the
choices made so far. Here they are:

Q-: Marilyn vos Savant’s (or CraigWhitaker’s) question
“Is it to your advantage to switch?”

Q-: A mathematician’s question “What is the uncondi-
tional probability that switching gives the car?”

Q-: Amathematician’s question “What is the conditional
probability that switching gives the car, given every-
thing so far?”

�e free, and freely editable, internet encyclopediaWikipe
dia is the scene of a furious debate as to which mathema-
tization Q- or Q- is the right starting point for answer-
ing the verbal question Q- (to be honest, many of the
actors claim another “original” question as the original

question). Alongside that, there is a furious debate as to
which supplementary conditions are obviously implicitly
being made. For each protagonist in the debate, those are
the assumptions which ensure that his or her question
has a unique and nice answer. My own humble opinion is
“neither Q- nor Q-, though the unconditional approach
comes closer.” I prefer Q-, and I prefer to see it as a ques-
tion of game theory for which, to my mind, [almost] no
supplementary conditions need to be made.
Here I admit that I will suppose that the player knows

game-theory and came to the quiz-show prepared. I will
also suppose that the player wants to get the Cadillac while
Monty Hall, the quizmaster, wants to keep it.
My analysis below of both problemsQ- andQ- yields

the good answer “/” under minimal assumptions, and
almost without computation or algebraic manipulation.
I will use Israeli (formerly Soviet Union) mathematician
Boris Tsirelson’s proposal on Wikipedia talk pages to use
symmetry to deduce the conditional probability from the
unconditional one. (Boris graciously gave me permission
to cite him here, but this should not be interpreted tomean
that anything written here also has his approval).
You, the reader, may well prefer a calculation using

Bayes’ theorem, or a calculation using the de�nition of
conditional probability; I think this is a matter of taste.
I �nally use a game-theoretic point of view, and von

Neumann’s minimax theorem, to answer the question
Q- posed by Marilyn vos Savant, on the assumptions just
stated.
Let the three doors be numbered in advance , , and .

I add the universally agreed (and historically correct) addi-
tional assumptions: Monty Hall knows in advance where
the car is hidden,MontyHall always opens a door revealing
a goat.
Introduce four random variables taking values in the

set of door-numbers {, , }:

C: the quiz-teamhides theCar (aCadillac) behinddoorC,
P: the Player chooses door P,
Q: the Quizmaster (Monty Hall) opens door Q,
S: Monty Hall asks the player if she’ld like to Switch to
door S.

Because of the standard story of the Monty Hall show, we
certainly have:

Q ≠ P, the quizmaster always opens a door di�erent to the
player’s �rst choice,
Q ≠ C, opening that door always reveals a goat,
S ≠ P, the player is always invited to switch to another door,
S ≠ Q, no player wants to go home with a goat.
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It does not matter for the subsequent mathematical analy-
sis whether probabilities are subjective (Bayesian) or objec-
tive (frequentist); nor does it matter whose probabilities
they are supposed to be, at what stage of the game. Some
writers think of the player’s initial choice as �xed. For them,
P is degenerate.
I simplymerely down somemathematical assumptions

and deduce mathematical consequences of them.

Solution to Q-: Unconditional Chance
That Switching Wins
By the rules of the game and the de�nition of S, if P ≠ C
then S = C, and vice-versa. A “switcher” would win the car
if and only if a “stayer” would lose it.�erefore:
If Pr(P = C) = / then Pr(S = C) = /, since
the two events are complementary.

Solution to Q-: Probability Car is Behind
Door  Given You Chose Door , Monty
Hall Opened 
First of all, suppose that P and C are uniform and inde-
pendent, and that given (P,C), suppose that Q is uniform
on its possible values (unequal to those of P and of C). Let
S be de�ned as before, as the third door-number di�erent
from P andQ.�e joint law ofC,P,Q, S is by this de�nition
invariant under renumberings of the three doors. Hence
Pr(S = C∣P = x,Q = y) is the same for all x ≠ y. By the law
of total probability, Pr(S = C) (which is equal to / by
our solution to Q-) is equal to the weighted average of all
Pr(S = C∣P = x,Q = y), x ≠ y ∈ {, , }. Since the latter are
all equal, all these six conditional probabilities are equal to
their average /.
Conditioning on P = x, say, and letting y and y′ denote

the remaining two door numbers, we �nd the following
corollary:
Now take the door chosen by the player as �xed, P ≡ ,

say. We are to compute Pr(S=C∣Q= ). Assume that all
doors are equally likely to hide the car and assume that
the quizmaster chooses completely at random when he has
a choice. Without loss of generality we may as well pre-
tend that P was chosen in advance completely at random.
Nowwe have embedded our problem into the situation just
solved, where P and C are uniform and independent.

7 If P ≡  is fixed, C is uniform, and Q is symmetric, then

“switching gives car” is independent of quizmaster’s choice,

hence

Pr(S = C∣Q = ) = Pr(S = C∣Q = ′) = Pr(S = C) = /.

Some readers may prefer a direct calculation. Using Bayes’
theorem in the form “posterior odds equal prior odds times

likelihoods” is a particularly e�cient way to do this.�e
probabilities and conditional probabilities below are all
conditional on P = , or if your prefer with P ≡ .
We have uniform prior odds

Pr(C = ) : Pr(C = ) : Pr(C = ) =  :  : .

�e likelihood for C, the location of the car, given data
Q = , is (proportional to) the discrete density function of
Q given C (and P)

Pr(Q = ∣C = ) : Pr(Q = ∣C = ) :

Pr(Q = ∣C = ) =


:  : .

�e posterior odds are therefore proportional to the likeli-
hood. It follows that the posterior probabilities are

Pr(Q = ∣C = ) =


, Pr(Q = ∣C = ) =



,

Pr(Q = ∣C = ) = .

Answer to Marilyn Vos Savant’s Q-:
Should You Switch Doors?
Yes. Recall, You only know that Monty Hall always opens
a door revealing a goat. You didn’t know what strategy
the quiz-team and quizmaster were going to use for their
choices of the distribution of C and the distribution of
Q given P and C, so naturally (since you know elemen-
tary Game�eory) you had picked your door uniformly
at random. Your strategy of choosing C uniformly at ran-
dom guarantees that Pr(C = P) = / and hence that
Pr(S = C) = /.
It was easy for you to �nd out that this combined

strategy, which I’ll call “symmetrize and switch,” is your
so-called minimax strategy.
On the one hand, “symmetrize and switch” guaran-

tees you a / (unconditional) chance of winning the car,
whatever strategy used by the quizmaster and his team.
On the other hand, if the quizmaster and his team use

their “symmetric” strategy “hide the car uniformly at ran-
dom and toss a fair coin to open a door if there is choice”,
then you cannot win the car with a better probability
than /.

�e fact that your “symmetrize and switch” strategy
gives you “at least” /, while the quizmaster’s “symmetry”
strategy prevents you from doing better, proves that these
are the respective minimax strategies, and / is the game-
theoretic value of this two-party zero-sum game. (Mini-
max strategies and the accompanying “value” of the game
exist by virtue of John von Neumann’s () minimax
theorem for �nite two-party zero-sum games).

�ere is not much point for you in worrying about
your conditional probability of winning conditional on
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your speci�c initial choice and the speci�c door opened
by the quizmaster, say doors  and  respectively. You don’t
know this conditional probability anyway, since you don’t
know the strategy used by quiz-team and the quizmaster.
(Even though you know probability theory and game the-
ory, they maybe don’t). However, it is maybe comforting
to learn, by easy calculation, that if the car is hidden uni-
formly at random, then your conditional probability can-
not be smaller than /. So in that case at least, it certainly
never hurts to switch door.

Discussion
Above I tried to give short clear mathematical solutions
to three mathematical problems. Two of them were prob-
lems of elementary probability theory, the third is a prob-
lem of elementary game theory. As such, it involves not
much more than elementary probability theory and the
beautiful minimax theorem of John von Neumann ().
�at a �nite two-party zero-sum game has a saddle-point,
or in other words, that the two parties in such a game
have matching minimax strategies (if 7randomization is
allowed), is not obvious. It seems to me that probabilists
ought to know more about game theory, since every ordi-
nary non-mathematician who hears about the problem
starts to wonder whether the quiz-master is trying to cheat
the player, leading to an in�nite regress: if I know that he
knows that I know that....
I am told that the literature ofmathematical economics

and of game theory is full of Monty Hall examples, but no-
one can give me a nice reference to a nice game-theoretic
solution of the problem. Probably game-theorists like to
keep their clever ideas to themselves, so as to make money
from playing the game. Only losers write books explaining
how the reader could make money from game theory.
It would certainly be interesting to investigate more

complex game-theoretic versions of the problem. If we take
Monty Hall as a separate player to the TV station, and
note that TV ratings are probably helped if nice players
winwhile annoying players lose, we leave elementary game
theory and must learn the theory of Nash equilibria.

�en there is a sociological or historical question: who
“owns” the Monty Hall problem? I think the answer is
obvious: no-one. A beautiful mathematical paradox, once
launched into the real world, lives it own life, it evolves, it
is re-evaluated by generation a�er generation.�is point
of view actually makes me believe that Question : would
you switch is the right question, and no further infor-
mation should be given beyond the fact that you know
that the quizmaster knows where the car is hidden, and
always opens a door exhibiting a goat. Question  is a ques-
tion you can ask a non-mathematician at a party, and if

they have not heard of the problem before, they’ll give the
wrong answer (or rather, one of the two wrong answers:
no because nothing is changed, or it doesn’t matter because
it’s now –). My mother, who was one of Turing’s com-
puters at Bletchley Park during the war, but who had had
almost no schooling and in particular never learnt any
mathematics, is the only person I know who immediately
said: switch, by immediate intuitive consideration of the
-door variant of the problem.�e problem is a paradox
since you can next immediately convince anyone (except
lawyers, as was shown by an experiment inNijmegen), that
their initial answer is wrong.

�e mathematizations Questions  and  are not (in
my humble opinion!) the Monty Hall problem; they are
questions which probabilists might ask, anxious to show
o� Bayes’ theorem or whatever. Some people intuitively try
to answer Question  via Questions  and ; that is natural,
I do admit. And sometimes people become very confused
when they realize that the answer toQuestion  can only be
given its pretty answer “/” under further conditions. It is
interesting how in the pedagogicalmathematical literature,
the further conditions are as it were held under your nose,
e.g., by saying “three identical doors,” or replacingMarilyn’s
“say, door ” by the more emphatic “door .”
It seems to me that adding into the question explic-

itly the remarks that the three doors are equally likely to
hide the car, and that when the quizmaster has a choice
he secretly tosses a fair coin to decide, convert this beauti-
ful paradox into a probability puzzle with little appeal any
more to non experts.
It also converts the problem into one version of

the three prisoner’s paradox. �e three prisoners prob-
lem is isomorphic to the conditional probabilistic three
doors problem. I always found it a bit silly and not
very interesting, but possibly that problem too should be
approached from a sophisticated game theoretic point of
view.
By the way, Marilyn vos Savant’s original question is

semantically ambiguous, though this might not be noticed
by a non-native English speaker. Are the mentioned door
numbers, huge painted numbers on the front of the doors
a priori, or are we just for convenience naming the doors by
the choices of the actors in our game a posteriori. Marilyn
stated in a later column in Parade that she had origi-
nally been thinking of the latter. However, her own o�ered
solutions are not consistent with a single unambiguous for-
mulation. Probably she did not �nd the di�erence very
interesting.

�is little article contains nothing new, and only almost
trivial mathematics. It is a plea for future generations to
preserve the life of�e True Monty Hall paradox, and not
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let themselves be misled by probability purists who say
“youmust compute a conditional probability.”
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In , A.M.Mood developed the square rank test for dis-
persion known as Mood test. It is based on the sum of
squared deviations of the ranks of one sample from the
mean rank of the combined samples.�e null hypothesis
is that there is no di�erence in spread against the alterna-
tive hypothesis that there is some di�erence.�eMood test
assumes that location remains the same. It is assumed that
di�erences in scale do not cause a di�erence in location.
�e samples are assumed to be drawn from continuous
distributions.
In two-sample scale tests, the population distributions

are usually assumed to have the same location with dif-
ferent spreads. However, Neave and Worthington ()
cautioned that tests for di�erence in scale could be severely
impaired if there is a di�erence in location as well.
In a two-sample problem composed of X = {x, x, . . . ,

xm} with distribution F(X) and Y = {y, y, . . . , yn}
with distribution G(Y), arrange the combined samples in

ascending order of magnitude and rank all the N = m + n
observations from  (smallest) to N (largest). LetW be the
sum of squares of the deviations of one of the samples’ (say
X) ranks from the mean rank of the combined samples,

W =
m

∑
i=

(ri −
m + n + 


)

,

where ri is the rank of the ith X observation. �e table
of exact critical values can be found in Odiase and
Ogbonmwan ().
Under the null hypothesis (F = G), the layout of the

ranks of the combined samples is composed of N inde-
pendent and identically distributed random variables, and
hence conditioned on the observed data set, the mean and
variance ofW arem(N−)/ andmn(N+)(N−)/,
respectively. �e large sample Normal approximation of
W is

W −
m(N − )


√
mn(N + )(N − )



.

�e e�ciency of the two-sample Mood test against the
normal alternative to the null hypothesis is 

π
≅ %.

A Monte Carlo study of several nonparametric test
statistics to obtain the minimum sample size require-
ment for large sample approximation was carried out
by Fahoome (). Adopting Bradley’s () liberal
criterion of robustness, Fahoome () recommends
the asymptotic approximation of the Mood test when
min(m,n) =  for the level of signi�cance α = .
and min(m,n) =  for α = .. However, Odiase and
Ogbonmwan () generated the exact distribution of the
Mood test statistics by the permutation method and there-
fore provided the table of exact critical values at di�erent
levels of signi�cance.

�e idea of a general method of obtaining an exact test
of signi�cance originated with Fisher ().�e essential
feature of the method is that all the distinct permutations
of the observations are considered, with the property that
each permutation is equally likely under the hypothesis to
be tested.
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�is notion plays a key role in testing statistical hypotheses.
Testing is a two-decision statistical problem.

Case Study
A producer of hydraulic pumps applies plastic gaskets pur-
chased from a deliverer.�e gaskets are supplied in batches
of ,. Since the cost of repairing a pump found to be
faulty is far higher than the cost of the gasket itself, each
batch is subject to testing. Not only the testing is costly
but also any gasket used in the process is practically dam-
aged.�us the producer decides to verify  gaskets taken
randomly from each batch.
Assume the deliverer promised that the fraction of

defective gaskets would not exceed %. Suppose  defec-
tive gaskets were disclosed in a sample of size . Is this
enough to reject the batch?�e situation is illustrated by
the following table

Batch/decision Accept Reject

Good + Type I Error

Bad Type II Error +

Since the decision is taken on the basis of a random
variable (the number of defective gaskets), the quality of
test may be expressed in terms of the probabilities of these
two errors. We would like to minimize these probabili-
ties simultaneously. However, any decrease of one of these
probabilities causes increase of the second one. Conse-
quences of these two errors should also be taken into
consideration. Similarly as in law, one presumes that the
tested hypothesis is true.�us the probability of the error
of the �rst type should be under control.�eory of testing
statistical hypotheses, regarding these postulates, was for-
malized in  by Neyman and Pearson.

Neyman-Pearson Theory
Let X be a random variable (or: random vector) taking
values in a sample space (X ,A) with a distribution P
belonging to a class P = {Pθ : θ ∈ Θ) and let Θ be a
proper subset of Θ. We are interested in deciding, on the
basis of observationX, whether θ ∈ Θ (decision d) or not
(decision d).
Any statement of the formH : θ ∈ Θ is called a statisti-

cal hypothesis. We consider also the alternative hypothesis
K : θ ∉ Θ, i.e., θ ∈ Θ ∖ Θ. A criterion of reject-
ing H (called a test) may be assigned by a critical region
S ⊆ X , according to the rule: reject H if X ∈ S and accept
otherwise.
When performing a test one may arrive at the correct

decision, or one may commit one of two errors: rejecting
H when it is true or accepting when it is false.�e upper
bound of the probability Pθ(d(X)) for all θ ∈ Θ is called
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the sizewhile the function β(θ) = Pθ(d) for θ ∈ Θ∖Θ is
called the power function of the test.

�e general principle in Neyman-Pearson theory is
to �nd such a procedure that maximizes β(θ) for all
θ ∈ Θ/Θ under assumption that Pθ(d(X)) ≤ α
(signi�cance level) for all θ ∈ Θ. Any such test (if
exists) is called to be uniformly most powerful (UMP).
�e well known Neyman-Pearson fundamental lemma
(see 7Neyman-Pearson Lemma) states that for any two-
element family of densities or mass probabilities { f, f}
such test always exists and it can be expressed by the like-
lihood ratio r(x) = f(x)

f(x) . In this case the power function β
reduces to a scalar and the word uniformly is redundant.
It is worth to add that in the continuous case the size of

theUMP test coincideswith its signi�cance level. However,
it may not be true in the discrete case.�e desired equal-
ity can be reached by considering the randomized decision
rules represented by functions ϕ = ϕ(x), taking values in
the interval [, ] and interpreted as follows:

“If X = x then reject H with probability ϕ(x)
and accept it with probability  − ϕ(x)”

�e size of the MP randomized test coincides with its
signi�cance level and its power may be greater than for the
nonrandomized one. According to the Neyman-Pearson
lemma, the randomized MP test has the form

ϕ(x) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

, if p(x) > kp(x)
γ, if p(x) = kp(x
, if p(x) < kp(x

for some k induced by the signi�cance level. If γ =  then
it is non-randomized.

One-Side Hypothesis and Monotone
Likelihood Ratio
In practical situations distribution of the observation vec-
tor depends on one ormore parameters andwemake use of
composite hypotheses θ ∈ Θ against θ ∈ Θ ∖Θ. Perhaps
one of the simple situations of this type is testing one-side
hypothesis θ ≤ θ or θ ≥ θ in a scalar parameter family
of distributions.
We say that a family of densities { fθ : θ ∈ Θ}hasmono-

tone likelihood ratio if there exists a statistic T = t(X) such
that for any θ < θ′ the ratio fθ′(x)fθ(x) is a monotone function
of T. It appears that for testing a hypothesis H : θ ≤ θ

against K : θ > θ in such a family of densities there exists
a UMP test of the form

ϕ(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

 when T(x) > C
γ when T(x) = C
 when T(x) < C.

An important class of families with monotone likeli-
hood ratio are one-parameter exponential families with
densities of type fθ(x) = C(θ)eQ(θ)T(x)h(x). In a dis-
crete case with integer parameter instead the monono-
tonity condition it su�ces to verify that the ratio Pk+(x)

Pk(x)
is a monotone function of T for all k.

Example  (Testing expectation in a simple sample from
normal distributionwith known variance). LetX, ...,Xn be
independent and identically distributed. Randomvariables
with distribution N(µ, σ ), where σ  is known. Consider
the hypothesisH : µ ≤ µ under the alternativeK : µ > µ.
�e family of distributions has amonotone likelihood ratio
with respect to the statistic T = ∑

n
i= Xi.�erefore there

exists a UMP test which rejects H if∑
n
i= Xi. is too large.

Example  (Statistical control theory). Froma great num-
ber (N) of elements with an unknown number D of defec-
tive ones we draw without replacement a sample of size n.
�en the potential number X of defective elements in the
sample has the hypergeometric distribution

PD(X = x) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(DX)(
N−D
n−x )

(Nn)
, if max(,n+D−N) <

x < min(n,D)
, otherwise.

.

One can verify that

PD+(x)
PD(x)

=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

, if x = n +D −N
D+
N−D

N−D−n+x
D+−x , if n +D +  −N ≤ x ≤ D

∞ if x = D + 

is a monotone function of x.�erefore there exists a UMP
test for the hypothesis H : D ≤ D against K : D > D,
which rejects H if x is too large.

Invariant and Unbiased Tests
If distribution of the observation vector depends on sev-
eral parameters, some of them may be out of our interest
and play the role of nuisance parameters. Such a situation
occurs, for instance, in testing linear hypotheses. In this
case the class of all unbiased estimators is usually too large
for handle. �en we may seek for a test with maximum
power in a class of tests which are invariant with respect to
some transformations of observations or their powers do
not depend on the nuisance parameters.�is is called the
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most powerful invariant test.�e class of tests under con-
siderationmay be also reduced by unbiasedness condition.
Amember of this class withmaximumpower is then called
themost powerful unbiased test.�e standard tests for lin-
ear hypotheses in a linear normalmodel aremost powerful
in each of these classes.
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A moving average is a time series constructed by taking
averages of several sequential values of another time series.
It is a type ofmathematical convolution. If we represent the
original time series by y, . . . , yn, then a two-sided moving
average of the time series is given by

zt =


k + 

k

∑
j=−k
yt+j, t = k + , k + , . . . ,n − k.

�us zk+, . . . , zn−k forms a new time series which is based
on averages of the original time series, {yt}. Similarly, a

one-sided moving average of {yt} is given by

zt =

k + 

k

∑
j=
yt−j, t = k + , k + , . . . ,n.

More generally, weighted averages may also be used. Mov-
ing averages are also called running means or rolling aver-
ages.�ey are a special case of “�ltering”, which is a general
process that takes one time series and transforms it into
another time series.

�e term “moving average” is used to describe this pro-
cedure because each average is computed by dropping the
oldest observation and including the next observation.�e
averaging “moves” through the time series until zt is com-
puted at each observation for which all elements of the
average are available.
Note that in the above examples, the number of data

points in each average remains constant. Variations on
moving averages allow the number of points in each aver-
age to change. For example, in a cumulative average, each
value of the new series is equal to the sum of all previous
values.
Moving averages are used in two main ways: Two-

sided (weighted) moving averages are used to “smooth” a
time series in order to estimate or highlight the underlying
trend; one-sided (weighted) moving averages are used as
simple forecasting methods for time series. While moving
averages are very simple methods, they are o�en build-
ing blocks for more complicated methods of time series
smoothing, decomposition and forecasting.

Smoothing Using Two-Sided Moving
Averages
It is common for a time series to consist of a smooth
underlying trend observed with error:

yt = f (t) + εt ,

where f (t) is a smooth and continuous function of t and
{εt} is a zero-mean error series.�e estimation of f (t) is
known as smoothing, and a two-sided moving average is
one way of doing so:

f̂ (t) =


k + 

k

∑
j=−k
yt+j, t = k + , k + , . . . ,n − k.

�e idea behind using moving averages for smooth-
ing is that observations which are nearby in time are also
likely to be close in value. So taking an average of the points
near an observation will provide a reasonable estimate of
the trend at that observation.�e average eliminates some
of the randomness in the data, leaving a smooth trend
component.
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Moving averages do not allow estimates of f (t) near
the ends of the time series (in the �rst k and last k periods).
�is can cause di�culties when the trend estimate is used
for forecasting or analyzing the most recent data.
Each average consists of k+ observations. Sometimes

this is known as a (k + ) MA smoother.�e larger the
value of k, the �atter and smoother the estimate of f (t)
will be. A smooth estimate is usually desirable, but a �at
estimate is biased, especially near the peaks and troughs in
f (t). When εt is a white noise series (i.e., independent and
identically distributed with zero mean and variance σ ),
the bias is given by E[f̂ (x)] − f (x) ≈ 

 f
′′
(x)k(k + ) and

the variance by V[ f̂ (x)] ≈ σ /(k+ ). So there is a trade-
o� between increasing bias (with large k) and increasing
variance (with small k).

Centered Moving Averages
�e simple moving average described above requires an
odd number of observations to be included in each aver-
age.�is ensures that the average is centered at the middle
of the data values being averaged. But suppose we wish to
calculate a moving average with an even number of obser-
vations. For example, to calculate a -termmoving average,
the trend at time t could be calculated as

f̂ (t − .) = (yt− + yt− + yt + yt+)/
or f̂ (t + .) = (yt− + yt + yt+ + yt+)/

�at is, we could include two terms on the le� and one on
the right of the observation, or one term on the le� and two
terms on the right, and neither of these is centered on t. If
we now take the average of these two moving averages, we
obtain something centered at time t.

f̂ (t)=


[(yt− + yt− + yt + yt+)/]

+


[(yt− + yt + yt+ + yt+)/]

=


yt− +



yt− +



yt +



yt+


yt+

So a  MA followed by a  MA gives a centered moving
average, sometimes written as  ×  MA. �is is also a
weighted moving average of order , where the weights
for each period are unequal. In general, a  × m MA
smoother is equivalent to a weighted MA of order m + 
with weights /m for all observations except for the �rst
and last observations in the average, which have weights
/(m).
Centeredmoving averages are examples of how amov-

ing average can itself be smoothed by another moving
average. Together, the smoother is known as a double mov-
ing average. In fact, any combination of moving averages
can be used together to form a double moving average. For
example, a  ×  moving average is a  MA of a  MA.

Moving Averages. Table  Weight functions aj for some common weighted moving averages

Name a a a a a a a a a a a a

 MA . .

 MA . . .

 ×  MA . . . . . . .

 ×  MA . . .

 ×  MA . . . .

S MA . . . . . −. −. −.

S MA . . . . . . −. −. −. −. −.

H MA . . −.

H MA . . . −. −.

H MA . . . . . −. −.

H MA . . . . . . . −. −. −. −. −.

S, Spencer’s weighted moving average.
H, Henderson’s weighted moving average.
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Moving Averages with Seasonal Data
If the centered  MA was used with quarterly data, each
quarter would be given equal weight. �e weight for the
quarter at the ends of the moving average is split between
the two years. It is this property that makes  ×  MA very
useful for estimating a trend in the presence of quarterly
seasonality. �e seasonal variation will be averaged out
exactly when the moving average is computed. A slightly
longer or a slightly shorter moving average will still retain
some seasonal variation. An alternative to a  ×  MA for
quarterly data is a ×  or ×  which will also give equal
weights to all quarters and produce a smoother �t than the
×MA. Other moving averages tend to be contaminated
by the seasonal variation.
More generally, a  × (km)MA can be used with data

with seasonality of length m where k is a small positive
integer (usually  or ). For example, a  ×  MA may
be used for estimating a trend in monthly seasonal data
(wherem = ).

Weighted Moving Averages
A weighted k-point moving average can be written as

f̂ (t) =
k

∑
j=−k
ajyt+j.

For the weighted moving average to work properly, it is
important that the weights sum to one and that they are
symmetric, that is aj = a−j. However, we do not require
that the weights are between  and . �e advantage of
weighted averages is that the resulting trend estimate is
much smoother. Instead of observations entering and leav-
ing the average abruptly, they can be slowly downweighted.
�ere are many schemes for selecting appropriate weights.
Kendall et al. (, Chap. ) give details.
Some sets of weights are widely used and have been

named a�er their proposers. For example, Spencer ()
proposed a  ×  ×  MA followed by a weighted -term
moving average with weights a = , a = a− = /, and
a = a− = −/.�ese values are not chosen arbitrarily,
but because the resulting combination of moving averages
can be shown to have desirable mathematical properties.
In this case, any cubic polynomial will be undistorted
by the averaging process. It can be shown that Spencer’s
MA is equivalent to the -point weighted moving aver-
age whose weights are −., −., −., ., ., .,
., ., ., ., ., ., −., −., and −..
Another Spencer’s MA that is commonly used is the -
point weighted moving average. Henderson’s weighted
moving averages are also widely used, especially as part
of seasonal adjustment methods (Ladiray and Quenneville

).�e set of weights is known as the weight function.
Table  shows some common weight functions.�ese are
all symmetric, so a−j = aj.
Weighted moving averages are equivalent to kernel

regression when the weights are obtained from a kernel
function. For example, we may choose weights using the
quartic function

Q( j, k) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

{ − [ j/(k + )]} for −k ≤ j ≤ k;
 otherwise.

�en aj is set to Q(j, k) and scaled so the weights sum to
one.�at is,

aj =
Q( j, k)
k

∑
i=−k
Q(i, k)

. ()

Forecasting Using One-Sided Moving
Averages
A simple forecasting method is to average the last few
observed values of a time series.�us

ŷt+h∣t =

k + 

k

∑
j=
yt−j

provides a forecast of yt+h given the data up to time t.
As with smoothing, the more observations included in

the moving average, the greater the smoothing e�ect. A
forecaster must choose the number of periods (k + ) in a
moving average.When k = , the forecast is simply equal to
the value of the last observation.�is is sometimes known
as a “naïve” forecast.
An extremely common variation on the one-sided

moving average is the exponentially weighted moving
average. �is is a weighted average, where the weights
decrease exponentially. It can be written as

ŷt+h∣t =
t−
∑
j=
ajyt−j

where aj = λ( − λ)j. �en, for large t, the weights
will approximately sum to one. An exponentially weighted
moving average is the basis of simple exponential smooth-
ing. It is also used in some process control methods.

Moving Average Processes
A related idea is the moving average process, which is a
time series model that can be written as

yt = et − θet− − θet− − ⋅ ⋅ ⋅ − θqet−q,

where {et} is a white noise series.�us, the observed series
yt , is a weighted moving average of the unobserved et
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series.�is is a special case of an Autoregressive Moving
Average (or ARMA)model and is discussed in more detail
in the entry7Box-Jenkins Time Series Models. An impor-
tant di�erence between thismoving average and those con-
sidered previously is that here the moving average series is
directly observed, and the coe�cients θ, . . . , θq must be
estimated from the data.
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One of the assumptions of the standard regression model
y = Xβ+ε is that there is no exact linear relationship among
the explanatory variables, or equivalently, that the matrix
X of explanatory variables has a full rank.�e problem of
multicollinearity occurs if two or more explanatory vari-
ables are linearly dependent, or near linearly dependent
(including the variable x′ = [, ,⋯, ] , which generates a
constant term). �ere are two types of multicollinearity:
perfect and near multicollinearity.
Perfect multicollinearity occurs if at least two explana-

tory variables are linearly dependent. In that case, the
determinant of matrix X′X equals zero (the X′X matrix

is singular), and therefore ordinary least squares (OLS)
estimates of regression parameters β′ = (β, β,⋯, βk)

β̂ = (X′X)−X′y =
adj(X′X)
det(X′X)

⋅ X′y

are not unique.�is type of multicollinearity is rare, but
may occur if the regression model includes qualitative
explanatory variables, whose e�ect is taken into account
by 7dummy variables. Perfect multicollinearity occurs
in a regression model with an intercept, if the number
of dummy variables for each qualitative variable is not
less than the number of groups of this variable. Perfect
multicollinearity can easily be revealed. A more di�cult
problem is near or imperfect multicollinearity.�is prob-
lem arises if at least two regressors are highly intercorre-
lated. In that case, det(X′X) ≈ , the matrix X′X is ill
conditioned, and therefore the estimated parameters are
numerically imprecise. Furthermore, since the covariance
matrix of estimated parameters is calculated by the for-
mula Cov(β̂) = σ̂ (X′X)−, the variances and covariances
of the estimated parameters will be large. Large standard
errors SE(β̂j) = σ̂

√
(X′X)−jj imply that empirical t-ratios

(tj = β̂j/SE (β̂j)) could be insigni�cant, which may lead
to an incorrect conclusion that some explanatory vari-
ables have to be omitted from the regression model. Also,
large standard errors make interval parameter estimates
imprecise.
Imperfect multicollinearity o�en arises in the time

series regression model (see 7Time Series Regression),
especially in data involving economic time series, while
variables over time tend to move in the same direction.

�e simplest way to detect serious multicollinearity
problems is to analyze variances of estimated parameters,
which are calculated with the following formula:

var(β̂j) = σ (X′X)−jj =
σ̂ 

n

∑
i=

(xij − x̄j) ⋅ ( − Rj )
,

where R j is the coe�cient of determination in the regres-
sion, variable xj is the dependent, and the remaining x’s
are explanatory variables. If variable xj is highly corre-
lated with other regressors, R j will be large (near to ),
and therefore the variance of β̂j will be large. �ere are
some measures of multicollinearity included in standard
statistical so�ware: the variance in�ation factor (VIF), tol-
erance (TOL), condition number (CN), and condition
indices (CI). VIF and TOL are calculated with the follow-
ing formulas:

VIFj =


 − Rj
j = , ,⋯, k TOLj =


VIFj

=  − Rj .
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�e multicollinearity problem is serious if R j > .,
consequently if VIFj > , or equivalently if TOLj < ..
More sophisticated measures of multicollinearity are

condition number, CN, and condition indices, CIi, based
on the use of eigenvalues of the X′X matrix. CN is the
square root of the ratio of the largest eigenvalue to the
smallest eigenvalue, andCIi, i = , , . . . , k, are square roots
of the ratio of the largest eigenvalue to each individual
eigenvalue.�ese measures, which are calculated with the
formulas

CN =

√
λmax
λmin

CIi =

√
λmax

λi
i = , ,⋯, k,

are measures of sensitivity of parameter estimates to small
changes in data. Some authors, such as Belsley et al. (),
suggested that a condition index of – indicates mod-
erate to strong multicollinearity.
Several solutions have been suggested to rectify

the multicollinearity problem. Some are the following:
() increasing the sample size to reduce multicollinearity,
as multicollinearity is a problem of the sample, and not
the population; () dropping one or more variables sus-
pected of causing multicollinearity; () transforming data
as the �rst di�erences ∆Xt = Xt −Xt− or ratios Xt/Xt− t =
, , . . . ,n to eliminate linear or exponential trends;
() ridge regression (see 7Ridge and Surrogate Ridge
Regressions); and () principal component regression.

�e problem of multicollinearity is approached di�er-
ently by econometricians depending on their research goal.
If the goal is to forecast future values of the dependent
variable, based on the determined regression model, the
problem ofmulticollinearity is neglected. In all other cases,
this problem is approached more rigorously.
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Some clustering problems cannot be appropriately solved
with classical clustering algorithms because they require
optimization over more than one criterion. In general,
solutions optimal according to each particular criterion are
not identical.�us, the problem arises of how to �nd the
best solution satisfying as much as possible all criteria con-
sidered. In this sense the set of Pareto e�cient clusterings
was de�ned: a clustering is Pareto e�cient if it cannot be
improved on any criterion without sacri�cing some other
criterion.
A multicriteria clustering problem can be approached

in di�erent ways:

● By reduction to a clustering problem with a single cri-
terion obtained as a combination of the given criteria;

● By constrained clustering algorithms where a selected
criterion is considered as the clustering criterion and
all others determine the constraints;

● By direct algorithms: Hanani () proposed an algo-
rithm based on the dynamic clusters method using the
concept of the kernel, as a representation of any given
criterion. Ferligoj and Batagelj () proposed modi-
�ed relocation algorithms and modi�ed agglomerative
hierarchical algorithms.

Usual Clustering Problems
Cluster analysis (known also as classi�cation and taxon-
omy) deals mainly with the following general problem:
given a set of units, U , determine subsets, called clusters,
C, which are homogeneous and/or well separated accord-
ing to the measured variables (e.g., Sneath and Sokal ;
Hartigan ; Gordon ). �e set of clusters forms a
clustering.�is problem can be formulated as an optimiza-
tion problem:
Determine the clustering C∗ for which

P(C∗) = min
C∈Φ

P(C)

where C is a clustering of a given set of units, U , Φ is the
set of all feasible clusterings and P : Φ → R a criterion
function.
As the set of feasible clusterings is �nite a solution

of the clustering problem always exists. Since this set is
usually large it is not easy to �nd an optimal solution.
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A Multicriteria Clustering Problem
In a multicriteria clustering problem (Φ,P,P, . . . ,Pk) we
have several criterion functions Pt , t = , . . . , k over the
same set of feasible clusterings Φ, and our aim is to deter-
mine the clustering C ∈ Φ in such a way that

Pt(C)→ min, t = , . . . , k.

In the ideal case, we are searching for the dominant set of
clusterings.�e solution C is the dominant solution if for
each solution C ∈ Φ and for each criterion Pt , it holds that

Pt(C) ≤ Pt(C), t = , . . . , k.

Usually the set of dominant solutions is empty.�erefore,
the problem arises of �nding a solution to the problem that
is as good as is possible according to each of the given cri-
teria. Formally, the Pareto-e�cient solution is de�ned as
follows:
For C,C ∈ Φ , solution C dominates solution C if

and only if

Pt(C) ≤ Pt(C), t = , . . . , k,

and for at least one i ∈ , . . . , k the strict inequality Pi(C) <
Pi(C) holds. We denote the dominance relation by ≺.
≺ is a strict partial order.�e set of Pareto-e�cient solu-
tions, Π, is the set of minimal elements for the dominance
relation:

Π = {C ∈ Φ : ¬∃C′ ∈ Φ : C′ ≺ C}

In other words, the solution C∗ ∈ Φ is Pareto-e�cient if
there exists no other solution C ∈ Φ such that

Pt(C) ≤ Pt(C∗), t = , . . . , k,

with strict inequality for at least one criterion. A Pareto-
clustering is a Pareto-e�cient solution of the multicriteria
clustering problem (Ferligoj and Batagelj ).
Since the optimal clusterings for each criterion are

Pareto-e�cient solutions the set Π is not empty. If the set
of dominant solutions is not empty then it is equal to the
set of Pareto-e�cient solutions.

Solving Discrete Multicriteria Optimization
Problems
Multicriteria clustering problems can be approached as a
multicriteria optimization problem, that has been treated
by several authors (e.g., Chankong and Haimes ;
Ferligoj and Batagelj ). In the clustering case, we are
dealing with discrete multicriteria optimization (the set of
feasible solutions is �nite), which means that many very
useful theorems in the �eld of multicriteria optimization
do not hold, especially those which require convexity. It
was proven that if, for each of the given criteria, there is

a unique solution, then the minimal number of Pareto-
e�cient solutions to the given multicriteria optimization
problem equals the number of di�erent minimal solutions
of the single criterion problems.
Although several strategies haven been proposed for

solving multicriteria optimization problems explicitly, the
most common is the conversion of the multicriteria opti-
mization problem to a single criterion problem.

Direct Multicriteria Clustering Algorithms
�e multicriteria clustering problem can be approached
e�ciently by using direct algorithms. Two types of direct
algorithms are known: a version of the relocation algo-
rithm, and themodi�ed agglomerative (hierarchical) algo-
rithms (Ferligoj and Batagelj ).

Modified Relocation Algorithm
�e idea of the modi�ed relocation algorithm for solv-
ing the multicriteria clustering problem follows from the
de�nition of a Pareto-e�cient clustering. �e solutions
obtained by the proposed procedure can be only local
Pareto clusterings.�erefore, the basic procedure should be
repeated many times (at least hundreds of times) and the
obtained solutions should be reviewed. An e�cient review
of the obtained solutions can be systematically done with
an appropriate metaprocedure with which the true set of
Pareto clusterings can be obtained.

Modified Agglomerative Hierarchical Approach
Agglomerative hierarchical clustering algorithms usually
assume that all relevant information on the relationships
between the n units from the set U is summarized by a
symmetric pairwise dissimilarity matrix D = [dij]. In
the case of multicriteria clustering we assume we have k
dissimilarity matrices Dt , t = , . . . , k, each summarizing
all relevant information obtained, for example, in the k
di�erent situations.�e problem is to �nd the best hier-
archical solution which satis�es as much as is possible all k
dissimilarity matrices.
One approach to solving the multicriteria clustering

problem combines the given dissimilaritymatrices (at each
step) into a composed matrix.�is matrix D = [dij] can,
for example, be de�ned as follows:

dij = max (dtij; t = , . . . , k)

dij = min (dtij; t = , . . . , k)

dij =
k

∑
t=

αtdtij ,
k

∑
t=

αt = 
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Following this approach, one of several decision rules
(e.g., pessimistic, optimistic, Hurwicz, Laplace) for mak-
ing decisions under uncertainty (Chankong and Haimes
) can be used at the composition and selection step of
the agglomerative procedure.

Conclusion
�e multicriteria clustering problem can be treated with
the proposed approaches quite well if only a few hundreds
units are analysed. New algorithms have to be proposed for
large datasets.
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Basic Definitions
�e �eld variously described asmulticriteria decision mak-
ing (MCDM) or multicriteria decision analysis or aid
(MCDA) is that branch of operational research/mana-
gement science (OR/MS) that deals with the explicit
modeling of multiple con�icting goals or objectives in
management decision making. Standard texts in OR/MS
typically do include identi�cation of objectives (o�en
stated as plural) as a key step in the decision-making pro-
cess, but the ensuing discussion appears to assume that
such objectives are easily aggregated into a single measure
of achievement which can formally be optimized.�e �eld
of MCDA, however, arose from a recognition that system-
atic and coherent treatment of multiple objectives requires
structured decision support to ensure that all interests are
kept in mind and that an informed balance is achieved.
See, for example, the discussions and associated references
in Chap.  of Belton and Stewart () and Chap.  of
Figueira et al. ().

�e starting point of MCDA is the identi�cation of
the critical criteria according to which potential courses
of action (choices, policies, strategies) may be compared
and evaluated. In this sense, each criterion is a partic-
ular point of view or consideration according to which
preference orders on action outcomes can (more-or-less)
unambiguously be speci�ed. Examples of such criteriamay
include issues such as investment costs, job creation, levels
of river pollution etc., as well as more subjective crite-
ria such as aesthetic appeal. With careful selection of the
criteria, preference ordering according to each could be
essentially self-evident apart from some fuzziness around
the concept equality of performance.
Selection of criteria is a profound topic in its own right,

but is perhaps beyond the scope of the present article.
Somediscussionmay be found inKeeney andRai�a ();
Keeney (); Belton and Stewart (). In essence, the
analyst needs to ensure that values and aspirations of the
decision maker(s) have been fully captured by the chosen
criteria, while still retaining amanageably small number of
criteria (typically, one strives for not muchmore than  or
 criteria inmost applications). Care needs to be taken not
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to double-count issues, and that preference orders can be
understood on each criterion independently of the others.
Suppose then that say m criteria have been de�ned as

above. For any speci�ed course of action, say a ∈ A (the
set of all possible actions), we de�ne zi(a) to be a mea-
sure of performance of a according to the perspective of
criterion i, for i = , . . . ,m.�e scaling at this stage is not
important, the only requirement being that action a is pre-
ferred to action b in terms of criterion i (a ≻i b) if and only
if zi(a) > zi(b)+ єi for some tolerance parameter єi. Apart
from the brief comments in the �nal section, we assume
that these measures of performance are non-stochastic.

�e primary aim of MCDA is to support the deci-
sion maker in aggregating the single-criterion preferences
into an overall preference structure, in order to make a
�nal selection which best satis�es all criteria, or to select a
reduced subset ofA for further discussion and evaluation.
It is important to recognize that this aggregation phase
contains fundamentally subjective elements, namely the
value judgments and tradeo�s provided by the decision
maker. We shall brie�y review some of the support pro-
cesses which are used. A comprehensive overview of these
approaches may be found in Figueira et al. ().

Methods of Multicriteria Analysis
It is important to recognize that two distinct situationsmay
arise in the context described above, and that these may
lead to broadly di�erent forms of analysis:

● Discrete choice problems: In this case, A consists of
a discrete set of options, e.g., alternative locations for
a power station. �e discrete case arises typically at
the level of high level strategic choices, within which
many of the criteria may require subjective evaluation
of alternatives.

● Multiobjective optimization problems:�ese problems
are o�en de�ned inmathematical programming terms,
i.e., an option will be de�ned in terms of a vector of
decision variables, say x ∈ X ⊂ Rn. �e measures
of performance for each criterion typically need to
be de�ned quantitatively in terms of functions fi(x)
mapping Rn → R for each i.

�e methods adopted can be characterized in two
ways:

● By the underlying paradigm formodeling human pref-
erences (preference modeling);

● By the stage of the analysis at which the decision mak-
ers’ judgments are brought into play (timing of prefer-
ence statements).

We deal with each of these in turn.

Preference Modeling
At least four di�erent paradigms can be identi�ed.

. Value scoring or utility methods: �e approach is
�rst to re-scale the performance measures zi(a) so as
to be commensurate in some way, typically by means
of transformation through a partial value function,
say vi(zi). �is rescaling needs to ensure that equal-
sized intervals in the transformed scale represent the
same importance to the decision maker (in terms of
trade-o�s with other criteria) irrespective of where
they occur along the scale. Relatively mild assump-
tions (under conditions of deterministic performance
measures) imply that an overall value of a can be mod-
eled additively, i.e., as V(a) = ∑

m
i= wivi(zi(a)). �e

assessment of the partial values and weights (wi) may
be carried out by direct assessment (e.g., Dyer ),
indirectly such as by the analytic hierarchy process
approach (Saaty ), or by learning from previous
choices (Siskos et al. ).

. Metric methods: In this approach, some form of goal
or aspiration is speci�ed (by the decision maker) for
each criterion, say Gi for each i. A search (discrete
or by mathematical optimization) is then conducted
to �nd the option for which the performance lev-
els z(a), z(a), . . . , zm(a) approach the goal levels
G,G, . . . ,Gm as closely as possible. Typically, L, L,
or L∞ metrics are used to de�ne closeness, with pro-
vision for di�erential weighting of criteria. Di�erences
do also arise in terms of whether over-achievement of
goals adds additional bene�ts or not. Such approaches
are termed (generalized) goal programming, and
are reviewed in Lee and Olson; Wierzbicki (;
). Goal programming is primarily applied in the
context of the multiobjective optimization class of
model.

. Outrankingmethods:�ese methods consider action
alternatives pairwise in terms of their performance
levels on all criteria, in order to extract the level of
evidence in the data provided by the performance
measures which either support (are concordant with)
or oppose (are discordant with) a conclusion that the
one action is better than the other. �ese consider-
ations generate partial rankings of the actions, or at
least a classi�cation of the actions into ordered pref-
erence classes. Descriptions of di�erent outranking
approaches may be found in Part III of Figueira et al.
().

. Arti�cial intelligence: Greco et al. () describe
how observed choices by the decision maker(s) can
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be used to extract decision rules for future multicri-
teria decisions, without explicit or formal preference
modeling along the lines described above.

Timing of Preference Statements
�ree possible stages of elicitation of values and pref-
erences from the decision maker may be recognized as
described below (although in practice no one of these is
used completely in isolation).

. Elicitation prior to analysis of options: In this app-
roach, a complete model of the decision maker pref-
erences is constructed from a sequence of responses
to questions about values, trade-o�s, relative impor-
tance, etc.�e resulting model is then applied to the
elements ofA in order to select the best alternative or a
shortlist of alternatives.�is approach is perhaps most
o�en used with value scoringmethods, in which a sim-
ple and transparent preferencemodel (e.g., the additive
value function) is easily constructed and applied.

. Interactivemethods:Hereatentativepreferencemodel,
incomplete in many ways, is used to generate a small
number of possible choices which are presented to the
decision maker, who may either express strong pref-
erences for some or dislike of others. On the basis of
these stated preferences, models are re�ned and a new
set of choices generated. Even in the prior elicitation
approach, some degree of interaction of this nature
will occur, where in the application of value scoring
or outranking approaches to discrete choice problems,
results will inevitably be fed back to decision mak-
ers for re�ection on the value judgements previously
speci�ed.However, it is especiallywithcontinuousmul-
tiobjective optimization problems that the interaction
becomes �rmly designed and structured into the pro-
cess.SeeChap.ofMiettinen()foracomprehensive
coverage of such structured interaction.

. Posterior value judgements: If each performance
measure is to be maximized, then an action a is said
to dominate action b if zi(a) ≥ zi(b) for all crite-
ria, with strict inequality for at least one criterion.
With discrete choice problems, the removal of domi-
nated actions from A may at times reduce the set of
options to such a small number that no more analy-
sis is necessary – decision makers can make a holistic
choice. In some approaches to multiobjective opti-
mization (see also Miettinen ), a similar attempt
is made to compute the “e�cient frontier,” i.e., the
image in criterion space of all non-dominated options,
which can be displayed to the decision maker for a
holistic choice. In practice, however, this approach is
restricted to problems with two or three criteria only

which can be displayed graphically (although there
have been attempts at graphical displays for slightly
higher dimensionality problems).

Stochastic MCDA
As indicated at the start, we have focused on deterministic
problems, i.e., inwhich a �xed (even if slightly “fuzzy”) per-
formancemeasurezi(a)canbeassociatedwitheachaction-
criterion combination. However, there do of course exist
situations in which each zi(a) will be a random variable.

�e introduction of stochastic elements into the mul-
ticriteria decision making problem introduces further
complications. Attempts have been made to adapt value
scoring methods to be consistent with the von Neumann/
Morgenstern axioms of expected utility theory, to linkmul-
ticriteria decision analysis with scenario planning, and to
treat probabilities of achieving various critical outcomes as
separate “criteria.”Discussion of these extensions is beyond
the scope of space available for this short article, but a
review is available in Stewart ().
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Greco S, Matarazzo B, Słowiński R () Decision rule approach.
In: Figueira J, Greco S, Ehrgott M (eds) Multiple criteria deci-
sion analysis – state of the art annotated surveys. International
series in operations research and management science, vol ,
chapter . Springer, New York, pp –

Keeney RL () Value-focused thinking: a path to creative decision
making. Harvard University Press, Cambridge

Keeney RL, Raiffa H () Decisions with multiple objectives.
Wiley, New York

Lee SM, Olson DL () Goal programming. In: Gal T, Stewart TJ,
Hanne T (eds) Multicriteria decision making: advances in
MCDMmodels, algorithms, theory, and applications, chapter .
Kluwer, Boston

Miettinen K () Nonlinear multiobjective optimization, Interna-
tional series in operations research and management science,
vol . Kluwer, Dordrecht

Saaty TL () The analytic hierarchy and analytic network pro-
cesses for the measurement of intangible criteria and for
decision-making. In: Figueira J, Greco S, Ehrgott M (eds) Multi-
ple criteria decision analysis – state of the art annotated surveys.
International series in operations research and management
science, vol , chapter . Springer, New York, pp –

Siskos Y, Grigoroudis E, Matsatsinis N () MAUT – multiat-
tribute utility theory. In: Figueira J, Greco S, Ehrgott M (eds)
Multiple criteria decision analysis – state of the art anno-
tated surveys. International series in operations research and
management science, vol , chapter . Springer, New York,
pp –

Stewart TJ () Dealing with uncertainties in MCDA. In:
Figueira J, Greco S, Ehrgott M (eds) Multiple criteria deci-
sion analysis – state of the art annotated surveys. International
series in operations research and management science, vol ,
chapter . Springer, New York, pp –

Wierzbicki AP () Reference point approaches. In: Gal T,
Stewart TJ, Hanne T (eds) Multicriteria decision making:
advances in MCDM models, algorithms, theory, and applica-
tions, chapter , Kluwer, Boston

Multidimensional Scaling

Ingwer Borg
Professor of Applied Psychological Methods
University of Giessen, Giessen, Germany
Scienti�c Director
GESIS, Mannheim, Germany

7Multidimensional scaling (MDS) is a family of methods
that optimally map proximity indices of objects into
distances between points of amultidimensional space with
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a given dimensionality (usually two or three dimensions).
�e main purpose for doing this is to visualize the data
so that the user can test structural hypotheses or discover
patterns “hidden” in the data.
Historically, MDS began as a psychological model for

judgments of (dis)similarity. A typical example of this early
era is the following. Wish () was interested to �nd out
how persons generate overall judgments on the similar-
ity of countries. He asked a sample of subjects to assess
each pair of twelve countries with respect to their global
similarity. For example, he asked “How similar are Japan
and China?”, o�ering a -point answer scale from “very
dissimilar” to “very similar” for the answer. On purpose,
“there were no instructions concerning the characteris-
tics on which these similarity judgments were to be made;
this was information to discover rather than to impose”
(Kruskal and Wish :).�e resulting numerical rat-
ings were averaged over subjects, and then mapped via
MDS into the distances among  points of a Euclidean
plane.�e resulting MDS con�guration (Fig. ) was inter-
preted to show that the ratings were essentially generated
from two underlying dimensions.
As an MDS model, Wish () used ordinal MDS, the

most popular MDSmodel. It maps the proximities of the n
objects (δij) into distances dij of the n × m con�guration
X such that their ranks are optimally preserved. Hence,
assuming that the δij ’s are dissimilarities, the function
f : δij → dij(X) is monotone so that f : δij < δkl →
dij(X) ≤ dkl(X), for all pairs (i, j) and (k, l) for which
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data are given. Missing data impose no constraints onto
the distances.
Another popular MDS model is interval MDS, where

f : δij → a + b ⋅ δij = dij(X). �is model assumes that
the data are given on an interval scale. Hence, both a and
b(≠ ) can be chosen arbitrarily. In particular, they can be
chosen such that the re-scaled proximities are equal to the
distances of a given MDS con�guration X.
A second facet of an MDS model is the distance func-

tion that it uses. In psychology, the family of Minkow-
ski distances has been studied extensively as a model of
judgment. Minkowski distances can be expressed by the
formula

d(p)ij (X) = (
m

∑
a=

∣xia − xja∣p)
/p
, p ≥ . ()

Setting p =  results in the city-block metric, setting p = 
in the Euclidean distance. If p grows, dij is quickly dom-
inated by its largest intra-dimensional di�erence (out of
the a = , . . . ,m dimensions). Such metrics supposedly
explain fast and frugal (dis)similarity judgments.�e city-
block metric, in contrast, models careful judgments with
important consequences for the individual. When MDS is
used for exploratory purposes, however, only p =  should
be used, because all other choices imply geometries with
non-intuitive properties.

�e �t of the MDS representation to the data can be
seen from its Shepard diagram. For our country-similarity
example, this is shown in Fig. .�e plot exhibits how the
data are related to the distances. It also shows the mono-
tone regression line.�e vertical scatter of the points about
this regression line corresponds to the model’s loss or mis-
�t. It ismeasured as∑i<j e


ij = ∑i<j(dij(X)−f (δij)) , for all

points i und j.�e f (δij)’s here are disparities, i.e., proxim-
ities that are re-scaled using all admissible transformations
of the chosen scale level to optimally approximate the cor-
responding distances of the MDS con�guration X. �e
optimization is done by ordinal or linear regression (or,
generally, by regression of type f ) so that f (δij) = d̂ij(X).
In order to obtain an interpretable measure of model mis-
�t, the error sum is normed to yield the standardMDS loss
function

Stress =
√

∑
i<j

(dij(X) − d̂ij)/∑
i<j
dij(X). ()

A perfect MDS solution has a Stress of zero. In this
case, the distances of the MDS solution correspond per-
fectly to the disparities. For the above example, we get
Stress = .. Evaluating if this is an acceptably low value is
complex. A minimum criterion is that the observed Stress
value should be clearly smaller than the Stress that results
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for random data. Other criteria (such as the number of
points (n), the number of missing data, the restrictiveness
of theMDSmodel, or the dimensionality of theMDS space
(m)), but also the interpretability of the solution have to
be taken into account. Indeed, it may be true that Stress
is high but the con�guration is nevertheless stable over
replications of the data. �is case can result if the data
have a large random error component. MDS, then, acts
as a data smoother that irons out the error in the distance
representation.
MDS methods allow one to utilize many di�erent

proximity measures. One example is direct judgments of
similarity or dissimilarity as in the example given above.
Another example are intercorrelations of test items over
a sample of persons. A third example are co-occurrence
coe�cients that assess how o�en an event X is observed
together with another event Y.
MDS is also robust against randomly distributed miss-

ing data. Computer simulations show that some % of the
proximities may be missing, provided the data contain lit-
tle error and the number of points (n) is high relative to the
dimensionality of theMDS space (m).�e data can also be
quite coarse and even dichotomous.
Apopular variety ofMDS is IndividualDi�erences Scal-

ing or Indscal (Carroll and Chang ). Here, we have
N di�erent proximity matrices, one for each of N per-
sons.�e idea of the model is that these proximities can
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be explained by individually stretching or compressing
a common MDS space along a �xed set of dimensions.
�at is,

d(k)ij (X) =

¿
Á
ÁÀ

m

∑
a=
w(k)
a (xia − xja),w(k)

a ≥ , ()

where k = , . . . ,N.�e weight w(k)
a is interpreted as the

salience of dimension a for individual k. Carroll and Wish
() used Indscal on the overall similarity ratings of
di�erent individuals for a set of countries, similar to the
data discussed above. What they �nd is that one group
of persons (“doves”) pays much attention to economic
development, while the other group (“falcons”) emphasizes
almost only political alignment of the countries with the
West. Note, though, that these interpretations depend on
the norming of X. Amore transparent way to analyze such
data is to scale each individual’s data matrix by itself, and
then proceed by Procrustean �ttings of the various solu-
tions to each other, followed by �nding optimal dimen-
sions for an Indscal-type weighting model (Lingoes and
Borg ).
A secondpopular variety ofMDS isUnfolding.�e pro-

totypical data for this model are preference ratings of a
set of persons for a set of objects.�ese data are mapped
into distances between person-points and object-points
in a “joint” space. �e person-points are interpreted as
“ideal” points that express the persons’ points of maximal
preference in the object space.
MDS solutions can be interpreted in di�erent ways.

�emost popular approach is interpreting dimensions, but
this is just a special case of interpreting regions. Regions
are partitions of the MDS space which sort its points into
subgroups that are equivalent in terms of substance. A sys-
tematic method for that purpose is facet theory (Borg
and Shye ), an approach that o�ers methods to cross-
classify the objects into substantively meaningful cells of
a Cartesian product. �e facets used for these classi�ca-
tions induce, one by one, partitions into the MDS space if
they are empirically valid.�e facets themselves are o�en
based on theoretical considerations, but they can also be
attributes that the objects possess by construction. Figure 
shows an example. Here, (symmetrized) confusion prob-
abilities of  Morse signals are represented as distances
of a -dimensional MDS con�guration.�e space is parti-
tioned by dashed lines into �ve regions that contain signals
with only short beeps (coded as ’s); signalswithmore short
than long (coded as ’s) beeps; etc.�e solid lines cut the
space into ten regions that each contain signals with equal
duration (. seconds to . seconds).
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sion probabilities of  Morse signals
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Morse signals, enforcing linearized regions

�e solution in Fig.  is found by exploratory
ordinal MDS. �ere also exist various methods for
con�rmatory MDS that impose additional external con-
straints onto the MDS model. Figure  shows an example
of an ordinal MDS with the additional constraint X=YC,
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where Y is a  ×  matrix of composition and dura-
tion codes, respectively, assigned to the  Morse sig-
nals; C is an unknown matrix of weights that re-scales
Y’s columns monotonically. �e con�rmatory MDS pro-
cedure optimally represents the proximities in the sense
of ordinal MDS while satisfying X=YC.�e resulting con-
�guration linearizes the regions of the MDS con�guration
which makes the solution easier to interpret. Provided its
Stress is still acceptable, this is the preferred MDS rep-
resentation, because it re�ects a clear law of formation
that is more likely to be replicable than an ad-hoc system
of regions. Many alternative side constraints are conceiv-
able. For example, an obvious modi�cation is to require
that C is diagonal. �is enforces an orthogonal lattice of
partitioning lines onto the solution in Fig. .
Many computer programs exist for doing MDS (for an

overview, see Borg and Groenen ()). All large statis-
tics packages o�er MDSmodules. One of the most �exible
programs is Proxscal, one of the two MDS modules in
Spss.�e Spss package also o�ers Prefscal, a powerful
program for unfolding. For R, De Leeuw and Mair ()
have written a comprehensive MDS program called Sma-
cofwhich can be freely downloaded fromhttp://CRAN.R-
project.org.

About the Author
Dr Ingwer Borg is Professor of Applied Psychological
Methods at the University of Giessen (Giessen, Germany),
and Scienti�c Director of the Department of Survey
Design & Methodology at GESIS (Mannheim, Germany).
He is Past President of the Facet�eory Association and of
the International Society for the Study of Work and Orga-
nizational Values. He has published some  papers and 
books, including Modern Multidimensional Scaling (with
Patrick Groenen, Springer, ).

Cross References
7Data Analysis
7Distance Measures
7Multidimensional Scaling: An Introduction
7Multivariate Data Analysis: An Overview
7Multivariate Statistical Analysis
7Sensometrics

References and Further Reading
Borg I, Groenen PJF () Modern multidimensional scaling, nd

edn. Springer, New York
Borg I, Shye S () Facet theory: form and content. Sage, Newbury

Park
Carroll JD, Chang JJ () Analysis of individual differences in mul-

tidimensional scaling via an N-way generalization of ‘Eckart-
Young’ decomposition. Psychometrika :–

Carroll JD, Wish M () Multidimensional perceptual models and
measurement methods. In: Carterette EC, Friedman MP (eds)
Handbook of perception. Academic, New York, pp –

Kruskal JB, Wish M () Multidimensional scaling. Sage, Beverly
Hills

Lingoes JC, Borg I () A direct approach to individual dif-
ferences scaling using increasingly complex transformations.
Psychometrika, :–

Wish M () Individual differences in perceptions and prefer-
ences among nations. In: King CW, Tigert D (eds) Attitude
research reaches new heights. American Marketing Association,
Chicago

Multidimensional Scaling: An
Introduction
Nataša Kurnoga Živadinović
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7Multidimensional scaling (MDS), also called perceptual
mapping, is based on the comparison of objects (persons,
products, companies, services, ideas, etc.). �e purpose
of MDS is to identify the relationships between objects
and to represent them in geometrical form. MDS is a set
of procedures that allows the researcher to map distances
between objects in a multidimensional space into a lower-
dimensional space in order to show how the objects are
related.
MDS was introduced by Torgerson (). It has its

origins in psychology where it was used to understand
respondents’ opinions on similarities or dissimilarities
between objects. MDS is also used in marketing, man-
agement, �nance, sociology, information science, political
science, physics, biology, ecology, etc. For example, it can
be used to understand the perceptions of respondents, to
identify unrecognized dimensions, for segmentation anal-
ysis, to position di�erent brands, to position companies,
and so on (for descriptions of various examples, see Borg
and Groenen  and Hair et al. ).
MDS starts from the proximities between the objects

that express the similarity between them.�ere are di�er-
ent types of MDS: metric MDS (the similarities data are
quantitative; input and output matrices are metric) and
nonmetricMDS (the similarities data are qualitative; input
matrix is nonmetric).

�e steps involved in conducting MDS consist of
problem formulation, selection of MDS procedure, deter-
mination of the number of dimensions, interpretation, and
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validation. Problem formulation includes several tasks.
First, the objectives of MDS should be identi�ed. �e
nature of the variables to be included in MDS should be
speci�ed. Also, an appropriate number of variables should
be chosen as the number of variables in�uences the result-
ing solution. �e selection of MDS procedure depends
on the nature of the input data (metric or nonmetric).
Nonmetric MDS procedures assume that the input data
is ordinal, but the resulting output is metric. Metric MDS
procedures assume that both input and output data are
metric. MDS procedures estimate the relative position of
each object in a multidimensional space. �e researcher
must decide on a number of dimensions.�e objective is
to achieve an MDS solution that best �ts the data in the
smallest number of dimensions.�ough the �t improves
as the number of dimensions increases, the interpreta-
tion becomes more complicated.�e interpretation of the
dimensions and the con�guration require subjective judg-
ment, including some elements of judgment on the part of
both the researcher and the respondent.�e objectives of
MDS are not achieved if an appropriate interpretation is
lacking. Ultimately, the researcher must consider the qual-
ity of theMDS solution. (For detailed descriptions of MDS
steps, see Cox and Cox , Hair et al. , and Kruskal
and Wish .)
To apply MDS, the distances between objects must

�rst be calculated. �e Euclidean distance is the most
commonly used distance measure. �e distance between

objects A and B is given by dAB =

√
v

∑
i=

(xAi − xBi).

MDS begins with a matrix (n × n) consisting of the
distances between objects. From the calculated dis-
tances, a graph showing the relationship among objects is
constructed.

�e graphical representation used in MDS is a per-
ceptual map, also called a spatial map. It represents the
respondent’s perceptions of objectives and shows the rela-
tive positioning of all analyzed objects. Let us suppose that
there are �ve objects, A, B, C, D, and E. If objects A and
B are judged by the respondents as most similar in com-
parison to all other pairs of objects (AC, AD, AE, BC, BD,
etc.), the MDS procedures will position the objects A and
B so that their distance is smaller than the distance of any
other two objects. A perceptual map is constructed in two
or more dimensions. In a two-dimensional map, objects
are represented by points on a plane. In the case of a higher
number of dimensions, graphical representation becomes
more complicated.
MDS can be conducted at the individual or group

level. At the individual level, perceptual maps should be
constructed on a respondent-by-respondent base. At the

group level, the average judgment of all respondents within
a group should be established and the perceptual maps of
one or more groups constructed.
Statistical packages such as statistical analysis system

(SAS), statistical package for the social sciences (SPSS),
Stata, and STATISTICA are suitable for MDS.
Methods closely related to MDS are factor analysis

(see 7Factor Analysis and Latent Variable Modelling),
7correspondence analysis, and cluster analysis (see Borg
and Groenen , Hair et al. ; see also the entry
7Cluster Analysis: An Introduction).
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Multilevel Analysis, Hierarchical Linear
Models
�e term “Multilevel Analysis” is mostly used interchange-
ably with “Hierarchical LinearModeling,” although strictly
speaking these terms are distinct. Multilevel Analysis may
be understood to refer broadly to the methodology of
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research questions and data structures that involve more
than one type of unit. �is originated in studies involv-
ing several levels of aggregation, such as individuals and
counties, or pupils, classrooms, and schools. Starting with
Robinson’s () discussion of the ecological fallacy, where
associations between variables at one level of aggregation
are mistakenly regarded as evidence for associations at a
di�erent aggregation level (see Alker , for an extensive
review), this led to interest in how to analyze data including
several aggregation levels.�is situation arises as a matter
of course in educational research, and studies of the con-
tributions made by di�erent sources of variation such as
students, teachers, classroom composition, school organi-
zation, etc., were seminal in the development of statistical
methodology in the s (see the review in Chap.  of de
Leeuw and Meijer ). �e basic idea is that studying
the simultaneous e�ects of variables at the levels of stu-
dents, teachers, classrooms, etc., on student achievement
requires the use of regression-type models that comprise
error terms for each of those levels separately; this is simi-
lar to mixed e�ects models studied in the traditional linear
models literature such as Sche�é ().

�e prototypical statistical model that expresses this
is the Hierarchical Linear Model, which is a mixed e�ects
regression model for nested designs. In the two-level
situation – applicable, e.g., to a study of students in class-
rooms – it can be expressed as follows.�e more detailed
level (students) is called the lower level, or level ; the
grouping level (classrooms) is called the higher level, or
level .Highlighting the distinctionwith regular regression
models, the terminology speaks of units rather than cases,
and there are speci�c types of unit at each level. In our
example, the level- units, students, are denoted by i and
the level- units, classrooms, by j. Level- units are nested
in level- units (each student is a member of exactly one
classroom) and the data structure is allowed to be unbal-
anced, such that j runs from  toN while i runs, for a given
j, from  to nj.�e basic two-level hierarchical linearmodel
can be expressed as

Yij = β +
r

∑
h=

βh xhij +Uj +
p

∑
h=
Uhj zhij + Rij; (a)

or, more succinctly, as

Y = X β + Z U + R. (b)

Here Yij is the dependent variable, de�ned for level- unit i
within level- unit j; the variables xhij and zhij are the
explanatory variables. Variables Rij are residual terms, or
error terms, at level , while Uhj for h = , . . . , p are resid-
ual terms, or error terms, at level . In the case p =  this

is called a random intercept model, for p ≥  it is called a
random slope model. �e usual assumption is that all Rij
and all vectors Uj = (Uj, . . . ,Upj) are independent, Rij
having a normal N (, σ ) and Uj having a multivariate
normalNp+(,T) distribution. Parameters βh are regres-
sion coe�cients (�xed e�ects), while the Uhj are random
e�ects. �e presence of both of these makes () into a
mixed linear model. In most practical cases, the variables
with random e�ects are a subset of the variables with �xed
e�ects (xhij = zhij for h ≤ p; p ≤ r), but this is not necessary.

More Than Two Levels
�is model can be extended to a three- or more-level
model for data with three or more nested levels by includ-
ing random e�ects at each of these levels. For example, for
a three level structure where level- units are denoted by
k = , . . . ,M, level- units by j = , . . . ,Nk, and level- units
by i = , . . . ,nij, the model is

Yijk = β +
r

∑
h=

βh xhijk +Ujk +
p

∑
h=
Uhjk zhijk + Vk

+

q

∑
h=
Vhk whijk + Rijk, ()

where the Uhjk are the random e�ects at level , while the
Vhk are the randome�ects at level . An example is research
into outcome variables Yijk of students (i) nested in class-
rooms ( j) nested in schools (k), and the presence of error
terms at all three levels provides a basis for testing e�ects
of pupil variables, classroom or teacher variables, as well as
school variables.

�e development both of inferential methods and of
applications was oriented �rst to this type of nested mod-
els, but much interest now is given also to the more gen-
eral case where the restriction of nested random e�ects
is dropped. In this sense, multilevel analysis refers to
methodology of research questions and data structures
that involve several sources of variation – each type of units
then refers to a speci�c source of variation, with or without
nesting. In social science applications this can be fruitfully
applied to research questions in which di�erent types of
actor and context are involved; e.g., patients, doctors, hos-
pitals, and insurance companies in health-related research;
or students, teachers, schools, and neighborhoods in edu-
cational research.�e word “level” then is used for such a
type of units. Given the use of randome�ects, themost nat-
ural applications are those where each “level” is associated
with some population of units.
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Longitudinal Studies
A special area of application of multilevel models is lon-
gitudinal studies, in which the lowest level corresponds
to repeated observations of the level-two units. O�en the
level-two units are individuals, but these may also be
organizations, countries, etc. �is application of mixed
e�ectsmodels was pioneered by Laird andWare (). An
important advantage of the hierarchical linear model over
other statistical models for longitudinal data is the possi-
bility to obtain parameter estimates and tests also under
highly unbalanced situations, where the number of obser-
vations per individual, and the time points where they
are measured, are di�erent between individuals. Another
advantage is the possibility of seamless integration with
nesting if individuals within higher-level units.

Model Specification
�e usual considerations for model speci�cation in linear
models apply here, too, but additional considerations arise
from the presence in the model of the random e�ects and
the data structure being nested or having multiple types
of unit in some other way. An important practical issue
is to avoid the ecological fallacy mentioned above; i.e., to
attribute �xed e�ects to the correct level. In the original
paper by Robinson (), one of the examples was about
the correlation between literacy and ethnic background as
measured in the USA in the s, computed as a corre-
lation at the individual level, or at the level of averages
for large geographical regions. �e correlation was .
between individuals, and . between regions, illustrat-
ing how widely di�erent correlations at di�erent levels of
aggregation may be.
Consider a two-level model () where variable X with

values xij is de�ned as a level- variable – literacy in Robin-
son’s example. For “level- units” we also use the term
“groups.” To avoid the ecological fallacy, one will have to
include a relevant level- variable that re�ects the compo-
sition of the level- units with respect to variable X.�e
mostly used composition variable is the group mean of X,

x̄.j =

nj

nj

∑
i=
xij.

�e usual procedure then is to include xij as well as x̄.j
among the explanatory variables with �xed e�ects. �is
allows separate estimation of the within-group regression
(the coe�cient of xij) and the between-group regression
(the sum of the coe�cients of xij and x̄.j).
In some cases, notably in many economic studies (see

Greene ), researchers are interested especially in the
within-group regression coe�cients, and wish to control
for the possibility of unmeasured heterogeneity between

the groups. If there is no interest in the between-group
regression coe�cients one may use a model with �xed
e�ects for all the groups: in the simplest case this is

Yij = β +
r

∑
h=

βh xhij + γj + Rij. ()

�e parameters γj (which here have to be restricted, e.g.,
to have a mean  in order to achieve identi�ability) then
represent all di�erences between the level-two units, as far
as these di�erences apply as a constant additive term to all
level- units within the group. For example in the case of
longitudinal studies where level- units are individuals and
a linear model is used, this will represent all time-constant
di�erences between individuals. Note that () is a linear
model with only one error term.
Model () implies the distribution

y ∼ Np (X β, Z TZ’ + σ I) .

Generalizations are possible where the level- residual
terms Rij are not i.i.d.; they can be heteroscedastic, have
time-series dependence, etc.�e speci�cation of the vari-
ables Z having random e�ects is crucial to obtain a well-
�tting model. See Chap.  of Snijders and Bosker (),
Chap.  of Raudenbush and Bryk (), and Chap.  of de
Leeuw and Meijer ().

Inference
A major reason for the take-o� of multilevel analysis in
the s was the development of algorithms for maxi-
mum likelihood estimation for unbalanced nested designs.
�e EM algorithm (Dempster et al. ), Iteratively
Reweighted Least Squares (Goldstein ), and Fisher
Scoring (Longford ) were applied to obtain ML esti-
mates for hierarchical linear models. �e MCMC imple-
mentation of Bayesian procedures has proved very useful
for a large variety ofmore complexmultilevelmodels, both
for non-nested random e�ects and for generalized linear
mixed models; see Browne and Draper () and Chap. 
of de Leeuw and Meijer ().
Hypothesis tests for the �xed coe�cients βh can be car-

ried out byWald or Likelihood Ratio tests in the usual way.
For testing parameters of the random e�ects, some care
must be taken because the estimates of the random e�ect
variances τhh (the diagonal elements of T) are not approx-
imately normally distributed if τhh = . Tests for these
parameters can be based on estimated �xed e�ects, using
least squares estimates for Uhj in a speci�cation where
these are treated as �xed e�ects (Bryk and Raudenbush
, Chap. ); based on appropriate distributions of the
log likelihood ratio; or obtained as score tests (Berkhof and
Snijders ).
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�e Multinomial distribution arises as a model for the fol-
lowing experimental situation. An experiment or “trial” is
carried out and the outcome occurs in one of k mutually
exclusive categories with probabilities pi, i = , , . . . , k. For
example, a personmay be selected at random from a popu-
lation of size N and their ABO blood phenotype recorded
as A, B, AB, or O (k = ). If the trial is repeated n times
such that the trials are mutually independent, and if xi is
the frequency of occurrence in the ith category, then the
joint probability function of the xi is

P(x, x, . . . , xk) =
n!

x!x!⋯xk!
px p

x
 ⋯p

xk
k ,

where ∑ki= xi = n and ∑
k
= pi = .�is would be the cor-

rect probability function for the genetics example if further
people were chosen with replacement. In practice, sam-
pling is without replacement and the correct distribution
is the multivariate hypergeometric, a di�cult distribution
to deal with. Fortunately, all is not lost, as when the sam-
pling fraction f = n/N is small enough (say less than .
or preferably less than .), the Multinomial distribution
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is a good approximation and is used extensively in genetics
(e.g., Greenwood and Seber ).We note that when k = 
we have the 7Binomial distribution. Also the terms of P
can be obtained by expanding (p + p +⋯ + pk)n.
Various properties of theMultinomial distribution can

be derived using extensive algebra. However, they aremore
readily obtained by noting that any subset of a multino-
mial distribution is alsoMultinomial.We simply group the
categories relating to the remaining variables into a single
category. For example xi will have a Binomial distribu-
tion as there are just two categories, the ith and the rest
combined. Hence the mean and variance of xi are

E(xi) = npi and var(xi) = npiqi,

where qi =  − pi. Also, if we combine the ith and jth cate-
gory and then combine the rest into single category, we see
that xi + xj is Binomial with probability parameter pi + pj
and variance n(pi + pj)( − pi − pj). Hence the covariance
of xi and xj is

cov(xi, xj) =


[var(xi + xj)− var(xi)− var(xj)] = −npipj.

Another useful result that arises in comparing proportions
pi and pj in a 7questionnaire is

var(xi − xj) = var(xi) + var(xj) − cov(xi, xj)
= n[pi + pj − (pi − pj)]. ()

It should be noted that the Multinomial distribution
given above is a “singular” distribution as the random vari-
ables satisfy the linear constraint ∑ki= xi = n, which leads
to a singular variance-covariance matrix. We can instead
use the “nonsingular” version

P(x, x, . . . , xk−) =
n!

x!x!⋯ (n −∑k−i= xi)!

× px p
x
 ⋯p

n−∑k−i= xi
k .

We note that the joint 7moment generating function of x
is

M(t) = (pet + pet +⋯ + pk−e
tk− + pk)

n,

which can also be used to derive the above properties of
the Multinomial distribution as well as the 7asymptotic
normality properties described next.
Let p̂i = xi/n be the usual estimate of pi. Given the

vectors p̂ = (p̂, p̂, . . . , p̂k−)′ and p = (p, p, . . . , pk−)′,
then the mean of p̂ is p and its variance-covariance matrix
is n−V , where V = (diag p − pp′) and diag p is a diag-
onal matrix with diagonal elements p, p, . . . pk−. In the
same way that a Binomial random variable is asymptot-
ically normal for large n,

√
n(p̂ − p) is asymptotically

multivariate Normal with mean vector  and variance-
covariance matrix V . If V− is the inverse of V , then V−

=

n− ((diag p)− + p−k k−
′k−), where k− is a column k−

ones (cf. Seber, , .). From the properties of the
multivariate Normal distribution (cf. Seber , .),

n(p̂ − p)′V−
(p̂ − p) =

k

∑
i=

(xi − npi)

npi
()

will be asymptotically distributed as the 7Chi-square dis-
tribution with k− degrees of freedom. If we use the singu-
lar version and include xk to expandV toVk, we can obtain
the result more quickly using a generalized inverse (cf.
Seber, , .b using A = V−

k = (diag (p′, pk)′)−).
�is link with the Chi-square distribution forms the basis
of a number of tests involving theMultinomial distribution
mentioned below.
We see that P(⋅) above can be regarded conceptually

as a nonsingular distribution for the xi (i = , , . . . , k)
with probabilities πi, but conditional on ∑ki= xi = n with
pi = πi/∑ki= πi. It therefore follows that the joint distri-
bution of any subset of multinomial variables conditional
on their sum is also multinomial. For example, the distri-
bution of x and x given x + x = n is Binomial with
probability parameter p/(p + p). We get a similar result
in ecology where we have a population of plants divided up
into k areas with xi in the ith area being distributed as the
Poisson distribution with mean µi. If the xi are mutually
independent, then the joint distribution of the xi condi-
tional on the sum∑ki= xi is Multinomial with probabilities
pi = µi/∑kj= µj.

�e last topic I want to consider brie�y is inference
for the multinomial distribution. Estimating pi by p̂i =

xi/n, using the normal approximation, and applying (),
we can obtain a con�dence interval for any particular pi or
any particular di�erence pi − pj. Simultaneous con�dence
interval procedures are also available for all the pi or all
di�erences using the Bonferroni method. We can also test
p = p using ().
A common problem is testing the hypothesis H :

p = p(θ), where p is a known function of some unknown
t-dimensional parameter θ (e.g., the genetics example
above). �is can be done using a derivation like the one
that led to () above, giving the so-called “goodness of �t”
statistic, but with p replaced by p(θ̂). Here θ̂, the maxi-
mum likelihood estimate of θ, is asymptotically Normal so
that p(θ̂) is also asymptotically Normal. Under H, it can
be shown that the test statistic is approximately Chi-square
with degrees of freedom now k −  − t.
One application of the above is to the theory of con-

tingency tables. We have an r × c table of observations xij
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(i = , , . . . , r; j = , , . . . , c) and pij is the probability of
falling in the (i, j)th category. Treating the whole array as a
single Multinomial distribution, one hypothesis of interest
is H : pij = αiβj, where ∑ri= αi =  and ∑cj= βj = . In
this hypothesis of row and column independence, we have
θ′ = (α, . . . αr−, β, . . . , βc−) with maximum likelihood
estimates α̂i = Ri/n and β̂j = cj/n, where ri is the ith row
sum of the table and cj the jth column sum.�e statistic for
the test of independence is therefore

r

∑
i=

c

∑
j=

(xi − ricj/n)

ricj/n
, ()

which, underH, is approximately Chi-square with rc− −
(r − ) − (c − ) = (r − )(c − ) degrees of freedom. If the
rows of the r×c table now represents r independentMulti-
nomial distributions with ∑cj= pij =  for i = , , . . . , r,
then the hypothesis that the distributions are identical is
H : pij = γj for i = , , . . . , r, where ∑cj= γj = . Pooling
the common distributions, the maximum likelihood esti-
mate of γj is γ̂j = cj/n so that the term npij(θ̂) becomes
riγ̂j and the test statistic for testing homogeneity turns out
to be the same as () with the same degrees of freedom.

�e above chi-squared tests are not particularly pow-
erful and need to be backed up with various con�dence
interval procedures. Other asymptotically equivalent tests
are the likelihood ratio test and the so-called “score”
(Lagrange multiplier) test. Log linear models can also be
used. For further properties of the Multinomial distribu-
tion see Johnson et al. (, Chap. ) and asymptotic
background theory for the chi-squared tests is given by
Bishop et al. (, Chap. ). More recent developments
are given by Agresti ().
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7 “Life is more complicated when you have three uncongenial

models involved.”

The Multi-Party Inference Reality
Much of the statistical inference literature uses the famil-
iar framework of “God’s model versus my model.” �at
is, an unknown model, “God’s model,” generates our data,
and our job is to infer this model or at least some of
its characteristics (e.g., moments, distributional shape) or
implications (e.g., prediction). We �rst postulate one or
several models, and then use an array of estimation, test-
ing, selection, and re�nementmethods to settle on amodel
that we judge to be acceptable – according to some sensi-
ble criterion, hopefully pre-determined – for the inference
goals at hand, even thoughwe almost never can be sure that
our chosen model resembles God’s model in critical ways.
Indeed, philosophically even the existence of God’s model
is not a universally accepted concept, just as theologically
the existence of God is not an unchallenged notion.
Whether one does or does not adopt the notion of

God’s model, it is repeatedly emphasized in the literature
that to select a reasonable model, an iterative process is
necessary and hence multiple models are typically consid-
ered (e.g., see Box and Tiao , Chap. ; Gelman and
Meng ). By multiple models we mean multiple sets of
mathematically quanti�able assumptions (hence, not nec-
essarily parametric models), which are compatible within
each set but not across di�erent sets. Indeed, if they are
not incompatible across di�erent sets then one is simply
postulating a larger model; see McCullagh (). In this
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sense we automatically take a “monotheistic” point of view
that there is only one God’smodel; we assumeGod’smodel
contains no self-contradiction (or at least none detectable
by a human modeler). However, we do not go so far as to
suggest that themodeler can always embed everything into
one model, e.g., as in Bayesian model averaging, because
contrasting models sometimes is as useful as, if not more
so than, combining models.
Whereas many models may be entertained, the com-

monly accepted paradigm involves only two parties: the
(hypothetical) God, and “me” – the modeler. Unfortu-
nately, reality is far more complicated. To explain the com-
plication, we must distinguish the modeler’s data from
God’s data. �e modeler’s data are the data available
to the modeler, whereas God’s data are the realizations
from God’s model that the modeler’s data were collected
to approximate. Whereas any attempt to mathematically
de�ne such concepts is doomed to fail, it is useful to
distinguish the two forms of data because the approxima-
tion process introduces an additional inference party (or
parties).
For example, in the physical sciences, the modeler’s

data typically are results of a series of pre-processing
steps to deal with limitations or irregularities in recording
God’s data (e.g., discarding “outliers” (see 7Outliers); re-
calibration to account for instrument dri�), and typically
the modeler at best only has partial information about this
process. For the social and behavioral sciences, some vari-
ables are not even what we normally think they are, such
as responses to a questionnaire survey. Rather, they are
so-called “constructed variables,” typically from a deter-
ministic algorithm converting a set of answers to an index
that indicates, say, whether a subject is considered to suf-
fer major depression.�e algorithm is o�en a black box,
and in some cases it is pitch black because the modeler is
not even informed of what variables were used as inputs
to produce the output. In the context of public-use data
�les, virtually all data sets contain imputations of some
sort (see 7Imputation) because of non-responses or other
forms of missing data (e.g., missingness by design such as
with matrix sampling), which means someone has “�xed
the holes” in the data before they reach the modeler.
In all these examples, the key issue is not that there

is data pre-processing step per se, but rather that during
the journey from God’s data to modeler’s data, a set of
assumptions has been introduced.�ere is no such thing
as “assumption-free” pre-processing; any attempt to make
the data “better” or “more usable” implies that a judg-
ment has been made. Under the God-vs.-me paradigm,
this intermediate “data cleaning” process has to be con-
sidered either as part of God’s model, or of the modeler’s

model, or of both by somehow separating aspects of the
process (e.g., one could argue that a refused answer to an
opinion question is an opinion itself, whereas a refusal
to an income question is a non-response). Regardless of
how we conceptualize, we �nd ourselves in an extremely
muddy – if not hopeless – situation. For example, if aspects
of this intermediate process are considered to be part of
God’s model, then the modeler’s inference is not just about
God’s model but also about someone else’s assumptions
about it. If we relegate the pre-processing to the modeler’s
model, then the modeler will need good information on
the process. Whereas there has been an increasing empha-
sis on understanding the entire mechanism that leads to
the modeler’s data, the reality is that for the vast majority
of real-life data sets, especially large-scale ones, it is sim-
ply impossible to trace back how the data were collected or
pre-processed. Indeed, many such processes are nowhere
documented, and some are even protected by con�dential-
ity constraints (e.g., con�dential information may be used
for imputation by a governmental agency).

�is intermediate “data cleaning” process motivates
the multi-party inference paradigm. �e term is self-
explanatory: we acknowledge that there is more than one
party involved in reaching the �nal inference.�e key dis-
tinction between the multi-party paradigm and the God-
vs.-me paradigm is not that the former involves more
sets of assumptions, i.e., models – indeed under the latter
we still almost always (should) consider multiple mod-
els. Rather, in the multi-party paradigm, we explicitly
acknowledge the sequential nature of the parties’ involve-
ment, highlighted by how the intermediate party’s assump-
tions impact the �nal inference, because typically they are
necessarily incompatible with the modeler’s assumptions,
due both to the parties’ having access to di�erent amounts
of information and to their having di�erent objectives.

�is situation is most vividly demonstrated by mul-
tiple imputation inference (Rubin ), where the inter-
mediate party is the imputer. (�ere is o�en more than
one intermediate party even in the imputation context,
but the case of a single imputer su�ces to reveal major
issues.) In such a setting, the concept of congeniality (Meng
) is critical. In a nutshell, congeniality means that the
imputation model and the analysis model are compati-
ble for the purposes of predicting the missing data. In
real life, this typically is not the case, even if the imputer
and analyst are the same entity, because of the di�er-
ent aims of imputation (where one wants to use as many
variables as possible even if causal directions are incor-
rectly speci�ed) and of analysis (where one may be only
interested in a subset of variables with speci�ed causal
directions).�e next section demonstrates the importance
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of recognizing uncongeniality, which directly a�ects the
validity of the �nal inferences. �e concept of unconge-
niality was originally de�ned and has thus far been inves-
tigated in the context of multiple imputation inference, the
most well-studied case of multi-party inference. However,
its general implication is broad: to reach valid inference
when more than one party is involved, we must consider
the incompatibility/uncongeniality among their assump-
tions/models, even if each party has made assumptions
that are consistent with God’s model and has carried out
its task in the best possible way given the information
available at the time.

Uncongeniality in Multiple Imputation
Inference
A common method for dealing with non-response in sur-
veys and incomplete data in general is imputation (Little
and Rubin ). Brie�y, imputation is a prediction of the
missing data from a posited (not necessarily parametric)
model pI(Ymis∣Yobs), where Ymis denotes the missing data
and Yobs the observed data.�e trouble with single impu-
tation, however sophisticated, is that the resulting data set
cannot be analyzed in the same way as would an authen-
tic complete data set, without sacri�cing the validity of the
inference. Multiple imputation (MI; Rubin ) attempts
to circumvent this problem by providing multiple predic-
tions from pI(Ymis∣Yobs), thereby permitting, via genuine
replications, a direct assessment of uncertainties due to
imputation.
Speci�cally, in the MI framework, we draw inde-

pendently m times from pI(Ymis∣Yobs), resulting in m
completed-data sets: Y(ℓ)

com = {Yobs,Y
(ℓ)
mis} , ℓ = , . . . ,m.

Suppose our complete-data analysis can be summarized by
a point estimator θ̂(Ycom) and an associated variance esti-
mator U(Ycom), where Ycom denotes {Ymis,Yobs}.�e MI
inference procedure consists of the following steps:

Step : Perform m complete-data analyses as if each Y(ℓ)
com

were real data:

θ̂ℓ ≡ θ̂ (Y(ℓ)
com) , and Uℓ ≡ U (Y(ℓ)

com) , ℓ = , . . . ,m.

Step : Use Rubin’s Combining Rules:

θ̄m =

m

m

∑
ℓ=

θ̂ℓ , and Tm = Ūm + ( +

m

)Bm,

where

Ūm =

m

m

∑
ℓ=
Uℓ and Bm =


m − 

m

∑
ℓ=

(θ̂ℓ − θ̄m)(θ̂ℓ − θ̄m)⊺

are respectively the within-imputation variance and the
between-imputation variance, to reach the MI inference
{θ̄m,Tm}, with Tm the variance estimator of θ̄m.

�e justi�cation of Rubin’s combining rules is most
straightforward under strict congeniality, which means
that both the analyst and the imputer use (e�ectively)
Bayesian models, and their Bayesian models are compat-
ible.�at is, we assume:

(I) �e complete-data analysis procedure can be embed-
ded into a Bayesian model, with

θ̂(Ycom) = EA(θ∣Ycom) and U(Ycom) = VA(θ∣Ycom),

where the subscript A indexes expectation with
respect to the embedded analysis model;

(II) �e imputer’s model and the (embedded) analysis
model are the same for the purposes of predicting
missing data:

PI(Ymis∣Yobs) = PA(Ymis∣Yobs), for all
Ymis (but the given Yobs).

�en for θ̄m asm→∞, we have

θ̄∞ = EI [θ̂(Ycom)∣Yobs]

< by (I) > = EI [EA(θ∣Ycom)∣Yobs]

< by (II) > = EA [EA(θ∣Ycom)∣Yobs] = EA(θ∣Yobs).

�at is, the MI estimator θ̄m simply is a consistent (Monte
Carlo) estimator of the posterior mean under the analyst’s
model based on the observed data Yobs.�e critical role of
(II) is also vivid in establishing the validity of Tm = Ūm +
( +m−)Bm asm→∞:

Ū∞ + B∞ = EI[U(Ycom)∣Yobs] +VI[θ̂(Ycom)∣Yobs]

< by (I) > = EI[VA(θ∣Ycom)∣Yobs]

+VI[EA(θ∣Ycom)∣Yobs]

< by (II) >= EA[VA(θ∣Ycom)∣Yobs]

+VA[EA(θ∣Ycom)∣Yobs] = VA(θ∣Yobs).

�erefore, as m → ∞, {θ̄m,Tm} reproduces the pos-
terior mean and posterior variance under the analyst’s
model given Yobs, because θ̄∞ = EA(θ∣Yobs) and T∞ =

VA(θ∣Yobs).
When congeniality fails, either because the analyst’s

procedure does not correspond to any Bayesian model or
because the corresponding Bayesian model is incompat-
ible with the imputer’s model, the MI variance estimator
Tm can overestimate or underestimate the variance of θ̂m
even asm →∞. However, depending on the relationships
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among God’s model, the analyst’s model and the imputer’s
model, we may still reach valid inference under unconge-
niality. For example, under the assumption that the ana-
lyst’s complete-data procedure is self-e�cient (Meng ),
if God’s model is nested in the analyst’s model, which in
turn is nested in the imputer’s model, then the MI con�-
dence interval based on {θ̄∞,T∞} is valid (asymptotically
with respect to the size of the observed data). However, the
MI estimator θ̄∞ may not be as e�cient as the analyst’s
estimator (e.g., MLE) directly based on the observed data,
because the additional assumptions built into the analysis
model are not used by the imputer. But this comparison
is immaterial when the analyst is unable to analyze the
observed data directly, and therefore multiple imputation
inference is needed (see 7Multiple Imputation).
However, the situation becomes more complicated if

we assume God’s model is nested in the imputer’s model,
which in turn is nested in the analyst’smodel. In such cases,
it is possible to identify situationswhere themultiple impu-
tation interval estimator is conservative in its own right,
yet it is narrower than analyst’s interval estimator (with the
correct nominal coverage) directly based on the observed
data (Xie andMeng ).�is seemingly paradoxical phe-
nomenon is due to the fact the imputer has introduced
“secret” model assumptions into the MI inference, making
it more e�cient than the analyst’s inference directly based
on the observed data, which does not bene�t from the
imputer’s assumptions. At the same time, since the analyst’s
complete-data procedure {θ̂(Ycom),U(Ycom)} is deter-
mined irrespective of the imputer’s model, the imputer’s
secret assumption introduces uncongenality, which leads
to the conservativeness of the MI interval. However, this is
not to suggest that MI tends to be conservative, but rather
to demonstrate the impact of imputationmodels on theMI
inference and hence to provide practical guidelines on how
to regulate the imputation models.
Even more complicated are situations where the ana-

lyst’s and imputer’s models do not nest, or where at least
one of them does not contain God’s model as a sub-model.
Consequences of such are virtually undetermined at the
present time, but one thing is clear. �ese complications
remind us the importance of recognizing the multi-party
inference paradigm, because the God-vs.-me paradigm
sweeps all of them under the rug, or more precisely buries
our heads in the sand, leaving our posteriors exposed
without proper coverage.
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Multiplicity Issues
Statistical evidence is obtained by rejecting the null
hypothesis at a “small” prespeci�ed signi�cance level α,
say . or ., which is an acceptable level of probabil-
ity of the type I error (the error of rejecting the “true” null
hypothesis). If we have a family of multiple hypotheses in
a con�rmatory experiment and test them simultaneously
at each level α, the overall or familywise type I error rate
(FWER), i.e., the probability of rejecting at least one “true”
null hypothesis in the family, may in�ate and exceed α,
even if there exist no treatment di�erences. We call such
in�ation of the FWER amultiplicity issue.
Usually there may be some correlation structure

between test statistics, and the in�ation of the FWER
might not be so remarkable. However, if we have multi-
ple hypotheses to be tested for con�rmatory purpose, we
should adjust for multiplicity so as to control the FWER
within α. �is is called multiplicity adjustment. Testing
procedures for multiplicity adjustment are called multiple
comparison procedures (MCPs) or more generally multiple
testing procedures (MTPs).
Multiplicity issues may arise in () multiple treatments

(multiple comparisons), () multiple response variables
(multiple endpoints), () multiple time points (longitu-
dinal analysis), () multiple subgroups (subgroup analy-
sis), and () multiple looks (interim analysis with group
sequential methods or adaptive designs).
Herea�er we mainly concentrate on the multiple treat-

ment comparisons, i.e., multiple comparisons in a tradi-
tional sense.

Multiple Comparisons
In a two group comparison of treatments A and B on their
response means µA and µB, we have just one null hypothe-
sisH : µA = µB to be tested and there is no need to adjust
for multiplicity. However, when we compare three treat-
ment groups, e.g., there are three treatments A,B and C,
we may typically want to compare their means pairwisely,
i.e., µA vs µB, µA vs µC and µB vs µC.�en there are three
test hypotheses to be adjusted for multiplicity; namely, we
need multiple comparison procedures.

All Pairwise Comparisons
�e method to exactly control the FWER by adjusting
the critical value in the above “all” pairwise comparisons
is called Tukey’s method (or Tukey’s multiple comparison
test). �e method was developed for equal sample sizes,
but even if the sample sizes are di�erent between groups,
the same critical value could be used conservatively, and
such a method is known as the Tukey-Kramer method.
�e nonparametric version of Tukey’s method is called the
Steel-Dwass test.

Comparisons with a Control
�e above three treatment example may have a structure
that A and B are two (high and low) doses of a drug and
C is a placebo (zero-dose).�en main interest in a formal
analysis may be focused on the comparisons between each
active dose and the placebo, i.e., µA vs µC and µB vs µC.
�is type of multiple comparison on treatment means can
be performed by Dunnett’s method (or Dunnett’s multiple
comparison test), and the common reference C is called
a control or control group. �e nonparametric version of
Dunnett’s method is called Steel’s test.
If we assume themonotonicity of responsemeans, such

as µA ≥ µB ≥ µC or µA ≤ µB ≤ µC, then in the compari-
son with a control, we can apply the Williams test, which
is more powerful than Dunnett’s test when the monotone
dose-response relationship holds.�e nonparametric ver-
sion of the Williams test is known as the Shirley-Williams
test.

Any Contrast Comparisons
More generally in a k(≥ ) treatment comparison, various
hypotheses on any contrasts, such as, ∑ki= ciµi =  where
∑
k
i= ci = , can be tested using Sche�e’s method to con-
trol the FWER. For all pairwise comparisons or compar-
isons with a control, Sche�e’s method is not recommended
because it is “too” conservative in such cases. A nonpara-
metric version of the Sche�e type multiple comparison
method can be easily constructed.
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Fixed Number of Comparisons
When the number of comparisons is �xed, the Bonfer-
roni method (or Dunn’s method) is simpler and easier to
apply. �e method only adjusts the signi�cance level to
α/m for each single test, where m is the number of inter-
ested comparisons. It is known that the method controls
the FWER because the well-known Bonferroni inequality,
Pr (⋃mi= Ei) ≤ ∑

m
i= Pr(Ei) holds, where Ei is an event to

reject hypothesis Hi. In the above three treatment exam-
ple, the Bonferroni method could be applied with m = 
for Tukey-type, and withm =  for Dunnett-type multiple
comparisons, although it might be rather conservative.

Stepwise Procedures
All themethods described above (except theWilliams test)
are called “simultaneous tests” or “single step tests”, because
none of tests considered are a�ected by the results of oth-
ers, and statistical testing for each hypothesis can be done
simultaneously or in a single step manner. �ey control
the FWER and can be used to easily construct the corre-
sponding simultaneous con�dence intervals, but there is
some tradeo� in that they have a low statistical power in
compensation for controlling the FWER.
Recently, more powerful test procedures than single

step or simultaneous test procedures have been developed
and become popular. Most of them are based on the closed
testing procedure (CTP) proposed by Marcus, Peritz and
Gabriel () and they have a stepwise property in their
nature. CTPs give a very general scheme of stepwiseMCPs
(orMTPs).

Closed Testing Procedures (CTPs)
Suppose that we have a family of m null hypotheses
F = {H,H, . . . ,Hm} to be tested and letN = {, , . . . ,m}

be an index set that indicates the set of hypotheses consid-
ered.�en there are m −  possible intersections of null
hypotheses Hi. We denote a set or family of such intersec-
tion hypotheses by G = {HI = ⋂i∈I Hi : I ⊆ N, I ≠ /},
where / is an empty set and each intersection hypothesis
HI means that all hypotheses Hi, i ∈ I hold simultane-
ously and thus HI represents one possibility of the “true”
null hypothesis. Because we do not know whichHI is true,
a given MCP (or MTP) should control the FWER under
any HI .�is is called a strong control of the FWER. If we
control the FWER only under the complete or global null
hypothesis, HN = ⋂i∈N Hi, it is called a weak control of the
FWER.
CTPs are testing procedures in which each elementary

hypothesis Hi, i = , . . . ,m, is rejected only if all the inter-
section hypotheses includingHi, i.e., allHI = ⋂j∈I Hj, i ∈ I,
are rejected by the size α test. It is easily shown that any

CTP controls the FWER in a strong sense.�e procedure
is equivalent to a test that starts with the test of complete
null hypothesis HN at level α and then proceeds in a step-
wise manner that any intersection hypothesis HI , I ⊂ N,
is tested at level α only if all the intersection hypotheses
HJ = ⋂i∈J Hi which imply HI , i.e., J ⊃ I, are rejected.
Some well known stepwise methods for the Tukey type

multiple comparisons, e.g., Fisher’s protected LSD (least
signi�cant di�erence) test, the Newman-Keuls test, and
Duncan’s multiple range test, control the FWER only in a
weak sense, and should not be used. Instead, we can use the
Tukey-Welsch method and Peritz’s method. Also the step-
down Dunnett method can be applied for the Dunnett type
comparisons. �ey are CTPs and control the FWER in a
strong sense. Note that the Williams test is also a CTP.

Modified Bonferroni Procedures (MBPs)
Modi�ed Bonferroni procedures (MBPs) are extensions
of the classical Bonferroni procedure, which use the
Bonferroni’s or similar criterion to test the intersection
hypotheses HI in CTPs.�ey use only individual p-values
for multiplicity adjustment and are easy to apply. Holm,
Hochberg,Hommel and Rom procedures are some of typical
MBPs.

Gatekeeping Procedures (GKPs)
Most recently the new methods called the gatekeeping pro-
cedures (GKPs) have been rapidly developed. GKPs utilize
the order and logical relationship between hypotheses or
families of hypotheses and construct a MTP satisfying
these relationships. �ey are usually based on CTPs and
control the FWER in a strong sense. �ey include serial
GKP, parallel GKP, treeGKP, and truncatedGKP, etc.GKPs
are especially useful for multiple endpoints and various
combination structures of multiple comparisons, multiple
endpoints and other multiplicities.
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A General Multiple Comparisons Problem
In this note, we examine a general multiple comparisons
testing problem from a Bayesian viewpoint. Suppose we
observe independent random samples from I normally
distributed populations with equal variances.�e goal of
our problem is to determine which pairs of groups have
equal means.
Write

{Xij} ∣ {µi} , σ  ∼ indep N (µi, σ ) . ()

We are interested in testingH(a,b) : µa = µb for each (a, b);
a total of I(I − )/ distinct, but related hypotheses. A typ-
ical frequentist test is based on the decision rule of accept
H(a,b) when

∣Xb − Xa∣ ≤ Qa,b. ()

�e overall error rate is the probability of falsely rejecting
any of the true hypotheses in the set {H(a,b)

}.�e deter-
mination of Qa,b in () depends on how the overall error
rate is to be controlled. A classical book featuring this mul-
tiple comparisons problem in detail is Sche�é (). For
an applied review, see, for example, Kutner et al. ()
or Montgomery (). A modern theoretical treatment
is o�ered by Christensen ().
An overview to multiple comparisons under the

Bayesian framework is given by Berry and Hochberg
(). Westfall et al. () consider the preceding prob-
lem of controlling the overall error rate from a Bayesian
perspective. Here, our main focus is to show how a
Bayesian approach can o�er a logically pleasing interpre-
tation of multiple comparisons testing.
A major point of di�culty to multiple comparisons

procedures based on an accept / reject H(a,b) philosophy
is illustrated by a case where one decides to accept µ = µ
and µ = µ, but reject µ = µ. Such an outcome is possi-
ble under decision rule (), but an interpretation is di�cult
to provide since the overall decision is not logically consis-
tent. Employing a Bayesian philosophy, we may restate the
goal of the problem as quantifying the evidence from the
data in favor of each hypothesis H(a,b).
To implement this philosophy, we will require a mea-

sure of prior/posterior belief in H(a,b), represented by
point mass probabilities.�e construction of prior prob-
abilities over the set of hypotheses {H(a,b)

}must account
for the fact that the collection does not consist of mutu-
ally exclusive events. For example, H(,) true (µ = µ)
may occur with H(,) true (µ = µ) or with H(,) false
(µ ≠ µ). One cannot develop a prior by comparing
relative beliefs in each of the pairwise hypotheses. Fur-
thermore, certain combinations of hypotheses in the set
{H(a,b)

} represent impossibilities. For example, the event

with H(,) true (µ = µ), H(,) true (µ = µ), H(,)

false (µ ≠ µ) should be assigned zero probability.
Allowable decisions can be reached through the forma-

tion of equal mean clusters among the I populations. For
example, the clustering µ = µ, µ = µ implies H(,)

true,H(,) true, and all others false. Designating a cluster-
ing of equal means will de�ne a model nested within ().
When two or more means are taken as equal, we merely
combine all relevant samples into one.�e smaller model
is of the same form as (), only for I′ < I. �e problem
can now be stated in terms of Bayesian 7model selec-
tion, where each allowable combination of hypotheses will
correspond to a candidate model.
We provide a short review of Bayesian model selec-

tion in the general setting using the notation of Neath
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and Cavanaugh (). Let Yn denote the observed data.
Assume that Yn is to be described using a model Mk
selected from a set of candidate models {M, . . . ,ML}.
Assume that eachMk is uniquely parameterized by θk, an
element of the parameter space Θ(k). In themultiple com-
parisons problem, the class of candidate models consists
of all possible mean clusterings. Each candidate model is
parameterized by themean vector µ = (µ, . . . , µI) and the
common variance σ , with the individual means restricted
by the model-de�ned clustering of equalities.�at is, each
model determines a corresponding parameter space where
particular means are taken as equal.
Let L(θk∣Yn) denote the likelihood for Yn based on

Mk. Let π(k), k= , . . . ,L, denote a discrete prior over
the models M, . . . ,ML. Let g(θk∣k) denote a prior on θk
given the model Mk. Applying Bayes’�eorem, the joint
posterior ofMk and θk can be written as

f (k, θk∣Yn) =
π(k)g(θk∣k)L(θk∣Yn)

h(Yn)
,

where h(Yn) denotes the marginal distribution of Yn.
�e posterior probability onMk is given by

π(k∣Yn) = h(Yn)−π(k)∫
Θ(k)

g(θk∣k)L(θk∣Yn)dθk. ()

�e integral in () requires numerical methods or
approximation techniques for its computation. Kass and
Ra�ery () provide a discussion of the various alterna-
tives. An attractive option is one based upon the popular
Bayesian information criterion (Schwarz ). De�ne

Bk = − lnL(θ̂k∣Yn) + dim(θk) ln(n),

where θ̂k denotes the maximum likelihood estimate
obtained by maximizing L(θk∣Yn) over Θ(k). It can be
shown under certain nonrestrictive regularity conditions
(Cavanaugh and Neath ) that

π(k∣Yn) ≈
exp(−Bk/)

∑
L
l= exp(−Bl/)

. ()

�e advantages to computing the posterior model
probabilities as () include computational simplicity and
a direct connection with a popular and well-studied cri-
terion for Bayesian model selection. �e justi�cation of
approximation () is asymptotic for the general case of
prior g(θk∣k), but Kass and Wasserman () argue how
the approximation holds under a noninformative prior on
θk even for moderate and small sample sizes.
Regardless of which technique is used for computing

π(k∣Yn), we compute the probability on hypothesis H(a,b)

by summing over the probabilities on those models for

which µa = µb.�is gives a nice approach to determin-
ing the evidence in favor of each of the pairwise equalities.
�e probability approach to presenting results for multi-
ple comparisons testing provides more information than
merely an accept / reject decision and is free of the potential
contradictions alluded to earlier.

Example
We illustrate the Bayesian approach to multiple compar-
isons testing using data from Montgomery (). �e
I =  groups correspond to di�erent cotton blends.
Five fabric specimens are tested for each blend. �e
response measurements re�ect tensile strength (in pounds
per square inch). See Table  for the data and summary
statistics. For ease of notation, treatments are identi�ed in
ascending order of the observed sample means.
A glance at the data suggests a potentially strong clus-

tering of µ, µ and a clustering to a lesser degree among
µ, µ, µ.We shall see how these notions can be quanti�ed
by computing Bayesian posterior probabilities on the pair-
wise equalities.�e top �ve most likely pairwise equalities
are displayed in Table .

�e hypothesis µ = µ is well-supported by the data
(P[H(,)

] ≈ .), as was suspected. �ere is also some
evidence in favor of µ = µ (P[H(,)

] ≈ .) and a non-
negligible probability of µ = µ (P[H(,)

] > .). Yet,
there is good evidence against µ = µ (P[H(,)

] < .).
Consider the clustering among µ, µ, µ. Tukey’s mul-

tiple comparison procedure gives a critical range of Q =

.. A pair of means is deemed equal only if the cor-
responding sample di�erence is less than Q in magni-
tude. One reaches the decision of accept µ = µ, accept
µ = µ, but reject µ = µ. �is decision is not logi-
cally consistent and is lacking any probabilistic detail.�e
proposed Bayesian approach bridges this probabilistic gap

Multiple Comparisons Testing from a Bayesian Perspective.
Table  Data for example

Group
(cotton blend)

Response
(tensile strength
in lb/in)

Sample
mean Sample s.d.

 ,,,, . .

 ,,,, . .

 ,,,, . .

 ,,,, . .

 ,,,, . .
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Multiple Comparisons Testing from a Bayesian Perspective.
Table  Probabilities of pairwise equalities

Hypothesis Posterior

µ = µ .

µ = µ .

µ = µ .

µ = µ .

µ = µ .

and provides a nice presentation formultiple comparisons.
Bayesian inference has an advantage over traditional fre-
quentist approaches tomultiple comparisons in that degree
of belief is quanti�ed. One can avoid illogical conclusions
which arise from an accept/reject decision process.
For computing details and continued analysis on this

example, see Neath and Cavanaugh ().
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Multiple Imputation and Combining
Estimates
Missing data substantially complicates the statistical anal-
ysis of data. A common approach to circumvent the
problem of analyzing a data set with missing data is to
replace/impute the missing values by some estimates or
auxiliary values. Subsequently, the data are then analyzed
as if they would have been complete. While it is o�en
straightforward to get a point estimate θ̂ for a quantity
or parameter of interest, θ, an estimate for the variance
of θ̂ is typically di�cult to obtain, since the uncertainty
due to the imputed values is not re�ected correctly.�is is
exactly wheremultiple imputation (Rubin , ) steps
in: by creating several datasets by imputing several values
for each missing position in the dataset, multiple impu-
tation tries to re�ect the uncertainty due to the imputed
values. Note, that this uncertainty is additional to the usual
uncertainty arising from the sampling process. Finally, the
estimate θ̂ is computed for each of the completed datasets
and these estimates are then combined into a single esti-
mate for θ. In the followingwe give the algorithmic scheme
for computing the combined point estimate and an esti-
mated covariance matrix of it, that is, we directly address
the case of a vector valued parameter θ. Strategies on how
proper imputations can be created are discussed in the next
paragraph.

Algorithm for inference under multiple imputation

. Createm imputed datasets.
. For each imputed dataset, j = , . . . ,m, compute the
point estimate Q(j)

= θ̂(j) and its corresponding esti-
mated (probably asymptotic) covariance matrixU(j)

=

Ĉov(θ̂( j)
). Usually, the “MI”-paradigm (Schafer )

assumes that Q(j) is asymptotically normal.
. �e multiple-imputation point estimate for θ is then

Q =

m

m

∑
j=
Q(j)

=

m

m

∑
j=

θ̂(j). ()



Multiple Imputation M 

M

. �e estimated covariance matrix of Q consists of
two components, the within-imputation covariance
and the between-imputation covariance. �e within-
imputation covariance U is given by

U =

m

m

∑
j=
U(j)

=

m

m

∑
j=
Ĉov(θ̂(j)

). ()

�e between-imputation covariance B is given by

B =


m − 

m

∑
j=

(Q(j)
−Q) (Q(j)

−Q)
T
, ()

where T means the transposed vector, i.e. B is a
quadraticmatrix where the dimensions are equal to the
length of the vector θ. Now we can combine the two
estimates to the total variance T which is our estimated
covariance matrix of Q:

T = Ĉov(Q) = U + ( +m−)B. ()

. A problem is that while the distribution of T−

 (θ−Q)

can be approximated by a t-distribution with ν degrees
of freedom,

ν = (m − ) [ +
U

 +m−B
]



, ()

in the scalar case, the same is not trivial for the vector
valued case, see Schafer ().

Approaches to Create Multiple
Imputations
So far we have discussed how MI works in principal and
how the estimates for the completed datasets can be com-
bined. Now we address how the imputations can be gener-
ated. We assume a missing data process that is ignorable.
�is relates essentially to a missing at random mechanism
(MAR) plus the assumption that the parameters of the data
model and the parameters of the missing data process are
distinct (in likelihood inference this means that the com-
bined parameter space is the product of the two parameter
spaces, in a Bayesian analysis this means roughly that the
prior distributions are independent). We note, that exten-
sions to the case of nonignorable data situations are pos-
sible (although in general this is not easy), especially if
one uses a Bayesian approach.�e following subsections
cannot re�ect the whole research which has been done in
the past.�ey only represent a small number of methods
selected by the authors.

MI from Parametric Bayesian Models
LetDobs be the observed data andDmis themissing part of a
dataset D, with D = (Dobs,Dmis).�en,m proper multiple

imputations can be obtained via the predictive posteriori
distribution of the missing data given the observed data

p(Dmis∣Dobs) = ∫ p(Dmis∣Dobs; θ) p(θ∣Dobs) dθ ()

or an approximation thereof. Note, that p(θ∣Dobs) denotes
the posteriori distribution of θ. Typically, two distinct
approaches are considered to generate multiple imputa-
tions from (): joint modeling and fully conditional mod-
eling. �e �rst approach assumes that the data follow a
speci�c multivariate distribution, e.g. D ∼ N(µ, Σ). Under
a Bayesian framework draws from p(Dmis∣Dobs) can be
either generated directly (in some trivial cases) or sim-
ulated via suitable algorithms (in most cases) such as
the IP-algorithm (see, e.g., Schafer []). �e second
approach speci�es an individual conditional distribution
p(Dj∣D−j, θ j) for each variable Dj ∈ D and creates imputa-
tions as draws from these univariate distributions. It can be
shown that the process of iteratively drawing and updating
the imputed values from the conditional distributions can
be viewed as a Gibbs sampler, that converges to draws from
the (theoretical) joint distribution (if it exists). Further dis-
cussions and details on these issues can be found, e.g., in
Drechsler and Rässler () and the references therein.
An additional important remark refers to the fact that

the imputations are called improper if we only draw impu-
tations from

p(Dmis∣Dobs, θ̃),

where θ̃ is a reasonable point estimate of θ (such as max-
imum likelihood, posterior mode or posterior mean), see
also section “Other Pragmatic Approaches”.�at is why the
above mentioned IP algorithm always includes the P-Step
which samples also a new value of θ from p(θ∣Dobs) before
using this value to create a new imputed data set.

Nonparametric Methods
Another method to create proper multiple imputations is
the so-called ABB (Approximate Bayesian Bootstrap). We
refer the reader to Litte and Rubin (, Chap. .).

Bootstrap EM
If the EM(Expectation-Maximization) algorithm is applied
to an incomplete dataset, then a common problem is that
only a point estimate (maximum likelihood estimate) is
generated, but not an estimated (co-)variance matrix of
this estimate. A typical approach to handle that issue corre-
sponds to the use of the bootstrap (see 7Bootstrap Meth-
ods) to createmultiple imputations which then can be used
to calculate such an estimate as shown in section “Multiple
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Imputation andCombining Estimates”.�e following steps
are repeated for j = , . . . ,m:

 Draw a bootstrap sample D(j) from the data with
replacement (including all data, complete and incom-
plete) with the same sample size as the original data.
Obtain themaximum likelihood estimate θ̂(j) from the
EM algorithm applied to D(j).

 Use θ̂(j) to create an imputed dataset j from p(Dmis∣Dobs;
θ̂(j)

).

Other Pragmatic Approaches
Since Rubin introduced the MI paradigm in the late s,
there have been proposed several more or less ad-hoc
methods to create multiple imputations that do not rely
directly on random draws of the predictive posteriori
distribution (). A common approach refers to types of
regression imputation (see, e.g., Little and Rubin []),
whereby missing values are replaced by predicted values
froma regression of themissing itemon the items observed
based upon the subsample of the complete cases. �is
may be interpreted as an approximation to p(Dmis∣Dobs; θ)
from () with the simple constraint, that the uncertainty
due to estimation of θ is not su�ciently re�ected and
hence p(θ∣Dobs) is apparently neglected. As an approach
to consider this source of uncertainty anyhow and gen-
erate pragmatic multiple imputations (PMI), one might
add an stochastic error to the imputation value and/or
draw a random value from the conditional estimated dis-
tribution resulting from the prediction of the regression.
Further extensions on regression imputation, e.g. the use of
�exible nonparametric models and a recursive algorithm
(GAMRI, Generalized Additive Model based Recursive
Imputation), are discussed in Schomaker et al. (). Of
course, the combination of values form di�erent single
imputation procedures might be seen as another type of
PMI as well. Various strategies, such as nearest neighbor
imputation (Chen and Shao ), Hot Deck imputations
(Little and Rubin ) and others can be used for that
approach.

Proper Versus Pragmatic Multiple
Imputation
We recommend to create proper multiple imputations
based on the predictive posteriori distribution of the miss-
ing data given the observed data. As mentioned in section
“So�ware”, a variety of statistical so�ware packages nowa-
days provide fast and reliable tools to create proper multi-
ple imputations even for users with less statistical expertise
inmissing-data-procedures. In situations where numerical

algorithms fail to do so (sparse data, small datasets) prag-
matic multiple imputations can be seen as a �rst approach
to model imputation uncertainty.

Problems and Extensions
A number of problems arise along with multiple imputa-
tion procedures. O�en they are not exclusively related to
multiple imputation but to the general problem of mis-
speci�cation in statistical models. If, e.g., the data model
is misspeci�ed because it assumes independent observa-
tions on the sampling units, but the observations are tem-
porally or/and spatially correlated, also the results based
on MI may become erroneous. An additional problem
is 7model selection in general, especially if it is applied
on high dimensional data. Also fully Bayesian inference,
which o�en takes a lot of time for one speci�c model,
is o�en too time consuming to be realistically applied to
such problems.�e same applies to model averaging (Fre-
quentist or Bayesian) which may be thought of being an
alternative to model selection.

Software
Recent years have seen the emergence on so�ware that
not only allows for valid inference with multiple imputa-
tion but also enables users with less statistical expertise to
handle missing-data problems. We shortly introduce two
packages that highlight the important progresses that lately
have been made in easy-to-use Open-Source-So�ware. A
broader description, discussion and comparison on MI-
so�ware can be found in Horton and Kleinman ().

● Amelia II (Honaker et al. ) is a package
strongly related to the statistical So�ware R (R Devel-
opment Core Team ) and performs proper multi-
ple imputations by using an new, bootstrapping-based
EM-algorithm that is both fast and reliable. All impu-
tations are created via the amelia() function. For
valid inference the quantities of the m imputed data
sheets can be combined (i) in R using the zelig()
command of Zelig (Imai et al. ), (ii) by hand
using () and (), respectively, or (iii) in separate so�-
ware such as SAS, Stata etc. �e Amelia II So�ware
(named a�er the famous “missing” pilot Amelia Mary
Earhart) is exceedingly attractive as it provides many
useful options, such as the analysis of time-series data,
the speci�cation of priors on individual missing cell
values, the handling of ordinal and nominal variables,
the choice of suitable transformations and other use-
ful tools. For further details see King et al. () and
Honaker and King ().
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● MICE (Multiple Imputations by Chained Equations,
van Buuren andOudshoorn ()) is another package
provided for R and S-Plus. It implements the chained
equation approach proposed from van Buuren et al.
(), where proper multiple imputations are gen-
erated via Fully Conditional Speci�cation and Gibbs
Sampling.�e imputation step is carried out using the
mice() function. As bugs of earlier versions seem
to be removed, the MICE so�ware can be attractive
especially to the advanced user since he/she may spec-
ify his/her own imputation functions without much
additional e�ort.
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Multiple Statistical Decision
Theory
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In the theory and practice of statistical inference, mul-
tiple decision problems are encountered in many exper-
imental situations. �e classical methods for analyzing
data customarily employ hypothesis testing in most situa-
tions. In such cases, when the hypothesis is rejected, one
wants to know on which of a number of possible ways
the actual situations �t our goal. If in the formulation of
the problem, we consider only two decisions (reject or
not reject the hypothesis), we will not only neglect to dif-
ferentiate between certain alternative decisions but may
also be using an inappropriate acceptance region for the
hypothesis. Moreover, the traditional approach to hypoth-
esis testing problems is not formulated in a way to answer
the experimenter’s question, namely, how to identify the
hypothesis that satis�es the goal. Furthermore, when per-
forming a test onemay commit one of two errors: rejecting
the hypothesis when it is true or accepting it when it is
false. Unfortunately, when the number of observations is
given, both probabilities cannot be controlled simultane-
ously by the classical approach (Lehmann ). Kiefer
() gave an example to show that for some sample
values an appropriate test does not exhibit any detailed
data-dependent measure of conclusiveness that conveys
our strong feeling in favor of the alternative hypothesis. To
enforce Kiefer’s point, Schaafsma () pointed out the
Neyman–Pearson formulation is not always satisfactory
and reasonable (Gupta and Huang ).
In the preceding paragraphs, we have discussed various

di�culties associated with the hypothesis testing formula-
tion.�us, there arises the need for a modi�cation of this
theory and for alternative ways to attack such problems.
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�e approach in terms of Wald’s decision theory
() provides an e�ective tool to overcome the above-
mentioned di�culties in some reasonable ways. Actually,
the problems of hypothesis testing can be formulated as
general multiple decision problems. To this end, we �rst
de�ne that the spaceA of actions of the statistician consists
of a �nite number (k ≥ ) of elements,A = ⟨a, a, . . . , ak⟩.
In practice, there are two distinct types of multiple deci-
sion problems. In one the parameter space Θ is partitioned
into k subsets Θ, Θ, . . . , Θk, according to the increasing
value of a real-valued function r(θ), θ ∈ Θ.�e action ai
is preferred if θ ∈ Θi.�is type of multiple decision prob-
lem is calledmonotone.�is approach has been studied by
Karlin and Rubin () and Brown et al. (). For exam-
ple, in comparing two treatments with means θ and θ,
an experimenter may have only a �nite number of actions
available, among these the experimenter might have pref-
erence based on the magnitudes of the di�erences of the
means θ − θ: A particular case occurs when one may
choose from the three alternatives:

. Prefer treatment  over treatment 
. Prefer treatment  over treatment 
. No preference (Ferguson )

Another important class of multiple decision problems
arises – selection problems where the treatments are clas-
si�ed into a superior category (the selected items) and
an inferior one. In general, selection problems have been
treated under several di�erent formulations (Gupta and
Panchapakesan ).
Recently, the modi�cation of the classical hypothesis

testing is considered the null hypothesis and several alter-
native hypotheses. Some multiple decision procedures are
proposed to test the hypotheses.Under controlling the type
I error, the type II error is the probability of incorrect deci-
sion. �e type I and type II errors are given, the sample
size can be determined. In general, one’s interest is not just
testing H against the global alternative. Formulating the
problem as one of choosing a subset of a set of alternatives
has been studied (Lin and Huang ).

About the Author
Dr. Deng-Yuan Huang is Professor and Director, Institute
of Applied Statistics, and Dean of the College of Man-
agement at Fu-Jen Catholic University in Taipei, Taiwan.
He received his Ph.D. degree in Statistics from Purdue
University in . He is a renowned scholar in multi-
ple decision theory, and has published numerous books
and journal articles. Professor Huang has held positions
of great honor in the research community of his coun-
try. He has also served as a member of the Committee

on Statistics and the Committee on the Census of the
Directorate General of Budget Accounting and Statistics
of Taiwan. Before beginning his doctoral studies under
Professor Shanti Gupta, he received the B.S. in mathemat-
ics from National Taiwan Normal University and the M.S.
in Mathematics from National Taiwan University. Profes-
sor Huang is a member of the Institute of Mathematical
Statistics, the Chinese Mathematical Association, and the
Chinese Statistical Association. In , he received the
Distinguished Alumnus Award from Purdue University.
In his honor, the International Conference on Multiple
Decision�eory was held in Taiwan in .

Cross References
7Decision�eory: An Introduction
7Decision�eory: An Overview

References and Further Reading
Brown LD, Cohen A, StrawdermanWE () A complete class theo-

rem for strict monotone likelihood ratio with applications. Ann
Stat :–

Ferguson TS () Mathematical statistics: a decision theoretic
approach. Academic, New York

Gupta SS, Huang DY () Multiple decision theory: recent devel-
opments. Lecture notes in statistics, vol . Springer, New York

Gupta SS, Panchapakesan S () Multiple decision procedures:
theory and methodology of selecting and ranking populations.
Wiley, New York, Republished by SIAM, Philadelphia, 

Karlin S, Rubin H () The theory of decision procedures for
distribution rules. Ann Math Stat :–

Kiefer J () Conditional confidence statements and confidence
estimators. JASA :– (with comments)

Lehmann L () Testing statistical hypotheses. Wiley, New York
Lin CC, Huang DY () On some multiple decision procedures for

normal variances Communication in statistics. Simulat Comput
:–

Schaafsma W () Minimal risk and unbiaseness for multiple
decision procedures of type I. Ann Math Stat :–

Wald A () Statistical decision function. Wiley, New York

Multistage Sampling

David Steel
Professor, Director of Centre for Statistical and Survey
Methodology
University of Wollongong, Wollongong, NSW, Australia

Probability and Single Stage Sampling
In probability sampling each unit in the �nite population of
interest has a known, non-zero, chance of selection, πi. In
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single stage sampling the units in the sample, s, are selected
directly from the population and information is obtained
from them. For example, the �nite population of interest
may consist of businesses and a sample of businesses is
selected. In these cases the population units and sampling
units are the same. To obtain a single stage sample a sam-
pling frame consisting of a list of the population units and
means of contacting them are usually required. Simple ran-
dom sampling (SRS) can be used, in which each possible
sample of a given size has the same chance of selection. SRS
leads to each unit in the population having the same chance
of selection and is an equal probability selection method
(EPSEM). Other EPSEMs are available. A probability sam-
plingmethod does not need to be anEPSEM.As long as the
selection probabilities are known it is possible to produce
an estimator that is design unbiased, that is unbiased over
repeated sampling. For example the 7Horvitz-�ompson
estimator of the population total can be used, T̂y =∑

i∈s
π−i yi.

Strati�cation is o�en used, in which the population
is divided into strata according to the values of auxiliary
variables known for all population units. An independent
sample is then selected from each stratum.�e selection
probabilities may be the same in each stratum, but o�en
they are varied to give higher sampling rates in strata
that are more heterogeneous and/or cheaper to enumerate.
Common strati�cation variables are geography, size and
type, for example industry of a business.

Cluster and Multistage Sampling
Instead of selecting a sample of population units directly
it may be more convenient to select sampling units which
are groups that contain several population units.�e sam-
pling unit and the population unit di�er.�e groups are
called Primary Sampling Units (PSUs). If we select all pop-
ulation units from each selected PSU we have 7cluster
sampling. If we select a sample of the units in the selected
PSUs we have multistage sampling. Each population unit
must be uniquely associated with only one PSU through
coverage rules.�ese methods are o�en used when there
is some geographical aspect to the sample selection and
there are signi�cant travel costs involved in collecting data
and/or when there is no suitable population list of the pop-
ulation units available. A common example of a PSU is a
household, which contains one or more people (Clark and
Steel ). Another common example is area sampling
(see Kish , Chap. ).
In a multistage sample the sample is selected in stages,

the sample units at each stage being sampled from the
larger units chosen at the previous stage. At each succes-
sive stage smaller sampling units are de�ned within those

selected at the previous stage and further selections are
made within each of them. At each stage a list of units from
which the selections are to bemade is required only within
units selected at the previous stage.
For example, suppose we wish to select a sample of vis-

itors staying overnight in the city of Wollongong. No list
of such people exists, but if we con�ne ourselves to people
staying in hotels ormotels then it would be possible to con-
struct a list of such establishments. We could then select
a sample of hotels and motels from this list and select all
guests from the selected establishments, in which case we
have a cluster sample. It would probably be better to select
a sample from the guests in each selected establishment
allowing selection of more establishments, in which case
we have a multi-stage sampling scheme.�e probability of
a particular guest being selected in the sample is the prod-
uct of the probability of the establishment being selected
and the probability the guest is selected given the estab-
lishment is selected. Provided the selection of establish-
ments and guests within selected establishments is done
using probability sampling, the sampling method is a valid
probability sample. It would also be worthwhile stratifying
according to the size of the establishment and its type.
Cluster and multistage sampling are used because a

suitable sampling frame of population units does not exist
but a list of PSUs does, or because they are less costly
than a single stage sample of the same size in terms of
population units. In multistage sampling the probability a
population unit is selected is the probability the PSU con-
taining the unit is selected multiplied by the conditional
probability that the unit is selected given that the PSU it is
in is selected.
Cluster and multistage sampling are o�en cheaper and

more convenient than other methods but there is usually
an increase in standard errors for the same sample size in
terms of number of �nally selected population units. It is
important that the estimation of sampling error re�ects the
sample design used (See Lohr , Chap. ).
In many situations, the problems of compiling lists of

population units and travel between selected population
units are present even within selected PSUs. Consideration
is then given to selecting the sample of population units
within a selected PSU by grouping the population units
into second stage units, a sample of which is selected.�e
population units are then selected from selected second
stage units.�is is called three-stage sampling.�is pro-
cess can be continued to any number of stages.�e set of
all selected population units in a selected PSU is called an
ultimate cluster.
Multistage sampling is very �exible since many aspects

of the design have to be chosen including the number of
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stages and, for each stage, the unit of selection, the method
of selection and number of units selected. Strati�cation
and ratio or other estimation techniques may be used.�is
�exibility means that there is large scope for meeting the
demands of a particular survey in an e�cient way.
For a multistage sample the sampling variance of an

estimator of a mean or total has a component arising from
each stage of selection.�e contribution of a stage of selec-
tion is determined by the number of units selected at that
stage and the variation between the units at that stage,
within the units at the next highest level.�e precise for-
mula depends on the selection and estimation methods
used (See Lohr , Chaps. –; Cochran , Chaps. ,
A, –; Kish , Chaps. –, –).
If PSUs vary appreciably in size then it can be useful to

control the impact of this variation using ratio estimation
or Probability Proportional to Size (PPS) sampling using
the number of units in the PSU. For two-stage sampling a
common design involves PPS selection of PSUs and selec-
tion of an equal number of units in each selected PSU.�is
gives each population unit the same chance of selection,
which is usually a sensible feature for a sample of people,
and an equal workload within each selected PSU, which
has operational bene�ts.�e �rst stage component of vari-
ance is determined by the variation of the PSU means. To
use PPS sampling we need to know the population size of
each PSU in the population. For ratio estimation we only
need to know the total population size.

Optimal Design in Multistage Sampling
One of themain problems in designingmultistage samples
is to determine what size sample within selected PSUs to
take to optimally balance cost and sampling error. In a two
stage sampling scheme in whichm PSUs are to be selected
and the average number of units selected in each PSU is n
the sampling variance is minimized for �xed sample size
when n = , since then the sample includes the largest
number of PSUs. However, costs will be minimized when
as few PSUs as possible are selected. Costs and variances
are pulling in opposite directions and we must try to opti-
mally balance them. In a two-stage sample several types
of costs can be distinguished: overhead costs, costs associ-
ated with the selection of PSUs and costs associated with
the selection of nd stage units.�is leads to specifying a
cost function of the form

C + Cm + Cmn.

For some of the common two-stage sampling and estima-
tionmethods used in practice the variance of the estimator

of total or mean can be written as

V 
 +

V 


m
+
V 


mn
.

For �xed cost the variance is minimized by choosing

n =

¿
Á
ÁÀC
C
V 

V 

.

�e optimum choice of n thus depends on the ratios of
costs and variances. As the �rst stage costs increase rela-
tive to the second stage costs the optimum n increase, so
we are led to a more clustered sample. As the second stage
component of variance increases relative to the �rst stage
we are also led to a more clustered design.

�e optimum value of n can be expressed in terms

of the measure of homogeneity δ =
V 


V 
 + V 


, as

n =

√
C
C
 − δ

δ
. As δ increases the optimal choice of n

decreases. For example if C/C =  and δ = . then
the optimal n = . To determine the optimal choice of n
we only need to obtain an idea of the ratio of �rst stage to
second stage cost coe�cients and δ.
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Fractional Polynomial Models
Suppose that we have an outcome variable, a single contin-
uous covariate X, and a suitable regression model relating
them. Our starting point is the straight line model, βX
(for simplicity, we suppress the constant term, β). O�en
a straight line is an adequate description of the relation-
ship, but other models must be investigated for possible
improvements in �t. A simple extension of the straight
line is a power transformation model, βXp. �e latter
model has o�en been used by practitioners in an ad hoc
way, utilising di�erent choices of p. Royston and Altman
() formalize the model slightly by calling it a �rst-
degree fractional polynomial or FP function.�e power
p is chosen from a pragmatically chosen restricted set
S = {−,−,−., , ., , , }, where X denotes logX.
As with polynomial regression, extension from one-

term FP functions to the more complex and �exi-
ble two-term FP functions follows immediately. Instead
of βX + βX, FP functions with powers (p, p) are
de�ned as βXp + βXp with p and p taken from S. If
p = p Royston and Altman proposed βXp +βXp logX,
a so-called repeated-powers FP model.
For a more formal de�nition, we use the nota-

tion from Royston and Sauerbrei (). An FP func-
tion or model is de�ned as φ (X, p) = β + βXp,
the constant (β) being optional and context-speci�c.
For example, β is usually included in a normal-errors
regression model but is always excluded from a Cox
proportional-hazards model. An FP transformation of
X with powers p = (p, p), or when p = p
with repeated powers p = (p, p) is the vector Xp with

Xp = X(p ,p) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(Xp ,Xp) , p ≠ p

(Xp ,Xp logX) , p = p

An FP function (or model) with parameter vector
β = (β, β)T and powers p is φ (X,p) = β + Xpβ.
With the set S of powers as just given, there are
 FP transformations,  FP transformations with
distinct powers (p ≠ p) and  FP transformations with

equal powers (p = p).�e best �t among the combina-
tions of powers from S is de�ned as that with the highest
likelihood.

�e general de�nition of an FPm function with powers
p = (p ≤ ⋯ ≤ pm) is conveniently written as a recurrence
relation. Let h (X) =  and p = .�en

φm (X,p) = β + Xpβ = β +
m

∑
j=

βjhj (X)

where for j = , . . . ,m

hj (X) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Xpj , pj− ≠ pj
hj− (X) logX, pj− = pj

For example, for m =  and p = (−, ) we have
h (X) = X−, h (X) = X. For p = (, ) we have
h (X) = X, h (X) = X logX.
Figure  shows some FP curves, chosen to indicate

the �exibility available with a few pairs of powers (p, p).
�e ability to �t a variety of curve shapes, some of which
have asymptotes or which have both a sharply rising or
falling portion and a nearly �at portion, to real data is a
particularly useful practical feature of FP functions.

Function Selection Procedure (FSP)
Choosing the best FP or FP function by mininizing the
deviance (minus twice the maximized log likelihood) is
straightforward. However, having a sensible default func-
tion is important for increasing the parsimony, stability
and general usefulness of selected functions. Inmost of the
algorithms implementing FP modelling, the default func-
tion is linear – arguably, a natural choice.�erefore, unless
the data support a more complex FP function, a straight
line model is chosen. �ere are occasional exceptions;
for example, in modelling time-varying regression coe�-
cients in the Cox model, Sauerbrei et al. (a) chose a
default time transformation of log t rather than t.
It is assumed in what follows that the null distribu-

tion of the di�erence in deviances between an FPm and
an FP(m − ) model is approximately central χ on two
degrees of freedom. Justi�cation of this result is given in
Sect. .. of Royston and Sauerbrei () and supported
by simulation results (Ambler and Royston ).
For FP model selection, Royston and Sauerbrei ()

proposed using the following closed test procedure
(although other procedures are possible). It runs as follows:

. Test the best FPmodel forX at the α signi�cance level
against the null model using four d.f. If the test is not
signi�cant, stop, concluding that the e�ect of X is “not
signi�cant” at the α level. Otherwise continue.
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Multivariable Fractional Polynomial Models. Fig.  Examples of FP curves for different powers (p , p)

. Test the best FP for X against a straight line at the
α level using three d.f. If the test is not signi�cant,
stop, the �nal model being a straight line. Otherwise
continue.

. Test the best FP for X against the best FP at the α
level using two d.f. If the test is not signi�cant, the �nal
model is FP, otherwise the �nal model is FP. End of
procedure.

�e test at step  is of overall association of the out-
come with X.�e test at step  examines the evidence for
non-linearity.�e test at step  chooses between a simpler
or more complex non-linear model. Before applying the
procedure, the analyst must decide on the nominal P-value
(α) and on the degree (m) of the most complex FP model
allowed. Typical choices are α = . and FP (m = ).

Multivariable Fractional Polynomial
(MFP) Procedure
In many studies, a relatively large number of predictors is
available and the aim is to derive an interpretable multi-
variable model which captures the important features of
the data: the stronger predictors are included and plausible
functional forms are found for continuous variables.
As a pragmatic strategy to building such models, a sys-

tematic search for possible non-linearity (provided by the
FSP) is added to a backward elimination (BE) procedure.
For arguments to combine FSP with BE, see Royston and
Sauerbrei ().�e extension is feasible with any type of
regression model to which BE is applicable. Sauerbrei and

Royston () called it the multivariable fractional poly-
nomial (MFP) procedure, or simply MFP. Using MFP suc-
cessfully requires only general knowledge about building
regression models.

�e nominal signi�cance level is the main tuning
parameter required byMFP. Actually, two signi�cance lev-
els are needed: α for selecting variables with BE, and α
for comparing the �t of functions within the FSP. O�en,
α = α is a good choice. A degree greater than  (m > ) is
rarely if ever needed in a multivariable context. Since the
model is derived data-dependently, parameter estimates
are likely to be somewhat biased.
As with any multivariable selection procedure checks

of the underlying assumptions and of the in�uence
of single observations are required and may result
in model re�nement. To improve robustness of FP
models in the univariate and multivariable context
Royston and Sauerbrei () proposed a preliminary
transformation of X.�e transformation shi�s the origin
of X and smoothly pulls in extreme low and extreme high
values towards the center of the distribution.�e transfor-
mation is linear in the central bulk of the observations.
If available, subject-matter knowledge should replace

data-dependent model choice. Only minor modi�cations
are required to incorporate various types of subject-matter
knowledge into MFP modelling. For the discussion of a
detailed example, see Sauerbrei and Royston ().
For model-building by selection of variables and func-

tional forms for continuous predictors, MFP has several
advantages over spline-based models (the most important
alternatives). For example, MFP models exhibit fewer
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artefacts in �tted functions, and are more transportable,
mathematically concise and generally more useful than
splinemodels (Royston and Sauerbrei ; Sauerbrei et al.
b). Residual analysis with spline models may be used
to check whether the globally de�ned functions derived
by MFP analysis have missed any important local features
in the functional form for a given continuous predictor
(Binder and Sauerbrei ).
Recommendations for practitioners of MFPmodelling

are given in Royston and Sauerbrei () and Sauerbrei
et al. (b).

Extensions of MFP to Investigate for
Interactions
MFP was developed to select main e�ects of predictors on
the outcome. If a variable X explains (at least partially)
the relationship between a predictor X and the outcome
Y then confounding is present. Another important issue is
interaction between two or more predictors in a multivari-
able model. An interaction between X and X is present if
X modi�es the relationship between X and the outcome.
�at means that the e�ect of X is di�erent in subgroups
determined by X. Extensions of MFP have been proposed
to handle two-way interactions involving at least one con-
tinuous covariate (Royston and Sauerbrei ). Higher
order interactions, which typically play a role in factorial
experiments, are a further extension, but not one that has
yet been considered in the FP context.
To investigate for a possible interaction between a con-

tinuous predictor and two treatment arms in a randomized
controlled trial, the multivariable fractional polynomial
interaction (MFPI) procedure was introduced (Royston
and Sauerbrei ). In a �rst step, the FP class is used
to model the prognostic e�ect of the continuous variable
separately in the two treatment arms, usually under some
restrictions such as the same power terms in each arm.
In a second step, a test for the equality of the prognos-
tic functions is conducted. If signi�cant, an interaction is
present and the di�erence between two functions estimates
the in�uence of the prognostic factor on the e�ect of treat-
ment.�e di�erence function is called a treatment e�ect
function (and should be plotted). For interpretation, it is
important to distinguish between the two cases of a prede-
�ned hypothesis and of searching for hypotheses (Royston
and Sauerbrei , ).
For more than two groups, extensions to investigate

continuous by categorical interactions are immediate. Fur-
thermore,MFPI allows investigation of treatment-covariate
interactions in models with or without adjustment for
other covariates. �e adjustment for other covariates
enables the use of the procedure in observational studies,

where the multivariable context is more important than in
an RCT.
Continuous-by-continuous interactions are important

in observational studies. A popular approach is to assume
linearity for both variables and test the multiplicative term
for signi�cance. However, the model may �t poorly if
one or both of the main e�ects is non-linear. Royston
and Sauerbrei (, Chap. ) introduced an extension of
MFPI, known as MFPIgen, in which products of selected
main e�ect FP functions are considered as candidates for
an interaction between a pair of continuous variables. Sev-
eral continuous variables are usually available, and a test of
interaction is conducted for each such pair. If more than
one interaction is detected, interactions are added to the
main-e�ects model in a step-up manner.

�e MFPT(ime) algorithm (Sauerbrei et al. a)
combines selection of variables and of the functional
form for continuous variables with determination of time-
varying e�ects in a Cox proportional hazards model for
7survival data. A procedure analogous to the FSP was sug-
gested for investigating whether the e�ect of a variable
varies in time, i.e., whether a time-by-covariate interaction
is present.

Further Contributions to Fractional
Polynomial Modelling
Methods based on fractional polynomials have been
reported recently, aiming to improve or extend the mod-
elling of continuous covariates in various contexts. For
example, Faes et al. () appliedmodel averaging to frac-
tional polynomial functions to estimate a safe level of expo-
sure; Lambert et al. () considered time-dependent
e�ects in regression models for relative survival; and Long
and Ryoo () used FPs to model non-linear trends in
longitudinal data. For further topics and references, see
Sect. . of Royston and Sauerbrei ().
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Multivariate Analysis of Variance
(MANOVA)
Barbara G. Tabachnick, Linda S. Fidell
California State University, Northridge, CA, USA

ANOVA (7analysis of variance) tests whethermean di�er-
ences among groups on a single DV (dependent variable)
are likely to have occurred by chance. MANOVA (multi-
variate analysis of variance) tests whethermean di�erences
among groups on a combination of DVs are likely to have
occurred by chance. For example, suppose a researcher
is interested in the e�ect of di�erent types of treatment
(the IV; say, desensitization, relaxation training, and a
waiting-list control) on anxiety. In ANOVA, the researcher
chooses one measure of anxiety from among many. With
MANOVA, the researcher can assess several types of anx-
iety (say, test anxiety, anxiety in reaction to minor life
stresses, and so-called free-�oating anxiety). A�er random
assignment of participants to one of the three treatments
and a subsequent period of treatment, participants are
measured for test anxiety, stress anxiety, and free-�oating
anxiety. Scores on all three measures for each participant
serve as DVs. MANOVA is used to ask whether a combi-
nation of the three anxiety measures varies as a function
of treatment. (MANOVA is statistically identical to dis-
criminant analysis.�e di�erence between the techniques
is one of emphasis. MANOVA emphasizes the mean dif-
ferences and statistical signi�cance of di�erences among
groups. Discriminant analysis (see 7Discriminant Analy-
sis: An Overview, and7Discriminant Analysis: Issues and
Problems) emphasizes prediction of group membership
and the dimensions on which groups di�er.)
MANOVA developed in the tradition of ANOVA. Tra-

ditionally, MANOVA is applied to experimental situa-
tions where all, or at least some, IVs are manipulated
and participants are randomly assigned to groups, usu-
ally with equal cell sizes. �e goal of research using
MANOVA is to discover whether outcomes, as re�ected by
the DVs, are changed by manipulation (or other action) of
the IVs.
InMANOVA, a new DV is created from the set of DVs

that maximizes group di�erences.�e new DV is a linear
combination of measured DVs, combined so as to separate
the groups asmuch as possible. ANOVA is then performed
on the newly created DV. As in ANOVA, hypotheses about
means are tested by comparing variances between means
relative to variances in scores within groups-hence multi-
variate analysis of variance.
In factorial ormore complicatedMANOVA, a di�erent

linear combination of DVs is formed for each IV and
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interaction. If gender of participant is added to type of
treatment as a second IV, one combination of the threeDVs
maximizes the separation of the three treatment groups,
a second combination maximizes separation of women
and men, and a third combination maximizes separation
of the six cells of the interaction. Further, if an IV has
more than two levels, the DVs can be recombined in yet
other ways to maximize the separation of groups formed
by comparisons.
MANOVA has a number of advantages over ANOVA.

First, by measuring several DVs instead of only one, the
researcher improves the chance of discovering what it is
that changes as a result of di�erent IVs and their interac-
tions. For instance, desensitization may have an advantage
over relaxation training or waiting-list control, but only on
test anxiety; the e�ect is missed in ANOVA if test anxiety
is not chosen as the DV. A second advantage of MANOVA
over a series of ANOVAs (one for each DV) is protec-
tion against in�ated Type I error due to multiple tests of
(likely) correlated DVs. (�e linear combinations them-
selves are usually of interest in discriminant analysis, but
not in MANOVA.)
Another advantage of MANOVA is that, under cer-

tain, probably rare conditions, it may reveal di�erences not
shown in separate ANOVAs (Maxwell ). Such a sit-
uation is shown in Fig.  for a one-way design with two
levels. In this �gure, the axes represent frequency distribu-
tions for each of two DVs, Y and Y. Notice that from the
point of view of either axis, the distributions are su�ciently
overlapping that a mean di�erence might not be found in
ANOVA.�e ellipses in the quadrant, however, represent
the distributions of Y and Y for each group separately.
When responses to two DVs are considered in combina-
tion, group di�erences become apparent.�us,MANOVA,
which considers DVs in combination, may occasionally be
more powerful than separate ANOVAs.

�e goal in MANOVA is to choose a small number of
DVs where each DV is related to the IV, but the DVs are
not related to each other. Good luck. In the usual situation
there are correlations among the DVs, resulting in some
ambiguity in interpretation of the e�ects of IVs on any
single DV and loss of power relative to ANOVA. Figure 
shows a set of hypothetical relationships between a single
IV and four DVs. DVis highly related to the IV and shares
some variance with DV and DV. DV is related to both
DV and DV and shares very little unique variance with
the IV. DV is somewhat related to the IV, but also to all of
the other DVs. DV is highly related to the IV and shares
only a little bit of variance with DV.�us, DV is com-
pletely redundant with the other DVs, and DV adds only
a bit of unique variance to the set. (However, DV might
be useful as a covariate if that use is conceptually viable

Y1

Y2

Multivariate Analysis of Variance (MANOVA). Fig.  Advant-
age of MANOVA, which combines DVs, over ANOVA. Each axis

represents a DV; frequency distributions projected to axes

show considerable overlap, while ellipses, showing DVs in
combination, do not

IV

DV4

DV3
DV2

DV1

Multivariate Analysis of Variance (MANOVA). Fig.  Hypothe-

tical relationships among a single IV and four DVs

because it reduces the total variances in DVs  and  that
are not overlapping with the IV.)
Although computing procedures and programs for

MANOVA and MANCOVA are not as well developed as
for ANOVA and ANCOVA, there is in theory no limit
to the generalization of the model. �e usual questions
regarding main e�ects of IVs, interactions among IVs,
importance of DVs, parameter estimates (marginal and
cell means), speci�c comparisons and trend analysis (for
IVs with more than two levels), e�ect sizes of treatments,
and e�ects of covariates, if any, are equally interesting with
MANOVA as with ANOVA. �ere is no reason why all
types of designs - one-way, factorial, repeated measures,
nonorthogonal, and so on - cannot be extended to research
with several DVs.
For example, multivariate analysis of covariance

(MANCOVA) is the multivariate extension of ANCOVA.
MANCOVA asks if there are statistically signi�cant mean
di�erences among groups a�er adjusting the newly created
DV for di�erences on one or more covariates. To extend
the example, suppose that before treatment participants are
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pretested on test anxiety, minor stress anxiety, and free-
�oating anxiety; these pretest scores are used as covariates
in the �nal analysis. MANCOVA asks if mean anxiety on
the composite score di�ers in the three treatment groups,
a�er adjusting for preexisting di�erences in the three types
of anxieties.
MANOVA is also a legitimate alternative to repeated-

measures ANOVA in which di�erences between pairs of
responses to the levels of the within-subjects IV are simply
viewed as separate DVs.
Univariate analyses are also useful following a

MANOVA or MANCOVA. For example, if DVs can be
prioritized, ANCOVA is used a�er MANOVA (or MAN-
COVA) in Roy-Bargmann stepdown analysis where the
goal is to assess the contributions of the various DVs to
a signi�cant e�ect (Bock ; Bock and Haggard ).
One askswhether, a�er adjusting for di�erences on higher-
priority DVs serving as covariates, there is any signi�cant
mean di�erence among groups on a lower-priority DV.
�at is, does a lower-priority DV provide additional sep-
aration of groups beyond that of the DVs already used?
In this sense, ANCOVA is used as a tool in interpret-
ing MANOVA results. Results of stepdown analysis are
reported in addition to individual ANOVAs.
However, MANOVA is a substantially more com-

plicated analysis than ANOVA because there are sev-
eral important issues to consider. MANOVA has all of
the complications of ANOVA (e.g., homogeneity of vari-
ance; equality of sample sizes within groups; absence of
7outliers; power, cf. Woodward et al. ; normality of
sampling distributions, independence of errors) and sev-
eral more besides (homogeneity of variance-covariance
matrices; multivariate normality, cf. Mardia  and Seo
et al. ; linearity, absence of7multicollinearity and sin-
gularity; and choice among statistical criteria, cf. Olson
).�ese are not impossible to understand or test prior
to analysis, but they are vital to an honest analysis.
Comprehensive statistical so�ware packages typically

include programs for MANOVA. �e major SPSS mod-
ule is GLM, however the olderMANOVAmodule remains
available through syntax and includes Roy-Bargmann
stepdown analysis as an option. NCSS and SYSTAT have
speci�c MANOVAmodules, whereas SAS provides analy-
sis of MANOVA through its GLMmodule. Analysis is also
available through BMDPV, STATA, and Statistica.
For more information about MANOVA, see Chaps. 
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Most business problems involve many variables. Managers
look atmultiple performancemeasures and relatedmetrics
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when making decisions. Consumers evaluate many char-
acteristics of products or services in deciding which to
purchase. Multiple factors in�uence the stocks a broker
recommends. Restaurant patrons consider many factors in
deciding where to dine. As the world becomes more com-
plex, more factors in�uence the decisions managers and
customers make.�us, increasingly business researchers,
as well as managers and customers, must rely on more
sophisticated approaches to analyzing and understanding
data.
Analysis of data has previously involved mostly uni-

variate and bivariate approaches. Univariate analysis
involves statistically testing a single variable, while bivari-
ate analysis involves two variables.When problems involve
three or more variables they are inherently multidimen-
sional and require the use of multivariate data analysis.
For example, managers trying to better understand their
employees might examine job satisfaction, job commit-
ment, work type (part-time vs. full-time), shi� worked
(day or night), age and so on. Similarly, consumers
comparing supermarkets might look at the freshness and
variety of produce, store location, hours of operation,
cleanliness, prices, courtesy and helpfulness of employ-
ees, and so forth. Managers and business researchers need
multivariate statistical techniques to fully understand such
complex problems.
Multivariate data analysis refers to all statistical meth-

ods that simultaneously analyze multiple measurements
on each individual respondent or object under investiga-
tion. �us, any simultaneous analysis of more than two
variables can be considered multivariate analysis. Multi-
variate data analysis is therefore an extension of univariate
(analysis of a single variable) and bivariate analysis (cross-
classi�cation, correlation, and simple regression used to
examine two variables).
Figure  displays a useful classi�cation of statistical

techniques. Multivariate as well as univariate and bivari-
ate techniques are included to help you better understand
the similarities and di�erences. As you can see at the top,
we divide the techniques into dependence and interdepen-
dence depending on the number of dependent variables.
If there is one or more dependent variables a technique is
referred to as a dependence method.�at is, we have both
dependent and independent variables in our analysis. In
contrast, when we do not have a dependent variable we
refer to the technique as an interdependence method.�at
is, all variables are analyzed together and our goal is to form
groups or givemeaning to a set of variables or respondents.

�e classi�cation can help us understand the di�er-
ences in the various statistical techniques. If a research
problem involves association or prediction using both
dependent and independent variables, one of the dependence

techniques on the le� side of the diagram is appro-
priate. �e choice of a particular statistical technique
depends on whether the dependent variable is metric
or nonmetric, and how many dependent variables are
involved. With a nonmetric, ordinally measured depen-
dent we would use the Spearman correlation. With a non-
metric, nominal dependent variable we use discriminant
analysis (see 7Discriminant Analysis: An Overview, and
7Discriminant Analysis: Issues and Problems), conjoint
analysis or 7logistic regression. On the other hand, if
our dependent variable is metric, we can use correlation,
regression, ANOVA or MANOVA, canonical correlation,
and conjoint analysis (the statistical technique of conjoint
analysis can be formulated to handle bothmetric and non-
metric variables). �e various statistical techniques are
de�ned in Fig. . For more information on multivariate
statistical techniques see Hair et al. ().

Concluding Observations
Today multivariate data analysis is being used by most
medium and large sized businesses, and even some small
businesses. Also, most business researchers rely on mul-
tivariate analysis to better understand their data. �us,
in today’s business environment it’s just as important to
understand the relationship between variables, which o�en
requires multivariate analysis, as it is to gather the infor-
mation in the �rst place.�e importance of multivariate
statisticalmethods that help us to understand relationships
has increased dramatically in recent years. What can we
expect in the future as applications of multivariate data
analysis expand: () data will continue to increase expo-
nentially, () data quality will improve as will data cleaning
techniques and data maintenance, () data analysis tools
will be more powerful and easier to use, and () there will
be many more career opportunities involving examining
and interpreting data using multivariate data analysis.
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Dependent variable
level of measurement
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Nominal Ordinal

ß Discriminant analysis
ß Conjoint analysis
ß Logistic regression

ß Correlation analysis, Bivariate
 and multiple regression
ß ANOVA and MANOVA
ß Conjoint analysis
ß Canonical analysis

ß Factor analysis
ß Cluster analysis
ß Multidimensional scaling
ß Correspondence  analysis

ß Spearman’s
correction

Number of
dependent variables
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ratio

Interdependence
techniques

One
or

More

None

Multivariate Data Analysis: An Overview. Fig.  Classification of statistical techniques

ANOVA – ANOVA stands for analysis of variance. It is used to examine statistical differences between the means
of two or more groups. The dependent variable is metric and the independent variable(s) is nonmetric. One-way
ANOVA has a single non-metric independent variable and two-way ANOVA can have two or more non-metric
independent variables. ANOVA is bivariate while MANOVA is the multivariate extension of ANOVA.
Bivariate Regression – this is a type of regression that has a single metric dependent variable and a single
metric independent variable.
Cluster Analysis – this type of analysis enables researchers to place objects (e.g., customers, brands, products)
into groups so that objects within the groups are similar to each other. At the same time, objects in any particular
group are different from objects in all other groups.
Correlation – correlation examines the association between two metric variables. The strength of the asso-
ciation is measured by the correlation coefficient. Canonical correlation analyzes the relationship between
multiple dependent and multiple independent variables, most often using metric measured variables.
Conjoint Analysis – this technique enables researchers to determine the preferences individuals have for
various products and services, and which product features are valued the most.
Discriminant Analysis – enables the researcher to predict group membership using two or more metric
dependent variables. The group membership variable is a non-metric dependent variable.
Factor Analysis – this technique is used to summarize the information from a large number of variables into
a much smaller number of variables or factors. This technique is used to combine variables whereas cluster
analysis is used to identify groups with similar characteristics.
Logistic Regression – logistic regression is a special type of regression that involves a non-metric dependent
variable and several metric independent variables.
Multiple Regression – this type of regression has a single metric dependent variable and several metric
independent variables.
MANOVA – same technique as ANOVA but it can examine group differences across two or more metric
dependent variables at the same time.
Perceptual Mapping – this approach uses information from other statistical techniques (e.g., multidimensional
scaling) to map customer perceptions of products, brands, companies, and so forth.

Multivariate Data Analysis: An Overview. Fig.  Definitions of statistical techniques
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�e multivariate normal distribution is a generalization
of the familiar univariate normal or Gaussian distribution

(Hogg et al. ; Miller and Miller ) to p ≥  dimen-
sions. Just as with its univariate counterpart, the impor-
tance of the multivariate normal distribution emanates
from a number of its useful properties, and especially
from the fact that, according to the central limit theorem
(Anderson ; Johnson and Wichern ) under cer-
tain regularity conditions, sum of random variables gener-
ated from various (likely unknown) distributions tends to
behave as if its underlying distribution were multivariate
normal.

�e need for generalization to the multivariate dis-
tribution naturally arises if we simultaneously investigate
more than one quantity of interest. In that case, single
observation (result of an experiment) is not value of a
single variable, but the set of p values of p ≥  random
variables. �erefore, we deal with p ×  random vector
X and each single observation becomes p ×  vector x
of single realizations of p random variables under exam-
ination. All these variables have their particular expected
values that jointly constitute p ×  mean vector µ, which
is expected value of random vector X. Since analysis of
collective behaviour of several quantities must take into
account their mutual correlations, in multivariate analysis
we also de�ne p × p variance-covariance matrix

Σ = cov(X) = E [(X − µ)(X − µ)T]

=
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⎢
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where σij are covariances between ith and jth component
of X and σii are variances of ith variable (more commonly
denoted σ i ). �is matrix is symmetric because σij = σji
and it is assumed to be positive de�nite.
Conceptually, the development of multivariate normal

distribution starts from the univariate probability density
function of a normal random variable X with the mean µ
and variance σ . Common notation is X ∼ N(µ, σ ) and
probability density function (pdf) of X is

f (x) =


√
πσ 

e
− (x − µ)

σ =


√
πσ 

e
− 

( x − µ

σ
)


=


√
πσ 

e
− 

z ;−∞ < x < +∞. ()

Variable Z is so-called standard normal variable or z-
score and it represents the square of the distance from
a single observation (measurement) x to the population



 M Multivariate Normal Distributions

0 0 0 0

x1

x2

z z

x2

µ1

x1

µ1
µ2 µ2

Multivariate Normal Distributions. Fig.  Bivariate normal distribution with: left - σ = σ, ρ = ; right - σ = σ , ρ = , 

mean µ, expressed in standard deviation units. It is this dis-
tance that directly generalizes to p ≥  dimensions, because
in the univariate case we can write

(
x − µ

σ
)

= (x − µ)(σ )−(x − µ), ()

and in themultivariate case, by analogy, we have theMaha-
lanobis distance (Johnson andWichern ) expressed as

(x − µ)TΣ−(x − µ). ()

�e multivariate normal probability density function
is obtained (Anderson ; Hogg et al. ; John-
son and Wichern ) by replacing () by () in the
density function () and substituting the normalizing
constant by (π)−p/∣Σ∣−/, so that the p-dimensional
normal probability density for the random vector X =

[X,X, . . . ,Xp]T is

f (x) =


(π)p/∣Σ∣/
e−(x−µ)TΣ−(x−µ)/ ()

where xi ∈ (−∞,∞) and i = , , . . . , p. Again analogously
to the univariate case, we write X ∼ Np(µ,Σ).
As an example, consider bivariate (p = ) distribution

in terms of the individual parameters µ , µ, σ  = σ , σ  =
σ and σ = σ. If we also introduce correlation coe�cient
ρ = ρ = corr(X,X) = σ /(σ ⋅ σ), density () becomes

f (x, x) =


πσσ
√
 − ρ

exp{−


( − ρ)
[(
x − µ

σ
)


+(
x − µ

σ
)

− ρ

x − µ
σ

x − µ
σ

]} . ()

Formula () clearly indicates certain important general
properties of multivariate normal distributions. First of all,
if random variables X and X are uncorrelated, i.e., ρ = ,
it immediately follows that their joint density () can be
factored as the product of two univariate normal densi-
ties of the form of (). Since f (x , x) factors as f (x , x) =
f (x) ⋅ f (x), it follows that if X and X are uncorre-
lated, they are also statistically independent.�is is a direct
consequence of the general (p ≥ ) multivariate normal
property that uncorrelated variables are independent and
have marginal distributions univariate normal. However,
converse is not necessarily true for both of these state-
ments and requires caution. Independent normal variables
certainly are uncorrelated (this is true for any distribu-
tion anyway), but marginal distributions may be univari-
ate normal without the joint distribution being multivari-
ate normal. Similarly, marginally normal variables can be
uncorrelated without being independent (Anderson ;
Miller and Miller ).
Several other general properties ofmultivariate normal

distribution are easier to conceive by studying the bivari-
ate normal surface de�ned by () and illustrated in Fig. .
Obviously, the bivariate (as well as multivariate) proba-
bility density function has a maximum at (µ , µ). Next,
any intersection of this surface and a plane parallel to
the z-axis has the shape of an univariate normal distribu-
tion, indicating that marginal distributions are univariate
normal.
Finally, any intersection of this surface and a plane

parallel to the xx plane is an ellipse called contour of
constant probability density. In the special case when vari-
ables are uncorrelated (independent) and σ = σ (Fig. 
- le�), contours of constant probability density are circles
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and it is customary to refer to the corresponding joint
density as a circular normal density. When variables are
uncorrelated, but σ ≠ σ, contours are ellipses whose
semi-axes are parallel to the x, x axes of the coordinate
system. In the presence of correlation, probability density
concentrates along the line (Fig.  - right) determined by
the coe�cient of correlation and variances of variables,
so the contours of constant probability density are ellipses
rotated in a plane parallel to xx plane (Anderson ;
Miller and Miller ). All these properties are valid in
p-dimensional spaces (p > ) as well.
Here is the list of most important properties of the

multivariate normal distribution (Anderson ; Johnson
and Wichern ; Rao ).

. Let X be a random vector X ∼ Np(µ,Σ) and a an arbi-
trary p ×  vector.�en the linear combination aTX =

aX+aX+ . . .+apXp is distributed asN(aTµ, aTΣa).
Inwords, any linear combination of jointly normal ran-
dom variables is normally distributed. Converse is also
true: if aTX is ∼ N(aTµ, aTΣa) for every a, then X ∼

Np(µ,Σ).
. Generalization of property : LetX be a random vector
X ∼ Np(µ,Σ) and let us form q linear combinations
AX, whereA is an arbitrary q×pmatrix.�en it is true
that AX ∼ Nq(Aµ,AΣAT). Similarly, for any vector of
constants d we have X + d ∼ Np(µ + d,Σ).

. All subsets of variables constituting X ∼ Np(µ,Σ) are
(multivariate) normally distributed.

. Multivariate normal q ×  and q ×  vectors X and
X are independent if and only if they are uncor-
related, i.e., cov(X,X) =  (a q × q matrix of
zeros).

. If multivariate normal q ×  and q ×  vectors X and
X are independent and distributed asNq(µ,Σ) and
Nq(µ,Σ), respectively, then (q + q) ×  vector
[XT XT ]T has multivariate normal distribution
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. Let X,X, . . . ,Xn be mutually independent random
vectors that are all multivariate normally distributed,
each having its particularmean, but all having the same
covariance matrix Σ, i.e., Xj ∼ Np(µj,Σ). Linear com-
bination of these vectors V = cX + cX + . . . +

cnXn is distributed as Np (
n
∑
j=
cjµj,(

n
∑
j=
cj )Σ) . More-

over, similarly to property , V and some other linear
combination V = bX + bX + . . . + bnXn are

jointly multivariate normally distributed with covari-
ance matrix

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
n
∑
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cj )Σ (bTc)Σ

(bTc)Σ (
n
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⎥
⎥
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.

�us, if bTc = , i.e., vectors b and c are orthogonal, it
follows thatV andV are independent and vice versa.

. All conditional distributions are multivariate normal.
Formally, let X and X be any two subsets of a mul-
tivariate normal vector X ∼ Np(µ,Σ) with µ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

µ

µ
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⎥
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, and ∣Σ∣ > .�e con-

ditional distribution of X, given a �xed X = x, is
multivariate normal with

mean(X∣x) = µ + ΣΣ
−
(x − µ) and cov(X∣x)

= Σ − ΣΣ−Σ.

. Generalized distance (x − µ)TΣ−(x − µ) of observa-
tions x of a vector X ∼ Np(µ,Σ) from the mean µ
has a chi squared distribution with p degrees of freedom
denoted χp.

. With X,X, . . . ,Xn as a set of n observations from
a (multivariate) normal population with mean µ and
covariance Σ, we have the following results:
(a) X is distributed as Np(µ, (/n)Σ)
(b) (n − )S has a Wishart distribution; with n − 
degrees of freedom

(c) X and S are independent.
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In the statistical analysis of data one is o�en confronted
with observations that “appear to be inconsistent with the
remainder of that set of data” (Barnett and Lewis ).
Although such observations (the 7outliers) have been the
subject of numerous investigations, there is no general
accepted formal de�nition of outlyingness. Nevertheless,
the outliers describe abnormal data behavior, i.e., data that
are deviating from the natural data variability (see, e.g.,
Peña and Prieto , Filzmoser , and Filzmoser et al.
 for a discussion).
Sometimes outliers can grossly distort the statistical

analysis, while at other times their in�uence may not
be as noticeable. Statisticians have accordingly developed
numerous algorithms for the detection and treatment of
outliers, but most of these methods were developed for
univariate data sets.�ey are based on the estimation of
location and scale, or on quantiles of the data. Since in a
univariate sample outliers may be identi�ed as an excep-
tionally large or small value, a simple plot of the data, such
as scatterplot, stem-and-leaf plot, and QQ-plot can o�en
reveal which points are outliers.
In contrast, for multivariate data sets the problem of

outliers identi�cation gives challenges that do not occur

with univariate data since there is no simple concept
of ordering the data. Furthermore, the multivariate case
introduces a di�erent kind of outlier, a point that is not
extreme component wise but departs from the prevail-
ing pattern of correlation structure. �is departs causes
that the observations appear as univariate outliers in some
direction not easily identi�able. In this context, to detect
an observation as possible outlier not only the distance
from the centroid of the data is important but also the
data shape. Also, as Gnanadesikan and Kettenring ()
pointed out the visual detection of multivariate outliers is
virtually impossible because the outliers do not “stick out
on the end.”
Since most standard multivariate analysis techniques

rely on the assumption of normality, in , Wilks pro-
posed identifying sets of outliers of size j from {, , . . . ,n},
in normal multivariate data, by checking the minimum
values of the ratios ∣A(I)∣/∣A∣, where ∣A(I)∣ is the internal
scatter of a modi�ed sample in which the set of observa-
tions I of size j has been deleted and ∣A∣ is the internal
scatter of the complete sample. For j =  this method
is equivalent to the classical way to declare a multivari-
ate observation as a possible outlier by using the squared
Mahalanobis’ distance de�ned as

MDi (xi, t,V) = ((xi − t)TV−(xi − t))/

where t is the estimated multivariate location and V the
estimated scattermatrix. Usually t is themultivariate arith-
metic mean, the centroid, and V the sample covariance
matrix. Mahalanobis’ distance identi�es observations that
lie far away from the center of the data cloud, giving less
weight to variables with large variances or to groups of
highly correlated variables. For a p-multivariate normally
distributed dataMDi (xi, t,V) converge to χp, a chi-square
distribution with p degree of freedom. Points with large
MDi ≡ MD


i (xi, t,V), compared with some χp quantile,

are then considered outliers. Hence, to evaluate multivari-
ate normality one may plot the orderedMD(i) against the
expected order statistics of the 7chi-square distribution
with sample quantiles χp[(i−/)/] = qi where qi (i =
, . . . ,n) is the (i − /)/n sample quantile of χp.�e
plotted points (MD(i), qi) should be close to a line, so
the points far from the line are potential outliers. Formal
tests formultivariate outliers are considered by Barnett and
Lewis ().
Clearly, the Mahalanobis distance relies on classical

location and scatter estimators. �e presence of outliers
may distort arbitrarily the values of these estimators and
render meaningless the results. �is is particularly acute
when there are several outliers forming a cluster, because
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they will move the arithmetic mean toward them and
in�ate the classical tolerance ellipsoid in their direction.
So this approach su�ers from the masking and swamp-
ing e�ects by which multiple outliers do not have a large
MDi . A solution to this problem is well known in 7robust
statistics: t andV have to be estimated in a robust manner,
where the expression “robust”means resistance against the
in�uence of outlying observations.�us, the “robusti�ed”
ordered Mahalanobis distances, RMD(i) may be plotted to
locate extreme outliers.�is is the approach considered by
Becker and Gather (), Filzmoser (), and Hardin
and Rocke () who studied outlier identi�cation rules
adapted to the sample size using di�erent location and
scatter robust estimators.
For a review on some of the robust estimators for loca-

tion and scatter introduced in the literature see Maronna
et al. (). �e minimum covariance determinant
(MCD) estimator – the procedure is due to Rousseeuw
() – is probablymost frequently used in practice, partly
because a computationally fast algorithm has been devel-
opped (Rousseeuw and Van Driessen ). �e MCD
estimator also bene�ts from the availability of so�ware
implementation in di�erent languages, includingR, S-Plus,
Fortran, Matlab, and SAS. For these reasons theMCD esti-
mator had gained much popularity, not only for outliers
identi�cation but also as an ingredient of many robust
multivariate techniques.
Other currently popular multivariate outlier detec-

tion methods fall under projection pursuit techniques,
originally proposed by Kruskal (). Projection pursuit
searches for “interesting” linear projections of multivari-
ate data sets, where a projection is deemed interesting if
it minimizes or maximizes a projection index (typically a
scale estimator).�erefore, the goal of projection pursuit
methods is to �nd suitable projections of the data in which
the outliers are readily apparent and may thus be down-
weighted to yield a estimator, which in turn can be used
to identify the outliers. Since they do not assume the data
to originate from a particular distribution but only search
for useful projections, projection pursuit procedures are
not a�ected by non-normality and can be widely applied
in diverse data situations. �e penalty for such freedom
comes in the form of increased computational burden,
since it is not clear which projections should be examined.
An exact method would require to test over all possible
directions.

�e most well-known outlier identi�cation method
based upon the projection pursuit concept is the Stahel–
Donoho (Stahel ; Donoho ) estimator. �is was
the �rst introduced high-breakdown and a�ne equivariant
estimator of multivariate location and scatter that became

better known a�er Maronna and Yohai () published
an analysis of it. It is based on a measure of the outlying-
ness of data points, which is obtained by projecting the
observation on univariate directions.�e Stahel–Donoho
estimator then computes a weighted mean and covariance
matrix, with weights inverse proportional to the outlying-
ness.�is outlyingness measure is based upon the projec-
tion pursuit idea that if a point is a multivariate outlier,
theremust be some one-dimensional projection of the data
in which this point is a univariate outlier. Using a partic-
ular observation as a reference point, the Stahel–Donoho
algorithm determines which directions have optimal val-
ues for a pair of robust univariate location/scale estimators
and then uses these estimators to assign weights to the
other points. One way of reducing the computational cost
of the Stahel–Donoho estimator is to reduce the number
of projections that need to be examined.
In this direction, Peña and Prieto () proposed a

method, the Kurtosis, which involves projecting the data
onto a set of p directions. �ese directions are chosen
to maximize and minimize the kurtosis coe�cient of the
data along them. A small number of outliers would cause
heavy tails and lead to a larger kurtosis coe�cient, while a
larger number of outlierswould start introducing bimodal-
ity and decrease the kurtosis coe�cient. Viewing the data
along projections that have maximum and minimum kur-
tosis values would therefore seem to display the outliers in
a more recognizable representation.
For a much more detailed overview about outliers see

Barnett and Lewis () and also Rousseeuw et al. ()
for a review on robust statistical methods and outlier
detection.
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Developments 7in multivariate statistical analysis have
genesis in the parametrics surrounding the multivariate
normal distribution (see 7Multivariate Normal Distribu-
tions) in the continuous casewhile the productmultinomial
law dominates in discrete multivariate analysis. Charac-
terizations of multi-normal distributions have provided
a wealth of rigid mathematical tools leading to a very
systematic evolution of mathematical theory laying down
the foundation of multivariate statistical methods. Inter-
nal multivariate analyses comprising of principal compo-
nent models, canonical correlation and factor analysis are
all based on appropriate invariance structures that exploit
the underlying linearity of the interrelation of di�erent
characteristics, without depending much on underlying

normality, and these tools are very useful in many areas
of applied research, such as sociology, psychology, eco-
nomics, and agricultural sciences. In the recent past, there
has been a phenomenal growth of multivariate analysis in
medical studies, clinical trials and7bioinformatics, among
others. �e role of multinormality is being scrutinized
increasingly in these contexts.
External multivariate analyses pertaining to

7multivariate analysis of variance (MANOVA) and covari-
ance (MANOCOVA), classi�cation and discrimination,
among others, have their roots in the basic assumption
of multinormal distribution, providing some optimal, or
at least desirable, properties of statistical inference proce-
dures. Such optimal statistical procedures generally exist
only when the multinormality assumption holds. Yet, in
real life applications, the postulation of multinormality
may not be tenable in a majority of cases. Whereas in the
univariate case, there are some other distributions, some
belonging to the so-called exponential family of densities
and some not, for which exact statistical inference can be
drawn, o�en being con�ned to suitable subclass of statis-
tical procedures. In the multivariate case, alternatives to
multinormal distributions are relatively few and lack gen-
erality. As such, almost �ve decades ago, it was strongly felt
that statistical procedures should be developed to bypass
the stringent assumption of multinormality; this is the
genesis ofmultivariate nonparametrics.
Whereas the classical normal theory likelihood based

multivariate analysis exploited a�ne invariance, leading
to some optimality properties, it has some shortcomings
too. A�ne invariance makes sense only when the di�er-
ent characteristics or variates are linearly combinable in
a meaningful way. Further, such parametric procedures
are quite vulnerable to even small departures from the
assumed multinormality. �us, they are generally nonro-
bust even in a local sense. Moreover, in many applications,
di�erent characteristics are recorded on di�erent units and
o�en on a relative scale (viz., ranking of n individuals on
somemultivariate traits) where linearly combinability may
not be compatible. Rather, it is more important to have
coordinatewise invariance under arbitrary strictly mono-
tone transformations – a feature that favors ranks over
actual measurements. Multivariate rank procedures have
this basic advantage of invariance under coordinatewise
arbitrary strictly monotone transformations, not neces-
sarily linear. Of course, this way the emphasis on a�ne
invariance is sacri�ced, albeit, there are a�ne-invariant
rank procedures too (see Oja ).

�e basic di�erence between univariate and multi-
variate rank procedures is that for suitable hypothesis of
invariance, in the univariate case, such procedures are gen-
uinely distribution-free, whereas in the multivariate case,
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even the hypothesis of invariance holds, these tests are usu-
ally conditionally distribution-free.�is feature, known as
the rank-permutation principle, was initially developed by
Chatterjee and Sen () and in a more general frame-
work, compiled and reported in Puri and Sen (), the
�rst text in multivariate nonparametrics. During the past
four decades, a phenomenal growth of research litera-
ture in multivariate nonparametrics has taken place; spe-
ci�c entries in the Encyclopedia of Statistical Science and
Encyclopedia of Biostatistics (both published from Wiley-
Interscience, New York) provide detailed accounts of these
developments.
In the recent past, high-dimensional low sample size

(HDLSS) problems have cropped up in diverse �elds of
application. In this setup, the dimension is generally far
larger than the number of sample observations, and hence,
standard parametric procedures are untenable; nonpara-
metrics fare much better.�is is a new frontier of multi-
variate nonparametrics and there is a tremendous scope
of prospective research with deep impact on fruitful appli-
cations. 7Data mining (or knowledge discovery and data
mining) and statistical learning algorithms also rest on
multivariate nonparametrics to a greater extent. Bioin-
formatics and environmetrics problems also involve such
nonstandard multivariate nonparametric procedures. In
a micro-array data model, an application of multivariate
rankmethods has been thoroughly explored in Sen ().
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Multivariate reduced-rank regression is away of constrain-
ing the multivariate linear regression model so that the
rank of the regression coe�cient matrix has less than full
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rank. Without the constraint, multivariate linear regres-
sion has no true multivariate content.
To see this, suppose we have a random r-vector X

= (X, . . . ,Xr)τ of predictor (or input) variables with
mean vector µX and covariance matrix ΣXX , and a random
s-vectorY= (Y, . . . ,Ys)τ of response (or output) variables
with mean vector µY and covariance matrix ΣYY . Suppose
that the (r+s)-vectorZ = (Xτ ,Yτ

)
τ has a joint distribution

with mean vector and covariance matrix,

µZ =
⎛
⎜
⎜
⎝

µX

µY

⎞
⎟
⎟
⎠

, ΣZZ =
⎛
⎜
⎜
⎝

ΣXX ΣXY

ΣYX ΣYY

⎞
⎟
⎟
⎠

, ()

respectively, where we assume that ΣXX and ΣYY are both
nonsingular. Now, consider the classicalmultivariate linear
regression model,

s×
Y =

s×
µ +

s×r
Θ
r×
X +

s×
E , ()

where Y depends linearly on X, µ is the overall mean vec-
tor,Θ is the multivariate regression coe�cient matrix, and
E is the error term. In this model, µ and Θ are unknown
and are to be estimated. �e least-squares estimator of
(µ,Θ) is given by

(µ∗,Θ∗) = arg min
µ,Θ
E{(Y−µ−ΘX)(Y−µ−ΘX)τ

}, ()

where
µ∗ = µY −Θ

∗µX , Θ
∗
= ΣYXΣ−XX . ()

In (), the expectation is taken over the joint distribution of
(Xτ ,Y τ

)
τ .�e minimum achieved is ΣYY − ΣYXΣ−XXΣXY .

�e (s × r)-matrix Θ∗ is called the (full-rank) regres-
sion coe�cient matrix. �is solution is identical to that
obtained by performing a sequence of s ordinary least-
squares multiple regressions. For the jth such multiple
regression, Yj is regressed on the r-vector X, where j =
, , . . . , s. Suppose the minimizing regression coe�cient
vectors are the r-vectors β∗j , j = , , . . . , s. Arranging
the coe�cient vectors as the columns, (β∗ , . . . , β

∗
r ), of an

(r × s)-matrix, and then transposing the result, it follows
from () that

Θ∗ = (β∗ , . . . , β
∗
r )

τ . ()

�us, multivariate linear regression is equivalent to just
carrying out a sequence ofmultiple regressions.�is is why
multivariate regression is o�en confused with multiple
regression.
Now, rewrite the multivariate linear model as

s×
Y =

s×
µ +

s×r
C
r×
X +

s×
E , ()

where the rank constraint is

rank(C) = t ≤ min(r, s). ()

Equations () and () form the multivariate reduced-rank
regression model. When the rank condition () holds,
there exist two (nonunique) full-rank matrices A and B,
whereA is an (s× t)-matrix and B is a (t× r)-matrix, such
that

s×r
C =

s×t
A
t×r
B . ()

�e multivariate reduced-rank regression model can now
be written as

s×
Y =

s×
µ +

s×t
A
t×r
B
r×
X +

s×
E . ()

�e rank condition has been embedded into the regression
model.�e goal is to estimate µ, A, and B (and, hence, C).
Let Γ be a positive-de�nite symmetric (s× s)-matrix of

weights.�e weighted least-squares estimates of (µ,A,B)
are

(µ∗,A∗,B∗) = arg min
µ,A,B

E{(Y−µ−ABX)τΓ(Y−µ−ABX)}

()
where

µ∗ = µY −ABµX ()

A∗ = Γ−/V ()
B∗ = VτΓ/ΣYXΣ−XX , ()

andV = (v, . . . , vt) is an (s× t)-matrix, where the jth col-
umn, vj, is the eigenvector corresponding to the jth largest
eigenvalue, λj, of the (s × s) symmetric matrix,

Γ/ΣYXΣ−XXΣXYΓ
/. ()

�emultivariate reduced-rank regression coe�cientmatrix
C with rank t is, therefore, given by

C∗ = Γ−/
⎛

⎝

t

∑
j=
vjvτ

j
⎞

⎠
Γ/ΣYXΣ−XX . ()

�e minimum achieved is tr{ΣYYΓ} −∑tj= λj.
�e main reason that multivariate reduced-rank

regression is so important is that it contains as spe-
cial cases the classical statistical techniques of 7principal
component analysis, canonical variate and correlation
analysis (see 7Discriminant Analysis: An Overview, and
7Discriminant Analysis: Issues and Problems), linear dis-
criminant analysis, exploratory factor analysis, multiple
correspondence analysis, and other linear methods of ana-
lyzing multivariate data. It is also closely related to arti-
�cial neural network models and to cointegration in the
econometric literature.
For example, the special cases of principal compo-

nent analysis, canonical variate and correlation analysis,
and linear discriminant analysis are given by the follow-
ing choices: For principal component analysis, set X ≡ Y
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and Γ = Is; for canonical variate and correlation anal-
ysis, set Γ = Σ−YY ; for linear discriminant analysis, use
the canonical-variate analysis choice of Γ and set Y to be
a vector of binary variables whose component values (
or ) indicate the group or class to which an observation
belongs. Details of these and other special cases can be
found in Izenman (). If the elements of ΣZZ in () are
unknown, as will happen in most practical problems, they
have to be estimated using sample data on Z.

�e relationships between multivariate reduced-rank
regression and the classical linear dimensionality reduc-
tion techniques become more interesting when the meta-
parameter t is unknown and has to be estimated.�e value
of t is called the e�ective dimensionality of the multivariate
regression (Izenman ). Estimating t is equivalent to the
classical problems of determining the number of princi-
pal components to retain, the number of canonical variate
to retain, or the number of linear discriminant functions
necessary for classi�cation purposes. Graphical methods
for estimating t include the scree plot, the rank trace plot,
and heatmap plots. Formal hypothesis tests have also been
developed for estimating t.
When the number of variables is greater than the num-

ber of observations, some adjustments to the results have to
be made to ensure that ΣXX and ΣYY can be inverted. One
simple way of doing this is to replace ΣXX by ΣXX + δIr
and to replace ΣYY by ΣYY + κIs as appropriate, where
δ >  and κ > . Other methods, including regularization,
banding, tapering, and thresholding, have been studied for
estimating large covariance matrices and can be used here
as appropriate.

�e multivariate reduced-rank regression model can
also be developed for the case of nonstochastic (or �xed)
predictor variables.

�emultivariate reduced-rank regressionmodel has its
origins inAnderson (), Rao (, ), and Brillinger
(), and its name was coined by Izenman (, ).
For the asymptotic distribution of the estimated reduced-
rank regression coe�cient matrix, see Anderson (),
who gives results for both the random-X and �xed-X
cases. Additional references are themonographs by van der
Leeden () and Reinsel and Velu ().
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Classical multivariate statistical methods concern models,
distributions and inference based on the Gaussian dis-
tribution. �ese are the topics in the �rst textbook for
mathematical statisticians by T.W.Anderson that was pub-
lished in  and that appeared as a slightly expanded
rd edition in . Matrix theory and notation is used
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there extensively to e�ciently derive properties of themul-
tivariate Gaussian or the Wishart distribution, of princi-
pal components, of canonical correlation and discrimi-
nant analysis (see 7Discriminant Analysis: An Overview,
and 7Discriminant Analysis: Issues and Problems) and of
the general multivariate linear model in which a Gaus-
sian response vector variable Ya has linear least-squares
regression on all components of an explanatory vector
variable Yb.
In contrast, many methods for analyzing sets of

observed variables have been developed �rst within spe-
cial substantive �elds and some or all of the models in
a given class were justi�ed in terms of probabilistic and
statistical theory much later. Among them are factor anal-
ysis (see7Factor Analysis and Latent Variable Modelling),
path analysis, 7structural equation models, and mod-
els for which partial-least squares estimation have been
proposed. Other multivariate techniques such as cluster
analysis (see 7Cluster Analysis: An Introduction) and
7multidimensional scaling have been o�en used, but the
result of such an analysis cannot be formulated as a hypoth-
esis to be tested in a new study and satisfactory theoretical
justi�cations are still lacking.
Factor analysis was proposed by psychologist

C. Spearman (), () and, at the time, thought of as
a tool for measuring human intelligence. Such a model has
one or several latent variables.�ese are hidden or unob-
served and are to explain the observed correlations among
a set of observed variables, called items in that context.�e
di�cult task is to decide how many and which of a possi-
bly large set of items to include into a model. But, given
a set of latent variables, a classical factor analysis model
speci�es for a joint Gaussian distribution mutual indepen-
dence of the observed variables given the latent variables.
�is can be recognized to be one special type of a graphi-
cal Markov model; see Cox andWermuth (), Edwards
(), Lauritzen (), Whittaker ().
Path analysis was developed by geneticist S. Wright

(), () for systems of linear dependence of variables
with zero mean and unit variance. He used what we now
call directed acyclic graphs to represent hypotheses of how
the variables he was studying could have been generated.
He compared correlations implied for missing edges in the
graph with corresponding observed correlations to test the
goodness of �t of such a hypothesis.
By now it is known, under which condition for these

models in standardized Gaussian variables, maximum-
likelihood estimates of correlations coincide with Wright’s
estimates via path coe�cients.�e condition on the graph
is simple: there should be no three-node-two-edge sub-
graph of the following kind ○ ≻ ○ ≺ ○. �en, the
directed acyclic graph is said to be decomposable and

captures the same independences as the concentration
graph obtained by replacing each arrow by an undirected
edge. In such Gaussian concentration graph models, esti-
mated variances are matched to the observed variances so
that estimation of correlations and variances is equivalent
to estimation of covariances and variances.
Wright’s method of computing implied path coef-

�cients by “tracing paths” has been generalized via a
so-called separation criterion. �is criterion, given by
Geiger, Verma and Pearl (), permits to read o� a
directed acyclic graph all independence statements that
are implied by the graph.�e criterion takes into account
that not only ignoring (marginalizing over) variablesmight
destroy an independence, but also conditioning on com-
mon responses may render two formerly independent
variables to be dependent. In addition, the separation
criterion holds for any distribution generated over the
graph.

�e separation criterion for directed acyclic graphs has
been translated into conditions for the presence of edge-
inducing paths in the graph; see Marchetti and Wermuth
(). Such an edge-inducing path is also association-
inducing in the corresponding model, given some mild
conditions on the graph and on the distributions gener-
ated over it; seeWermuth (). In the special case of only
marginalizing over linearly related variables, these induced
dependences coincide with the path-tracing results given
by Wright provided the directed acyclic graph model is
decomposable and the variables are standardized to have
zero means and unit variances. �is applies not only
to Gaussian distributions but also to special distribu-
tions of symmetric binary variables; see Wermuth et al.
().
Typically however, directed acyclic graph models are

de�ned for unstandardized random variables of any type.
�en,most dependences are no longer appropriately repre-
sented by linear regression coe�cients or correlations, but
maximum-likelihood estimates of all measures of depen-
dence can still be obtained by separately maximizing each
univariate conditional distribution, provided only that its
parameters are variation-independent from parameters of
distributions in the past.
Structural equation models, developed in economet-

rics, can be viewed as another extension of Wright’s path
analyses.�e result obtained by T. Haavelmo () gave
an important impetus. For his insight that separate lin-
ear least-squares estimation may be inappropriate for
equations having strongly correlated residuals, Haavelmo
received a Nobel prize in . It led to a class of models
de�ned by linear equations with correlated residuals and
to responses called endogenous. Other variables condi-
tioned on and considered to be predeterminedwere named
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exogenous. Vigorous discussions of estimation methods
for structural equations occurred during the �rst few
Berkeley symposia on mathematical statistics and proba-
bility from  to .
Path analysis and structural equation models were

introduced to sociological research via the work by O.D.
Duncan (, ). Applications of structural equa-
tion models in psychological and psychometric research
resulted from cooperations between A. Goldberger and
K. Jöreskog; seeGoldberger (, ) and Jöreskog (,
). �e methods became widely used once a corre-
sponding computer program for estimation and tests was
made available; see also Kline ().
In , A. Zellner published his results on seem-

ingly unrelated regressions. He points out that two sim-
ple regression equations are not separate if the two
responses are correlated and that two dependent endoge-
nous variables need to be considered jointly and require
simultaneous estimation methods.�ese models are now
recognized as special cases of both linear structural equa-
tions and of multivariate regression chains, a subclass of
graphical Markov models; see Cox and Wermuth (),
Drton (), Marchetti and Lupparelli ().
But it was not until  years later, that a maximum-

likelihood solution for the Gaussian distribution in four
variables, split into a response vector Ya and vector vari-
able Yb, was given and an example of a poorly �tting data
set with very few observations for which the likelihood
equations have two real roots; see Drton and Richardson
(). For well-�tting data and reasonably large sample
sizes, this is unlikely to happen; see Sundberg (). For
such situations, a close approximation to the maximum-
likelihood estimate has been given in closed form for the
seemingly unrelated regression model, exploiting that it is
a reduced model to the covering model that has closed-
form maximum-likelihood estimates, the general linear
model of Ya given Yb; see Wermuth et al. (), Cox and
Wermuth ().
For several discrete random variables of equal stand-

ing, i.e., without splits into response and explanatory
variables, maximum-likelihood estimation was developed
under di�erent conditional independence constraints in a
path-breaking paper by M. Birch (). �is led to the
formulation of general log-linearmodels, whichwere stud-
ied intensively among others by Haberman (), Bishop
et al. (), Sundberg () and by L. Goodman, as sum-
marized in a book of his main papers on this topic, pub-
lished in . His work was motivated mainly by research
questions from the social and medical sciences.
For several Gaussian variables of equal standing, two

di�erent approaches to reducing the number of parameters
in a model, were proposed at about the same time. T. W.

Anderson put structure on the covariances, the moment
parameters of a joint Gaussian distribution and called the
resulting models, hypotheses linear in covariances; see
Anderson (), while A. P. Dempster put structure on the
canonical parameters with zero constraints on concentra-
tions, the o�-diagonal elements of the inverse of a covari-
ance matrix, and called the resulting models covariance
selection models; see Dempster ().
Nowadays, log-linear models and covariance selection

models are viewed as special cases of concentration graph
models and zero constraints on the covariance matrix
of a Gaussian distribution as special cases of covariance
graph models. Covariance and concentration graph mod-
els are graphical Markov models with undirected graphs
capturing independences. A missing edge means marginal
independence in the former and conditional indepen-
dence given all remaining variables in the latter; see also
Wermuth and Lauritzen (), Wermuth and Cox (),
(), Wermuth ().

�e largest known class of Gaussian models that is
in common to structural equation models and to graph-
ical Markov models are the recursive linear equations
with correlated residuals. �ese include linear summary
graphmodels ofWermuth (), linearmaximal ancestral
graph of Richardson and Spirtes (), linear multivari-
ate regression chains, and linear directed acyclic graph
models. De�ciencies of some formulations start to be dis-
covered by using algebraic methods. Identi�cation is still
an issue to be considered for recursive linear equations
with correlated residuals, since so far only necessary or
su�cient conditions are known but not both. Similarly,
maximum-likelihood estimation still needs further explo-
ration; see Drton et al. ().
For several economic time series, it became possible

to judge whether such �uctuating series develop neverthe-
less in parallel, that is whether they represent cointegrating
variables because they have a common stochastic trend.
Maximum-likelihood analysis for cointegrating variables,
formulated by Johansen (, ), has led to many
important applications and insights; see also Hendry and
Nielsen ().
Algorithms and corresponding programs are essential

for any widespread use of multivariate statistical meth-
ods and for successful analyses. In particular, iterative
proportional �tting, formulated by Bishop () for log-
linear models, and studied further by Darroch and Ratcli�
(), was adapted to concentration graph models for
CG (conditional Gaussian)-distributions (Lauritzen and
Wermuth ) ofmixed discrete and continuous variables
by Frydenberg and Edwards ().

�e EM (expectation-maximization)-algorithm of
Dempster et al. () was adapted to Gaussian directed
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acyclic graphmodels with latent variables by Kiiveri ()
and to discrete concentration graph models with missing
observation by Lauritzen ().
With the TM-algorithm of Edwards and Lauritzen

(), studied further by Sundberg (), maximum-
likelihood estimation became feasible for all chain graph
models called blocked concentration chains in the case
these are made up of CG (conditional Gaussian)-
regressions (Lauritzen and Wermuth ).
For multivariate regression chains of discrete ran-

dom variables, maximum-likelihood estimation has now
been related to the multivariate logistic link function by
Marchetti and Lupparelli (), where these link func-
tions provide a common framework and corresponding
algorithm for 7generalized linear models, which include
among others linear, logistic and probit regressions as spe-
cial cases; see McCullagh and Nelder (), Glonek and
McCullagh ().
Even in linear models, estimation may become di�-

cult when some of the explanatory variables are almost
linear functions of others, that is if there is a prob-
lem of 7multicollinearity. �is appears to be o�en the
case in applications in chemistry and in the environmen-
tal sciences. �us, in connection with consulting work
for chemists, Hoerl and Kennard () proposed the
use of ridge-regression (see 7Ridge and Surrogate Ridge
Regressions) instead of linear least-squares regression.
�is means for regressions of vector variable Y on X, to
add to XTX some positive constant k along the diagonal
before matrix inversion to give as estimator β̃ = (kI +
XTX)−XTY .
Both ridge-regression and partial-least-squares, (see

7Partial Least Squares Regression Versus Other Meth-
ods) proposed as an estimation method in the presence
of latent variables by Wold (), have been recognized
by Björkström and Sundberg () to be shrinkage esti-
mators and as such special cases of Tykhonov ()
regularization.
More recently, a number of methods have been sug-

gested which combine adaptive skrinkage methods with
variable selection. A unifying approach which includes
the least-squares estimator, shrinkage estimators and var-
ious combinations of variable selection and shrinkage has
recently been given via a least squares approximation by
Wang and Leng (). Estimation results depend nec-
essarily on the chosen formulations and the criteria for
shrinking dependences and for selecting variables.
Many more specialized algorithms and programs have

been made available within the open access programming
environment R, also those aiming to analyze large numbers
of variables for only few observed individuals. It remains

to be seen, whether important scienti�c insights will be
gained by their use.
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Origins and Uses
Multivariate distributions (MDs) are de�ned on �nite-
dimensional spaces. Origins trace to early studies of
7multivariate normal distributions as models for depen-
dent chance observations (Adrian ; Bravais ;
Dickson ; Edgeworth ; Galton ; Gauss ;
Helmert ; Laplace ; Pearson ; Plana ;
Schols ; Spearman ; Student ); for two
and three dimensions in Bravais () and Schols
(); and for �nite dimensions in Edgeworth ()
and Gauss (), advancing such now–familiar con-
cepts as regression and partial correlation. Let Y =
[Y, . . . ,Y] designate chance observations; in pharma-
cology as systolic (Y) and diastolic (Y) pressures,
pulse rate (Y), and gross (Y) and �ne (Y) motor
skills. Strengths of materials may register moduli of elas-
ticity (Y) and of rupture (Y), speci�c gravity (Y),
coe�cient of linear expansion (Y), and melting point
(Y). A complete probabilistic description of each vector
observation entails the joint distribution of [Y, . . . ,Y].

A sample of n such k–vectors, arranged as rows, yields a
random matrix Y = [Yij] of order (n×k), its distribution
supporting much of 7multivariate statistical analysis.
Beyond modeling chance outcomes, MDs describe

probabilistic features of data–analytic operations, to
include statistical inference, decision theory (see7Decision
�eory: An Introduction, and 7Decision �eory: An
Overview), and other evidentiary analyses. In infer-
ence the frequentist seeks joint distributions () of mul-
tiparameter estimates, and () of statistics for testing
multiple hypotheses, both parametric and nonparamet-
ric. Such distributions derive from observational mod-
els. Similarly, multiparameter Bayesian methods require
MDs in modeling prior, contemporary, and posterior dis-
tributions for the parameters. In addition, MDs serve
to capture dependencies owing to repeated measure-
ments on experimental subjects. MDs derive from other
distributions through transformations, projections, con-
ditioning, convolutions, extreme values, mixing, com-
pounding, truncating, and censoring. Speci�cally, exper-
iments modeled conditionally in a random environ-
ment yield unconditional distributions as mixtures; see
Everitt and Hand (), Lindsay (), McLachlan and
Basford (), and Titterington et al. (). Random
processes, to include such concepts as stationarity, are
characterized through MDs as their �nite–dimensional
projections. Beyond probability, MD–theory occasionally
supports probabilistic proofs for purely mathematical the-
orems. In short, MDs arise throughout statistics, applied
probability, and beyond, and their properties are essential
to understanding those �elds.
In what follows Rk, Rk+, Fn×k, Sk, and S+k respectively

designate Euclidean k–space, its positive orthant, the real
(n×k) matrices, the real symmetric (k×k) matrices, and
their positive de�nite varieties. Special arrays are Ik, the
(k×k) identity, and the diagonal matrix Diag(a, . . . , ak).
�e transpose, inverse, trace, and determinant of A ∈Fk×k
are A′, A−, tr(A), and ∣ A ∣, with a′ = [a, . . . , ak] as the
transpose of a ∈Rk. For Y ∈Rk random, its expected vec-
tor, dispersion matrix, and law of distribution are E(Y) ∈

Rk, V(Y) ∈ S+k , and L(Y). Abbreviations include pdf ,
pmf , cdf , and chf , for probability density, probability mass,
cumulative distribution, and 7characteristic functions,
respectively.

Some Properties
MDs merit scrutiny at several levels. At one extreme are
weak assumptions on existence of low-order moments,
as in Gauss–Markov theory. At the other extremity are
rigidly parametric models, having MDs of speci�ed func-
tional forms to be surveyed subsequently. In between are
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Multivariate Statistical Distributions. Table  Examples of
spherical distributions on Rn having density f(x) or
characteristic function ξ(t); see Chmielewski ()

Type Density or chf Comments

Normal f(x) = c exp(−x′x/) Nn(, In)

Pearson Type II f(x) = c( − x′x)γ− γ> 

Pearson Type VII f(x) = c( + x′x)−γ γ>n/

Student t f(x) = c( + ν−x′x)−(ν+n)/ ν a positive
integer

Cauchy f(x) = c( + x′x)−(n+)/ Student t
ν = 

Scale mixtures f(x) = c

∫ ∞ t−n/ exp(−x′x/t)dG(t)
G(t) a cdf

Stable laws ξ(t) = c exp[γ(t′t)α/] <α<
; γ>

classes ofMDs exhibiting such common structural features
as symmetry or unimodality, giving rise to semiparametric
models of note. Of particular relevance are derived distri-
butions that are unique to all members of an underlying
class.
Speci�cally, distributions on Fn×k in the class {Ln,k(Θ,

Γ,Σ); ϕ ∈ Φ} have pdf s as given in Table . Here
Θ ∈ Fn×k comprise location parameters; Γ ∈ S+n and
Σ ∈ S+k are scale parameters; ϕ(⋅) is a function on
S+k ; and Σ

−  is a factor of Σ−. �ese distributions are
invariant for Γ = In in that L(Y − Θ) = L(Q(Y −

Θ)) for every real orthogonal matrix Q(n × n). A sub-
class, taking ϕ(A) = ψ(tr(A)), with ψ de�ned on
[,∞), is Sn,k(Θ, Γ,Σ) as in Table . Here independence
among rows of Y = [y, . . . , yn]

′ and multinormality are
linked: If L(Y) ∈ Sn,k(Θ, In,Σ), then {y, . . . , yn} are
mutually independent if and only if Y is matrix nor-
mal, namely Nn,k(Θ, In,Σ) on Fn×k; see James ().
A further subclass on Rn, with k =  and Σ(×) = , are
the elliptical distributions on Rn, namely, {Sn(θ, Γ,ψ);ψ ∈

Ψ}, with location-scale parameters (θ, Γ) and the typical
pdf f (y) = ∣ Γ ∣

−  ψ((y − θ)′Γ−(y − θ)). �e fore-
going all contain multivariate normal and heavy–tailed
Cauchy models as special cases, and all have served as
observational models in lieu of multivariate normality. In
particular, {Sn(θ, In,ψ);ψ ∈ Ψ} o�en serve as semipara-
metric surrogates for Nn(θ, In) in univariate samples, and
{Ln,k(Θ, Γ,Σ); ϕ ∈Φ} in the analysis of multivariate data.
Examples from {Sn(θ, In,ψ);ψ ∈ Ψ} are listed in Table ,

cross-referenced as in Chmielewski () to well-known
distributions on R.
Inferences built on these models o�en remain exact as

for normal models, certifying their use as semiparametric
surrogates.�is follows from the invariance of stipulated
derived distributions as in Jensen and Good (). Fur-
ther details, for their use as observational models on Rk

and Fn×k, for catalogs of related and derived distributions,
and for the robustness of various inferential procedures,
are found in Cambanis et al. (), Chmielewski (),
Devlin et al. (), Fang and Anderson (), Fang et al.
(), Fang and Zhang (), James (), and Kariya
and Sinha (). Regarding {Ln,k(Θ, Γ,Σ); ϕ ∈Φ} and its
extensions, see Dawid (), Dempster (), and Jensen
andGood ().�ese facts bear heavily on the robustness
and validity of normal-theory procedures for usewith non-
normal data, including distributions having heavy tails.
�e cited distributions all exhibit symmetries, including
symmetries under re�ections. Considerable recent work
addresses skewed MDs, o�en resulting from truncation;
see Arnold and Beaver (), for example.
Properties of distributions on R o�en extend

nonuniquely to the case of MDs. Concepts of unimodal-
ity on Rk are developed in Dharmadhikari and Joag-Dev
(), some enabling a sharpening of joint Chebyshev
bounds. Stochastic ordering on R likewise admits a mul-
tiplicity of extensions.�ese in turn support useful proba-
bility inequalities onRk as in Tong (),many pertaining
to distributions cited here. Let µ(⋅) and ν(⋅) be probabil-
ity measures on Rk, and Ck the compact convex sets in
Rk symmetric under re�ection about  ∈ Rk. �e con-
centration ordering (Birnbaum ) on R is extended
in Sherman (): µ(⋅) is said to be more peaked about
 ∈ Rk than ν(⋅) if and only if µ(A) ≥ ν(A) for every
A∈Ck. Speci�cally, let PΣ(⋅;ψ) and PΩ(⋅;ψ) be probability
measures for Sn(,Σ,ψ) and Sn(,Ω,ψ).�en a neces-
sary and su�cient condition that PΣ(⋅;ψ) should be more
peaked about  than PΩ(⋅;ψ), is that (Ω−Σ) ∈ S+n , su�-
ciency in Fe�erman et al. (), necessity in Jensen ().
Similar orderings apply when both (Σ,ψ) are allowed to
vary (Jensen ), extending directly to include distri-
butions in {Sn,k(, Γ,Σ,ψ);ψ ∈ Ψ}. Numerous further
notions of stochastic orderings for MDs are treated in
Shaked and Shanthikumar ().
Interest in MDs o�en centers on their dependencies.

A burgeoning literature surrounds 7copulas, expressing
a joint distribution function in terms of its marginals,
together with a �nite–dimensional parameter quantifying
the degree of dependence; see Nelsen () for example.
Further concepts of dependence, including notions rooted
in the geometry of Rk, are developed in Joe ().
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The Basic Tools
Let (Ω,B,P) be a probability space, Ω an event set, B a
�eld of subsets of Ω, and P a probability measure. Given a
setX, anX–valued randomelement is ameasurablemap-
ping X(ω) from Ω to X, multivariate when X is �nite-
dimensional, as Rk, its cdf then given by F(x, . . . , xk) =

P(ω : X(ω) ≤ x, . . . ,Xk(ω) ≤ x k). To each cdf corre-
sponds a PX on (Rk,Bk,PX) and conversely, with Bk as
a �eld of subsets of Rk. Moreover, {PX = aP + aP +
aP; ai ≥ , a + a + a = } decomposes as a mix-
ture: P assigns positive probability to the mass points of
PX ; P is absolutely continuous with respect to Lebesgue
(volume) measure on (Rk,BX , ⋅); and P is purely singu-
lar. Corresponding to {P,P,P} are cdf s {F,F,F} :
F has a mass function (pmf ) p(x, . . . , xk) = P(X =

x, . . . ,Xk = x k), giving jumps of F at its mass points; F
has a pdf f(x, . . . , xk) = ∂k

∂x⋯∂x k F(x, . . . , xk) for almost
all {x, . . . , xk}. �e marginal cdf of X′ = [X, . . . ,Xr]
is Fm(x, . . . , xr) = F(x, . . . , xr ,∞, . . . ,∞). With X′ =
[Xr+, . . . ,Xk] and x′ = [xr+, . . . , xk], the conditional pmf
for L(X ∣ x), given that {X = x}, is p⋅(x, . . . , xr) =
p(x ,. . .,xk)
p(xr+ ,. . .,xk) with p(xr+, . . . , xk) as the marginal pmf for
X. A similar expression holds for P in terms of the joint
and marginal pdf s f (x, . . . , xk) and f(xr+, . . . , xk). As
noted, F is discrete and F absolutely continuous, pure
types to warrant their separate cataloging in the literature.
On the other hand, P is singular on a set in Rk having
Lebesgue measure zero, o�en illustrated as a linear sub-
space. In contrast, P is known to originate in practice
through pairs (X,Y) as in Olkin and Tate (), such that
X is multinomial and L(Y ∣ X = x) is multivariate nor-
mal. Related studies are reported in a succession of articles
including the recent (Bedrick et al. ).

�e study of MDs draws heavily on the calculus of Rk.
Distributions not expressible in closed form may admit
series expansions, asymptotic expansions of Cornish-
Fisher and Edgeworth types, or large-sample approxima-
tions via central limit theory. Accuracy of the latter is
gauged through Berry–Esséen bounds on rates of con-
vergence, as developed extensively in Bhattacharya and
Ranga Rao () under moments of order greater than .
Moreover, the integral transform pairs of Fourier, Laplace,
and Mellin, including chf s on Rk, are basic. Elemen-
tary operations in the space of transforms carry back
to the space of distributions through inversion. A�ne
data transformations are intrinsic to the use of chf s of
MDs, as treated extensively in Lukacs and Laha ().
On the other hand, Mellin transforms couple nicely with
such nonlinear operations as powers, products, and quo-
tients of random variables, as treated in Epstein ()

and Subrahmaniam () and subsequently. In addition,
functions generating joint moments, cumulants, factorial
moments, and probabilities are used routinely. Projection
methods determine distributions onRk completely, via the
one-dimensional distributions of every linear function. To
continue, a property is said to characterize a distribution if
unique to that distribution. A general treatise is Kagan et al.
(), including reference to some MDs reviewed here.
We next undertake a limited survey of continuous and

discrete MDs encountered with varying frequencies in
practice. Developments are cited for random vectors and
matrices. Continuing to focus on semiparametric mod-
els, we identify those distributions derived and unique
to underlying classes of models, facts not widely acces-
sible otherwise. �e principal reference for continuous
MDs is the encyclopedic (Kotz et al. ), coupled with
monographs on multivariate normal (Tong ) and Stu-
dent t (Kotz and Nadarajah ) distributions. For dis-
crete MDs, encyclopedic accounts are archived in Johnson
et al. () and Patil and Joshi ().

Continuous Distributions
Central to classical ∗multivariate statistical analysis∗ are
{Nn,k(Θ, In,Σ);n>k} for L(Y), and the essential derived
distributionL(W) =Wk(n,Σ,Λ), withW = Y ′Y , as non-
central Wishart having n degrees of freedom, scale matrix
Σ, and noncentrality matrix Λ = Θ′Θ, with central pdf as
in Table .

Student tDistributions
Vector distributions. �ere are two basic types.
Let [Y, . . . ,Yk] be multivariate normal with means
[µ, . . . , µk], unit variances, and correlation matrix R(k ×
k). A Type I t distribution is that of {Tj = Yj/S; ≤ j≤ k}
such that L(νS) = χ(ν) independently of [Y, . . . ,Yk].
Its central pdf is listed in Table . To continue, suppose
that S = [Sij] and L(νS) = Wk(ν,R), independently of
[Y, . . . ,Yk]. A Type II t distribution is that of {Tj =

Yj/Sjj; ≤ j≤ k}. Both types are central if and only if {µ =
⋯ = µk = }.�ese distributions arise inmultiple compar-
isons, in the construction of rectangular con�dence sets
for means, in the Bayesian analysis of multivariate nor-
mal data, and in variousmultistage procedures. For further
details see Kotz et al. () and Tong ().
More generally, ifL(X, . . . ,Xk,Z, . . . ,Zν) = Sn(θ, Γ)

with θ′ = [µ, . . . , µk, , . . . , ] and Γ = Diag(R, Iν), then
with νS = (Z + . . . + Zν) , the central distribution of
{Tj = Xj/S; ≤ j≤ k} is Type I multivariate t for all dis-
tributions in {Sn(θ, Γ,ψ);ψ ∈ Ψ} as structured. Multiple
comparisons using {T, . . . ,Tk} under normality thus are
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Multivariate Statistical Distributions. Table  Standard pdf s for some continuous distributions on Rk

Type Density Comments

Student t k [ + ν−(t − µ)′R−(t − µ)]−(ν+k)/ t ∈Rk

Dirichlet k( − Σk
 uj)α−Πk

 u
αj−
j { ≤ uj ≤ ;Σk

 uj ≤ }

Inv. Dirichlet kΠk
 v

αj−
j /[ + Σk

 vj]α/ { ≤ vj <∞; α = Σk
αj

∣ W − wΣ ∣=  kΠk
 w(ν−k−)/

i Πi<j(wi − wj)e−


(Σk

 wi) {w > ⋯ > wk > }

∣ S  − ℓS  ∣=  kΠk
 ℓ



(m−k−)

i Πk
 (ℓi+)−(m+n)/Πi<j(ℓi−ℓj) {ℓ > ⋯ > ℓk > }

Multivariate Statistical Distributions. Table  Standard pdf s for some continuous distributions on Rk

Type Density Comments

Nn,k(Θ, Γ,Σ) κ exp[− 


tr(Y−Θ)′Γ−(Y−Θ)Σ−] Y ∈Fn×k

Ln,k(Θ, Γ,Σ) κ ∣Γ ∣−
k
 ∣Σ ∣−

n
 ϕ(Σ−


 (Y−Θ)′Γ−(Y−Θ)Σ−


 ) Y ∈Fn×k , ϕ∈Φ

Sn,k(Θ, Γ,Σ) κ ∣Γ ∣−
k
 ∣Σ ∣−

n
 ψ(tr(Y−Θ)′Γ−(Y −Θ)Σ−) ψ on [,∞)

Wishart κ ∣W ∣(ν−k−)/ exp(− 


trWΣ−) W ∈S+k

Gamma Hsu (l) κ ∣W ∣(n−k−)/ ϕ(Σ−

 WΣ−


 ) ϕ∈Φ,W ∈S+k

Gamma Lukacs and Laha () κ ∣W ∣λ− exp(−trWΣ−) λ>,W ∈S+k

Matric T κ ∣Ik − ν−T′T ∣−(ν+r)/ T ∈Fr×k

Dirichlet κΠk
 ∣Wj ∣(νj−k−)/∣Ik − Σk

 Wj ∣(ν−k−)/ f(W, . . . ,Wk)

Inv. Dirichlet κΠk
 ∣Vj ∣(νj−k−)/∣Ik + Σk

 Vj ∣(νT−k−)/ f(V , . . . ,Vk)

exact in level for linear models having spherical errors
(Jensen ). Similarly, if L(Y) = Sn,k(Θ, In,Σ) with
parameters Θ = [θ, . . . , θ]′, θ ∈ Rk; if Xj = n/Ȳj with
{Ȳj = (Yj + ⋯ + Ynj)/n; ≤ j≤ k}; and if S is the sam-
ple dispersion matrix; then the central distribution of

{Tj = Xj/S


jj ; ≤ j≤ k} is Type II multivariate t for every

L(Y) in {Sn,k(, In,Σ,ψ);ψ ∈ Ψ}. Noncentral distri-
butions generally depend on the particular distribution
Sn(θ, Γ) or Sn,k(Θ, In,Σ).
Matric T distributions. Let Y and W be independent,

L(Y) =Nr,k(, Ir ,Σ) andL(W) =Wk(ν,Σ) such that ν ≥
k, and let T = YW−  using any factorizationW−  ofW−.
�enL(T) ismatric t with pdf as in Table . Alternatively,
consider X′ = [Y′,Z′]with distribution Sn,k(, In,Σ) such
that n = r + ν and ν ≥ k, and again let T = YW−  but
nowwithW =Z′Z.�ese variables arise fromdistributions
Sn,k(, In,Σ) in the same manner as for Nn,k(, In,Σ).
�en T has a matric t distribution for every distribution
L(Y) in {Sn,k(, In,Σ,ψ);ψ ∈Ψ}.�is property transfers
directly to L(ATB) as in Dickey () with A and B
nonsingular.

Gamma Distributions
Vector Distributions. Extract Diag(W, . . . ,Wkk) from
W = [Wij].�eir joint distributions arise in the analysis
of nonorthogonal designs, in time-series, in multiple com-
parisons, in the analysis of multidimensional contingency
tables, in extensions of Friedman’s χ test in two-way data
based on ranks, and elsewhere.�ere is a gamma distri-
bution on Rk+ for diagonals of the matrix Gamma (Lukacs
and Laha ) of  Table ; k–variate χ whenW isWishart;
see Kibble () for k = ; and a k–variate exponen-
tial distribution for the case n = . Rayleigh distributions

L(W


 ,W



, . . . ,W



kk) on Rk+ support the detection of

signals from noise (Miller ); more general such dis-
tributions are known (Jensen a); as are more general
χ distributions on Rk having di�ering marginal degrees
of freedom (Jensen b). Densities here are typically
intractable, o�en admitting multiple series expansions in
special functions. Details are given in Kotz et al. (). As
n→∞, the χ and Rayleigh distributions onRk+ are multi-
normal in the limit, for central and noncentral cases alike,
whereas for �xed n, the limits as noncentrality parameters
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grow again aremultivariate normal (Jensen ). Alterna-
tive approximations, throughnormalizingWilson-Hilferty
transformations, are given in Jensen () and Jensen and
Solomon ().
Matric distributions. Let L(Y) ∈ Ln,k(, In,Σ, ϕ) with

n ≥ k; the pdf of W = Y ′Y is given in Table  under
Gamma (Hsu l) as in that reference. �e pdf under
Gamma (Lukacs and Laha ), with λ > , reduces to
that of a scaled Wishart matrix when λ is an integer.�e
noncentral Wishart pdf with Λ ≠  admits series expan-
sions in special polynomials. Moreover, as n → ∞, for
�xed Λ its limit distribution is multinormal, and for �xed
n, its 7asymptotic normality attains as the noncentral-
ity parameters grow in a speci�ed manner (Jensen ).
Wishart matrices arise in matrix normal samples, e.g., as
scaled sample dispersionmatrices, and otherwise through-
outmultivariate distribution theory. Parallel remarks apply
for Gamma (Hsu l) of Table  when the underlying
observational model belongs to {Ln,k(Θ, In,Σ, ϕ); ϕ ∈ Φ}.

Dirichlet Distributions
If X and Y are independent gamma variates having a com-
mon scale, then U = X/(X + Y) and V = X/Y have
beta and inverted beta distributions, respectively, the scaled
Snedecor-Fisher F specializing from the latter.�is section
treats vector and matrix versions of these.
Vector distributions. Let {Z , . . . ,Z k} be independent

gamma variates with common scale and the shape param-
eters {α , . . . , α k}, and let T = (Z + ⋯ + Zk). �en
the joint distribution of {Uj = Zj/T; ≤ j≤ k} is the k-
dimensional Dirichlet distribution D(α , . . . , α k) with pdf
as given in Table . An important special case is that
{αj = νj/; ≤ j≤ k} with {ν , . . . , ν k} as positive integers
and with {Z , . . . ,Z k} as independent χ variates. How-
ever, in this case neither χ nor independence is required.
For if y = [y′, y

′
, . . . , y

′
k]
′
∈ Rn with {yj ∈ Rνj ; ≤ j≤ k}

and n = ν + ⋯ + νk such that L(y) = Sn(, In), then
{Uj = y′jyj/T; ≤ j≤ k} , but now with T = y′y + y′y +
⋯ + y′kyk, has the distribution D(ν/, ν/, . . . , νk/) for
all such L(y)∈{Sn(, In,ψ);ψ ∈ Ψ}.

�e inverted Dirichlet is that of {Vj = Zj/Z; ≤ j≤ k},
with {Z , . . . ,Z k} as before, having pdf as listed in Table .
�e scaled {Vj = νZj/νjZ; ≤ j≤ k} then have a mul-
tivariate F distribution whenever {αj = νj/; ≤ j≤ k}
with {ν , . . . , ν k} as positive integers. �is arises in the
7analysis of variance in conjunction with ratios of inde-
pendent mean squares to a common denominator (Finney
). As before, neither χ nor independence is required in
the latter; take {Vj = νy′jyj/νjy′y; ≤ j≤ k} with L(y) ∈
{Sn(, In,ψ);ψ ∈Ψ} as for Dirichlet distributions.

Matric distributions. Take {S , . . . , S k} in S+k as inde-
pendent Wishart matrices with {L(S j) = Wk(νj,Σ);
νj ≥ k; ≤ j≤ k}. Let T = S + ⋯ + Sk and
{Wj = T−


 S jT−


 ; ≤ j≤ k}. A matric Dirichlet distribu-

tion (Olkin and Rubin ), taking the lower triangu-
lar square root, has pdf as listed in Table , such that
Wj and (Ik − ΣkWj) are positive de�nite, and νT = ν +
⋯ + νk. Neither independence nor the Wishart character
is required. If instead Y = [Y ′ ,Y ′ , . . . ,Y ′k] ∈ Fn×k, n =
ν + ⋯ + νk, νj ≥ k, and {S j = Y ′j Yj; j = , , . . . , k} , then
forL(Y) = Sn,k(, In,Σ), invariance properties assure that
f (W , . . . ,W k) is identical to that given in Table , for
every distribution L(Y) in {Sn,k(, In,Σ,ψ);ψ ∈Ψ}.
An inverted matric Dirichlet distribution (Olkin and

Rubin ) takes {S , S , . . . , S k} as before, and de�nes

{Vj = S
− 
 S jS

− 
 ; ≤ j≤ k} using the symmetric root of S .

Its pdf f (V, . . . ,Vk) is known allowing S  to be noncen-
tral.�e central pdf is given inTable .�e special case k= 
is sometimes called a Type II multivariate beta distribution.
Again neither independence nor the Wishart character
is required. To see this, again take {S j = Y ′j Yj; ≤ j≤ k}
as for matric Dirichlet distributions, and conclude that
f (V, . . . ,Vk), as in Table , is identical for every L(Y) in
{Sn,k(, In,Σ,ψ);ψ ∈Ψ}.

Distributions of Latent Roots
Topics in multivariate statistics, to include reduction
by invariance, tests for hypotheses regarding dispersion
parameters, and the study of energy levels in physical sys-
tems, all entail the latent roots of random matrices. Sup-
pose that L(W) = Wk(ν,Σ), and consider the ordered
roots {w > . . . > wk > } of ∣ W − wΣ ∣= . �eir joint
pdf is listed in Table . On occasion ratios of these roots
are required, including simultaneous inferences for dis-
persion parameters, for which invariance in distribution
holds. For ifW =Y ′Y , then the joint distributions of ratios
of the roots of ∣W − wΣ ∣ =  are identical for all L(Y) ∈

{Sn,k(, In,Σ,ψ);ψ ∈Ψ} such that n≥ k.
To continue, consider S  and S  as independent

Wishart matrices having Wk(ν,Σ) and Wk(ν,Σ,Λ),
respectively. �en central (Λ = ) and noncentral joint
distributions of the roots of ∣ S  − ℓS  ∣=  are known, as
given in Table  for the case Λ = . An invariance result
holds for the central case. For if Y = [Y ′ ,Y ′ ]

′ with n =
ν + ν such that ν ≥ k and ν ≥ k, S  = Y ′Y and S  =
Y ′ Y, then by invariance the latent root pdf f (ℓ, . . . , ℓk)
is the same for all L(Y) in {Ln,k(, In,Σ, ϕ) : ϕ ∈ Φ}, as
given in Table .
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Multivariate Statistical Distributions. Table  Some discrete multivariate compound distributions

Basic distribution
Mixing
parameters

Compounding
distribution Source

Resulting
distribution

Bivariate binomial
(n, π, π, π)

n Poisson Papageorgiou () bivariate Poisson

Multinomial
(n, π, . . . , π s)

(π, . . . , π s) Dirichlet Johnson et al. ()
and Patil and Joshi ()

s–variate negative
hypergeometric

Multinomial
(n, π, . . . , π s)

n Logarithmic
series

Patil and Joshi () s–variate modified
logarithmic series

Multinomial
(n, π, . . . , π s)

n Negative
binomial

Patil and Joshi () s–variate negative
multinomial

Multinomial
(n, π, . . . , π s)

n Poisson Patil and Joshi () multiple Poisson

Multiple Poisson
(uλ, . . . , uλs)

u Gamma Patil and Joshi () s–variate negative
multinomial

Multiple Poisson
(λ, . . . , λs)

(λ, . . . , λ s) Multinormal Steyn () s–variate Poisson–
normal

Multiple Poisson
{λ i = α + (β − α)u

u Rectangular
on (, )

Patil and Joshi () s–variate Poisson–
rectangular

Multivariate Poisson
(uλ , uλ, . . . , uλ⋅s)

u Gamma Patil and Joshi () s–variate negative
binomial

Negative multinomial
(k, π, . . . , π s)

(π, . . . , π s) Dirichlet Johnson et al. ()
Patil and Joshi ()

s–variate negative
multinomial-Dirichlet

Convolution of
multinomials
(γ, . . . , γk , θ, . . . , θ s)

(γ, . . . , γk) Multivariate
hypergeometric

Kotz and Johnson () numbers judged
defective of k types
in lot inspection

Other Distributions
Numerous other continuous multivariate distributions are
known; a compendium is o�ered in Kotz et al. ().
Multivariate versions of Burr distributions arise through
gamma mixtures of independent Weibull distributions.
Various multivariate exponential distributions are known;
some properties and examples are found on specializing
multivariate Weibull distributions. Various multivariate
stable distributions, symmetric and asymmetric, are char-
acterized through the structure of their chf s, as are types
of symmetric MDs surveyed earlier.Multivariate extreme-
value distributions are treated in Kotz et al. (), with
emphasis on the bivariate case. �e Beta-Stacy distribu-
tions yield a multivariate Weibull distribution as a special
case. Multivariate Pareto distributions have their origins
in econometrics. Multivariate logistic distributions model
binary data in the analysis of quantal responses. Properties

of chf s support a bivariate distribution having normal and
gamma marginals (Kibble ).

Discrete Distributions
A guided tour is given with special reference to Johnson
et al. () and Patil and Joshi (). Inequalities for
selected multivariate discrete distributions are o�ered in
Jogdeo and Patil ().

Binomial, Multinomial, and Related
�e outcome of a random experiment is classi�ed as hav-
ing or not having each of s attributes {A, . . . ,A s}. If
{X, . . . ,X s} are the numbers having these attributes in n
independent trials, then theirs is a multivariate binomial
distribution with parameters

{π i = Pr(Ai), πij = Pr(AiAj), . . . , π⋅s
= Pr(AA . . .As); ı ∈[, , . . . s]; i≠ j≠k≠ . . .}
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where ı takes successive values {i, j, k, . . .}.�e 7binomial
7distribution B(n, π) obtains at s = . For bivariate bino-
mial distributions see Hamdan (), Hamdan and Al-
Bayyati (), andHamdan and Jensen ().�e limit as
n→∞ and π→  such that nπ→ λ is Poisson, the dis-
tribution of “rare events”. More generally, as n→∞ and
π i→ , such that {nθ i→ λ i,nθ ij→ λij, . . . ,nπ⋅s→ λ⋅s},
where {θ i, θ ij, . . .} are speci�ed functions of {π i, πij, . . .},
then the limit of the multivariate binomial distribution is
multivariate Poisson.
Suppose that independent trials are continued until

exactly k trials exhibit none of the s attributes. �e joint
distribution of the numbers {Y, . . . ,Ys} of occurrences
of {A, . . . ,As} during these trials is a multivariate Pascal
distribution.
To continue, let {A , . . . ,A s} be exclusive and exhaus-

tive outcomes having probabilities {π , . . . , π s}, with {<
π i < ; π + ⋯ + πs = }. �e numbers {X, . . . ,X s}
of occurrences of {A , . . . ,A s} in n independent tri-
als have the 7multinomial distribution with parameters
(n, π, . . . , πs). If independent trials are repeated until A
occurs exactly k times, the numbers of occurrences of
{A , . . . ,A s} during these trials have a negative multino-
mial distribution with parameters (k, π, . . . , πs).
In a multiway contingency table an outcome is classi-

�ed according each of k criteria having the exclusive and
exhaustive classes {Aio,Ai, . . .Aisi ; i = , . . . , k}. If in n
independent trials {Xi, . . . ,Xisi ; i = , . . . , k} are the num-
bers occurring in {Ai, . . . ,Aisi ; i = , . . . , k}, then their
joint distribution is called a multivariate multinomial dis-
tribution (also multivector multinomial). �ese are the
joint distributions of marginal sums of the contingency
table, to include the k–variate binomial distribution when
{s = s = ⋯ = sk = }.

Hypergeometric and Related
A collection of N items consists of s +  types: N of type
A, N of type A, . . . , Ns of type As, with N = N + ⋯ +

Ns. Random samples are taken from this collection. If n
items are drawn without replacement, the joint distribu-
tion of the numbers of items of types {A , . . . ,A s} is a
multivariate hypergeometric distribution with parameters
(n,N,N , . . . ,N s).With replacement, their distribution is
multinomial with parameters (n,N/N, . . . ,Ns/N).
If successive items are drawnwithout replacement until

exactly k items of type A are drawn, then the num-
bers of types {A, . . . ,As} thus drawn have a multivari-
ate inverse hypergeometric distribution with parameters
(k,N,N , . . . ,N s).
To continue, sampling proceeds in two stages. First,m

items are drawn without replacement, giving {x, . . . , xs}

items of types {A, . . . ,As}. Without replacing the �rst
sample, n additional items are drawn without replacement
at the second stage, giving {Y, . . . ,Ys} items of types
{A, . . . ,As}.�e conditional distribution of (Y, . . . ,Ys),
given that {X = x, . . . ,Xs = xs}, is amultivariate negative
hypergeometric distribution.

Multivariate Series Distributions
Further classes of discrete multivariate distributions are
identi�ed by types of their pmf s. Some arise through trun-
cation and limits. If [X, . . . ,Xs] has the s–variate negative
multinomial distribution with parameters (k, π, . . . , πs),
then the conditional distribution of [X, . . . ,Xs], given
that [X, . . . ,Xs] ≠ [, . . . , ], converges as k →  to the
s–variate logarithmic series distribution with parameters
(θ, . . . , θs) where {θ i =  − π i; i = , . . . , s}. See Patil
and Joshi () for details. A modi�ed multivariate log-
arithmic series distribution arises as a mixture, on n, of the
multinomial distribution with parameters (n, π, . . . , πs),
where the mixing distribution is a logarithmic series dis-
tribution (Patil and Joshi ).
A class of distributions with parameters (θ, . . . , θs) ∈

Θ, derived from convergent power series, has pmf s of
the form p(x, . . . , xs) =

a(x ,. . .,xs)θx ⋯θxss
f (θ  ,. . .,θ s) for {xi =

, , , . . . ; i = , . . . , s}. �e class of such distributions,
called multivariate power series distributions, contains
the s–variate multinomial distribution with parameters
(n, π, . . . , πs); the s-variate logarithmic series distribu-
tion with parameters (θ, . . . , θs); the s-variate negative
multinomial distribution with parameters (k, π, . . . , πs);
and others. See Patil and Joshi () for further proper-
ties. Other discretemultivariate distributions are described
next.

Other Distributions
A typical Borel-Tanner distribution refers to the number of
customers served before a queue vanishes for the �rst time.
If service in a single-server queue begins with r customers
of type I and s of type II with di�erent arrival rates and ser-
vice needs for each type, then the joint distribution of the
numbers served is the bivariate Borel-Tanner distribution
as in Shenton and Consul ().
In practice compound distributions o�en arise from

an experiment undertaken in a random environment;
the compounding distribution then describes variation of
parameters of the model over environments. Numerous
bivariate and multivariate discrete distributions have been
obtained through compounding, typically motivated by
the structure of the problem at hand. Numerous examples
are cataloged in references Johnson et al. () and Patil
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and Joshi (); examples are listed in Table  from those
and other sources.
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Multivariate Statistical Process
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Statistical process control (SPC) includes the use of
statistical techniques and tools, such as7control charts, to
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monitor change in a process. �ese are typically applied
separately to each process variable of interest. Statistical
process control procedures help provide an answer to the
question: “Is the process in control?” When an out-of-
control event is identi�ed as a signal in a control chart, pro-
cedures o�en are available for locating the speci�c process
variables that are the cause of the problem.
In multivariate statistical process control (MVSPC),

multivariate statistical control procedures are used to
simultaneously monitor many process variables that are
interrelated and form a correlated set that move together
(see Mason and Young ).�e relationships that exist
between and among the variables of the multivariate pro-
cess are used in developing the procedure. Assume that
the observation vectors obtained from a process are inde-
pendent random variables that can be described by a mul-
tivariate normal distribution (see 7Multivariate Normal
Distributions) with amean vector and a covariancematrix.
Any change in the mean vector and/or the covariance
matrix of this distribution is considered an out-of-control
situation and should be detectible with an appropriate
multivariate control chart.
Implementation of a multivariate control procedure

is usually divided into two parts: Phase I and Phase II.
Phase I includes the planning, development, and con-
struction phase. In this phase, the practitioner studies
the process in great detail. Preliminary data are collected
under good operational conditions and examined for sta-
tistical control and other potential problems. �e major
problems include statistical 7outliers, variable collineari-
ties, and autocorrelated observations, i.e., time-dependent
observations. A�er statistical control of the preliminary
data is established, the data is used as the process his-
tory and referred to as the historical data set (HDS). If
the parameters of the process are unknown, parameter
estimates of the mean vector and covariance matrix are
obtained from the data of the HDS for use in monitoring
the process.
Phase II is the monitoring stage. In this phase, new

observations are examined in order to determine if the pro-
cess has deviated from the in-control situation speci�ed
by the HDS. Note that, in MVSPC, deviations from the
HDS can occur through a mean vector change, a covari-
ance matrix change, or both a mean vector and covariance
matrix change in the process. In certain situations a change
in one parameter can also induce a change in the other
parameter.
Process control is usually determined by examining a

control statistic based on the observed value of an indi-
vidual observation and/or a statistic related to a ratio-
nal subgroup (i.e., sample) of the observations such as

the sample mean. Easy monitoring is accomplished by
charting the value of the multivariate control statistic on
a univariate chart. Depending on the charted value of
this statistic, one can determine if control is being main-
tained or if the process has moved to an out-of-control
situation.
For detecting both large and small shi�s in the mean

vector, there are three popular multivariate control chart
methods. An implicit assumption when using these charts
is that the underlying population covariancematrix is con-
stant over the time period of interest. Various forms of
7Hotelling’s T statistic are generally chosen when the
detection of large mean shi�s is of interest (e.g., see Mason
and Young ). For detecting small shi�s in the pro-
cess mean, the multivariate exponential weighted moving
average (MEWMA) statistic (e.g., see Lowry et al. )
or the multivariate cumulative sum (MCUSUM) statis-
tic (e.g., Woodall and Ncube ) can be utilized.�ese
statistics each have advantages and disadvantages, and they
can be used together or separately.
All of the above procedures were developed under the

assumption that the data are independent and follow a
multivariate normal distribution. Autocorrelated data can
present a serious problem for both the MCUSUM and
MEWMA statistics, but seems to have lesser in�uence on
the behavior of theT statistic. Amain reason for the in�u-
ence of autocorrelation on the MEWMA and MCUSUM
statistics is that both of them are dependent on a subset of
past-observed observation vectors, whereas theT statistic
depends only on the present observation.
A related problem in MVSPC is monitoring shi�s in

the covariance matrix for a multivariate normal process
when the mean vector is assumed to be stable. A useful
review of procedures for monitoring multivariate process
variability is contained in Yeh et al. ().�e methods
for detecting large shi�s in the covariance matrix include
charts based on the determinant of the sample covariance
matrix (Djauhari ), while the methods for detect-
ing small shi�s include charts based on a likelihood-ratio
EWMA statistic (Yeh et al. ) and on related EWMA-
type statistics (Yeh et al. ). A recent charting method
that is applicable in monitoring the change in covariance
matrix for amultivariate normal process is based on a form
of Wilks’ ratio statistic (Wilks ). It consists of taking
the ratio of the determinants of two estimators of the pro-
cess covariance matrix (Mason et al. ). One estimator
is obtained using the HDS and the other estimator is com-
puted using an augmented data set consisting of the newest
observed sample and the HDS.�e Wilks’ chart statistic is
particularly helpful when the number of variables is large
relative to the sample size.
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Current attention in the MVSPC literature is focused
on procedures that simultaneously monitor both the mean
vector and the covariance matrix in a multivariate process
(e.g., see Reynolds and Cho  or Chen et al. ).
�ese charts are based on EWMA procedures and can
be very useful in detecting small-to-moderate changes in
a process. Several papers also exist that present useful
overviews of MVSPC (e.g., see Woodall and Montgomery
 and Bersimis et al. ). �ese papers are valu-
able for their insights on the subject and their extensive
reference lists.
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Multivariate statistical simulation comprises the computer
generation of multivariate probability distributions for use
in statistical investigations. �ese investigations may be
robustness studies, calibrations of small sample behavior of
estimators or con�dence intervals, power studies, or other
MonteCarlo studies.�e distributions to be generatedmay
be continuous, discrete or a combination of both types.
Assuming that the n-dimensional distributions have inde-
pendent components, the problem of variate generation
is reduced to simulating from univariate distributions for
which, fortunately, there is a vast literature (Devroye ;
L’Eculer ; and international standard ISO , for
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example).�us, the real challenge of multivariate statisti-
cal simulation is in addressing the dependence structure of
the multivariate distributions.
For a few situations, the dependence structure is read-

ily accommodated from a generation standpoint. Con-
sider the usual n-dimensional multivariate normal dis-
tribution (see 7Multivariate Normal Distributions) with
mean vector µ and covariance matrix Σ. For a positive
de�nite covariance matrix, there exists a lower triangular
(Cholesky) decomposition LL′ = Σ. Assuming a source
of independent univariate normal variates to occupy the
vector X, the random vector Y = L X + µ has the desired
multivariate normal distribution. Having been able to gen-
erate multivariate normal random vectors, component-
wise transformations provide the capability to generate the
full Johnson translation system (a), of which the log-
normal distribution may be the most familiar. In using
the multivariate Johnson system, it is possible to spec-
ify the covariance matrix of the transformed distribution.
Some researchers transform the multivariate normal dis-
tribution without noting the severe impact on the covari-
ancematrix of the transformed distribution.�is oversight
makes it di�cult to interpret the results of simulation stud-
ies involving the Johnson translation system (see Johnson
 for further elaboration).
In expanding to distributions beyond the Johnson

translation system, it is natural to consider generalizations
of the normal distribution at the core of this system.�e
exponential power distribution with density function f (x)
proportional to exp(−∣x∣τ) is a natural starting point since
it includes the double exponential distribution (τ = ),
the normal distribution (τ = ) and the uniform dis-
tribution in the limit (τ → ∞) and is easy to simulate
(Johnson ). A further generalization of the exponen-
tial power distribution amenable to variance reduction
simulation designs was developed by Johnson, Beckman
and Tietjen () who noted that the normal distribution
arises as the product of ZU where Z is distributed as the
square root of a chi-squared() distribution and is inde-
pendent ofU which is uniformon the interval (−, ).�eir
generalization occurs by considering arbitrary degrees of
freedom and powers other than .. Since by Khintchine’s
unimodality theorem, any unimodal distribution can be
represented as such a product there are many possibilities
that could be pursued for other constructions ultimately
for use in multivariate simulation contexts.
Multivariate distribution families are appealing for

simulation purposes. A useful extension of the Johnson
translation system has been developed by Jones and
Pewsey (). �e family is de�ned implicitly via the
equation

Z = sinh[δ sinh−(Xε,δ) − ε]

where Z has the standard normal distribution, Xδ ,ε has a
sinh-arcsinh distribution, ε is a skewness parameter and
δ relates to the tail weight of the distribution.�is family
of distributions is attractive for use in Monte Carlo stud-
ies, since it includes the normal distribution as a special
intermediate (non-limiting) case and covers a variety of
skewness and tailweight combinations. Extensions of the
Jones-Pewsey family to themultivariate case can follow the
approach originally taken by Johnson (b), with adap-
tations by Johnson et al. () to better control impacts of
the covariance structure and component distributions.
Variate generation for multivariate distributions is

readily accomplished (at least, in principle) for a speci�c
multivariate distribution provided certain conditional dis-
tributions are identi�ed. Suppose X is a random vector
to be generated. A direct algorithm is to �rst generate
X as the marginal distribution of the �rst component of
X, say x. Second, generate from the conditional distri-
bution of X given X = x to obtain x. �ird, generate
from the conditional distribution X given, X = x and
X = x and then continue until all n components have
been generated. �is conditional distribution approach
converts the multivariate generation problem into a series
of univariate generation problems. For cases in which the
conditional distributions are very complicated or not par-
ticularly recognizable, there may be alternative formulae
for generation, typically involving a transformation to n+
or more independent random variables. Examples include
a multivariate Cauchy distribution and the multivariate
Burr-Pareto-logistic distributions (see Johnson ).

�e general challenge inmultivariate statistical simula-
tion is to incorporate the dependence structure as it exists
in a particular distribution. As noted earlier, the multi-
variate normal distribution is particularly convenient since
dependence is introduced to independent normal com-
ponents through appropriate linear transformations. Fur-
ther transformations to the components of themultivariate
normal distribution give rise to skewed, light tailed or
heavy tailed marginal distributions while retaining some
semblance of the dependence structure. An important
approach to grappling with the dependence structure is to
recognize that marginal distributions are not terribly rel-
evant in that the components can be transformed to the
uniform distribution via Ui = Fi(Xi), where Fi is the dis-
tribution function of Xi. In other words, in comparing
multivariate distributions, the focus can be on the trans-
formed distribution having uniform marginal’s.�is mul-
tivariate distribution is known as a “copula.” Examining the
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7copulas associated with the Burr, Pareto and logistic dis-
tributions led Cook and Johnson to recognize the essential
similarity of these three multivariate distributions. A very
useful introduction to copulas is Nelsen () while Gen-
est and MacKay () deserve credit for bringing copulas
to the attention of the statistical community.

�is entry does not cover all possible distributions or
families of distributions that could be considered for use
in multivariate simulation studies. Additional possibilities
(most notably elliptically contoured distributions) are
reviewed in Johnson ().
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�e usual multivariate analysis techniques include loca-
tion and scatter estimation, 7principal component anal-
ysis, factor analysis (see7Factor Analysis and Latent Vari-
ableModelling), discriminant analysis (see7Discriminant
Analysis: An Overview, and 7Discriminant Analysis:
Issues and Problems), 7canonical correlation analysis,
multiple regression and cluster analysis (see 7Cluster
Analysis: An Introduction). �ese methods all try to
describe and discover structure in the data, and thus rely
on the correlation structure between the variables. Classi-
cal procedures typically assume normality (i.e. gaussian-
ity) and consequently use the sample mean and sample
covariance matrix to estimate the true underlying model
parameters.
Below are three examples of multivariate settings used

to analyze a data set with n objects and p variables, form-
ing an n × p data matrix X = (x, . . . , xn)′ with xi =

(xi, . . . , xip)′ the ith observation.

. 7Hotelling’s T statistic for inference about the center
of the (normal) underlying distribution is based on the
sample mean x̄ = ∑

n
i= xi and the sample covariance

matrix Sx = 
n− ∑

n
i=(xi − x̄)(xi − x̄)′.

. Classical principal component analysis (PCA) uses
the eigenvectors and eigenvalues of Sx to construct a
smaller set of uncorrelated variables.

. In the multiple regression setting, also a response vari-
able y = (y, . . . , yn)′ is measured.�e goal of linear
regression is to estimate the parameter θ = (β, β)′ =
(β, β, . . . , βp)′ relating the response variable and the
predictor variables in the model

yi = β + βxi +⋯ + βpxip + εi.

�e least squares slope estimator can be written as
β̂LS = S−x sxy with sxy = 

n− ∑
n
i=(yi − ȳ)(xi − x̄)

the cross-covariance vector.�e intercept is given by
β̂ = ȳ − β̂

′
LSx̄.

�ese classical estimators o�en possess optimal prop-
erties under the Gaussian model assumptions, but they
can be strongly a�ected by even a few 7outliers. Outliers
are data points that deviate from the pattern suggested by
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the majority of the data. Outliers are more likely to occur
in datasets with many observations and/or variables, and
o�en they do not show up by simple visual inspection.
When the data contain nasty outliers, typically two things
happen:

● �e multivariate estimates di�er substantially from the
“right” answer, de�ned here as the estimates we would
have obtained without the outliers.

● �e resulting �tted model does not allow to detect the
outliers by means of their residuals, Mahalanobis dis-
tances, or the widely used “leave-one-out” diagnostics.

�e �rst consequence is fairly well-known (although
the size of the e�ect is o�en underestimated). Unfortu-
nately the second consequence is less well-known, and
when statedmany people �nd it hard to believe or paradox-
ical. Common intuition says that outliers must “stick out”
from the classical �tted model, and indeed some of them
do so. But the most harmful types of outliers, especially if
there are several of them, may a�ect the estimated model
so much “in their direction” that they are now well-�tted
by it.
Once this e�ect is understood, one sees that the follow-

ing two problems are essentially equivalent:

● Robust estimation: �nd a “robust” �t, which is similar
to the �t we would have found without the outliers.

● Outlier detection: �nd all the outliers that matter.

Indeed, a solution to the �rst problem allows us, as a
by-product, to identify the outliers by their deviation from
the robust �t. Conversely, a solution to the second prob-
lem would allow us to remove or downweight the outliers
followed by a classical �t, which yields a robust estimate.
It turns out that the more fruitful approach is to solve

the �rst problem and to use its result to answer the second.
�is is because from a combinatorial viewpoint it is more
feasible to search for su�ciently many “good” data points
than to �nd all the “bad” data points.
Many robust multivariate estimators have been con-

structed by replacing the empirical mean and covariance
matrix with a robust alternative. Currently the most pop-
ular estimator for this purpose is the Minimum Covari-
ance Determinant (MCD) estimator (Rousseeuw ).
�e MCD method looks for the h observations (out of n)
whose classical covariance matrix has the lowest possible
determinant.�e rawMCD estimate of location is then the
average of these h points, whereas the raw MCD estimate
of scatter is a multiple of their covariance matrix. Based on
these raw estimates one typically carries out a reweighting
step, yielding the reweighted MCD estimates (Rousseeuw
and Van Driessen ).

�e MCD location and scatter estimates are a�ne
equivariant, which means that they behave properly under
a�ne transformations of the data. Computation of the
MCD is non-trivial, but can be performed e�ciently
by means of the FAST-MCD algorithm (Rousseeuw and
Van Driessen ) which is available in standard SAS,
S-Plus, and R.
A useful measure of robustness is the �nite-sample

breakdown value (Donoho and Huber ; Hampel et al.
).�e breakdown value is the smallest amount of con-
tamination that can have an arbitrarily large e�ect on the
estimator.�eMCD estimates of multivariate location and
scatter have breakdown value ≈ (n − h)/n.�e MCD has
its highest possible breakdown value of % when h =

[(n + p + )/]. Note that no a�ne equivariant estimator
can have a breakdown value above %.
Another measure of robustness is the in�uence func-

tion (Hampel et al. ), which measures the e�ect on an
estimator of adding a small mass of data in a speci�c place.
�eMCD has a bounded in�uence function, which means
that a small contamination at any position can only have a
small e�ect on the estimator (Croux andHaesbroeck ).
In regression, a popular estimator with high break-

down value is the Least Trimmed Squares (LTS) estima-
tor (Rousseeuw ; Rousseeuw and Van Driessen ).
�e LTS is the �t that minimizes the sum of the h small-
est squared residuals (out of n). Other frequently used
robust estimators include S-estimators (Rousseeuw and
Yohai ) and MM-estimators (Yohai ), which can
achieve a higher �nite-sample e�ciency than the LTS.
Robust multivariate estimators have been used to

robustify the Hotelling T statistic (Willems et al. ),
PCA (Croux and Haesbroeck ; Salibian-Barrera et al.
), multiple regression with one or several response
variables (Rousseeuw et al. ; Agulló et al. ), dis-
criminant analysis (Hawkins andMcLachlan ; Hubert
and Van Driessen ; Croux and Dehon ), factor
analysis (Pison et al. ), canonical correlation (Croux
and Dehon ), and cluster analysis (Hardin and Rocke
).
Another important group of robust multivariate meth-

ods are based on projection pursuit (PP) techniques.
�ey are especially useful when the dimension p of
the data is larger than the sample size n, in which
case the MCD is no longer well-de�ned. Robust PP
methods project the data on many univariate direc-
tions and apply robust estimators of location and scale
(such as the median and the median absolute devia-
tion) to each projection. Examples include the Stahel-
Donoho estimator of location and scatter (Maronna and
Yohai ) and generalizations (Zuo et al. ), robust
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PCA (Li and Chen ; Croux and Ruiz-Gazen ;
Hubert et al. ; Boente et al. ), discriminant
analysis (Pires ), canonical correlation (Branco et al.
), and outlier detection in skewed data (Brys et al.
; Hubert and Van der Veeken ). �e hybrid
ROBPCA method (Hubert et al. ; Debruyne and
Hubert ) combines PP techniques with the MCD and
has led to the construction of robust principal compo-
nent regression (Hubert and Verboven ), partial least
squares (Hubert and Vanden Branden ), and classi-
�cation for high-dimensional data (Vanden Branden and
Hubert ).
A more extensive description of robust multivariate

methods and their applications can be found in (Hubert
et al. ; Hubert and Debruyne ).
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National accounts are the system by which the current
level of economic activity is measured, the summary statis-
tic being Gross Domestic Product (GDP). Government
o�cials, policy makers, businessmen, and investors o�en
react to GDP real growth rates and levels as GDP is a pri-
mary indicator of the health of the economy. Safeguards
are taken in the United States, and probably in many other
countries, to ensure that no one has advance knowledge of
these numbers before the o�cial release to protect against
someone capitalizing from inside knowledge.
National accounts are the economist’s version of busi-

ness accounts. Both national and business accountants
follow speci�c rules and methodologies. �e most com-
mon set of rules for national accounts is summarized
for national accounts in the System of National Accounts
(SNA); the current published version is dated . (Many
countries have not yet changed their national accounts to
re�ect changes between SNA  and SNA .) �e
SNAwas developed by Sir Richard Stone and ismaintained
by a group of international organizations. �e United
States national accounts (National Income and Product
Accounts orNIPAs)were developed by SimonKuznets and
use a di�erent system than the SNA. However, the NIPAs
are currently largely compatible with the SNA. National
accounts and business accounts are similar in that they
both use a double-entry system and have a number of
account components which relate to a snapshot, i.e., an
assets and liabilities balance sheet for a particular date,
or a �ow account, i.e., a production account or a pro�t
or loss statement for the year. However, national accounts
and business accounts use signi�cantly di�erent rules and
methodologies.
GDP is a measure of the goods and services currently

produced by labor and property located within a speci�c

geographic region. GDP can be measured in three dif-
ferent ways using an expenditure, income or value-added
approach.�e expenditures approach estimates GDP as:

GDP = Consumption + Investment +Government
Expenditures + Exports − Imports,

where in this formula consumption and investment
exclude consumption and investment by government,
which are included in the Government Expenditures total.
Imports are subtracted to ensure that only production
within a speci�c geographic region are included in GDP.
�e income approach estimates GDP as the sum of income
received and costs incurred in production. �e value-
added approach estimates GDP as:

GDP = Total Sales − Total Intermediate Inputs.

An intermediate input is a good or service purchased for
resale, i.e., by a retailer from a wholesaler, or a good or
service purchased for use in producing another good or
service (hence the name intermediate “input”), i.e., �our
used to produce a loaf of bread. If the price paid for a prod-
uct by a retailer, i.e., carrots brought by a grocery store
from a farm, were included in GDP as well as the price
paid for the product by an individual consumer, i.e., carrots
bought by an individual consumer from a grocery store,
then there would be double-counting in GDP equal to the
price paid by the retailer, i.e., the grocery store. At each
stage of production normally some inputs are added, such
as transportation, packaging, and labor costs.�ese costs
as re�ected in the �nal price to a consumer, investor, or
government are included in GDP. Note that GDP, regard-
less of which approach is used, does not include capital
gains as these do not result from current production.

�ere are three major categories of output in the SNA:
Market, produced for your own use, and other non-market
output. Market produced for your own use includes food
produced and consumed on a farm. Other non-market
output consists of goods and or services produced by non-
pro�t institutions or governments that are supplied free, or
at prices that are not economically signi�cant. Although
market output is generally the easiest to estimate, prob-
lems arise in the estimation of all three types of output.

Miodrag Lovric (ed.), International Encyclopedia of Statistical Science, DOI ./----,
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In all cases, collection of data is critical to the estimation
of GDP. Missing data points are estimated using interpo-
lation or extrapolation with indicators, such as computer
programmer for so�ware production, supplementary data
sources, and/or best judgment. Other components of GDP
are imputed notably because there is no market informa-
tion. �e imputation for services from owner-occupied
housing is normally the largest imputation. Rent payments
for houses of similar sizes and quality in similar locations
are o�en used to impute these services when possible. Ser-
vices from intangibles, such as research and development
(R&D), represent a particularly challengingmeasurement
problem.
GDP is presented in the prices of the day, frequently

called nominal or current dollars, or in units which allow
for comparisons over time, called volume in SNA ter-
minology, real in NIPA terminology, or by many others
constant dollars or quantity. Creating volume or real GDP
is one of the major challenges facing national accountants.
Volume or realmeasures are created by holding prices con-
stant, allowing for changes in the number and the quality
of goods and services over time. Volume or real measures
are estimated directly or by de�ating nominal measures
with prices indexes. Typically indexes are used such as the
Paasche, Laspeyres, Fisher or�ornqvist index. Fixed price
(volume or quantity) indexes commonly are a Paasche
or Laspeyres index; chained prices (volume or quantity)
indexes frequently are a Fisher or�ornqvist index. Qual-
ity changes in goods and services can be particularly dif-
�cult to measure, such as quality changes in computers.
During the second half of the nineties in the United States,
prices of computers were declining at the same time as per-
formance and sales of computers was increasing. If price
and volume (or quantity) indexes had not been adjusted
for quality changes and chain indexes were not used, GDP
would have been misestimated. Aggregate indexes, such
as GDP, will change if the composition of goods and
services produced changes even if there are no quality
changes because indexes typically involve nominal dollar
weights.

�is short description describes the primary macroe-
conomic aggregate of national accounts: GDP, but there
are many other economic statistics contained in national
accounts. To give a sense of the large volume of informa-
tion available in national accounts, note that there are nine
accounts in the SNA and seven accounts in the NIPAs.
�e SNA accounts include those for production, distribu-
tion of income, redistribution of income, use of income,
capital, �nancial, other changes in asset values, balance
sheet, and goods and services.�e NIPA accounts include
those for domestic income and product, private enterprise

income, personal income and outlay, government receipts
and expenditures, foreign transactions current, domestic
capital, and foreign transactions capital. For further infor-
mation on national accounts, it is recommended that you
refer to the references, particularly those by Lequiller and
Blades, and Landefeld et al., and the two short documents
by the Bureau of Economic Analysis.
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Anetwork is a representation for a collection of individuals
or other units connected in a pairwise fashion by relation-
ships, such as friendship. Networks are typically displayed
visually as “graphs,” so that individuals correspond to the
“nodes” of a graph,with the existence of a relationship indi-
cated by an edge between pairs of nodes. Relationships can
be univariate ormultivariate, and the connections between
individuals can be either directed (from one to the other)
or undirected. In terms of statistical science, a network

model is one that accounts for the structure of the network
ties in terms of the probability that each network tie exists,
whether conditional on all other ties, or as considered part
of the distribution of the ensemble of ties.
A network with N nodes has (N) unordered pairs of

nodes, and hence (N) possible directed edges. If the labels
on edges re�ect the nodes they link, as (i, j), Yij represents
the existence of an edge from individual i to j, and {Y} =

{Y,Y, . . .Y(N−)N} represents the ties in the graph.

Conditionally Independent Edges and
Dyads
For a binary graph with conditionally independent edges,
each edge outcome Yij can be expressed as a Bernoulli
binary random variable with probability of existence pij.
�e simplest of this class of network models is the Erdős–
Rényi–Gilbert random graph model (Erdős and Rényi
, ; Gilbert ) (sometimes referred to as the
Erdős-Rényi model, or “the” random graph), in which any
given edge exists with probability p. �is model extends
immediately to directed graphs, where any arc has the
same existence probability p as any other.�ere is a large,
and still growing, probabilistic literature on random graph
models and their generalizations, that is well summarized
in Durrett () and Chung and Lu ().

�e Erdős–Rényi–Gilbert class of model assumes that
there is no di�erentiation between nodes, and that the two
arcs within a dyad are independent of each other.�e p
model of Holland and Leinhardt () proposes that three
factors a�ect the outcome of a dyad: the “gregariousness”
α of an individual, how likely they are to have outgoing
ties; the “popularity” β of an individual; how likely they
are to have incoming ties; and “reciprocity” ρ, the tendency
to which the two arcs in a dyad are identical, taking into
account their existing characteristics. Given a parameter
for the overall density θ, the form of the joint likelihood is

P(X = x) = exp(ρm + θx++ +∑
i

αixi+

+∑
j

βjx+j
⎞

⎠
K(ρ, θ, α, β). ()

where K(ρ, θ, α, β) is a normalizing constant to insure
that the total probabilities add to . Additionally, Holland
and Leinhardt () present an iterative proportional �t-
ting method for maximum likelihood estimation for this
model, and discuss the complexities involved in assessing
goodness-of-�t.
A natural extension of the p model is the case of

tightly linked “blocks” of nodes, within which the α
and β parameters are equated, suggesting an equivalence
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betweenmembers of the same block.�e inference for and
discovery of “communities” in networks has become espe-
cially popular in recent network literature in a variety of
di�erent applications; see Newman () for an example.

Ensemble Models and Topological
Motivations
Rather than focusing on the dyads as independent units,
there are classes of models that consider topological fea-
tures of interest in the network as the main measure of the
model.�e best knownof these is the Exponential Random
Graph Model, or ERGM (Frank and Strauss ), also
known as p∗ (Anderson et al. ), which extends directly
from the pmodel, by adding statistical summaries of topo-
logical relevance. For example, the number of three-cycles
or triangles in a graph is equal to

T =∑
i,j,k

XijXjkXki;

this can then be added into the likelihood of Eq. (), as in

P(X = x) = exp(τT + ρm + θx++ +∑
i

αixi+

+∑
j

βjx+j
⎞

⎠
K(τ, ρ, θ, α, β), ()

where K(τ, ρ, θ, α, β) is a new normalizing constant.
Due to the computational intractability of this nor-
malizing constant, much of the recent literature on
ERGMs uses Markov chain Monte Carlo methods (see
7Markov Chain Monte Carlo) for maximum likelihood
estimation of the model parameters. Additionally, these
models o�en have degenerate or near-degenerate solu-
tions, as explained in Rinaldo et al. ().

Evolutionary Models and Methods
Two popular models for binary networks come from a net-
work model based charcterized by stepwise changes.�e
�rst is the “small world” model Watts and Strogatz (),
which suggests that many networks in nature exhibit high
local clustering – the tendency of a node’s neighbours to be
connected, a sign of an “ordered” system –with short char-
acteristic path lengths, typical of a more “chaotic” system.
�e second is the “scale-free”model of Barabási andAlbert
(), in which nodes enter sequentially into a existing
system, making connections with previously added nodes.
�e probability of selecting a node for a new link is pro-
portional to its degree at that time, so that “rich” nodes are
more likely to receive new links, a notion that goes back
almost a century to the work of Yule ().�e recent lit-
erature on this class of evolutionary models emerged from
ideas in statistical physics and has been subject to criticism

for its loose assessment of the “scale-free” property Li et al.
().
Considerable current interest focuses on continuous-

timedynamicmodelsofnetworks,forexample,thatdescribe
the changes in edge properties. For example, Wasserman
() described Markov models for edge states in which
theprobability of a friendshipbeingmadeorbrokenduring
aparticular time interval isproportional topropertiesof the
individuals and of reciprocity in general. Snijders ()
among others has extended these ideas.

Further Reading
For in-depth reviews of the probabilistic literature on
random graph models, see Durrett () and Chung and
Lu (). Kolaczyk () provides a detailed examina-
tion of a number of di�erent network models and their
applications, and Goldenberg et al. () provides a broad
statistical review with an extensive bibliography.
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Network sampling refers to the observation of a sampled
network from some population or family F of possible net-
works. In particular, F can be a family of subnets obtainable
from a �xed graph or network G. In this case, G is usu-
ally referred to as the population graph or the population
network.
A graphGwith vertex setV and edge set E is identi�ed

by a binary function y = {(u, v, yuv) : (u, v) ∈ V} that
for each ordered pair of vertices in V returns a value yuv
indicating whether or not (u, v) ∈ E. If V = {, . . . ,N}

and the vertices are ordered according to their labeling,
y can be displayed as the adjacency matrix (yuv) of G.
A more general network G, a valued graph with univari-
ate or multivariate variables de�ned on the vertex pairs,
can be represented by a univariate or multivariate function
y on V.
A family F of subnets obtainable from a �xed popu-

lation network speci�ed by a function y can be generated
by a vertex sample S selected according to a speci�ed
probabilistic sampling design. Let E(S) be the subset ofV

generated by S, and let y(S) be the restriction of y to E(S).
�e family F of observable subnets consists of the subnets

represented by y(S) for di�erent outcomes of S. In partic-
ular, a subnet induced by S consists of yuv for (u, v) ∈ S,
and a subnet generated from and towards S consists of yuv
for all (u, v) with u ∈ S or v ∈ S.

�e subnets represented by y(S) are random due to the
randomness of the sampling design of S. Any inference
on y based on y(S) is referred to as design based infer-
ence.�e population network represented by y is usually
too complicated to describe in detail, and it might be con-
veniently summarized by some summary statistics or by
some probabilistic model assumptions focusing on impor-
tant features between the variables involved in y. If the
probabilistic sampling design of S is combined with prob-
abilistic model assumptions about y, the observed subnet
y(S) is random due to the randomness of both design and
model. In this case, model based inference refers to infer-
ence on features of the model of y, while model assisted
inference is sometimes used as a term for inference on the
outcome of y.
As a simple example, consider an undirected popu-

lation graph on V = {, . . . ,N} given by the adjacency
matrix y = (yuv) with yvv =  and yuv = yvu for u ≠ v.
�e number of edges R and the number of isolated vertices
N should be estimated by using the information from a
subgraph induced by a Bernoulli (p)-sample S of vertices.
Here vertices in V are independently selected with a com-
mon probability p, which for instance could be chosen as
. + N−/ in order to get a small probability for a sample
that is too small. Let nk be the number of vertices of degree
k in the sample graph for k = , , . . . �en the number
of edges in the sample graph is given by r = (/)Σkknk,
and R can be estimated by r/p. It can be shown that N
has an unbiased estimator given by the alternating series
(/p)Σknk(−q/p)k where q =  − p. �is estimator has
very low precision, and it is desirable to replace it with
a model based alternative. Assume that the population
graph is a Bernoulli (α)-graph so that yuv for u < v are
independent Bernoulli (α)-variables. It follows that R and
N have expected values N(N − )α/ and N( − α)N−,
respectively. Now α can be estimated by the edge density
r/n(n−) of the sample graph, and it follows thatR andN
could be predicted to be close to their estimated expected
values N(N − )r/n(n − ) and N[ − r/n(n − )]N−,
respectively.
For a more statistical example, consider a population

network with a multivariate y having means and vari-
ances that should be estimated by using the information
from a subnet generated by a vertex sample S selected
according to a speci�ed probabilistic design.Obviously any
model assumptions that explain the multivariate structure
between the variables in y should be bene�cial in order
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to �nd predictors of the estimated expected values of the
means and variances of the variables in y.
Further information about the literature on survey

sampling in networks can be found in the following
references.
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Introduction
Neural networks emulate aspects of real neural systems
to attempt to achieve some of the remarkable capabilities
of real neural systems, or to help understand the work-
ing of neural systems. �ere are many types of neural
networks, some concerned with data prediction and clas-
si�cation (which are of interest here), and others with
detailed understanding of the operation of real neural
systems. What they all share is modelling (on a digital

computer) some simpli�cation of the extremely compli-
cated and sophisticated structure of real neural systems: in
essence parallel operation of relatively simple but highly
interconnected processing elements (model neurons).
Neural networks that are of interest to statisticians

use highly simpli�ed model neurons, and interconnec-
tions between neurons (synapses). �e earliest such net-
works were based on the seminal work of McCulloch and
Pitts () who characterized neurons as threshold logic
devices. �ese were used by Rosenblatt and Minsky to
build systems which they called Perceptrons. Such systems
are inherently limited (as was shown byMinsky and Papert
[]), and it was not until the s that modern ideas of
using of Neural Networks for statistical purposes came to
the fore. (A more detailed history may be found in Haykin
[], Chap. .)
Neural networks consist of a model M, with a set of

parameters P. M is one of a generic set of models such as
those below. An important concept in neural networks is
that the parameters adapt as a result of the data applied to
the network.�e initial issues are choosing the rightmodel
M, then choosing an initial set of parameters, and an e�ec-
tive way to adapt the parameters P (a learning rule). In
addition, it is necessary to check that the resultant param-
eter values actually solve the problem. O�en a number of
models and initial parameter values are used, and then
the �nal results assessed. Neural network adaptation tech-
niques allow them to approximate regression techniques.
Because the networks include non-linear elements they
can go beyond linear regression. A detailed discussion of
the nature of the relationship between neural networks and
statistical techniques may be found in Bishop ().

Types of Neural Network
Neural networks may be supervised or unsupervised.
Supervised neural networks (sometimes characterised as
having a teacher) are provided with sets of inputs and
their corresponding outputs (training data) and internally
adapt their parameters to attempt learn how to map (new)
inputs into outputs in a way consistent with the train-
ing data. Unsupervised neural networks also receive data
which they use to alter their internal structure, but in
this case, there are no corresponding outputs: the net-
work needs to approximate some aspects of the internal
structure of the training data. Normally, the training data
is divided into data used for training, and data used to
test the resultant network. Supervised neural networks are
used for prediction (function approximation) and classi�-
cation, and unsupervised networks are normally used for
data dimensionality reduction, and classi�cation purposes.
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Supervised Neural Networks
Most supervised networks are feedforward: that is, the
external input is connected to some neurons, and these are
then connected to others in turn in such a way that there
are no loops.�ese are in general easier to train than recur-
rent neural networks, but can have no sensitivity to the
history of their inputs. �e simplest such network is the
simple Delta-unit network (Simple∆), and consists of a set
of input units and an output unit: however such networks
are limited in what they can learn.
In the Simple∆ network, the output unit calculates a

weighted sum of theN inputs Xi , (plus a bias term, written
here as wX, with X always ).

A = ΣN(i=)(wiXi) ()

where A is the activation of the output unit, and the wi

are the weights between the input units and the output
unit. O�en this activation is then compressed, for example
using a logistic function to produce the output Y so that
Y = /(+exp(−KA)). IfD is the desired output for a given
input vector X̄ = (X,X , . . . ,XN) then it can be shown
that adjusting the weights using

δwi = k(D − Y)
dY
dA

Xi ()

will result in making D closer to Y for small positive k.
However, the range of functions (or classi�cations) that
can be represented by such a network is restricted to lin-
early seperable functions. To enable a more general class of
problems to be solved requires that (for example) increas-
ing a value for an input xi can sometimes increase and
sometimes decrease Y , and this requires additional model
neurons: these are called hidden neurons as they are nei-
ther input nor output neurons.�ey are usually arranged
in layers.

�e two commonest forms of feedforward super-
vised neural networks are back-propagated Delta rule net-
works (BP∆) and radial basis function (RBF) networks:
they (largely) share a common architecture, illustrated in
Fig. .�e primary di�erence between BP∆ and RBF net-
works is the nature of the hidden layer units. In BP∆
networks, these calculate a weighted sum of their inputs,
then non-linearly squash this output: typically, a logistic
function is used for squashing. In this case, if Y is the
output,

Output

Output units

Connections
from hidden to

output units

"Hidden" units

Connections from
input to hidden units

Input units

Input

Bias units
(BP Delta only)

Neural Networks. Fig.  Feedforward neural network. Input arrives at the (three) input units, and is transferred through the con-

nections from input to hidden units to the hidden units. For back-propagated delta-rule networks, there is one other input to each
hidden unit, a bias input from a unit (in black) whose output is always . The output from the hidden units passes through connec-
tions to the output units, (again, for back-propogated delta-rule networks there is an extra bias input). The output units provide
the output. Note that this is a fully connected layered feedforward net because all units in each layer are connected to all units in
the next layer



 N Neural Networks

Y = / ( + exp(−K ΣN(i=)(wiXi))) ()

where wiXi is weighted input, N is the number of units in
the previous layer (including the bias unit), andK is a posi-
tive number which determines the steepness of the logistic
function.�e network adapts by altering all of thewi . Here
M is the network architecture (number of layers and of
hidden units in each layer), and P is the wi.�e network
shown in Fig.  has a single hidden layer with �ve hidden
units: there may be multiple hidden layers, with di�erent
numbers of units in each.
In RBF networks, the hidden units compute a high

dimensional Gaussian of their input.�us they have a sin-
gle maximum, and the region of the input space to which
they respond is localized, unlike the BP∆ hidden units.�e
Gaussian may have di�erent standard deviations (SDs) in
di�erent dimensions. Typically, a relatively large number of
hidden units is used, and the Gaussian centers and SDs are
�xed. (�ere may be an initial stage in which these centers
and SDs are adjusted so that the hidden units together
cover the whole of the region of the input space populated
by the actual inputs.) In training, only the connections
between the hidden units and the output units are adapted,
usually using a simple Delta-rule technique.�usM is the

RBF units (and usually their centers and standard devia-
tions), and P is the weights from the RBFs to the output
units. Only a single layer of hidden units is used.
For the BP∆ network, the weights are adjusted by

propagating the errors back through the feedforward
architecture (see Haykin [] for details).�is uses sim-
ple locally calculated gradient descent, although steepest
descent is also possible, though the change in weight then
requires non-local values for its computation. Because the
relationship between the weights and the overall error may
be very complex, the BP∆ network can become trapped in
localminima (which is why normal practice is to start from
di�erent locations in weight space). For the RBF network,
the weights to the output units are adjusted using Eq. ().
�e RBF network may also be sensitive to the placing and
radii of the RBF units: o�en the centers are initialized to
some of the training data, and the radii calculated from
initial training data. However, because the weights are only
a single layer, gradient descent algorithms are guaranteed
to �nd a global minimum of the error.

Unsupervised Neural Networks
Unsupervised neural networks adapt the connections
between neurons as a result of the input to the network.

Representation
(output) units

Connections
from input to
output units

High dimensional input

Output

Neural Networks. Fig.  Simple self-organized neural network. Input arrives at the (seven) input units, and is transferred through
the connections from these to the representation or output units. These units may be interconnected (dotted lines), or they may
interact in an algorithmically defined way
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Typically, these consist of a single layer of input units
providing adjustable weighted inputs to a layer of repre-
sentation (and also output) units, as shown in Fig. .
Generally, the weighted connections from the input to

the representation units are adjusted so that the unit that
received the greatest activation (“won”) will be more likely
to win in the future: clearly this leaves open the possi-
bility that some units may never win, or that some units
may win too o�en, so that there may also be adjustment
of the sensitivity of output units as well. A more sophis-
ticated self-organized network was designed by Kohonen
(), and it places a geometry on the representation units
so that one can talk of di�erent output units being nearer
or further from each other: the learning algorithm used
also attempts to ensure that the whole output space is used.
�is allows the data in the original high-dimensional input
space to be projected down to a much lower-dimensional
output space: this can be very useful when attempting to
understand the structure of, or to classify high dimensional
datasets.

Other Architectures
Some network architectures also allow adaptation of the
architecture: these o�en have phases of adding neurons,
followed by phases of removing them.�e aim is to pro-
duce a simple M which can then provide a simple model
of the data being analysed.�ough not a new idea (Frean
; Hassibi et al. ), this area has seen recent inter-
est (Franco et al. ). Recurrent neural networks (net-
works with feedback loops) are also used for prediction
and classi�cation where the network needs to be sensitive
to previous inputs. Training in such networks can present
convergence issues: the algorithms used in the BP∆ and
RBF networks require the absence of loops. Details of some
training techniques may be found in Haykin ().
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Neyman–Pearson lemma (also called fundamental lemma)
presented in  is the basic tool in testing statistical
hypotheses. Its essence consists of the followingmathemat-
ical problem.
Given a measure µ on a measurable space (X ,A) and

given nonnegative measurable real functions f and f on
(X ,A) satisfying the condition ∫

X
fi(x)dµ(x) = , for

i = , , consider the family S = S(α) of allA-measurable
subsets S of X such that

∫
S
f(x)dµ(x) ≤ α, where α is a given positive

constant, non greater than . ()

Find all sets inS(α)maximizing the integral∫
S
f(x)dµ(x).

Neyman-Pearson lemma states that the family of the
sets S in S(α) of the form {x ∈ X : f(x) > kf(x)} for
some nonnegative constant k is not empty and it includes
the desired solution. Moreover, any solution may be
presented in this form almost surely w.r.t µ.
A version of this lemma for randomized tests is more

useful. As known a randomized test is represented by a real
function ϕ = ϕ(x) onX taking values in the interval [, ]
which plays the role of a fuzzy set inX . In consequence, the
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condition () and the integral ∫
S
f(x)dµ(x) are replaced

by ∫
X
ϕ(x)f(x)dµ(x) ≤ α, and ∫

X
ϕ(x)f(x)dµ(x),

respectively. In this case the Neyman–Pearson has the
following statistical interpretation.
Suppose a random variable X has a density fX , being

one of the functions f or f. �en one of the equivalent
most powerful (MP) tests for the hypothesis H : fX = f
under the alternative K : fX = f at the signi�cance level α
may be presented in the form

ϕ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

, if f(x) > kf(x)

γ, if f(x) = kf(x),

, if f(x) < kf(x)

()

where nonnegative k and γ belonging to the interval [, ]
are determined by the condition

∫
X
ϕ(x)f(x)dµ(x) = α, ()

unless there exists a test ϕ of size less than α with power .
�e Neyman–Pearson lemma was also generalized for

testing a hypothesis of type H : fX ∈ { f, . . . , fm} against a
simple alternative K : fX = fm+..

Example Random value X takes values −, , , , , , 
according to one of the distributions given in the table.

x −      

P(X = x) . . . . . . .

P(X = x) . . . . . . .

Construct the MP test for the hypothesis H: P = P
against the alternative K: P = P at the signi�cance level
α = ..

First we compute the likelihood rations q(x) = P(X=x)
P(X=x)

and range them in the descending order. Let r(x) denote
the rank of q(x) while xi – the value x corresponding to
the rank i. Further steps may be observed in the table

x q(x) r(x) i xi fi = P(X = xi) si = ∑j≤i fj

− .    . .

 .   − . .

 .    . .

 .    . .

 .    . .

     . .

     . .

Nowwe only need to apply the conditions () and () in
discrete form.�e last column in the table shows that the
MP nonrandomized test for the hypothesis H against K at
the signi�cance level . rejects H, if and only if X = .
Moreover its power is equal to ..�e corresponding MP
randomized test is de�ned by

ϕ(x) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

, if X = 

., if X = −

, otherwise.

Its power is equal to ..
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�e nonlinear mixed e�ects model (or hierarchical nonlin-
ear model) is a standard framework for analysis of data
in the form of continuous repeated measurements over
time on each individual from a sample of individuals
drawn from a population of interest. It is particularly rel-
evant when the goal is to make inference on the average
behavior and variability in the population of individu-
als of features underlying the individual pro�les, where
the pro�les are well-represented by a function nonlin-
ear in parameters that characterize the features under
study.
A key area where this model is appropriate is in phar-

macokinetic analysis, where repeated blood samples are
collected from each of several subjects at intermittent time
points following a dose or doses of a drug, fromwhich con-
tinuous drug concentrationmeasurements are ascertained.
�e objective is to characterize the underlying pharma-
cological processes within the body that lead to observed
concentrations and how these processes vary across sub-
jects in the population. To describe the processes formally,
it is routine to represent the body of an individual subject
by a simple compartment model, which yields an expres-
sion for concentration at any time post-dose as a function
nonlinear in parameters that quantify absorption, distri-
bution, and elimination of the drug for the subject. For
example, representation of the body by a single “blood
compartment,” with oral dose D given at time t = , leads
to the standard model for concentration at time t, C(t),
given by

C(t) =
Dka

V(ka − Cl/V)
{exp(−kat) − exp(−

Cl
V
t)} , ()

where ka is the fractional rate of absorption of the drug
from the gut into the bloodstream; V is roughly the vol-
ume required to account for all drug in the body; and
Cl is the clearance rate, the volume of blood from which
drug is eliminated per unit time. In (), the goal is to
learn about the parameters (ka,V ,Cl) that summarize
pharmacokinetic processes for a given subject and their
mean or median values and the extent of variation of
them in the population of subjects. �is information is
critical for designing dosage regimens to maintain drug

concentrations in a desired range; if population variation
in (ka,V ,Cl) is substantial, designing a regimen that will
work well for most individuals may be di�cult. If some
of the variation is systematically associated with subject
characteristics like weight or age, regimens tailored to sub-
populations of subjects sharing certain characteristics may
be developed. See Giltinan () for an excellent review
of this area.
Additional applications where the inferential goals are

similar and for which the nonlinear mixed e�ects model is
a suitable framework include growth analysis in agricul-
ture and forestry and analysis of viral dynamics, among
others. In general, relevant applications are such that a
model for response–time pro�le at the individual level,
derived from theoretical or empirical considerations, like
(), and depending on parameters characterizing directly
underlying features of interest, is available and is central to
the data-analytic objectives.
For each individual i in a sample ofN individuals from

a population of interest, i = , . . . ,N, let Yij denote a con-
tinuous, univariate response (e.g., drug concentration) at
time tij, j = , . . . ,ni. Let U i denote a vector of covariates
specifying conditions under which i is observed; for exam-
ple, in (), U i = Di = oral dose given to individual i at
time ; in the case of multiple doses, U i would summa-
rize the times and corresponding doses given.�e U i are
needed to describe the response–time relationship at the
level of individual i, as in (), and hence are o�en referred
to as “within-individual” covariates. Assume further that a
vector of characteristics that do not change over the obser-
vation period on i are recorded, such as age, ethnicity,
weight, and so on; summarize these in a vector Ai, o�en
called “among-individual” covariates because they charac-
terize how individuals may di�er but are not required to
describe individual response–time relationships.�e avail-
able data are then (Y i,U i,Ai), i = , . . . ,N, where Y i =

(Yi, . . . ,Yini)
′, which, combining the within- and among-

individual covariates as Xi = (U ′
i ,A

′
i)
′, may be written

more succinctly as (Y i,Xi), i = , . . . ,N.
�e model may be conceived as a two stage hierarchy.

At the �rst stage, a model for data at the level of a given
individual i is speci�ed. Let m(t,U , θ) be a function of
time, within-individual conditions of measurement, and a
vector of parameters θ characterizing features underlying
the response-time pro�le; e.g., m(t,U , θ) is C(t), U = D,
and θ = (ka,V ,Cl)′ in (). Key to the development is that
individual i is assumed to have individual-speci�c such
parameters θ i governing his/her trajectory m(t,U i, θ i);
in (), θ i = (kai,Vi,Cli)′ = (θ i, θ i, θ i)

′. Writing
mi(U i, θ i) = {m(ti,U i, θ i), . . . ,m(tini ,U i, θ i)}

′, it is
assumed that
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E(Y i ∣U i, θ i) = mi(U i, θ i), so that E(Yij∣U i, θ i)

= m(tij,U i, θ i). ()

A model for Cov(Y i ∣U i, θ i) is also speci�ed. �e diag-
onal elements embody assumptions regarding measure-
ment error, sampling variation, and the fact that error-
free realizations of the response–time process may not fall
directly on the trajectory m(t,U i, θ i) because, for exam-
ple, it is a simpli�ed representation of a complex biological
phenomenon (e.g., as () is a gross simpli�cation of the
underlying physiology).�e o�-diagonal elements are dic-
tated by assumptions on possible autocorrelation among
the Yij, j = , . . . ,ni, given (U i, θ i). Due to the inter-
mittent nature of the times of measurement ti, . . . , tini ,
autocorrelation between any pair of measurements is o�en
assumed negligible; however, this need not always be the
case. Combining these, it is assumed that

Cov(Y i ∣U i, θ i) = Vi(U i, θ i, α), ()

where α is the collection of parameters used to describe
within-subject variance and correlation. See Davidian
() for discussion of considerations involved in specify-
ing model for Cov(Y i ∣U i, θ i).�e most common model,
sometimes adopted by default without adequate consider-
ation of its rather strong assumptions, is Vi(U i, θ i, α) =

σ Ini , where α = σ ; In is a (n × n) identity matrix; and
σ  represents a constant variance due to, say, measurement
error and variation in realizations, that is the same across
all subjects.
Along with () and (), the �rst stage individual level

model is ordinarily completed by an assumption on the
distribution of Y i given (U i, θ i). A standard such assump-
tion is that this distribution is normal with mean () and
covariance matrix (); this may be reasonable for some
types of responses on a transformed scale, in which case
Yij may be taken to be a transformation of the original
response in the foregoing discussion.
At the second stage, a model for the population

describes possible systematic relationships between
individual-speci�c parameters θ i and individual charac-
teristics Ai in the population as well as the “inherent”
variation among the θ i once a such relationships are taken
into account. A general population model is written as

θ i = d(Ai, β, bi), ()

where d is a r-dimensional function that describes the
relationship between θ i and Ai in terms of a parameter
β ( p × ) and random e�ects bi (q × ) accounting for
the additional inherent variation.�e bi are typically taken
to be independent across i, and the bi are o�en assumed
independent of the Ai, i = , . . . ,N, with E(bi) = 

and Cov(bi) = G for unstructured covariance matrix G;
moreover, it is routine to assume that the bi are normally
distributed with these moments. As an example, in the
context of (), supposing Ai = (wi, δi)

′, with wi weight
and δi an indicator of creatinine clearance, where δi =

 if >mL/min, consider kai = θ i = d(Ai, β, bi) =

exp(β + bi), Vi = θ i = d(Ai, β, bi) = exp(β + bi),
and Cli = θ i = d(Ai, β, bi) = exp(β + βwi + βδi +bi),
where bi = (bi, bi, bi)′ (q = ), and β = (β, . . . , β)′

( p = ).�is model enforces positivity of kai, Vi, and Cli;
moreover, if the bi are normal, then the distributions of
their components, and thus those of the θ i, are lognormal
(and hence skewed), which is common in this application.
Alternatively, an analogous speci�cation would be to repa-
rameterize (), taking θ i = (k∗ai,V

∗
i ,Cl

∗
i )

′, where k∗ai =

log(kai), V∗
i = log(Vi), and Cl∗i = log(Cli), and to write

k∗ai = β+bi,V∗
i = β+bi, andCl∗i = β+βwi+βδi+bi.

Here, the population model () may be written in the lin-
ear form θ i = Aiβ + Bibi, where Ai and Bi are “design
matrices” specifying dependence onAi and whether or not
all elements of θ i have associated random e�ects, respec-
tively; see Davidian (). A linear population model
is the default speci�cation in many papers and so�ware
packages.

�e nonlinear mixed e�ects model may be summa-
rized as is conventional by writing the stage , individual
level model as in () and (), substituting the population
model (), so that conditioning is with respect to Xi and
the random e�ects bi, as follows:

Stage : Individual-Level Model

E(Y i ∣Xi, bi) = mi(U i, θ i) = mi(Xi, β, bi),

Cov(Y i ∣Xi, bi) = Vi(U i, θ i, α) = Vi(Xi, β, bi, α) ()

Stage : Population Model

θ i = d(Ai, β, bi), bi ∼ (,G). ()

Standard assumptions are that the distribution of Y i

given (Xi, bi) is normal with moments (); that bi ∼

N(,G), independently of Ai (and U i, and hence Xi); and
that bi are independent across i.

�e usual objective is inference on β and G, corre-
sponding to average behavior of and extent of variation in
features underlying individual pro�les in the population.
�e obvious approach to inference in (), () is maximum
likelihood. Letting γ = (β′, α′)′, and writing the condi-
tional density of Y i given Xi as fi(yi ∣ xi; γ,G), by indepen-
dence across i, the loglikelihood for (γ,G) based on the
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observed data (Y i,Xi), i = , . . . ,N, is

ℓ(γ,G) = log{
N

∏
i=

fi(yi ∣ xi; γ,G)}

= log{
N

∏
i=
∫ fi(yi ∣ xi, bi; γ) f (bi; G) dbi } , ()

where fi(yi ∣ xi, bi; γ) is the conditional density of Y i given
(Xi, bi) assumed in stage ; and f (bi; G) is the density of
the bi assumed in stage , e.g., the N(,G) density. From
the right side of (), ℓ(γ,G) involves N almost certainly
analytically intractable q-dimensional integrals, so maxi-
mization of ℓ(γ,G) in (γ,G) requires a way of numerically
evaluating or analytically approximating these integrals.
A natural approach when f (bi; G) is a normal density

isGaussian quadrature, which approximates the integral by
a weighted average of the integrand over a q-dimensional
grid. Although accuracy increases with the number of
grid points, the larger is q, the greater the computational
burden, but reducing the number of grid points in each
dimension can compromise accuracy. A variant, adaptive
Gaussian quadrature, can reduce the number of grid points
needed (Pinheiro and Bates ); regardless, because
evaluation of the N integrals must be carried out at each
internal iteration of the optimization algorithm for max-
imizing (), computation can be challenging unless q is
small (e.g., ≤ ). �e SAS procedure nlmixed (SAS
Institute ) o�ers options formaximization of () using
Gaussian or adaptive Gaussian quadrature to “do” the inte-
grals.
Alternativemethods accordingly seek to avoid the inte-

grations via analytical approximations to fi(yi ∣ xi; γ,G) in
().�e twomain approaches, which assume fi(yi ∣ xi, bi; γ)
and f (bi; G) are normal, follow fromwriting (), () equiv-
alently as Y i = mi(Xi, β, bi) + V /(Xi, β, bi, α) єi, where
єi is N(, Ini) conditional on (Xi, bi). Taking a linear Tay-
lor series about bi = b∗i “close” to bi and disregarding
negligible terms leads to

Y i ≈ mi (Xi, β, b∗i ) − Zi (Xi, β, b∗i ) b
∗
i + Zi (Xi, β, b∗i ) bi

+ V /i (Xi, β, b∗i , α) єi, ()

where Zi (Xi, β, b∗i ) = ∂/∂bi{mi(Xi, β, bi)}∣bi = b∗i . Taking
b∗i = , the mean of bi, () implies that the distribution of
Y i given Xi is approximately normal with

E(Y i ∣Xi) ≈ mi(Xi, β, ), Cov(Y i ∣Xi)

≈ Zi(Xi, β, )GZ′i(Xi, β, )
+ Vi(Xi, β, , α). ()

�is suggests replacing fi(yi ∣ xi; γ,G) in () by the cor-
responding normal density and maximizing the resulting

likelihood, �rst proposed by Beal and Sheiner () in
the pharmacokinetics literature.�is and related methods
based on () with b∗i =  are referred to as “�rst order”
methods and are available in SAS proc nlmixed, the
SAS macro nlinmix (Littell et al. ), and in the
pharmacokinetics package NONMEM ().

�e “�rst order” methods may yield too crude an
approximation to the true E(Y i ∣Xi) and Cov(Y i ∣Xi),
resulting in inconsistent inferences on β and G.�e more
“re�ned” “�rst order conditional” approximation takes
b∗i in () to be the mode b̂i of the posterior density
fi(bi ∣ yi, xi; γ,G) implied by (), (), and takes the distri-
bution of Y i given Xi to be approximately normal with

E(Y i ∣Xi) ≈ mi(Xi, β, b̂i) − Zi(Xi, β, b̂i)b̂i,
Cov(Y i ∣Xi) ≈ Zi(Xi, β, b̂i)GZ′i(Xi, β, b̂i)

+ Vi(Xi, β, b̂i, α). ()

Approaches based on () iterate between update of
the b̂i holding the current estimates of (γ,G) �xed and
maximization in (γ,G) of the approximate loglikelihood
implied by () for �xed b̂i and are available in the SAS
macro nlinmix, NONMEM, and the R package nlme
(R Development Core Team ).
Another tactic, relevant only when the ni are su�-

ciently large to permit individual-speci�c �tting of the
stage  model is to use the resulting θ̂ i as “data” to �t the
stage  model; see Davidian and Giltinan (, Sect. .)
and Davidian (). It is also possible to place (), ()
within a Bayesian framework, adding at third, “hyper-
prior” stage to the hierarchy with an assumed prior den-
sity for (γ,G). As shown by Wake�eld et al. () and
Davidian and Giltinan (, Chap. ), Bayesian infer-
encemay be implemented via7Markov chainMonteCarlo
(MCMC) and carried out using so�ware such asWinBUGS
(Lunn et al. ).
Of necessity, this brief review covers only the basic for-

mulation of themodel and selected implementation strate-
gies and so�ware. Alternative strategies, model extensions,
and further details are given in the aforementioned refer-
ences and in the vast literature on this topic; see Davidian
() for a bibliography.
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Introduction
When an experiment is performed n times, within the
experimental region X ⊆ R

k, known as design space, the
outcome or response variable, Y , can be considered either
as discrete variable or continuous variable.�at means the
set of all possible response outcomes Ψ, known as response
space, can follow one of the two cases:

Case : Ψ is �nite, i.e., Ψ = {, , , . . . , λ} with cardinal
number ν = λ + .�e most common case, ν = , cor-
responds to binary response problems where Y ∈ Ψ =

{, }. When n >  we are referring to polytomous exper-
iments. In some cases, like Poisson experiments, the set Ψ
is countable in�nite.
Case : Ψ has the power of the continuum, i.e., cardinality
c, as Ψ can be any interval inR.

In Case  and for binary problems the outcome Yi = 
or , i = , , . . . ,n is linked with the covariate x ∈ X and
the parameter vector θ, from the parameter space Θ ⊆R

p,
through a probability model T as

p(x) = p(Yi = ∣x) = T(x; θ) =  − P(Yi = ∣x) ()

Example  In bioassay the typical situation is to consider
logit, probit, or exponential models as T, i.e.,

TL(x, θ) = log{p(x)( − p(x))},
TP(x, θ) = Φ−{p(x)}, TE(x, θ) = exp(−θx)
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respectively, with “log,” “exp,” and “Φ” having their trivial
meaning.
McCullagh and Nelder () discussed extensively

such cases and 7generalized linear models.
Now, the latter (Case ) situation is faced with the gen-

eral regression model: A real-valued, continuous, twice
di�erentiable function, fromX×Θ, is considered to de�ne
the (assumed correct) deterministic portion f (x, θ). �e
error is applied as a stochastic portion additively in the
form

Yi = f (xi, θ)+ei, i = , , . . . ,n, θ ∈ Θ ⊆R
p, x ∈ X ⊆R

k.
()

Example  Typical, one variable nonlinear problems, let
x = u, which might provide response curves with no sig-
ni�cant di�erence between them, for particular values of
the parameters, are

MODEL NAME

fG(u, ϑ) = ϑ exp{ϑeϑu} Gompertz model

fJ(u, ϑ) = ϑ + ϑ{exp(ϑuϑ)} Janoscheck model

fL(u, ϑ) = ϑ/ { + ϑ exp(ϑu)} Logistic model

fB(u, ϑ) = {ϑ + ϑ exp(ϑu)} Bertalan�y model

fT(u, ϑ) = ϑ + ϑ tanh (ϑ(u + ϑ)) Tanh model

f(u, ϑ) =



ϑ { +

π
arctan(ϑ(u − ϑ))}  - Tanh model

f(u, ϑ) = ϑ +

π

ϑ arctan(ϑ(u − ϑ))  - Tanh model

When a real function f exists such that f (xi, θ) =

g(xi)Tθ, then the problem is reduced to the linear regres-
sion problem.�e nonlinear optimal design can be de�ned
through two di�erent problems:
Problem :�e underlying model describing the physical
phenomenon is nonlinear, as in (), ().�e target then is
either to �t (with7Least Squares) the model or to estimate
θ ∈ Θ as well as possible.
Problem : A nonlinear function, known as general
nonlinear aspect, of the unknown parameter θ, φ(θ) say,
is asked to be estimated as well as possible, even when the
underlying model is assumed linear.
Robust estimation of a general nonlinear aspect φ(θ),

as in Problem  above based on one-step-M-estimators
with a bounded asymptotic bias was discussed by Kitsos
and Muller ().
In both problems, interest is focused on the assumption

about the errors. In this article it is assumed that ei are iid
from the normal distribution N(, σ ).

In principle, σ  = σ (x; θ) in nonlinear situation and σ  =
σ (x) in linear.

�e target is to discuss for the nonlinear design
problem:

● When a design is optimal, i.e., possible optimality cri-
teria that can be imposed, see Ford et al. () as well
as Pukelseim (), among others, for such approach.

● Howwe can �t the nonlinear model, see the early work
of Bard () and Seber and Wild () for such
approach.

On the Existence of the Least Square
Estimators
A�er collection of the data the question arises as to
whether it is possible to get estimates in all problems, that
is those of binary response and regression.
For the model (), we introduce the quantity

Sn(θ) =∑(yi − f (ui, θ)) = ∥y − f (u, θ)∥ ()

where ∥.∥ is the -norm. An estimate θ̂ will be called the
least squares estimate (LSE) if

Sn(θ̂) = min{Sn(θ); θ ∈ Θ}. ()

Jennrich (), in his pioneering work, imposing
some assumptions, proved that the model () has an LSE,
θ̂, as a measurable function Ψ → Θ, where Ψ is the space
of values of Y ′s. Under the usual normality assumption
for the errors, it is known that this LSE coincides with the
maximum likelihood estimators (MLE).
For the binary response problem the likelihood func-

tion L can be evaluated as

L∝ Π{T(ui, θ)}yi{ − T(ui, θ)}−yi ()

and maximum likelihood estimators can be obtained.
Roughly speaking that occurs when the intersection of the
sets of values taken by the explanatory variables corre-
sponding to s and to s is not the null set.�is happens
to be a necessary and su�cient condition for the logit and
probit models.
Now, having ensured that the likelihood equation can

provide MLE and denoting by ℓ the log-likelihood we
de�ne the matrix

S(θ̂, ξn, y) = −(
∂ℓ

∂θ i∂θ j
) ()

where ξn is the design measure on n observations. �e
matrix

S(θ̂, ξn, y) = −(
∂ℓ

∂θ i∂θ j
∣θ = θ̂) ()

will be called the “sample information matrix.”
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Example  Maximum likelihood estimates for the logistic
can be obtained through the “normal equations”:

∑Ti =∑ yi and ∑uiTi =∑ yiui

with Ti = T(ui; θ) as in TL model, Example  above.
�e problem in nonlinear model �t is the construction

of con�dence intervals, as �rst Beale () discussed, see
also Seber and Wild ().

Linearization of the Model
�e idea of the (design) matrix X being known is essen-
tial in dealing with linear models. In nonlinear models we
can not de�ne a matrix X in the same fashion. �is can
be done only approximately through the partial derivatives
of θ, with θ taking its “true” value, θt . We de�ne the nxp
matrix

X = (xij) =
∂f (ui, θ)
∂θ j

∣

θ=θ t

. ()

�en the matrix X = X(θ) is formed as a func-
tion of θ. Function f (u, θ) can be linearized through a
Taylor series expansion in the neighborhood of θt (the true
parameter) as

f (u, θ) = f (u, θt) + ∑(θ j − θtj)(∂f (u, θ))/(∂θ j)∣θ=θ t
.
()

Following the pattern of 7linear regression models in the
nonlinear regression case (See7Nonlinear Regression), an
approximation to the covariancematrix, of the estimates of
the parameters, can be de�ned as

C ≅ [XT
(θt)X(θt)]

−σ . ()

Moreover, for all nonlinear problems a useful approxima-
tion to the covariance matrix is

C− ≅ nM(θt , ε). ()

With M(., .) being the “average per observation informa-
tion matrix.”

�e index t declares that the parameter takes its true
value, which of course is asked to be estimated! Here is
exactly the di�culty in nonlinear problems. For this one
could seek minimum bias experiments. But the lineariza-
tion of the model, not only creates problems in con�dence
intervals (as we have now “banana shape” intervals), but as
well as on �tting the model, depending on the curvature of
the model.

�e linearization idea can be applied to the logit model
in the following example.

Example  Given that [ + exp(−θ(u − θ))]− ≅ / +
/ θ(u − θ), when ∣θ(u − θ)∣ ≤ , then the normal

equations of Example  are approximately

n/ + (θ/)∑(ui − θ) =∑ yi

(/)∑ui + (θ/)∑ui(ui − θ) =∑uiyi.

Optimality Criteria
For both models () and () we shall denote by η = E(Y).
�en it is

η = E(Y) =
g(x, θ) models (.)

T(x, θ) models (.).
()

Let∇η denote the vector of partial derivatives of ηwith
respect to θ ∈ Θ ⊆ R

p.�en for the exponential family of
models Fisher’s information matrix is de�ned to be

I(θ, x) = σ−(∇η)(∇η)T . ()

�e concept of the average-per-observation informa-
tion matrix plays an important role to the nonlinear prob-
lems scenario for the de�nition of the optimality criteria,
as well as for the �t of themodel (when de�ning the appro-
priate approximate con�dence intervals). It is de�ned for ξ,
the design measure, Pukelsheim () to be

M(θ, ξ) =
n−ΣI(θ, xi), discrete case

∫
X
I(θ, x)ξ(dx), continuous case.

()

On the basis of the experiment the average-per-
observation information matrix M = M(θ, ξ) is obtained
which depends, in principle, on θ.
As the nonlinear experimental design problem su�ers

“on θ dependence”, i.e.,M =M(θ, ξ), there is not a unique
theoretical framework for every model () or ().

Example  For the logit or probit model the D(θ)-
optimal design concentrated at two points, i.e., ξ = ξ =
/ and the optimal design points are

x = (x − θ)/θ, x = (−x − θ)/θ.

�e D-optimal points corresponds to x = . for the
logistic and x = . for the probit. If the design space
X = [α, β] ⊆ R is symmetric about −θ/θ and (±x −
θ)/θ /∈ X then x = α, x = β.

Example  In chemical kinetics di�erent models have
been developed to describe a chemical process. To develop
the sequential design the initial local optimum design is
needed, for the particular model.�erefore, Kitsos ()
provides all the appropriate support points. For the family
of generalized linear models the support points have been
provided by Sitter and Torsney ().
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An important task of statistics is to �nd the relationship
that exists between di�erent variables. In regression prob-
lems typically one random variable Y , o�en called the
response variable, is of particular interest.�e other depen-
dent variables x, . . . , xk , also called explanatory variables

or regressors, are usually non-random and are principally
used to predict or explain the behavior of Y . More exactly,
the aim is to �nd the dependence of the mean Ex (Y) on
the vector x = (x, . . . , xk)T in a form

Ex (Y) = η (x, θ) ,

where η (., .) is a “su�ciently smooth” known function,
and θ = (θ, . . . , θp)

T is the vector of parameters, which
are to be estimated from the observed data.�e remain-
ing part of Y , εx = Y − η (x, θ), is the error variable,
it cannot be observed directly, and does not depend on
θ, neither stochastically. When η (., .) is linear on θ, the
regression is called linear, if not, the regression is nonlinear.
�e data related to N observations are given by the design
of the experiment (x(), . . . , x(N)) , where each x(i) =

(x(i) , . . . , x
(i)
k )

T
is a choice of the values of the regressors,

and by the vector of observations of the response vari-
able, y = (y, . . . , yN)T .�e corresponding model of the
experiment can be then written in a vector form

y = η (θ) + ε, ()

where η (θ) = (η (x(), θ) , . . . , η (x(N), θ))
T
and ε =

(ε, . . . , εN)T .�e possible values of θ are restricted by the
assumption θ ∈ Θ where Θ is the parameter space. We
have E (ε) =  and assume Var (ε) = σ I, where σ  is
the unknown variance of Y . A more general set-up with
Var (ε) = σ W, withW known and not depending on θ,
can be reduced to () by a linear transformation of y, hence
implicitly we are considering it as well.
Typically many models in physics and chemistry and

models for engineering problems are nonlinear regression
models with parameters having a physical meaning. �e
form of the function η (., .) is then prescribed by a physi-
cal law, but7nonlinear models are used also in cases when
the model is aimed just for data �tting, and the nonlinear
modeling requires the estimation of a smaller number of
parameters than the �t of the data by a linear regression
(cf. Ratkowsky ). One advantage of the nonlinear
regression with least squares estimation is that a broad
range of relationships can be �tted. One disadvantage is
that the detection of 7outliers is much more di�cult
than in linear models. Sophisticated examples of nonlin-
ear regression are obtained when η (x, θ) as a function of
x is a solution of some di�erential equations, for example
in compartmentalmodels describing the exchange of some
products in a chemical reaction, or the circulation of sub-
stances between di�erent parts of a human body (cf. Seber
and Wild ).
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Estimation of θ. Typically one uses in a regres-
sion model the least squares estimator (LSE): θ̂ =

argminθ∈Θ ∥y − η (θ)∥. In linearmodels,withη (θ) = Fθ,
the computation is direct, namely θ̂ = (FTF)− FTy,
while in nonlinear models iterative methods are required.
Di�erent numerical methods of minimization are avail-
able, but the most used is the Gauss–Newton method
(cf. Seber and Wild ), in which the improvement at
the nth step is given by θ(n+) = θ(n) + λ(n)v(n) with

v(n) = [M (θ(n))]
−
FT

(θ(n)) (y − η (θ(n))), where

M (θ) = FT
(θ)F (θ), F (θ) =

∂η(θ)
∂θT , and with some

λ(n) ∈ (, ]. Numerical problems can arise here as only
local minima are computed, and a clever choice of the
starting θ() is necessary. Problems with an eventual ill-
conditioned M (θ(n)) are usually solved by a regulariza-
tion called the Levenberg–Marquardt method.
Statistical inference based on the7asymptotic normal-

ity of θ̂. Under the assumption that i) Θ is compact, ii)
η (x(i), θ) and its �rst and second order derivatives with
respect to θ are continuous, iii) their values do not vary
“too quickly” for an increasing i ∈ {, , . . .} , and iv)
limN→∞


N lim ∥η (θ) − η (θ̄)∥ =  implies θ = θ̄, we �nd

that the estimators θ̂ and s = 
N−p ∥y − η (θ̂)∥


converge

with N → ∞ strongly to θ̄, the true value of θ, and to
σ  respectively (strong consistency). Moreover, if θ̄ is in
the interior of Θ, and ifM∗

(θ̄) = limN→∞

N F

T
(θ̄)F (θ̄)

is nonsingular, then
√
N [θ̂ − θ̄] converges in distribution

to a random vector distributed normally with zero mean
and variance σ  [M∗

(θ̄)]−. All this makes the nonlinear
model asymptotically very similar to a linear model with
normal errors, hence all standard methods of inference
known from linear models are at hand (approximately, for
large N): the estimator θ̂ is asymptotically unbiased, with
Var (θ̂) ≐ s [M (θ̂)]

−
, and the approximate con�dence

ellipsoid for θ is

{θ ∈ Θ : [θ − θ̂]
T
M (θ̂) [θ − θ̂] < psFp,N−p} ,

where Fp,N−p is a quantile of the F-distribution, etc.�is
is usually exploited in statistical packages for least squares
estimation. Methods of optimal design of experiments (see
7Optimum Experimental Design) also make much use of
this similarity to a linear model. Higher order asymptotic
results are at hand as well (cf. Gallant ), for example,
in obtaining a 7bias correction.
Inference problems for small-sample properties of θ̂.

For a not too large N and under normal errors a better
con�dence region for θ than the con�dence ellipsoid is the

likelihood region

{θ ∈ Θ : ∥y − η (θ)∥ − ∥y − η (θ̂)∥

< psFp,N−p}

(cf. Bates and Watts  for examples), which is related
to the asymptotic properties of the likelihood ratio test.
Attempts tomake further small sample corrections of these
regions lead to the introduction of the intrinsic and param-
eter measures of nonlinearity (cf. Bates and Watts ),
which are in fact geometric measures of curvatures either
of the expectation surface of the model

{η (θ) : θ ∈ Θ}

in the Euclidean geometry of the sample space, or of the
parameter space in the Riemannian geometry, induced by
the metric tensor given by M (θ) (the Fisher information
matrix for σ = ). Models with a large intrinsic measure
of nonlinearity tend to give false or unstable LSE θ̂, while
models with a large parameter measure of nonlinearity
tend to give θ̂ having a large bias and, in general, a dis-
tribution of LSE which is far from a normal distribution.
Explicit formulae for these measures are

max
v∈Rp ,v≠

σ
∥Z (θ) [∑i,j vi

∂η(θ)
∂θ i∂θ j

vi]∥

vTM (θ) v

with either Z (θ) = P (θ) = F (θ) [M (θ)]− FT
(θ) for

the parametric nonlinearity, or Z (θ) = I − P (θ) for the
intrinsic nonlinearity. Computation is simpli�ed using the
QR decomposition of F (θ) (cf. Bates and Watts []
and Ratkowsky [] for an algorithm). In general, the
geometry is very useful for understanding the nonlinear
regression model (cf. Bates and Watts ; Pázman ),
and extending the result to more general situations such
as regression models with parameter constraints (Pázman
).

�e in�uence of the parameter nonlinearity of the
model is fully re�ected by the probability distribution of
θ̂, given θ̄ (cf. Pázman ), namely

det [Q (θ̂, θ̄)]

(π)p/ σ p det/ [M (θ̂)]
exp{−


σ 

∥P (θ̂) [η (θ̂)

−η (θ̄)]∥} ,

with Qij (θ̂, θ̄) = Mij (θ̂) + [η (θ̂) − η (θ̄)]
T
[I − P (θ̂)]

∂η(θ)
∂θ i∂θ j

, which is correct under the assumption that the
errors are normal, and that the intrinsic curvature is not
so large to cause failure of the LSE.
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Notice that some basic features of nonlinear regression
models can be extended to more general models where
the notion of the error variable is not used because the
variance of Y depends on its mean. �e best known are
the 7generalized linear models, where another parame-
ter instead of Ex (Y) is a linear function of the unknown
parameters and the maximum likelihood estimator is used
instead of the LSE.
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Introduction
A function f from Rp to R is said to be linear if for vectors
x, y ∈ Rp and any real scalar α, f (αx + y) = αf (x) + f (y).
Any function f that is not linear is said to be nonlinear.
In the analysis of stationary time series, the spectral

density function, if it exists, is nonlinear under the above
de�nition. However, for reasons to be made clear later, a
statistical analysis that is based on it or its equivalents is
ordinarily considered a linear analysis. O�en, a time series
is observed at discrete time intervals. For a discrete-time
stationary time series {Xt : t = . . . ,−, , , . . .} with �nite
variance, corr(Xt ,Xt+s) is a function of s only, say ρ(s), and
is called the auto-correlatoin function.�e spectral density
function is the Fourier transform of ρ(s) if∑∞

s=−∞ ∣ρ(s)∣ <
∞. Now, Yule () introduced the celebrated autoregres-
sive model in time series. Typically the model takes the
form

Xt = α + αXt− +⋯ + αpXt−p + εt , ()

where the α’s are parameters and {εt} is a sequence of inde-
pendent and identically distributed random variables with
zero mean and �nite variance, or a white noise for short.
It is commonly denoted as an AR(p) model. Clearly Xt is
a linear function of Xt−, . . . ,Xt−p, εt . Under the assump-
tion of normality, the distribution of the time series is
completely speci�ed by its constant mean, constant vari-
ance and ρ(s)’s. Perhaps for the close connection with
the analysis of linear models (of which the autoregressive
model is one), an analysis based on the autocorrelation
function or equivalently the spectral density function is
loosely referred to as a linear analysis of the time series.
By the same token, an analysis based on higher order
moments or their Fourier transforms is loosely called a
nonlinear analysis. Broadly speaking, tools based on the
Fourier transforms of moments constitute what is called
the frequency-domain approach, while those based on
the moments constitute the time-domain approach, which
o�en includes building a time series model of the form ()
or its generalizations.
Similar discussion as the above can be extended to

cover {X(t) : t ∈ R}
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Can We Do Without Nonlinearity?
A general answer is in the negative simply because the
dynamical laws governing Nature or human activities are
seldom linear. In the real world, we can see the foot-
prints of nonlinearity everywhere we look. Below are a few
examples.

(a) Phase Transition
�e melting of ice of a glacier will alter fundamentally
the amount of water �owing in a river near the glacier.
Phase transition (from solid to liquid in the above
example) is an important signature of nonlinearity.
Animals behave di�erently (e.g., hunting e�ort) dur-
ing time of short food supply versus time of abundant
food supply.

(b) Saturation
In economics, diminishing return is a well-known
phenomenon: doubling your e�ort does not necessar-
ily double your reward.

(c) Synchronization
�e celebrated Dutch scientist, Christiaan Huygens,
observed that clocks placed on the same piece of
so� timberwere synchronized! Biological systems can
also exhibit synchoronization. It has been noted that
girls sharing the same dormitory have a higher chance
of synchronizing their menstruation. Even female
keepers of baboons have been known to have a similar
experience.

(d) Chaos
When we toss a coin to randomize our choice, we
are exploiting nonlinearity, for the dynamical system
underlying the tossing is a set of (typically three)
nonlinear ordinary di�erential equations, the solu-
tion of which is generally very sensitive to the ini-
tial spinning unless we “cheat.”�e system is said to
generate chaos in a technical sense. When statisti-
cians generate pseudo-randomnumbers, they are also
generating chaos. One of the most commonly used
pseudo-random generator is the linear congruential
generator, which is a piecewise linear (i.e., nonlinear)
function that does precisely this. It might surprise you
that you are actually using nonlinear devices almost
daily because encrypting passwords is closely related
to pseudo-random number generation.

In the following sections, we focus on the time-domain
approach because at the current state of development, this
approach tends to admit simpler interpretations in practi-
cal applications.

What Is a Nonlinear Time Series Model?
A short answer is that it is not a linear time series model.
�is raises the need to de�ne a linear model. A fairly com-
monly adopted de�nition is as follows. A stationary time
series model is called a linear time series model if it is
equivalent (for example in the mean-square sense) to

Xt =
∞

∑
s=−∞

βsεt−s, ()

where {εt} is a white noise and the summation is assumed
to exist in some sense. An alternative de�nition due to
Hannan () is one that requires that the minimizer of
E∣Xt − h(Xt−,Xt−, . . .)∣ with respect to h over the space
of all measurable functions is the linear function. Here the
mean square is assumed to exist.

Are Linear Time Series Models Fit for
Purpose?
Examples abound of the inability of linear time seriesmod-
els to capture essential features of the underlying dynamics.
Yule () introduced the autoregressive model to

model the annual sunspot numbers with a view to cap-
turing the observed -year sunspot cycle but noted the
inadequacy of his model. He noted the asymmetry of the
cycle and attempted to model it with anAR()model only
to discover that it gave statistically aworse �t than a simpler
AR() model.
Moran () �tted an AR() model to the annual

lynx data corresponding to the MacKenzie River region
in Canada, with a view to capturing the observed -year
cycle. He was quick to point out that the �tted residuals
were heteroscedastic.
Whittle () analyzed a seiche record fromWelling-

ton Bay in New Zealand. He noted that, besides the funda-
mental frequency of oscillations and a frequency due to the
re�ection of an island at the bay, there were sub-harmonics
bearing an interesting arithmetic relation with the above
frequencies. Now, sub-harmonics are one of the signatures
of nonlinear oscillations, long known to the physicists and
engineers.

Examples of Nonlinear Time Series
Models
First, we describe parametric models. Due to space lim-
itation, we describe the two most commonly used mod-
els. For other models, we refer to Tong (). We shall
describe (i) the threshold model and (ii) the (generalized)
autoregressive conditional heteroscedasticity model, or in
short the TAR model and the (G)ARCH model respec-
tively. �e former was introduced by Tong in  and
developed systematically in Tong and Lim () and Tong
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(, ), and the latter by Engles (), later general-
ized by Bollerslev ().

�ere are several di�erent but equivalent ways to
express a TAR model. Here is a simple form. Let {Zt}

denote an indicator time series that takes positive integer
values, say {, , . . . ,K}. Let {ηt} denote a white noise with
zero mean and unit variance, α(j) , α

(j)
i , β

(j) be real con-
stants for j = , , . . . ,K. �en a time series {Xt : t =

,±,±, . . .} is said to follow a threshold autoregressive
model if it satis�es, when Zt = j, j = , . . . ,K,

Xt = α(j) +

p

∑
i=

α(j)i Xt−i + β(j)ηt . ()

For the case in which Zt = j if and only if Xt−d ∈ Rj

for some positive integer d and for some partition of R,
i.e., R = ⋃

K
i= Ri say, the TAR model is called a self-exciting

threshold autoregressive model, or SETAR model for short.
In this case, given Xt−s, s > , the conditional mean of
Xt is piecewise linear, and the conditional variance of Xt

piecewise constant.
For the case in which Zt = j if and only if Yt−d ∈ Rj

for some covariate time series {Yt}, some positive inte-
ger d and some partition of R, i.e. R = ∪

K
i=Ri say, then we

have a TARmodel driven by (or excited by) {Yt}. Note that
the covariate time series {Yt}, and thus the indicator time
series {Zt}, can be observable or hidden. If the indicator
time series, whether observable or hidden, forms aMarkov
chain (see 7Markov Chains), then we call {Xt} a Markov-
chain driven TAR; this model was �rst introduced by Tong
(Tong and Lim , p. ; Tong ; p. ). In the econo-
metric literature, the sub-class with a hiddenMarkov chain
is commonly called aMarkov switching model.

�e TAR model, especially the SETAR model, has
many practical applications in diverse areas/disciplines,
including earth sciences, ecology, economics, engineer-
ing, environmental science, �nance, hydraulics, medical
science, water resources and many others.

�e nonlinear parametric model that is mostly and
widely used in econometrics and �nance is the (G)ARCH
model.�e ARCHmodel is given by

Xt = ηtσt , ()

where {ηt} is as de�ned previously but sometimes
assumed to be Gaussian, and σ t = α +∑p

i= αiXt−i, α >
, αi ≥ , i = , . . . , p. Note that the ARCH model dif-
fers from the SETAR model in its σt being a continuous
function instead of a piecewise constant function as in the
latter. �e GARCH model generalizes σ t to σ t = α +
∑

p
i= αiXt−i + ∑

q
i= βiσ t−i, where the βis are usually also

assumed to be non-negative, although the non-negativity

assumption may be relaxed; see Cryer and Chan (,
Chap. ).
One of the limitations of any parametric modelling

approach is the subjectivity of selecting a family of possible
parametric models. We can sometimes mitigate the situa-
tion if a certain parametric family is suggested by subject
matter considerations. In the absence of the above, miti-
gation is weaker even if we are assured that the family is
dense in some su�ciently large space of models. It is then
tempting to allow the data to suggest the form of F where
we are contemplating a model of say

Xt = F(Xt−, . . . ,Xt−p, εt), ()

F being unknown.�is is one of the strengths of the non-
parametricmodelling approach, which is a vast and rapidly
expanding area. A word of caution is the so-called curse of
dimensionality, meaning that when p >  the estimated
F is unlikely to be reliable unless we have a huge sam-
ple size. One way to ameliorate the situation is to replace
Xt−, . . . ,Xt−p by ξt−, . . . , ξt−q with q much smaller than
p, e.g. q =  or .�e ξ’s are typically suitably chosen but
unknown linear functions ofX’s, sometimes called indices.
�is is called the semi-parametric modelling approach,
which is also a rapidly expanding �eld. For comprehensive
accounts of the above developments, see, e.g., Fan and Yao
() and Gao (). Another way is to impose some
simplifying structure on () such as zero interaction as in
Chen and Tsay (), who gave

Xt = F(Xt−) +⋯ + F(Xt−p) + εt . ()

About the Author
Past President of the Hong Kong Statistical Society (–
), Professor Howell Tong, was Founding Chair of
Statistics, Chinese University of Hong Kong (–),
Chair of Statistics at the University of Kent at Canter-
bury, (–), and Chair of Statistics at the London
School of Economics (–September ). Between
 and , he was also Chair of Statistics and Pro-Vice
Chancellor and Founding Dean of the Graduate School,
University of Hong Kong. He was elected a Fellow of the
Institute of Mathematical Statistics () and is a Foreign
member of the Norwegian Academy of Science and Let-
ters (). Among many awards, Professor Tong won the
State Natural Science Prize, China, in  and received
the Guy medal in Silver (Royal Statistical Society, UK) in
, in recognition of his many important contributions
to time series analysis.



 N Nonparametric Density Estimation

Cross References
7Box–Jenkins Time Series Models
7Econometrics
7Heteroscedastic Time Series
7Statistical Modeling of Financial Markets
7Time Series

References and Further Reading
Bollerslev T () Generalized autoregressive conditional

heteroskedasticity. J Economet :–
Chen R, Tsay RS () Nonlinear additive ARX models. J Am Stat

Assoc :–
Cryer JD, Chan KS () Time series analysis: with applications in

R. Springer, New York
Engles R () Autoregressive conditional heteroscedasticity with

estimates of variance of United Kingdom inflation. Economet-
rica :–

Fan J, Yao Q () Nonlinear time series: nonparametric and
parametric methods. Springer, New York

Gao J () Nonlinear time series: semiparametric and ponpara-
metric methods. Chapman and Hall/CRC Press, London

Hannan EJ () The asymptotic theory of linear time-series
models. J Appl Probab :–

Moran PAP () The statistical analysis of the Canadian lynx cycle.
Aust J Zool :–

Tong H () Threshold models in nonlinear time series analysis.
Springer Lecture Notes in Statistics, New York

Tong H () Non-linear time series: a dynamical system approach.
Oxford University Press, Oxford

Tong H, Lim KS () Threshold autoregression, limit cycles and
cyclical data. J R Stat Soc Ser B :–

Whittle P () The statistical analysis of a seiche record. Sears
Foundation J Marine Res :–

Yule U () On a method of investigating periodicities in disturbed
series, with special reference to Wolfer’s sunspot numbers. Phil
Trans R Soc Lond Ser A :–

Nonparametric Density
Estimation
Ricardo Cao
Professor
Universidade da Coruña, A Coruña, Spain

�e density function of a continuous randomvariable,X, is
the derivative of its distribution function f (x) = dF(x)/dx,
and can be represented as

f (x) = lim
h→

F(x + h) − F(x − h)
h

= lim
h→


h ∫

x+h

x−h
dF(u)

= lim
h→

E [ (∣X − x∣ ≤ h)]
h

. ()

Nonparametric density estimation can be performed via
estimation of the last term in (). Given a random sam-
ple (X, . . . ,Xn), this ratio can be estimated replacing the
unknown expectation by its empirical analog, suggesting
the naive estimator

f̂ (x) =

h ∫

x+h

x−h
dFn(u) =


n

n

∑
i=

 (∣Xi − x∣ ≤ h)
h

. ()

�is estimator was proposed �rst by Rosenblatt (). It
is the relative frequency, per unit of length, of the observa-
tions within the interval [x − h, x + h] . For a �xed sample
size, it does not make sense to de�ne the estimator by the
limit, when h → , of the previous quantity. In fact this
limit is zero since, for h small enough, the numerator in
() equals zero. However, as n →∞, one may think of the
value h (o�en called smoothing parameter or bandwidth)
as a sequence, hn, tending to zero.

�e naive estimator in () can be also written as

f̂ (x) =

nh

n

∑
i=

K (
x − Xi

h
) , ()

with K(u) =  (∣u∣ ≤ ) /. �e function K is called the
kernel. In fact the kernel used in () is the uniform den-
sity function. Other kernel functions used in practice are
the triangular density, the Gaussian or the Epanechnikov
kernel. Kernel functions are generally required to hold that
∫R uK (u)du = , ∫R K (u)du =  and ∫R uK (u)du <∞.
�is kernel estimator was proposed by Rosenblatt ()
and Parzen ().
Using the structure of () as a sum of iid random vari-

ables, its bias and variance can be easily computed. In gen-
eral, the estimator is biased and, for small values of h, the
bias and the variance are approximately E ( f̂ (x) − f (x)) ≃
h
 f

′′
(x) ∫ tK (t)dt and Var (f̂ (x)) ≃

f (x)
nh ∫ K (t) dt.

�us, it seems reasonable to require, for consistency, that
h →  and nh → ∞ as n → ∞. �e behavior of these
two terms is opposite: while the bias increases with the
smoothing parameter, the variance decreases as the band-
width gets large. Hence, it is intuitive that the choice of
the smoothing parameter is very important in practice,
since it regulates the balance between the bias (systematic
error) and the variance (stochastic error) of the estima-
tor. Undoubtedly any practical choice for h has to be a
compromise between both terms.
A well-known nonparametric density estimator is the

histogram. It is a predecessor of the kernel estimator in
().�e nearest neighbours method consists in using the
distance between a given point and its kth nearest sample
value to compute a nonparametric density estimator.�is
method adapts the “amount of smoothing” to the point
where the density is estimated.�e spline method can be
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thought as estimating some piecewise polynomial approx-
imation of the underlying density.�emethod of orthogo-
nal series can be viewed as estimating some approximation
of the true density function, namely, a �nite linear com-
bination of terms of a basis of the functional space where
the density is assumed to belong.�e list of books devoted
to nonparametric density estimation includes Silverman
(), Devroye and Györ� () and Wand and Jones
().
An important issue in nonparametric density estima-

tion is the problem of selection of the smoothing param-
eter. �e most popular error measures for bandwidth
selection are the integrated squared error criterion ISE =

∫ ( f̂h(x) − f (x))

dx, and the mean integrated squared

error, given byMISE = E (ISE).
Under regularity conditions on f , an asymptotic

representation for MISE can be obtained: MISE(h)
= AMISE(h) +o(h) +O(n−), where

AMISE(h) =
h

 ∫
f ′′ (x) dx∫ tK (t)dt

+

nh ∫

K (t) dt.

Minimization of AMISE (h) in h gives the asymptoti-
cally optimal bandwidth

hAMISE = (
∫ K (t) dt

n ∫ f ′′ (x) dx ∫ tK (t)dt
)

/

.

However, the value hAMISE is not observable since it
depends on the curvature of the underlying density. In
practice, most of the bandwidth selectors are de�ned as
minimizers of the error measures ISE,MISE or AMISE.
Among the dozens of proposals for bandwidth selec-

tion in this context we mention the least squares cross val-
idation, proposed by Rudemo () and Bowman (),
the biased cross-validation method, (see Scott and Terrell
), the plug-in methods (see Sheather and Jones ),
the smoothed cross-validation, proposed by Hall et al.
(), and the bootstrap bandwidth selectors (see Cao
).
Nonparametric density estimationmethods can be also

extended to multivariate settings (see the book by Scott
). Similar ideas have been successfully used for the
estimation of other curves as the regression function,
the distribution function, the conditional distribution and
density and the hazard rate, among many other.
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Meanings of the Word “Nonparametric”
�e terminology nonparametric was introduced by
Wolfowitz in  to encompass a group of statistical
techniques for situations where one does not specify the
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functional form of the distributions of the random vari-
ables that one is dealing with. In its earlier form, this
comprised mainly methods working with rank statistics,
and was also coined “distribution free” methods. Most
o�en these methods are applied to perform hypothesis
tests. For an example of such a hypothesis test, see the
entry by Jurec̆ková (same volume).Other examples include
the 7Kolmogorov–Smirnov test, the runs test, 7sign test,
7Wilcoxon-signed-rank test, the Mann–Whitney U-test
(see 7Wilcoxon–Mann–Whitney Test) and 7Fisher Exact
Test. For an overview and details, see Hollander andWolfe
().�is type of nonparametric method has the advan-
tage that it can be applied to ordinal and rank data; the
data may be frequencies or counts, and do not have to be
measured on a continuous scale.
In more recent times, nonparametric statistics has

evolved to settings where a model for the data is not spec-
i�ed a priori, but is in some form determined from the
data.�is will be explained in more detail below. In such
nonparametric models there are parameters to estimate,
even many parameters in most cases, hence the name-
giving might be somewhat misleading. Main examples of
such estimationmethods are kernel estimators, splines and
wavelet estimators. �ese techniques are also known as
“smoothing methods.”

Nonparametric Regression Estimation
In parametric regression models we relate the mean of
a response variable Y , conditional on covariates X via a
parametric function. For example, in 7linear regression
models, we assume that Y = β + Xβ + ε, where β and
β are unknown parameter vectors and ε is o�en assumed
to be a normal random variable with zero mean and an
unknown variance σ . In nonparametric regression we do
not specify the functional form for the conditional mean
of Y and write the model as Y = f (X) + ε, where X may
be random, or take �xed values.�e terminology smooth-
ing arises from the commonly made assumption for most
methods (however, see the “7Wavelet Estimation” section
below) that the unspeci�ed function f is smooth.
Nonparametric estimation starts with choosing a basis

which de�nes a space of functions.�e function f is then
approximated within this space by f̃ (x) = ∑

J
j= βjψj(x).

�e basis functions may also depend on further param-
eters, specifying for example the location. �ese may be
estimated or speci�ed in advance. Fourier series are one
example. Nonparametric estimation of f then proceeds
with estimating the unknown parameters. Spaces of func-
tions are o�en in�nite dimensional, hence the number of
basis functions to be used, J in the above sum, is a tun-
ing parameter.�e more basis functions taken, the better

the approximation will be, in general. However, estimating
more parameters comes at a cost of increased variance and
increased computational e�ort.

�e smoothing methods are used in a similar way for
the estimation of density functions. While histograms give
rough approximations, the nonparametric density esti-
mators are smooth curves. Likewise, splines, wavelets or
kernelsmay be used. For the lattermethod, see for example
Wand and Jones ().

Spline Estimation
�e choice of the basis characterizes the estimated func-
tion. O�en taken choices are spline functions. A jth degree
polynomial spline is a curve that consists of piecewise
jth degree polynomial parts that are continuously joined
together at knots. �e smoothness of the resulting func-
tion depends on whether also the higher derivatives of
the spline are continuous. When each observation xi, i =
, . . . ,n is taken as a knot, this results in a smoothing spline
(see7Smoothing Splines).When a set of knots κ, . . . , κK is
chosen, withK < n, the sample size, the function is a regres-
sion spline. In cases that K < n, estimation of the unknown
spline coe�cients βj can be done via7least squares in case
of (approximate) normal errors ε. For smoothing splines,
one introduces a penalty term that is related to the deriva-
tives of f . Also for regression splines, penalties on the coef-
�cients may be stated, to reduce the in�uence of the choice
of the knots.�is results in penalized regression splines. An
expanded description of spline regression methods can be
found in the entry by Opsomer and Breidt (same volume).
Some main references are Eubank (), Wahba (),
Green and Silverman () and Ruppert et al. ().

Wavelet Estimation
�anks to a fast decomposition algorithm (Mallat ),
wavelet bases have gained considerable success as a repre-
sentation for data to be smoothed. Wavelet basis functions
are short waveforms located at a speci�c point in time
or space and with a speci�c scale. �is locality in time
and frequency provides a tool for a multiscale and sparse
representation of data. Especially piecewise smooth data,
with isolated singularities, are typical objects for which
wavelets are well suited. Indeed, the singularities can be
captured by a relatively limited number of local wavelet
basis functions, with appropriate scales, while the smooth
intervals in between the singularities produce many but
small contributions in a wavelet decomposition.
While other methods may have di�culties in catch-

ing singularities, in a wavelet decomposition they pose no
bottleneck, provided that at the position of a singularity
the wavelet representation is locally more re�ned than in
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between the singularities. �e location of the singulari-
ties is done automatically, even in the presence of noise,
by the fact that the coe�cients corresponding to the basis
functions at those positions are large, as they carry the
contributions that constitute the singularity. Singularities
are thus well captured by selecting the largest coe�cients,
rather than a predetermined subset. Putting the smallest
coe�cients to zero therefore removes most of the noise
without a�ecting the noise-free data too much.�e usage
of this thresholding or any sophisticated variant, which is
always a nonlinear processing, is always the main reason
for using a wavelet decomposition and it is always linked to
the intermittend nature of the data, i.e., the presence of iso-
lated singularities in otherwise smooth behavior.�e use of
thresholds relies on the sparsity property of a wavelet resp-
resentation. �e multiscale property, on the other hand,
is mostly used for additional across-scale processing, for
instance to remove false positives a�er thresholding (for
smoother intervals between singularities) or to correct for
false negatives by looking across scales (for sharper recon-
struction of singularities). Also scale dependent processing
is necessary in the case of correlated noise on the observa-
tions (Donoho and Johnstone ).

�e selection of appropriate thresholds has been a
major domain of research. Limiting or even reducing
to zero the number of false positives is the objective of
an important class of thresholds, including the univer-
sal threshold (Donoho and Johnstone ) or False Dis-
covery Rate thresholds (Benjamini and Hochberg ).
Another class of thresholds focusses on the expected,
integrated squared loss, i.e., risk, of the result. Stein’s
Unbiased Risk Estimator andmodi�cations (such as cross-
validation) provide practical methods for �nding mini-
mum risk thresholds. A third, and wide class of threshold
assessment methods is based on Bayesian – mostly empir-
ical Bayes – models, such as EBayesthresh (Johnstone and
Silverman , ). �e prior model for noise-free
coe�cients re�ects the idea of sparsity, mostly through a
zero-in�ated or otherwise mixture model with heavy tails
(where heavy here includes everything heavier than the
normal distribution).

Kernel and Local Polynomial Estimation
Kernel estimation of a regression function starts from the
idea that the function is locally well approximated by a
low order polynomial curve.�e Nadaraya–Watson esti-
mator locally approximates the curve f at value x by a
constant regression function. Observations Xi close to x
get a large weight, and observations further away receive
less or zero weight. �e kernel function K determines

the weighting and is assumed to be a density func-
tion. �e estimator takes the following form, f̂h(x) =

∑
n
i= Kh(x − Xi)Yi/∑

n
i= Kh(x − Xi), where h is called the

bandwidth. �is is a tuning parameter, small values of h
imply that only close neighbors get a large weight, this
might result in a rather wiggly �t. Large values of h will
result in much smoother �tted curves. Several studies have
focussed on appropriate bandwidth choices, for example
via cross-validation or plug-in methods based on asymp-
totic properties of the estimator. Variants on this estima-
tor are the Priestley–Chao and Gasser–Müller estimator.
Local polynomial estimators are similar in spirit. Instead
of taking a local constant approximation of the function f
around x, a local polynomial approximation is obtained.
More information on kernel regression methods can be
found in the entry by Opsomer and Breidt (same volume).
For more details, see Fan and Gijbels ().
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Incomplete observations occur in survival analysis, espe-
cially in clinical trials and engineering when we partially
observe death in biological organisms or failure in
mechanical systems.
From statistical literature one can learn that incom-

plete observations arise in two ways: by censoring and
truncation. Note that truncation is sampling an incomplete
population, while censoring occurs when we are able to
sample the complete population, but the individual val-
ues of observations below and/or above given values are
not speci�ed. �erefore, censoring should not be con-
fused with truncation. In this article we deal only with
right-censoring model, which is easily described from the
methodological point of view.
Let X,X, . . . be a sequence of independent and iden-

tically distributed random variables (i.i.d.r.v.-s) (the life-
times) with common distribution function (d.f.) F. Let Xj

be censored on the right by Yj, so that observations avail-
able for us at the nth stage consist of the sample S(n) =

{(Zj, δj),  ≤ j ≤ n}, where Zj = min(Xj,Yj) and δj =

I(Xj ≤ Yj)with I(A)meaning the indicator of the eventA.
Suppose thatYj are again i.i.d.r.v.-s, the so-called censoring
times with common d.f. G, independent of lifetimes Xj.

�e main problem consists of nonparametrically esti-
mating F with nuisance G based on censored sample S(n),
where r.v.-s of interest Xj-s are observed only when δj=.
Kaplan and Meier () were the �rst to suggest the
product-limit (PL) estimator FPL

n de�ned as

FPL
n (t) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

 −∏{j:Z(j)≤t} [ −
δ(j)

n−j+ ] , t ≤ Z(n),

, t > Z(n), δ(n) = ,

unde�ned, t > Z(n), δ(n) = ,

where Z() ≤ . . . ≤ Z(n) are the 7order statistics of Zj and
δ(), . . . , δ(n) are the corresponding δj. In statistical litera-
ture there are di�erent versions of this estimator. However,
those do not coincide if the largest Zj is a censoring time.
Gill () rede�ned the FPL

n setting FPL
n (t) = FPL

n (Z(n))
when t > Z(n). Further, we use Gill’s modi�cation of the
PL-estimator. At present, there is an enormous literature
on properties of the PL-estimator (see, e.g., Abdushukurov
[], Akritas [], Csörgő [], Gill [, ])
and most of the work on estimating incomplete observa-
tions are concentrated on the PL-estimator. However, FPL

n
is not a unique estimator of F.

�e second, closely related with the FPL
n , nonparamet-

rical estimator of F is the exponential hazard estimator

FE
n(t) =  − exp

⎧⎪⎪
⎨
⎪⎪⎩

−
n

∑
j=

δ(j)I(Z(j) ≤ t)
n − j + 

⎫⎪⎪
⎬
⎪⎪⎭

,−∞ < t <∞.

FE
n plays an important role in investigating the limiting

properties of the estimator FPL
n .

Abdushukurov (, ) proposed another estima-
tor for F of power type:

Fn(t) =  − ( −Hn(t))Rn(t)

=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

, t < Z(),

 − (
n−j
n )

Rn(t)
, Z(j) ≤ t < Z(j+),  ≤ j ≤ n − ,

, t ≥ Z(n),

where

Hn(t) =

n

n

∑
j=

I(Zj ≤ t)
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is an empirical estimator of d.f.H(t) = P(Zj ≤ t) = − (−
F(t))( −G(t)) and

Rn(t) =
−log ( − FE

n(t))

∑
n
j=

I(Z(j)≤t)
n−j+

As we see, estimator Fn is de�ned on whole line. Let

an(t) =
n

∑
j=

I(Z(j) ≤ t)
(n − j)(n − j + )

.

Note that sup{an(t), t ≤ T} ≤ [n( − Hn(T))]− =
O ( n) with probability , where T < Z(n).

�e following inequalities show that all three estima-
tors are closely related (Abdushukurov (, )): For
t < Z(n) with probability 

(I)  < −log ( − FPL
n (t)) + log ( − FE

n(t)) < an(t);
(II)  ≤ FPL

n (t) − FE
n(t) < 

an(t);
(III) < −log( − Fn(t)) + log ( − FE

n(t)) < an(t);
(IV) ∣−log ( − FPL

n (t)) + log( − Fn(t))∣ < an(t);
(V) ∣FPL

n (t) − Fn(t)∣ < an(t);
(VI) ∣FE

n(t) − Fn(t)∣ < an(t).

�us, one can expect the stochastic equivalences of
these estimators in the sense of their weak convergence to
the sameGaussian process (Abdushukurov ). Let d.f.-s
F and G be continuous and T < TH = inf{t : H(t) = }.
�en one can de�ne the sequence of Wiener processes

{Wn(x),  ≤ x <∞}
∞
n= such that when n →∞

sup
t≤T

∣n

 (F∗n (t) − F(t)) − ( − F(t))Wn(d(t))∣

P
→ ,

where F∗n stands for one of estimators FPL
n ,FE

n ,Fn and

d(t) = ∫
t

−∞
[( − F)( −G)]

−dF.

Here we state the weak convergence result in the form
of weak approximation by the sequence of appropriate
copies of the limiting Gaussian process.�is implies that
n

 (F∗n − F) converges weakly in the Skorochod’s space

D(−∞,T] to themean-zero Gaussian process with covari-
ance function σ(t; s) = ( − F(t))( − F(s))d(min(t, s)),
t, s ≤ T.�us, we see that all three estimators are equivalent
in the asymptotic sense. But as we see in Abdushukurov
(, ) the estimator Fn has some peculiarities and
even better properties than FPL

n and FE
n do for all n ≥ .

Let us consider the following exponential representation
for any right continuous d.f. (Gill ):

 − F(t) = exp{−∫
t

−∞

dF(u)
 − F(u−)

}∏
s≤t

( − ∆Λ(s)),

where ∆Λ(s) = (F(s) − F(s−))/( − F(s−)) and F(s−) =
limu↑sF(u).�en we see that FPL

n is a natural estimator for
∏s≤t(−∆Λ(s)), that is a discrete d.f. On the other side, F

E
n

and Fn are natural estimators for continuous d.f. F(t) = −
exp{− ∫

t
−∞

( − F)−dF} = −(−H(t))R(t), whereR(t) =
−log( − F(t))/[−log( − H(t))] - relative risk function.
Obviously, the relative risk estimators Fn(t) and Gn(t) =

1
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−(−Hn(t))−Rn(t) of F(t) andG(t) satisfy the empirical
analogy of equality (−F(t))(−G(t)) = −H(t), −∞ <

t < ∞, that is ( − Fn(t))( − Gn(t)) =  − Hn(t), −∞ <

t < ∞. But for exponential hazard estimators FE
n(t) and

GE
n(t) =  − exp{−∑n

j=( − δ(j))I(Z(j) ≤ t)/(n − j + )}
of F(t) and G(t), we have

( − FE
n(t))(−G

E
n(t)) = exp

⎧⎪⎪
⎨
⎪⎪⎩

−
n

∑
j=

I(Z(j) ≤ t)
n − j + 

⎫⎪⎪
⎬
⎪⎪⎭

≠ −Hn(t).

Moreover, for t ≥ Z(n),Fn(t) = , but FE
n(t) < .�ere-

fore, Fn is a correct estimator of continuous d.f. F than FPL
n

and FE
n . In the Fig. , we demonstrate plots of estimators

 − Fn,  − FPL
n , and  − FE

n of survival function  − F using
well-known Channing House data of size n=.
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Brief History of Nonparametric Statistics
A statistical procedure is called nonparametric if it is valid
under less restrictive assumptions than those required by
the classical, or parametric, procedures. �e di�erence
between parametric and nonparametric statistics is best
illustrated in the context of estimating the population dis-
tribution function on the basis of a 7simple random sam-
ple from the population.�e parametric approach assumes
that the population distribution belongs to a particular
parametric family of distributions, such as the normal,
and estimates the distribution by estimating the unknown
parameters. In contrast, the nonparametric approach uses
the empirical distribution function. In fact, parametric
statistics makes frequent use of a particular branch of non-
parametric statistics which consists of diagnostic proce-
dures, including graphics and goodness-of-�t tests, aimed
at con�rming the approximate validity of the employed
assumption.
In its earliest form, the �eld of nonparametric pro-

cedures comprised mainly of distribution free test pro-
cedures for relatively simple designs. Examples are the
7sign test and signed-rank test for the one-sample location
problem and paired data design, the Mann–Whitney–
Wilcoxon (MWW) rank sum test for the two-sample prob-
lem (see 7Wilcoxon–Mann–Whitney Test), the Kruskal–
Wallis test for k-sample problem, the Friedman test for a
complete randomized block design, the Wald–Wolfowitz
runs test for randomness, Kendall’s and Spearman’s rank
correlation coe�cients and tests for independence, and
Fisher’s exact test for association in  ×  contingency
tables. �e popularity of these tests lies in the fact that
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they can be applied to ordinal and rank data, have good
robustness properties, while some of them, notably the
MWW rank sum test and the Kruskal–Wallis test, retain
high e�ciency relative to corresponding classical proce-
dures under normality. Moreover, the idea of inverting
tests to obtain estimators gave rise to the popular Hodges–
Lehmann (see 7Hodges-Lehmann Estimators) and�eil–
Sen estimators. Detailed accounts of this branch of non-
parametric statistics can be found in Hajek and Sidak
(), Lehmann (), Hettmansperger (), Hollan-
der and Wolfe (), and Gibbons and Chakraborti
().
Following this early activity on distribution-free test

procedures and corresponding estimators, nonparamet-
ric statistics expanded to include nonparametric regres-
sion which focuses on estimating an unknown regression
function using smoothing methods such as kernel, splines
and wavelets. See Eubank (), Hart (), Wahba
(), Green and Silverman (), Fan and Gijbels
(), Härdle et al. (). �is remains a very active
research area with emphasis now placed in overcoming
complications caused by the presence of a large num-
ber of covariates.�is has led to a number of innovative
semi-parametric models, variable selection methods, and
dimension reduction methods; see Hastie and Tibshirani
(), Cook and Li (), Fan and Li (), Fan and
Lv () for some representative contributions in these
areas.
Another recent direction of nonparametric statistics

deals with e�orts to extend the Kruskal–Wallis test tomore
complicated factorial designs.�e main obstacle towards
a successful extension lies in the fact that in such designs
the observations are not iid under the more specialized
null hypotheses, such as the hypotheses of no main e�ects
and no interaction, which are of interest in such designs.
Two main developments have been the aligned rank tests
(cf. Puri and Sen ; Mansouri ), and distance based
methods (cf. Hettmansperger and McKean ); see also
the recent approach of Gao and Alvo ().�ese proce-
dures, however, are not based on the overall ranks of the
observations, and have been developed for homoscedas-
tic models. A di�erent approach to constructing rank tests
for factorial designs is the so-called rank transform (RT)
method. It consists of substituting ranks instead of the
observations in the classical F statistics.�is approach was
motivated by the fact that asymptotically equivalent ver-
sions of the MWW rank sum test or the Kruskal–Wallis
test statistics can be obtained by substituting ranks instead
of the observations in the pooled variance two sample t
test statistic or the one-way ANOVA F statistic, respec-
tively. �e validity of the RT in these cases sparked an

interest in exploring it further. While the RT procedure
was shown to be valid in certain balanced additive designs,
Akritas () showed that in general it fails. �e main
argument for establishing this failure lies in the fact that
the hypotheses of no main e�ects and no interaction are
not invariant under monotone transformations and thus
cannot be tested by statistics (such as rank statistics) which
are invariant under such transformations. In addition, the
aforementioned paper pointed to the fact that, in gen-
eral, ranks are heteroscedastic even if the original obser-
vations are homoscedastic.�ese observations motivated
Akritas and Arnold () to introduce nonparametric
versions of the linear models for factorial designs and to
construct Wald-type weighted rank test statistics for test-
ing nonparametric versions of the common hypotheses of
no main e�ects and no interactions. �is approach has
been extended to analysis of covariance designs and to
high dimensional settings.�e rest of this article gives an
account of these developments.

Factorial Designs
Consider for simplicity the crossed two-factor design, and
let Yijk denote the kth observation in cell formed from
the ith level of the row factor and the jth level of the col-
umn factor.�e fully nonparametric version of this design
speci�es only that

Yijk ∼ Fij, ()

where Fij is some cumulative distribution function. �e
model () allows discrete and continuous quantitative
response variables, and does not assume homoscedas-
ticity. Akritas and Arnold () de�ned nonparametric
hypotheses in terms of the following decomposition

Fij(y) =M(y) + Ai(y) + Bj(y)
+ Γij(y), i = , . . . , a, j = , . . . , b, ()

where M = F⋅ ⋅ , Ai = Fi⋅ − M and Bj = F⋅j − M are the
nonparametric main e�ects for the row and column fac-
tors, and Γij = Fij − Ai − Bj are nonparametric versions of
the interaction e�ects. �e nonparametric hypotheses of
no main row or column e�ects, and no interaction spec-
ify that the corresponding nonparametric e�ects are zero:
H(A) : Ai = , for all i, H(B) : Bj = , for all j, and
H(Γ) : Γij = , for all i and j. Letting µij = ∫ydFij(y)
denote the mean of Yijk it easily follows that

αi = ∫ ydAi(y), βj = ∫ ydBj(y), and γij = ∫ ydΓij(y)

constitute the unique decomposition of µij as µij = µ+αi+

βj + γij so that∑ αi = ∑ βj = ∑i γij = ∑j γij = . It follows
that the nonparametric versions of the null hypotheses are
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stronger than their parametric counterparts (i.e., imply but
are not implied by them). It turns out that these stronger
versions of the common hypotheses are invariant under
monotone transformations and thus can be tested by rank
statistics.
For designs with independent observations, Akritas

et al. () (abbreviated by AAB from now on) con-
structed a class of Wald-type rank test statistics which
adjusts for the heteroscedasticity in the ranks (Akritas
). A scored rank version of this statistic was devel-
oped in Brunner and Puri (). A Box-type approx-
imation which enhances the small sample type I error
performancewas also proposed inAAB; formore details
on the Box-type approximation procedure see Brunner
et al. ().�e Wald-type statistics in AAB were fur-
ther extended to repeated measures designs in Akritas and
Brunner (a), to censored independent data in Akritas
and Brunner (b), and to censored dependent data in
O’Gorman and Akritas ().
Akritas and Arnold () introduced the nonpara-

metric hypotheses only in the context of the full (or
saturated) model, using equal weights in the constraints
that de�ne the e�ects. �is practice was followed in the
aforementioned subsequent literature on nonparametric
hypotheses. An extension of the class of nonparamet-
ric hypotheses to non-saturated designs, and to arbi-
trary weights in de�ning the e�ects, is given in Akritas,
Stavropoulos and Caroni (). Wald statistics, how-
ever, are not convenient for non-saturated designs.�is is
mainly because estimators of the e�ects, on which Wald
statistics are based, are not always available in closed form.
�is is particularly prevalent with non-orthogonal designs.
Moreover, so�ware development, and consequently sta-
tistical practice, has favored heavily the likelihood ratio
F tests over the Wald-type tests. Akritas () con-
structed the �rst rank version of a weighted F statistic
but remarked that, because F statistics do not have a
closed form expression, a general asymptotic theory of
such statistics would require di�erent asymptotic meth-
ods. By adopting Wald-type statistics instead of weighted
F statistics, AAB circumvented this problem, but the
methodology is con�ned to saturated designs. Akritas et al.
() derive an asymptotic theory that covers rank ver-
sions of weighted F statistics for any hypothesis in any
factorial design. In particular, the theory and the statistics
apply not only for testing that some e�ects are zero against
general alternatives (adjusted, or type III in SAS, sum of
squares) but also for the so-called sequential analysis (type
I sum of squares in SAS).�us, the aforementioned paper
extends the application of the robust rank methodology to
the entire spectrum of ANOVA applications for factorial
designs.

Analysis of Covariance Designs
Consider for simplicity the one-way analysis of covari-
ance design.�us, we observe (Yij,Xij), for i= , . . . , k and
j= , . . . ,ni, where i enumerates the factor or treatment
levels, the covariates Xij are either observed constants
or observed random variables, and Yij is the observed
response random variable.�e fully nonparametric model
of Akritas et al. () assumes only that, given Xij = x,

Yij ∼ Fix,

where Fix is a distribution function that depends only on
i, x in an unspeci�ed way.�e decomposition

Fix(y) =M(y) + Ai(y) +Dx(y) + Cix(y),

which is extends the decomposition () to allowing for a
continuous index, helps de�ne e�ects in this nonparamet-
ric context.
Akritas et al. () and Akritas and Van Keilegon

() develop test procedures for the hypothesis for no
covariate adjusted factor e�ects H(A) : Ai(y) = , for
all i and all y. �is procedure was extended to censored
data in Du et al. (), while Tsangari and Akritas ()
extended the procedure to ANCOVA designs with up to
three covariates. Tsangari and Akritas () considered
ANCOVA designs with dependent data.
Testing for the covariate e�ect, as well as the factor-

covariate interaction e�ect, falls in the category of test-
ing against high-dimensional alternatives; see Wang and
Akritas (). �e techniques for doing so are similar
to those for analyzing high-dimensional factorial designs,
which is discussed next.

High Dimensional Factorial Designs
Advances in data gathering technologies have produced
massive data sets giving rise to designs with a large number
of factor levels and few replications. Such high dimen-
sional designs have motivated the development of high-
dimensional analysis of variance or HANOVA – a term
introduced by Fan and Lin (). Having a large num-
ber of factor levels but possibly few replications calls for a
very di�erent asymptotic theory than that involved in the
developments outlined in Section 7“Factorial Designs”.
For example, the asymptotic theory of the F statistic is now
obtained by studying the di�erence F − .
Dealing with heteroscedasticity when there are only a

few replications per cell is particularly challenging. Several
approaches for doing so are explored in Akritas and
Papadatos (), where an up to date literature review
is presented. Rank statistics for testing the nonparamet-
ric hypotheses (), and their versions for higher-way lay-
outs, with independent data are presented in Wang and
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Akritas (, ). Bathke and Harrar () consid-
ered a version of the nonparametric hypotheses for mul-
tivariate designs and constructed corresponding rank test
procedures.

�e conceptual connection between a factorial design
having factors havemany levels andANCOVAdesigns (the
covariate can be thought of as a factor with many levels)
was exploited in Wang and Akritas (), and in Wang
et al. () to develop tests for the covariate e�ect.
When the factor with many levels is time, the data,

known as curves or functional data, are o�en dependent.
�e aforementioned procedures have been extended to
testing for various aspects of functional dependent data in
Wang and Akritas (), and in Wang et al. ().
Finally, nonparametric models for mixed and random

e�ects designs are presented in Gaugler ().�e main
contribution of the nonparametric modeling in mixed
e�ects designs is the relaxation of the so-called symmetry
assumption.�is is the assumption of independence of the
main random e�ect and the interaction e�ect. It is shown
that violations of this assumption (which likely occur in the
majority of real data applications) has devastating e�ects
on the signi�cance level of the traditional F test.
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Overview
Nonparametric predictive inference (NPI) is a statistical
method based onHill’s assumptionA(n)Hill (), which
gives a direct conditional probability for a future observ-
able random quantity, conditional on observed values of
related random quantities (Augustin and Coolen ;
Coolen ). Suppose that X, . . . ,Xn,Xn+ are continu-
ous and exchangeable random quantities. Let the ordered
observed values of X, . . . ,Xn be denoted by x() < x()

< . . . < x(n) < ∞, and let x() = −∞ and x(n+) = ∞ for
ease of notation. For a future observation Xn+, based on n
observations, A(n) (Hill ) is

P(Xn+ ∈ (x(j−), x(j))) =


n + 
for j = , , . . . ,n + 

A(n) does not assume anything else, and is a post-data
assumption related to exchangeability. Hill discusses A(n)
in detail. Inferences based on A(n) are predictive and non-
parametric, and can be considered suitable if there is hardly
any knowledge about the random quantity of interest,
other than the n observations, or if one does not want
to use such information, e.g., to study e�ects of addi-
tional assumptions underlying other statistical methods.
A(n) is not su�cient to derive precise probabilities for
many events of interest, but it provides optimal bounds for
probabilities for all events of interest involving Xn+.�ese
bounds are lower and upper probabilities in the theories
of imprecise probability (Walley ) and interval proba-
bility (Weichselberger ), and as such they have strong
consistency properties (Augustin and Coolen ). NPI
is a framework of statistical theory and methods that use
these A(n)-based lower and upper probabilities, and also
considers several variations of A(n) which are suitable for
di�erent inferences. For example, NPI has been presented
for Bernoulli data, multinomial data and lifetime data with
right-censored observations. NPI enables inferences for
m ≥  future observations, with their interdependence
explicitly taken into account, and based on sequential
assumptions A(n), . . . ,A(n+m−). NPI provides a solution
to some explicit goals formulated for objective (Bayesian)
inference, which cannot be obtained when using precise
probabilities (Coolen ). NPI is also exactly calibrated
(Lawless and Fredette ), which is a strong consistency
property, and it never leads to results that are in con�ict
with inferences based on empirical probabilities.
NPI for Bernoulli random quantities (Coolen ) is

based on a latent variable representation of Bernoulli data
as real-valued outcomes of an experiment in which there
is a completely unknown threshold value, such that out-
comes to one side of the threshold are successes and to the
other side failures.�e use ofA(n) together with lower and
upper probabilities enable inference without a prior distri-
bution on the unobservable threshold value as is needed
in 7Bayesian statistics where this threshold value is typ-
ically represented by a parameter. Suppose that there is
a sequence of n + m exchangeable Bernoulli trials, each
with “success” and “failure” as possible outcomes, and data
consisting of s successes in n trials. Let Yn

 denote the ran-
dom number of successes in trials  to n, then a su�cient
representation of the data for NPI is Yn

 = s, due to the
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assumed exchangeability of all trials. Let Yn+m
n+ denote the

random number of successes in trials n +  to n + m. Let
Rt = {r, . . . , rt}, with  ≤ t ≤ m +  and  ≤ r < r < . . . <
rt ≤ m, and, for ease of notation, de�ne (s+rs ) = .�en
the NPI upper probability for the event Yn+m

n+ ∈ Rt , given
data Yn

 = s, for s ∈ {, . . . ,n}, is

P (Yn+m
n+ ∈ Rt ∣Yn

 = s)

= (
n +m
n

)

− t

∑
j=

[(
s + rj
s

) −(
s + rj−

s
)](

n − s +m − rj
n − s

)

�e correspondingNPI lower probability is derived via the
conjugacy property

P (Yn+m
n+ ∈ Rt ∣Yn

 = s) =  − P (Yn+m
n+ ∈ Rc

t ∣Y
n
 = s)

where Rc
t = {, , . . . ,m}/Rt .

For multinomial data, a latent variable representation
via segments of a probability wheel has been presented,
together with a corresponding adaptation of A(n) (Coolen
and Augustin ). For data including right-censored
observations, as o�en occur in lifetime data analysis, NPI is
based on a variation of A(n) which e�ectively uses a sim-
ilar exchangeability assumption for the future lifetime of
a right-censored unit at its moment of censoring (Coolen
and Augustin ). �is method provides an attractive
predictive alternative to the well-known Kaplan–Meier
estimate (see 7Kaplan-Meier Estimator) for such data.

Applications
Many applications of NPI have been presented in the lit-
erature.�ese include solutions to problems in Statistics,
Reliability and Operational Research. For example, NPI
methods formultiple comparisons of groups of real-valued
data are attractive for situations where such comparisons
are naturally formulated in terms of comparison of future
observations from the di�erent groups (Coolen ). NPI
provides a frequentist solution to such problems which
does not depend on counterfactuals, which play a role in
hypothesis testing and are o�en criticized by opponents of
frequentist statistics. An important advantage of the use of
lower and upper probabilities is that one does not need to
add assumptions to data which one feels are not justi�ed.
A nice example occurs in precedence testing, where exper-
iments to compare di�erent groups may be terminated
early in order to save costs or time (Coolen-Schrijner et al.
). In such cases, the NPI lower and upper probabili-
ties are the sharpest bounds corresponding to all possible
orderings of the not-fully observed data. NPI provides
an attractive framework for decision support in a wide
range of problems where the focus is naturally on a future
observation. For example, NPI methods for replacement

decisions of technical units are powerful and fully adaptive
to process data (Coolen-Schrijner and Coolen ).
NPI has been applied for comparisons of multiple

groups of proportions data (Coolen and Coolen-Schrijner
), where the number m of future observations per
group plays an interesting role in the inferences. E�ectively,
if m increases the inferences tend to become more impre-
cise, while imprecision tends to decrease if the number of
observations in the data set increases. NPI for Bernoulli
data has also been implemented for system reliability, with
particularly attractive algorithms for optimal redundancy
allocation (Coolen-Schrijner et al. ; MacPhee et al.
). NPI for multinomial data enables inference if the
number of outcome categories is not known, and explicitly
distinguishes between de�ned and unde�ned categories
for which no observations are available yet (Coolen ).
Typically, if outcome categories have not occurred yet, the
NPI lower probability of the next observation falling in
such a category is zero, but the corresponding NPI upper
probability is positive and depends on whether or not the
category is explicitly de�ned, on the total number of cat-
egories or whether this number is unknown, and on the
number of categories observed so far. Such NPI upper
probabilities can be used to support cautious decisions,
which are o�en deemed attractive in reliability and 7risk
analysis.

Challenges
Development of NPI is gathering momentum, inferen-
tial problems for which NPI solutions have recently been
presented or are being developed include aspects of med-
ical diagnosis with the use of ROC curves, robust clas-
si�cation, inference on competing risks, quality control
and 7acceptance sampling. Main research challenges for
NPI include its generalization for multidimensional data,
which is similarly challenging for NPI as for general non-
parametric methods due to the lack of a unique natural
ordering of the data. NPI theory and methods that enable
information from covariates to be taken into account also
provide interesting and challenging research opportuni-
ties. A researchmonograph introducingNPI theory,meth-
ods and applications is currently in development, further
information is available from www.npi-statistics.com.
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�ere are threemajor reasons for considering nonparamet-
ric rank tests.�ey donot require a parametric distribution
assumption, such as normality, for the observations in
order to determine the p-value of the test (nonparamet-
ric or distribution-free property). When the observations
come from a population with tails that are heavier than
those of a normal population, nonparametric rank tests
can be much more powerful and e�cient than t and F
tests. Finally, they are more robust to 7outliers and data
contamination than traditional t and F tests.�ese three
properties (nonparametric, e�cient, and robust) have been
well documented; see, for example, Hettmansperger and
McKean (), Hollander and Wolfe (), Higgins
(), Lehmann (), and Sprent and Smeeton ().
Nonparametric methods are implemented in all standard
statistical computing packages.

�e most widely used nonparametric rank test is
the Mann–Whitney–Wilcoxon rank sum test (abbreviated
MWW) (�is test is also commonly called Wilcoxon–
Mann–Whitney test and abbreviated as WMW.) (see
7Wilcoxon–Mann–Whitney Test). Suppose we have two
samples of independent and identically distributed obser-
vations, denoted by X, . . . ,Xm and Y, . . . ,Yn, from two
populations represented by continuous cumulative dis-
tribution functions F(x) and G(y), respectively. O�en,
we assume that the population distributions di�er only
in their locations (typically the mean or median). �en
G(y) = F(y − ∆) where ∆ represents the di�erence in
locations. We are interested in testing the null hypothe-
sis H : ∆ =  versus an alternative hypothesis such as
HA : ∆ > . �is hypothesis indicates that the Y dis-
tribution is shi�ed to the right of the X distribution.�e
traditional test would be the one-sided two-sample t test.

Example  Researchers held the hypothesis that silver
content (measured by the percentage of silver in a coin)
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decreased from early mintings of Byzantine coins to later
mintings in themid twel�h century. Data (ordered) is con-
tained in Hendy and Charles () and consists in early
minting values: ., ., ., ., ., ., ., ., . and
later minting values: ., ., ., ., ., ., .. Based on
this data we wish to test H : ∆ =  versus HA : ∆ > 
where ∆ represents the di�erence in locations of the early
and late mintings. Let X denote the late minting and Y
denote the early minting.

�e MWW statistic is computed as follows: combine
the X and Y data, assign ranks to the combined data. In
case of ties assign the average rank.�en theMWW statis-
tic, denoted byW, is the sum of ranks of the Y data. When
the null hypothesis is true, the expected value of W is
n(n + m + )/ and we will reject H : ∆ =  in favor
of HA : ∆ >  whenW is observed su�ciently far above
n(n+m+)/. Su�ciently far is determined by the p-value
of the test: p-value = P(W > obsW) where obsW is the
observed value ofW from the data.

Example , continued Late minting X data has m = 
observations with ranks , , , , ., ., . and the early
minting Y data has n =  with ranks , ., , , , ,
, , .�e sum of ranks of the early data isW = .,
the expected value under the null hypothesis is ., and
the p-value is ..�is indicates that the observed value
of W = . is far above the expected value of .,
and hence we reject the null hypothesis and conclude that
the later minting contained signi�cantly less silver content
than the early minting.

Calculating the p-value: �e most convenient method is
to approximate the p-value using a normal approximation
for the null sampling distribution ofW.�is requires the
standard deviation of W under the null hypothesis and
is given by

√
mn(m + n + )/. �en [W − n(m + n +

)/]/
√
mn(m + n + )/ can be referred to a standard

normal table. Accuracy of the approximation can gener-
ally be increased by using a 7continuity correction. For
the example above, obsW = ., n(m + n + )/ =

.,
√
mn(m + n + )/ = ., and the standardized

value of . determines the p-value = ..
�ere are tables of the exact distribution of W for

restricted values of m and n. Finally, since, under the
null hypothesis, all permutations of the combined data are
equally likely, a computer can be used to approximate the
p-value by sampling the permutations and assigning the
�rst m observations in a permutation to the X sample. In
this case the p-value is approximately equal to the number
of sampled permutations such that W is greater than or

equal to obsW divided by the number of sampled permu-
tations. Note this null permutation distribution ofW does
not require speci�cation of the underlying population dis-
tributions and this determines the nonparametric property
of the MWW rank test.
Since we use only the ranks of the data, outliers will

have a minimal e�ect on the value of W. An extreme
outlier will only be assigned the maximum or minimum
rank of m+n or . �is is the source of the robustness
ofW.
In addition to the MWW test above, there is an asso-

ciated point estimate of the di�erence in locations ∆. It is
given by the median of themn pairwise di�erences Yj −Xi

for i = , , . . . ,m and j = , , . . . ,n. For the coins data the
estimate of ∆ is .. Note that this estimate is not generally
equal to the di�erence in sample medians. If we record the
range of ∆ values for which the MWW test fails to reject
the null hypothesis at signi�cance level approximately .,
then we have an approximate % con�dence interval
for ∆. For the example, we �nd a .% con�dence interval
to be (.,.). See the references for detailed discussions
of the construction of con�dence intervals.
In case we wish to carry out an hypothesis test in a

one sample setting, we can use the 7Wilcoxon-signed-
rank test. Here we have a random sample X, . . . ,Xn from
a population with continuous distribution function F(x).
Let θ denote the median of the population and suppose
that F(x) is symmetric about θ. For testing H : θ = 
versus HA : θ >  let S be the sum of ranks of the posi-
tive observations when ranked among the absolute values
of the data.�e statistic S compares the right side of the
sample to the le� side much the way the MWW statistic
compares the Y-sample to the X-sample. Under the null
hypothesis we have the mean and standard deviation of
S as n(n + )/ and

√
n(n + )(n + )/, respectively.

Using the fact that S has an approximate normal sampling
distribution, the p-value of the test can be approximated
by standardizing S and referring the standardized statis-
tic to a standard normal table.�e corresponding estimate
of θ is the median of the pairwise averages (Xi +Xj)/ for
i ≤ j. Further, a nonparametric con�dence interval is avail-
able; see the references for details. Traditional methods are
based on the one sample t-statistic.

�e MWW rank sum test can be extended to
the one-way layout for testing the null hypothesis
H : F(x) = . . . = Fc(x). In this case we have samples
from c populations.�e test is constructed by combining
all the data and ranking it.�e Kruskal–Wallis statistic is
then based on the c average ranks for the c samples.�e
formula is:
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KW =


N(N + )

c

∑
i=

ni [ Ri − (N + )/],

where N is the total sample size. Under the null hypoth-
esis KW has an approximate chisquared distribution with
c −  degrees of freedom. Hence, it is easy to approximate
the p-value of this test.�e MWW methods can then be
used for multiple comparisons and the estimation of loca-
tion di�erences. �e Kruskal-Wallis test enjoys the same
nonparametric, e�ciency, and robustness properties as the
MWW.
In summary, nonparametric rank tests for the one,

two, and c-sample designs are readily available. Relative to
the traditional t and F tests they are robust and e�cient.
�ey provide a very attractive alternative to the traditional
tests and are easily implemented using standard statistical
so�ware. Rank tests and estimates are available for more
complex designs such as multi-way analysis of variance
and regression. See the references for details.
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Consider the linear regressionmodel (see7Linear Regres-
sion Models)

Yi = β + x⊺i β + ei, i = , . . . ,N

where β ∈ R, β ∈ Rp are unknown parameters and
e, . . . , eN are independent errors, identically distributed
according to a continuous d.f. F and xi ∈ Rp are given
regressors, i = , . . . ,N. We look for the rank test of the
hypotheses

H() : β =  versus K() : β ≠ , β unspeci�ed,

H() : β∗ = (β, β⊺)⊺ =  versus K() : β
∗
≠ .

Another situation is that β is partitioned as β =

⎛
⎜
⎜
⎝

β

β

⎞
⎟
⎟
⎠

,

where β ∈ Rp , β ∈ Rp , p + p = p, and we want to test
the hypothesis

H : β =  versus β ≠ , β, β unspeci�ed.

Rank Tests for H()
Let RN, . . . ,RNN be the ranks of Y, . . . ,YN and let
aN(), . . . , aN(N)be the scores generated by a nondecreas-
ing, square-integrable score function φ : (, ) ↦ R so
that aN(i) = φ ( i

N+) , i = , . . . ,N. �e rank tests are
based on the linear rank statistics

SNj =
N

∑
i=

(xij−x̄Nj)aN(RNi), x̄Nj =

N

N

∑
i=

xij, j = , . . . ,N

and their vector

SN =
N

∑
i=

(xi − x̄N)aN(RNi) = (SN, . . . , SNp)⊺.

�e distribution function of observation Yi under H()
is F(y − β), i = , . . . ,N. Hence, the vector of
ranks (RN, . . . ,RNN) assumes all possible permutations
of (, , . . . ,N) with the same probability 

N! . More-
over, SN depends only on x, . . . , xN , on the scores
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aN(), . . . , aN(N) and on the ranks. Our test for H() is
based on the quadratic form

SN = A−N (S⊺NQ
−
N SN) , ()

where

AN =


N − 

N

∑
i=

(aN(i)−āN), QN =
N

∑
i=

(xi−x̄N)(xi−x̄N)⊺

and Q−N is replaced by the generalized inverse Q
−
N if QN

is singular. We reject H() if SN > kα where kα is a suit-
able critical value. �e distribution of SN and hence the
critical values under the hypothesis H() do not depend
on the distribution function F of the errors. For small
N, the critical value can be calculated numerically, but it
would become laborious with increasing N. Otherwise we
must use asymptotic critical values based on the large-
sample approximation of the distribution of SN .�e large
sample distribution of SN under H() is χ distribution
with p degrees of freedom, under some conditions on the
regressors and the scores.
We reject hypothesis H() on the signi�cance level α

(usually α = . or .) ifSN > χp(−α), where χp(−α)
is the (− α) quantile of the χ distribution with p degrees
of freedom.

Rank Tests for H()
For the sake of identi�ability of parameter β, we should
assume that the basic distribution of the errors is symmet-
ric around. LetR+N, . . . ,R

+
NN be the ranks of ∣Y∣, . . . , ∣YN ∣.

Choose a score-generating function φ∗(u) = φ ( u+
 ) :

(, ) ↦ [,∞) and the scores a∗N(), . . . , a
∗
N(N) gener-

ated by φ∗. Put xi = , i = , . . . ,N, and consider the
signed-rank statistics

S+N = (S+N ,, S
+
N ,, . . . , S

+
N ,p)

⊺ ,

S+N ,j =
N

∑
i = 

xij sign Yi a∗N (R+Ni) , j = , , . . . , p.

�e test criterion forH() will be the quadratic form

S
+
N = A∗−N (S+′N (Q∗N)

− S+N)

where A∗N = 
N ∑

N
i= [a

∗
N(i)]

 , Q∗N = ∑
N
i= x

∗
i x

∗⊺
i , and

x∗i = (xi,, xi, . . . , xip)⊺.
�e distribution of S+N (and hence of S

+
N) is gener-

ated byN!N equally probable realizations of (sign Y, . . . ,
signYN) and (R+N, . . . ,R

+
NN) .�e asymptotic distribution

ofS+N underH
()
 willbe χ(p+)undersomeconditionson

the regressors and on the scores. Hence, we reject hypoth-
esis H() on the signi�cance level α if S+N > χp+( − α),

where χp+(−α) is the(−α)quantileofthe χ distribution
with p +  degrees of freedom.

Tests of H Based on Regression Rank Scores
Consider the model

Yi = β + x⊺niβ + z
⊺
niδ + ei, i = , . . . ,n

with unknown parameters β ∈ R, β ∈ Rp, δ ∈ Rq, and
the hypothesis

H : δ = , β, β unspeci�ed.

For the sake of the identi�ability of the parameters, we
rewrite the model in the form

Yi = β + x⊺niβ + (zni − ẑni)⊺δ + ei, i = , . . . ,n ()

where Ẑn is the projection of matrix Zn with the rows
z⊺n, . . . , z

⊺
nn on the space spanned by the columns ofmatrix

Xn, i.e.,

Ẑn = ĤnZn, Ĥn = Xn (X⊺nXn)
− X⊺n .

�e model under the hypothesis is just Yi = β + x⊺niβ + ei,
i = , . . . ,n. �e alternative model is (). �e regression
rank scores for the hypothetical model are de�ned as the
vector ân(τ) = (ân(τ), . . . , ânn(τ))⊺ of solutions of the
parametric linear programming problem

n
∑
i=

Yi âni(τ) := max subject to
n
∑
i=

âni(τ) = ( − τ)n,
n
∑
i=

xij âni(τ) = ( − τ)
n
∑
i=

xij,

j =  . . . , p,

ân(τ) ∈ [, ]n,  ≤ τ ≤ . ()

�e restrictions in () imply that ân(τ) is invariant to the
transformations Yi ↦ Yi + b + x⊺i b, b ∈ R, b ∈ Rp.
Gutenbrunner et al. () constructed the tests of H

under some conditions on the tails of F (not heavier than
the tails of t-distribution with  d.f.) and on the xi. Take a
nondecreasing score function φ : (, )↦ R and calculate
the scores

b̂n = (b̂n, . . . , b̂nn)⊺, b̂ni = −∫



φ(t) dâni(t), i = , . . . ,n

and the q-dimensional vector of linear regression rank
scores statistics

Sn = n−/(Zn − Ẑn)⊺b̂n.
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�e test criterion for the hypothesisH is

T

n = (A(φ))− S⊺n D̃

−
n Sn where

D̃n = n−(Zn − Ẑn)⊺(Zn − Ẑn).

�e asymptotic distribution ofT n underH is the χ distri-
bution with q degrees of freedom, under some conditions
on xni and zni, i = , . . . ,n. Hence, we reject H on the
signi�cance level α provided T n > χq( − α).

�e usual choices of the score-generating function φ in
all above tests are

● Wilcoxon scores: φ(u) = u − ,  ≤ u ≤ 
● van derWaerden (normal scores): φ(u) = Φ−(u),  <

u < , where Φ is the standard normal distribution
function

● Median scores: φ(u) = 
 sign (u − 

) ,  ≤ u ≤ 

�e computation aspects for the regression rank scores, as
dual to the regression quantiles, are discussed in mono-
graph of Koenker ().�e tests were extended to the
linear autoregression times series by Hallin and Jurečková
(); there are other related works cited.
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The Statistical Model
�e entry byClaeskens and Jansen (same volume) provides
an overview of 7nonparametric estimation and describes
the major classes of nonparametric regression methods in
use today. In the current entry, we provide more details on
two of these classes, kernel methods and spline methods.
When applying these methods, the researcher is interested
in estimating the relationship between one dependent vari-
able, Y , and one or several covariates, X, . . . ,Xq. We dis-
cuss here the situation with one covariate, X (the case with
multiple covariates is addressed in the references provided
below).�e relationship betweenX andY can be expressed
as the conditional expectation

E(Y ∣X = x) = f (x).

Unlike in parametric regression, the shape of the func-
tion f (⋅) is not restricted to belong to a speci�c parametric
family such as polynomials.

�is representation for the mean function is the key
di�erence between parametric and nonparametric regres-
sion, and the remaining aspects of the statistical model for
(X,Y) are similar between both regression approaches. In
particular, the random variable Y is o�en assumed to have
a constant (conditional) variance, Var(Y ∣X) = σ , with
σ  unknown. �e constant variance and other common
regression model assumptions, such as independence, can
be relaxed just as in parametric regression.

Kernel Methods
Suppose that we have a dataset available with observations
(x, y), . . . , (xn, yn). A simple kernel-based estimator of
f (x) is the Nadaraya–Watson kernel regression estimator,
de�ned as

f̂h(x) =
∑

n
i= Kh(xi − x)yi
∑

n
i= Kh(xi − x)

, ()

with Kh(⋅) = K(⋅/h)/h for some kernel function K(⋅)

and bandwidth parameter h > . �e function K(⋅) is
usually a symmetric probability density and examples of
commonly used kernel functions are the Gaussian kernel
K(t) = (

√
π)− exp(−t/) and the Epanechnikov kernel

K(t) = max{  ( − t), }.
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Generally, the researcher is not interested in estimating
the value of f (⋅) at a single location x, but in estimating
the curve over a range of values, say for all x ∈ [ax , bx].
In principle, kernel regression requires computing () for
any value of interest. In practice, f̂h(x) is calculated on a
su�ciently �ne grid of x-values and the curve is obtained
by interpolation.
We used the subscript h in f̂h(x) in () to emphasize

the fact that the bandwidth h is the main determinant of
the shape of the estimated regression, as demonstrated in
Fig. . When h is small relative to the range of the data,
the resulting �t can be highly variable and look “wiggly.”
When h is chosen to be larger, this results in a less variable,
more smooth �t, but it makes the estimator less responsive
to local features in the data and introduces the possibility
of bias in the estimator. Selecting a value for the band-
width in such a way that it balances the variance with the
potential bias is therefore a crucial decision for researchers
who want to apply nonparametric regression on their
data. Data-driven bandwidth selection methods are avail-
able in the literature, including in the references provided
below.
A class of kernel-based estimators that generalizes the

Nadaraya–Watson estimator in () is referred to as local
polynomial regression estimators. At each location x, the
estimator f̂h(x) is obtained as the estimated intercept,
β̂, in the weighted least squares �t of a polynomial of

degree p,

min
β

n

∑
i=

(yi − β + β(xi − x) +⋯ + βp(xi − x)p)Kh(xi−x).

�is estimator can be written explicitly in matrix notation
as

f̂h(x) = (, , . . . , ) (XT
xWxXx)

−
X

T
xWxY , ()

where Y = (y, . . . , yn)T , Wx = diag{Kh(x −
x), . . . ,Kh(xn − x)} and

Xx =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

 x − x ⋯ (x − x)p

⋮ ⋮ ⋮

 xn − x ⋯ (xn − x)p

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

It should be noted that the Nadaraya–Watson estimator ()
is a special case of the local polynomial regression estima-
tor with p = . In practice, the local linear (p = ) and local
quadratic estimators (p = ) are frequently used.
An extensive literature on kernel regression and local

polynomial regression exists, and their theoretical proper-
ties are well understood. Both kernel regression and local
polynomial regression estimators are biased but consis-
tent estimators of the unknown mean function, when that
function is continuous and su�ciently smooth. For fur-
ther information on these methods, we refer to reader to
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the monographs by Wand and Jones () and Fan and
Gijbels ().

Spline Methods
In the previous section, the unknown mean function was
assumed to be locally well approximated by a polynomial,
which led to local polynomial regression. An alternative
approach is to represent the �t as a piecewise polynomial,
with the pieces connecting at points called knots. Once
the knots are selected, such an estimator can be computed
globally in a manner similar to that for a parametrically
speci�ed mean function, as will be explained below. A �t-
ted mean function represented by a piecewise continuous
curve only rarely provides a satisfactory �t, however, so
that usually the function and at least its �rst derivative are
constrained to be continuous everywhere, with only the
second or higher derivatives allowed to be discontinuous at
the knots. For historical reasons, these constrained piece-
wise polynomials are referred to as splines, leading to the
name spline regression or spline smoothing for this type of
nonparametric regression.
Consider the following simple type of polynomial

spline of degree p:

β + βx +⋯ + βpxp +
K

∑
k=

βp+k(x − κk)
p
+, ()

where p ≥ , κ, . . . , κK are the knots and (⋅)
p
+ =

max{(⋅)p, }. Clearly, () has continuous derivatives up
to degree (p − ), but the pth derivative can be discon-
tinuous at the knots. Model () is constructed as a linear
combination of basis functions , x, . . . , xp, (x − κ)p+, . . . ,
(x − κK)

p
+.�is basis is referred to as the truncated power

basis. A popular set of basis functions are the so-called
B-splines. Unlike the truncated power splines, the B-splines
have compact support and are numericallymore stable, but
they span the same function space. In what follows, we will
write ψj(x), j = , . . . , J for a set of (generic) basis func-
tions used in �tting regression splines, and replace () by
βψ(x) +⋯ + βJψJ(x).
For �xed knots, a regression spline is linear in the

unknown parameters β = (β, . . . , βJ)
T and can be �t-

ted parametrically using least squares techniques. Under
the homoskedastic model described in section “7�e Sta-
tistical Model”, the regression spline estimator for f (x) is
obtained by solving

β̂ = argmin
β

n

∑
i=

⎛

⎝
yi −

J

∑
j=

βjψj(xi)
⎞

⎠



()

and setting f̂ (x) = ∑J
j= β̂jψj(x). Since deviations from the

parametric shape can only occur at the knots, the amount

of smoothing is determined by the degree of the basis and
the location and number of knots. In practice, the degree is
�xed (with p = ,  or  as common choices) and the knot
locations are usually chosen to be equally-spaced over the
range of the data or placed at regularly spaced data quan-
tiles. Hence, the number of knots K is the only remaining
smoothing parameter for the spline regression estimator.
As K (and therefore J) is chosen to be larger, increasingly
�exible estimators for f (⋅) are produced.�is reduces the
potential bias due to approximating the unknown mean
function by a spline function, but increases the variability
of the estimators.

�e smoothing spline estimator is an important exten-
sion of the regression spline estimator. �e smoothing
spline estimator for f (⋅) for a set of data generated by
the statistical model described in section “7�e Statistical
Model” is de�ned as the minimizer of

n

∑
i=

(yi − f (xi)) + λ∫
bx

ax
( f (p)(t))dt, ()

over the set of all functions f (⋅) with continuous (p − )th
derivative and square integrable pth derivative, and λ > 
is a constant determining the degree of smoothness of the
estimator. Larger values of λ correspond to smoother �ts.
�e choice p =  leads to the popular cubic smoothing
splines. While not immediately obvious from the de�ni-
tion, the function minimizing () is exactly equal to a
special type of regression spline with knots at each of the
observation points x, . . . , xn (assuming each of the loca-
tions xi is unique). For further information on smoothing
splines, see the entry by Wahba (same volume).
Traditional regression spline �tting as in () is usually

done using a relatively small number of knots. By con-
struction, smoothing splines use a large number of knots
(typically, n knots), but the smoothness of the function is
controlled by a penalty term and the smoothing parameter
λ.�e penalized spline estimator represents a compromise
between these two approaches. It uses a moderate number
of knots and puts a penalty on the coe�cients of the basis
functions. Speci�cally, a simple type of penalized spline
estimator form(⋅) is obtained by solving

β̂ = argmin
β

n

∑
i=

⎛

⎝
yi −

J

∑
j=

βjψj(xi)
⎞

⎠



+ λ
J

∑
j=

βj ()

and setting f̂λ(x) = ∑J
j= β̂jψj(x) as for regression splines.

Penalized splines combine the advantage of a parametric
�tting method, as for regression splines, with the �exible
adjustment of the degree of smoothness as in smooth-
ing splines. Both the basis function and the exact form



Nonparametric Statistical Inference N 

N

of the penalization of the coe�cients can be varied to
accommodate a large range of regression settings.
Spline-based regression methods are extensively

described in the statistical literature. While the theoret-
ical properties of (unpenalized) regression splines and
smoothing splines are well established, results for penal-
ized regression splines have only recently become avail-
able. �e monographs by Wahba (), Eubank ()
and Ruppert et al. () are good sources of information
on spline-based methods.
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Nonparametric statistical inference is a collective term
given to inferences that are valid under less restrictive
assumptions than with classical (parametric) statistical
inference. �e assumptions that can be relaxed include
specifying the probability distribution of the population
from which the sample was drawn and the level of mea-
surement required of the sample data. For example, wemay
have to assume that the population is symmetric, which is
much less restrictive than assuming the population is the
normal distribution.�e data may be ratings or ranks, i.e.,
measurements on an ordinal scale, instead of precise mea-
surements on an interval or ratio scale. Or the data may
be counts. In nonparametric inference, the null distribu-
tion of the statistic on which the inference is based does
not depend on the probability distribution of the popula-
tion fromwhich the sample was drawn. In other words, the
statistic has the same sampling distribution under the null
hypothesis, irrespective of the form of the parent popula-
tion.�is statistic is therefore called distribution-free, and,
in fact, the �eld of nonparametric statistics is sometimes
called distribution-free statistics. Nonparametric methods
are o�en based on ranks, scores, or counts.�is allows us
to make less restrictive assumptions and still carry out an
inference such as calculate a P-value or �nd a con�dence
interval. Strictly speaking, the term nonparametric implies
an inference that may or may not be concerned with the
value of a parameter of the population.�is allows more
�exibility, in that the inference may be concerned only
with the form of the population, as in goodness-of-�t tests,
or with some other characteristic of the data distribution,
as in tests for randomness, trend or autocorrelation, or it
may be that the inference is concerned with the median
of the distribution. It has become customary to include all
such tests and estimation procedures under the umbrella
of nonparametric statistical inference.

�e earliest example of nonparametric statistical infer-
ence has been attributed to John Arbuthnot in the early
s when the sign test statistic was introduced with the
analysis of birth data to show thatmales have a higher birth
rate than females.�e sign test statistic (see 7Sign Test) is
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the number of plus signs among, say, n di�erences within
a set of n paired sample observations that have no ties.
�e number of plus signs follows the 7binomial distri-
bution with parameter p representing the probability of a
plus sign. �is is true regardless of the form of the par-
ent population of pairs, and hence the sign test statistic
is distribution-free. �e next example of nonparametric
statistical inference was goodness-of-�t tests and contin-
gency table analysis due to Karl Pearson in the early s.
Also in the early s Charles Spearman, a psychologist,
recommended substituting ranks in calculating the corre-
lation coe�cient; this statistic is called Spearman’s rho, a
measure of rank correlation. Sir Maurice Kendall’s land-
mark book Rank Correlation Methods appeared in ;
this treatise covers Spearman’s rho and 7Kendall’s tau in
great detail. �e ��h edition of this book appeared in
, co-authored with Jean D. Gibbons. John Walsh pub-
lished a three-volume handbook of nonparametric statisti-
cal methods in ,  and . I.R. Savage compiled a
bibliography of nonparametricmethods published in .
Gottfried Noether published a slim volume titled

Elements of Nonparametric Statistics in ; this book
addressed some of the theoretical bases of nonparametric
statistics.�e �rst two comprehensive books suitable for
classroom use as a course in nonparametric statistics were
Distribution-free Statistical Tests by James V. Bradley in
 and Nonparametric Statistical Inference by Jean D.
Gibbons in . �e latter book is now in its ��h edi-
tion, co-authored with Subhabrata Chakraborti. At the
present time there are several other books on the subject.
�e American Statistical Association organized a sepa-
rate Section on Nonparametric Statistics in the s and
now publishes a separate periodical called the Journal of
Nonparametric Statistics.

�e best known and most widely used nonparamet-
ric inference procedures are the 7Wilcoxon-signed-rank
test and con�dence interval estimate for the median of
one population or the median di�erence in a population
of di�erences, theWilcoxon rank sum test (or equivalently
the Mann-Whitney test, see 7Wilcoxon–Mann–Whitney
Test) and con�dence interval estimate for the di�erence of
themedians of twopopulations, theKruskal–Wallis test for
equal treatment e�ects in a one-way7analysis-of-variance
situation and multiple comparisons, the Friedman test for
equal treatment e�ects in a two-way analysis-of-variance
situation and multiple comparisons, the Spearman’s rho
and Kendall’s tau coe�cients of correlation for samples
from bivariate populations. Nonparametric methods are
also available for multivariate data as well as for regression
settings although some of these procedures are not as well-
known. Bootstrapping and 7permutation tests, which are
applicable under very weak assumptions, take advantage

of modern computing power and have brought renewed
focus and interest into nonparametric methodology.

�e primary advantage of nonparametric procedures
over classical (parametric) procedures is that they are
inherently robust and valid under very weak assumptions.
With classical statistical inference, any conclusions reached
should be tempered by qualifying statements like, “If the
population from which the sample was drawn is the nor-
mal distribution, then….” In practice, one seldom has any
reliable information about the population. With a small
sample size, one cannot even make an informed guess
about the shape of the population. Nonparametric meth-
ods are easy to use and understand.�eir properties can
frequently be derived by combinatorial theory rather than
calculus. Kendall’s tau as a measure of relative concor-
dance of pairs is much easier to interpret than the classical
product-moment correlation coe�cient. Data used in clas-
sical statistics are implicitly assumed to be measured on
at least an interval scale. But many studies, particularly
in social science research, collect data as opinions or rat-
ings, as in Likert scale data. Such data cannot possibly be
assumed to have come from a normal distribution.
Many nonparametric techniques have a classical or

parametric counterpart. �e classical techniques are
derived under a speci�c set of assumptions (mainly about
the distribution, such as normality) and are frequently the
most powerful when those assumptions are fully satis�ed.
But if those assumptions are not met or cannot be veri�ed
(which is usually the case in practice), or are disregarded,
or are not even known, the researcher can have little or no
faith in any inferences drawn. In fact, the inference may be
less reliable than a judicious opinion, or even a guess. In
this context a typical question then is “How much is lost
by using a nonparametric type of inference if the classi-
cal assumptions were indeed met?” Studies of the relative
power of nonparametric tests have shown that under the
classical assumptions, the nonparametric test is frequently
almost as powerful as the corresponding classical test, and
little power is lost while considerable con�dence in the
conclusions is gained. And of course the nonparametric
methods are still applicable whenmany of the assumptions
behind the classical methods are not satis�ed or can not be
fully justi�ed.
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Non-probability sampling is generally used in experimental
or trial research and does not represent the target pop-
ulation. Non-probability sampling uses subjective judge-
ment and utilizes convenient selection of units from the
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population. Non-probability sampling methods produce
cost savings for personal interview surveys; the result-
ing samples o�en look rather similar to probability sam-
ple data (Fowler ).�ere are several non-probability
selection methods that are used in practice. We will brie�y
overview these methods in the following sections.

Convenience (Haphazard) Sampling
�e sample is composed of conveniently accessible persons
who will contribute to the survey. Samples of volunteer
subjects should be included here. It is used in many sci-
ences that display little care about the representativeness
of their specimens (Kish ).

Purposive (Judgement) Sampling
In purposive sampling, the participants are selected by
the researcher subjectively. �e selection is based on the
judgement of the researcher. Respondents are not selected
randomly but by using the judgement of the interviewers.
Consequently, there is an unknown probability of inclu-
sion for any selected sample unit.

Expert Choice
Expert choice is a formof purposive or judgment sampling,
which is used by experts to pick “typical” or “represen-
tative” specimens, units, or portions. Experts o�en hold
di�ering views on the best way to choose representative
specimens or to decide which are the most representative
units. Sometimes the researcher asks that, instead of a real
population, a hypothetical universe be postulated as the
parent of the sample (Kish ).

Snowball Sampling
A more specialized type of purposive sample is a snow-
ball sample, in which respondents are asked to suggest
more respondents. Snowball samples are non-probability
samples, since it is impossible to know the probability
with which any person in the larger population ends up
in the sample (Weisberg ). When an incomplete list
of a special population is available, enumerators evaluate
these units. Later, the enumerator enquires about a possi-
ble nearby address that has the same characteristic as the
respondent.�en, this address is also visited and enumer-
ated as a sample unit.�e accumulation of the additional
addresses to the existing list resembles the expansion of a
snowball, which is rolling downhill.

Quota Sampling
Quota sampling is a formof purposive sampling, where the
enumerators are instructed to obtain speci�c quotas from

which to build a sample roughly proportional to the pop-
ulation on a few demographic variables (Kalton ; Kish
). Quota sampling is a method of strati�ed sampling
in which the selection within strata is non-random. �e
sample selectionmethod employs controls (independent or
interrelated) and �xed quotas as alternatives.�e statisti-
cians have criticized the method for its theoretical weak-
ness, while market and opinion researchers have defended
it for its cheapness and administrative convenience (Moser
and Kalton ).

Mobile Population Sampling
Mobile population sampling is one of the very speci�c
areas in which special non-probability sampling tech-
niques are widely used. One of the main reasons for this
is that it is not possible to obtain a list of the mobile target
population, for probability sampling. �e second impor-
tant reason is the mobility of the population elements,
which makes it di�cult to access as a sample unit.�e use
of list sampling is not a possibility, while the use of speci-
�ed area sampling is also di�cult for some types of mobile
units (e.g., birds, �shes, etc.) due to unrecognized bound-
ary concept of the de�ned population areas. �e mobile
population sampling can be examined for several di�erent
types of populations. Basically, we can summarize these as
mobile animal populations andmobile human populations.

Sampling from Mobile Animal Populations
�e mobile animals can be examined as types of wild ani-
mals, birds, insects, or �shes. Sometimes it is possible to
create protected boundaries for some of these animals. In
this case, it will be possible to examine these animals by
using a non-probability selection method. In other cases,
there may be no de�ned boundary for their evaluation.
In both cases, it may not be possible to use a probability
sampling.�erefore one of the common methods for this
enumeration is the use of capture-tag-recapture method.
�e animal has to be caught �rst, and measured, then
labeledwith a tag (mechanical or electronic) and then let go.
�e second stage is based on the possibility of catching the
same labeled animal for another periodic measurement.
�e method continues until the desired round of planned
measurements on the selected units are achieved.�e total
population is estimated from the proportion in the cap-
ture of individuals that have been previously captured and
tagged (Kish ).

Sampling from Mobile Human Populations
within Small Areas
Determining the number of people in a crowded street
by ordinary methods would require the demarcation of
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a number of small areas in the street and counting the
number of people on each of these areas, known as grid
sampling. Equally it is no use stationing observers at �xed
points with instructions to count passers-by is another
approach to enumerate the mobile human population,
which the method is known as the use of stationary
observers.�ese di�culties can be overcome by usingmov-
ing observers instead of stationary observers. To obtain an
estimate of the number of people in a street, the observer
traverses the street in one direction, counting all the peo-
ple he passes, in whichever direction they are moving, and
deducing all the peoplewhoovertake him.Crowded streets
were dealt with by teams of two or more observers, mov-
ing down the street in a transverse line, with each observer
counting the people between him and the next observer
(Yates ).

Sampling of Nomadic Tribes
Nomadic tribes usually live in unpopulated rural areas.
Generally, they deal with animal husbandry and are trav-
elling with their animals through a speci�ed route over
several months (Ayhan and Ekni ). Due to their
mobility, it is not possible to observe and enumerate them
by stationary observers.�erefore, moving observers are
recommended to be used to enumerate this special popu-
lation for censuses (see 7Census) as well as surveys.

Sampling of Homeless People
Most sample-based studies of the homeless are basically
designed tomeasure characteristics of the currently home-
less.�e main challenge for designing such samples is that
there typically is no �xed reference on which to base a
sampling frame (Sumner et al. ). Due to several di�-
culties related to listing of homeless people within a perfect
sampling frame, many homeless studies in the past were
based on the non-probability samples. Recently, multi-
stage probability samples have been used for alternative
estimation.

Non-probability Sampling from
Internet Users
Couper () di�erentiates three types of non-probability
Web surveys that are basically availability samples: Web
surveys as entertainment, self-selectedWeb surveys, and vol-
unteer panels of internet users. In addition, Ayhan ()
had proposed a sample weighting adjustment methodol-
ogy for the non-probability sample that is selected from
voluntary participation Web surveys. �e future of Web
surveys is heading towards voluntary panels of internet
surveys, which requires generalizations from the selected
non-probability samples.

�e use of non-probability sampling methods in prac-
tice has also been reviewed by Weisberg (), and the
following points have been emphasized. First, the usual
statistical advice is to avoid non-probability samples. Sec-
ond, many surveys either explicitly use non-probability
sampling or do so implicitly.�ird, the balancing of sur-
vey errors and survey costs can sometimes justify non-
probability sampling, regardless of the usual textbook
injunctions against it.
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Our complex society experiences an ever growing demand
for statistical information relating to social, demographic,
industrial, economic, �nancial, political, and cultural sit-
uation of the country. Such information enables policy
makers and others to take informed decisions for a better
future. Sometimes, statistical information can be retrieved
from administrative sources. More o�en there is a lack of
such sources. In this case, the sample survey is a powerful
instrument to collect new statistical information.
A sample survey collects information on a small part

of the population. In principle, this sample only provides
information about the selected elements of the population.
Nevertheless, if the sample is selected using a proper sam-
pling design, it is also possible to make inference about the
population as a whole.
Many things can go wrong when carrying out a sur-

vey. �ere are all kinds of phenomena that may have a
negative impact on the quality of the survey outcomes.
Nonresponse is one such problem.
Nonresponse is the phenomenon that elements in the

selected sample do not provide the requested information,
or that the provided information is unusable. Nonresponse
comes in two forms. Unit nonresponse denotes the situ-
ation in which all requested information on a sampled

population element is missing. If information is missing
on some items in the 7questionnaire only, it is called item
nonresponse.
Due to non-response the amount of collected data is

smaller than expected.�is problem can be taken care of
by selecting a larger sample. Amore serious problem is that
estimates of population characteristics may be biased.�is
situation occurs if, due to non-response, some groups in
the population are over- or underrepresented, and these
groups behave di�erently with respect to the characteris-
tics to be investigated. Consequently, wrong conclusions
may be drawn from the survey results.�erefore, it is vital
to reduce the amount of nonresponse in the �eldwork of
the survey as much as possible.
Nonresponse rates have been rising over the years, see

Bethlehem (). Currently, these rates o�en exceed %.
So no information is obtained from more than halve of
the sampled elements. Some case studies have shown that
nonresponse may result in serious biases. In practice, it is
very di�cult to asses the possible negative e�ects of non-
response, due to lack of information on nonrespondents.
And even if such e�ects can be detected, it is no simple
matter to correct for them.
To be able to do something, it is very important to have

auxiliary information. For example, if there is an auxil-
iary variable that has been measured in the sample, and
for which population characteristics are known, then this
variable can be used to check whether the available data
show unbalancedness, i.e., they are not representative for
the population.

�ere are several techniques available to correct for
non-response bias. �e usual treatment for unit non-
response is adjustment weighting, and for item nonre-
sponse imputation techniques (see 7Imputation) can be
applied.

�e basic principle of adjustment weighting is that
every observed element is assigned a speci�c weight. Esti-
mates for population characteristics are obtained by pro-
cessing the weighted values instead of the values them-
selves.�e easiest and most straightforward method used
to compute weights is post-strati�cation.�e population
is divided into strata a�er selection of the sample. If each
stratum is homogeneous with respect to the target vari-
able of the survey, then the observed elements resemble
the unobserved elements.�erefore, estimates of stratum
characteristics will not be very biased, so they can be used
to construct population estimates.
To take as much advantage as possible of the avail-

able auxiliary information also more advanced weighting
methods have been developed, like linear weighting (see
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Bethlehem and Keller ) and calibration estimation (see
Deville and Särndal ).
To carry out adjustment weighting auxiliary variables

are needed and preferable auxiliary variables having a
strong relationship with the target variables of the survey.
In practical situations, the available information may be
limited, and also the relationships may not be as strong
as preferred.�erefore, sometimes adjustment may not be
capable of completely removing the bias.
A fortunate development is that a tendency that more

and more data from registers can be used. Such registers
contains more useful auxiliary information, and there-
fore correction procedures based on these variables will be
more e�ective.
Item non-response requires a di�erent approach. A

great deal of additional information is available for the ele-
ments involved. All available responses to other questions
can be used to predict the answer to the missing ques-
tions.�is computation of a “synthetic” answer to a ques-
tion is called imputation. Predictions are usually based on
models describing relationships between the variable with
missing values and other variables for which the values are
available.
Imputation techniques can be classi�ed as random or

deterministic, depending on whether residuals are set to
zero or not. Deterministic techniques have the disadvan-
tage that they distort the properties of the distribution of
the values of the variable. �ese techniques tend to pre-
dict values in themiddle part of the distribution.�erefore,
standard errors computed from the imputed data set are
generally too small. �ey create a too optimistic view of
the precision of estimates. Random imputation methods
do not have this nasty property.�ey much better able to
preserve the original distribution.However, they introduce
an extra source of variability.
Another point to take into consideration is the e�ect

of imputation on relationship between variables. Sev-
eral imputation techniques cause estimates of covariances
and correlations to be biased.�e estimates produce too
low values. For more information, see e.g., Kalton and
Kasprzyk ().
Research for new imputation techniques is in progress.

An example is themultiple imputation technique proposed
by Rubin ().�is technique computes a set of imputed
values for each missing value. �is results in a number
of imputed data sets. Inference is based on the distribu-
tion of estimates obtained by computing the estimate for
each data set.�is approach has attractive theoretical prop-
erties, but may not be so easy to implement in practical
situations.

An overview of the state of the art in nonresponse
research can be found in Groves et al. ().
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As in other types of surveys, we can distinguish between
unit nonresponse, where the expected (invited) eligible
units do not participate in the survey, and item nonre-
sponse, where the units participate, but certain responses
are missing to some questions.
In addition, due to the availability of paradata –

i.e., data from the process of answering a Web survey
7questionnaire that are stored in the log �les together
with the responses (Couper ) – a variety of addi-
tional nonresponse measures and patternsmay be detected
in Web surveys (Bosnjak ). In particular, partial non-
response, where respondents answer only part of the ques-
tionnaire and then drop out is an issue requiring further
discussion.
Here we predominantly focus on unit and partial

nonresponse, while leaving the item nonresponse aside
because it is not somuch a problemof participation inWeb
surveys, but is more a problem related to Web question-
naire design issues, which is not our focus here.
When discussing the amount of unit and partial non-

response in Web surveys, it is important to distinguish
between di�erent types of Web surveys (Couper ).
�e level of nonresponse can be precisely assessed only
for list-based Web surveys, that is, surveys where a list
of sample members (either probability or non-probability)
are invited individually, giving them a unique URL and/or
username/password to answer the questionnaire. Only
in this case is it possible to distinguish between crucial
response outcomes and calculate required response rates.
For example, the AAPOR (AAPOR ) lists the follow-
ing disposition codes for Internet surveys of speci�cally
named persons: complete and partially complete question-
naires, eligible but with nonresponse (either due to explicit
or implicit refusals and break-o�s, non-contacts, or some
other reason), caseswith unknown eligibility, and not eligi-
ble.�is coding is rather di�cult, especially if e-mail invi-
tations to the survey are used. For those units that do not
respond (do not even log on to the �rst questionnaire page)
it can rarely be established whether they are eligible or
whether they actually received the invitation (whether they
were actually contacted).�e cases with unknown eligibil-
ity and those where it cannot be determined if contact has

been made occur much more frequently in Web surveys
than in any other survey modes.
In contrast to the list-based Web surveys, there are

also unrestricted self-selected Web surveys where partic-
ipants become aware of the questionnaire via word of
mouth, advertisements, or serendipity. In this case, any
response rate is di�cult or impossible to calculate due
to the unknown target population (thus an unknown
denominator).
Another special aspect of Web surveys are surveys

where pre-recruited lists of Internet users or of the gen-
eral population (usually panels) are invited to the survey.
In this case, two types of responses are of interest here:
one is cooperation in the pre-recruitment stage and inclu-
sion in the sampling frame, the other is cooperation for a
particular Web survey project.
Despite the di�erent types ofWeb surveys and di�cul-

ties in distinguishing between some disposition codes, we
can de�ne the following response outcome rates for Web
surveys:

● Response rate and completion rate: �e response rate
as a ratio of completed questionnaires to the number
of eligible units (AAPOR ) can be calculated for
list-based Web surveys. However, since we o�en do
not have information about the eligibility of the units
(unless we somehow estimate their share or simply
assume that all invited units are eligible), a completion
rate may be a better measure. It is de�ned as the num-
ber of completed questionnaires among all invitations
sent. In addition, if a distinction between partial (ques-
tionnaire answered only partially, then a drop-out) and
complete respondents is made, overall (referring to
partial and complete respondents) and full (referring to
complete respondents only) response and completion
rates can be de�ned.

● Absorption rate and failure rate (Vehovar et al. ):
�e absorption rate can be de�ned for list-based Web
surveys as the number of absorbed or delivered (email,
mail, fax) invitations among all invitations sent (deliv-
ered and undelivered). Its opposite, the failure rate
(sometimes also called the attrition rate), is de�ned as
the number of undelivered invitations (known as non-
contacts) among all invitations sent. �ese rates are
indicators of the quality of the sampling frame. �e
absorption rate is similar to the contact rate, and is
de�ned as the ratio of contacted units to the number of
eligible units (AAPOR ). However, the absorption
rate is a more robust measure when the exact number
of eligible units cannot be established, which is o�en
the case in Web surveys.
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● Cooperation rate.�e cooperation rate is de�ned as the
ratio of interviews obtained to the number of units con-
tacted (AAPOR ). For list-based Web surveys, an
approximate measure of the cooperation rate can be
calculated if we assume that all units with absorbed
(e-mail, mail, fax) invitations are also contacted units.
Again, we can distinguish between the overall and full
cooperation rates, depending on complete and partial
respondents.

● Refusal rate. For list-based Web surveys, the refusal
rate, as a ratio of the units that explicitly refuse to
participate to the number of eligible units (AAPOR
), can also be calculated. In this case, those who
explicitly state that they do not want to participate
and/or want to be excluded from the list are counted as
explicit refusals, while eligibility is again usually only
estimated.

● Click-through rate.�is is a special measure that is spe-
ci�c toWeb surveys and can be reported for any type of
Web surveys, including unrestricted self-selected ones.
Namely, it refers to respondents who click on the URL
link and access the Web questionnaire. For example,
when banner ads or some other publication of the URL
is used, the click-through rate is de�ned as the per-
centage of those clicking on the banner ad/invitation
and going to the questionnaire page among those
exposed to the ad/invitation. For list-based Web sur-
veys, the click-through rate is de�ned as the percent-
age of invited units who access the �rst questionnaire
page. In general, we can de�ne the click-through rate
for all Web surveys where the number of respondents
exposed to the invitation can be established (regard-
less of whether or not they were actually contacted, and
regardless of whether or not they are eligible). In spe-
cial cases, the cooperation click-through rate can be
de�ned as the number of units accessing theWeb ques-
tionnaire among all contacted, eligible, and available
during data collection.

● Drop-out and complete rate.�e drop-out rate (some-
times called the attrition rate) refers to respondents
who started to answer the Web questionnaire, but
abandoned it prematurely. It refers to the percent-
age of respondents who only partially complete the
questionnaire among all respondents.�e opposite –
complete rate – is de�ned as the percentage of com-
plete responses among all respondents. �e manner
in which partial respondents are distinguished from
complete respondents depends on the particular sur-
vey. In general, partial respondents can be answering
drop-outs, item nonresponding drop-outs with low
item nonresponse rate for the displayed questions,

and/or item nonrespondents with item nonresponse
large enough not to include them among complete
respondents.

�e above rates for Web surveys can be very variable.�e
articles published in journals in  included in the Web
of Science database and reporting the results of some
Web surveys, show the response rates vary from less than
% to close to %. (�eWeb of Science database returns
, unique records (articles) for  when entering
the following keywords: Web surveys, Web questionnaire,
Internet survey, Internet questionnaire, online survey, and
online questionnaire. A�er reading abstracts of a 7simple
random sample of  of these records, we estimate that
% of these articles actually do not report on Web sur-
veys. Among the remaining ones, for % of the articles
not enough data was provided to estimate a response rate
or they report on an unrestrictred, self-selected Web sur-
vey.) Unfortunately, no systematic study was recently done
to give an overview of response rates. However, a meta-
analysis of experimental studies comparing response rates
of Web vs. some other survey mode (Lozar Manfreda et al.
) showed that Web surveys on average yield an %
lower response rate than other survey modes, when com-
parable samples and procedures are used. �is is alarm-
ing if we assume that the level of nonresponse is also
an indicator of nonresponse bias. However, since this is
not necessarily the case (Groves and Peytcheva ),
further investigations into how Web respondents di�er
from nonrespondents are needed and some studies on this
topic have already been done (for example Bi�gnandi and
Pratesi ; Taylor et al. ; Sax et al. ).
In general, the response rate inWeb surveys depends on

di�erent factors, such as the sociological and technologi-
cal environment, survey design, and characteristics of the
respondent (Vehovar et al. ).

�e social environment indirectly a�ects participation
in Web surveys through general economic development,
telecommunication policy, educational system, technolog-
ical tradition, etc. In addition, the general survey climate,
perception of direct marketing, legitimacy of surveys and
their sponsors, data protection scandals, and opinion lead-
ers also in�uence participation. As regards Web surveys
with email invitations, the increasing problem of spam and
viruses negatively in�uence participation to a large degree
(Fan and Yan ). Email invitations may either be con-
sidered spam, and as such ignored or not even delivered
(in some email systems they are automatically intercepted
by spam �lters), or people do not want to click on the URL
address in the invitation due to the fear of viruses. �e
critical issue regarding privacy on the Internet may also
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negatively a�ect participation in Web surveys since Inter-
net users are reluctant to reveal personal information if
conditions of its use are not clearly speci�ed.

�e social environment interacts closely with the tech-
nological environment. General telecommunication and
information infrastructure is especially critical for success-
ful implementation of Web surveys. Considerable di�er-
ences can be observed with respect to Internet penetration
in various countries. By the year , Internet penetration
surpassed % of the active population only in some devel-
oped countries such as the US, Canada, some European
countries (e.g., Faroe Islands, Switzerland, Luxemburg,
Andorra, UK, Spain), or certain Asian countries (e.g.,
Japan, South Korea), and % only in a few countries (e.g.,
Greenland, Iceland, Norway, Finland, Netherlands, Swe-
den, Australia, New Zeeland). In general, while the devel-
oped world has reached a high penetration rate, in some
of the largest countries (like China, Russia, and India) as
well as in the remaining developing countries, penetration
is still below % (Internet World Stats ). In addi-
tion to the problemof non-coverage, the quality of Internet
infrastructure (speed of Internet connections) and cost for
Internet connections additionally a�ects participation in
Web surveys.
Regarding the respondents’ characteristics, response

rates to surveys usually vary across social-demographic
categories, survey experience, interest in the survey topic,
and other attitudes. In addition, for Web surveys, com-
puter literacy and the respondent’s orientation towards
computer use also become extremely important. Actu-
ally, the intensity of computer and Internet usage is the
most important predictor of cooperation in a Web sur-
vey, even when observed within the social-demographic
categories de�ned by age, gender, education, and income
(Batagelj and Vehovar ; Kwak and Radler ; Veho-
var et al. ). Of course, when computer orientation is
not controlled, it appears that the usual characteristics of
Internet usage also determine the participation in Web
surveys: respondents are younger, more educated, richer,
and male (Bandilla et al. ; Batagelj and Vehovar ;
Braungberger et al. ; McCabea et al. ). In addi-
tion, the respondent’s technical equipment may also a�ect
Web survey participation with technologically advanced
users being more willing (or able) to participate.
Although the above in�uences on web survey par-

ticipation are of extreme importance, researchers can-
not do much to change them. On the other hand, the
design of a Web survey is becoming a crucial factor by
which survey researchers can in�uence the readiness of
people to participate. Several studies have been done to

develop implementation procedures that would result in
high quality data fromWeb surveys. It has also been shown
that response rates in Web surveys can be increased par-
ticularly by incentives (e.g., Göritz ), as well as by
mixed-modes (e.g., Dillman et al. ; Greene et al. ;
Kroth et al. ), and increased number of contacts with
respondents.
In addition to developing techniques for increasing

response rates, another stream of measures address the
post-survey adjustments.�ese techniques not only com-
pensate for nonresponse, but also the non-coverage,
frame problems and non-probability nature of the sam-
ple. Besides standard weighting and imputation strategies,
propensity score adjustment is frequently used in the con-
text of Web surveys (e.g., Lee ; Lee and Valliant ;
Schonlau et al. ).
As survey response rates have been declining over the

years in general (de Leeuw and de Heer ; Grapentine
; Stoop ) and as Web surveys gain even lower
response rates than other survey modes (Lozar Manfreda
et al. ), the predictions for the future are rather nega-
tive. We can expect even less willingness to participate in
Web surveys.�erefore, the development of measures to
increase response rates (particularly incentives) seems to
be crucial. In addition, the increased use of probability-
based Internet panels (e.g., Knowledge Network in U.S.A.,
Centerdata panel in the Netherlands), as well as numerous
non-probability access panels, seem to be gainingmomen-
tum.�is will be emphasized evenmore due to lower costs
of Web survey data collection in comparison to other sur-
vey modes. �is forces survey organizations to consider
this mode of data collection, regardless of the problem of
non-coverage and higher levels of nonresponse.
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�e term “nonsampling errors” is usually employed to refer
to all the problems that can occur in sample surveys with
the exception of sampling error (which is the inherent vari-
ability of estimates from sample to sample (See the entry
Sampling distributions). Mosteller (), in a classic arti-
cle that is outdated in detail but still very much worth
reading, uses the term more broadly so that it refers to
experiments as well as surveys. In his usage it includes
such things as theHawthorne E�ect and bad breaks in ran-
dom assignment; the usage here will be con�ned to sample
surveys.
Broadly, nonsampling error can be broken down into

�ve categories as shown in Fig. : speci�cation errors, cov-
erage errors, nonresponse, response errors, and processing
errors. In this article these types of errors will be discussed
separately, but the reader should note that in reality the
issues overlap and interact – for example, a question that
tends to produce confusion in amail surveymaywork per-
fectly well in person. In addition, a brief article such as this
cannot address all possible nonsampling errors that are dis-
cussed in the literature. Please see the references at the end
of the article for fuller treatments, some older and some
newer; see also the article on Total Survey Error.

Specification Errors
Speci�cation errors occur in the planning stage of a survey
if researchers prepare an instrument that does not col-
lect the data necessary to meet the objectives of the study.

Leaving out a question the answer to which would be
crucial to the analysis would be an example.

Coverage Errors
Undercoverage errors occur when members of the target
population are missing from the frame from which the
sample is drawn. Early in the twentieth century, for exam-
ple, sample surveys in the United States had to be done
via in-person interviewing or by mail because telephone
penetration was su�ciently small as to make telephone
numbers a frame that su�ered from undercoverage in rep-
resenting the US population. As telephone penetration
grew to close to % towards the end of the twentieth
century, telephone interviewing (especially random digit
dialing using CATI, computer-assisted telephone inter-
viewing) became the method of choice for many govern-
mental and non-governmental surveys. Now as more and
more households replace their landlines with cell phones,
methods using random digit dialing sampling again suf-
fer from undercoverage, and methods are being devised
to reach the cell-phone only population. (�is is especially
di�cult in the United States where there are legal prohibi-
tions against using automated dialers to call cell phones.)
A turn toward what has been dubbed “address-based
sampling” is one current solution to these undercoverage
problems – the method uses post-o�ce address lists
(which are usually quite complete) and then reaches house-
holds either via phone if they can be traced through reverse
directories, via mail, or as a last resort because of the
expense involved, in person.
Overcoverage errors occur when the frame includes

individuals who are not members of the target population,
as when those who will not vote in an election are inter-
viewed about their voting intentions and their answers

Non-
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Nonsampling Errors in Surveys. Fig.  Conceptualization of nonsampling errors
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included in estimates of candidates’ popularity with vot-
ers. Survey researchers have devised careful questioning
and weighting procedures (most of them proprietary) to
deal with this problem of overcoverage in pre-election sur-
veys.�e issues are less straightforward in other types of
surveys.

Nonresponse Errors
If a unit from the population designated to be in the sample
cannot be reached or refuses to participate in the survey,
then what is called unit nonresponse occurs. To avoid unit
nonresponse survey researchers make repeated call-backs
and o�en o�er incentives to participate. Nonresponse error
occurs to the extent that nonresponders are di�erent from
responders and hence estimates of the quantities of interest
in the survey are biased. O�en a subsample of nonrespon-
ders is pursued with special e�orts, both to reduce unit
nonresponse and to estimate nonresponse error on the the-
ory that hard-to-reach respondents are more similar to
nonrespondents than are other respondents.
If a unit from the population responds to the survey but

leaves out answers to some of the questions, those omis-
sions are referred to as item nonresponse. When there is
item nonresponse the editing process for a survey o�en
“�lls in” those blanks by a process known as 7imputation.
(Imputation is also sometimes used for unit nonresponse.)
When a survey is longitudinal, a so-called panel survey,

in which respondents are questioned several times over a
period of months or years, there is a special kind of non-
response when a respondent who has given answers dur-
ing previous rounds of the survey cannot be contacted or
refuses to answer in the current round. Survey researchers
who carry out longitudinal surveys put in place careful
procedures to keep in touchwith respondents to help avoid
this kind of panel attrition.

Response Errors
When a respondent gives an answer to a survey question,
but that answer is “wrong,” a response error occurs.
Of course, respondents can simply lie, and one of the

reasons for lying is to maintain one’s self presentation.
Hence there is a class of so-called sensitive questions that
researchers o�en suspect respondents will be reluctant
to answer truthfully – for example, questions about ille-
gal acts or about sexual behavior. Methods for reducing
respondents’ tendency to respond untruthfully to sensitive
questions include introducing the question with a state-
ment that many people actually indulge in that behavior,
through arranging for the respondent to answer privately
(which always is the case in a mailed survey and which

can be done in-person through a sealed ballot box or by
having the respondent him/herself enter responses on the
computer screen out of view of the interviewer). A ran-
domized response protocol has been developed in which
the respondent does a randomization (e.g., tosses a coin)
and depending on the outcome (which is unknown to the
interviewer) answers the sensitive question or an innocu-
ous one (e.g., does your social security number end in
an even digit?). Since both the probability distribution for
the outcome of the randomization device and that for the
answer to the innocuous question are known, an estimate
of the proportion of respondents admitting to the sensi-
tive behavior can be generated. Of course, complications
arise with any attempt to relate those answers to other
variables.
Sometimes respondents give an incorrect answer

because of memory problems. Survey researchers have
developed memory aids to help solve this problem – for
example, a respondent can �ll in a time line in order to
remember events in his/her own history. In a longitudi-
nal study, o�en the events reported in the �rst interview
are not used as data but only to “bound” the respondent’s
memory in the subsequent interview. In the second and
subsequent interviews, the respondent is reminded about
the events s/he reported up to the time of the previous
interview and asked what has happened since that time. A
special kind of forgetting is called “telescoping,” in which
the respondent reports events that happened before the
start of the reference period as having happened during
the reference period.Huttenlocher et al. () have shown
that telescoping can be a natural result of how elapsed time
is stored in memory.

Instrument Errors
�e di�ering modes of survey presentation, whether an
in-person interview (using either a paper 7questionnaire
or a computer), a mailed questionnaire, a survey on the
web, or a telephone interview can make a di�erence in
how the respondent understands and answers the ques-
tions.�is is a broad �eld of study; a current reference is
Biemer andLyberg ().DonDillman andhis colleagues
have made deep studies of the e�ects of the physical form
of the questionnaire and of how to design both paper sur-
veys and computer displays to avoid errors generated by
the physical layout. See, for example, Dillman et al. ().

�e problemofwording of questions and their e�ect on
nonsampling error was for many years more of an art than
a science. In recent years some progress has been made
in systematizing this knowledge and providing theoretical
underpinnings.�e movement to study cognitive aspects
of survey methodology (CASM) was given impetus by a
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seminar described the Jabine et al. (). It is now stan-
dard practice to do cognitive interviewing as part of the
questionnaire design and testing process and thus avoid
some misunderstandings as sources of nonsampling error.
Useful works contributing to this part of the understanding
of nonsampling errors are Tanur (), Tourangeau et al.
() and Sudman et al. ().

Interaction
�e earliest surveys, Converse () reports, were carried
out by a researcher on his/her own behalf – interview-
ing respondents to �nd out what s/he wanted to know.
It was an individual e�ort and conversations were o�en
quite informal, with the aim of getting the information
needed from the respondent and without any particular
e�ort to standardize the questions asked. But as surveys got
larger and the number of interviewers grew correspond-
ingly large, researchers began to insist on standardization.
�e ideal was to have every interviewer ask every respon-
dent the same questions in the same order using the exact
same words and the same intonation. In a landmark article
Suchman and Jordan () showed that such standardiza-
tion could sometime not only irritate respondents to the
extent that they would be reluctant to continue the inter-
view, but could also lead to such gross misunderstandings
that incorrect data were recorded, thus providing another
source of nonsampling error. Michael Schober and Fred
Conrad and their colleagues (e.g., Conrad and Schober
) have experimented with conversational interview-
ing to try to alleviate that problem. �ey �nd, in partic-
ular, that when the respondent’s situation is complicated,
conversational interviewing ismore likely to result in accu-
rate data than more standardized procedures. When the
respondent’s situation is simple there seems to be little gain
in conversational interviewing.

�e race of the interviewer and of the respondent and
whether theymatch have long been suspected as sources of
nonsampling error. By the early s survey researchers
believed that the race of the interviewer had an e�ect
only when the topic was itself concerned racial matters. In
recent pre-election polling in the United States there was
fear that a so-called Bradley e�ect (or Wilder e�ect) might
occur. Such a putative e�ect posits that white respon-
dents are unwilling to say that they would vote against
a Black candidate when interviewed, but were willing to
vote against a Black candidate in the privacy of the vot-
ing booth.�ere seems to be little evidence that a Bradley
e�ect occurred in the polling the preceded the election of
Barak Obama in .

Processing
As survey data are edited for consistency and for
imputation, errors can be introduced. Vigilance and both
computer and human checking are the only ways such
errors can be caught and corrected.
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Introduction
As explained in the entry 7Uniform Random Number
Generators, the simulation of random variables on a com-
puter operates in two steps: In the �rst step, uniform ran-
domnumber generators produce imitations of i.i.d.U(, )
(uniform over (,)) random variables, and in the sec-
ond step these numbers are transformed in an appropriate
way to imitate random variables from other distributions
than the uniform ones, and other types of random objects.
Here we discuss the second step only, assuming that in�-
nite sequences of (truly) i.i.d. U(, ) random variables
are available from the �rst step. �is assumption is not
realized exactly in so�ware implementations, but good-
enough approximations are available (L’Ecuyer ).
For some distributions, simple exact transformations

from the uniform to the target distribution are available,
usually based on the inversion method. But for many
types of distributions and processes, in particular those
having shape parameters, and multivariate distributions,
one relies on approximations that require a compromise
between e�ciency and approximation error. �at is, the
sampling is not always done exactly from the target dis-
tribution, but the discrepancy between the sampling and
target distributions can o�en be made smaller with more
work. �is work is generally divided in two parts: A
one-time setup cost to compute constants and tables that
depend on the distribution parameters, and a marginal
cost for each random variate generated from this distribu-
tion.�emarginal speed and also the quality of the approx-
imation can o�en be improved by a larger investment in
the setup time, sometimes to precompute larger tables.

�is investment can beworthwhile when a large number of
random variates has to be generated from the same distri-
bution, with the same shape parameters. Robustness with
respect to shape parameters is another issue: Some meth-
ods provide a good approximation only in a certain range
of values of these parameters, so onemust be careful not to
use the generator outside that range.
Generally speaking, inversion should be the preferred

method whenever it is feasible and not too ine�cient,
because of its compatibility with important variance-
reduction techniques such as common random num-
bers, antithetic variates, randomized quasi-Monte Carlo,
etc. (Law and Kelton ; L’Ecuyer ).
Inversion is not always convenient, in particular for

complicated multivariate distributions, for which the den-
sity is sometimes known only up to a multiplicative
constant. One important approximation method for that
situation is Markov chain Monte Carlo (MCMC) (see
7Markov Chain Monte Carlo Methods), which constructs
an arti�cial Markov chain (see 7Markov Chains) whose
stationary distribution is the target distribution. A random
variate that follows approximately the target distribution is
obtained by returning the current state a�er running the
Markov chain long enough; see the entry 7Monte Carlo
Statistical
Methods.
In the remainder, we brie�y summarize some of the

most basic techniques. Detailed coverages of non-uniform
variate generation can be found in (Devroye (; )
and Hörmann et al. ).

Inversion
A general transformation that provides a univariate ran-
dom variable X having the cumulative distribution func-
tion (cdf) F from a U(, ) random variable U is X =

F−(U), where F− : [, ] → R is the inverse distribution
function, de�ned as

F−(u) def= inf{x ∈ R ∣ F(x) ≥ u}.

�is is the inversion method.
As an illustration, if X is a binomial random variable

with parameters (n, p) = (, .), then we have P[X = i] =
pi where p = (.) = ., p =  × . × . = .,
p = (.) = ., and pi =  elsewhere. Inversion then
returns X =  if U < ., X =  if . ≤ U < ., and
X =  if U ≥ .. Another simple way of generating X
here is to generate two Bernoulli random variables X and
X by inversion from two independent uniforms U and
U, i.e., X = I[U < p] and X = I[U < p], where I is the
indicator function, and return X = X + X.�is method
requires two uniforms and is not inversion for X.
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For certain distributions, there is a closed-form for-
mula for F−. For example, if X has a discrete uniform dis-
tribution over {, . . . , k− }, we have X = F−(U) = ⌊kU⌋.
IfX is geometric with parameter p, so P[X = x] = p(−p)x

for x = , , . . . , we have X = F−(U) = ⌈ln( − U)/ ln
(−p)⌉− = ⌊ln(−U)/ ln(−p)⌋with probability . IfX is
exponential, with rate λ, thenX = F−(U) = − ln(−U)/λ.
To generateX with cdf F but truncated to an interval (a, b],
it su�ces to generateU uniform over (F(a),F(b)], and to
return F−(U).
For certain distributions there is no closed-form

expression for F− but good numerical approximations are
available. For distributions having a location and a scale
parameter, we only need a good approximation of F− for
the standardized form of the distribution, say with location
at  and scale . We generate from the standardized distri-
bution, then multiply by the scale parameter and add the
location parameter.�is applies in particular to the normal
distribution, for which good numerical approximations of
the standard inverse cdf Φ− are available. For example, the
probdist package of SSJ (L’Ecuyer ) implements a
slight modi�cation of a rational Chebyshev approximation
proposed in Blair et al. (), which is quite fast and pro-
vides essentially machine-precision accuracy when using
-bit �oating point numbers. For any u ∈ (, ) that can
be represented by such a �oating-point number (given as
input), the approximation procedure returns Φ−(u) with
relative error smaller than −.
In general, given an approximation F̃− of F−, the

absolute error onX for a givenU is ∣F̃−(U)−F−(U)∣.�e
corresponding error onU is ∣F(F̃−(U))−U∣.�is second
error can hardly be less than the error in the representation
of U, and we are also limited by the machine precision on
the representation ofX. If one of these two limits is reached
for eachU ∈ [, ], for practical purposes we have an exact
inversion method.
When shape parameters are involved (e.g., for the

gammaandbeta distributions), things aremore complicated
because a di�erent approximation of F− must be con-
structed for each choice of shape parameters.
When we have an algorithm for computing F but not

F−, and F is continuous, as a last resort we can always
approximateX = F−(U) by a numericalmethod that �nds
a root of the equationU = F(X) for a givenU. For instance,
we can run the robust Brent-Dekker iterative root �nding
algorithm (Brent , Chapter ) until we have reached
the required precision, as done by default in SSJ (L’Ecuyer
).
Faster inversion algorithms for �xed shape parame-

ters can be constructed if we are ready to invest in setup
time.�ese methods are called automatic when the code

that approximates F− is produced automatically by a gen-
eral one-time setup algorithm (Hörmann et al. ).�e
setup computes tables that contain the interpolation points
and coe�cients. With these tables in hand, random vari-
ate generation is very fast. For example, a general adaptive
method that constructs an accurate Hermite interpola-
tion method for F−, given a function that computes F, is
developed in Hörmann and Leydold (). In Der�inger
(), the authors propose an algorithm that constructs an
approximation of F− to a given accuracy (speci�ed by the
user) for the case where only the density of X is available.
�is algorithm is an improvement over similar methods
in Ahrens and Kohrt (). �ese methods assume that
the distribution has bounded support, but they can be
applied to most other distributions by truncating the tails
far enough for the error to be negligible.
For discrete distributions, say over the values x < ⋯ <

xk, inversion �nds I = min{i ∣ F(xi) ≥ U} and return X =

xI . To do this, onemay �rst tabulate the pairs (xi,F(xi)) for
i = , . . . , k, and then �nd I by sequential or binary search
in the table (L’Ecuyer ). However, the fastest imple-
mentation when k is large is obtained by using an index
(Chen and Asau ; Devroye ).�e idea is to par-
tition the interval (, ) into c subintervals of equal sizes,
[ j/c, ( j+)/c) for j = , . . . , c−, and store the smallest and
largest possible values of X for each subinterval, namely
Lj = F−( j/c) and Rj = F−(( j + )/c). Once U is gener-
ated, we �nd the corresponding interval number J = ⌊cU⌋,
and search for I only in that interval, with linear or binary
search.�e fastest average time per call is usually obtained
by taking a large c (so that k/c does not exceed a few units),
and linear search in the subintervals (tominimize the over-
head).�e resulting algorithm is as fast (on average) as the
alias method (Law and Kelton ; Walker ), which
is o�en presented as the fastest algorithm but does not
preserve inversion. If k is large or even in�nite, for example
for the Poisson distribution or the 7binomial distribu-
tion with a large n, the pairs (xi,F(xi)) are precomputed
and tabulated only in the areas where the probabilities
are not too small, usually around the center of the dis-
tribution. Other values are computed dynamically only in
the very rare cases where they are needed. Similar index-
ing techniques can also be used for piecewise-polynomial
approximations of F− for continuous distributions.

Rejection Methods and Thinning
When inversion is too costly, the alternative is o�en a
rejection method. It works as follows. Suppose we want
to generate X from density f . It su�ces to know f up to a
multiplicative constant, i.e., to know κf , where κ might be
unknown. If f is known, we take κ = . We pick a density
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r such that κf (x) ≤ t(x) def= ar(x) for all x for some con-
stant a, and such that sampling random variates Y from r
is easy.�e function t is called a hat function. Integrating
this inequality with respect to x on both sides, we �nd that
κ ≤ a. To generateX with density f , we generateY from the
density r and U ∼ U(, ) independent of Y , repeat this
until Ut(Y) ≤ κf (Y), and return X = Y (Devroye ;
von Neumann ).�e number of times we have to retry
is a geometric random variable with mean a/κ −  ≥ . We
want a/κ to be as small as possible.
If κf is expensive to compute, computations can o�en

be accelerated by using squeeze functions q and q that
are less costly to evaluate and such that q(x) ≤ κf (x) ≤

q(x) ≤ t(x) for all x. A�er generating Y , we �rst check
if Ut(Y) ≤ q(Y). If so we accept Y immediately. Oth-
erwise if Ut(Y) ≥ q(Y), we reject Y immediately. We
verify the condition Ut(Y) ≤ κf (Y) explicitly only when
none of the two previous inequalities is satis�ed. One may
also usemultiple levels of embedded squeezing, with crude
squeezing functions that are very quick to evaluate at the
�rst level, then tighter but slightly more expensive ones at
the second level, and so on.
Inmost practical situations, rejection is combinedwith

a change of variable to transform the original density into
a nicer one, for which a more e�cient implementation of
the rejection method can be constructed. �e change of
variable can be selected so that the transformed density is
concave and a piecewise linear hat function is easy to con-
struct. Typical examples of transformations can be T(x) =
log x and T(x) = −x−/, for instance (Devroye ;
Hörmann et al. ). �e rejection method also works
for discrete distributions; we just replace the densities by
the probability mass functions.
One special case of change of variable combined with

rejection leads to the ratio-of-uniformsmethod. It is based
on the observation that if X has density f over the real
line, κ is a positive constant, and the pair (U,V) has the
uniform distribution over the set

C = {(u, v) ∈ R such that  ≤ u ≤
√

κf (v/u)} ,

then V/U has the same distribution as X (Devroye ;
Kinderman and Monahan ). �us, one can generate
X by generating (U,V) uniformly over C, usually by a
rejection method, and returning X = V/U.
A special form of rejection called thinning is frequently

used to generate non-homogeneous 7point processes. For
example, suppose we want to generate the jump times of
a Poisson process (see 7Poisson Processes) whose time-
varying rate is {λ(t), t ≥ }, where λ(t) ≤ λ̄ at all time t
for some constant λ̄.�enwe can generate pseudo-jumps at

constant rate λ̄ by generating the times between successive
jumps as i.i.d. exponentials withmean /λ̄. A pseudo-jump
at time t is accepted (becomes a real jump) with probability
λ(t)/λ̄.

Multivariate Distributions
A d-dimensional random vector X = (X, . . . ,Xd)

t has
distribution function F if P[X ≤ x, . . . ,Xd ≤ xd] =

F(x, . . . , xd) for all x = (x, . . . , xd)t ∈ Rd. �e dis-
tribution function of a random vector does not have an
inverse in general, so the inversion method does not apply
directly to multivariate distributions.�ere are situations
where one can generate X directly by inversion from its
marginal distribution, then generate X by inversion from
its marginal distribution conditional on X, then generate
X by inversion from its marginal distribution conditional
on (X,X), and so on. But this is not always possible or
convenient.

�ere are important classes of multivariate distribu-
tions for which simple and elegant methods are available.
For example, suppose X has a multinormal distribution
with mean vector µ and covariance matrix Σ. When µ = 
and Σ = I (the identity), we have a standard multinormal
distribution.�is one is easy to generate: the coordinates
are independent standard normals, and they can be gener-
ated separately by inversion. For the general case, it su�ces
to decompose Σ = AAt, generate Z standard multinor-
mal, and return X = µ + AZ. �e most popular way to
decompose Σ is the Cholesky decomposition, for which A
is lower triangular, but there are in fact many other possi-
bilities, including for example the eigendecomposition as
in 7principal component analysis.�e choice of decom-
position can have a large impact on the variance reduction
in the context of randomized quasi-Monte Carlo integra-
tion, by concentrating much of the variance on just a few
underlying uniform random numbers (Glasserman ;
L’Ecuyer ).
Multivariate normals are useful for various purposes.

For example, to generate a random point on a sphere in
d dimensions centered at zero, generate a standard multi-
normal vector Z, then normalize its length to the desired
radius.�is is equivalent to generating a random direction.
A more general class of multivariate distributions named
radially symmetric are de�ned by putting X = RZ/∥Z∥
where Z/∥Z∥ is a random direction and R has an arbitrary
distribution over (,∞). For example, if R has the Student
distribution, thenX is multivariate Student. A further gen-
eralization yields the elliptic multivariate random variable:
X = µ + RAZ/∥Z∥ where Z is a multinormal in k dimen-
sions and A is a d × kmatrix. It is easy to generate X if we
know how to generate R.
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A very rich class of multivariate distributions are
de�ned via copula methods (Hörmann and Der�inger
; Nelsen ). Start with an arbitrary d-dimensional
cdf G with continuous marginals Gj, generate Y
= (Y, . . . ,Yd)

t from G, and let U = (U, . . . ,Ud) =

(G(Y), . . . ,Gd(Yd))
t. At this point, the Uj have the uni-

form distribution over (, ), but they are not independent
in general. �e cdf of U is the copula associated with G
and it speci�es the dependence structure of the vector U.
In fact, any cdf over (, )d with uniform marginals can
act as a copula. To generate a vector X = (X, . . . ,Xd)

t

with arbitrary marginal cdf ’s Fj and a dependence struc-
ture speci�ed by this copula, just put Xj = F−j (Uj) for
each j. A popular choice for G is the multinormal cdf
with standard normal marginals; then Y and U are easy
to generate, and one can select the correlation matrix of
Y to approximate a target correlation (or rank correla-
tion) matrix for X.�is is known as the NORTA (normal
to anything) method. It can usually match the correla-
tions prettywell. But to approximate thewhole dependence
structure in general, a much richer variety of 7copulas
is required (Hörmann and Der�inger ; Nelsen
).

�e rejection method extends rather straightforwardly
to the multivariate case. For a known target d-dimensional
density f , pick a d-dimensional density r such that f (x) ≤
ar(x) for all x and some constant a, and such that sampling
randomvectorsY from r is easy. To generateXwith density
f , generate Y from r and U ∼ U(, ) independent of Y,
until Uar(Y) ≤ f (Y), and return X = Y.

Stochastic Processes
Various types of7stochastic processes can be simulated in
a way that becomes obvious from their de�nition.�e Lévy
processes form an important class; they are continuous-
time stochastic processes {Y(t), t ≥ } with Y() = 
andwhose increments over disjoint time intervals are inde-
pendent, and for which the increment over a time inter-
val of length t has a distribution that depends only on t
(the mean and standard deviation must be proportional
to t) (Asmussen and Glynn ; Bertoin ). Special
instances include the (univariate ormultivariate)Brownian
motion (see 7Brownian Motion and Di�usions), the sta-
tionary Poisson process, the gamma process, and the inverse
Gaussian process, for example, whose increments have the
(multi)normal, Poisson, gamma, and inverse Gaussian dis-
tributions (see 7Inverse Gaussian Distribution), respec-
tively. A natural way to generate a Lévy process observed
at times  = t < t < ⋯ < tc is to generate the independent
incrementsY(tj)−Y(tj−) successively, for j = , . . . , c.�is
is the random walkmethod.

For certain 7Lévy processes (such as those men-
tioned above), for any t < s < t, it is also easy
to generate Y(s) from its distribution conditional on
{Y(t)= y, Y(t)= y} for arbitrary y, y.�en the tra-
jectory can be generated via the following Lévy bridge
sampling strategy, where we assume for simplicity that
c is a power of . We start by generating Y(tc) from
the distribution of the increment over [, tc], then we
generate Y(tc/) from its distribution conditional on
(Y(t),Y(tc)), then we apply the same technique recur-
sively to generate Y(tc/) conditional on (Y(t),Y(tc/)),
Y(tc/) conditional on (Y(tc/),Y(tc)), Y(tc/) condi-
tional on (Y(t),Y(tc/)), and so on.�is method is con-
venient if one wishes to later re�ne the approximation of
a trajectory. It is also e�ective for reducing the e�ective
dimension in the context of quasi-Monte Carlo methods
(L’Ecuyer ).
For the Poisson process, one usually wishes to have the

individual jump times, and not only the numbers of jumps
in predetermined time intervals. For a stationary Poisson
process, the times between successive jumps are easy to
generate, because they are independent exponential ran-
dom variables. For a non-stationary Poisson process, one
way is to apply a nonlinear time transformation to turn it
into a standard stationary Poisson process of rate , gener-
ate the jumps times of the standard process, and apply the
reverse time transformation to recover the jump times of
the target non-stationary Poisson process.�is idea applies
to other continuous-time stochastic processes aswell, aswe
now explain.
GivenaprocessX = {X(t), t ≥ }, andanotherprocess

T = {T(t), t ≥ } with nondecreasing trajectories, called
a subordinator, we can de�ne a new process Y = {Y(t) def=
X(T(t)), t ≥ }, which is the process X to which we have
applied a random time change.�is can be applied to any
process X with index t ∈ R. If both X and T are Lévy
processes, then so is Y . If X is a stationary Poisson process
with rate  and we want a nonstationary Poisson process
Y with rate function {λ(t), t ≥ }, then we must take
T(t) = Λ(t) def= ∫

t
 λ(s)ds. To simulate Y , we generate the

jump times Z < Z < ⋯ of the stationary process X by
generatingZj−Zj− as independentexponentialswithmean
, and de�ne the jump times of Y as Tj = Λ−(Zj) for j ≥ .
If X is a one-dimensional Brownian motion, the ran-

dom time change is equivalent to replacing the con-
stant volatility parameter σ of the Brownian motion by a
stochastic (time-varying) volatility process {σ(t), t ≥ }.
Two notable examples of Lévy processes that can act as
subordinators are the gamma process and the inverse
Gaussian process, respectively.�eir use as subordinators
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for the Brownian motion yields the variance gamma and
the normal inverse Gaussian processes. Brownian motions
with such a random time change do provide a much better
�t to various types of �nancial data (such as the log prices
of stocks and commodities, etc.) than standard Brownian
motions, and they recently became popular for this reason.
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Brief Historical Background
�e normal distribution is used extensively in probabil-
ity theory, statistics, and the natural and social sciences.
It is also called the Gaussian distribution because Carl
Friedrich Gauss () used it to analyze astronomical
data. �e normal distribution was (a) �rst introduced
by Abraham de Moivre (), as an approximation to a
7binomial distribution (b) used by Laplace (), as an
approximation to hypergeometric distribution to analyze
errors of experiments and (c) employed, in the past, by
Legendre, Peirce, Galton, Lexis, Quetelet, etc. �e nor-
mal distribution can be used as an approximation to other
distributions because the standardized sumof a large num-
ber of independent and identically distributed random
variables is approximately normally distributed.�us, the
normal distribution can be used when a large number
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of non-normal distribution correspond more closely to
observed values. �e  work of Gauss (Gauss ) is
the earliest result of this kind when he derived the normal
distribution as the sum of a large number of independent
astronomical data errors. �e central limit theorem (see
7Central Limit�eorems) for independent and identically
distributed random variables was established by Lyapunov
(). �is result was extended to non identically dis-
tributed random variables by Lindeberg () and for
non-independent random variables later on (see Loève
; Gnedenko and Kolmogorov ).

Important Properties and Results
�e normal distribution has a continuous probability den-
sity function which is bell-shaped and has its maximum
at the mean (Figs.  (Normal densities) and  (Cumulative
distribution functions)).

�e expression for density function along with various
basic important results are listed below:

. Notation: X ∼ N(µ, σ )
. Probability density function:

f (x) = ((π)/σ)− exp[−(x − µ)/(σ )],−∞ <

x, µ <∞, σ > 

. Mean (location parameter), Median, and Mode:
E(X) = µ = median = mode.

. Variance (shape parameter): V(X) = σ 

. Coe�cient of skewness: τ = 
. Coe�cient of kurtosis: τ = 

. Standard normal variate: Y = (X − µ)/σ ∼ N(, )
. Standard normal density function:

ϕ(y) = (π)−/ exp(−y/),−∞ < y <∞
. Folded normal density function:

g(y) = ((π)/σ)− exp[−y/(σ )], y > , σ > 
. Cumulative distribution function corresponding to ():

φ(x) = [ + erf (x/
√
)] /,

where erf (x) = (/π/)∫
x


e−t



dt = (/π/)
∞

∑
n=

[(−)nxn+/{n!(n + )}].

. 7Moment generating function:

MX(t) = exp(µt + σ t/)

. Characteristic function:

ϕX(t) = exp(iµt − σ t/), i = (−)/

. nth central moment:

µn = E(X − µ)n =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

, n-odd

n!σ n
/[n/(n/)!], n-even

. L-moments: λ = µ, λ = σ/π/, λ = 
. Shannon entropy: H(X) = (/) ln(πeσ )
. Rényi entropy of order α:

Hα(X) = (/) ln(πσ ) − (ln α)/[( − α)]

. Song measure: V(ln f (X)) = − lim
α→

dHα(X)
dα

= /
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. Fisher information: (a) of the distribution of X is
I(X) = σ−, (b) with respect to µ is I(µ) = σ− and
(c) with respect to σ  is I(σ ) = (σ )−

Some properties of the normal distribution are given
below:

. If X ∼ N(µ, σ ), then (a) aX + b ∼ N(aµ + b, aσ ),
where a and b are real numbers and (b) Y = eX ∼ log
normal(µ, σ ).

. IfX, . . . ,Xn withXi ∼ N (µi, σ i ) , i = , . . . ,n are inde-

pendent, then
n
∑
i=

aiXi ∼ N (
n
∑
i=

aiµi,
n
∑
i=

ai σ i ) where

a, . . . , an are real numbers.
. If X, . . . ,Xn, Xi ∼ N(, ), i = , . . . , n are indepen-

dent, then
n
∑
i=

Xi ∼ χn .

. For a sample of size n from N(µ, σ ), the sam-

ple mean X =
n
∑
i=

Xi/n and sample variance

S =
n
∑
i=

(Xi − X)

/(n − ) are independent.

. If Xi ∼ N(, ), i = , , then Y = X/X has the Cauchy
distribution with density function g(y) = [π( +
y)]−, y ∈ R.

. If X ∼ N(, σ ), then ∣X∣ is folded normal.
. Central Limit�eorem (Lyapunov): If X, . . . ,Xn are
independent and identically distributed random vari-
ables with �nite mean and variance, then [X −

E(X)]/[V(X)
/

] ∼ N(, ), as n →∞.

Importance of Normal Distribution in
Statistics
. �e sample mean X: (a) is the maximum likelihood
estimator for the population mean µ and (b) has the
distribution N(µ, σ /n).

. �e sample variance S is the unbiased estimator for
the population variance σ .

. (n − )S/σ  ∼ χn−.
. S ∼ Γ((n − )/, σ /(n − )).
. Moment Estimators:�e method of moments leads to
estimating µ by X and σ  by

n
∑
i=

(Xi − X)

/n.

. �e sample mean of i.i.d random variables Xi ∼

N(µ, σ ), i = , . . . ,n is consistent for µ and the sample
variance for σ .

. �e statistic (X, S) is a su�cient statistic for (µ, σ ).
. 7Cramér-Rao inequality implies that X is the mini-
mumvariance unbiased estimator of µ. In otherwords,
X is e�cient.

. Con�dence Intervals: Let X , . . . ,Xn be i.i.d random
variables with Xi ∼ N(µ, σ ), i = , . . . ,n. �en the
symmetric ( − α)-level con�dence interval:
(a) for µ, given σ , is (X−zα/σ/n/,X+zα/σ/n/),
where zα/ is given by P(Y ≥ zα/) = α/, for Y ∼

N(, );
(b) for σ , with µ unknown, is ((n − )S/χn−,α/,

(n − )S/χn−,−α/), and
(c) for σ  , with µ known, is

(
n

∑
i=

(Xi − µ)/χn,α/ ,
n

∑
i=

(Xi − µ)/χn,−α/) .
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�e con�dence intervals are used in hypothe-
ses testing problems involving µ and σ .

An Approximation to the Normal
Distribution
Several approximations to the normal distribution are
available in the literature. In , Rathie and Swamee
(see Rathie et al. ) de�ned a family of invertible dis-
tributions by taking the generalized logistic distribution
function as

. F(x) = [ + exp{−x(a + b ∣x∣p)}]− , x ∈ R, a, b, p > .
�is distribution is a very good approximation for

a = ., b = ., and p = . with a max-
imum error of (a)  × − at x = , to the standard
normal density function, and (b) . × − at x =

±. to the cumulative standard normal distribution
function. It may be pointed out that for certain sets of
values of the parameters a, b, and p, this distribution
approximates very well the Student t-distribution.�e
density function corresponding to () is given by

. f (x) = [a + b( + p)∣x∣p] exp [−x(a + b∣x∣p)] /
[ + exp{−x(a + b∣x∣p)}] ,
x ∈ R, a, b, p > .

Some Applications and Computational
Aspects
�e normal distribution is used in various practical appli-
cations occurring in many areas such as Economics (used
earlier to analyze exchange rates, stockmarkets, etc.; nowa-
days heavy tailed distributions, such as Lévy distribu-
tion, are used), Medical Sciences (blood pressure of adults
(males or females)), Physics (measurement errors, heat
equation), Election predictions, etc.
Most statistical and mathematical packages may be

used for numerical and symbolical calculations of sev-
eral results concerning the normal distribution as well as
for verifying if a given data set is approximately normally
distributed. �ere are several methods to generate val-
ues that have normal distribution. Box and Muller (see
Rubinstein and Kroese ) gave an easy method of
generating variables from N(, ) based on the follow-
ing result. Let U and U be independent random vari-
ables from uniform distributionU(, ).�en the random
variables

. X = (− lnU)/ cos(πU)
and

. Y = (− lnU)/ sin(πU)
are independent N(, ).

Alternatively, variables from approximate N(, )
given in Eq. () can be generated from the following
expressions derived by Rathie and Swamee () (see
Rathie et al. ):

. x =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
∞

∑
k=

[(−b/a)kΓ(kp + k + )/{kΓ(kp + )}]

×[a− ln{( − F)/F}]kp+, F ≤ .

∞

∑
k=

[(−b/a)kΓ(kp + k + )/{k!Γ(kp + )}]

×[a− ln{F/( − F)}]kp+, F ≥ .
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Normal Scores

Lelys Bravo de Guenni
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Normal scores use the ranks of a data set to calculate stan-
dard normal quantiles of the same size than the original
data set.�e aim of this calculation is mainly to compare
each sample value with the expected value of the order
statistic of the same rank from a standard normal distribu-
tion sample of the same sample size than the original data
set.�e expected values of the7order statistics of a sample
from a standard normal distribution are the sorted values
in increasing order. Plots of the original data or sample
quantiles versus the quantiles or scores derived from the
standard normal distribution are best known as the Nor-
mal Quantile–Quantile plots or Normal Q–Q plots where
Q stands for quantile.�ese plots are commonly used as
a simple test for normality in a graphical way. If the data
set is a sample from a normal probability distribution,
the Q–Q plot should show a linear relationship (Barnnet
).

�e best way to explain how to calculate the normal
scores is through an example. Suppose we have the sample

X = (x, . . . , xn), which arises from a certain distribution
function F with location and scale parameters µ and σ .�e
ordered sample values are denoted as x(), . . . , x(n). As a
speci�c case assume X = (., ., ., ., ., ., .) with
sample size n = . Associated to this sample we can calcu-
late the standard normal quantile zk/(n+) for each xk where
k is the rank of the observation; k/(n + ) is the plotting
position and Φ is the standard normal probability distri-
bution function. In other words, zk/(n+) = Φ−(k/(n+)).
In our example the rank of the observation . is i = .�e
quantile z/(+) = z. is . Detailed calculations for the
sample data set are presented in Table .
Plotting positions are plausible empirical estimates of

F[(x(k) − µ)/σ]. To calculate the plotting position there
are several options as summarized by Hyndman and Fan
(). If p(k) is the plotting position of rank k the follow-
ing expressions for p(k)may be considered:

. p(k) = k/n
. p(k) = (k − .)/n
. p(k) = k/(n + )
. p(k) = (k − )/(n − )
. p(k) = (k − /)/(n + /)
. p(k) = (k − /)/(n + /)

�e di�erences of using di�erent plotting position
formulas in the resulting Q–Q plots will be very small.
For small sample size (n < ) R Development Core
Team () uses option  and has implemented the
function qqnorm to produce Normal Q–Q plots. For our
sample data set qqnorm produces Fig. . Other authors
as Hyndman and Fan () recommend the use of
option .

Normal Scores. Table  Normal scores for the sample
data X

Ordered sample data Plotting position Normal scores

. / −.

. / −.

. / −.

. / 

. / .

. / .

. / .
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The Importance of Testing for Normality
Many statistical procedures such as estimation and
hypothesis testing have the underlying assumption that
the sampled data come from a normal distribution. �is
requires either an e�ective test of whether the assump-
tion of normality holds or a valid argument showing that
non-normality does not invalidate the procedure. Tests of
normality are used to formally assess the assumption of the
underlying distribution.
Much statistical research has been concerned with

evaluating the magnitude of the e�ect of violations of the
normality assumption on the true signi�cance level of a
test or the e�ciency of a parameter estimate. Geary ()
showed that for comparing two variances, having a sym-
metric non-normal underlying distribution can seriously
a�ect the true signi�cance level of the test. For a value
of . for the kurtosis of the alternative distribution, the
actual signi�cance level of the test is ., as compared
to the nominal level of . if the distribution sampled
were normal. For a distribution with a kurtosis value of ,
the probability of rejection was .. On the other hand,
for the t-test the distortion of a Type I error is small if
the underlying distribution is symmetric; however, if the
underlying distribution is asymmetric or skewed, marked
changes to the probability of rejection can occur. For the
two sample t-test Geary concluded that if the underlying
distribution is the same for both populations, regardless of
the type of non-normality, the changes in the probability
that the null hypothesis is rejected are small. Large di�er-
ences can occur if the distributions are di�erent. Others
have corroborated these �ndings (e.g., Box (), Pearson
and Please (), Subrahmaniam et al. ()): that com-
parative tests on means are not very sensitive when the
departure from normality is the same in the di�erent
groups. Type I error in tests of variance and single sample
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t-tests can be greatly a�ected depending on the type and
degree of non-normality.
Tukey () addressed the problem of robustness

in estimation against slight departures from normality.
He showed the e�ects of non-normality on estimates of
location and scale parameters of a distribution which was
an unbalanced mixture of two normal distributions with
common mean and di�erent variances. Under such cir-
cumstances he stated that “. . . neither mean nor variance
is likely to be a wisely chosen basis for making estimates
from a large sample.” D’Agostino and Lee () compared
the e�ciency of several estimates of location, including the
sample mean, when the underlying distribution was either
a Student’s t or exponential power distribution, both of
which are symmetric families of distributions.�e e�cien-
cies of the estimates were compared based on the kurtosis
value of the underlying distributions. For the t distribution
the relative e�ciency of the sample mean only decreases
to about % for a kurtosis value of  (corresponding to a
t distribution with  degrees of freedom) compared to
when the sample is from a normal distribution. For the
exponential power distribution family, however, the rel-
ative e�ciency of the sample mean drops quickly and
decreases to about % when the kurtosis value is  (the
Laplace distribution).
Tests for normality are useful for applications other

than checking assumptions for estimates and tests. For
example, some tests for normality have been found to be
e�ective at detecting 7outliers in a sample.�ey also have
promise as a tool in cluster analysis (see7Cluster Analysis:
An Introduction)where the alternative is a normalmixture
model, with applications to genetics as an example.

Testing Distributional Hypotheses
�ere are more tests designed to assess normality than for
any other speci�c distribution. Many normality tests take
advantage of special properties of the normal distribution,
for example, general absolute moment tests are based on
unique relations among the moments of the normal dis-
tribution. �e usual measure of the worth of a test for
normality is its power, i.e., the probability of detecting a
non-normal distribution.
Suppose you have a random sample of n indepen-

dent and identically distributed observations of a random
variableX, labeled x, x, . . . , xn, from an unspeci�ed prob-
ability density f (x).�e general goodness of �t problem
consists of testing the null hypothesis

H : f (x) = f(x)

against an alternative hypothesis.�e probability density
in the null hypothesis f(x) has a speci�ed distributional

form. When the parameters are completely speci�ed, the
null hypothesis is called a simple hypothesis. If one ormore
of the parameters in H are not speci�ed, H is called a
composite hypothesis. We will only consider tests of the
composite hypothesis of normality

H : f (x) = N(µ, σ )

where both the mean µ and standard deviation σ are
unknown.�is is more commonly the case of interest in
practice. �e tests which we will describe are also loca-
tion and scale invariant, i.e., they have the property that
a change in the location or scale of the observations do not
a�ect the test statistic T, i.e.,

T(x, x, . . . , xn) = T(kx − u, kx − u, . . . , kxn − u)

for constants k and u.�is is a desirable property of a test
since the parameters do not a�ect the shape of the normal
distribution. For most statistical procedures, distribution
assumptions which are made usually only concern shape.

Types of Normality Tests
Which of the many tests for normality is the best to use
in a speci�c situation depends on how much is known
or assumed about the alternative hypothesis. Normality
tests have been derived based on alternative hypotheses
ranging from speci�c distributions to non-normality of a
completely unspeci�ed nature.
Likelihood ratio tests and most powerful location and

scale invariant (MPLSI) tests were derived for detecting
speci�c alternative distributions to normality.�ese tests
are based on the joint probabilities of the null and alterna-
tive distributions, conditional on the values of the obser-
vations. �e likelihood ratio test (LRT) for the uniform
(David et al. ) and for the double exponential alterna-
tives (Utho� ) are among the most powerful for these
speci�c alternatives and distributions that are similar in
shape; MPLSI tests show good power for speci�c alterna-
tives of uniform, exponential and double exponential alter-
natives (Utho� , ) andCauchy alternatives (Franck
).�ese would be the tests of choice when the alterna-
tive hypothesis is speci�ed as one of these distributions.
More o�en the speci�c alternative is not known and

a more general alternative hypothesis must be considered.
�e general shape of the alternative may be known, or only
a certain type of departure from normality may be of con-
cern. Conventionally, non-normal alternatives have been
divided into three shape classes based on the comparison
of their third and fourth standardized moments (denoted
√

β and β, respectively) to those of the normal distri-
bution. A distribution whose value of

√
β (skewness) is
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di�erent from  has a skewed shape.�e value of β (kur-
tosis) for a normal distribution is , although a value of 
does not necessarily indicate a normal distribution (e.g.,
Johnson et al. ). Symmetric alternatives are o�en sep-
arated into those shapes with β less than  (sometimes
called light-tailed distributions) and those shapes with β
greater than  (heavy-tailed distributions).
Among the best tests for detecting skewed or symmet-

ric non-normality are themoment tests
√
b (sample skew-

ness) and b (sample kurtosis), respectively. De�ning the
kth sample moment as

mk
=∑(xi − x)k/n

then
√
b = m/(m)/ and b = m/(m).�ese tests

perform even better as directional or single tail tests, i.e.,
when the type of skewness or kurtosis is known (skewed
le� vs. skewed right; light- vs. heavy-tailed). For sim-
plicity of calculation, the uniform likelihood ratio test u
(range/standard deviation) and an asymptotic equivalent
to the double exponential MPLSI test, Geary’s () abso-
lute moment test a, are useful for detecting light- and
heavy-tailed alternatives, respectively.
Omnibus tests are designed to cover all possible alter-

natives. �ey are not usually as powerful as speci�c or
shape tests when the characteristics of the true alterna-
tive can be correctly identi�ed. One of the better tests
for detecting unspeci�ed departures from normality is the
Shapiro-Wilk W (Shapiro and Wilk ), which is the
ratio of an estimate of σ  obtained from the regression of
the sample order statistics on their expected values to s.
�e performance of

√
b and b at detecting shape alter-

natives suggest that combinations of moment tests would
have acceptable power as omnibus tests; the Jarque-Bera
test (, ) is computationally the simplest of these
tests, calculated as JB = n(

√
b/ + b/).

Empirical distribution function (EDF) goodness of �t
tests are less powerful than tests for normality, with the
most notable exception being the Anderson-Darling A

test (Anderson and Darling ) which performs very
well from a power standpoint. Most of these procedures
operate by using the cumulative distribution function to
reduce the general problem to the speci�c one of testing the
hypothesis of uniformity.�e7Kolmogorov–Smirnov test
in particular has poor power compared to most normality
tests inmost situations. Similarly, the very common χ and
goodness of �t tests based on spacing should be avoided as
tests for normality.

�e following table shows some of the more powerful
tests under a variety of alternatives

Test
(symbol) Source

Type
of test

Goodpower
at detecting
this type of
alternative

Anderson–
Darling
(A)

Anderson
and
Darling


EDF Any

Shapiro–
Wilk (W)

Shapiro
and Wilk


Regression Any

Jarque–
Bera (JB)

Jarque and
Bera ,


Joint
moment

Any

Skewness
(√b)

Thode


Moment Skewed

Kurtosis
(b)

Thode


Moment Symmetric

Geary (a) Geary  Absolute
moment

Double
exponential,
symmetric
β > 

Range (u) David et al.


LRT Uniform,
symmetric
β < 

Test Recommendations
As indicated previously, the number of normality tests
is large, too large for even the majority of them to be
mentioned here. Overall the best tests appear to be the
moment tests, Shapiro–Wilk W, Anderson–Darling A

(see 7Anderson-Darling Tests of Goodness-of-Fit), and
the 7Jarque–Bera test. Speci�cs on these and many other
normality tests and their characteristics can be found in
�ode () and on general goodness of �t issues, includ-
ing normality tests, in D’Agostino and Stephens ().
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�e assumption of normality is required by several meth-
ods in parametric statistical inference, some of which are
robust toward mild or moderate non-normality.�e his-
togram in Fig. a was prepared with  values randomly
generated with the standard normal distribution; however,
one could argue that the normality of the variable is not
evident from the histogram. If these were real observations
instead of generated data, a test would be applied with the
null hypothesis being that the variable has a normal distri-
bution; frequently no speci�c distribution is mentioned as
alternative hypothesis.�e normal quantile plot (Fig. b)
compares the ordered values x(i) in the sample, also called
7order statistics, with the n corresponding quantiles of
the normal distribution. If the sample comes from a nor-
mal distribution, the dots tend to suggest a linear pattern.
Other versions of the quantile plot do exist.
Numerous tests for normality have been de�ned. Tests

are generally compared in terms of their power, i.e. the
probability of �nding out when the sample does not come
from a normal distribution; every few years a systematic
comparison of tests is published. A recent and comprehen-
sive comparison that involves thirty three di�erent tests
for normality can be found in Romão et al (). Previ-
ous comparisons include those of Gan and Koehler ()
and Seier (), among others. All those articles pro-
vide tables that compare the power of tests against several
non-normal distributions for di�erent sample sizes.�at
detailed information is useful when we want to test for
normality, specially if we have in mind a certain type of
alternative distribution. Historical information and a dis-
cussion on power comparison is included in Chap.  of
�ode ().�ere is not one single test that is the most
powerful against all the possible non-normal distributions.
�ere are tests that are more powerful against skewed
distributions, or tests that are more powerful against dis-
tributions that are symmetric but have heavier tails than
the normal. However, if the practitioner does not have in
mind a speci�c type of non-normal distribution, a test
that is more powerful on average against a wide range of
distributions is usually preferred.
To test the hypothesis of normality, based on a data

set, one can use one of various statistical so�ware or write
a computer program if the test of our preference is not
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Normality Tests: Power Comparison. Fig.  Histogram and normal quantile plot for  values generated with a normal
distribution

implemented by the available so�ware. Di�erent tests will
produce di�erent 7p-values for the same data set. For the
data in Fig. , the p-values for four di�erent tests are as
follows: Shapiro–Wilk ., Pearson ., Anderson–
Darling ., Lilliefors (Kolmogorov–Smirnov) .. In
this example, the four tests agree in not rejecting the null
hypothesis of normality. However, for a di�erent exam-
ple some tests might reject the hypothesis of normality
and some others might not, it is from such cases that the
di�erences in power originate.
A special program needs to be written in order to sys-

tematically compare tests for normality in terms of power.
A non-normal distribution is used to generate a large num-
ber of samples of a given size and each one of the tests
is applied to each sample, keeping track of the number
of times that the null hypothesis is rejected.�e empiri-
cal power of the normality test, when the true distribution
is that speci�c one, is the number of times that the null
hypothesis is rejected divided by the number of samples
generated. Tomake the comparison fair, tests are �rst com-
pared in terms of their control of α. �e proportion of
samples for which the hypothesis of normality is rejected,
when the samples are generated by a normal distribution,
should be as close as possible to the nominal probability
(α) of type I error.

�e normal distribution has well known density and
distribution functions, it is symmetric, has Pearson’s kur-
tosis equal to , and ifX ∼ N(µ, σ ) thenX = µ+σZ where
Z ∼ N(, ). To de�ne a new test of normality one usually
focuses on one ormore of those characteristics. Testsmight
use Pearson’s skewness and kurtosis statistics or some other

ones.�e empirical distribution function can be compared
with the normal CDF using di�erent criteria. Some tests
compare the order statistics with the expected values of the
order statistics under normality, the summary of that com-
parison can be done in di�erent manners. Some tests rely
on concepts such as7entropy or7likelihood. A�er the test
statistic is de�ned, it is necessary to derive the distribution
of the statistic under normality in order to calculate either
critical values or p-values. Some tests work with exact dis-
tributions that require special tables, some others strive for
simplicity using one of the standard statistical distributions
as an approximation (sometimes sacri�cing a little power
in the process).�e diverse possibilities in the de�nition
of the tests explains in part why there are so many tests
for normality and why they might di�er in power depend-
ing on the true distribution of the variable.�ode ()
describes thirty tests of normality and in recent years new
ones have been de�ned.
Most tests of normality have high power when the

sample is large, it is the small and moderate sample sizes
the ones that provide the setting for interesting compar-
isons among tests. �e more di�erent from the normal
the true distribution looks like, the smaller the sample size
needed to achieve high power. For example, the Student’s
t-distributions look very similar to the normal except that
they have heavier tails, as the number of degrees of free-
dom n increases the t(n) and the normal look more alike.
A certain normality test requires a sample size  to have
a power . when the true distribution is t(), the same
test requires a sample size of only  to have power .
when the true distribution is t() (Bonett and Seier ).
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When the true distribution is severely skewed, e.g. the log-
normal(,), there are several tests that have a power larger
than . when the sample size is .
Considering the way tests are de�ned helps to

understand why some of them have more power than
others. One of the �rst approaches used to test for nor-
mality was to apply the Chi-square goodness of �t test,
comparing the observed frequency of each interval with
the expected frequency (something similar to the visual
comparison of the histogram to the normal curve in Fig. a)
Currently more powerful tests are available.
Kurtosis is a characteristic of distributions related to

the heaviness of the tails and the concentration of mass
toward the center of the distribution.�ere are some tests
de�ned speci�cally to test for normality against symmet-
ric distributions that have heavier tails or large kurtosis;
these distributions are of interest in the �elds of eco-
nomics and �nance. Two such tests are the ones de�ned by
Bonnet and Seier () and Gel et al. (), both repre-
sent kurtosis with a ratio that has the standard deviation
in the numerator and another measure of spread in the
denominator. �ey have good power when the true dis-
tribution is symmetric with high kurtosis such as Laplace,
t(), some SU distributions, Cauchy and some scale con-
taminated normals where the contaminating distribution
has smaller variance.�e kurtosis test in D’Agostino et al.
() has good performance against symmetric distribu-
tions with kurtosis moderately higher than  and against
some scale contaminated distributions where the contam-
inating distribution has larger variance. It is recommended
to accompany kurtosis based tests by a test of symmetry.

�ere is a class of tests that �rst summarize the
empirical distribution using some skewness and kurtosis
statistics and then compare their values with the skewness
and kurtosis of the normal distribution. Tests described
by D’Agostino et al. () and the 7Jarque–Bera test,
popular in econometrics, are based on Pearson’s skewness
and kurtosis statistics. A modi�cation to the Jarque–Bera
test (Gel and Gastwirth ) uses a robust measure of
variability and improves the power of the JB test when
the true distribution is symmetric with moderately higher
kurtosis than the normal and the sample size is small.

�e Anderson–Darling (see 7Anderson-Darling Tests
of Goodness-of-Fit) and Kolmogorov–Smirnov tests are
both based on the comparison of the empirical distribu-
tion function and the normal CDF. �e Lilliefors test is
the version of the 7Kolmogorov–Smirnov test that uses
the sample mean and variance. �e Lilliefors or KS test
focuses on the maximum di�erence between the empir-
ical and theoretical distribution. �e Anderson–Darling
test summarizes all the di�erences between the empirical

and theoretical distributions, tending to be more powerful
than the KS test.�e Shapiro–Wilk test is more powerful
than the Anderson–Darling test against many non-normal
distributions, but the AD test is more powerful than the
SW when the true distribution is the Tukey (), a dis-
tribution that has a very sharp peak and tails that end
abruptly.

�ere is a group of tests of normality called regres-
sion type tests.�ose tests, in one way or other, compare
one by one sample quantiles with quantiles from the nor-
mal distribution.�e most well known of these tests is the
Shapiro–Wilk test, de�ned in terms of the order statistics
and the expected values of the order statistics. Originally
de�ned in  for n ≤ , it required special constants
and critical values. Several extensions and modi�cations
of that test have been published since then, such as the one
in Royston ().�e Chen–Shapiro test () compares
the spacings in between the quantiles in both the empirical
and the normal distribution.�e Chen–Shapiro test is also
quite powerful against a wide range of non-normal distri-
butions, it is even slightlymore powerful than the Shapiro–
Wilk test against some distributions when the sample size
is small. When working with rounded data, both the CS
test and the SW test bene�t from the adjustment for ties
proposed by Royston ().
Romão et al. () conclude that when testing nor-

mality against symmetric alternatives, the best choices are
the already mentioned tests by Gel et al. (), Bonett
and Seier (), Chen and Shapiro (), and the test
de�ned by Coin (). �e �rst two are kurtosis based
tests and the last two are regression type tests that work
with the order statistics. Coin’s test consists in �tting a
polynomial model to a standardized version of the normal
quantile plot and testing for the coe�cient (Ho : β = )
of the third power of the expected values of the order
statistics under normality. To test for normality against
skewed distributions they recommend the Chen–Shapiro
test, Shapiro–Wilk test and two tests based on the like-
lihood ratio de�ned by Zhang and Wu (). To detect
normal distributions with 7outliers Romão et al. ()
recommend tests based on a trimmed version (de�ned
in  by Elamir and Seheult) of Hosking’s L-moments,
which are considered to be less sensitive to outliers than
the classical moments. To test for normality in general
without having a particular type of alternative distribution
in mind, Romão et al. () recommend: Shapiro–Wilk,
Chen–Shapiro and Del Barrio et al. (), the three of
them are regression type tests.
Most statistical so�ware include some tests of normal-

ity. However, some powerful tests have not been imple-
mented by statistical so�ware yet. �e base package of
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R calculates the Shapiro–Wilk test and �ve more tests
with the normtest package: Anderson–Darling, Cramer–
vonMises, Kolmogorov–Smirnov (Lilliefors), Pearson chi-
square test, and Shapiro–Francia. MINITAB has three
options: KS, AD and Ryan–Joiner (similar to SW). SPSS
calculates KS(L) and SW. SAS calculates SW, CM, AD and
KS(L).

Cross References
7Anderson-Darling Tests of Goodness-of-Fit
7Chi-Square Goodness-of-Fit Tests: Drawbacks
and Improvements
7Jarque-Bera Test
7Kolmogorov-Smirnov Test
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Null-Hypothesis Significance
Testing: Misconceptons

Raymond S. Nickerson
Research Professor
Tu�s University, Medford, MA, USA

Null-hypothesis signi�cance testing (NHST) has for many
years been the most widely used statistical tool for eval-
uating the outcomes of psychological experiments. It is
routinely taught to college students in elementary statis-
tics courses and courses in experimental methodology and
design. Despite these facts, there are manymisconceptions
about null-hypothesis signi�cance testing—about what
conclusions the results of such testing do or do not justify.
Here several of these misconceptions are brie�y summa-
rized. More substantive treatments of these and related
misconceptions may be found in several publications,
including Rozeboom (), Clark (), Bakan (),
Morrison and Henkel (), Carver (), Lakatos
(), Berger and Sellke (), Falk and Greenbaum
(), Gigerenzer (), and Wilkinson and APA Task
Force on Statistical Inference ().
Many criticisms have been directed at the use of NHST.

Some of these criticisms challenge the logic on which it is
based; some contend that its use is not productive because
it does not advance an understanding of the phenomena of
interest; others focus on what are seen as arbitrary aspects
of the rules for its use and interpretation of the statis-
tics it provides; still others contend that its widespread
use has undesirable e�ects on the way experiments are
designed and on the reporting – or the failure to report –
experimental results.
Although null hypothesis has more than one connota-

tion as it has been used by di�erent people in a variety of
contexts, the meaning that is taken for purposes of this
article is one that is likely to be found in statistics texts:
�e hypothesis that two groups – usually an experimen-
tal group and a control group – do not di�er with respect
to a speci�ed quantitative measure of interest, and that
any observed di�erence between the means of that mea-
sure is due strictly to chance. Assuming the data obtained
from the two groups satisfy certain assumptions under-
lying the use of the null-hypothesis test, the test yields a
statistic and a p value, the latter of which indicates the
probability that the value of the statistic, or a larger one,
would be obtained if the observed di�erence between the
means were due strictly to chance. Conventionally, the null
hypothesis is rejected when the value of p that is obtained
is less than some speci�ed criterion, generally referred to
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as alpha, and typically set at . or ..�e theory admits
of only two possible outcomes of null-hypothesis testing:
either the hypothesis is rejected on the basis of obtaining
a p value not exceeding alpha, or it is not rejected if the p
value does exceed alpha. Never, strictly speaking, is the null
hypothesis said to have been shown to be true.�e obvi-
ous bias in the test re�ects the view that rejecting the null
hypothesis when it is true (generally referred to as a Type-I
error) is a much less acceptable outcome of testing than is
failing to reject it when it is false (Type-II error).
Apparently null-hypothesis statistical testing is eas-

ily misunderstood, and the misunderstandings can take
a variety of forms. Space does not permit an exhaus-
tive, or even extensive, listing and explanation of all the
misunderstandings that can occur. �is note focuses on
certain misconceptions that are fairly common. �e evi-
dence of their commonality is found in numerous pub-
lished reports of experiments in which NHST has been
used in the data analyses.�e format for what follows is
a statement of each of several misconceptions, accompa-
nied by a brief explanatory comment.�e misconceptions
noted have been discussed in more detail in Nickerson
(); many have also been discussed in other publi-
cations cited in that article and in the reference list for
this one.

● �e value of p is the probability that the null hypothesis is
true and that of -p is the probability that the alternative
to the null hypothesis is true. Given this belief, a p value
of . would be taken tomean that there is one chance
in one-thousand that the obtained di�erence between
the means is due to chance, and that it is almost certain
that the alternative to the null hypothesis – the hypoth-
esis that the observed di�erence is not due to chance –
is true.�is misconception is an example of confusion
between the probability ofA conditional on B, p(A∣B),
and the probability of B conditional on A, p(B∣A). Let-
ting A represent “the observed value of the statistic is
X,” and B “the null hypothesis is true,” obtaining a p of
. means that p(A∣B) = .; it does not mean that
p(B∣A) = ..

● Rejection of the null hypothesis establishes the truth of
a theory that predicts it to be false. �e reasoning,
expressed as a conditional syllogism is: If the theory is
true, the null hypothesis will prove to be false; the null
hypothesis proved to be false, therefore the theory is true.
�is is a case of a�rming the consequent, a common
fallacy in conditional reasoning.

● A small p is evidence that the results are replicable (some-
times accompanied by the belief that -p is the probability
that the results will replicate). A case can be made that

a small p indicating a statistically signi�cant di�er-
ence justi�es a greater expectation than does a large p
that a follow-up experiment under the same conditions
will also produce a statistically signi�cant di�erence,
but a small p does not guarantee that the results will
replicate, and -p is not the probability that they will
do so.

● A small p means a large treatment e�ect. Although,
other things equal, a large e�ect is likely to yield a small
p, and a small p is suggestive of a large e�ect, p is also
sensitive to sample size (with a large sample, a small
e�ect can yield a small p), so a small p is not a reliable
indication of a large e�ect.

● Statistical signi�cance means theoretical or practical sig-
ni�cance. Statistical signi�cance indicates only that two
samples selected at random from the same population
are unlikely to produce the observed result; it reveals
nothing about whether the �nding has any theoretical
or practical signi�cance.

● Alpha is the probability that if one has rejected the null
hypothesis, one has made a Type-I error.�is is another
case of confusing p(A∣B) and p(B∣A). Alpha – or more
speci�cally p ≤ alpha– is the probability of rejecting the
null hypothesis, given that the hypothesis is true, which
is di�erent from the probability that the null hypothesis
is true, given that one has rejected it.

● �e value of alpha selected for a given experiment is the
probability that a Type-I error will be made in interpret-
ing the results of that experiment. Alpha is the probabil-
ity of making a Type-I error when the null hypothesis
is true; a Type-I error cannot be made when the null
hypothesis is false. So alpha could be the probabil-
ity of a Type-I error only on the assumption that the
null hypothesis is always true, but presumably for most
experiments there are prior reasons to believe that the
null hypothesis is false.

● �e value of alpha is the probability of Type-I error across
a large set of experiments in which alpha is set at the
same value.�e counter for this misconception is sim-
ilar to that for the last one. It would be true only on
the assumption that across the set of experiments of
interest the null hypothesis is always true.

Just as there are faulty beliefs about Type-I errors and
alpha, there are faulty beliefs about Type-II errors and beta.
A Type-II error is made when a null hypothesis that is false
is not rejected; beta is the probability of failing to reject
the null hypothesis, given that it is false. Sometimes beta
is taken to be the probability that the null hypothesis is
false, given that it has not been rejected, and sometimes it
is taken to be the absolute probability of making a Type-II
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error. Both of these beliefs are wrong, and for reasons com-
parable to those given for the corresponding beliefs about
Type-I errors and alpha.

● Failing to reject the null hypothesis is equivalent to
demonstrating it to be true. In view of the conven-
tion of selecting a very small value for alpha (.,
.), thus, in e�ect, setting a high bar for rejecting the
null hypothesis, failure to reach this bar to claim the
hypothesis to be false is very weak evidence that it is
true. Nevertheless, experimenters o�en take the failure
to �nd a statistically signi�cant di�erence between two
groups as su�cient evidence to proceed as though no
di�erence exists.

● Failure to reject the null hypothesis is evidence of a failed
experiment. Probably most experiments for which null
hypothesis testing is used to analyze data are planned
and run with the expectation that the results will reveal
a hypothesized di�erence, or di�erences, of interest .If
a di�erence that is su�ciently distinct to permit rejec-
tion of the null hypothesis is not obtained, it may be
because the experiment was not adequately planned
or executed, in which case one might argue that it
should be considered a failed experiment. On the other
hand, it may be too that there is no di�erence to be
found. �e failure to reject the null hypothesis, by
itself, does not su�ce to distinguish between these
possibilities.

�e focus here has been on misconceptions of NHST.
Critics of the use of NHST in the analysis and interpre-
tation of data from psychological experiments have raised
other issues as well, discussion of which is beyond the
scope of this article. It must be noted, too, that NHST has
many defenders (Abelson ; Baril and Cannon ;
Chow ; Cortina and Dunlap ; Dixon ; Frick
; Harris ; Mulaik et al. ; Wilson et al. ;
Winch and Campbell ), but defense of the NHST is
also beyond the scope of this article. Defenders of NHST
generally acknowledge that it is o�en misunderstood and
misapplied, but contend that it is an e�ective tool when
used appropriately.
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One of the most common mathematical operations in
scienti�c computing is quadrature, the evaluation of a
de�nite integral. It is used to determine volume, mass, or
total charge, for example. In the evaluation of probabilities,
of expectations, and of marginal or conditional densities,
integration is the basic operation.
Most of the integrals and di�erential equations of inter-

est in real-world applications do not have closed-form
solutions; hence, their solutions must be approximated or
estimated numerically.

�e general problem is to approximate or estimate

I = ∫
D
f (x)dx. ()

�ere are basically two approaches. One is based on
sums of integrals of approximations of the integrand over
subregions of the domain:

∫
D
f (x)dx ≈

n

∑
i=
∫
Di

f̃i(x)dx, ()

where ∪n
i=Di = D and f̃i(x) ≈ f (x) within Di.

In the other approach, the integrand is decomposed
into a probability density function (PDF) and another

factor:
∫
D
f (x)dx = ∫

D
h(x)pX(x)dx, ()

where pX is the probability density function of a random
variable X with support onD. In this formulation, we have

I = E(h(X)), ()

where E(⋅) represents the expectation operator with
respect to the probability distribution ofX. Notice that this
is exact.

�e second approach, called Monte Carlo integra-
tion, is fundamentally di�erent from the �rst, because
it leads to a statistical estimate rather than a numerical
approximation.
Each approach hasmany variations and there aremany

details that we cannot address in the brief space here.
�e references at the end of this article contain fuller
descriptions.

Numerical Approximations
One type of numerical approximation is based on direct
approximation of the Riemann sum, which we take as the
basis for the de�nition of the integral. Another type of
approximation is based on an approximation of the func-
tion using one of the methods discussed above. We begin
with approximations that are based on Riemann sums. We
also generally limit the discussion to univariate integrals.
Although some of the more interesting problems are

multivariate and the region of integration is not rectangu-
lar, we begin with the simple integral,

I = ∫
b

a
f (x)dx. ()

Newton–Cotes Quadrature
�e Riemann integral is de�ned as the limit of theRiemann
sums:


n

n

∑
i=

(xi − xi−)f (̃xi), ()

where a = x < x < ⋯ < xn = b and x̃i ∈ [xi−, xi].
Instead of a simple step function, the function f (x)

may be approximated by a piecewise linear function p(x)
that agrees with f at each of the points.�e integral () can
be approximated by a sum of integrals, each of which is
particularly easy to evaluate:

∫

b

a
f (x)dx ≈

n

∑
i=
∫

xi+

xi
p(x)dx,

= h(f (a) + f (x) + f (x) +⋯ + f (xn−)

+f (b))/.
()
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�e expression () is called the trapezoid rule.
Many other quadrature rules can be built using this

same idea of an approximating function that agrees with
f at each of some set of points. Quadrature formulas that
result from this kind of approach are called Newton–Cotes
formulas.
Rather than the linear functions of the trapezoid rule, a

more accurate approximation would probably result from
use of polynomials of degree k that agree with f at each of
k+ successive points. Use of polynomials in this way leads
to what are called Simpson’s rules.

Error in Newton–Cotes Quadrature
�ere are generally multiple sources of error.�e error in
approximations must be considered separately from the
error in rounding, although at some level of discretization,
the rounding error may prevent any decrease in approxi-
mation error, even though the approximation is really the
source of the error.
In Newton–Cotes quadrature, we get an expression for

the error of the general form O(g(h)).
To approximate the error, we consider a polynomial of

degree n over that region, because we could have a single
such polynomial that corresponds to f at each of the break
points. Using a Taylor series, we �nd that the error in use
of the trapezoid rule can then be expressed as

−



(b − a)hf ′′(x∗)

for some x∗ ∈ [a, b].�is is not very useful in practice. It
is important, however to note that the error is O(h).
Using similar approaches we can determine that the

error for Simpson’s rules is O(h).

Extrapolation in Quadrature Rules
We can use Richardson extrapolation (see, for example,
Gentle ) to improve the approximation in Newton–
Cotes formulas. In the trapezoid rule, for example, we
consider various numbers of intervals. Let Tk represent
the value of the expression in Eq.  when n = k; that is,
when there are n intervals, and we examine the formula
for , , , . . . intervals, that is,T,T,T, . . .. Now,we use
Richardson extrapolation to form

T,k = (T,k+ − T,k)/. ()

Generalizing this, we de�ne

Tm,k = (mTm−,k − Tm−,k−)/(
m
− ). ()

Notice in Tm,k, m represents the extent of extrapolation,
and k determines the number of intervals. (�is kind of

scheme is used o�en in numerical analysis. It can be rep-
resented as a triangular table in which the ith row consists
of the i terms T,i−, . . . ,Ti−,.)

�is application ofRichardson extrapolation in quadra-
ture with the trapezoid rule is called Romberg quadrature.

Adaptive Quadrature Rules
It is not obvious how to choose the interval width in
Newton–Cotes formulas. Obviously if the interval width is
too large, �ner structure in the integrand will be missed.
On the other hand, if the interval width is too small, in
addition to increased cost of evaluation of the integrand,
rounding error can become signi�cant. �ere are vari-
ous ways of trying to achieve a balance between accuracy
and number of function evaluations. In most cases these
involve approximation of the integral over di�erent subin-
tervals with di�erent widths used in each of the subinter-
vals. Initially, this may identify subintervals of the domain
of integration that require smaller widths in the Newton–
Cotes formulas (that is, regions in which the integrand is
rougher). Evaluations at di�erent widths over the di�erent
subintervalsmay lead to a good choice of both subintervals
and widths within the di�erent subintervals.�is kind of
approach is called adaptive quadrature.

Gaussian Quadrature
We now brie�y discuss another approach to the evaluation
of the integral () called Gaussian quadrature. Gaussian
quadrature uses the idea of expansion of the integrand.
Like the Newton–Cotes approaches, Gaussian quadrature
arises from the Riemann sum (), except here we interpret
the interval widths as weights:

n

∑
i=

w(xi)f (xi). ()

In Gaussian quadrature, we put more emphasis on choos-
ing the points, and by so doing, we need a smaller number
of points. Whether or not this is a good idea of course
depends on how we choose the points and how we de�ne
w(xi).

Determination of Weights in Gaussian
Quadrature
If f is a polynomial of degree n−, it is possible to represent
the integral ∫

b
a f (x)dx exactly in the form (). Use of the

formula () yields n equations in n unknowns to deter-
mine the xi’s and wi’s. In Gaussian quadrature, the xi’s and
wi’s are chosen so that the approximation is correct when
f is a polynomial, and it can provide a approximation in
many cases with a relatively small n. O�en only �ve or six
points provide a good approximation.
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To make this a useful method for any given (reason-
able) integrand over a �nite range, the obvious approach is
to represent the function as a series in a standard sequence
of orthogonal polynomials.

Error in Gaussian Quadrature
�e error in Gaussian quadrature is

∫

b

a
f (x)dx −

n

∑
i=

wig(xi),

which we can write as

∫

b

a
g(x)w(x)dx −

n

∑
i=

wig(xi) =
g(n)(x∗)
(n)!cn

, ()

for some point x∗ in (a, b).
A problem with Gaussian quadrature is that it is not

easy to use the results for n to compute results for ñ, and
hence the kinds of extrapolation and adaptation we dis-
cussed above for Newton–Cotes quadrature are not very
useful for Gaussian quadrature.

Monte Carlo Methods for Quadrature
In the Monte Carlo method of quadrature we �rst for-
mulate the integral to be evaluated as an expectation of
a function of a random variable, as in Eq. . To estimate
this expected value, that is, the integral, we simulate real-
izations of the random variable, and take the average of the
function evaluated at those realizations,

Î =

m

m

∑
i=

h(xi), ()

where x, x, . . . , xm is a random sample (or pseudorandom
sample) of the random variable X.
If we formulate the estimator Î as a sum of functions

of independent random variables, each with density pX ,
instead of a sum of realizations of random variables, the
estimator itself is a random variable. An obviously desir-
able property of this random variable is that its expectation
be equal to the quantity being estimated. Assuming the
expectations exist, this is easily seen to be the case:

E( Î ) =

m

m

∑
i=
E(h(Xi)) =


m

m

∑
i=

I = I.

We therefore say the estimator is unbiased.
An advantage of Monte Carlo quadrature is that the

nature of the domain of integration is not as critical as in
the other quadrature methods we have discussed above.
Monte Carlo quadrature can be performed equally easily
for improper integrals as for integrals over �nite domains.

Another advantage of Monte Carlo quadrature is that
the computations can be performed in parallel without any
special coding.

Variance of Monte Carlo Estimators
Monte Carlomethods are samplingmethods; therefore the
estimates that result from Monte Carlo procedures have
associated sampling errors.
In the case of scalar functions, the variance of the esti-

mator Î is a rather complicated function involving the
original integral (assuming the integrals exist):

V ( Î )=

m
E ((h(X) − E(h(X)))


)

= 
m ∫D

(h(x) − ∫
D
h(y)pX(y)dy)


pX(x)dx.

()
We see that the magnitude of the variance depends on the
variation in

h(x) − ∫
D
h(y)pX(y)dy,

which depends in turn on the variation in h(x). If h(x) is
constant, the variance of Î is . Of course, in this case, we
do not need to do theMonte Carlo estimation; we have the
solution I = h(⋅) ∫D dy.
While the variance in () is complicated, we have a

very simple estimate of the variance; it is just the sample
variance of the observations h(xi).

Reducing the Variance
As we see from Eq.  the variance of the Monte
Carlo estimator is linear in m−; hence, the variance is
reduced by increasing the Monte Carlo sample size. More
e�ective methods of variance reduction include use of
antithetic variates, importance sampling, and strati�ed
sampling (see Gentle ).

Error in Monte Carlo Quadrature
As we have emphasized, Monte Carlo quadrature di�ers
from quadrature methods such as Newton–Cotes meth-
ods andGaussian quadrature in a fundamental way;Monte
Carlo methods involve random (or pseudorandom) sam-
pling. �e expressions in the Mont Carlo quadrature
formulas do not involve any approximations, so questions
of bounds of the error of approximation do not arise.
Instead of error bounds or order of the error as some func-
tion of the integrand, we use the variance of the random
estimator to indicate the extent of the uncertainty in the
solution.

�e square root of the variance, that is, the stan-
dard deviation of the estimator, is a good measure of the
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range within which di�erent estimators of the integral
may fall.
Because of the dependence of the con�dence inter-

val on the standard deviation the standard deviation is
sometimes called a “probabilistic error bound.”�e word
“bound” is misused here, of course, but in any event,
the standard deviation does provide some measure of a
sampling “error.”

�e important thing to note from Eq.  is the order of
error in the Monte Carlo sample size; it is O(m−  ).�is
results in the usual diminished returns of ordinary statis-
tical estimators; to halve the error, the sample size must be
quadrupled.

Higher Dimensions
�e most signi�cant di�culties in numerical quadrature
occur in multiple integration.

�e Monte Carlo quadrature methods extend directly
tomultivariate integrals, although, obviously, it takes larger
samples to �ll the space. It is, in fact, only for mul-
tivariate integrals that Monte Carlo quadrature should
ordinarily be used.�e preference forMonte Carlo inmul-
tivariate quadrature results from the independence of the
pseudoprobabilistic error bounds and the dimensionality
mentioned above.
An important fact to be observed in Eq.  the order

of the error in terms of the number of function evalua-
tions is independent of the dimensionality of the integral
so the order of the error remains O (m−  ). On the other
hand, the usual error bounds for numerical quadrature are
O ((g(n))−


d ), where d is the dimensionality, and g(n) is

the order for one-dimensional quadrature.�is is one of
the most important properties of Monte Carlo quadrature.

�e papers in the book edited by Flournoy and
Tsutakawa () provide good surveys of speci�c meth-
ods for multiple integrals, especially ones with important
applications in statistics. Evans and Schwartz () pro-
vide a good summary of methods for numerical quadra-
ture, including both the standard deterministic methods
of numerical analysis and Monte Carlo methods.

About the Author
James E. Gentle is University Professor of Computational
Statistics in the Department of Computational and Data
Sciences at George Mason University. He is a Fellow of
the American Statistical Association and of the American
Association for the Advancement of Science, and he is an
electedmember of the International Statistical Institute.He
is author of Computational Statistics (Springer, ) and
of other books on statistical computing.

Cross References
7Computational Statistics
7Monte Carlo Methods in Statistics

References and Further Reading
Evans M, Schwartz T () Approximating integrals via Monte

Carlo and deterministic methods. Oxford University Press,
Oxford, UK

Flournoy N, Tsutakawa RK () Statistical multiple integration.
American Mathematical Society, Providence, Rhode Island

Gentle JE () Random number generation and Monte Carlo
methods. Springer, New York

Gentle JE () Computational statistics. Springer, New York

Numerical Methods for Stochastic
Differential Equations

Peter E. Kloeden
Professor
Goethe-Universität, Frankfurt, Germany

A stochastic di�erential equation (SDE)

dXt = f (t,Xt)dt + g(t,Xt)dWt

is, in fact, not a di�erential equation at all, but only a sym-
bolic representation for the stochastic integral equation

Xt = Xt + ∫

t

t
f (s,Xs)ds + ∫

t

t
g(s,Xs)dWs,

where the �rst integral is a deterministic Riemann inte-
gral for each sample path. �e second integral is an Itô
stochastic integral, which is de�ned as the mean-square
limit of sums of products of the integrand g evaluated at
the start of each discretization subinterval times the incre-
ment of the Wiener process Wt (which is o�en called a
Brownianmotion, see7BrownianMotion andDi�usions).
It is not possible to de�ne this stochastic integral pathwise
as a Riemann–Stieltjes integral, because the sample paths
of a Wiener process, although continuous, are nowhere
di�erentiable and not even of bounded variation on any
bounded time interval.

�e simplest numerical method for the above SDE is
the Euler-Maruyama scheme given by

Yn+ = Yn + f (tn,Yn)∆n + g(tn,Yn)∆Wn,

where ∆n = tn+ − tn and ∆Wn = Wtn+ − Wtn . �is is
intuitively consistent with the de�nition of the 7Itô inte-
gral. Here Yn is random variable, which is supposed to
be an approximation on Xtn . �e stochastic increments
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∆Wn, which areN (,
√
∆n) distributed, can be generated

using, for example, the Box-Muller method. In practice,
however, only individual realizations can be computed.
Depending on whether the realizations of the solu-

tions or only their probability distributions are required to
be close, one distinguishes between strong and weak con-
vergence of numerical schemes, respectively, on a given
interval [t,T]. Let ∆=maxn ∆n be themaximumstep size.
�en a numerical scheme is said to converge with strong
order γ if, for su�ciently small ∆,

E (∣XT − Y(∆)NT
∣) ≤ KT ∆γ

and with weak order β if

∣E (p(XT)) − E (p(Y(∆)NT
))∣ ≤ Kp,T ∆β

for each polynomial p. �ese are global discretization
errors, and the largest possible values of γ and β give
the corresponding strong and weak orders, respectively,
of the scheme for a whole class of stochastic di�erential
equations, e.g., with su�ciently o�en continuously dif-
ferentiable coe�cient functions. For example, the Euler-
Maruyama scheme has strong order γ = 

 and weak order
β = , while theMilstein scheme

Yn+ = Yn + f (tn,Yn)∆n + g(tn,Yn)∆Wn

+


g(tn,Yn)

∂g
∂x

(tn,Yn) {(∆Wn)

− ∆n}

has strong order γ =  and weak order β = . Note that
these convergence orders may be better for speci�c SDE
within the given class, e.g., the Euler-Maruyama scheme
has strong order γ =  for SDE with additive noise, i.e., for
which g does not depend on x, since it then coincides with
the Milstein scheme.

�e Milstein scheme is derived by expanding the inte-
grand of the stochastic integral with the Itô formula, the
stochastic chain rule. �e additional term involves the
double stochastic integral ∫

tn+
tn ∫

s
tn
dWu dWs, which pro-

vides more information about the non-smooth Wiener
process inside the discretization subinterval and is equal
to 

 {(∆Wn)

− ∆n}. Numerical schemes of even higher

order can be obtained in a similar way. In general, di�er-
ent schemes are used for strong andweak convergence.�e
strong stochastic Taylor schemes have strong order γ = 

 ,
,  , , . . ., whereas weak stochastic Taylor schemes have
weak order β = ,, , . . .. See Kloeden and Platen ()
for more details. In particular, one should not use heuristic
adaptations of numerical schemes for ordinary di�erential
equations such as Runge–Kutta schemes, since these may
not converge to the right solution.

�e proofs of convergence rates in the literature
assume that the coe�cient functions in the above stochas-
tic Taylor schemes are uniformly bounded, i.e., the partial
derivatives of appropriately high order of the SDE coe�-
cient functions f and g exist and are uniformly bounded.
�is assumption, however, is not satis�ed in many basic
and important applications, for example with polynomial
coe�cients such as

dXt = −( + Xt) ( − Xt ) dt + ( − Xt ) dWt ,

or with square-root coe�cients such as in the Cox-
Ingersoll-Ross volatility model

dVt = κ (ϑ − Vt) dt + µ
√
Vt dWt ,

which requiresVt ≥ .�e second is more di�cult because
there is a small probability that numerical iterations may
become negative and various ad hoc methods have been
suggested to prevent this.�e paper (Jentzen et al. )
provides a systematic method to handle both of these
problems by using pathwise convergence, i.e.,

sup
n=,. . .,NT

∣Xtn(ω) − Y(∆)n (ω)∣Ð→  as ∆ → , ω ∈ Ω.

It is quite natural to consider pathwise convergence since
numerical calculations are actually carried out path by
path. Moreover, the solutions of some SDE do not have
bounded moments.
Vector valued SDE with vector valued Wiener pro-

cesses can be handled similarly. �e main new di�culty
is how to simulate the multiple stochastic integrals since
these cannot be written as simple formulas of the basic
increments as in the double integral above when they
involve di�erent Wiener processes.

About the Author
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Omnibus Test for Departures
from Normality

Kimiko O. Bowman, L. R. Shenton
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An omnibus test for departures from normality is an idea
developed by E.S. Pearson (letter to Bowman); he thought
a test including skewness b and kurtosis b, both of which
scale and location free, would give more information than
the test using lower moments only. For the normal dis-
tribution, the population skewness is

√
β =  and the

population kurtosis is β = .
D’Agostino and Pearson () introduced a goodness-

of-�t test for departures from normality using sample
skewness

√
b and sample kurtosis b, thus

K

S = X


S (

√
b) + X


S(b)

where
√
b = m/m

/
 , b = m/m


, and ms = ∑

n
 (xj −

x̄)s/n, j = , ,⋯,n, n sample size. D’Agostino and Pearson
considered the Johnson’s () SU and SB transformed dis-
tribution for

√
b and b. Johnson’s system of distributions

has the advantage that it transforms the distribution to the
normal distribution, so the KS is considered as χ with
degree of freedom ν = . Bowman and Shenton (b)
continued the study further and introduced the contours
for this test.�ey found SU gives a good �t to

√
b for n ≥ 

or so, and reasonable �t to b for n ≥ . For smaller sample
size, the SB system was used for the b.

XS (
√
b) = δ sinh− (

√
b/λ) ,

XS(b) = γ + δ sinh−[(b − ζ)/λ],

and small sample n <  for b

XS(b) = γ + δ ln(
b − ζ

λ − b
) .

γ, δ, λ and ζ are parameters for the Johnson system of
distributions and derived by sample moments m′

, m, m
and m. �e %, %, and % contours are made for

n = (), , , , , , , , , , .
�e contours are shown in Fig. .
Extensive simulation study found the areas of the con-

tours will contain the percentiles contents satisfactory;
however they are not the smallest areas that represent
the true shape of distribution. For the normal distribu-
tion,

√
b and b are not independent only asymptotically

independent.
Pearson et al. () studied the power of the test of

normality for a variety of tests and found the omnibus test
to be one of themost powerful tests for the departures from
normality.
Bowman and Shenton () further studied the sub-

ject and improved the KS test to include the correlation of
(
√
b, b).�e new improved test is

K

SR =

XS (
√
b) − RXS (

√
b)XS(b) + XS(b)

 − R

where R = ρ (XS (
√
b), XS(b)), and is treated as χ

(ν = ).
�e new bivariate model contours follow the true dis-

tribution shapes and are shown in Fig. .
Figure  shows the contrast of two sets of contours old

and new.
If the % level is chosen, then reject samples , ,

, , , and  immediately without further complicated
calculations.�is brings out the striking simplicity of the
omnibus test approach.
In concluding remarks, a contour can be constructed

for any distribution which has moments. Bowman and
Shenton (a) tabulated the values of moments of the
skewness and kurtosis statistics in non-normal sampling,
power series in power of (n−). Figure  shows several
Pearson type I distributions including normal distribution
for % with sample size n = . It is surprising to �nd
% area of normal distribution is not necessarily smallest.
Also the shape of contours are di�erent for each distribu-
tion.�e test could be used for non-normal distribution
as well as computing the power of test for a particular
distribution.
Patrinos andBowman () used the test to determine

the thermal e�ect of rainfall amount around the nuclear
plant.

Miodrag Lovric (ed.), International Encyclopedia of Statistical Science, DOI ./----,
© Springer-Verlag Berlin Heidelberg 
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Online Statistics Education

David Lane
Rice University, Houston, TX, USA

�e Internet is a great resource for statistics education
providing numerous online resources including textbooks,
interactive simulations/demonstrations, practical applica-
tions of statistics, assessment tools, and data analysis facili-
ties.With the continuing advances inweb technologies and
means for accessing the Internet, the number of resources
and their use will very likely increase greatly in the coming
years.

Textbooks
Textbooks on the Internet o�er many advantages over
their written counterparts. One advantage is the capabil-
ity of having links to glossary items embedded in the text.
Over  years ago Lachman () showed that the avail-
ability of glossary items enhances the comprehension of
online texts. Links to glossary items are incorporated in
several online statistics books (e.g., Online Statistics Edu-
cation: A Multimedia Course of Study, SurfStat, SticiGui,
and Learner.org). Similarly, many online statistics books
incorporate hyperlinks to related materials (e.g., Hyper-
stat, SurfStat, Online Statistics Education: A Multimedia
Course of Study, StatSo�, and New View of Statistics).
Hyperlinks are particularly valuable in technical topics
such as statistics because they make it easy for students
to �nd prerequisite material that they may need to review
before proceeding. Hyperlinks can be especially useful for
students who consult a book for information about a topic
covered in one of the later chapters of the book.
A second advantage of online statistics textbooks is

that they can provide interactive exercises. For example,
Learner.org o�ers interactive hints as well as solutions to
homework problems. SticiGui’s exercises are graded inter-
actively with correct answers and explanations shown a�er
the student answers. Online Statistics Education: A Multi-
media Course of Study also provides automatically-graded
questions with explanations. In addition, some questions
from this site involve randomly-generated data. For exam-
ple, a student may be asked to compute an independent-
groups t test. Data are generated randomly and presented
to the student for analysis. A�er the student enters the
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answer, the website calculates the correct answer and pro-
vides feedback. �e student then has the option to do a
similar problem with newly generated data.
Gregory Francis of Purdue University developed an

innovative way to take advantage of the online aspect of
an online textbook. Using a modi�ed version of Online
Statistics Education: A Multimedia Course of Study, Dr.
Francis added the capability to monitor the time students
spent on individual pages. Each page had an assigned time
period and students were given credit for the page only if
they had the page open for the required amount of time.
Although there was no way to know if students were really
reading the page during that time, the idea was that most
would be reading the page since they had it open anyway.
�e class using this method performed remarkably bet-
ter than previous classes who had used a traditional text
book: the modal grade jumped from a C in the previous
year’s class that used a traditional text book to an A with
the online textbook.�ere is no way to know, of course,
how much of this di�erence was due to student di�er-
ences, di�erences in the quality of the textbooks per se, or
other advantages of online texts. In any case, this �nding, if
con�rmed in a more controlled study, would indicate that
online statistics texts have the potential to greatly improve
student learning.
Most online statistics textbooks contain non-

mathematical introductions to statistical analysis.However,
more advanced methods such as multivariate statistics
are covered by some (PsychStat, Electronic Statistics Text-
book, VisualStatistics, StatNotes: Topics in Multivariate
Analysis).

Interactive Simulations/Demonstrations
Many of the concepts in statistics are inherently abstract.
Interactive simulations and demonstrations can helpmake
these conceptsmore concrete and facilitate understanding.
Accordingly, the well-respected Guidelines for Assessment
and Instruction in Statistics Education (GAISE) report rec-
ommended that technology tools should be used to help
students visualize concepts and develop an understanding
of abstract ideas by simulations.
Technologies such as Java and Flash have made it

possible for interactive simulations to be hosted on the
web and run within a web browser. A large number of
these educational resources based on these technologies
have become available over the last – years. Among
the sites o�ering large numbers of interactive simula-
tions and demonstrations are “Statistics Online Computa-
tional Resource (SOCR),” the “Web Interface for Statistics
Education (WISE),” the Rice Virtual Laboratory in Statis-
tics (RVLS),” and “Computer-Assisted Statistics Textbooks
(CAST). Collections of educational resources including

interactive simulations and demonstrations can also be
found at the websites of the “Consortium for the Advance-
ment of Undergraduate Statistics Education (CauseWeb)”
and “Multimedia Educational Resource for Learning and
Online Teaching (MERLOT).”

Real World Applications
One of the key recommendations of the GAISE report
was that real data be used to illustrate statistical princi-
ples.�is recommendation is in accordancewithWeinberg
and Abramowitz () who concluded that statistical
principles “come alive” through the use of real data.

�ere are many online resources for statistics edu-
cation that include real data. Among them are the
“Data and Story Library (DASL),” “Australasian Data and
Story Library (OzDASL),” “Journal of Statistics Education
Data Archive,” “Stat Labs: Mathematical Statistics through
Applications,” “UCLA Statistics Case Studies,” and “Online
Statistics Education: AMultimedia Course of Study.”�ese
datasets can play an integral part of an online statistics
course.
Chance News is an outstanding resource reviewing

issues in the news that use probability or statistical con-
cepts. Back issues of this monthly publication are available
online starting with May .

Assessment
Assessment is a critical part of instruction. �e “Assess-
ment Resource Tools for Improving Statistical �ink-
ing (ARTIST)” project contains numerous resources for
assessment including an item database, references to arti-
cles on assessment, and research instruments.�e items in
the database are categorized in terms of whether theymea-
sure statistical thinking, statistical reasoning, and/or basic
statistical literacy. Other assessment items can be found in
the “Database of Sample Statistics Quiz Questions” and on
the “Chance Evaluation” page.

Data Analysis
�e Internet contains a large number of resources for
online statistical analysis.�ese resources are valuable for
online statistics education because they enable students
to do statistical analyzes without downloading additional
so�ware or learning complex procedures. Most of the
resources are free although a few have small costs associ-
ated with their use.
StatCrunch can perform a wide range of statistical

analyzes and create several types of statistical graphs. Sta-
tistical analyzes include ANOVA, simple, multiple and
7logistic regression, and 7control charts. StatCrunch also
has calculators for several statistical distributions.
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�e site “Web Pages that Perform Statistical Calcula-
tions” contains an extensive list of online statistics analy-
sis calculators. Topics include () Selecting the right kind
of analysis, () Calculators, plotters, function integrators,
and interactive programming environments, () Probabil-
ity distribution functions: tables, graphs, random number
generators, () Descriptive statistics, histograms, charts,
() Con�dence intervals, single-population tests, ()
Sample comparisons: t-tests, ANOVAs, non-parametric
comparisons, () Contingency tables, cross-tabs, 7Chi-
Square tests, () Regression, correlation, least squares
curve-�tting, non-parametric correlation, () Analysis of
7survival data, () Bayesian Methods, and () Power,
sample size and experimental design.
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Optimal Designs for Estimating
Slopes

ShahariarHuda
Professor
Kuwait University, Safat, Kuwait

Introduction
In classical designs, comparison of the treatment e�ects
is of primary interest. Response surface designs are
concerned with experiments in which treatments are com-
binations of various levels of factors that are quantitative.
Consequently, the response is assumed to be a smooth
function of the factors and the experimenter is usually
interested in estimating the absolute response at various
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points in the factor space. However, even in response
surface designs, sometimes the experimenter may have
greater interest in estimating the di�erences between
response at various points rather than the response at
individual locations (Herzberg ; Box and Draper
; Huda ). If di�erences in response at points
close together in the factor space are involved, estima-
tion of local slopes of the response surface becomes
important. Optimal designs for estimating slopes are
concerned with developing various meaningful optimal-
ity criteria and deriving designs that are best accord-
ing to these criteria when the experimenter’s primary
objective is to estimate slopes. Such designs can be use-
ful to investigators wishing to optimize (minimize or
maximize) the response in a given region of the factor
space.

Preliminaries
Typical response surface design set-up involves an uni-
variate response y and k quantitative factors x, . . . , xk. It
is assumed that y = ϕ(x, θ), a smooth function, where
x = (x, . . . , xk)′ and θ = (θ, . . . , θp)

′ is a p-component
column vector of unknown parameters. A design ξ is a
probability measure on the experimental region χ. Let
yi be the observation on the response at point xi =

(xi, . . . , xik)′ (i = , . . . ,N) selected according to the
design. It is assumed that yi = ϕ(xi, θ)+εi where the εi’s are
uncorrelated, E(εi) =  and var(εi) = σ  (i = , . . . ,N).

�e parameters θ j’s are usually estimated by the
method of 7least squares. Let θ̂ be the estimate of θ,
then ŷ(x) = ϕ(x, θ̂) is the corresponding estimate
of the response at the point x.�e column vector of esti-
mated slopes along the factor axes at point x is given by
dŷ(x)/dx = (∂ŷ(x)/∂x, . . . , ∂ŷ(x)/∂xk)′. Let V(ξ, x) =

(N/σ )Cov(dŷ/dx), the normalized covariance matrix of
estimated slopes. V(ξ, x) depends on the point at which
slopes are estimated as well as the design used.�e vec-
tor dy(x)/dx not only displays the rates of change in y

along the axial directions but also provides information
about the rates of change in other directions. �e direc-
tional derivative at point x in the direction speci�ed by the
vector of direction cosines c = (c, . . . , ck)′ is c′ dy(x)/dx.
Also, the direction inwhich the derivative is largest is given
by {(dy(x)/dx)′(dy(x)/dx)}−/dy(x)/dx.

Linear Model Set-Up
Most of the available work on response surface designs
is concerned with situations where the model is linear
in the parameters, that is, ϕ(x, θ) = f′(x)θ with f′(x)
= ( f(x), . . . , fp(x)) containing p linearly independent

functions of x. In this case for the least squares estimate θ̂,

(N/σ

)Cov(θ̂) =M−

(ξ),

assuming the information matrix M(ξ) = ∫
χ
f(x)f′(x)

ξ(dx) to be nonsingular.�en

(N/σ

)Cov(dŷ(x)/dx) = H(x)M−

(ξ)H′(x) = V(ξ, x),

whereH(x) is a k×pmatrix whose ith row is ∂f′(x)/∂xi =
(∂f(x)/∂xi, . . . , ∂fp(x)/∂xi).

�e commonly used linear models are the polynomial
models for which f(x) consists of terms of a polynomial
of order (degree) d in x. If all the terms of a polynomial of
degree d are included in the model then f(x) (and θ) con-
tains k+dCd components. A design ξ is called a dth order
design if it permits estimation of all the parameters of a
dth order model. A design ξ of order d is called symmetric
if all the “odd moments” up to order d are zero, i.e., if

∫
χ
x
d
 . . . x

dk
k ξ(dx) = 

whenever one or more of the di’s are odd integers and
k

∑
i=
di ≤ d. A design is balanced (permutation invariant)

if the moments are invariant with respect to permutations
of the factors x, . . . , xk.�e class of “symmetric balanced”
designs is simpler to analyze and also very rich in the sense
that it contains optimal designs under many commonly
used criteria.

Optimality Criteria
Research into design of experiments to estimate the slopes
of a response surface was initiated by Atkinson () who
proposed minimization of trace of the “integrated mean
squared error matrix” of the estimated slopes as a design
criterion and investigated �rst-order designswhen the true
model may be a second-order model. Since then the prob-
lem of optimal design for estimating slopes has been inves-
tigated by many other researchers. Ott and Mendenhall
() considered univariate second-order model over an
interval and used criterion of minimizing the variance of
the estimated slope maximized over the design region.
Murty and Studden () also considered univariate poly-
nomial model of order d over an interval and obtained
optimal designs to minimize variance of the estimated
slope at a �xed point in the interval as well as averaged over
the interval. Myers and Lahoda () considered inte-
grated mean squared error criterion for �rst- and second-
order designs in the presence of second- and third-order
terms in the true model, respectively when the integra-
tion is done with respect to an uniform measure. Vaughan
() obtained a new optimal second-order design for
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estimating slopes near a stationery region, taking account
of both variance and bias in the estimation.
If the model assumed is correct and primary goal of

the experimenter is to estimate slopes, it is natural to con-
sider design criteria based on V(ξ, η) rather than Cov(θ̂)

or var(ŷ(x)) where

V(ξ, η) = ∫
R
(N/σ


)Cov(dŷ(x)/dx)η(dx)

= ∫
R
H(x)M−

(ξ)H′(x)η(dx),

with R being the region of interest and η a measure re�ect-
ing the pattern of the experimenters interest.

�en in analogy with the traditional set-up A-, D- and
E-average optimal designs for estimating slopes are de�ned
as those minimizing

β = trV(ξ, η)/k =
k

∑
i=

βi/k, ∣V(ξ, η)∣/k =
k

∏
i=

β
/k
i ,

Max{β, . . . , βk}

respectively, where βi are e-values of V(ξ, η).
One possibility is to take η as the measure putting

all its mass at a single point x∗ where trV(ξ, x), ∣V(ξ, x)∣
and Max{β(ξ, x), . . . , βk(ξ, x)} is maximized, respec-
tively, the βi(ξ, x) being e-values of V(ξ, x).�ese objec-
tive functions are not necessarily maximized at the same
point and themeasure ηmay be di�erent in each case.�is
is the minimax approach and A-, D- and E-minimax opti-
mality criteria of designs for estimating slopes are de�ned
as minimization (with respect to ξ) of

β(ξ, x) =
k

∑
i=

βi(ξ, x)/k, ∣V(ξ, x)∣/k

=
k

∏
i=

{βi(ξ, x)}/k, Max{β(ξ, x), . . . , βk(ξ, x)}

maximized with respect to x ∈ R, respectively. Under “MV-
minimax optimality” criterion the objective is to minimize
the largest diagonal element of V(ξ, x) maximized with
respect to x ∈ R.

Available Results
�e A-criterion is the easiest to handle and has been exten-
sively used in the past.�e A-minimax second- and third-
order designs for regression over spheres were derived in
Mukerjee andHuda (), some results for the set-upwith
R ≠ χ being given in Huda (). For the cubic regions
the A-minimax second-order designs were presented in
Huda and Sha�q () while the third-order designs were
derived in Huda and Al-Shiha ().

�e D-criterion is much more di�cult to tackle.
For second-order models over spherical regions the
D-minimax designs were derived in Huda and Al-Shiha
() while the E-minimax designs were presented
in Al-Shiha and Huda (). More recently,
Huda and Al-Shingiti () obtained A-, D- and
E-minimax designs over spherical regions when R ≠

χ. Huda and Al-Shiha () provided the D- and
E-minimax second-order designs over cubic regions.
A-average optimal second- and third-order designs

for spherical regions were studied in Huda (). �e
A-average second-order designs for cubic regions were
studied in Huda ().

Concluding Remarks
Many interesting problems remain unsolved in optimal
design of experiments for estimating the slopes. For exam-
ple, the D- and E-minimax criteria have not yet been
applied for third- and higher-order designs. Very little
work in general has been done for third-order designs and
practically none for higher order designs in more than
one variable.�e derivation of optimal designs for mod-
els of order three and higher is likely to be very di�cult
but certainly deserves the attention of researchers in the
�eld. Researchers also need to consider situations that take
account of the possibility of bias in the assumed models.
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Optimal Regression Design
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Introduction
�ere are a variety of problems in statistics, which demand
the calculation of one or more probability distributions
or measures. Optimal regression design is a particular
example. Other examples include parameter estimation,
adaptive design and strati�ed sampling.
Consider the problem of selecting an experimental

design to furnish information on models of the type
y ∼ π(y∣x, θ, σ), where y is the response variable;
x = (x, x, . . . , xm)T are design variables, x ∈ X ⊆ Rm,
X is the design space; θ = (θ, θ, . . . , θk)

T are unknown
parameters; σ is a nuisance parameter, �xed but unknown;
and π(.) is a probability model. In most applications, X
is taken to be compact. For each x ∈ X , an experiment
can be performed whose outcome is a random variable
y(x), where var(y(x)) = σ . In linear models, it is fur-
ther assumed that y(x) has an expected value of the explicit
form E(y∣v) = vTθ, where v ∈ V , V = {v ∈ Rk: v = η(x),
x ∈ X} with η(x) = (η(x), η(x), . . . , ηk(x))

T .�at is,
V is the image under a set of regression functions η of X ,
called the induced design space.
Clearly choosing a vector x in the design space X is

equivalent to choosing a k-vector v in the closed bounded
k-dimensional space V . Typically this design space is con-
tinuous but we can assume that V is discrete. Suppose that
V consists of J distinct vectors v, v, . . . , vJ . In order to
obtain an observation on y, a value for v must �rst be
chosen from the J elements of V to be the point at which
to take this observation.

Exact and Approximate Designs
A natural question to consider is at what values of v should
observations, say n, on y be taken in order to obtain a
“best” inference or as reliable an inference as possible for
all or some of the parameters θ. Such a “best” selection of
v (or x values) or allocation of the n observations to the
elements of V (or X ) is termed an optimal regression
design. Given n observations, we must decide how many
of these, say nj, to take at vj, ∑nj = n. Given that the
nj’s must be integer this is an integer programming prob-
lem and in the optimal design context is described as an
“exact design” problem. Typically interger programming
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problems are di�cult or at least laborious to solve, mainly
because the theory of calculus cannot be used to de�ne the
existence of or to identify optimal solutions.
However, we could �nd a simpler or more �exible

problem to solve and yet is not much visibly di�erent from
the original problem. If θ̂ is the least squares estimator
of θ, then cov(θ̂) ∝ M−

(p), where M(p) is the per
observation information matrix:

M(p) =
J

∑
j=

pjvjv
T
j = VPV

T
=

J

∑
j=

pjη(xj)η
T
(xj)

where V is the k × J matrix [v v . . . vJ], P = diag
(p, p, . . . , pJ), pj=nj/n. So pj is the proportion of obser-
vations taken at vj, so that pj ≥ , ∑ pj = ; and
p = (p, p, . . . , pJ) represents the resultant distribution
on V . �us our problem becomes that of choosing p to
make M(p) large subject to pj=nj/n. Relaxing the latter
to pj ≥  and ∑ pj =  yields an “approximate design”
problem. Naturally an approximate solution that would be
preferred to the original exact design problemwould benp,
rounded to a nearest exact design.
We wish to choose the proportion pj of observations,

taken at xj (or vj) to ensure good estimation of θ by opti-
mizing some criterion. �e most important criterion in
design applications is that of D-optimality, in which the
criterion ϕ(p) = ψ{M(p)} = log{det(M(p))}, is maxi-
mized. A D-optimal design minimizes the volume of the
conventional ellipsoidal con�dence region for the param-
eters of the linear model. Other choices of maximizing
criteria are ψ{M(p)} = −cTM−

(p)c for a given vector c
(c-optimality; appropriate if there is interest only in cTθ)
or ψ{M(p)} = −Trace(AM−

(p)AT
) and ψ{M(p)} =

−logdet(AM−
(p)AT

) for a given s × k matrix A, s < k

(linear optimality and DA-optimality respectively and
appropriate if there is interest in inference only for Aθ).
A-optimality is the special case of linear optimality with
A = I, the identity matrix.�ere is a vast statistical litera-
ture on optimal design and optimality criteria. Useful texts
in optimal design are Fedorov (), Atkinson and Donev
(), Pukelsheim (), and Silvey ().

Optimality Conditions and Algorithms
Our general problem is to maximize a criterion ϕ(p) sub-
ject to pj ≥ , j = , , . . . , J and∑ pj = . To solve the prob-
lem, we �rst de�ne optimality conditions in terms of point
to point directional derivatives. Making use of di�erential
calculus, we exploit the directional derivative of Whittle
(). �e directional derivative Fϕ{p, q} of a criterion

function ϕ(.) at p in the direction of q is de�ned as

Fϕ{p, q} = lim
ε↓

ϕ{( − ε)p + εq} − ϕ(p)

ε
.

�e derivative Fϕ{p, q} exists even if ϕ(.) is not di�eren-
tiable. If ϕ(.) is di�erentiable, Fϕ(p, q) = (q − p)T∂ϕ/∂p.
Let

Fj = Fϕ(p, ej) =
∂ϕ

∂pj
−

J

∑
i = 

pi
∂ϕ

∂pi
= dj − d̄,

dj =
∂ϕ

∂pj
, d̄ =

J

∑
i=

pidi

where ej is the jth unit vector in RJ . We call Fj the vertex
directional derivative of ϕ(.) at p. If ϕ(.) is di�erentiable
at an optimizing distribution p∗, then the �rst-order con-
ditions for ϕ(p∗) to be a local maximum of ϕ(.) in the
feasible region of the problem are

F
∗
j = Fϕ{p

∗, ej}

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

=  for p∗j > 

≤  for p∗j = .

If ϕ(.) is concave on its feasible region, then the above
�rst-order stationarity conditions are both necessary and
su�cient for optimality, a result known as the general
equivalence theorem in optimal design (Kiefer ).
In order to determine the optimal weights, we o�en

require an algorithm because it is typically not possible to
evaluate an optimal solution explicitly. Several algorithms
exist in the literature. A class of algorithms which neatly
satisfy the basic constraints of the optimal weights take
the form p

(r+)
j ∝ p

(r)
j f (d

(r)
j ), where d(r)j = ∂ϕ/∂pj at

rth iterate p = p(r) and the function f (.) satis�es certain
conditions and may depend on a free positive parame-
ter δ. Torsney () �rst proposed this type of iteration
by taking f (d) = dδ with δ > . Subsequent empirical
studies include Silvey et al. () and Torsney ().
Torsney () explores monotonicity of particular val-
ues of δ for particular ϕ(p). Mandal and Torsney ()
modi�ed the algorithm for more than one optimizing dis-
tributions based on a clustering approach. Mandal et al.
() used the algorithm for constructing designs subject
to additional constraints.

�ere are many other algorithms in the literature.
Vertex direction algorithms which perturb one pj and
change the others proportionately were �rst proposed by
Fedorov () and Wynn (). When all pj are posi-
tive at the optimum or when it has been established which
are positive, constrained steepest ascent or Newton type
iterations may be appropriate. See Wu () and Atwood
() on these respectively. Molchanov and Zuyev ()
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consider steepest descent algorithms based on the gradient
function.

Conclusion
Finally, as a concluding remark, one important advan-
tage of optimal regression designs is that we can �nd the
best selection of the inputs (factors) for which the opti-
mal value of each response occurs. Another advantage
of optimal design is that it reduces the costs of experi-
mentation by allowing statistical models to be estimated
with fewer experimental runs.
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To �x the idea, we consider the estimation of means in the
following one-way ANOVAmodel,

Yij = θ i + єij, i = , . . . , k, j = , , . . . ,ni. ()

For brevity sake, we consider that єij are identically and
independently normally distributed with mean  and
common �nite variance σ . �e statistical objective is
to estimate simultaneously the mean parameter θ =

(θ, . . . , θk)
′. Let Ȳi = ∑

ni
j= yij/ni, i = , , . . . , k. If σ is

known, the vector (Ȳ, . . . , Ȳk)
′ is a complete su�cient

statistic for θ. Further, it is the best unbiased, maximum
likelihood, andminimax estimator of θ. However, we wish
to improve the performance of the maximum likelihood
estimator (MLE), Ȳi by incorporating the information
(which may not be certain) regarding the parameter vec-
tor of interest, θ. In other words, it is possible that θ = θo,
where θo is a known prior guess of θ. On the other hand,
in many applications one considers that θ = θk, where θ

is the unknown common parameter of interest and k is
a k-column vector with all entries equal to . Indeed, it is
not unusual to encounter the above information regard-
ing the parameter of interest in many practical situations.
Hence, in either situation we assume that a prior guess of
θ, say θ̃, is available or can be evaluated from the data. For
example, θ̃ is the restrictedmaximum likelihood estimator
(RMLE) under the assumption that θ = θk. In this case,
θ̃ = (θ̃, . . . , θ̃)′ = θ̃k, where θ̃ = Ȳ = ∑

k
i=∑

ni
j= yij/n,

where n = n + . . . + nk. It is well-documented in the
scienti�c literature that restricted estimator yields smaller
risk (under quadratic loss) when a priori information is
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nearly correct, however at the expense of poorer perfor-
mance in the rest of the parameter space induced by the
restriction. �e incorrect or imprecise restrictions on θ

may lead to biased (or even inconsistent) and ine�cient
estimators of θ. Now, the question is how to combine θ̃

and θ̂ to get a better estimation strategy for θ. A natural
way to balance the potential bias of the estimator under
the restriction against the benchmark estimator is to take
a weighted average of θ̂ and θ̃. Such shrinkage estimator
(SE) or integrated estimator is de�ned as

θ̂
S
= πθ̂ + ( − π)θ̃ = θ̃ + π(θ̂ − θ̃), ()

for a judiciously chosen weight π ( ≤ π ≤ ). Many
of the estimators proposed in the reviewed literature,
both design-based and model-based, have the integrated
form (). A major drawback of θ̂

S
is that it is not uni-

formly better than either component estimators in terms
of risk. Another approach is to employ shrinkage estima-
tion based on Stein rule, which in turn yields the optimal
weight for θ̂

S
. To construct a shrinkage estimator, we con-

sider the preliminary test approach as advocated by Sclove
() or empirical Bayes consideration.�is approachhad
been implemented by Ahmed () and others. In this
technique, the prior information regarding θ can be dis-
played in the form of the null hypothesis. Let us consider
the following null hypothesis:

Ho : θ = ⋯ = θk = θ (unknown). ()

For the preliminary test on the null hypothesis in (), we
consider the following F-test statistic

D =
(θ̂ − θ̃)′Λ(θ̂ − θ̃)

(k − )S
, Λ = diagonal(n, . . . ,nk),

S

=


n − k

k

∑
i=

ni

∑
j=

(yij). ()

A preliminary test estimator (PTE) is de�ned as

θ̂
P
= θ̃ + (θ̂ − θ̃)I(D ≥ dα), ()

where I(A) is an indicator function of the set A and
dα is the upper α% ( < α < ) point of the test
statistic under the null hypothesis.�e PTE is essentially
obtained by repacking π by a random quantity I(D ≥

dα); however, this is not an optimal value of π.�e PTE
does not uniformly improve upon θ̂ which merits further
enhancement. Hence we replace this indicator function by
a smooth function of D to obtain James–Stein (J–S) type
estimator (see 7James-Stein Estimator).

Optimal Shrinkage Estimation Strategy
�e J-S type shrinkage estimator of θ is de�ned by

θ̂
JS
= θ̃ + { − cD

−
}(θ̂ − θ̃), k > , ()

where c is the shrinkage constant chosen in an inter-
val in such a way that θ̂

JS
dominates θ̂. We notice that

although this estimator resembles the J-S rule, its construc-
tion is based on the preliminary test approach. Further, as
it shrinks the θ̂ toward θ̃, this estimator is generally called a
shrinkage estimator. Clearly, if the value of D is small then
a relatively large weight is placed on θ̃. Otherwise, more
weight is placed on θ̂. Consequently, θ̂

JS
is a special case

of θ̂
S
with π = ( − cD−). It is important to note that

θ̂
JS
may over-shrink θ̂ toward the θ̃, thus causing a pos-

sible inversion of the sign of the benchmark estimator θ̂.
A positive-rule shrinkage estimator (PSE) θ̂

JS+
is obtained

from () by changing the factor −c/D to wheneverD ≤ c,
that is,

θ̂
JS+

= θ̃ + ( − cD
−
)
+
(θ̂ − θ̃), ()

where z+ = max(, z).�e PSE is particularly important
to control the over-shrinking inherent in θ̂

JS+
. For this

reason, Ahmed () recommended using the shrinkage
estimator as a tool to develop the PSE instead of as an esti-
mator in its own right. Rewriting the above relation in the
following weighted form

θ̂
JS+

= θ̃ + ( − cD
−
) [ − I(D > c)](θ̂ − θ̃), ()

we easily see that θ̂
JS+

= θ̂
S
with π = ( − cD−)I

(cD− > ) keeping in mind all the shrinkage estimators
are biased estimators of θ. Since bias is a part of the risk,
we shall only compare the risk function of the estimators.
Assuming that θ̂

∗
is an estimator of θ and Q is a posi-

tive semi-de�nite matrix, let us de�ne the quadratic loss
function

L(θ̂
∗; θ) = (θ̂

∗
−θ)

′
Q(θ̂

∗
−θ) = trace[Q(θ̂

∗
−θ)(θ̂

∗
−θ)

′
].
()

�e risk of θ̂
∗
is R(θ̂

∗
; θ) = E[L(θ̂

∗
; θ)] = trace(QΓ),

where Γ, the mean squared error matrix, is de�ned as Γ =
E([θ̂

∗
− θ)(θ̂

∗
−θ)′]. Noting thatR(θ̂; θ) = σ Λ−, so to

appraise the relative risk performance in meaningful way
it makes sense that we consider Q = σ−Λ what follows in
the remaining discussions. For this particular choice of Q,
we haveR(θ̂; θ) = k.�e risk of the shrinkage estimators
are given below.�ese results originated from the work of
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James and Stein (). For detailed derivation we refer to
Ahmed and Ullah ().

R(θ̂
JS
; θ) = k − com(k − )E [χ

−
k+(∆) − (k − )χ

−
k+(∆)]

+ com(k + )∆E (χ
−
k+(∆)),

where co = (k − )(m + )− is optimal shrinkage con-
stant with m = n − k. Further, ∆ = σ−(Aθ)′Λ(Aθ), with
A = Ik −n

−k′kΛ, Ik is the k×k identity matrix.�e above
relation reveals that R(θ̂

JS
; θ) ≤ R(θ̂; θ) for all the values

of ∆ and strict inequality holds for some ∆.�e maximum
reduction in the risk for θ̂

JS
is achieved at ∆ = , i.e.,

θ = θk.

R(θ̂
JS+
; θ) = R(θ̂

JS
; θ) − (k − )Gk+,m(k; ∆)

−m(k − )coE [{(k − )χ
−
k+(∆)

−χ
−
k+(∆)} I (χ


k+(∆)/χ


m ≤ co)]

−mco∆ [{(k − )χ
−
k+(∆)

−χ
−
k+(∆)} I (χ


k+(∆)/χ


m ≤ co)

+χ
−
k+(∆)I (χ


k+(∆)/χ


m ≤ co)]

+ ∆{Gk+,m(k; ∆) −Gk+,m(k; ∆)},

whereGp , p(. , ∆) is the cumulative distribution of a non-
central F-distribution with p and p degrees of freedom
and non-centrality parameter ∆ with k = com(k + )−

and k = com(k + )−.�e above risk expression leads to
the relation that R(θ̂

JS+
; θ) ≤ R(θ̂

JS
); θ) ≤ R(θ̂); θ) for

all the values of ∆, and strict inequality holds for some ∆.
�e maximum reduction in the risk is achieved at ∆ = .
�erefore, the θ̂

JS+
outperforms both θ̂

JS
and θ̂ in the

entire parameter space induced by ∆ and the upper of
risk function of θ̂

JS+
is obtained when ∆ → ∞.�us, for

π = πo = ( − coD
−
) I(coD

−
≤ ) in θ̂

S
given in (),

we obtain an optimal shrinkage strategy which provides
a basis for optimally combining the estimation problems.
�is approach yields a well-de�ned data-based shrinkage
estimator that combines estimation problem by shrinking
a benchmark estimator to plausible alternative quantity.
�e optimal shrinkage estimator is similar to the most
celebrated J–S estimator in which they shrink the bench-
mark estimator toward the null vector for estimating the
mean vector of a multivariate normal distribution (see
7Multivariate Normal Distributions). �ere is no mys-
tery about the origin; these estimators can shrink toward
any point. Here we use the restricted estimator instead
in the formulations and evaluations for optimal shrink-
age strategy in one-way ANOVA.�ese formulations have

been extended in regression problems pertaining to para-
metric, non-parametric and semi-parametric setup by a
host of researchers including Ahmed () and Ahmed
et al. (, ). Now we present the formulation in a
regression set-up.

Regression Model
Let us consider the linear regressionmodel yn = Xnβ+єn,
where yn is a n ×  random vector, Xn is a known n × k

matrix (n > k) of regression constant and, as the sam-
ple size n becomes in�nitely large, limn→∞ (X’

nXn) /n =

C where C is �nite and nonsingular matrix. Further, β

is a column vector of k unknown regression parameters,
and є = (є, . . . , єn)′ are independent and identically dis-
tributed random variables with a distribution function F

on real line R = (−∞,+∞). Here we do not make any
assumption about the functional form of the F. We assume
that E(є) =  and E(єє

′

) = σ In, where σ  is unknown
positive �nite parameter.
We are primarily interested in the estimation of βwhen

β is suspected to lie in the subspace de�ned by Hβ = h,
where H is a given q × k matrix of rank q ≤ k and h is a
given q×  vector of constants.�e test statistic for the null
hypothesis Ho : Hβ = h is

D = (H β̂ − h)
′
[H (X

′
nXn)

−
H

′
]
−

(H β̂ − h)/S
,

S

= (Yn − Xn β̂)

′
(Yn − Xn β̂)/n − k,

where β̂ is the least square estimator (LSE) of β. �e
restricted estimator of β is given by

β̃ = β̂ − C
−
n H

’
(HC

−
n H

′
)
−

(H β̂ − h).

with Cn = X′nXn. Consequently, placing β̃, β̂ and D

appropriately in () and (), we can obtain shrinkage esti-
mators for β respectively. �eses estimator preserve the
dominance property over LSE. Recently, Nkurunziza and
Ahmed () extended shrinkage methodology to the
matrix estimation.�e literature on shrinkage estimation
strategy is vast; and research on the statistical implica-
tions of these and other combining possibilities for a range
of statistical models is ongoing and growing in statistical,
econometric, and related scienti�c literatures.
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Optimal Shrinkage Preliminary
Test Estimation
S. Ejaz Ahmed, S. Chitsaz, S. Fallahpour
University of Windsor, Windsor, ON, Canada

Statistical models parameters are estimated in an e�ort to
have knowledge about unknown quantities. In many sit-
uations, however, statisticians provide the estimation of
the parameters by using not only information based on
the sample, but other information as well. �is informa-
tion may be regarded as nonsample information(NSI) or
uncertain prior information (UPI) about the parameter of
interest. It is advantageous to utilize theNSI in the estima-
tion procedure, especially when the information based on
the sample may be rather limited or even the data qual-
ity is questionable. But in some experimental cases, it is
not certain whether or not this information holds. Con-
sider the data arising from tumor measurements in mice,
for example, at various times following injection of car-
cinogens. Such data should be thought as coming from an
in vivo experiment. Biologists are interested in estimating
growth rate parameter θ when it suspected a priori that θ =

θ. Such θ can be obtained directly from in vitro experi-
ments in which cell behavior may or may not be di�erent
because of di�erent environmental conditions.�us, biol-
ogists may have reason to suspect that θ is the true value
of the growth parameter for the in vivo experiment, but are
not sure. Generally speaking, consequences of incorporat-
ing NSI depend on the quality or reliability of information
introduced in the estimation process.�is uncertain prior
information in the form of the null hypothesis can be used
in the estimation procedure. It is natural to perform a pre-
liminary test on the validity of the UPI in the form of
the parametric restrictions, and then choose between the
restricted and unrestricted estimation procedure, depend-
ing upon the outcome of the preliminary test. �is idea
was initially conceived by T.A. Bancro� in . How-
ever, this may be partly motivated by the remarks made by
Berkson ().�e preliminary test estimators (PTE) are
widely used by researchers, as is evident from the extensive
bibliographies and research articles. A standard reference
on the PTE is Judge and Bock ().
For illustrative purposes, let us consider one sample

problem. Suppose we observe Y,⋯,Yn satisfying Yi =

θ + єi, i = ,⋯,n, where the errors єi are independently
and identically normally distributed with a mean of  and
variance σ .

�e statistical problem is to estimate θ when θ = θ
is suspected. To estimate θ, one need only to consider
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the su�cient statistic T(y) = ∑
n
i= yi. �e benchmark

or unrestricted estimator (UE) θ is θ̂U
= T(y)/n, with

variance σ 

n
.

Preliminary Test Estimation
�e preliminary test estimation strategy involves a statis-
tical test of the available NSI based on an appropriate test
statistic and a decision is made on the outcome of the test.
�us, the preliminary test estimator (PTE) of θ denoted by
θ̂P is de�ned as

θ̂
P
= θI(Dn < dα) + θ̂

U
I(Dn ≥ dα), ()

where Dn is any suitable test statistic and I(A) is an indi-
cator function of the setA, and dα is the upper α% ( <
α < )point of the test statistic. For our estimation problem
to test the null hypothesis H : θ = θ against H : θ ≠ θ,
we use the test statistic Dn =

n(θ̂U−θ)
s

, where s is the
sample estimate of σ . Under the null hypothesis, Dn fol-
lows an F-distribution.�us, at the α-level of signi�cance
we reject the null hypothesis if Dn ≥ F(α ; , n−), where
F(α ; , n−) is the upper α-level critical values of the central
F-distribution with (,n− ) degrees of freedom.�us, we
can replace dα by F(α ; , n−) in () and the remaining dis-
cussion follows. By construction, θ̂P is a biased estimator
and the mean squared error (MSE) of the θ̂P is given by

MSE(θ̂
P
) =

σ 

n
−

σ 

n
[H,n−(Fa, δ) − δ {H,n−(Fa, δ)

+H,n−(Fb, δ)}] , ()

where, Hk, n−(. , δ/, ) is the cumulative distribution of
a non-central F-distribution with k and n −  degrees of
freedom and non-centrality parameter δ/, where δ =

n(θ − θ)

/σ . Further, Fa = / F(α ; , n−) and Fb =

/ F(α ; , n−).
�e MSE expression reveals the typical characteris-

tics of the preliminary test estimator. For small values of
δ the performance of θ̂P is better than θ̂U . Alternatively,
for larger values of δ, the value of theMSE(θ̂P

) increases,
reaches its maximum a�er crossing theMSE(θ̂U

) = σ /n

and thenmonotonically decreases and approaches towards
it. Further, as α, approaches to one, MSE(θ̂P

) tends to
MSE(θ̂U

).�us, the relative performance of θ̂P to θ̂U will
also depend on the size of the preliminary test. It was rec-
ommended in the literature to use a level of signi�cance
of at least . or more for such preliminary testing to
achieve reasonable MSE reduction. Use of such a large sig-
ni�cance level helps maximizing the minimum e�ciency
of θ̂P. Hence, the use of θ̂P was limited due to the large size
of the preliminary test. To resolve this issue Ahmed ()
introduced the shrinkage technique in the preliminary
test estimation to overcome this di�culty. �e proposed

methodology remarkably improves upon the PTE with
respect to the size of the preliminary test whilemaintaining
the minimum e�ciciecy.
A shrinkage estimator (SE) of θ is de�ned by θ̂SR

=

πθ + (− π)θ̂U , where π ∈ (, ) is a coe�cient re�ecting
the degree of con�dence in the prior information. How-
ever, the key question in this type of estimator is how to
select an optimal value for the shrinkage parameter π. In
some situations, it may su�ce to �x the parameter at some
given value.�e second choice, is to choose the parameter
in a data-driven fashion by explicitly minimizing a suit-
able risk function. A common but also computationally
intensive approach to estimate π is using cross-validation.
On the other hand, from a Bayesian perspective one can
employ the empirical Bayes technique. In this case π is
treated as a hyper-parameter and may be estimated from
the data by optimizing themarginal likelihood. For brevity
sake, we assume that the value of π may be completely
determined by the experimenter, depending upon the reli-
ability ofNSI.�e SE performs better than θ̂U near the null
hypothesis, but as the hypothesis error grows, θ̂SR may be
considerably biased, ine�cient and inconsistent, while the
performance of θ̂U remains constant over such departures.
Hence, this estimator is not preferable in its own right,
however it can be used in constructing another estimators.

Shrinkage Preliminary Test Estimation
�e shrinkage preliminary test estimator (SPTE) of θ

denoted by θ̂SP is de�ned by replacing θ by θ̂SR in the
de�nition of θ̂P given in ()

θ̂
SP
= {πθ+(−π)θ̂

U
}I(Dn < dα)+ θ̂

U
I(Dn ≥ dα). ()

�e expression for the MSE of θ̂SP is

MSE(θ̂
SP
) =

σ 

n
−

σ 

n
π( − π)H, n−(Fa, δ)

+
σ 

n
πδ{H, n−(Fa, δ)

− ( − π)H, n−(Fb, δ)}. ()

It appears from the MSE expression of θ̂SP that as π

increases, theMSE of θ̂SP becomes smaller than that of θ̂SR

and θ̂P, and approaches to MSE of θ̂U faster than that of
θ̂P. Further, θ̂SP dominates θ̂U over a wider range than θ̂P.
More importantly, θ̂SP has a good control on themaximum
ofMSE as comparedwith θ̂P. Hence the θ̂SP providesmuch
more meaningful size for the preliminary test than θ̂P.�e
trick is in selecting the value of π. In this sense, θ̂SP can be
considered as an optimal strategy.
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Summary
When there is uncertainty concerning the appropriate sta-
tistical model-estimator to use in representing a data sam-
pling process, the estimation rule based on preliminary test
estimation provides a basis for optimally combining the
estimation problems.�is approach yields a well-de�ned
data-based shrinkage preliminary test estimator that com-
bines estimation problem by shrinking a benchmark esti-
mator to plausible alternative quantity. Bearing in mind,
neither θ̂SP nor θ̂P uniformly dominate θ̂U . �us, the
performance of the estimators based on preliminary test
procedures depends on the quality of theNSI. In this com-
munication we considered formulations and evaluations
for θ̂SP in one-sample-problems. �e formulations have
been extended tomultiple estimation and regression prob-
lems in parametric, non-parametric and semi-parametric
setup by a host of researchers including Ahmed () and
Ahmed et al. (, ). �e literature on PTE is vast
and research on the statistical implications of these and
other combining possibilities for a range of statisticalmod-
els is ongoing and growing in statistical and econometric
literatures.
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Optimal Statistical Inference in
Financial Engineering
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�e �eld of �nancial engineering has developed as a huge
integration of economics,mathematics, probability theory,
statistics, time series analysis, operation research etc.
We describe �nancial assets as 7stochastic processes.
Using stochastic di�erential equations, probabilists devel-
oped a highly sophisticated mathematical theory in this
�eld. On the other hand empirical people in �nancial
econometrics studied various numerical aspects of �nan-
cial data by means of statistical methods.
Black and Scholes () provided the modern option

pricing theory assuming that the price process of an under-
lying asset follows a geometric Brownian motion (see
7Brownian Motion and Di�usions). But, a lot of empiri-
cal studies for the price processes of assets show that they
do not follow the geometric Brownianmotion. Concretely,
we o�en observe that the sample autocorrelation function

ρ̂Xt
(l) =

∑
n−∣l∣
t= (Xt+l − Xn)(Xt − Xn)

∑
n
t=(Xt − Xn)

,(Xn = n
−

n

∑
t=

Xt)

of the return process {Xt} of assets with time lag l becomes
near  for l ≠ , i.e., Xt ’s are almost uncorrelated, and that
ρ̂Xt

(l), l ≠ , of the square-transformed return Xt are not
near  for l ≠ , i.e., Xt

′s are not uncorrelated. Hence we
may suppose that

“return processes {Xt} are non-Gaussian dependent.”
()

Based on this, it is important to investigate which
stochastic models can describe the actual �nancial data
su�ciently, and how to estimate the proposedmodels opti-
mally, which lead to the theme of this section. Let {Xt} be
anm-dimensional vector process whose components con-
sist of the return of assets. A typical candidate for () is the
following non-Gaussian linear process :

Xt = µ +
∞
∑
j=

Aθ(j)Ut−j, ()

where µ is anm-dimensional non-random vector, Aθ(j)’s
are m ×m-non-random matrices, θ is a p-dimensional
unknown parameter and Us’s are i.i.d. m-dimensional
random vectors with probability density function g(u),
u ∈ Rm.
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Lucien LeCam (e.g., LeCam ) established the most
important and sophisticated foundation of the general
statistical asymptotic theory. He introduced the concept
of local asymptotic normality (LAN) for the likelihood
ratio between contiguous hypotheses of general statistical
models. Once LAN is proved, the asymptotic optimality
of various statistical methods (estimators, tests and dis-
criminant statistics etc.) is described in terms of the LAN
property.
Under appropriate regularity conditions, Taniguchi

and Kakizawa () proved the LAN for (), and showed
the asymptotic optimality of themaximum likelihood esti-
mator (MLE) for θ.�e philosophy of optimal statistical
inference in �nancial engineering is to develop the �nan-
cial analysis (option pricing, VaR problem, portfolio con-
struction and credit rating etc.) based on the optimally
estimated statistical models. In what follows we explain a
few topics in this stream.
Suppose that Xt is the random return on m assets

at time t, and that Xt is generated by (). Let α =

(α, . . . , αm)
′ be the vector of portfolio weights.�en the

return of portfolio is α′Xt , and the mean and variance are,
respectively, given by α′µ and α′Σα, where Σ = Var(Xt).
Optimal portfolio weights have been proposed by various
criteria.�e most famous one is given by the solution of

⎧⎪⎪
⎨
⎪⎪⎩

maxα {α′µ − βα′Σα }

subject to e′α = 
()

where e= (, . . . , )′ (m×-vector ), and β is a given positive
number.�en the optimal portfolio for () becomes

αI =

β

{Σ−µ −
e′Σ−µ
e′Σ−e

Σ−e } +
Σ−e
e′Σ−e

. ()

�e criterion () is so called the “mean-variance method.”
If we use the other criterion, the optimal portfolio αopt is
of the form

αopt = g(µ, Σ), ()

i.e., a measurable function of µ and Σ. A natural estimator
of αopt is

α̂opt ≡ g(µ̂, Σ̂) ()

where µ̂ is the sample mean and Σ̂ is the sample covari-
ance matrix from the observations with length n. Shi-
raishi and Taniguchi () gave a necessary and su�-
cient condition for α̂opt to be asymptotically e�cient in
terms of the spectral densitymatrix of {Xt}.�is condition
shows that if {Xt}∼VARMA(p, p) with p < p, then
α̂opt is not asymptotically e�cient, which gives a strong
warning for use of the classical mean-variance estima-
tor. In view of the asymptotic e�ciency, based on LAN,

Shiraishi and Taniguchi () showed that the MLE of
αopt is asymptotically e�cient.
So far we have assumed that the return process {Xt}

is stationary. However, stationary models are not plausi-
ble to describe the real world. In fact, time series data with
a long stretch o�en contain slow or rapid changes in the
spectra. For this Dahlhaus () introduced an important
class of non-stationary processes, called locally stationary
processes which have the time varying spectral density
f (u, λ) where u is a standardized time parameter and λ

is the frequency. In the case of locally stationary return
processes, Shiraishi and Taniguchi () discussed the
optimal estimation of αopt .
Various approaches in �nancial engineering with opti-

mal statistical properties can be found in Taniguchi et al.
().
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Optimal Stopping Rules
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�e theory of Optimal Stopping was considerably stimu-
lated byA.Wald (). He showed that – in contrast to the
classical methods of theMathematical Statistics, according
to which the decision is taken in a �xed (and nonrandom)
time – the methods of the sequential analysis take obser-
vations sequentially and the decision is taken, generally
speaking, at a random time whose value is determined by
the rule (strategy) of observation of a statistician.Wald dis-
covered the remarkable advantage of the sequential meth-
ods in the problem of testing (from i.i.d. observations) two
simple hypotheses. He proved that there is a sequential
method (sequential probability-ratio test) which requires
on average a smaller number of observations than any
othermethod using �xed sample size (and the same proba-
bilities of wrong decisions). It turned out that the problem
of optimality of a sequential statistical decision can be
reformulated as an “optimal stopping problem,” and this
was the essential step in constructing the General Optimal
Stopping�eory.

�e basic notions and results of the Optimal Stopping
�eory are the following.
In the discrete-time case, one assumes that a �ltered

probability space (Ω,F , (Fn)n≥,P) is given, where we
interpret Fn as the information available up to time n.
Let G = (Gn)n≥ be a sequence of random variables

such that each Gn is Fn-measurable. All our decisions in
regard to optimal stopping at time n must be based on
the information Fn only. In other words, no anticipation
is allowed.
By de�nition, a Markov time is a random variable

τ∶Ω → {, , . . . ,∞} such that {τ ≤ n} ∈ Fn for all n ≥ .
A Markov time with the property τ <∞ is usually called a
stopping time (the class of all stopping timeswill be denoted
byM).
A basic problem of the Optimal Stopping�eory con-

sists of �nding the value function

V = sup
τ∈M

EGτ

and a stopping time τ∗ (if it exists) such that EGτ∗ = V .
(We assume that E supn≥ ∣Gn∣ <∞.)
For solving this problem it is useful to introduce the

value functions

V
N
n = sup

τ∈MN
n

EGτ ,  ≤ n ≤ N <∞, and Vn = sup
τ∈Mn

EGτ ,

 ≤ n <∞,

whereMN
n ={τ ∈ M∶n ≤ τ ≤ N} andMn={τ ∈ M∶ τ ≥ n}.

�e usual method of �nding the value functions VN
n

is the method of backward induction, which deals with a
sequence of random variables (SNn )≤n≤N de�ned recur-
sively as follows:

SNn = GN for n = N,

SNn = max{Gn, E (SNn+ ∣Fn)} for n = N − , . . . , .

�e method also suggests that we consider the time

τ
N
n = inf {n ≤ k ≤ N∶ S

N
k = Gk} for  ≤ n ≤ N.

�e following theorem (which we formulate for the
case  ≤ n ≤ N < ∞) plays a central role in the Optimal
Stopping�eory.

�eorem  �e stopping time τNn is optimal (EGτN
n
= VN

n )
in the class MN

n .�e value VN
n equals ESNn .

To �nd the value functions Vn = supτ≥n EGτ , n ≥ ,
we consider the sequence of random variables (Sn)n≥
de�ned by

Sn = ess sup
τ≥n

E(Gτ ∣Fn)

and the stopping time

τn = inf{k ≥ n∶ Sk = Gk}.

Here ess sup is an abbreviation for essential supremum; the
sequence (Sn)n≥ is o�en referred to as the Snell envelope
of G.
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�eorem  �e following recurrent relations hold:

Sn = max{Gn, E(Sn+ ∣Fn)}.

If τn <∞, then this stopping time τn is optimal: EGτn = Vn

and ESτn = Vn.

�eorem  Under assumption E supn≥ ∣Gn∣ <∞we have

Sn = limN→∞ SNn and Vn = limN→∞ VN
n .

�eorems – cover the main results of the so-called
martingale approach to the optimal stopping. A lot of
attention in the Optimal Stopping �eory is paid to the
so-calledMarkovian approach.�is approach assumes that
the gain functions Gn admit theMarkovian representation,
i.e., there exist a Markov process X = (Xn)n≥ de�ned on
(Ω,F , (Fn)n≥,P) and a measurable function G = G(x)

such that Gn = G(Xn) for all n ≥ .�e assumption about
the Markovian representation allows one to use for solv-
ing the optimal stopping problems the theory of 7Markov
processes, which has a well-developed tools, methods, and
remarkable results.
To describe the Markovian approach to the Optimal

Stopping, let us assume that G = G(x) is a measurable
function, X = (Xn)n≥ is a homogeneous Markov chain
(see 7Markov Chains) with values in R. We denote by Px

the distribution of X under assumption X = x ∈ R and by
Ex the expectation with respect to Px.
We assume Ex supn≥ ∣G(Xn)∣ <∞, x ∈ R, and use the

following notation: for n ≥ ,

V
n
(x) = sup

τ∈Mn


ExG(Xτ), V(x) = sup
τ∈M

ExG(Xτ);

for N ≥  �xed and n ≤ N,

C
N−n

= {x ∈ R∶VN−n
(x) > G(x)},

D
N−n

= {x ∈ R∶VN−n
(x) = G(x)},

and
τ
N
D = inf{ ≤ n ≤ N∶Xn ∈ D

N−n
}.

Denote also by T the transition operator of X:

TF(x) = ExF(X),

where F(x) is a real function such that ExF(∣X∣) <∞.

�eorem  For all n ≤ N the function Vn
(x) satis�es the

Wald–Bellman equation

V
n
(x) = max{G(x),TVn−

(x)}

with V = G.�e stopping time τND is optimal: ExG (XτN
D
) =

VN
(x).

We see that optimal stopping time τND has a very trans-
parent form: if xn ∈ CN−n, then we continue observations,
and we stop, if xn ∈ DN−n. (�e sets CN−n and DN−n are

called sets of continuation and stopping of observations,
respectively.)
For case of in�nite horizon (N = ∞) the following

theorem holds.

�eorem  Under assumption E supn≥ ∣G(Xn)∣ < ∞,
x ∈ R, the value function V(x) solves the Wald–Bellman

equation

V(x) = max{G(x),TV(x)}

for x ∈ R. If the stopping time τD = inf{n ≥ ∶Xn ∈ D},

where D = {x ∈ R∶V(x) = G(x)}, is �nite (τD < ∞), then
this stopping time is optimal: ExG(XτD) = V(x), x ∈ R.

Remark . In�eorems  and  it su�ces to assume that
τn <∞ (P-a.s.) and τD <∞ (P-a.s.), respectively. For case
τn =∞ and τD =∞ we put Gτn =  and G(XτD) = .

�e results formulated above give the basis for solv-
ing di�erent concrete optimal stopping problems in the
theory of probability, mathematical statistics, �nancial
mathematics.
Above we presented the optimal stopping theory only

for the discrete-time case. For the case of continuous
time, the formulations of problems are very similar (one
should consider the continuous-time �ltered probability
space (Ω,F , (Ft)t≥,P) instead of the discrete-time �l-
tered probability space (Ω,F , (Fn)n≥,P)). �e corre-
sponding general theory is exposed in Chow et al. (),
DeGroot (), Peskir and Shiryaev () and Shiryaev
(), where one can also �nd solutions to many con-
crete optimal stopping problems from di�erent �elds of
probability theory, mathematical statistics, �nancial math-
ematics.
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Introduction
Many applied problems in engineering, economics, �nance,
and medicine lead to the important problem of statistical

data analysis – forecasting of time series.�e mathemat-
ical substance of the forecasting problem is quite simple:
to estimate the future value xT+τ ∈ Rd of the d-variate
time series in τ ∈ N steps ahead by T ∈ N successive
observations {x, . . . , xT} ⊂ Rd.
We can distinguish two stages in the history of attacks

on the forecasting problem. �e research on the �rst
stage (before the year ) was oriented to the develop-
ment of forecasting statistics and algorithms thatminimize
the mean square risk (error) of forecasting for a set of
basicmathematicalmodels, e.g., stationary time serieswith
some known spectral density, time series with a trend from
some known parametric family, and autoregressive inte-
grated moving-average (ARIMA) time series (Bowerman
and O‘Connel ).
It was detected by many researchers that the “optimal”

forecasting algorithms on the real statistical data have the
risk values that are much more than the expected the-
oretical values. In his lecture at the World Congress of
Mathematicians in , Peter Huber explained the rea-
son for this strange situation (Huber ): “Statistical
inferences (including statistical forecasts) depend only in
part upon the observations. An equally important base is
formed by prior assumptions about the underlying situa-
tion.”�e system of prior assumptions is called the hypo-
thetical model of the data M. In applied problems, the
hypothetical model assumptions M are o�en distorted,
and this fact leads to the unstability of the “optimal” fore-
casting statistics that are optimal only underM. Huber has
proposed to construct robust statistical inferences that are
“weak-sensitive w.r.t. small distortions of the hypothetical
modelM”; this event has opened the second stage in sta-
tistical forecasting of time series.�e present-day state of
the research in 7robust statistics is displayed in analytic
reviews (Davies and Gather ; Maronna et al. ;
Morgenthaler ).

Distortions of Hypothetical Models
�e probability model of the observed time series under
distortions is determined by the family of probability dis-
tributions {Pε

T ,θ(A), A ∈ BTd: T ∈ N, θ ∈ Θ ⊆ Rm,
ε ∈ [, ε+]}, where BTd is the Borel σ-algebra in RTd, θ

is an unknown true value of the model parameters, ε is the
distortion level, ε+ ≥  is its maximal admissible value. If
ε+ = , then the distortions are absent, and we have the
hypothetical modelM.
A short scheme of classi�cation for typical distor-

tions of hypothetical models is presented in Fig. ; a more
detailed scheme of classi�cation is given in Kharin ().
Let us describe brie�y the distortions indicated on Fig. .
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Optimality and Robustness in Statistical Forecasting. Fig.  Classification for types of distortions

With respect to (w.r.t.) the form of presentation of the
hypothetical model M, the set of all types of distortions
can be split into two classes: the model in the explicit form
(D.), i.e., in the form of some probability distribution
P(⋅); the model in the implicit form (D.) determined by
a stochastic equation

xt = G(xt− , . . . , xt−s ,ut ,ut− , . . . ,ut−L; θ), t ∈ Z,

where ut ∈ Rν is an innovation process (usually the white
noise), s,L ∈ N are some natural numbers indicating the
memory depth, θ ∈ Θ ⊆ Rm is the vector of model
parameters.
Tukey–Huber distortions (D..) for the observation

vector X are described by the mixture: p(X) = ( −
ε)p(X) + εh(X), where p(⋅) is some “non-distorted”
(hypothetical) p.d.f., h(⋅) is the so-called contaminating
p.d.f., ε ∈ [, ε+) is the distortion level. If ε = , then
p(⋅) = p(⋅), and distortions are absent.
Distortions of the type D.. are described by ε-

neighborhoods in any probability metric:  ≤ ρ(p(⋅),
p(⋅)) ≤ ε, where ρ(⋅) is some probability metric.

�e classD. consists of three subclasses.�e subclass
D.. describes distortions in the observation channel:
X = H(X,V), where X = (xk) ∈ RTd is the “non-
observable prehistory” of the process,X ∈ RTd is the vector
of observations, that is the “observable prehistory,” V =

(v
′
, . . . , v

′
T) ∈ RTl is the non-observable random vector

of distortions (errors in the observation channel), H(⋅) is
a function that describes the registration algorithm.

�e subclass (D..) includes �ve types of distortions.
Additive (D...) and multiplicative (D...) distor-

tions in the observation channel are described by the
equations

xt = x

t + εvt , xt = ( + εvt)x


t , t ∈ N,

respectively, where {vt} are i.i.d. random variables,
E{vt} = , D{vt} = σ  < +∞.

�e subclass D... (ε-non-homogeneities) includes
the cases where the random vectors of distortions vt ∈ Rl

are nonidentically distributed, but their probability dis-
tributions di�er not more than on ε in some probability
metric.

�e subclass D... describes the 7outliers in the
data.�e replacement outliers (RO) and the additive out-
liers (AO) in the observation channel are described by the
equations:

xt = ( − ξt)x

t + ξtvt , xt = x


t + ξtvt , t ∈ N,

respectively, where {ξt} are i.i.d. Bernoulli random vari-
ables, P{ξt = } =  − P{ξt = } = ε, {vt} are random
variables describing outliers, ε is the probability of the out-
lier appearance, and E{vt},D{vt} characterize the level of
outliers.

�e subclass D... considers the missing values in
X ∈ RTd. To describe the missing values, it is conve-
nient to de�ne the binary (T × d)-matrix O = (oti): oti =
{, if xti is observed; , if x


ti is a missing value}.

�e subclass D.. describes distortions of the gener-
ating stochastic equation (“misspeci�cation errors”) and
includes two types of distortions:

● Parametric distortions (D...), when instead of the
true parameter value θ we get (or estimate by statisti-
cal data) a di�erent value θ̃, with ∣θ̃ − θ∣ ≤ ε

● Functional distortions (D...), when instead of the
true functionG(⋅)we get a di�erent function G̃(⋅), and
in some metric ∥G̃(⋅) − G(⋅)∥ ≤ ε

�e subclass D.. describes distortions of the
innovation process ut ∈Rν in the generating stochastic
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equation and includes distortions of three types: ε-
non-homogeneities (D...), probabilistic dependence
(D...), “innovation outliers” (D...).

Characteristics of Optimality and
Robustness in Forecasting
Let x̂T+τ = f (X): RTd

→ Rd be any forecasting statistic.
Its performance is evaluated by the mean square risk of
forecasting:

rε = rε( f ) = Eε{∥x̂T+τ − xT+τ∥

} ≥ , ε ∈ [, ε+],

whereEε{⋅} is the expectation symbol w.r.t. the probability
distribution Pε

T ,θ(⋅). If the distortions are absent (ε = )
and the hypothetical model M is valid, this functional is
called the hypothetical risk r = r( f ). �e guaranteed
(upper) risk is

r+ = r+( f ) = sup
≤ε≤ε+

rε( f ),

where the supremum is taken on all admissible distortions
of the hypothetical modelM.
Let further x̂T+τ = f (X; θ) be the optimal forecasting

statistic under the known hypothetical model M (ε = )
that gives the minimal value to the hypothetical risk:

r = r( f

) = inf

f (⋅)
r( f ).

In practice, the family of the so-called plug-in forecast-
ing statistics is o�en used: x̂T+τ = f (X) := f (X; θ̂),
where θ̂ ∈ Rm is some consistent statistical estimator of the
unknown parameter θ based on the observed time series
X. A forecasting statistic x̂T+τ = f (X) is called the asymp-
totically optimal forecasting statistic if limT→∞(r( f )

− r( f

)) = .

�e risk unstability coe�cient κ is the relative incre-
ment of the guaranteed risk w.r.t. theminimal hypothetical
risk

κ = κ( f ) = (r+( f ) − r)/r ≥ .

For any δ >  de�ne another characteristic of robustness
that is quite useful in applications:

ε
∗
= ε

∗
(δ) = sup{ε ∈ [, ε+] : κ( f ) ≤ δ},

that is called the δ-admissible distortion level. It indi-
cates themaximal level of distortions for which the relative
increment of the risk is yet not greater than the �xed value
δ ⋅ %.

�e smaller the value κ is and the greater the value ε∗

is, themore robust the forecasting statistic is.�eminimax
robust forecasting statistic x̂∗T+τ = f ∗(X) minimizes the
risk unstability coe�cient

κ( f
∗
) = inf

f (⋅)
κ( f ).

In Hampel et al. (), a characteristic of the “quali-
tative robustness” is introduced – the Hampel breakdown
point ε∗∗; it is the maximal fraction of “arbitrary large
outliers” in the sample X such that the considered fore-
casting statistic f (X) is bounded: ε∗∗ = max{ε ∈ [, ] :
sup ∣ f (X)∣ ≤ C < +∞}.

Some Approaches to Construct Robust
Forecasting Statistics
�ere are three main approaches to construct robust fore-
casting statistics.

�e �rst approach is based on minimization of the risk
unstability coe�cient κ( f ) in some family of forecasting
statisticsF : κ( f )→ minf ∈F .�is approach is theoretically
complicated. Because of the computational complexity, the
minimization problem can be solved for some cases only;
relevant examples are given in Kharin ().

�e second approach is the “plug-in” approach: x̃T+τ =

f (X; θ̃), where θ̃ is some robust estimator of parameters
θ by the distorted data X; the methods for robust esti-
mation of parameters can be found in Davies and Gather
(), Hampel et al. (), Kharin (), Maronna
et al. (), Morgenthaler (), and Rousseeuw and
Leroy (). Robustness of the “plug-in” forecasting statis-
tics can be evaluated by the characteristics indicated in
the previous section (“7Characteristics of Optimality and
Robustness in Forecasting”).

�e third approach is based on the idea of preliminary
�ltering (“cleaning”) of the observed time series X. Some
methods of forecasting based on �ltering are discussed in
Maronna et al. () and Rousseeuw and Leroy ().
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Introduction
Experimental design is concerned with the allocation of
treatments to units.�e methods of optimum design were
originally developed for the choice of those values of the
explanatory variables x in a regression model at which
observations should be taken (Smith ). For example,
in a chemical experiment there may be several factors,
such as time of reaction, temperature, pressure and cat-
alyst concentration, that a�ect the response which is a
smooth function of these variables (see7Response Surface
Methodology). At what combination of variables should
measurements be taken in order to obtain good estimates
of the dependence of responses, such as yield or purity
of product, on these variables? More recent developments
include the design of experiments for the nonlinearmodels
occurring in pharmacokinetic experiments in drug devel-
opment (Gagnon and Leonov ).
Perhaps a�er data transformation (see 7Box-Cox

Transformations), e�cient analysis of regression experi-
ments requires the use of least squares parameter esti-
mation (see 7Least Squares). In a good experiment the

variances and covariances of the estimated parameters will
be small. Optimal experimental designs minimize func-
tions of these variances and so provide good estimates of
the parameters.
Since optimal designs focus on the variances of the

estimated parameters, it is necessary to specify a model
or models. Also needed is an experimental region X that
speci�es the range of values of the experimental variables.
�e modern statistical theory of optimum experimental
designwas developed in a series of papers byKiefer (Brown
et al. ). A succinct introduction to the theory is given
by Fedorov and Hackl (), which Atkinson et al. ()
�eshes out with examples and SAS programs.

Least Squares and the Information
Matrix
�e linear regressionmodel (see7Linear RegressionMod-
els) is written E(y) = Fβ with y the N ×  vector of
responses, β a vector of p unknown parameters and F the
N × p extended design matrix that may contain functions
of the explanatory variables such as powers and interac-
tions.�e ith row of F is f T(xi), a known function of them
explanatory variables. It is usual to assume that the obser-
vational errors are independent with constant variance σ .
�is value does not a�ect the design.

�e least squares estimator of the parameters is β̂ with
information matrix FTF.�e “larger” FTF, the greater is
the information in the experiment. Depending on the sci-
enti�c purpose, di�erent optimality criteria are chosen
which maximize di�erent functions of the information
matrix.

Criteria of Optimality
D-optimality. �e volume of the con�dence region for
all p elements of β is proportional to the square root of
σ /∣FTF∣, the generalized variance of β̂. Designs which
maximize ∣FTF∣minimize this generalized variance and are
called D-optimum (for Determinant).
G-optimality.�e prediction from the �tted model at

a point x is ŷ(x) = β̂T f (x), with variance var ŷ(x). Designs
which minimize the maximum over X of var ŷ(x) are
called G-optimum. A famous result, the “General Equiva-
lence�eorem” (Kiefer andWolfowitz ), shows that as
N increases, D-optimality and G-optimality give increas-
ingly similar designs.�e designs may also be identical for
some speci�c smaller values of N.
I or V-optimality. An alternative to this minimax

approach to var ŷ(x) is to �nd designs that minimize the
average value of the variance overX . Such designs are var-
iously called I-optimum or V-optimum from Integrated
Variance.
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c-optimality. Another criterion of importance in
applications, particularly for 7nonlinear models, is that of
c-optimality in which the variance of the linear com-
bination cT β̂ is minimized, where c is a p ×  vector of
constants.
T-optimality. If there is uncertainty about the true

model, T-optimality provides powerful designs for dis-
criminating between models.
Details of these and other design criteria are inChap. 

of Atkinson et al. (). Compound designs inwhich pro-
vide good designs for several criteria are in Chap. .�e
optimum designs consist of a list of N values of x, o�en
with replication. �e indicated sets of conditions should
be run in random order.

Some D-optimum Designs
Many standard designs which have been derived over the
years by a variety of methods share the property that they
are D- and G-optimum. One example is the series of m

factorial designs and their symmetric fractions forming the
m−f fractional factorial designs, which can also be used
to construct D-optimally blocked m designs. However, if
N is not a power of , numerical methods for the con-
struction of optimal designs will be needed. In the case of
the blocked m factorial, we might be forced by the size of
batches of raw materials, to have blocks which were not all
of size m−f .

�e dependence of the optimum design on the value
of N is illustrated by D-optimum designs for the second-
order response surface, that is a quadratic model in two
factors including an interaction (xx) term. ForN = , the
optimum design is the  factorial. For N = , the points
of the  factorial are added to this design. IncreasingN to
 duplicates the centre point. Addition of a few further
design points destroys the symmetry of the designs and
produces designs that have a lower e�ciency per observa-
tion, although of course the overall information increases.
�e choice of design size as well as the values of the xi are
both important.

Advantages of Optimum Designs
Here are some advantages of optimum experimental
design:

. �e availability of algorithms for the construction of
designs

. �e calculation of good designs for a speci�ed number
of trials

. �e provision of simple, but incisive, methods for the
comparison of designs

. �e ability to divide designs into blocks of a speci�ed
size

. �e determination of good response surface designs
over non-regular regions

. �e construction of designs for7mixture models, per-
haps again over non-regular regions

Further Models
�e methods of optimum design, sketched here for lin-
ear models, can be extended to several important classes
of model.
Nonlinear models. �ese models, nonlinear in the

parameters, are particularly important in chemical and
pharmaco-kinetics. Informative experiments are o�en
concentrated in a small part of X and it is easy to waste
experimental e�ort. Because of the non-linearity of the
models, techniques incorporating prior information are
important. See Chaps.  and  of Atkinson et al. ()
and 7Nonlinear Models.
Generalized Linear models. Particularly if the

responses are binomial, the models need extending,
although the principles of optimum design remain the
same. See Chap.  of Atkinson et al. () and7Designs
for Generalized Linear Models.
Discrete Designs. In the designs appropriate in agri-

culture, many of the factors are discrete, rather than con-
tinuous as in regression, and analysis of variance models
are appropriate (see 7Analysis of Variance). �e experi-
mental units, for example plots in a �eld, may be highly
variable and require division into blocks (see 7Statistical
Design of Experiments, 7Agriculture, Statistics in and
7Incomplete Block Designs). In addition to D-optimality,
such designs are o�en compared using A-optimality, in
which the Average variance of treatment contrasts is min-
imized and E-optimality in which the variance of the
least well-estimated, or Extreme, linear combination aT β̂

is minimized subject to aTa = . Design construction is
o�en facilitated by the use of combinatorial methods.
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Consider a life test in which n like items are tested until
they fail.�e failure times may be denoted by

x() ≤ x() ≤ . . . ≤ x(r) ≤ . . . ≤ x(n).

Here x(r) is the r-th order statistic, also denoted by xr:n if the
sample size needs to be emphasized.�e duration of the
test, x(n), may be unduly long, so that it becomes desirable
to censor the test a�er, say, the r-th failure.
More commonly, the observations come to us unordered

as x, x, . . . , xn, say the diameters of n mass-produced
items. Here n is usually small, e.g., n = , but such samples
are taken frequently and charts of both sample means and
sample ranges x(n) − x() plotted.�e range is more con-
venient than the standard deviation and almost as e�cient

in small samples from the underlying normal populations
generally assumed.

Basic Distribution Theory
LetX,X, . . . ,Xn be independent random variables drawn
from a population with cumulative distribution function
(cdf) F(x).�en the cdf of X(r) is given by

FX(r)(x)= Pr(X(r) ≤ x)

= Pr (at least r of X, . . . ,Xn are ≤ x)

= ∑
n
i=r (

n

i)F
i
(x)[ − F(x)]n−i

()

since the term in the summand is the binomial probability
that exactly i of X, . . . ,Xn are less than or equal to x.

�is result holds whether X is a continuous or dis-
crete variate. In the former case di�erentiation gives the
probability density function (pdf) of X(r) in terms of the
underlying f (x) = F′(x) as

fX(r)(x)=
n!

(r−)!(n−r)!F
r−

(x)f (x) [ − F(x)]
n−r . ()

If X is discrete, taking integral values, we have simply

fX(r)(x)= Pr (X(r) = x) = FX(r)(x) − FX(r)(x − ).

In the continuous case the joint pdf of X(r) and X(s)
( ≤ r < s ≤ n) is

fX(r) , x(s) (x, y)=
n!

(r−)!(s−r−)!(n−s)!F
r−

(x)f (x)

× [F(y) − F(x)]
s−r−

f (y) [ − F(y)]
n−s .
()

�e distribution of functions of two order statistics may
now be obtained from () by standard transformation of
variables methods. For example, the pdf of the rangeWn =

X(n) − X() is

fWn
(x)=n(n−) ∫

∞
−∞ f (x) [F(x+w)−F(x)]

n−
f (x+w)dx,

giving a�er integration the useful formula

FWn
(x)= n ∫

∞
−∞ f (x) [F(x + w) − F(x)]

n−
dx.

For aN(µ, σ ) population, both E(Wn/σ) and percentage
points ofWn/σ have been widely tabulated (e.g., Pearson
and Hartley ), providing the basis for 7control charts
on µ and σ .

Confidence Intervals and Tolerance Intervals
�e population qauntile of order p, denoted by ξp, is
de�ned by F(ξp) = p,  < p < . In particular, ξ 


is the
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population median. Since, for r < s,

Pr (X(r) < ξp < X(s))= Pr (X(r) < ξp) − Pr (X(s) < ξp)

it follows from () that the con�dence interval (X(r), X(s))

covers ξp with probability

P = ∑
s−
i=r (

n

i) p
i
( − p)

n−i .

We can choose r and s to make P satisfactorily large.
A tolerance interval (X(r),X(s)) covers a propor-

tion γ of the underlying population with probability P.
�us

P = Pr {F (X(s)) − F (X(r)) ≥ γ} .

Since F(X) is a uniform variate, U, over the interval (, )

P = Pr (U(s) −U(r) ≥ γ) =  − Iγ (n − r,n − s + r + ) ,

with the help of (), where Iγ(a, b) is the incomplete beta
function.
Note that both intervals require only that the underly-

ing distribution is absolutely continuous, i.e., these proce-
dures are distribution-free or nonparametric. In this they
are exceptional in the theory of order statistics, which is
largely distribution-dependent. Order statistics are an aid
to but not a branch of nonparametric statistics.
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Ordered Statistical Data: Recent
Developments

Mohammad Z. Raqab
Professor of Statistics, Acting Dean, Faculty of Science
University of Jordan, Amman, Jordan

�e term “order statistics” (see 7Order Statistics) was
introduced by Wilks in . �e history of the ordered
variates goes back to older years.�roughout the last thirty
years, order statistics and other related statistics have
changed considerably and moved to be involved in sta-
tistical modeling, inferences, decision procedures and the
study of the reliability systems.
Let X,X, . . . ,Xn be a random sample of size n from a

distribution with probability density function (pdf) f and
cumulative distribution function (cdf) F. If the random
variables are arranged in ascending order of magnitude,
then the ordered quantities X:n ≤ X:n ≤ . . . ≤ Xn:n are
called order statistics. Since there are n! equally orderings
of the xi’s, the joint pdf of X:n,X:n, . . . ,Xn:n is

f,,. . .,n(x, . . . , xn) = n!
n

∏
i=

f (xi), x ≤ . . . ≤ xn.
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LetFk:n(x)(k = , . . . ,n)denote the cdf of the kth order
statistic Xk:n. Its form can be derived as follows:

Fk:n(x) = P(Xk:n ≤ x)

= P(at least k of the Xi are less than or equal to x)

=
n

∑
j=k

(
n

j
)[F(x)]

j
[ − F(x)]

n−j. ()

�e binomial probability in the summand represents
the probability that exactly k of the Xi’s are less than or
equal to x. From the relationship between the binomial
sum of probabilities and the incomplete beta, we write the
cdf of Xk:n in () as

Fk:n(x) =
n!

(k − )!(n − k)! ∫
F(x)


u
k−

( − u)
n−k

du. ()

�e expression () holds for continuous and discrete
variates. If we assume that Xi is continuous with pdf
f (x) = F′(x), then the pdf of Xk:n will have the form

fk:n(x) =
n!

(k − )!(n − k)!
[F(x)]

k−
[ − F(x)]

n−k
f (x).

In the last few decades, the ordered statistics are natu-
rally engaged in reliability theory. In many applications, a
(n − k + )-out-of-n technical system of n identical com-
ponents with independent and identically distributed (iid)
life-lengths, functions if at least (n − k + ) of the compo-
nents function. In this context, the life-length of the system
is the same as the life-length of Xk:n( ≤ k ≤ n). For k = ,
the system is a series system where any component fail-
ure is disastrous. When k = n, the system is also known
as a parallel system. Statistical inference on the model of
order statistics can be found in David andNagaraja ().
Recent years have been seen a rapid growth on techniques
and applications involving order statistics. Its connection
with reliability theory, survival studies and biostatistical
sciences is the main reason for its wide applications.
Kaminsky and Rhodin () and Raqab and Nagaraja

() have examined the maximum likelihood predic-
tion (MLP) of the future failure time Xs:n based on the
observed failure times X:n,X:n, . . . ,Xr:n,  ≤ r < s ≤ n.
�e corresponding prediction likelihood function (PLF) is

L∝
r

∏
i=

f (xi:n)[F(xs:n) − F(xr:n)]
s−r−

[−F(xs:n)]n−sf (xs:n).

It is observed that the MLP is biased in general and it
may lead to a smaller mean square error when compared
with best linear unbaised predictor (Kaminsky and Nel-
son ). Raqab () has approximated the PLF and
obtained some approximate MLPs. It is found that the
approximate MLPs perform well in some cases compared
to the MLPs.

Applications of the ordered statistical data can be
observed in the analysis of the two most common cen-
soring schemes termed as Type-I and Type-II censoring.
Let us assume that n items are placed on a life-testing
experiment. In a Type-I censoring scheme, the experiment
continues up to a speci�ed time T and the failures occur-
ring a�er T are not observed.�e Type-II scheme requires
the experiment to continue until a pre-speci�ed number
of failuresm ≤ n occurs. If a practitioner desires to remove
experimental units at points other than the terminal point
of the experiment, then a generalization of the above men-
tioned schemes can be put forward in a similar manner.
�is generalization is referred to as progressive Type-II
censoring. Under this general censoring scheme, n units
are placed on a life-testing experiment and only m(< n)

are completely observed until failure.�e censoring occurs
progressively inm stages.�esem stages o�er failure times
of the m completely observed units. At the time of the
�rst failure (the �rst stage), r of the n −  surviving units
are randomly withdrawn (censored) from the experiment,
r of the n −  − r surviving units are withdrawn (cen-
sored) at the time of the second failure (the second stage),
and so on. Finally, at the time of the mth failure (the mth

stage), all the remaining rm = n − m − r − . . . − rm−
surviving units are withdrawn.�is scheme includes the
conventional Type II right censoring scheme (r = r =

. . . = rm− = , rm = n − m) and the complete sampling
scheme (r = r = . . . = rm− = ,n = m). In the approx-
imately ten years since the publication of the Progressive
Censoring,�eory, Methods and Applications (Balakrish-
nan and Aggrawala ), various optimal techniques of
estimation have appeared in the literature (Balakrishnan
).
Predictions of order statistics are of natural interest.

Prediction problems can be generally classi�ed into two
types. In the �rst type, the variable to be predicted comes
from the same sequence of variables observed and is there-
fore correlated with the observed data. �is is referred
to as the one-sample prediction problem. In the second
type, referred to as the two-sample prediction problem, the
variable to be predicted comes from another independent
future sample. Considerable work has been done on the
one-sample prediction problem, and both parametric and
nonparametric inferential methods have been developed
in this regard. Interested readers may refer to Gulati and
Padgett () for details on these developments. In con-
trast, the two-sample prediction problem has not received
much attention.
Let Y:m:n,Y:m:n, . . . ,Ym:m:n, denote the above men-

tioned progressively type II right censored observed
sample. It is of interest to predict the life-lengths Zs:ri
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(s = , , . . . , ri; i = , , . . . ,m) of all censored units in
all m stages of censoring. Here Zs:ri (s = , , . . . , ri; i =
, , . . . ,m) denotes the sth order statistic from a sample
of size ri removed at stage i = , , . . . ,m. Basak et al.
() used di�erent classical prediction methods such
as best linear unbiased, maximum likelihood and condi-
tional median to predict the times to failure Zs:ri (s =

, , . . . , ri; i = , , . . . ,m).�e prediction of times to fail-
ure of the last rm units still surviving at the observation Ym

has been discussed by Balakrishnan and Rao (). Madi
and Raqab () have discussed the prediction of unob-
served failure times from the generalized exponential (GE)
distribution using the Gibbs and Metropolis samplers.
Other related statistics are the record values, which are

introduced by Chandler (). Record statistics arise nat-
urally in many practical problems, and there are several
situations pertaining to meteorology, hydrology, sporting
and athletic events wherein only record values may be
recorded. Let {Xi, i ≥ } be a sequence of iid random vari-
ables with common absolutely continuous cdf F and pdf f .
De�ne a sequence of record times U(n),n = , . . . , as
follows:

U() = ,

U(n)= min{j : j > U(n − ), Xj > XU(n−)} , n ≥ .

�en the r.v.’s XU(n),n ≥  are called upper records.
�at is; an observation Xj is an upper record value (or
simply a record) if its value exceeds that of all previous
observations.�e joint pdf of XU(), . . . ,XU(n) is

fU(),. . .,U(n)(x, . . . , xn)=
n−
∏
i=

f (xi)
−F(xi) f (xn),

−∞ < x < . . . < xn <∞.
()

By integrating the expression in () out of x, . . . , xn−,
we obtain the pdf of the nth upper record value as

fU(n)(x) =
[−log(−F(x))]n−

(n−)! f (x), −∞ < x <∞.

It is clear that the upper record values are the largest
values observed to date. If the second or third largest values
are observed to date then the model of kth record values
is adequate when k is a positive integer (cf. Dziubdziela
and Kopociński ). Record values are closely connected
with the occurrence times of some corresponding non-
homogeneous Poisson processes (see 7Poisson Processes)
and used in so-called shock models.�e successive shocks
may be considered as realizations of record values from a
sequence of identically independent random variables. In
the context of statistical inference, maximum likelihood,
best linear unbiased and best linear invariant are used

to estimate the model parameters based on record data
(Arnold et al. ). A Bayesian parametric approach via
the Gibbs and Metropolis samplers is also used to predict
the behavior of further future records (Madi and Raqab
).

�e order statistics and record values are included in
a more general model called generalized order statistics
(cf. Kamps ).�e concept of generalized order statis-
tics allows us to unify the models and examine the sim-
ilarities and analogies. �rough the last twenty years, it
was observed that many well-known distributional prop-
erties of order statistics and record values are also valid
for generalized order statistics. �e best linear unbiased
estimation is applied by Burkschat et al. () to esti-
mate location and scale parameters of generalized Pareto
distribution based on generalized order statistics.

About the Author
Dr. Mohammad Raqab is Professor of Statistics and Act-
ing Dean, Faculty of Science, University of Jordan. He
completed his B.Sc. () in mathematics at University
of Jordan, M. Sc. () and Ph.D. () in statistics at
Ohio State University, Ohio State, USA. He has received
�ve Scienti�c Awards, as a distinguished researcher in
statistics. Raqab is an elected member of the International
Statistical Institute (), a Fellow of American Asso-
ciation for the Advancement of Science (–present),
New York Academy of Sciences (–present), American
Statistical Association (–present), and International
Biometric Society, USA (). Professor Raqab is cur-
rently an Associate Editor of the Journal of Applied Statisti-
cal Science (–present), Journal of Statistical�eory and

Applications (–present), and Journal of Probability and
Statistical Science (–present). He has (co-)authored
more than  refereed articles and �ve books including,
Recent Development in Ordered Random Variables (with
M. Ahsanullah, Nova Science, New York, USA, ).

Cross References
7Best Linear Unbiased Estimation in Linear Models
7Binomial Distribution
7Censoring Methodology
7Order Statistics
7Parametric and Nonparametric Reliability Analysis
7Permanents in Probability�eory
7Ranked Set Sampling
7Record Statistics

References and Further Reading
Arnold BC, Balakrishnan N, Nagaraja HN () Records. Wiley,

New York
Balakrishnan N () Progressive methodology: an appraisal, (with

discussions). Test ():–



Outliers O 

O

Balakrishnan N, Aggrawala R () Progressive censoring, theory,
methods and applications. Birkhäuser, Boston

Basak I, Basak P, Balakrishnan N () On some predictors of times
to failure of censored items in progressively censored samples.
Comput Stat Data Anal :–

Balakrishnan N, Rao CR () Large sample approximations to best
linear unbiased estimation and best linear unbiased prediction
based on progressively censored samples and some applica-
tions. In: Panchapakesan S, Balakrishnan N (eds) Advances in
statistical decision theory and applications. Birkhäuser, Boston,
pp –

Burkschat M, Cramer E, Kamps U () Linear estimation of
location and scale parameters based on generalized order statis-
tics from generalized pareto distribution. In: Ahsanullah M,
Raqab MZ (eds) Recent developments in ordered random vari-
ables. Nova Science, New York, pp –

Chandler KN () The distribution and frequency of record values.
J R Stat Soc B :–

David HA, Nagaraja HN () Order statistics. Wiley, New York
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Outliers
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A familiar problem in analyzing data is the occurrence
of one or more values in a data set which appear to the
analyst, (who thus makes an individual subjective judg-
ment, see Collett and Lewis ()), to be inconsistent or
out of line with the rest of the data, relative to the prob-
ability model – call it F – assumed for the data. Such a
surprising value is called an outlying observation or outlier.

�e term ‘outlier’ also applies to a value in the data which
would have appeared surprising if the analyst had observed
it. �e damaging e�ect of such an unobserved outlier is
illustrated by Ho and Naugher (); see the discussion
of Accommodation below.
In what follows, some references are given to particular

topics, but the reader is otherwise referred to the com-
prehensive treatment of outliers and outlier problems in
Barnett and Lewis ().
Outliers are encountered in a variety of situations, e.g.,

an outlying value or a subset of  or more outlying values
(the multiple outlier situation) in a univariate sample, an
outlying point (x, y) in the regression of a variable y on a
regressor variable x, an outlying value in a time series or
in a contingency table, and so on.�e general principles
and the range of procedures for dealing with outliers are
�rst discussed in the case of an upper outlier in a univari-
ate sample of n observations x, x, . . . , xn of a variable X,
denoted in ascending order x() < x() < . . . < x(n). If
the greatest observation x(n) is not only higher than the
rest of the sample but appears surprisingly high, it is an
outlier, relative to the assumed model F for the data. If an
appropriate statistical test is carried out of the null hypoth-
esis H that all n values belong to F against an alternative
H that n −  values belong to F and x(n) does not, and
H is rejected, the value x(n) is judged to be not cred-
ible (at the level of the test) as the highest value in the
sample of size n from F. �is value is then said to be
discordant; the discordancy test has shown it to be a dis-
cordant outlier. �e value x(n) is taken not to come from
the distribution modeled, and it is conventionally called a
contaminant.
“�is apparently pejorative term . . . does not necessar-

ily have any undesirable implications, sometimes quite the
contrary; for instance, in a study of performance in exam-
inations a phenomenally high mark by a student of excep-
tional ability might be called a ‘contaminant’!” (Langford
and Lewis ).
Examples of a discordancy test statistic for an upper

outlier x(n) in a univariate sample of size n are (x(n)/x)/s
for an assumed normal sample and x(n)/nx for an expo-
nential sample.
Note that some writers use the word “outlier” for a dis-

cordant outlier, and refer to an outlier (as said above, a
value which looks unusual but may or may not be discor-
dant) as a “suspicious” or “suspect” value.
What action is called for with an outlier? In some cases

the value is deleted from the data set without the need for
statistical assessment, e.g., because it is known to have been
misrecorded or miscalculated. Again there are cases when
a discordancy test is carried out on an outlier, say the great-
est value x(n) in a univariate sample, the null hypothesis
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H is not rejected and x(n) is declared non-discordant. All
the n sample values are then taken to belong to F, and the
outlier is retained in the data set although it has appeared
to the analyst to be somewhat unusual.
When, on the other hand, H is rejected and the out-

lier is declared discordant on the assumption of model
F, three possibilities arise, depending on the aim of the
investigation. If its concern is with characteristics of the
population that has been sampled, e.g., to obtain a con-
�dence interval for the population mean, the discordant
outlier, judged not to belong to F, should be rejected from
the data set. (A valuable alternative strategy, to use a robust
method of estimating the population parameter of inter-
est and dispense with testing the outlier for discordancy, is
discussed below – see 7Accommodation.) If on the other
hand the concern of the investigation is with the outlying
value (x(n), say) and the information conveyed by it (show-
ing, for example, that a duration of pregnancy as long as
x(n) years has been known to occur), further examination
of this information and its implications would naturally
follow.

�ese two possibilities assume acceptance of themodel
F, and conclude that the outlying value is discordant.�ere
is a third possibility, that the value belongs to the same
distribution as the rest of the data, but that the appropri-
ate model for this distribution is not F but some other
distribution G. A fresh analysis is then called for with a
suitable choice of model G (e.g., a gamma distribution G

with unknown shape parameter instead of an exponential
distribution F), on the basis of which the discordant out-
lier relative to F is a non-discordant member of the data
set, and the outlier problem disappears.

�e multiple outlier situation is now considered. �e
choice of procedures for dealing with data sets with two or
more outliers is �rst discussed in the context of two upper
outliers x(n−), x(n), in a univariate sample of n observa-
tions x, . . . , xn, of a continuous variable X. In testing the
two outliers for discordancy the analyst has a three-way
choice between a block procedure, an inward consecutive

procedure, and an outward consecutive procedure.
Block procedure: x(n−) and x(n) are tested together as

an outlying pair in the data set of n values, with alternative
hypothesis that x(), . . . , x(n−). belong to F while x(n−)
and x(n) do not.�ere are two possible outcomes: () x(n)
and x(n−) are both judged non-discordant, () they are
both judged discordant.
Inward consecutive procedure: �rst, x(n) is tested as

an outlier in the complete data set of n values. If x(n)
is judged discordant, x(n−) is then tested as an outlier
in the data set of n −  values x(), . . . , x(n−). �ere are
three possible outcomes: (l) x(n) and therefore also x(n−)

are judged non-discordant, () x(n) is judged discordant,
x(n−) non-discordant, () x(n) and x(n−) are both judged
discordant.
Outward consecutive procedure: �rst, x(n−) is tested

as an outlier in the data set of n −  values x(), . . . , x(n−).
If x(n−) is judged non-discordant, x(n) is then tested as an
outlier in the complete data set ofn values.�ere are clearly
three possible outcomes: () x(n−) and therefore also x(n)
are judged discordant, () x(n−) is judged non-discordant,
x(n) discordant, () x(n−) and x(n) are both judged non-
discordant.
Block testingmaywell be appropriate when the outliers

form, from non-statistical characteristics, a natural subset
of the data, for example when some measure of an indi-
vidual’s performance is being studied in an analysis of a
random sample of individuals, two of whom happen to be
siblings. However, a possible danger to the use of a block
test arises when swamping occurs. �is is when a non-
discordant value x(n−) is much nearer to x(n−) than to
x(n), but when x(n) is extreme enough to make x(n) and
x(n−) jointly declared discordant in a block test. x(n−) is
then wrongly judged, having been swamped by x(n) in the
block test.
Conversely, a possible danger to the use of an inward

consecutive procedure arises when masking occurs. �e
procedure starts with the test for discordancy of an outlier
x(n) which is in fact discordant. If x(n−) is near in value
to x(n) its presence in the test may cause the outlier x(n)
to be judged non-discordant. x(n) is then wrongly judged,
having been masked by x(n−). In an outward consecutive
procedure, masking does not occur.

Accommodation
In analyzing a data set, say a sample of values of a variable
X, with the aim of making inferences about the popu-
lation being sampled, the approach described so far for
dealing with any outlier in the data set has been to test
it for discordancy and remove it from the data set if it
is judged discordant. As already mentioned, an alterna-
tive approach is to dispense with discordancy testing and
to accommodate the outlier by giving extreme values in
the data set reduced weight in the analysis whether they
are discordant or not; in short, to use a procedure robust
against the presence of outliers. For example, a well known
robust procedure for accommodating possible outliers in
a sample x() < x() < . . . < x(n) when estimating
the population mean E(X) is trimming – working with a
“trimmed sample” from which the r lowest and s highest
values, with an appropriate choice of r and s, have been
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removed. �is replaces the sample mean x by the (r, s)-
fold trimmed mean (x(r+) +⋯+ x(n−s))/(n− r− s) when
estimating E(X).
Clearly, an important advantage of accommodation as

against discordancy testing is the protection it gives against
the danger of unobserved outliers Ho andNaugher ().

�ere is a range of relevant robust procedures available
in the literature; see Huber (), Rousseeuw and Leroy
().

Directional data:�e mean of a number of directions
is not given by the simple arithmetic average, so di�erent
test and accommodation procedures are needed for out-
liers in data sets where the observations are directions of
occurrences in two or in three dimensions, represented
respectively by points on the circumference of a circle or on
the surface of a sphere. Examples of “circular data” are van-
ishing directions of homing pigeons and arrival times on a
-hour clock of patients at a hospital’s accident and emer-
gency department; examples of “spherical data” are arrival
directions of showers of cosmic rays and wind directions.
See Fisher () and Fisher et al. () for treatment of
directional outliers.

�e discussion has, for convenience, mainly been in
the context of outliers in univariate samples; however, as
stated earlier, outliers are encountered in a variety of more
complex situations.
Much work has been done on the treatment of outliers

in the following data situations:
Multivariate data, Regression, Designed experiments,
Contingency tables, Time series, and some work also on
Multilevel data and Sample surveys.
For discussion of outliers in these data situations

[except Multilevel data – but see Langford and Lewis
()] see Barnett and Lewis ().
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Panel data (or longitudinal data) are data sets, where infor-
mation on a number of observational units have been col-
lected at several time points.�ese observational units are
usually called individuals or subjects. In economic applica-
tions they might be households, �rms, individual persons,
countries, investors or other economic agents. In medi-
cal, biological and social applications the subjects might be
patients, test animals, individual persons etc.
Panel data are most o�en used to study unidirectional

relationships between some explanatory variables Xit =

(x,i,t . . . xm,i,t)′ and a continuous dependent variable yit ,
where i (i = , . . . ,N) refers to individual and t (t =

toi, . . . ,Ti) refers to time or period. (To simplify notation,
we will assume toi ≡  and Ti ≡ T.) Panel data have many
advantages over cross sectional data or single aggregated
time series. One can for instance study the dynamic e�ects
of the covariates on a micro level and one can explore het-
erogeneities among the individuals. Regression models of
the linear type (for suitably transformed variables)

yit = αi + β
′
Xit + εit ()

are especially popular as model frameworks. �e error
terms εit are assumed to be independent of the explanatory
variables Xit , the processes {εit} are assumed stationary
with zero means and the data from di�erent individu-
als are assumed independent of each other. �e length
of the data T is o�en fairly short, whereas the number
of subjects N might be large. �e levels of any depen-
dent variable usually show considerable individual varia-
tion, which makes it necessary to allow for individually
varying intercept terms αi in model (). If these inter-
cepts are taken as �xed parameters, the model is called
a �xed e�ects model. When N is large, this will how-
ever lead to some inferential problems. For instance ML
estimators of the variance–covariance structure of the
error processes would be inconsistent for �xed T and

increasing N. �is is why the intercept terms are o�en
treated as mutually independent random variables αi ∼

IID(α, τ) (αi also independent of {εit}), whenever the
observed subjects can be interpreted as a sample from
a larger population of potential subjects. �ese random
e�ects models are special cases of so-called mixed models
or variance componentsmodels. If the e�ects of the covari-
ates Xit vary over individuals, the regression coe�cients
β(i) can similarly be interpreted as random variables,
(αi β′(i))

′
∼ IIDm+ ((α β′)

′ ,G). If all the random
elements in themodel were assumed normally distributed,
the whole model for subject i could be written as

Yi = (yi . . . yiT)′

= α + Xiβ + ZiUi + εi, εi independent of Ui,
Ui ∼ NIDm+ (,G) , εi = (εi . . . εiT)

′
v

∼ NIDT (,R) , ()

where Ui = (αi β′(i))
′
− (α β′)

′, Xi = (Xi . . . XiT)′,
Zi = (T Xi) and T = ( . . . )′.�is is a standard form
of a mixed model leading to GLS estimators for α and β

once the parameters incorporated in the matrices G and R
have been estimated.
To take account of possible unobserved changes in

the general (either economic or biological) environment,
one can include an additive term γ′(i)Ft inmodel (), where
Ft denotes an r -dimensional vector of common factors
and γ(i) is a vector containing the factor loadings for indi-
vidual i.�ese common factors will induce dependencies
between the yit -observations from di�erent individuals.
(See e.g., Pesaran .)
In model (), all the explanatory variables were

assumed exogenous. However, econometric models quite
o�en include also lagged values of the dependent vari-
able as regressors. Much of economic theory starts from
the assumption that the economic agents are optimizing an
intertemporal utility function, and this assumption o�en
induces an autoregressive, dynamic model

yit = αi + ϕyi,t− + . . . + ϕpyi,t−p + β
′
Xit + εit ,

εit ∼ IID(, σ ) ()

for the dependent variable yit . In case of random inter-
cepts αi, the lagged values of the dependent variable and

Miodrag Lovric (ed.), International Encyclopedia of Statistical Science, DOI ./----,
© Springer-Verlag Berlin Heidelberg 
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the combined error terms (αi − α) + εit will be correlated.
�is would lead to inconsistent least squares estimators
for the ϕ -parameters.�e problem can be circumvented
by the GMM estimation method (Generalized Method of
Moments). (See e.g., the Appendices in Arellano .)
Once the order p of the autoregressive model () has been
correctly speci�ed, it will be easy to �nd valid instruments
for the GMM estimationt among the lagged di�erences
of the dependent variable. Model () can be straightfor-
wardly extended to the vector-valued case. (See e.g., Hsiao
, Chap. ..)
If the dependent variable yit is discrete (either a count

variable or measured on a nominal or ordinal scale), one
can combine the basic idea of model () and the concept
of 7generalized linear models by assuming that the covari-
ates Xit and the heterogeneity terms αi a�ect the so-called
linear predictors analogously to (),

ηit = g (E (yit ∣ Xit , αi)) = αi + β
′
Xit ()

and by assuming that conditionally on Xit and αi , yit fol-
lows a distribution belonging to the exponential family
of distributions. (See e.g. Diggle et al. , Chap. , or
Fitzmaurice et al. , Chap. .) Function g is called the
link function, and models () are called generalized lin-
ear mixed models (GLMM). If for instance yit would be
dichotomous obtaining the values  or , logit link func-
tion would lead to the model

P (yit =  ∣ Xit , αi) = exp(αi + β′Xit)/ (+ exp(αi + β′Xit)).

�e resulting likelihood function contains complicated
integral expressions, but they can be e�ectively approxi-
mated by numerical techniques.
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Introduction
Reliability is “the probability that a piece of equipment
(component, subsystem or system) successfully performs
its intended function for a given period of time under spec-
i�ed (design) conditions” (Martz andWaller ). Failure
means that an item does not perform its required func-
tions. To evaluate the performance of an item, to predict
its failure time and to �nd its failure pattern is the subject
of Reliability.
Mathematically we can de�ne reliability, R(t), as

follows:

R(t) = Pr(T > t) =  − ∫
t


f (τ)dτ, (t ≥ )

where T denotes the failure time of the system or compo-
nent, and f (t) the failure probability distribution.

�emain entity in performing accurate reliability anal-
ysis depends on having properly identi�ed a classical
discrete or continuous probability distribution that will
characterize the behavior of the failure data. In practice,
scientists and engineers either assume one, such as the
exponential, Weibull, Poisson, etc., or a perform goodness
of �t test to properly identify the failure distribution and
then proceed with the reliability analysis. It is possible that
the assumed failure distribution is not the correct one and
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furthermore, the goodness of �t test methodology failed to
identify a classical probability distribution.�us, proceed-
ingwith the reliability analysis will result inmisleading and
incorrect results.
In this brief document we discuss a nonparametric

reliability procedure when one cannot identify a classical
failure distribution, f (t), to characterize the failure data
of the system.�e method is based on estimating the fail-
ure density through the concept of distribution-free kernel
density method. Utilizing such methods on the subject
area o�ers signi�cant computation di�culties.�erefore,
in order to use this method, one must be able to obtain the
optimal bandwidth for the kernel density estimate. Here,
we recommend a six-step procedure which one can apply
to compute the optimal nonparametric probability distri-
bution that characterizes the failure times. Some useful
references on the subjectmatter are Bean andTsokos (,
), Liu and Tsokos (, a, b), Qiao and Tsokos
(, ), Rust and Tsokos (), Silverman (),
and Tsokos and Rust (). First we brie�y discuss the
parametric approach to reliability using the popular three-
parameter Weibull probability distribution as the failure
model. Some additional useful failuremodels can be found
in Tsokos (, ).

Parametric Approach to Reliability
�e two-parameterWeibull probability distribution is uni-
versally used to characterize the failure times of a system
or component to study its reliability behavior instead of
the three-parameter Weibull model. Recently, methods
have been developed along with e�ective algorithms for
which one can obtain estimates of the three-parameter
Weibull probability distribution. Here we will use the
three-parameter Weibull failure model.

�e three-parameter Weibull failure model is given by

f̂ (t) =
ĉ (t − â)ĉ−

b̂ĉ
exp{−(

t − â

b̂
)
ĉ

} ,

where â, b̂ and ĉ are the maximum likelihood estimates
to the location, scale and shape parameters, respectively.
For calculation of the estimates of a, b and c, see Qiao and
Tsokos (, ).

�us, the parametric reliability estimation R̂p(t) of the
three-parameter Weibull model is given by

R̂p(t) = exp{−(
t − â

b̂
)
ĉ

} .

�e goodness of �t criteria that one can use in iden-
tifying the appropriate classical failure probability distri-
bution to characterize the failure times is the popular
7Kolmogorov–Smirnov test.
Brie�y, it tests the null hypothesis that the data {tj}nj=

is from some speci�ed classical probability distribution
against the alternative hypothesis that it is from another
probability distribution.�at is,

⎧⎪⎪
⎨
⎪⎪⎩

H : {tj}nj= ∼ F(t),
H : {tj}nj= /∼ F(t).

Let F∗n (t) be the empirical distribution function for the
failure data.�e Kolmogorov–Smirnov statistic is de�ned
by

Dn =∑
t

∣F
∗
n (t) − F(t)∣ .

�e statistic Dn can be easily calculated from the fol-
lowing formula:

Dn = max{max
≤i≤n

[
i

n
− F (t(i))] , max

≤i≤n
[
i − 
n

− F (t(i))]} ,

where t() ≤ t() ≤ ⋯ ≤ t(n) is the order statistic of {tj}
n

j=.
Let Dn,α be the upper α-percent point of the distribu-

tion of Dn, that is,

P {Dn > Dn,α} ≤ α.

Tables for the exact critical values Dn,α are available. See
Miller () and Owen (), among others, to make the
appropriate decision.

Nonparametric Approach to Reliability
Let {tj}nj= be the failure data characterized by the proba-
bility density function f (t).�en the nonparametric prob-
ability density estimation f̂ can be written as

f̂ĥ(t) =

nĥ

n

∑
j=
K (
t − tj

ĥ
)

whereK(t) is the kernel and assumed to beGaussian given
by

K(t) =


√
π
e
−  t



and ĥ is the estimate of the optimal bandwidth. �ere
are several other choices for the kernel, namely, Epanech-
nikov, Corine, biweight, triweight, triangle and uniform.
For further information regarding the selection process,
see Silverman ().�e most important element in f̂ĥ(t)
being e�ective to characterize the failure data is the band-
width, ĥ. Given below is a procedure that works fairly well
in obtaining optimal ĥ and then f̂ĥ(t) for the failure data,
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(Bean and Tsokos ; Silverman ).�is procedure is
summarized below.

● Calculate S and T using the failure data t, t, . . . , tn:

S

= (n − )−

n

∑
j=

(tj − t̄)
 and T =


n

n

∑
j=

(tj − t̄)
 .

● Determine a value for U and U as de�ned below:

U ≈ S
 and U ≈

n

(n − ) (n − n + )

(T −
(n − )(n − )

n
S

) .

● Find estimates of the parameters µ and σ :

µ̂ =


√
U −U


and σ̂ =
√
U − µ̂.

● Calculate ∫
∞
−∞ f

′′(t)dt from the following:

∫
∞

−∞
f
′′
(t)dt =



√

πσ̂ 

+



√

πσ̂ 
e
− µ̂

σ̂ (


−
µ̂

σ̂ 
+
µ̂

σ̂ 
) .

● Find hopt from the following:

hopt = −

 π

− 
 n

−  {∫
∞

−∞
f
′′
(t)dt}

− 
.

● Obtain the estimate of the nonparametric failure dis-
tribution of the data:

f̂ (t) =


nhopt

n

∑
j=
K (
t − tj

hopt
) .

�ere are other methods for dealing with the opti-
mal bandwidth selection, see Bean and Tsokos () and
Silverman ().

�e nonparametric estimate of the failure probability
distribution R̂np(t) can be obtained,

R̂np(t) = ∫
∞

t
f̂ (τ)dτ

= ∫
∞

t


nĥ

n

∑
j=
K (

τ − tj

ĥ
)dτ

=

nĥ

n

∑
j=
∫

∞

t
K (

τ − tj

ĥ
)dτ

=

n

n

∑
j=
∫

t−tj

ĥ

−∞
K(τ)dτ.

To evaluate the integral in the above equation, let

Φ(t) = ∫
t

−∞
K(x)dx =


√
π ∫

t

−∞
e
− x


 dx.

�en we have

R̂np(t) =

n

n

∑
j=

[ −Φ (
t − tj

ĥ
)]

=  −

n

n

∑
j=
Φ (
t − tj

ĥ
) .

To calculate Φ(t), let

∫
u


e
−x
dx = e

−u
∞
∑
k=

k ⋅ uk+

(k + )!!
.

It follows that we can write

Φ(t) = ∫
t


K(x)dx + .

=


√
π ∫

t


e
− x


 dx + .

=


√
π

√
∫

t
√




e
−τ
dτ + .

=


√
π
⋅ e
− t

 ⋅

∞
∑
k=

k ( t√

)
k+

(k + )!!
+ .

=


√
π

⋅ e
− t

 ⋅

∞
∑
k=

tk+

(k + )!!
+ ..

Note that Φ(t) ≈  when t < −, and Φ(t) ≈  when
t > . �en we need to carry out the summation in the
interval ∣t∣ ≤ .
Since the sum converges quite fast, when ∣t∣ < , we

have overcome the numerical di�culty in the calculation
of the nonparametric reliability. An e�cient numerical
procedure is given below to evaluate the above summation.

Step  Construct a subroutine for calculating Φ(t) as
follows:

. Notations: At input, t stores the point; at output, p
stores Φ(t). Other values for the computation: cc, each
term of the sum; tt stores the value t ∗ t, to save
computer time.

. Let p = t, cc = t, tt = t ∗ t.
. For k = , , , . . . , perform () through () that follows.
. If ∣cc∣ < tolerance (we use − for tolerance), then

p =


√
π
e
− tt ⋅ p + .,

output p and exit. Otherwise continue with ().
. cc = cc ⋅ tt/(k + ), p = p + cc.

Step  Find the optimal bandwidth ĥ from the six-step
procedure introduced in section “7Parametric Approach
to Reliability”.
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Step �e reliability function at any givenpoint t is given
by

R̂np(t) =  −

n

n

∑
j=
Φ (
t − tj

ĥ
) .

Several applications of real data, along with Monte
Carlo simulations and the nonparametric kernel prob-
ability estimate of reliability, give very good results in
comparison with the parametric version of the reliability
function.
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A common distinction made with reference to statisti-
cal tests/procedures is the classi�cation of a procedure as
parametric versus nonparametric.�is distinction is gen-
erally predicated on the number and severity of assump-
tions regarding the population that underlies a speci�c
test. Although some sources use the term assumption free
(as well as distribution free) in reference to nonparametric
tests, the latter label is misleading, in that nonparametric
tests are not typically assumption free. Whereas paramet-
ric statistical tests make certain assumptions with respect
to the characteristics and/or parameters of the underly-
ing population distribution upon which a test is based,
nonparametric tests make fewer or less rigorous assump-
tions.�us, as Marascuilo and McSweeney () suggest,
nonparametric tests should be viewed as assumption freer
tests. Perhaps the most common assumption associated
with parametric tests that does not apply to nonparamet-
ric tests is that data are derived from a normally distributed
population.
Many sources categorize a procedure as parametric

versus nonparametric based on the level of measure-
ment a set of data being evaluated represents. Whereas
parametric tests are typically employed when interval or
ratio data are evaluated, nonparametric tests are used
with rank-order (ordinal) and categorical data. Com-
mon example of parametric procedures employed with
interval or ratio data are 7Student’s t tests, analysis of
variance procedures (see 7Analysis of Variance), and
the Pearson product moment coe�cient of correlation
(see 7Correlation Coe�cient). Examples of commonly
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described nonparametric tests employed with rank-order
data are theMann–Whitney U test,Wilcoxon’s signed–ranks
and matched–pairs signed ranks tests, the Kruskal–Wal-
lis one-way analysis of variance by ranks, the Friedman
two–way analysis of variance by ranks, and Spearman’s
rank order correlation coe�cient. Examples of commonly
described nonparametric tests employed with categori-
cal data are 7chi-square tests such as the goodness-of-�t
test, test of independence, and test of homogeneity and the
McNemar test.
Researchers are in agreement that since ratio and inter-

val data contain a greater amount of information than
rank-order and categorical data, if ratio or interval data are
available it is preferable to employ a parametric test for an
analysis. One reason for preferring a parametric test is that
the latter type of test generally has greater power than its
nonparametric analog (i.e., a parametric test is more likely
to reject a false null hypothesis). If, however, one has reason
to believe that one or more of the assumptions underly-
ing a parametric test have been saliently violated (e.g., the
assumption of underlying normal population distributions
associated with the t test for independent samples), many
sources recommend that a nonparametric test (e.g., a rank-
order test that does not assume population normality such
as the Mann–Whitney U test, which can also be used to
evaluate data involving two independent samples)will pro-
vide a more reliable analysis of the data. Yet other sources
argue it is still preferable to employ a parametric test under
the latter conditions, on the grounds that parametric tests
are, for the most part, robust. A robust test is one that still
allows a researcher to obtain reasonably reliable conclu-
sions even if one or more of the assumptions underlying
the test are violated. As a general rule, when a paramet-
ric test is employed in circumstances when one or more
of its assumptions are thought to be violated, an adjusted
probability distribution is employed in evaluating the data.
Sheskin (, p. ) notes that in most instances, the
debate concerning whether a researcher should employ
a parametric or nonparametric test for a speci�c experi-
mental design turns out to be of little consequence, since
in most cases data evaluated with both a parametric test
and its nonparametric analog will result in a researcher
reaching the same conclusions.
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Introduction
Let U = {, , . . . ,N} be a population of units. To get
information about the population total Y of some inter-
esting y-variable, unequal probability sampling is a widely
applied method. O�en a random sample of a �xed num-
ber, n, of distinct units is to be selected with prescribed
inclusion probabilities πi, i = , , . . . ,N, for the units inU .
�ese πi should sum to n and are usually chosen to be pro-
portional to some auxiliary variable. In this form unequal
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probability sampling is called �xed size πps sampling (ps
= proportional to size). By the help of a πps sample and
recorded y-values for the units in the sample, the total Y
can be estimated unbiasedly by the 7Horvitz–�ompson
estimator ŶHT = ∑i∈s yi/πi, where s denotes the sample.
�ere are many possible �xed size πps sampling designs,
see, e.g., Brewer and Hanif () and Tillé ().

�is article treats Rosén’s (a,b) Pareto order πps
sampling design. Contrary to many other �xed size πps
designs, it is very easy to implement. However, it is only
approximate. Independently of Rosén, Saavedra ()
suggested the design. Both were inspired by unpublished
work of Ohlsson, cf. Ohlsson ().

The Pareto Design
Let Ui, i = , , . . . ,N, be independent U(, )-distributed
random numbers. Further, let

Qi =
Ui/( −Ui)
pi/( − pi)

, i = , , . . . ,N,

be so-called ranking variables. Put pi = πi, i = , , . . . ,N,
and select as sample those n units that have the smallestQ-
values.�e factual inclusion probabilities π∗i do not equal
the desired πi but approximately. For d = ∑Ni= πi( − πi)

not too small (d > ), the agreement is surprisingly good
and better the larger d is.

�e main advantages of the method are its simplic-
ity, its high 7entropy, and that the Uis can be used as
permanent random numbers, i.e., can be reused when at
a later occasion the population, more or less altered, is
re-sampled. In this way changes can be better estimated.

�e name of the method derives from the fact that
u/( − u) = F−(u), where F− is the inverse of the spe-
cial Pareto distribution function F(x) = x/( + x) on
(,∞). A general order sampling procedure uses instead
Qi = F

−(Ui)/F
−(πi) for any speci�ed F. As d →∞, cor-

rect inclusion probabilities are obtained but Rosén showed
that the Pareto choice gives smallest possible asymptotic
bias for them. Ohlsson () uses Qi = Ui/πi, i.e., the
distribution function F(x) of a uniform distribution over
(,).
Probabilistically the Pareto design is very close to

Sampford’s () design for which the factual inclusion
probabilities agree with the desired ones. Let x be a binary
N-vector such that xi =  if unit i is sampled and otherwise
.�e probability function p(x) of the Sampford design is
given by

p(x) = C
N

∏
i=

π
xi
i ( − πi)

−xi ×
N

∑
k=

( − πk)xk,
N

∑
i=
xi = n,

where C is a constant. For the Pareto design the proba-
bility function has the same form but the factor  − πk is
replaced by ck, where ck is given by an integral that is closely
proportional to  − πk if d is large (Bondesson et al. ).
For the Pareto design the factual inclusion probabil-

ities π∗i can be calculated in di�erent ways (Aires ;
Bondesson et al. ). By an iterative procedure based on
recalculated factual inclusion probabilities, it is possible to
adjust the parameters pi = πi for the Pareto procedure,
so that the desired inclusion probabilities πi are exactly
obtained (Aires ).�e iterative procedure is time con-
suming. It is also possible to get good improvement by a
simple adjustment.�e ranking variables Qi are replaced
by the adjusted ranking variables

Q
Adj

i = Qi exp(πi( − πi) (πi −


) /d


) .

For N =  and n =  the following table illustrates the
improvement:

πi . . . . . .

Pareto π∗i . . . . . .

AdjPar π∗i . . . . . .

Restricted Pareto Sampling
Pareto sampling can be extended to cases where there are
further restrictions on the sample than just �xed sample
size (Bondesson ). Such restrictions appear if the pop-
ulation is strati�ed in di�erent ways.�e restrictions are
usually of the form Ax = b, where A is anM × N matrix.
�en

N

∑
i=
xi logQi =

N

∑
i=
xi (log

Ui

 −Ui
− log

πi

 − πi
)

is minimized with respect to x given the linear restrictions.
�is minimization can be done by using a program for
combinatorial optimization but it usually also su�ces to
use linear programming and the simplex algorithm with
the additional restrictions  ≤ xi ≤  for all i. Under
some conditions asymptotically correct inclusion proba-
bilities are obtained.However, in practice some adjustment
is o�en needed. A simple adjustment is to replace Qi by

Q
Adj

i = Qi exp(πi( − πi) (πi −


)(aTi Σ

−ai)

) ,

where Σ = ADAT with D = diag(π( − π), . . . , πN
(−πN)), and ai is the ith column vector inA.�ismethod
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is suggested by Bondesson (), who also presents
anothermethod for improvement, conditional Pareto sam-
pling. For the latter method, the random numbers are
conditioned to satisfy AU = 

A.
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Introduction
�e concept of regression originated from genetics and the
word regression was introduced into statistical literature in
the published paper by Sir Francis Galton () on the
relationship between the stature of children and their par-
ents.�e relationshipwas found to be approximately linear
with an approximate gradient of /, and this suggested
that very tall parents tend to have children shorter than
themselves and vice versa.�is phenomena was referred
to as regression or return to mediocrity or to an aver-
age value.�e general framework of the linear regression
model (see 7Linear Regression Models)

Y = Xβ + є

where Y is an n× qmatrix of observations on q dependent
variables,X is an n×p explicativematrix on p variables, β is
a p×qmatrix of unknown parameters, and є is n×qmatrix
of errors. �e rows of є are independent and identically
distributed, o�en assumed to be Gaussian. �e justi�ca-
tion for the use of a linear relationship comes from the
fact that the conditional mean of a Gaussian random vec-
tor given the value of another Gaussian random vector
is linear when the joint distribution is Gaussian. Without
loss of generality, we will assume throughout that X and Y
are mean centered and scaled.�e aim is to estimate the
unknown matrix β.�e standard approach is to solve in
L the optimization problem:

L(β) = minβ ∥Y − βX∥.

If X has a full rank, then a unique solution exists and is
given by

βˆOLS = (XTX)
−XTY .

When the errors are assumed Gaussian, βˆOLS is also
the maximum likelihood estimator and therefore, the
best unbiased linear estimator (BLUE) of β. Unfor-
tunately, when some of the dependent variables are
collinear, the matrix X does not have full rank and
the ordinary least squares estimator may not exist or
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becomes inappropriate. To overcome this multicollinear-
ity problem (see 7Multicollinearity), many other estima-
tors have been proposed in literature.�is includes ridge
regression estimator (RR), principal component regres-
sion estimator (PCR), and more recently the partial least
squares regression estimator (PLSR).

Ridge Regression
�e slightest multicollinearity of the independent vectors
may make the matrix XTX ill conditioned and increase
the variance of the components of βˆOLS, which can lead
to an unstable estimation of β. Hoerl () proposed the
ridge regression method (see 7Ridge and Surrogate Ridge
Regressions) that consists in adding a small positive con-
stant λ to the diagonal of the standardized matrix XTX to
obtain the RR estimator as

βˆRR = (XTX + λI)−XTY

where I is the p×p identity matrix.�e matrix XTX+ λI is
always invertible since it is positive de�nite. Several tech-
niques are available in literature for �nding the optimum
value of λ. Another solution for the collinearity prob-
lem is given by the principal component regression (PCR)
technique that is outlined below.

Principal Component Regression
Principal component regression is a 7principal compo-
nent analysis (PCA) followed by a linear regression. In
this case, the response variables are regressed on the lead-
ing principal components of the matrix X, which can be
obtained from its singular value decomposition (SVD).
PCA is a compressing data technique that consists of �nd-
ing a
k-rank, k = , . . . , p, projection matrix Pk such that the
variance of the projected data X × Pk is maximized.�e
columns of the matrix Pk consist of the k unit-norm lead-
ing eigenvectors of XTX. Using the matrix Pk, we regress
Y on the orthogonal score matrix Tk satisfying X = TkPk;
this yields the k latent-component regression coe�cients
matrix

βˆPCR = Pk (T
T
kTk)

−
TTkY .

However, twomajor problemsmay occur: �rstly the choice
of k and secondly, how, if the ignored principal compo-
nents that correspond to the small eigenvalues are in fact
relevant for explaining the covariance structure of the Y
variables. For this reason, PLS comes into play to better
dealwith themulticollinearity problemby creatingX latent
components for explaining Y , through the maximization
of the covariance structure between the X and Y spaces.

Partial Least Squares Regression
Partial least squares (PLS), also known as projection
method to latent structures, is applied to a broad area of
data analysis including7generalized linearmodels, regres-
sion, classi�cation, and discrimination. It is a multivariate
technique that generalizes and combines ideas from prin-
cipal component analysis (PCA) and ordinary least squares
(OLS) regression methods. It is designed to not only con-
front situations of correlated predictors but also relatively
small samples and even the situation where the number
of dependent variables exceeds the number of cases.�e
original idea came in the work of the Swedish statisti-
cian Herman Wold () in the s and became pop-
ular in computational chemistry and sensory evaluation
by the work of his son Svante who developed the popu-
lar so�ware so� independent modeling of class analogies
(SIMCA) (Wold ). PLS �nd �rst two sets of weights
ω = (w, . . . ,wm) and U = (u, . . . ,um) for X and Y such
that Cov (tXl , t

Y
l ), where t

X
l = X × ωl, tYl = Y × U l and l =

, . . . ,m, is maximal.�en, theY variables are regressed on
the latent matrixT whose columns are the latent vectors t i,
see, e.g., (Vinzi et al. ) for more details. Classically, the
ordinary least squares regression (OLS) is used but other
methods have been considered along with the correspond-
ing algorithms.We describe the PLS technique through the
algorithm, outlined, for instance in Mevik and Wehrens
(), which is based on the singular value decomposi-
tion (SVD) of the cross product XTY types. First, we set
E = X and F = Y .�en, we perform the singular decom-
position of ETF and take the �rst le�-singular vector ω and
the right-singular vector q ofETF to obtain the scores t and
u as follows:

t = Eω

and

u = Fq.

�e �rst score then is obtained as t = t =
t

(tTt)/
.�e

e�ect of this score t on E and F is obtained by regress-
ing E and F on t.�is gives p = ETt and q = FTt.�is
e�ect is then subtracted fromE and F to obtain the de�ated
matrices, with one rank less, E′ and F′, see, for example,
Wedderburn ().�e matrices E′ and F′ are then sub-
stituted for E and F and the process is reiterated again from
the singular value decomposition of ETF to obtain the sec-
ond normalized latent component t.�e process is con-
tinued until the required number m of latent components
is obtained. �e optimal value of m is o�en obtained by
cross-validation or bootstrap, see, for example, Tenenhaus
().�e obtained latent components t l, l = , . . . ,m are



 P Pattern Recognition, Aspects of

saved a�er each iteration as column of the latent matrix T.
Finally, the original Y variables are regressed on the latent
components T to obtain the regression estimator

β̂PLS = (TTT)
−TTY

and the estimator

Ŷ = T(TTT)
−TTY

of Y . Note that several of the earlier PLS algorithms,
available in literature, lack robustness. Recently, Simonetti
et al. () substituted systematically the least median of
squares regression, Rousseeuw (), for the least squares
regression in Garthwaite () PLS setup to obtain a
robust estimation for the considered data set.
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Introduction
Recognition is regarded as a basic attribute of human
beings and other living organisms. A pattern is a descrip-
tion of an object (Tou and Gonzalez ). Pattern recog-
nition is a process of assigning category labels to a set of
patterns. For instance, visual patterns “A,” “a,” and “A” are
members of the same category, which is labeled as “let-
ter A” and can easily be distinguished from the patterns,
“B,” “b,” and “B,” which belong to another category labeled
as “letter B.” Humans perform pattern recognition very
well and the central problem is how to design a system
to match human performance. Such systems �nd practical
applications in many domains such as medical diagnosis,
image analysis, face recognition, speech recognition, hand-
written character recognition, and more (Duda et al. ;
Fukunaga ).

�e problem of pattern recognition can be tackled
using handcra�ed rules or heuristics for distinguishing the
category of objects, though in practice such an approach
leads to proliferation of the rules and exceptions to the
rules, and invariably gives poor results (Bishop ).
Some classi�cation problems can be tackled by syntactic
(linguistic) pattern recognition methods, but most real-
word problems are tackled using the machine learning
approach. Pattern recognition is an interdisciplinary �eld
involving statistics, probability theory, computer science,
machine learning, linguistics, cognitive science, psychol-
ogy, etc. Pattern recognition systems involve the following
phases: sensing, feature generation, feature selection, clas-
si�er design, and system performance evaluation (Tou and
Gonzalez ).
In the previous example, the pattern was a set of

black and white pixels. However, patterns might be a set
of continuous variables. In statistical pattern recognition,
features are treated as random variables. �erefore, pat-
terns are random vectors that are assigned to a class or
category with certain probability. In this case, patterns
could be conceived as points in a high-dimensional fea-
ture space. Pattern recognition is the task of estimating a
function that divides the feature space into regions, where
each region corresponds to one of the categories (classes).
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Such a function is called the decision or discriminant func-
tion and the surface that is realized by the function is
known as the decision surface.

Feature Generation and Feature
Selection
Before the measurement data obtained from the sensor
could be utilized for the design of the pattern classi�er,
sometimes it is necessary to perform several preprocess-
ing steps such as outlier removal, data normalization,
and treatment of the missing data. A�er preprocessing,
features are generated from measurements using data
reduction techniques, which exploits and removes redun-
dancies in the original data set. A popular way of gen-
erating features is to use linear transformations such as
the Karhunen–Loeve transformation (7principal compo-
nent analysis), independent component analysis, discrete
Fourier transform, discrete cosine and sine transforms,
and Hadamard and Haar transforms. Important con-
sideration in using these transformations is that they
should preserve as much of the information that is cru-
cial for classi�cation task as possible, while removing as
much redundant information as possible (�eodoridis and
Koutroumbas ).
A�er the features are generated, they could be inde-

pendently tested for their discriminatory capability. We
might select features based on the statistical hypothesis
testing. For instance, we may employ t-test or Kruskall–
Wallis test to investigate the di�erence in mean feature
values for two classes. Another approach is to construct the
characteristic receiver operating curve and to explore how
much overlap exists between distributions of feature val-
ues for two classes. Furthermore, we might compute class
separability measures that take into account correlations
between features such as Fisher’s discriminant ratio and
divergence. Besides testing individual features, we might
ask what is the best feature vector or combination of fea-
tures that gives the best classi�cation performance.�ere
are several searching techniques such as sequential back-
ward or forward selection that can be employed in order
to �nd an answer (�eodoridis and Koutroumbas ).

Design of a Pattern Classifier
�e principled way to design a pattern classi�er would
involve characterization of the class probability density
functions in the feature space and �nding an appro-
priate discriminant function to separate the classes in
this space. Every classi�er can make an error by assign-
ing the wrong class label to the pattern. �e goal is to
�nd the classi�er with the minimal probability of clas-
si�cation error. �e best classi�er is based on the Bayes

decision rule (Fukunaga ).�e basic idea is to assign
a pattern to the class having the highest a posteriori prob-
ability for a given pattern. A posteriori probabilities for a
given pattern are computed fromapriori class probabilities
and conditional density functions. However, in practice, it
is o�en di�cult to compute a posteriori probabilities as a
priori class probabilities are not known in advance.

�erefore, although the Bayesian classi�ers are opti-
mal they are rarely used in practice. Instead, classi�ers are
designed directly from the data. A simple and computa-
tionally e�cient approach to the design of the classi�er is
to assume that the discriminant function is linear. In that
case, we can construct a decision hyperplane through the
feature space de�ned by

g(x) = w
T
x + w = 

where w = [w,w, . . .]T are unknown coe�cients or
weights, x = [x, x, . . .] is a feature vector, and w is
a threshold or bias. Finding unknown weights is called
learning or training. In order to �nd an appropriate value
for the weights, we can use iterative procedures such as the
perceptron learning algorithm.�e basic idea is to com-
pute error or cost function, which measures the di�erence
between actual classi�er output and desired output. Error
function is used to adjust current values of the weights.
�is process is repeated until perceptron converges, that
is, until all patterns are correctly classi�ed.�is is possible
if patterns are linearly separable. A�er the perceptron con-
verges, new patterns could be classi�ed according to the
simple rule:

If wTx + w >  assign x to class ω

If wTx + w <  assign x to class ω

where ω and ω are class labels.
�e problem with linear classi�ers is that they lead to

suboptimal performance when classes are not linearly sep-
arable. An example of pattern recognition problem that is
not linearly separable is the logical predicate XOR where
the patterns (,) and (,) belong to class ω, and the pat-
terns (,) and (,) belong to ω. It is not possible to
draw a straight line (linear decision boundary) in two-
dimensional feature space that will discriminate between
these two classes. One approach to deal with such prob-
lems is to build a linear classi�er that will minimize the
mean square error between the desired and the actual
output of the classi�er. �is can be achieved using least
mean square (LMS) orWidrow–Ho� algorithm for weight
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adjustment. Another approach is to design a nonlinear
classi�er (Bishop ). Examples of nonlinear classi�ers
are multilayer perceptron trained with error backpropa-
gation, radial basis functions network, k-nearest neighbor
classi�er, and decision trees. In practice, it is possible to
combine outputs from several di�erent classi�ers in order
to achieve better performance. Classi�cation is an exam-
ple of so-called supervised learning in which each feature
vector has a preassigned target class.

Performance Evaluation of the Pattern
Classifier
An important task in the design of a pattern classi�er is
how well it will perform when faced with new patterns.
�is is an issue of generalization. During learning, the clas-
si�er builds a model of the environment to which it is
exposed.�e model might vary in complexity. A complex
model might o�er a better �t to the data, but might also
capturemore noise or irrelevant characteristics in the data,
and thus be poor in the classi�cation of new patterns. Such
a situation is called over-�tting. On the other hand, if the
model is of low complexity, it might not �t the data well.
�e problem is how to select an appropriate level of com-
plexity that will enable the classi�er to �t the observed
data well, while preserving enough �exibility to classify
unobserved patterns. �is is known as a bias-variance
dilemma (Bishop ).

�e performance of the designed classi�er is evalu-
ated by counting the number of errors committed dur-
ing a testing with a set of feature vectors. Error counting
provides an estimation of classi�cation error probability.
�e important question is how to choose a set of fea-
ture vectors that will be used for building the classi�er
and a set of feature vectors that will be used for test-
ing. One approach is to exclude one feature vector from
the sample, train the classi�er on all other vectors, and
then test the classi�er with the excluded vector. If mis-
classi�cation occurs, error is counted. �is procedure is
repeated N times with di�erent excluded feature vectors
every time. �e problem with this procedure is that it is
computationally demanding. Another approach is to split
the data set into two subsets: () a training sample used
to adjust (estimate) classi�er parameters and () a test-
ing sample that is not used during training but is applied
to the classi�er following completion of the training.�e
problem with this approach is that it reduces the size of
the training and testing samples, which reduces the reli-
ability of the estimation of classi�cation error probability
(�eodoridis and Koutroumbas ).
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Preliminaries
If A is an n × n matrix, then the permanent of A, denoted
by per A, is de�ned as

per A = ∑
σ∈Sn

n

∏
i=
aiσ(i),

where Sn is the set of permutations of , , . . . ,n.�us the
de�nition of the permanent is similar to that of the deter-
minant except that all the terms in the expansion have a
positive sign.

Example: Consider the matrix

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

 − 

  

−  

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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�en

per A =  +  +  −  +  −  = .

Permanents �nd numerous applications in probabil-
ity theory, notably in the theory of discrete distributions
and 7order statistics. �ere are two main advantages of
employing permanents in these areas. Firstly, permanents
serve as a convenient notational device, which makes it
feasible to write complex expressions in a compact form.
�e second advantage, which is more important, is that
some theoretical results for the permanent lead to state-
ments of interest in probability theory.�is is true mainly
of the properties of permanents of entrywise nonnegative
matrices.
Although the de�nition of the permanent is similar

to that of the determinant, many of the nice properties
of the determinant do not hold for the permanent. For
example, the permanent is not well behaved under elemen-
tary transformations, except under the transformation of
multiplying a row or column by a constant. Similarly, the
permanent of the product of two matrices does not equal
the product of the permanents in general. �e Laplace
expansion for the determinant holds for the permanent
as well and is a convenient tool for dealing with the per-
manent.�us, if A(i, j) denotes the submatrix obtained by
deleting row i and column j of the n × nmatrix A, then

per A =
n

∑
k=
aikper A(i, k) =

n

∑
k=
akiper A(k, i), i = , , . . . ,n.

We refer to van Lint andWilson () for an introduc-
tion to permanents.

Combinatorial Probability
Matrices all of whose entries are either  or , the so called
(, )-matrices, play an important role in combinatorics.
Several combinatorial problems can be posed as prob-
lems involving counting certain permutations of a �nite
set of elements and hence can be represented in terms
of (, )-matrices. We give two well-know examples in
combinatorial probability.
Consider n letters and n envelopes carrying the corre-

sponding addresses. If the letters are put in the envelopes
at random, what is the probability that none of the letters
goes into the right envelope?�e probability is easily seen
to be


n!
per

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

  ⋯ 

  ⋯ 

⋮ ⋮ ⋱ ⋮

  ⋯ 

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

which equals − 
! +


! −


! +⋯+(−)

n 
n! .�e permanent in

the above expression counts the number of derangements
of n symbols.
Another problem, whichmay also be posed as a proba-

bility question, is the problème desménages (Kaplansky and
Riordan ). In how many ways can n couples be placed
at a round table so that men and women sit in alternate
places and no one is sitting next to his or her spouse?�is
number equals n! times the permanent of the matrix Jn −
In−Pn, where Jn is the n×nmatrix of all ones, In is the n×n
identitymatrix, andPn is the full cycle permutationmatrix,
having ones at positions (, ), (, ), . . . , (n − ,n), (n, )
and zeroes elsewhere.�e permanent can be expressed as

per (Jn − In − Pn) =
n

∑
i=

(−)i
n
n − i

(
n − i
i

)(n − i)!.

Discrete Distributions
�e densities of some discrete distributions can be conve-
niently expressed in terms of permanents. We illustrate by
an example of multiparameter 7multinomial distribution.
We �rst consider the multiparameter binomial. Sup-

pose n coins, not necessarily identical, are tossed once, and
letX be the number of heads obtained. Let pi be the proba-
bility of heads on a single toss of the i-th coin, i = , , . . . ,n.
Let p be the column vector with components p, . . . , pn,
and let  be the column vector of all ones.�en it can be
veri�ed that

Prob(X = x) =


x!(n − x)!
per

[p, . . . ,p
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

r

( − p), . . . , ( − p)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n−r

]. ()

Now consider an experiment which can result in any
of r possible outcomes, and suppose n trials of the exper-
iment are performed. Let pij be the probability that the
experiment results in the j-th outcome at the i-th trial,
i = , , . . . ,n; j = , , . . . , r. Let P denote the n × r matrix
(pij)which is row stochastic. Let P, . . . ,Pr be the columns
of P. LetXj denote the number of times the j-th outcome is
obtained in the n trials, j = , , . . . , r. If k, . . . , kr are non-
negative integers summing to n, then as a generalization of
() we have (Bapat )

Prob(X = k, . . . ,Xr = kr) =


k!⋯kr!
per

[P, . . . ,P
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k

, . . . ,Pr , . . . ,Pr
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

kr

].

Similar representations exist for the multiparameter
negative binomial.
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Order Statistics
Permanents provide an e�ective tool in dealing with
order statistics corresponding to independent random
variables, which are not necessarily identically distributed.
Let X, . . . ,Xn be independent random variables with
distribution functions F, . . . ,Fn and densities f, . . . , fn
respectively. Let Y ≤ ⋯ ≤ Yn denote the corresponding
order statistics. We introduce the following notation. For
a �xed y, let

f̂ (y) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f(y)

⋮

fn(y)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and F̂(y) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

F(y)

⋮

Fn(y)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

For  ≤ r ≤ n, the density function of Yr is given by
Vaughan and Venables ()

gr(y) =


(r − )!(n − r)!
per

[ f̂ (y)
±


F̂(y)
±
r−

−F̂(y)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
n−r

],∞ < y <∞

For  ≤ r ≤ n, the distribution function of Yr is given
by Bapat and Beg ()

Prob(Yr ≤ y) =
n

∑
i=r


i!(n − i)!

per [ F̂(y)
±
i

 − F̂(y)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
n−i

],

∞ < y <∞

�e permanental representation can be used to extend
several recurrence relations for order statistics from the
i.i.d. case to the case of nonidentical, independent ran-
dom variables. Using the Alexandro� inequality for the
permanent of a nonnegativematrix, it can be shown (Bapat
) that for any y, the sequence Prob(Yi ≤ y∣Yi− ≤ y),
i = , . . . ,n is nonincreasing.
For additional material on applications of permanents

in order statistics we refer to Balakrishnan () and the
references contained therein.
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A permutation test is illustrated here for a two-sample
comparison.�e notation is as follows: Two independent
groups with sample sizes n andm have independently and
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identically distributed values X, . . . ,Xn and Y, . . . ,Ym,
respectively, n +m = N.�e means are denoted by X and
Y , and the distribution functions by F and G.�ese distri-
bution functions of the two groups are identical with the
exception of a possible location shi�: F(t) = G(t − θ) for
all t,−∞ < θ < ∞.�e null hypothesis states H : θ = ,
whereas θ ≠  under the alternative H.
In this case Student’s t test (see 7Student’s t-Tests)

can be applied. However, if F and G were not normal
distributions, it may be better to avoid using the t distri-
bution. An alternative method is to use the permutation
null distribution of the t statistic.
In order to generate the permutation distribution all

possible permutations under the null hypothesis have to
be generated. In the two-sample case, each permutation is
a possible (re-)allocation of the N observed values to two

groups of sizesn andm. Hence, there are
⎛
⎜
⎜
⎝

N

n

⎞
⎟
⎟
⎠

possible per-

mutations.�e test statistic is calculated for each permuta-
tion.�e null hypothesis can then be accepted or rejected
using the permutation distribution of the test statistic, the
p-value being the probability of the permutations giving a
value of the test statistic as or more supportive of the alter-
native than the observed value. �us, inference is based
upon how extreme the observed test statistic is relative to
other values that could have been obtained under the null
hypothesis.
Under H all permutations have the same probability.

Hence, the p-value can simply be computed as the propor-
tion of the permutations with a test statistic’s value as or
more supportive of the alternative than the observed value.

�e order of the permutations is important, rather than
the exact values of the test statistic.�erefore,modi�ed test
statistics can be used (Manly , pp. –). For example,
the di�erence X − Y can be used instead of the t statistic

t =
X − Y

S ⋅

√

n
+

m

where S is the estimated standard deviation.
�is permutation test is called Fisher–Pitman permu-

tation test or randomization test (see 7Randomization
Tests), it is a nonparametric test (Siegel ; Manly ).
However, at least an interval measurement is required for
the Fisher-Pitman test because the test uses the numerical
values X, . . . ,Xn and Y, . . . ,Ym (Siegel ).

�e permutation distribution depends on the observed
values, therefore a permutation test is a conditional test,
and a huge amount of computing is required. As a

result, the Fisher–Pitman permutation test was hardly ever
applied before the advent of fast PCs, although it was
proposed in the s and its high e�ciency was known
since decades. Nowadays, the test is o�en recommended
and implemented in standard so�ware such as SAS (for
references see Lehmann , or Neuhäuser and Manly
).
Please note that the randomization model of inference

does not require randomly sampled populations. For a
permutation test it is only required that the groups or treat-
ments have been assigned to the experimental units at
random (Lehmann ).
A permutation test can be appliedwith other test statis-

tics, too. Rank-based statistics such asWilcoxon’s rank sum
can also be used as test statistic (see the entry about the
Wilcoxon–Mann–Whitney test). Rank tests can also be
applied for ordinal data. Moreover, rank tests had advan-
tages in the past because the permutation null distribution
can be tabulated. Nowadays, with modern PCs and fast
algorithms, permutation tests can be carried out with any
suitable test statistic. However, rank tests are relatively
powerful in the commonly-occurring situation where the
underlying distributions are non-normal (Higgins ).
Hence, permutation tests on ranks are still useful despite
the fact that more complicated permutation tests can be
carried out (Neuhäuser ).
When the sample sizes are very large, the number

of possible permutations can be extremely large. �en,
a 7simple random sample of M permutations can be
drawn in order to estimate the permutation distribution.
A commonly used value is M = , . Please note that
the original observed values must be one of theM selected
permutations (Edgington and Onghena , p. ).
It should be noted that permutation procedures

do have some disadvantages. First, they are computer-
intensive, although the computational e�ort seems to be
no longer a severe objection against permutation tests. Sec-
ond, conservatism is o�en the price for exactness. For this
reason, the virtues of permutation tests continue to be
debated in the literature (Berger ).
When a permutation test is performed for other situa-

tions than the comparison of two samples the principle is
analogue.�e Fisher-Pitman test can also be carried out
with the ANOVA F statistic. Permutation tests can also
be applied in case of more complex designs. For example,
the residuals can be permuted (ter Braak ; Anderson
).
Permutation tests are also possible for other situa-

tions than the location-shi� model. For example, Janssen
() presents a permutation test for the7Behrens-Fisher
problem where the population variances may di�er.
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In the terminology of pharmacokinetics, the bioavailabil-
ity (BA) of a drug product refers to the rate and extent of its
absorbed active ingredient or active moiety that becomes
available at the site of action. A new/test drug product

(T) is considered bioequivalent to an existing/reference
product (R) if there is no signi�cant di�erence in the
bioavailabilities between the two products when they are
administered at the same dose under similar conditions
in an appropriately designed study. Studies to demonstrate
either in-vivo or in-vitro bioequivalence are required for
government regulatory approvals of generic drug prod-
ucts, or new formulations of existing products with known
chemical entity.
Statistically an in-vivo bioequivalence (BE) study

employs a crossover design with T and R drug products
administered to healthy subjects on separate occasions
according to a pre-speci�ed randomization schedule, with
ample washout between the occasions. �e concentra-
tion of the active ingredient of interest in blood is mea-
sured over time per subject in each occasion, resulting in
multiple concentration-time pro�les curves for each sub-
ject. From which a number of bioavailability measures,
such as area under the curve (AUC) and peak concentra-
tion (Cmax) in either raw or logarithmic scale, are then
computed, statistically modeled, and analyzed for bioe-
quivalence. Let Yijkt be a log-transformed bioavailability
measure of subject j in treatment sequence i at period t,
having the treatment k. In a simplest × crossover design
with two treatment sequences T/R (i = ) and R/T (i = ),
is assumed to follow a mixed-e�ects ANOVA model

Yijkt = µ + ωi + ϕk + πt + Sij + εijkt

where µ is an overall constant, ωi, ϕk and πt are, respec-
tively, (�xed) e�ects of sequence i, formulation k and
period t, Sij is the (random) e�ect of subject j in sequence
i, and εijkt the measurement error. In this model, the
between-subject variation is captured by the random com-
ponent Sij ∼ N (, σ B) and the within-subject variation
εijkt ∼ N (, σ Wk) is allowed to depend on formulation
k. Bioequivalence of T and R is declared when the null
hypothesisH : ϕT ≤ ϕR − ε or ϕT ≥ ϕR + ε can be rejected
against the alternative H : −ε ≤ ϕT − ϕR ≤ ε at some
signi�cance level α, where ε = log(.) = . and
α = . are set by regulatory agencies.�is last sentence
is referred to as the criterion for average BE. A common
method to establish average BE is to calculate the shortest
(−α)×% con�dence interval of δ = ϕT−ϕR and show
that it is contained in the equivalence interval (−ε, ε).
Establishing average BE using any nonreplicated k × k

crossover design can be conducted along the same line
as described above. For certain types of drug products,
such as those with Narrow�erapeutic Index (NTI), ques-
tions were raised regarding the adequacy of the average BE
method (e.g., Blakesley et al. ). To address this issue,
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other criteria and/or statisticalmethods for bioequivalence
have been proposed and studied in the literature. In partic-h
ular, population BE (PBE) assesses the di�erence between
T and R in both means and variances of bioavailability
measures, and individual BE (IBE) assesses, in addition,
the variation in the average T and R di�erence among
individuals. Some of these new concepts, notably indi-
vidual bioequivalence, would require high-order crossover
designs such as TRT/RTR. Statistical designs and analyses
for population BE and individual BE are described in detail
in a statistical guidance for industry (USA FDA, ) and
several monographs (Chow and Shao ; Wellek ).
Hsuan and Reeve () proposed a uni�ed procedure to
establish IBE using any high-order crossover design and
a multivariate ANOVA model. Recently the USA FDA
() proposes a process of making available the public
guidance(s) on how to design bioequivalence studies for
speci�c drug products.
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�e philosophical foundations of statistics involve issues
in theoretical statistics, such as goals and methods to meet
these goals, and interpretation of the meaning of infer-
ence using statistics.�ey are related to the philosophy of
science and to the 7philosophy of probability.
As with any other science, the philosophical foun-

dations of statistics are closely connected to its history,
which again is connected to the men with whom di�er-
ent philosophical directions can be associated. Some of
the most important names in this connection are�omas
Bayes (–), Ronald A. Fisher (–) and Jerzy
Neyman (–).

�e standard statistical paradigm is tied to the concept
of a statisticalmodel, an indexed family of probabilitymea-
sures Pθ(⋅) on the observations, indexed by the parameters
θ. Inference is done on the parameter space.�is paradigm
was challenged by Breiman (), who argued for an algo-
rithmical, more intuitive model concept. Breiman’s tree
models are still much in use, together with other algorith-
mical bases for inference, for instance within chemometry.
For an attempt to explain some of these within the frame-
work of the ordinary statistical paradigm, see Helland
().
On the other hand, not all indexed families of distribu-

tions lead to sensible models. McCullagh () showed
that several absurd models can be produced.

�e standard statisticalmodel concept can be extended
by implementing some kind of model reduction
(Wittgenstein : “�e process of induction is the pro-
cess of assuming the simplest law that can be made to
harmonize with our experience”) or by, e.g., adjoining a
symmetry group to the model (Helland , ).
To arrive at methods of inference, the model concept

must be supplemented by certain principles. In this con-
nection, an experiment is ordinarily seen as given by a
statisticalmodel togetherwith some focus parameter.Most
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statisticians agree at least to some variants of the following
three principles:�e conditionality principle (When you
choose an experiment randomly, the information in this
large experiment, including the 7randomization, is not
more than the information in the selected experiment.),
the su�ciency principle (Experiments with equal values of
a su�cient statistics have equal information.) and the like-
lihood principle (All the information about the parameter
is contained in the likelihood for the parameter, given the
observations.). Birnbaum’s famous theorems says that like-
lihood principle follows from the conditionality principle
together with the su�ciency principle (for some precisely
de�ned version of these principles). �is, and the prin-
ciples themselves are discussed in detail in Berger and
Wolpert ().
Berger and Wolpert () also argue that the likeli-

hood principle “nearly” leads to Bayesian inference, as the
only mode of inference which really satis�es the likelihood
principle. �is whole chain of reasoning has been coun-
tered by Kardaun et al. () and by leCam (), who
states that he prefers to be a little “unprincipled.”
To arrive at statistical inference, whether it is point

estimates, con�dence intervals (credibility intervals for
Bayesians) or hypothesis testing, we need some deci-
sion theory (see 7Decision�eory: An Introduction, and
7Decision �eory: An Overview). Such decision theory
may be formulated di�erently by di�erent authors. �e
foundation of statistical inference from a Bayesian point
of view is discussed by Good (), Lindley () and
Savage (). From the frequentist point of view it is
argued by Efron () that one should be a little more
informal; but note that a decision theory may be very
useful also in this setting.

�e philosophy of foundations of statistics involves
many further questions which have direct impact on the
theory and practice of statistics: Conditioning, random-
ization, shrinkage, subjective or objective priors, reference
priors, the role of information, the interpretation of prob-
abilities, the choice of models, optimality criteria, non-
parametric versus parametric inference, the principle of
an axiomatic foundation of statistics etc. Some papers
discussing these issues are Cox () with discussion,
Kardaun et al. () and Efron (, ).�e last paper
takes up the important issue of the relationship between
statistical theory and the ongoing revolution of computers.

�e struggle between7Bayesian statistics and frequen-
tist statistics is not so hard today as it used to be some years
ago, partly since it has been realized that the two schools
o�en lead to similar results. As hypothesis testing and con-
�dence intervals are concerned, the frequentist school and
the Bayesian school must be adjoined by the Fisherian
or �ducian school, although largely out of fashion today.

�e question of whether these three schools in some sense
can agree on testing, is addressed by Berger ().

�e �eld of design of experiments also has its own
philosophical foundation, touching upon practical issues
like randomization, blocking and replication, and linked
to the philosophy of statistical inference. A good reference
here is Cox and Reid ().
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�e probability calculus was created in  by Pierre de
Fermat and Blaise Pascal.�e philosophy of probability is
the philosophical inquiry into the semantic and epistemic
properties of this mathematical calculus.�e question at
the center of the philosophical debate is what it means to
say that the probability of an event or proposition equals a
certain numerical value, or in other words, what the truth-
conditions for a probabilistic statement are. �ere is sig-
ni�cant disagreement about this, and there are two major
camps in the debate, viz., objectivists and subjectivists.
Objectivists maintain that statements about probabil-

ity refer to some features of the external world, such as the
relative frequency of some event. Probabilistic statements
are thus objectively true or false, depending on whether
they correctly describe the relevant features of the exter-
nal world. For example, some objectivists maintain that it
is true that the probability that a coin will land heads is / if
and only if the relative frequency of this type of event is /
(Other objective interpretations will be discussed below).
Subjectivists disagree with this picture.�ey deny that

statements about probability should be understood as
claims about the external world. On their view, they should
rather be understood as claims about the speaker’s degree
of belief that an event will occur. Consider, for exam-
ple, Mary’s probability that her suitor will propose. What
is Mary’s probability that this event will occur? It seems
rather pointless to count the number ofmarriage proposals
that other people get, because this does not tell us anything
about the probability that Mary will be faced with a mar-
riage proposal. If it is true thatMary’s probability is, say, /

then it is true because of her mental state, i.e., her degree
of belief that her suitor will propose. Unfortunately, noth-
ing follows from this about whether her suitor actually will
propose or not. Mary’s probability that her suitor will pro-
pose may be high even if the suitor feels that marriage is
totally out of the question.
Both the objective and subjective interpretations are

compatible withKolmogorov’s axioms.�ese axioms come
out as true, irrespective of whether we interpret them
along the lines suggested by objectivists and subjectivists.
However, more substantial questions about what the prob-
ability of an event is may depend on which interpretation
is chosen. For example, Mary’s subjective belief that her
suitor will propose might be low, although the objective
probability is quite high.

�e notion of subjective probability is closely related to
7Bayesian statistics, presented elsewhere in this book. (In
recent years some authors have, however, also developed
objectivist accounts of Bayesian statistics.)
In what follows we shall give a more detailed overview

of some of the most well-known objective and subjec-
tive interpretations, viz. the relative-frequency view, the
propensity interpretation, the logical interpretation, and
the subjective interpretation. We shall start, however, with
the classical interpretation. It is strictly speaking neither an
objective nor a subjective interpretation, since it is salient
about many of the key questions discussed by objectivists
and subjectivists.

�e classical interpretation, advocated by Laplace,
Pascal, Bernoulli and Leibniz, holds the probability of an
event to be a fraction of the total number of possible ways
in which the event can occur. Hence, the probability that
youwill get a six if you roll a six-sided die is /. However, it
takes little re�ection to realize that this interpretation pre-
supposes that all possible outcomes are equally likely.�is
is not always a plausible assumption, as Laplace and oth-
ers were keen to stress. For an extreme example, consider
the weather in the Sahara desert. It seems to bemuchmore
probable that it will be sunny in the Sahara desert tomor-
row than not, but according to the classical interpretation
the probability is / (since there are two possible outcomes,
sun or no sun). Another problem with the classical inter-
pretation is that it is not applicable when the number of
possible outcomes is in�nite.�en the probability of every
possibility would be zero, since the ratio between any �nite
number and in�nity is zero.

�e frequency interpretation, brie�y mentioned above,
holds that the probability of an event is the ratio between
the numbers of times the event has occurred divided
by the total number of observed cases. Hence, if you
toss a coin , times and it lands heads up  times
then the relative frequency, and thus the probability,
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would be / = .. A major challenge for anyone
seeking to defend the frequency interpretation is to spec-
ify which reference class is the relevant one and why. For
example, suppose I toss the coin another , times, and
that it lands heads up on  occasions. Does this imply
that the probability has changed from . to .? Or
is the “new” probability  + /.? �e physical
constitution of the coin is clearly the same.

�e problem of identifying the relevant reference class
becomes particularly pressing as the frequency interpreta-
tion is applied to unique events, i.e., events that only occur
once, such as the US presidential election in  in which
George W Bush won over Al Gore. �e week before the
election the probability was – according to many political
commentators – about % that Bush would win. Now, to
which reference class does this event belong? If this was a
unique event the reference class has, by de�nition, just one
element, viz., the event itself. So according to the frequency
interpretation the probability that Bush was going to win
was /, since Bush actually won the election.�is cannot
be the right conclusion.
Venn famously argued that the frequency interpreta-

tion makes sense only if the reference class is taken to be
in�nitely large. More precisely put, he pointed out that one
should distinguish sharply between the underlying limit-
ing frequency of an event and the frequency observed so
far. �e limiting frequency is the proportion of success-
ful outcomes would get if one were to repeat one and the
same experiment in�nitely many times. So even though
the US presidential election in  did actually take place
just once, we can nevertheless imagine what would have
happened had it been repeated in�nitely many times.
Of course, we cannot actually toss a coin in�nitely

many times, but we could imagine doing so. �erefore,
the limiting frequency is o�en thought of as an abstrac-
tion, rather than as a series of events that take place in
the real world.�is point has some important philosoph-
ical implications. First, it seems that one can never be
sure that a limiting relative frequency exists. When toss-
ing a coin, the relative frequency of heads will perhaps
never converge towards a speci�c number. In principle, it
could oscillate forever. Moreover, the limiting relative fre-
quency seems to be inaccessible from an epistemic point of
view, even in principle. If you observe that the relative fre-
quency of a coin landing heads up is close to / in a series
of ten million tosses, this does not exclude that the true
long-run frequency is much lower or higher than /. No
�nite sequence of observations can prove that the limiting
frequency is even close to the observed frequency.
According to the propensity interpretation, probabil-

ities should be identi�ed with another feature of the
external world, namely the propensity (or disposition or

tendency) of an object to give rise to a certain e�ect. For
instance, symmetrical coins typically have a propensity to
land heads up about every second time they are tossed,
whichmeans that their probability of doing so is about one
in two.

�e propensity interpretationwas developed byPopper
in the s. His motivation for developing this view was
that it avoids the problem of assigning probabilities to
unique events faced by the frequency view. Even an event
that cannot take place more than once can nevertheless
have a certain propensity (or tendency) to occur. How-
ever, Popper’s version of the theory also sought to connect
propensities with long-run frequencies whenever the lat-
ter existed.�us, his theory is perhaps best thought of as
a hybrid between the two views. Contemporary philoso-
phers have proposed “pure” versions of the propensity
interpretation, which make no reference what so ever to
long-run frequencies.
A well-known objection to the propensity interpreta-

tion is Humphreys’ paradox. To state this paradox, recall
that conditional probabilities can be “inverted” by using
7Bayes’ theorem. �us, if we know the probability of A
given B we can calculate the probability of B given A, given
that we know the priors.�e point made by Humphreys
is that propensities cannot be inverted in this sense. Sup-
pose, for example, that we know the probability that a train
will arrive on time at its destination given that it departs
on time.�en it makes sense to say that if the train departs
on time, it has a propensity to arrive on time at its desti-
nation. However, even though it makes sense to speak of
the inverted probability, i.e., the probability that the train
departed on time given that it arrived on time, it makes
no sense to speak of the corresponding inverted propen-
sity. No one would admit that the on-time arrival of the
train has a propensity tomake it depart on time a few hours
earlier.

�e thrust of Humphreys’ paradox is thus the fol-
lowing: Even though we may not know exactly what a
propensity (or disposition or tendency) is, we do know
that propensities have a temporal direction. If A has a
propensity to give rise to B, then A cannot occur a�er
B. In this respect, propensities function very much like
causality; if A causes B, then A cannot occur a�er B.
However, probabilities lack this temporal direction. What
happens now can tell us something about the probability
of past events, and reveal information about past causes
and propensities, although the probability in itself is a
non-temporal concept. Hence, it seems that it would be a
mistake to identify probabilities with propensities.

�e logical interpretation of probability was developed
by Keynes and Carnap. Its basic idea is that probability is
a logical relation between a hypothesis and the evidence
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supporting it. More precisely put, the probability relation
is best thought of as a generalization of the principles of
deductive logic, from the deterministic case to the indeter-
ministic one. For example, if an unhappy housewife claims
that the probability that her marriage will end in a divorce
is ., this means that the evidence she has at hand (no
romantic dinners, etc.) entails the hypothesis that the mar-
riage will end in a divorce to a certain degree, which can be
represented by the number .. Coin tossing can be ana-
lyzed along the same lines.�e evidence one has about the
shape of the coin and past outcomes entails the hypothe-
sis that it will land heads up to a certain degree, and this
degree is identical with the probability of the hypothesis
being true.
Carnap’s analysis of the logical interpretation is quite

sophisticated, and cannot be easily summarized here.
However, a general di�culty with logical interpretations is
that they run a risk of being too dependent on evidence.
Sometimeswewish to use probabilities for expressingmere
guesses that have no correlation whatsoever to any evi-
dence. For instance, I think the probability that it will be
sunny in Rio de Janeiro tomorrow is ..�is guess is not
based on anymeteorological evidence. I am just guessing –
the set of premises leading up to the hypothesis that it will
be sunny is empty; hence, there is no genuine “entailment”
going on here. So how can the hypothesis that it will be
sunny in Rio de Janeiro tomorrow be entailed to degree
., or any other degree?
It could be replied that pure guesses are irrational, and

that it is therefore not a serious problem if the logical inter-
pretation cannot handle this example. However, it is not
evident that this is a convincing reply. People do use prob-
abilities for expressing pure guesses, and the probability
calculus can easily be applied for checking whether a set
of such guesses are coherent or not. If one thinks that the
probability for sun is . it would for instance be correct
to conclude that the probability that it will not be sunny is
..�is is no doubt a legitimate way of applying the prob-
ability calculus. But if we accept the logical interpretation
we cannot explain why this is so, since this interpretation
de�nes probability as a relation between a (non-empty) set
of evidential propositions and a hypothesis.
Let us now take closer look at the subjective interpreta-

tion.�e main idea is that probability is a kind of mental
phenomenon. Probabilities are not part of the external
world; they are entities that human beings somehow cre-
ate in their minds. If you claim that the probability for sun
tomorrow is, say, . this merely means that your subjec-
tive degree of belief that it will be sunny tomorrow is strong
and that the strength of this belief can be represented by the
number .. Of course, whether it actuallywill rain tomor-
row depends on objective events in the external world,

rather than on your beliefs. So it is probable that it will rain
tomorrow just in case you believe that it will rain to a cer-
tain degree, irrespective of what the weather is actually like
tomorrow. However, this should not be taken to mean that
any subjective degree of belief is a probability. Advocates
of the subjective approach stress that for a partial belief
to qualify as a probability, one’s degrees of belief must be
compatible with the axioms of the probability calculus.
Subjective probabilities can vary across people. Mary’s

degree of belief that it will rain tomorrowmight be strong,
at the same time as your degree of belief is much lower.
�is just means that your mental dispositions are di�er-
ent. When two decision makers hold di�erent subjective
probabilities, they just happen to believe something to dif-
ferent degrees. It does not follow that at least one person
has to be wrong. Furthermore, if there were no humans
around at all, i.e., if all believing entities were to be extinct,
it would simply be false that some events happen with a
certain probability, including quantum-mechanical events.
According to the pioneering subjectivist Bruno de Finetti,
“Probability does not exist.”
Subjective views have been around for almost a cen-

tury. de Finetti’s pioneering work was published in .
Ramsey presented a similar subjective theory in a paper
written in  and published posthumously in . How-
ever, most modern accounts of subjective probability start
o� from Savage’s theory, presented in , which is more
precise from a technical point of view. �e key idea in
all three accounts is to introduce an ingenious way in
which subjective probabilities can be measured.�e mea-
surement process is based on the insight that the degree
to which a decision maker believes something is closely
linked to his or her behavior. Imagine, for instance, that
we wish to measure Mary’s subjective probability that the
coin she is holding in her hand will land heads up the next
time it is tossed. First, we ask her which of the following
very generous options she would prefer.

(a) “If the coin lands heads up you win a trip to Bahamas;
otherwise you win nothing”

(b) “If the coin does not land heads up you win a trip to
Bahamas; otherwise you win nothing”

Suppose Mary prefers A to B. We can then safely conclude
that she thinks it is more probable that the coin will land
heads up rather than not.�is follows from the assump-
tion that Mary prefers to win a trip to Bahamas rather
than nothing, and that her preference between uncer-
tain prospects is entirely determined by her beliefs and
desires with respect to her prospects of winning the trip
to Bahamas. If she on the other hand prefers B to A, she
thinks it ismore probable that the coin will not land heads
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up, for the same reason. Furthermore, ifMary is indi�erent
between A and B, her subjective probability that the coin
will land heads up is exactly /.�is is because no other
probability would make both options come out as equally
attractive, irrespective of how strongly she desires a trip to
Bahamas, and irrespective of which decision rule she uses
for aggregating her desires and beliefs into preferences.
Next, we need to generalize the measurement pro-

cedure outlined above such that it allows us to always
represent Mary’s degree of belief with precise numerical
probabilities. To do this, we need to ask Mary to state
preferences over amuch larger set of options and then rea-
son backwards. Here is a rough sketch of the main idea:
Suppose that Mary wishes to measure her subjective prob-
ability that her etching by Picasso worth $, will be
stolen within one year. If she considers $, to be a fair
price for insuring her Picasso, that is, if that amount is the
highest price she is prepared to pay for a gamble in which
she gets $, if the event S: “�e Picasso is stolenwithin
a year” takes place, and nothing otherwise, then Mary’s
subjective probability for S is ,

, = ., given that she
forms her preferences in accordance with the principle of
maximizing expected monetary value. If Mary is prepared
to pay up to $, for insuring her Picasso, her subjective
probability is ,

, = ., given that she forms her pref-
erences in accordance with the principle of maximizing
expected monetary value.
Now, it seems that we have a general method for mea-

suring Mary’s subjective probability: We just ask her how
much she is prepared to pay for “buying a contract” that
will give her a �xed income if the event we wish to assign
a subjective probability to takes place. �e highest price
she is prepared to pay is, by assumption, so high that she
is indi�erent between paying the price and not buying
the contract. (�is assumption is required for representing
probabilities with precise numbers; if buying and selling
prices are allowed to di�er we can sometimes use intervals
for representing probabilities. See e.g., Borel and Baudain
 and Walley .)

�e problem with this method is that very few people
form their preferences in accordance with the principle of
maximizing expected monetary value. Most people have
a decreasing marginal utility for money. However, since
we do not know anything about Mary’s utility function for
money we cannot replace the monetary outcomes in the
exampleswith the corresponding utility numbers. Further-
more, it alsomakes little sense to presuppose thatMary uses
a speci�c decision rule, such as the expected utility prin-
ciple, for forming preferences over uncertain prospects.
Typically, we do not know anything about howpeople form
their preferences.

Fortunately, there is a clever solution to all these prob-
lems. �e main idea is to impose a number of struc-
tural conditions on preferences over uncertain options.
�e structural conditions, or axioms, merely restrict what
combinations of preferences it is legitimate to have. For
example, if Mary strictly prefers option A to option B in
the Bahamas example, then she must not strictly prefer
B to A.�en, the subjective probability function is estab-
lished by reasoning backwards while taking the structural
axioms into account: Since the decision maker preferred
some uncertain options to others, and her preferences over
uncertain options satisfy a number of structural axioms,
the decision maker behaves as if she were forming her
preferences over uncertain options by �rst assigning sub-
jective probabilities and utilities to each option, and there-
a�er maximizing expected utility. A peculiar feature of
this approach is, thus, that probabilities (and utilities) are
derived from “within” the theory.�e decisionmaker does
not prefer an uncertain option to another because she
judges the subjective probabilities (and utilities) of the out-
comes to be more favorable than those of another. Instead,
thewell-organized structure of the decisionmaker’s prefer-
ences over uncertain options logically imply that they can
be described as if her choices were governed by a subjec-
tive probability function and a utility function, constructed
such that a preferred option always has a higher expected
utility than a non-preferred option.�ese probability and
utility functions need not coincide with the ones outlined
above in the Bahamas example; all we can be certain of
is that there exist some functions that have the desired
technical properties.
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“Point Processes” are locally �nite (i.e., no �nite accumula-
tion points) families of events, typically occurring in time,
but o�en with additional dimensions (marks) to describe
their locations, sizes and other characteristics.

�e subject originated in attempts to develop life-
tables.�e �rst such studies included one by Newton and
another by his younger contemporary Halley.
Newton’s study was provoked by his life-long religious

concerns. In his book, “Chronology of Ancient Kingdoms
Amended” he set out to estimate the dates of various bib-
lical events by counting the number of kings or other
rulers between two such biblical events and allowing each
ruler a characteristic length of reign. �e value he used
seems to have been arrived at by putting together all the
observations from history that he could �nd (he included
rulers from British, classical, European and biblical histo-
ries and even included Methuselah’s quoted age among his
data points) and taking some average of their lengths of
rules, but he acknowledged himself that his methods were
informal and personal.
Halley, by contrast, was involved in a scienti�c exer-

cise, namely the development of actuarial tables for use
in calculating pensions and annuities. Indeed, he was

requested by the newly established Royal Society to pre-
pare such a table from records in Breslau, a city selected
because it had been less severely a�ected by the plague than
most of the larger cities in Europe, so that its mortality
data were felt more likely to be typical of those of cities and
periods in normal times.
Another important early stimulus for point process

studies was the development of telephone engineering.
�is application prompted Erlang’s early studies of the
Poisson process (see7PoissonProcesses), which laid down
many of the concepts and procedures, such as 7renewal
processes, and forward and backward recurrence times,
subsequently entering into point process theory. It was
also the context of Palm’s () deep studies of telephone-
tra�c issues. Palm was the �rst to use the term “point
process” (Punkt-Prozesse) itself.
A point process can be treated in many di�erent ways:

for example, as a sequence of delta functions, as a sequence
of time intervals between event occurrences; as an integer-
valued randommeasure; or as the sum of a regular increas-
ing component and a jump-type martingale.
Treating each point as a delta-function in time yields a

time series which has generalized functions as realizations,
but in other respects has many similarities with a contin-
uous time series. In particular, stationarity, ergodicity, and
a “point process spectrum” can be developed through this
approach.
If attention is focused on the process of intervals

between successive points, the paradigm example is the
renewal process, where the intervals between events are
independent, and, save possibly for the �rst interval,
identically distributed.
Counting the number of events, say N(A) falling into

a pre-speci�ed set A (an interval, or more general Borel
set), leads to treating the point process as an integer-valued
random measure.
An important underlying theorem, �rst enunciated

and analyzed by Slivnyak (), asserts the equivalence of
the counting and interval based approaches.
Random measures form a generalization of point pro-

cesses which are of considerable importance in their own
right.�eir �rst and second order moment measures

M(A) = E[N(A)]

M(A × B) = E[N(A)N(B)]

and the associated signedmeasure, the covariancemeasure

C(A × B) =M(A × B) −M(A)M(B)

form non-random measures which have been exten-
sively studied.
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A third point of view originated more recently from
martingale ideas applied to point processes, andhas proved
a rich source of both newmodels andnewmethods of anal-
ysis.�e key here is to de�ne the point process in terms of
its conditional intensity (or conditional hazard) function,
representing the conditional rate of occurrence of events,
given the history (record of previously occurring events
and any other relevant information) up to the present.

�ese ideas are closely linked to the martingale rep-
resentation of point processes.�is takes the form of an
increasing step function, with unit steps at the time points
when the events occur, less a continuous increasing part
given by the integral of the conditional intensity.

�e Hawkes’ processes [introduced by Hawkes (a,
b)] form an important class of point processes introduced
and de�ned by their conditional intensities, which take the
general form

λ(t) = µ + ∑
i:ti−t

g(t − ti)

where µ is a non-negative constant (“the arrival rate”) and
g is a non-negative integrable function (“the infectivity
function”).

�e archetypal point process is the simple Poisson pro-
cess, where the intervals between successive events in
time are independent, and, (with the possible exception
of the initial interval) are identically and exponentially
distributed with a common mean, say m. For this pro-
cess, the conditional intensity is constant, equal to the
rate of occurrence (intensity) of the Poisson process,
here /m. Processes with continuous conditional inten-
sities are sometimes referred to as “processes of Poisson
type” since they behave locally like Poisson processes over
intervals small enough for the conditional intensity to be
considered approximately constant.
For the Poisson process itself, and also Poisson clus-

ter processes, where cluster centers follow a simple Poisson
process, and the clusters are independent subprocesses,
identically distributed relative to their cluster centers, it is
possible to write down simple expressions for the charac-
teristic functional

Φ[h] = E[e
i ∫ h(t)dN(t)]

where the carrying function h is integrable againstM, or
the essentially equivalent probability generating functional

G[ξ] = E[Πξ(ti)]

where ξ plays the role of h in the characteristic functional.

For example, the Poisson process with continuous
intensitym has probability generating functional

G[h] = exp{ −m∫ [ − h(u)]du}.

Such functionals provide a comprehensive summary of the
process and its attributes, especially the moment structure.
However, the usefulness of characteristic or generat-

ing functionals in practice is restricted by the relatively
few examples for which they can be obtained in con-
venient closed form. Nevertheless, where available, their
form is essentially independent of the space (phase space)
in which the points are located. By contrast, �nding exten-
sions of the conditional intensity to spaces of more than
one dimension has proved extremely di�cult, on account
of the absence of a clear linear ordering, a problem which
equally a�ects other attempts to extendmartingale ideas to
higher dimensions.
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�e Poisson distribution was �rst introduced by the
FrenchMathematician Siméon-Denis Poisson (–)
to describe the probability of a number of events occur-
ring in a given time or space interval, with the probability
of occurrence of these events being very small. However,
since the number of trials is very large, these events do
actually occur.
It was �rst published in  in his work Recherches

sur la probabilité des jugements en matières criminelles et

matière civile (Research on the Probability of Judgments
in Criminal and Civil Matters). In this work, the behavior
of certain random variables X that count the number of

occurrences (or arrivals) of such events in a given interval
in time or space was described. Some examples of these
events are infant mortality in a city, the number of mis-
prints in a book, the number of bacteria on a plate, the
number of activations of a geiger counter, and so on.
Assuming that λ is the expected value of such arrivals

in a time interval of �xed length, the probability of observ-
ing exactly k events is given by the probability mass
function

f (k∣λ) =
λke−λ

k!
for k = , , , . . ..�e parameter distribution λ is a posi-
tive real number, which represents the average number of
events occurring during a �xed time interval. For exam-
ple, if the event occurs on average three times per second,
in  s the event will occur on average  times and λ = .
When the number of trials n is large and the probabil-
ity of occurrence of the event λ/n approaches to zero, the
7binomial distribution with parameters n and p = λ/n can
be approximated to a Poisson distribution with parame-
ter λ.�e binomial distribution gives the probability of x
successes in n trials.
If X is a random variable with a Poisson distribution,

the expected value ofX and the variance ofX are both equal
to λ. To estimate λ bymaximum likelihood, given a sample
k, k, . . . , kn, the log-likelihood function

L(λ) = log
n

∏
i=

λki e
−λ

ki!

is maximized with respect to λ and the resulting estimate
is λ̂ =

∑ni= ki
n
. �is is an unbiased estimator since the

expected value of each ki is equal to λ; and it is also an
e�cient estimator since its estimator variance achieves the
Cramer–Rao lower bound. From the Bayesian inference
perspective, a conjugate prior distribution for the parame-
ter λ is the Gamma distribution. Suppose that λ follows a
Gamma prior distribution with parameters α and β, such
that

p(λ∣α, β) =
βα

Γ(α)
λα−

e
−βλ λ > 

If a sample k, k, . . . , kn of size n is observed, the posterior
probability distribution for λ is given by

p(λ∣k, k, . . . , kn) ∼ Gamma(α +
n

∑
i=
ki, β + n) .

When α → and β → , we have a di�use prior distribution,
and the posterior expected value of λ (E[λ∣k, k, . . . , kn])
approximates to the maximum likelihood estimator λ̂.
A use for this distribution was not found until ,

when an individual named Bortkiewicz (O’Connor and



 P Poisson Distribution and Its Application in Statistics

Robertson ) was asked by the Prussian Army to inves-
tigate accidental deaths of soldiers attributed to being
kicked by horses. In , he published�e Law of Small
Numbers. In this work he was the �rst to note that events
with low frequency in a large population followed a Pois-
son distribution even when the probabilities of the events
varied. Bortkiewicz studied the distribution of  men
kicked to death by horses among  Prussian army corps
over  years.�is famous data set has been used in many
statistical textbooks as a classical example on the use of the
Poisson distribution (see Yule and Kendall [] or Fisher
[]). He found that in about half of every army corps–
year combination, there were no deaths for horse kicking.
For other combinations of corps–years, the number of
deaths were from  to . Although the probability of horse
kick deaths might vary from corps and years, the over-
all observed frequencies were very close to the expected
frequencies estimated by using a Poisson distribution.
In epidemiology, the Poisson distribution has been

used as amodel for deaths. In one of the oldest textbooks of
statistics published by Bowley in  (cited byHill []),
he �tted a Poisson distribution to deaths from splenic fever
in the years – and showed a reasonable agreement
with the theory. At that time, splenic fever was a synonym
for present-day anthrax.
A more extensive use of the Poisson distribution can

be found within the Poisson generalized linear models,
usually called the Poisson regression models (see 7Poisson
Regression).�ese models are used to model count data
and contingency tables. For contingency tables, the Pois-
son regressionmodel is best known as the log-linear model.
In this case, the response variable Y has a Poisson distribu-
tion and usually, the logarithm of its expected value (E[Y])
is expressed as a linear predictor Xβ where X is a n × p
matrix of explanatory variables and β is a parameter vector
of size p. In this case, the link function g(.), which relates
the expected value of the response variable Y with the lin-
ear predictor is the logarithm function, in such a way that
the mean of the response variable µ = g−(Xβ).
Poisson regression can also be used to model what is

called the relative risk.�is is the ratio between the counts
and an exposure factor E. For example, tomodel the relative
risk of disease in a region, wemake η = Y/E, whereY is the
observed number of cases and E is the expected number of
cases, which depends on the number of persons at risk.�e
usual model for Y is

Y ∣η ∼ Poisson(Eη)

where η is the true relative risk of disease (Banerjee et al.
()). When applying the Poisson model to data, the
main assumption is that the variance is equal to the mean.

In many cases, this may not be assumed since the variance
of counts are usually greater than themean. In this case, we
have overdispersion. One way to deal with this problem is
to use the negative binomial distribution, which is a two-
parameter family that allows the mean and variance to be
�tted separately. In this case, the mean of the Poisson dis-
tribution λ is assumed a random variable as drawn from a
Gamma distribution.
Another common problem with Poisson regression is

excess zeros: if there are two processes at work, one deter-
mining whether there are zero events or any events, and
a Poisson process (see 7Poisson Processes) determining
how many events there are, there will be more zeros than
a Poisson regression would predict. An example would be
the distribution of cigarettes smoked in an hour by mem-
bers of a group where some individuals are nonsmokers.
�ese data sets can be modeled as zero in�ated Poisson
models, where p is the probability of observing zero counts,
and  − p is the probability of observing a count variable
modeled as a Poisson(λ).
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Introduction
Poisson Processes are surely ubiquitous in the modeling of
point events in widely varied settings, and anything resem-
bling a brief exhaustive account is impossible. Rather we
aim to survey several “Poisson Habitats” and properties,
with glimpses of underlying mathematical framework for
these processes and close relatives. We refer to three (of
many) authoritative works (Cox and Lewis ; Daley and
Vere-Jones ; Kallenberg ) for convenient detailed
accounts of Poisson Process and general related theory,
tailored to varied mathematical tastes.
In this entrywe �rst consider PoissonProcesses in their

classical setting as series of random events (7point pro-
cesses) on the real line (e.g., in time), their importance in
one dimension for stochastic modeling being rivaled only
by the Wiener Process - both being basic (for di�erent
purposes) in their own right, and as building blocks for
more complex models. Classical applications of the Pois-
son process abound - exempli�ed by births, radioactive
disintegrations, customer arrival times in queues, instants
of new cases of disease in an epidemic, and (a favorite of
ours), the crossings of a high level by a stationary pro-
cess. �e classical format for Poisson Processes will be
described in section “7PoissonProcesses on theReal Line”,
and important variants in section “7Important Variants”.
Unlike many situations in which generalizations to

more than one dimension seem forced, the Poisson process
has important and natural extensions to two and higher
dimensions, as indicated in section “7Poisson Processes in
Higher Dimensions”. Further, an even more attractive fea-
ture (at least to those with theoretical interests) is the fact
that Poisson Processes can be de�ned on spaces with very
little structure, as indicated in section “7Poisson Processes
on Abstract Spaces”.

Poisson Processes on the Real Line
A Point Process on the real line is simply a sequence of
events occurring in time (or some other -dimensional
(e.g., distance) parameter) according to a probabilistic
mechanism. One way to describe the probability structure
is to de�ne a sequence  ≤ τ < τ < τ . . . < ∞ where
the τi are the “times” of occurrences of interest (“events” of
the point process).�ey are assumed to be random vari-
ables (written here as distinct, i.e., strictly increasing, when

the point process is termed “simple” but successive τi can
be taken to be equal if “multiple events” are to be consid-
ered.) It is assumed that the points τi tend to in�nity as
i→∞ so that there are no “accumulation points”. Onemay
de�ne a point process as a random set {τi : i = , , . . .}
of such points (cf Ryll-Nardzewski ). Alternatively the
occurrence times τi are a family of random variables for
i = , , . . . and may be discussed within the framework
of random sequences (discrete parameter stochastic pro-
cesses). However o�en the important quantities for a point
process on the real line are the random variables N(B)

which are the (random) numbers of events (τi) in sets
B of interest (usually Borel sets). When B = (, t] we
write Nt for N((, t]), i.e., the number of events occur-
ring from time zero up to and including time t. {Nt} is
thus a family of random variables for positive t – or a non-
negative integer-valued continuous parameter stochastic
process on the positive real line. Likewise {N(B)} de�nes
a non-negative integer-valued stochastic process indexed
by the (Borel) sets B (�nite for bounded B).
Here (as is customary) we focus on the “counting”

r.v.s {Nt} or {N(B)} rather than the consideration of
more geometric properties of the sets {τi}. Note that these
two families are essentially equivalent since knowledge of
N(B) for each Borel set determines that of the sub-family
{Nt}(B = (, t]) and the converse is also true since N(B)

is a measure de�ned on the Borel sets and is determined
by its values on the intervals (, t]. Further their distribu-
tions are determined by those of the occurrence times τk
and conversely, in view of equality of the events (τk > t),
(Nt < k).
We (�nally!) come to the subject of this article – the

Poisson Process. In its simplest context this is de�ned as
a family N(B), (or Nt) as above on the positive real line
by the requirement that each Nt be Poisson, P{Nt = r} =

e−λt(λt)r/r!, r = , , , . . . and that “increments” (Nt −
Nt), (Nt − Nt), are independent for  < t < t ≤

t < t. Equivalently N(B) is Poisson with mean λm(B)

where m denotes Lebesgue measure, and N(B), N(B)

are independent for disjointB, B. λ = EN is the expected
number of events per unit time, or the intensity of the
Poisson process.

�at the Poisson– rather than someother – distribution
plays a central role is due in part to the long history of its
use to describe rare events – such as the classical number
of deaths by horse kicks in the Prussian army. But more
signi�cantly the very simplest modeling of a point process
would surely require independence of increments which
holds as noted above for the Poisson Process. Further this
process has the stationarity property that the distribution
of the “increment” (Nt+h−Nt) depends only on the length
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h of the interval, not on its starting point t. Moreover the
probability of an event in a small interval of length h is
approximately λh and the probability of more than one in
that interval is of smaller order, i.e.,

P{(Nt+h −Nt) = } = λh + o(h),

P{(Nt+h −Nt) ≥ } = o(h) as h→ o.

It turns out that the Poisson Process as de�ned is the
only point process exhibiting stationarity and these two
latter properties [see e.g., Durrett () for proof]
which demonstrates what Kingman aptly describes as the
“inevitability” of the Poisson distribution, in his volume
(Kingman ).

�e Poisson Process has extensive properties which are
well described in many works [e.g., Cox and Lewis ()
and Daley and Vere-Jones ()] For example the equiva-
lence of the events (τk > t), (Nt < k) noted above readily
shows that the inter-arrival times (τk−τk−) are i.i.d. expo-
nential random variables with mean λ−(τ = ), and τk
itself is the sum of the �rst k of these, thus distributed as
(λ)− χk. On the other handwe have the famous apparent
paradox that the random interval which contains a �xed
point t is distributed as the sum of two independent such
exponential variables – the time from the preceding event
plus that to the following event.�is and a host of other
useful properties may be conveniently found in Cox and
Lewis () and Daley and Vere-Jones (). Finally, the
above discussion has focused on Poisson Processes on the
positive real line. It is a simple matter to add an indepen-
dent Poisson Process on the negative real line to obtain one
on the entire real line (−∞,∞).

Important Variants
�e stationarity requirement of a constant intensity λmay
be generalized to include a time varying intensity function
λ(t) for which the number of events N(B) in a (Borel) set
B is still Poisson but with mean Λ(B) = ∫

B

λ(t)dt, keeping

independence ofN(B), N(B) for disjointB,B.�enNt
is Poisson with mean ∫

t


λ(t)dt. More generally one may

take Λ to be a “measure” on the Borel sets but not neces-
sarily of this integral (absolutely continuous) form which
unlike the simple Poisson Process above, does not neces-
sarily prohibit the occurrence of more than one event at
the same instant, (multiple events) and may allow posi-
tive probability of an event occurring at a given �xed time
point. Further one may consider random versions of the
intensity e.g., with λ(t) being itself a stochastic process
(“stochastic intensity”) as for example the blood pressure
of an individual (varying randomly in time) leading to

(conditionally) Poisson chest pain incidents. �e result-
ing point processes are termed doubly stochastic Poisson or
Cox Processes, and are widely used in medical trials e.g., of
new treatments. For other widely used variants of Poisson
Processes (e.g., “Mixed” and “Compound” Poisson pro-
cesses) as well as extensive theory of point process proper-
ties, we recommend the very readable volume (Daley and
Vere-Jones ()).

Poisson Processes in Higher Dimensions
Point processes (especially Poisson) have also been tra-
ditionally very useful in modeling point events in space
and space-time dimensions.�e locations of ore deposits
in two or three spatial dimensions and the occurrences
of earthquakes in two dimensions and perhaps time
(“spatio-temporal”) are important examples. �e mathe-
matical framework extends naturally from one dimension,
N(B) being the number of point events in the two- or
-dimensional (Borel) set B, and notational extensions
such as Nt(B) for the number of events in a spatial set B
up to time t.
Not infrequently a time parameter is considered sim-

ply as equivalent to the addition of just one more spatial
dimension, but the obvious di�erences in the questions
to be asked for space and time suggest that the notation
re�ect the di�erent character of the parameters. Further
natural dependence structure (correlation assumptions,
mixing conditions, long range dependence) may di�er for
spatial and time parameters. Further “coordinatewise mix-
ing” (introduced in Leadbetter and Rootzen ()) seems
promising in current investigation to facilitate point pro-
cess theory in higher dimensions, where the parameters
have di�erent roles. A reader interested in the theory and
applications in higher dimensions should consult (Daley
and Vere-Jones ) and the wealth of references therein.

Poisson Processes on Abstract Spaces
�ere is substantial development of point process (and
more general “random measure”) theory in more abstract
spaces, usually with an intricate topological structure
(see Kallenberg ()). However for discussion of exis-
tence and useful basicmodeling properties, the topological
assumptions are typically solely used for de�nition of a
natural simple measure-theoretic structure without any
necessary underlying topology - though useful for deeper
considerations such as weak convergence, beyond pure
modeling. Further a charming property of Poisson pro-
cesses in particular is that they may be de�ned simply on
spaces with very little structure as we now indicate.
Speci�cally let S be a space, and S a σ-ring (here a

σ-�eld for simplicity) of subsets of S. For a givenprobability
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space (Ω,F ,P), a random measure is de�ned to be any
family of non-negative- (possibly in�nite) valued random
variablesNω(B) for each B ∈ S which is a measure (count-
ably additive) on S for each ω ∈ Ω. A point process is a
random measure for which each Nω(B) is integer-valued
(or +∞). In this very general context one may construct a
Poisson Process (see 7Poisson Processes) by simple steps
(cf Kallenberg () and Kingman ()) which we indi-
cate. De�ne i.i.d. random elements τ, τ, . . . , τn on S for
each positive integer nwith common distribution ν = Pτ−j
yielding a point process on S consisting of a �nite number
(n) of points. By regarding n as random having a Pois-
son distribution with mean a >  (or mixing the (joint)
distributions of this point process with Poisson weights)
one obtains a �nite valued Poisson process {N(B)} with
the �nite intensity measure EN(B) = aν(B). Finally if λ

is a σ-�nite measure on S we may write S =
∞
⋃

Si where

λ(Si) < ∞. Let {Ni(B), i = , , . . .} be point processes
with the �nite intensity measures ENi(B) = λ(B ∩ Si).
�e superposition of these point processes gives a Poisson
Process with intensity λ.
Relatives of the Poisson Process such as those above

(Mixed, Compound, Doubly Stochastic. . .) may be con-
structed in a similar way to the one-dimensional frame-
work.�ese sometimes require small or modest additional
assumptions about the space S such as measurability of
singleton sets, and the separation of two of its points by
measurable sets. Onemay also obtainmany general results
analogous results to those of one dimension by assuming
the existence of a countable semiring which covers S, and
plays the role of bounded sets on which the point pro-
cess is �nite-valued, in this general non-topological con-
text. Finally, as noted, the reference Kingman () gives
an account of Poisson processes primarily in this general
framework, alongwith the basic early paper (Kendall ).
In a topological setting the monograph (Kallenberg )
gives a comprehensive development of random measures,
motivating our own non-topological approach.
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Introduction
�e Poisson regression model is a standard model for
count data where the response variable is given in the form
of event counts such as the number of insurance claims
within a given period of timeor the number of cases with a
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speci�c disease in epidemiology. Let (Yi, xi)denoten inde-
pendent observations, where xi is a vector of explanatory
variables and Yi is the response variable. It is assumed that
the response given xi follows a Poisson distribution which
has probability function

P(Yi = r) =

⎧⎪⎪
⎨
⎪⎪⎩

λri
r! e

−λi for r ∈ {, , , . . . }
 otherwise.

Mean and variance of the Poisson distribution are given by
E(Yi) = var(Yi) = λi. Equality of the mean and variances
is o�en referred to as the equidispersion property of the
Poisson distribution.�us, in contrast to the normal dis-
tribution, for which mean and variance are unlinked, the
Poisson distribution implicitly models stronger variability
for largermeans, a property which is o�en found in real life
data.�e support of the Poisson distribution is , , , . . .,
whichmakes it an appropriate distributionmodel for count
data.
A Poisson regression model assumes that the condi-

tional mean µi = E(Yi∣xi) is determined by

µi = h (xTi β) or equivalently g(µi) = xTi β,

where g is a known link function and h = g− denotes the
response function. Since the Poisson distribution is from
the simple exponential family the model is a generalized
linear model (GLM, see7Generalized LinearModels).�e
most widely used model uses the canonical link function
by specifying

µi = exp (xTi β) or log(µi) = xTi β.

Since the logarithm of the conditional mean is linear in
the parameters the model is called a log-linear model.
�e log-linear version of the model is particularly attrac-
tive because interpretation of parameters is very easy.�e
model implies that the conditional mean given xT =

(x, . . . , xp) has a multiplicative form given by

µ(x) = exp(xTβ) = exβ . . . expβp .

�us eβj represents the multiplicative e�ect on µ(x) if
variable xj changes by one unit to xj + .

Inference
Since the model is a generalized linear model inference
may be based on the methods that are available for that
class of models (see for example McCullagh and Nelder
). One obtains for the derivative of the log-likelihood,
which is the so-called score function

s(β) =
n

∑
i=

xi
h′ (xTi β)
h(xiβ)

(yi − h (xTi β)) ,

and the Fisher matrix F(β) = E(−∂h/∂β∂βT) =

∑
n
i= xix

T
i
h′(xT

i
β)

h(xT
i

β) . Under regularity conditions, β̂ de�ned

by s(β̂) =  is consistent and asymptotically normal
distributed,

β̂∼N(β,F(β)−),

where F(β) may be replaced by F(β̂) to obtain standard
errors.
Goodness-of �t and tests on the signi�cance of param-

eters based on deviance are providedwithin the framework
of GLMs.

Extensions
In many applications count data are overdispersed, with
conditional variance exceeding conditional mean. Several
extensions of the basic model that account for overdisper-
sion are available, in particular quasi-likelihood methods
and more general distribution models like the Gamma–
Poisson or negative binomial model. Quasi-likelihood uses
the same estimation equations as maximum likelihood
estimates, which are computed by solving

n

∑
i=

xi
∂µi

∂η

yi − µi

v(µi)
= ,

where µi = h(ηi) and v(µi) is the variance function. But
instead of assuming the variance function of the Poisson
model v(µi) = µi one uses a more general form. For exam-
ple, Poissonwith overdispersion uses v(µi) = ϕµi for some
unknown constant ϕ.�e case ϕ >  represents overdisper-
sion of the Poisson model, the case ϕ < , which is rarely
found in applications, is calledunderdispersion. Alternative
variance functions usually continue to model the variance
as a function of the mean.�e variance function v(µi) =

µi + γµi with additional parameter γ corresponds to the
variance of the negative binomial distribution.
It may be shown that the asymptotic properties of

quasi-likelihood estimates are similar to that for GLMs.
In particular one obtains asymptotically a normal distri-
bution with the covariance given in the form of a pseudo-
Fisher matrix, see McCullagh (), and McCullagh and
Nelder ().
A source book for the modeling of count data which

includesmany applications is Cameron and Trivedi ().
An econometric view on count data is outlined in
Winkelmann () and Kleiber and Zeileis ().

About the Author
Prof. Dr. Gerhard Tutz works at the Department of Statis-
tics, Ludwig-MaximiliansUniversityMunich. He served as
Head of the department for several years. He coauthored
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the book Multivariate Statistical Modeling Based on Gen-
eralized Linear Models (with Ludwig Fahrmeir, Springer,
).
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Population Projections

JanezMalačič
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Population projections are a basic tool that demographers
use to forecast a future population.�ey can be produced
in the form of a prognosis or as prospects.�e �rst is the
most likely future development according to the expec-
tations of the projections’ author(s) and is produced in a
single variant. �e second type is based more on an “if-
then” approach and is calculated in more variants. Usually,
there are three or four variants, namely, low,medium, high,
and constant variants. In practice, the medium variant is
the most widely used and is taken as the most likely or
accurate variant, that is, as a prognosis.
Population projections can be produced bymathemat-

ical or analytical methods.�e mathematical methods use
extrapolation(s) of various mathematical functions. For
example, a census population can be extrapolated for a cer-
tain period into the future based on a linear, geometric,
exponential, or someother functional form.�e functional
form is chosen on the basis of () past population develop-
ment(s), () the developments of a neighboring and other

similar populations, as well as () on the basis of gen-
eral and particular demographic knowledge. In the great
majority of cases, the mathematical methods are used for
short- and midterm periods in the future. For population
projections of small settlements and regions, only mathe-
maticalmethods can be used in any reasonableway. Excep-
tionally, for very long-term periods (several centuries)
a logistic curve can be used for a projection of the total
population.
Analytical methods for population projections are

much more complex.�e population development in the
projection period is decomposed at the level of basic com-
ponents. �ese components are mortality, fertility, and
migration. For each component, a special hypothesis of
future development is produced. Very rich and complex
statistical data are needed for analytical population projec-
tions. �ey are considered suitable for a period of –
years into the future.�ey cannot be used to project pop-
ulations in small areas because such life tables (see 7Life
Table) and some other data will not be available. Analyti-
cal population projections o�er very detailed information
on particular population structures at present and in the
future as well as data on the development of basic popula-
tion components (e.g., mortality, fertility, and migration).
�ey are also the basis for several other derived projections
like those of households, of the active, rural, urban, and
pensioned population.
Suppose that we have the census population divided by

gender and age (in �ve-year age groups, say) as our starting
point: x+V tm,x and x+V tf ,x, where V stands for popula-
tion size, x for age, t for time, and m and f for male and
female. To make a projection, we need three hypotheses.
�e mortality hypothesis is constructed on the basis of life
table indicators.We take survival ratios x+Pm,x and x+Pf ,x
for all �ve-year age groups ( − ,  − , . . . ,  − , +).
Our hypothesis can be thatmortality is constant, declining,
or increasing, or we can have a combination of all three for
each gender and each age group.�en we apply a popu-
lation projection model aging procedure in the following
form (spelled out for males):

V
t
m, ∗ Pm, = V

t+
m, → V

t+
m, ∗ Pm, = V

t+
m, , etc.

Evidently, in this case constant mortality hypothesis was
used.�e aging procedure would be applied for both gen-
ders and for all �ve-year age groups.
In the next step, we would construct a fertility hypothe-

sis.�is one can also be that fertility is constant, declining,
increasing, or a combination of all three. It provides the
newborn population for each year in the projection period.
A set of di�erent fertility indicators are available.�e most
convenient indicators are age-speci�c fertility rates, x+fx,
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where x is equal to , , , , , , and . In princi-
ple, we calculate the future number of births (N) for seven
�ve-year age-groups with the formula:

N
t−(t+)
x =  ((V tf ,x + V

t+
f ,x ) / ∗ f

t
x) .

�e number of births, N t−(t+), should be subgrouped
by gender. We can apply the demographic “constant”
alternative and suppose that  girls are born per 
births.�en we calculate

V
t+
m, = Pm,r ∗N

t−(t+)
m and V t+f , = Pf ,r ∗N

t−(t+)
f

Pm, and Pf ,r are survival ratios for newborn boys and
girls. In the case of a closed population or a populationwith
zero migration, our projection is �nished.
However, real populations have in- and out-migration.

To cover this case, we should construct amigration hypoth-
esis.�e procedure is similar to the mortality and fertility
hypotheses. Suppose we use net migration rates for �ve-
year age groups, separately by gender. In principle, we
calculate age-speci�c netmigration factors (formales), nm
is net migration:

Fm,x =  + (nmm,x/, ).

�e population aging procedure changes slightly:

V
t+
m,x+ = V

t
m,x∗Pm,x∗Fm,x.

�e procedure for the female population is parallel to the
procedure for themale population.�emost serious prob-
lem in practice is that age-speci�c migration data may be
unavailable or of poor quality.
Such simple analytical population projection proce-

dures have been improved considerably in the litera-
ture during recent decades. Probably the most important
improvement is the construction of probabilistic popula-
tion projections, for which considerable progress has been
made in recent decades (Lutz et al. ). Many analytical
population projections for countries and regions are now
supplemented by several national probabilistic population
forecasts.
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ber of the IUSSP (from ). He has authored two books
and more than  papers. His papers have been published
in eight languages.

Cross References
7Actuarial Methods
7African Population Censuses
7Census
7Demographic Analysis: A Stochastic Approach
7Demography
7Life Table
7Survival Data

References and Further Reading
Eurostat, European Commission () Work session on demo-

graphic projections. Bucharest, – October . Methodolo-
gies and working papers.  p

Lutz W, Goldstein JR (guest eds) () How to deal with uncer-
tainty in population forecasting? Int Stat Rev (–):–,
–

Lutz W, Vaupel JW, Ahlburg DA (eds) () Frontiers of popula-
tion Forecasting. A Supplement to vol , , population and
Development Review. The Population Council, New York

Portfolio Theory

HarryM. Markowitz
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Portfolio �eory considers the trade-o� between some
measure of risk and some measure of return on the
portfolio-as-a-whole.�e measures used most frequently
in practice are expected (or mean) return and variance
or, equivalently, standard deviation.�is article discusses
the justi�cation for the use of mean and variance, sources
of data needed in a mean-variance analysis, how mean-
variance tradeo� curves are computed, and semi-variance
as an alternative to variance.

Mean-Variance Analysis and its
Justification
While the idea of trade-o� curves goes back at least to
Pareto, the notion of a trade-o� curve between risk and
return (later dubbed the e�cient frontier) was introduced
inMarkowitz (). Markowitz proposed expected return
and variance as both a hypothesis about how investors act
and as a rule for guiding action in fact. ByMarkowitz ()
he had given up the notion of mean and variance as a
hypothesis but continued to propose them as criteria for
action.
Tobin () said that the use of mean and variance

as criteria assumed either a quadratic utility function or a
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Gaussian probability distribution.�is view is sometimes
ascribed to Markowitz, but he never justi�ed the use of
mean and variance in this way. His views evolved consid-
erably from Markowitz () to Markowitz (). Con-
cerning thesemattersMarkowitz () should be ignored.
Markowitz () accepts the views of Von Neumann
and Morgenstern () when probability distributions
are known, and L.J. Savage () when probabilities are
not known.�e former asserts that one should maximize
expected utility; the latter asserts that when probabili-
ties are not known one should maximize expected utility
using probability beliefs when objective probabilities are
not known.
Markowitz () conjectures that a suitably chosen

point from the e�cient frontier will approximately max-
imize expected utility for the kinds of utility functions that
are commonly proposed for cautious investors, and for the
kinds of probability distributions that are found in practice.
Levy and Markowitz () expand on this notion con-
siderably. Speci�cally, Levy and Markowitz show that for
such probability distributions and utility functions there is
typically a correlation between the actual expected utility
and the mean-variance approximation between . and
of .. �ey also show that the Pratt () and Arrow
() objection to quadratic utility does not apply to the
kind of approximations used by Levy and Markowitz, or
in Markowitz ().

Models of Covariance
If covariances are computed from historical returns with
more securities than there are observations, e.g., ,
securities and  months of observations, then the covari-
ance matrix will be singular. A preferable alternative is to
use a model of covariance where the return on the ith
security is assumed to obey the following relationship

ri = αi +∑ βik fk + ui

where the ui are independent of each other and the fk.
�e fk may be either factors or scenarios or some of each.
�ese ideas are carried out in, for example, Sharpe (),
Rosenberg () andMarkowitz and Perold (a, b).

Estimation of Parameters
Covariancematrices are sometimes estimated from histor-
ical returns and sometimes from factor or scenario models
such as the one-factor model of Sharpe, the many-factor
model of Rosenberg, or the scenario models of Markowitz
and Perold cited above.
Expected returns are estimated in a great variety of

ways. I do not believe that anyone suggests that, in practice,
historical average returns should be used as the expected

returns of individual stocks.�e Ibbotson and Sinque�eld
() series are frequently used to estimate expected
returns for asset classes. Black and Litterman (, )
propose a very interesting Bayesian approach to the esti-
mation of expected returns. Richard Michaud () pro-
poses to use estimates for asset classes based on what
he refers to as a “resampled frontier”. Additional meth-
ods for estimating expected return are based on statis-
tical methods for “disentangling” various anomalies, see
Jacobs and Levy (), or estimates based on factors
that Graham and Dodd () might use: see Lakon-
ishok et al. (), Ohlson (), and Bloch et al. ().
�e last mentioned paper is based on results obtained by
back-testing many alternate hypotheses concerning how
to achieve excess returns.Whenmany estimationmethods
are tested, the expected future return for the best of the lot
should not be estimated as if this were the only procedure
tested. Estimates should be corrected for “datamining.” See
Markowitz and Xu ().

Computation of M-V Efficient Sets
�e set of mean-variance e�cient portfolios is piecewise
linear.�e critical line algorithm (CLA) traces out this set,
one linear piece at a time, without having to search for
optima. CLA is described in Appendix A of Markowitz
() and, less compactly, in Markowitz and Todd ().

Downside Risk
“Semi-variance” or downside risk is like variance, but only
considers deviations below the mean or below some tar-
get return. It is proposed by Markowitz () Chap.  and
championed by Sortino and Satchell (). It is used less
frequently in practice than variance.

About the Author
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Posterior Consistency in Bayesian
Nonparametrics
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Bayesian Nonparametrics (see 7Bayesian Nonparametric
Statistics) took o� with two papers of Ferguson (Ferguson
, ) and followed by Antoniak (Antoniak ).
However consistency or asymptotics were not major issue
in those papers, which were more concerned with tak-
ing the �rst steps towards a usable, easy to interpret prior
with easy to choose hyperparameters and a rich support.
Unfortunately, the fact that the Dirichlet sits on discrete
distributions diminished the early enthusiasm.

�e idea of consistency came from Laplace and infor-
mally may be de�ned as : Let P be a set of probability
measures on a sample space X , Π be a prior on P . �e
posterior is said to be consistent at a true value P if the
following holds: For sample sequences with P probability
, the posterior probability of any neighborhood U of P
converges to .

�e choice of neighborhoods U determines the
strength of consistency.One choice, when the sample space
is separable metric, is weak neighborhoodsU of P. When
elements of P have densities, L neighborhoods of P is
o�en the relevant choice. If the family P is parametrized
by θ, then these notions easily translate to θ, via continuity
requirements of the map θ ↦ Pθ .

�e early papers on consistency were by Freedman
(Freedman , ) on multinomials with (countably)
in�nite classes.�ey were very interesting but provided a
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somewhat negative picture, namely, that in a topological
sense, for most priors (i.e., outside a class of �rst cat-
egory) consistency fails to hold. �is lead Freedman to
consider tail-free priors including the Dirichlet prior for
the countably many probabilities of the countably in�nite
multinomial. Around the same time, in her posthumous
paper (Schwartz ) of , arising from her thesis at
Berkeley, written under Le Cam, Schwartz showed among
other things that, if the prior assigned positive probability
to all Kullback-Leibler neighborhoods of the true density,
then consistency holds in the sense of weak convergence.
�is is an important result which showed that this is the
right notion of support in these problems, not the more
usual one adopted by Freedman.

�ese early papers were followed by Ferguson’s Dirich-
let process on the set of all probability measures along
with Antoniak’s study of mixtures. Even though the set
of discrete measures had full measure under the Dirich-
let process, it still enjoyed the property of consistency at
all distributions. �e paper by Diaconis and Freedman
(Diaconis and Freedman ), along with the discussions
revived interest in consistency issues. Diaconis and Freed-
man showed that with Dirichlet process prior consistency
can go awry in the presence of a location parameter. Bar-
ron, in his discussion of the paper provided insight as
to why it would be unreasonable to expect consistency
in this example. Ghosh and Ramamoorthi (Ghosh and
Ramamoorthi ) discuss several di�erent explanation
for lack of consistency if one uses the Dirichlet Process in
a semiparametric problem with a location parameter.
Other major contributions have been made by Barron

(Barron ), Barron, Schervish and Wasserman (Barron
et al. ), Walker (Walker ) and Coram and Lalley
(Coram and Lalley ). A thorough review up to
 is available in Choi and Ramamoorthi (Choi and
Ramamoorthi ). Contributions to rates of conver-
gence have been made by Ghosal, Ghosh and van der
Vaart, (Ghosal et al. ), Ghosal and van der Vaart
(Ghosal and van der Vaart ), Shen and Waseerman
(), Kleijn and van der Vaart (Kleijn and van der
Vaart ) and (van der Vaart and van Zanten ),
(van der Vaart and van Zanten ). see also the book
by Ghosh and Ramamoorthi (Ghosh and Ramamoorthi
) for many basic early results on consistency and
other aspects of, like choice of priors and consistency for
density estimation, semiparametric problems and survival
analysis.
Ghosh and Ramamoorthi (Ghosh and Ramamoorthi

) deal only with nonparametric estimation problems.
Work on nonparametric testing and consistency problems
there have begun only recently. A survey is available in
Tokdar, Chakravarti and Ghosh (Tokdar et al. ).
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and comprehensive treatment of Bayesian nonparamet-
rics. Ghosh and Ramamoorthi present the theoretical
underpinnings of nonparametric priors in a rigorous yet
extremely lucid style…It is indispensable to any serious
Bayesian. It is bound to become a classic in Bayesian non-
parametrics.” (Jayaram Sethuraman, Review Of Bayesian
Nonparametrics, Sankhya, , , –).
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One of the most common applications of statistics in the
social and behavioral science is in testing null hypotheses.
For example, a researcher wanting to compare the out-
comes of two treatments will usually do so by testing the
hypothesis that in the population there is no di�erence in
the outcomes of the two treatments. �e power of a sta-
tistical test is de�ned as the likelihood that a researcher
will be able to reject a speci�c null hypothesis when it is
in fact false.
Cohen (), Lipsey (), and Kraemer and

�iemann () provided excellent overviews of the
methods, assumptions, and applications of power analysis.
Murphy and Myors () extended traditional methods
of power analysis to tests of hypotheses about the size of
treatment e�ects, not merely tests of whether or not such
treatment e�ects exist.

�e power of a null hypothesis test is a function of
sample size (n), e�ect size (ES), and the standard used to
de�ne statistical signi�cance (α), and the equations that

de�ne this relation can be easily rearranged to solve for
any of four quantities (i.e., power, n, ES, and α), given the
other three. �e two most common applications of sta-
tistical power analysis are in: () determining the power
of a study, given n, ES, and α, and () determining how
many observations will be needed (i.e., n required), given
a desired level of power, an ES estimate, and the α value.
Both of these methods are widely used in designing stud-
ies; one widely-accepted convention is that studies should
be designed so that they achieve power levels of . or
greater (i.e., so that they have at least an % chance of
rejecting a false null hypothesis; Cohen ; Murphy and
Myors ).

�ere are two other applications of power analysis that
are less common, but no less informative. First, power anal-
ysis may be used to evaluate the sensitivity of studies.�at
is, power analysis can indicate what sorts of e�ect sizes
might be reliably detected in a study. If one expects the
e�ect of a treatment to be small, it is important to know
whether the study will detect that e�ect, or whether the
study as planned only has su�cient sensitivity to detect
larger e�ects. Second, one may use power analysis to make
rational decisions about the criteria used to de�ne “statis-
tical signi�cance.”
Power analyses are included as part of several statis-

tical analysis packages (e.g., SPSS provides Sample Power,
a �exible and powerful program) and it is possible to use
numerous websites to perform simple power analyses. Two
notable so�ware packages designed for power analysis are:

● G∗Power (Faul et al. ; http://www.psycho.uni-
duesseldorf.de/abteilungen/aap/gpower/ is distribu-
ted as a freeware program that is available for both
Macintosh and Windows environments. It is simple,
fast, and �exible.

● Power and Precision, distributed by Biostat, was devel-
oped by leading researchers in the �eld (e.g., J. Cohen).
�is program is very �exible, covers a large array
of statistical tests, and provides power analyses and
con�dence intervals for most tests.
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Introduction
7Data mining is the process of extracting hidden patterns
in a large dataset. Azzopardi () breaks the datamining
process into �ve stages:

(a) Selecting the domain – datamining should be assessed
to determine whether there is a viable solution to the
problem at hand and a set of objectives should be
de�ned to characterize these problems.

(b) Selecting the target data – this entails the selection
of data that is to be used in the speci�ed domain;
for example, selection of subsets of features or data
samples from larger databases.

(c) Preprocessing the data – this phase is primarily aimed
at preparing the data in a suitable and useable format,
so that a knowledge extraction process can be applied.

(d) Extracting the knowledge/information – during this
stage, the types of datamining operations (association
rules, regression, supervised classi�cation, clustering,
etc.), the data mining techniques, and data mining
algorithms are chosen and the data is then mined.

(e) Interpretation and evaluation – this stage of the data
mining process is the interpretation and evaluation
of the discoveries made. It includes �ltering informa-
tion that is to be presented, visualizing graphically,
or locating the useful patterns and translating the
patterns discovered into an understandable form.

In the process of data mining, many patterns are found
in the data. Patterns that are interesting for the miner are
those that are easily understood, valid, potentially useful,
and novel (Fayyad et al. ).�ese patterns should val-
idate the hypothesis that the user seeks to con�rm. �e
quality of patterns obtained depends on the quality of
the data analyzed. It is common practice to prepare data
before applying traditional data mining techniques such
as regression, association rules, clustering, and supervised
classi�cation.
Section “7Reasons for Applying Data Preprocessing”

of this article provides a more precise justi�cation for
the use of data preprocessing techniques.�is is followed
by a description in section “7Techniques for Data Pre-
processing” of some of the data preprocessing techniques
currently in use.

Reasons for Applying Data Preprocessing
Pyle () suggests that about % of the total time
required to complete a datamining project should be spent
on data preparation since it is one of the most important
contributors to the success of the project. Transforming
the data at hand into a format appropriate for knowl-
edge extraction has a signi�cant in�uence on the �nal
models generated, as well as on the amount and quality
of the knowledge discovered during the process. At the
same time, the e�ect caused by changes made to a dataset
during data preprocessing can either facilitate or compli-
cate even further the knowledge discovery process; thus
changes made must be selected with care.
Today’s real-world datasets are highly susceptible to

noise, missing and inconsistent data due to human errors,
mechanical failures, and to their typically large size. Data
a�ected in this manner is known as “dirty.” During the
past decades, a number of techniques have been developed
to preprocess data gathered from real-world applications
before the data is further processed for other purposes.
Cases where data mining techniques are applied

directly to raw data without any kind of data preprocess-
ing are still frequent; yet, data preprocessing has been
recommended as an obligatory step. Data preprocessing
techniques should never be applied blindly to a dataset,
however. Prior to any data preprocessing e�ort, the dataset
should be explored and characterized. Two methods for
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exploring the data prior to preprocessing are data charac-
terization and data visualization.

Data Characterization
Data characterization describes data in ways that are use-
ful to the miner and begins the process of understanding
what is in the data. Engels and�eusinger () describe
the following characteristics as standard for a given dataset:
the number of classes, the number of observations, the
percentage of missing values in each attribute, the num-
ber of attributes, the number of features with numeric data
type, and the number of features with symbolic data type.
�ese characteristics can provide a �rst indication of the
complexity of the problem being studied.
In addition to the above-mentioned characteristics,

parameters of location and dispersion can be calcu-
lated as single-dimensional measurements that describe
the dataset. Location parameters are measurements such
as minimum, maximum, arithmetic mean, median, and
empirical quartiles. On the other hand, dispersion param-
eters such as range, standard deviation, and quartile devia-
tion provide measurements that indicate the dispersion of
values of the feature.
Location and dispersion parameters can be divided

in two classes: those that can deal with extreme values
and those that are sensitive to them. A parameter that
can deal well with extreme values is called robust. Some
statistical so�ware packages provide the computation of
robust parameters in addition to the traditional non-robust
parameters. Comparing robust and non-robust parame-
ter values can provide insight to the existence of 7outliers
during the data characterization phase.

Data Visualization
Visualization techniques can also be of assistance dur-
ing this exploration and characterization phase. Visual-
izing the data before preprocessing it can improve the
understanding of the data, thereby increasing the likeli-
hood that new and useful information will be gained from
the data. Visualization techniques can be used to identify
the existence of missing values, and outliers, as well as to
identify relationships among attributes.�ese techniques
can, in e�ect, assist in ranking the “impurity” of the data
and in selecting the most appropriate data preprocessing
technique to apply.

Techniques for Data Preprocessing
Applying the correct data preprocessing techniques can
improve the quality of the data, thereby helping to improve
the accuracy and e�ciency of the subsequent mining pro-
cess. Lu et al. (), Pyle (), and Azzopardi ()

present descriptions of common techniques for preparing
data for analysis.�e techniques described by both authors
can be summarized as follows:

(a) Data cleaning – �lling in missing values, smoothing
noisy data, removing outliers, and resolving inconsis-
tencies.

(b) Data reduction – reducing the volume of data (but
preserving the patterns) by removing repeated obser-
vations and applying instance selection as well as fea-
ture selection techniques.Discretization of continuous
attributes is also a way of data reduction.

(c) Data transformation – converting text and graphical
data to a format that can be processed, normalizing
or scaling the data, aggregation, and generalization.

(d) Data integration – correcting di�erences in coding
schemes due to the combining of several sources
of data.

Data Cleaning
Data cleaning provides methods to deal with dirty data.
Since dirty datasets can cause problems for data explo-
ration and analysis, data cleaning techniques have been
developed to clean data by �lling in missing values (value
imputation), smoothing noisy data, identifying and/or
removing outliers, and resolving inconsistencies. Noise is
a random error or variability in a measured feature, and
several methods can be applied to remove it. Data can also
be smoothed by using regression to �nd a mathematical
equation to �t the data. Smoothing methods that involve
discretization are alsomethods of data reduction since they
reduce the number of distinct values per attribute. Cluster-
ing methods can also be used to remove noise by detecting
outliers.

Data Integration
Some studies require the integration of multiple databases,
or �les. �is process is known as data integration. Since
attributes representing a given concept may have di�er-
ent names in di�erent databases, care must be taken to
avoid causing inconsistencies and redundancies in the
data. Inconsistencies are observations that have the same
values for each of the attributes but that are assigned to
di�erent classes. Redundant observations are observations
that contain the same information.
Attributes that have been derived or inferred from oth-

ersmay create redundancy problems. Again, having a large
amount of redundant and inconsistent datamay slowdown
the knowledge discovery process for a given dataset.
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Data Transformation
Many data mining algorithms provide better results if the
data has been normalized or scaled to a speci�c range
before these algorithms are applied. �e use of normal-
ization techniques is crucial when distance-based algo-
rithms are applied, because the distance measurements
taken on by attributes that assume many values will gen-
erally outweigh distancemeasurements taken by attributes
that assume fewer values. Other methods of data transfor-
mation include data aggregation and generalization tech-
niques.�ese methods create new attributes from existing
information by applying summary operations to data or
by replacing raw data by higher-level concepts. For exam-
ple, monthly sales data may be aggregated to compute
annual sales.

Data Reduction
�e increased size of current real-world datasets has led
to the development of techniques that can reduce the size
of the dataset without jeopardizing the datamining results.
�e process known as data reduction obtains a reduced
representation of the dataset that is much smaller in vol-
ume, yet maintains the integrity of the original data.�is
means that data mining on the reduced dataset should be
more e�cient yet produce similar analytical results. Han
and Kamber () mention the following strategies for
data reduction:

(a) Dimension reduction, where algorithms are applied
to remove irrelevant, weakly relevant, or redundant
attributes.

(b) Data compression, where encoding mechanisms are
used to obtain a reduced or compressed representa-
tion of the original data. Two common types of data
compression are wavelet transforms and 7principal
component analysis.

(c) Numerosity reduction, where the data are replaced
or estimated by alternative, smaller data representa-
tions such as parametricmodels (which store only the
model parameters instead of the actual data), or non-
parametric methods such as clustering and the use of
histograms.

(d) Discretization and concept hierarchy generation, where
raw data values for attributes are replaced by ranges or
higher conceptual levels. For example, concept hierar-
chies can be used to replace a low-level concept such
as age, with a higher-level concept such as young,
middle-aged, or senior. Some detail may be lost by
such data generalizations.

(e) Instance selection, where a subset of best instances of
thewhole dataset is selected. Some of the instances are

more relevant than others to perform a data mining,
and working only with an optimal subset of instances,
it will be more cost-and time-e�cient. Variants of the
classical sampling techniques can be used.

Final Remarks
Acuna () has developed Drep, an R package for data
preprocessing and visualization. Drep performs most of
the data preprocessing techniques mentioned in this arti-
cle. Currently, research is being done in order to apply pre-
processing methods to data streams, see Aggarwal ()
for more details.
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Introduction
Unlike scienti�c research, where we have the luxury of
carrying out new studies to replicate and determine the
domain of validity of prior investigations, the law also con-
siders other social goals. For example, in many nations
one spouse cannot be forced to testify against the other.
A main purpose of the law is to resolve a dispute, so a
decision needs to be made within a reasonable amount of
time a�er the charge is �led. Science is primarily concerned
with determining the true mechanism underlying a phe-
nomenon. Typically no limits are placed on the nature of
the experiment or approach an investigator may take to a
problem. Inmost uses of statistics in legal proceedings, the
relevant events happened several years ago; rarely will you
be able to collect additional data. (One exception occurs in
cases concerned with violations of laws protecting intellec-
tual property, such as the Lanham Act in the USA, which
prohibits a �rm frommaking a product that infringes on an
established one. Surveys of potential consumers are con-
ducted to estimate the percentage who might be confused
as to the source of the product in question.) O�en, the data
base will be one developed for administrative purposes,
e.g., payroll or attendance records, which you will need to
rely on.
Civil cases di�er from criminal cases in that the penalty

for violating a civil statue is not time in prison but rather
compensation for the harm done. Consequently, the bur-
den of proof a plainti� has in discrimination or tort case is
to show that the defendant caused the alleged harm by “the
preponderance of the evidence” rather than the stricter
standard of “beyond a reasonable doubt” used in crimi-
nal cases.�us, many statistical studies are more useful in
civil cases.
A major di�erence between presenting testimony in

court or a regulatory hearing and giving a talk at a major
scienti�c conference is that expert witnesses, like all oth-
ers, are only allowed to answer questions put to them by
the lawyers.�us, particular �ndings or analyses that you
believe are very important may not be submitted as evi-
dence if the lawyer who hired you does not ask you about
them when you are testifying. Unless the judge, or in some
jurisdictions a juror, asks you a question related to that
topic you are not allowed to discuss it.

Courts have also adopted criteria to assess the reliabil-
ity of scienti�c evidence as well as some traditional ways of
presenting and analyzing some types of data. (�e leading
case is Daubert v. Merrell-Dow Pharmaceuticals Inc., 
U.S.  ().�e impact of this case and two subsequent
ones on scienti�c evidence is described by Berger ()
and Rosenblum (). Some of the criteria courts con-
sider are: can the methodology was subject to peer review,
can it be replicated and tested and whether the poten-
tial error rates are known and considered in the expert’s
report and testimony.)�is may limit the range of analy-
ses you can use in the case at hand; although subsequently
it can stimulate interesting statistical research. A poten-
tially more serious threat to the credibility of your research
and subsequent testimony case is due to the fact that the
lawyers provide you with the data and background infor-
mation. �us, you may not even be informed that other
information or data sets exist.
A related complication can arise when the lawyer hires

both a consulting expert who has complete access to all the
data as he or she is protected by the “work product” rule
and then hires a “testifying expert”.�is second expertmay
only be asked to analyze the data favorable to the defen-
dant and not told that any other data exists. Sometimes,
the analytic approach, e.g., regression analysis, may be sug-
gested to this expert because the lawyer already knows the
outcome. If one believes an alternative statistical technique
would be preferable or at least deserves exploration, the
expertmay be constrained as to the choice ofmethodology.

�is entry describes examples of actual uses of statisti-
cal evidence, alongwith suggestions to aid courts in under-
standing the implications of the data. Section “7Presenting
the Data or Summary Tables�at will be Analyzed” dis-
cusses the presentation of data and the results of statistical
tests. One dataset illustrates the di�culty of getting lawyers
and judges to appreciate the statistical concept of “power”,
the ability of a test to detect a real or important di�erence.
As a consequence an analysis that used a test with no power
was accepted by a court. In section “7AMore Informative
Summary of Promotion Data: Hogan v. Pierce ( F.E.P.
 (D.D.C. ))” will show how in a subsequent case I
was able to present more detailed data, which helpedmake
the data clearer to the court.�e last section o�ers some
suggestions for improving the quality of statistical analyses
and their presentation.

Presenting the Data or Summary Tables
That will be Analyzed
In the classic Castenada v. Partida ( U.S. ,  S. Ct.
 ()) case concerning whether Mexican-Americans
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were discriminated against in the jury selection process,
the Court summarized the data by years, i.e., the data for
all juries during the year were aggregated and the minority
fraction compared to their fraction of the total popula-
tion as well as the subgroup eligible for jury service. (�e
data is reported in footnote  of the opinion as well as
in the texts: Finkelstein and Levin () and Gastwirth
().) �e data showed a highly signi�cant di�erence
between the Mexican-American fraction of jurors (%)
and both their fraction of the total population (.%) and
of adults with some schooling (%). From a statistical
view the case is important as it established that formal
statistical hypothesis testing would be used rather than
intuitive judgments about whether the di�erence between
the percentage of jurors whowere from theminority group
di�ered su�ciently from the percentage of minorities eli-
gible for jury service. When the lower courts followed the
methodology laid out in Castenada, they also adopted the
tradition of presenting yearly summaries of the data in
discrimination cases.
Unlike jury discrimination cases, which are typically

brought by a defendant in a criminal case rather than
the minority juror who was dismissed, in equal employ-
ment cases the plainti� is the individual who su�ered the
alleged discriminatory act. In the United States the plain-
ti� has  days from the time of the alleged act, e.g., not
being hired or promoted or of being laid o�, to �le a for-
mal complaint with the Equal Employment Opportunity
Commission (EEOC). Quite o�en a�er receiving notice
of the complaint, the employer will modify their system
to mitigate the e�ect of the employment practice under
scrutiny on the minority group in question.�e impact of
this “change” in policy on statistical analysis has o�en been
overlooked by courts. In particular, if a change occurs dur-
ing the year the charge occurs and employer may change
their policy and include the post-charge minority hires or
promotions in their analysis.
Let me use data from a case, Capaci v. Katz & Bestho�

( F. Supp.  (E.D. La. ), a� ’d in part, rev’d in part,
 F.d  (th Cir. )), in which I was an expert
for the plainti�s to illustrate this. On January, ,  the
plainti� �led a charge of discrimination against women in
promotions in the pharmacy department. One way such
discriminatory practices may be carried out is to require
female employees to work longer at the �rm before promo-
tion than males.�erefore, a study comparing the length
of time males and female Pharmacists served before they
were promoted to Chief Pharmacist was carried out.�e
time frame considered started in July ,  the e�ective
date of the Civil Rights Act until the date of the charge.
�e times each Pharmacist who was promoted had served

Presentation of Statistical Testimony. Table  Months of
service for male and female pharmacists employed at K&B
during the period July ,  thru January ,  before
receiving a promotion to chief pharmacist

Females: ; .

Males: ; ; ; ; ; ; ; ; , ; ; ; ; ; ; ; ; ;
; ; ; ; ; .

until they received their promotion are reported in Table .
Only their initials of the employees are given.
Applying the Wilcoxon test (see 7Wilcoxon–Mann–

Whitney Test), incorporating ties yielded a statistically sig-
ni�cant di�erence (p-value = .). �e average number
of months the two females worked until they were pro-
moted was , while the average male worked for 
months before their promotion.�e corresponding medi-
ans were  and  months, respectively.�e defendant’s
expert presented the data, given in Table , broken out
into two time periods ending at the end of a year. �e
�rst was from  until the end of  and the second
was from  until . �e defendant’s data includes
three more females and eight more males in the defen-
dant’s data because their expert included essentially the
�rst year’s data subsequent to the charge. Furthermore, the
three females fell into the seniority categories of –,
– and – months, i.e., they had much less senior-
ity than the two females who were promoted prior to the
complaint

�e defendant’s expert did not utilize the Wilcoxon
test; rather he analyzed all the data sets with the median
test and found no signi�cant di�erence di�erences. In con-
trast with the Wilcoxon analysis of the data in Table , the
median test did not �nd the di�erence in time to pro-
motion data in the pre-charge period to be statistically
signi�cant.
Because only two females were promoted from July ,

 until the charge was �led in January , the median
test has zero power of detecting a di�erence between the
two samples. �us, I suggested that the plainti�s’ lawyer
ask the following series of questions to the defendant’s
expert on cross exam:

. What is the di�erence between the average time to pro-
motion of the male and female pharmacists in Table .
Expected Answer: about  years.�e actual di�er-

ence was  years as the mean female took  months
while the mean male took  months to be promoted.

. Suppose the di�erence in the two means or averages
was  years, would the median test have found a
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statistically signi�cant di�erence between the times
that females had to work before being promoted
than males?
Expected Answer: No.

. Suppose the di�erence in the two means or averages
was  years, would the median test have found a
statistically signi�cant di�erence between the times
that females had to work before being promoted
than males?
Expected Answer: No.

. Suppose the di�erence in the two means or aver-
ages was , years, would the median test have
found a statistically signi�cant di�erence between the
times that females had to work before being promoted
than males?
Expected Answer: No.

. Suppose the di�erence in the two means or averages
was one million years, would the median test have
found a statistically signi�cant di�erence between the
times that females had to work before being promoted
than males?
Expected Answer: No.
My thought was that the above sequence of ques-

tions would have shown the judge the practical impli-
cation of �nding a non-signi�cant result with a test that
did not have any power, in the statistical sense. Unfor-
tunately, a�er the lawyer asked the �rst question, she
jumped to the last one. By doing so, the issue was not
made clear to the judge. When I asked why, I was told
that she felt that the other expert realized the point.
Of course, the questions were designed to explain the
practical meaning of statistical “power” to the trial
judge, not the expert. Awhile later while describing the
trial to another, more experienced lawyer, he told me
that a�er receiving the No answers to the �ve questions
he would have turned to the expert and asked him:

. As your statistical test could not detect a di�erence of a
million years between the times to promotion of male
and female employees, just how long would my client
and other females have to work without receiving a
promotion before your test would �nd a statistically
signi�cant di�erence?

�is experience motivated me to look further into the
power properties of nonparametric tests, especially in the
unbalanced sample size setting (Gastwirth andWang ;
Freidlin and Gastwirth a).�e data from the Capaci
case is discussed by Finkelstein and Levin (, p. )
and Gastwirth (, p. ) and the need to be cautious
when a test with low power accepts the null hypothesis is
emphasized by Zeisel and Kaye (, p. ).

To further illustrate the change in practices the
employer made one could examine the data for –.
It turns out the mean (median) time to promotion for
males was . () and for females was . ().�us,
a�er the charge males had to work at least a year more
than females before they were promoted to Chief Phar-
macist.�is is an example of a phenomenon I refer to as
“A Funny�ing Happens on the Way to the Courtroom.”
From both a “common sense” standpoint as well as legal
one, the employment actions in the period leading up to
the complaint have the most relevance for determining
what happenedwhen the plainti� was being considered for
promotion. (Similar issues of timing occur in contract law,
where themeaning and conditions of a contract at the time
it was signed are used to determine whether it has been
properly carried out by both parties. In product liability
law, a manufacturer is not held liable for risks that were
not known when the product was sold to the plainti� but
were discovered subsequently.) Indeed, quite o�en a plain-
ti� applies for promotion on several occasions and only
a�er being denied it on all of them, �les a formal charge.
(For example, inWatson v. Fort Worth Bank & Trust, 
U.S.  () the plainti� had applied for promotion four
times.�e opinion indicates that the Justices felt that she
was unfairly denied promotion on her fourth attempt.)
Comment : Baldus and Cole (, p. ) refer to the

dispute concerning the Wilcoxon and Median tests in the
Capaci case in a section concerning the di�erence between
practical and statistical signi�cance. Let me quote them:

7 Exclusive concern for the 7statistical significance of a dis-
parity encourages highly technical skirmishes between
plaintiff’s and defendants’ experts who may find compet-
ing methods of computing statistical significance advan-
tageous in arguing their respective positions (citing the
Capaci case). The importance of such skirmishes maybe
minimized by limiting the role of a test of significance to
that of aiding in the interpretation of a measure of impact
whose practical significance may be evaluated on non-
technical grounds.

�us, even the authors of perhaps a commonly cited text
on statistical proof of discrimination at the time did not
appreciate the importance of the theory of hypothesis test-
ing and the role of statistical power in choosing between
tests. More importantly, a di�erence in the median time to
promotion of − =  or about  years (or the di�er-
ence in the average times of . years) would appear tome
to be of practical signi�cance.�us, well respected authors
aswell as the judiciary allowed the defendant’s expert to use
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the median test, which had no power to detect a di�erence
in time to promotion, to obfuscate a practicallymeaningful
di�erence.
Comment :�e expert for the defendant was a social

scientist rather than a statistician. Other statisticians who
have faced experts of this type have mentioned to me that
o�ennon-statisticians haven’t had su�cient training in our
subject to know how one should properly choose a pro-
cedure. �ey may select the �rst procedure that comes
to mind or choose a method that helps their client even
though it is quite inappropriate and their ignorance of
statistical theory makes it di�cult for the lawyer you are
working for to get them to admit that their method is not
as powerful (or accurate or reliable) as yours. An example
of this occurred in a case concerning sex discrimination in
pay when an “expert” compared the wages of small groups
of roughly similar males and females with the t-test. It is
well known that typically income and wage data are quite
skewed and that the distribution of the two-sample t-test
in small samples depends on the assumption of normal-
ity. I provided this information to the lawyer who then
asked the other “expert” whether he had ever done any
research using income orwage data (Ans. No) andwhether
he had ever carried out any research or read literature on
the t-test and its properties (Ans. No).�us, it was di�-
cult for the lawyer to get this “expert” to admit that using
the t-test in such a situation is questionable and the signi�-
cance levels might not be reliable. On amore positive note,
the Daubert ( U.S.  ()) opinion listed several
criteria for courts to evaluate expert scienti�c testimony,
one of which is that the method used has a known error
rate. Today one might be able to �t a skewed distribution
to the data and then show by simulation that a nominal
. level test has an actual level (α) of . or more. Sim-
ilarly, if the one must use the t-test in such a situation one
could conduct a simulation study to obtain “correct” crit-
ical values that will ensure that a nominal . level test
has true level between . and .. (Although I use the
. level for illustration, I agree with Judge Posner ()
that it should not be used as a talisman. Indeed, Judge P.
Higginbotham’s statement inVuyanich v. Republic National
Bank,  F. Supp.  (N.D. Texas ) that the p-value
is a sliding-scale makes more sense than a simple yes-no
dichotomy of signi�cance or not in the legal context as the
statistical evidence is only part of the story.�e two-sided
p-value . on the post-charge time until promotion data
from the Capaci case illustrates the wisdom of the state-
ments of these judges. Not only do the unbalanced sample
sizes diminish the power of two-sample tests, the change in
the promotion practices of the defendant subsequent to the
charge are quite clear from the change in di�erence in aver-

age waiting times until promotion of males and females as
well as the change from a signi�cant di�erence in favor of
males before the charge to a nearly signi�cant change in
favor of females a�er the charge.)
Another way of demonstrating that an expert does not

possess relevant knowledge is for the lawyer to show them
a book or article that states the point you wish tomake and
ask the expert to read it and then say they agree or dis-
agree with the point. (Dr. Charles Mann told the author
that he has been able to successfully use this technique.) If
that expert disagrees, a follow-up question can inquire why
or on what grounds does he or she disagree with it.

�e tradition of reporting data by year also makes
it more di�cult to demonstrate that a change occurred
a�er a charge was �led. In Valentino v. USPS ( F.d
 (DC Circ. )) the plainti� had applied for a pro-
motion in  and �led the charge in May, . �e
data is reported in Table  and has reanalyzed by Frei-
dlin and Gastwirth (b) and Kadane and Woodworth
(), suggested that females received fewer promotions
than expected in the two previous years but a�er  they
received close to their expected number. Let me recall
the data and analysis the yearly summaries enabled us to
present.

�e data for each year were analyzed by the Mantel-
Haenszel test applied to the  ×  tables for each grade
grouping in Tables  and . �is was done because the
Civil Service Commission reported its data in this fashion.
Notice that during two time periods, the number of grade
advancements awarded to females for each year is signi�-
cantly less than expected. A�er , when the charge was
�led the female employees start to receive their expected
number of promotions.
My best recollection is that the promotion the plain-

ti� applied for was the th competitive one �lled in .
Unfortunately, data on all of the applicants was not avail-
able even though EEOC guidelines do require employers
to preserve records for at least  months. Of the  or so
positions for which data on the actual applicants was avail-
able every one was given to amale candidate. Since females
did receive their expected number of promotions over the
entire year it would appear that the defendant changed its
practices a�er the charge and consequently prevailed in
the case. (�e data discussed in the cited references con-
sidered employees in job categories classi�ed by their level
in the system.�e district court accepted the defendant’s
criticism that since each job level contains positions in a
variety of occupations, the plainti�s should have strati�ed
the data by occupation; see  F. Supp ,  (D.C. DC,
). Later in the opinion, at  F. Supp. , the opinion
accepted a regression analysis submitted by the defendant
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Presentation of Statistical Testimony. Table  Number of employees and promotions they received: from the Valentino v. U.S.P.S

Case

Grade – Grade – Grade – Grade – Grade –

Time period M F M F M F M F M F

/–/          

         

/–/          

         

/–/          

         

/–/          

         

/–/          

         

Key to symbols: F=females; M=males; for any time period and grade group the number of promotions is below the number of employees. For
example, in grades – during /–/ period  out of  eligible males were promoted compared to  out of  eligible females

Presentation of Statistical Testimony. Table  The results
obtained from Mantel-Haenszel test for equality of promotion
rates applied to the stratified data for each period in Table 

Year Observed Expected p-value (two-sided)

–  . .

–  . .

–  . .

–  . .

–  . .

that used grade level as a predictor of salary noting that
‘level” is a good proxy for occupation.While upholding the
ultimate �nding that U.S.P.S did not discriminate against
women, the appellate opinion, fn.  at , did not accept
the district court’s criticism that a regression submitted
by plainti�s should have included the level of a position.
�e reason is that in a promotion case, it is advancement
in one’s job level that is the issue.�us, courts do accept
regressions that include the major other job-related char-
acteristics such as experience, education, special training
and objective measures of productivity.) �ere was one
unusual aspect of the case; the Postal Service had changed
the system of reviewing candidates for promotions as of

January , . As no other charges of discrimination in
promotionhad been�led in either  or , the analysis
of data for those years is considered background infor-
mation unless the plainti� can demonstrate that the same
process carried over into the time period when the pro-
motion in question was made. (In Evans v. United Airlines,
the Supreme Court stated that since charges of employ-
ment discrimination need to be �led within  days of
the charge, earlier data is useful background information
but is not su�cient by itself to establish a prima facie case
of discrimination. If there is a continuing violation, how-
ever, then the earlier data can be used in conjunction with
more recent data by the plainti�s.�e complex legal issues
involved in determining when past practices have contin-
ued into the time period relevant to a particular case are
beyond the scope of the present paper.)
When data is reported in yearly periods, invariably

some post-charge data will be included in the data for the
year in which the charge was �le and statisticians should
examine it to see if there is evidence of a change in employ-
ment practice subsequent to the charge. In theCapaci case,
the defendant included eleven months of post-charge data
in their �rst time period, –.�e inclusion of three
additional females promoted in that period lessens the
impact of the fact that only two female Pharmacists were
promoted during the previous seven and a half years. Sim-
ilarly, reporting the data by year in Valentino enabled the
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defendant to monitor the new promotion system begun at
the start of  subsequent to the complaint, so females
did receive their expected number of promotions for the
, the year of the charge.

A More Informative Summary of
Promotion Data: Hogan v. Pierce ( F.E.P.
 (D.D.C. ))
�e plainti� in the case alleged that he had been denied
a promotion to a GS- level position in the computer
division of a government agency and �led a formal com-
plaint in . As the �les on the actual applicants were
unavailable, we considered all individuals employed inGS-
 level jobswhose records indicated that theymet theCivil
Service criteria for a promotion to the next job-level to
be the pool of “quali�ed applicants.” (�ese quali�cations
were that they were employed in an appropriate computer-
related position and had at lest one year of experience at the
previous level (GS-) or its equivalent.)�ere were about
ten opportunities for promotion to a GS- post during the
several years prior to the complaint. About three of the suc-
cessful GS- job applicants were outside candidates who
had a Ph.D. in computer science; all of whom were white.
Since they had a higher level of education than the internal
candidates, they are excluded fromTable , which gives the
number of employees who were eligible and the number
promoted, by race, for the ten job announcements.
Although the data is longitudinal in nature and tech-

nically one might want to apply a survival test such as the
log-rank procedure, it was easier to analyze the data by the
Mantel-Haenszel (MH) test that combines the observed
minus expected numbers from the individual the individ-
ual  ×  tables (this is, of course, the way the log-rank test
is also computed and the resulting statistics are the same).
Although there were only  promotions awarded to inter-
nal candidates during the period under consideration none
of them went to a black. Moreover, the exact p-value of the
MH test was ., a clearly signi�cant result.�e analysis
can be interpreted as a test for the e�ect of race controlling
for eligibility by Feinberg (, p. ) and has been dis-
cussed by Agresti () in the STATXACTmanual (,
p. ) where it is shown that the lower end of a % con-
�dence interval of the odds a white employee receives a
promotion relative to a minority employee is about two.
�us, we can conclude that the odds of a black employee
had of being promoted were half those of a white, which is
clearly of practical as well as statistical signi�cance.
In order to demonstrate that the most plausible poten-

tial explanation of the promotion data, the white employ-
ees had greater seniority, data was submitted that showed

Presentation of Statistical Testimony. Table 
Promotion data for GS- positions obtained by internal job
candidates, by Race, from Hogan v. Pierce (From Plaintiff’s
exhibit on file with D.C. District Court. Reproduced in
Gastwirth (, p. ) and in the STATXACT manual (Version
, p. ))

Whites Blacks

Date of Promotion Eligible Promoted Eligible Promoted

July     

August     

Sept.     

April     

May     

Oct.     

Nov.     

Feb.     

March     

Nov.     

that by  the average black employee had worked over a
year more at the GS- level than the average white one.
�us, if seniority were a major factor that could explain
why whites received the earlier promotions, it should have
worked in favor of the black employees in the later part of
the period. �e defendant did not suggest an alternative
analysis of this data but concentrated on post-charge data
but Judge A. Robinson observed at the trial that their anal-
ysis should have considered a time frame around the time
of the complaint.

A Few Suggestions to Statisticians
Desiring to Increase the Validity of and
Weight Given to Statistical and Scientific
Evidence
Mann (), cited and endorsed by Mallows (),
noted that if your analysis does not produce results the
lawyer who hired you desired; you will likely be replaced.
Indeed, he notes that many attorneys act as though they
will be able to �nd a statistician who will give them the
results they want and that “regrettably they may o�en be
correct.”�is state of a�airs unfortunately perpetuates the
statement that there are “lies, damn lies and statistics”
attributed to both B. Disraeli and M. Twain. Statisticians
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have suggested questions that judges may ask experts
(Feinberg et al. ) and discussed related ethical issues
arising in giving testimony (Meier ; Kadane ).
Here we mention a few more suggestions for improving
statistical testimony and close with a brief discussion ques-
tioning the wisdom of a recent editorial that appeared in
Science.

. Mann () is correct in advising statisticianswho are
asked to testify inquire as to the existence of other data
or the analysis of any other previous expert the lawyer
consulted. I would add that these are especially impor-
tant considerations if you are asked to examine data
very shortly before a trial as you will have a limited
time to understand the data and how it was generated
so you will need to totally rely on the data and back-
ground information the lawyer provides. In civil cases,
it is far preferable for an expert to be involved during
the period when discovery is being carried out. Both
sides are asking the other for relevant data and infor-
mation and it is easier for you to tell the lawyer the
type of data that you feel would help answer the rel-
evant questions. If the lawyers ignore your requests or
don’t give you a sensible justi�cation (let me give an
example of a business justi�cation. You are asked to
work for a defendant in an equal employment case con-
cerning the fairness of a layo� carried out in a plant
making brakes for cars and SUVs. Data on absenteeism
would appear to be quite useful.�e employer knows
that the rate of absenteeism in the plant was “higher”
than normal for the industry and might be concerned
that if this information was put into the public record,
theymight become involved inmany suits arising from
accidents involving cars with brakes made there. Since
the corporation is a pro�t-making organization not a
scienti�c one, they will carry out a “cost-bene�t” anal-
ysis to decide whether you will be given the data), you
should become concerned.

�e author’s experience inValentino illustrates this
point. One reason the original regression equation we
developed for the plainti�s was considered incomplete
was because it did not contain relevant information
concerning any special degrees the employees had.
�is �eld was omitted from the original �le we were
given and we only learned about it a week or so before
trial. A�er �nding that employees with business, engi-
neering or law degrees received about the same salary
increase, we then included a single indicator for having
a degree in one of the three areas. To assist the court,
it would have been preferable to use separate indica-
tors for each degree. (Both opinions, see  F.d ,

 fn. , downplayed this factor because the defen-
dant’s expert testi�ed that it was unreliable as the
information depended on whether applicants listed
any specialty on their form. More importantly, use of
the single indicator variable for three di�erent degrees
may not have made it clear that they all had a simi-
lar e�ect on salary and that the indicator was restricted
to employees in these three specialties.) Given the very
short time available to incorporate the new, but impor-
tant information that did reduce the estimated coef-
�cient on sex by a meaningful amount, although it
remained signi�cant, one did not have time to explore
how best to present the analysis.

. When you are approached by counsel, you should ask
for permission to write an article about any interest-
ing statistical problems or data arising in the case.
(Of course, data and exhibits submitted formally into
evidence are generally considered to be in the pub-
lic domain so one can use them in scholarly writings.
Sometimes, however, the data in the exhibits are sum-
maries and either the individual data or summaries
of smaller sub-groups are required to illustrate the
methodology.) While the lawyers and client might
request that some details of the case not be reported so
that the particular case or parties involved are not iden-
ti�able, you should be given permission to show the
profession how you used or adapted existing method-
ology. If you perceive that the client or lawyer want to
be very restrictive about the use and dissemination of
the data and your analysis, you should think seriously
about becoming involved. I realize that it ismuch easier
for an academic statistician to say “no” in this situation,
than statisticians who do consulting for a living; espe-
cially if they have a long-term business relationship
with a law �rm.

. Statisticians are now being asked by judges to advise
them in “Daubert” hearings, which arise when one
party in the case challenges the scienti�c validity or
reliability of the expert testimony the other side desires
to use.�is is a useful service that all scienti�c profes-
sions can provide the legal system. Before assessing a
proposed expert’s testimony and credentials, it is wise
for you to look over the criteria the court suggested in
the Daubert opinion as well as some examples of deci-
sions in such matters. Because courts take a skeptical
view of “new techniques” that have not been subject to
peer review but appear to have been developed specif-
ically for the case at hand, one should not fault an
expert who does not use the most recently developed
method but uses a previously existing method that has
been generally regarded in the �eld as appropriate for
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the particular problem. �e issue is not whether you
would have performed the same analysis the expert
conducted but whether the analysis is appropriate and
statistically sound. Indeed, Kadane () conducted a
Bayesian analysis of data arising in an equal employ-
ment and con�rmed it with a frequentist method used
in 7biostatistics that had been suggested for the prob-
lem by Gastwirth and Greenhouse (). He noted
that it is reassuring when two approaches lead to the
same inference. In my experience, this o�en occurs
when data sets of moderate to large sample size are
examined and one uses some common sense in inter-
preting any di�erence. (By common sense I mean that
if one statistician analyzes a data set with test A and
obtains a p-value of ., i.e., a statistically signi�cant
one, but the other statistician uses another appropriate
test B and obtains a p-value of ., a so-called non-
signi�cant one, the results are really not meaningfully
di�erent.)

. A “Daubert” hearing can be used to provide the judge
with questions to ask an expert about the statisti-
cal methodology utilized. (�is also gives the court’s
expert the opportunity to �nd the relevant portions
of books and articles that can be shown the expert,
thereby implementing the approach described inCom-
ment  of section “7A More Informative Summary of
Promotion Data: Hogan v. Pierce ( F.E.P.  (D.D.C.
))”.) �is may be e�ective in demonstrating to a
court that a non-statistician really does not have a rea-
sonable understanding of some basic concepts such
as power or the potential e�ect of violations of the
assumptions underlying the methods used.

. One task experts are asked to perform is to criticize or
raise questions about the �ndings and methodology of
the testimony given by the other party’s expert.�is is
one place where is easy for one to become overly parti-
san and lose their scienti�c objectivity.�is important
problem is discussed by (Meier ). Before raising
a criticism, one should ask whether it is important.
Could it make a di�erence in either the conclusion or
the weight given to it? In addition to checking that the
assumptions underlying the analysis they are present-
ing are basically satis�ed, one step an expert can carry
out to protect their own statistical analyses from being
unfairly criticized is to carry out a7sensitivity analysis.
Many methods for assessing whether an omitted vari-
able could change an inference have been developed
(Rosenbaum ) and van Belle () has discussed
the relative importance of violations of the assump-
tions underlying commonly used techniques.

. While this entry focused on statistical testimony in
civil cases, similar issues arise in the use of statisti-
cal evidence in criminal cases. �e reader is referred
to Aitken and Taroni (), Balding () for the
commonly used statistical methods used in this set-
ting. Articles by a number of experts in both civil
and criminal cases appear in Gastwirth () provide
additional perspectives on issues arising in the use of
statistical evidence in the legal setting.
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Introduction
Large or massive data sets are increasingly common and
o�en include measurements on many variables. It is fre-
quently possible to reduce the number of variables consid-
erably while still retaining much of the information in the
original data set. Principal component analysis (PCA) is
probably the best known andmost widely used dimension-
reducing technique for doing this. Suppose we have n
measurements on a vector x of p random variables, and
we wish to reduce the dimension from p to q, where q
is typically much smaller than p. PCA does this by �nd-
ing linear combinations, a′x, a′x, . . . , a′qx, called principal
components, that successively have maximum variance for
the data, subject to being uncorrelated with previous a′kxs.
Solving this maximization problem, we �nd that the vec-
tors a, a, . . . , aq are the eigenvectors of the covariance
matrix, S, of the data, corresponding to the q largest eigen-
values (see7Eigenvalue, Eigenvector and Eigenspace).�e
eigenvalues give the variances of their respective princi-
pal components, and the ratio of the sum of the �rst q
eigenvalues to the sum of the variances of all p original
variables represents the proportion of the total variance in
the original data set accounted for by the �rst q principal
components.�e familiar algebraic form of PCA was �rst
presented by Hotelling (), though Pearson () had
earlier given a geometric derivation.�e apparently simple
idea actually has a number of subtleties, and a surprisingly
large number of uses, and has a vast literature, including at
least two comprehensive textbooks (Jackson ; Jolli�e
).

An Example
As an illustration we use an example that has been widely
reported in the literature, and which is originally due to
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Principal Component Analysis. Table  Principal Component
Analysis Vectors of coefficients for the first two principal
components for data from Yule et al. ()

Variable a a

x . .

x . .

x . .

x . .

x . .

x . −.

x . −.

x . −.

x . −.

x . −.

Yule et al. ().�e data consist of scores, between  and
, for  children aged / −  years from the Isle of
Wight, on ten subtests of theWechsler Pre-School and Pri-
mary Scale of Intelligence. Five of the tests were “verbal”
tests and �vewere ’performance’ tests. Table  gives the vec-
tors a, a that de�ne the �rst two principal components for
these data.
�e �rst component is a linear combination of the ten
scores with roughly equal weight (maximum ., mini-
mum .) given to each score. It can be interpreted as a
measure of the overall ability of a child to dowell on the full
battery of ten tests, and represents themajor (linear) source
of variability in the data. On its own it accounts for %
of the original variability.�e second component contrasts
the �rst �ve scores (verbal tests) with the �ve scores on the
performance tests. It accounts for a further % of the total
variability.�e form of this second component tells us that
once we have accounted for overall ability, the next most
important (linear) source of variability in the tests scores
is between those children who do well on the verbal tests
relative to the performance tests and those children whose
test score pro�le has the opposite pattern.

Covariance or Correlation
Principal components successively maximize variance,
and can be found from the eigenvalues/eigenvectors of
a covariance matrix. O�en a modi�cation is adopted, in

order to avoid two problems. If the p variables are mea-
sured in a mixture of units, then it is di�cult to interpret
the principal components. What is meant by a linear com-
bination of weight, height and temperature, for example?
Furthermore, if we measure temperature and weight in
○F and pounds respectively, we may get completely dif-
ferent principal components from those obtained from the
same data but using ○C and kilograms. To avoid this arbi-
trariness, we standardize each variable to have zero mean
and unit variance. Finding linear combinations of these
standardized variables that successively maximize vari-
ance, subject to being uncorrelated with previous linear
combinations, leads to principal components de�ned by
the eigenvalues and eigenvectors of the correlation matrix,
rather than the covariance matrix, of the original vari-
ables. When all variables are measured in the same units,
covariance-based PCA may be appropriate, but even here
they can be uninformative when a few variables havemuch
larger variances than the remainder. In such cases the �rst
few components are dominated by the high-variance vari-
ables and tell us little that could not have been deduced by
inspection of the original variances. Circumstances exist
where covariance-based PCA is of interest but most PCAs
encountered in practice are correlation-based. Our exam-
ple is a case where either approach could be used. �e
results given above are based on the correlationmatrix but,
because the variances of all  tests are similar, results from
a covariance-based analysis would be little di�erent.

How Many Components?
We have talked about q principal components account-
ing for most of the variation in the p variables? What is
meant by “most” and, more generally, how do we decide
how many components to keep?�ere is a large literature
on this topic – see, for example, Jolli�e (), Chap. . Per-
haps the simplest procedure is to set a threshold, say %,
and stop when the �rst q components account for a per-
centage of total variation greater than this threshold. In our
example the �rst two components accounted for only %
of the variation.�e threshold is o�en set higher than this
– % to % are the usual sort of values, but it depends on
the context of the data set and can be higher or lower.Other
techniques are based on the values of the eigenvalues or
on the di�erences between consecutive eigenvalues. Some
of these simple ideas, as well as more sophisticated ones
(Jolli�e , Chap. ) have been borrowed from factor
analysis (see 7Factor Analysis and Latent Variable Mod-
elling).�is is unfortunate because the di�erent objectives
of PCA and factor analysis (see below for more on this)
mean that typically fewer dimensions should be retained in
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factor analysis than in PCA, so the factor analysis rules are
o�en inappropriate. It should also be noted that although
it is usual to discard low-variance principal components,
they can sometimes be useful in their own right, for exam-
ple in �nding 7outliers (Jolli�e , Chap. ) and in
quality control (Jackson ).

Confusion with Factor Analysis
�ere is much confusion between principal component
analysis and factor analysis, partly because some widely
used so�ware packages treat PCA as a special case of
factor analysis, which it is not. �ere are several techni-
cal di�erences between PCA and factor analysis, but the
most fundamental di�erence is that factor analysis explic-
itly speci�es a model relating the observed variables to a
smaller set of underlying unobservable factors. Although
some authors express PCA in the framework of amodel, its
main application is as a descriptive, exploratory technique,
with no thought of an underlying model.�is descriptive
nature means that distributional assumptions are unnec-
essary to apply PCA in its usual form. It can be used,
although caution may be needed in interpretation, on dis-
crete and even binary data, as well as continuous variables.
One notable feature of factor analysis is that it is generally
a two-stage procedure; having found an initial solution, it
is rotated towards simple structure.�is idea can be bor-
rowed and used in PCA; having decided to keep q principal
components, we may rotate within the q-dimensional sub-
space de�ned by the components in a way that makes the
axes as easy as possible to interpret.�is is one of number
of techniques that attempt to simplify the results of PCA
by post-processing them in someway, or by replacing PCA
with a modi�ed technique (Jolli�e , Chap. ).

Uses of Principal Component Analysis
�ere are many variations on the basic use of PCA
as a dimension reducing technique whose results are
used in a descriptive/exploratory manner – see Jackson
(), Jolli�e (). PCA is o�en used a �rst step,
reducing dimensionality before undertaking another tech-
nique, such as multiple regression, cluster analysis (see
7Cluster Analysis: An Introduction), discriminant anal-
ysis (see 7Discriminant Analysis: An Overview, and
7DiscriminantAnalysis: Issues andProblems) or indepen-
dent component analysis.

Extensions to Principal Component
Analysis
PCA has been extended in many ways. For example, one
restriction of the technique is that it is linear. A num-
ber of non-linear versions have therefore been suggested.

�ese include the Gi� approach to multivariate analysis.
Another area in which many variations have been pro-
posed is when the data are time series, so that there is
dependence between observations as well as between vari-
ables (Jolli�e , Chap. ).�ere are many other exten-
sions and modi�cations, and the list continues to grow.
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�is paper reviews the basic principles underlying the
identi�cation of conventional econometric evaluation
estimators for causal e�ects and their recent extensions.
Heckman () discusses the econometric approach
to causality and compares it to conventional statistical
approaches.�is paper considers alternative methods for
identifying causal models.

�e paper is in four parts. �e �rst part presents a
prototypical economic choice model that underlies econo-
metric models of causal inference. It is a framework that is
useful for analyzing andmotivating the economic assump-
tions underlying alternative estimators. �e second part
discusses general identi�cation assumptions for leading
econometric estimators at an intuitive level.�e third part
elaborates the discussion of matching in the second part.
Matching is widely used in applied work andmakes strong
informational assumptions about what analysts know rela-
tive to what the people they analyze know.�e fourth part
concludes.

A Prototypical Policy Evaluation Problem
Consider the following prototypical policy problem. Sup-
pose a policy is proposed for adoption in a country. It has
been tried in other countries and we know outcomes there.
We also know outcomes in countries where it was not
adopted. From the historical record, what can we conclude
about the likely e�ectiveness of the policy in countries that
have not implemented it?
To answer questions of this sort, economists build

models of counterfactuals. Consider the following model.
Let Y be the outcome of a country (e.g., GDP) under a
no-policy regime. Y is the outcome if the policy is imple-
mented. Y −Y is the “treatment e�ect” or causal e�ect of
the policy. It may vary among countries. We observe char-
acteristics X of various countries (e.g., level of democracy,
level of population literacy, etc.). It is convenient to decom-
pose Y into its mean given X, µ(X) and deviation from

mean U. One can make a similar decomposition for Y:

Y = µ(X) +U

Y = µ(X) +U.
()

Additive separability is not needed, but it is convenient
to assume it, and I initially adopt it to simplify the expo-
sition and establish a parallel regression notation that
serves to link the statistical literature on treatment e�ects
with the economic literature. (Formally, it involves no
loss of generality if we de�ne U = Y − E(Y ∣ X) and
U = U − E(Y ∣ X).)
It may happen that controlling for the X, Y −Y is the

same for all countries. �is is the case of homogeneous
treatment e�ects given X. More likely, countries vary in
their responses to the policy even a�er controlling for X.
Figure  plots the distribution of Y − Y for a bench-

mark X. It also displays the various conventional treat-
ment parameters. I use a special form of a “generalized
Roy” model with constant cost C of adopting the policy
(see Heckman and Vytlacil a, for a discussion of this
model). �is is called the “extended Roy model.” I use
this model because it is simple and intuitive. (�e precise
parameterization of the extended Roy model used to gen-
erate the �gure and the treatment e�ects is given at the base
of Fig. .)�e special case of homogeneity in Y −Y arises
when the distribution collapses to its mean. It would be
ideal if one could estimate the distribution of Y −Y given
X and there is research that does this.
More o�en, economists focus on some mean of the

distribution in the literature and use a regression frame-
work to interpret the data. To turn () into a regression
model, it is conventional to use the switching regression
framework. (Statisticians sometimes attribute this repre-
sentation to Rubin (, ), but it is due to Quandt
(, ). It is implicit in the Roy () model. See
the discussion of this basic model of counterfactuals in
Heckman and Vytlacil (a)). De�ne D =  if a country
adopts a policy; D =  if it does not. Substituting () into
this expression, and keeping all X implicit, one obtains

Y = Y + (Y − Y)D

= µ + (µ − µ +U −U)D +U.
()

�is is the Roy-Quandt “switching regression” model.
Using conventional regression notation,

Y = α + βD + ε ()
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Principles Underlying Econometric Estimators for Identify-
ing Causal Effects. Fig.  Distribution of gains, the Roy econ-
omy (Heckman et al. )

where α = µ, β = (Y − Y) = µ − µ + U − U and
ε = U. I will also use the notation that υ = U − U, let-
ting β̄ = µ − µ and β = β̄ + υ.�roughout this paper I
use treatment e�ect and regression notation interchange-
ably.�e coe�cient on D is the treatment e�ect.�e case

where β is the same for every country is the case con-
ventionally assumed. More elaborate versions assume that
β depends on X (β(X)) and estimates interactions of D
withX.�e case where β varies even a�er accounting forX
is called the “random coe�cient” or “heterogenous treat-
ment e�ect” case. �e case where υ = U − U depends
on D is the case of essential heterogeneity analyzed by
Heckman et al. (). �is case arises when treatment
choices depend at least in part on the idiosyncratic return
to treatment. A great deal of attention has been focused on
this case in recent decades and I develop the implications
of this model in this paper.

An Index Model of Choice and Treatment
Effects: Definitions and Unifying Principles
I now present the model of treatment e�ects developed
in Heckman and Vytlacil (, , , a,b) and
Heckman et al. (), which relaxes the normality, sep-
arability and exogeneity assumptions invoked in the tra-
ditional economic selection models. It is rich enough to
generate all of the treatment e�ects in the program eval-
uation literature as well as many other policy parameters.
It does not require separability. It is a nonparametric gener-
alized Roymodel with testable restrictions that can be used
to unify the treatment e�ect literature, identify di�erent
treatment e�ects, link the literature on treatment e�ects to
the literature in structural econometrics and interpret the
implicit economic assumptions underlying 7instrumental
variables, regression discontinuity designmethods, control
functions and matching methods.
Y is the measured outcome variable. It is produced

from the switching regression model (). Outcomes are
general nonlinear, nonseparable functions of observables
and unobservables:

Y = µ(X,U) ()
Y = µ(X,U). ()

Examples of models that can be written in this form
include conventional latent variable models for discrete
choice that are generated by a latent variable crossing a
threshold:Yi =  (Y∗i ≥ ), whereY

∗
i = µi (X)+Ui , i = , .

Notice that in the general case, µi(X,Ui)−E(Yi ∣ X) ≠ Ui,
i = , .

�e individual treatment e�ect associated withmoving
an otherwise identical person from “” to “” isY − Y = ∆
and is de�ned as the causal e�ect on Y of a ceteris paribus
move from “” to “”. To link this framework to the lit-
erature on economic choice models, I characterize the
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decision rule for program participation by an indexmodel:

D
∗
= µD(Z) − V ; D =  if D

∗
≥  ;

D =  otherwise, ()

where, from the point of view of the econometrician,
(Z,X) is observed and (U,U,V) is unobserved.�e ran-
dom variable V may be a function of (U,U). For exam-
ple, in the original Roy Model, µ and µ are additively
separable in U and U respectively, and V = −[U − U].
In the original formulations of the generalized Roy model,
outcome equations are separable andV = −[U−U−UC],
where UC arises from the cost function. Without loss of
generality, I de�ne Z so that it includes all of the elements
ofX as well as any additional variables unique to the choice
equation.
I invoke the following assumptions that are weaker

than those used in the conventional literature on structural
econometrics or the recent literature on semiparametric
selection models and at the same time can be used both
to de�ne and to identify di�erent treatment parameters.
(A much weaker set of conditions is required to de�ne the
parameters than is required to identify them. SeeHeckman
and Vytlacil (b, Appendix B).)�e assumptions are:

(A-) (U,U,V) are independent of Z conditional on X
(Independence);

(A-) µD(Z) is a nondegenerate random variable condi-

tional on X (Rank Condition);

(A-) �e distribution of V is continuous; (Absolutely con-

tinuous with respect to Lebesgue measure.)

(A-) �e values of E∣Y∣ and E∣Y∣ are �nite (Finite

Means);

(A-)  < Pr(D =  ∣ X) < .

(A-) assumes that V is independent of Z given X and
is used below to generate counterfactuals. For the de�ni-
tion of treatment e�ects one does not need either (A-) or
(A-). �e de�nitions of treatment e�ects and their uni-
�cation do not require any elements of Z that are not
elements of X or independence assumptions. However,
an analysis of instrumental variables requires that Z con-
tain at least one element not in X. Assumptions (A-) or
(A-) justify application of instrumental variablesmethods
and nonparametric selection or control function methods.
Some parameters in the recent IV literature are de�ned by
an instrument so I make assumptions about instruments
up front, noting where they are not needed. Assumption
(A-) is needed to satisfy standard integration conditions.
It guarantees that the mean treatment parameters are well

de�ned. Assumption (A-) is the assumption in the popu-
lation of both a treatment and a control group for each X.
Observe that there are no exogeneity requirements for X.
�is is in contrast with the assumptions commonly made
in the conventional structural literature and the semipara-
metric selection literature (see, e.g., Powell ).
A counterfactual “no feedback” condition facilitates

interpretability so that conditioning on X does not mask
the e�ects ofD. Letting Xd denote a value of X ifD is set to
d, a su�cient condition that rules out feedback from D to
X is:

(A-) Let X denote the counterfactual value of X that

would be observed if D is set to . X is de�ned anal-
ogously. Assume Xd = X for d = , . (�e XD are
invariant to counterfactual manipulations.)

Condition (A-) is not strictly required to formulate an
evaluation model, but it enables an analyst who conditions
on X to capture the “total” or “full e�ect” of D on Y (see
Pearl ).�is assumption imposes the requirement that
X is an external variable determined outside themodel and
is not a�ected by counterfactual manipulations ofD. How-
ever, the assumption allows for X to be freely correlated
with U, U and V so it can be endogenous.
In this notation, P(Z) is the probability of receiv-

ing treatment given Z, or the “propensity score” P(Z) ≡

Pr(D =  ∣ Z) = FV∣X(µD(Z)), where FV∣X(⋅) denotes
the distribution of V conditional on X. (�roughout this
paper, I will refer to the cumulative distribution function of
a randomvectorA by FA(⋅) and to the cumulative distribu-
tion function of a random vectorA conditional on random
vector B by FA∣B(⋅). I will write the cumulative distribution
function of A conditional on B = b by FA∣B(⋅ ∣ b).) I denote
P(Z) by P, suppressing the Z argument. I also work with
UD, a uniform random variable (UD ∼ Unif[, ]) de�ned
by UD = FV∣X(V). (�is representation is valid whether or
not (A-) is true. However, (A-) imposes restrictions on
counterfactual choices. For example, if a change in govern-
ment policy changes the distribution of Z by an external
manipulation, under (A-) the model can be used to gen-
erate the choice probability fromP (z) evaluated at the new
arguments, i.e., the model is invariant with respect to the
distribution Z.)�e separability between V and µD (Z) or
D (Z) and UD is conventional. It plays a crucial role in
justifying instrumental variable estimators in the general
models analyzed in this paper.
Vytlacil () establishes that assumptions

(A-)–(A-) for the model of Eqs. ()–() are equivalent
to the assumptions used to generate the LATE model of
Imbens and Angrist ().�us the nonparametric selec-
tion model for treatment e�ects developed by Heckman
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and Vytlacil is implied by the assumptions of the Imbens
and Angrist instrumental variable model for treatment
e�ects.�e Heckman and Vytlacil approach is more gen-
eral and links the IV literature to the literature on economic
choice models. �e latent variable model is a version of
the standard sample selection bias model. �is weaves
together two strands of the literature o�en thought to be
distinct (see e.g., Angrist and Krueger ). Heckman
et al. () develop this parallelism in detail. (�e model
of Eqs. ()–() and assumptions (A-)–(A-) impose two
testable restrictions on the distribution of (Y , D, Z, X).
First, it imposes an index su�ciency restriction: for any set
A and for j = , ,

Pr(Yj ∈ A ∣ X,Z,D = j) = Pr(Yj ∈ A ∣ X,P(Z),D = j).

Z (given X) enters the model only through the propensity
score P(Z) (the sets of A are assumed to be measurable).
�is restriction has empirical content when Z contains
two or more variables not in X. Second, the model also
imposes monotonicity in p for E(YD ∣ X = x, P = p) and
E(Y ( −D) ∣ X = x, P = p). Heckman and Vytlacil (,
Appendix A) develop this condition further, and show that
it is testable.
Even though this model of treatment e�ects is not the

most general possible model, it has testable implications
and hence empirical content. It unites various literatures
and produces a nonparametric version of the selection
model, and links the treatment literature to economic
choice theory.)

Definitions of Treatment Effects in the Two
Outcome Model
�e di�culty of observing the same individual in both
treated and untreated states leads to the use of various pop-
ulation level treatment e�ects widely used in the biostatis-
tics literature and o�en applied in economics. (Heckman
et al. () discuss panel data cases where it is possible
to observe both Y and Y for the same person.)�e most
commonly invoked treatment e�ect is the Average Treat-
ment E�ect (ATE): ∆ATE(x) ≡ E(∆ ∣ X = x) where ∆ =

Y − Y.�is is the e�ect of assigning treatment randomly
to everyone of typeX assuming full compliance, and ignor-
ing general equilibrium e�ects. (See, e.g., Imbens ().)
�e average impact of treatment on persons who actu-
ally take the treatment is Treatment on the Treated (TT):
∆TT(x) ≡ E(∆ ∣ X = x,D = ).�is parameter can also
be de�ned conditional on P(Z): ∆TT(x, p) ≡ E(∆ ∣ X =

x,P(Z) = p,D = ). (�ese two de�nitions of treatment on
the treated are related by integrating out the conditioning

p variable: ∆TT(x) = ∫

 ∆

TT(x, p)dFP(Z)∣X,D(p∣x, ) where
FP(Z)∣X,D(⋅∣x, ) is the distribution of P(Z) givenX = x and
D = .)

�e mean e�ect of treatment on those for whom X = x

and UD = uD, the Marginal Treatment E�ect (MTE), plays
a fundamental role in the analysis of the next subsection:

∆MTE(x,uD) ≡ E(∆ ∣ X = x,UD = uD). ()

�is parameter is de�ned independently of any instru-
ment. I separate the de�nition of parameters from their
identi�cation.�e MTE is the expected e�ect of treatment
conditional on observed characteristics X and conditional
on UD, the unobservables from the �rst stage decision
rule. For uD evaluation points close to zero, ∆MTE(x,uD)
is the expected e�ect of treatment on individuals with the
value of unobservables that make them most likely to par-
ticipate in treatment and who would participate even if the
mean scale utility µD (Z) is small. If UD is large, µD (Z)

would have to be large to induce people to participate.
One can also interpret E(∆ ∣ X = x, UD = uD) as the

mean gain in terms of Y − Y for persons with observed
characteristics X who would be indi�erent between treat-
ment or not if they were randomly assigned a value of Z,
say z, such that µD(z) = uD.WhenY andY are value out-
comes,MTE is ameanwillingness-to-paymeasure.MTE is
a choice-theoretic building block that unites the treatment
e�ect, selection, matching and control function literatures.
A third interpretation is thatMTE conditions onX and

the residual de�ned by subtracting the expectation of D∗

from D∗: ŨD = D∗ − E (D∗ ∣ Z,X).�is is a “replacement
function” interpretation in the sense ofHeckman andRobb
(a) andMatzkin (), or “control function” interpre-
tation in the sense of Blundell and Powell (). (�ese
three interpretations are equivalent under separability in
D∗, i.e., when () characterizes the choice equation, but
lead to three di�erent de�nitions of MTE when a more
general nonseparable model is developed. See Heckman
and Vytlacil (b).)�e additive separability of Eq.  in
terms of observables and unobservables plays a crucial role
in the justi�cation of instrumental variable methods.

�e LATE parameter of Imbens and Angrist () is
a version of MTE. I de�ne LATE independently of any
instrument a�er �rst presenting the Imbens–Angrist def-
inition. De�ne D(z) as a counterfactual choice variable,
with D(z) =  if D would have been chosen if Z had been
set to z, andD(z) =  otherwise. LetZ(x) denote the sup-
port of the distribution of Z conditional on X = x. For any
(z, z′) ∈ Z(x) × Z(x) such that P(z) > P(z′), LATE is
E(∆ ∣ X = x,D(z) = ,D(z′) = ) = E(Y − Y ∣ X =

x,D(z) = ,D(z′) = ), the mean gain to persons who
would be induced to switch from D =  to D =  if Z were
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manipulated externally from z′ to z. In an example of the
returns to education, z′ could be the base level of tuition
and z a reduced tuition level. Using the latent indexmodel,
Heckman andVytlacil (, ) show that LATE can be
written as

E(Y − Y ∣ X = x,D(z) = ,D(z′) = )
= E (Y − Y ∣ X = x,u′D < UD < uD)

= ∆LATE (x,uD,u′D)

for uD = Pr(D(z) = ) = P(z), u′D = Pr(D(z′) = ) =

P(z′), where assumption (A-) implies that Pr(D(z) = ) =
Pr(D =  ∣ Z = z) and Pr(D(z′) = ) = Pr(D =  ∣ Z = z′).
Imbens and Angrist de�ne the LATE parameter as

the probability limit of an estimator. �eir analysis con-
�ates issues of de�nition of parameters with issues of iden-
ti�cation. �e representation of LATE given here allows
analysts to separate these two conceptually distinct mat-
ters and to de�ne the LATE parametermore generally. One
can in principle evaluate the right hand side of the pre-
ceding equation at any uD, u′D points in the unit interval
and not only at points in the support of the distribu-
tion of the propensity score P (Z) conditional on X = x

where it is identi�ed. From assumptions (A-), (A-), and
(A-), ∆LATE (x,uD,u′D) is continuous in uD and u

′
D and

lim
u′
D
↑uD
∆LATE (x,uD,u′D) = ∆

MTE(x,uD). (�is follows from

Lebesgue’s theorem for the derivative of an integral and
holds almost everywhere with respect to Lebesgue mea-
sure. �e ideas of the marginal treatment e�ect and the
limit form of LATE were �rst introduced in the context
of a parametric normal generalized Roy model by Björk-
lund andMo�tt (), and were analyzed more generally
in Heckman (). Angrist et al. () also de�ne and
develop a limit form of LATE.)
Heckman and Vytlacil () use assumptions (A-)–

(A-) and the latent index structure to develop the rela-
tionship between MTE and the various treatment e�ect
parameters shown in the �rst three lines of Table a.�ey
present the formal derivation of the parameters and asso-
ciated weights and graphically illustrates the relationship
between ATE and TT. All treatment parameters may be
expressed as weighted averages of the MTE:

Treatment Parameter (j)

= ∫ ∆MTE (x,uD) ωj (x,uD) duD

where ωj (x,uD) is the weighting function for the MTE
and the integral is de�ned over the full support of uD.
Except for theOLSweights, theweights in the table all inte-
grate to one, although in some cases the weights for IVmay
be negative (Heckman et al. ).

In Table a, ∆TT (x) is shown as a weighted average of
∆MTE:

∆TT (x) = ∫



∆MTE (x,uD) ωTT (x,uD)duD,

where

ωTT (x,uD) =
 − FP∣X (uD ∣ x)

∫

 ( − FP∣X (t ∣ x))dt

=
SP∣X (uD ∣ x)

E (P (Z) ∣ X = x)
,

()

and SP∣X(uD ∣ x) is Pr(P (Z) > uD ∣ X = x) and
ωTT (x,uD) is a weighted distribution. �e parameter
∆TT (x) oversamples ∆MTE (x,uD) for those individuals
with low values of uD that make them more likely to par-
ticipate in the program being evaluated. Treatment on
the untreated (TUT) is de�ned symmetrically with TT
and oversamples those least likely to participate.�e var-
ious weights are displayed in Table b. A central theme of
the analysis of Heckman and Vytlacil is that under their
assumptions all estimators and estimands can be written
as weighted averages of MTE. �is allows them to unify
the treatment e�ect literature using a common functional
MTE (uD).
Observe that if E(Y − Y ∣ X = x,UD = uD) =

E(Y −Y ∣ X = x), so ∆ = Y −Y is mean independent of
UD givenX = x, then ∆MTE = ∆ATE = ∆TT = ∆LATE.�ere-
fore in cases where there is no heterogeneity in terms of
unobservables in MTE (∆ constant conditional on X = x)
or agents do not act on it so that UD drops out of the
conditioning set, marginal treatment e�ects are average
treatment e�ects, so that all of the evaluation parameters
are the same. Otherwise, they are di�erent. Only in the
case where the marginal treatment e�ect is the average
treatment e�ect will the “e�ect” of treatment be uniquely
de�ned.
Figure a plots weights for a parametric normal gener-

alized Roy model generated from the parameters shown at
the base of Fig. b.�e model allows for costs to vary in
the population and is more general than the extended Roy
model used to construct Fig. .�e weights for IV depicted
in Fig. b are discussed in Heckman et al. () and the
weights for OLS are discussed in the next section. A high
uD is associatedwith higher cost, relative to return, and less
likelihood of choosing D = .�e decline of MTE in terms
of higher values of uD means that people with higher uD
have lower gross returns. TT overweights low values of uD
(i.e., it oversamples UD that make it likely to have D = ).
ATE samples UD uniformly. Treatment on the Untreated
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Principles Underlying Econometric Estimators for Identifying Causal Effects. Table 

(a) Treatment effects and estimands as weighted averages of the marginal treatment effect

ATE(x) = E (Y − Y ∣ X = x) = ∫


 ∆
MTE(x,uD)duD

TT(x) = E (Y − Y ∣ X = x,D = ) = ∫


 ∆
MTE(x,uD) ωTT(x,uD)duD

TUT(x) = E (Y − Y ∣ X = x,D = ) = ∫


 ∆
MTE (x,uD) ωTUT (x,uD) duD

Policy relevant treatment effect (x) = E (Ya′ ∣ X = x) − E (Ya ∣ X = x) = ∫


 ∆
MTE (x,uD) ωPRTE (x,uD) duD for two policies

a and a′ that affect the Z but not the X

IVJ(x) = ∫


 ∆
MTE(x,uD) ωJ

IV(x,uD)duD, given instrument J

OLS(x) = ∫


 ∆
MTE(x,uD) ωOLS(x,uD)duD

(b) Weights (Heckman and Vytlacil )

ωATE(x,uD) = 

ωTT(x,uD) = [∫

uD
f(p ∣ X = x)dp]



E(P ∣ X = x)

ωTUT (x,uD) = [∫
uD

 f (p∣X = x)dp]


E (( − P) ∣X = x)

ωPRTE(x,uD) = [
FPa′ ,X(uD) − FPa ,X(uD)

∆P
]

ωJ
IV(x,uD) = [∫


uD
(J(Z) − E(J(Z) ∣ X = x)) ∫ fJ,P∣X (j, t ∣ X = x) dt dj]



Cov(J(Z),D ∣ X = x)

ωOLS(x,uD) =  +
E(U ∣ X = x,UD = uD) ω(x,uD) − E(U ∣ X = x,UD = uD) ω(x,uD)

∆MTE(x,uD)

ω(x,uD) = [∫

uD
f(p ∣ X = x)dp] [



E(P ∣ X = x)
]

ω(x,uD) = [∫
uD

 f(p ∣ X = x)dp]


E(( − P) ∣ X = x)

(E(Y − Y ∣ X = x,D = )), or TUT, oversamples the
values of UD which make it unlikely to have D = .
Table  shows the treatment parameters produced from

the di�erent weighting schemes for themodel used to gen-
erate the weights in Fig. a and b. Given the decline of the
MTE in uD, it is not surprising that TT>ATE>TUT.�is is
the generalized Roy version of the principle of diminishing
returns.�ose most likely to self select into the program
bene�t the most from it.�e di�erence between TT and
ATE is a sorting gain: E(Y − Y ∣ X,D = ) − E(Y −
Y ∣ X), the average gain experienced by people who
sort into treatment compared to what the average person
would experience. Purposive selection on the basis of gains
should lead to positive sorting gains of the kind found in
the table. If there is negative sorting on the gains, then
TUT≥ATE≥TT.

The Weights for a Generalized Roy Model
Heckman et al. () show that all of the weights for
treatment e�ects and IV estimators can be estimated over
the available support. Since the MTE can be estimated by
the method of Local Instrumental variables, we can form
each treatment e�ect and each IV estimand as an inte-
gral to two estimable functions (subject to support). For
the case of continuous Z, I plot the weights associated
with the MTE for IV. �is analysis draws on Heckman
et al. (), who derive the weights. Figure  plots E(Y ∣

P(Z)) and MTE for the extended Roy models generated
by the parameters displayed at the base of the �gure. In
cases where β⊥⊥D, ∆MTE (uD) is constant in uD. �is is
trivial when β is a constant. When β is random but selec-
tion into D does not depend on β, MTE is still �at. �e
more interesting case termed “essential heterogeneity” by



Principles Underlying Econometric Estimators for Identifying Causal Effects P 

P

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

3.5

3

a

2.5

2

1.5

1

0.5

0

w (uD)

uD

MTE
0.35

MTE

ATE

TT

0

TUT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–3

–2

–1

0

1

2

3

b

4

5
wTT(uD)

uD

MTE

0.5

MTE

IV

OLS

–0.3

wOLS (uD)

Y1 U1 U1

U0 U0

UD

Y
D Z

Z N
V V N~

~V
V

V V

0

1 1

0

–1 if 0

0.67 0.012
–0.050
–1.000
(–0.0026, 0.2700)

0.2
(0,1)

+ +
+0

= b
= a
=

= = =
=
=

==
=

=

s se
s e s
s e s

σ σε

e

a a
b

f

Principles Underlying Econometric Estimators for Identify-
ing Causal Effects. Fig. (a) Weights for the marginal treat-
ment effect for different parameters (Heckman and Vytlacil

) (b) Marginal treatment effect vs linear instrumental

variables and ordinary least squares weights (Heckman and
Vytlacil )

Heckman and Vytlacil has β⊥⊥/ D. �e le� hand side
(Fig. a) depicts E(Y ∣ P(Z)) in the two cases.�e �rst
case makes E(Y ∣ P(Z)) linear in P(Z).�e second case is
nonlinear in P(Z).�is arises when β⊥⊥/ D.�e derivative
of E(Y ∣ P(Z)) is presented in the right panel (Fig. b). It
is a constant for the �rst case (�at MTE) but declining in
UD = P(Z) for the casewith selection on the gain. A simple
test for linearity in P(Z) in the outcome equation reveals
whether or not the analyst is in cases I and II (β⊥⊥D) or
case III (β⊥⊥/ D). (Recall that we keep the conditioning on

Principles Underlying Econometric Estimators for
Identifying Causal Effects. Table  Treatment parameters and

estimands in the generalized Roy example

Treatment on the treated .

Treatment on the untreated .

Average treatment effect .

Sorting gaina .

Policy relevant treatment
effect (PRTE)

.

Selection biasb −.

Linear instrumental variablesc .

Ordinary least squares .

aTT − ATE = E(Y − Y ∣ D = ) − E(Y − Y)
bOLS − TT = E(Y ∣ D = ) − E(Y ∣ D = )
cUsing Propensity Score P (Z) as the instrument.
Note: The model used to create Table  is the same as those used to
create Fig. a and b. The PRTE is computed using a policy t characterized
as follows:
If Z >  then D =  if Z( + t) − V > .
If Z ≤ t then D =  if Z − V > .
For this example t is set equal to ..

X implicit.)�ese cases are the extended Roy counterparts
to E (Y ∣ P (Z) = p) and MTE shown for the generalized
Roy model in Figs. a and b.
MTE gives the mean marginal return for persons who

have utility P(Z) = uD .�us, P(Z) = uD is the margin of
indi�erence.�ose with low uD values have high returns.
�ose with high uD values have low returns. Figure  high-
lights that in the general case MTE (and LATE) identify
average returns for persons at the margin of indi�erence at
di�erent levels of the mean utility function (P(Z)).
Figure  plots MTE and LATE for di�erent intervals of

uD using the model generating Fig. . LATE is the chord of
E(Y ∣ P(Z)) evaluated at di�erent points.�e relationship
between LATE and MTE is depicted in the right panel (b)
of Fig. . LATE is the integral under theMTE curve divided
by the di�erence between the upper and lower limits.
Treatment parameters associated with the second case

are plotted in Fig. . �e MTE is the same as that pre-
sented in Fig. . ATE has the same value for all p. �e
e�ect of treatment on the treated for P (Z) = p, ∆TT (p) =
E (Y − Y ∣ D = ,P (Z) = p) declines in p (equivalently
it declines in uD). Treatment on the untreated given p,
TUT(p) = ∆TUT (p) = E(Y − Y ∣ D = ,P(Z) = p)

also declines in p.
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Outcomes Choice model

Y = α +
−
β+U D =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

 if D∗ > 

 if D∗ ≤ Y = α + U

Case IA Case IB Case II

U = U U − U ⊥⊥ D U − U ⊥Ò⊥ D
−
β =ATE=TT=TUT=IV

−
β =ATE=TT=TUT=IV

−
β =ATE≠TT≠TUT≠IV

Parameterization

Cases IA, IB, and II Cases IB and II Case II

α = . (U,U) ∼ N (,Σ) D∗ = Y − Y − γZ

−
β = . with Σ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

 −.

−. 

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Z ∼ N (µZ ,ΣZ)

µZ = (,−) and ΣZ=
⎡
⎢
⎢
⎢
⎢
⎢
⎣

 −

− 

⎤
⎥
⎥
⎥
⎥
⎥
⎦

γ = (., .)

Principles Underlying Econometric Estimators for Identifying Causal Effects. Fig.  Conditional expectation of Y on P(Z) and

the marginal treatment effect (MTE) the extended Roy economy (Heckman et al. )

LATE(p, p′) =
∆TT(p′)p′ − ∆TT(p)p

p′ − p
, p′ ≠ p

MTE =
∂[∆TT(p)p]

∂p
.

One can generate all of the treatment parameters from
∆TT (p).
Matching on P = p (which is equivalent to nonpara-

metric regression given P = p) produces a biased estimator
of TT(p). Matching assumes a �at MTE (average return
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Principles Underlying Econometric Estimators for Identify-
ing Causal Effects. Fig.  (a) Plot of the E(Y ∣P(Z) = p), (b)

Plot of the identified marginal treatment effect from Fig. a (the

derivative). Note: Parameters for the general heterogeneous
case are the same as those used in Fig. a and b. For the homo-

geneous case we impose U = U (σ = σ = .). (Heckman
and Vytlacil )

equals marginal return) as we develop below.�erefore it
is systematically biased for ∆TT (p) in a model with essen-
tial heterogeneity, where β⊥⊥/ D. Making observables alike
makes the unobservables dissimilar. Holding p constant
across treatment and control groups understates TT(p) for
low values of p and overstates it for high values of p. I
develop this point further in section “7Matching”, where
I discuss the method of matching. First I present a uni-
�ed approach that integrates all evaluation estimators in a
common framework.

The Basic Principles Underlying the
Identification of the Leading
Econometric Evaluation Estimators
�is section reviews the main principles underlying the
evaluation estimators commonly used in the economet-
ric literature. I assume two potential outcomes (Y,Y).
D =  if Y is observed, and D =  corresponds to Y being
observed.�e observed outcome is

Y = DY + ( −D)Y. ()

�e evaluation problem arises because for each person
we observe eitherY orY but not both.�us in general it is
not possible to identify the individual level treatment e�ect
Y−Y for any person.�e typical solution to this problem
is to reformulate the problem at the population level rather
than at the individual level and to identify certain mean
outcomes or quantile outcomes or various distributions of
outcomes as described in Heckman and Vytlacil (a).
For example, a commonly used approach focuses attention
on average treatment e�ects, such as ATE = E(Y − Y).
If treatment is assigned or chosen on the basis of poten-

tial outcomes, so
(Y,Y)⊥⊥/ D,

where ⊥⊥/ denotes “is not independent” and “⊥⊥” denotes
independent, we encounter the problem of selection bias.
Suppose that we observe people in each treatment state
D =  and D = . If Yj⊥⊥/ D, then the observed Yj will be
selectively di�erent from randomly assigned Yj, j = , .
�us E(Y ∣ D = ) ≠ E(Y) and E(Y ∣ D = ) ≠ E(Y).
Using unadjusted data to constructE(Y−Y)will produce
one source of evaluation bias:

E(Y ∣ D = ) − E(Y ∣ D = ) ≠ E(Y − Y).

�e selection problem underlies the evaluation prob-
lem. Many methods have been proposed to solve both
problems.

�e method with the greatest intuitive appeal, which is
sometimes called the “gold standard” in evaluation anal-
ysis, is the method of random assignment. Nonexperi-
mental methods can be organized by how they attempt
to approximate what can be obtained by an ideal random
assignment. If treatment is chosen at random with respect
to (Y,Y), or if treatments are randomly assigned and
there is full compliance with the treatment assignment,

(R-) (Y,Y)⊥⊥D.

It is useful to distinguish several cases where (R-) will be
satis�ed. �e �rst is that agents (decision makers whose
choices are being analyzed) pick outcomes that are ran-
dom with respect to (Y,Y).�us agents may not know
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E(Y |P(Z )= p) and ΔLATE(pℓ, pℓ+1)
2
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∆LATE(pℓ ,pℓ+) =
E (Y ∣P(Z) = pℓ+) − E (Y∣P(Z) = pℓ)

pℓ+ − pℓ
=

pℓ+

∫
pℓ

∆MTE(uD)duD

pℓ+ − pℓ

∆LATE(., .) = −.

∆LATE
(., .) = .

Outcomes Choice model

Y = α +
−
β +U D =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

 if D∗ > 

 if D∗ ≤ 

Y = α + U with D∗ = Y − Y − γZ

Parameterization

(U,U) ∼ N (,Σ) and Z ∼ N (µZ ,ΣZ)

Σ =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

 −.

−. 

⎤
⎥
⎥
⎥
⎥
⎥
⎦
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Principles Underlying Econometric Estimators for Identifying Causal Effects. Fig.  The local average treatment effect the
extended Roy economy (Heckman et al. )

(Y,Y) at the time they make their choices to partici-
pate in treatment or at least do not act on (Y,Y), so that
Pr (D =  ∣ X,Y,Y) = Pr (D =  ∣ X) for all X. Match-
ing assumes a version of (R-) conditional on matching
variables X: (Y,Y)⊥⊥D ∣ X.
A second case arises when individuals are randomly

assigned to treatment status even if they would choose
to self select into no-treatment status, and they comply
with the randomization protocols. Let ξ be randomized

assignment status. With full compliance, ξ =  implies that
Y is observed and ξ =  implies that Y is observed.�en,
under randomized assignment,

(R-) (Y,Y)⊥⊥ξ,

even if in a regime of self-selection, (Y,Y) ⊥⊥/ D. If
7randomization is performed conditional on X, we obtain
(Y,Y)⊥⊥ξ ∣ X.
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Parameter Definition Under assumptionsa

Marginal treatment effect E [Y − Y∣D∗ = , P(Z) = p]
−
β+σU−UΦ

−( − p)

Average treatment effect E [Y − Y∣P(Z) = p] β

Treatment on the treated E [Y − Y∣D∗ > , P(Z) = p]
−
β+σU−U

ϕ(Φ−(−p))
p

Treatment on the untreated E [Y − Y∣D∗ ≤ , P(Z) = p]
−
β−σU−U

ϕ(Φ−(−p))
−p

OLS/matching on P(Z) E [Y∣D
∗ > ,P(Z) = p]

−
β+(

σ 
U
−σU ,U√
σU−U

)( −p
p(−p)) ϕ (Φ−( − p))

-E [Y∣D
∗ ≤ , P(Z) = p]

Principles Underlying Econometric Estimators for Identifying Causal Effects. Fig.  Treatment parameters and OLS/matching

as a function of P(Z) = p. Note: Φ (⋅) and ϕ (⋅) represent the cdf and pdf of a standard normal distribution, respectively. Φ− (⋅)

represents the inverse ofΦ (⋅). a The model in this case is the same as the one presented below Fig. . (Heckman et al. )

LetA denote actual treatment status. If the randomiza-
tionhas full complianceamongparticipants, ξ = ⇒ A = ;
ξ =  ⇒ A = .�is is entirely consistent with a regime
in which a person would choose D =  in the absence of
randomization, but would have no treatment (A = ) if
suitably randomized, even though the agent might desire
treatment.
If treatment status is chosen by self-selection, D = ⇒

A =  and D =  ⇒ A = . If there is imperfect compli-
ance with randomization, ξ =  ⇏ A =  because of agent
choices. In general, A = ξD so that A =  only if ξ = 
and D = . If treatment status is randomly assigned, either
through randomization or randomized self-selection,

(R-) (Y,Y)⊥⊥A.

�is version of randomization can also be de�ned con-
ditional on X. Under (R-), (R-), or (R-), the average

treatment e�ect (ATE) is the same as the marginal treat-
ment e�ect of Björklund and Mo�tt () and Heckman
and Vytlacil (, , a), and the parameters treat-
ment on the treated (TT) (E(Y − Y ∣ D = )) and
treatment on the untreated (TUT) (E(Y − Y ∣ D = )).
(�e marginal treatment e�ect is formally de�ned in the
next section.) �ese parameters can be identi�ed from
population means:

TT =MTE = TUT = ATE = E(Y − Y) = E(Y) − E(Y).

Forming averages over populations of persons who are
treated (A = ) or untreated (A = ) su�ces to identify
this parameter. If there are conditioning variablesX, we can
de�ne themean treatment parameters for allX where (R-)
or (R-) or (R-) hold.
Observe that even with random assignment of treat-

ment status and full compliance, one cannot, in gen-
eral, identify the distribution of the treatment e�ects
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(Y −Y), although one can identify the marginal distri-
butions F(Y ∣ A = ,X = x) = F(Y ∣ X = x)

and F(Y ∣ A = ,X = x) = F(Y ∣ X = x). One
special assumption, common in the conventional econo-
metrics literature, is that Y − Y = ∆ (x), a constant given
x. Since ∆ (x) can be identi�ed from E(Y ∣ A = ,X =

x) − E(Y ∣ A = ,X = x) because A is randomly allo-
cated, in this special case the analyst can identify the joint
distribution of (Y,Y). (Heckman (); Heckman et al.
().)�is approach assumes that (Y,Y) have the same
distribution up to a parameter ∆ (Y and Y are perfectly
dependent). One can make other assumptions about the
dependence across ranks from perfect positive or nega-
tive ranking to independence. (Heckman et al. ().)�e
joint distribution of (Y,Y) or of (Y − Y) is not identi-
�ed unless the analyst can pin down the dependence across
(Y,Y).�us, even with data from a randomized trial one
cannot, without further assumptions, identify the propor-
tion of people who bene�t from treatment in the sense
of gross gain (Pr(Y ≥ Y)). �is problem plagues all
evaluationmethods. Abbring andHeckman () discuss
methods for identifying joint distributions of outcomes.
(See also Aakvik et al. (); Carneiro et al. (, );
and Cunha et al. ().)
Assumption (R-) is very strong. In many cases, it is

thought that there is selection bias with respect to Y, Y,
so persons who select into status  or  are selectively
di�erent from randomly sampled persons in the popula-
tion. �e assumption most commonly made to circum-
vent problems with (R-) is that even though D is not
random with respect to potential outcomes, the analyst
has access to control variables X that e�ectively produce
a randomization of D with respect to (Y,Y) given X.
�is is the method of matching, which is based on the
following conditional independence assumption:

(M-) (Y,Y)⊥⊥D ∣ X.

Conditioning on X randomizes D with respect to
(Y,Y). (M-) assumes that any selective sampling of
(Y,Y) can be adjusted by conditioning on observed
variables. (R-) and (M-) are di�erent assumptions and
neither implies the other. In a linear equations model,
assumption (M-) that D is independent from (Y,Y)
given X justi�es application of 7least squares on D to
eliminate selection bias in mean outcome parameters.
For means, matching is just nonparametric regression.
(Barnow et al. () present one application of match-
ing in a regression setting.) In order to be able to compare
X-comparable people in the treatment regime one must
assume

(M-)  < Pr(D =  ∣ X = x) < .

Assumptions (M-) and (M-) justify matching. Assump-
tion (M-) is required for any evaluation estimator that
compares treated and untreated persons. It is produced by
random assignment if the randomization is conducted for
all X = x and there is full compliance.
Observe that from (M-) and (M-), it is possible to

identify F(Y ∣ X = x) from the observed data F(Y ∣ D =

,X = x) since we observe the le� hand side of

F(Y ∣ D = ,X = x) = F(Y ∣ X = x)

= F(Y ∣ D = ,X = x).

�e �rst equality is a consequence of conditional indepen-
dence assumption (M-).�e second equality comes from
(M-) and (M-). By a similar argument, we observe the
le� hand side of

F(Y ∣ D = ,X = x) = F(Y ∣ X = x)

= F(Y ∣ D = ,X = x),

and the equalities are a consequence of (M-) and (M-).
Since the pair of outcomes (Y,Y) is not identi�ed for
anyone, as in the case of data from randomized trials, the
joint distributions of (Y,Y) given X or of Y − Y given
X are not identi�ed without further information.�is is a
problem that plagues all selection estimators.
From the data on Y given X andD =  and the data on

Y given X and D = , since E(Y ∣ D = ,X = x) = E(Y ∣

X = x) = E(Y ∣ D = ,X = x) and E(Y ∣ D = ,X = x) =

E(Y ∣ X = x) = E(Y ∣ D = ,X = x) we obtain

E(Y − Y ∣ X = x) = E(Y − Y ∣ D = ,X = x)

= E(Y − Y ∣ D = ,X = x).

E�ectively, we have a randomization for the subset of the
support of X satisfying (M-).
At values ofX that fail to satisfy (M-), there is no vari-

ation in D given X. One can de�ne the residual variation
in D not accounted for by X as

E(x) = D − E(D ∣ X = x) = D − Pr(D =  ∣ X = x).

If the variance of E(x) is zero, it is not possible to construct
contrasts in outcomes by treatment status for those X val-
ues and (M-) is violated. To see the consequences of this
violation in a regression setting, use Y = Y +D(Y − Y)

and take conditional expectations, under (M-), to obtain

E(Y ∣ X,D) = E(Y ∣ X) +D[E(Y − Y ∣ X)].

�is follows because E(Y ∣ X,D) = E(Y ∣ X,D) +
DE(Y−Y ∣ X,D) but from (M-),E(Y ∣ X,D)=E(Y∣X)
and E(Y − Y∣X,D) = E(Y − Y∣X). If Var(E(x)) > 
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for all x in the support of X, one can use nonparametric
least squares to identify E(Y − Y ∣ X = x) =ATE(x)
by regressing Y on D and X.�e function identi�ed from
the coe�cient onD is the average treatment e�ect. (Under
the conditional independence assumption (M-), it is also
the e�ect of treatment on the treated E (Y − Y ∣ X,D = )
and the marginal treatment e�ect formally de�ned in the
next section.) If Var(E(x)) = , ATE(x) is not identi�ed
at that x value because there is no variation inD that is not
fully explained by X. A special case of matching is linear
least squares where one can write

Y = Xα +U Y = Xα + β +U,

U = U = U and hence under (M-),

E(Y ∣ X,D) = Xα + βD.

If D is perfectly predictable by X, one cannot identify
β because of a multicollinearity problem (see 7Multi-
collinearity). (M-) rules out perfect collinearity. (Clearly
(M-) and (M-) are su�cient but not necessary condi-
tions. For the special case of OLS, as a consequence of the
assumed linearity in the functional form of the estimating
equation, we achieve identi�cation of β if Cov (X,U) = ,
Cov (D,U) =  and (D,X) are not perfectly collinear.
�ese conditions are much weaker than (M-) and (M-)
and can be satis�ed if (M-) and (M-) are only identi�ed
in a subset of the support ofX.) Matching is a nonparamet-
ric version of least squares that does not impose functional
form assumptions on outcome equations, and that imposes
support condition (M-).
Conventional econometric choice models make a dis-

tinction between variables that appear in outcome equa-
tions (X) and variables that appear in choice equations (Z).
�e same variables may be in (X) and (Z) but more typi-
cally, there are some variables not in common. For exam-
ple, the instrumental variable estimator is based on vari-
ables that are not in X but that are in Z. Matching makes
no distinction between the X and the Z. (Heckman et al.
() distinguish X and Z in matching.�ey consider a
case where conditioning on X may lead to failure of (M-)
and (M-) but conditioning on (X,Z) satis�es a suitably
modi�ed version of this condition.) It does not rely on
exclusion restrictions.�e conditioning variables used to
achieve conditional independence can in principle be a
set of variables Q distinct from the X variables (covariates
for outcomes) or the Z variables (covariates for choices). I
use X solely to simplify the notation.�e key identifying
assumption is the assumed existence of a random variable
X with the properties satisfying (M-) and (M-).

Conditioning on a larger vector (X augmented with
additional variables) or a smaller vector (Xwith some com-
ponents removed) may or may not produce suitably modi-
�ed versions of (M-) and (M-).Without invoking further
assumptions there is no objective principle for determining
what conditioning variables produce (M-).
Assumption (M-) is strong. Many economists do not

have enough faith in their data to invoke it. Assumption
(M-) is testable and requires no act of faith. To justify
(M-), it is necessary to appeal to the quality of the data.
Using economic theory can help guide the choice of

an evaluation estimator. A crucial distinction is the one
between the information available to the analyst and the
information available to the agent whose outcomes are
being studied. Assumptionsmade about these information
sets drive the properties of econometric estimators. Ana-
lysts using matching make strong informational assump-
tions in terms of the data available to them. In fact,
all econometric estimators make assumptions about the
presence or absence of informational asymmetries, and I
exposit them in this paper.
To analyze the informational assumptions invoked in

matching, and other econometric evaluation strategies, it
is helpful to introduce �ve distinct information sets and
establish some relationships among them. (See also the dis-
cussion in Barros (), Heckman and Navarro (),
and Ger�n and Lechner ().) () An information set
σ(IR) with an associated random variable that satis�es
conditional independence (M-) is de�ned as a relevant
information set; () �e minimal information set σ(IR)

with associated random variable needed to satisfy condi-
tional independence (M-), theminimal relevant informa-
tion set; () �e information set σ(IA) available to the
agent at the time decisions to participate are made; ()
�e information available to the economist, σ(IE∗); and ()
�e information σ(IE) used by the economist in conduct-
ing an empirical analysis. I will denote the random vari-
ables generated by these sets as IR∗ , IR, IA, IE∗ , IE, respec-
tively. (I start with a primitive probability space (Ω, σ ,P)
with associated random variables I. I assume minimal σ-
algebras and assume that the random variables I are mea-
surable with respect to these σ-algebras. Obviously, strictly
monotonic or a�ne transformations of the I preserve the
information and can substitute for the I.)

De�nition  De�ne σ(IR∗) as a relevant information set if

the information set is generated by the random variable IR∗ ,

possibly vector valued, and satis�es condition (M-), so

(Y,Y) ⊥⊥ D ∣ IR∗ .
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De�nition  De�ne σ(IR) as a minimal relevant infor-

mation set if it is the intersection of all sets σ(IR∗) and

satis�es (Y,Y) ⊥⊥ D ∣ IR. �e associated random vari-

able IR is aminimumamount of information that guarantees

that condition (M-) is satis�ed.�ere may be no such set.

(Observe that the intersection of all sets σ(IR∗) may be
empty and hence may not be characterized by a (pos-
sibly vector valued) random variable IR that guarantees
(Y,Y) ⊥⊥ D ∣ IR. If the information sets that produce
conditional independence are nested, then the intersec-
tion of all sets σ(IR∗) producing conditional independence
is well de�ned and has an associated random variable
IR with the required property, although it may not be
unique (e.g., strictly monotonic transformations and a�ne
transformations of IR also preserve the property). In the
more general case of non-nested information sets with the
required property, it is possible that no uniquely de�ned
minimal relevant set exists. Among collections of nested
sets that possess the required property, there is a mini-
mal set de�ned by intersection but there may be multiple
minimal sets corresponding to each collection.)

If one de�nes the relevant information set as one that pro-
duces conditional independence, it may not be unique. If
the set σ(IR∗) satis�es the conditional independence con-
dition, then the set σ(IR∗ ,Q) such that Q ⊥⊥ (Y,Y) ∣ IR∗

would also guarantee conditional independence. For this
reason, I de�ne the relevant information set to be mini-
mal, that is, to be the intersection of all relevant sets that
still produce conditional independence between (Y,Y)
and D. However, no minimal set may exist.

De�nition  �e agent’s information set, σ(IA), is de�ned

by the information IA used by the agent when choos-

ing among treatments. Accordingly, call IA the agent’s

information.

By the agent Imean the personmaking the treatment deci-
sion not necessarily the person whose outcomes are being
studied (e.g., the agent may be the parent; the person being
studied may be a child).

De�nition  �e econometrician’s full information set,

σ(IE∗), is de�ned as all of the information available to the

econometrician, IE∗ .

De�nition  �e econometrician’s information set, σ(IE),

is de�ned by the information used by the econometrician

when analyzing the agent’s choice of treatment, IE, in con-

ducting an analysis.

For the case where a unique minimal relevant infor-
mation set exists, only three restrictions are implied by the
structure of these sets: σ(IR) ⊆ σ(IR∗), σ(IR) ⊆ σ(IA),

and σ(IE) ⊆ σ(IE∗). (�is formulation assumes that the
agent makes the treatment decision.�e extension to the
case where the decision maker and the agent are distinct
is straightforward. �e requirement σ(IR) ⊆ σ(IR∗) is
satis�ed by nested sets.) I have already discussed the �rst
restriction.�e second restriction requires that the mini-
mal relevant information set must be part of the informa-
tion the agent uses when deciding which treatment to take
or assign. It is the information in σ(IA) that gives rise to the
selection problemwhich in turn gives rise to the evaluation
problem.

�e third restriction requires that the information used
by the econometrician must be part of the information
that the agent observes. Aside from these orderings, the
econometrician’s information setmay be di�erent from the
agent’s or the relevant information set.�e econometrician
may know something the agent doesn’t know, for typically
he is observing events a�er the decision is made. At the
same time, there may be private information known to the
agent but not the econometrician. Matching assumption
(M-) implies that σ(IR) ⊆ σ(IE), so that the econome-
trician uses at least the minimal relevant information set,
but of course he or she may use more. However, using
more information is not guaranteed to produce a model
with conditional independence property (M-) satis�ed for
the augmented model. �us an analyst can “overdo” it.
Heckman and Navarro () and Abbring and Heckman
() present examples of the consequences of the asym-
metry in agent and analyst information sets.

�e possibility of asymmetry in information between
the agentmaking participationdecisions and the observing
economist creates the potential for a major identi�ca-
tion problem that is ruled out by assumption (M-).�e
methods of control functions and instrumental variables
estimators (and closely related regression discontinuity
design methods) address this problem but in di�erent
ways. Accounting for this possibility is a more conser-
vative approach to the selection problem than the one
taken by advocates of 7least squares, or its nonparamet-
ric counterpart, matching. �ose advocates assume that
they know the X that produces a relevant information
set. Heckman and Navarro () show the biases that
can result in matching when standard econometric model
selection criteria are applied to pick the X that are used
to satisfy (M-). Conditional independence condition (M-
) cannot be tested without maintaining other assump-
tions. (�ese assumptions may or may not be testable.�e
required “exogeneity” conditions are discussed in Heck-
man and Navarro ().�us randomization of assign-
ment of treatment status might be used to test (M-) but
this requires that there be full compliance and that the
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randomization be valid (no anticipation e�ects or general
equilibrium e�ects).) Choice of the appropriate condition-
ing variables is a problem that plagues all econometric
estimators.

�e methods of control functions, replacement func-
tions, proxy variables, and instrumental variables all recog-
nize the possibility of asymmetry in information between
the agent being studied and the econometrician and rec-
ognize that even a�er conditioning on X (variables in the
outcome equation) and Z (variables a�ecting treatment
choices, whichmay include the X), analysts may fail to sat-
isfy conditional independence condition (M-). (�e term
and concept of control function is due to Heckman and
Robb (a,b, a,b). See Blundell and Powell ()
(who call the Heckman and Robb replacement functions
control functions). A more recent nomenclature is “con-
trol variate.” Matzkin () provides a comprehensive
discussion of identi�cation principles for econometric esti-
mators.) �ese methods postulate the existence of some
unobservables θ, which may be vector valued, with the
property that

(U-) (Y,Y)⊥⊥D ∣ X,Z, θ,

but allow for the possibility that

(U-) (Y,Y)⊥⊥/ D ∣ X,Z.

In the event (U-) holds, these approaches model the rela-
tionships of the unobservable θ with Y,Y and D in var-
ious ways. �e content in the control function principle
is to specify the exact nature of the dependence on the
relationship between observables and unobservables in a
nontrivial fashion that is consistent with economic theory.
Heckman and Navarro present examples of models that
satisfy (U-) but not (U-).

�e early literature focused on mean outcomes condi-
tional on covariates (Heckman andRobb a, b, a, b)
and assumes a weaker version of (U-) based on con-
ditional mean independence rather than full conditional
independence. More recent work analyzes distributions of
outcomes (e.g., Aakvik et al. ; Carneiro et al. ,
). �is work is reviewed in Abbring and Heckman
().

�e normal Roy selection model makes distributional
assumptions and identi�es the joint distribution of out-
comes. A large literature surveyed by Matzkin ()
makes alternative assumptions to satisfy (U-) in nonpara-
metric settings. Replacement functions (Heckman and
Robb a) are methods that proxy θ. �ey substitute
out for θ using observables. (�is is the “control vari-
ate” of Blundell and Powell (). Heckman and Robb
(a) and Olley and Pakes () use a similar idea.

Matzkin () discusses replacement functions.) Aakvik
et al. (, ), Carneiro et al. (, ), Cunha et al.
(), and Cunha et al. (, ) develop methods
that integrate out θ from the model assuming θ⊥⊥(X,Z),
or invoking weaker mean independence assumptions, and
assuming access to proxy measurements for θ.�ey also
consider methods for estimating the distributions of treat-
ment e�ects.�ese are discussed in Abbring andHeckman
().

�e normal selection model produces partial identi�-
cation of a generalized Roymodel and full identi�cation of
a Roy model under separability and normality. It models
the conditional expectation of U and U given X,Z,D. In
terms of (U-), itmodels the conditionalmean dependence
of Y,Y on D and θ given X and Z. Powell () and
Matzkin () survey methods for producing semipara-
metric versions of these models. Heckman and Vytlacil
(a, Appendix B) or the appendix of Heckman and
Navarro () present a prototypical identi�cation proof
for a general selection model that implements (U-) by
estimating the distribution of θ, assuming θ⊥⊥(X,Z), and
invoking support conditions on (X,Z).
Central to both the selection approach and the instru-

mental variable approach for a model with heterogenous
responses is the probability of selection.�is is an integral
part of the Roy model previously discussed. Let Z denote
variables in the choice equation. Fixing Z at di�erent val-
ues (denoted z), I de�neD(z) as an indicator function that
is “” when treatment is selected at the �xed value of z and
that is “” otherwise. In terms of a separable index model
UD = µD(Z) − V , for a �xed value of z,

D(z) =  [µD(z) ≥ V]

where Z⊥⊥V ∣ X.�us �xing Z = z, values of z do not a�ect
the realizations of V for any value of X. An alternative way
of representing the independence between Z and V given
X due to Imbens and Angrist (), writes that D (z)⊥⊥Z

for all z ∈ Z , whereZ is the support of Z.�e Imbens and
Angrist independence condition for IV is

{D (z)}z∈Z ⊥⊥Z ∣ X.

�us the probabilities that D (z) = , z ∈ Z are not
a�ected by the occurrence of Z. Vytlacil () estab-
lishes the equivalence of these two formulations under
general conditions. (See Heckman andVytlacil (b) for
a discussion of these conditions.)

�e method of instrumental variables (IV) postulates
that

(IV-) (Y,Y,{D (z)}z∈Z)⊥⊥Z ∣ X. (Independence)



 P Principles Underlying Econometric Estimators for Identifying Causal Effects

One consequence of this assumption is that E(D ∣ Z) =

P(Z), the propensity score, is random with respect to
potential outcomes.�us (Y,Y)⊥⊥P (Z) ∣ X. So are all
other functions of Z given X.�e method of instrumental
variables also assumes that

(IV-) E(D ∣ X,Z) = P(X,Z) is a nondegenerate function
of Z given X. (Rank Condition)

Alternatively, one can write that Var (E (D ∣ X,Z)) ≠

Var (E (D ∣ X)).
Comparing (IV-) to (M-) in the method of instru-

mental variables, Z is independent of (Y,Y) given X
whereas in matching D is independent of (Y,Y) given
X. So in (IV-), Z plays the role of D in matching condi-
tion (M-). Comparing (IV-) with (M-), in the method
of IV the choice probability Pr(D =  ∣ X,Z) is assumed
to vary with Z conditional on X, whereas in matching,
D varies conditional on X. Unlike the method of control
functions, no explicit model of the relationship between D
and (Y,Y) is required in applying IV.
(IV-) is a rank condition and can be empirically veri-

�ed. (IV-) is not testable as it involves assumptions about
counterfactuals. In a conventional common coe�cient
regression model

Y = α + βD +U,

where β is a constant and where I allow for Cov(D,U) ≠ ,
(IV-) and (IV-) identify β. (β = Cov(Z,Y)

Cov(Z,D) .)When β varies
in the population and is correlated with D, additional
assumptions must be invoked for IV to identify inter-
pretable parameters. Heckman et al. () and Heckman
and Vytlacil (b) discuss these conditions.
Assumptions (IV-) and (IV-), with additional assump-

tions in the case where β varies in the population which I
discuss in this paper, can be used to identify mean treat-
ment parameters. Replacing Y with  (Y ≤ t) and Y with
 (Y ≤ t), where t is a constant, the IV approach allows us
to identify marginal distributions F(y ∣ X) or F(y ∣ X).
In matching, the variation in D that arises a�er con-

ditioning on X provides the source of randomness that
switches people across treatment status. Nature is assumed
to provide an experimental manipulation conditional on
X that replaces the randomization assumed in (R-)–(R-).
When D is perfectly predictable by X, there is no variation
in it conditional on X, and the randomization assumed to
be given by nature in the matching model breaks down.
Heuristically, matching assumes a residual E (X) = D −

E(D ∣ X) that is nondegenerate and is one manifestation
of the randomness that causes persons to switch status. (It
is heuristically illuminating, but technically incorrect to

replace E (X) with D in (R-) or R in (R-) or T in (R-).
In general E (X) is not independent of X even if it is mean
independent.)
In the IV method, it is the choice probability E(D ∣

X,Z) = P (X,Z) that is random with respect to (Y,Y),
not components of D not predictable by (X,Z). Variation
in Z for a �xed X provides the required variation in D that
switches treatment status and still produces the required
conditional independence:

(Y,Y)⊥⊥P(X,Z) ∣ X.

Variation in P(X,Z) produces variations in D that switch
treatment status. Components of variation in D not pre-
dictable by (X,Z) do not produce the required inde-
pendence. Instead, the predicted component provides the
required independence. It is just the opposite in matching.
Versions of the method of control functions use measure-
ments to proxy θ in (U-) and (U-) and remove spurious
dependence that gives rise to selection problems. �ese
are called replacement functions (see Heckman and Robb
a) or control variates (see Blundell and Powell ).

�e methods of replacement functions and proxy vari-
ables all start from characterizations (U-) and (U-). θ is
not observed and (Y,Y) are not observed directly but Y
is observed:

Y = DY + ( −D)Y.

Missing variables θ produce selection bias which creates a
problem with using observational data to evaluate social
programs. From (U-), if one conditions on θ, condition
(M-) for matching would be satis�ed, and hence one
could identify the parameters and distributions that can
be identi�ed if the conditions required for matching are
satis�ed.

�e most direct approach to controlling for θ is to
assume access to a function τ(X,Z,Q) that perfectly prox-
ies θ:

θ = τ(X,Z,Q). ()

�is approach based on a perfect proxy is called the
method of replacement functions by Heckman and Robb
(a). In (U-), one can substitute for θ in terms of
observables (X,Z,Q).�en

(Y,Y)⊥⊥D ∣ X,Z,Q.

It is possible to condition nonparametrically on (X,Z,Q)
and without having to know the exact functional form of
τ. θ can be a vector and τ can be a vector of functions.�is
method has been used in the economics of education for
decades (see the references in Heckman and Robb a).
If θ is ability and τ is a test score, it is sometimes assumed
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that the test score is a perfect proxy (or replacement func-
tion) for θ and that one can enter it into the regressions of
earnings on schooling to escape the problem of ability bias
(typically assuming a linear relationship between τ and θ).
(�us if τ = α + αX + αQ + αZ + θ, one can write

θ = τ − α − αX − αQ − αZ,

and use this as the proxy function. Controlling for
T,X,Q,Z controls for θ. Notice that one does not need
to know the coe�cients (α, α, α, α) to implement the
method, one can condition on X,Q,Z.) Heckman and
Robb (a) discuss the literature that uses replacement
functions in this way. Olley and Pakes () apply this
method and consider nonparametric identi�cation of the
τ function. Matzkin () provides a rigorous proof of
identi�cation for this approach in a general nonparametric
setting.

�emethodof replacement functions assumes that ()
is a perfect proxy. In many applications, this assumption
is far too strong. More o�en, θ is measured with error.
�is produces a factor model or measurement error model
(Aigner et al. ). Matzkin () surveys this method.
One can represent the factor model in a general way by a
system of equations:

Yj = gj (X,Z,Q, θ, εj) , j = , . . . , J. ()

A linear factormodel separable in the unobservableswrites

Yj = gj (X,Z,Q) + αjθ + εj, j = , . . . , J, ()

where

(X,Z,Q)⊥⊥(θ, εj), εj⊥⊥θ, j = , . . . , J, ()

and the εj are mutually independent. Observe that under
() and (), Yj controlling for X,Z,Q only imperfectly
proxies θ because of the presence of εj. θ is called a fac-
tor, αj factor loadings and the εj “uniquenesses” (see e.g.,
Aigner ).
A large literature, reviewed in Abbring and Heckman

() and Matzkin () shows how to establish iden-
ti�cation of econometric models under factor structure
assumptions. Cunha et al. (), Schennach () and
Hu and Schennach () establish identi�cation in non-
linear models of the form (). (Cunha et al. (, )
apply and extend this approach to a dynamic factor setting
where the θt are time dependent.)�e key to identi�cation
is multiple, but imperfect (because of εj), measurements
on θ from the Yj, j = , . . . , J and X,Z,Q, and possibly
other measurement systems that depend on θ. Carneiro
et al. (), Cunha et al. (, ) and Cunha and
Heckman (, ) apply and develop these methods.

Under assumption (), they show how to nonparametri-
cally identify the econometric model and the distributions
of the unobservables FΘ(θ) and Fξj(εj). In the context of
classical simultaneous equations models, identi�cation is
secured by using covariance restrictions across equations
exploiting the low dimensionality of vector θ compared to
the high dimensional vector of (imperfect) measurements
on it.�e recent literature (Cunha et al. ; Cunha et al.
; Hu and Schennach ) extends the linear model to
a nonlinear setting.

�e recent econometric literature applies in special
cases the idea of the control function principle introduced
in Heckman and Robb (a).�is principle, versions of
which can be traced back to Telser (), partitions θ in
(U-) into two or more components, θ = (θ, θ), where
only one component of θ is the source of bias.�us it is
assumed that (U-) is true, and (U-)′ is also true:

(U-)′ (Y,Y)⊥⊥D ∣ X,Z, θ,

and (U-) holds. For example, in a normal selectionmodel
with additive separability, one can breakU, the error term
associated with Y, into two components:

U = E (U ∣ V) + ε,

where V plays the role of θ and is associated with the
choice equation. Under normality, ε is independent of
E (U ∣ V). Further,

E (U ∣ V) =
Cov(U,V)
Var(V)

V , ()

assuming E(U) =  and E(V) = . Heckman and Robb
(a) show how to construct a control function in the
context of the choice model

D =  [µD(Z) > V] .

Controlling for V controls for the component of θ in
(U-)′ that gives rise to the spurious dependence. �e
Blundell and Powell (, ) application of the con-
trol function principle assumes functional form () but
assumes that V can be perfectly proxied by a �rst stage
equation. �us they use a replacement function in their
�rst stage.�eir method does not work when one can only
condition onD rather than onD∗ = µD (Z)−V instead of
directly measuring it. (Imbens and Newey () extend
their approach. See the discussion in Matzkin ().) In
the sample selection model, it is not necessary to iden-
tify V . As developed in Heckman and Robb (a) and
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Heckman and Vytlacil (a, b), under additive separa-
bility for the outcome equation for Y, one can write

E (Y ∣ X,Z,D = ) = µ(X) + E (U ∣ µD(Z) > V)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
control function

,

so the analyst “expects out” rather than solve out the e�ect
of the component of V on U and thus control for selec-
tion bias under the maintained assumptions. In terms of
the propensity score, under the conditions speci�ed in
Heckman and Vytlacil (a), one may write the preced-
ing expression in terms of P(Z):

E (Y ∣ X,Z,D = ) = µ(X) + K(P(Z)),

where K(P(Z)) = E(U ∣ X,Z,D = ). It is not literally
necessary to know V or be able to estimate it.�e Blundell
and Powell (, ) application of the control func-
tion principle assumes that the analyst can condition on
and estimate V .

�e Blundell and Powell method and the method
of Imbens and Newey () build heavily on () and
implicitly make strong distributional and functional form
assumptions that are not intrinsic to the method of control
functions. As just noted, their method uses a replacement
function to obtain E(U ∣ V) in the �rst step of their pro-
cedures. �e general control function method does not
require a replacement function approach. �e literature
has begun to distinguish between the more general control
function approach and the control variate approach that
uses a �rst stage replacement function.
Matzkin () develops the method of unobservable

instruments which is a version of the replacement function
approach applied to 7nonlinear models. Her unobserv-
able instruments play the role of covariance restrictions
used to identify classical simultaneous equations models
(see Fisher, ). Her approach is distinct from and there-
fore complementary with linear factor models. Instead of
assuming (X,Z,Q)⊥⊥ (θ, εj), she assumes in a two equa-
tion system that (θ, ε) ⊥⊥ Y ∣ Y,X,Z. See Matzkin
().
I do not discuss panel data methods in this paper.�e

most commonly used panel data method is di�erence-in-
di�erences as discussed in Heckman and Robb (a),
Blundell et al. (), Heckman et al. (), and
Bertrand et al. (), to cite only a few of the key
papers. Most of the estimators I have discussed can
be adapted to a panel data setting. Heckman et al.
() develop di�erence-in-di�erences matching estima-
tors. Abadie () extends this work. (�ere is related
work by Athey and Imbens (), which exposits the
Heckman et al. () di�erence-in-di�erences matching

estimator.) Separability between errors and observables
is a key feature of the panel data approach in its stan-
dard application. Altonji and Matzkin () and Matzkin
() present analyses of nonseparable panel data meth-
ods. Regression discontinuity estimators, which are ver-
sions of IV estimators, are discussed by Heckman and
Vytlacil (b).
Table  summarizes some of the main lessons of this

section. I stress that the stated conditions are necessary
conditions. �ere are many versions of the IV and con-
trol functions principle and extensions of these ideaswhich
re�ne these basic postulates. See Heckman and Vytlacil
(b). Matzkin () is an additional reference on
sources of identi�cation in econometric models.
I next introduce the generalized Roy model and the

concept of the marginal treatment e�ect which helps to
link the econometric literature to the statistical literature.
�e Roy model also provides a framework for thinking
about the di�erence in information between the agents and
the statistician.

Matching
�e method of matching is widely-used in statistics. It is
based on strong assumptions which o�en make its appli-
cation to economic data questionable. Because of its popu-
larity, I single it out for attention.�e method of matching
assumes selection of treatment based on potential out-
comes

(Y,Y)⊥⊥/ D,

so Pr (D =  ∣ Y,Y) depends on Y,Y. It assumes access
to variables Q such that conditioning on Q removes the
dependence:

(Y,Y)⊥⊥D ∣ Q. (Q-)

�us,

Pr (D =  ∣ Q,Y,Y) = Pr (D =  ∣ Q) .

Comparisons between treated and untreated can be made
at all points in the support of Q such that

 < Pr (D =  ∣ Q) < . (Q-)

�emethod does not explicitly model choices of treatment
or the subjective evaluations of participants, nor is there
any distinction between the variables in the outcome equa-
tions (X) and the variables in the choice equations (Z) that
is central to the IVmethod and themethod of control func-
tions. In principle, condition (Q-) can be satis�ed using a
set of variables Q distinct from all or some of the compo-
nents of X and Z.�e conditioning variables do not have
to be exogenous.
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Principles Underlying Econometric Estimators for Identifying Causal Effects. Table  Identifying assumptions under
commonly used methods

Identifying assumptions

Identifies
marginal
distributions?

Exclusion
condition
needed?

Random (Y, Y) ⊥⊥ ξ, ξ =  Ô⇒ A = , ξ =  Ô⇒ A =  Yes No

assignment (full compliance)

Alternatively, if self-selection is random with

with respect to outcomes, (Y, Y) ⊥⊥ D.

Assignment can be conditional on X .

Matching (Y, Y) ⊥⊥Ò D, but (Y, Y) ⊥⊥ D ∣ X , Yes No

 < Pr(D =  ∣ X) <  for all X

So D conditional on X is a nondegenerate random

variable

Control functions (Y, Y) ⊥⊥Ò D ∣ X , Z, but (Y, Y) ⊥⊥ D ∣ X , Z, θ. Yes Yes

and extensions The method models dependence induced by θ (for

or else proxies θ (replacement function) semiparametric

Version (i) Replacement functions (substitute models)

out θ by observables) (Blundell and Powell, ;

Heckman and Robb, b; Olley and Pakes,

).

Factor models Carneiro et al., () allow for

measurement error in the proxies.

Version (ii) Integrate out θ assuming θ ⊥⊥ (X , Z)

(Aakvik et al., ; Carneiro et al., )

Version (iii) For separable models for mean

response expect θ conditional on X , Z, D as in

standard selection models (control functions in

the same sense of Heckman and Robb).

IV (Y, Y) ⊥⊥Ò D ∣ X , Z, but (Y, Y) ⊥⊥ Z ∣ X , Yes Yes

Pr(D =  ∣ Z) is a nondegenerate function of Z

(Y , Y) are potential outcomes that depend on X

D =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

 if assigned (or choose) status 

 otherwise

Z are determinants of D, θ is a vector of unobservables

For random assignments, A is a vector of actual treatment status. A =  if treated; A =  if not.

ξ =  if a person is randomized to treatment status; ξ =  otherwise (Heckman and Vytlacil b)

From condition (Q-) one recovers the distributions of
Y and Y given Q – Pr (Y ≤ y ∣ Q = q) = F (y ∣ Q = q)

and Pr (Y ≤ y ∣ Q = q) = F (y ∣ Q = q) – but not the
joint distribution F, (y, y ∣ Q = q), because the ana-
lyst does not observe the same persons in the treated

and untreated states. �is is a standard evaluation prob-
lem common to all econometric estimators. Methods
for determining which variables belong in Q rely on
untested exogeneity assumptions which we discuss in this
section.
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OLS is a special case of matching that focuses on the
identi�cation of conditional means. In OLS linear func-
tional forms are maintained as exact representations or
valid approximations. Considering a common coe�cient
model, OLS writes

Y = πQ +Dα +U, (Q-)

where α is the treatment e�ect and

E (U ∣ Q,D) = . (Q-)

�e assumption is made that the variance-covariance
matrix of (Q,D) is of full rank:

Var (Q,D) full rank. (Q-)

Under these conditions, one can identify α even though D
and U are dependent: D⊥⊥/ U. Controlling for the observ-
ableQ eliminates any spurious mean dependence between
D and U: E (U ∣ D) ≠  but E (U ∣ D,Q) = . (Q-) is
the linear regression counterpart to (Q-). (Q-) is the lin-
ear regression counterpart to (Q-). Failure of (Q-) would
mean that using a nonparametric estimator onemight per-
fectly predict D given Q, and that Pr (D =  ∣ Q = q) = 
or . (�is condition might be met only at certain values
of Q = q. For certain parameterizations (e.g., the linear
probability model), onemay obtain predicted probabilities
outside the unit interval.)
Matching can be implemented as a nonparametric

method.When this is done, the procedure does not require
speci�cation of the functional form of the outcome equa-
tions. It enforces the requirement that (Q-) be satis�ed
by estimating functions pointwise in the support of Q.
Assume that Q = (X,Z) and that X and Z are the same
except where otherwise noted.�us I invoke assumptions
(M-) and (M-) presented in section “7�e Basic Princi-
ples Underlying the Identi�cation of the Leading Econo-
metric Evaluation Estimators”, even though in principle
one can use a more general conditioning set.
Assumptions (M-) and (M-) or (Q-) and (Q-) rule

out the possibility that a�er conditioning on X (or Q),
agents possess more information about their choices than
econometricians, and that the unobserved information
helps to predict the potential outcomes. Put another way,
the method allows for potential outcomes to a�ect choices
but only through the observed variables, Q, that predict
outcomes. �is is the reason why Heckman and Robb
(a, b) call the method selection on observables.
Heckman and Vytlacil (b) establish the following

points. () Matching assumptions (M-) and (M-) generi-
cally imply a �at MTE in uD , i.e., they assume that E(Y −
Y ∣ X = x,UD = uD) does not depend on uD.�us the
unobservables central to the Roy model and its extensions

and the unobservables central to the modern IV litera-
ture are assumed to be absent once the analyst conditions
on X. (M-) implies that all mean treatment parameters
are the same. () Even if one weakens (M-) and (M-) to
mean independence instead of full independence, generi-
cally the MTE is �at in uD under the assumptions of the
nonparametric generalized Roy model developed in sec-
tion “7An Index Model of Choice and Treatment E�ects:
De�nitions and Unifying Principles”, so again all mean
treatment parameters are the same. () IV and match-
ing make distinct identifying assumptions even though
they both invoke conditional independence assumptions.
() Comparing matching with IV and control function
(sample selection)methods, matching assumes that condi-
tioning on observables eliminates the dependence between
(Y,Y) and D.�e control function principle models the
dependence. () Heckman and Navarro () and Heck-
man and Vytlacil (b) demonstrate that if the assump-
tions of the method of matching are violated, the method
can produce substantially biased estimators of the param-
eters of interest. () Standard methods for selecting the
conditioning variables used in matching assume exogene-
ity. Violations of the exogeneity assumption can produce
biased estimators.
Nonparametric versions ofmatching embodying (M-)

avoid the problem of making inferences outside the sup-
port of the data.�is problem is implicit in any applica-
tion of least squares. Figure  shows the support problem
that can arise in linear least squares when the linearity of
the regression is used to extrapolate estimates determined
in one empirical support to new supports. Careful atten-
tion to support problems is a virtue of any nonparamet-
ric method, including, but not unique to, nonparametric
matching. Heckman, Ichimura, Smith, and Todd ()

X

Y

True function
Y = g(X) + U

Data

Least squares approximating line
Y = ΠX + V

Principles Underlying Econometric Estimators for Identify-
ing Causal Effects. Fig.  The least squares extrapolation prob-
lem avoided by using nonparametric regression or matching
(Heckman and Vytlacil b)
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show that the bias from neglecting the problem of lim-
ited support can be substantial. See also the discussion in
Heckman, LaLonde, and Smith ().

Summary
�is paper exposits the basic economic model of causal-
ity and compares it to models in statistics. It exposits the
key identifying assumptions of commonly used econo-
metric estimators for causal inference.�e emphasis is on
the economic content of these assumptions. I discuss how
matching makes strong assumption about the information
available to economist/statistician.

Acknowledgments
University of Chicago, Department of Economics,  E.
th Street, Chicago IL , USA.�is research was sup-
ported by NSF: --, -, and SES- and
NICHD: R-HD-. I thank Mohan Singh, Sergio
Urzua, and Edward Vytlacil for useful comments.

About the Author
Professor Heckman shared the Nobel Memorial Prize
in Economics in  with Professor Daniel McFadden
for his development of theory and methods for ana-
lyzing selective samples. Professor Heckman has also
received numerous awards for his work, including the John
Bates Clark Award of the American Economic Associa-
tion in , the  Jacob Mincer Award for Lifetime
Achievement in Labor Economics, the  University
College Dublin Ulysses Medal, the  Aigner award
from the Journal of Econometrics, and Gold Medal of
the President of the Italian Republic, Awarded by the
International Scienti�c Committee, in . He holds six
honorary doctorates. He is considered to be among the
�ve most in�uential economists in the world, in .
(http://ideas.repec.org/top/top.person.all.html).

Cross References
7Causal Diagrams
7Causation and Causal Inference
7Econometrics
7Factor Analysis and Latent Variable Modelling
7Instrumental Variables
7Measurement Error Models
7Panel Data
7Random Coe�cient Models
7Randomization

References and Further Reading
Aakvik A, Heckman JJ, Vytlacil EJ () Training effects on

employment when the training effects are heterogeneous: an
application to Norwegian vocational rehabilitation programs.
University of BergenWorking Paper , University of Chicago

Aakvik A, Heckman JJ, Vytlacil EJ () Estimating treatment
effects for discrete outcomes when responses to treatment
vary: an application to Norwegian vocational rehabilitation
programs. J Econometrics :–

Abadie A () Bootstrap tests of distributional treatment effects
in instrumental variable models. J Am Stat Assoc :–

Abbring JH, Heckman JJ () Econometric evaluation of social
programs, part III: distributional treatment effects, dynamic
treatment effects, dynamic discrete choice, and general equi-
librium policy evaluation. In: Heckman J, Leamer E (eds)
Handbook of econometrics, vol B. Elsevier, Amsterdam, pp
–

Aigner DJ () The residential electricity time-of-use pricing
experiments: what have we learned? In: Hausman JA, Wise
DA (eds) Social experimentation. University of Chicago Press,
Chicago, pp –

Aigner DJ, Hsiao C, Kapteyn A, Wansbeek T () Latent variable
models in econometrics. In: Griliches Z, Intriligator MD (eds)
Handbook of econometrics, vol , chap . Elsevier, Amsterdam,
pp –

Altonji JG, Matzkin RL () Cross section and panel data esti-
mators for nonseparable models with endogenous regressors.
Econometrica :–

Angrist J, Graddy K, Imbens G () The interpretation of instru-
mental variables estimators in simultaneous equationsmodel-
swith an application to the demand for fish. Rev Econ Stud
:–

Angrist JD, Krueger AB () Empirical strategies in labor eco-
nomics. In: Ashenfelter O, Card D (eds) Handbook of labor
economics, vol A. North-Holland, New York, pp –

Athey S, Imbens GW () Identification and inference in nonlin-
ear difference-indifferences models. Econometrica :–

Barnow BS, Cain GG, Goldberger AS () Issues in the analysis of
selectivity bias. In: Stromsdorfer E, Farkas G (eds) Evaluation
studies, vol . Sage Publications, Beverly Hills, pp –

Barros RP () Two essays on the nonparametric estimation of
economic models with selectivity using choice-based samples.
PhD thesis, University of Chicago

Bertrand M, Duflo E, Mullainathan S () How much should we
trust differences-indifferences estimates? Q J Econ :–

Björklund A, Moffitt R () The estimation of wage gains and
welfare gains in self-selection. Rev Econ Stat :–

Blundell R, Duncan A, Meghir C () Estimating labor supply
responses using tax reforms. Econometrica :–

Blundell R, Powell J () Endogeneity in nonparametric
and semiparametric regression models. In: Dewatripont
LPHM, Turnovsky SJ (eds) Advances in economics and
econometrics: theory and applications, eighth world congress,
vol . Cambridge University Press, Cambridge

Blundell R, Powell J () Endogeneity in semiparametric binary
responsemodels. Rev Econ Stud :–

Carneiro P, Hansen K, Heckman JJ () Removing the veil of igno-
rance in assessing the distributional impacts of social policies.
Swedish Econ Policy Rev :–

Carneiro P, Hansen K, Heckman JJ () Estimating distributions
of treatment effects with an application to the returns to school-
ing and measurement of the effects of uncertainty on college
choice. Int Econ Rev :–

Cunha F, Heckman JJ () Identifying and estimating the distri-
butions of Ex Post and Ex Ante returns to schooling: a survey of
recent developments. Labour Econ :–



 P Principles Underlying Econometric Estimators for Identifying Causal Effects

Cunha F, Heckman JJ () A new framework for the analysis of
inequality. Macroecon Dyn :–

Cunha F, Heckman JJ, Matzkin R () Nonseparable factor anal-
ysis. Unpublished manuscript, University of Chicago, Depart-
ment of Economics

Cunha F, Heckman JJ, Navarro S () Separating uncertainty
fromheterogeneity in life cycle earnings. The  Hicks Lec-
ture. Oxford Economic Papers , –

Cunha F, Heckman JJ, Navarro S () Counterfactual analysis
of inequality and social mobility. In: Morgan SL, Grusky DB,
Fields GS (eds) Mobility and inequality: frontiers of research in
sociology and economics, chap . Standford University Press,
Stanford, pp –

Cunha F, Heckman JJ, Schennach SM () Nonlinear factor anal-
ysis. Unpublished manuscript, University of Chicago, Depart-
ment of Economics, revised 

Cunha F, Heckman JJ, Schennach SM () Estimating the technol-
ogy of cognitive and noncognitive skill formation, Forthcom-
ing. Econometrica

Fisher RA () The design of experiments. Hafner Publishing,
New York

Gerfin M, Lechner M () Amicroeconomic evaluation of the
active labormarket policy in Switzerland. Econ J :–

Heckman JJ () Randomization and social policy evaluation. In:
Manski C, Garfinkel I (eds) Evaluating welfare and training
programs. Harvard University Press, Cambridge, pp –

Heckman JJ () Instrumental variables: a study of implicit behav-
ioral assumptions used inmaking programevaluations. J Hum
Resour :–; addendum published vol.  no.  (Winter
)

Heckman JJ () Econometric causality. Int Stat Rev :–
Heckman JJ, Ichimura H, Smith J, Todd PE () Characteriz-

ing selection bias using experimental data. Econometrica :
–

Heckman JJ, LaLonde RJ, Smith JA () The economics and econo-
metrics of active labor market programs. In: Ashenfelter O,
Card D (eds) Handbook of labor economics, vol A, chap .
North-Holland, New York, pp –

Heckman JJ, Navarro S () Usingmatching, instrumental vari-
ables, and control functions to estimate economic choice
models. Rev Econ Stat :–

Heckman JJ, Navarro S () Dynamic discrete choice and dynamic
treatment effects. J Econometrics :–

Heckman JJ, Robb R (a) Alternative methods for evaluating the
impact of interventions. In: Heckman J, Singer B (eds) Longitu-
dinal analysis of labor market data, vol . Cambridge University
Press, New York, pp –

Heckman JJ, Robb R (b) Alternative methods for evaluating
the impact of interventions: an overview. J Econometrics :
–

Heckman JJ, Robb R (a) Alternative methods for solving the
problem of selection bias in evaluating the impact of treatments
on outcomes. In: Wainer H (ed) Drawing inferences from self-
selected samples. Springer, New York, pp –, reprinted in
, Erlbaum, Mahwah

Heckman JJ, Robb R (b) Postscript: a rejoinder to Tukey. In:
Wainer H (ed) Drawing inferences from self-selected samples.
Springer, New York, pp –, reprinted in , Erlbaum,
Mahwah

Heckman JJ, Smith JA, Clements N () Making the most out
of programme evaluations and social experiments: accounting

for heterogeneity in programme impacts. Rev Econ Stud :
–

Heckman JJ, Urzua S, Vytlacil EJ () Understanding instrumen-
tal variables in models with essential heterogeneity. Rev Econ
Stat :–

Heckman JJ, Vytlacil EJ () Local instrumental variables and
latent variable models for identifying and bounding treatment
effects. Proc Natl Acad Sci :–

Heckman JJ, Vytlacil EJ () Local instrumental variables. In:
Hsiao C, Morimune K, Powell JL (eds) Nonlinear statistical
modeling: proceedings of the thirteenth international sympo-
sium in economic theory and econometrics: essays in honor of
Takeshi Amemiya. Cambridge University Press, New York, pp
–

Heckman JJ, Vytlacil EJ () Structural equations, treatment
effects and econometric policy evaluation. Econometrica
:–

Heckman JJ, Vytlacil EJ (a) Econometric evaluation of social
programs, part I: causal models, structural models and econo-
metric policy evaluation. In: Heckman J, Leamer E (eds)
Handbook of econometrics, vol B. Elsevier, Amsterdam, pp
–

Heckman JJ, Vytlacil EJ (b) Econometric evaluation of social
programs, part II: using the marginal treatment effect to orga-
nize alternative economic estimators to evaluate social pro-
grams and to forecast their effects in new environments. In:
Heckman J, Leamer E (eds) Handbook of econometrics, vol B.
Elsevier, Amsterdam, pp –

Hu Y, Schennach SM () Instrumental variable treatment of non-
classical measurement error models. Econometrica :–

Imbens GW () Nonparametric estimation of average treatment
effects under exogeneity: a review. Rev Econ Stat :–

Imbens GW, Angrist JD () Identification and estimation of local
average treatment effects. Econometrica :–

Imbens GW, Newey WK () Identification and estimation of
triangular simultaneous equations models without additivity.
Technical working paper , National Bureau of Economic
Research

Matzkin RL () Nonparametric estimation of nonadditive ran-
domfunctions. Econometrica :–

Matzkin RL () Nonparametric identification. In: Heckman J,
Leamer E (eds) Handbook of econometrics, vol B. Elsevier,
Amsterdam

Olley GS, Pakes A () The dynamics of productivity in
the telecommunications equipment industry. Econometrica
:–

Pearl J () Causality. Cambridge University Press, Cambridge
Powell JL () Estimation of semiparametric models. In: Engle R,

McFadden D (eds) Handbook of econometrics, vol . Elsevier,
Amsterdam, pp –

Quandt RE () The estimation of the parameters of a linear
regression systemobeying two separate regimes. J Am Stat Assoc
:–

Quandt RE () A new approach to estimating switching regres-
sions. J Am Stat Assoc :–

Roy A () Some thoughts on the distribution of earnings. Oxford
Econ Pap :–

Rubin DB () Estimating causal effects of treatments in random-
ized and nonrandomized studies. J Educ Psychol :–

Rubin DB () Bayesian inference for causal effects: the role of
randomization. Ann Stat :–



Prior Bayes: Rubin’s View of Statistics P 

P

Schennach SM () Estimation of nonlinear models with mea-
surement error. Econometrica :–

Telser LG () Iterative estimation of a set of linear regression
equations. J Am Stat Assoc :–

Vytlacil EJ () Independence, monotonicity, and latent index
models: an equivalence result. Econometrica :–

Prior Bayes: Rubin’s View of
Statistics
Herman Rubin
Purdue University, West Lafayette, IN, USA

Introduction
What is statistics?�e commonway of looking at it is a col-
lection of methods, somehow or other produced, and one
should use one of thosemethods for a given set of data.�e
typical user who has little more than this comes to a statis-
tician asking for THE answer, as if the data are su�cient to
get this without knowing the problem.
No; the �rst thing is to formulate the problem. One

cannot do better than to assume that there is an unknown
state of nature, that there is a probability distribution
of observations given a state of nature, a set of possible
actions, and that each action in each state of nature has
(possibly random) consequences.
Following the von Neumann–Morgenstern ()

axioms for utility, in  (see Rubin a) I was able to
show that if one has a self-consistent evaluation of actions
in each state of nature, the utility function for an unknown
state of nature has to be an integral of the utilities for the
states of nature. Another way of looking at this in the dis-
crete case is that one assigns a weight to each result in each
state of nature, and should choose the action which pro-
duces the best sum; this generalizes to the best value of the
integral.�is is the prior Bayes approach.
Let us simplify to the usual Bayes model; it can be gen-

eralized to include more, and in fact, must be for the in�-
nite parametric (usually called non-parametric) problems
encountered.
So the quantity to be minimized is

∫ ∫ L(ω, q(x))dµ(x∣ω)dξ(ω).

If this integral is �nite, and if, for example, L is positive, the
integration can be interchanged and the result written as

∫ ∫ L(ω, q(x))dϕ(ω∣x)dm(x),

and if the properties of q for di�erent x are unrestricted,
one can (hopefully) use the usual Bayes proceduce of min-
imizing the inner integral.
But this can require a huge amount of computing

power, possibly even exceeding the capacity of the uni-
verse,and su�cient assurance that one has a su�ciently
good approximation to the loss-prior combination. One
use this latter because it is only the product of L and ξ

which is relevant. One can try to approximate, but poste-
rior robustness results are hard, and o�en impossible, to
come by.
On the other hand, the prior Bayes approach can show

what is and what is not important, and can, in many cases,
providemethodswhich are notmuchworse than full Bayes
methods, or at least the approximations made. One might
question how this can be shown, considering that the full
Bayes procedure cannot be calculated; however, a smaller
problemwith one which can be calculatedmight be shown
to come close. Also, one can get procedures which are good
with considerable uncertainty about the prior distribution
of the parameter.

Results and Examples
Some early approaches, some by those not believing in
the Bayes approach, were the empirical Bayes results of
Robbins and his followers. Empirical Bayes extends much
farther now, and it is in the spirit of prior Bayes, as the per-
formance of the procedures is what is considered.�ere is
a large literature on this, and Iwill not go into it in any great
detail.
Suppose we consider the case of the usual test of a

point null, when the distribution is normal. If we assume
the prior is symmetric, we need only consider procedures
which accept if the mean is close enough to the null,
and reject otherwise. If we assume that the prior gives a
point mass at the null, and is otherwise given by a smooth
density, the prior Bayes risk is

ξ({})P(∣X > c∣) + ∫ Q(ω)h(ω)P(∣X∣ ≤ c∣ω)dω,

where Q is the loss of incorrect acceptance.
�is shows that the tails of the prior distribution

are essentially irrelevant if the variance is at all small,
so the prior probability of the null is NOT an impor-
tant consideration. Only the ratio of the probability of
the null to the density at the null of the alternative is
important. �is shows that the large-sample results of
Rubin and Sethuraman () can be a good approxima-
tion for moderate, or even small, samples. It also shows
how the “p-value” should change with the sample size. An
expository paper is in preparation.
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If the null is not a point null, this is still a good approxi-
mation if the width of the null is smaller than the standard
deviation of the observations; if it is not, the problem is
much harder, and the form of the loss-prior combina-
tion under the null becomes of considerable importance.
Again, the prior Bayes approach shows where the prob-
lem lies, in the behavior of the loss-prior combination near
the division point between accepptance and rejection. In
“standard” units, a substantial part of the parameter space
may be involved.
For another example, consider the problem of esti-

mating an in�nite dimensional normal mean with the
covariance matrix a multiple of the identity, or the simi-
lar problem of estimating a spectral density function.�e
�rst problem was considereed by Rubin (b), and was
corrrected in Hui Xu’s thesis in . If one assumes the
prior mean square of the kth mean, or the correspond-
ing Fourier coe�cient, is non-increasing, an empirical
Bayes type result can be obtained, and can be shown to
be asymptotically optimal in the class of “simple” pro-
cedures, which are the ones currently being used with
more stringent assumptions, and which are generally not
as good.�e results are good even if the precise form is not
known, while picking a kernel ismuchmore restrictive and
generally not even asymptotically optimal.
For the latter problem, obtaining a reasonable prior

seems to be extremely di�cult, but the simple procedures
obtained are likely to be rather good even if one is found.
�e positive de�niteness of the Toeplitz matrix of the
covariances is a di�cult condition to work with.
I see a major set of applications to non-parametric

problems, properly called in�nite parametric, problems
such as density estimation, testingwith in�nite dimensional
alternatives, etc. With a large number of dimensions, the
classical approach does not work well, and the only “sim-
ple Bayesian” approaches use priors which look highly
constrained to me.

About the Author
“Professor Rubin has contributed in deep and original
ways to statistical theory and philosophy. �e statistical
community has been vastly enriched by his contribu-
tions through his own research and through his in�uence,
direct or indirect on the research and thinking of others.”
Erich Marchard and William Strawdeman, A festschri� for
Herman Rubin, A. DasGupta (ed.), p. . “He is well known
for his broad ranging mathematical research interests and
for fundamental contributions in Bayesian decision theory,
in set theory, in estimations for simultaneous equations,
in probability and in asymptotic statistics.” Mary Ellen
Block, Ibid. p. . Professor Rubin is a Fellow of the IMS,

and a Fellow of the AAAS (American Association for the
Advancement of Science).

Cross References
7Bayesian Analysis or Evidence Based Statistics?
7Bayesian Statistics
7Bayesian Versus Frequentist Statistical Reasoning
7Model Selection
7Moderate Deviations
7Statistics: An Overview
7Statistics: Nelder’s View

References and Further Reading
Rubin H (a) A weak system of axioms for “rational” behavior and

the non-separability of utility from prior. Stat Decisions :–
Rubin H (b) Robustness in generalized ridge regression and

related topics. Third Valencia Symp Bayesian Stat :–
Rubin H, Sethuraman J () Bayes risk efficiency. Sankhya A

:–
von Neumann J, Morgenstern O () Theory of games and eco-

nomic behavior. Princeton university press, Princeton
Xu H () Some applications of the prior Bayes approach.

Unpublished thesis

Probabilistic Network Models

Ove Frank
Professor Emeritus
Stockholm University, Stockholm, Sweden

A network on vertex set V is represented by a function y
on the set V of ordered vertex pairs.�e function can be
univariate or multivariate and its variables can be numeri-
cal or categorical. A graphGwith vertex setV and edge set
E inV is represented by a binary function y = {(u, v, yuv) :
(u, v) ∈ V} where yuv indicates whether (u, v) ∈ E.
If V = {, . . . ,N} and vertices are ordered according to
their labels, y can be given as an N by N adjacency matrix
y = (yuv). Simple undirected graphs have yuv = yvu and
yvv =  for all u and v. Colored graphs have a categori-
cal variable y with the categories labeled by colors. Graphs
with more general variables y are called valued graphs or
networks. If Y is a random variable with outcomes y rep-
resenting networks in a speci�ed family of networks, the
probability distribution induced on this family is a prob-
abilistic network model and Y is a representation of a
random network.
Simple random graphs are de�nedwith uniformdistri-

butions or Bernoulli distributions. Uniformmodels assign
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equal probabilities to all graphs in a speci�ed �nite fam-
ily of graphs, such as all graphs of order N and sizeM, or
all connected graphs of order N, or all trees of order N.
Bernoulli graphs (Bernoulli digraphs) have edge indicators
that are independent Bernoulli variables for all unordered
(ordered) vertex pairs.�ere is an extensive literature on
such random graphs, especially on the simplest Bernoulli
(p) graph, which has a common edge probability p for all
vertex pairs. An extension of a �xed graphG to a Bernoulli
(G, α, β) graph is a Bernoulli graph that is obtained by
independently removing edges inGwith probability α and
independently inserting edges in the complement of G
with probability β. Suchmodels have been applied to study
reliability problems in communication networks. Attempts
tomodel theweb have recently contributed to an interest in
random graph models with speci�ed degree distributions
and random graph processes for very large dynamically
changing graphs.

�e literature on social networks describes models for
�nite random digraphs on V = {, . . . ,N} in which dyads
(Yuv,Yvu) for u < v are independent and have probabilities
that depend on parameters governing in- and out-edges of
each vertex and mutual edges of each vertex pair. Special
cases of such models with independent dyads are obtained
by assuming homogeneity for the parameters of di�erent
vertices or di�erent groups of vertices. Extensions to mod-
elswith dependent dyads includeMarkov graphs that allow
dependence between incident dyads. Other extensions
are log-linear models that assume that the log-likelihood
function is a linear function of speci�ed network statis-
tics chosen to re�ect various properties of interest in the
network.
Statistical analysis of network data comprise explo-

ratory tools for selecting appropriate probabilistic network
models as well as con�rmatory tools for estimating and
testing various models. Many of these tools use computer
intensive methods.
Applications of probabilistic networkmodels appear in

many di�erent areas in which relationships between the
units studied are essential for an understanding of their
properties and characteristics. �e social and behavioral
sciences have contributed to the development of many
network models for the study of social interaction, friend-
ship, dominance, co-operation and competition. �ere
are applications to criminal networks and co-o�ending,
communication and transportation networks, vaccination
programs in epidemiology, information retrieval and orga-
nizational systems, particle systems in physics, biometric
cell systems. Random graphs and random �elds are also
theoretically developed in computer science, mathemat-
ics, and statistics. �ere is an exciting interplay between

model development and new applications in a variety of
important areas.
Many references to the literature on graphs, random

graphs, and random networks are provided by the follow-
ing sources.

About the Author
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Introduction
Probability on groups enables us to study the interaction
between chance and symmetry. In this article I’ll focus
on the case where symmetry is generated by continuous
groups, speci�cally compact Lie groups.�is class contains
many examples such as the n-torus, special orthogonal
groups SO(n) and special unitary groups SU(n) which
are important in physics and engineering applications. It is
also a very good context to demonstrate the key role played
by non-commutative harmonic analysis via group repre-
sentations.�e classic treatise (Heyer ) by Heyer gives
a systematic mathematical introduction to this topic while
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Diaconis () presents a wealth of concrete examples in
both probability and statistics.
For motivation, let ρ be a probability measure on the

real line. Its characteristic function ρ̂ is the Fourier trans-
form ρ̂(u) = ∫R e

iuxρ(dx) and ρ̂ uniquely determines ρ.
Note that themappings x → eiux are the irreducible unitary
representations of R.
Now let G be a compact Lie group and ρ be a prob-

ability measure de�ned on G.�e group law of G will be
written multiplicatively. If we are given a probability space
(Ω,F ,P) then ρ might be the law of a G-valued random
variable de�ned on Ω.�e convolution of two such mea-
sures ρ and ρ is the unique probability measure ρ ∗ ρ
on G such that

∫
G
f (σ)(ρ ∗ ρ)(dσ) = ∫

G
∫
G
f (στ)ρ(dσ)ρ(dτ),

for all continuous functions f de�ned on G. If X and
X are independent G-valued random variables with laws
ρ and ρ (respectively), then ρ ∗ ρ is the law of XX.

Characteristic Functions
Let Ĝ be the set of all irreducible unitary representations
of G. Since G is compact, Ĝ is countable. For each π ∈

Ĝ, σ ∈ G, π(σ) is a unitary (square) matrix acting on a
�nite dimensional complex inner product spaceVπ having
dimension dπ . Every group has the trivial representation δ

acting on C by δ(σ) =  for all σ ∈ G.�e characteristic
function of the probability measure ρ is the matrix-valued
function ρ̂ on Ĝ de�ned uniquely by

⟨u, ρ̂(π)v⟩ = ∫
G
⟨u, π(τ)v⟩ρ(dτ),

for all u, v ∈ Vπ . ρ̂ has a number of desirable properties
(Siebert ). It determines ρ uniquely and for all π ∈ Ĝ:

ρ̂ ∗ ρ(π) = ρ̂(π)ρ̂(π).

In particular δ̂ = .
Lo and Ng () considered a family of matrices

(Cπ , π ∈ Ĝ) and asked when there is a probability mea-
sure ρ on G such that Cπ = ρ̂(π).�ey found a necessary
and su�cient condition to be that Cδ =  and that the fol-
lowing non-negativity condition holds: for all families of
matrices (Bπ , π ∈ Ĝ) where Bπ acts on Vπ and for which
∑π∈Sπ

dπtr(π(σ)Bπ) ≥  for all σ ∈ G and all �nite subsets
Sπ of Vπ we must have∑π∈Sπ

dπtr(π(σ)CπBπ) ≥ .

Densities
Every compact group has a bi-invariant �nite Haar mea-
sure which plays the role of Lebesgue measure on Rd

and which is unique up to multiplication by a positive
real number. It is convenient to normalise this measure

(so it has total mass ) and denote it by dτ inside inte-
grals of functions of τ. We say that a probability mea-
sure ρ has a density f if ρ(A) = ∫A f (τ)dτ for all
Borel sets A in G. To investigate existence of densities
we need the Peter–Weyl theorem that the set of functions

{d


π πij;  ≤ i, j ≤ dπ , π ∈ Ĝ} are a complete orthonormal

basis for L(G,C). So any f ∈ L(G,C) can be written

f (σ) = ∑
π∈Ĝ
dπtr(π(σ )̂f (π)), ()

where f̂ (π) = ∫G f (τ)π(τ−)dτ is the Fourier trans-
form. In Applebaum () it was shown that ρ has a
square-integrable density f (which then has an expan-
sion as in ()) if and only if ∑π∈Ĝ dπtr(ρ̂(π)ρ̂(π)∗) < ∞

where ∗ is the usual matrix adjoint. A su�cient con-
dition for ρ to have a continuous density is that

∑π∈Ĝ d


π ∣tr(ρ̂(π)ρ̂(π)∗)∣


 < ∞ in which case the series

on the right hand side of (.) converges absolutely and
uniformly (see Proposition .. on pp. – of Faraut
[]).

Conjugate Invariant Probabilities
Many interesting examples of probability measures are
conjugate invariant, i.e., ρ(σAσ−) = ρ(A) for all σ ∈ G. In
this case there exists cπ ∈ C such that ρ̂(π) = cπIπ where
Iπ is the identity matrix in Vπ (Said et al. ). If a den-
sity exists it takes the form f (σ) = ∑π∈Ĝ dπcπ χπ(σ), where
χπ(σ) = tr(π(σ)) is the group character.

Example  GaussMeasure.Here cπ = eσ κπ whereκπ ≤  is
the eigenvalue of the group Laplacian corresponding to the
Casimir operator κπIπ onVπ and σ > . For example ifG =

SU() then it can be parametrized by the Euler angles ψ, ϕ
and θ, Ĝ = Z+, κm = −m(m+) and we have a continuous
density depending only on  ≤ θ ≤ π

 :

f (θ) =
∞
∑
m=

(m + )e−σ m(m+) sin((m + )θ)

sin(θ)
.

Example  Laplace Distribution.�is is a generalization
of the double exponential distribution on R (with equal
parameters). In this case cπ = ( − βκπ)

− where β > 
and κπ is as above.

Infinite Divisibility
A probability measure ρ on G is in�nitely divisible if for
each n ∈ N there exists a probability measure ρ


n on G

such that the nth convolution power (ρ

n )
∗n

= ρ. Equiv-

alently ρ̂(π) =
̂
ρ

n (π)n for all π ∈ Ĝ. If G is connected

as well as compact any such ρ can be realised as µ in
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a weakly continuous convolution semigroup of probabil-
ity measures (µt , t ≥ ). For a general Lie group, such
an embedding may not be possible and the investigation
of this question has generated much research over more
than  years (McCrudden ). �e structure of con-
volution semigroups has been intensely analyzed. �ese
give the laws of group-valued 7Lévy processes, i.e., pro-
cesses with stationary and independent increments (Liao
). In particular there is a Lévy–Khintchine type for-
mula (originally due to G.A.Hunt) which classi�es these in
terms of the structure of the in�nitesimal generator of the
associatedMarkov semigroup that acts on the space of con-
tinuous functions. One of the most important examples is
Brownianmotion (see7BrownianMotion andDi�usions)
and this has a Gaussian distribution. Another important
example is the compound Poisson process (see 7Poisson
Processes)

Y(t) = XX⋯XN(t) ()

where (Xn,n ∈ N) is a sequence of i.i.d. random variables
having common law ν (say) and (N(t), t ≥ ) is an inde-
pendent Poisson process of intensity λ > . In this case

µt = ∑
∞
n= e

−λt (λt)
n

n!
ν
∗n. Note that µt does not have a

density and it is conjugate invariant if ν is.

Applications
�ere is intense interest among statisticians and engineers
in the deconvolution problem on groups.�e problem is to
estimate the signal density fX from the observed density fY
when the former is corrupted by independent noise having
density fє , so the model is Y = Xє and the inverse prob-
lem is to untangle fY = fX ∗ fє . Inverting the characteristic
function enables the construction of non-parametric esti-
mators for fX and optimal rates of convergence are known
for these when fє has certain smoothness properties (Kim
andRichards ; Koo andKim ). In Said et al. ()
the authors consider the problem of decompounding, i.e., to
obtain non-parametric estimates of the density of X in ()
based on i.i.d. observations of a noisy version of Y : Z(t) =
єY(t), where є is independent of Y(t).�is is applied to
multiple scattering of waves from complexmedia by work-
ing with the group SO() which acts as rotations on the
sphere.
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Sources of Uncertainty in Statistics
Statistics is o�en de�ned as the science of the methods of
data collection and analysis, but from a somewhat more
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conceptual perspective, statistics is also the science of
methods dealing with uncertainty.�e sources of uncer-
tainty in statistics may be divided into two groups. Uncer-
tainty associated with the data one has and uncertainty
associated with respect to the mechanism which produced
the data.�ese kinds of uncertainty are o�en interrelated
in practice, yet it is useful to distinguish them.

Uncertainties in Data
Onemay distinguish twomain sources of uncertainty with
respect to data. One is related to measurement error, the
other to sampling error.
Measurement error is the di�erence between the actual

measurement obtained and the true value of what was
measured. �is applies to both cases when a numerical
measurement taken (typical in the physical, biological,
medical, psychological sciences) but also to qualitative
observations when subjects are classi�ed (typical in the
social and behavioral sciences), except that in the latter
case, instead of the numerical value of the error, its lack
or presence is considered. In the former case, it is o�en
observed that the errors are approximately distributed
as normal, even if very precise and expensive measur-
ing instruments are used. In the latter case, the existence
of measurement error, that is misclassi�cation, is o�en
attributed to self-re�ection of the human beings observed.
In both situations, the lack of understanding of the precise
mechanisms behind measurement errors suggest apply-
ing a stochastic model assuming that the result of the
measurement is the sum of the true value plus a random
error.
Sampling error stems from the uncertainty of how our

results would di�er, if a sample that is di�erent from the
actual one were observed. It is usually associated with the
entire sample (and not with the individual observations)
and is measured as the di�erence between the estimates
obtained from the actual sample, and the census value that
could be obtained if the same data collectionmethodswere
applied to the entire population.�e census value may or
may not be equal to the true population parameter of inter-
est. For example, if the measurement error is assumed to
be constant, then the census value di�ers from the popu-
lation value by this quantity. Usually, the likely size of the
sampling error is characterized by the standard deviation
(standard error) of the estimates. Under many common
random sampling schemes, the distribution of the esti-
mates is normal, and the choice of the standard error, as
a characteristic quantity, is well justi�ed.

Uncertainties in Modeling
While uncertainties associated with the data seem to be
inherent characteristics, uncertainties related to modeling

are more determined by our choice of models, which
depends very o�en on the existing knowledge regarding
the research problem at hand.�e most common assump-
tion is that the quantity of interest has a speci�ed, though
unknown to the researcher, distribution, that may or may
not be assumed to belong to some parametric family of
distributions. A further possible choice, gaining increasing
popularity during the recent decades, is that the distribu-
tion of interest belongs to a parametric family, though not
with a speci�ed parameter value, rather characterized by
a probability distribution (the prior distribution) on the
possible parameter values.�e former view is adopted in
frequentist statistics and the latter view is the Bayesian
approach to statistics.
To model uncertainty, frequentist statistics uses fre-

quentist or classical probability theory, while 7Bayesian
statistics o�en relies on a subjective concept of probability.

Classical and Frequentist Probability
Historically, there are two sources of modern probability
theory. One is the theory of gambling, where themain goal
was to determine how probable certain outcomes were in
a game of chance.�ese problems could be appropriately
handled under the assumptions that all possible outcomes
of an experiment (rolling a die, for example) are equally
likely and probabilities could be determined as the ratio of
the number of outcomes with a certain characteristic, to
the total number of outcomes.�is interpretation of prob-
ability is called classical probability. Questions related to
gambling also made important contributions to develop-
ing the concepts of Boolean algebra (the algebra of events
associated with an experiment), conditional probability
and in�nite sequences of random variables (which play an
important role in the frequentist interpretation of proba-
bility see below).�e other source of modern probability
theory is the analysis of errors associated with a measure-
ment.�is led, among others, to the understanding of the
central role played by the normal distribution.
It is remarkable, that the main concepts and results of

these two apparently very di�erent �elds, all may be based
on one set of axioms, proposed by Kolmogorov and given
in the next section.

The Kolmogorov Axioms
�e axioms, summarizing the concepts developed within
the classical and frequentist approaches, apply to experi-
ments thatmay be repeated in�nitelymany times, where all
circumstances of the experiment are supposed to remain
constant. An experiment may be identi�ed with its pos-
sible outcomes. Certain subsets of outcomes are called
events, with he assumption that no outcome (the impos-
sible event) and all the outcomes (the certain event) are
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events and countable unions or intersections of events
are also events. �is means that the set of events asso-
ciated with an experiment form a sigma-�eld. �en the
Kolmogorov axioms (basic assumptions that are accepted
to be true) are the following:
For any event A, its probability

P(A) ≥ 

For the certain event Ω

P(Ω) = 

For a series Ai, i = , , . . . of pairwise disjoint events

Σi=,,. . .P(Ai) = P(Σi=,,. . .Ai)

�e heuristic interpretation is that the probability of
an event manifests itself via the relative frequency of this
event over long series of repetitions of the experiment.
�is is why this approach to probability is o�en called fre-
quentist probability. Indeed, the axioms are true for relative
frequencies instead of probabilities.

The Laws of Large Numbers
�e link between the heuristic notion of probability and
themathematical theory of probability is established by the
result that if fn(A) denotes the frequency of event A a�er
n repetitions of an experiment, then

fn(A)/n→ P(A),

where the convergence → may be given various interpre-
tations. More generally, if X is a random variable (that is,
such a function that X ∈ I is an event for every interval
I), then for the average of n independent observations of
X, Xn,

Xn → E(X),

where E(X) is the expected value of X. Here, convergence
is in probability (weak law) or almost surely (strong law)
(See also 7Laws of Large Numbers).

The Central Limit Theorem
�is fundamental result explains why the normal distri-
bution plays such a central role of statistics. Many of the
statistics are sample averages and for their asymptotic dis-
tributions the following result holds. If V(X) denotes the
variance of X, then the asymptotic distribution of

Xn − E(X)
√
V(X)/n

is standard normal (see also 7Central Limit�eorems).

Subjective Probability
�is interpretation of the concept of probability associates
it with the strength of trust or belief that a person has in the
occurrence of an event. Such beliefs manifest themselves,
for example, in betting preferences: out of two events, a
rational person would have a betting preference for the
one with which he/she associates a larger subjective prob-
ability. A fundamental di�erence between frequentist and
subjective probability is that the latter may also be applied
to experiments and events that may not be repeated many
times. Of course, the subjective probabilities of di�erent
individuals may be drastically di�erent from each other
and it has been demonstrated repeatedly that the subjec-
tive probabilities an individual associates with di�erent
events, may not be logically consistent. Bayesian statis-
tics sometimes employs the elicitation of such subjective
probabilities to construct a prior distribution.
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Five thousand years ago dice were invented in India (David
).�is fact implies that their users had at least a com-
mon sense approach to the idea of probability.�ose dice
were not the contemporary cubical standard dice, but fruit
stones or animal bones (Dandoy ).�ey must surely
have been used for fun and gambling as well as for fortune-
telling practices. �e worries about the future and the
absurd idea that the world was causally guided by super-
natural forces led those people to a belief in the explanatory
power of rolling dice.
In fact, cosmogonical answers were the �rst attempt to

explain in a causal way the existence of things and beings.
�e Greek creation myth involved a game of dice between
Zeus, Poseidon, andHades. Also in the classic Hindu book
Mahabharata (section “Sabha-parva”), we can �nd the use
of dice for gambling. But in both cases there is no theory
regarding probability in dice, just their use “for fun.”
Later, and beyond myths, Aristotle was the strongest

defender of the causal and empirical approach to reality
(Physics, II, –) although he considered the possibility of
chance, especially the problem of the game of dice (On
Heavens, II, a) and probabilities implied in it.�ese
ideas had nothing to do with those about atomistic chance
by Leucippus and Democritus nor Lucrecius’ controver-
sial clinamen’s theory. Hald () a�rms the existence of
probabilistic rather thanmathematical thought inClassical
Antiquity; we can accept that some authors (like Aristotle)
were worried about the idea of chance (as well as about the
primordial emptiness and other types of conceptual cul-
de-sac), but they made no formal analysis of it. Later, we
can �nd traces of interest in the moral aspects of gambling
with dice in Talmudic (Babylonian Talmud, Book : Tract
Sanhedrin, chapter III, Mishnas I to III) and Rabbinical
texts, and we know that in , Bishop Wibolf of Cambrai
calculated  diverse ways of playing with three dice. De
Vetula, a Latin poem from the thirteenth century, tells us of

 possibilities. But the �rst occurrence of combinatorics
per se arose from Chinese interest in future prediction
through the  hexagrams of the I Ching (previously eight
trigrams derived from four binary combinations of two
elemental forces, yin and yang).
In  Luca Paccioli de�ned the basic principles of

algebra and multiplication tables up to ×  in his book
Summa de arithmetica, geometria, proportioni e propor-

tionalita. He posed the �rst serious statistical problem of
two men playing a game called “balla,” which is to end
when one of them has won six rounds. However, when
they stop playing A has only won �ve rounds and B three.
How should they divide the wager? It would be another
 years before this problem was solved.
In  Girolamo Cardano wrote the books Ars magna

(the great art) and Liber de ludo aleae (the book on games
of chance). �is was the �rst attempt to use mathemat-
ics to describe statistics and probability, and accurately
described the probabilities of throwing various numbers
with dice. Galileo expanded on this by calculating prob-
abilities using two dice. At the same time the quanti�ca-
tion of all aspects of daily life (art, music, time, space)
between the years  and made possible the numer-
ical analysis of nature and, consequently, the discovery of
the distribution of events and their rules (Crosby ).
It was �nally Blaise Pascal who re�ned the theories

of statistics and, with Pierre de Fermat, solved the “balla”
problem of Paccioli (Devlin ). All these paved the way
for modern statistics, which essentially began with the use
of actuarial tables to determine insurance for merchant
ships (Hacking , ). Pascal was also the �rst to apply
probability studies to the theory of decision (see his Pen-
sées, ), curiously, in the �eld of religious decisions. It
is in this historical moment that the Latin term “proba-
bilis” acquires its actual meaning, evolving from “worthy
of approbation” to “numerical assessment of likelihood on
a determined scale” (Moussy ).
In , Antoine Arnauld and Pierre Nicole published

the in�uentialLalogiqueoul’artdepenser,wherewecan�nd
statistical probabilities. Games and their statistical roots
worried people like Cardano, Pascal, Fermat, and Huygens
(Weatherford ), although all of them were immersed
in a strict mechanistic paradigm. Huygens is considered
the �rst scientist interested in scienti�c probability, and in
 he publishedDe ratiotiniis in aleae ludo. In  Pierre
Raymond de Montmort published his Essay d’Analyse sur
les Jeux deHazard, probably the �rst comprehensive text on
probability theory. Itwas thenext step a�erPascal’sworkon
combinatoricsanditsapplicationtothesolutionofproblems
on games of chance. Later, DeMoivre wrote the in�uential
Demensurasortis(),andyearslater,Laplacepublished
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hisPhilosophicalEssayAboutProbability.Inthes,Daniel
Bernoulli (Jacob Bernoulli’s nephew) developed the idea
of utility as the mathematical combination of the quantity
and perception of risk. Gottfried Leibniz at the beginning
of the eighteenth century argued in several of his writings
against the ideaofchance,defendingdeterministic theories.
According to him, chance was not part of the true nature
of reality but the result of our incomplete knowledge. In
this sense, probability is the estimation of facts that could
be completely known and predicted, not the basic nature
of things. Even morality was guided by natural laws, as
ImmanuelKantarguedinhisFoundationsoftheMetaphysics
of Morals ().
In  an in�uential paper written by the Reverend

�omas Bayeswas published posthumously. Richard Price,
who was a friend of his, worked on the results of his
e�orts to �nd the solution to the problem of computing
a distribution for the parameter of a 7binomial distribu-
tion: An Essay towards solving a Problem in the Doctrine of
Chances. Proposition  in the essay represented the main
result of Bayes. Degrees of belief are therein considered
as a basis for statistical practice. In a nutshell, Bayes pro-
posed a theorem in which “probability” is de�ned as an
index of subjective con�dence, at the same time taking
into account the relationships that exist within an array of
simple and conditional probabilities. 7Bayes’ theorem is a
tool for assessing how probable evidence can make a given
hypothesis (Swinburne ). So, we can revise predic-
tions in the light of relevant evidence and make a Bayesian
inference, based on the assignment of some a priori dis-
tribution of a parameter under investigation (Stigler ).
�e classical formula of Bayes’ rule is:

P(A∣B) =
P(B∣A)P(A)

P(B)
,

where our posterior belief P(A∣B) is calculated by multi-
plying our prior belief P(A) by the likelihood P(B∣A) that
B will occur if A is true.�is classical version of Bayesian-
ism had a long history, beginning with Bayes and con-
tinuing through Laplace to Je�reys, Keynes, and Carnap
in the twentieth century. Later, in the s, a new type
of Bayesianism appeared, the “subjective Bayesianism” of
Ramsey and De Finetti (Ramsey ; de Finetti ;
Savage ).
At the end of the nineteenth century, a lot of things

were changing in the scienti�c and philosophical arena.
�e end of the idea of “causality” and the con�icts about
observation lay at the heart of the debate. Gödel attacked
Hilbert’s axiomatic approach tomathematics and Bertrand
Russell, as clever as ever, told us: “�e law of causality (. . .)
is a relic of a bygone age, surviving, like themonarchy, only

because it is erroneously supposed to do no harm (. . .)�e
principle “same cause, same e�ect,” which philosophers
imagine to be vital to science, is therefore utterly otiose”
(Suppes , p. ). Nevertheless, scientists like Einstein
were reluctant to accept the loss of determinism in favor of
a purely random Universe; Einstein’s words “God does not
play dice” are the example of the di�culty of considering
the whole world as a world of probabilities, with no inner
intentionality, nor moral direction. On the other hand, sci-
entists like Monod (Chance and Necessity, ) accepted
this situation. In both cases, there is a deep consideration
of the role of probability and chance in the construction of
the philosophical and scienti�c meaning about reality.
In the s there arose from theworks of Fisher ()

and Neyman and Pearson () the classic statistical
paradigm: frequentism. �ey use the relative frequency
concept, that is, you must perform one experiment many
times and measure the proportion where you get a posi-
tive result.�is proportion, if you perform the experiment
enough times, is the probability. If Neyman and Pearson
wrote their �rst joint paper and presented their approach
as one among alternatives, Fisher, with his null hypoth-
esis testing, gave a di�erent message: his statistics was
the formal solution of the problem of inductive inference
(Gigerenzer , p. ).
From then on, these two main schools, Bayesian and

Frequentist, were �ghting each other to demonstrate that
theirs was the superior and only valid approach (Vallverdú
).
Finally, with the advent of the information era and all

the (super)computer scienti�c simulations, Bayesianism
has again achieved a higher status inside the community of
experts on probability. Bayesian inference also allows intel-
ligent and real-time monitoring of computational clusters,
and its application in belief networks has proved to be
a good technique for diagnosis, forecasting, and decision
analysis tasks. �is fact has contributed to the increas-
ing application of parallel techniques for large Bayesian
networks in expert systems (automated causal discovery,
AI…) (Korb and Nicholson ).
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Introduction
�e idea of probit analysis was originally published in
Science by Chester Ittner Bliss (–) in . He was
primarily concerned with �nding an e�ective pesticide to
control insects that fed on grape leaves. By plotting the
response of the insects to various concentrations of pesti-
cides, he could visually see that each pesticide a�ected the
insects at di�erent concentrations, but he did not have a
statisticalmethod to compare this di�erence.�emost log-
ical approach would be to �t a regression of the response
versus the concentration or dose and compare between the
di�erent pesticides. �e relationship of response to dose
was sigmoid in nature and at that time regression was
only used on linear data. �erefore, Bliss developed the
idea of transforming the sigmoid dose–response curve to a
straight line.When biological responses are plotted against
their causal stimuli (or their logarithms) they o�en form a
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sigmoid curve. Sigmoid relationships can be linearized by
transformations such as logit, probit, and angular. Formost
systems the probit (normal sigmoid) and logit (logistic sig-
moid) give the most closely �tting result. Logistic methods
are useful in epidemiology, but in biological assay work,
probit analysis is preferred.David Finney, from theUniver-
sity of Edinburgh, tookBliss’ idea andwrote a book entitled
Probit Analysis in , and since this year it is still the pre-
ferred statistical method in understanding dose–response
relationships.

Probit
In probability theory and statistics, the probit function
is the inverse cumulative distribution function (CDF),
or quantile function associated with the standard nor-
mal distribution. It has applications in exploratory sta-
tistical graphics and specialized regression modeling of
binary response variables. For the standard normal dis-
tribution, the CDF is commonly denoted Φ(z), which
is a continuous, monotone-increasing sigmoid function
whose domain is the real line and range is (, ).�e pro-
bit function gives the inverse computation, generating a
value of an N(, ) random variable, associated with spec-
i�ed cumulative probability. Formally, the probit function
is the inverse of Φ(z), denoted Φ−(p). In general, we
have Φ(probit(p)) = p and probit(Φ(z)) = z. Bliss pro-
posed transforming the percentage into “probability unit”
(or “probit”) and included a table to aid researchers to con-
vert their kill percentages to his probit, which they could
then plot against the logarithm of the dose and thereby,
it was hoped, obtain a more or less straight line. Such a
probit model is still important in toxicology, as well as in
other �elds. It should be observed that probit methodol-
ogy, including numerical optimization for �tting of probit
functions, was introduced beforewidespread availability of
electronic computing and, therefore, it was convenient to
have probits uniformly positive.

Related Topics
�e probit function is useful in statistical analysis for diag-
nosing deviation from normality, according to the method
of Q−Q plotting. If a set of data is actually a sample of
a normal distribution, a plot of the values against their
probit scores will be approximately linear. Speci�c devi-
ation from normality such as asymmetry, heavy tails, or
bimodality can be diagnosed based on the detection of spe-
ci�c deviations from linearity. While the Q−Q plot can be
used for comparisonwith any distribution family (not only
the normal), the normal Q−Q plot is a relatively standard

exploratory data analysis procedure because the assump-
tion of normality is o�en a starting point for analysis.

�e normal distribution CDF and its inverse are not
available in closed form, and computation requires careful
use of numerical procedures. However, the functions are
widely available in so�ware for statistics and probability
modeling, and also in spreadsheets. In computing envi-
ronments where numerical implementations of the inverse
error function are available, the probit function may be
obtained as probit(p) =

√
erf −(p − ). An example

is MATLAB, where an “er�nv” function is available and
the language MATHEMATICA implements “InverseErf.”
Other environments directly implement the probit func-
tion in the R programming language.
Closely related to the probit function is the logit func-

tion using the “odds” p/(−p), where p is the proportional
response, i.e., r out of n responded, so there is p = r/n

and logit(p) = log odds = log(p/( − p)). Analogously
to the probit model, it is possible to assume that such a
quantity is related linearly to a set of predictors, resulting in
the logitmodel, the basis in particular of logistic regression
model (see7Logistic Regression), themost prevalent form
of regression analysis for binary response data. In current
statistical practice, probit and logit regression models are
o�en handled as cases of the generalized linear model (see
7Generalized Linear Models).

Probit Model
In statistics and related �elds, a probit model is a speci�-
cation for a binary response model that employs a probit
link function.�is model is most o�en estimated using the
standard maximum likelihood procedure; such an estima-
tion is called probit regression. A fastmethod for computing
maximum likelihood estimates for probit models was pro-
posed by Ronald Fisher in an Appendix to the article of
Bliss in .
Probit analysis is a method of analyzing the rela-

tionship between a stimulus (dose) and the quantal (all
or nothing) response. Quantitative responses are almost
always preferred, but in many situations they are not prac-
tical. In these cases, it is only possible to determine if a cer-
tain response has occurred. In a typical quantal response
experiment, groups of animals are given di�erent doses of
a drug.�e percent dying at each dose level is recorded.
�ese data may then be analyzed using probit analysis.
StatPlus includes two di�erent methods of probit analysis,
but the Finney method is the most important and use-
ful.�e probit model assumes that the percent response is
related to the log dose as the cumulative normal distribu-
tion, that is, the log doses may be used as variables to read
the percent dying from the cumulative normal. Using the
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normal distribution, rather than other probability distri-
butions, in�uences the predicted response rate at the high
and low ends of possible doses, but has little in�uence near
the middle. Much of the comparison of di�erent drugs is
done using response rates of %.�e probit model may
be expressed mathematically as follows:

P = a + b(log(Dose)),

where P is �ve plus the inverse normal transform of the
response rate (called the probit).�e �ve is added to reduce
the possibility of negative probits, a situation that caused
confusion when solving the problem by hand.
Suppose the response variableY is binary, that is, it can

have only two possible outcomes, which we will denote as
 and . For example, Y may represent presence/absence
of a certain condition, success/failure of some device, and
answer yes/no on a survey.We also have a vector of regres-
sion X, which are assumed to in�uence the outcome Y .
Speci�cally, we assume that the model takes the form

P[Y = ∣X] = Φ(X
′
β),

where P is the probability and Φ is the probit function –
the CDF of the standard normal distribution.�e param-
eters β are typically estimated by maximum likelihood.
For more complex probit analysis, such as the calculation
of relative potencies from several related dose–response
curves, consider nonlinear optimization so�ware or spe-
cialist dose–response analysis so�ware.�e latter is a FOR-
TRAN routine written by David Finney and Ian Craigie
from Edinburgh University Computing Center. MLP or
GENSTAT can be used for amore general nonlinearmodel
�tting. We must take into account that the standard pro-
bit analysis is designed to handle only quantal responses
with binomial error distributions.Quantal data, such as the
number of subjects responding versus the total number of
subjects tested, usually have binomial error distributions.
We should not use continuous data, such as percent max-
imal response, with probit analysis as these data are likely
to require regressionmethods that assume a di�erent error
distribution.

Applications
Probit analysis is used to analyze many kinds of dose–
response or binomial response experiments in a variety of
�elds. It is commonly used in toxicology to determine the
relative toxicity of chemicals to living organisms. �is is
done by testing the response of an organism under vari-
ous concentrations of each of the chemicals in question and
then comparing the concentrations at which one encoun-
ters a response.�e response is always binomial and the

relationship between the response and the various con-
centrations is always sigmoid. Probit analysis acts as a
transformation from sigmoid to linear and then runs a
regression on the relationship. Once the regression is run,
we can use the output of the probit analysis to compare the
amount of chemical required to create the same response in
each of the various chemicals.�ere are many points used
to compare the di�ering toxicities of chemicals, but the
LC (liquids) or LD (solids) are the most widely used
outcomes of the modern dose–response experiments.�e
LC/LD represent the concentration (LC) or dose
(LD) at which % of the population responds. It is
possible to use probit analysis with various methods such
as statistical packages SPSS, SAS, R, or S, but it is good
to see the history of the methodology to get a thorough
understanding of the material. Wemust take care that pro-
bit analysis assumes that the relationship between number
responding (non-percent response) and concentration is
normally distributed; if not, logit is preferred.

�e properties of the estimates given by probit anal-
ysis have been studied also by Ola Hertzberg ().�e
up-and-down technique is the best known among staircase
methods for estimating the parameters in quantal response
curves (QRC). Some small sample properties of probit
analysis are considered and in the estimate distribution the
medians are used as a measure of location.
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Statistical methods are universal and hence their appli-
cability depends neither on geographical area nor on a
people’s culture. Promoting and increasing the use of statis-
tics in developing countries can help to �nd solutions to
the needs of their citizens. Developing countries are con-
fronted with endemic poverty that requires implementable
solutions for alleviating su�ering. Such poverty is a signal
call to the world to meet fundamental human needs—
food, adequate shelter, access to education and healthcare,
protection from violence, and freedom. Statistics and sta-
tistical tools, thematching betweenhypothesis, data collec-
tion, and statistical method, are necessary as development

strategies in the developing counties are formulated to
address these needs.
First, a reliable basis for the implementation of strate-

gies against poverty and achievement of the Millennium
Development Goals require good statistics, an essential
element of good governance. �erefore, important indi-
cators to inform and monitor development policies are
o�en derived from household surveys, which have become
a dominant form of data collection in developing coun-
tries. Such surveys are an important source of socioe-
conomic data. Azouvi () has proposed a low-cost
statistical program in four areas: statistical coordination,
national accounts, economic and social conjuncture, and
dissemination. To increase awareness that good statistics
are important for achieving better development results,
the Marrakech Action Plan for Statistics (MPS) was devel-
oped in .�is global plan for improving development
statistics was agreed upon at a second round-table for best
managing development results (World Bank, ). �e
idea is that better data are needed for better results in
order to improve development statistics. One indicator to
ensure the application of this MPS is the full participa-
tion of developing countries in the  census round.
Additionally, funds allocated by the World Bank from the
Development Grant Facility and technical assistance from
national universities are critical.
Second, national capacity-building in statistics is very

limited. Even in developed countries, secondary school
students, together with their teachers, rarely see the appli-
cability and the challenge of statistical thinking (Boland,
).�is situation exists to a greater degree in the uni-
versity training systems of many developing countries. It
is suggested that statistical programs should be reviewed
and executed by statisticians and examples of a local nature
should be used. �is is possible with su�cient number
of statisticians in various �elds. According to Lo (),
there are  to  holders of doctoral degrees in statistics
per country, with higher numbers in some countries.
�ere is a low number of statisticians in developing
countries due to the lack of master’s degree programs
in statistics. In sub-Saharan, French-speaking African
countries, the “Statistiques pour l’Afrique Francophone et
Applications au vivant” (STAFAV) project is being imple-
mented in three parts: a network for master’s training in
applied statistics at Cotonou (Benin), Saint-Louis (Sene-
gal), and Yaounde (Cameroon); some PhD candidates
jointly supervised by scientists from African universities
and French universities; and the development of statisti-
cal research through an African Network of Mathemat-
ical Statistics and Applications (RASMA). STAFAV con-
stitutes a good means for increasing statistical capacity in
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developing countries.With the launch of the Statistical Pan
African Society (SPAS), more visibility for research and
the use of statistics and probability may be achieved via
the African Visibility Program in Statistics and Probabil-
ity. �is society is an antidote to the very isolated work
of statistics researchers and allows researchers to share
experiences and scienti�c work.

�ird, statistics are a tool for solving the problems
of developing countries, but the development of research
activities is a challenge.Many of these countries are located
in tropical areas; therefore, there are major di�erences
between them and other countries due to high biolog-
ical variability and the probability distribution of the
studied phenomena is frequently misunderstood. Control
of biological variability requires wide use of probability
theory. Because of the disparate populations and subpop-
ulations in the experimental data, the use of one proba-
bility distribution should be called into question. Lacking
sophisticated statistical methods, development of statis-
tical methods of mix-distributions becomes a challenge.
Economic loss, agriculture, water policies, and health
(malaria, HIV/AIDS, and recently HN) are the major
areas for research programs inwhich statistics have amajor
role to play. Development of statistical research programs
directed at the well-being of local people is necessary.

�e sustainability of statistical development is another
important issue in the �eld. Graduate statisticians, when
returning to their native countries, o�en do not have facil-
ities for continuing education, documentation, or statis-
tics so�ware packages. To foster statistics in developing
countries, national statistics institutes, universities, and
research centers need to increase funds allocated for sub-
scribing to statistical journals, mainly online, and so�ware,
with a sta� properly trained on those �elds. Statisticians
must be o�ered opportunities to attend annual confer-
ences and to do research and/or professional training in
a statistical institute outside of their countries.
Contributions of statisticians from developed

countries, working or teaching in developing countries,
are welcome. Speci�cally, they can join research teams in
developing countries, share experiences with them, help
acquire funding, and teach.
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Properties of Estimators
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Estimation is a primary task of statistics and estimators
play many roles. Interval estimators, such as con�dence
intervals or prediction intervals, aim to give a range of
plausible values for an unknown quantity. Density estima-
tors aim to approximate a probability distribution.�ese
and other varied roles of estimators are discussed in other
sections. Here attention is restricted to point estimation,
where the aim is to calculate from data a single value that
is a good estimate of an unknown parameter.
We will denote the unknown parameter by θ, which is

assumed to be a scalar. In the standard situation there is a
statistic T whose value, t, is determined by sample data.
T is a random variable and it is referred to as a (point)
estimator of θ if t is an estimate of θ. Usually there will
be a variety of possible estimators so criteria are needed
to separate good estimators from poor ones. �ere are a
number of desirable properties which we would like esti-
mators to possess, though a property will not necessarily
identify a unique “best” estimator and rarely will there be
an estimator that has all the properties mentioned here.
Also, cautionmust be exercised in using the properties as a
reasonable property will occasionally lead to an estimator
that is unreasonable.
One property that is generally useful is unbiasedness.

T is an unbiased estimator of θ if, for any θ, E(T) = θ.
�us T is unbiased if, on average, it tends neither to be big-
ger nor smaller than the quantity it estimates, regardless of
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the actual value of the quantity.�e bias of T is de�ned to
be E(T) − θ. Obviously a parameter can have more than
one unbiased estimator. For example, if θ is the mean of
a symmetric distribution from which a random sample is
taken, then T is an unbiased estimator if it is the mean,
median or mid-range of the sample. It is also the case that
sometimes a unique unbiased estimator is not sensible. For
example, Cox andHinkley (, p. ) show that if a sin-
gle observation is taken from a geometric distributionwith
parameter θ, then there is only one unbiased estimator and
its estimate of θ is either  (if the observation’s value is )
or  (if the observation’s value is greater than ). In most
circumstances these are not good estimates.
It is desirable, almost by de�nition, that the estimate

t should be close to θ. Hence the quality of an estimator
might be judged by its expected absolute error, E(∣T − θ∣),
or its mean squared error, E[(T − θ)].�e latter is used
far more commonly, partly because of its relationship to
the mean and variance of T:

mean squared error = variance + (bias). ()

If the aim is to �nd an estimator with small mean squared
error (MSE), clearly unbiasedness is desirable, as then the
last term in Eq. () vanishes. However, unbiasedness is not
essential and trading a small amount of bias for a large
reduction in variance will reduce the MSE. Perhaps the
best known biased estimators are the regression coe�-
cients given by ridge regression (see7Ridge and Surrogate
Ridge Regressions), which handles multicollinearities in a
regression problem by allowing a small amount of bias in
the coe�cient estimates, thereby reducing the variance of
the estimates.
It may seem natural to try to �nd estimators which

minimize MSE, but this is o�en di�cult to do. Moreover,
given any estimator, there is usually some value of θ for
which that estimator’sMSE is greater than theMSEof some
other estimator. Hence the existence of an estimator with a
uniformlyminimumMSE is generally in doubt. For exam-
ple, consider the trivial and rather stupid estimator that
ignores the data and chooses some constant θ as the esti-
mator of θ. Should θ actually equal θ, then this estimator
has an MSE of  and other estimators will seldom match
it.�us other estimators will not have a uniformly smaller
MSE than this trivial estimator.
Restricting attention to unbiased estimators solves

many of the di�culties of working with MSE. �e task
of minimizing MSE reduces to that of minimizing vari-
ance and substantial theory has been developed about
minimum variance unbiased estimators (MVUEs). �is
includes two well-known results, the Cramér–Rao lower
bound and the 7Rao–Blackwell theorem.�e Cramér–Rao

lower bound is I−θ , where Iθ is the Fisher information
about θ. (Iθ is determined from the likelihood for θ.) Sub-
ject to certain regularity conditions, theCramér–Rao lower
bound is a lower bound to the variance of any unbiased
estimator of θ.
A bene�t of the Cramér–Rao lower bound is that it

provides a numerical scale-free measure for judging an
estimator: the e�ciency of an unbiased estimator is de�ned
as the ratio of the Cramér–Rao lower bound to the vari-
ance of the estimator. Also, an unbiased estimator is said
to have the property of being e�cient if its variance equals
the Cramér–Rao lower bound. E�cient estimators are not
uncommon. For example, the sample mean is an e�cient
estimator of the population mean when sampling is from
a normal distribution or a Poisson distribution, and there
are many others. By de�nition, only an MVUE might be
e�cient.
Su�ciency is a property of a statistic that can lead to

good estimators. A statistic S (which may be a vector) is
su�cient for θ if it captures all the information about θ

that the data contain. For example, the sample variance is
su�cient for the population variance when data are a ran-
dom sample from a normal distribution – hence to make
inferences about the population variance we only need to
know the sample variance and not the individual data val-
ues.�e de�nition of su�ciency is a littlemore transparent
in 7Bayesian statistics than in classical statistics (though
the de�nitions are equivalent). In the Bayesian approach,
S is su�cient for θ if the distribution of θ, given the value
of S, is the same as θ’s distribution given all the data. i.e.
g(θ ∣ S) = g(θ ∣data), where g( . ) is the p.d.f. of θ. In the
classical de�nition (where θ cannot be considered to have a
distribution), S is su�cient for θ if the conditional distribu-
tion of the data, given the value of S, does not depend on θ.
A su�cient statistic may contain much super�uous infor-
mation along with the information about θ, so the concept
of a minimal su�cient statistic is also useful. A statistic is
minimal su�cient if it can be expressed as a function of
every other su�cient statistic.

�e Rao–Blackwell theorem shows the importance of
su�cient statistics when seeking unbiased estimators with
small variance. It states that if θ̂ is an unbiased estimator of
θ and S is a su�cient statistic, then

. TS = E(θ̂ ∣ S) is a function of S alone and is an unbiased
estimator of θ.

. Var(TS) ≤ var(θ̂).

�e theorem means that we can try to improve on any
unbiased estimator by taking its expectation conditional
on a su�cient statistic – the resulting estimator will also
be unbiased and its variance will be smaller than, or equal
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to, the variance of the original estimator. Stronger results
hold if a minimal su�cient statistic is also complete: S is
complete ifE[h(S)] cannot equal  for all θ unless h(S) ≡ 
almost everywhere (where h is any function). If S is com-
plete there is at most one function of S that is an unbiased
estimator of θ. Suppose now, that S is a complete minimal
su�cient statistic for θ. An important result is that if h(S)
is an unbiased estimator of θ, then h(S) is anMVUE for θ,
if an MVUE exists.�e consequence is that, when search-
ing for an MVUE, attention can be con�ned to functions
of a complete su�cient statistic.
Turning to asymptotic properties, suppose that data

consist of a7simple random sample of size n and consider
the behavior of an estimator T as n→∞. An almost essen-
tial property is that the estimator should be consistent: T
is a consistent estimator of θ if T converges to θ in prob-
ability as n → ∞. Consistency implies that, as the sample
size increases, any bias in T tends to  and the variance of
T also tends to .
Two useful properties that do not relate directly to the

accuracy of an estimator are 7asymptotic normality and
invariance. When sample sizes are large, con�dence inter-
vals and hypothesis tests are o�en based on the assumption
that the distribution of an estimator is approximately nor-
mal. Hence asymptotic normality is a useful property in
an estimator, especially if approximate normality holds
quite well for modest sample sizes. Invariance of estima-
tors relates to the method of forming them. It is the notion
that if we take a transformation of a parameter, then ideally
its estimator should transform in the same way. For exam-
ple, let ϕ = g(θ), where ϕ is a one-to-one function of θ.
�en if a method of forming estimators gives t and t as
estimates of ϕ and θ, invariance would imply that t neces-
sarily equalled g(t). Maximum likelihood estimators are
invariant.
We have assumed that the unknown parameter (θ) is

a scalar. Concepts such as unbiasedness, su�ciency, con-
sistency, invariance and asymptotic normality extend very
naturally to the case where the unknown parameter is a
vector. If θ is a vector but an estimate of just one of its com-
ponents is required, then a vector-formof the Cramer–Rao
lower bound yields a minimum variance for any unbi-
ased estimator of the component. Simultaneous estimation
of more than one component, however, raises new chal-
lenges unless estimating each component separately and
combining the estimates is optimal.
While a search for MVUEs has been a focus of one

area of statistics, other branches of statistics want di�erent
properties in estimators. Robust methods want point esti-
mators that are comparatively insensitive to a few aberrant
observations or the odd outlier. Nonparametric methods

want to estimate a population mean or variance, say,
without making strong assumptions about the popula-
tion distribution.�ese branches of statistics do not place
paramount importance on unbiasedness or minimal vari-
ance, but they nevertheless typically seek estimators with
low bias and small variance – it is just that their estimators
must also satisfy other requirements. In contrast, Bayesian
statistics uses amarkedly di�erent framework for choosing
estimators. In its basic form the parameters of the sampling
model are given a prior distribution, while a loss function
speci�es the penalty for inaccuracy in estimating a param-
eter. �e task is then to select an estimator or decision
rule that will minimize the expected loss, so minimizing
expected loss is the property of dominant importance.
Many other sections of this encyclopedia also consider

point estimators and point estimation methods. �ese
include sections on nonparametrics, robust estimation,
Bayesian methods and decision theory.�e focus in this
section has been the classical properties of point estima-
tors. Deeper discussion of this topic and proofs of results
are given in most advanced textbooks on statistical infer-
ence or theoretical statistics, such as Bickel and Doksum
(), Cox and Hinkley (), Garthwaite et al. (),
and Lehmann and Casella ().

About the Author
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A common problem in statistics, and especially in sample
surveys, is how to estimate the proportion p (=  − q) of
people with a given characteristic (e.g., being le�-handed)
in a population of known sizeN. If there areM le�-handed
people in the population, then p =M/N.�e usualmethod
of estimating p is to take a 7simple random sample (SRS),
that is, a random samplewithout replacement, of size n and
count the number of le�-handed people, x, in the sample.
If the sample is representative, then p can be estimated by
the sample proportion p̂ = x/n. Tomake inferences about p
we need to use the probability distribution of x, namely the
Hypergeometric distribution (see 7Hypergeometric Dis-
tribution and Its Application in Statistics), a distribution
that is di�cult to use. From this distribution we can get
the mean and variance of x and hence of p̂, namely

µp̂ = p and σ

p̂ = r

pq

n
,

where r = (N − n)/(N − ) ≈  − f , and f is the sampling
fraction n/N, which can be ignored if it is less that . (or
better .). Fortunately, for su�ciently large N,M and n,
x and p̂ are approximately normal so that z = (p̂−p)/σp̂ has
an approximate standard normal distribution (with mean
 and variance ).�is approximation will still hold if we
replace p by p̂ in the denominator of σp̂ to get σ̂p̂ giving us
an approximate % con�dence interval p̂ ± .σ̂p̂.
Inverse sampling can also be used to estimate p, espe-

cially when the characteristic is rare. Random sampling
is continued until x units of the given characteristic are
selected, n now being random, and Haldane in  gave

the estimate p̂I = (x − )/(n − ).�is has variance esti-
mate σ̂ p̂I = rI(p̂I q̂I)/(n − ), where rI =  − (n − )/N for
without replacement and rI =  for with replacement, and
an approximate % con�dence interval for p is p̂I±.σ̂p̂I
(Salehi and Seber ).
Another application of this theory is in the case where

M consists of a known number of marked animals released
into a population of unknown size, but with f known to be
su�ciently small so that we can set r = .�e con�dence
interval for p can then be rearranged to give a con�dence
interval for N. �is simple idea has lead to a very large
literature on capture-recapture (Seber ).
Returning to our example relating to le�-handed peo-

ple, when we choose the �rst person from the population,
the probability of getting a le�-handed person will be p so
that the terms “probability” and “proportion” tend to be
used interchangeably in the literature, although they are
distinct concepts.�ey can be brought even closer together
if sampling is with replacement for then the probability of
getting a le�-handed person at each selection remains at p
and x nowhas a7Binomial distribution, as we have n inde-
pendent trials with probability of “success” being p. �e
above formulas for means and variances and con�dence
interval are still the same except that r is now exactly .
�is is not surprising as we expect sampling with replace-
ment to be a good approximation for sampling without
replacement when a small proportion of a population is
sampled. Con�dence intervals for the Binomial distribu-
tion have been studied for many years and a variety of
approximations and modi�cations have been considered,
for example, Newcombe (a). “Exact” con�dence inter-
vals, usually referred to as the Clopper–Pearson intervals,
can also be computed using the so-called “tail” probabil-
ities of the binomial distribution, which are related to a
7Beta distribution (cf. Agresti and Coull ). We can
also use the above theory to test null hypotheses like H:
p = p, though such hypotheses applymore to probabilities
than proportions.
When it comes to comparing two proportions, there

are three di�erent experimental situations that need to be
considered. Our example for explaining these relates to
voting preferences. Suppose we wish to compare the pro-
portions, say pi (i = , ), of people voting for a particular
candidate in two separate areas and we do so by taking an
SRS of size ni in each area and computing p̂i for each area.
In comparing the areas we will be interested in estimating
θ = p − p using θ̂ = p̂ − p̂. As the two estimates are
statistically independent, and assuming f can be neglected
for each sample, we have

σ

θ̂
=
pq

n
+
pq

n
,
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which we can estimate by replacing each pi by its esti-
mate. Assuming the normal approximation is valid for
each sample, we have the usual approximate % con�-
dence interval θ̂ ± .σ̂

θ̂
for θ.�is theory also applies to

comparing two Binomial probabilities and, as with a single
probability, a number of methods have been proposed (see
Newcombe b). Several procedures for testing the null
hypothesisH: θ =  are available including an “exact” test
due to Fisher and an approximate Chi-square test with or
without a correction for continuity.
A second situation is when we have a single population

and the pis now refer to two di�erent candidates.�e esti-
mates p̂i (i = , ) are no longer independent and we now
�nd, from Scott and Seber (), that

σ

θ̂
=

n
[ p + p − (p − p)


],

where n is the sample size. Once again we can replace the
unknown pi by their estimates and, assuming f can be
ignored, we can obtain an approximate con�dence interval
for θ, as before.
A third situation occurs when two proportions from

the same populations overlap in some way. Suppose we
carry out a sample survey 7questionnaire of n questions
that have answers “Yes” and “No.” Considering the �rst two
questions, Q and Q, let p be the proportion of people
who say “Yes” to both questions, p the proportion who
say “Yes” toQ and “No” toQ, p the proportion who say
“No” toQ and “Yes” toQ, and p the proportion who say
“No” to both questions.�en p = p+p is the proportion
saying “Yes ” to Q and p = p + p the proportion say-
ing “Yes” to Q. We want to estimate θ = p − p, as before.
If xij are observed in the category with probability pij and
x = x + x and x = x + x, then, fromWild and Seber
(),

σ

θ̂
=

n
[ p + p − (p − p)


].

To estimate the above variance, we would replace each pij
by its estimate p̂ij. In many surveys though, only x and
x are recorded so that the only parameters we can esti-
mate are the pi using p̂i = xi/n. However, we can use these
estimates in the following bounds


n
d( − d) ≤ σ


θ̂
≤

n
[min(p + p, q + q) − (p − p)


],

where d = ∣p − p∣ = ∣p − p∣. Further comments about
constructing con�dence intervals, testing hypotheses, and
dealing with non-responses to the questions are given in
the above paper.
For an elementary discussion of some of the above

ideas see Wild and Seber ().
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Why “Statistics in Psychiatry”? What makes statistics in
psychiatry a particularly interesting intellectual challenge?
Why is it not merely a sub-discipline of 7medical statis-
tics such as the application of statistics in rheumatology
or statistics in cardiology? It is in the nature of mental ill-
ness and of mental health. Mental illness extends beyond
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medicine into the realms of the social and behavioral
sciences. Similarly, statistics in psychiatry owes as much,
ormore, to developments in social and behavioral statistics
as it does to medical statistics. Statisticians in this area typ-
ically user a much wider variety of multivariate statistical
methods than domedical statisticians elsewhere. Scienti�c
psychiatry has always taken the problems of measurement
much more seriously than appears to be the case in other
clinical specialties. �is is partly due to the fact that the
measurement problems in psychiatry are obviously rather
complex, but partly also because the other clinical �elds
appear to have been a bit backward by comparison. It
is also an academic discipline where, at its best, there is
fruitful interplay between the ideas typical of the ‘medical
model’ of disease and those coming from the psychometric
traditions of, say, educationalists and personality theorists.
“Mental diseases have both psychological, sociological

and biological aspects and their study requires a combina-
tion of the approaches of the psychologist, the sociologist
and the biologist, using the last word rather than physician
since the latter must be all three. In each of these aspects
statistical reasoning plays a part, whether it be in the future
planning of hospitals, the classi�cation of the various forms
of such illnesses, the study of causation or the evaluation of
methods of treatment.” (Moran  – my italics)
“�e etiology ofmental illness inevitably involves com-

plex and inadequately understood interactions between
social stressors and genetically and socially determined
vulnerabilities – the whole area being overlaid by a
thick carpet of measurement and misclassi�cation errors.”
(Dunn )
Do the varieties of mental illness fall into discrete,

theoretically justi�ed, diagnostic categories? Or are the
boundaries entirely pragmatic and arti�cial? Should we
be considering dimensions (matters of degree) or cate-
gories? Is the borderline between bipolar depression and
schizophrenia, for example, real or entirely arbitrary?�e
same question even applies to the existence of mental ill-
ness itself. What distinguishes illness from social deviance
and eccentricity? Establishing the validity and utility of
psychiatric diagnoses has been, and still is, a major appli-
cation of statistical thinking involving a whole range of
complex multivariate methods (factor analysis being one
of the most prominent). Once psychiatrists have created a
diagnostic system they also need to be able to demonstrate
its reliability.�ey need to be con�dent that psychiatrists
will consistently allocate patients with a particular pro�le
of symptoms to the same diagnostic group.�ey need to
know that the category “schizophrenia” means the same
thing and is used in the same way by all scienti�c psychia-
trists, whether they work in the USA, China or Uganda.

Here, again, statistical methods (kappa coe�cients, for
example) hold the centre stage.

�e development of rating scales and the evaluation of
the associatedmeasurement errors form the central core of
statistics in psychiatry. It is the problem of measurement
that makes psychiatry stand apart from the other medi-
cal specialties. Scienti�c studies in all forms of medicine
(including psychiatry) need to take account of confound-
ing and selection e�ects. Demonstration of treatment e�-
cacy for mental illness, like treatment e�cacy elsewhere in
medicine, always needs the well-designed controlled ran-
domized trial. But measurement and measurement error
make psychiatry stand out.Here, the statistician’sworld has
long been populated by latent variable models of all sorts –
�nite mixture and latent class models, factor analysis and
item response models and, of course, structural equations
models (SEM) allowing one to investigate associations and
- with luck and careful design - causal links between these
latent variables.
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Testing and assessment of individual di�erences have been
a critical part of the professional work of scientists and
practitioners in psychology and related disciplines. It is
generally acknowledged that psychological tests, along
with the existing conceptualizations of measurements of
human potential, are among the most valuable contribu-
tions of the behavioral sciences to society. Testing practice
is for many reasons an extremely sensitive issue, and is not
only a professional but also a public issue. As the decisions
based on test results and their interpretations o�en entail
important individual and societal consequences, psycho-
logical testing has been the target of substantial public
attention and long-standing criticism (AERA, APA, and
NCME ).

�e theory of psychological tests andmeasurement, or,
as typically referred to, test theory or psychometric the-
ory, o�ers a general framework and a set of techniques
for evaluating the development and use of psychological
tests. Due to their latent nature, the majority of psycho-
logical constructs are typically measured indirectly, i.e., by
observing behavior on appropriate tasks or responses to
test items. Di�erent test theories have been proposed to
provide rationales for behaviorally based measurement.
Classical test theory (CTT) has been the foundation

of psychological test development since the turn of the
twentieth century (Lord and Novick ). It comprises a
number of psychometric models and techniques intended
to estimate theoretical parameters, including the descrip-
tion of di�erent psychometric properties, such as the
derivation of reliability estimates and ways to assess the
validity of use of test.�is knowledge is crucial if we are

to make sound inferences and interpretations from the
test scores.

�e central notion of CTT is that any observed test
score (X) can be decomposed into two additive compo-
nents: a true score (T) and a random measurement error
term (e). Di�erent models of CTT have been proposed,
each de�ned by speci�c sets of assumptions that deter-
mine the circumstances under which the model may be
reasonably applied. Some assumptions are associated with
properties of measurement error as random discrepan-
cies between true and observed test scores, whereas others
include variations of the assumption that the two tests
measure the same attribute.�e latter assumption is essen-
tial for deducing test reliability, i.e., the ratio of true score
variance to observed score variance, from the discrepancy
between two measurements of the same attribute in the
same person.
CTT and its applications have been criticized for var-

ious weaknesses, such as population dependence of its
parameters, focus on a single undi�erentiated random
error, or arbitrary de�nition of test score variables. Gener-
alizability theory (see Brennan ) was developed as an
extension of the classical test theory approach, providing
a framework for estimating the e�ects of multiple sources
of error or other factors determining test scores. Another
generalization of CTT has been put forwardwithin the for-
mulation of the Latent State-Trait�eory (see Steyer ).
Formal de�nitions of states and traits have been intro-
duced, and models allowing the separation of persons,
situations, and/or interaction e�ects from measurement
error components of the test scores are presented.
A more recent development in psychometric theory,

item response theory (IRT), emerged to address some of
the limitations of the classical test theory (Embretson and
Reise ).�e core assumption of IRT is that the prob-
ability of a person’s expected response to an item is the
joint function of that person’s ability, or her/his position on
the latent trait, and one or more parameters characterizing
the item.�e response probability is presented in the form
of an item characteristic curve as a function of the latent
trait.
Despite the controversies and criticisms surround-

ing CTT, and the important advances and challenges in
the �eld of IRT, both classical and modern test theo-
ries appear today to be widely used and are comple-
mentary in designing and evaluating psychological and
educational tests.
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�e use of quantitative methods in psychology is present
essentially at its beginning as an independent discipline,
and many of the early developers of statistical methods,
such as Galton, Pearson, and Yule, are generally consid-
ered by psychologists as among the major contributors to
the development of psychology itself. In addition, many
early psychologists mademajor contributions to the devel-
opment of statistical methods, o�en in the context of psy-
chometric measurement theory and multivariate methods
(e.g., Spearman, �urstone). Among the techniques that
psychologists developed or helped to develop during the
early part of the twentieth century are the correlation coef-
�cient, the chi-square test, regression analysis, factor anal-
ysis (see7Factor Analysis and Latent Variable Modelling),
7principal components analysis, and various multivariate
procedures.�e use of the7analysis of variance (ANOVA)
in psychology did not begin until about  and quickly
became widespread.
During the decades of the s and s, a kind

of schism arose among psychologists, with experimental
psychologists favoring the use of ANOVA techniques and
psychologists interested in measurement and individual
di�erences favoring correlation and regression techniques,
culminating in Cronbach’s famous declaration concern-
ing the “two disciplines” of scienti�c psychology. �at
these procedures were both aspects of the general lin-
ear model (see 7General Linear Models) and essentially
equivalent mathematically did not become widely known
among psychologists until about . A similar sort of
schism with respect to models of statistical inference has

been resolved with a kind of hybrid model that accom-
modates both the Fisher andNeyman-Pearson approaches,
although in this case, most researchers in psychology are
completely unaware that such a schism ever existed, and
that the models of statistical decision-making espoused in
their textbooks and in common everyday use represent a
combination of views thought completely antithetical by
their original proponents. Bayesian approaches, while not
unknown in psychology, remain vastly underutilized.
Statistical methods currently in common use in psy-

chology include: Pearson product-moment correlation
coe�cient, chi-square test (see 7Chi-Square Tests), t test,
univariate and multivariate analysis of variance (see
7Analysis of Variance and7Multivariate Analysis of Vari-
ance (MANOVA)) and covariance with associated follow-
up procedures (e.g., Tukey test), multiple regression, factor
analysis (see 7Factor Analysis and Latent Variable Mod-
elling) and 7principal components analysis, discriminant
function analysis, path analysis, and structural equation
modeling (see 7Structural Equation Models). Psycholo-
gists have been instrumental in the continued develop-
ment and re�nement of many of these procedures, par-
ticularly for measurement oriented procedures, such as
item response theory, and structural equation modeling
techniques, including con�rmatory factor analysis, latent
growth curve modeling, multiple group structural invari-
ance modeling, and models to detect mediation and mod-
eration e�ects. �ere is considerable emphasis on group
level data analysis using parametric statistical procedures
and the assumptions of univariate and multivariate nor-
mality.�e use of nonparametric procedures, once fairly
common, has declined substantially in recent decades.�e
use of moremodern nonparametric techniques and robust
methods is almost unknown among applied researchers.

The Null Hypothesis Significance Testing
Controversy
Common to many of the procedures in use in psychol-
ogy is an emphasis on null hypothesis signi�cance testing
(NHST) and concomitant reliance on statistical test p val-
ues for assessing the merit of scienti�c hypotheses. Con-
sidering its still dominant position, the use of the NHST
paradigm in psychology and related disciplines has been
subject to numerous criticisms over a surprisingly long
period of time, starting at least  years ago. Until recently,
these criticisms have not gained much traction. Common
objections raised against the NHST paradigm include the
following:

● �e null is not a meaningful hypothesis and is essen-
tially always false.



 P Psychology, Statistics in

● Rejection of the null hypothesis provides only weak
support for the alternative hypothesis.

● Failure to reject the null hypothesis does not mean
that the null can be accepted, so that null results are
inconclusive.

● Signi�cance test p values are misleading in that they
depend largely on sample size and consequently do not
indicate the magnitude or importance of the obtained
e�ect.

● �e obtained p value is unrelated to, but frequently
confused with both the study alpha (α) level and −α.

● Reliance on p values has led to an overemphasis on the
type I error rate and to the neglect of the type II error
rate.

● Statistical signi�cance is not the same as scienti�c or
practical signi�cance.

● �e NHST approach encourages an emphasis on point
estimates of parameter values rather than con�dence
intervals.

● �e use of the p < . criterion for 7statistical sig-
ni�cance is arbitrary and has led to dichotomous deci-
sion making with regard to the acceptance/rejection of
study hypotheses.�is has resulted in the phenomenon
of “publication bias,” which is the tendency for studies
that report statistical signi�cance to be published while
those that do not are not published, despite the overall
quality or merit of the research.

● �e dichotomous decision making approach inherent
to the NHST paradigm has seriously compromised the
ability of researchers to accumulate data and evidence
across studies.�is has hindered the development of
theories in many areas of psychology, since a few neg-
ative results tend to be accorded more weight than
numerous positive results.

�e extent and seriousness of these criticisms has led some
to suggest an outright ban on the use of signi�cance testing
in psychology. Once inconceivable, this position is receiv-
ing serious consideration in numerous journal articles in
the most prestigious journals in psychology, has been dis-
cussed by recent working groups and task forces on quan-
titative methods and reporting standards in psychology,
and is even the subject of one recent book. Even among
those not willing to discard signi�cance testing entirely,
there is widespread agreement on a number of alternative
approaches that would reduce reliance on p values.�ese
include the use of con�dence intervals, e�ect size indices,
7power analysis, and 7meta-analysis. Con�dence inter-
vals (see 7Con�dence Interval) provide useful informa-
tion beyond that supplied by point estimates of parameters
and p values. In psychology, the most frequently used has

been the % con�dence interval. Despite its simplicity,
con�dence intervals are still not widely used and reported
or even that well understood by many applied researchers.
For example, some recent studies have indicated that even
when error bars are shown on graphs, it is not at all clear
if authors intended to show standard deviations, standard
errors, or con�dence intervals.
Measures of e�ect size have been recommended as

supplements to or even as substitutes for reporting p val-
ues.�ese provide a more direct index of the magnitude
of study results and are not directly in�uenced by study
sample size. Measures of e�ect size fall into two broad cat-
egories.�e most common historically are measures of the
proportion of shared variance between two (ormore) vari-
ables, such as r and R.�ese indices have a long history
of use in research employing correlational and regression
methods, particularly within the tradition of individual
di�erences research. Within the tradition of experimen-
tal psychology, comparable measures have been available
for many years but have not seen widespread use until rel-
atively recently. Most commonly used for the t test and
ANOVA are η and ω, which index the proportion of
variance in the dependent variable that is accounted for
by the independent variable. Again, under the general lin-
ear model (see 7General Linear Models), these indices
are essentially equivalent mathematically and retain their
separate identities primarily for historical purposes. Mul-
tivariate analogs exist but are not well known and not o�en
used.
A second and more recent approach to measuring the

magnitude of study outcomes independent of p values is
represented by standardized measures of e�ect size.�ese
were developed by Cohen as early as  but have not
seen widespread use until relatively recently. While he
developed a wide range of such indices designed to cover
numerous study designs and statistical methods, by far the
most widely known and used is Cohen’s d. An advantage
of d is its simplicity:

d = (M −M)/sp

where M and M represent the means of two indepen-
dent groups and sp is the pooled within-groups standard
deviation. It is also easily related to proportion of variance
measures:

η

= d


/(d


+ ).

A disadvantage of d is that is it applicable only to the com-
parison of two groups. A generalized version applicable to
the ANOVA F test is Cohen’s f . However, this measure is
much less well-known and not o�en utilized. As a guide to
use and interpretation, Cohen developed a simple rubric
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for categorizing themagnitudes of e�ect sizes. For d, small,
medium, and large e�ect sizes are de�ned as ., .,
and ., respectively.�e equivalent magnitudes for pro-
portion of variance accounted for are ., ., and .,
respectively. Cohen recognized these de�nitions as arbi-
trary, but subsequent research suggests they hold up well
across a broad range of research areas in the “so�er” areas
of psychology.
Although methods for aggregating data across inde-

pendent studies have been in use formore than  years, a
more formal and systematic approach did not begin to take
shape until  with the independent work of Rosenthal
and Glass, who coined the term meta-analysis. While very
controversial at �rst, and to a lesser extent still, the tech-
nique caught on rapidly as an e�cient way to summarize
quantitatively the results of a large number of studies, thus
overcoming the heavy reliance on p values used in the
more traditional narrative literature review. In principle
any outcome measure can be employed; however, in prac-
tice meta-analysis relies heavily on the use of e�ect sizes as
the common metric integrated across studies. Many stud-
ies employ the Pearson correlation coe�cient r for this
purpose, although Cohen’s d is without question the most
frequently used, primarily due to its simplicity and easy
applicability to a wide range of focused two-group com-
parisons characteristic of many studies in psychology (e.g.,
control vs treatment, men vs women). It is probably fair to
say that the rise of meta-analysis over the past – years
has greatly facilitated and popularized the concept of the
e�ect size in psychology. As a consequence, a great deal of
work has been conducted on d to investigate its proper-
ties as a statistical estimator.�is has resulted in substantial
advances in meta-analysis as a statistical procedure. Most
early meta-analyses employed simple two-group compar-
isons of e�ect size across studies using a �xed e�ectsmodel
approach (o�en implicitly). Most recent applications have
emphasized a regressionmodel approach in which numer-
ous study-level variables are quanti�ed and used as pre-
dictors of e�ect size (e.g., subject characteristics, study
setting, measures and methods used, study design quality,
funding source, publication status and date, author char-
acteristics, etc.). Fixed e�ects models still predominate,
but there is growing recognition that random (or mixed)
e�ects models may be more appropriate in many cases.
A considerable array of follow-on procedures have been
developed as aids in the interpretation of meta-analysis
results (e.g., e�ect size heterogeneity test Q, funnel and
forest plots, assessment of publication bias, fail-safe num-
ber, power analysis, etc.). When done well, meta-analysis
not only summarizes the literature, it identi�es gaps and
provides clear suggestions for future research.

Current Trends and Future Directions
Quantitative specialists in psychology continue to work
on methods and design in a number of areas. �ese in-
clude data descriptive and exploratory procedures and
alternatives to parametric methods, such as 7exploratory
data analysis and cluster analysis (see 7Cluster Analy-
sis: An Introduction), robust methods, and computer-
intensive methods. Work focusing on design includes
alternatives to randomized designs, methods for �eld
experiments and quasi-experimental designs, and the use
of fractional ANOVA designs. Structural equation model-
ing continues to receive a lot of attention, including work
on latent growth curve modeling, latent transition anal-
ysis, intensive longitudinal modeling, invariance model-
ing, multiple group models, multilevel models, hierarchi-
cal linear modeling, and models to detect mediation and
moderation e�ects.
Missing data analysis and multiple imputation meth-

ods (see 7Multiple Imputation), especially for longitudi-
nal designs, is also receiving considerable emphasis. �e
increased interest in longitudinal approaches has not been
limited to group designs. �e single subject/idiographic
approach, also known as the person-speci�c paradigm, has
been the focus ofmuch recent work.�is approach focuses
on change over time at the individual level, exempli�ed
by time series analysis, intensive longitudinal modeling,
dynamic factor analysis, and dynamic cluster analysis.
Psychologists also continue to conduct a great deal

of work on meta-analysis and integrative data analysis,
particularly on random e�ects and hierarchical model
approaches, as well as on investigations of the properties
of various e�ect size indices as statistical estimators and
the application and development of e�ect size indices for
a wider range of study designs. Increased use of meta-
analysis by applied researchers is encouraging the use
of alternatives to null hypothesis testing, including the
speci�cation of non-zero null hypotheses, and the use of
alternative hypotheses that predict the magnitude of the
expected e�ect sizes.
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A public opinion poll is a survey of the views of a sample of
people. It is what we use to measure public opinion in the
modern day.�is was not always true, of course, as non-
random “straw polls” have been in regular use at least since
the early nineteenth century. We thus had information
even back then about what the public thought and wanted,
though it was not very reliable.�e development of prob-
ability sampling, and its application by George Gallup,
Archibald Crossley, and Elmo Roper, changed things in
important ways, as we now had more reliable informa-
tion about public opinion (see Geer ). �e explo-
sion of survey data since that time has fueled the growth
in research on attitudes and opinion and behavior that
continues today.

�ere are various forms of probability sampling. In
simple random sampling respondents are selected purely
at random from the population.�is is themost basic form
of probability sampling and does a good job representing
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the population particularly as the sample size increases and
sampling error declines. In strati�ed random sampling,
the population is divided into strata, e.g., racial or eth-
nic groups, and respondents are selected randomly from
within the strata. �is approach helps reduce sampling
error across groups, which can result from simple ran-
dom sampling. Traditionally, most survey organizations
have relied on 7cluster sampling. Here the population is
divided into geographic clusters, and the survey researcher
draws a sample of these clusters and then samples ran-
domly from within them.�is is particularly useful when
respondents are geographically disbursed. Survey organi-
zations using any of thesemethods traditionally have relied
on face-to-face interviews.

�e technology of public opinion polling has changed
quite dramatically over time. �e invention of random
digit dialing (RDD) had an especially signi�cant impact,
as interviewing could be done over the telephone based
on lists of randomly-generated phone numbers.�e more
recent introduction of internet polling is having a simi-
lar impact.�ese developments have clear and increasing
advantages in cost and speed, and have made it much eas-
ier to conduct polls. Witness the growth in the number of
pre-election trial-heat polls in presidential election years
in the United States (US) (Wlezien and Erikson ).
Consider also that National Annenberg Election Survey
(NAES) conducted over , telephone interviews dur-
ing the  presidential election campaign, with similar
numbers in  and . In the same election years
Knowledge Networks’ conducted repeated interviews with
, individuals via the internet. Similar developments
can be seen in other countries, including Canada and the
United Kingdom.�ese numbers would be almost incon-
ceivable using face-to-face interviews.

�e developments also come with disadvantages. To
begin with, there is coverage error. Not everyone has a tele-
phone, and the number relying solely on a cell phone –
which poses special challenges for telephone surveys – is
growing. Fewer have access to the internet and we cannot
randomly e-mail them (note that this precludes calcu-
lations of sampling error, and thus con�dence intervals.
Internet polls do have a number of advantages for scholarly
research, however (Clarke et al. )). Even among those
we can reach, nonresponse is a problem. �e issue here
is that respondents who select out of surveys may not be
representative of the population. Survey organizations and
scholars have long relied on weighting devices to address
coverage and nonresponse error (besides sampling error
and coverage and nonresponse error, all polls are subject
to measurement error, which re�ects �aws in the survey
instrument itself, including question wording, order, inter-
viewer training and other things. For a treatment of the

di�erent forms of survey error, see Weissberg ()). In
recent years more complicated approaches have begun to
be used, including “propensity scores” (see, e.g., Terhanian
).
A recent analysis of polling methods in the  US

presidential election campaign suggested that the survey
mode had little e�ect on poll estimates (AAPOR ).
�e extent to which the weighting �xes used by survey
organizations succeed is the subject of ongoing research –
see, e.g., work on internet polls by Malhotra and Krosnick
() and Sanders et al. (). It is of special importance
given the appeal of internet surveys owing to the speed
with which they can be conducted and their comparatively
low cost.
Despite the di�culties, polls have performed very well.

Pre-election polls have proved very accurate at predict-
ing the �nal vote, particularly at the end of the campaign
(Traugott ).�ey also predict well earlier on, though
it is not an identity relation, e.g., in US presidential elec-
tions, early leads tend to decline by Election Day (Wlezien
and Erikson ). Pre-election polls in recent election
years have provided more information about the election
outcome than highly-touted election prediction markets
(Erikson andWlezien ). Polls also tell quite a lot about
public opinion (see, e.g., Stimson ; Page and Shapiro
; Erikson and Tedin ). Policymakers now have
reliable information about the preferences of those with a
stake in the policies they make. It also appears to make a
di�erence to what they actually do (Geer ).
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�e origin of the p-value is credited to Karl Pearson (),
who introduced it in connection with his chi-square test
(see7Chi-Square Tests). However, it was Sir Ronald Fisher
who popularized signi�cance tests and p-values in the

multiple editions of his hugely in�uential books Statistical
Methods for Research Workers and �e Design of Experi-
ments, �rst published in  and , respectively. Fisher
used divergencies in the data to reject the null hypothe-
sis by calculating the probability of the data on a true null
hypothesis, or Pr(x∣H). More formally, p = Pr(T(X) ≥

T(x)∣H).�e p-value is the probability of getting a test
statistic T(X) larger than or equal to the observed result,
T(x), as well as more extreme ones, assuming a true null
hypothesis, H, of no e�ect or relationship. �us, the p-
value is an index of the (im)plausibility of the actual obser-
vations (together with more extreme, unobserved ones) if
the null is true, and is a randomvariablewhose distribution
is uniform over the interval [, ].

�e reasoning is that if the data are viewed as being
rare or extremely unlikely underH, this constitutes induc-
tive evidence against the null hypothesis. Fisher (, p. )
immortalized a p-value of . for rejecting the null: “It is
usual and convenient for experimenters to take  per cent.
as a standard level of signi�cance, in the sense that they are
prepared to ignore all results which fail to reach this stan-
dard.” Consequently, values like p < ., p < ., and
so on, are said to furnish even stronger evidence against
H. So Fisher considered p-values to play an important
epistemological role (Hubbard and Bayarri ).
Moreover, Fisher (, p. ) saw the p-value as an

objectivemeasure for judging the (im)plausibility of H:

7 “…the feeling induced by a test of significance has an
objective basis in that the probability statement on which
it is based is a fact communicable to and verifiable by other
rational minds. The level of significance in such cases fulfils
the conditions of a measure of the rational grounds for the
disbelief [in the null hypothesis] it engenders.”

Researchers across the world have enthusiastically adopted
p-values as a “scienti�c” and “objective” criterion for certi-
fying knowledge claims.
Unfortunately, the p-value is neither an objective nor

very useful measure of evidence in statistical signi�cance
testing (see Hubbard and Lindsay , and the references
therein). In particular, p-values exaggerate the evidence
against H. Because of this, the validity of much pub-
lished research with comparatively small (including .)
p-values must be called into question.
Of great concern, though obviously no fault of the

index itself, members of the research community insist
on investing p-values with capabilities they do not pos-
sess (for critiques of this, see, among others, Carver ;
Nickerson ). Some common misconceptions regard-
ing the p-value are that it denotes an objective measure of:
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● �e probability of the null hypothesis being true
● �e probability (in the sense of − p) of the alternative
hypothesis being true

● �e probability (again, in the sense of  − p) that the
results will replicate

● �e magnitude of an e�ect
● �e substantive or practical signi�cance of a result
● �e Type I error rate
● �e generalizability of a result

Despite its ubiquity, the p-value is of very limited use.
Indeed, I agree with Nelder’s (, p. ) assertion that
the most important task in developing a helpful statistical
science is “to demolish the P-value culture.”
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Let us assume that the p-values pk are known for testing
Hk versus HAk, k = , . . . ,n, in n independent studies on
some common issue, and our aim is to achieve a decision
on the overall questionH∗ : all the Hk are true versusH∗A :
some of the HAk are true. As there are many di�erent ways
in which H∗ can be false, selecting an appropriate test is
in general unfeasible. On the other hand, combining the
available pk’s so that T(p, . . . , pn) is the observed value
of a random variable whose sampling distribution under
H∗ is known is a simple issue, since under H∗ , p is the
observed value of a random sample P = (P, . . . Pn) from a
Uniform(, ) population. In fact, several di�erent sensible
combined testing procedures are o�en used.
A rational combined procedure should of course be

monotone, in the sense that if one set of p-values p =

(p, . . . , pn) leads to rejection of the overall null hypoth-
esis H∗ , any set of componentwise smaller p-values p′ =
(p′, . . . , p′n), p′k ≤ pk, k = , . . . ,n, must also reject H

∗
 .
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Tippett () used the fact that P:n = min{P, . . . ,Pn}
⌢
∣H∗
Beta(,n) to reject H∗ if the minimum observed

p-value p:n < −(−α)/n.�isTippett’s minimummethod
is a special case of Wilkinson’s method (Wilkinson, ),
advising rejection ofH∗ when some low rank order statis-
tic pk:n < c; as Pk:n ⌢ Beta(k,n+ − k), to rejectH∗ at level
α the cut-of-point c is the solution of ∫

c

 u
k−(−u)n−kdu =

α B(k,n +  − k).
�e exact distribution of Pn = 

n ∑
n
k= Pk is cum-

bersome, but for large n an approximation based on
the central limit theorem (see 7Central Limit �e-
orems) can be used to perform an overall test on
H∗ vs.H∗A . On the other hand, the probability density func-
tion of the 7geometric mean Gn = (∏

n
k= Pk)


n of n inde-

pendent uniform random variables is readily computed,

fGn(x) =
n (−n x ln x)n−

Γ(n)
I(,)(x), leading to a more

powerful test; see, however, the discussion below on pub-
lication bias.
Another way of constructing combined p-values is

to use additive properties of simple functions of uni-
form random variables. Fisher () used the fact that
Pk ⌢ Uniform(, ) Ô⇒ − lnPk ⌢ χ , and there-

fore, −
n

∑
k=
lnPk ⌢

∣H∗
χ

n.�en H∗ is rejected at the signif-

icance level α if the −
n

∑
k=
ln pk > χ


n,−α . Stou�er et al.

() used as test statistic
n

∑
k=

Φ−(Pk)
√
n

⌢
∣H∗
Gaussian(, ),

where Φ− denotes the inverse of the distribution func-
tion of the standard Gaussian, rejecting H∗ at level α if
∣∑
n
k=

Φ−(Pk)√
n

∣ > z−α .
Another simple transformation of uniform random

variables Pk is the logit transformation, ln Pk
−Pk ⌢

Logistic(, ). As
n

∑
k=

ln Pk
−Pk√

n
π(n+)
(n+)

≈ tn+, rejectH∗ at the

signi�cance level α if −
n

∑
k=

ln pk
−pk

√

n
π(n+)
(n+

> tn+, −α .

Birnbaum () has shown that everymonotone com-
bined test procedure is admissible, i.e., provides a most
powerful test against some alternative hypothesis for com-
bining some collection of tests, and is therefore opti-
mal for some combined testing situation whose goal is
to harmonize eventually con�icting evidence, or to pool
inconclusive evidence. In the context of social sciences

Mosteller and Bush () recommend Stou�er’s method,
but Littel and Folks (, ) have shown that under
mild conditions Fisher’s method is optimal for combining
independent tests.
As in many other techniques used in 7meta-analysis,

publication bias can easily lead to erroneous conclusions.
In fact, the set of available p-values comes only from
studies considered worth publishing because the observed
p-values were small, seeming to point out signi�cant
results.�us the assumption that the pk’s are observations
from independentUniform(, ) random variables is ques-
tionable, since in general they are in fact a set of low order
statistics, given that p-values greater than . have not

been recorded. For instance, E (Gkn) = ( 
+ k

n

)
n

Ð→
n→∞

e−k,

and in particular E (Gn) = ( n
n+)

n
↓

n→∞

e ≈ ., the

standard deviation decreases to zero, the skewness steadily
decreases a�er a maximum . for n = , and the
kurtosis increases from −. (for n = ) towards .
Whenever pn:n falls below the critical rejection point, this
test will lead to the rejection of H∗ , but pn:n smaller than
the critical point ( for n ≥ , the expected value of Gn
is greater than . and the standard deviation is smaller
than .) is what should be expected as a consequence of
publication bias.
Another important issue: H∗A states that some of the

HAk are true, and so a meta-decision on H∗ implicitly
assumes that some of the Pk may have non-uniform dis-
tribution, cf. Hartung et al. (, pp. –) and Kulin-
skaya et al. (, pp. –), and references therein,
on the promising concepts of generalized and of ran-
dom p-values. Gomes et al. () investigated the e�ect
of augmenting the available set of p-values with uniform
and with non uniform pseudo-p-values, using results such
as: Let Xm and Xm be independent random variables,
Xm denoting a random variable with probability density
function fm(x) = (mx + −m

 ) I(,)(x), m ∈ [−, ],
i.e., a convex mixture of uniform and Beta(, ) (if m ∈

[−, )), thus favoring pseudo-p-values near  the sharper
the slope is, the slope m =  corresponding to standard
uniform, or of uniform and Beta(, ) (if m ∈ (, ]),
in this case favoring the occurrence of p-values near .
�en min ( Xm

Xm
, −Xm−Xm

) is a member of the same family –
more precisely X m m


. In particular, if either m =  or

m = , then min ( Xm
Xm
, −Xm−Xm

) can be used to generate
a new set of uniform random variables, which moreover
are independent of the ones used to generate them.
Extensive simulation, namely with computationally

augmented samples of p-values (Gomes et al. ;
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Brilhante et al. ) led to the conclusion that inwhat con-
cerns decreasing power, and increasing number of unre-
ported cases needed to reverse the overall conclusion of a
meta-analysis, the methods of combining p-values rank as
follows:

. Arithmetic mean
. 7Geometric mean
. Chi-square transformation (Fisher’s method)
. Logistic transformation
. Gaussian transformation (Stou�er’s method)
. Selected order statistics (Wilkinson’s method)
. Minimum (Tippett’s method)
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Pyramid Schemes

Robert T. Smythe
Professor
Oregon State University, Corvallis, OR, USA

Apyramid scheme is a businessmodel inwhich payment is
made primarily for enrolling other people into the scheme.
Some schemes involve a legitimate business venture, but
in others no product or services are delivered. A typical
pyramid scheme combines a plausible business opportu-
nity (such as a dealership) with a recruiting operation
that promises substantial rewards. A recruited individual
makes an initial payment, and can earn money by recruit-
ing others who also make a payment; the recruiter receives
part of these receipts, and a cut of future payments as the
new recruits go on to recruit others. In reality, because of
the geometrical progression of (hypothetical) recruits, few
participants in a pyramid scheme will be able to recruit
enough others to recover their initial investment, let alone
make a pro�t, because the pool of potential recruits is
rapidly exhausted.
Although they are illegal in many countries, pyra-

mid schemes have existed for over a century. As recently
as November , riots broke out in several towns in
Colombia a�er the collapse of several pyramid schemes,
and in  Ireland launched a website to better educate
consumers to pyramid fraud a�er a series of schemes were
perpetrated in Cork and Galway.
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Perhaps the best-known type of pyramid scheme is a
chain letter, which o�en does not involve even a �ctitious
product. A chain letter may contain k names; purchasers
of the letter invest $x, with $x paid to the name at the top
of the letter and $x to the seller of the letter.�e purchaser
deletes the name at the top of the list, adds his own at the
bottom, and sells the letter to new recruits.�e promoter’s
pitch is that if the purchaser, and each subsequent recruit
for k− stages, sells just two letters, therewill be k− people
selling k letters featuring the purchaser’s name at the top
of the list, so that the participant would net $kx from the
venture.Many variants of this basic “get rich quick” scheme
have been, and continue to be, promoted.
A structure that can be used to model many pyramid

schemes is that of recursive trees. A tree with n vertices
labeled , , . . . ,n is a recursive tree if node  is distinguished
as the root, and for each j with  ≤ j ≤ n, the labels of
the vertices in the unique path from the root to node j
form an increasing sequence.�e special case of random
or uniform recursive trees, in which all trees in the set
of trees of given order n are equally probable, has been
extensively analyzed (cf. Smythe andMahmoud (), for
example); however, most pyramid schemes or chain let-
ters in practice have restrictions making their probability
models non-uniform.�e number of places where the next
nodemay join the tree is then a randomvariable, unlike the
uniform case. �is complicates the analysis considerably
(and may account for the relative sparsity of mathematical
analysis of the properties of pyramid schemes).
Bhattacharya and Gastwirth () analyze a chain let-

ter scheme allowing reentry, in which each purchaser may
sell only two letters, unless he purchases a new letter to
re-enter the chain. In terms of recursive trees, this means
that a node of the tree is saturated once it has two o�-
spring nodes, and no further nodes can attach to it. It is
further assumed that at each stage, participants who have
not yet sold two letters all have an equal chance to make
the next sale, i.e., all unsaturated nodes of the recursive
tree have an equal chance of being the “parent” of the next
node to be added. If Ln denotes the number of leaves of the
recursive tree (nodes with no o�spring) at stage n under
this growth rule, Ln/n corresponds to the proportion of
“shutouts” (those receiving no revenue) in this chain letter
scheme.�e analysis of Bhattacharya and Gastwirth sets
up a nonhomogeneous Markov chain model and derives a
di�usion approximation for large n. �ey �nd that Ln/n
converges to . in this model and that the (centered
and scaled) number of shutouts has a normally distributed
limit. Mahmoud () considers the height hn of the tree
of order n in this same “random pyramid” scheme and
show that it converges with probability  to .; the

proof involves embedding the discrete-time growth pro-
cess of the pyramid in a continuous time birth-and-death
process. Mahmoud notes that a similar analysis could be
carried out for schemes permitting the sale of m letters,
provided that the probabilistic behavior of the total num-
ber of shutouts could be derived (as it was in the binary
case by Bhattacharya and Gastwirth).
Gastwirth () and Gastwirth and Bhattacharya

() analyze another variant of pyramid schemes, known
as a quota scheme. �is places a limit on the maximum
number of participants, so that the scheme corresponds to
a recursive tree of some �xed size n.�is scheme derives
from a case in a Connecticut court (Naruk ) in which
people bought dealerships in a “Golden Book of Values,”
thenwere paid to recruit other dealers. In this scheme, each
participant receives a commission from all of his descen-
dants; thus for the jth participant, the size of the branch
of the tree rooted at j determines his pro�t. If Sj denotes
the size of this branch, and j/n converges to a limit θ,
Gastwirth and Bhattacharya showed that the distribution
of Sj converges to the geometric law

P(Sj = i + ) = θ( − θ)
i
for i = , , , . . .

(It was later shown (Mahmoud and Smythe ()) that if
j is �xed, the limiting distribution of Sj/n is Beta(, j − ).)
Calculations made by Gastwirth and Bhattacharya show
that, for example, when n is �xed at , the th entry has
probability only about . of recruiting two or more new
entrants, and probability . of three or more recruits.
Gastwirth () shows that for large n, the expected pro-
portion of all participants who are able to recruit at least r
persons is −r .
Other variants of pyramid schemes include the “-Ball

Model” and the “-Up System” (http://www.mathmotiva
tion. com/money/pyramid-scheme.html). In the eight-Ball
model, the participant again recruits two new entrants, but
does not receive any payment until two further levels have
been successfully recruited.�us a person at any level in
the scheme would theoretically receive  =  times his
“participation fee,” providing incentive to help those in
lower levels succeed. In the two-Up scheme, the income
from a participant’s �rst two recruits goes to the individual
who recruited the participant; if the participant succeeds in
recruiting three ormore new entrants, the income received
from these goes to the participant, along with the income
from the �rst two sales made by each subsequent recruit.
�is scheme creates considerable incentive to pursue the
potentially lucrativethirdrecruit.Forbothoftheseschemes,
it is easily calculated that when the pool of prospective
recruits is exhausted, themajority of the participants in the
scheme end up losing money.
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Introduction
Quantitative Risk Management (QRM for short) is a rela-
tively new �eld of mathematical research on the scienti�c
�rmament. As a �eld of science, QRM concentrates on the
axiomatisation, the measurement and the analysis of risk
in a rather broad context. Examples range from the con-
struction of dykes, over the development of new medical
compounds to the calculation of risk capital for insurance
companies and banks.�e quanti�cation of risk and the
societal challenges concerning “living with risks” are well
known to all; how high do we need to build a sea dyke in
order to protect a geographic area and its inhabitants, or
what are prudent regulatory guidelines in order to safe-
guard a stable �nancial system? It is immediately clear that
an overview of the �eld is out of the question, the various
acronyms encountered stand proof of this: besides QRM,
ERM (Enterprise-wide Risk Management), GRM (Global
RM), IRM (Integrative RM), and no doubt others. A broad
overview of the various faces of RM can for instance be
obtained from (Melnick and Everitt ). In this paper
we will restrict to a rather speci�c, though important inter-
pretation, that of McNeil et al. (); the latter is mainly
derived from the �eld of banking and insurance, though
the concepts, techniques and tools are much more widely
applicable. First of all, we will look at risk as related to ran-
domness or uncertainty. As such, the main tools discussed
in McNeil et al. () concern the �eld of stochastics:
probability theory, statistics and the theory of stochas-
tic processes. I am very well aware that this restriction is
a shortcoming but so be it. It su�ces to stress over and
over again that in any application of importance and sub-
stance, it pays for the quantitative risk modeller to show
a fair amount of humbleness. Also, that same modeller
must realise that such “real problems” only can be solved in
an interdisciplinary context, and that the quantitative ana-
lyst (o�en referred to as “quant” in the world of banking)

should be very well aware of the (o�en disturbing) impor-
tance of the qualitative, the irrational, the human factor.
Having said all that, in the following paragraphs we con-
centrate only on the quantitative, stochastic side of risk,
hence referred to as QRM, and this as summarised in
McNeil et al. (). Examples will mainly come from the
banking world.

The Basic Set-Up: Risk Measures
�e �rst question one needs to consider is whether risk is
to be measured in a dynamic way (as a process in time)
or in a static, one-period way, say. For reason of space, we
concentrate on the latter. Hence risk is modelled initially
by a real-valued random variable (rv) X de�ned on some
probability space (Ω,F ,P)

X : (Ω,F ,P)→ R .

�e distributional properties of X are captured by its dis-
tribution function (df) FX , or F for short,

FX(x) = P(X ≤ x) , FX(x) = P(X > x) .

For notational convenience, we shall only concentrate on
the upper tail F =  − F of the df F. A risk measure R
now maps the rv X (in our case the df FX) onto a real
number R(X) satisfying certain axiomatic properties: in
applications to �nance, these are referred to as the axioms
of coherence (see Artzner et al. ):

(C) (homogeneity) ∀λ >  :R(λX) = λR(X)
(C) (translation invariance) ∀a ∈R :R(X + a)

=R(X) + a
(C) (subadditivity)R (X+X)≤R (X)+R (X)
(C) (monotonicity) X ≤ X ⇒R (X) ≤R (X).

A risk measure R satisfying (C–C) is called a
coherent risk measure. Especially (C) is disputed (it is
related to the notions of diversi�cation and risk aggre-
gation) and indeed several alternative axioms have been
proposed; see for instance Föllmer and Schied ().�e
key questions to be asked for any axiomatic system are:

(Q) Construct examples satisfying (C–C);
(Q) Do risk measures used in practice satisfy

(C–C), and
(Q) How can such risk measures be estimated.

Miodrag Lovric (ed.), International Encyclopedia of Statistical Science, DOI ./----,
© Springer-Verlag Berlin Heidelberg 
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Concerning (Q) one can show that any coherent risk
measure is a so called generalized scenario measure; see
McNeil et al. (, p.). A commonly used risk mea-
sure in the world of banking regulation is the so-called
Value-at-Risk measure VaRα(X) for α ∈ (, ), typically
α ∈ {., ., ., .}, i.e., α is close to ,

VaRα(X) = F←X (α)

where F←X stands for the (generalized) inverse, or quan-
tile function of FX ; see McNeil et al. (, p. ).
In general, VaR is not coherent. A consequence is that
P (X > VaRα(X)) =  − α. It is coherent for so-called
elliptical dfs like the multivariate normal or the multi-
variate Student-t, but coherence (in particular (C)) typ-
ically fails for either very skew, very heavy-tailed (in�nite
mean models) or multivariate dfs exhibiting a very special
dependence structure; seeMcNeil et al. ( pp. , ).
A widely used risk measure that is coherent is the so-called
Expected Shortfall.

ESα(X) = E(X ∣ X > VaRα(x))

which for continuous dfs FX is coherent; see McNeil et al.
(, p. ). A very readable paper on this topic is Acerbi
and Tasche (). An obvious weakness of VaR, as com-
pared to ES, is that it only contains a frequency estimate
(“once every . . .”) whereas ES yields severity information
(“what if . . .”).

Multivariate Models
So far, I have mainly looked at one-dimensional risk
rvs (though in (C) the two-dimensional distribution of
the vector (X,X)′ plays a crucial role). QRM there-
fore devotes a considerable amount of e�ort to determin-
ing useful models for d-dimensional risk vectors X =
(X, . . . ,Xd)′. In the case of continuous rvs, key models
are:

(M) �e multivariate normal Nd(µ,Σ);
(M) �e multivariate Student-t tν ,d(Σ);
(M) �e class of generalised hyperbolic dfs, and
(M) �e class of elliptical dfs.

�e latter class (M) is a particularly useful one. It is
de�ned (in a slightly restricted form) as follows: suppose
Z ∼ Nd(, Id), hence the components Z, . . . ,Zd of Z are
iid N(, ) and µ ∈ Rd, A is a d × dmatrix, then

X = µ +AZ

is called elliptical. From a RM point of view, these dfs
exhibit several very nice properties, for instance, VaR is
coherent in this class; see McNeil et al. (, p. ). Also,
linear combinations of the components X. . . . ,Xd are of

the same type; see McNeil et al. (, p. ). An interest-
ing discussion relevant for applications to �nance is to be
found in Bingham and Kiesel (). As already stated, the
world of ellipticalmodels is fully understood (and verywell
behaved) when it comes to risk management. An interest-
ing research topic concerns “how do such nice properties
change if one moves away from ellipticality?”
A �nal model construction we need to mention here is

the so-called copula construction; see McNeil et al. ()
(Chap. ). A copula is a df C on [, ]d with uniform
marginals. Suppose now that we are given marginal dfs
F, . . . ,Fd, then the following construction always leads to
a valid d-dimensional df with marginals F, . . . ,Fd:

(M) F (x, . . . , xd) = C (F (x) , . . . ,Fd (xd)).

Reading (M) from le� to right yields, for a given df F,
at least one copula C such that (M) holds; whenever the
Fi’s are continuous, then C (or better CF) is unique.�is
is the content of Sklar’s�eorem; see for instance McNeil
et al. (, p. ), or Nelsen () and Joe ().�is
leads for instance to widely used models like the Gauss-
(or normal-) copula or the t-copula. In the former case,
F corresponds to a multivariate normal distribution (see
7Multivariate Normal Distributions), whereas in the lat-
ter case F stands for a multivariate t. In (M) we can
inject any copula function on the right-hand side lead-
ing to numerous families like the Clayton, Gumbel, Frank,
Archimedean, . . . copulas. All with their speci�c properties
which may make them useful for speci�c QRM applica-
tions. Since their appearance on the QRM scene in the late
s, 7copulas have attracted a considerable amount of
interest; the reader should consult Embrechts () for
details on their use and which basic papers to read for
a start.

Statistical Estimation
Given a problem where risk has to be estimated, the whole
of statistics may enter. However, as many of the risk mea-
sures used (like VaRα and ESα) concern rare or extreme
events, α is close to , it is natural that Extreme Value
�eory (EVT) plays an important role. Numerous text-
books of a varying degree of complexity yield an intro-
duction to EVT; see for instance McNeil et al. (,
Chap. ), Embrechts et al. (), Coles () and the ref-
erences therein. Many other statistical techniques enter at
this stage, in particular such �elds as rare event estima-
tion/simulation and resampling techniques are very useful
here. Just to show that EVTquickly links to further relevant
QRM questions, consider the following

λu = lim
α↑
P (X > VaRα (X) ∣ X > VaRα (X)),
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the so-called (upper) asymptotic dependence measure.
�is number (given that the limit exists, and this is indeed
a condition) yields so-called spillover or contagion infor-
mation fromahigh loss onX toX. It turns out that λu only
depends on the copula of the joint df of X and X. Also,
for the Gaussian copula model with correlation ρ < , λu =
; this mathematically explains why the Gaussian copula
model never yields su�cient joint extremal events.�e lat-
ter issue played a role in the credit crisis starting in 
where such models were used to price and hedge com-
plicated credit derivatives; see Li (). For the t-copula,
λu > , hence such amodel would allow for joint extremes.
At this point, one could combine multivariate EVT with
questions of risk aggregation and diversi�cation in QRM,
a topic of considerable methodological as well as practi-
cal importance; see for instance Embrechts et al. () for
a �rst impression.

An Example: Operational Risk
In order to end with a brief example showing how some
of the above may be applied, consider the so-called class
of Operational Risk (OR): “OR is de�ned as the risk of loss
resulting from inadequate or failed internal processes, peo-
ple and systems or from external events. �is de�nition
includes legal risk, but excludes strategic and reputational
risk.” See McNeil et al. (, Chap. ) and Panjer ().
�e so-called Basel II regulatory guidelines for larger inter-
national banks require the estimation of risk capital for OR
based on a -year, .% VaR, i.e., a  in , year event.
Internal OR data is typically aggregated over a number d
(o�en ) of business lines each yielding their OR loss rvs
X, . . . ,Xd and the corresponding (estimated) risk mea-
sures VaR. (X) , . . . , VaR. (X). At a next step one
adds these numbers yielding

VaRsum. =
d

∑
i=
VaR. (Xi).

�e bank in question then has the possibility to bring
a so–called diversi�cation factor δ ∈ [, ] into account so
that the resulting risk capital becomes

RC (OR) = ( − δ)VaRsum..

Of course, non-coherence would yield δ < ! As such one
sees that several of the topics very brie�y touched upon
enter immediately, and this in a very fundamental way. See
the above references for further reading on this topic.

Conclusion
It is clear that the above paragraphs only give a tiny view on
the new, emerging �eld of QRM.A good (quantitative) risk
manager has to bemaster of several trades, including being
an excellent communicator. �e literature on the �eld is

exploding.�e handbook McNeil et al. () is de�nitely
an excellent start on the topic from a more mathematical
point of view.�e references given no doubt will help in
digging deeper and hopefully also yield a much broader
view of this fast evolving �eld.
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A questionnaire is a helpful tool for collecting a wide range
of information from a large number of respondents.�e
questionnaire was invented by Sir Francis Galton in about
. Containing structured groups of questions, it can be
used to examine the general characteristics of a popula-
tion, to compare attitudes of di�erent groups, and to test
theories. Questionnaires are any written instruments that
present respondents with a series of questions or state-
ments to which they are to react, either by writing out
their answers or selecting from among existing answers
(Brown ). It is important to emphasize that the pro-
cess of developing a questionnaire involves several steps,
starting with problem de�nition and ending with analysis
and interpretation.
A questionnaire should be organized so as to be easy to

conduct, �ll in, and respond to. It should start with a gen-
eral introduction to a topic, followed by questions from the

least sensitive to themost sensitive. Its structuremust in no
way in�uence the responses. A frequently used technique
when going from general to speci�c topics is called the
funnel approach, as it begins with broader (more general)
questions and then asks narrower (more speci�c) ques-
tions, re�ecting the shape of a funnel (Grover and Vriens
). A questionnaire should ask the “right questions” (by
careful use of wording and language) in such a way as to
make it easily understandable to the respondent.

�ere are a great number of questionnaire types.
Churchill () classi�ed questionnaires by the method
of administration, describing the following types: personal
(face-to-face conversation between the interviewer and
the respondent), telephone (the conversation with respon-
dents occurs over the telephone), and mail questionnaire
(mailing the questionnaire to designated respondents with
a covering letter). With the advent of computers and
their increasing usage in research processes, the devel-
opment of di�erent forms of questionnaires adapted to
CADAC (Computer Assisted Data Collection) methods
has taken place. In other words, every CADAC method
requires a di�erent design and logic of the questionnaire
(Table ).
In recent years, there have been publications cover-

ing testedmeasurement instruments that allow researchers
to use the most appropriate questionnaire for the de�ned
research problem. Manuals such as �e Handbook of
Marketing Scales or�e Marketing Scale Handbook of Scal-
ing Procedures: Issues and Application provide invaluable
assistance when creating questionnaires. Such handbooks
provide an insight into all the new uses of previously devel-
oped scales in consumer behavior and advertising, pre-
sented along with a description, the origin of the scale,
reliability, validity, and other useful information.
Information on respondents collected by a question-

naire is divided into factual, behavioral, and attitudinal
information (Dörnyei ).�is assumption is expanded
by knowledge questions, the group of information intended
to measure respondents’ knowledge about a topic.
Factual questions.�ese query basic information about

the respondents, demographic questions (gender, age. . .),
and other background information relevant for the inter-
pretation of the questionnaire results (level of education,
socioeconomic status, religion, workplace. . .).
Behavioral questions.�ese are used to investigate cur-

rent and past behaviors of respondents (lifestyles, habits,
and actions).
Attitudinal questions. �ese depend on the topi-

cal problems under investigation and include informa-
tion about attitudes, opinions, beliefs, interests, and
values.
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Questionnaire. Table  Specific question computer assisted form (de Leeuw and Nicholls II )

Face-to-face questionnaire CAPI Computer Assisted Personal Interviewing

Telephone questionnaire CATI Computer Assisted Telephone Interviewing

Self-administered questionnaire CASI Computer Assisted Self Interviewing

CSAQ Computerized Self-Administered Questionnaire

Questionnaire where interviewer is present CASI of CASIIP Computer Assisted Self-Interviewing With Interviewer Present

CASI-V Question Text On Screen: Visual

CASI-A Text On Screen And On Audio

Mail questionnaire DBM Disk By Mail

EMS Electronic Mail Survey

Panel research questionnaire CAPAR Computer Assisted Panel Research

Teleinterview Electronic Diaries

Various questionnaires (no interviewer) TDE Touchtone Data Entry

VR Voice Recognition

ASR Automatic Speech Recognition

Knowledge questions. �ese are used to assess what
respondents know about a particular topic, as the level of
knowledge.

Forms of questions. Questions are basically divided
into closed-ended questions (respondents choose from a
set of predetermined answers) and open-ended questions
(respondents can answer in their own words).
Closed-ended questions have to be exhaustive and

mutually exclusive. �ey include multiple choice, yes-no
answers, and questions with a numerical rating scale (e.g.,
 – strongly disagree,  – strongly agree). Closed-ended
questionnaires are suitable for processing massive quan-
tities of data, they are easier to answer, and it takes less
time to respond to more questions. Respondents pick out
answers without any possibility of intervention and need
to understand both questions and answers.
Open-ended questions are appropriate in an exploratory

phase of research or to obtain speci�c comments or
answers that cannot be expressed as a numerical code.
�e answers are more di�cult to tabulate and analyze,
but provide more information and uncover the respon-
dents’ knowledge without being reminded. Eventually the
answersmust be adjusted (open categories are transformed
into closed ones) to allow for statistical analysis, but this
process is costly, time consuming, and subject to error.
Advantages of questionnaires are primarily in their low

costs and relatively quick collection of data from a large

portion of a group (particularly compared to face-to-face
interviews). �e data collected with questionnaires are
easy to analyze. Data entry and tabulation can be simply
done with various computer so�ware packages.�e most
popular questionnaires are conducted by large organiza-
tions such as the European Commission (Eurobarometer)
and UNESCO among others, who regularly publish their
research and make it publicly accessible.
Disadvantages of questionnaires. Questionnaires are

standardized forms of data collecting, so it is not possi-
ble to explain any points in the questions that participants
might misinterpret. If researchers inadvertently omit a
question, it is not usually possible to go back to respon-
dents, especially if they are anonymous. Open-ended ques-
tions can generate large amounts of data that can take a
long time to process and analyze.
Sometimes questionnaires can seem impersonal and

respondents have even been known to ignore certain ques-
tions, particularly if they are not interested in the topic.
Another drawback is a potentially low response rate, which
can dramatically decrease the con�dence in the results.
For example, perhaps more responses would be received
from participants having a strong opinion on the sub-
ject matter and are thereby motivated to respond, while
less would be received from potential participants who
are indi�erent to the topic. �e results would not neces-
sarily be accurately representative if applied to the wider
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population. Additionally, the results would be less reliable
if some questions were misunderstood.

Cross References
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Queueing is essential to manage congestion in tra�c of
any type in the modern technological world.�is does not
mean it is a new phenomenon. More than one hundred
years ago, recognizing its importance to telephone tra�c,
Danish mathematician A.K. Erlang () showed for the
�rst time how probability theory can be used to provide
a mathematical model for telephone conversations. From

then on, slowly in the �rst  decades, moderately in the
next  decades, and tremendously in the last  decades, the
probabilistic approach to modeling queueing phenomena
when it is appropriate has grown and contributed sig-
ni�cantly to the technological progress. For a historical
perspective of the growth of queueing theory see Chapter 
of Bhat ().
Queueing theory describes probabilistically andmath-

ematically the interaction between the arrival process of
customers and the service provided to them in order to
manage the system in an e�cient manner.�e term cus-
tomer is used in a generic sense representing a unit, human
or otherwise, demanding service.�e unit providing ser-
vice is known as the server. Some examples of a queueing
system are: a communication system with voice and data
tra�c demanding transmission; a manufacturing system
with several work stations; patients arriving at a doctor’s
o�ce; vehicles requiring service; and so on.
Since the arrival process and service are random phe-

nomena we start with a probabilistic model (also known
as a stochastic model) of a queueing system. If we ana-
lyze such models using mathematical techniques we can
derive its properties that can be used in understanding its
behavior and managing it for its e�cient use.
In order to build a probabilisticmodel, �rst we describe

the arrival process (called the input process) using proba-
bility distributions. For example, the arrival of customers
could be in a Poisson process (see7Poisson Processes) i.e.,
the number of customers arriving in a set period of time
has a Poisson distribution. Its parameter, say λ, gives the
mean number of customers arriving during a unit time.
�e known distribution now identi�es the arrival process.
�e amount of service provided by the facility is repre-
sented by a random variable since it could be random.
�e distribution of the random variable identi�es the ser-
vice process. When we talk about service we have to take
into consideration themode of service such as service pro-
vided with several servers, service provided in a network
of servers, etc. Also we must include factors such as queue
discipline (e.g., �rst come, �rst served (FCFS), also known
as �rst in, �rst out (FIFO); last come, �rst served (LCFS or
LIFO); group service; priority service; etc.). Another factor
that complicates the model is the system capacity, which
may be �nite or in�nite.
Because of themultitude of factors involved in a queue-

ing system, we use a three or four element symbolic rep-
resentation in discussing various types of systems. �e
basic structure of the representation is to use symbols
or numbers for the three elements: input/service/number
of servers. When the system capacity is �nite an addi-
tional element is added. �e commonly used symbols
for distributions are: M for Poisson or exponential, Ek
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for Erlangian with k phases (gamma distribution with an
integer scale parameter k),D for deterministic, andG for a
general (alsoGI for general independent) or an unspeci�ed
distribution.�usM/G/ represents a Poisson arrival, gen-
eral service, and a single server system, andM/G//N has
the same description as above with a capacity restriction of
N customers in the system.
When the arrival process is represented by a random

variable with an index parameter t, de�ne A(t) as the
number of customers arriving and D(t) the number of
customers leaving the system during a time period (, t).
Let the number of customers in the system at time t be
Q(t).�en Q(t) = A(t) − D(t). In order to manage the
system e�ciently one has to understand how the process
Q(t) behaves over time. Note that allA(t),D(t), andQ(t)
are stochastic processes (which are sequences of random
variables indexed by the time parameter t.) Since the total
number of customers leaving the system at t is depen-
dent on the number customers arriving during that time,
the mode of their arrival (e.g., there may be time periods
with no customers in the system, commonly called idle
periods), the service mechanism, queue discipline (when
some customers get preferred treatment) and other factors
that a�ect the operation of the system (e.g., service break-
downs), to analyze Q(t), all these factors need to be taken
into account in the model.
In the analysis of a queueing system the stochastic pro-

cessW(t) representing the waiting time of a customer to
get served, and the random variable, say B, representing
the busy period (the amount of time the system is con-
tinuously busy at a stretch) are also used. �e objective
of the analysis is to get the distributional properties of
the stochastic processes Q(t) and W(t) and the random
variable B for use in decision making. Analyzing stochas-
tic processes in �nite time t o�en becomes very complex.
When the constituent elements such as arrival and service
are not time-dependent we can derive the distributions
of the limit random variables Q = lim

t→∞Q(t) and W =
lim
t→∞W(t) when they exist. �e ratio arrival/service rate
is commonly known as the tra�c intensity of the queue-
ing system (say ρ). �e property ρ <  is generally the
requirement for the existence of the limit distributions of
the stochastic processes Q(t) and W(t), when they are
time-independent.�e behavioral performance measures
of interest in a queueing system are transition probability
distributions of Q(t) and W(t), probability distributions
of Q,W and B, and their means and variances.
In addition to the behavioral problems of underly-

ing stochastic processes mentioned above, we are also
interested in inference problems such as estimation
and tests of hypotheses regarding basic parameters and

performance measures, and optimization problems for
assistance in decision making. An introduction to these
topics and the necessary references may be found in Bhat
().
In order to provide an illustration of the behavioral

analysis of a queueing system we consider below a sys-
tem with Poisson arrivals, exponential service, and single
server, symbolically known as an M/M/ queue. �is is
the simplest and the most used system in applications. As
systems includemore complicated featuresmore advanced
techniques will need to be employed to analyze the corre-
sponding stochastic models.
Let customers arrive in a Poisson process with rate λ.

�ismeans that the numberA(t) of the customers arriving
in (, t) has a Poisson distribution

P[A(t) = j] = e−λt (λt)j
j!
, j = , , , . . .

It also means that the interarrival times have an expo-
nential distribution with probability density a(x)= λe−λx

(x > ).Weassumetheservice times tohaveanexponential
distributionwith probability density b(x) = µe−µx (x > ).
With these assumptions we have E[inter-arrival time] =
(/λ) = /arrival rate and E[service time] = (/µ) =
/service rate. �e ratio of arrival rate to service rate is
the tra�c intensity ρ = λ/µ. Note that we have assumed
the processes to be time-independent.
Let Q(t) be the number of customers in the system

at time t and its transition probability distribution be
de�ned as

Pij(t) = P[Q(t) = j∣Q() = i]

because of the Poisson arrival process and the exponen-
tial service distribution, Q(t) can be modeled as a birth
and death process (a class of stochastic processes with
major properties (a) probability of more than one state
change during an in�nitesimal interval of time is close to
zero; (b) the rate of change in a unit time is constant and
(c) changes occurring in non-overlapping intervals of time
are independent of each other) governed by the following
di�erence-di�erential equations.

P′i(t) = −λPi(t) + µPi(t)
P′in(t) = −(λ + µ)Pin(t) + λPi,n−(t)

+ µPi,n+(t) n = , , . . .

with Pin() =  when n = i and =  otherwise. Solving
these equations to obtain Pin(t) is not very simple. Readers
may refer to Gross et al. () and its earlier editions for
their solutions.
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When ρ < , the limit Pij
t→∞

(t) = pj exists and is inde-

pendent of the initial state i. It can be obtained easily from
the following equations that result by letting t →∞ in the
above set of di�erence-di�erential equations.

λp = µp
(λ + µ)pn = λpn− + µpn+ n = , , . . .

along with ∑∞n= pn = . We get p =  − ρ, pn = ( −
ρ)ρn(n = , , , . . .).�e mean E(Q) and variance V(Q)
of this distribution can be obtained as E(Q) = ρ/( − ρ)
and V(Q) = ρ/( − ρ).

�e waiting time of an arriving customer, when the
queue discipline is FCFS, is the total amount of time
required to serve the customers who are already in the sys-
tem and this total time has an Erlangian distribution. Let
us denote it as Tq (we use T as the random variable rep-
resenting the total time the customer is in the system, also
known as total workload.) Accordingly we get

P[Tq ≤ t] =  − ρe−µ(−ρ)t

E[Tq] = ρ/µ( − ρ) and E[T] = /µ( − ρ).

Let E(Q) = L and E[T] =W. Looking at the above results
we can see that L = λW showing how L andW are related
in this system.�is property is known as Little’s Law and
it holds in more complex systems under certain general
conditions. Another property is the exponential nature of
the limiting waiting time distribution shown above which
holds in more general queueing systems as well.

�e derivation of the distribution of the busy period B
is more complicated even in this simple system. We may
refer the reader to Gross et al. () for its derivation.

�e literature on queueing theory is vast and it is
impossible to cover all facets of the analysis of queueing
systems using various modeling and sophisticated math-
ematical techniques in a short article in an encyclopedia.
�e following references and bibliographies given in them
provide the basic understanding of the subject at two levels:
Bhat () for those who have a background only in
probability and statistics and Gross and Harris () or
Gross et al. () for those who have some background
in stochastic processes.
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R is a widely used open source language for scienti�c com-

puting and visualization. It is based on the S language

(S: An Interactive Environment for Data Analysis and

Graphics, R. A. Becker and J. M. Chambers, Wadsworth,

), but with a few paradigms adopted from the Lisp

family of languages.

R began its life in , when Ross Ihaka and Robert

Gentleman started a project that ultimately evolved into

what it is now. In the early days, their main goal was

to develop something that was like S, but which had

clearer underlying semantics. Around the same time, other

major changes were taking place: the world wide web was

quickly gaining steam, and a new open source operating

system named Linux (with major components from the

GNU project) was becoming a popular tool for academic

researchers. With these advances, it made sense to make

the so�ware more widely available, and hence it needed a

name. In part to re�ect its heritage, and in part to re�ect

their contributions, Ross and Robert chose to call it R. At

this time, R was still primitive and had restricted capabili-

ties, but a number of other scientists realized its potential,

and shortly a�er its release the R-core group was formed.

�e activities and hard work of this group of contributors

was what really made the breakthrough, and due to their

e�orts, R quickly becomemore stable, reliable and forward

looking.

R is now under constant development by a team

of approximately  individuals (essentially members of

R-core) and has a fairly consistent  month release cycle.

�e core language is extended through add-on packages

which can be obtained and installed in a local version of

R, thereby customizing it to a user’s interests.�ese pack-

ages are perhaps one of the main advantages of R, since a

wide variety of statistical, computational and visualization

methods are available. �ese add-on packages are o�en

written by experts in the methodology, and that has served

well to ensure the high quality of the outputs. However,

users should realize that the availability of packages on

sites such as cran.r-project.org or www.bioconductor.org

does not imply any endorsement of their scienti�c qual-

ity except perhaps by their authors. Textbooks, the mailing

list archives, and the scienti�c publications that some-

times accompany a package are good places for users

to derive a judgment on packages’ suitability for their

needs.

R has served to bring scienti�c computing into many

peoples hands. Many statisticians world-wide use R for

their teaching and research. R has become widely used in

many other �elds as well, physics, chemistry, sociology,

and notably biology. It is used in a wide variety of indus-

tries, Google, Microso�, various pharmaceutical compa-

nies, banks andmany investment houses. Its �exibility and

the ability to relatively easily code new algorithms is likely

to be one of the reasons that R has seen such wide-spread

adoption. While reliable estimates of the number of users

are hard to obtain increases in download tra�c, in frequ-

ency of posting to the email help list suggest that the user

base is continuing to grow quite rapidly.

R has made scienti�c computing easier for many

sophisticated users and it has also brought in people who

are new to the �eld. Balancing the diverse needs of the

community is a particular problem. Discussions on the

mailing lists can range from the very philosophical (o�en

surrounding variants of object oriented programming) to

the somewhat simpler (but o�en repeated) bug report that

R’s numerical capabilities are questionable. For all classes

of new users it may be helpful to realize that R has a long

history, the actual numerical code used for most of the

applications is more than  years old and much of it is

even older. Large parts of that code have beenwidely tested

for years and it is somewhat unlikely that it fails to per-

form as intended in any really obvious way (as one person

put it, you may be new to R, but R is not new).�e fact

that R has a long history (somewhat longer than that of

Java, for example)means that changes to the way that func-

tions work (even when we know that the original version

Miodrag Lovric (ed.), International Encyclopedia of Statistical Science, DOI ./----,
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was not optimal) are not likely to happen – there is simply

too much code and too many users invested in the way it

currently works and one must have very good reasons to

modify code.

New users of R, or any other programming language,

that want to do scienti�c programming should be conver-

sant with the basics of computer arithmetic. To quote from

“�e Elements of Programming Style” by Kernighan and

Plauger: . times . is hardly ever ..�e issue is one of

representing a real number in the allocated memory of a

computer, this can only be done exactly for a small subset

of all numbers and for all others some rounding is needed.

Interested readers should consult a good book on numer-

ical computing and David Goldberg (), “What Every

Computer Scientist Should Know About Floating-Point

Arithmetic,” ACM Computing Surveys, /, –, which

is available online at: http://docs.sun.com/source/-

/ncg_goldberg.html.

As noted above the R language is largely based on

the S language that was developed at Bell Laboratories

by John Chambers and colleagues during the s and

s. While a major goal was providing an interactive

environment for performing statistical, and more gener-

ally scienti�c, computing there were other motivations for

their work. One of the guiding philosophies of John’s work

was the notion that scientists needed to use computers to

solve problems, and that if the computing environment

was suitably conducive they would gradually evolve into

being programmers.�e main reason is that while there

aremany commonalities between problems, there is always

some need for additional programming and the tweaking

of inputs or outputs. �us, one hopes that the language

will actually help to develop the next generation of com-

putational experts by converting some set of its users into

programmers. It is worth emphasizing again, that the bene-

�ts of having a scientist conversant with, and invested in a

method typically means that the method will provide the

correct outputs.�ere is potential for the implementation

to be sub-optimal, but that can generally be overcome if the

method gets adopted for wide-spread use.

In his book, Algorithms+Data Structures = Programs,
N. Wirth describes the fundamental notion that computer

programs rely on both a set of algorithms and a set of data

structures. R contains a very rich set of algorithms, but of

equal importance is the ability of the user to create and use

data structures that are appropriate to the problem at hand.

R has a very rich and extensible collection of data struc-

tures and well designed data structures can greatly simp-

lify many programming problems. Common examples are

speci�c data structures do hold dates and data structures to

hold time series objects. Both of these specialized contain-

ers are widely used and their use greatly simpli�es many

programming problems. Specialized methods can be writ-

ten to deal with the speci�c implementations and users are

then free to worry about other problems (and not con-

verting month–day–year representations into something

numeric).

In our work in computational biology we found that

the complexity of most experiments was very high and the

users were typically spending a great deal of their time

doing very basic data management. A very typical example

comes from the analysis ofmicroarrays on some set of sam-

ples.�e arrays provide us with a very large (generally s

of thousands) of measurements one genes for each sample

and at the same time we would have a separate set of data

describing the characteristics of the sample. Most users

would then spend some time arranging that the order of

the columns in the microarray data was the same as that of

the rows in the sample characteristic data (somewhat pecu-

liarly microarray data are stored with samples as columns,

while most other statistical data is stored with the sam-

ples as rows).�at is �ne until subsets are needed or one

decides to do a permutation test (see 7Permutation Tests)
for some hypothesis. At that point, depending on whether

samples or genes are being permuted di�erent operations

are needed.�is task is both tedious and has the potential

to be done incorrectly in ways that are hard to detect.�e

rather simple expedient of de�ning a new data structure

that contains both arrays, and where subsetting is de�ned

and implemented to work appropriately greatly simpli�es

the analysts job and has the additional e�ect of making it

much more likely that the right answer is obtained.

�is observation leads us to another arena in which R

is taking an important role: that of reproducibility in sci-

enti�c computing. �is issue arises o�en due to the fact

that the analysis of any reasonably large and complex data

set is error prone. �e chance that mistakes are made,

steps omitted increases as the number of people involved

in the analysis grows and as the number of so�ware tools

increases. A dynamic document is a document that con-

sists of both text and computer code. In greatly simpli�ed

terms the document is processed and the computer code

is evaluated. An output document is created where each

block of computer code is replaced with its output. Typi-

cally the computer code is used to produce the �gures and

tables that are needed for the �nal document. �e �nal

document can then be submitted as a paper to a journal

or as an internal report within a group or company.�e

advantage of the approach is that anyone with access to

the raw document and the data can reproduce the doc-

ument and more importantly they can understand how

every �gure and table was produced.
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�e theorem is concerned with the existence of density

(derivative) of one measure with respect to another. Let

(Ω,F) be a measurable space, i.e., a set Ω together with a
σ-algebraF of subsets of Ω. Suppose that ν, µ are two σ-

�nite positivemeasures on (Ω,F) such that ν is absolutely
continuous (denoted by ν ≪ µ) with respect to µ, i.e., if

µ(A) =  for some A ∈ F then ν(A) = .�e Radon–
Nikodým theorem states that these exists a µ-integrable

function f : Ω → R+ such that

ν(A) = ∫
A
f (ω)µ(dω), A ∈ F .

Moreover, f is µ-a.e. unique, in the sense that if f ′ also satis-

�es the above then the µ-measure of the points ω such that

f (ω) ≠ f ′(ω) equals zero.�e function f is called Radon–
Nikodým derivative of µ with respect to ν and this is o�en

denoted by

f (ω) = dν

dµ
(ω).

�e standard proof is as follows. First, assume that

µ(Ω) < ∞. Denote by G the class of all non-negative
µ-integrable functions g such that

∫
A
g(ω)µ(dω) ≤ ν(A), A ∈ F .

Let c be the supremum of the set numbers

{∫Ω gdµ : g ∈ G}, and choose a sequence gn of ele-
ments of G such that limn→∞ ∫Ω gndµ = ∫Ω gdµ. Observe
that if g′, g′′ are elements of G then so is their maximum

max(g′, g′′). �is observation, together with the mono-
tone convergence theorem, allows us to conclude that

f = supn gn is also a member of G and ∫Ω fdµ = c.�is
shows that ∫A fdµ ≤ ν(A) for all A ∈ F . To show that

the di�erence is actually zero we need to use the Hahn

decomposition of a signed measure. Details can be found

in Kallenberg (, pp. –). �e general case for a

σ-�nite µ follows easily by taking an increasing sequence

Ωn with µ(Ωn) < ∞ and ∪nΩn = Ω, and by applying the
previous construction to each Ωn.

�e theorem was proved by Johann Radon () in

 for the case Ω = Rn and generalized by Otton
Nikodým () in  in its present form.�e Radon–

Nikodým derivative possesses the following properties:

. Linearity:
d(cν + cν)

µ
= c
dν

dµ
+ c

dν

dµ
, c, c ∈ R.

. Change of measure: If ν ≪ µ and g is a ν-integrable

function then ∫
Ω
gdν = ∫

Ω
g
dν

dµ
dµ.

. Chain rule: If λ ≪ ν ≪ ν then
dλ

dµ
= dλ

dν

dν

dµ
.

. Inverse rule: If ν ≪ µ and µ ≪ ν then
dν

dµ
= (dµ
dν

)
−
.

It is worth noting that a more general statement holds,

known as Lebesgue decomposition: Let ν, µ be σ-�nite mea-

sures on (Ω,F). �en there exists a unique measure
νa ≪ µ and a unique measure νs�µ (singular with respect
to µ) such that ν = νa + νs.

Also note that the σ-�niteness condition cannot be

dropped. For example, if Ω = R,F the σ-algebra of Borel

sets, µ the counting measure and ν the Lebesgue measure,

we certainly have ν ≪ µ but a density of ν with respect to

µ does not exist.

�e Radon–Nikodým theorem has numerous applica-

tions in many areas of modern mathematics. We mention

a few below.

. Conditional expectation. Let (Ω,F ,P) be a probabil-
ity space, X a non-negative random variable with EX =
∫Ω XdP < ∞, and G a sub-σ-algebra of F .�e notion of

conditional expectation E(X∣G ) of X given G was intro-

duced by A.N. Kolmogorov () in  by means of

the Radon–Nikodým derivative as follows. Consider the

measure ν(A) = ∫A XdP, A ∈ G . Clearly, ν ≪ P on G .

According to the Radon–Nikodým theorem there is a

G -measurable functionE(X∣G )which satis�es the relation

∫
A
E(X∣G )dP = ∫

A
XdP, A ∈ G .

More generally, we de�ne E(X∣G ) = E(X+∣G )− E(X−∣G ).
For further information see Konstantopoulos ().

. 7Martingales. If P,Q are two probability measures
on the same measurable space (Ω,F) such that Q ≪
P then, for any sub-σ-algebra G ⊂ F we have

Q ≪ P on (Ω,G ). If we denote by ( dQ
dP

)
F
and

( dQ
dP

)
G
the two Radon–Nikodým derivatives we have

the consistency property E [( dQ
dP

)
F

∣G ] = ( dQ
dP

)
G
.
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In fact, if Fn is an increasing sequence of sub-σ-

algebras generating F , then E [( dQ
dP

)
F

∣Fn] is a uni-
formly integrable martingale (Williams ) whose limit

(a.s. and in L) equals ( dQdP )F
.

. Kullback–Leibler divergence and Hellinger distance. In
�eoretical Statistics, the notion of 7Kullback–Leibler
divergence was introduced by Solomon Kullback and

Richard Leibler () in . �is is a generalization of

the notion of7entropy for two distributions. If µ and ν are

two probability measures on the same space with ν ≪ µ,

the Kullback–Leibler divergence or distance

Q(ν ∥ µ) = −∫
Ω
log( dν

dµ
)dµ

measures the relative variability of ν with respect to µ.�e

quantity is always non-negative (owing to the convexity

of − log and Jensen’s inequality) but not symmetric. �e
Kulback–Leibler divergence is used in Information�eory

(Cover and�omas ) to de�ne themutual information

between two random variables.

�e Hellinger distance H(µ, ν) between two probabil-
ity measures µ and ν which are absolutely continuous to a

third probability measure λ is de�ned by

H
(µ, ν) = 


∫
Ω

⎛
⎝

√
dµ

dλ
−
√
dν

dλ

⎞
⎠



dλ

and we have H(µ, ν) ≤ Q(ν ∥ µ).
. Densities on Rn. Let f , g be densities of two proba-

bility measures P,Q, respectively, on Rn.�en Q ≪ P if

and only if there are versions of f and g such that {x :
f (x) > } ⊂ {x : g(x) > }. In this case, dQ

dP
(x) =

g(x)
f (x) . For example, if P is the law of n i.i.d. standard nor-

mal random variables (ξ, . . . , ξn), and if Q is the law of
(ξ + µ, . . . , ξn + µn), for some constants µ, . . . , µn, then
dQ
dP

(x, . . . , xn) = exp∑nj= (µjxj − 


µj ).

. The Radon–Nikodým derivative between two Brownian
motions. �is is an in�nite-dimensional generalisation of
the previous example. De�ne the probabilitymeasure PT ,µ ,

on the space Ω of continuous functions ω : [,T] → R, to
be the law of a Brownian motion (see 7Brownian Motion
and Di�usions) with dri� µ and unit variance. We have

PT ,µ ≪ PT , and
dPT ,µ

dPT ,
(ω) = eµω(T)− 


µT
. Moreover,

the consistency (martingale) property ET , [
dPT ,µ
dPT ,

∣Ft] =
dPt,µ
dPt,
, t ≤ T, holds. Here Ft is the σ-algebra generated

by (ω(s), s ≤ t). A further generalisation of this is the
Cameron–Martin–Girsanov theorem (Cameron and Mar-

tin ). Let (Xt) be a measurable (Ft)-adapted process
such that Zt := exp{∫

t


XsdWs − 

 ∫
t


Xs ds} is de�ned

and is a martingale. De�ne Q on (Ω,FT) by dQ
dPT ,

=
ZT .�en the law of the process (Wt − ∫

t


Xsds,  ≤ t ≤ T)

on (Ω,FT ,Q) is again PT ,. More general results on the
absolute convergence of Gaussian measures and the cal-

culation of a density function are studied, e.g., by Feld-

man (), Ibragimov and Rozanov (), Zerakidze

() and Yadrenko (). Results on di�usions and gen-

eral processes appear, e.g., in Liptser and Shiryaev (),

Gikhman and Skorokhod (–). Smooth measures

were studied by Bell (), Daletskii and Sokhadze (),

Bogachev (), Kulik and Pilipenko (), among

others.

. The Radon–Nikodým derivative between two
7Poisson processes. Let Pλ be the law of a rate-λ homoge-

neous Poissonprocess on a boundedmeasurable set S ⊂ Rn

with Lebesgue measure ∣S∣.�e Pλ is a probability measure

on the space Ω of integer-valued random measures with

no multiple points. For any  < λ, µ < ∞ we have that

Pλ ≪ Pµ with Radon–Nikodým derivative

dPλ

dPµ
(ω) = ( λ

µ
)

ω(S)

⋅ e−(λ−µ)∣S∣
.

To see this, it is su�cient to show that for any bounded

measurable f : Ω → R we have Eλ[exp ∫S f (x)ω(dx)] =

Eµ [( λ
µ
)

ω(S)
⋅ e−(λ−µ)∣S∣ ⋅ exp ∫S f (x)ω(dx)], something

that is easily veri�able by means of the Poisson character-

istic functional Eλ[exp ∫S f (x)ω(dx)] = exp λ ∫S(e
f (x) −

)dx. Note that if P̂λ is the image of Pλ on Z+ under
the mapping ω ↦ ω(S) then the formula above says
that

dPλ

dPµ
(ω) = dP̂λ

dP̂µ
(ω(S)). We also note that if S is not

bounded, e.g., if S = Rn, the above fails to hold because
Pλ�Pµ if λ ≠ µ.

. The Radon–Nikodým derivative between two Markov
jump processes. Consider a Markov jump process in a
countable state space S with transition rates qx,y such that

q(x) := −q(x, x) = ∑y qx,y <∞ for all x ∈ S, and initial dis-
tribution µ. Let Q be the matrix with entries qx,y. In other

words, Q and µ de�ne a probability measure Pµ ,Q on the

space Ω of right-continuous piecewise-constant functions

ω : [,T] → S. We only consider �nite time horizon T.

We change µ,Q to µ̃, Q̃ in a way that µ ≪ µ̃ and qx,y = 
whenever q̃x,y = .�en Pµ ,Q ≪ Pµ̃ ,Q̃ and

dPµ ,Q

dPµ̃ ,Q̃
(ω) = µ(ω())

µ̃(ω())
exp{−∫

T


(q(ω(s))

− q̃(ω(s)))ds} ⋅∏
x≠y

(
qx,y

q̃x,y
)
NT(ω,x,y)

,
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where NT(ω, x, y) is the total number of points s ≤ T such
that ω(s−) = x,ω(s) = y.

. The Esscher transform. Let (Xt , t ≥ ) be a Lévy
process (see 7Lévy Processes), i.e. a stochastic process
with values in R which is continuous in probability and
has stationary-independent increments. Assume that the

Laplace exponent ψ(β) = logE exp(βX) is de�ned for β

belonging to a non-trivial interval. Let Z
β
t := exp{βXt −

ψ(β)t} and de�ne a new measure Pβ
via the Radon–

Nikodým derivative dPβ

dP
∣
Ft
=Zβ

t , where Ft=σ(Xs, s≤t).
�is derivative is known as the Esscher transform and

leads to a natural generalisation of the Cameron–Martin–

Girsanov theorem:�e process (Xt) is still a Lévy process
under Pβ

. See Kyprianou () for its use in Fluctuation

�eory.

. Palm probability. Let (Ω,F ,P) be a probability space
andM : (Ω × Rd) → R+ be measurable in the �rst argu-

ment and a locally �nite probabilitymeasure in the second.

We call such an M a random measure on Rd. Assume
that λ(B) = EM(B) is a locally �nite measure. De�ne the
Campbell measure C(A,B) = E[1AM(B)], A ∈ F ,B ∈ B,

whereB is the class of Borel sets on Rd, and observe that
C(A, ⋅) ≪ λ for eachA ∈ F .�e Radon–Nikodým deriva-

tivePx(A) = dC(A,⋅)
dλ

(x) has a versionwhich is a probability
measure on (Ω,F) and is called Palm probability. IfM is
a simple point process (see 7Point Processes), i.e.M(ω, ⋅)
takes values in Z+ such that M(ω,{x}) ∈ {, }, for all x
and ω, then Px(A) gives the probability of A given thatM
places a unitmass at the point x.�e concept ismost useful

for stationary random measures (Kallenberg ).
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Independence of the observations is a key assumption of

many standard statistical methods, such as 7analysis of
variance (ANOVA) and ordinary regression, and some of

its extensions. Common examples of data structures that

do not �t into such a framework arise in longitudinal

analysis, in which observations are made on subjects at

subject-speci�c sequences of time points, and in studies

that involve subjects (units) ocurring naturally in clusters,

such as individuals within families, schoolchildren within

classrooms, employees within companies, and the like.�e

assumption of independence of the observations is not ten-

able, because observations within a cluster are likely to be

more similar than observations in general. Such similarity

can be conveniently represented by a positive correlation

(dependence).

�is section describes an adaptation of the ordinary

regression for clustered observations. Such observations

require two indices, one for elements within clusters,

i = , . . . ,nj , and another for clusters, j = , . . . ,m.�us,
we have n = n +⋯ + nm elementary units andm clusters.
�e ordinary regression model

yij = xij β + εij , ()

with the usual assumptions of normality, independence

and equal variance (homoscedasticity) of the deviations

εij , εij ∼ N (, σ ), i.i.d., implies that the regressionswithin
the clusters j have a common vector of coe�cients β.�is

restriction can be relaxed by allowing the regressions to

di�er in their intercepts. A practical way of de�ning such

a model is by the equation

yij = xij β + δj + εij , ()

where δj is a random sample from a centred normal dis-

tribution, δj ∼ N (, σ B), i.i.d., independent from the ε’s.

With thismodel, thewithin-cluster regressions are parallel;

their intercepts are β + δj , but the coe�cients on all the

other variables in x are common to the clusters. A more
appealing interpretation of the model is that observations

in a cluster are correlated,

cor (yi ,j , yi ,j) = σ B
σ  + σ B

,

because they share the same deviation δj. Further relax-

ation of how the within-cluster regressions di�er is

attained by allowing some (or all) the regression slopes to

be speci�c to the clusters. We select a set of variables in x,
denoted by z, and assume that the regressions with respect
to these variables di�er across the clusters, but are constant

with respect to the remaining variables;

yij = xij β + zij δj + εij , ()

where δj is a random sample from a multivariate nor-

mal distribution (see7Multivariate Normal Distributions)
N (,ΣB), independent from the ε’s. We say that the vari-

ables in z are associated with (cluster-level) variation.�e
variance of an observation yij , without conditioning on the

cluster j, is

var (yij) = σ
 + xijΣBx⊺ij .

We refer to σ  and zijΣBz⊺ij as the variance components (at
the elementary and cluster levels, respectively).�e prin-

ciple of invariance with respect to linear transformations

of z implies that the intercept should always be included
in z, unless z is empty, as in the model in (). �e func-
tion V(z) = zΣBz⊺, over the feasible values of z, de�nes
the pattern of variation, and it can be described by its

behaviour (localminima, points of in�ection, and the like).

By way of an example, suppose z contains the intercept and
a single variable z. Denote the variances in ΣB by σ  and σ z ,

and the covariance by σz .�en

V(z) = σ

 + zσz + zσ z , ()
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and this quadratic function has a unique minimum at

z∗ = −σz/σ z , unless σ z = , in which case we revert to
the model in () in which V(z) is constant.

�emodel in () is �tted bymaximum likelihood (ML)

which maximizes the log-likelihood function

l (β, σ

,ΣB) = − 



m

∑
j=

[ log{det (Vj)}

+ (yj −Xjβ)
⊺
V−j (yj −Xjβ)],

in which Vj is the variance matrix of the observations
in cluster j, yj the vector of the outcomes for the obser-
vations in cluster j, and Xj the corresponding regression
design matrix formed by vertical stacking of the rows xij ,
i = , . . . ,nj .�e variation design matrices Zj , j = , . . . ,m,
are de�ned similarly; with them, Vj = σ Inj + ZjΣBZ⊺j ,
where Inj is the nj × nj identity matrix. For ML solutions,
see Longford () andGoldstein ().�ese and other

algorithms are implemented in most standard statistical

packages.

7Model selection entails two tasks, selecting a set of
variables to form x and selecting its subset to form z.�e
variables in x can be de�ned for elements or clusters; the
latter can be de�ned as being constant within clusters.

Inclusion of cluster-level variables in z does not have an
interpretation in terms of varying regression coe�cients,

so associating them with variation is in most contexts not

meaningful. However, the identity in () and its generalisa-

tions for ΣB withmore than two rows and columns indicate

that z can be used for modelling variance heterogeneity.
�e likelihood ratio test statistic and various information

criteria can be used for selecting among alternative mod-

els, so long as one is a submodel of the other; that is, the

variables in both x and z of one model are subsets of (or
coincide with) their counterparts in the other model.

Random coe�cients can be applied to a range of mod-

els much wider than ordinary regression. In principle, we

can conceive any basis model, characterized by a vector

of parameters, which applies to every cluster. A subset of

these parameters is constant across the clusters and the

remainder varies according to a model for cluster-level

variation.�e latter model need not be a multivariate nor-

mal distribution, although suitable alternatives to it are

di�cult to identify.�e basis model itself can be complex,

such as a random coe�cient model itself.�is gives rise to

three- or, generally, multilevel models, in which elements

are clustered within two-level units, these units in three-

level units, and so on. Generalized linear mixed models

have 7generalized linear models (McCullagh and Nelder
) as their basis.

Randomcoe�cientmodels arewell suited for analysing

surveys in which clusters arise naturally as a consequence

of the organisation (design) of the survey and the way

the studied population is structured.�ey can be applied

also in settings in which multiple observations are made

on subjects, as in longitudinal studies (Molenberghs and

Verbeke ). In some settings it is contentious as to

whether the clusters should be regarded as �xed or ran-

dom. When they are assumed to be random the (random

coe�cient)models are o�enmore parsimonious than their

�xed-e�ects (ANCOVA) models, because the number of

parameters involved does not depend on the number of

clusters.
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Random �eld X(t) on D ⊂ Rn (i.e., t ∈ D ⊂ Rn) is a func-
tion whose values are random variables for any t ∈ D.�e
dimension of the coordinate is usually in the range from

one to four, but any n >  is possible. A one-dimensional
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random �eld is usually called a stochastic process. �e

term “random �eld” is used to stress that the dimension

of the coordinate is higher than one. Random �elds in

two and three dimensions are encountered in a wide range

of sciences and especially in the earth sciences, such as

hydrology, agriculture, and geology. Random�elds where t

is a position in space-time are studied in turbulence theory

and in meteorology.

Random�eldX(t) is described by its �nite-dimensional
(cumulative) distributions

Ft ,. . .,tk(x, . . . , xk) = P{X(t)
< x, . . . ,X(tk) < xk}, k = ,  . . .

�e cumulative distribution functions are by de�nition

le�-continuous and nondecreasing. Two requirements on

the �nite-dimensional distributions must be satis�ed.�e

symmetry condition

Ft ,. . .,tk(x, . . . , xk) = Ftπ ,. . .,tπk(xπ, . . . , xπk),

where π is a permutation of the index set {, . . . , k}.�e
compatibility condition

Ft ,. . .,tk−(x, . . . , xk−) = Ft ,. . .,tk(x, . . . , xk−,∞).

Kolmogorov Existence �eorem states: If a system of

�nite-dimensional distributions Ft ,. . .,tk(x, . . . , xk), k =
,  . . . , satis�es the symmetry and compatibility condi-

tions, then there exists on some probability space a random

�eld X(t), t ∈ D, having Ft ,. . .,tk(x, . . . , xk), k = ,  . . . , as
its �nite-dimensional distributions.

�e expectation (mean value) of a random �eld is by

de�nition the Stieltjes integral

m(t) = EX(t) = ∫
R
xdFt(x).

�e (auto-)covariance function is also expressed as the

Stieltjes integral

B(t, s) = E(X(t)X(s)) −m(t)m(s)

=∬
R
xydFt,s(x, y) −m(t)m(s),

whereas the variance is σ (t) = B(t, t).
Gaussian random �elds play an important role due

to several reasons: the speci�cation of their �nite-

dimensional distributions is simple, they are reasonable

models for many natural phenomena, and their estimation

and inference are simple.

A Gaussian random �eld is a random �eld where all

the �nite-dimensional distributions are7multivariate nor-
mal distributions. Since multivariate normal distributions

are completely speci�ed by expectations and covariances,

it su�ces to specify m(t) and B(t, s) in such a way that

the symmetry condition and the compatibility condition

hold true.�e expectation can be arbitrarily chosen, but

the covariance functionmust be positive-de�nite to ensure

the existence of all �nite-dimensional distributions.

Wiener sheet (Brownian sheet) is a Gaussian ran-

dom �eld W(t), t = (t, t) ∈ R+ with EW(t) =
 and correlation function B(t, s) = E(X(t)X(s)) =
min{s, t}min{s, t}. Analogously, the n-parametric
Wiener process is a Gaussian random �eld W(t), t ∈
Rn+ with EW(t) =  and correlation function B(t, s) =
∏ni=min(si, ti). �e multiparametric Wiener process
W(t) has independent homogeneous increments. A gen-
eralized derivative of the multiparametric Wiener process

W(t) is theGaussianwhite noise process onRn+ (Chung and
Walsh ).

Poisson random �elds are also reasonable models for

many natural phenomena. A Poisson random �eld is an

integer-valued (point) random �eld where the (random)

amount of points that belong to a bounded set from the

range of values of the �eld has a Poisson distribution and

the random amounts of points that belong to nonoverlap-

ping sets are mutually independent (Kerstan et al. ).

Markov random �eld X(t), t ∈ D ⊂ Rn, is a random
function that has the Markov property with respect to a

�xed system of ordered triples (S, Γ, S) of nonoverlap-
ping subsets from the domain of de�nitionD.�e Markov

property means that for any measurable set B from the

range of values of the function X(t) and every t ∈ S, the
following equality holds true:

P{X(t) ∈ B∣X(t), t ∈ S ∪ Γ} = P{X(t) ∈ B∣X(t), t ∈ Γ}.

�is means that the future S does not depend on the past

S when the present Γ is given. Let, for example, D = Rn,
{Γ} be a family of all spheres inRn, S be the interior of Γ,
and S be the exterior of Γ. A homogeneous and isotropic

Gaussian random �eld X(t), t ∈ Rn, has the Markov prop-
erty with respect to the ordered triples (S, Γ, S) if and
only if X(t) = ξ, where ξ is a random variable. Nontrivial

examples of homogeneous and isotropic Markov random

�elds can be constructed when considering the general-

ized random �elds. Markov random �elds are completely

described in the class of homogeneous Gaussian random

�elds on Zn, in the class of multidimensional homoge-
neous generalized Gaussian random �elds on the space

C∞
 (Rm) and the class of multidimensional homogeneous
and isotropic generalized Gaussian random �elds (Glimm

and Ja�e ; Rozanov ; Yadrenko ).

Gibbs random �elds form a class of random �elds

that have extensive applications in solutions of problems

in statistical physics. �e distribution functions of these
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�elds are determined by Gibbs distribution (Malyshev and

Minlos ).

Homogeneous random �eld in the strict sense is a real-

valued random function X(t), t ∈ Rn (or t ∈ Zn), where
all its �nite-dimensional distributions are invariant under

arbitrary translations, that is,

Ft+s,. . .,tk+s(x, . . . , xk) = Ft ,. . .,tk(x, . . . , xk)∀s ∈ Rn.

Homogeneous random �eld in the wide sense is

a real-valued random function X(t), t ∈Rn (t ∈Zn),
E∣X(t)∣ <+∞, where EX(t) = m = const. and the cor-
relation function EX(t)X(s) = B(t − s) depends on the
di�erence t − s of coordinates of points t and s.
Homogeneous random �eld X(t), t ∈ Rn, EX(t) = ,

E∣X(t)∣ <+∞, and its correlation function B(t) = EX(t
+s)X(s) admit the spectral representations

X(t) = ∫ ⋯∫ exp{
n

∑
k=
tkλk}Z(dλ),

B(t) = ∫ ⋯∫ exp{
n

∑
k=
tkλk}F(dλ),

where F(dλ) is a measure on the Borel σ-algebra Bn of sets
from Rn, and Z(dλ) is an orthogonal randommeasure on
Bn such that EZ(S)Z(S) = F(S ∩ S).�e integration
range is Rn in the case of continuous time random �eld
X(t), t ∈ Rn, and [−π, π]n in the case of discrete time
random �eld X(t), t ∈ Zn. In the case where the spectral
representation of the correlation function is of the form

B(t) = ∫ ⋯∫ exp{
n

∑
k=
tkλk} f (λ)dλ,

the function f (λ) is called the spectral density of the
�eld X(t). Based on these spectral representations we can
prove, for example, the law of large numbers for random

�eld X(t):
�e mean square limit

lim
N→∞



(N + )n ∑
∣ti ∣≤N ,i=,. . .,n

X(t) = Z{}.

�is limit is equal to EX(t) =  if and only if E∣Z{}∣ =
F{}. In the case where F{} =  and

∫
π

−π
⋯∫

π

−π

n

∏
i=
log ∣log 

∣λi∣
∣F(dλ) < +∞,

the strong law of large numbers holds true for the random

�eld X(t).
Isotropic random �eld is a real-valued random function

X(t), t ∈ Rn, E∣X(t)∣ < +∞, where the expectation and
the correlation function have properties EX(t) = EX(gt)
and EX(t)X(s) = EX(gt)X(gs) for all rotations g around

the origin of coordinates. An isotropic random �eld X(t)
admits the decomposition

X(t) =
∞
∑
m=

h(m,n)

∑
l=

X
l
m(r)Slm(θ, θ, . . . , θn−, φ),

where (r, θ, θ, . . . , θn−, φ) are spherical coordinates of
the point t ∈ Rn, Slm(θ, θ, . . . , θn−, φ) are spherical har-
monics of the degree m, h(m,n) is the amount of such
harmonics, Xlm(r) are uncorrelated stochastic processes
such that EXlm(r)Xlm(s) = bm(r, s)δmm δ l

l
, where δ

j

i is

the Kronecker symbol, bm(r, s) is a sequence of positive
de�nite kernels such that ∑∞m= h(m,n)bm(r, s) < +∞,
bm(, s) = ,m /= .
Isotropic random �eld X(t), t ∈ R, on the plane

admits the decomposition

X(r, φ) =
∞
∑
m=

{Xm(r) cos(mφ) + Xm(r) sin(mφ)} .

�e class of isotropic random �elds includes homo-

geneous and isotropic random �elds, multiparametric

Brownian motion processes (see 7Brownian Motion and
Di�usions).

Homogeneous and isotropic random �eld is a real-

valued random function X(t), t ∈ Rn, E∣X(t)∣ < +∞,
where the expectation EX(t) = c = const. and the cor-
relation function EX(t)X(s) = B(∣t − s∣) depends on the
distance ∣t − s∣ between points t and s. Homogeneous and
isotropic random �eld X(t) and its correlation function
B(r) admit the spectral representations (Rozanov ;
Yadrenko ; Yaglom )

X(t) = cn
∞
∑
m=

h(m,n)

∑
l=

S
l
m(θ, θ, . . . , θn−, φ)

∫
∞



Jm+(n−)/(rλ)
(rλ)(n−)/

Z
l
m(dλ),

B(r) = ∫
∞


Yn(rλ)dΦ(λ),

where

Yn(x) = (n−)/Γ (
n


)
J(n−)/(x)
x(n−)/

is a spherical Bessel function, Φ(λ) is a bounded nonde-
creasing function called the spectral function of the �eld

X(t), Zlm(dλ) are random measures with orthogonal val-
ues such that EZlm(S)Zlm(S) = δmm δ l

l
Φ(S ∩ S), cn =


n−
Γ(n/)πn/.
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Homogeneous and isotropic random�eldX(t), t ∈ R,
on the plane admits the spectral representation

X(t, φ) =
∞
∑
m=
cos(mφ)Ym(rλ)Zm(dλ)

+
∞
∑
m=
sin(mφ)Ym(rλ)Zm(dλ).

�ese spectral decompositions of random �elds form a

power tool for the solution of statistical problems for ran-

dom �elds such as extrapolation, interpolation, �ltering,

and estimation of parameters of the distribution (Yadrenko

; Yaglom a, b).
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Random matrix theory (RMT) originated from the inves-

tigation of energy levels of a large number of particles

in quantum mechanics. Many laws were discovered by

numerical study in mathematical physics. In the late s,

E. P.Wigner formulated the problem in terms of the empir-

ical distribution of a random matrix (Wigner , ),

which began the investigation into the semicircular law of

Gaussian matrices. Since then, RMT has formed an active

branch in modern probability theory.

Basic Concepts
LetA be an n×nmatrix with eigenvalues λ,⋯, λn. If all λjs
are real, then we can construct a -dimensional empirical

distribution function

F
A(x) = 

n

n

∑
j=
I(λj ≤ x),

otherwise, we may construct a -dimensional empirical

distribution function by the real and imaginary parts of λj,

i.e.

F
A(x, y) = 

n

n

∑
j=
I(R(λj) ≤ x;I(λj) ≤ y).

�en, FA is called the empirical spectral distribution (ESD)

ofA.�e main task of RMT is to investigate limiting prop-
erties of FA in the case where A is random and the order
n tends to in�nity. If there is a limit distribution F, then

the limit is called the limiting spectral distribution (LSD) of

the sequence of theA. Interesting problems include �nding
the explicit forms of the LSD if it exists and to investigate

its properties.

�ere are two methods used in determining limiting

properties of FA (Bai ). One is themethod of moments,

using the fact that the moments of FA are the scaled traces
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of powers of A. �e other is using Stieltjes transforms,
de�ned for any distribution function F as

m(z) = ∫


x − z
dF(x),

for z ∈ C.
Contrary to the progress made on the eigenvalues of

large dimensional random matrices, very few results have

been obtained on the limiting properties of the eigenma-

trix (i.e., the matrix of the standardized eigenvectors ofA).
Due to its importance in the application to statistics and

applied areas, investigation on eigenmatrices is becoming

more active.

Limiting Spectral Distributions
. Semicircular LawAWignermatrix is de�ned as aHer-
mitian (symmetric if real) matrixW = (wij)n×n whose
entries above or on the diagonal are independent.�en

the ESD of n−/W tends to the semicircular law with
density

p(x) = 

π

√
 − xI(∣x∣ < ),

if Ewij = , E∣wij∣ =  and for any δ > ,



n
∑
ij

E ∣wij∣ I (∣wij∣ ≥ δ
√
n)→ .

. Marcěnko–Pastur Law LetX = (xij)p×n whose entries
are independent random variables with mean zero and

variance . If p/n→ y ∈ (,∞) and for any δ > ,



np
∑
ij

E ∣xij∣ I (∣xij∣ ≥ δ
√
n)→ .

�en the ESD of Sn = 

n
XX∗ (so-called sample covari-

ance matrix) tends to the Marcěnko–Pastur law with

density



πxy

√
(b − x)(x − a)I(a < x < b)

where a = ( −√
y) and b = ( +√

y). Furthermore,
if y > , the LSD has a point mass  − /y at the origin.

. LSD of Products of Random Matrices Let T (p × p)
be a Hermitian matrix with LSD H (a probability dis-

tribution function) and Sn, p/n satisfy the conditions
in item ().�en the ESD of SnT exists and the Stielt-
jes transformm(z) is the unique solution on the upper
complex plane to the equation

m = ∫


t( − y − yzm) − z
dH(t),

where z is complex with positive imaginary part.

Extreme Eigenvalues and Spectrum
Separation
Limits of extreme eigenvalues of large random matrices

is one of the important topics. In many cases, under the

assumption of �nite fourthmoment, the extreme eigenval-

ues almost surely tend to the respective boundaries of the

LSD. For the product SnT, if the support of the LSD is dis-
connected, then, under certain conditions, it is proved that

there are no eigenvalues among the gaps and the numbers

on each side are exactly the same of eigenvalues of T, on
the corresponding sides of the interval which determines

the gap of the LSD (Bai and Silverstein ).

Further deeper investigation into extreme eigenvalues

is the Tracy–Widom Law which says that n/ times the

di�erence of the extreme eigenvalues and the correspond-

ing boundary points tends to the so-called Tracy–Widom

law (Tracy and Widom ).

Convergence Rates of Empirical Spectral
Distributions
Convergence rates of ESDs of large dimensional random

matrices to their corresponding LSDs are important for

application of spectral theory of large dimensional matrix.

Bai inequality is the basic mathematical tool to establish

the convergence rates (Bai a,b).�e currently known

best rates are that O(n−/) for the expected ESDs for
Wigner matrix and for sample covariance matrix, and

Op(n−/) and Oa.s.(n−/+η) for their ESDs.
�e exact rates are still far from known.

CLT of LSS
If λ, . . . , λn are the eigenvalues of the random matrix A
and f is a function de�ned on the space of the eigenval-

ues, then the LSS (linear spectral statistic) for the random

matrix is de�ned by



n

n

∑
k=
f (λk) = ∫ f (x)dFA(x).

To investigate the limiting distribution of the LSS, we

de�ne Xn( f ) = n (∫ f (x)d(FA(x) − F(x))).
Under certain conditions, the normalized LSS, Xn( f ),

is proved to tend to a normal distribution for the Wigner

matrix, the product SnT, as well as for the multivariate
F-matrix, with asymptotic means and variances explicitly

expressed by the Stieltjes transforms of the LSDs (Bai and

Yao ; Bai and Silverstein ; Zheng ).

�ese theorems have been found to have important

applications to multivariate analysis and many other areas.

Limiting Properties of Eigenvectors
Work in this area has been primarily done on the matri-

ces in item () with X containing real entries (Silverstein
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, , ). Write Sn = OΛO∗, its spectral decom-
position. When the entries of X are Gaussian, then Sn is
the standard Wishart matrix, with O Haar-distributed in
the group of p × p orthogonal matrices.�e question is to
compare the distribution ofOwhen the entries ofX are not
Gaussian to Haar measure when p is large.�is has been

pursued when X is made up of iid random variables, by
comparing the distribution of y = O∗x, where x is a unit
p-dimensional vector, to the uniform distribution on the

unit sphere in Rp. A stochastic process is de�ned in terms
of the entries of y, which converges weakly to Brownian
bridge in the Wishart case. A necessary condition for this

process to behave the same way for non Gaussian entries

has been shown to be E (x) = , matching the fourth
moment of a standardized Gaussian (Silverstein ). For

certain choices of x and for symmetrically distributed x,
weak convergence to Brownian bridge has been shown in

Silverstein ().
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Set Partitions
For n ≥ , a partition B of the �nite set [n] = {, . . . ,n} is

● A collection B = {b, . . .} of disjoint non-empty sub-
sets, called blocks, whose union is [n]

● An equivalence relation or Boolean function B∶ [n] ×
[n]→ {, } that is re�exive, symmetric and transitive

● A symmetric Boolean matrix such that Bij =  if i, j
belong to the same block

�ese equivalent representations are not distinguished in

the notation, so B is a set of subsets, a matrix, a Boolean

function, or a subset of [n]×[n], as the context demands. In
practice, a partition is sometimes written in an abbreviated

form, such asB = ∣ for a partition of []. In this notation,
the �ve partitions of [] are

, ∣, ∣, ∣, ∣∣.

�e blocks are unordered, so ∣ is the same partition as
∣ and ∣.
A partition B is a sub-partition of B∗ if each block of

B is a subset of some block of B∗ or, equivalently, if Bij = 
implies B∗ij = .�is relationship is a partial order denoted
byB ≤ B∗, which can be interpreted as B ⊂ B∗ if each parti-
tion is regarded as a subset of [n].�e partition lattice En
is the set of partitions of [n]with this partial order. To each
pair of partitions B,B′ there corresponds a greatest lower

bound B ∧ B′, which is the set intersection or Hadamard
component-wise matrix product. �e least upper bound
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B ∨ B′ is the least element that is greater than both, the
transitive completion of B ∪ B′.�e least element of En is
the partition n with n singleton blocks, and the greatest
element is the single-block partition denoted by n.
A permutation σ ∶ [n] → [n] induces an action

B↦ Bσ
by composition such thatBσ(i, j) = B(σ(i), σ( j)).

In matrix notation, Bσ = σBσ−, so the action by conju-

gation permutes both the rows and columns of B in the

same way.�e block sizes are preserved and are maximally

invariant under conjugation. In this way, the  partitions

of [] may be grouped into �ve orbits or equivalence
classes as follows:

, ∣ [], ∣ [], ∣∣ [], ∣∣∣.

�us, for example, ∣ is the representative element for
one orbit, which also includes ∣ and ∣.

�e symbol #B applied to a set denotes the number of

elements, so #B is the number of blocks, and #b is the size

of block b ∈ B. If En is the set of equivalence relations on
[n], or the set of partitions of [n], the �rst few values of #En
are , , , , , called Bell numbers. More generally, #En
is the nth moment of the unit Poisson distribution whose

exponential generating function is exp(et − ). In the dis-
cussion of explicit probability models on En, it is helpful to
use the ascending and descending factorial symbols

α↑r = α(α + )⋯ (α + r − ) = Γ(r + α)/Γ(α)

k↓r = k(k − )⋯ (k − r + )

for integer r ≥ . Note that k↓r =  for positive integers
r > k. By convention α↑ = .

Partition Model
�e term partition model refers to a probability distribu-

tion, or family of probability distributions, on the set En
of partitions of [n]. In some cases, the probability is con-
centrated on the the subset E kn ⊂ En of partitions having
k or fewer blocks. A distribution on En such that pn(B) =
pn(σBσ−) for every permutation σ ∶ [n] → [n] is said to
be �nitely exchangeable. Equivalently, pn is exchangeable

if pn(B) depends only on the block sizes of B.
Historically, themost important examples areDirichlet-

multinomial random partitions generated for �xed k in

three steps as follows.

● First generate the random probability vector π =
(π, . . . , πk) from the Dirichlet distribution with

parameter (θ, . . . , θk).
● Given π, the sequence Y, . . . ,Yn, . . . is independent

and identically distributed, each component taking

values in {, . . . , k} with probability π. Each sequence

of length n in which the value r occurs nr ≥  times has

probability

Γ(θ.)∏kj= θ
↑nj
j

Γ(n + θ.)
,

where θ. = ∑ θ j.

● Now forget the labels , . . . , k and consider only the

partition B generated by the sequence Y , i.e., Bij = 
if Yi = Yj. �e distribution is exchangeable, but an
explicit simple formula is available only for the uni-

form case θ j = λ/k, which is now assumed.�e number
of sequences generating the same partition B is k↓#B,

and these have equal probability in the uniform case.

Consequently, the induced partition has probability

pnk(B, λ) = k↓#B
Γ(λ)∏b∈B(λ/k)↑#b

Γ(n + λ)
, ()

called the uniform Dirichlet-multinomial partition

distribution. �e factor k↓#B ensures that partitions

having more than k blocks have zero probability.

In the limit as k →∞, the uniform Dirichlet-multinomial
partition becomes

pn(B, λ) =
λ
#B∏b∈B Γ(#b)

λ↑n
. ()

�is is the celebrated Ewens distribution, or Ewens sam-

pling formula, which arises in population genetics as the

partition generated by allele type in a population evolving

according to the Fisher–Wright model by random muta-

tion with no selective advantage of allele types (Ewens

). �e preceding derivation, a version of which can

be found in Chap.  of Kingman (), goes back to

Watterson (). �e Ewens partition is the same as

the partition generated by a sequence drawn according

to the Blackwell-McQueen urn scheme (Blackwell and

MacQueen ).

Although the derivation makes sense only if k is a

positve integer, the distribution () is well de�ned for neg-

ative values −λ < k < . For a discussion of this and the
connection with GEM distributions and Poisson-Dirichlet

distributions, see Pitman (, Sect. .).

Partition Processes and Partition
Structures
Deletion of element n from the set [n], or deletion of the
last row and column from B ∈ En, determines a map
Dn∶En → En−, a projection from the larger to the smaller
lattice.�ese deletion maps make the sets {E,E, . . .} into
a projective system

⋯ En+
Dn+Ð→ En

DnÐ→ En− ⋯

A family p = (p, p, . . .) in which pn is a probability
distribution on En is said to be mutually consistent, or
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Kolmogorov-consistent, if each pn− is the marginal dis-

tribution obtained from pn under deletion of element n

from the set [n]. In other words, pn−(A) = pn (D−n A)
forA ⊂ En−. Kolmogorov consistency guarantees the exis-
tence of a random partition of the natural numbers whose

�nite restrictions are distributed as pn. �e partition is

in�nitely exchangeable if each pn is �nitely exchangeable.

Some authors, for example Kingman (), refer to p as a

partition structure.

An exchangeable partition process may be generated

from an exchangeable sequence Y,Y, . . . by the trans-

formation Bij =  if Yi = Yj and zero otherwise. �e

Dirichlet-multinomial and the Ewens processes are gener-

ated in this way. Kingman’s () paintbox construction

shows that every exchangeable partition process may be

generated from an exchangeable sequence in this manner.

Let B be an in�nitely exchangeable partition,

B[n] ∼ pn, let B∗ be a �xed partition in En, and sup-
pose that the event B[n] ≤ B∗ occurs. �en B[n] lies
in the lattice interval [n,B∗], which means that B[n] =
B[b]∣B[b]∣ . . . is the concatenation of partitions of the
blocks b ∈ B∗. For each block b ∈ B∗, the restriction B[b] is
distributed as p#b, so it is natural to ask whether, and under

what conditions, the blocks of B∗ are partitioned indepen-

dently givenB[n] ≤ B∗. Conditional independence implies
that

pn(B ∣B[n] ≤ B∗) = ∏
b∈B∗

p#b(B[b]), ()

which is a type of non-interference or lack-of-memory

property not dissimilar to that of the exponential distribu-

tion on the real line. It is straightforward to check that the

condition is satis�ed by () but not by (). Aldous ()

shows that conditional independence uniquely character-

izes the Ewens family.

Chinese Restaurant Process
A partition process is a random partition B ∼ p of a count-
ably in�nite set {u,u, . . .}, and the restriction B[n] of B
to {u, . . . ,un} is distributed as pn.�e conditional distri-
bution of B[n + ] given B[n] is determined by the proba-
bilities assigned to those events in En+ that are consistent
with B[n], i.e. the events un+ ↦ b for b ∈ B and b = /. For
the uniform Dirichlet-multinomial model (), these are

pr(un+ ↦ b ∣B[n] = B) =
⎧⎪⎪⎨⎪⎪⎩

(#b + λ/k)/(n + λ) b ∈ B

λ( − #B/k)/(n + λ) b = /.
()

In the limit as k→∞, we obtain

pr(un+ ↦ b ∣B[n] = B) =
⎧⎪⎪⎨⎪⎪⎩

#b/(n + λ) b ∈ B

λ/(n + λ) b = /,
()

which is the conditional probability for the Ewens process.

To each partition process p there corresponds a

sequential description called the Chinese restaurant pro-

cess, in which B[n] is the arrangement of the �rst n cus-
tomers at #B tables.�e placement of the next customer

is determined by the conditional distribution pn+(B[n +
] ∣B[n]). For the Ewens process, the customer chooses
a new table with probability λ/(n + λ) or one of the
occupied tables with probability proportional to the num-

ber of occupants. �e term, due to Pitman, Dubins and

Aldous, is used primarily in connection with the Ewens

and Dirichlet-multinomial models.

Exchangeable Random Permutations
Beginning with the uniform distribution on permutations

of [n], the exponential family with canonical parameter
θ = log(λ) and canonical statistic #σ equal to the number

of cycles is

pn(σ) = λ
#σ/λ↑n.

�e Stirling number of the �rst kind, Sn,k, is the number

of permutations of [n] having exactly k cycles, for which
λ
↑n = ∑nk= Sn,kλ

k
is the generating function. �e cycles

of the permutation determine a partition of [n] whose
distribution is (), and a partition of the integer n whose

distribution is (). From the cumulant function

log(λ↑n) =
n−
∑
j=
log( j + λ)

it follows that #σ = X + ⋯ + Xn− is the sum of indepen-
dent Bernoulli variables with parameter E(Xj) = λ/(λ+ j),
which is evident also from the Chinese restaurant repre-

sentation. For large n, the number of cycles is roughly Pois-

son with parameter λ log(n), implying that λ̂ ≃ #σ/ log(n)
is a consistent estimate as n → ∞, but practically
inconsistent.

A minor modi�cation of the Chinese restaurant pro-

cess also generates a randompermutation by keeping track

of the cyclic arrangement of customers at tables. A�er n

customers are seated, the next customer chooses a table

with probability () or (), as determined by the partition

process. If the table is occupied, the new arrival sits to the

le� of one customer selected uniformly at random from the

table occupants.�e random permutation thus generated

is j↦ σ( j) from j to the le� neighbour σ( j).
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Provided that the partition process is consistent and

exchangeable, the distributions pn on permutations of [n]
are exchangeable and mutually consistent under the pro-

jection Πn → Πn− on permutations in which element

n is deleted from the cyclic representation (Pitman ,

Sect. .). In this way, every in�nitely exchangeable ran-

dom partition also determines an in�nitely exchangeable

random permutation σ ∶N → N of the natural numbers.
Distributional exchangeability in this context is not to be

confused with uniformity on Πn.

On the Number of Unseen Species
A partition of the set [n] is a set of blocks, and the block
sizes determine a partition of the integer n. For example,

the partition ∣∣ of the set [] is associated with the
integer partition  +  + , one singleton and two dou-
bletons. An integer partition m = (m, . . . ,mn) is a list
of multiplicities, also written as m = mm⋯nmn , such
that ∑ jmj = n.�e number of blocks, usually called the
number of parts of the integer partition, is the sum of the

multiplicitiesm. = ∑mj.
Each integer partition is a group orbit in En induced by

the action of the symmetric group on the set [n].�e mul-
tiplicity vectorm contains all the information about block

sizes, but there is a subtle transfer of emphasis from block

sizes to the multiplicities of the parts.

By de�nition, an exchangeable distribution on set par-

titions is a function only of the block sizes, so pn(B) =
qn(m), where m is the integer partition corresponding
to B. Since there are

n!

∏nj=( j!)mjmj!

set partitions B corresponding to a given integer parti-

tion m, to each exchangeable distribution pn on set par-

titions there corresponds a marginal distribution

qn(m) n!

∏nj=( j!)mjmj!

on integer partitions. For example, the Ewens distribution

on integer partitions is

λ
m.Γ(λ)∏ Γ(j)mj
Γ(n + λ)

× n!

∏nj=(j!)mjmj!
= λ

m. n! Γ(λ)
Γ(n + λ)∏j jmjmj!

.

()

�is version leads naturally to an alternative description

as follows. Let M = M, . . . ,Mn be independent Poisson
random variables with mean E(Mj) = λθ j/j for some
positive number θ. �en ∑ jMj is su�cient for θ, and

the conditional distribution pr (M = m ∣ ∑nj= jMj = n) is
the Ewens integer-partition distribution with parameter λ.

�is representation leads naturally to a simple method of

estimation and testing, using Poisson log-linear models

with model formula  + j and o�set − log( j) for response
vectors that are integer partitions.

�e problem of estimating the number of unseen

species was �rst tackled in a paper by Fisher (), using

an approach that appears to be entirely unrelated to parti-

tion processes. Specimens from species i occur as a Poisson

process (see 7Poisson Processes) with rate ρi, the rates

for distinct species being independent and identically dis-

tributed gamma random variables. �e number Ni ≥ 
of occurrences of species i in an interval of length t is a

negative binomial random variable

pr(Ni = x) = ( − θ)ν
θ
x Γ(ν + x)
x! Γ(ν)

. ()

In this setting, θ = t/( + t) is a monotone function
of the sampling time, whereas ν >  is a �xed number
independent of t. Specimen counts for distinct species are

independent and identically distributed random variables

with parameters ν >  and  < θ < .
�e probability that no specimens from species i occur

in the sample is ( − θ)ν
, the same for every species. Most

species are unlikely to be observed if either θ is small,

i.e., the time interval is short, or ν is small.

LetMx be the number of species occurring x ≥  times,
so thatM. is the unknown total number of species of which
M.−M are observed.�e approach followed by Fisher is to
estimate the parameters θ, ν by conditioning on the num-

ber of species observed and regarding the observed multi-

plicitiesMx for x ≥  as multinomial with parameter vector
proportional to the negative binomial frequencies (). For

Fisher’s entomological examples, this approach pointed to

ν = , consistent with the Ewens distribution (), and
indicating that the data are consistent with the number

of species being in�nite. Fisher’s approach using a model

indexed by species is less direct for ecological purposes

than a process indexed by specimens. Nonetheless, sub-

sequent analyses by Good and Toulmin (), Holgate

() and Efron and�isted () showed how Fisher’s

model can be used to make predictions about the likely

number of new species in a subsequent temporal exten-

sion of the original sample.�is amounts to a version of

the Chinese restaurant process.

At this point, it is worth clarifying the connection

between Fisher’s negative binomial formulation and the

Ewens partition formulation. �e relation between them

is the same as the relation between binomial and negative

binomial sampling schemes for a Bernoulli process: they

are not equivalent, but they are complementary.�e par-

tition formulation is an exchangeable process indexed by

specimens: it gives the distribution of species numbers in a
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sample consisting of a �xed number of specimens. Fisher’s

version is also an exchangeable process, in fact an iid pro-

cess, but this process is indexed by species: it gives the

distribution of the sample composition for a �xed set of

species observed over a �nite period. In either case, the con-

ditional distribution given a sample containing k species

and n specimens is the distribution induced from the uni-

form distribution on the set of Sn,k permutations having

k cycles. For the sorts of ecological or literary applica-

tions considered byGood andToulmin () or Efron and

�isted (), the partition process indexed by specimens

is much more direct than one indexed by species.

Fisher’s �nding that themultiplicities decay asE(Mj)∝
θ j/j, proportional to the frequencies in the log-series dis-
tribution, is a property ofmany processes describing popu-

lation structure, either social structure or genetic structure.

It occurs in Kendall’s () model for family sizes as mea-

sured by surname frequencies. One explanation for univer-

sality lies in the nature of the transition rates for Kendall’s

process, a discussion of which can be found in Sect. . of

Kelly ().

Equivariant Partition Models
A family pn(σ ; θ) of distributions on permutations
indexed by a parameter matrix θ, is said to be equivari-

ant under the induced action of the symmetric group if

pn(σ ; θ) = pn(gσg−; gθg−) for all σ , θ, and for each

group element g∶ [n] → [n]. By de�nition, the param-
eter space is closed under conjugation: θ ∈ Θ implies
gθg− ∈ Θ.�e same de�nition applies to partitionmodels.
Unlike exchangeability, equivariance is not a property of a

distribution, but a property of the family. In this setting,

the family associated with [n] is not necessarily the same
as the family of marginal distributions induced by deletion

from [n + ].
Exponential family models play a major role in both

theoretical and applied work, so it is natural to begin

with such a family of distributions on permutations of the

matrix-exponential type

pn(σ ; θ) = α
#σ
exp(tr(σθ))/Mα(θ),

where α >  and tr(σθ) = ∑nj= θσ(j),j is the trace of the

ordinary matrix product.�e normalizing constant is the

α-permanent

Mα(θ) = perα(K) =∑
σ

α
#σ

n

∏
j=
Kσ(j),j

where Kij = exp(θ ij) is the component-wise exponen-
tial matrix. �is family of distributions on permutations

is equivariant.

�e limit of the α-permanent as α →  gives the sum
of cyclic permutations

cyp(K) = lim
α→

α
−
perα(K) = ∑

σ :#σ=

n

∏
j=
Kσ(j),j,

giving an alternative expression for the α-permanent

perα(K) = ∑
B∈En

α
#B∏
b∈B
cyp(K[b])

as a sum over partitions. �e induced marginal distri-

bution () on partitions is of the product-partition type

recommended by Hartigan (), and is also equivariant.

Note that the matrix θ and its transpose determine the

same distribution on partitions, but they do not usually

determine the same distribution on permutations.

�e α-permanent has a less obvious convolution prop-

erty that helps to explain why this function might be

expected to occur in partition models:

∑
b⊂[n]

perα(K[b])perα′(K[b̄]) = perα+α′(K). ()

�e sum extends over all 
n
subsets of [n], and b̄ is the

complement of b in [n]. A derivation can be found in sec-
tion . of McCullagh andMøller (). If B is a partition

of [n], the symbol K ⋅ B = B ⋅ K denotes the Hadamard
component-wise matrix product for which

perα(K ⋅ B) =∏
b∈B
perα(K[b])

is the product over the blocks of B of α-permanents

restricted to the blocks.�us the function B↦ perα(K ⋅B)
is of the product-partition type.

With α,K as parameters, we may de�ne a family of

probability distributions on E kn , i.e., partitions of [n] hav-
ing k or fewer blocks, as follows:

pnk(B) = k↓#B perα/k(K ⋅ B)/perα(K). ()

�e fact that () is a probability distribution on En follows
from the convolution property of permanents.�e limit as

k→∞

pn(B) = α
#B∏
b∈B
cyp(K[b])/perα(K), ()

is a product-partition model satisfying the conditional

independence property (). For K = n, the n × n
matrix whose elements are all one, perα(n) = α↑n is the

ascending factorial function.�us the uniform Dirichlet-

multinomial model () and the Ewens model () are both

obtained by setting θ = .
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Leaf-Labelled Trees
Kingman’s [n]-coalescent is a non-decreasing, En-valued
Markov process (see7MarkovProcesses) (Bt) in continuous-
time starting from the partition B = n with n singleton
blocks at time zero. �e coalescence intensity is one for

each pair of blocks regardless of size, so each coalescence

event unites two blocks chosen uniformly at random from

the set of pairs. Consequently, the �rst coalescence occurs

a�er a random time Tn exponentially distributed with rate

ρ(n) = n(n− )/ and mean /ρ(n). A�er k coalescences,
the partition consists of n − k blocks, and the waiting time
Tk for the next subsequent coalescence is exponential with

rate ρ(n− k).�e time to complete coalescence is the sum
of independent exponentials T = Tn + Tn− + ⋯ + T,
which is a random variable withmean −/n and variance
increasing from  at n =  to a little less than . as n→∞.
In the context of the Fisher–Wright model, the coalescent

describes the genealogical relationships among a sample of

individuals, and T is the time to the most recent common

ancestor of the sample.

�e [n]-coalescent is exchangeable for each n, but the
property that makes it interesting mathematically, statisti-

cally and genetically is its consistency under selection or

sub-sampling (Kingman ). If we denote by pn the dis-

tribution on [n]-trees implied by the speci�c Markovian
model described above, it can be shown that the embedded

tree obtained by deleting element n from the sample [n] is
not only Markovian but also distributed as pn−, i.e., the

same coalescent rule applied to the subset [n − ]. �is
property is mathematically essential for genealogical trees

because the occurrence or non-occurrence of individual n

in the sample does not a�ect the genealogical relationships

among the remainder.

A fragmentation [n]-tree is a non-increasing

En-valued Markov process starting from the trivial par-
tition B = n with one block of size n at time t = .
�e simplest of these are the consistent binary Gibbs frag-

mentation trees studied by Aldous (), Bertoin (,

) and McCullagh et al. ().�e �rst split into two

branches occurs at a random time Tn exponentially dis-

tributed with parameter ρ(n). Subsequently, each branch
fragments independently according to the same family of

distributions with parameter ρ(#b) for branch b, which
is a Markovian conditional independence property anal-

ogous to (). Consistency and conditional independence

put severe limitations on both the splitting distribution

and the rate function ρ(n), so the entire class is essentially
one-dimensional.

A rooted leaf-labelled tree T is also a non-negative

symmetric matrix.�e interpretation of Tij as the distance

from the root to the junction at which leaves i, j occur on

disjoint branches implies the inequalityTij ≥ min(Tik,Tjk)
for all i, j, k ∈ [n]. �e set of [n]-trees is a subset of the
positive de�nite symmetric matrices, not a manifold, but

a �nite union of manifolds of dimension n − , or n if
the diagonal elements are constrained to be equal. Like

partitions, rooted trees form a projective system within

the positive de�nite matrices. A fragmentation tree is an

in�nitely exchangeable random tree, which is also a special

type of in�nitely exchangeable random matrix.

Cluster Processes and Classification
Models
A Rd-valued cluster process is a pair (Y ,B) in which
Y = (Y, . . .) is anRd-valued random sequence and B is a
random partition ofN.�e process is said to be exchange-
able if, for each �nite sample [n] ⊂ N, the restricted process
(Y[n],B[n]) is invariant under permutation σ ∶ [n] → [n]
of sample elements.

�e Gauss–Ewens process is the simplest non-trivial

example for which the distribution for a sample [n] is as
follows. First �x the parameter values λ > , and Σ,Σ
both positive de�nite of order d. In the �rst step B has the

Ewens distribution on En with parameter λ. Conditionally
on B, Y is a zero-mean Gaussian matrix of order n×d with
covariance matrix

cov(Yir ,Yjs ∣B) = δijΣ

rs + BijΣrs,

where δij is the Kronecker symbol. A scatterplot color-

coded by blocks of theY values inR shows that the points
tend to be clustered, the degree of clustering being gov-

erned by the ratio of between to within-cluster variances.

For an equivalent construction we may proceed using

a version of the Chinese restaurant process in which tables

are numbered in order of occupancy, and t(i) is number of
the table at which customer i is seated. In addition, є, . . .

and η, . . . are independent Gaussian sequences with inde-

pendent components єi ∼ Nd(,Σ), and ηi ∼ Nd(,Σ).
�e sequence t determines B, and the value for individual i

is a vector Yi = ηt(i) + єi inRd, or Yi = µ + ηt(i) + єi if a

constant non-zero mean vector is included.

Despite the lack of class labels, cluster processes lend

themselves naturally to prediction and classi�cation, also

called supervised learning.�e description that follows is

taken from McCullagh and Yang () but, with minor

modi�cations, the same description applies equally to

more complicated non-linear versions associatedwith gen-

eralized linear mixed models (Blei et al. ). Given the

observation (Y[n],B[n]) for the ‘training sample’ [n],
together with the feature vector Yn+ for specimen un+,

the conditional distribution of B[n + ] is determined by
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those events un+ ↦ b for b ∈ B and b = / that are com-
patible with the observation.�e assignment of a positive

probability to the event that the new specimen belongs to

a previously unobserved class seems highly desirable, even

logically necessary, in many applications.

If the classes are tree-structured with two levels, we

may generate a sub-partitionB′ ≤ Bwhose conditional dis-
tribution given B is Ewens restricted to the interval [n,B],
with parameter λ

′
.�is sub-partition has the e�ect of split-

ting eachmain clusters randomly into sub-clusters. For the

sample [n], let t′(i) be the number of the sub-cluster in
which individual i occurs. Given B,B′, the Gauss-Ewens

two-level tree process is a sum of three independent Gaus-

sian processes Yi = ηt(i) + η′t′(i) + єi for which the con-

ditional distributions may be computed as before. In this

situation, however, events that are compatible with the

observation B[n],B′[n] are of three types as follows:

un+ ↦ b′ ∈ B′[n], un+ ↦ / ⊂ b ∈ B[n], un+ ↦ /.

In all, there are #B′ + #B +  disjoint events for which the
conditional distribution given B[n],B′[n],Y[n + ] must
be computed. An event of the second type is one in which

the new specimen belongs to the major class b ∈ B, but not
to any of the sub-types previously observed for this class.

Further Applications of Partition Models
Exchangeable partition models are used to construct non-

trivial, exchangeable processes suitable for cluster analysis

and density estimation. See Frayley and Ra�ery ()

for a review. Here, cluster analysis means cluster detec-

tion and cluster counting in the absence of covariate or

relational information about the units. In the computer-

science literature, cluster detection is also called unsuper-

vised learning.�e simplest of thesemodels is themarginal

Gauss–Ewens process in which only the sequence Y is

observed.�e conditional distribution pn(B ∣Y) on En is
the posterior distribution on clusterings or partitions of

[n], and E(B ∣Y) is the one-dimensional marginal dis-
tribution on pairs of units. In estimating the number of

clusters, it is important to distinguish between the sample

number #B[n], which is necessarily �nite, and the popu-
lation number #B[N], which could be in�nite (McCullagh
and Yang ).

Exchangeable partitionmodels are also used to provide

a Bayesian solution to the multiple comparisons problem.

�e key idea is to associate with each partition B of [k] a
subspace VB ⊂ Rk equal to the span of the columns of B.
�us, VB consists of vectors x such that xr = xs if Brs = .
For a treatment factor having k levels τ, . . . , τk, the Gauss–

Ewens prior distribution on Rk puts positive mass on the

subspaces VB for each B ∈ Ek. Likewise, the posterior dis-
tribution also puts positive probability on these subspaces,

which enables us to compute in a coherent way the pos-

terior probability pr(τ ∈ VB) or the marginal posterior
probability pr(τr = τs ∣ y). For details, see (Gopalan and
Berry ).
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Random variable (r.v.) is a real function de�ned on the

set of outcomes. It reduces the set-theoretical problems in

probability to some simpler ones in real analysis. R.v. ’s are

indispensable in probability computing.

Motivation
Formal de�nition of a r.v. is a consequence of some practi-

cal and logical needs. Let us start from ameasure-theoretic

frame (Ω,A,P), where Ω is the set of outcomes, A is a
σ-algebra of subsets of Ω, serving as random events, and P

is a normalized measure on the space (Ω,A), called prob-
ability. Any real function f = f (ω) transforms the initial
probability system (Ω,A,P) onto some induced system

(Ωf ,Af ,Pf ), where Ωf is the image of Ω by f , Af is the
σ-algebra of of subsets B on Ωf induced by f , while Pf is a

probability measure on (Ωf ,Af ) de�ned by

Pf (B) = P({ω : f (ω) ∈ B}). ()

For practical reasonswe require that the familyAf includes
all intervals (a; b >, i.e., that Af ⊇ B, where B means the
family of Borel sets in the real line. On the other hand the

right side of () is well de�ned, if and only if, {ω : f (ω) ∈
B} ∈ A. Since Af is σ-algebra generated by the intervals,

the last condition may be expressed in a more readable

form

{ω : f (ω) ≤ c} ∈ A for any c ∈ R. ()

Formal Definition
Any real function de�ned on the (measurable) space

(Ω,A) satisfying the condition () is said to be a ran-
dom variable on (Ω,A). Traditionally, random variables
are denoted by capital letters X(ω),Y(ω),Z(ω), or sim-
ply X,Y ,Z. �e following exmple shows that not every

function of outcome is a random variable.

Example  Let us set Ω = {, , , , }, A =
{∅,{, , },{, }, Ω} and

f (ω) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

, if ω ≤ 

, if ω > .

By setting in () c =  we get {ω : f (ω) < } = {, } ∉ A.
�us f is not random variable on the space (Ω,A).

�e probability measure PX(B) = P({ω : X(ω) ∈ B})
for B ∈ B is said to be distribution of the r.v.X.�is expres-
sion has mainly theoretical sense, because the Borel sets

are abstractive objects. More practical in use is so called

cumulative distribution function (c.d.f) F de�ned by F(α) =
P({ω : X(ω) ≤ α}).
Example  (Two-Dice Game). Here the set of out-

comes may be presented in the form Ω = {(i, j) :

i, j = , , , , , }, the family of random eventsAmay be
de�ned as the family of all subsets of Ω, while X(ω), for
any ω = (i, j) may be de�ned as i + j. Such a r.v. takes the
possible values from  to  with probabilities

PX(k) =
⎧⎪⎪⎨⎪⎪⎩

k−


if k ≤ 
−k+


if k > ,

while the values of c.d.f. FX = FX(α) are collected in the
Table .

It is worth to add that if X = X(ω) is a random vari-
able and f is a Borel function, i.e., a real function of a real

variable such that {x : f (x) ≤ c} ∈ B for all c ∈ R then the
composition f [X(ω)] is also random variable.
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Random Variable. Table  Values of c.d.f. FX = FX(α) in example 

Interval for α (−∞, ) < , ) < , ) < , ) < , ) < , )

FX(α)  














Interval for α < , ) < , ) < , ) < , ) < , ) < ,+∞)

FX(α) 
















Classification of r.v. ’s
It is well known that any c.d.f. F is continuous, perhaps out-

side a countable set on the real line. For practical purposes

we distinguish two classes of random variables. A r.v. is

. Discrete, if its c.d.f is constant in all intervals designed

by the points of its discontinuity

. Continuous, if there exists a nonnegative integrable

function f on R, called density, such that F(α) =
∫
+∞
−∞ f (x)dx for all α ∈ R.

�is classi�cation is fully justi�ed by two di�erent ana-

lytical toolsused inpresentationandcalculationof the r.v. ’s.

Distribution of a discrete r.v.X taking values xi for some i ∈
I is given by probability mass function pi = P(X = xi) and
its expectation is calculated by the formula Ex = ∑i

xipi.

Distribution of a continuous r.v. X is usually given by its

density function f , while its expectation is calculated by the

formula Ex =
+∞

∫
−∞

xf (x)dx.
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�e simple random walk {Sn : n = , , . . .}, starting at an
integerx, isastochasticprocessontheintegers,givenbyS =
x, Sn = x+X + . . .+Xn(n ≥ ), where Xn,n ≥ , is an inde-
pendent Bernoulli sequence: P(Xn = ) = p, P(Xn = −)
=  − p = q,  < p < . In the case, p = q = /, it is
called the simple symmetric random walk, while if p ≠ /,
it is asymmetric. By the binomial theorem, P(Sn = y ∣ S =
) = Cn(n+y)



p(n+y)/q(n−y)/, if y and n are of the same par-

ity, i.e., if either both are odd or both are even. Otherwise,

P(Sn = y ∣ S = ) = . Here = Cnm = n!/(m!(n −m)!).
For c ≤ x ≤ d integers, the probability π(x) that a sim-

ple random walk, starting at x, reaches c before d satis�es

the equation

π(x) = pπ(x + ) + qπ(x − )
for c < x < d, π(c) = , π(d) = , ()

as shown by conditioning on the �rst step X. For the

symmetric walk, the solution of this equation is π(x) =
(d − x)/(d − c). Since π(x) →  as d → ∞, the sym-
metric walk will reach the state c, starting from any state

x > c, with probability one. By symmetry, it will reach
every state with probability one. Iterating this argument

one sees that, with probability one, the symmetric random

walk visits every state in�nitely o�en.�at is, the walk is

recurrent. For the asymmetric walk, the solution to () is
π(x) = ( − (p/q)d−x)/( − (p/q)d−c). If p < /, then
the limit of this is  as d → ∞ and, with probability one,
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the random walk will visit c, starting from x > c. On the
other hand, if p > /, then π(x) → (q/p)x−c < , as
d → ∞.�e probability of ever reaching d, starting from
x < d is obtained by symmetry as  if p > / and (p/q)d−x
if p < /. �e asymmetric simple random walk is thus
transient. Indeed, it follows from the strong law of large

numbers (SLLN) that if p > /, then Sn → ∞ with prob-

ability one as n → ∞; and Sn → −∞, with probability
one, if p < /. For these and other properties of the ran-
dom walk, such as those described below, see Feller (,

Chap. ), Bhattacharya and Waymire (, Chap. ), or

Durrett (, Chap. ). For additional information, refer

to Billingsley (), and Spitzer ().

For computation of various probabilities associated

with a simple random walk, the following result proved

by D. Andre in  is very useful: Consider the polygonal

path of the random walk joining successive points ( j, Sj),
(j + , Sj+) (j = , , . . . ,n − ) by line segments. Let y > .
�en (a) the set of paths from (, ) to (n, y−) (n and y−
of the same parity) which touch or cross the level y, is in

one-one correspondence with (b) the set of all paths from

(, ) to (n, y + ) (Re�ection principle). To prove this, let
τ be the �rst time a path of the type (a) touches the level y

prior to time n.�en replace the segment of the path from

(τ, y) to (n, y − ) by its mirror re�ection about the level
y.�is gives a path of the type (b). Conversely, given any

path of the type (b), re�ect about y the segment of the path

from (τ, y) to (n, y + ).�is gives a path of the type (a).
Here is an application of this principle.

Example  (First passage time distribution of a sim-

ple random walk). Let y be a positive integer, and

Fn,y the event that the random walk, starting at zero,

reaches y for the �rst time at time n, i.e., Fn,y = {Sj ≠
y, for  ≤ j < n, Sn = y}, n and y of the same parity. Alto-
gether there are Cnn+y



paths from (, ) to (n, y), each

having probability p(n+y)/q(n−y)/ . Of these, the number

which cross or touch the level y prior to time n and for

which Sn− = y−  is, by the re�ection principle, Cn−n+y



. Also

the number for which Sn− = y+ isCn−n+y



. Subtracting these

two from the number Cnn+y


of all paths, one obtains, for all

y ≠  (treating the case y <  by symmetry),

P(Fn,y) = (Cnn+y


− Cn−n+y



) p(n+y)/q(n−y)/

= (∣y∣/n)Cnn+y


p
(n+y)/

q
(n−y)/

()

(n = ∣y∣, ∣y∣ + , ∣y∣ + , . . .).

One may also consider the simple symmetric random

walk S = x, Sn = x + X + . . . + Xn (n ≥ ), in dimen-
sion d ≥ , as a stochastic process on the d-dimensional

lattice Zd, with Xn(n ≥ ) i.i.d. random vectors, taking val-
ues ±ej( j = , . . . , d), each with probability /d. Here ej
is the vector whose j-th coordinate is  and the remaining

d−  coordinates are zero. It was proved by G. Polya in 
that this walk is recurrent in dimensions ,, and transient

in higher dimensions.

De Moivre () obtained the normal approximation

to the binomial probability P(Sn = y ∣ S = ), as a
combinatorial result. �e full potential of this was real-

ized by Laplace () who formulated and derived the far

reaching central limit theorem (CLT, see 7Central Limit
�eorems). Apparently, Gauss knew about the normal dis-

tribution as early as , and assuming this as the distri-

bution of errors of measurement, he obtained his famous

method of 7least squares. Hence the name Gaussian dis-
tribution is o�en used for the normal distribution. �e

�nal version of the CLT for a general random walk Sn =
X + . . . + Xn (n ≥ ), where Xn are arbitrary indepen-
dent identically distributed (i.i.d.) random variables with

mean zero and �nite variance σ  > , was obtained by
Lévy (): n−/(X + . . . + Xn) converges in distribu-
tion to the normal distribution N(, σ ) with mean zero
and variance σ , as n → ∞. In physical terms, this result
says the following: if time and length are rescaled so that

in one unit of rescaled time there are a large number n of

i.i.d. displacements of small rescaled lengths of order /
√
n,

then the randomwalk displacements over a period of time

t will appear as Gaussian with mean zero and variance

tσ , the increments over disjoint intervals being indepen-

dent.�at such a Gaussian process exists with continuous

sample paths was proved rigorously by N.Wiener in .

�is process is called the Brownian motion, following its

implicit use by A. Einstein in – to describe the

kinetic motion of colloidal molecules in a liquid, experi-

mentally observed earlier by the botanist R. Brown. Inter-

estingly, even before Einstein, Bachelier () described

the random movements of stocks by this Gaussian pro-

cess.�e statement that the rescaled random walk Sn(n =
, , , . . .) converges in distribution to Brownian motion
(see 7Brownian Motion and Di�usions) was proved rig-
orously by M. Donsker in , and this result is known as

the functional central limit theorem (FCLT). Both the CLT

and the FCLT extend to arbitrary dimensions d.

As consequences of the FCLT, one can derive many

asymptotic results for the simple symmetric random walk

given by the corresponding result for the limiting Brow-

nian motion. Conversely, by evaluating combinatorially

some probability associated with the random walk, one

may derive the corresponding probability for the Brown-

ian motion. A Brownian motion with variance parameter

σ  =  is called a standard Brownian motion, and denoted
{Bt : t ≥ } below.
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Example  (Boundary hitting probability of Brownian

motion). Let c ≤ x ≤ d be arbitrary reals. �en, using
the corresponding result for the scaled7randomwalk, one
obtains

P({Bt : t ≥ } reaches c before d ∣ B = x)
= (d − x)/(d − c). ()

Example  (Arcsine law). Let U denote the amount of

time in [, ] the Brownian motion spends above zero, i.e.,
U = Lebesgue measure of the set {t :  ≤ t ≤  : Bt > },
given B = . Consider the polygonal path of the simple
symmetric random walk Sj( j = , , . . . n), starting at zero.
By combinatorial arguments, such as the re�ection prin-

ciple, one can calculate exactly the proportion of times the

polygonal path lies above zero and, by the FCLT, this yields

P(U ≤ x) = (/π)sin−
√
x ( ≤ x ≤ ). ()
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Randomization is prescribed in several statistical proce-

dures for reasons related not only to the assurance of

scienti�c objectivity. Randomization, in essence, may be

de�ned as a physical mechanism to assign probabilities

to events. In probability sampling, such events are related

to the selection of samples from �nite populations. Sam-

ples are selected according to randomization processes that
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guarantee selection probabilities for any speci�c sample.

As a consequence, it also guarantees inclusion probabilities

(of �rst and higher orders) for any element of the popu-

lation. When a simple random sampling design (without

replacement) is employed, for instance, any sample A, of

size n from a populationU , of sizeN (n<N) have the same
probability of been selected, and its inclusion probabil-

ity of �rst order corresponds to the sample fraction, n/N.
Restrictions imposed on the randomization lead to di�er-

ent sample designs (e.g., systematic sampling, Bernoulli

sampling, Poisson sampling, and strati�ed sampling) and

are responsible for their statistical properties. Similarly,

in comparative experiments, the events are related to the

assignment of treatments to experimental units. In exper-

iments following the randomization principle, treatments

are randomly assigned to available experimental units.�is

means such an assignment follows a speci�c randomiza-

tion protocol. If, for instance, the protocol implies each

group of size r from a total n= tr available experimen-
tal units have the same probability of receiving a given

treatment, the experiment is been conducted to compare

t treatments according to a completely randomized design

(with r genuine replicates). Once again, restrictions in

the randomization lead to di�erent designs (e.g., random-

ized complete block designs, Latin square designs, and

split-plot designs).

Statistical methods of sampling and design of experi-

ments rely on randomization to make valid design-based

inferences. In both cases, inferences are supported by

real reference distributions, induced by randomization.

Its major role may be evident from appropriately derived

linearmodels. A linearmodel for data from a7simple ran-
dom sample, for instance, may be derived as follows. Let yi
be de�ned as the ith observation of a variable of interest

Y under a simple random sample selection scheme (such

as the traditional drawing of n balls, one at a time, without

replacement, from an urnwithN balls labeled from  toN).

Hence, yi can assume any value Yk (the value of Y associ-

ated to element k ∈U). Let also be the following indicator
variable de�ned:

δik =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

, if yi = Yk

, if yi ≠ Yk

Now, it is possible to write

yi = ∑
k∈U

δikYk. ()

Let Yk be rewritten as µ+(Yk − µ), with µ =
∑
k∈U
Yk

N
.�en,

() may be rewritten as

yi = ∑
k ∈U

δik [µ + (Yk − µ)] = µ + ∑
k ∈U

δik (Yk − µ) . ()

De�ne ωi = ∑
k ∈U

δik (Yk − µ) and () may be written as

yi = µ + ωi. ()

Expression () is the simplest linear model. According

to thismodel, the ith observation of a variable of interestY ,

observed on a simple random sample, may be regarded as

the populationmean (µ) plus a random term (ωi) with sta-

tistical properties implied by the randomization scheme.

For example, the description of “balls withdrawn from an

urn” scheme allows one to write

P (δik = ) =


N
, for any k ∈ U ;

P (δik = , δi′k′ = ) =  for k ≠ k′; and,

P (δik = , δi′k′ = ) =


N(N − )
, for i ≠ i′ and k ≠ k′.

�erefore, the following properties hold:

E(ωi) = E(∑
k∈U

δik (Yk − µ)) = 
N
∑
k∈U

(Yk − µ) = ; ()

V(ωi) = E (ω

i ) = ∑

k∈U
∑
k′∈U

(Yk − µ) (Yk′ − µ)E (δikδik′)

= 
N
∑
k∈U

(Yk − µ) =
(N − )
N

σ


()

where σ  =
∑
k∈U

(Yk − µ)

N − 
. It can also be shown that

Cov (ωi,ωi′) = −
σ 

N
()

Clearly, properties (), (), and () are consequences of the

randomization process.�ey are not assumptions. Based

on them, estimators such as the sample mean can be eval-

uated and proved unbiased with variances given as stated

in many sampling books.

�e ideas related to the role of randomization in sci-

enti�c investigation were originally proposed by Fisher

(, ). Since then, the relevance of the subject moti-

vated works by several authors. Only few of them are

referenced here as suggestions for further reading by limi-

tation of space. Hinkelmann and Kempthorne (), for

instance, explore the role of randomization in designed

experiments by deriving linear models and examining in
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depth the properties of the induced reference distributions.

Särndal et al. () emphasize the fundamental ideas

of probability sampling giving attention to unbiased esti-

mation. Finally, Tillé () describes a series of com-

putational algorithms (randomization protocols) to select

samples according to the probabilistic method.
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A randomization test is a permutation test (see

7Permutation Tests) that is based on randomization (ran-
dom assignment), where the test is carried out in the fol-

lowing way. A test statistic (such as a di�erence between

means) is computed for the experimental data (mea-

surements or observations).�en the data are repeatedly

divided or rearranged in a manner consistent with what

the random assignment procedure would have produced

if the treatments had no di�erential e�ect.�e test statis-

tic is computed for each of the resulting data permutations.

�ose data permutations, including the one for the experi-

mental results, constitute the reference set for determining

signi�cance. �e proportion of data permutations in the

reference set having test statistic values greater than or

equal to (or for certain test statistics, less than or equal to)

the value for the experimental results is the p-value (sig-

ni�cance or probability value). Determining signi�cance

on the basis of a distribution of test statistics generated

by permuting the data is characteristic of all permutation

tests; it is when the basis for permuting the data is random

assignment (not random sampling) that a permutation test

is called a randomization test.

�e null hypothesis for a randomization test is that the

measurement for each experimental unit (e.g., a subject or

a plot of land) is the same under one assignment to treat-

ments as under any alternative assignment. �us, under

the null hypothesis, assignment of experimental units to

treatments randomly divides themeasurements among the

treatments. Each data permutation in the reference set rep-

resents the results that, if the null hypothesis is true, would

have been obtained for a particular assignment. A random-

ization test is valid for any kind of sample, no matter how

the sample is selected.�is is an extremely important prop-

erty because the use of non-random samples is common

in experimentation, and parametric statistical tables (e.g.,

t and F tables) are not valid for such samples.

�e validity of parametric statistical tables depends on

random samples, and the invalidity of application to non-

random samples is widely recognized.�e random sam-

pling assumption underlying the parametric signi�cance

tables is that of a sampling procedure that gives all possi-

ble samples of n individuals within a speci�ed population
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the same probability of being drawn. Arguments regard-

ing the “representativeness” of a non-randomly selected

sample are irrelevant to the question of its randomness:

a random sample is random because of the sampling pro-

cedure used to select it, not because of the composition of

the sample.�us random selection is necessary to ensure

that samples are random.

It must be stressed that violation of the random sam-

pling assumption invalidates parametric statistical tables

not just for the occasional experiment but for virtually all

experiments involving statistical tests. A person conduct-

ing a poll may be able to enumerate the population to be

sampled and select a random sample by a lottery proce-

dure, but an experimenter would not have enough time,

money, or information to take a random sample of the pop-

ulation of the world in order to make statistical inferences

about people in general. Not many experiments in biology,

education, medicine, psychology, or any other �eld use

randomly selected subjects, and those that do usually con-

cern populations so speci�c as to be of little interest. For

instance, when human subjects for psychological experi-

ments are selected randomly, o�en they are drawn from

a population of students who attend a certain university,

are enrolled in a particular class, and are willing to serve

as subjects. Biologists and others performing experiments

on animals generally do not even pretend to take random

samples although they commonly use standard hypothesis

testing procedures designed to test null hypotheses about

populations. �ese well-known facts are mentioned here

as a reminder of the rareness of random samples in experi-

mentation and of the speci�city of the populations on those

occasions when random samples are taken.

In most experimentation the concept of population

comes into the statistical analysis because it is traditional

to discuss the results of a statistical test in terms of infer-

ences about populations, not because the experimenter has

sampled randomly some population to which he wishes

to generalize. �e population of interest to the experi-

ment is likely to be one that cannot be sampled randomly.

Random sampling by a lottery procedure, a table of ran-

dom numbers, or any other device requires sampling a

�nite population, but experiments of a basic nature are not

designed to �nd out something about a particular �nite

existing population. For example, with either animals or

human subjects the intention is to draw inferences appli-

cable to individuals already dead and individuals not yet

born, as well as those who are alive at the present time.

If we were concerned only with an existing population,

we would have extremely biological laws because every

minute some individuals are born and some die, producing

a continual change in the existing population. �us the

population of interest inmost experiments is not one about

which statistical inferences can be made because it cannot

be sampled randomly.

A number of desirable properties of randomization

tests are a function of their intelligibility. A knowledge

of calculus or other aspects of “advanced mathematics” is

unnecessary for an experimenter to develop a new ran-

domization test, using only his statistical knowledge of

�nite statistics involving combinations and permutations.

�e way in which random assignment is carried out in

an experiment permits an experimenter to see whether

the method of permuting the data is valid for that exper-

iment for either simple or complex randomization tests.

Neither the producer nor the consumer of randomization

tests needs to rely on unknown authorities to justify their

decision regarding the validity of a randomization test – or

of its invalidity. For professors who enjoymaking their stu-

dents think instead of memorize, teaching randomization

tests is enjoyable, and the pleasure of reasoning at a level

that permits a student to develop new statistical tests that

are custom-made to �t a new type of experimental design

can appeal to ingenuity of many students.
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Statistics
�e Science of Statistics is concerned with the analysis

of data. �is analysis may be as simple as presenting a

graph, or �nding an average. In more complex analyzes

a statistical model may be assumed, and inferences may

be made concerning the more general characteristics of

the population of data from which a sample of data was

obtained.

Parametric Versus Nonparametric
If the statistical model involves assumptions regarding the

distribution of probabilities that govern the population

of data then the resulting statistical methods are usu-

ally called “parametric.” If the statistical model involves

assumptions, but not assumptions regarding the distribu-

tion of probabilities governing the population, then the

resulting statistical methods are usually called “nonpara-

metric” or “distribution-free.” Many of the best nonpara-

metric methods involve the ranks of the data rather than

the data itself. By ranks of the data it is meant that the

smallest observation in the data set is given rank , the

second smallest is given rank , and so forth.

Rank Transformation
Parametric methods usually have some optimum prop-

erty for the parametric model, but are o�en inferior to

the nonparametric method when the parametric model is

not appropriate. It is convenient in those cases to “trans-

form” the data to ranks, and to use the parametric method

on the ranks instead of the data. �ese are called “rank

transformation methods.”

Example
In some cases the rank transformation method results

in a nonparametric method. An early example involves

Spearman’s rho, published in , which is simply the

Pearson product-moment correlation coe�cient r calcu-

lated on the ranks of the data rather than the data itself.

�us one can test the hypothesis of independence of two

variables paired as in (X, Y), without any assumptions
regarding the nature of the bivariate distribution from

which they came, while the parametric model assumes a

bivariate normal distribution.�e observations on X are

replaced by their ranks from  to n, the observations on

Y are replaced by their ranks from  to n, and the ranks

are placed in the original n pairs where the original data

were.�e usual correlation coe�cient r is calculated on the

ranks instead of the data, and the usual hypothesis test is

conducted. In the case of independence ofX andY the dis-

tribution of Spearman’s rho is asymptotically (for large n)
the same as the distribution of Pearson’s r.�e exact dis-

tribution of Spearman’s rho can be found, and is given in

tables (see Conover , for example), which is useful

when n is small.

RT-
�ere are several classi�cations of the transformation to

ranks, as outlined by Conover and Iman ().�e �rst

type of rank transformation involves ranking all of the

data together as one group, from smallest to largest, and

then replacing the data in each of the original groups with

their ranks. For example, in the case of two independent

samples the observations in each sample are replaced with

their ranks in the combined sample. �en for a test of

equal means the two-sample t-test is computed on the

ranks instead of the original data, and the test statistic is

compared with the t-distribution in the usual way as an

approximate test. With small sample sizes exact distribu-

tions of the test statistic can be obtained.�is is equivalent

to the Mann-Whitney Test, also known as the two-sample

Wilcoxon Test (see 7Wilcoxon–Mann–Whitney Test). An
extension to the case of several independent samples is

obvious, with the one-way 7analysis of variance being
computed on the ranks instead of the original data, and

the F-tables being consulted for signi�cance.�is is equiv-

alent to the Kruskal-Wallis Test. Details of these tests may

be found in Conover ().

RT-
A second type of rank transformation involves subsets of

the data being ranked separately from other subsets, as in

the correlation case mentioned earlier where the observa-

tions on X were ranked among themselves, and the obser-

vations on Y were ranked among themselves.�e original

data are replaced by their resulting ranks, and the statis-

tic computed on the ranks. If independence is of interest,

r is calculated, resulting in Spearman’s rho, as mentioned

earlier.

Another example of this second type of rank transfor-

mation is in the two-way layout, where the observations in

each row are ranked among themselves only, and a two-

way analysis of variance is computed on these ranks to see

if there is a signi�cant di�erence in the column means.
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�us we obtain a form of the Friedman Test. In the case

of only two columns we obtain a form of the 7Sign Test.

RT-
�is brings us to a third type of rank transformation,

where the ranks are determined a�er an appropriate

re-expression of the data. Again consider pairs of data,

n observations on a bivariate (X,Y) randomvariable. If the
null hypothesis is equal means rather than independence,

as was the case in the previous paragraph, the di�erences

X − Y are �rst computed, and then these di�erences are
ranked on the basis of their absolute values ∣X−Y ∣with the
smallest absolute di�erence getting rank , and so on.�en

the signs of the di�erence are applied to the ranks, and the

one-sample t-test is computed on these signed ranks.

RT-
�e fourth type of rank transformation is an extension of

the second type and third type combined. �at is, sub-

groups of data are re-expressed, such as by subtracting a

covariate or dividing by the consumer price index. �en

each re-expressed subgroup is ranked by itself, and the

standard parametric test is applied to the ranks.�is could

lead to an 7analysis of covariance by testing equality of
means on the ranks of the re-expressed groups.

Another example of this fourth type of rank transfor-

mation is a nonparametric test for equal slopes presented

by Hogg and Randles (). Several groups of paired data

(X, Y) are �rst combined to �nd the least squares regres-
sion estimate y = a+bx.�en the residuals (Y−y) from this
model are ranked overall, and compared with the ranks of

the X′s as described in their paper in a rank version of the

parametric test for the same hypothesis.

Discussion
�e rank transformation may result in a nonparametric

test as indicated in the examples above, or the result may

be a robust test such as when the �rst type of rank trans-

form is applied to a two-way layout, or itmay result in a test

that is not even always robust such as applying the �rst type

of rank transformation to a two-way layout with several

observations per cell and trying to test for interaction.
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Introduction
In experimental settings where data are collected with the

goal of making inferences about some aspects of an under-

lying population it is always important to design the study

in such a way as to obtain as much useful information as

possible while minimizing the overall cost of the exper-

iment. �is is particularly true when the initial step in

collecting these data is to select the particular units from

the �nite or in�nite population on which measurements
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are to be taken. In this context, the goal of minimizing

experimental cost is most o�en equivalent to minimizing

the sample size while still achieving the desired accuracy

of the inferences that follow.

�e most commonly used approach for collecting data

from a population is that of a simple random sample (SRS).

If the population is in�nite, the observations in a SRS are

independent and identically distributed random variables.

Even if the population is �nite and sampling is done with-

out replacement so that the sample observations are no

longer independent, there is still a probabilistic guaran-

tee that each measurement in the SRS can be considered

as representative of the population. Despite this assurance,

there is a distinct possibility that a speci�c SRS might not

provide a truly representative picture of the complete pop-

ulation and larger sample sizes might be required to guard

against such atypical samples.

Statisticians have, of course, developed a number

of ways to guard against such unrepresentative samples

without resorting to unduly large sample sizes. Sampling

designs such as strati�ed sampling, probability sampling,

and 7cluster sampling all provide additional structure on
the sampling process that improves the likelihood that a

collected sample provides a good representation of the

population while trying to control the sampling costs

involved in both the selection of the units to include in the

sample and the cost ofmaking the actualmeasurements on

the selected units.

A novel sampling approach with this goal in mind was

introduced by McIntyre (, reprinted in ) for sit-

uations where taking the actual measurements for sample

units is di�cult (e.g., costly, destructive, time-consuming,

etc.), but there are inexpensive mechanisms readily avail-

able for either informally or formally ranking a set of

sample units. Sample data collected via such a preliminary

ranking scheme are known in the literature as ranked set

sample (RSS) data.

Balanced Ranked Set Samples
To obtain a RSS of k observations from a population, we

�rst select a SRS of k units from the population and ran-

domly divide them into k subsets of k units each. Within

each of these subsets, the k units are rank ordered (least to

greatest) by some informative mechanism (such as visual

comparisons, expert opinion, or through the use of auxil-

iary variables) that does not involve actual measurements

on the attribute of interest for the sample units.�e unit

that is judged to be the smallest in the �rst of these

rank ordered subsets is then included in the RSS and the

attribute of interest is formally measured for this unit.�is

measurement is denoted by X[], where [] is used instead

of the usual round bracket () for the smallest order statis-

tic because X[] is only judgment ranked to be the smallest

among the k units in the �rst subset; it may or may not

actually have the smallest measurement among the k units.

�e same ranking process is used to judgment rank the

second subset of k units and the item ranked as the second

smallest of the k units is selected and its attribute measure-

ment, X[], is obtained and added to the RSS. From the

third subset of size k we select the unit judgment ranked

to be the third smallest and add its attribute measurement,

X[], to the RSS.�is process continues until we add the

attribute measurement for the unit ranked to the largest of

the k units in the �nal subset of size k, denoted by X[k], to

the RSS.

�e resulting collection of k measurements X[], . . . ,

X[k] is called a balanced ranked set sample of size k, where

the term balanced refers to the fact that we have col-

lected one judgment order statistics for each of the ranks

, , . . . , k.�is entire process is called a cycle and k is the set

size. To obtain a balanced RSS with a desired total number

ofmeasured observations (i.e., total sample size) n = kq, we
repeat the entire process for q independent cycles, yielding

the balanced RSS of size n : X[i]j, i = , . . . , k; j = , . . . , q.
To illustrate the advantages of RSS over SRS, we con-

sider the problem of estimation of a population mean. Let

X, . . . ,Xn be a SRS of size n from a distribution withmean

µ and �nite variance σ . LetX[], . . . ,X[n] be the judgment

order statistics for a balanced RSS from this distribution

based on a single cycle with set size n. Let

X = 
n

n

∑
i=
Xi and X

∗ = 
n

n

∑
j=
X[ j]

be the corresponding SRS and RSS sample means, respec-

tively. It is well known that the SRS mean X is unbiased

for µ and that Var(X) = σ 

n
. Dell and Clutter () and

Takahasi and Wakimoto () showed that the RSS sam-

ple mean X
∗
is also an unbiased estimator of µ, and this is

true even when there are errors in the ranking mechanism

used to obtain the RSS data. Moreover, they provided an

explicit formula for the variance of X
∗
, namely,

Var(X∗) = σ 

n
− 

n

n

∑
j=

(µ∗[ j] − µ)


= Var(X) − 

n

n

∑
j=

(µ∗[ j] − µ)

, ()

where µ∗[ j] = E(X[ j]), for j = , . . . ,n.

Since
n

∑
j=

(µ∗[ j] − µ)


≥ , it follows fromEq. () that the

variance of the SRS mean X is always at least as large as the
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variance of the RSS mean X
∗
, regardless of the accuracy

of the ranking process.�us the RSS mean X
∗
is a more

precise estimator of the population mean µ than the SRS

mean X based on the same number of measured observa-

tions.�e gain in precision is a monotonically increasing

function of the quantity
n

∑
j=

(µ∗[ j] − µ)


, which is itself an

increasing function of the accuracy of the judgment rank-

ings.�e more reliable the judgment ranking process, the

more separated will be the judgment order statistic expec-

tations, µ∗[r], r = , . . . ,n, and the more improvement we
can expect from using RSS instead of SRS.�e worst-case

scenario where there is no gain from using RSS occurs

when µ∗[] = µ
∗
[] = ⋯ = µ∗[n] = µ, which corresponds to

no information in our ranking process and thus completely

random rankings.

Unbalanced Ranked Set Samples
For most settings, balanced RSS is the natural and

preferred approach. �ere are, however, settings where

measuring di�erent numbers of the various judgment

order statistics (unbalanced RSS) can lead to improved

RSS procedures. �is is the case, for example, when we

are estimating the location parameter θ for a unimodal,

symmetric distribution. In that setting when the ranking

process is reasonably accurate, the optimal RSSwould be to

measure the sample median from each of the k sets, result-

ing in an extremely unbalanced RSS, and then estimate θ

by the average of these k set samplemedians. Stokes (),

Bhoj (), and Kaur et al. () were the �rst to point

out the optimality of unbalanced RSS under appropriate

conditions.

Other Factors Affecting RSS
Properties of procedures based on RSS data are a�ected

by a number of factors that are unique to this sampling

approach. First, and probably foremost, is the accuracy

of the ranking process. While the balanced RSS sample

mean is always as e�cient as the SRS sample mean based

on the same number of measured observations, this gain

in e�ciency can be minimal if the ranking process is not

reasonably accurate. Moreover, the SRS sample mean can

even be more e�cient than estimators based on unbal-

anced RSS data when the ranking process is not reliable.

�ere have been a number of approaches in the literature to

modeling this degree of imperfection in the rankings. Frey

() provides a general discussion of these approaches

and presents a broad class of imperfect ranking models

that can be used to assess the e�ect of imperfect ranking

on RSS procedures. A second factor that a�ects the prop-

erties of RSS procedures is the set size. Generally speaking,

the e�ectiveness of RSS procedures improves with increas-

ing set size but this is counterbalanced by the fact that the

ranking accuracy generally decreases with increased set

size. Finally, the relative costs of sampling, ranking, and

measuring units can be an important factor to consider in

evaluating RSS versus SRS competitors.

Resources
�e original paper by McIntyre (, ) is a good

place to start with understanding the motivation behind

the RSS sampling approach. Kaur et al. () and Patil

() provide general reviews of the research and applica-

tions involving RSS data and Wolfe () gives a general

introduction to RSS methodology with a special emphasis

on nonparametric procedures. Cheng et al. () have the

only monograph/textbook on the subject.
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Introduction
A statistical ranking or selection procedure is typically

called for when the experimenter (the decision-maker) is

facedwith the problem of comparing a certain number k of

populations in order to make a decision about preferences

among them.

Consider k populations, each characterized by the

value of a parameter θ. In an agricultural experiment, for

example, the di�erent populations may represent di�erent

varieties of wheat and the parameter θ may be the average

yield of a variety.�e classical approach in this situation

is to test the so-called homogeneity hypothesis H that

θ = ⋯ = θk, where the θ i are the unknown values of the

parameter for the k populations. In the case of the familiar

one-way classi�cationmodel, the populations are assumed

to be normal with unknown means θ, . . . , θk, and a com-

mon unknown variance σ .�e homogeneity hypothesis

H is tested using Fisher’s 7analysis of variance (ANOVA)
technique. However, this usually does not solve the real

problem of the experimenter, which is not simply to accept

or reject the homogeneity hypothesis.�e real goal is o�en

to choose the best population (the variety with the largest

average yield). �e inadequacy of the ANOVA is not in

the design aspects of the procedure; it rather lies in the

types of decisions that are made on the basis of the data.

�e attempts to formulate the decision problem in order

to achieve this realistic goal of selecting the best treatment

mark the beginnings of ranking and selection theory.

�e formulation of a k-sample problem as a multiple

decision problem enables one to answer the natural ques-

tions regarding the best populations. �e formulation of

multiple decision procedures in the framework of what

has now come to be known as ranking and selection pro-

cedures began with the now-classic paper by Bechhofer

().

Basic Formulations of the Ranking and
Selection Problem
We have k populations, Π, . . . ,Πk, each indexed by a

parameter θ, where the cumulative distribution function

(cdf) of Πi is F(x; θ i) for i = , , . . . , k. We assume

that the family {F(x; θ)} is stochastically increasing in θ,

i.e., F(x; θ) ≥ F(x; θ) for θ ≤ θ for all x, and that

the parameters can be ordered from the smallest to the

largest. Denote the true ordered θ-values by θ[] ≤ θ[]
≤ . . . ≤ θ[k]. To �x ideas, we assume that larger the value

of θ, more preferable is the population. Hence, the pop-

ulation associated with θ[k] is called the best population.

We assume that there is no prior information as to the cor-

respondence between the ordered and the unordered θ i.

Ranking and selection problems have generally been for-

mulated adopting one of two main approaches known as

the indi�erence-zone formulation and the subset selection

formulation.

In the indi�erence-zone formulation due to Bechhofer

(), the goal is to select a �xed number of popula-

tions. Consider the basic goal of selecting the one best

population. Based on samples of size n taken from each

population, we seek a procedure to select one of the pop-

ulations as the best. �e natural procedure would be to

compute estimates θ̂, θ̂, . . . , θ̂k from each sample and

claim that the population that yielded the largest θ̂ i is the

best population. Here, a correct selection occurs when the

selected population is the best. We require a guaranteed

minimumprobability of a correct selection (PCS), denoted

by P∗, whenever θ[k] is su�ciently larger than θ[k−]. Let

δ = δ(θ[k], θ[k−]) denote a suitably de�ned measure of
the separation between the populations associated with

θ[k] and θ[k−]. Let Ω = {
Ð→
θ = (θ, θ, . . . , θk)}. De�ne

Ω(δ∗) = {
Ð→
θ ∣δ(θ[k], θ[k−]) ≥ δ∗ > }. For speci�ed δ∗

and P∗(/k < P∗ < ), it is required that

PCS ≥ P∗ whenever
Ð→
θ ∈ Ω(δ

∗). ()

To be meaningful, we choose P∗ > /k; otherwise,
the requirement () can be met by randomly choosing one

of the populations as the best. �e region Ω(δ∗) of the
parameter space Ω is called the preference-zone (PZ) as this

is where we have strong preference for a correct selection.
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�e complement of the PZ is known as the indi�erence-

zone (IZ), a region where we do not require a guaran-

teed PCS.�e PCS in the PZ depends, in general, on the

con�guration of
Ð→
θ . In many cases, there is a least favor-

able con�guration (LFC) of
Ð→
θ for which the PCS attains

a minimum over the PZ for any sample size. If we can

make the PCS at the LFC equal to P∗, then the probability

requirement () will be satis�ed.�e usual choices for δ =
δ(θ[k], θ[k−]) are δ = θ[k] − θ[k−] in the case of a loca-

tion parameter and δ = θ[k]/θ[k−] in the case of a scale

parameter. In the case of nonnegative θ which is not a

scale parameter, onemay choose either of these two special

forms depending on other aspects of the problem.

Bechhofer () introduced the IZ formulation by

considering k normal populations with means θ, . . . , θk,

and a common known variance σ . Here, δ = θ[k]−θ[k−].

Based on samples of size n from these normal populations,

he proposed the natural selection procedure, say R, which

selects the population that yielded the largest samplemean.

�e LFC for R is θ[] = ⋯ = θ[k−] = θ[k] − δ∗. For

a speci�ed (δ∗,P∗), the minimum sample size needed to
meet the probability requirement () is given by

n = ⟨ (σH/δ
∗)⟩ , ()

where ⟨b⟩ stands for the smallest integer greater than or
equal to b,H satis�es

Pr{Z ≤ H, . . . ,Zk− ≤ H} = P∗, ()

and the Zi are standard normal variables with equal corre-

lation ρ = ..
Some generalized goals that have been considered are:

(I) Selecting the t best populations for t ≥ , (a) in an
ordered manner or (b) in an unordered manner, and (II)

Selecting a �xed subset of sizem that will contain at least s

of the t best populations.

�e �rst of these itself is a special case of the general

ranking goal of Bechhofer (), which is to partition the

set of k populations into s nonempty subsets I, I, . . . , Is
consisting of k, k, . . . , ks (k+k+⋯+ks = k) populations,
respectively, such that for Πi ∈ Iα , Πj ∈ Iβ ,  ≤ α < β ≤ s,
we have θ i < θ j.

In the above general ranking problem, Fabian ()

introduced the idea of ∆–correct ranking. Roughly speak-

ing, a ranking decision is ∆–correct if wrongly classi�ed

populations are not too much apart. �e special case of

s =  and k = k −  for a location parameter family is of
interest. In this case, a ∆-correct ranking is equivalent to

selecting one populationΠi for which θ i > θ[k]−∆, ∆ > ;
such a population is called a good population.�e goal of

selecting a good population has been considered by several

subsequent authors.

In the normal means selection problem of Bechhofer

() mentioned previously, if the common variance σ  is

unknown, a single-sample procedure does not exist. It can

be seen from () that theminimum sample size n needed in

order to satisfy the probability requirement () cannot be

determined without the knowledge of the variance. In this

case, a two-stage selection procedure is necessary to con-

trol the PCS.�e �rst two-stage procedure for this problem

was studied by Bechhofer et al. ().�is procedure uses

the �rst stage samples to obtain an estimate of σ .

In the subset selection formulation for selecting the

best (i.e., the population associated with θ[k]), we seek a
rule which will select a nonempty subset of random size

that includes the best population. Here no assertion is

made about which population in the selected subset is the

best. �e size S of the selected subset is determined by

the sample data. In contrast with the IZ formulation, there

is no speci�cation of a PZ (or an IZ). �e experimenter

speci�es P∗, the minimum PCS to be guaranteed no mat-

ter what the unknown values of the θ i are.�e selection

rule is based on the estimates θ̂, θ̂, . . . , θ̂k.�e expected

size of the selected subset is a performance characteristic

of a procedure.

In the case of normalmeans problem, assuming a com-

mon known variance σ , Gupta (, ) proposed a

procedure based on a sample of size n from each popula-

tion.�is rule, say R, selects population Πi if the sample

mean Xi from it satis�es:

Xi ≥ X[k] − dσ/
√
n, ()

where d is a positive constant to be chosen so that the min-

imum PCS is guaranteed.�e LFC in this case is given by

θ = θ = ⋯ = θk. By equating the PCS at the LFC to P
∗
,

we get d =
√
H, where H is given by ().

When σ  is unknown, Gupta () proposed the rule

R which is R with σ  replaced by the pooled sample vari-

ance s based on ν = k(n − ) degrees of freedom and a
di�erent constant d′, which turns out to be the one-sided

upper ( − P∗) equicoordinate point of the equicorrelated
(k− )–variate central t distribution with equal correlation
ρ = . and the associated degrees of freedom ν.

Seal () proposed a class of procedures that

included Gupta’s maximum-type procedure and an alter-

native (average-type) procedure that Seal advocated using.

�e superiority of Gupta’s procedure under certain slip-

page con�gurations and with regard to certain optimality

properties and its comparative ease in handling theoreti-

cal details accelerated the growth of the subset selection

literature.
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Subset selection can be thought of as a screening pro-

cedure towards selecting one population as the best.�e

IZ approach has no requirements regarding correct selec-

tion when the true parametric con�guration lies in the IZ,

whereas the (random size) subset selection formulation

does not control the size of the selected subset. A modi-

�ed formulation, called the restricted subset selection, puts

an upper bound for the (random) size of the selected sub-

set (see Santner ). Using the restricted subset selection

formulation for the goal of selecting a subset of the k pop-

ulations whose size does not exceed m( ≤ m ≤ k) so that
the selected subset includes at least one of the t( ≤ t ≤
k − ) best with a guaranteed probability, Panchapakesan
() has provided a fresh look at the salient features of

the IZ and subset selection approaches.

Over the last almost six decades, several aspects of

selection and ranking have been investigated. Substantial

accomplishments have been made concerning procedures

for speci�c univariate and multivariate parametric fam-

ilies, conditional procedures, nonparametric procedures,

sequential and multistage procedures, procedures for

restricted families such as the IFR (increasing failure rate)

and IFRA (increasing failure rate on the average) distri-

butions, decision-theoretic developments, and Bayes and

empirical Bayes procedures. For detailed accounts of these,

see Gupta and Panchapakesan (, , ), Pancha-

pakesan () and the references contained therein.

Inference Problems Associated with
Ranking and Selection
One related inference problem is the point and interval

estimation of the ordered parameters, θ[], . . . , θ[k]. Some

attempts have beenmade to combine selecting the popula-

tion associated with θ[k] and estimating θ[k] with simulta-

neous probability control; see, for example, Rizvi and Lal

Saxena (). Another related inference problem is the

estimation of the PCS for a selection procedure; see, for

example, Gupta et al. (). Another interesting problem

is known as estimation a�er selection in which the inter-

est is to estimate the parameter of the selected population

in the case of a procedure for selecting one population, or

to estimate a known function such as the average of the

parameters of the selected populations in the case of sub-

set selection. Here the object of inference depends on the

sample data that are to be used in the procedure. Such a

statistical procedure has been called a selective inference

procedure.�is is di�erent from a nonselective inference

procedure in which the identity of the object of inference is

�xed and is determined before the data were obtained. For

references to several papers dealing with this, see Gupta

and Panchapakesan () and Panchapakesan ().

In a given situation, we may use a natural rule to select

the best population and may want to simultaneously test if

the selected population is uniquely the best. Such a prob-

lem was �rst considered by Gutmann and Maymin ().

Recently, a few papers have appeared dealing with location

and scale parameter cases and selecting the best multino-

mial cell using inverse sampling. For a discussion of these,

see Cheng and Panchapakesan () and the references

given therein.

Concluding Remarks
Our aim here is to give a brief introduction to ranking and

selection procedures. As such, we have given only a few

important references. Gupta and Panchapakesan ()

provide a comprehensive survey of the literature up to

the date with a bibliography of some  main references.

For references to later developments and other books on

the subject see Gupta and Panchapakesan (, ) and

Panchapakesan ().
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Uni-variate Ranking
A common approach in nonparametric statistical method

is to transformdata to ranks. A ranking of n ordered obser-

vations {x < x <, . . . ,< xn} will be a set of n ranks

{r <, . . . ,< rn} where xi is represented by the rank ri in

calculations.�e rank sum is
/n(n+), and∑r =

n − n

.

Hence themean rank is
/(n+) and the variance




(n−)

assuming uniform distribution of all possible rankings.

For untied observations the rank ri equals the number of

observations less than xi+, i = , . . . ,n.
Assessments on scales with a limited number of cat-

egories will produce groups of observations that are tied

to the same category, which means that these observa-

tions will share the same rank value. �e midrank of an

observation in the ith category, i = , . . . ,m, is then

ri =
i−
∑
ν=
xν +/(xi + ),

where xν denotes the νth category frequency, ν = , . . . ,m.
�en∑r <




(n − n) and the variance is decreased, the

correction term being

t
(X) =

m

∑
ν=

(xν − xν).

�e mid-ranks of the marginal distribution X of the Fig. 

are (, , , ).

�e calculations of the Wilcoxon–Mann–Whitney test

statistics (see 7Wilcoxon–Mann–Whitney Test) of di�er-
ence between two independent groups of data and of the

Spearman rank-order correlation coe�cient are based on

this type of rank transformations.

Augmented Ranking
In the evaluation of paired assessments made on rat-

ing scales regarding reliability of inter- or intra-rater

agreement but also regarding change in outcome, the pairs

of data can be transformed to ranks taking account of the

information given by the pairs of data. In this augmented

ranking approach, (aug-rank), by Svensson, the ranks are

tied to the pairs of data (X,Y), i.e., to the observations
in the cells of a square contingency table alternatively to

X C1 C2 C3 C4 Total
Y
C4 1 1 2

(31; 49) (50; 50)
2 2 14 18

(13.5; 31.5) (29.5; 33.5) (42.5; 41.5)
1 1 11 3 16

(3; 15) (12; 16) (23; 22) (34; 29)
2 8 3 1 14

(1.5; 1.5) (7.5; 6.5) (16; 12) (32; 14)
Total 3 11 17 19 50

C3

C2

C1

Ranks. Fig.  Example of a frequency distribution of paired
assessments of a four-point rating scale, and the pairs of aug-
mented ranks (R

(X)
ij ; R

(Y)
ij )
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X C1 C2 C3 C4 Total

Y

2 2

1 17 18

16 16

3 11 14

Total 3 11 17 19 50

C4

C3

C2

C1

Ranks. Fig.  The rank-transformable pattern of agreement,
RTPA, uniquely defined by the two sets of marginal distribu-

tions

the points of a scatter plot of data from visual analogue

scale assessments.�is means that the augmented rank of

the assessments X depends on the pairing with Y .

�e mean augmented rank according to the assess-

ments X is

R
(X)
ij =

i−
∑
k=

m

∑
l=
xkl +

j−

∑
l=
xil +




( + xij)

for  ≤ i, j ≤ m, where xij is the ijth cell frequency,

i and j = , . . . ,m and m is the number of categories.�e
augmented mean rank of the observations in the ijth cell

according to assessments Y , R
(Y)
ij , is de�ned correspond-

ingly, see Fig. .�is aug-rank approach makes it possible

to identify and separately analyse a possible systematic

component of observed disagreement from the occasional,

noise, variability, (see 7Measures of Agreement). A com-

plete agreement in all pairs of aug-ranks, R
(X)
ij = R(Y)ij , for

all i and j = , . . . ,m de�nes the rank-transformable pattern
of agreement (RTPA), which is uniquely related to the two

marginal distributions, see Fig. .
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�e Rao–Blackwell�eorem (RB�eorem) attributed to

C.R. Rao and David Blackwell links the notions of su�-

cient statistics and unbiased estimation. Let X, a random
vector represent the data. Assume the distribution of X
depends on a parameter θ. A statistic S(X) is said to be
su�cient if the conditional distribution of X given S does
not depend on θ. A statistic T(X) is said to be an unbi-
ased estimator of g(θ), a function of θ, if EθT(X) = g(θ)
where E stands for expected value.�e RB�eorem, which

is constructive says the following:

LetU(X) be any unbiased estimator of g(θ) and let σ U
be the variance of U. Let

W(X) = E[U(X)∣S(X)].

�at is,W(X) is the conditional expected value of U(X)
given S(X).�enW(X) is unbiased and σ U ≥ σ W , where

σ W is the variance of W.

Evaluating unbiased estimators by their variance

clearly corresponds to evaluating estimators using a

squared error loss function. A well known extension of the

RB�eorem is achieved by replacing a squared error loss

function with any convex loss function.

�e utility of the theorem is highlighted in situations

where it is easy to �nd a simple unbiased estimator of g(θ).
Sometimes this can be done using only a subset of the

data and then the construction typically yields an excellent

unbiased estimator. We proceed with some applications

and an extension of the theorem.

One issue in quality control is to estimate the pro-

portion of items produced whose measurements do not
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meet speci�cations i.e. fall outside a given interval (L, U).

Assuming measurements are normal with mean µ and

variance σ  the quantity to estimate is

p =  − ∫
U

L
φ(z; µ, σ )dz,

where φ(z; µ, σ ) is the normal density. Based on a sam-
ple of size n, labeled x, . . . , xn su�cient statistics are x̄ =
∑ xi/n, s = ∑(x − x̄)/(n − ). A simple unbiased
estimator of p is

p̂ =  if L ≤ x ≤ U.
=  otherwise

Lieberman and Resniko� () Rao–Blackwellize p̂ by

deriving E(p̂∣x̄, s) resulting in what turns out to be the
minimum variance unbiased estimator of p.

Cohen and Sackrowitz () consider a common

mean model. �at is, consider two independent random

samples, x, . . . , xm from N (µ, σ x ) and y, . . . , yn from
N (µ, σ y ). In the course of estimating the common mean
µ it was desired to seek an unbiased estimator of γ =
σ x / (σ x + σ y ) . For bothm and n greater than or equal to ,
the sample could be split up in such away to quickly �nd an

unbiased estimator of γ.�en the simple estimator could

be Rao–Blackwellized.�is type of application is also suit-

able to �nd a good unbiased estimator of a correlation

coe�cient or intraclass correlation coe�cient as was done

in Olkin and Pratt ().

Cohen et al. () consider the problem of estimating

a quantile of a symmetric distribution.�e cases of known

and unknown centers of symmetry are studied. Convex

combinations of a pair of7order statistics from the sample
are intuitive simple estimators of a quantile that exceeds

.. �at is, suppose X() ≤ . . . ≤ X(n) are the order

statistics from a population whose center of symmetry is

known to be θ.�en the ordered values of Yj = ∣Xj − θ∣
are su�cient statistics.�e Rao–Blackwellized version of

the convex combination then is a superior estimator of the

quantile in terms of mean squared error.

Given two independent samples from populations

with distributions characterized by parameters θ and

θ respectively, suppose population i, i =  or  is

selected if X̄i is the larger sample mean. Suppose we wish

to estimate the mean of the selected population. Note

such a mean is a random variable. An estimator of a

selected mean is said to be unbiased if its expected value

equals the expected value of the selected mean. By tak-

ing an additional single observation from the selected

population, and Rao–Blackwellizing it, using all the data

Cohen and Sackrowitz () display an estimator of the

selected mean that is minimum variance conditionally

unbiased under some assumptions regarding the underly-

ing distributions.

An extension of the RB�eorem and the construction

aspect of it appears in Brown et al. ().�e extension

gives a construction based on a conditional expectation of

a decision procedure given the su�cient statistic that leads

to a better procedure for all bowl shaped loss functions

simultaneously even those that are not convex. Further-

more the construction preserves the property of median

unbiasedness of any estimator.
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Rating scales have been used in psychology and psy-

chophysics for over  years, and the use of rating scales

and other kinds of ordered classi�cations is nowadays

inter-disciplinary and unlimited. As there are no stan-

dardised rules for the operational de�nitions of qualitative

variables, a considerable variety in types of rating scales

for the same variable, in di�erent applications, is common.

A rating scale consists of a number of ordered categorical

recordings of an item.

�e verbal descriptive scale (VDS), also called the ver-

bal rating scale, consists of a discrete number of ver-

bally described ordered response categories, or descrip-

tion of criteria, grading the level of responses. �e

set of categories can also refer to a time scaling, also

called a frequency-of-use scale, like “o�en, seldom, never,”

Fig. .

A Likert scale is a type of VDS, the descriptive cat-

egories being agreement levels to statements. Figure 

shows two di�erent operational de�nitions of perceived

health, a VDS- scale and a Likert scale from the

same 7questionnaire, �e Short-Form  (SF-). �e

categories of the VDS represent �ve levels of perceived

health, from excellent to poor. �e Likert scale has one

level of the variable, in this case “excellent health,” and

�ve levels of agreement with the statement of excellent

health. �e response categories except for a complete

agreement with the statement (de�nitely true) contain no

information about other levels of health. Hence the Lik-

ert scale assessments are just comparable with the binary

responses: yes my health is excellent, no my health is not

excellent.

A numerical rating scale (NRS) consists of a range of

numerals indicating the ordered response levels without

any description of the categories, except from the end

points. Figure  shows a seven-point NRS of pain.

A visual analog scale (VAS) consists of a straight line

anchored by the extremes of the variable being measured.

�e variable can be measured by a bipolar construct of

the VAS, the anchors being opposing adjectives, or by a

mono-polar scale, the anchors being “no sign at all” to “the

most extreme alternative.” A rating method that combines

the verbal descriptor scale and the VAS, called the graphic

rating scale (GRS) consists of a line with no breaks or

divisions.�ere should be three to �ve discrete categories

beneath the horizontal line, and the extreme categories

should not be worded such that they are never employed,

see Fig. .

A pictogram is a visual scale, the categories being faces

or other pictures with di�erent expressions illustrating the

variable of interest.

VDS-6 intensity scale VDS-4 grading of symptom VDS-5 time scale
How much. . . ? [ ] no evidence How often. . . ?
[ ] Extremely high [ ] slight signs [ ] None of the time
[ ] Very high [ ] moderate signs [ ] A little of the time
[ ] Moderate [ ] considerable signs [ ] Some of the time
[ ] Slight [ ] Most of the time
[ ] Very low [ ] All of the time
[ ] non-existing

Rating Scales. Fig.  Examples of verbal descriptive scale categories

VDS-5 scale of health Likert scale of excellent health
In general, would you say your health is My health is excellent
[ ] Excellent [ ] Definitely true
[ ] Very good [ ] Mostly true
[ ] Good [ ] Don’t know
[ ] Fair [ ] Mostly false
[ ] Poor [ ] Definitely false

Rating Scales. Fig.  Examples of two different types of scales for assessment of health from the Short-Form- (SF-), item  and
item d, respectively
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“How is your pain now?”
0 1 2 3 4 5 6

no pain at all unbearable pain

Rating Scales. Fig.  Example of a numeric rating scale (NRS-) of pain

Bipolar VAS

Unipolar VAS

Extremely
bad

Extremely
good

Completely
absent

Extremely
present

Happy Sad

A graphics rating scale (GRS)

Slight Moderate Strong

Rating Scales. Fig.  Examples of Visual analogue scales (VAS) and a Graphic rating scale (GRS)

A transitional scale, the categories being completely dis-

appeared, much better, somewhat better, unchanged, some-

what worse, much worse is useful when patient’s perceived

change a�er treatment is evaluated.

Assessments on rating scales, of any kind, produce

ordinal data, the responses indicating only an ordering,

although the use of numerical labelling could give a false

impression of mathematical values.�ese so-called rank-

invariant properties of ordinal data are well recognized,

and several authors have stressed the fact that arithmetic

operations are not appropriate for such data, therefore rank

based statistical methods are recommended for analysis of

data from rating scales.

About the Author
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In , Chandler de�ned the so-called record times and

record values and gave groundwork for a mathematical

theory of records. For six decades beginning his pioneer-

ingwork, about  papers and somemonographs devoted

to di�erent aspects of the theory of records appeared.

�is theory relies largely on the theory of 7order statis-
tics and is especially closely connected to extreme order

statistics. Records are very popular because they arise nat-

urally in many �elds of studies such as climatology, sports,

medicine, tra�c, industry and so on. Such records are

memorials of their time.�e annals of records re�ect the

progress in science and technology and enable us to study

the evaluation of mankind on the basic of record achieve-

ments in various areas of its activity. A large number of

record data saved for a long time inspirited the appear-

ance of di�erent mathematical models re�ecting the cor-

responding record processes and forecasting the future

record results.

Definitions of Records
LetX ,X, . . . be a sequence of randomvariables andX,n ≤
X,n ≤ . . . ≤ Xn,n, n = , , . . . , be the corresponding
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order statistics. For any n = , , . . . denote also M(n) =
Xn,n = max{X,X, . . . ,Xn} and m(n) = X,n = min
{X,X, . . . ,Xn}. Now one can de�ne the classical upper
record timesL(n) andupper record valuesX(n) as follows:

L() = , X() = X and then

L(n + ) = min{ j : Xj > X(n)}, X(n + ) = XL(n+),

n = , , . . . ()

One can use the following alternative de�nitions:

L()= , L(n + )= min{ j : Xj >M(L(n))}, . . .
n= , , . . . , ()

and

X(n) =M(L(n)), n = , , . . .

If we replace the sign > and M(L(n)) in () by < and
m(L(n)), respectively, we obtain the de�nitions of the
lower record times and the lower record values. Indeed,

the theories of upper and lower records coincide practi-

cally in all their details, since the lower records for the

sequence X,X, . . . correspond to the upper records for

the sequence −X,−X, . . . Using the sign ≥ in () instead
of > we introduce the so-called weak upper records, when
any repetition of the previous record value is also consid-

ered as a new record. Analogically, the sign ≤ in () gives
the opportunity to de�ne the weak lower record times and

the weak lower record values. Note that the theory of weak

records has practical meaning only for sequences of the

initial X′s, which have discrete distributions.

�e so-called kth records are a natural extension of

records.�e kth record times L(n, k) and the kth record
values X(n, k) for any k = , , . . . are de�ned as follows:

L(, k) = k, L(n + , k) = min{ j > L(n, k) : Xj
> Xj−k,j−}, n = , , . . . , ()

and

X(n, k) = XL(n,k)−k+,L(n,k), n = , , . . . ()

To be precise, () and () de�ne the kth upper record times

and the kth upper record values respectively. One can also

introduce the kth lower record times and the kth lower

record values changing the event Xj > Xj−k,j− in () by
Xj < Xk,j− and replacingXL(n,k)−k+,L(n,k) in () byXk,L(n).
If k =  then de�nitions of kth record values X(n, k) and
kth record times L(n, k) coincide with the de�nitions of
X(n) and L(n) given in ().
We will use N(n) to denote the number of records

among random variables X,X, . . . ,Xn, n = , , . . . ,

and N(n, k) will denote the number of kth records in a
sequence X,X, . . . ,Xn respectively.

Sequential Ranks and Record Indicators
�e essential role in the theory of records play the sequen-

tial ranksR(n), the record indicators ξj, j= , , . . . , and the
indicators of the kth records ξj(k), j= , , . . . , k= , , . . . .
�e sequential rank R(n) denotes the rank of Xn among
X,X, . . . ,Xn, i.e.,

Xn = XR(n),n, n = , , . . .

�e record indicator ξj is de�ned as follows: ξj =  if Xj
is a record value and ξj =  otherwise. Analogically, the
indicator ξj(k) can be de�ned for any k = , , . . . and j ≥ k:

ξj(k) = , if Xj is the kth record value and ξj(k)= 
otherwise.�ere are some useful relations between record

indicators and sequential ranks. We will formulate some

simple equalities for indicators of the upper records.

Indeed, analogical results are also valid for the lower

records. Note, that

{ξj = } = {R( j) = j} = {Xj =M( j)} = {Xj = Xj,j}
= {Xj is a record value}

and for any k = , , . . . and j ≥ k

{ξj(k) = } = {R(j) ≥ j − k + } = {Xj−k+,j ≥ Xj−k,j−}
= {Xj > Xj−k,j−} = {Xj is a kth record}.

�e record indicators allow us to give convenient rela-

tions for the numbers of records N(n) and N(n, k):

{N(n) = m} = {ξ + . . . + ξn = m},
n = , , . . . , m = , , . . . ,n; ()

{N(n, k) = m} = {ξk(k) + . . . + ξn(k) = m},
n = k, k + , . . . , m = , , . . . ,n − k + . ()

�e classical theory of records is connected with the

situation when the initial sequence of random variables

X,X, . . . is a sequence of independent random variables

with a common continuous distribution function. In this

case, sequential ranks and record indicators have a number

of useful and rather convenient properties.

�eorem  For independent identically distributed ran-

dom variables X, X, . . . with a continuous distribution

function F the sequential ranks R(),R(), . . . are inde-
pendent and P{R(n) = m} = /n, m = , , . . . ,n,

n = , , . . .

�eorem  Under conditions of�eorem , for any �xed

k = , , . . . , indicators ξk(k), ξk+(k), . . . are independent
and P{ξj(k) = } = k/j, j = k, k + , . . .
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As a partial case of �eorem  it follows that under

conditions of �eorem  record indicators ξ, ξ, . . . are

independent and P{ξj = } =  − P{ξj = } = /j, j =
, , . . .

�ese results together with equalities () and () allow

us to �nd that the distributions of N(n) and N(n, k) are
expressed as distributions of sums of independent ran-

dom variables. One can also see that under conditions of

�eorem , there are some convenient relations for the

kth record times L(n, k) and, in particular, for the record
times L(n) :

P{L(n, k) > m} = P{N(m, k) < n} = P{ξk(k) + ξk+(k)
+ . . . + ξm(k) < n} ()

and

P{L(n) > m} = P{N(m) < n} = P{ξ+ ξ+ . . .+ ξm < n}.
()

It follows from relations () and () that if X,X, . . . is

a sequence of independent identically distributed random

variableswith any continuous distribution function F, then

distributions of record times and numbers of records do

not depend on F.

One more important situation in the classical record

theory is connected with sequences of independent iden-

tically distributed random variables having a discrete dis-

tribution. Without loss of generality, we can suppose that

X′s take nonnegative integer values. For discrete distribu-

tions we introduce another type of record indicators. Let

ηn =  if n is a record value in the sequence X,X, . . . ,
that is there exists such m = , , . . . that X(m) = n, and
ηn =  otherwise (compare with indicators ξn!). Anal-
ogously, for any k = , , . . . we can introduce indicators
ηn(k) for kth record values : ηn(k) = , if n is a kth

record value in the sequence X,X, . . . , and ηn(k) = 
otherwise.�e following results are valid for such type of

indicators.

�eorem  Let X,X,X, . . . be a sequence of indepen-

dent identically distributed random variables taking val-

ues , , , . . . with probabilities pn =P{X =n}> , n =
, , , . . . �en for any �xed k = , , . . . indicators

ηn(k), n = , , , . . . , are independent and

P{ηn(k) = } =  − P{ηn(k) = } = (pn/P{X ≥ n})k,
n = , , , . . .

Indeed, under k = , as a partial case of this theorem,
one gets that record indicators η, η, η, . . . are indepen-

dent and P{ηn = } =  − P{ηn = } = pn/P{X ≥ n},
n = , , , . . .

It is easy to see that under conditions of�eorem , we

can express distributions of kth record values for discrete

random variables via distributions of sums of independent

indicators:

P{X(n, k) > m} = P{η(k) + . . . + ηm(k) < n},
m = , , , . . . , n = , , . . . , ()

and, in particular, under k =  one has equality

P{X(n) > m} = P{η + . . . + ηm < n}, m = , , , . . . ,
n = , , . . . ()

As an example, we can consider the case, whenX′s have

the geometric distribution with some parameter  < p < ,
that is P{Xj = n} = (−p)pn, n = , , , . . . , for j = , , . . . .
In this situation, P{ηn(k) = } = ( − p)k and P{ηn(k) =
} =  − ( − p)k, for any n = , , , . . . . It means that
the sum η(k) + . . . + ηm(k) has the binomial B(m + , q)
distribution with a parameter q = ( − p)k. Hence,

P{X(n, k) > m} =
n−
∑
j=

((m + )!/j!

(m +  − j)!)qj( − q)m+−j, if  ≤ n ≤ m + ,

and

P{X(n, k) > m} = , if n > m + .

It was mentioned above that for discrete distributions

it is useful to introduce weak records together with clas-

sical (strong) record values. Weak records may arise, for

example, in some sports competitions where any athlete

who repeats the record achievement is also declared as

a record-holder. If we consider X′s having a common

discrete distribution, it is useful to introduce one more

type of record statistics. Let conditions of �eorem  be

valid. We de�ne random variables µ, µ, µ, . . . , where µn
denotes the number of those weak records in the sequence

X,X, . . . that are equal to n.�e following result is valid.

�eorem  Let X,X,X, . . . be a sequence of indepen-

dent identically distributed random variables taking values

, , , . . . with probabilities pn = P{X = n} > , n =
, , , . . .�en for any �xed k = , , . . . , random variables
µ, µ, µ, . . . are independent and

P{µn = m} = ( − r(n))(r(n))m, n = , , , . . . ;
m = , , , . . . ,

where

r(n) = pn/P{X ≥ n}.

Let Xω(),Xω(), . . . denote the weak (upper) record
values in the sequence X,X, . . .�en for any n = , , . . .
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andm = , , , . . . the following relation is valid:

P{Xω(n) > m} = P{µ + µ + . . . + µm < n}. ()

�us, we see that there are some convenient represen-

tations of record values, record times, numbers of records

((–) among them), which allow us to impress these

record statistics in terms of sums of independent random

variables.

Distributions of Record Times
Let us consider the classical case, whenX,X, . . . are inde-

pendent and have a continuous distribution function F.

Using the independence of the corresponding record indi-

cators ξ, ξ, . . . one gets for any n = , , . . . and  < j() <
j() < . . . < j(n) that

P{L() = , L() = j(), . . . ,L(n) = j(n)} =
P{ξ = , ξ = , . . . , ξj()− = , ξj() = ,
ξj()+ = , . . . , ξj()− = ,

ξj() = , . . . , ξj(n)− = , ξj(n) = } =

P{ξ = }P{ξ = } . . . P{ξj()− = }
P{ξj() = }P{ξj()+ = } . . .

P{ξj()− = }P{ξj() = } . . .
P{ξj(n)− = }P{ξj(n) = } =
/( j() − )( j() − ) . . . ( j(n) − )j(n). ()

Note that here the joint distribution of record times

does not depend on F. Now one can see from () that

P{L(n) = m} =∑ /( j() − )( j() − )
. . . ( j(n − ) − )(m − )m,

where the sum is taken over all j(), j(), . . . , j(n−), such
that  < j() < j() < . . . < j(n − ) < m.
It follows from () also that

P{L(n) = j(n)∣L(n − ) = j(n − ),L(n − )
= j(n − ), . . . ,L() = j(),L() = }
= j(n − )/j(n)(j(n) − )

and

P{L(n) = j∣L(n − ) = i} = i/j(j − ), n = , , . . . , j > i.

Hence, we see that the sequence of record times

L(),L(), . . . in the announced situation forms a Markov
chain (see 7Markov Chains).
It was mentioned above that record times are closely

related to the random variables N(n), since for any

n= , , . . . and m = , , . . . the following equalities are
valid:

P{L(n) > m} = P{N(m) < n}

and

P{L(n) = m} = P(N(m − ) = n − , N(m) = n}. ()

Equalities () and () allow us to express the distribu-

tions of L(n) in terms of independent record indicators:

P{L(n) = m} = P{N(m − ) = n − , ξm = }

= P{N(m − ) = n − }/m

= P{ξ + ξ + . . . ξm − 

= n − }/m. ()

Representations () and () ofN(m) and L(n) give a pos-
sibility to �nd the distributions of these record statistics

via the Stirling numbers of the �rst kind Sn(k), which are
de�ned by equalities

x(x − ) . . . (x − n + ) =∑
k≥
Sn(k)xk.

It appears that

P{N(m) = k} = (−)kSm(k)/m! = ∣Sm(k)∣/m!,

k = , , . . . ,m,

and

P{L(n) = m} = ∣Sm−(n − )∣/m!, m = n, n + , . . .

Representations () and () give the following formulas

for the corresponding generating functions:

Pm(s) = EsN(m) = s( + s)( + s) . . . (m −  + s)/m!

and

Qn(s) = EsL(n) =  − ( − s)
n−
∑
k=

(− log( − s))k/k!

=
− log(−s)

∫


v
n−
exp(−v)dv/(n − )! ()

Distributions of Record Values
Let us again consider the case whenX,X, . . . are indepen-

dent and have a continuous distribution function F.�e

record valueX(n) can be presented asXL(n), where L(n) is
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the corresponding record time with a generating function

(). One can see that then

P{X(n) < x} = P{XL(n) < x} = P{M(L(n)) < x}, ()

whereM(n) = max{X,X, . . . ,Xn} and P{M(n) < x} =
Fn(x). It follows from () and () that

P{X(n) < x} = P{M(L(n)) < x}
= ∑
m≥
P{M(m) < x}P{L(n) = m}

= ∑
m≥
F
m(x)P{L(n) = m} = Qn(F(x))

=
− log(−F(x))

∫


v
n−
exp(−v)dv/(n − )!

�e following result is valid for distributions of record

values.

�eorem  Let X() < X() < . . . be the record val-
ues in a sequence of independent random variables having

a common continuous distribution function F, and let

U() < U() < . . . be the record values related to the
uniform distribution on the interval [, ]. �en for any
n = , , . . . the random vector (F(X()), . . . ,F(X(n)))
has the same distribution as (U(), . . . ,U(n)).

Corollary  Let X() < X() < . . . and Y() <
Y() < . . . be, respectively, the record values in a

sequence of independent random variables X,X, . . .

having a common continuous distribution function F
and in a sequence of independent identically distributed

random variables Y,Y, . . . with a continuous distribu-

tion function F. �en for any n = , , . . . the vec-

tor (Y(),Y(), . . . ,Y(n)) has the same distribution as
the vector (H(X()),H(X()), . . . ,H(X(n))), where
H(x) = G(F(x)) and G is the inverse function to
F. Analogously, the vectors (X(),X(), . . . ,X(n)) and
(H(Y()),H(Y()), . . . ,H(Y(n))), where H(x) =
G(F(x)) and G is the inverse function to F, are iden-
tically distributed.

Let us consider the partial case of record values Z() <
Z() < . . . related to the standard exponential E() distri-
bution (the case, when F(x) =  − exp(−x), x > ). We
get

P{Z(n) < x} =
x

∫


v
n−
exp(−v)dv/(n − )!,

that is, in this situation Z(n) has the gamma-distribution
with parameter n. It means that Z(n) has the same distri-
bution as the sum ν + ν + . . . + νn of independent E()-
distributed random variables ν, ν, . . . Moreover, for any

n = , , . . . the vector (Z(),Z(), . . . ,Z(n)) has the same
distribution as the vector (ν, ν+ν, . . . , ν+ν+ . . .+νn).
It means that the vector (Z(),Z() − Z(), . . . ,Z(n) − Z
(n−)) consists of independent elements and each of these
elements has the standard exponential E() distribution.
Combining the previous results, we can get the follow-

ing representation for record values X() < X() < . . .
related to any continuous distribution function F. Let G

below denote the inverse function to F.

Representation  For any n = , , . . .

(X(),X(), . . . ,X(n)) d= (H(ν),H(ν + ν), . . . ,
H(ν + ν + . . . + νn)),

where ν, ν, . . . are independent random variables having

the exponential E() distribution and

H(x) = G( − exp(−x)).

Taking into account the property of the expo-

nential records it is not di�cult to obtain the joint

density function fn(x, x, . . . , xn) of the record values
Z(),Z(), . . . ,Z(n). It appears that

fn(x, x, . . . , xn) = exp(−xn), if  < x < x <
. . . < xn, and fn(x, x, . . . , xn) = , otherwise.

In the general case, whenX,X, . . . have a distribution

function F and a density function f , the joint density func-

tion of the record values X(),X(), . . . ,X(n) is given by
the formula

fn(x, x, . . . , xn) = r(x)r(x) . . . r(xn) ( − F(xn)),
x < x < . . . < xn,

where r(x) = f (x)/( − F(x)).
Now we consider the conditional distributions

φ(x∣x, x, . . . , xn) = P{X(n + ) > x∣X() = x,
X() = x, . . . ,X(n) = xn}, x < x < . . . < xn < x,

for record values X() < X() < . . . < X(n) < X(n + ). It
appears that

φ(x∣x, x, . . . , xn) = P{X(n + ) > x∣X(n) = xn}
= ( − F(x))/( − F(xn)), x > xn. ()

It is interesting that equality () does not need the con-

tinuity of the distribution function F. It follows from ()

that record values X(),X(), . . . form a Markov chain.
If we now consider discrete X’s taking values , , , . . .

then () can be rewritten in the form

P{X(n + ) > j∣X(n) = m} = P{X > j}/P{X ≥ m + },
j > m ≥ n − .
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It follows from the latter equality that in this case

P{X() = j, X() = j, . . . ,X(n) = jn}
= P{X = jn}ω( j)ω( j) . . . ω( jn−),

 ≤ j < j < . . . < jn− < jn,

where ω(j) = P{X = j}/P{X > j}.
�e simplest discrete case is presented by the geometric

distribution.�e following result is valid.

�eorem  Let X,X,X, . . . be independent identically

distributed random variables such that

P{X = j} = ( − p)p j−, j = , , . . . ;  < p < ,

and X()<X()< . . . be the record values in a sequence
X,X, . . .�en the interrecord values X(),X()−X(),
X()−X(), . . . are independent and have the same geo-
metric distribution as X.

Distributions of kth Record Values
�e kth record values X(n, k) are a natural extension of
records X(n). It is interesting that distributions of the kth
records can be expressed via distributions of the classical

record values. Really, together with a sequence of inde-

pendent random variables X,X, . . . having a common

distribution function F, let us consider one more sequence

Y = min{X,X, . . . ,Xk},
Y = min{Xk+,Xk+, . . . ,Xk}, . . .

Now let X(n, k) be the kth record value based on X’s
and Y(n) be the classical records based on the sequence
Y,Y, . . . It appears that for any �xed k = , , . . . and any
n = , , . . . the vector (X(, k),X(, k), . . . ,X(n, k)) has
the samedistribution as the vector (Y(),Y(), . . . ,Y(n)).
Note that this result is valid for discreteX’s as well. One

can immediately obtain some important results for the kth

records taking into account the analogous results for the

classical record values. For example, ifZ(n, k), n = , , . . . ,
denote the kth records for the standard exponential dis-

tribution, then the vector (Z(, k),Z(, k), . . . ,Z(n, k))
has the same distribution as the vector (ν/k, (ν +
ν)/k, . . . , (ν + ν + . . . + νn)/k), where ν, ν, . . . are the

independent exponentially E() distributed random vari-
ables. Hence, the following relation is valid for kth records

related to a sequence of X,X, . . . with a continuous dis-

tribution function F.

Representation  For any n = , , . . .

(X(, k),X(, k), . . . ,X(n, k)) d= (H(ν/k),H((ν

+ ν)/k), . . . ,H((ν + ν + . . . + νn)/k),

where ν, ν, . . . are independent random variables having

the exponential E() distribution,H(x) = G(− exp(−x))
and G is the inverse function to F.

Some useful results for the kth records follow immedi-

ately from representation  and analogous results for the

classical records. Say, one gets that

P{X(n, k) < x} =
−k log(−F(x))

∫


v
n−
exp(−v)dv/(n − )!

and this equality is valid for any k = , , . . . and any

continuous distribution function F.

�eorem  For any k = , , . . . the sequence X(, k),
X(, k), . . . forms a Markov chain and

P{X(n + , k) > x∣X(n, k) = u} = (( − F(x))/
( − F(u)))k, x > u.

More complete theory of records is given in mono-

graphs (Ahsanullah , , ; Ahsanullah and

Nevzorov ; Arnold et al. ; Nevzorov ). Dif-

ferent results for record values can be found in ref-

erences (Adke ; Ahsanullah , , , ,

, , ; Ahsanullah and Nevzorov , ,

; Akhundov and Nevzorov ; Akhundov et al.

; Andel ; Arnold et al. ; Bairamov ;

Balakrishnan and Nevzorov ; Ballerini and Resnick

, ; Berred et al. ; Biondini and Siddiqui ;

Chandler ; Deheuvels ; Deheuvels and Nevzorov

; Dziubdziela and Kopocinsky ; Foster and Stu-

art ; Gulati and Padgett ; Gupta ; Haiman

; Houchens ; Nagaraja , ; Nevzorov ,

, , , , ; Nevzorov and Balakrishnan

; Nevzorov et al. ; Nevzorova et al. ; Pfeifer

, , ; Renyi A ; Resnick ; Shorrock

a, b; Siddiqui and Biondini ; Smith ; Smith

and Miller ; Stepanov ; Tata ; Vervaat ;

Williams ; Yang ).
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Introduction
Recursive partition (RP) models are a �exible method

for specifying the conditional distribution of a variable y,

given a vector of predictor values x. Such models use a

tree structure to recursively partition the predictor space

into subsets where the distribution of y is successively

more homogeneous. �e terminal nodes of the tree cor-

respond to the distinct regions of the partition, and the

partition is determined by splitting rules associated with

each of the internal nodes. By moving from the root node

through to the terminal node of the tree, each observa-

tion is then assigned to a unique terminal node where the

conditional distribution of y is determined.�e two most

common response types are continuous and categorical,

with corresponding tasks o�en known as regression and

classi�cation.

Given a data set, a common strategy for �nding a good

tree is to use a greedy algorithm to grow a tree and then to

prune it back to avoid over�tting. Such greedy algorithms

typically grow a tree by sequentially choosing splitting

rules for nodes on the basis of maximizing some �tting

criterion.�is generates a sequence of trees each of which

is an extension of the previous tree. A single tree is then

selected by pruning the largest tree according to a model

choice criterion such as cost-complexity pruning, cross-

validation, or hypothesis tests of whether two adjoining

nodes should be collapsed into a single node.

Early work in RP models includes Morgan and Son-

quist (), who developed a recursive partitioning

strategy (AID – Automatic Interaction Detection) for a

continuous response. �ere were many o�shoots of this

work, including Kass () and Hawkins and Kass ().

Recursive partitioningmodels were popularized in the sta-

tistical community by the book “Classi�cation and Regres-

sion Trees” by Breiman et al. (). RP models have also

been developed in the machine learning community, with

work by Quinlan on the ID ( and references therein)

and C. () algorithms being among the most widely

recognized.

Structure of a RP model
A RP model describes the conditional distribution of y

given a vector of predictors x = (x, x, . . . , xp).�is model
has two main components: a tree T with b terminal nodes,

and a parameter Θ = (θ , θ, . . . , θb) which associates the
(possibly vector-valued) parameter θ j with the jth terminal

node. If x lies in the region corresponding to the jth termi-

nal node then y∣x has distribution f (y∣θ j), where we use f
to represent a parametric family indexed by θ j.�e model

is called a regression tree or a classi�cation tree accord-

ing to whether the response y is quantitative or qualitative,

respectively. An example of a RP model with binary splits

is displayed in Fig. , and data sampled from its induced

partition is displayed in Fig. .

Before describing the example tree, we discuss the gen-

eral structure of a RP model for the case of a binary tree.

A binary tree T subdivides the predictor space as follows:

Each internal node has an associated splitting rule which

uses a predictor to assign observations to either its le� or

X2 {C, D }∈
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Recursive Partitioning. Fig.  A regression tree where y ∼
N(θ , ) and x = (x , x)
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Recursive Partitioning. Fig.  A realization of  observations sampled from the tree model depicted in Fig. 

right child node.�e terminal nodes thus identify a par-

tition of the predictor space according to the subdivision

de�ned by the splitting rules. For quantitative predictors,

the splitting rule is based on a split value s, and assigns

observations for which {xi ≤ s} or {xi > s} to the le� or
right child node respectively. For qualitative predictors, the

splitting rule is based on a category subset C, and assigns

observations for which {xi ∈ C} or {xi ∉ C} to the le� or
right child node respectively.

Several assumptions have been made to simplify expo-

sition. First, splitting rules are assumed to subdivide a

region into two sub-regions, giving a binary tree. Second,

only one predictor variable is assumed to be used for each

splitting rule. Both these restrictions can be relaxed.

For illustration, Fig.  depicts a regression tree model

where y ∼ N(θ, ) and x = (x , x). x is a quantita-
tive predictor taking values in [,], and x is a qualitative

predictor with categories (A,B,C,D).�e binary tree has
nine nodes of which b =  are terminal nodes.�e termi-
nal nodes subdivide the x space into �ve nonoverlapping

regions. �e splitting variable and rule are displayed at

each internal node. For example, the le�most terminal

node corresponds to x ≤ . and x ∈ {C,D}. �e θ i
value which identi�es the mean of y given x is displayed

at each terminal node. Note that θ i decreases in x when

x ∈ {A,B}, but increases in x when x ∈ {C,D}. A real-
ization of  observations sampled from this model is

displayed in Fig. .

If y were a qualitative variable, a classi�cation tree

model would be obtained by using an appropriate categor-

ical distribution at each terminal node. For example, if y

was binary with categories C or C , one might consider

the Bernoulli model P(y ∈ C) = θ =  − P(y ∈ C) with a
possibly di�erent value of θ at each terminal node. A stan-

dard classi�cation rule for this model would then classify

y into the category yielding the smallest expected misclas-

si�cation cost. When all misclassi�cation costs are equal,

this would be the category with largest probability.

Learning the RP Model
To learn or estimate a RPmodel, we assume that a training

sample consisting of tuples (xi, yi), i = , . . . ,n is available.
Both the tree T and the terminal node parameters Θ must

be estimated using the training data.

For a �xed T, a common assumption is that the

response values are i.i.d. within each terminal node.�e

data in each terminal node can be considered a sepa-

rate sample, and conventional estimation techniques (e.g.,

maximum likelihood) yield familiar node parameter esti-

mates θ̂ j such as the sample mean for a continuous normal

response and sample proportions for a categorical multi-

nomial response.

Armed with a recipe for estimating Θ given T, we can

now consider estimation of T. First, an objective function

must be speci�ed, providing a mechanism to assess the

quality of a particular tree T. �e log-likelihood of the

training data is one such criterion. For a normal response

model, the corresponding criterion would be the mini-

mization of a residual sum of squares. For a multinomial

response, the multinomial log-likelihood would be used.

Ciampi () was one of the �rst to develop a likelihood-

based approach to RP models. Other criteria have been
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proposed for speci�c response classes, such as the Gini

index (Breiman et al. ) for a categorical response.

With an objective function quantifying the quality of

a tree, the estimation problem becomes a search over all

possible trees to optimize the objective. Although split-

ting rules for continuous x are real-valued, the objective

function will only change when training points are moved

among terminal nodes of the tree. �us it is common

to consider only splitting rules de�ned at data points,

and require that each terminal node contain at least one

training point. �e search over the set of trees is thus a

combinatorial search over a �nite but very large discrete

space.

�e most common search algorithm is a greedy for-

ward search, in which all training observations are initially

grouped into a single node.�e algorithm considers split-

ting into two child nodes, examining all possible splits on

all possible variables. �e splitting rule yielding the best

value of the objective function (e.g., the smallest residual

sum of squares when summed over the two child nodes)

is selected.�e procedure is repeated in each child node

recursively until a large tree is grown.

Several strategies can be employed to decide how large

a tree to grow. In the CHAID algorithm of Kass (),

hypothesis tests were used to decide when to stop subdi-

viding, yielding a �nal tree. Breiman et al. () suggest

growing a maximal tree, and then pruning away sibling

nodes that do not signi�cantly improve the objective func-

tion over the value assigned to their parent node. �eir

reasoning was that the forward greedy search might some-

times stop early, missing signi�cant e�ects. For example,

in the tree displayed earlier, no initial split leads to a large

reduction in residual sum of squares because of the inter-

action pattern.�eir backward pruning was facilitated by

the idea of cost-complexity pruning, in which a modi�ed

objective function was minimized:

Loss(T; α) = RSS(T) + α∣T∣, ()

where ∣T∣ represents the number of terminal nodes of
the tree. Penalty parameter α ≥  controls the trade-o�
between tree size and accuracy. Breiman et al. showed that

() can be minimized as α increases from  to∞ by con-

sidering a nested sequence of pruned trees, starting with

the largest tree identi�ed.�e optimal α and a correspond-

ing tree are selected so as to minimize a cross-validated

estimate of the objective function.

While other methods for identifying the best tree have

been proposed, the greedy forward search is quick and can

be quite e�ective.

Strengths and Weaknesses of RP Models
�e structure of RP models enables them to identify inter-

actions. For instance, in Figs.  and , we see an interaction

e�ect between X and X: If X = {A,B} then response y
decreases with increasing X. If X = {C,D} then response
y increases with increasing X.�is is perhaps the greatest

strength of RPmodels, and one of the reasons they are used

for exploratory data analysis.

�is strength is also a weakness. If the relation between

predictors and response is additive, very large trees will be

needed to capture this relationship. For instance, if

y = x + x + x + x + x + error,

then a tree with  terminal nodes will be required to even

approximate this function with a single step along each of

the �ve predictor axes.

Trees are popular among practitioners because of their

interpretability. It is natural to interpret the sequence of

conditions leading to a terminal node of a tree. Care must

be taken with such interpretations, especially if dependen-

cies exist among predictors. In such cases, multiple trees

with di�erent splits on di�erent variables may �t the data

equally well.

In addition to dealing with mixed predictor types, RP

models can handle missing values of predictors via sev-

eral strategies. For missing predictor values in the training

data, one could (i) treat “missing” as a new category for

a categorical predictor, or (ii) identify surrogate splitting

variables that produce splits similar to a missing predictor.

If predictor values are missing when making predictions

for new observations, either of these strategies may be

employed, or one may terminate the branching process

when a missing value is needed in a branch, and base

predictions on the interior node.

�e most common form of RP models utilize a single

variable for each splitting rule.�is axis alignment aids in

interpretability, but can be a weakness if variation in the

response occurs along a linear combination of predictors,

rather than along the axes. �e additive function of �ve

variables mentioned above is an example of this.

By virtue of subdividing the data into smaller sub-

groups, an RP model can su�er from sparsity, especially if

more complex statisticalmodels are utilized in the terminal

nodes. For instance, a signi�cant challenge in modify-

ing RP models for survival data with censoring (LeBlanc

and Crowley ) is the pooled nature of Kaplan–Meier

estimates (see 7Kaplan-Meier Estimator) of the survival
curve.�is data sparsity is one of the primary reasons for

the use of simple models in terminal nodes.
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A weakness of RP models is sensitivity of results to

small data perturbations. Breiman () demonstrated

that when RP models were �t to bootstrap samples of the

data, there could be substantial variation in tree structure.

While this would seem to be a weakness, Breiman lever-

aged this idea to produce Ensemble methods discussed

below in section 7“Ensembles of Trees”.
Because of the greedy nature of the search over the

space of trees, inference for the resultant model is di�cult.

Although con�dence intervals and hypothesis tests can

easily be constructed conditional on a speci�c tree T, the

adaptive nature of the learning algorithm means that the

statistical properties of estimators, intervals and tests will

be seriously undermined.Methods that take account of the

search include adjustments for multiple testing (Hawkins

and Kass ) and Bayesian approaches (Chipman et al.

; Denison Mallick and Smith ).

Extensions
�e popularity of RP models has lead to a number of

extensions and the development of related methods.

A variety of search strategies have been proposed

as alternatives to the greedy forward stepwise approach.

�ese include the use of stochastic search optimizers such

as genetic algorithms (Fan and Gray ) and simu-

lated annealing (Sutton ; Lutsko and Kuijpers )

and MCMC (Chipman et al. ; Denison et al. ).

Tibshirani andKnight () used the bootstrap to perturb

data before executing a greedy search.

Variations on the tree structure have also been con-

sidered, including splitting rules based on linear combi-

nations of real-valued predictors (Loh and Vanichsetakul

). Some RP algorithms (e.g., AID) allow nodes to

have more than two child nodes, complicating the search

but sometimes making interpretation clearer. Quinlan’s

C. splits categorical predictors by generating a di�erent

child node for each categorical level of the corresponding

predictor.

�e statistical model in terminal nodes has also been

extended to richer models, such as linear regression

(Alexander and Grimshaw ; Chipman et al. ),

7generalized linear models (Chipman et al. ), and
Gaussian process models (Gramacy and Lee ).

Ensembles of Trees
RP models have been used as a “base learner” in a num-

ber of algorithms that seek to achieve greater predictive

accuracy by combining together multiple instances of a

model.

In noticing the sensitivity of trees to small pertur-

bations, Breiman () developed a strategy known as

bootstrap aggregation or “Bagging” for generating multi-

ple trees and combining them to achieve greater prediction

accuracy. For instance, with a continuous response, each

bootstrap tree would be used to generate predictions at

a particular test point, and these predictions would be

averaged to form an ensemble prediction.

A further enhancement led to Random Forests

(Breiman ). Additional variation in the search algo-

rithm was introduced by randomizing the choice of pre-

dictor in splitting rules.�is led to a richer set of trees, and

could further improve predictive accuracy.

Another form of ensemble model using RP models is

boosting (Freund and Schapire ). In this algorithm,

a sequence of RP models are learned, each depending on

those already identi�ed via data weights that depend on

predictive accuracy of earlier RP models. �ese weights

encourage the next RP model to better �t those observa-

tions that have been incorrectly classi�ed. At the end of the

boosting sequence, an ensemble prediction is generated by

a weighted combination of predictions from each learner

in the ensemble.

Although neither boosting or random forests require

that the base learner be a RP model, these have yielded the

most popular and successful form of ensemble model.

Related Work
A model closely related to RP models is the hierarchical

mixture of experts model (Jordan and Jacobs ). In this

model, a di�erent logistic function of the predictors is used

in each interior node to probabilistically assign data points

to the le� and right children. In doing so, the hard bound-

aries associated with splitting rules are replaced with so�

decisions indexed by continuous parameters. In terminal

nodes, predictions are given by 7logistic regression. Tree
size and topology is typically �xed in advance, and the tree

learning algorithm becomes a continuous optimization

problem.
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Regression diagnostics are a set of mostly graphical meth-

ods which are used to check empirically the reason-

ableness of the basic assumptions made in the model.

�ese informal methods are an important part of regres-

sion modelling: many formal conclusions and inferences

(including con�dence intervals, statistical tests, prediction

etc.) derived from a �tted model only make sense if the

assumptions of the model hold. If the regression assump-

tions are violated, any application of results obtained from

the model can be very misleading.

For a data set of n observations of a response vari-

able y and k explanatory variables xj ( j = , . . . , k), the
standard linear regression model (see 7Linear Regres-
sion Models) for the relationship between the response

and the explanatory variables can be written in matrix

notation as

y = Xβ + є, ()

where y = (yi) is an n-vector of observations, X =
(xij) is an n × k matrix of independent variables, β =
(βj) is a k-vector of unknown parameters and є = (єi)
is an n-vector of unobserved random variables, o�en

called errors. �e basic assumptions of the model are

that the relationship between y and X is linear, the єi
are independent, have constant variance and are normally

distributed.

�e basic quantities on which diagnostics are based

are the residuals and �tted values. For any estimator β̂

of β, the �tted values are ŷ = Xβ̂ and the residuals are

є̂ = y − ŷ = y − Xβ̂. �e residuals provide information

about the errors in the model so are fundamental in diag-

nostics. Various forms of standardized residuals can also be

calculated. If X is of full column rank so β̂ = (X′X)−X′y
is the least squares estimator of β, the �tted values can be

written as ŷ = Hy, where H = X(X′X)−X′ = (hij) is
the hat matrix and the ith diagonal element hii is called

the leverage of the ith observation. �e residuals can be

standardized as є̂i/s, where s = (n − k)−∑ni= є̂i ,
as є̂i/s( − hii)/ (internally Studentized) or as

є̂i/s(i)( − hii)/ (externally Studentized), where s(i) =
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Regression Diagnostics. Fig.  Diagnostic plots based on the least squares fit of a linear regression model to the salinity data of

Ruppert and Carroll ()

(n − k − )−∑nj≠i є̂

(j) and є̂(j) is the residual for the

jth observation calculated from the n −  observations
a�er excluding the jth observation. Other useful quantities

include 7Cook’s Distance which is a measure of in�uence
involving the square of the Studentized residual and the

potential function hii/( − hii).
�emostwidely used diagnostic plots are residual plots

which plot the residuals against the �tted values (check-

ing for linearity, constant variance and 7outliers), spread
plots which plot the square root of the Studentized resid-

uals against the �tted values (checking for constant vari-

ance, outliers), QQ-plots which plot the ordered residuals

against their expected values under normality (normal-

ity, outliers), and leverage plots which plot Studentized

residuals against the leverage (checking for 7in�uential
observations).�ese four plots are illustrated in Fig.  for

the salinity data (Ruppert and Carroll ) which have

 observations and  explanatory variables.�e plots are

supplemented by lines and curves which aid in their inter-

pretation.�e most interesting features are the departure

from normality in the upper tail (observation ) shown

in the QQ-plot and the con�rmation that this observa-

tion is in�uential in the leverage plot. In general, outliers

may be di�cult to �nd without the use of robust method:

using robust methods, Ruppert and Carroll also identi-

�ed observations  and  as outliers in these data. Other

useful plots include added-variable plots (examining the

relationship between y and xj a�er adjusting for the other

explanatory variables) and partial-residual plots (checking

for linearity). In addition, there are a number of special-

ized plots which can be used to check for dependence:

these include various time series and spatial plots, correlo-

grams (ACF, PACF), variograms and spectrumplots.�ese

methods are extensively documented in the statistical

literature.

See for example the list of references at the end of this

entry.

Graphicalmethods are preferred in diagnostics because

they are more informative than numerical ones and o�en

suggest ways in which de�ciencies in a model can be

recti�ed. A good illustration is Anscombe’s () set of

 di�erent datasets with the same summary statistics but

four distinct regression relationships between the response

and explanatory variables.

Diagnostic methods are important in all statistical

modelling including generalised linear models (de Jong

and Heller ), time series analysis (Li ) etc.

About the Authors
Shuangzhe Liu is Associate Professor in the Discipline of

Mathematics and Statistics in the Faculty of Information

Sciences and Engineering at theUniversity of Canberra.He



 R Regression Models with Increasing Numbers of Unknown Parameters

holds a PhD in Econometrics from the Tinbergen Insti-

tute, University of Amsterdam. He is a member, Statistical

Society of Australia (–), and Australian Mathemati-

cal Sciences Institute (–). He is a Contributing Editor,

Current Index to Statistics (–), and anAssociate Editor,

Chilean Journal of Statistics (–).

Alan Welsh is the E.J. Hannan Professor of Statistics

and the Head of the Centre for Mathematics and its Appli-

cations at the Australian National University. He is a fel-

low of the Australian Academy of Science, the Institute

for Mathematical Statistics and the American Statistical

Association. He is currently Applications Editor of the

Australian and New Zealand Journal of Statistics and an

Associate Editor of the Journal of the American Statistical

Association. He has published over  papers and a book

on statistical inference.

Cross References
7Cook’s Distance
7In�uential Observations
7Linear Regression Models
7Outliers
7Residuals
7Robust Regression Estimation in Generalized Linear
Models

7Simple Linear Regression

References and Further Reading
Anscombe FJ () Graphs in statistical analysis. Am Stat :

–

Atkinson AC, Riani M () Robust diagnostic regression analysis.

Springer, New York

Belsley DA, Kuh E, Welsch RE () Regression diagnostics: iden-

tifying influential data and sources of collinearity, nd edn.

Wiley, New York

Cook RD, Weisberg S () Residuals and influence in regression.

Chapman & Hall/CRC, New York

Cook RD, Weisberg S () Applied regression including comput-

ing and graphics. Wiley, New York

de Jong P, Heller GZ () Generalized linear models for insurance

data. Cambridge University Press, Cambridge

Fox J () Regression diagnostics: an introduction. Sage,

New York

Fox J () Applied regression analysis and generalized linear

models, nd edn. Sage, New York

Li WK () Diagnostic checks in time series. Chapman &

Hall/CRC, New York

Ruppert D, Carroll RJ () Trimmed least squares in the linear

model. J Am Stat Assoc :–

Wheeler D () Spatially varying coefficient regression models:

diagnostic and remedial method for collinearity. Vdm Verlag

Dr. Müller, p . ISBN --X

Regression Models with
Increasing Numbers of Unknown
Parameters
AsafHajiyev

Professor, Chair

Baku State University, Baku, Azerbaijan

Introduction
Consider the regression model

yi = f (xi, θ) + εi, i = , , . . . ,N ()

where xi is the point of observation, yi an observable value,

εi a random error at the point xi, and θ = (θ, θ, . . . , θm)T
is the vector of unknown parameters. Let us suppose that

the number of unknown parameters m depends on the

number of observations N and m may increase, when N

becomes larger. Such regressions are called models with

increasing number of unknown parameters.�e variances

of observation error are unknown andmay be di�erent. At

each point xi there is only one observable value, yi, that

does not allow estimation of the variance.

Regression models with an increasing number of

unknown parameters and with unknown and di�erent

variances of observation error are of interest in impor-

tant applications.�is is because, with an increased num-

ber of unknown parameters, the unknown function can

be approximated more accurately in experiments. More-

over, in some applications, repeated tests at a single

point are costly (�nancially and technically), which ham-

pers the estimation of the unknown error variance, which

is di�erent at di�erent observation points.

Regression models have been widely addressed in

numerous publications (Demidenko ; Huet et al. ;

Sen and Srivastava ), but models with an increasing

number of unknown parameters have received little atten-

tion, whichmotivates our interest in this subject.�emain

aims of our investigations are

● Direct estimation (without estimation of a variance)

of the elements of the covariance matrix of the vec-

tor
√
N(θ∗ − θ), where θ∗ is the least square estimator

(l.s.e.).

● Construction of a con�dence band for the unknown

function f (x, θ).

Linear Regression Models
Let us assume that

f (x, θ) = θϕ(x)+ θϕ(x)+ . . . + θm(N)ϕm(N)(x), ()
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where ϕ(x), ϕ(x), . . . , ϕm(N)(x) is a system of linearly
independent and bounded functions. Expression () can be

rewritten in a vector form as

Y = Xθ + ε, ()

where Y is the vector of observable values, X the design

matrix, de�ned as X = //x ij//, xij = ϕi(xj), i =
, , . . . ,m; j = , , . . . ,n; with θ = (θ, θ, . . . , θm(N))T
being the vector of unknown parameters and ε =
(ε, ε, . . . , εN)T denoting the error-vector.�e number of
unknown parameters depends on the number of observa-

tions and moreover

m(N)/N → , as n→∞. ()

�e sequence ε, ε, . . . , εN is assumed to have uni-

formly bounded and independent random variables with

Eεi = ,Eεi = σi

being unknown, di�erent, and

 < (σ∗) ≤ σi
 ≤ (σ

∗) <∞.

Let θ∗ = (XTX)−XTYY be the l.s.e and trA =
n

∑
i=

aii be the

trace of the matrix A with elements aij.

De�nition  �e vector θ = (θ, θ, . . . , θm(N))T with
random elements and increasing dimension converges to

zero in probability θ
PÐ→ , if

m(N)

∑
i=

θi
PÐ→  as N →∞.

Let  < λ(N) ≤ λ(N) ≤ . . . ≤ λm(N) be eigenvalues
of the matrix (XTX)/N.

�eorem  Let the conditions ()–() be true.�en (θ∗−
θ) PÐ→ , if and only if (/N)tr(XTX/N) PÐ→  asN →∞.

De�nition  �e vector θP = (θ
P
, θ

P
, . . . , θm(N)

P
,

, . . . , )T is called m-�nite and p-consistent estimator
of the vector θ = (θ, θ, . . . , θN)T , if

∀δ > P{
m(N)

∑
i=

(θ i
P − θ i)

 < δ} ≥ pholds true, asN →∞.

Example  Consider f (x, θ) =
∞

∑
i=

θ iϕi < ∞, /ϕi(x)/ ≤ ,
∞

∑
i=

θi < ∞. �e problem is to �nd such m(p,N, δ)

(∀δ >  and given  < p < , N > ), for which

P{
m(N)

∑
i=

(θ∗i − θ i)
 < δ} ≥ p holds true, where θ∗i is the

l.s.e. on N observations. For simplicity, we assume Eεi =
,Eεi ≤ .

Consider yi =
m(N)

∑
i=

θ iϕi(x) + δi, where

δi =
∞
∑

j=m(N)+
θ iϕi(x) + εi, δi

=
∞
∑

j=m(N)+
θ iϕi(x)→  as N →∞.

Assuming that for large values ofN P{
∞

∑
i=

(θ i
∗−θ i)

<δ} ≈

P{
m(N)

∑
i=

(θ i
∗ − θ i)

 < δ} . If the conditions of the�eorem 

hold true, then we obtain

P

⎧⎪⎪⎨⎪⎪⎩

m(N)

∑
i=

(θ i
∗ − θ i)

 < δ

⎫⎪⎪⎬⎪⎪⎭
≥  − (m + )/(Nλ(N)δ)

from Chebyshev inequality. Taking p =  − (m + )/
(Nλ(N)δ), we get m = ( − p)(Nλ(N)δ) − .
Now in the capacity of a consistent estimator of the

vector θ = (θ, θ, . . . , θN)T , we can take the vec-
tor θP = (θ

P
, θ

P
, . . . , θm(N)

P
, , . . . , )T , where m was

found, above. According to the �eorem  the vector θ∗

is a consistent estimator of θ.

Estimation of Covariance Matrix
Denote

DN = E(θ
∗ − θ)(θ

∗ − θ)T

= (/N)(XTX/N)−[XT(Eεε
T)X/N](XTX/N)−

= (/N)(XTX/N)−[XTI(σ
)X/N](XTX/N)

where I(σ ) = //zij// is an unknown matrix, //zij// =
σiσjδij, δij(i, j = , , . . . ,N) is Kroneker symbol

CN = XTI(σ
)X/N, CN = //ckl//, k, l = , , . . . ,m;

y
∗ = Xθ

∗
,

Ikl(x) = //aij kl//, i, j = , , . . . ,m;

//aij kl// = ϕk(xj)ϕl(xj)δij, ckl
∗

= (/N)(y∗ − y)Ikl(x)(y∗ − y),

CN
∗ = //ckl∗//, k/l = , , ...,m.

�eorem  Let Eεi
 <∞ and (m

√
m) /(Nλ(N)) → ,

as N →∞, then

(cij∗ − cij)
PÐ→ , E (cij∗ − cij)→  as N →∞.
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Remark  In�eorem  we do not need the existence of

the limit c∗kl and ckl.�is is because the di�erence between

them converges to zero, in probability.

�eorem If (m
√
m) /(Nλ(N))will be bounded, then√

N(θ∗ − θ)⇒ N(,DN) as N →∞, where⇒ N(,DN)
means a convergence in probability to the normal distri-

bution with the covariance matrix DN .

Di�erent approaches for estimating the elements of

covariance matrix were suggested in Belyaev and Hajiyev

(), Hajiyev (), and Wu ().

Nonlinear Regression Models
Let us assume that f (xi, θ) in () is a nonlinear function
and

f (xi, θ), ∂f (x, θ)/∂θ, ∂

f (x, θ)/∂θ i∂θ j, (i, j = , , . . . ,m)

are bounded and continuous functions of (x, θ), θ ∈ Θ is a
compact set. Denote

fij(θ) = ∂f (xj, θ)/∂θ i;

FN(θ) is the matrix with elements fij(θ),  < µN(θ) ≤
. . . ≤ µmN(θ) eigenvalues of thematrix [FNT(θ)FN(θ)/N]
and B(r) be the sphere of the radius r >  centered at the
point θ∗. A least squares estimator of θ is constructed by

the iterative process

θN(s + ) = θN(s) + [FNT(θN(s))FN(θN(s))]
−

FN
T(θN(s))(y − f (x, θN(s))). ()

�e question arises as to whether the iterative process ()

converges or not. Relation () can be represented as

θN(s + ) = u(θN(s)) = θN(s) + AN(θN(s))δN(θN(s)),

where

AN(θN(s)) = [FNT(θN(s))FN(θN(s))/N]−FNT(θN(s))

δN(θN(s)) = y − f (x, θN(s)), δN
∗(θN(s)) = y − f (x, θ∗).

De�ne

ζN ,r
p(θ) = m(∂AN(θ)/∂θp)ε, p = , , ..,m; θ ∈ B(r),
Lp = ∂uN(θ)/∂θp,

τN(r) = maxp=,,. . .,msupθ∈Θ//Lp//.

Below, the convergence of random variables is understood

as convergence in probability.

�eorem  If there exists such N that m(N)/
[N(λ

N(θ))]→ , r → , then

m(N)τN(r)→  and for any p, ζN ,r
p(θ)→ , r → .

Introduce ρN(θ) = uN(θ) − θ, ρ∗ = ρ(θ∗).

�eorem  Let θ() ∈ B(r) and τN(r)+ (//ρ∗//)/r < .
�en under the conditions of �eorem , there exists a

random variable θN such that
√
N(θN − θ

∗)⇒ N[,∑ (θ
∗)] as N →∞,

where

∑(θ
∗) = [FNT(θ

∗)FN(θ
∗)/N]

−

[FNT(θ
∗)I(σ

)FN(θ
∗)/N] [FNT(θ

∗)FN(θ
∗)/N]

−
,

that is, θN is a
√
N consistent estimator and θN can be used

as l.s.e. onN observations. Using the approach suggested in

Hajiyev andHajiyev (), (similarly as for linearmodels)

the elements of a covariance matrix can be estimated.

The Construction of Asymptotic
Confidence Bands
Consider the quadratic form

(θ
∗ − θ)T(DN)−(θ

∗ − θ) ≤ χγ
(m)/N. ()

According to�eorem , the le� side of () has asymptoti-

cally chi-square distribution random with degrees of free-

domm. In () instead ofD−N (according to the�eorem )

can be used estimates (Hajiyev and Hajiyev ) the

matrix D−N elements. For the construction of a con�dence

band for f (x, θ), it is necessary to �nd inf f (x, θ) and sup
f (x, θ), θ ∈ εγ(θ), which are lower and upper boundaries
of a con�dence band and

εγ(θ) = [θ : (θ
∗ − θ)T (DN−) (θ

∗ − θ) ≤ χ

γ(m)/N]

is the con�dence ellipsoid, χγ
(m) is the γ >  level

quantile of the 7chi-square distribution withm degrees of
freedom.
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�e normality assumption is a very attractive option for

the errors of regression models with continuous response

variables. However, when it is not satis�ed, some trans-

formation can be adopted for the response variable to

obtain, at least, the symmetry property. It is known that

the estimates of the coe�cients in normal regressionmod-

els are sensitive to extreme observations. Alternatives to

the assumption of normal errors have been proposed in

the literature. One of those alternatives is to consider that

the errors have distributions with heavier tails than the

normal distribution, in order to reduce the in�uence of

outlier observations. In this context, Lange et al. ()

proposed the Student t model with unknown ν degrees

of freedom. In the last decade, several results appeared

as alternatives to modeling distributions other than the

normal errors as, for instance, the symmetrical (or ellip-

tical) distributions. Some of these results can be found in

Fang et al. (), and Fang and Anderson ().

Symmetrical Nonlinear Models
Consider the symmetrical nonlinear model

yi = µi + єi, i = , . . . ,n ()

where y, . . . , yn are the observed responses, µi = µi(β; x)
is an injective and at least twice di�erentiable function

with respect to β. In addition, we suppose that the deriva-

tive matrix Dβ = ∂µ/∂β has rank p(p < n) for all
β ∈ Ωβ ⊂ IRp, where Ωβ is a compact set with inte-

rior points, β = (β, . . . , βp)T is the parameter vector
of interest, xi = (xi, . . . , xip)T is a vector of explana-
tory variable values and є, . . . , єn are independent random

variables with the symmetrical density function fєi(є) =
g(є/ϕ)/

√
ϕ, y ∈ IR, where g : IR → [,∞) is such that

∫
∞

g(u)du <∞.�e function g(⋅) is typically known as

the density generator. We will denote єi ∼ S(, ϕ, g).�e
symmetrical class includes all symmetrical continuous dis-

tributions with heavier and lighter tails than the normal

ones. When they exist, E(Yi) = µi and Var(Yi) = ξϕ,

where ξ >  is a constant that may be obtained from the
expected value of the radial variable or from the deriva-

tive of the characteristic function (see, for instance, Fang

et al. ).�e log-likelihood function for θ = (βT , ϕ)T
is given by L(θ) = −n/ log ϕ + ∑ni= log{g(ui)}, where
ui = ϕ−{yi − µi}.�e score functions for β and ϕ take,

respectively, the forms

Uβ(θ) = 
ϕ
DTβV(y − µ) and

Uϕ(θ) = ϕ−{QV(β, ϕ)/ϕ − n},

whereV = diag{v, . . . , vn}with vi = −Wg(ui),Wg(u) =
g′(u)
g(u) , g

′(u) = dg(u)
du
, y = (y, . . . , yn)T , µ = (µ, . . . , µn)T ,

QV(β, ϕ) = {(y − µ)tV(y − µ)}.�e Fisher information
matrix for θ can be expressed as Kθθ = diag{Kββ ,Kϕϕ},
where Kββ = dgϕ−DTβDβ and Kϕϕ = n(ϕ)−(fg − )
with dg = E{W

g(U)U}, fg = E{W
g(U)U} and U ∼

S(, , g).�us, β and ϕ are orthogonal. Due to the similar-
ity between the inference for elliptical and normal models,

it is reasonable to expect that for large n and under suitable

regularity conditions, the estimators β̂ and ϕ̂ are approxi-

mately normal of means β and ϕ and variance–covariance

matrices K−ββ and K
−
ϕϕ , respectively. General expressions

forWg(u),W′
g(u), dg , fg , and ξmay be found, for instance,

in Cysneiros and Paula ().
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Parameter Estimation
Some iterative procedures such as Newton–Raphson,

BFGS, and Fisher scoringmethod can be used. Fisher scor-

ing method can be easily applied to obtain θ̂, where the

iterative process can be interpreted as a modi�ed least

squares.�e iterative process for θ̂ take the form

β
(m+) = {DT (m)

β
D(m)

β
}
−
DT (m)

β
Z(m),

ϕ
(m+) = 

n
QV(β

(m+)
, ϕ

(m)), m = , , , . . . , ()

where Z = Dβ β + 

dg
V(y − µ). In linear case, we have

β(m+) = (XTV(m)X)−XTV(m)y. Starting values should
be given for β and ϕ, for example, least square estimates. As

we can see from the iterative process (), the observations

with small value for vi are down weighted for estimating β.

In particular, for the normal model, we have vi = , ∀i.
For the Student t model with ν degrees of freedom, power

exponential with shape parameter k, and logistic type II

distributions, the values of vi are given in the Table .

It may be showed for the Student t and logistic type

II distributions, vi is inversely proportional to ui. �is

property also follows for the power exponential distribu-

tion when  < k ≤ . �en, robustness aspects of β̂

against outlying observations appear in these three heavy-

tailed error distributions. In general, when the errors of

the model have distribution with heavier tails than nor-

mal, the values of the weights vi have small values for

ui large. �us, models where the distribution of error

have heavy tails can reduce the in�uence of extreme

observations, while in the normal nonlinear regression

model the weights are equal for all observations. In con-

sequence, estimates in symmetrical regression models are

less sensitive to the extreme observations than normal

regression models. Extensions in the area of heteroscedas-

tic symmetrical regression models can be found in

Cysneiros et al. (, ) and codes in S-Plus and R to

�t symmetrical regression models can be obtained in the

Web page www.de.ufpe.br/~cysneiros/elliptical/elliptical.

html.

Regression Models with Symmetrical Errors. Table 
Expression of vi for some symmetrical distributions

Distribution vi

Normal 

Student-t
ν + 

(ν + ui)

Logistic-II
exp(−

√
ui)− 

(−
√

ui)[+ exp(−
√

ui)]

Power exponential


(+ k)uk/(k+)
i
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Introduction
Many industrial processes must be adjusted from time to

time to continuouslymaintain their outputs close to target.

�e reason for this is that such processesmay be a�ected by

disturbances produced, for example, by machines loosing

their adjustment, components wearing out, and varying

feed stock characteristics. Industrial control is a continual

endeavor to keep measures of quality as close as possi-

ble to their target values for inde�nite periods of time.
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�ismay be attained using processmonitoring and process

adjustment tools. Monitoring implies continually check-

ing the desired state of the process to detect and eliminate

assignable causes of variation that can send the process

out of control. Adjustment implies forecasting future devi-

ations and taking corrective actions by feedback and/or

feedforward. Process control can potentially bene�t by

using complementary tools of process monitoring and

process adjustment within the same application.

Process Monitoring Techniques
Process monitoring, or process surveillance, is a part of

Statistical Process Control (SPC) that is usedwhen the pro-

cess can be brought to a satisfactory state of statistical con-

trol by systematically applying standardization of criteria,

materials, methods, practices and processes.

Process monitoring is usually implemented by means

of 7control charts, such as the Shewhart charts, the
CUmulative SUM (CUSUM) charts, or the Exponentially

WeightedMovingAverage (EWMA) charts, among others.

�e purpose of such methods is to continually check,

or supervise, the state of the process in order to detect

any conceivable out of control situation as soon as possible

while simultaneously minimizing the rate of false alarms

(i.e., alarms that eventually turn out to have no special

cause).

When an alarm is triggered, a search for the special and

potentially assignable cause of variation that presumably

produced the alarm should be started.�is search should

end with the detection of such assignable cause and its per-

manent removal from the system. If the search fails, so that

no special cause is eventually found, the alarm should be

counted as a false alarm.

Process Adjustment Techniques
Process adjustment is o�en considered as a part of

Engineering Process Control (EPC) and is used when the

process cannot be brought to a satisfactory state of sta-

tistical control, even a�er systematic application of stan-

dardization techniques. Much e�orts have recently been

dedicated, however, to bring some important features

of process adjustment to the attention of the statistical

community (e.g., see Box and Kramer ; Box and

Luceño a,b, ; Box et al. ; Luceño , or

Montgomery et al. ).

Process adjustment is o�en implemented by �rst using

forecasting tools to estimate future deviations from tar-

get and subsequently modifying, or adjusting, an input

compensatory variable so as to make those predicted devi-

ations equal to zero (or to an appropriate small value

in asymmetric situations). A process adjustment scheme

may use feedback adjustments, feedforward adjustments,

or a combination of both. Some types of feedback

adjustment schemes are repeated adjustment schemes,

constrained adjustment schemes, Proportional Integral

Derivative (PID) control schemes, bounded adjustment

schemes, among other.

�e purpose of these methods is to indicate when and

by how much the process has to be sampled and adjusted

to keep it close to target. �e only actions called for are

to sample and to adjust the process when and as indicated

by the adjustment scheme.�e objective may be to mini-

mize the output variance (or the mean squared error at the

output) without any additional constraints, or to minimize

the output variance constrained by a bound on the input

variance, or by a bound on the frequency of adjustment,

or on the frequency of sampling, or on the amount of each

adjustment, among other possibilities.

Conclusion
One can tentatively conclude that declarations of

alarms and searches for special and potentially assignable

causes of variation are not called for in the context of

process adjustment techniques, but in the context of pro-

cess monitoring techniques. By the same token, process

adjustments are not called for in the context of process

monitoring techniques, but much more appropriately in

the context of process adjustment techniques.

Nevertheless, the appropriate combination of process

monitoring and process adjustment tools, and their com-

plementary use in SPC, is the subject of controversy within

the statistical community. Further information can be

found in the bibliography that follows, as well as in many

documents produced by the International Organization

for Standardization (ISO) and related organizations (e.g.,

ANSI, DIN, BSI, CEN).
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Certain statistical distributions occur so o�en in applica-

tions that they are named. Examples include the binomial,

exponential, normal, and uniformdistributions.�ese dis-

tributions typically have parameters that allow for a certain

degree of �exibility for modeling. Two important applica-

tions of these common statistical distributions are: (a) to
provide a probability model the outcome of a random

experiment, and (b) to provide a reasonable approxima-
tion to a data set.

Statistical distributions are traditionally introduced in

separate sections in introductory probability texts, which

obscures the fact that there are relationships between these

distributions. �e purpose of this section is to overview

the various types of relationships between these common

univariate distributions.

Common distributions and their relationships are pre-

sented in the encyclopedic work of Johnson et al. (,

) and Johnson et al. (). More concise treatments

are given in Balakrishnan and Nevzorov (), Evans

et al. (), Patel et al. (), Patil et al. (a, b), and

Shapiro and Gross (). Figures that highlight the rela-

tionships between distributions are given in Casella and

Berger (), Leemis and McQueston (), Marshall

and Olkin (), Morris and Lock (), Nakagawa and

Yoda (), Song (), and Taha ().

Since there are well over  named distributions used

by probabilists and statisticians, the next three sections

simply classify and illustrate some of the relationships.

Special Cases
�e �rst type of relationship between statistical distribu-

tions is known as a special case, which occurs when one

distribution collapses to a second distribution for certain

settings of its parameters. Two well-known examples are:

● A 7gamma distribution collapses to the exponential
distribution when its shape parameter equals .

● A normal distribution with mean µ and variance σ 

collapses to a standard normal distribution when µ = 
and σ = .

�ere are also certain special cases in which two statistical

distributions overlap for a single setting of their param-

eters. Examples include (a) the exponential distribution
with a mean of two and the 7chi-square distribution
with two degrees of freedom, (b) the chi-square distribu-
tion with an even number of degrees of freedom and the

Erlang distribution with scale parameter two, and (c) the
Kolmogorov–Smirnov distribution (all parameters known

case) for a sample of size n =  and the U(/, ) dis-
tribution, where U denotes the uniform distribution (see

7Uniform Distribution in Statistics).

Transformations
�e second type of relationship between statistical distri-

butions is known as a transformation.�e term “transfor-

mation” is used rather loosely here, to include the distri-

bution of an order statistic, truncating a random variable,

or taking amixture of random variables. Somewell-known

examples include:

● �e random variable (X − µ)/σ ∼ N(, ) when X ∼
N(µ, σ ), where N denotes the normal distribution.

● An Erlang random variable is the sum of mutually

independent and identically distributed exponential

random variables.

● �e natural logarithm of a log normal random variable

has the normal distribution.

● A hyperexponential random variable is the mixture of

mutually independent exponential random variables.

● An order statistic taken from a sample of mutually

independent U(, ) random variables has the 7beta
distribution.
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● A geometric random variable is the �oor of an expo-

nential random variable.

● If X has the F distribution with parameters n and n,

then ( + (n/n)X)
−
has the beta distribution.

● If X ∼ U(, ) then the �oor of X has the Benford
distribution (Benford ).

It is also the case that two random variables from di�erent

statistical families can be combined via a transformation to

form another common distribution, for example,

Z√
Y/n

∼ t(n)

where t(n) is the t distribution with n degrees of free-
dom, Z is a standard normal random variable, and Y is a

chi-square random variable with n degrees of freedom that

is independent of Z.

Limiting Relationships
�e third type of relationship between statistical distri-

butions is known as a limiting or asymptotic relationship,

which is typically formulated in the limit as one or more

parameters approach the boundary of the parameter space.

�ree well-known examples are:

● A standard normal distribution is the limit of a t distri-

bution as its degrees of freedom parameter approaches

in�nity.

● IfX,X, . . . ,Xn aremutually independentU(, ) ran-
dom variables, then

n( −max{X,X, . . . ,Xn})

approaches an exponential randomvariable in the limit

as n→∞.
● �e gamma distribution approaches the normal distri-

bution as its shape parameter approaches in�nity.

Bayesian Relationships
�e fourth type of relationship between statistical distri-

butions is known as a Bayesian or stochastic parameters

relationship, in which one or more of the parameters of a

distribution are considered to be random variables rather

than �xed constants. Two well-known examples are:

● If a random variable has a7binomial distribution with
�xed parameter n and random parameter p which has

the beta distribution, then the resulting random vari-

able has the beta–binomial distribution.

● If a randomvariable has a negative binomial distribution

with �xed parameter n and random parameter pwhich

has the beta distribution, then the resulting random

variable has the beta-negative binomial distribution.

Internal Properties
�e ��h and last type of relationship between statistical

distributions is actually a relationship between a statis-

tical distribution and itself. �ere are occasions when a

particular operation on one or more random variables

from a certain statistical family result in a new random

variable that remains in that family.�ese are best thought

of as properties of a statistical distribution rather than

relationships between statistical distributions. Some well-

known examples include:

● �e linear combination property indicates that linear

combinations of mutually independent random vari-

ables having this particular distribution come from

the same distribution family. For example, if Xi ∼
N (µi, σ i ) for i = , , . . . ,n; a, a, . . . , an are real con-
stants, and X,X, . . . ,Xn are mutually independent,

then
n

∑
i=
aiXi ∼ N (

n

∑
i=
aiµi,

n

∑
i=
a

i σ

i ) .

● �e convolution property indicates that sums of mutu-

ally independent random variables having this par-

ticular distribution come from the same distribution

family. For example, if Xi ∼ χ(ni) for i = , , . . . ,n,
and X,X, . . . ,Xn are mutually independent, then

n

∑
i=
Xi ∼ χ

 (
n

∑
i=
ni) ,

where χ denotes the chi-square distribution.�e con-

volution property is a special case of the linear combi-

nation property.

● �e scaling property implies that any positive real con-

stant times a random variable having this distribution

comes from the same distribution family. For example,

if X ∼ Weibull(α, β) and k is a positive, real constant,
then

kX ∼Weibull(αk
β
, β).

● �e product property indicates that products of mutu-

ally independent random variables having this par-

ticular distribution come from the same distribution

family. For example, if Xi ∼ log normal(µi, σ i ) for
i = , , . . . ,n, andX,X, . . . ,Xn aremutually indepen-
dent, then

n

∏
i=
Xi ∼ log normal(

n

∑
i=
µi,

n

∑
i=

σ

i ) .
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Relationships Among Univariate Statistical Distributions. Fig.  Univariate distribution relationships

● �e inverse property indicates that the reciprocal of

a random variable of this type comes from the same

distribution family. For example, if X ∼ F(n ,n) then



X
∼ F(n,n),

where F denotes the F distribution.
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● �e minimum property indicates that the smallest

of mutually independent and identically distributed

random variables from a distribution comes from

the same distribution family. For example, if Xi ∼
exponential(λi) for i = , , . . . ,n, and X,X, . . . ,Xn
are mutually independent, then

min{X,X, . . . ,Xn} ∼ exponential(
n

∑
i=

λi),

where the exponential parameter is a rate.

● �e residual property indicates that the conditional dis-

tribution of a random variable le�-truncated at a value

in its support belongs to the same distribution fam-

ily as the unconditional distribution. For example, if

X ∼ U(a, b), and k is a real constant satisfying a < k <
b, then the conditional distribution of X given X > k
belongs to the uniform family.

Many of the relationships described here are con-

tained in Fig.  from Leemis and McQueston (),

which is reprinted with permission from �e American

Statistician.
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Let {Xn;n ∈ N} be a sequence of independent, identi-
cally distributed random variables with values in R+

and

distribution function F.�e process {Sn;n ∈ N} de�ned
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bymeans of S := , Sn := Sn−+Xn, n = , , . . . is called an
ordinary renewal process.�e non-negative random vari-

ables Xn are called increments or, in many applications,

inter-event times. In connection with the sequence of ran-

dom points in time, {Sn}, one can de�ne the counting
process Nt = ∑∞n= (Sn ≤ t), t ∈ R+

, where (A) designates
the indicator function of the event A (which is  if A occurs

and  otherwise).�e renewal function associated with a

renewal process is the increasing, right-continuous func-

tionU(t) := ENt = ∑∞n= F∗n(t)where F∗n(t) denotes the
n-fold convolution of the distribution function F with itself

(hence F∗n(t) = P(Sn ≤ t)).
Renewal processes are intimately related to the theory

of the so-called renewal equation which is a linear integral

equation of the form

Z(x) = z(x) + ∫
x


Z(x − y)F(dy) ()

where z : R+ → R is a Borel function, bounded on �nite
intervals, and F a probability distribution on R+

. F and z

are assumed to be given and the object is to determine the

(unique) solution Z which is bounded on �nite intervals,

and study its asymptotic behavior as x →∞. Its solution is
given, in terms of the renewal function by the convolution

Z(x) = ∫
x


z(x − y)U(dy).

Renewal processes are important as special cases of

random 7point processes. In this respect the Poisson pro-
cess (see 7Poisson Processes) on the real line is the sim-
plest and most important renewal process. �ey occur

naturally in the theory of replacement of industrial equip-

ment, the theory of queues, in branching processes, and

in many other applications. In the framework of perpetual

replacement of a single item, Xn is the life of the nth such

itemwhich, as soon as it fails, is replaced by a new one with

independent duration distributed according to F.�en Nt
is the number of items used in the time interval [, t] and
SNt is the time of the last replacement before t. We de�ne

three additional processes {At ; t ≥ }, {Bt ; t ≥ }, and
{Ct ; t ≥ } as follows:At := t−SNt− is the age, Bt := SNt − t
is the remaining life, and Ct := At + Bt = XNt is the total
life duration of the item currently in use. (�e age and

remaining life are also known as the backward and forward

recurrence times.)�e statistics of these processes can be

described by means of appropriate renewal equations. For

instance, if Wx(t) := P(At ≤ x) then conditioning on S
(using the so-called “renewal argument”) we obtain

Wx(t) = ( − F(t))(t ≤ x) + ∫
t


Wx(t − s)dF(s). ()

If we allow the �rst increment to have a di�erent

distribution from all the others, i.e. if we set S = X and

Sn = Sn− + Xn, n = , , . . . where X is independent of the
{Xn} and, unlike them, has distribution F, di�erent from
F, we obtain a delayed renewal process. �is type of pro-

cess is important because it provides additional �exibility

in accommodating di�erent initial conditions. Of course,

its limiting properties are not a�ected by this modi�ca-

tion. Of particular importance, assuming the mean m to

be �nite, is the choice F = FI , given by

FI(x) :=


m
∫

x


( − F(y))dy. ()

With this choice, {Sn} becomes a stationary point process.
FI is called the integrated tail distribution associated with

the distribution F.

Of fundamental importance are the limit theorems

related to renewal processes. Ifm := ∫
∞


xdF(x) denotes

the mean of the increments, then the Elementary Renewal

�eorem states that lim
t→∞

t
−
U(t) = m−. (�e result holds

also in the case m = ∞ provided that we interpret m−

as .) A re�nement is possible if the increments have

�nite second moment, in which case lim
t→∞

(U(t) − t/m) =

EX

 /(m). An analogous bound, due to Lorden (),

also holds for all t ≥ : U(t) ≤ t/m + EX /m. When the
second moment exists we also have a Central Limit�e-

orem for the number of events up to time t: As t → ∞,
Nt − t/m
σ
√
t/m

d→ Z where Z is a standard Normal random

variable and σ  = Var(X).
Much deeper is Blackwell’s�eorem which states that,

if F in non-lattice and the meanm is �nite then

lim
t→∞

(U(t + h) −U(t)) = h/m for all h > . ()

(A distribution F on R+
is lattice with lattice size δ if there

exists δ >  such that the support of F is a subset of

{nδ;n = , , , . . .} and δ is the largest such number.)

If F is lattice (δ) then () still holds, provided that h is

an integer multiple of δ. Also, if m = ∞ the theorem

still holds with m− = . Blackwell’s original proof ()
of () depended on harmonic analysis techniques. In the

s with the widespread use of coupling techniques sim-

pler probabilistic proofs of the renewal theorem became

available. (See Lindvall [] for a complete account.) An

integral version of Blackwell’s theorem, the Key Renewal

�eorem, states that, if z is directly Riemann integrable

then the limit lim
x→∞∫

x


z(x − y)dU(y) exists and equals

m
−
∫

∞


z(x)dx.�is then gives the limiting behavior of

any function which satis�es a renewal equation (). (Direct

Riemann integrability is a direct extension of the Riemann
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integral from bounded intervals to unbounded ones: Fix

h >  and let γn(h) = supnh≤x<(n+)h z(x), γ
n
(h) =

infnh≤x<(n+)h z(x). Set I(h) := ∑∞n= hγn(h) and I(h) :=
∑∞n= hγn(h). Clearly, if h > h >  then I(h) ≤ I(h) ≤
I(h) ≤ I(h), though these quantities may not necessar-
ily be �nite. If limh→ I(h) and limh→ I(h) exist and are
equal then z is directly Riemann integrable. It should be

noted that the direct Riemann integral is more restrictive

than either the improper Riemann integral or the Lebesgue

integral.)

�e discrete version of the renewal theorem is simpler

but not elementary. Suppose we are given a probability dis-

tribution { fn;n = , , . . .} which is non–arithmetic, i.e.
g.c.d.{n : fn > } =  and has mean m = ∑∞n= nfn, and
de�ne the renewal sequence {un;n = , , , . . .} via u = ,
un = fn + fn−u + ⋯ + fun−. �en limn→∞ un = m−
(interpreted as  when m = ∞). �is is the celebrated
Erdös–Feller–Pollard () renewal theorem (see Feller

[, , Vol. , Chap. ]) which marks the begin-

ning of modern renewal theory and played a central rôle

in the treatment of 7Markov chains with countable state
space. Interesting behavior arises if the non-arithmetic

distribution function { fn} has in�nite mean: Suppose that
∑∞k=n+ fk = L(n)n−α

where  < α <  and L(n) is a slowly
varying function. (A real function L is said to be slowly

varying if it is positive, measurable, and for every λ > ,
L(λx)/L(x) →  as x → ∞.)�en (Garsia and Lamperti
) limn→∞ n

−αL(n)un = π− sin πα. If / < α < ,
this can be sharpened to limn→∞ n

−αL(n)un = π− sin πα.

Analogous results in continuous time are also proved. Sup-

pose thatF(.) is continuous,F(+) = ,F(∞) = ,m =∞,
and

 − F(t) ∼ t
−αL(t)
Γ( − α)

⇔ m(t) :=

∫
t


( − F(u))du ∼ t

−αL(t)
Γ( − α)

, t →∞, ()

where α ∈ [, ) and L(⋅) is a slowly varying function at
in�nity. Under these conditions the growth rate of U(t) is
given by (see e.g. Bingham et al. [, Chap. ]),

U(t)∼Cα t/m(t), as t→∞, where Cα = [Γ(α+)Γ(−α)]−.

Erickson () proved a version of Blackwell’s theorem

in the in�nite mean cycle case. It states that if in (), α ∈
( 

, ] , then for any �xed h > 

lim
t→∞

m(t)[U(t) −U(t − h)] = Cαh.

If α ∈ (, 

] , then lim has to be replaced by lim. Sev-

eral versions of the Key Renewal�eorem in the in�nite

mean cycle case are also proved in Teugels (), Erickson

(), and Anderson and Athreya ().

Using the Key Renewal �eorem one can obtain the

asymptotic behavior of the age and the current and residual

life. If Y is a random variable with distribution P(Y ≤ y) =


m
∫

y


xdF(x) andV is uniform in [, ] and independent

of Y , then

(At ,Bt ,Ct)
d→ (VY , ( − V)Y ,Y) as t →∞.

In particular the limiting marginal distribution of the age

(which is the same as that of the residual life) is

lim
t→∞

P(At ≤ x) = FI(x),

the integrated tail distribution given in (). �e limit-

ing behavior of these processes gives rise to the so called

“renewal paradox.” For instance, the limiting distribution

of the item currently in use is

lim
t→∞

P(Ct ≤ x) =


m
∫

x


ydF(y)

with corresponding mean, provided that the second

moment of F exists, given bym+σ /m. Hence if we inspect
such a process a long time a�er it has started operating

(and is therefore in equilibrium) the part we are going to

see will have longer life duration than average. Of course

this is simply an instance of length-biased sampling and its

e�ects are more pronounced when the variability of the

distribution F around its mean is large.

In the in�nite mean cycle case the life time processes

At and Bt have a linear growth to in�nity, i.e. the nor-

malized processesAt/t and Bt/t have non-degenerate limit
laws, jointly or separately.�is result is usually called the

Dynkin–Lamperti theorem (Dynkin ; Lamperti ).

(See also Bingham et al. [, Chap. ]). �e theorem

states that the condition () with α ∈ (, ) is necessary and
su�cient for the existence of non-degenerate limit laws for

At/t, Bt/t,

lim
t→∞

P (At/t ≤ x) = π
−
sin πα∫

x


u
−α( − u)α−

,

 < x < ,

lim
t→∞

P (Bt/t ≤ x) = π
−
sin πα∫

x


u
−α( + u)−du,

x > .

An important and immediate generalization of the renewal

equation () is to allow F to be a general positive �nite

measure on R+
. Setting ∥F∥ := F(R+) one distinguishes

the excessive case where ∥F∥ > , the defective case where
∥F∥ < , and the proper case we have already discussed,
where ∥F∥ = . In the excessive case one can always �nd
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a (unique) β >  such that ∫
∞


e
−βx
dF(x) = . One

can de�ne then a probability distribution function F# via

the relationship dF
#(x) = e−βx

dF(x), x ≥ . Multiplying
both sides of () by e−βx

and setting z
#(x) = e−βx

z(x),
Z#(x) = e−βxZ(x), the proper renewal equation Z#(x) =
z
#(x)+∫

x


z
#(x−y)dF#(y) is obtained.�e Key Renewal

�eorem then yields

lim
x→∞

e
−βx
Z(x) = 

m# ∫
∞


z
#(y)dy,

which establishes that, asymptotically, Z grows exponen-

tially with rate β. We should point out that the defective

case is not entirely similar. While formally one again tries

to identify β >  so that ∫
∞


e

βx
dF(x) = , this may

or may not be possible according to whether the distri-

bution function


∥F∥
F(x) is light-tailed or heavy-tailed. In

the former case one proceeds just as in the excessive case.

(For more details see Feller [, , Vol. , Chap. ]).

�is type of analysis is characteristic of the applications of

renewal theory to areas such as population dynamics, the

theory of collective insurance risk, and to the economic

theory or replacement and depreciation (Jorgenson ;

Feldstein and Rothchild ).

Alternating renewal processes arise in a natural way

in many situations, like queueing systems and reliabil-

ity of industrial equipment, where working(busy) peri-

ods (X) interchange with idle periods (T). Consider a

sequence of random vectors with non-negative coordi-

nates (Ti,Xi), i = , , . . . . It de�nes an alternating renewal
sequence (Sn, S′n+) as follows S = , S′n = Sn− +
Tn, Sn = S′n + Xn = Sn− + (Tn + Xn), n =
, , . . . . An interpretation in terms of the reliability the-

ory is the following.�ere are two types of renewal events:

Sn is the moment when the installation of a new ele-

ment begins (�e installation takes time Tn); S
′
n+ is the

moment when the installation ends and the new ele-

ment starts working. (�e working period has length

Xn). �e renewal process N(t) = sup{n : Sn ≤ t}
counts the pairs of renewal events in the interval [, t].�e
processes σt = max{, t−S′N(t)+} – spent working time and
τt = min{SN(t)+− t,XN(t)+} – residual working time gen-
eralize the lifetime processes At and Bt . �eir properties

are derived in Mitov and Yanev () in the in�nite mean

cycle case.

�e central place that renewal theory holds in the

analysis of stochastic systems is due to the concept of

regeneration. Let {Xt ; t ∈ R+} be a process with val-
ues in S (e.g. a Euclidean space Rd) and sample paths
that are càdlàg (right-continuous with le�-hand limits)

a.s.. Such a process is called regenerative with respect to

a (possibly delayed) renewal process {Sn}, de�ned on the
same probability space, if, for each n ∈ N the post Sn
process ({XSn+t}t≥,{Sn+k − Sn}k∈N) is independent of
{S, S, . . . , Sn} and its distribution does not depend on n,
i.e. ({XSn+t}t≥,{Sn+k − Sn}k∈N)

d= ({XS+t}t≥,{Sk −
S}k∈N) for alln.�e existence of an embedded, non-lattice
renewal process with respect to which the process {Xt}
is regenerative, together with the �niteness of the mean

m := E[S − S] is enough to guarantee the existence of a
“stationary version,” say {X̃t}, to which {Xt} converges as t
goes to in�nity.�e statistics of {X̃t} can be determined by
analyzing the behavior of {Xt} over any regenerative cycle,
i.e. a random time interval of the form [Sn, Sn+). If k ∈ N,
ti ∈ R+

, i = , , . . . , k, and f : Sk → R is any bounded,
continuous function then

Ef (X̃t , . . . , X̃tk) =


m
E∫

S

S

f (Xt+t , . . . ,Xtk+t)dt.

Nowadays, our view of whole areas of probability,

including parts of the theory of 7Markov processes is
in�uenced by renewal theoretic tools and related concepts

of regeneration.�e analysis of many stochastic models is

greatly facilitated if one identi�es certain embedded points

in time that occur according to a renewal process and

with respect to which the process is regenerative.�e fact

that these regeneration cycles are independent, identically

distributed, also facilitates the statistical analysis of the

simulation output of regenerative systems.

A detailed representation of the renewal theory and its

applications could be found, for instance, in the follow-

ing books Asmussen (), Bingham et al. (), Feller

(, ), and Resnick ().
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Repeated measures are obtained whenever a speci�c

response is measured repeatedly in a set of units. Exam-

ples are hearing thresholds measured on both ears of a set

of subjects, birth weights of all litter members in a toxico-

logical animal experiment, or weekly blood pressure mea-

surements in a group of treated patients.�e last example

is di�erent from the �rst two examples in the sense that the

time dimension puts a strict ordering on the obtainedmea-

surements within subjects.�e resulting data are therefore

o�en called longitudinal data. Obviously, a correct statis-

tical analysis of repeated measures or longitudinal data

can only be based on models which explicitly take into

account the clustered nature of the data. More speci�cally,

validmodels should account for the fact that repeatedmea-

sures within subjects are allowed to be correlated. For this

reason, classical (generalized) linear regression models are

not applicable in this context. An additional complication

arises from the highly unbalanced structure of many data

sets encountered in practice. Indeed, the number of avail-

able measurements per unit is o�en very di�erent between

units, and, in the case of longitudinal data, measurements

may have been taken at arbitrary time points, or subjects

may have le� the study prematurely, for a number of rea-

sons (sometimes known but mostly unknown). A large

number of models have been proposed in the statistical

literature, during the last few decades. Overviews are given

in Verbeke andMolenberghs () andMolenberghs and

Verbeke ().
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According to Lavrakas (), a representative sample is

one that ensures external validity in relationship to the

population of interest the sample is meant to represent. In

addition, it should be said that a representative sample is a

probability sample, so, sampling errors for estimates can be

calculated and the estimates from the sample survey can be

generalized with con�dence to the sampling population.

Random selection, i.e., being objective and unbiased,

is an essential element of survey sampling. �ere are

many factors that a�ect the representativeness of a sam-

ple, though traditionally attention has mostly been paid to

sample design and coverage. More recently, the focus has

extended to the nonresponse issues.

Zarkovic (), Kruskal and Mosteller (),

Bellhouse (), Kish (), and Rao () wrote histo-

ries of random sampling methods as representative meth-

ods. �e statistical literature gives examples of all the

meanings for “representative sampling,” such as: general

acceptance for data; absence of selective forces; miniature

of the population; typical or ideal cases; and proper cover-

age of the population. Kruskal and Mosteller () added

the following new meanings: representative sampling as a

speci�c sampling method; representative sampling as per-

mitting unbiased estimation; and representative sampling

as su�cient to serve a particular purpose. Occasionally, it

is also determined as a vague term.

�e development of modern sampling theory started

in around  when the Norwegian statistician A.N.

Kiaer, the �rst director of Statistics Norway, published his

Representative Method and was the �rst to promote “the

representative method” over the 7census as a complete

enumeration. Kiaer stated that if a sample was repre-

sentative with respect to variables for which the popula-

tion distribution was known, it would also be represen-

tative with respect to other survey variables. For Kiaer, a

representative sample is a “miniature” of the actual popu-

lation, though the selection of units is based on purposive

selection, according to a rational scheme based on gen-

eral results of previous investigations. He presented his

thoughts at a meeting of the International Statistical Insti-

tute in Bern in . Many famous statisticians did not

agree on Kiaer’s new approach, as no measure of the accu-

racy of the estimates could be obtained. A basic problem

was that the representative method lacked a formal theory

of inference.

It was Sir A.L. Bowley, an English statistician, who

pioneered the use of simple random sampling, for which

the accuracy measures of estimates could be computed.

He introduced strati�ed random sampling with propor-

tional allocation, leading to a representative sample with

equal inclusion probabilities. By the s, the representa-

tivemethodwaswidely used. In , the International Sta-

tistical Institute played a prominent role with its formation

of a committee to report on the representative method. In

, Polish scientist J. Neyman published his now famous

paper (Neyman ). He developed a new theory and laid

the theoretical foundations for design-based sampling or

the probability sampling approach to inference from sur-

vey samples. He showed that strati�ed random sampling

is preferable to 7balanced sampling and introduced the
optimal allocation of units based on e�ciency in his the-

ory of strati�ed random sampling without replacement,

by relaxing the condition of equal inclusion probabilities

for sampling units. In , M.H. Hansen and W.N. Hur-

witz published their theory of multistage cluster samples.

In , W.G. Madow and L.H. Madow conducted the

�rst theoretical study of the precision of systematic sam-

pling. �e classical theory of survey sampling was more

or less completed in . Horvitz and�ompson ()

completed the classical theory, and the random sampling

approach was almost unanimously accepted. Most of the

classical books on sampling were also published by then:

W.G. Cochran in  (see the last edition: Cochran ),

Deming (), Hansen et al. (a, b), and Yates ().

Later, a great contribution to probability sampling was

given by Kish ().

�e representativemethod is applied in survey research,

both social and business, in o�cial statistics, for public opin-

ion polling, in market research, etc. It is also applied for

audit sampling and statistical quality control.

�e sampling technique used by G. Gallup was quota

sampling for opinion polling. Gallup’s approach was in

great contrast with that of Literary Digest magazine, the
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leading polling organization at that time. �is magazine

conducted regular “America Speaks” polls with a conve-

nient sample of the sample size near to two million people.

�e presidential election of  turned out to be decisive

for both approaches (Rao ). Gallup correctly predicted

using a sample size of , that the candidate Alf Lan-

donwould beat Franklin Roosevelt. It seemed to be strange

how could a prediction based on such a large sample be

wrong?�e explanation was the fatal �aw in the Literary

Digest’s sampling mechanism.�e automobile registration

lists and telephone directories applied were not repre-

sentative samples. In the s, cars and telephones were

typically owned by the middle and upper classes. More

well-to-do Americans tended to vote Republican and the

less well-to-do were inclined to vote Democrat. �ere-

fore, Republicans were over represented in the Literary

Digest sample. As a result of this famous historical error,

opinion researchers learned that the manner of selection

of a sample is more important than the sample size. Also,

among nonprobability sample designs, a quota sample, if

well designed, would be the most similar to a probability

sample as a representative one.

In a sample survey, researchers must judge whether

the sample is actually representative of the target popula-

tion.�e best way of ensuring a representative sample is

to have a complete sampling frame (i.e., directory, list or

map) covering all the elements in the population, and to

know that each and every element (e.g., person, household,

enterprise, etc.) on the list has a nonzero probability (equal

or unequal) of being included in the sample. Furthermore,

it is necessary to use random selection to draw elements

from the sampling frame into the sample based either on a

random number generator or on systematic selection pro-

cedure. Also, it is essential to collect complete data from

every single sampled element.

Completely up-to-dated sampling frames of the popu-

lations of interest are very rare. If there are elements in the

target population with a zero probability of selection, sam-

ple estimates cannot be generalized to these elements. For

example, if unemployed persons belong to the population

of interest, but were not registered as unemployed, then

they would have a zero probability of inclusion in the sam-

ple. Further, very modern Internet surveys, Tele-Voting

and Push Polling samples are not based on solid sampling

frames and instead use non-representative sample designs.

As such, the results in such surveys cannot be generalized

to the overall population and users should be aware that

these are nothing more than amusement techniques.

First, to judge the representativeness of a sample,

the use of some prior knowledge about the population

main variables structures is recommended, for comparison

with the sample structures. Occasionally, an extra random

sample is helpful. Further, to correct for biases, survey

researchers apply post-strati�cation. Post-strati�cation is

the process of weighting some of the respondents in the

responding sample relative to others, so that the char-

acteristics of the responding sample are essentially equal

to those of the target population for those characteristics

that can be controlled to complete coverage data (e.g., age,

gender, educational level, geography, etc.). Applying post-

strati�cation adjustments reduces the bias due to noncov-

erage and nonresponse. And �nally, it is necessary to limit

the conclusions to those elements in the sampling frame

to only those with a nonzero probability of inclusion. In

other words, to avoid biases, researchers need to estimate

coverage, and both unit and item-nonresponse.
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Introduction
Research design is a term broadly referring to any plan for

gathering data systematically in such a way as to be able to

arrive at conclusions. On the subject selection dimension,

designs may be experimental, quasi-experimental, or non-

experimental. On the measurement dimension, designs

may be between-subjects or within-subjects.

Experimental studies are characterized by

7randomization of subjects into treatment and control
groups. Control groups may receive no treatment or some

standard treatment, where “treatment” is exposure to some

stimulus. Randomization serves to control for variables

which are not included explicitly in the study. In quasi-

experimental designs, treatment and comparison groups

are not composed of randomized subjects, even if data

are gathered through random sampling. In the absence

of randomization, control for confounding variables must

be accomplished explicitly through statistical techniques.

Finally, a design is non-experimental if there is systematic

collection of data with respect to topics of interest but there

is no randomization of subjects as in experimental stud-

ies nor statistical controls as in quasi-experimental designs.

Most case study designs exemplify this category.

By type of measurement, between-subjects designs are

the most common.�e researcher is comparing between

subjects who experience di�erent treatments. �ere are

di�erent subjects for each level of the independent vari-

able(s). Any given subject is exposed to only one level

and comparisons are made between subjects’ reactions or

e�ects. In contrast, in within-subjects designs the same

subjects are measured for each level of the independent

variable, as in before-a�er studies or panel studies. Sim-

ilar subjects, as in matched pair’s designs, are of the same

type.When subjects aremeasuredmore than once, within-

subjects designs are also called repeated measures designs.

Since the subjects are the same for all levels of the indepen-

dent variable(s), they are their own controls (i.e., subject

variables are controlled). However, there is greater danger

to validity in the form of carryover e�ects due to exposure

to earlier levels in the treatment sequence (e.g., practice,

fatigue, attention) and there is danger of attrition in the

sample. Counterbalancing is a common but not foolproof

strategy to address carryover e�ects: e.g., half the subjects

get treatmentA �rst, then B, while the other half get B �rst,

then A.

Factorial and Block Designs
Factorial designs use categorical independent variables to

establish groups. For instance, in a two factor design, the

independent variables might be information type (�ction,

non-�ction) and media type (television, print, Internet),

generating two times three = six categories. A factorial
design is “fully crossed” if there is a group for every pos-

sible combination of factors (independent variables). An

“incomplete” factorial design, leaving out some of the

groups, may be preferred if some combinations of val-

ues of factors are nonsensical or of no theoretical interest.

In experimental designs, an equal number of subjects are

assigned randomly to each of the six possible groups (e.g.,

to the �ction-television group).�e researcher might then

measure subjects on information retention. A null out-

come would be indicated by the average retention score

being the same for all six groups of the factorial design.

Unequal mean retention scores would indicate a main

e�ect of information type or media type, and/or an inter-

action e�ect of both. Quasi-experimental designs may also

be factorial, but groups are established by strati�ed ran-

dom sampling, not randomization of subjects, entailing the

need for more complex and explicit statistical controls and

possibly less conclusive results.

Balanced designs are simply factorial designs where
there are equal numbers of cases in each subgroup (cell)

of the design, assuring that the factors are independent of

one another (but not necessarily the covariates). Unbal-

anced designs have unequal n’s in the cells formed by the

intersection of the factors.

Randomized block designs stratify the subjects and
for each strata, a factorial design is run. �is is typically

done when the researcher is aware of nuisance factors that
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need to be controlled (e.g., there might be an air condi-

tioned room stratum and a no air conditioning stratum)

or if there were other mitigating structural factors known

in advance (e.g., strata might be di�erent cities).�at is,

the blocking variables which stratify the sample are factors

which are considered to be control variables, not indepen-

dent variables as they would be in a simple factorial design.

Randomized block designs seek to control for the e�ects

of main factors and their interactions, controlling for the

blocking variable(s).

Nested designs have two ormore factors, but the levels
of one factor are never repeated as levels in the other fac-

tor(s).�is happens in hierarchical designs, for instance,

when a forester samples trees, then samples seedlings

of each sampled tree for survival rates. �e seedlings

are unique to each tree and represent a random fac-

tor. Likewise, a researcher could sample drug companies,

then could sample drug products for quality within each

sampled company.�is contrasts with crossed designs of

ordinary two-way (or higher) analysis of variance, inwhich

the levels of one factor appear as levels in another fac-

tor (e.g., tests may appear as levels across schools). We

can get the mean of di�erent tests by averaging across

schools, but we cannot get the mean survival rate of dif-

ferent seedlings across trees because each tree has its own

unique seedlings. Likewise, we cannot compute the mean

quality rating for a drug product across companies because

each company has its own unique set of products. Latin

square and Graeco-Latin square designs discussed below

are nested designs.

Random Versus Fixed Effects Designs
Most designs are �xed e�ects models, meaning that data

are collected on all categories of the independent variables.

In randome�ectsmodels (also called random factorsmod-

els), in contrast, data are collected only for a sample of

categories.�ere is replaceability, meaning that the levels

of the factor are randomly or arbitrarily selected and could

be replaced by other, equally acceptable levels. �e pur-

pose of random e�ects modeling is generalizability – the

researcher wishes to generalize �ndings beyond the par-

ticular, randomly or arbitrarily selected levels in the study.

For instance, a researchermay study the e�ect of itemorder

in a 7questionnaire. Six items could be ordered  ways.
However, the researcher may limit him- or herself to the

study of a sample of six of these  ways. �e random

e�ects model in this case would test the null hypothesis

that the e�ects of ordering are zero. Note that “mixed fac-

torial design” is also possible simply by having a random

e�ects model with a �xed factor and a random factor.

Treatment by replicationdesign is a common random
e�ects model.�e treatment is a �xed factor, such as expo-

sure to di�erent types of public advertising, while the repli-

cation factor is represented by the particular respondents

who are treated. Sometimes it is possible and advisable

to simplify analysis from a hierarchical design to a sim-

ple treatment by replication design by shi�ing the unit of

analysis. An example would be to use class averages rather

than student averages in a design in which students rep-

resent a random factor nested within teachers as another

random factor (the shi� drops the student random factor

from analysis). Note also that the greater the variance of

the random e�ect variable, themore levels are needed (e.g.,

more subjects in replication) to test the �xed (treatment)

factor at a given alpha level of signi�cance.

Common Experimental Designs
A very large number of research designs have been

devised for experimental design. �ough not exclusive

to experimental design, the most prevalent examples are

outlined below.

Completely randomized designs assign an equal
number of subjects randomly to each of the cells formed by

the factors. In the quasi-experimentalmode, where there is

no control by randomization, the researcher must measure

and employ controls explicitly by using covariates.

Latin square designs extend block designs to control
for two categorical variables.�is design requires that the

researcher assume all interaction e�ects are zero.Normally,

if one had three variables, each of which could assume four

values, then one would need 
 =  observations just

to have one observation for every possible combination.

Under Latin square design, however, the number of nec-

essary observations is reduced to 
 =  because the third

variable is nested. For instance, suppose there are  teach-

ers,  classes, and  textbooks.�e  groups in the design

would be the  di�erent class-textbook pairs. Each teacher

would teach in each of the four classes, using a di�erent

text each time. Each class would be taught by each of the

four di�erent teachers, using a di�erent text each time.

However, only  of the  possible teacher-class-textbook

combinations would be represented in the design because

textbooks represent a nested factor, with each class and

each teacher being exposed to a given textbook only once.

Eliminating all but  cells from the complete (crossed)

design requires the researcher to assume that there are

no signi�cant teacher-textbook or class-textbook interac-

tion e�ects, only the main e�ects for teacher, class, and

textbook.

Graeco-Latin square designs extend Latin square
block designs to control for three categorical variables.
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Split-plot designs. Like randomized complete block
designs, in split plot designs there is still a blocking fac-

tor but each block is split into two segments and seg-

ments are assigned to the blocks in random order. Within

any segment, treatments are assigned in random order.

For instance, in a study of health improvement e�ects,

the blocking factor might be in the form of three age

groups, treatment in the form of three levels of dosage

of medicine, with the segmentation variable being two

brands of medicine. Splitting the three age blocks yields

six segments, with each age group having a Brand A and

Brand B segment. Each of the six segments is homogenous

by brand. Split-plot designs are used when homogeneity

rather than randomization within blocks is required (in

agriculture, for instance, equipment considerations could

dictate that any given plot segment only receive one brand

of fertilizer).

Split-plot repeated measures designs can be used
when the same subjects are measured more than once.

In a typical split-plot repeated measures design, subjects

are measured on some variable over a number of trials.

Subjects are also split by some grouping variable. In this

design, the between-subjects factor is the group (treatment

or control) and the repeated measure is, for example, the

test scores for two trials. �e resulting statistical output

will include amain treatment e�ect (re�ecting being in the

control or treatment group) and a group-by-trials interac-

tion e�ect (re�ecting treatment e�ect on posttest scores,

taking pretest scores into account).

Common Quasi-Experimental Designs
As with experimental designs, numerous types of quasi-

experimental designs exist,many enumerated in the classic

work of Cook and Campbell ().

One-group posttest-only design.�is design lacks a
pretest baseline or a comparison group, making it impos-

sible to come to reliable conclusions about a treatment

e�ect.

Posttest-only design with nonequivalent compari-
son groups. In this common social science design, it is
also impossible to come to reliable conclusions about treat-

ment e�ect based solely on posttest information on two

nonequivalent groups since e�ectsmay be due to treatment

or to nonequivalencies between the groups.

Posttest-only design with predicted higher-order
interactions.�e presence of an interaction e�ect creates
twoormore expectations compared to the one-expectation

one-group posttest-only design. Because there are more

expectations, there is greater veri�cation of the treatment

e�ect but the explanation accounting for the interaction is

more complex and therefore may be less reliable.

One-group pretest-posttest design. �is is a com-
mon but �awed design subject to such threats to valid-

ity as history (events intervening between pretest and

posttest), maturation (changes in the subjects that would

have occurred anyway), regression toward the mean (the

tendency of extremes to revert toward averages), testing

(the learning e�ect on the posttest of having taken the

pretest), and the like.

Two-grouppretest-posttest designusing anuntreated
control group. If a comparison group which does not
receive treatment is added to what otherwise would be a

one-group pretest-posttest design, threats to validity are

greatly reduced. �is is the classic experimental design

but in quasi-experimental design, since the groups are not

equivalent, there is still the possibility of selection bias.

Double pretest design.�e researcher can strengthen
pretest-posttest designs by having two (or more) pretest

measures to establish if there is a trend in the data inde-

pendent of the treatment e�ect measured by the posttest.

Regression-discontinuity design. If there is a treat-
ment e�ect, then the slope of the regression line relat-

ing scores before and a�er treatment would be the same,

but there would be a discontinuous jump in the inter-

cept (and possibly also change in slope) following treat-

ment. �is design is extended in the simple interrupted

time series design in which there are multiple pretests and

posttests.�e trend found inmultiple pretests can be com-

pared to the trend found in multiple posttests to assess

whether apparent post-treatment improvement may sim-

ply be an extrapolation of a maturation e�ect which was

leading toward improvement anyway.

Regression point displacement design. In this design
there is a treatment group (e.g., a county) and a large num-

ber of comparison groups (e.g., other counties in the state).

For instance, in a study of the e�ect of an a�er-school inter-

vention on juvenile crime, the researcher might regress

juvenile crime rates on median income in the pretest con-

dition and note the position of the test county in the regres-

sion scattergram. In the posttest condition, the regression

is re-run and the location of the test county is noted. If dis-

placed on the scattergram, the researcher concludes that

the intervention had an e�ect.�is type of design assumes

no misspeci�cation of the model and assumes an invari-

ant relation of independents to dependents between pretest

and posttest.

Other designs. Cook and Campbell () dis-
cussed other research designs for which space does

not permit discussion here.�ese include nonequivalent

dependent variables pretest-posttest designs, removed-

treatment pretest-posttest designs, repeated-treatment

designs, switching replications designs, reversed-treatment

pretest-posttest nonequivalent comparison groups designs,
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cohort designs with cyclical turnover, four-group designs

with pretest-posttest and posttest-only groups, interrupted

time series designs with a nonequivalent no-treatment

comparison group, interrupted time series designs with

nonequivalent dependent variables, interrupted time series

designs with removed treatment, interrupted time series

designs with multiple replications, and interrupted time

series designs with switching replications.
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Residual is an important concept in statisticalmodel build-

ing. Residual is de�ned as the di�erence between an

observed value (Y) and the value �tted by a statistical
model Ŷ

Residuali = Yi − Ŷi
A large value of the residual (positive or negative) shows

the model does not �t the particular data point.�e pat-

tern of the residuals will o�en reveal the inadequacy of the

�tted model. A plot of the residuals, o�en called the resid-

ual plot, is an important tool in regression model building.

In this article we will concentrate on the role of residuals

in regression analysis.

With n observations in a regression data set there will

be n residuals. �e sum of the n residuals from a least

squares �t will be zero. Instead of working with the resid-

uals as de�ned above we usually work with the standard-

ized residuals.�e residuals are scaled so they have unit

standard deviation. We will call the standardized residu-

als for brevity residual. We will be talking about residuals

obtained from least squares �t in our discussion.

�e magnitude and the pattern of the distribution of

residuals will reveal a great deal about the adequacy of the

model describing the data. For moderate sized data the

residuals can be thought of as normal deviates (mean ,

and Standard deviation ). Large residuals, with values

greater than  or ., are called 7outliers.�e data points
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Index plot of residuals.  The plot
indicates autocorrelation or model
misspecification.

(a)

(c) Residuals versus fitted values.
Curvature indicates nonlinearity.
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Normal probability plot.  Curvature
indicates violation of normality.

Residuals versus fitted values.
An indication of heteroscedasticity.
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Residuals. Fig.  Several configurations illustrating possible violations of model assumptions

corresponding to the outliers are not well �tted by the

model.�ese points should be examined carefully, as they

o�en represent transcription errors or contamination of

the data. By contamination of data we mean an observa-

tion which comes from another population. As an example

consider a data set of weekly production of a factory. Most

weeks have  workdays, but there may be few weeks with

only  workdays.�e weeks with  workdays will not be

well �tted by the model, and those weeks will be outliers.

�e residual plot should show no structure. �e dis-

tribution should appear random. Instead of trying to

describe random structure (an impossible task!) we pro-

vide examples of some commonly observed structures of

residual plots, and indicate the model de�ciencies they

indicate.

�e four graphs depicted in Fig.  give some of the

commonly observed pattern of residual plots which indi-

cate model de�ciencies. Plot (c) indicates the data has a

nonlinear component which is not included in the spec-

i�ed mode. Inclusion of a squared term in the model will

remove the structure from the residuals.

�e graph (a) indicates that the successive values are

correlated, a common feature of time series data.�is pat-

tern may also arise if the model is misspeci�ed. Methods

for removing auto regression have to be adopted. Working

with successive di�erences is a good �rst step.

�e graph (d) indicates that the error variance is not

constant and increases with size.�e data is o�en classi-

�ed as heteroscedastic.�is is o�en referred to as the size

e�ect. To account for the size e�ect, sometimes we work

with logarithms of the data, use weighted least squares, or

introduce a variable which re�ects size.

�e graph (b) is the normal plot of the residuals and

is used to assess the normality of the residuals.�is plot is

not very e�ective for small sample sizes.

�e residual plots are one of the most e�ective diag-

nostic plots for model �tting. No regression analysis is

complete without a residual plot analysis.
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Analysis by Example (with Ali Hadi, th edition, John

Wiley & Sons, ).
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Response surface methodology (RSM) is an area of statistics

that incorporates the use of design and analysis of experi-

ments along with model �tting of a response of interest

denoted by y. One of the main objectives of RSM is the

determination of operating conditions on a group of con-

trol (or input) variables that yield optimal response values

over a certain region of interest denoted byR.
In a typical response surface (RS) investigation, several

factors are �rst identi�ed by the experimenter as having

possible e�ects on the response y. In some experiments,

the number of such factors may be large. In this case, fac-

tor screening is carried out in order to eliminate factors

deemed to be unimportant.�is represents the �rst stage

in the RS investigation.�e execution of this stage requires

the use of an initial design which consists of a number of

speci�ed settings of the control variables. Each set of such

settings is used to produce a value on the response y. A

low-degree polynomial model, usually chosen to be of the

�rst degree, is then �tted to the resulting data set. Follow-

ing factor screening, additional experiments are carried

out which lead to a new region of experimentation where

the actual exploration of the response will take place. By

this we mean �tting a suitable polynomial model of degree

higher than the one used in the initial screening stage. Such

a model can be expressed as

y = f ′(x)β + є, ()

where x = (x, x, . . . , xk)′ is a vector of k of control
variables representing the levels of the factors that were

retained a�er the initial screening, f (x) is a vector function
of x whose elements consist of powers and cross products

of powers of x, x, . . . , xk up to a certain degree denoted

by d. Typically, d =  or higher depending on the adequacy
of model (). Furthermore, β is a vector of p unknown

parameters and є is a random experimental error term

assumed to have a zero mean. A commonly used form of

model () is the second-degree model,

y = β +
k

∑
i=

βixi +∑∑
i<j

βijxixj +
k

∑
i=

βiix

i + є. ()

In this case, the elements of β consist of β, the βi’s, βij’s,

and βii’s (i, j = , , . . . , k, i < j). �e quantity f ′(x)β in

model () is called the mean response at x and is denoted

by η(x).�us,

η(x) = f ′(x)β. ()

In order to estimate the parameter vector β, a series of n

experiments is carried out in each of which the response y

is measured at speci�ed settings of x, x, . . . , xk. Let xu =
(xu, xu, . . . , xuk)′, where xui is the setting of xi at the uth
experimental run, and let yu denote the corresponding

response value (i = , , . . . , k, u = , , . . . ,n). From model
() we then have

yu = f ′(xu)β + єu, u = , , . . . ,n. ()

Model () can be expressed in matrix form as

y = Xβ + є, ()

where y = (y, y, . . . , yn)′, X is a matrix of order n × p
whose uth row is f ′(xu), and є = (є, є, . . . , єn)′.�e �rst
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column of X is n, the column of n ones.�e n × kmatrix,

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x x . . . xk

x x . . . xk

. . . . . .

. . . . . .

. . . . . .

xn xn . . . xnk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ()

whose rows consist of the settings of x, x, . . . , xk used at

the n experimental runs is called the design matrix. If є is

assumed to have a zero mean and a variance–covariance

matrix σ In, where σ  is an unknown variance component

and In is the matrix of ones of order n × n, then β is

estimated by the ordinary least-squares estimator,

β̂ = (X′X)−X′y. ()

�e variance–covariance matrix of β̂ is

Var(β̂) = (X′X)−σ . ()

Using formula (), an estimate of themean response, η(x),
at a point x in the region of interest,R, is given by

η̂(x) = f ′(x)β̂,

which is also known as the predicted response at x and is

denoted by ŷ(x).�us,

ŷ(x) = f ′(x)β̂. ()

�e variance of ŷ(x) is then of the form

Var[ ŷ(x)] = σ

f
′(x)(X′X)−f (x). ()

�is is called the prediction variance.�e process of select-

ing the designmatrixD and the subsequent �tting ofmodel

() represents the second stage of the RS investigation.

�e third stage involves the determination of opti-

mum operating conditions on the control variables,

x, x, . . . , xk, that yield either maximum or minimum val-

ues of ŷ(x) over the region R. �is is a very important
stage since it amounts to determining the settings of the

control variables that should be used in order to obtain

“best” values for the response. For example, if y represents

the yield of some chemical product, and if the correspond-

ing control variables consist of x = reaction temperature
and x = length of time of the reaction, then it would be of
interest to determine the settings of x and x that result in

a maximum yield.

�e proper choice of the design matrix D given in

formula () is very important. �is is true because D is

used to predict the response and determine its prediction

variance (see formula ()).�e size of the latter quantity

has to be small in order to get good quality predictions.

�is is particularly true since the optimization of ŷ(x) in
formula () leads to the determination of optimum oper-

ating conditions on x, x, . . . , xk in the third stage of a RS

investigation.

Several criteria are available for the choice of the

design D. Some of these criteria pertain to the predic-

tion variance, such as D-optimality and G-optimality. A

review of such criteria can be found in several textbooks

such as Khuri and Cornell (, Chap. ), Atkinson and

Donev (, Chap. ) andMyers andMontgomery (,

Sect. ..), among others. Other design criteria deal with

the minimization of the bias caused by �tting the wrong

model as explained in Box and Draper (, ).

If model () is of the �rst degree, that is,

y = β +
k

∑
i=

βixi + є, ()

then common designs for �tting the model are 
k
fac-

torial, Plackett-Burman, and simplex designs. �ese are

referred to as �rst-order designs. A coverage of such designs

can be found in, for example, Khuri and Cornell (,

Chap. ) and Myers and Montgomery (, Chaps. , ,

and ). On the other hand, if model () is of the second

degree, as shown in formula (), then common second-

order designs include 
k
factorial, the central composite

design, and the Box-Behnken design. A coverage of these

designs can be found in, for example, Khuri and Cornell

(, Chap. ), which also includes reference to other

lesser-known second-order designs (see also Myers and

Montgomery , Sect. .).

Methods for the determination of optimum conditions

on the control variables depend on the nature of the �tted

model in (). If it is of the second degree, as in model (),

then the method of ridge analysis can be used to optimize

ŷ(x) in ().�is method was introduced by Hoerl ()
and later formalized by Draper () (see also Khuri and

Cornell , Chap. ). A more recent modi�cation of this

method that takes into account the size of the prediction

variance was given by Khuri and Myers ().

Historically, the development of RSM was initiated

by the work of Box and Wilson () which introduced

the sequential approach in a RS investigation. �e arti-

cle by Box and Hunter () is considered to be a

key paper, which along with the one by Box and Wil-

son (), provided an outline of the basic principles

of RSM. Several review articles were also written about

RSM.�ese include those by Mead and Pike (), Myers
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et al. (, ), and Myers (). In addition, a com-

prehensive coverage of RSM can be found in the books by

Khuri and Cornell (), Myers and Montgomery (),

and Box and Draper ().

New developments and modeling trends were intro-

duced into the RSM literature in the late s.�ey pro-

vided further extensions of the classical techniques used

in RSM. Some of these developments include the analysis

of multiresponse experiments, which deals with several

response variables that are measured for each setting of a

group of control variables (see Khuri a), the response

surface approach to robust parameter design (see, for exam-

ple, Myers et al. ), response surface models with ran-

dom e�ects (see Khuri b, ). Furthermore, in the

design area, several graphical techniques were introduced

for comparing response surface designs. �ese include

the use of variance dispersion graphs, as in Giovannitti-

Jensen and Myers (), the quantile plots of the predic-

tion variance, as in Khuri et al. (), and the fraction

of design space plots by Zahran et al. (). �e main

advantage of the graphical approach is its ability to explore

the prediction capability of a response surface design

throughout the region of interest, R. By contrast, stan-
dard design optimality criteria, such asD- orG-optimality,

use single-valued criteria functions to evaluate a given

design. �is does not give adequate information about

the design’s performance at various locations inside the

regionR.
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Ridge regression is a method for the estimation of the

parameters of a linear regression model (see 7Linear
Regression Models) which is useful when the predictor

variables are highly collinear, that is, when there is a strong

linear relationship among the predictor variables. Hoerl

() named the method ridge regression because of its

similarity to ridge analysis used in his earlier work to study

second-order response surfaces in many variables. Some

standard references for ridge regression areHoerl andKen-

nard (, ), Belsley et al. (), and Chatterjee and

Hadi ().

�e standard linear regression model can be written as

Y = Xβ + ε, ()

where Y is an n ×  vector of observations on the response
variable, X = (X, . . ., Xp) is an n × p matrix of n obser-
vations on p predictor variables, β is a p ×  vector of
regression coe�cients, and ε is an n ×  vector of random
errors. It is usual to assume that E(ε) = , E(εεT) = σ In,
where σ  is unknown constant and In is the identitymatrix
of order n.

Without loss of generality, we also assume that Y and
the columns of X are centered and scaled to have unit
length so that XTX and XTY are matrices of correlation
coe�cients. If a variableV is not centered or scaled, it’s i-th
element, vi, can be replaced by (vi − v̄)/

√
∑ni=(vi − v̄).

An estimate for β is obtained by minimizing

∥Y −Xβ∥, ()

where ∥ ⋅ ∥ denotes the Euclidean (or L) norm.�e mini-
mization of this ordinary least squares (OLS) problem

leads to the so-called system of normal equations,

XTXβ = XTY. ()

Provided that (XTX)− exists, the solution of this system
of linear equations is given by

β̂ = (XTX)
−
XTY, ()

with E(β̂) = β and Var(β̂) = σ (XTX)−.

If collinearity is present, the linear system in () is said

to be ill-conditioned and β̂ in () can be unstable, that is, a

slight change in the data can result in a substantial change

in the values of the estimated regression coe�cients. Fur-

thermore, collinearity usually in�ates the variance of β̂ and

this in turn de�ates the t-statistics for testing the signi�-

cance of the regression coe�cients, which can lead to the

wrong conclusion that the coe�cients of some important

predictors are statistically insigni�cant.

Ameasure for assessing the condition of the linear sys-

tem in () is the condition number of X, which is de�ned
as κ =

√
λ/λp, where λ and λp are the largest and smallest

eigenvalues of XTX, respectively. Large values of the con-
dition number indicate ill-conditioned system. A measure

for assessing the e�ect of collinearity on variance in�ation

is the variance in�ation factor (VIF). For the j-th predic-

tor variable Xj, the VIF is the j-th diagonal element of

(XTX)−. It can be shown thatVIFj = / ( − Rj ), whereRj
is the multiple correlation coe�cient when Xj is regressed

on all other predictor variables. When Xj has a strong lin-

ear relationship with all other predictors, Rj would be very

large (close to ), causing VIFj to be very large. As a rule of

thumb, values of variance in�ation factors greater than 

are indicative of the presence of collinearity.

To obtain a stable (regularized) solution, we replace the

problem in () by minimizing

∥Y −Xβ∥ + k∥β∥, ()

for some value of k > , suitably chosen by the user.�e
explicit solution of the problem in () is

β̂(k) = (XTX + kIp)−XTY = (XTX + kIp)−XTXβ̂, ()

where Ip is the identity matrix of order p. �e expected
value and variance of β̂(k) are

E(β̂(k)) = (XTX + kIp)−XTXβ ()

and

Var(β̂) = σ
(XTX + kIp)−XTX(XTX + k Ip)−. ()

In statistics, the solution β̂(k) is known as ridge regres-
sion (seeHoerl ) and the ridge parameter k is a penaliz-

ing factor. But more generally, it is known as the Tikhonov

regularization (TR) method (Tikhonov ) and the fac-

tor k is known as the Tikhonov factor.

By comparing () and (), one can see that the ridge

estimator is obtained by adding a small positive quantity k

to each of the diagonal elements of thematrixXTX. Clearly,
when k = , the ridge estimator in () becomes the OLS
estimator in (). It is clear from () that for k > , ridge
estimators are biased for β.
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�e variance in�ation factors as a function of k are the

diagonal elements of the matrix (XTX + kIp)−XTX(XTX
+kIp)−. Hoerl and Kennard () show that there exists
a value of k >  such that

E[(β̂(k) − β)T(β̂(k) − β)] < E[(β̂ − β)T(β̂ − β)], ()

which means that the total mean square error of the ridge

estimators are less than that of the OLS.

�e choice of the ridge parameter k is therefore impor-

tant. �e optimal value of k is di�cult to �nd, but there

exists several alternativemethods for estimating k. First, an

appropriate value of k can be found graphically by exam-

ining the ridge trace, which is a simultaneous plot of the

elements of β̂(k) versus k (usually between  and ).�e
smallest value of k, for which (a) the estimated vector

of regression coe�cients, β̂(k), is stable, (b) the variance
in�ation factors are less than  (close to ), and (c) the

residual sum of squares is close to its minimum value, is

chosen and used in () to obtain the ridge estimators.

Second, numerical methods for estimating k have been

proposed. For example, Hoerl et al. () suggest estimat-

ing k by k̂ = pσ̂ /(β̂
T
β̂), where σ̂  = SSE/(n − p) and

SSE is the OLS residual sum of squares. Other numeri-

cal methods have also been suggested; see, for example,

Lawless and Wang (), Wahba et al. (), Hoerl and

Kennard (), Masuo (), Khalaf and Shukur (),

and Dorugade and Kashid ().

Forms of ridge regression other than () are possible.

For example the ridge parameter k (which is a scalar) can

be replaced by a diagonal matrix with possibly di�erent

diagonal elements, or evenwith a full p×pmatrix, but these
alternatives are less common in practice.

More recently, Jensen and Ramirez () cast some

doubt about the ability of ridge estimators to actually

improve the condition of an ill-conditioned linear sys-

tem and provide stable estimated regression coe�cients

and smaller variance in�ation factors. Note that the ridge

estimator in () is the solution of the linear system

(XTX + kIp)β = XTY, ()

which replaces the system of normal equations in ().

�e condition number of the matrix (XTX + kIp) on
the le�-hand side of () is

√
(λ + k)/(λp + k), which

is smaller than the condition number of (XTX), which
is

√
λ/λp. �us adding k to each of the diagonal ele-

ments of XTX improves its condition. But the matrix X
on the right-hand side of () remains ill-conditioned.

To also improve the condition of the right-hand side of

(), Jensen and Ramirez () propose replacing the ill-

conditioned regression model in () by the surrogate but

less ill-conditioned model

Y = Xkβ + ε, ()

where Xk = U(Λ + kIp)/VT , the matrices U and V are
obtained from the singular-value decomposition of X =
UDVT (see, e.g., Golub and van Loan ) with UTU =
VTV = Ip, andD is a diagonal matrix containing the corre-
sponding ordered singular values ofX. Note that the square
of the singular values of X are the eigenvalues of XTX,
that is, D = Λ. Because XTkXk = XTX + kIp, the least
squares estimator of the regression coe�cients in () is the

solution of the linear system

(XTX + kIp)β = XTkY, ()

which is given by

β̂s(k) = (XTX + kIp)−XTkY. ()

Jensen and Ramirez () study the properties of the sur-

rogate ridge regression estimator, β̂s(k), in (), and using
a case study they demonstrate that the surrogate estima-

tor is more conditioned than the classical ridge estimator,

β̂(k), in (). For example, they observe that (a) the condi-
tion of the variance of ∣∣β̂s(k)∣∣ is monotonically increasing
in k and (b) the maximum variance in�ation factor is

monotonically decreasing in k. �ese properties do not

hold for the classical ridge estimator, β̂(k).
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Rise of Statistics in the Twenty
First Century

Jon R. Kettenring

Drew University, Madison, NJ, USA

Introduction
As the end of the �rst decade of the twenty �rst century

approaches, it is fair to say that statistics as a profession is

on the rebound in ways that matter. In recent years there

have been recurring laments about missed opportunities

and lack of respect for statistics and statisticians. Yet, statis-

ticians are on the move, identifying and embracing new

opportunities, and being increasingly expansive in de�n-

ing the scope of their �eld and its relationship to the world

at large.

A sign of progress is the growing recognition by out-

siders of the importance of the statistics discipline. For

example, a recent editorial in Sciencemagazine (Long and

Alpern ), based on a new report, “Scienti�c Founda-

tions for Future Physicians,” argues that “students should

arrive at medical school prepared in the sciences, includ-

ing some areas not currently required, such as statistics and

biochemistry.”

Even more recently, this dramatic headline appeared

on the front page of�e New York Times: “For today’s grad-

uate, just one word: statistics.” �e accompanying article

(Lohr ) talked about “the rising stature of statisti-

cians,” “the new breed of statisticians” who analyze “vast

troves of data,” and how the “data explosion” is “open[ing]

up new frontiers” for statistics.

�e goal in this essay is to discuss a few disparate

factors that are relevant to my thesis about the current rise

of and strong future for statistics and statisticians.

Renewal
One of the great qualities of the statistics profession, and an

important reason for optimism about the future, is its tra-

dition of introspection, self-assessment, and adjustment,

leading to renewal of how we view our �eld, how we teach

our subject, and how we interact with others. In part, this

re�ects the healthy questioning that statisticians engage

in whenever confronted with a new problem. We want to

know the whole story.We are politely but usefully skeptical

of everything we are told.We examine all assumptions.We

strive for quality data and supportable conclusions drawn

from sound analyses. We know how to unlock underlying

truths from complex and noisy circumstances. We rec-

ognize our limitations but also are able to develop new

methods as needed.

Education
7Statistics education has received considerable attention
and improvement during the last  years. It is even an

accepted area for research – and we’ve learned a lot about

how to teach students more e�ectively. Statistics courses

are now frequently found in high schools in the U.S. Over

, high school students take theAdvanced Placement

Examination in Statistics annually. Introductory courses

for college students are o�en taught by specialists who have

devoted careers to perfecting ways of breaking novices

gently and carefully into the wonders of statistical think-

ing.�e wide availability of statistical so�ware has allowed

students to experience �rst hand what it is like to analyze

real data.

Consulting courses have been a popular way to expose

graduate students to current data analysis and modeling
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problems. Going a step further, there are now success

stories that involve the orchestrated merging of statis-

tics education, consulting, and research. A well-developed

example of this synergistic approach, from the Univer-

sity of California at Riverside, is described by Jeske et al.

(). As a result of such e�orts, students are enter-

ing the workforce with wider experiences and broader

skill sets.

Another plus has been the evolution of postdoctoral

programs in statistics. Once rarities, they are increasingly

common in academia, government, industry and research

institutes such as the National Institute of Statistical Sci-

ences (NISS) in the U.S.A. In the past  years, NISS

has engaged more than  postdoctoral students in cross-

disciplinary research projects.

Still, the potential for substantial improvements remains,

and a few speci�c ones are spelled out in Lindsay et al.

(). �e recent eye-catching proposal by Brown and

Kass (), based on their experience working together

in neuroscience, calls for strong reforms based on “deepen-

ing cross-disciplinary involvement” and “a broad vision of

the discipline of statistics.”�e aggressive changes that they

propose amount to a culture change (comment by Gibbs

and Reid in the discussion) and won’t come easily (com-

ment by Johnstone) but are necessary to keep up with “big

science” (comment by Nolan and Temple Lang).

Cross-Disciplinary Research
Statistics has always been driven in part by applica-

tions. It is only in the last few decades that full-blown

cross-disciplinary research involving statistics has become

widely accepted within the profession. Now it is not only

part of the culture but it is also spurring growth as statis-

ticians respond to new data problems such as those posed

by neuroscience. Other fruitful �elds are easy to tick o� as

well, e.g.,7bioinformatics, healthcare, life sciences, climate
change, the environment, manufacturing, business strat-

egy, privacy and con�dentiality, bioterrorism, and national

defense. Increasingly, the associated problems involve the

analysis of massive datasets, i.e., ones of extraordinary size

and complexity. When confronted with such challenges,

teamwork is perhaps the most e�ective strategy and is very

likely to trump purely statistical ones (Kettenring ).

A variety of other examples of cross-disciplinary work

are listed in Lindsay et al. (), under the heading of

statistics in science and industry, to illustrate the now com-

mon “interplay between statistics and other scienti�c dis-

ciplines.” It is also worth noting that funding opportunities

for such crossover activities have been on the rise.

Credentials
Within the American Statistical Association (ASA) there

have been strong debates for at least  years about the need

for credentialing (as in accreditation based on experience

or certi�cation based on testing) of professional statisti-

cians. In a perfect world there would be no need for more

than a suitable academic degree, but ours is not so neat and

tidy. Practitioners with no degrees in statistics but excellent

records of accomplishment o�en have di�culty achiev-

ing the stature that they deserve or require for success in

their careers. Similar problems are encountered by those

who work in fringe areas or for small employers where the

professionalism of statisticians is misunderstood or under-

appreciated. We also face the unfortunate companion sit-

uation of practitioners who claim competency in statistics

but lack it.�is can result in damaging malpractice.

Similar concerns were no doubt behind earlier move-

ments by theRoyal Statistical Society, the Statistical Society

of Canada, and the Statistical Society of Australia Inc. to

provide accreditation programs that help to di�erentiate

practitioners who are good at statistics from those who

only claim to be. Motivated in part by the apparent success

of these ventures, the ASA has taken several steps along

the same path, culminating in approval in August 

of a plan (Bock et al. ) to launch its own voluntary

accreditation program for professional statisticians.

In a randomized survey of ASA members, %

reported that they would apply to such a program were it

o�ered because it would provide evidence of competency

and a credential useful for employment, among other fac-

tors.�is change in thinking from “why do we need such

a thing” to “maybe the time is right” illustrates that the

�eld is evolving not only in theoretical and philosophical

ways but also in very pragmatic ones aimed at meeting

the needs of practitioners operating in very competitive

environments.

Timewill tell, but if these credentialing programs ful�ll

their potential, they will have served a very useful pur-

pose by helping to legitimize and support a broad class of

professionals who are highly quali�ed to practice statistics.

Journals
Journals are an essential component of the statistics infras-

tructure. �ey serve as a collective record of historical

and current developments in the �eld. JSTOR, e.g., pro-

vides a very important centralized archive and point of

access for more than  of the leading ones in statistics

and probability. It includes journals such asBiometrika, the

Journal of the American Statistical Association (JASA), the

Journals of the Royal Statistical Society (JRSS), and Tech-

nometrics. Yet there are many more. �e Current Index
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to Statistics lists over  “core” journals on its web-

site, www.statindex.org/CIS/news/CIS_core_journals.pdf.

As ofApril  thewebsite, http://w.stern.nyu.edu/ioms/

research.cfm?doc_id=, hosted by the Stern School at

New York University, included over  names under the

heading of statistics and probability. Its breadth re�ects the

so� boundary view of statistics. Examples include Ana-

lytical Chemistry, Econometrica, the Journal of Machine

Learning Research, andWater Resources Research.

Comparing journals across �elds is dicey business, but

it is tempting to see where one stands. In Lindsay et al.

() it was observed that JASA was “far and away the

most cited mathematical science journal” for the period

–. I’ve also taken note of more recent data on the

website www.eigenfactor.org, where  journals in prob-

ability and statistics are ranked based on cross-journal

citation patterns, along with nearly , others. Citations

of a journal to itself are not counted. �e journals are

quanti�ed by their “Eigenfactor Score,” which measures

“the journal’s total importance to the scienti�c commu-

nity”, and the “Article in�uence Score,” which measures

“the average in�uence, per article, of the papers in a jour-

nal” (Bergstrom et al. ). For the most recent year

available, , based on citations to the previous �ve years,

the top four in the probability and statistics category are

JASA, Statistics in Medicine, the Annals of Statistics, and

JRSS Series B by the �rst measure, and JRSS Series B, JASA,

theAnnals of Statistics, andBiostatistics by the second. (�e

last title is a convenient reminder of the enormous success

story of 7biostatistics as a sub�eld that has led the way in
growth and career opportunities.)

�e median Article In�uence Score is . across all

journals and . for those in the probability and statistics

category. In comparison, the medians are . for neuro-

science, . formathematics, . for psychology, . for

economics, and . for physics.�e point is that statistics

journals are publishing articles of relatively broad interest

and high in�uence, at least by this measure. �e vitality

of our better journals provides a strong backbone for the

future of statistics research, practice, and education.

Holistic Statistics
In Kettenring (), under the heading of “holistic statis-

tics,” I asked whether statistics in the twenty �rst century

should be equated so strongly to the more traditional core

topics of statistics as it had been in the past and followed

with these points:

● �ere is a natural tension between narrowly focused

pursuits of science vs. broader ones that favor synthesis

and interdisciplinarity.

● �e core of statistics should be nourished by surround-

ing itself with vigorous areas of application.

● Broad-minded statisticians are needed to work across

boundaries and operate in fast-paced environments.

● A more inclusive de�nition of statistics would better

re�ect its strong interdisciplinary character.

● Such an inclusive interpretation of statistics is where

the future lies.

In similar spirit, Hand () talks about the importance

of “greater statistics” (Chambers ) as an overarching

discipline that deals with (quoting Chambers) “everything

related to learning from data.” It is this expansive view of

statistics that I intended in the title of this essay and what

Hand has in mind when he talks about the “magic” of

modern statistics.

Wrap Up
Taking a bit of license with a popular adage, we can safely

say that the future of statistics isn’t what it used to be.�ese

are meant to be encouraging words for students looking

for a �eld of study that is full of life and much needed in a

modern information age that is swamped with data and in

need of help onwhat to do about it. Or, as the distinguished

economist Hal Varian put it in Lohr (), “I keep saying

that the sexy job in the next  years will be statisticians.

And I’m not kidding.”
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Introduction
Risk analysis originated in safety and systems engineering

and following the events at the�ree Mile Island nuclear

facilities in the United States developed into an inter-

disciplinary approach to better understand and manage

hazards. It has been applied to many human and ecolog-

ical health issues, such as air borne spread of biological

agents, destruction of the United States chemical weapons

stockpile, cyber attacks, facility safety, food contamination,

hazardous waste management, medical decision-making,

nuclear power and waste management, and natural haz-

ards such as earthquakes, �oods, and tornadoes. Several of

the ideas and models can be extended to economic, social,

and even political risk.

Risk analysis is divided into risk assessment and risk

management, although feedback loops exist among the

stages. To provide continuity to this entry, the author uses

the example of a terrorist planning to kill bus riders.

Risk Assessment
Risk assessors try to answer three questions.

. What can go wrong?

. What are the chances that something with serious con-

sequences will go wrong?

. What are the consequences if something does go

wrong?

�is so-called “triplet” of questions (Kaplan and Garrick

; Garrick ) can be written as follows:

R = (S,P,C)

where R is the risk; S is a hypothesized risk scenario event

of what can go wrong; P is the probability of that scenario

occurring; and C are the consequences.

Scenarios
Analysts create risk scenarios. For example, the terrorist

could board a bus and detonate a bomb or leave a bomb

near a stop and detonate it remotely. When there are thou-

sands of potential triggering scenarios, analysts identify

the worst consequences and then they work backward to

scenarios that could produce them.

Analysts use fault trees or event trees to build out risk

assessment scenarios. Event trees start with an event and

follow it through branches. Some of the branches lead to

insigni�cant consequences, while others end in serious

outcomes. Fault tree analyses begin with the end state and

work backwards to identify the event or sequence of events

that will trigger it.�ey also are used together.

Likelihood
Quanti�cation of the 7likelihood of events was the major
improvement introduced by risk assessment to safety anal-

ysis. Analysts develop a probability distribution of the

likelihood of events, and then apply them to the trees.

�is step, the author believes, is the most di�cult chal-

lenge faced by risk assessors (Hora ; Aven and Renn

; Committee on Methodological Improvements to

the Department of Homeland Securities Biological Agent

Risk Analysis, National Research Council ; Cox ;

Dillon et al. ).

When there is no deliberate intent driving an event, for

instance, a bus has a �at tire and crashes, then estimat-

ing probabilities from historical records and experiences

make sense.�e problem is how to estimate the likelihood
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of a deliberate attack. Do we assume that the terrorists are

intent as well as capable and will adjust to countermea-

sures? If a terrorist is assumed to achieve optimal or near

optimal success, then we need to game theoretic or more

generally agent-basedmodeling to support these estimates.

Eliciting likelihood estimates from experts is part sci-

ence and part art. Expert opinion can be obtained through

surveys. �e results may not translate directly into an

absolute measurement of likelihood, but perhaps an ordi-

nal scale that can be used to set priorities. �e key is

training the experts to participate in the survey (Hora

; Aven andRenn ; Committee onMethodological

Improvements to the Department of Homeland Securities

Biological Agent Risk Analysis, National Research Council

).

Consequences
Estimating consequences is part three of the risk assess-

ment process. In the case of the bus passengers, the worst

outcomes would be death of all the riders and for a tran-

sit system it would also be public fear of using the bus.

When all the branches are followed, the results include esti-

mates of the number of deaths, injuries, physical damage to

assets, environmental e�ects, and local/regional economic

impacts. �ese consequences are ranked with regard to

severity.

Summarizing, risk assessments produce a list of risks.

What to do about them is the responsibility of risk

managers.

Risk Management
�e author o�ers the following three questions for risk

managers:

. How can consequences be prevented or reduced?

. How can recovery be enhanced, if the scenario occurs?

. How can key local o�cials, expert sta�, and the public

be informed to reduce concern and increase trust and

con�dence?

Prevention
Risk managers try to contain risk within an acceptable

(typically regulatory-based) level by implementingmitiga-

tion measures. �ese options are engineered and behav-

ioral, and collectively they can be seen as the essence

of a multi-criteria decision-making model (MCDM)

(Chankong and Haimes ), where prevention options

Oi(i = , , . . . ,m) are de�ned and the decision-maker(s)
evaluate them based on selected criteriaCj( j = , , . . . ,n).
In the case of our at risk bus passengers, the company can

monitor the bus stops, and train the drivers can look for

suspicious behavior (they are already trained to deal with

rowdy and intoxicated riders).

Prevention is partly based on engineering options, life

cycle cost, union contracts, ethical and other considera-

tions, and requires blending of quantitative and qualita-

tive data into a multi-criteria decision making framework.

�e audience for this volume recognizes the problems of

scarcity of data, lack of knowledge, and subjectivity. Var-

ious mathematical and statistical techniques are available

in the literature to deal with decision-making with uncer-

tainties (Chankong and Haimes ; Heinz Center ;

Skidmore and Toya ; Greenberg et al. ; Bedford

and Cooke ; Edwards et al. ).

Two di�cult challenges for risk managers are the time

and space dimensions. In fact, we do not know a great

deal about the geographical and temporal impacts of risk-

related events (Zinn ).�e direct consequences of a

bus explosion event include impacts on the passengers and

the driver. But indirect e�ects could include fear of using

the bus, leading to a loss of revenue for the system and for

businesses that depend on it, and to induced income e�ects

caused by job losses.�at is, when people lose their jobs,

they begin to reduce their purchases.

�e local impact is the area directly impacted by the

event. Regional impacts occur in surrounding areas that

are a�ected by direct losses. State, national and interna-

tional impacts are felt as economic consequence ripples

across the landscape. Some of these impacts are felt imme-

diately or within a month or two of the event. Others are

intermediate in length andmeasured inmonths and even a

year or two out from the events. If the event is large enough

there will also be long-term impacts that can be mea-

sured for many years. For example, the author has studied

the impact of large scale loss of energy supply, leading to

loss of con�dence in the region and relocation out of the

area. Yet we also have learned that a devastated region will

receive funds from insurance companies, not-for-pro�ts,

and government agencies (Singpurwalla ), so negative

consequences may be less than had been anticipated.

Economic impact tools allow us to estimate some of the

consequences of such risk management decisions, albeit

each of these has important data requirements, limitations,

and capabilities (Modarres et al. ). �e key to suc-

cessfully using the economic models is the willingness of

analysts to probe deeply into the events and through the

stages that follow. Using sophisticated models without �rst

understanding the event is a waste of time and money.

Recovery
Even the best e�orts to prevent risk events sometimes fail.

Every risk manager needs a plan to respond to events. Like
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the riskmitigation response, these options are both human

and engineered.�e response options Ri(i = , , . . . ,m)
are de�ned and the decision-maker(s) evaluate thembased

on selected criteria Cj( j = , , . . . ,n). In the case of our
bus passengers, for example, police would cordon o� the

area, ambulances would arrive, and the injured would be

moved to a nearest health care facility that is able to treat

those that are alive.

Communications
At some major risk-related events, there are misunder-

standings about who is in charge, who should perform

what function, and sometimes the results are tragic. Fire-

men and police should be fully equipped and trained to

deal with hazards. Transit workers and upper-level man-

agers should know how to cope with passengers who show

signs of suspicious behavior, and how to prevent panic

rather than contribute to it. A good deal of research is

focusing on crisis communications speci�cally and risk

communications more generally, and principles have been

articulated about how to manage risk events. However, it

will take a systematic and ongoing e�ort to di�use these

suggestions to managers and to front-line employees.

Summary
Risk analysis is a multidisciplinary �eld that includes

researchers trained in physics, chemistry, biology, engi-

neering, mathematics, economics, psychology, geography,

sociology, communications, political science and others.

�is essay touches on the six key questions that risk ana-

lysts try to answer. Some good books are available (Bed-

ford and Cooke ; Edwards et al. ; Zinn ;

Singpurwalla ; Modarres et al. ). However, in a

rapidly moving �eld like this, most books are out of date

quickly.�e author recommends consulting two journals:

Risk Analysis: an International Journal and the Journal of

Risk Research.
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7Robust statistics deals with deviations from ideal para-
metric models and their dangers for the statistical pro-

cedures derived under the assumed model. Its primary

goal is the development of procedures which are still reli-

able and reasonably e�cient under small deviations from

the model, i.e., when the underlying distribution lies in

a neighborhood of the assumed model. Robust statistics

is then an extension of parametric statistics, taking into

account that parametric models are at best only approx-

imations to reality. �e �eld is now some  years old.

Indeed one can consider Tukey (), Huber (),

and Hampel () the fundamental papers which laid

the foundations of modern robust statistics. Book-length

expositions can be found in Huber (, nd edition by

Huber andRonchetti ), Hampel et al. (),Maronna

et al. ().

More speci�cally, in robust testing one would like the

level of a test to be stable under small, arbitrary departures

from the distribution at the null hypothesis (robustness of

validity). Moreover, the test should still have good power

under small arbitrary departures from speci�ed alterna-

tives (robustness of e�ciency). For con�dence intervals,

these criteria correspond to stable coverage probability and

length of the con�dence interval.

Many classical tests do not satisfy these criteria. An

extreme case of nonrobustness is the F-test for comparing

two variances. Box () showed that the level of this test

becomes large in the presence of tiny deviations from the

normality assumption (see Hampel et al. ; –).

Well known classical tests exhibit robustness problems

too. �e classical t-test and F-test for linear models are

relatively robust with respect to the level, but they lack

robustness of e�ciency with respect to small departures

from the normality assumption on the errors (cf. Hampel

; Schrader and Hettmansperger ; Ronchetti ;

Heritier et al. : ). Nonparametric tests are attractive

since they have an exact level under symmetric distri-

butions and good robustness of e�ciency. However, the

distribution free property of their level is a�ected by asym-

metric contamination (cf. Hampel et al. : ). Even

7randomization tests which keep an exact level, are not
robust with respect to the power if they are based on a

non-robust test statistic like the mean.

�e �rst approach to formalize the robustness problem

was Huber’s (, ) minimax theory, where the sta-

tistical problem is viewed as a game between the Nature

(which chooses a distribution in the neighborhood of

the model) and the statistician (who chooses a statisti-

cal procedure in a given class). �e statistician achieves

robustness by constructing a minimax procedure which

minimizes a loss criterion at the worst possible distribu-

tion in the neighborhood.More speci�cally, in the problem

of testing a simple hypothesis against a simple alterna-

tive, Huber (, ) found the test which maximizes

the minimum power over a neighborhood of the alterna-

tive, under the side condition that the maximum level over

a neighborhood of the hypothesis is bounded. �e solu-

tion to this problem which is an extension of 7Neyman-
Pearson Lemma, is the censored likelihood ratio test. It

can be interpreted in the framework of capacities (Huber

and Strassen ) and it leads to exact �nite sample mini-

max con�dence intervals for a location parameter (Huber

). While Huber’s minimax theory is one of the key

ideas in robust statistics and leads to elegant and exact

�nite sample results, it seems di�cult to extend it to gen-

eral parametric models, when no invariance structure is

available.

�e in�nitesimal approach introduced in Hampel

() in the framework of estimation, o�ers an alternative

formore complexmodels.�e idea is to view the quantities

of interest (for instance the bias or the variance of an esti-

mator) as functionals of the underlying distribution and

to use their linear approximations to study their behav-

ior in a neighborhood of the ideal model. A key tool is

a derivative of such a functional, the in�uence function

(Hampel ) which describes the local stability of the

functional.
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To illustrate the idea in the framework of testing,

consider a parametricmodel{Fθ}, where θ is a real param-

eter and a test statistic Tn which can be written (at least

asymptotically) as a functional T(Fn) of the empirical
distribution function Fn. Let H : θ = θ be the null

hypothesis and θn = θ + ∆/
√
n a sequence of alterna-

tives. We consider a neighborhood of distributions Fє,θ ,n =
(−є/

√
n)Fθ +(є/

√
n)G, whereG is an arbitrary distribu-

tion and we can view the asymptotic level α of the test as a

functional of a distribution in the neighborhood.�en by a

von Mises expansion of α around Fθ , where α(Fθ) = α,

the nominal level of the test, the asymptotic level and (sim-

ilarly) the asymptotic power under contamination can be

expressed as

lim
n→∞

α(Fє,θ ,n) = α + є∫ IF(x; α,Fθ)dG(x) + o(є),

()

lim
n→∞

β(Fє,θn ,n) = β + є∫ IF(x; β,Fθ)dG(x) + o(є),

()

where

IF(x; α,Fθ) = ϕ(Φ
−( − α))IF(x;T,Fθ)/

[V(Fθ ,T)]
/
,

IF(x; β,Fθ) = ϕ(Φ
−( − α) − ∆

√
E)IF(x;T,Fθ)/

[V(Fθ ,T)]
/
,

α = α(Fθ) is the nominal asymptotic level, β =  −
Φ(Φ−( − α) − ∆

√
E) is the nominal asymptotic power,

E = [ξ′(θ)]/V(Fθ ,T) is Pitman’s e�cacy of the test,
ξ(θ) = T(Fθ), V(Fθ ,T) = ∫ IF(x;T,Fθ)

dFθ(x) is the
asymptotic variance of T, andΦ

−(−α) is the −α quan-

tile of the standard normal distribution Φ and ϕ is its den-

sity (see Ronchetti ; Rousseeuw and Ronchetti ).

More details can be found in Markatou and Ronchetti

() and Huber and Ronchetti (, Chap. ).

�erefore, bounding the in�uence function of the the

test statistic T from above will ensure robustness of valid-

ity and bounding it from below will ensure robustness of

e�ciency.�is is in agreement with the exact �nite sample

result about the structure of the censored likelihood ratio

test obtained using the minimax approach.

In the multivariate case and for general parametric

models, the classical theory provides three asymptotically

equivalent tests, Wald, score, and likelihood ratio test,

which are asymptotically uniformly most powerful with

respect to a sequence of contiguous alternatives. If the

parameter of the model is estimated by a robust estima-

tor such as an M-estimator Tn de�ned by the estimating

equation∑ni= ψ(xi;Tn) = , natural extensions of the three
classical tests can be constructed by replacing the score

function of the model by the function ψ. �is leads to

formulas similar to () and () and to optimal bounded

in�uence tests (see Heritier and Ronchetti ).
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�e idea of 7generalized linear models (GLM) generated
by Nelder and Wedderburn () seeks to extend the

domain of applicability of the linear model by relaxing the

normality assumption. In particular, GLM can be used to

model the relationship between the explanatory variable,

X, and a function of the mean, µi, of a continuous or dis-

crete responses.More precisely, GLMassumes that g(µi) =
ηi = ∑pj= xijβj, where β = (β, β, . . . , βp)T is the p-vector
of unknown parameters and g(⋅) is the link function that
determines the scale onwhich linearity is assumed.Models

of this type include logistic and probit regression, Pois-

son regression, linear regression with known variance, and

certain models for lifetime data.

Speci�cally, let Y,Y, . . . ,Yn, be n independent ran-

dom variables drawn from the exponential family with

density (or probability function)

f (yi; θ i, ϕ) = exp{
yiθ i − b(θ i)
a(ϕ)

+ c(yi, ϕ)} ()

for some speci�c functions a(⋅), b(⋅), and c(⋅, ⋅). Here,
E(Yi) = µi = b

′

(θ i) and var(Yi) = b
′′

(θ i)a(ϕ) with usual
notation of derivative.

�emost commonmethod of estimating the unknown

parameter, β, is that of maximum likelihood estimation

(MLE) or quasi-likelihood methods (QMLE), which are

equivalent if g(⋅) is the canonical link such as the logit
function for the 7logistic regression, the log function for
7Poisson regression, or the identity function for the Nor-
mal regression. �at is, when g(µi) = θ i, the MLE and

QMLE estimator of β are the solutions of the p-system of

equations:

n

∑
i=

(yi − µi)xij = , j = , . . . , p. ()

�e estimator de�ned by () can be viewed as an

M-estimator with score function

ψ(yi; β) = (yi − µi)xi ()

where xi = (xi, xi, . . . , xip)T .
Since the score function de�ned by () is proportional

to x and y, the maximum possible in�uence in both the

x and y spaces are unbounded. When y is categorical, the

problem of unbounded in�uence in x remains and in addi-

tion, the breakdown possibility by inliers arises (Albert

and Anderson ). As such, the corresponding estima-

tor of β based on () is therefore non-robust. Any attempt

to improve the estimation of such β should limit such

in�uences. Two basic approaches are usually employed in

order to address the problems stated above, that is: (a)

diagnostics and (b) robust estimation.

Diagnostic Measures
In most diagnostics approaches, the MLE is �rst employed

and subsequently diagnostics tools are used to identify

potential in�uential observations. For details on diagnos-

tic measures, readers are referred to the published works

of Pregibon (, ), McCullagh and Nelder (),

Johnson (),Williams (), Pierce and Schafer (),

�omas and Cook (), and Adimari and Ventura

().
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While these techniques have been quite successful in

identifying individual in�uential points, its generalization

to jointly in�uential points cannot guarantee success.�e

development of a robustmethod in the early s provides

an option that o�ers automatic protection against anoma-

lous data. A recent trend in diagnostic research is (a) to

detect wild observations by using the classical diagnostic

method a�er initially deploying the robust method (Imon

and Hadi ) or (b) to use robust method in any case

(Cantoni andRonchetti ; Serigne andRonchetti ).

Robust Estimation
Since the score function in () is subject to in�uence of

outlying observation, both in the X and y, appropriate

robust estimations are those of the GM-estimates. �ese

include the Mallows-type (Pregibon ) and Schweppe-

type (Stefanski et al. ; Künsch et al. ). �e pro-

posed methods are discussed here. Let

ℓ(θ i, yi) = log f (yi; θ i, ϕ) =
yiθ i − b(θ i)
a(ϕ)

+ c(yi, ϕ) ()

and de�ne the i-th deviance as di = di(θ i) = {ℓ(θ̃ i, yi) −
ℓ(θ i, yi), where θ̃ i is the MLE based on observation yi

alone, that is, θ̃ i = (b
′

)−(yi).�e deviance di can be inter-
preted as ameasure of disagreement of the i-th observation

and the �tted model. �us, MLE that aims at maximiz-

ing the likelihood function also aims at minimizing the

deviances, speci�cally minimizingM(β) =
n

∑
i=
di(θ).

In an attempt to robustify the MLE, the �rst modi�ca-

tion of theMLE introduced by Pregibon () is to replace

the minimization criterion withM(β) = ∑ni= ρ(di).
�e function ρ(⋅) acts as a �lter that limits the con-

tribution of extreme observations in determining the

�ts to the data. Minimizing the criterion above can be

obtained by �nding the root solutions to the following

score function

n

∑
i=

ψ(di) =
n

∑
i=
wisixij = , j = , . . . , p, ()

with si = ∂ℓ(θ i, yi)/∂ηi, and wi( ≤ wi ≤ ) given by
w(di) = ∂ρ(di)/∂di. Note that this is simply the weighted
version of the maximum likelihood score equations with

data-dependent weights.

Mallows-Type GM Estimate
Based on Huber’s loss function, the corresponding weight

function wi = min{, (H/di)/} with adjustable tuning
constant H, which aims at achieving some speci�ed e�-

ciency, can be used (Pregibon ). By solving (), one can

obtain a class of Mallows M-estimates. �is type of esti-

mation is resistant to poorly �tted data, but not to extreme

observations in the covariate space that may exert undue

in�uence on the �t.

Schweppe-Type GM Estimate
Extending the results obtained by Krasker and Welsch

() and Stefanski et al. (), Künsch et al. ()

proposed bounded in�uence estimators that are also con-

ditionally Fisher-consistent. Subject to a bound b on the

measure of sensitivity γψ(γψ ≤ b < ∞), the following
modi�cation to the score function was proposed:

ψBI = {y − µ − c(xTβ,
b

(xTB−x)/
)}

wb(∣r(y, x, β,B)∣(xTB−x)/)xT

where c(⋅, ⋅) and B are the respective bias-correction term
and dispersionmatrix chosen so that the estimates are con-

ditionally Fisher-consistent with bounded in�uence, with

weight function of the form wb(a) = min{, b/a} based
on Huber’s loss function. As in Schweppe-type GM esti-

mates,wb(⋅)downweight observationswith a high product
of corrected residuals and leverage. Details on the terms

used here can be found elsewhere (see, e.g., Huber ()

on in�nitesimal sensitivity).

Besides the general approach in robust estimation in

GLMseveral researchers put forward various other estima-

tors for speci�c case of GLM. For example, when y follows

a Gamma distribution with log link function, Bianco et al.

() considered redescendingM-estimators and showed

that the estimators are Fisher-consistent without any cor-

rection term. In the logistic model, Carrol and Pederson

() proposed weighted MLE to robustify estimators,

Bianco and Yohai () extended the work of Morgen-

thaler () and Pregibon () on M-estimators while

Croux and Haesbroeck () developed a fast algorithm

to execute Bianco–Yohai estimators. Gervini () pre-

sented robust adaptive estimators and recently Hobza et al.

() opened a new line proposing robust median esti-

mators in 7logistic regression (see also Hamzah ).
�e robust Poisson regression model (RPR) (see 7Poisson
Regression) was proposed by Tsou () for the infer-

ence about regression parameters for more general count

data; here one need not worry about the correctness of the

Poisson assumption.
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Outliers
�e following Table (Hand et al. : ) contains 

measurements of the speed of light in suitable units (km/s

minus ) from the classical experiments performed

by Michelson and Morley in .

    

    

    

    

Wemay represent our data as

xi = µ + ui, i = , . . . ,n ()

where n = , µ is the true (unknown) speed value and ui
are random observation errors. We want a point estimate

µ̂ and a 7con�dence interval for µ.
Figure  is the normal QQ-plot of the data.�e three

smallest observations clearly stand out from the rest.�e

central part of the plot is approximately linear, and there-

fore we may say that the data are “approximately normal.”

�e le�-hand half of the following Table shows the

sample mean and standard deviation (SD) of the com-

plete data and also of the data without the three smallest

observations (the right-hand half will be described below).

Mean SD Median MADN

Complete data . . . .

 obs. omitted . . . .
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Robust Statistical Methods. Fig.  Speed of light: normal QQ-plot of data

We see that these three observations in�ate the SD and

diminish the mean.

�e con�dence intervals with level . for the mean

with the complete data andwith the three outliers removed

are respectively [., .] and [. .].

We see that even data froma carefully controlled exper-

imentmay contain atypical observations (“outliers”) which

may overly in�uence the conclusions from the experiment.

Although the proportion of outliers is low (/=%) they

have a serious in�uence.

�e oldest approach to deal with this problem is to

employ some diagnostic tool to detect 7outliers, delete
them, and then recompute the statistics of interest. Barnett

and Lewis () is a useful source of methods for outlier

detection.

Using a good outlier diagnostic is clearly better than

doing nothing, but has its drawbacks:

● Deletion requires a subjective decision. When is an

observation “outlying enough” to be deleted?

● �e user or the author of the datamay feel uneasy about

deleting observations

● �ere is a risk of deleting “good” observations, which

results in underestimating data variability

● Since the results depend on the user’s subjective deci-

sions, it is di�cult to determine the statistical behavior

of the complete procedure.

Robust statistical methods are procedures that require

no subjective decisions from the user, and that

● give approximately the same results as classical meth-

ods when there are no atypical observations, and

● are only slightly a�ected by a small or moderate pro-

portion of atypical observations.

�e sample median Med (x) is a robust alternative
to the median. �e median absolute deviation from the

median MAD (x) = Med (∣x-Med (x) ∣) is a robust dis-
persion estimate. �e normalized MAD: MADN (x) =
MAD (x) /. is a robust alternative to the SD; for large
normal samples MADN and SD are approximately equal.

�e right-hand half of the Table above shows the sam-

ple median and MADN for the complete data and the

data with the three smallest observations omitted. We see

that the median has only a small change, and that MADN

remains the same.

�en, why not always use the median instead of the

mean? To answer this question we have to analyze the

behavior of the estimates at a given model. Assume that

ui are normal: N (, σ ) .�en the sample mean has vari-
ance Var (x) = σ /n, while for large n the sample median
has Var (Med (x)) ≈ .σ /n (proofs for all results can
be found in Maronna et al. ). We say that the sam-

ple median has asymptotic e�ciency /. = . at the
normal.�is means that we have to pay a high price for the

median’s robustness. We may make requirement () above

more precise by stating that we want an estimate with a

high e�ciency at the normal, while keeping condition ().

We now consider two approaches to attain this goal.
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M Estimates
Let ui have a positive density function f , so that xi in () has

density f (x − µ).�en the maximum likelihood estimate
(MLE) of µ is the solution of

n

∏
i=
f (xi − µ) = max.

Taking logs we get

n

∑
i=

ρ (xi − µ) = min ()

where ρ = − log (x) . If f N (, ) we have ρ (x) =
(x + log (π)) /. Note that using this ρ is equivalent to

using ρ (x) = x, which yields µ̂ = x. If f is the double
exponential density f (x) = . exp (−∣x∣) we get likewise
ρ (x) = ∣x∣, which yields µ̂ =Med (x) .
An M estimate is de�ned through () where ρ (x) is a

given function (which does not necessarily correspond to

a MLE). To ful�ll () it has to be approximately quadratic

for small x; to ful�ll () it must increase more slowly than

x for large x. An important case is the Huber ρ-function

ρ (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x for ∣x∣ ≤ k

k∣x∣ − k for ∣x > k.

Figure  plots ρ for k = .
�e limit cases k → ∞ and k →  correspond respec-

tively to x and ∣x∣, and therefore the estimate is an inter-
mediate between themean and themedian. Di�erentiating

() we get that µ̂ is a solution to the estimating equation

n

∑
i=

ψ (xi − µ̂) =  ()

where ψ = ρ′. For the Huber function we have that (up to

a constant)

ψ (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−k for x < −k

x for ∣x ≤ k.

k for x > k

Figure  displays ψ for k = .
�e boundedness of ψ makes the estimate robust.

It can be shown that for any symmetric distribution of

the ui, for large n the distribution of µ̂ is approximately

N (µ, v/n) where the asymptotic variance v is given by

v = Eψ (x − µ)

[Eψ′ (x − µ)]
.

�e following Table gives the normal e�ciencies of the

Huber estimate for di�erent values of k.

k Efficiency

 .

. .

. .

∞ .

It is seen that k = . yields a high e�ciency.
De�ne now theweight functionW asW (x) = ψ (x) /x.

For the Huber function we have

W (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

 for ∣x∣ ≤ k

k/∣x∣ for ∣x∣ > k.

Figure  plots Huber’sW :

We may rewrite () as

n

∑
i=
W (xi − µ̂) (xi − µ̂) = 

and therefore

µ̂ = ∑
n
i= wixi

∑ni= wi
()

where wi =W (xi − µ̂) .�is shows that a location M esti-
mate can be thought of as aweightedmeanwithweightswi,

where observations distant from the “bulk” of the data

receive smaller weights.

Note however that () is not an explicit formula for µ̂,

since wi depends on both xi and µ̂. It can however be used

as a basis for the iterative numerical computing of µ̂.

L Estimates
A di�erent approach to robust location estimates is based

on the ordered observations x() ≤ x() ≤ . . . ≤ x(n)
(“order statistics”). �e simplest is the α-trimmed mean.

For α ∈ [, .] let m = [α(n − )] where [.] stands for
the integer part.�en the α-trimmed mean is de�ned as

xα =


n − m

n−m
∑
i=m+

x(i). ()

�at is, a proportion α of the largest and smallest obser-

vations are deleted. It can be shown that for α = . the
e�ciency of xα is ., although it seems that we are “delet-

ing” half of the sample!.�e reason is that xα is actually

a function of all observations, even of those that do not

appear in ().

In general, L estimates are linear combinations of

7order statistics:

µ̂ =
n

∑
i=
aix(i)

where the ai are constants such that ai = an−+i and

∑ni= ai = .
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Although L estimates seem simpler than M estimates,

they are di�cult to generalize to regression and multi-

variate analysis. On the other hand, M estimates can be

generalized to more complex situations.

General Considerations
�e present exposition attempts to give the reader a �avor

of what robust methods are, through the incomplete treat-

ment of a very simple situation. It is based on the author’s

experience and personal preferences.

�e book by Maronna et al. () contains a gen-

eral and up to date account of robust methods. �e

classic book by Huber () and the recent one by

Jurecková and Picek () containmore theoreticalmate-

rial. Hampel et al. () gives a particular approach to

robustness. Rousseeuw and Leroy () deal (although

not exclusively) with an important approach to robust

regression.
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Introduction
�e term “robust” was introduced into the statistical lit-

erature by Box (). By then, robust methods such

as trimmed means, had been in sporadic use for well

over a century, see for example Anonymous (). How-

ever, Tukey () was the �rst person to recognize the
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extreme sensitivity of some conventional statistical pro-

cedures to seemingly minor deviations from the assump-

tions, and to give an eye-opening example. His example,

and his realization that statistical methods optimized for

the conventional Gaussian model are unstable under small

perturbations were crucial for the subsequent theoreti-

cal developments initiated by Huber () and Hampel

().

In the s robust methods still were considered

“dirty” by most.�erefore, to promote their reception in

the statistical community it was crucial tomathematize the

approach: one had to prove optimality properties, as was

done by Huber’s minimax results (, , ), and to

give a formal de�nition of qualitative robustness in topo-

logical terms, as was done by Hampel (, ).�e �rst

book-length treatment of theoretical robustness was that

byHuber (, nd edition byHuber andRonchetti ).

M-Estimates and Influence Functions
With Huber () we may formalize a robust estimation

problem as a game between the Statistician and Nature.

Nature can choose any distribution within some uncer-

tainty region, say an ε-contamination neighborhood of the

Gaussian distribution (i.e., a fraction ε of the observations

comes from an arbitrary distribution).�e Statistician can

choose anyM-estimate, that is, an estimate de�ned as the

solution θ̂ of an equation of the form

∑ψ(xi, θ) = , ()

where ψ is an arbitrary function. If ψ(x, θ) = (∂/∂θ) log
f (x, θ) is the logarithmic derivative of a probability den-
sity, then θ̂ is themaximum likelihood estimate.�e Statis-

tician aims tominimize theworst-case asymptotic variance

of the estimate.

It can be seen from () that in large samples the in�u-

ence of the ith observation toward the value of θ̂ is pro-

portional to ψ(xi, θ). Hampel (; , see also Hampel
et al. ) generalized this notion through his in�uence

curve (or in�uence function) to more general types of esti-

mators. In the case of M-estimates the in�uence function

is proportional to ψ(x, θ). Arguably, the in�uence func-
tion is the most useful heuristic tool of robustness. To

limit the in�uence of gross errors, the in�uence function

should be bounded, and a simple method for constructing

a robust M-estimate is to choose for ψ a truncated ver-

sion of the logarithmic derivative of the idealized model

density.

In simple cases, in particular the estimation of a one-

dimensional location parameter, the game between the

Statistician andNature has an explicit asymptoticminimax

solution: �nd the least favorable distribution (i.e., mini-

mizing Fisher information) within the uncertainty region.

�is is the minimax strategy for Nature. �e asymptotic

minimax strategy for the Statistician then is the maximum

likelihood estimate for the least favorable distribution. In

fact, error distributions occurring in practice arewellmod-

eled by least favorable distributions corresponding to con-

tamination rates between % and %, better than by the

Gaussian model itself.

Note that bounding the in�uence provides safety not

only against 7outliers (“gross errors”), but also against all
other types of contamination. All three approaches: the

simple-minded truncation of the logarithmic derivative,

the asymptotic minimax solution, and the �nite sample

minimax solution (see below) lead to qualitatively identical

ψ-functions.

Robustness, Large Deviations and
Diagnostics
By  John Tukey’s interests had changed their focus,

he scorned models, and for him, robust methods now

were supposed to have a good performance for the widest

possible variety of (mostly longtailed) distributions. His

shi� of the meaning of the word “robust” inevitably cre-

ated some confusion. I still hold (with Tukey , Huber

 and Hampel ) that robust statistics should be

classi�ed with parametric statistics, and that robustness

primarily should be concerned with safeguarding against

ill e�ects caused by �nite but small deviations from an

idealized model, with emphasis on the words small and

model. Interpretation of the results in terms of a model

becomes di�cult if one leaves the neighborhood of that

model. Good properties far away from the model should

be regarded as a bonus rather than as a must.

�e concern with large deviations (see 7Large Devi-
ations and Applications) has caused a concomitant con-

fusion between the complementary roles of diagnostics

and robustness.�e purpose of robustness is to safeguard

against deviations from the assumptions, while the pur-

pose of diagnostics is to identify and interpret such devi-

ations. Robustness is concerned in particular with devi-

ations that are near or below the limits of detectability.

Safeguards against those can be achieved in a mechani-

cal, almost blind fashion, even if the sparsity of data may

prevent you from going beyond. Diagnostics on the other

hand comes into play with larger deviations; it is an art,

requiring insight into the processes generating the data.

The Breakdown Point
�e standard interpretation of contamination models is

that a dominant fraction − ε of the data consists of “good”
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observations that follow the idealized model, while a small

fraction ε of “bad” observations does not.

�e breakdownpoint ε∗ is the smallest fraction ε of bad

observations that may cause an estimator to take on arbi-

trarily large aberrant values.�is concept is a very simple,

but extremely useful global characteristic of a robust proce-

dure. Hampel () had given it an asymptotic de�nition,

but actually, it is most useful in small sample situations

(Donoho and Huber ).

Robust statistical procedures should have a reason-

ably high breakdown point (i.e., at least in the range of

% to %). A higher values is desirable – if it comes

for free and does not unduly impair performance at the

model. Indeed, robust M-estimates of one-dimensional

parameters in large samples typically approach the max-

imum possible breakdown point of %.�is is not so in

higher dimensions:M-estimates of d-dimensional location

parameters and covariance matrices have a disappoint-

ingly low breakdown point ε∗ ≤ /(d + ), see Maronna
(). For a while this limit was thought to hold generally

for all a�ne equivariant estimators, but then it was found

that with the help of projection pursuit methods it is pos-

sible to construct estimators approaching an asymptotic

breakdown point of %, see Donoho and Huber ().

However, these estimators are overly pessimistic by having

a low e�ciency at the model, and they are very computer

intensive.

Over the years it has become fashionable to strive

for the highest possible breakdown point, particularly in

regression situations, where observations that are in�uen-

tial through their position in factor space (the so-called

“leverage points”) present peculiar problems. While a

proof that the theoretical maximumof % can be attained

is interesting and theoretically important, the correspond-

ing procedures in my opinion su�er from what I have

called the Souped-up Car Syndrome (Huber ): they

optimize one aspect to the detriment of others. For exam-

ple, the high breakdown point S-estimators of regression

even lack the crucial stability attribute of robust procedures

(Davies , Section .).

With high values of ε, alternative interpretations of

contamination models become important, transcending

the ubiquitous presence of a small fraction of gross errors.

�e data may be a mixture of two or more sets with di�er-

ent (e.g., ethnic) origins, and the task no longer is to ignore

a small discordant minority of gross errors (a robustness

problem), but to disentangle larger mixture components

(a diagnostic problem). High breakdown point procedures

can be used for diagnostic purposes, namely to identify a

dominant mixture component, but they need not provide

the best possible approach.

Bayesian Robustness
�e term “robust” had been coined by a Bayesian (Box

). Ironically, while there is a fairly large literature in the

form of journal articles – see, for example, Berger’s ()

overview – Bayesianism never quite assimilated the con-

cept.�e reason seems to be that for an orthodox Bayesian

statistician probabilities exist only in his mind, and that he

therefore cannot separate the model (i.e., his belief) from

the true underlying situation. For a pragmatic Bayesian like

Box, robustness was a property of themodel (which he was

willing to adjust in order to achieve robustness), while for

a pragmatic frequentist like Tukey, it was a property of the

procedure (and he would tamper with the data by trim-

ming or weighting them to achieve robustness). To me as

a decision theorist, the dispute between Box and Tukey

about the proper robustness concept was a question of the

chicken and the egg: which comes �rst, the least favorable

model of Nature, or the robust minimax procedure of the

Statistician? See Huber and Ronchetti (), Chapter ,

in particular p. .

Finite Sample Results and Robust Tests
In his decision theoretic formalization, Huber () had

imposed an unpleasant restriction on Nature by allow-

ing only symmetric contaminations. It seems to be little

known that this restriction is irrelevant; it can be removed

by an approach through �nite sample robust tests, Huber

(, ). �e extension of robust tests beyond the

single-parameter case, however, is di�cult; see Huber and

Ronchetti (), Chapter .

Heuristic Aspects of Robustness
�ere are no rigorous optimality results available once one

leaves the single-parameter case. Admittedly, the perceived

need formathematical rigor and proven optimality proper-

ties has faded away a�er the s. But at least, one should

subject one’s procedures to a worst case analysis in some

neighborhood of the model. Even this is di�cult and rig-

orously feasible only in few cases. A good heuristic alterna-

tive is a combination of in�nitesimal approaches (in�uence

function or shrinking neighborhoods) with breakdown

point aspects. Shrinking neighborhoods were �rst dealt

with by Huber-Carol () in her thesis, and a compre-

hensive treatment was given by Rieder ().

In my opinion the crucial attribute of robust meth-

ods is stability under small perturbations of the model.

I am tempted to claim that robustness is not a collection

of procedures, but rather a state of mind: a statistician

should keep inmind that all aspects of a data analytic setup

(experimental design, data collection,models, procedures)
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should be such that minor deviations from the assump-

tions cannot have large e�ects on the results (a robustness

problem), and that major deviations can be discovered (a

diagnostic problem). Compromises are unavoidable. For

example, the so-called “optimal” linear regression designs,

which evenly distribute the observations on the d cor-

ners of a (d − )-dimensional simplex, on one hand lack
redundancy to spot deviations of the response surface from

linearity, and on the other hand, already subliminal devi-

ations from linearity may impair optimality to such an

extent that the “naive” design (which distributes the obser-

vations evenly over the entire design space) is superior.

Moreover, if there is a problem at a single corner of the sim-

plex, a�ecting half of the observations there, then this can

cause breakdown, leading to a breakdown point no bet-

ter than ε∗ ≅ /(d). See Huber and Ronchetti (),
Chapter , and Chapter , p. .
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Classi�cation problems, arising in di�erent forms within

various contexts, have stimulated a lot of statistical

research with a thread of development stretching back to

Fisher’s discriminant analysis (see 7Discriminant Anal-
ysis: An Overview, and 7Discriminant Analysis: Issues
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and Problems) and leading right to the core of statistical

learning theory. Along this line ROC (Receiver Operating

Characteristic) has come to occupy a privileged position.

Weaving within its theory a central role for two classi�ca-

tion errors types, it manages to give a statistically sound

way of evaluating the diagnostic accuracy of classi�er

variables.

ROC saw its birth within signal detection theory

(Green and Swets ). It was cultivated for a time by

researchers in psychophysics and later on much promoted

within the biomedical sciences (Pepe ; Zhou et al.

). Interest in the technique and the theoretical tools it

o�ers has extended to many areas these days.�e problem

it addresses is fairly simple:

A population Π of entities, be they individuals, signal

emitters, images, ecosystems, whatever, is made up of two

disjoint subpopulations: Π = M ∪ N. An attribute of rele-
vance, say a biomarker like BMI, intensity of an electrical

signal, or environmental variable like Air Quality Index, is

being measured across both subpopulations.�is attribute

will be modeled by random variable X with values on a

continuous or ordinal scale. F is the probability distribu-

tion of X restricted toM with probability density function

f , G that restricted to N with density g.�e classi�cation

problem is that of determining appurtenance to one sub-

population of an object whose X-reading was x. Assuming

the mean corresponding to F is smaller than that of G, it

is natural to set up some number c and declare the object

to belong toM if x < c, or to N if x ≥ c. With reference to
the �gure below, the location of c determines a number of

classi�cation probabilities.

Corresponding to this rule we have two consequences

for each decisions: assigning object with value x < c toM
incurs the risk of committing an error whose probability is

denoted by false negative fraction (FNF)P[X < c∣N] or else
being correct with probability called true negative fraction

(TNF) P[X < c∣M].�e “negative” epithet comes from the
medical context where F would correspond to a healthy

group who are not a�icted by some disease under study.

Conversely, assigning object with value x ≥ c to N incurs
the risk of committing an error, whose probability is called

the false positive fraction (FPF) P[X > c∣M], or else being
correct with probability called true positive fraction (TPF)

P[X > c∣N].
�e performance of a classi�er variable, in particu-

lar its diagnostic accuracy, can be studied in depth by

looking at the graph of the sensitivity (another name for

TPF) against the -speci�city (another name for TNF) of

the classi�er for each possible value of c. �is graph is

called the receiver operating characteristic curve, ROC.

Using distribution functions and hiding c implicitly we

have: ROC(t) =  − G(F−( − t)) for  ≤ t ≤  and c is
given by: c = G−( − ROC(t)). A typical ROC curve is
shown in the �gure below.

�e higher the graph reaches toward the top le� cor-

ner the better the classi�er behaves. One way of gauging

this property is through the area under the curve, denoted

AUC, and de�ned as: AUC =


∫


ROC(t)dt.�is quantity

corresponds to the probability that a randomly selected

pair of objects, one from each subpopulation, is correctly

classi�ed by a test using the classi�er.�is statistic allows

comparisons to be made between classi�ers. Classi�ers

with large AUC are to be preferred. �e above analysis

can be suitably adapted to random variables with discrete

distributions (Figs.  and ).

In practice all the population quantities above are

not known explicitly. �ey have to be estimated from

actual data. �e estimation procedure starts with the

procurement of samples of size m (resp. n) selected from
subpopulation M (resp. N).�e values obtained are used
to obtain optimal values of c as well as to compare di�er-

ent classi�ers.ROC curves can be estimated from such data

using a number of techniques which vary across the whole

spectrum of estimation techniques.�ere are parametric

methods using known underlying distribution types.�e

sample from M (resp. N) gives estimates for the corre-
sponding parameters and an ROC curve can be derived

from the de�nition above using distribution functions

explicitly.

Nonparametric models using empirical distributions

are popular in areas where identi�cation of the under-

lying distributions has not been de�nitively established.

Using results from 7empirical processes and asymp-
totic theory a number of very useful statistical results

have been obtained for nonparametric models.�e most

popular method, called the binormal model, is in fact

semiparametric. It derives a lot of its sampling distribu-

tional results from the Komlós–Major–Tusnády Brownian

bridge construction (Hsieh and Turnbull ). �ough

it assumes underlying normal distributions, it can be

shown to be valid in cases where the distributions can

be transformed to normal distributions. Furthermore the

method has shown itself to be robust to departures from

normality.

A large number of other estimation techniques have

been proposed in the literature like minimum distance

and Bayesian estimators. �e former are de�ned relative

to some speci�c metric, or penalty function if you will,

on some suitable space of probability distributions. �is

idea ties up nicely with the hypothesis testing aspect of

ROC theory. In practice good values of cut-o� point c
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obtained from reliable ROC curve estimators would be

needed. “Good” varies from one application to the other,

but in general itmeans valueswhichminimize costs related

to consequences following from taking the wrong deci-

sion, which are tied up to probabilities FNF and TPF. So

in general we need to take care of some penalty func-

tion, say linear function: α + αTPP[TP] + αTNP[TN] +

αFPP[FP]+ αFNP[FN] where the coe�cients αAB give the

costs corresponding to eventuality AB.

ROC was, and still is, extensively used and developed

within the biomedical sciences. One important current

line of research tries to locate canonical theory within

a GLM context. Nevertheless these last thirty years have

seen an enormous amount of interest in the technique
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amongst computer science researchers interested in dis-

ciplines related to statistical classi�cation and machine

learning (Krzanowski and Hand ).

Cross References
7Discriminant Analysis: An Overview
7Nonparametric Predictive Inference
7Pattern Recognition, Aspects of
7Statistical Signal Processing
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7 “Modern statistics, like telescopes, microscopes, X-rays, radar,

and medical scans, enables us to see things invisible to the

naked eye. Modern statistics enables us to see through the

mists and confusion of the world about us, to grasp the under-

lying reality.”

David Hand

Introduction
Despite some recent vigorously promulgated criticisms

of statistical methods (particularly signi�cance tests),

methodological limitations, and misuses of statistics (see

Ziliak andMcCloskey ; Hurlbert and Lombardi ;

Marcus ; especially Siegfried , among others), we

are the ones still “living in the golden age of statistics”

(Efron ).

Statistics play a vital role in collecting, summarizing,

analyzing, and interpreting data in almost all branches

of science such as agriculture, astronomy, biology, busi-

ness, chemistry, economics, education, engineering, genet-

ics, government,medicine, pharmacy, physics, psychology,

sociology, etc. Statistical concepts and principles are ubiq-

uitous in science: “as researchers, we use them to design

experiments, analyze data, report results, and interpret

the published �ndings of others” (Curran-Everett et al.

). Statistical analysis has become an indispensable and

fundamental component and vehicle of modern research.

Why is there such a dependence on statisticalmethods?

One of the possible reasons is that statistical thinking has a

universal value, as a process that recognizes that variation

is present in all phenomena and that the study of variation

leads to new knowledge and better decisions. According to

Suppes (), “the new work, the new concepts, the new

e�orts, always lead initially, and, o�en for a long time, to

uncertain results. It is…only by an understanding of prob-

ability and statistics that a philosopher of science can come

to appreciate, in any sort of sophisticated way, the nature

of uncertainty that is at the heart of contemporary sci-

ence…Without statistical methods, it is o�en impossible

to convert the natural, seemingly confused, uncertainty of

many results in science into highly probable ones.” Straf, in

his presidential ASA address (), points out that statis-

tics is special “not only because it advances discoveries

across the breadth of scienti�c disciplines and advances

the development of technologies, but also because it has

an important connection to the human side of scienti�c

and technological development.” According to him, the

role of statistics is “to increase our understanding, to pro-

mote humanwelfare, and to improve our quality of life and

well-being by advancing the discovery and e�ective use of

knowledge from data.”

The Importance of Statistics
Since this Encyclopedia contains many entries on the spe-

ci�c role of statistics in di�erent sciences, we will list here

only several selected sources underlying the importance

of statistics and its versatile usefulness. For obtaining a

further appreciation of the role of statistics, the interested

reader is referred to those entries, list of references and

is urged to “virtually attend” a lecture given by Sir David

Cox, by downloading the video �le “�e Role of Statistics

in Science and Technology.” Additionally, readers (includ-

ing all researchers and writers of introductory textbooks

on statistics) are advised to read carefully the elucidat-

ing paper written by James Brewer () on myths and

misconceptions in statistics textbooks.
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(a) Climate research. Zwiers and Storch () empha-
size the importance of statistical methods “for a whole

gamut of activities that contribute to the ultimate

synthesis of climate knowledge, ranging from the col-

lection of primary data, to the interpretation and anal-

ysis of the resulting high-level data sets” (see also

7Statistics and Climate Change).
(b) Economics and social studies. Statistical analysis

has proved useful in the solution of a variety of eco-

nomic problems such as production, consumption,

distribution of income andwealth, wages, prices, prof-

its, savings, expenditure, investment, unemployment,

poverty, etc. “Statistical methods are essential to social

studies, and it is principally by the aid of such meth-

ods that these studies may be raised to the rank of

sciences. �is particular dependence of social stud-

ies upon statistical methods has led to the unfortu-

nate misapprehension that statistics is to be regarded

as a branch of economics, whereas in truth, meth-

ods adequate to the treatment of economic data, in

so far as these exist, have only been developed in

the study of biology and the other sciences” (Fisher

).

(c) Engineering. According to Johnson et al. (,
p. ) “there are few areas where the impact of

the recent growth of statistics has been felt more

strongly than in engineering and industrial manage-

ment. Indeed, it would be di�cult to overestimate the

contributions statistics has made to solving produc-

tion problems, to the e�ective use of materials and

labor, to basic research, and to the development of new

products.” Statistics in engineering can be e�ectively

used to solve, for example, the following diversi�ed

tasks: “calculating the average length of the down-

times of a computer, collecting and presenting data

on the numbers of persons attending seminars on

solar energy, evaluating the e�ectiveness of commer-

cial products, predicting the reliability of a rocket, or

studying the vibrations of airplane wings” (op. cit.,

p. ).

(d) Genomics. Ben-Hui Liu () emphasizes that
statistics is a tool to solve problems that cannot be

solved only through biological observation or quali-

tative analysis and that this is especially true for the

statistics used in genomic mapping.

(e) Information systems. Dudewicz and Karian ()
indicate that the role of statistics in information

systems and information technology in general “can

be substantial, yielding more nearly optimal perfor-

mance of problems at the emerging frontiers in all

their aspects.”

(f) Kinetic theory of gases. Von Mises (, p. )
believes that “not even the tiniest little theorem in the

kinetic theory of gases follows from classical physics

alone, without additional assumptions of a statistical

kind.”

(g) Medical research. Statisticians are at the “forefront
of medical research, helping to produce the evidence

for new drugs or discovering links between health

and disease and the way we lead our lives” (Oxford

Brookes University web site (http://tech.brookes.ac.

uk/teaching/pg/msc-in-medical-statistics). According

to Sprent () the role of statistics in medical

research “starts at the planning stage of a clinical trial

or laboratory experiment to establish the design and

size of an experiment that will ensure a good prospect

of detecting e�ects of clinical or scienti�c interest.

Statistics is again used during the analysis of data

(sample data) to make inferences valid in a wider

population.” Feinstein () points out that the sta-

tistical citation of results has become one of the most

common, striking phenomena of modern medical lit-

erature (see also 7Medical Statistics and 7Medical
Research, Statistics in).

(h) Ophthalmology. Coleman () believes that

statistics play a vital role in “helping us to make deci-

sions about new diagnostic tools and treatments and

the care of our patients in the face of uncertainty

because, when dealing with patients, we are never

% certain about an outcome.”

(i) Pharmacogenomics. Kirkwood () argues that
statistical theory andprobabilitywill play an expanded

role in understanding genetic information through

the development of new analytical methodology and

the novel application of traditional statistical the-

ory. He points out that “the combination of statis-

tical applications and genomic technologies is a key

to understanding the genetic di�erences that identify

patients susceptible to disease, stratify patients by clin-

ical outcome, indicate treatment response, or predict

adverse event occurrences.”

(j) Policy and world development. For example,
Moore (), in his presidential address to the Amer-

ican Statistical Association (ASA), claimed that it is

di�cult to think of policy questions that have no

statistical component, and argued that statistics is a

general and fundamental method because data, vari-

ation, and chance are omnipresent in modern life.

High-quality statistics also “improve the transparency

and accountability of policy making, both of which

are essential for good governance, by enabling elec-

torates to judge the success of government policies and
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to hold their government to account for those poli-

cies… Statistics play a vital role in poverty reduction

and world development” (Paris). However, many

developing countries still lack the capacity to pro-

duce and analyze good-quality data and use the range

of appropriate statistical techniques required to sup-

port e�ective development progress (see also the

entries 7Promoting, Fostering and Development of
Statistics in Developing Countries,�e Role of Statis-

tics –DevelopingCountry Perspective and7Selection
of Appropriate Statistical Methods in Developing

Countries).

(k) Psychiatry. Hand () believes that statistics has a
major role in modern psychiatry, and that “awareness

and understanding of statistical concepts is of increas-

ing importance to all psychiatrists, but especially those

whowish to advance the �eld by undertaking research

themselves” (see also 7Psychiatry, Statistics in).
(l) Qualitymanagement. �e role of statistics includes

control and improvement of the quality of indus-

trial products, during and a�er the production pro-

cess through statistical quality control (Srivastava and

Rego ).

(m) Quantum theory. Karl Popper (, p. ) argues
that the concept that “quantum theory should be inter-

preted statistically was suggested by various aspects of

the problem situation. Its most important task—the

deduction of the atomic spectra—had to be regarded

as a statistical task ever since Einstein’s hypothesis

of photons (or light-quanta)” (see also 7Statistical
Inference for Quantum Systems).

(n) Science. Magder () points out that the role of
statistics in science should be to quantify the strength

of evidence in a study so other scientists can inte-

grate the new results with other information to make

scienti�c judgments.

(o) Seismology. According to Vere-Jones, one of the
pioneers of statistical seismology, “the last decade

has seen an in�ux of new concepts, new data, and

new procedures, which combine to make the present

time as exciting as any for statistical seismology. New

concepts include new mathematical structures, such

as self-similarity, fractal growth and dimension and

self-organizing criticality, for which existing statistical

techniques, based as most of them are on assump-

tions of stationarity and ergodicity, are inappropriate.

In this area at least, seismology is once more challeng-

ing the statisticians to enlarge and update their tool

box” (Vere-Jones ).

(p) Sociology. Statistical methods have had a success-
ful half-century in sociology, contributing to a greatly

improved standard of scienti�c rigor in the disci-

pline (Ra�ery ). �e overall trend has been

toward using more complex statistical methods to

match the data, starting from cross-tabulation, mea-

sures of association, and log-linear models in the

late s; LISREL-type causal models and event-

history analysis in the s; and social networks,

simulation models, etc. in the late s (see also

7Sociology, Statistics in).

Statistics and Uncertainty
Human life always confronts challenging situations call-

ing for decision-making under uncertainties. While the

role of statistics is to minimize the uncertainty associated

with the impugned phenomena under investigation, the

uncertainty could be measured by the concept of prob-

ability. Probability is sine qua non for statistics and sta-

tistical modeling, the most important covariate that is

omnipresent in all realistic situations challenging the sci-

entists. In fact, the role of statistics encompasses the two

fundamentally relevant areas of approximation (anymodel

is an approximation of the real-life phenomenon) and that

of optimization (to achieve the minimization of the “gap”

between the model and reality).

�e role of statistics could, very comprehensibly, be

summarized as the “statistical game” being played by

the statistician/scientist(s) using statistics against nature

as the second player. And this statistical game is quite

di�erent from the well-known “zero-sum two person

game” in the mathematical setup, inasmuch as the sec-

ond player is not a conscious player trying to be strate-

gic with the choice of the playing strategies of the �rst

player (statistician/scientist(s) using statistics), and in that

the loss incurred by the �rst player is not a gain for

the second player, namely, nature (so that this game is

not zero-sum). For example, nature will not cause rains

if the statistician/person, guided by weather scientists

predicting empirically (statistically), is not carrying an

umbrella/raincoat. And vice versa if the person is not car-

rying the protection, that nature will cause the rain. Nature

will cause/not cause the rain if it had to do so for whatever

reasons not fully known to us/scientists.

�e previous discussion is related to the quantum

physics phenomenon. If we go at the microphysics level, as

we would attempt to do with the help of a powerful micro-

scope, any matter is not deterministic. Actually, the most

decisive conceptual event of twentieth-century physics has

been the discovery that the world is not deterministic

(Hacking , p. ). In fact, as we know, at themicroscopic

level, as to whether or not there will be occupancy/a parti-

cle or the absence of it at a particular point in the space



Role of Statistics R 

R

occupied by the relevant matter at any speci�c point in

time, the best physicist in the world, as of today, cannot tell.

�e best that one could do will be the statement of prob-

ability of occupancy reckoned empirically (i.e., based on

the experimental data, and that too, only statistically and

probabilistically) subject to approximation error.

Conclusion and Recommendation
We agree with Provost and Norman (, p. ) that the

st century will place even greater demands on society for

statistical thinking throughout industry, government, and

education.

However, if statistics aspire to be an essential element in

the description and understanding of the actual phenomena

in the world around us, it is an imperative that we, statis-

ticians, conduct a critical evaluation of statistics in the �rst

place. To achieve that, we need to begin with building a

bridge between Bayesians and frequentists, may be with

the help of a new Ronald Fisher. Equally importantly, we

need to �nd a way to explain more clearly the usage of

statistical methods, along with their advantages and dis-

advantages, to overcome the generalized confusion in the

public and among many researchers over many statisti-

cal issues and also to educate statistical practitioners at all

levels.

7 “A chisel in a skillful artist’s hand can produce a beautiful

sculpture and a scalpel in an experienced surgeon’s hand

can save a person’s life. Similarly, statistical techniques used

properly by an honest and knowledgeable scientist can be

equally impressive at illuminating complex phenomena, thus

promoting scientific understanding, and shortening the time

between scientific discovery and its impact on societal prob-

lems. If misused, they can produce the counterproductive

results… Such erroneous results, however, should not be

viewed as a failing of Statistics”

(ASA unedited letter to the editor of the Science News in
response to the “Odds Are, It’s Wrong” paper.)
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Role of Statistics in Advancing
Quantitative Education
James J. Cochran

College of Business, Louisiana Tech University, Ruston,

LA, USA

Introduction
Education policymakers and educators fromall disciplines

generally agree that as data have become more plentiful

andmore readily available, the importance of statistical lit-

eracy has grown (Utts ; Gar�eld and Ben-Zvi ).

Since trends in availability of data show no signs of abat-

ing (indicators actually point to accelerating increases in

data availability), the importance of teaching statistical

thinking to students at all levels is di�cult to overstate or

overestimate. It is not an exaggeration to state that statis-

tical/quantitative literacy is almost as critical to the future

success of students as is reading literacy (Steen ).�us,

it is vitally important that both society and the statis-

tics community understand the vital role of statistics in

quantitative education.

Statistics’ Role in Quantitative Education
Several phrases are used somewhat interchangeably in ref-

erence to an individual’s ability to work with numbers

and relationships and understand the implications of her

or his results. While the generally accepted de�nitions

of these phrases overlap, there are subtle but important

di�erences. �ese phrases (and generic versions of their

generally acceptable de�nitions) include:

● Numeracy – this phrase, �rst used in the Crowther

Report on education in the United Kingdom (Jarman

), comprises the aptitude to use reason to solve

sophisticated quantitative problems; a fundamental

understanding of the scienti�c method; and the ability

to communicate with others about everyday quantita-

tive issues, questions, and concerns. In explaining this

phrase, Steen () wrote:

7 Numeracy is to mathematics as literacy is to language.
Each represents a distinctive means of communication
that is indispensable to civilized life.

● Quantitative Literacy – this phrase refers to minimal

levels of comfort with, competency in, and disposi-

tion toward working with numerical data and concepts

necessary to function at a reasonable level in society.

● Quantitative Reasoning – this phrase represents the

manifestation of basic logic applied by an individual

to the construction of rigorous and valid arguments

as well as the evaluation of the rigor and validity of

arguments made by others.�us, quantitative reason-

ing emphasizes the higher-order analytic and critical

thinking skills needed to understand, create, and cope

with sophisticated arguments (which are frequently

supported by quantitative data).

See Madison and Steen () for a brief history of the

evolution of these terms.

If one considers these three concepts to be the corner-

stones of quantitative education, then their meaningsmust

provide the basis of a broad de�nition of quantitative edu-

cation.�e de�nition of quantitative education that results

from this perspective is the e�ort to imbue students with

numeracy, quantitative literacy, and quantitative reasoning.

While quantitative education certainly subsumes statis-

tics education, statistics education is without question a

vital and critical component of quantitative education.�e

strict associationmost individuals place on quantitative lit-

eracy and mathematics, in combination with the manner

in which mathematics is generally taught at lower levels

of education, generates an overwhelming and ill-advised

emphasis on thinking of quantitative issues deterministi-

cally.�is emphasis on a deterministic treatment of quan-

titative problems reinforces the notion that a problem has

a single correct answer and cultivates the more damag-

ing conclusion that there is a single correct way to solve
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a problem, which ultimately robs the student of the oppor-

tunity to fully comprehend and appreciate the nature of

quantitative problems and problem solving.�is issue can

be confronted directly through the integration of statis-

tics (and probability) into quantitative education at all

levels. Integration of statistics and probability into quan-

titative education can also be used to address the common

misconceptions that () quantitative concepts can only be

memorized and cannot be understood by average students;

() quantitative concepts have little relevance to everyday

life; () quantitative approaches to problem solving lead to

conclusive and consistent conclusions; and () quantitative

analysis is a solitary activity to be pursued by individuals

in isolation.

Florence Nightingale (Cook and Nash ) expressed

her explicit recognition and appreciation of statistics’ role

in quantitative education when she stated:

7 Statistics is the most important science in the whole world,
for upon it depends the practical application of every other
science and of every art; the one science essential to all
political and social administration, all education, all organi-
zation based on experience, for it only gives results of our
experience.

and

7 To understand God’s thoughts we must study statistics, for
these are the measure of his purpose.

As a critically important component of quantitative

education, statistics educators should strive to encourage

students to develop numeracy, quantitative literacy, and

quantitative reasoning skills. �us, it is vitally important

that statistical education focus on the components of these

three objectives.

Important Objectives of Statistics
Education and their Links to Quantitative
Education
Statistics education contributes to quantitative education

through its strong emphasis on the development of numer-

acy, quantitative literacy, and quantitative reasoning skills.

Statistics education can address the various components

of numeracy, quantitative literacy, and quantitative reason-

ing skills in a myriad of ways. In the following sections the

author discusses several ways in which statistics education

naturally and organically encourages students to develop

each component of numeracy, quantitative literacy, and

quantitative reasoning skills (identi�ed in the preceding

de�nitions).

Aptitude to use Reason to Solve
Sophisticated Quantitative Problems
Statistics instructors have abundant opportunities to help

students develop their aptitude to use reason to solve

sophisticated quantitative problems. To solve problems in

statistics, students must appreciate the fundamental dif-

ference between certainty and uncertainty as well as the

rami�cations of uncertainty; development of this apprecia-

tion certainly fosters the aptitude to use reason in resolving

sophisticated quantitative problems.�e student must use

sophisticated logic and reason to understand the p-value as

a conditional probability (the probability of taking a sam-

ple in a prescribed manner and collecting results at least

as counter to the null hypothesis given that the condition

that the null hypothesis is true). Similarly, comprehension of

the distinctions between conditional and joint probability,

precision and accuracy, and experimentation and observa-

tion also require extensive use of sophisticated reasoning

and logic.

Fundamental Understanding of the Scientific
Method
�e scienti�c method is the logical and rational order of

steps by which a scientist analytically and rigorously tests

a conjecture and reaches a conclusion while minimizing

the biases s/he introduces into a scienti�c inquiry. Statis-

tical inference is unquestionably an overt embodiment of

the scienti�c method. Indeed, the Guidelines for Assess-

ment and Instruction in Statistics Education (GAISE )

report of the American Statistical Association maintains

that statistics is a problem-solving process that comprises

four steps

● Formulation of questions – developing hypotheses and

selecting appropriate analytic methods and decision

making criteria;

● Data collection –making decisions onwhat data to col-

lect and how to collect the data, as well as executing the

actual process of collecting data;

● Data analysis – using descriptive and inferential

approaches that lead to an understanding of what the

sample data that have been collected can reveal about

their population; and

● Interpretation of results – disseminating and explain-

ing the results to the appropriate audience, consider-

ing implementation issues, and making suggestions to

make similar future e�orts more scienti�cally sound.

�ese four steps and the steps of the scienti�cmethod have

a bijective relationship (this is why many consider statis-

tics to be the purest science). By stressing this relationship

in statistics courses, statistics educators can help students
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understand the relevance of the scienti�c method to their

lives. Furthermore, statistics educators have opportuni-

ties to reinforce the appreciation of the scienti�c method

through coverage of the justi�cations for sampling, as it is

the use of sample data in lieu of census data that necessi-

tates the use of the scienti�c method.

Ability to Communicate about Everyday
Quantitative Issues, Questions, and Concerns
Because statistics students are generally learning about

concepts and ideas that are sophisticated and unfamiliar

to them, statistics courses provide natural environments

for the nurturing of communications skills. As a statistics

instructor works with students to enable them to con-

nect with and understand statistical concepts, s/he can

also stress the importance of students’ attempts to emu-

late the instructor’s e�orts to communicate; through these

e�orts students can develop the ability to explain statisti-

cal concepts, methodologies, and results with individuals

who are unfamiliar with and intimidated by statistics. Stu-

dents will naturally embrace this skill once they under-

stand its desirability and marketability. A student who

can correctly explain the underlying principle of statisti-

cal inference in an understandable manner or clarify the

distinction between the concepts of association and causal-

ity, replication and repeated measurement, or parametric

and nonparametric approaches will have great advantages

in her/his academic and career pursuits.

Minimal Levels of Comfort with, Competency
in, and Disposition toward Working with
Numerical Data and Concepts Necessary to
Function in Society
Asound background in basic statistics provides an individ-

ual with an important level of self-su�ciency with respect

to numerical data and concepts. For example, statistics

provides its users with systematicmethods for dealingwith

variation; the quantitatively literate individual not only

appreciates the ubiquity of variation but also understands

the need to consider variation when interpreting observed

phenomena and making decisions. Such an individual is

capable of quantifying and explaining variability; she or

he also recognizes that variability can be the result of pat-

terns in the values of the variable of interest, relationships

between the variable of interest and other variables, and/or

randomness. Understanding of these notions leads directly

to an understanding of randomness (and its importance)

as well as the distinction between experimentation and

observation (and the associated rami�cations).

While every concept covered in an introductory statis-

tics course provides statistics students with an occasion to

become more comfortable with numerical concepts, per-

haps none presents a greater opportunity (and challenge)

than the notion of a central limit theorem (see 7Central
Limit�eorems). An instructor will surely fail to commu-

nicate with all but the most highly motivated students by

explaining that:

7 A central limit theorem is any weak-convergence theorem
that expresses the tendency for a sum of several inde-
pendent identically distributed random variables with a
positive variance to converge in distribution to a member
of a known and predictable family of distributions.

On the other hand, a statistics instructor can open

her/his students’ eyes to the elegance and beauty of this

concept if s/he explains instead that:

7 One version of the central limit theorem states that given
a sample is taken from a population whose distribution
has mean µ and variance σ  , the distribution of the poten-
tial values of the resulting sample mean X̄ approaches a
normal distribution with a mean µX̄ = µ and a variance
σX̄
 = σ /n as the sample size n increases.

�e second explanation allows the statistics instructor

to further elaborate on how the probability of collecting

a sample with an extreme mean decreases rapidly as the

sample size increases because an extreme sample mean

can only result from a sample that consists primarily of

extreme observations, and the probability of collecting a

sample that consists primarily of extreme observations

decreases rapidly as the number of observations in the

sample increases. �is explanation both appeals to and

nurtures the student’s levels of comfort with, competency

in, and disposition toward working with numerical data

and concepts.

Development/Enhancement of the Ability to
Use the Higher-Order Analytic and Critical
Thinking Skills Needed to Understand and
Create Sophisticated Arguments
In properly designing and executing a statistical inves-

tigation, one must use higher-order analytic and critical

thinking skills to create quantitatively and logically sophis-

ticated arguments.�us, by teaching the process of statisti-

cal investigation, a statistics instructor is implicitly assist-

ing the student in the development and enhancement of

these higher-order analytic and critical thinking skills. For

example, because students generally think of mathemat-

ics deterministically, they tend to adhere to the rhetorical

tactic of using examples to support an argument (Law-

ton ; Sotos et al. ). Because of the uncertainty
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embedded in sample data (and so is embedded in any

statistical investigation), one cannot use examples to sup-

port a null hypothesis; sample data is evaluated in terms

of the strength of the evidence it provides against the null

hypothesis.�is distinction, between logical/rhetorical and

empirical arguments, is initially di�cult for students to

comprehend. However, with clear and cogent explanations

the statistics instructor can help the student understand

the sophisticated argument behind this distinction; this

certainly constitutes the development and enhancement of

these higher-order analytic and critical thinking skills.

In another example, consider the introductory statis-

tics student’s strong tendency to fall victim to the cum

hoc ergo propter hoc fallacy. When these students �nd a

strong correlation between two random variables, they

o�en immediately infer that a causal relationship exists

between these two variables. Enhancement of their higher-

order analytic and critical thinking skills is necessary to

facilitate their understanding that correlation is a necessary

but not su�cient condition for causality.�e studentsmust

further re�ne these skills in order to achieve an under-

standing of the concepts of spurious correlation, reverse

causation, two way causation, and common causal vari-

ables (examples of which can be found throughout the

popular media). �us, through the development of the

ability to properly interpret the results of a statistical anal-

ysis (in this case, a simple correlation), a student is enhanc-

ing her/his ability to use the higher-order analytic and

critical thinking skills needed to understand and create

sophisticated arguments.

Conclusions
Statistics education has a critical role in each of the primary

components of quantitative education. �rough statis-

tics education students can become more numerate and

strengthen their analytic and critical thinking skills. Statis-

tics instructors can and should increase their students’

and the public’s appreciation for statistics by closely align-

ing their course objectives with the broad de�nition of

quantitative education.
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Role of Statistics: Developing
Country Perspective
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Statistics: A Part of the Enabling
Environment for Development
�emain role of statistical development is to help National

Statistical Systems (NSS) e�ciently produce good statis-

tics. Good statistics are characterized, inter alia, by the

quality (reliability, accuracy, accessibility, timeliness, etc.)

with which they are produced. �ey are said to be good

only to the extent that they meet users’ needs.�ey need

to be available to a broad range of public and private users

and be trusted to be objective and reliable. In addition, they

must meet all policy needs and inform the public so that

the latter can evaluate the e�ectiveness of government’s

actions.

Good statistics are needed to assess, identify issues,

support the choice of interventions, forecast the future,

monitor progress and evaluate the results and impacts of

policies and programmes. �ey provide a basis for good

decision-making, support governments in identifying the

best courses of action in addressing problems, are essential

to manage the e�ective delivery of basic services, and are

indispensable for accountability and transparency. �ey

are also essential for providing a sound basis for the design,

management, monitoring, and evaluation of national pol-

icy frameworks such as the Poverty Reduction Strategies

(PRSs) and for monitoring progress towards national, sub

regional, regional, and international development goals

including the Millennium Development Goals initiatives

(MDGs). Accordingly, good statistics are considered to be

part of the enabling environment for development.

Initiatives Aimed at Supporting
Developing Countries in Statistics
In recognition of the importance of statistics in their

development process, developing countries have been

struggling to provide their users with quality statisti-

cal information. However, the last decade of the twenti-

eth century has witnessed an unprecedented increase in

the demand for quality and timely statistics following an

emergence of initiatives aimed at tackling development

issues including those enshrined in the Millennium Dec-

laration. In fact, there is increasing recognition that the

successful implementation, evaluation, and monitoring of

national, sub regional, regional, and international devel-

opment agendas rely on the production and use of quality

statistics.�is has challenged already weak and vulnerable

NSSs in developing countries.

In response to this challenge, several initiatives have

been launched at the international level to support devel-

oping countries to meet their respective users’ needs.

Among these is the Marrakech Action Plan for Statis-

tics (MAPS) adopted in  during the Second Round

Table on Managing for Development Results. It consists

of a global agenda aimed at improving the availability and

use of quality statistics in support of PRSs according to

a well-de�ned budget covering a speci�c period of time.

�e MAPS recommends, inter alia, that every low-income

country designs and implements a National Strategy for

the Development of Statistics (NSDS) aimed at provid-

ing the country with strategic orientations and appropriate

mechanisms to guide and accelerate the development of its

statistical capacity in a sustainable manner.

Some Issues and Challenges Facing
Developing Countries
Key issues and problems confronting statistical develop-

ment in developing countries include: inadequate polit-

ical commitment to statistical development especially at

the national level; limited coordination, collaboration, net-

working and information sharing among stakeholders;

inadequate resources (�nancial, human, and technical) for

statistical production; inadequate infrastructure (physical

and statistical) for statistical production; limited institu-

tional capacity; poor quality data; inadequate data man-

agement (archiving, analysis, and dissemination) systems;

lack of long-term planning for statistical development;

and inappropriate pro�les of National Statistical O�ces

(NSOs) in government hierarchy.

In this context, those delivering NSSs in develop-

ing countries face speci�c challenges including: creating

greater awareness among data users and especially plan-

ners, policy makers and decision makers about the strate-

gic importance of statistics in their work, particularly in

evidence-basedmacro-economicmanagement, policy for-

mulation and poverty measurement andmonitoring; play-

ing an advocacy role to ensure that statistical production

and use are given high priority by national governments;

building ample capacity to make user needs assessments

for data of improved quality and keep abreast of the data

needs of policy makers, the private sector and civil society;
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building capacity to harness technology and to improve the

way data are collected and disseminated to users; building

competent user groups (policymakers, researchers,media)

to properly understand and interpret available statisti-

cal data; building competence in Survey Management in

NSOs; and promoting co-ordination and synergy among

institutions involved in statistical activities.

Conclusion
Several e�orts are being made at international, regional,

sub-regional and national levels to support NSS of

developing countries. In spite of these e�orts, the major-

ity of developing countries still do not have statistical

systems that are capable of providing, in a sustainable

manner, good statistical data and information required for

evidence-based planning and policy formulation, demo-

cratic governance and accountability, political and per-

sonal decisions. It is therefore imperative that those sup-

porting statistical development e�orts in developing coun-

tries address the above-mentioned challenges to help

statistics play their role of enablers of development.
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�e Rubin Causal Model (RCM) is a formal mathematical

framework for causal inference, �rst given that name by

Holland () for a series of previous articles developing

the perspective (Rubin , , , , , ,

).�is framework, as formulated in these articles, has

two essential parts (the de�nition of causal e�ects using

the concept of potential outcomes and the de�nition of a

model for the assignment mechanism) and one optional

part (which involves the speci�cation of a model for quan-

tities treated as �xed by the �rst two parts). �ese three

parts are brie�y described, emphasizing the implications

for practice. A longer encyclopedic entry on the RCM is

Imbens and Rubin (), chapter length summaries are

included in Rubin (, ) and a full-length text from

this perspective is Imbens and Rubin ().

�e �rst part is conceptual and implies that we should

always start an inquiry into a causal question by carefully

de�ning all causal estimands (quantities to be estimated)
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in terms of potential outcomes, which are all values that

could be observed in some real or hypothetical experi-

ment comparing the results under a well-de�ned active

treatment versus the results under a well-de�ned con-

trol treatment in a population of units, each of which

can be exposed, in principle, to either treatment.�at is,

causal e�ects are de�ned by comparisons of (a) the val-

ues that would be observed if the active treatment were

applied and (b) the values that would be observed if instead

the control treatment were applied to this population of

units. �is step contrasts with the common practice of

de�ning causal e�ects in observational studies in terms of

parameters in some regression model, where the manip-

ulations de�ning the active versus control treatments are

o�en le� implicit and ill-de�ned, with the resulting causal

inferences correspondingly ambiguous. See, for example,

the discussions by Mealli and Rubin () and Angrist

et al. (). �is �rst step of the RCM can take place

before any data are observed or even collected. �e set

of potential outcomes under the active treatment and the

control treatment de�nes the “science” – the scienti�c

objective of causal inference in all studies, whether ran-

domized [see the entries on experiments by Hinkelman

() and Cox ()], observational or entirely hypo-

thetical. It appears that the �rst use of the formal con-

cept of potential outcomes to de�ne causal e�ects was

Neyman () in the context of randomization-based

inference in randomized experiments, but this notation

was not extended to nonrandomized studies until Rubin

(); Rubin () provides some historical perspective.

�e science also includes covariates (background vari-

ables) that describe the units in the population.

�e second part of the RCM, the formulation of the

assignment mechanism, implies that a�er having de�ned

the science, we should continue by explicating the design

of the real or hypothetical study being used to estimate

that science. �e assignment mechanism mathematically

describes why some study units will be (or were) exposed

to the active treatment and why other study units will be

(or were) exposed to the control treatment. Sometimes the

assignmentmechanism involves the consideration of back-

ground (i.e., pre-treatment) variables for the purpose of

creating strata of similar units to be exposed to the active

treatment and the control treatment, thereby improving

the balance of treatment and control groups with respect

to these background variables (i.e., covariates). A true

experiment automatically cannot use any outcome (post-

assignment) variables to in�uence design because they are

not yet observed. If the observed data were not generated

by a true experiment, but rather by an assignment mech-

anism corresponding to a nonrandomized observational

data set, there still should be an explicit design phase.�at

is, in an observational study, the same guidelines as in an

experiment should be followed.

More explicitly, the design step in the analysis of an

observational data set for causal inference should struc-

ture the data to approximate (or reconstruct or replicate)

a true randomized experiment as closely as possible. In

this design step, the researcher never uses or even exam-

ines any �nal outcome data, but rather, identi�es subsets

of units such that the active and control treatments can

be thought of as being randomly assigned within the sub-

sets.�is assumed randomness of treatment assignment is

assessed by examining, within these subsets of units, the

similarity of the distributions of the observed covariates in

the treatment group and in the control group.

�e third part of the RCM is optional; it derives infer-

ences for causal e�ects from the observed data by con-

ceptualizing the problem as one of imputing the missing

potential outcomes.�at is, once some outcome data are

observed (i.e., observations of the potential outcomes cor-

responding to the treatments actually received by the vari-

ous units), then themodeling of the outcomedata given the

covariates should be structured to derive predictive distri-

butions of those potential outcomes that would have been

observed if the treatment assignments had been di�erent.

�is modeling generates stochastic predictions (i.e., impu-

tations) for all missing potential outcomes in the study,

which, when combined with the actually observed poten-

tial outcomes, allows the calculation of causal–e�ect esti-

mands. Because the imputations of the missing potential

outcomes are stochastic, repeating the process results in

di�erent values for the causal–e�ect estimands.�is vari-

ation across the multiple imputations (Rubin , )

generates interval estimates and tests for the causal esti-

mands. Typically in practice, this third part is implemented

using simulation-based methods, such as Markov chain

Monte Carlo computation (see 7Markov Chain Monte
Carlo) applied to calculate posterior distributions under

Bayesian models.

�e conceptual clarity in the �rst two parts of the

RCMo�en allows previously di�cult causal inference situ-

ations to be easily formulated.�e optional third part o�en

extends this successful formulating by relying on mod-

ern computational power to handle analytically intractable

problems. Recent, albeit somewhat idiosyncratic, examples

include Hirano et al. (), Jin and Rubin (), and

Rubin and Zell ().
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Introduction
It is o�en required to approximate to the distribution of

some statistics whose exact distribution cannot be conve-

niently obtained. When the �rst few moments are known,

a common procedure is to �t a law of the Edgeworth type

having the same moments as far as they are given. �is

method is o�en satisfactory in practice, but has the draw-

back that error in the “tail” regions of the distribution are

sometimes comparable with the frequencies themselves.

Notoriously, the Edgeworth approximation can assume

negative values in such regions.

�e characteristic function of the statistic may be

known, and the di�culty is then the analytical one of

inverting a Fourier transform explicitly. It is possible to

show that for some statistics a satisfactory approximation

to its probability density, when it exists, can be obtained

nearly always by themethod of steepest descents.�is gives

an asymptotic expansion in powers of n−, where n is the
sample size, whose dominant term, called the saddlepoint

approximation, has a number of desirable features. �e

error incurred by its use isO(n−) as against themore usual
O(n−/) associated with the normal approximation.

The Saddlepoint Approximation
Let y = (y, . . . , yn)′ be a vector of observations of n ran-
domvariables with joint density f (y). Suppose that the real
random variable Sn = Sn(y) has a density with respect to
Lebesgue measure which depends on integer n > N for
some positiveN. Let ϕn(z) = E(eizSn) be the characteristic
function of Sn where i is the imaginary unit.�e cumulant

generating function of Sn is ψn(z) = log ϕn(z) = Kn(T)
with T = iz. Whenever the appropriate derivatives exist,
let ∂jψn(̃z)/∂zj denote the jth order derivative evaluated

at z = z̃.�e jth cumulant κnj of Sn, where it exists, satis�es
the relation

i
j
κnj =

∂ jψn()
∂z j

. ()

It is assumed that the derivatives ∂ jψn(z)/∂zj exist and are
O(n) for all z and j = , , . . . , rwith r ≥ .We use here par-
tial derivatives because the functions involvedmay depend

on something else, a parameter vector for example.

Let hn(x) be the density of the statistics Xn =
n−/ {Sn − E(Sn)}.�e characteristic function of Xn is

ϕ
∗
n(z) = E(eizXn) = E(exp{i

z√
n
{Sn − E(Sn)}})

= e−i
z

√

n
E(Sn)E{ei

z
√

n
Sn}

= e−i
z

√

n
E(Sn)ϕn (

z√
n
), ()

where ϕn is the characteristic function of Sn.

Without loss of generality assume that E(Sn) = ,

therefore

ϕ
∗
n(z) = E(eizXn) = ϕn (

z√
n
). ()

�e cumulant generating function of Xn is

ψ
∗
n(z) = log ϕ∗n(z) = K∗n (T), ()

with T = iz.
Let T̂ = i ẑ be the root of the equation

∂K∗n (T)
∂T

= Xn. ()

�e density function hn(x) of the statistics Xn is given
by the usual Fourier inversion formula

hn(x) =


π

∞

∫
−∞

ϕ
∗
n(z)e−izXndz

= 

π

∞

∫
−∞
exp{ψ

∗
n(z) − izXn}dz. ()

Miodrag Lovric (ed.), International Encyclopedia of Statistical Science, DOI ./----,
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where ψ∗n(z) was given in (). It is convenient here to
employ the equivalent inversion formula

hn(x) =


πi

a+i∞

∫
a−i∞

exp{K∗n (T) − TXn}dT, ()

where −c < a < c,  ≤ c <∞,  ≤ c <∞, but c + c > ,
thus either c or c may be zero, though not both, and

K∗n (T) was de�ned in ().
Let us write T = T̂ + iw, where T̂ is the root of

the Eq. ().�e argument then proceeds formally as fol-

lows. On the contour near T̂, the exponent of () can be

written as

K
∗
n (T) − TXn = K∗n (T̂) − T̂Xn + iw

∂

∂T
{K∗n (T̂) − T̂Xn}

+ 

(iw) ∂

∂T
{K∗n (T̂) − T̂Xn}

+ 

(iw) ∂

∂T
{K∗n (T̂) − T̂Xn}

+ 


(iw) ∂

∂T
{K∗n (T̂) − T̂Xn} +⋯

= K∗n (T̂) − T̂Xn −



w
 ∂
K∗n (T̂)
∂T

− i

w
 ∂
K∗n (T̂)
∂T

+ 


w
 ∂
K∗n (T̂)
∂T

+⋯, ()

where ∂
∂T

{K∗n (T̂) − T̂Xn} =  because T̂ is the root of ().
Because of (), the integrand of () can be written as

exp{K∗n (T) − TXn}

= exp{K∗n (T̂) − T̂Xn} exp{−



w
 ∂
K∗n (T̂)
∂T

}

× { − i

w
 ∂
K∗n (T̂)
∂T

+ 


w
 ∂
K∗n (T̂)
∂T

− 

{ 

w
 ∂
K∗n (T̂)
∂T

}


+⋯
⎫⎪⎪⎬⎪⎪⎭
. ()

Using T = T̂ + iw, we can transform from T to w in ()
resulting that

hn(x) =


π
exp{K∗n (T̂) − T̂Xn}

×
∞

∫
−∞
exp{− 


w
 ∂
K∗n (T̂)
∂T

}{ − i

w
 ∂
K∗n (T̂)
∂T

+ 


w
 ∂
K∗n (T̂)
∂T

− 

{ 

w
 ∂
K∗n (T̂)
∂T

}


+⋯
⎫⎪⎪⎬⎪⎪⎭
dw. ()

�e odd powers of w vanish on integration. On the other

hand, for j = , , . . . and since ∂ j

∂T j
Kn(T) is O(n)

∂ jK∗n (T)
∂T j

= ∂ j

∂T j
Kn (

T√
n
) = ∂ j

∂T∗ j
Kn(T∗)(

√
n
)
j

= O(n−
j


+), ()

where T∗ = T√
n
.�erefore

hn(x) =
√
π

{ ∂
K∗n (T̂)
∂T

}
− 


exp{K∗n (T̂) − T̂Xn}

× { + 
n
Q (T̂) +⋯}, ()

where

Q (T̂) =
n{ ∂K∗

n
(T̂)

∂T
}
− 


√
π

∞

∫
−∞
exp{− 


w
 ∂
K∗n (T̂)
∂T

}

× { 

w
 ∂
K∗n (T̂)
∂T

− 

{ 

w
 ∂
K∗n (T̂)
∂T

}
⎫⎪⎪⎬⎪⎪⎭
dw. ()

Clearly, Q (T̂) de�ned in () is n times the sum of two
terms. �e �rst of these terms is, apart from a multi-

plicative constant,
∂K∗

n
(T)

∂T
times fourth order moments of

a normal random variable with zero mean and variance

{ ∂K∗
n
(T̂)

∂T
}
−
; and the second term is also a constant times

( ∂K∗
n
(T)

∂T
)


and sixth order moments of a normal random

variable with zero mean and variance { ∂K∗
n
(T̂)

∂T
}
−
.�us,

because of (),Q (T̂) = O(). Consequently, wewrite ()
as

hn(x) = ĥn(x) { +O(n−)}, ()

where

ĥn(x) =


√
π

{∂
K∗n (T̂)
∂T

}
− 


exp{K∗n (T̂) − T̂Xn}. ()

�e expression () receives the name of saddlepoint

approximation to hn(x), been the error of approximation
of order n−.
Daniels () pointed out that when the constant term

in the saddlepoint approximation is adjusted to make the

integral over the whole sample space equal to unity, the

order ofmagnitude of the error is reduced in a certain sense

from n− to n−/. He called this process renormalization.
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A common problem arising in statistics is to determine the

smallest sample size needed to achieve a speci�ed inference

goal. Examples of inference goals include �nding a %

con�dence interval for a given statistic of width no larger

than a speci�ed amount, or performing a hypothesis test

at the % signi�cance level with power no smaller than a

speci�ed amount.�ese examples and others are discussed

more fully below.

Sample Size to Achieve a Given Variance
or Relative Variance
One may want to estimate a parameter θ by an estima-

tor θ̂ based on a sample of size n. O�en the variance of θ̂,

var(θ̂), will have the form var(θ̂) = b/n for some known
constant b. To achieve a variance of θ̂ no larger than a spec-

i�ed amount A, one simply sets A = b/n and solves for
n: n = b/A.�e value of nmust be an integer, so one takes
n to be the smallest integer no smaller than b/A. Note that
n is inversely related to the desired precision A.

It is more typically the case that b will depend on

unknown parameters, usually including θ. Because the

sample has not been selected yet, one must estimate

the parameters from a previous sample or from other

outside information. Precise values are not needed as one is

usually satis�ed with a conservative (that is, high) estimate

for the required sample size n.

It is common to be interested in the relative variance
var(θ̂)

θ
, also known as the square of the coe�cient of

variation or CV. In this case, one has

var( θ̂)
θ

= b

θn

so to keep CV less than a desired amount A, one sets

n = b

θA
. Again, b and θ may need to be estimated from

a previous sample or some outside source.

�e variance of an estimated proportion p̂ from a

7simple random sample of size n (from an in�nite pop-
ulation) is

var(p̂) = p( − p)
n

= 

n
− (/ − p)

n
≤ 

n
.

�erefore, to achieve a variance of p̂ of at mostA, it su�ces

that n be at least


A
. For this conservation determination

of the sample size, no estimation of unknown parameters

is needed.

One can also consider the estimation of an estimated

proportion p̂ from a simple random sample of size n from

a �nite population of size N. In this case,

var(p̂) = ( − n
N

) p( − p)
n

≤ ( − n
N

) 
n
.

To achieve a variance of p̂ of at most A as a conservative

estimate, nmust be at least



A + /N
.
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Sample Size to Achieve a Given Power in
a Hypothesis Test
In hypothesis testing, the probability of type I error (the

probability of rejecting a null hypothesis when it, in fact,

holds) is typically �xed at a predetermined level, called

alpha (α).�e value α = % is very common. A sample
size n is sought so that the test achieves a certain type II

error rate (the probability of not rejecting the null hypoth-

esis when a speci�c alternative actually holds), called beta

(β).�e power of a test is  − β, the probability of reject-

ing the null hypothesis when a speci�c alternative holds.

So sample size determination can be described as �nding

the smallest value of n so that for the predetermined α the

power achieves some desired level for a �xed alternative.

�e term statistical 7power analysis is frequently used as a
synonym for sample size determination.

To be speci�c, suppose one wants to test that the

mean µ of independent, identically normally distributed

data is equal to µ versus the alternative that the mean

is greater than µ. One can write this as H : µ = µ ver-
sus Hα : µ > µ. Suppose also that µ′ > µ is su�ciently
far from µ that the di�erence is deemed to be of practi-

cal signi�cance in the subject-matter area of the test. Let

Z be a standard normal random variable, Φ be its cumu-

lative distribution function, and zα be de�ned by P(Z ≥
zα) = α.�en it can be calculated that the type II error at

µ′, β(µ′), is

β(µ′) = P(H is not rejected when µ = µ′)

= Φ(zα +
µ − µ′

σ/
√
n

)

where σ  is the known variance of the data and n is the

sample size. It follows from this that

−zβ = zα +
µ − µ′

σ/
√
n
.

Solving for n, one gets

n = [
σ(zα + zβ)
µ − µ′

]


.

�is sample size (adjusted upward to an integer value, if

necessary) is needed to achieve a signi�cance level of α and

power of  − β(µ′) at µ′.�e same sample size n applies
when the alternative hypothesis is Hα : µ < µ. For the
two-sided alternative hypothesis Hα : µ ≠ µ, one has by a
similar argument (involving an approximation) that

n = [
σ(zα/ + zβ)
µ − µ′

]


.

For this testing problem, one is able to get explicit

solutions. It is typical, however, to have to resort to compli-

cated tables or, more recently, so�ware, to get a solution.

Sample Size to Achieve a Given Width for
a Confidence Interval
A ( − α)% 7con�dence interval for the mean µ of a
normal population with known variance σ  is

(x − zα/
σ√
n
, x + zα/

σ√
n
)

where x = 

n

n

∑
i=
xi is the sample mean. When n is reason-

ably large, say  or greater, this interval with σ replaced

by S =
√



n − 

n

∑
i=

(xi − x) holds approximately when σ 

is unknown.

�e width of the interval is w = zα/
σ
√
n
. So, solv-

ing for n, the sample size needed to achieve an interval of

width w and con�dence level ( − α)% is n =

σ  (
zα/

w
)


(or n = S (
zα/

w
)


when σ  unknown and

n ≥ ).
As with hypothesis testing, the sample size problem

for con�dence intervals more typically requires tables or

so�ware to solve.

The Scope of Statistical Procedures for
Sample Size Determination
Sample size determination arises in one sample problems,

two sample problems, 7analysis of variance, regression
analysis, 7analysis of covariance, multilevel models, sur-
vey sampling, nonparametric testing, 7logistic regression,
survival analysis, and just about every area of modern

statistics. In the case ofmultilevelmodels (e.g., hierarchical

linearmodels), onemust determine the sample size at each

level in addition to the overall sample size (Cohen ).

A similar situation arises in sample size determination for

complex sample surveys.

Software for Sample Size Determination
�e use of so�ware for sample size determination is highly

recommended. Direct calculation is di�cult (or impossi-

ble) in all but the simplest cases. Tables are cumbersome

and o�en incomplete. Speci�c so�ware products will not

be recommended here, but we mention some to indicate

the wide range of products available.

Statisticians who use SAS
r
should be aware that ver-

sions . and later include releases of PROC POWER and

PROC GLMPOWER (PROC means “procedure” in SAS
r

and GLM stands for “general linear model”) that are full

featured.
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SPSS has a product called SamplePower
r
that also

has many features. Other commercial products include

nQuery Advisor and PASS. G
∗
Power is a free product.

Sampsize is also free with an emphasis on survey sampling

sample size calculations. A Web search will reveal many

other products that should suit particular needs.
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A sample survey can be broadly de�ned as an exercise

that involves collecting standardised data from a sample of

study units (e.g., persons, households, businesses) designed

to represent a larger population of units, in order to make

quantitative inferences about the population. Within this

broad de�nition there is a large variety of di�erent types of

survey. Surveys can di�er in terms of the type of data col-

lected, the methods used to collect the data, the design of

the sample, and whether data is collected repeatedly, either

on the same sample or on di�erent samples. Key features of

a sample survey are:

Survey objectives must be clear and agreed at the outset,

so that all features of the survey can be designed with

these objectives in mind;

�e target population – about which knowledge is

required – must be de�ned. For example, it might be

all persons usually resident in a particular town, or all

farms within a national boundary;

�e survey samplemust be designed to represent the target

population;

Relevant concepts must be addressed by the survey mea-

sures, so that the survey data can be used to answer

important research questions;

�e survey measures – which typically include questions,

but could also include anthropometric measures, soil

samples, etc – must be designed to provide accurate

indicators of the concepts of interest;

Survey implementation should achieve the co-operation of

a high proportion of samplemembers in a cost-e�cient

and timely manner.

�e aim is to obtain relevant data that are representa-

tive, reliable and valid.

Representation concerns the extent to which the units

in the data set represent the units in the target popula-

tion and therefore share the pertinent characteristics of the

population as a whole.�is will depend on the identi�ca-

tion of a sampling frame, the selection of a sample from

that frame, and the attempts made to obtain data for the

units in the sample.

Sampling frame. Ideally, this is a list of all units in

the population, from which a sample can be selected.

Sometimes the list pre-exists, sometimes it must be con-

structed especially for the survey, and sometimes a sam-

pling method can be devised that does not involve the

creation of an explicit list but is equivalent (Lynn ).

Sample design. In  Anders Kiaer, founding Direc-

tor of Statistics Norway, proposed sampling as a way of

learning about a population without having to study every

unit in the population.�e basic statistical theory of prob-

ability sampling developed rapidly in the �rst half of the

twentieth century and underpinned the growth of sur-

veys. �e essence is that units must be selected at ran-

dom with known and non-zero selection probabilities.

�is enables unbiased estimation of population parameters

and estimation of the precision (standard errors) of esti-

mates (Groves et al. , Chap. ). Design features such

as strati�ed sampling and multi-stage (clustered) sam-

pling are commonly used within a probability sampling

framework. Some surveys, particularly in the commer-

cial sector, use non-probability methods such as quota

sampling.

Non-response. Once a representative sample has been

selected, considerable e�orts are usually made to achieve

the highest possible response rate (Lynn ). In many

countries, high quality surveys of the general population

typically achieve response rates in the range –%, with

rates above % being considered outstanding.�e main

reasons for non-response are usually refusal (unwillingness

of sample member to take part) and non-contact (inability

of the survey organisation to reach the sample member).

Other reasons include an inability to take part, for example



 S Sample Survey Methods

due to language or ill health. Di�erent strategies are used

by survey organizations to minimize each of these types

of non-response. Ultimately, non-response can introduce

bias to survey estimates if the non-respondents di�er from

respondents in terms of the survey measures. Adjustment

techniques such as weighting (Lynn ) can reduce the

bias caused by non-response.

Obtaining reliable and valid data from respondents

depends upon the measurement process. �is includes

development of concepts to be measured, development of

measures of those concepts (e.g., survey questions), obtain-

ing responses to the measures, and post-�eldwork process-

ing (such as editing, coding, and combining the answers

to a number of questions to produce derived variables).

Failure of the obtained responses to correctly re�ect the

concept of interest is referred to as measurement error

(Biemer et al. ). To minimise measurement error, sur-

vey researchers pay attention to cognitive response theory

(Tourangeau et al. ), which describes four steps in the

process of answering a survey question:

Understanding.�e sample member must understand the

question as intended by the researcher. �is requires

the question and the required response to be clear,

simple, unambiguous and clearly communicated.

Recall.�e sample member must be able to recall all the

information that is required in order to answer the

question. Question designers must be realistic regard-

ing what respondents can remember and should pro-

vide tools to aid memory, if appropriate.

Evaluation.�e sample member must process the recalled

information in order to form an answer to the

question.

Reporting.�e sample member must be willing and able

to communicate the answer. Various special techniques

are used by survey researchers to elicit responses to

questions on sensitive or embarrassing issues.

Two fundamental survey design issues with consider-

able implications are the following:

Data collection modes. �ere are several available

methods to collect survey data (Groves et al. ,

Chap. ). An important distinction is between interviewer-

administered methods (face-to-face personal interview-

ing, telephone interviewing) and self-completion meth-

ods (paper self-completion7questionnaires, web surveys).
With self-completion methods, the researcher usually has

less control over factors such as who is providing the data

and the order in which questions are answered, as well

as having a limited ability to address respondent concerns

and to provide help. Self-completion methods also require

a higher degree of literacy and cognitive ability than inter-

views and so may be inappropriate for certain study pop-

ulations. On the other hand, respondents may be more

willing to reveal sensitive or embarrassing answers if there

is no interviewer involved.�ere are o�en large di�erences

in survey costs between the possible modes.�is consid-

eration o�en leads to surveys being carried out in a mode

which might otherwise be thought sub-optimal.

Longitudinal designs. It is o�en bene�cial to collect

repeated measures from the same sample over time.�is

allows themeasurement of change and identi�cation of the

ordering of events, which can shed light on causality. Sur-

veys which collect data from the same units on multiple

occasions are known as longitudinal surveys (Lynn )

and involve additional organisation and complexity. Some

longitudinal social surveys have been running for several

decades and are highly valued data sources.
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A sampling algorithm is a procedure that allows us to

select randomly a subset of units (a sample) from a popu-

lation without enumerating all the possible samples of the

population.

More precisely, let U = {, . . . , k, . . . ,N} be a �nite
population and s ⊂ U a sample or a subset of U. A sam-
pling design p(s) is a probability distribution on the set of
all the subsets s ⊂ U, i.e., p(s) ≥  and

∑
s⊂U
p(s) = .

�e inclusion probability πk = pr(k ∈ s) of a unit k is its
probability of being selected in the sample s.�e sum of

the inclusion probabilities is equal to the expectation of the

sample size n.

In many sampling problem, the number of possible

samples is generally very large. For instance, if N = 

and n = , the number of possible samples already

equals ,,,. �e selection of a sample by enu-

merating all the possible samples is generally impos-

sible. A sampling algorithm is a method that allows

bypassing this enumeration. �ere exists several class of

methods:

● Sequential algorithms. In this case, there is only one

reading of the population �le. Each unit is successively

examined and the decision of selection is irremediably

taken.

● One by one algorithms. At each step, a unit is selected

from the population until obtaining the �xed sample

size.

● Eliminatory algorithms. At each step, a unit is removed

from the population until obtaining the �xed sample

size.

● Rejective methods. For instance, sample with replace-

ment are generated until obtaining a sample without

replacement. Rejective methods can be interesting if

there exists a more general sampling design that is

simpler than the design we want to implement.

● Splitting methods. �is method described in Deville

and Tillé () starts with a vector of inclusion proba-

bility. At each step, this vector is randomly replaced by

another vector until obtaining a vector containing only

zeros and ones i.e., a sample.

�e same sampling design can generally be implemented

by using di�erent methods. For instance, Tillé () gives

sequential, one by one, eliminatory algorithms for several

sampling designs like simple random sampling with and

without replacement and multinomial sampling.

�e main di�culties however appears when the sam-

ple is selected with unequal inclusion probabilities with-

out replacement and �xed sample size.�e �rst proposed

method was systematic sampling with unequal inclusion

probabilities (Madow ). For this sequential algorithm,

�rst compute the cumulated inclusion probabilities Vk.

Next units such that

Vk− ≤ u + i −  < Vk, i = , , . . . ,n,

are selected, where u is a uniform continuous random

variable in [,) and n is the sample size.

An interesting rejective procedure was proposed by

Sampford (). Samples are selected with replacement.

�e �rst unit is selected with probability πk/n, the n − 
other units are selected with probability

πk

n( − πk)
{
N

∑
ℓ=

πℓ

n( − πℓ)
}
−

.
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�e sample is accepted if n distinct units are selected,

otherwise another sample is selected.

Chen et al. () discussed the sampling design with-

out replacement and �xed sample size that maximizes the

7entropy given by

I(p) = −∑
s∈U
p(s) log p(s).

�ey gave a procedure for selecting a sample according this

sampling design. Several other e�cient algorithms that

implement this sampling design are given in Tillé ().

Other methods have been proposed by Brewer (),

Deville and Tillé (). A review is given in Brewer and

Hanif () and Tillé (). Other sampling algorithms

allows us to solve more complex problems. For instance,

the cube method (Deville and Tillé ) allows select-

ing balanced samples (see 7Balanced Sampling) in the
sense that the 7Horvitz-�ompson estimator are equal or
approximately equal to the population totals for a set of

control variables.
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What is it?
�e sampling distribution is a distribution of a sample

statistic. When using a procedure that repeatedly samples

from a population and each time computes the same sam-

ple statistic, the resulting distribution of sample statistics

is a sampling distribution of that statistic. To more clearly

de�ne the distribution, the name of the computed statistic

is added as part of the title. For example, if the computed

statistic was the sample mean, the sampling distribution

would be titled “the sampling distribution of the sample

mean.”

For the sake of simplicity let us consider a simple

example when we are dealing with a small discrete pop-

ulation consisting of the �rst ten integers {, , , , , , ,
, , }. Let us now repeatedly take random samples with-
out replacement of size n =  from this population.

�e random sampling might generate sets that look like

{, , },{, , },{, , },{, , } . . . If the mean (X) of
each sample is found, the means of the above samples

would appear as follows: , ., ., . . . . How many

di�erent samples can we take, or put it di�erently, how

many di�erent sample means can we obtain? In our arti�-

cial example only , but in reality when we analyze very

large populations, the number of possible di�erent samples

(of the same size) can be for all practical purposes treated

as countless.

Once we have obtained sample means for all samples,

we have to list all their di�erent values and number of their

occurrences (frequencies). Finally, we will divide each fre-

quency with the total number of samples to obtain relative

frequencies (empirical probabilities). In this way we will

comeup to a list of all possible samplemeans and their rela-

tive frequencies.When the population is discrete, that list is

called the sampling distribution of that statistic. Generally,

the sampling distribution of a statistic is a probability dis-

tribution of that statistic derived from all possible samples

having the same size from the population.

When we are dealing with a continuous population it

is impossible to enumerate all possible outcomes, so we

have to rely on the results obtained in mathematical statis-

tics (see section “7How Can Sampling Distributions be
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Constructed Mathematically?” of this paper for an exam-

ple). Still, we can imagine a process that is similar to the

one in the case of a discrete population. In that process we

will take repeatedly thousands of di�erent samples (of the

same size) and calculate their statistic. In that way we will

come to the relative frequency distribution of that statistic.

�e more samples we take, the closer this relative fre-

quency distributionwill come to the sampling distribution.

�eoretically, as the number of samples approaches in�n-

ity our frequency distribution will approach the sampling

distribution.

Sampling distribution should not be confused with a

sample distribution: the latter describes the distribution of

values (elements) in a single sample.

Referring back to our example, we can graphically

display the sampling distribution of the mean as follows:

2 3 4 5 6 7 8 9
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0.06

0.08

Every statistic has a sampling distribution. For exam-

ple, suppose that instead of the mean, medians (Md)
were computed for each sample. �at is, within each

sample the scores would be rank ordered and the middle

score would be selected as the median. Using the samples

above, the medians would be: , , ,  . . .�e distribution

of the medians calculated from all possible di�erent sam-

ples of the same size is called the sampling distribution of

the median and could be graphically shown as follows:
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It is possible to make up a new statistic and construct a

sampling distribution for that new statistic. For example,

by rank ordering the three scores within each sample and

�nding the mean of the highest and lowest scores a new

statistic could be created. Let this statistic be called the

mid-mean and be symbolized by M. For the above sam-

ples the values for this statistic would be: ., , ., . . . .

and the sampling distribution of the mid-mean could be

graphically displayed as follows:
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Just as the population distributions can be described with

parameters, so can the sampling distribution.�e expected

value and variance of any distribution can be represented

by the symbols µ (mu) and σ  (Sigma squared), respec-

tively. In the case of the sampling distribution, the µ sym-

bol is o�en written with a subscript to indicate which

sampling distribution is being described. For example, the

expected value of the sampling distribution of the mean is

represented by the symbol µ
X
, that of the median by µMd ,

and so on.�e value of µX can be thought of as the theoret-

ical mean of the distribution ofmeans. In a similar manner

the value of µMd , is the theoretical mean of a distribution

of medians.

�e square root of the variance of a sampling distribu-

tion is given a special name, the standard error. In order

to distinguish di�erent sampling distributions, each has a

name tagged on the end of “standard error” and a subscript

on the σ symbol.�e theoretical standard deviation of the

sampling distribution of the mean is called the standard

error of the mean and is symbolized by σX . Similarly, the

theoretical standard deviation of the sampling distribution

of the median is called the standard error of the median

and is symbolized by σMd .

In each case the standard error of the sampling dis-

tribution of a statistic describes the degree to which the

computed statistics may be expected to di�er from one

another when calculated from a sample of similar size

and selected from similar population models. �e larger
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the standard error of a given statistic, the greater the dif-

ferences between the computed statistics for the di�erent

samples. From the example population, sampling method,

and statistics described earlier, we would �nd µX = µMd =
µM = . and σX = ., σMd = ., and σM = ..

Why is the Sampling Distribution
Important – Properties of Statistics
Statistics have di�erent properties as estimators of a popu-

lation parameters.�e sampling distribution of a statistic

provides a window into some of the important properties.

For example if the expected value of a statistic is equal

to the expected value of the corresponding population

parameter, the statistic is said to be unbiased. In the exam-

ple above, all three statistics would be unbiased estimators

of the population parameter µX .

Consistency is another valuable property to have in

the estimation of a population parameter, as the statistic

with the smallest standard error is preferred as an estima-

tor of the corresponding population parameter, everything

else being equal. Statisticians have proven that the stan-

dard error of themean is smaller than the standard error of

themedian. Because of this property, the mean is generally

preferred over the median as an estimator of µX .

Hypothesis Testing
�e sampling distribution is integral to the hypothesis

testing procedure. �e sampling distribution is used in

hypothesis testing to create a model of what the world

would look like given the null hypothesis was true and a

statistic was collected an in�nite number of times. A sin-

gle sample is taken, the sample statistic is calculated, and

then it is compared to the model created by the sampling

distribution of that statistic when the null hypothesis is

true. If the sample statistic is unlikely given the model,

then the model is rejected and a model with real e�ects is

more likely. In the example process described earlier, if the

sample {, , } was taken from the population described
above, the sample mean (.), median (), or mid-mean

(.) can be found and compared to the corresponding

sampling distribution of that statistic. �e probability of

�nding a sample statistic of that size or smaller could be

found for each e.g. mean (p < .), median (p < .),
and mid-mean (p < .) and compared to the selected
value of alpha (α). If alpha was set to ., then the selected
sample would be unlikely given the mean and mid-mean,

but not the median.

How Can Sampling Distributions be
Constructed Mathematically?
Using advanced mathematics statisticians can prove that

under given conditions a sampling distribution of some

statisticmust be a speci�c distribution. Let us illustrate this

with the following theorem (for the proof see for example

Hogg and Tanis (, p. )):

If X,X, . . . ,Xn are observations of a random sample

of size n from the normal distribution N(µ, σ ),

X = 
n

n

∑
i=
Xi

and

S
 = 

n − 

n

∑
i=

(Xi − X)

then
(n − )S

σ 
is χ

(n − ).

�e given conditions describe the assumptions that must

bemade in order for the distribution of the given sampling

distribution to be true. For example, in the above theorem,

assumptions about the sampling process (random sam-

pling) and distribution of X (a normal distribution) are

necessary for the proof.

Of considerable importance to statistical thinking is

the sampling distribution of the mean, a theoretical distri-

bution of sample means. A mathematical theorem, called

the Central Limit �eorem, describes the relationship

of the parameters of the sampling distribution of the mean

to the parameters of the probabilitymodel and sample size.

�e Central Limit�eorem also speci�es the form of the

sampling distribution (Gaussian) in the limiting case.

Selection of Distribution Type to Model
Scores
�e sampling distribution provides the theoretical foun-

dation to select a distribution for many useful measures.

For example, the central limit theorem describes why a

measure, such as intelligence, that may be considered a

summation of a number of independent quantities would

necessarily be (approximately) distributed as a normal

(Gaussian) curve.

Monte Carlo Simulations
It is not always easy or even possible to derive the exact

nature of a given sampling distribution using mathemat-

ical derivations. In such cases it is o�en possible to use

Monte Carlo simulations to generate a close approxima-

tion to the true sampling distribution of the statistic. For

example, a non-random samplingmethod, a non-standard
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distribution, ormay be used with the resulting distribution

not converging to a known type of probability distribu-

tion. When much of the current formulation of statistics

was developed, Monte Carlo techniques, while available,

were very inconvenient to apply. With current computers

and programming languages such as Wolfram Mathemat-

ica (Kinney ), Monte Carlo simulations are likely to

become much more popular in creating sampling distri-

butions.

Summary
�e sampling distribution, a theoretical distribution of a

sample statistic, is a critical concept in statistical thinking.

�e sampling distribution allows the statistician to hypoth-

esize about what the world would look like if a statistic was

calculated an in�nite number of times.
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Introduction
�e statistical objective in survey research and in a number

of other applications is generally to estimate the param-

eters of a �nite population rather than to estimate the

parameters of a statistical model. As an example, the �nite

population for a survey conducted to estimate the unem-

ployment ratemight be all adults aged  or older living in a

country at a given date. If valid estimates of the parameters

of a �nite population are to be produced, the �nite popu-

lation needs to be de�ned very precisely and the sampling

method needs to be carefully designed and implemented.

�is entry focuses on the estimation of such �nite popula-

tion parameters using what is known as the randomization

or design-based approach. Another approach that is par-

ticularly relevant when survey data are used for analytical

purposes, such as for regression analysis, is known as the

superpopulation approach (see 7Superpopulation Models
in Survey Sampling).

�is entry considers only methods for drawing prob-

ability samples from a �nite population; Nonprobability

Sampling Methods are reviewed in another entry.�e basic

theory and methods of probability sampling from �nite

populations were largely developed during the �rst half

of the twentieth century, motivated by the desire to use

samples rather than censuses (see 7Census) to charac-
terize human, business, and agricultural populations.�e

paper by Neyman () is widely recognized as a seminal

contribution because it spells out the merits of proba-

bility sampling relative to purposive selection. A num-

ber of full-length texts on survey sampling theory and

methods were published in the ’s and ’s includ-

ing the �rst editions of Cochran (), Deming (),

Hansen et al. (), Kish (),Murthy (), Raj (),

Sukhatme et al. (), andYates (). Several of these are

still widely used as textbooks and references. Recent texts

on survey sampling theory and methods include Fuller

(), Lohr (), Pfe�ermann and Rao (), Särndal

et al. (),�ompson (), and Valliant et al. ().

Let the size of a �nite population be denoted by N

and let Yi (i = , , . . . ,N) denote the individual values of
a variable of interest for the study. To carry forward the

example given above, in a survey to estimate the unem-

ployment rate, Yi might be the labor force status of person

(element) i. Consider the estimation of the population total
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Y =
N

∑
i

Yi based on a probability sample of n elements

drawn from the population by sampling without replace-

ment so that elements cannot be selected more than once.

Let πi denote the probability that element i is selected for

the sample, with πi >  for all i, and let πij denote the

probability that elements i and j are jointly included in the

sample.�e sample estimator of Y can be represented as

Ŷ =
N

∑
i

wiYi where wi is a random variable re�ecting the

sample selection, with wi =  for elements that were not
selected.�e condition for Ŷ to be an unbiased estimator of

Y is that E(wi) = . Now E(wi) = πiwi+(−πi) so that for
Ŷ to be unbiased wi = π−i .�e reciprocal of the selection
probability, wi = π−i , is referred to as the base weight.�e

unbiased estimator for Y , Ŷ =
n

∑
i

wiYi, is widely known

as the7Horvitz-�ompson estimator.�e variance of Ŷ is
given by

V(Ŷ) =
N

∑
i

V(wi)Yi + 
N

∑
i

N

∑
j>i
Cov(wi,wj)YiYj

=
N

∑
i

π
−
i ( − πi)Yi

+ 
N

∑
i

N

∑
j>i

π
−
i π

−
j (πij − πiπj)YiYj

�ese general results cover a range of the di�erent sample

designs described below depending on the values of πj and

πij.�e selection probabilities πi appear in the estimator

and, in addition, the joint selection probabilities πij appear

in the variance. Note that when estimating the parameters

of a �nite population using the design-based approach for

inference, the Yi values are considered �xed; it is the wi’s

that are the random variables.

�e selection of a probability sample from a �nite pop-

ulation requires the existence of a sampling frame for that

population.�e simplest form of sampling frame is a list of

the individual population elements, such as a list of busi-

ness establishments (when they are the units of analysis).

�e framemay alternatively be a list of clusters of elements,

such as a list of households when the elements are persons.

�e initial frame may be a list of geographical areas that

are sampled at the �rst stage of selection.�ese areas are

termed primary sampling units (PSUs). At the second stage,

subareas, or second stage units, may be selected within the

sampled PSUs, etc.�is design, which is known as an area

sample, is a form of multistage sampling (see below).

�e quality of the sampling frame has an important

bearing on the quality of the �nal sample. An ideal sam-

pling frame would contain exactly one listing for each ele-

ment of the target population and nothing else. Sampling

frames used in practice o�en contain departures from this

ideal, in the form of noncoverage, duplicates, clusters, and

ineligible units (see Kish , Section ., for a discussion

of each of these frame problems). Issues with the sampling

frames used in telephone surveys are discussed in the entry

7Telephone Sampling: Frames and Selection Techniques.
Sometimes, two ormore sampling frames are used, leading

to dual- or multiple-frame designs.

Sampling frames o�en contain auxiliary information

that can be used to improve the e�ciency of the survey esti-

mators at the sample design stage, at the estimation stage,

or at both stages. Examples are provided below.

Simple Random Sampling
A simple random sample is a sample design in which every

possible sample of sizen from the population ofN elements

has an equal probability of selection (see7Simple Random
Sample). It may be selected by taking random draws from

the set of numbers {, , . . . ,N}.With simple random sam-
pling, elements have equal probabilities of selection and

simple random sampling is therefore an equal probability

selection method (epsem).

Simple random sampling with replacement (SRSWR),

also known as unrestricted sampling, allows population

elements to be selected at any draw regardless of their selec-

tion on previous draws. Since elements are selected inde-

pendently with this design, πij = πiπj for all i, j. Standard

statistical theory and analysis generally assumes SRSWR;

this is discussed further in the entry 7Superpopulation
Models in Survey Sampling.

In simple random sampling without replacement

(SRSWOR), also simply known as simple random sam-

pling, once an element has been drawn, it is removed from

the set of elements eligible for selection on subsequent

draws. Since SRSWOR cannot select any element more

than once (so that there are n distinct sampled elements),

it is more e�cient than SRSWR (i.e., the variances of the

estimators are lower under SRSWOR than under SRSWR).

Systematic Sampling
In the simple case where the sampling interval k = N/n is
an integer, a systematic sample starts with a random selec-

tion of one of the �rst k elements on a list frame, and then

selects every kth element therea�er. By randomly sorting

the sampling frame, systematic sampling provides a con-

venient way to select a SRSWOR. Kish (, Section .B)



Sampling From Finite Populations S 

S

describes various techniques for selecting a systematic

sample when the sampling interval is not an integer.

If the sampling frame is sorted to place elements that

are similar in terms of the survey variables near to each

other in the sorted list, then systematic sampling may

reduce the variances of the estimates inmuch the sameway

as proportionate strati�ed sampling does. Systematic sam-

pling from such an ordered list is o�en described as implicit

strati�cation. A general drawback to systematic sampling

is that the estimation of the variances of survey estimates

requires some form of model assumption.

Stratified Sampling
O�en, the sampling frame contains information that may

be used to improve the e�ciency of the sample design (i.e.,

reduce the variances of estimators for a given sample size).

Strati�cation involves using information available on the

sampling frame to partition the population into L classes,

or strata, and selecting a sample from each stratum. (See

7Strati�ed Sampling).
With proportionate strati�cation, the same sampling

fraction (i.e., the ratio of sample size to population size) is

used in all the strata, producing an epsem sample design.

Proportionate strati�cation reduces the variances of the

survey estimators to the extent that elements within the

strata are homogeneous with respect to the survey vari-

ables.

With disproportionate strati�cation, di�erent sampling

fractions are used in the various strata, leading to a design

in which selection probabilities vary. �e unequal selec-

tion probabilities are redressed by the use of the base

weights in the analysis. One reason for using a dispro-

portionate strati�ed design is to improve the precision of

survey estimates when the element standard deviations

di�er across the strata. Disproportionate strati�ed samples

are widely used in business surveys for this reason, sam-

pling the larger businesses with greater probabilities, and

even taking all of the largest businesses into the sample

(see 7Business Surveys).�e allocation of a given overall
sample size across strata that minimizes the variance of

an overall survey estimate is known as Neyman allocation.

If data collection costs per sampled element di�er across

strata, it is more e�cient to allocate more of the sample to

the strata where data collection costs are lower.�e sample

allocation that maximizes the precision of an overall sur-

vey estimate for a given total data collection cost is termed

an optimum allocation.

A second common reason for using a disproportionate

allocation is to produce stratum-level estimates of ade-

quate precision. In this case, smaller strata are o�en sam-

pled at above average sampling rates in order to generate

su�ciently large sample sizes to support the production of

separate survey estimates for them.

Cluster and Multistage Sampling
In many surveys, it is operationally e�cient to sample

clusters of population elements rather than to sample the

elements directly. One reason is that the sampling frame

may be a list that comprises clusters of elements, such

as a list of households for a survey of persons (the ele-

ments). Another reason is that the population may cover

a large geographical area; when the survey data are to

be collected by face-to-face interviewing, it is then cost-

e�ective to concentrate the interviews in a sample of areas

in order to reduce interviewers’ travel. �e selection of

more than one element in a sampled cluster a�ects the

precision of the survey estimates because elements within

the same cluster tend to be similar with respect to many

of the variables studied in surveys. �e homogeneity of

elementswithin clusters ismeasured by the intraclass corre-

lation (see 7Intraclass Correlation Coe�cient). A positive
intraclass correlation decreases the precision of the survey

estimates from a cluster sample relative to a SRS with the

same number of elements.

When the clusters are small, it is o�en e�cient to

include all the population elements in selected clusters, for

example, to collect survey data for all persons in sampled

households. Such a design is termed a cluster sample or

more precisely a single-stage cluster sample (see 7Cluster
Sampling).

Subsampling, or the random selection of elements

within clusters, may be used to limit the e�ect of cluster-

ing on the precision of survey estimates. Subsampling is

widely used when the clusters are large as, for example, is

the case with areal units such as counties or census enu-

meration districts, schools, and hospitals. A sample design

in which a sample of clusters is selected, followed by the

selection of a subsample of elements within each sampled

cluster is referred to as a two-stage sample. Multistage sam-

pling is an extension of two-stage sampling, in which there

are one or more stages of subsampling of clusters within

the �rst-stage units (or primary sampling units, PSUs) prior

to the selection of elements. In multistage sample designs,

a key consideration is the determination of the sample

size at each stage of selection.�is determination is gen-

erally based on cost considerations and the contribution

of each stage of selection to the variance of the estimator

(See 7Multistage Sampling).
In general, large clusters vary considerably in the num-

ber of elements they contain. Sampling unequal-sized

clusters with equal probabilities is ine�cient and, with an

overall epsem design, it fails to provide control on the
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sample size.�ese drawbacks may be addressed by sam-

pling the clusters with probability proportional to size (PPS)

sampling. By way of illustration, consider a two-stage sam-

ple design. At the �rst stage, clusters are sampled with

probabilities proportional to size, where size refers to the

number of elements in a cluster.�en, at the second stage,

an equal number of population elements is selected within

each PSU.�e resulting sample is an epsem sample of ele-

ments.�is approach extends to multi-stage sampling by

selecting a PPS sample of clusters at each stage through

to the penultimate stage. At the last stage of selection, an

equal number of population elements is selected within

each cluster sampled at the prior stage of selection. In

practice, the exact cluster sizes are rarely known and the

procedure is applied with estimated sizes, leading to what

is sometimes called sampling with probability proportional

to estimated size (PPES).

Two-Phase Sampling
It would be highly bene�cial in some surveys to use certain

auxiliary variables for sample design, but those variables

are not available on the sampling frame. Similarly, it may

be bene�cial to use certain auxiliary variables at the estima-

tion stage, but the requisite data for the population are not

available. In these cases, two-phase sampling (also known

as double sampling) may be useful. As an example, con-

sider the casewhere, if frame datawere available for certain

auxiliary variables, strati�cation based on these variables

with a disproportionate allocation would greatly improve

the e�ciency of the sample design. Under the two-phase

sampling approach, at the �rst phase, data are collected

on the auxiliary variables for a larger preliminary sample.

�e �rst-phase sample is then strati�ed based on the aux-

iliary variables, and a second phase subsample is selected

to obtain the �nal sample. To be e�ective, two-phase sam-

pling requires that the �rst phase data collection can be

carried out with little e�ort or resource requirements.

Estimation
As noted above, di�erential selection probabilities must

be accounted for by the use of base weights in estimating

the parameters of a �nite population. In practice, adjust-

ments are usually made to the base weights to compensate

for sample de�ciencies and to improve the precision of the

survey estimates.

One type of sample de�ciency is unit nonresponse, or

complete lack of response from a sampled element. Com-

pensation for unit nonresponse is typically made by in�at-

ing the base weights of similar responding elements in

order to also represent the base weights of nonresponding

eligible elements (see 7Nonresponse in Surveys, Groves
et al. , and Särndal and Lundström ).

A second type of de�ciency is noncoverage, or a fail-

ure of the sampling frame to cover some of the elements

in the population. Compensation for noncoverage requires

population information from an external source. Noncov-

erage is generally handled through a weighting adjustment

using some form of calibration adjustment, such as post-

strati�cation (see Särndal ). Calibration adjustments

also serve to improve the precision of survey estimates that

are related to the variables used in calibration.

A third type of de�ciency is item nonresponse, or the

failure to obtain a response to a particular item from

a responding element. Item nonresponses are generally

accounted for through imputation, that is, assigning val-

ues for the missing responses (see 7Imputation and Brick
and Kalton ).

In practice, samples from �nite populations are o�en

based on complex designs incorporating strati�cation,

clustering, unequal selection probabilities, systematic sam-

pling, and sometimes, two-phase sampling.�e estimation

of the variances of the survey estimates needs to take the

complex sample design into account.�ere are two general

methods for estimating variances from complex designs,

known as the Taylor Series or linearizationmethod and the

replication method (including balanced repeated replica-

tions, jackknife repeated replications, and the bootstrap).

See Wolter () and Rust and Rao (). �ere are

several so�ware programs available for analyzing complex

sample survey data using each method.
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Let X = (Xt)t∈[,T] be a d-dimensional di�usion process
de�ned by the following stochastic di�erential equation

dXt = b(Xt , α)dt + σ(Xt , β)dwt , t ∈ [,T], X = x,

where w is an r-dimensional Wiener process, (α, β) ∈
Θα ×Θβ , Θα and Θβ are subsets ofRp andRq, respectively.
Furthermore, b is anRd-valued function onRd×Θα and σ

is an Rd ⊗Rr-valued function on Rd ×Θβ .�e dri� func-

tion b and the di�usion coe�cient function σ are known

apart from the parameters α and β.

In the asymptotic theory of di�usion processes, the

following two types of data are treated: () the continu-

ously observed data and () the discretely observed data

of di�usion processes. Concerning the �rst order asymp-

totic theory of di�usion processes based on the con-

tinuously observed data, Kutoyants extended Ibragimov

and Has’minskii’s approach () to semimartingales,

and many researchers made contributions to establish

the asymptotic theory of semimartingales; see Kutoyants

(, , ) and Küchler and Sørensen (),

Prakasa Rao (a, b) and references therein.

On the other hand, parametric estimation for dis-

cretely observed di�usion processes is highly important for
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practical applications and now developing progressively.

�e data are discrete observations at regularly spaced time

point on the �xed interval [,T], that is, (Xkhn)≤k≤n with
nhn = T and hn is called a discretization step.�e discretely
observed data are roughly classi�ed into the following

three types:

(i) decreasing step size on a �xed interval: the observa-

tion time T = nhn is �xed and the discretization step
hn tends to zero as n→∞.

(ii) constant step size on an increasing interval: the dis-

cretization step is �xed (hn = ∆) and the observation
time T = nhn = n∆ tends to in�nity as n→∞.

(iii) decreasing step size on an increasing interval: the dis-

cretization step hn tends to zero and the observation

time T = nhn tends to in�nity as n→∞.

For the setting of type (i), Genon-Catalot and Jacod

() proposed estimators of the di�usion coe�cient

parameter β and they showed that the estimators are con-

sistent, asymptotic mixed normal and asymptotic e�cient.

For the linearly parametrized case of di�usion coe�cient,

Yoshida () obtained the asymptotic expansion for the

estimator bymeans of theMalliavin calculus. Gobet ()

proved the local asymptotic mixed normality for likeli-

hoods by using the Malliavin calculus. On the other hand,

for the dri� parameter α, we can not generally construct

even a consistent estimator under the setting of type (i).

However, under the situation where di�usion term is very

small, which is called a small di�usion process, we can

estimate the dri� parameter α. Genon-Catalot () and

Laredo () proposed estimators of the dri� parame-

ter under the assumption that the di�usion coe�cient is

known, and they proved that the estimators have consis-

tency, 7asymptotic normality and asymptotic e�ciency.
Uchida () investigated asymptotic e�cient estima-

tors under the general asymptotics. Sørensen and Uchida

() obtained estimators of both the dri� and the dif-

fusion coe�cient parameters simultaneously and investi-

gated the asymptotic properties of their estimators. Gloter

and Sørensen () developed the result of Sørensen and

Uchida () under the general asymptotics.

As concerns the type (ii), Bibby and Sørensen ()

proposed martingale estimating functions and obtained

the estimators of the dri� and the di�usion coe�cient

parameters from the martingale estimating functions.

�ey proved that both estimators have consistency and

asymptotic normality under ergodicity. Masuda ()

showed the asymptotic normality of themoment estimator

for a state space model involving jump noise terms.

Under the setting of type (iii), Prakasa-Rao (, )

are early work. As seen in Yoshida (a), the estimators

of α and β jointly converge, and they are asymptotically

orthogonal, however their convergence rates are di�erent.

�ose authors’ estimators are of maximum likelihood type

in their settings. Kessler () improved the condition

on the sampling scheme and gave generalization. Gobet

() showed local asymptotic normality for the likeli-

hood. A polynomial type large deviation inequality for

an abstract statistical random �eld, which includes likeli-

hood ratios of stochastic processes, enables to obtain the

asymptotic behaviors of the Bayes and maximum likeli-

hood type estimators; see Yoshida () for details. For

the asymptotic theory of di�usion processes with jumps,

see for example Shimizu and Yoshida ().

Regarding the higher order asymptotic theory of dif-

fusion processes, the asymptotic expansions have been

studied; see Yoshida (b, ), Sakamoto and Yoshida

() and recent papers.
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Measurement involves the assignment of scores (numbers

or other symbols) to entities (objects or events) in such a

way that the scores carry information about some charac-

teristic of the measured entities. With careful considera-

tion of themethod by which the scores have been assigned,

one can classify the method of measurement as belong-

ing to one or more “scales of measurement.” S.S. Stevens

() de�ned four scales of measurement: nominal, ordi-

nal, interval, and ratio. Membership in one or more of

these categories depends on the extent to which empiri-

cal relationships among the measured entities correspond

to numerical relationships among the scores.

If the method of measurement produces scores that

allow one to determine whether the measured entities are

or are not equivalent on the characteristic of interest, then

the scale is referred to as “nominal.” For example, I ask

the students in my class to take out all of their paper

money, write their university identi�cation number on

each bill, and deposit all the bills in a bag. I then shake

the bag and pull out two bills. From the identi�cation

numbers on the bills, I can determine whether or not the

same student contributed both bills.�e attribute of inter-

est is last ownership of the bill, and the scores allow one

to determine whether or not two bills are equivalent on

that characteristic – accordingly, the identi�cation number

scores represent a nominal scale. “Nominal” derives from

the Latin “nomen,” name. Nominal scores may be no more

than alternative names for entities.

If the scores can be employed to determine whether

two entities are equivalent or not on the measured char-

acteristic and, if they are not equivalent, which entity has

the greater amount of themeasured characteristic, then the

scale is “ordinal.” �e order of the scores is the same as

the order of the true amounts of the measured attribute.

�e identi�cation numbers my students wrote on their

bills would not allow one to determine whether “”

represents more or less of something than does “.”

Imagine that I throw all the money out the window and

then invite the students to retrieve the bills. My associate,

outside, assigns to the students the ordinal scores shown

in Table .�e measured attribute is time taken to retrieve
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Scales of Measurement. Table  Relationship between true
scores and observed scores

Entity A B C D E

True Score . . . . .

Ordinal Score . . . . .

Interval Score .  . . .

Ratio Score . . . . .

a bill, and the order of the scores is the same as the order

of the magnitudes of the measured attribute. If Student A

obtains a score of . and Student B a score of ., I am con-

�dent that they di�er on retrieval time and that Student B

took longer than Student A.

Scale of measurement can be inferred from the nature

of the relationship between the “observed scores” (themea-

surements) and the “true scores” (the true amounts of the

measured characteristic) (Winkler andHays , pp. –

). If that relationship is positive monotonic, then the

scale of measurement is ordinal. Notice that the ordinal

scores in Table  are related to the true scores in a positive

monotonic fashion.

�e ordinal scores in Table  do not allow one to estab-

lish the equivalence of di�erences or to order di�erences.

Consider the di�erences between A and B and between D

and E.�e true scores show that the di�erences are equiva-

lent, but the ordinal scores might lead one to infer that the

di�erence between D and E is greater than the di�erence

between A and B. Also, the ordinal scores might lead one

to infer that the di�erence between C and D (.) is equiv-

alent to the di�erence between D and E (.), but the true

scores show that not to be true.

If the relationship between the observed scores and the

true scores is not only positive monotonic but also linear,

then one will be able to establish the equivalence of di�er-

ences and will be able to order di�erences. Such a scale is

called “interval.”Myhypothetical associate used amechan-

ical device to measure the retrieval times, obtaining the

interval scores in Table . From these observed scores, one

would correctly infer that the di�erence between A and B

is equivalent to the di�erence betweenD andE and that the

di�erence between C and D is greater than the di�erence

between D and E.

For the interval scores in Table , the function relating

the measurements (m) to the true scores (t) ism = +t.
�is hypothetical interval scale does not have a “true zero

point.”�at is, it is not true that an entity that has abso-

lutely none of the measured characteristic will obtain a

measurement of zero. In this case, it will obtain a measure-

ment of .�is is problematic if one wishes to establish

the equivalences of and orders of ratios of measurements.

With the interval data one might infer that the ratio D/C >
C/B > B/A, but the true scores show that these ratios are
all equivalent. To achieve a ratio scale, the function relat-

ing the measurements to the true scores must not only

be positive linear but also must have an intercept of zero.

For the hypothetical ratio data in Table , that function is

m =  + t. With the ratio scale the ratios of observed
scores are identical to the corresponding ratios of the true

scores.

Stevens () argued that scale of measurement is an

important considerationwhen determining the type of sta-

tistical analysis to be employed. For example, themodewas

considered appropriate for any scale, even a nominal scale.

If a fruit basket contains �ve apples, four oranges, and nine

bananas, the modal fruit is a banana.�e median was con-

sidered appropriate for any scale that was at least ordinal.

Imagine that we select �ve fruits, identi�ed as A, B, C, D,

and E.�eir true weights are ., , ., , and , and their

ordinal scores are , , , , and . �e entity associated

with the median is C regardless of whether you use the

true scores of the ordinal scores. Interval scores , , ,

, and  have a linear relationship with the true scores,

m = +t.�e mean true score, , is associated with Entity
D, and the mean interval score, , is also associated with

EntityD.With the ordinal scores, however, themean score,

, is associated with Entity B.

�ere has been considerable controversy regarding the

role that scale of measurement should play when con-

sidering the type of statistical analysis to employ. Most

controversial has been the suggestion that parametric sta-

tistical analysis is appropriate only with interval or ratio

data, but that nonparametric analysis can be employed

with ordinal data.�is proposition has been attacked by

those who opine that the only assumptions required when

employing parametric statistics are mathematical, such

as homogeneity of variance and normality (Gaito ;

Velleman and Wilkinson ). Defenders of the mea-

surement view have argued that researchers must consider

scale ofmeasurement, the relationship between true scores

and observed scores, because they are interested inmaking

inferences about the constructs underlying the observed

scores (Maxwell and Delaney ; Townsend and Ashby

). Tests of hypotheses that groups have identicalmeans
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on an underlying construct or that the Pearson ρ between

two underlying constructs is zero do not require inter-

val level data given the usual assumptions of homogene-

ity of variance and normality, but with non-interval data

the e�ect size estimates will not apply to the underlying

constructs (Davison and Sharma ).

When contemplating whether the observed scores to

be analyzed represent an interval scale or a non-interval,

ordinal scale, one needs makes a decision about the

nature of the relationship between the true scores and the

observed scores. If one conceives of true scores as part of

some concrete reality, the decision regarding scale of mea-

surementmay comedown to amatter of faith. For example,

how could one know with certainty whether or not the

relationship between IQ scores and true intelligence is lin-

ear? One way to avoid this dilemma is to think of reality

as something that we construct rather than something we

discover. One can then argue that the results of paramet-

ric statistical analysis apply to an abstract reality that is a

linear function of our measurements. Conceptually, this is

similar to de�ning a population on a sample rather than

the other way around – when we cannot obtain a true ran-

dom sample from a population, we analyze the data we can

obtain and then make inferences about the population for

which our data could be considered random.
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During the last century, it was conventional in many dis-

ciplines, especially in psychology, education, and social

sciences, to associate statistical methods with a hierarchy

of levels of measurement. �e well-known classi�cation

proposed by Stevens () included nominal, ordinal,

interval, and ratio scales, de�ned by increasingly stronger

mathematical restrictions. It came to be generally believed

that the use of statistical signi�cance tests in practice

required choosing a test tomatch the scale ofmeasurement

responsible for the data at hand. Classes of appropriate sta-

tisticalmethodswere alignedwith the hierarchy of levels of

measurement.

In research studies in psychology and education, the

most relevant distinction perhaps was the one made

between interval scales and ordinal scales. �e Student

t test (see 7Student’s t Tests), the ANOVA F test, and
regression methods were deemed appropriate for inter-

val measurements, and nonparametric tests, such as the

7Wilcoxon–Mann–Whitney test and the Kruskal–Wallis
test were appropriate for ordinal measurements.

Despite the widespread acceptance of these ideas by

many statisticians and researchers, there has been exten-

sive controversy over the years about their validity (see, for

example, Cli� and Keats ; Maxwell and Delaney ;

Michell ; Rozeboom ; Velleman and Wilkinson

; Zimmerman and Zumbo ). �e mathematical

theory eventually included more re�ned de�nitions of

scales of measurement and additional types of scales (Luce

; Narens ), but the fourfold classi�cation persisted

for a long time in textbooks and research articles.

Scales of Measurement and
Distributional Assumptions
�e derivation of all signi�cance tests is based on

assumptions about probability distributions, such as

independence, normality, and equality of the variances

of separate groups, and some tests involve more restric-

tive assumptions than others. In many textbooks and

research papers, the requirement of a speci�c level of

measurement was placed on the same footing as these
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distributional assumptions made in the mathematical

derivation of a test statistic. For example, the Student t test

and ANOVA F test were widely believed to assume three

things: normality, homogeneity of variance, and inter-

val measurement, while a nonparametric test such as the

Wilcoxon–Mann–Whitney test is presumably free from

the two distributional assumptions and requires only ordi-

nal measurement.�e assumption of within-sample inde-

pendence is part of the de�nition of random sampling, and

it is typically taken for granted that the data at hand meets

that requirement before a test is chosen.

Many researchers believed that the parametric meth-

ods are preferable when all assumptions are satis�ed,

because nonparametric tests discard some information in

the data and have less power to detect di�erences. Fur-

thermore, the parametric methods were considered to be

robust in the sense that a slight violation of assumptions

does not lessen their usefulness in practical research. Early

simulation studies, such as the one by Boneau (), were

consistent with these ideas.

Some complications arose for the orderly correspon-

dence of scales and statistics when researchers began to

investigate how the Type I and Type II errors of both

parametric and nonparametric signi�cance tests depend

on properties of standard probability densities. It was

found that the nonparametric tests were o�en more pow-

erful than their parametric counterparts for quite a few

continuous densities, such as the exponential, lognormal,

mixed-normal, Weibull, extreme value, chi-square, and

others familiar in theoretical statistics.�e power advan-

tage of the nonparametric tests o�en turned out to be quite

large (see, for example, Blair and Higgins ; Lehmann

; Randles and Wolfe ; Sawilowsky and Blair ;

Zimmerman and Zumbo ). �e superiority of non-

parametric rank methods for many types of non-normal

data has been extensively demonstrated by many simula-

tion studies.

It can be argued that samples from one of these

continuous densities by de�nition conform to interval

measurement.�at is, equal intervals are assumed in de�n-

ing the parameters of the probability density. For this rea-

son it is legitimate to employ t and F tests of location on

sequences of random variates generated by di�erent com-

puter programs and obtain useful information. Similarly,

the scaling criteria imply that calculation of means and

variances is appropriate only for intervalmeasurement, but

it has become clear that slight violations of “homogeneity

of variance” have severe consequences for both parametric

and nonparametric tests.

Rank Transformations and Appropriate
Statistics
In the controversies surrounding the notion of levels and

measurement, theorists have tended to overlook the impli-

cations of a procedure known as the rank transformation.

It was discovered that the large-sample normal approxima-

tion form of the Wilcoxon–Mann–Whitney test is equiva-

lent to the Student t test performed on ranks replacing the

original scores and that the Kruskal–Wallis test is equiv-

alent to the ANOVA F test on ranks (Conover and Iman

). In the Wilcoxon–Mann–Whitney test, two samples

of scores of size n and n are combined and converted to a

single series of ranks, that is, integers from  to n+n. Simi-
larly, in one-way ANOVA, scores in k groups are combined

and converted to n + n + . . . + nk ranks.�en, the scores
in the original samples are replaced by their corresponding

ranks in the combined group.

�e above equivalence means that this rank transfor-

mation followed by the usual Student t test on the ranks

replacing the initial scores leads to the same statistical deci-

sion as calculating and comparing rank sums, as done by

a Wilcoxon–Mann–Whitney test.�e Type I and Type II

error probabilities turn out to be the same in both cases.

�at is true irrespective of the distributional form of the

original data. If a Student t test performed on ranks is

not appropriate for given data, then theWilcoxon–Mann–

Whitney test is not appropriate either, and vice versa.

Considered together with the power superiority of

nonparametric tests for various non-normal densities,

these �ndings imply that the power of t and F tests o�en

can be increased by transforming interval data to ordinal

data. Arguably, the main bene�t of converting to ranks

is not a change in scale, but rather augmentation of the

robustness of the t and F tests. At �rst glance it seems para-

doxical that statistical power can be increased, o�en sub-

stantially, by discarding information. However, one should

bear in mind that conversion to ranks not only replaces

real numbers by integers, but also alters the shape of dis-

tributions. Whatever the initial form of the data, ranks

have a rectangular distribution, and, as noted before, the

shape of non-normal distributions, especially those with

heavy tails and extreme outlying values, certainly in�u-

ences the power, or the extent of the loss of power, of

signi�cance tests.

Otherwise expressed, changing the distributional form

of the data before performing a signi�cance test appears

to be the source of the power advantages, not the

details of calculating rank-sums and �nding quantiles

of the resulting test statistic from a unique formula.
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�e rank transformation concept, together with the fact

that unequal variances of scores in several groups is inher-

ited by unequal variances of the corresponding ranks in the

same groups, also provides a rationale for the dependence

of both parametric and nonparametric tests on homogene-

ity of variance (Zimmerman ).

Another �nding that is di�cult to reconcile with

notions of scaling is the fact that the bene�cial properties

of rank tests can be maintained despite alteration of the

ranks in a way that modi�es the scale properties, some-

times substantially. For example, small random numbers

can be added to ranks, or the number of ranks can be

reduced in number, with little e�ect on the power of the

t and F tests under a rank transformation.�at is, combin-

ing ranks , , , and  all into the value , ranks , , , and 

into the value , and so on, has little in�uence on the power

of the test when sample sizes are moderately large.

A quick illustration of these properties of scores and

ranks is provided by Table , which gives the probability

of rejecting H by three signi�cance tests at the . level.

�ese computer simulations consisted of , pairs of

independent samples of size  from normal and seven

non-normal distributions, generated by a Mathematica

program. �e columns, labeled t represent the Student t

test, those labeled W are the Wilcoxon–Mann–Whitney

test, and those labeled m are the t test performed on

modi�ed ranks.

In this modi�cation, all scores from both groups

were combined and ranked as usual. �en, instead of

transforming to integers, each original score was replaced

by the median of all higher scores in the ranking; that is,

the lowest score, ranked , was replaced by the median of

all the higher scores ranked from  to n + n, the score
ranked was replaced by themedian of scores ranked from

 to n + n, and so on. Finally, the scores in the two ini-
tial groups were replaced by their corresponding modi�ed

ranks, and the signi�cance test was performed.

�is procedure resulted in a kind of hybrid ordi-

nal/interval data not too di�erent from ordinary ranks,

whereby the real values of the original scoreswere retained,

the distribution shape was compressed, and7outliers were
eliminated. Table  shows that the Type I error rates of

the t test on these modi�ed ranks were close to those of

ordinary ranks for the various distributions. Moreover, the

t test on the modi�ed values was nearly as powerful as

the Wilcoxon–Mann–Whitney test for two distributions

where the ordinary t test is known to be superior, and it

was considerably more powerful than the t test and some-

what more powerful than the Wilcoxon–Mann–Whitney

test for distributions for which the nonparametric test is

known to be superior.

All these facts taken together imply there is not a

one-to-one correspondence between the hierarchy of lev-

els of measurement and methods that are appropriate for

making correct statistical decisions. Transforming data

so that it conforms to the assumptions of a signi�cance

test is not itself unusual, because for many years statisti-

cians employed square-root, reciprocal, and logarithmic

Scales of Measurement and Choice of Statistical Methods. Table  Type I error rates and power of Student t test,
Wilcoxon–Mann–Whitney test, and t test on modified ranks, , iterations at . level, samples from normal and seven
non-normal distributions

µ − µ =  µ − µ = .σ µ − µ = .σ

Distribution t W m t W m t W m

Normal . . . . . . . . .

Exponential . . . . . . . . .

Mixed-normal . . . . . . . . .

Lognormal . . . . . . . . .

Extreme value . . . . . . . . .

Uniform . . . . . . . . .

Half-normal . . . . . . . . .

Chi-square . . . . . . . . .
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transformations.�e rank transformation can be regarded

as a member of the same broad class of methods as those

procedures. Unlike those methods, it is not continuous

and has no inverse.�at can be an advantage, because, by

substituting small integers for intervals of real numbers, it

lessens skewness and eliminates outliers.

As we have seen, the rank transformation in several

instances is equivalent to a corresponding nonparametric

test, in the sense that both either reject or fail to reject H

for given data.�e earlier normalizing transformations do

not possess such equivalences with well-known nonpara-

metric methods. Each is best suited to a speci�c problem,

such as stabilizing variances or changing the shape of a

particular distribution, whereas conversion to ranks is an

omnibus transformation that always brings data into a

rectangular form with no outliers. Also, it is possible to

reverse the perspective and regard the Wilcoxon–Mann–

Whitney test and the Kruskal–Wallis test as having an

a�nity with those normalizing transformations, because

the conversion to ranks, not the speci�c formula used in

calculations, is apparently what makes the di�erence.

Conclusion
When all is said and done, the theory of scales of measure-

ment, although interesting and informative in its own right,

is not closely related to practical decision-making in applied

statistics. Present evidence suggests that the mathematical

property most relevant to choice of statistics in research

is the probability distribution of the random variable that

accounts for the observed data.

Caution is needed in making choices, and the ratio-

nale for a decision is likely to be more subtle and complex

than the prescriptions in textbooks and so�ware pack-

ages. In practice, the shape of a population distribution

is not usually known with certainty.�e degree of viola-

tion of assumptions �uctuates from sample to sample along

with the estimates of the parameters, no matter what the

population may be and what measurement procedures are

used. Basing the choice of an appropriate test on inspec-

tion of samples, or even on preliminary signi�cance tests

performed to assess the validity of assumptions, can lead

to incorrect statistical decisions with high probability.
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Introduction
Asimple �lter o�en applied in empirical econometricwork

is the seasonal di�erence �lter ( − Ls), where s is the
number of observations per year, typically s = , ,  or
.�e seasonal di�erencing assumes that there are unit

roots at all the seasonal frequencies.�e seasonal di�er-

ence �lter can be written as the product of ( − L) and the
seasonal summation �lter S(L), which for quarterly data is
S(L) = (+L+L+L).�e quarterly seasonal summation
�lter has the real root − and the two complex conjugate
roots ±i.

�e existence of seasonal unit roots in the data gen-

erating process implies a varying seasonal pattern where

“Summer may becomeWinter.” In most cases, such a situ-

ation is not feasible and the �ndings of seasonal unit roots

should be interpreted with care and taken as an indication

of a varying seasonal pattern, where the unit root model is

a parsimonious approximation and not the true DGP.

�e idea that the seasonal components of a set of eco-

nomic time series are driven by a smaller set of common

seasonal features seems a natural extension of the idea that

the trend components of a set of economic time series

are driven by common trends. In fact, the whole business

of seasonal adjustment may be interpreted as an indirect

approval of such a view.

If the seasonal components are integrated, the idea

immediately leads to the concept of seasonal cointegra-

tion, introduced in the paper by Hylleberg et al. ().

In case the seasonal components are stationary, the idea

leads to the concept of seasonal common features, see

Engle and Hylleberg (), while so-called periodic coin-

tegration considers cointegration season by season, intro-

duced by Birchenhal et al. (). For a recent survey see

Brenstrup et al. ().

Seasonal Integration
In general, consider the autoregressive representation

ϕ (L) yt = εt , εt ∼ iid(, σ ), where ϕ (L) is a �nite lag
polynomial. Suppose ϕ (L) has all its roots outside the
unit circle except for possible unit roots at the long-run

frequency ω =  corresponding to L = , semiannual

frequency ω = π corresponding to L = −, and annual
frequencies ω = { π


, π

} corresponding to L = ±i.

Dickey et al. () suggested a simple test for seasonal

unit roots in the spirit of the 7Dickey – Fuller test for
long-run unit roots.�ey suggested estimating the auxil-

iary regression ( − L) yt = πyt− + εt , εt ∼ iid(, σ ).
�e DHF test statistic is the “t-value” corresponding to π,

which has a non-standard distributed tabulated in Dickey

et al. ().�is test, however, is a joint test for unit roots

at the long-run and all the seasonal frequencies.

In order to construct a test for each individual unit

root and overcome the lack of �exibility in the DHF test,

Hylleberg et al. () re�ned this idea. By use of the result

that any lag polynomial of order p, ϕ(L), with possible unit
roots at each of the frequencies ω = , π, [π/, π/], can
be written as ϕ(L) = ∑k=

ξk∆(L)(−δk(L))
δk(L) + ϕ∗(L)∆(L),

δk(L) =  − 

ςk
L, ςk = ,−, i,−i, ∆(L) = Πk=δk(L), where

ξk is a constant and ϕ
∗(z) =  has all its roots outside the

unit circle, it can be shown that the autoregression can be

written in the equivalent form

ϕ
∗(L)yt = πyt− + πyt− + πyt− + πyt− + εt . ()

where yt = ( + L + L + L) yt = ( + L)( + L)yt ,
yt = − ( − L + L − L) yt = −( − L)( + L)yt , yt =
− ( − L) yt = −( − L)( + L)yt , and yt = ( − L) yt =
(−L)(+L)(+L)yt . Notice that, in this representation,
ϕ∗ (L) is a stationary and �nite polynomial if ϕ (L) only
has roots outside the unit circle except for possible unit

roots at the long-run, semiannual , and annual frequencies.

�e HEGY tests of the null hypothesis of a unit root

are now conducted by simple “t-value” tests on π for the

long-run unit root, π for the semiannual unit root, and

“F-value” tests on π, π for the annual unit roots. As in the

Dickey–Fuller and DHF models, the statistics are not t or

F distributed but have non-standard distributions. Critical

values for the “t” tests are tabulated in Fuller () while

critical values for the “F” test are tabulated in Hylleberg

et al. ().

Tests for combinations of unit roots at the seasonal

frequencies are suggested by Ghysels et al. (). See also

Ghysels and Osborn (), who correctly argue that if the

null hypothesis is four unit roots, i.e., the proper transfor-

mation is (−L), the test applied should be an “F-test” of
πi, i = , , , , all equal to zero.
As in theDickey–Fuller case the correct lag-augmentat-

ion in the auxiliary regression () is crucial. �e errors
need to be rendered white noise in order for the size to be

close to the stipulated signi�cance level, but the use of too

many lag coe�cients reduces the power of the tests.
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Obviously, if the data generating process, the DGP,

contains a moving average component, the augmenta-

tion of the autoregressive part may require long lags, see

Hylleberg (). As is the case for the Dickey-Fuller test,

the HEGY test may be seriously a�ected by moving aver-

age terms with roots close to the unit circle, but also one

time jumps in the series, o�en denoted structural breaks

in the seasonal pattern, and noisy data with 7outliers may
cause problems.

A straightforward extension of theHEGY test for quar-

terly data produces tests for semiannual andmonthly data,

see Franses ()However the extension toweekly or daily

data is not possible in practice due to number of regressors

in the auxiliary regressions.

�e results of a number of studies testing for seasonal

unit roots in economic data series suggest the presence of

one or more seasonal unit roots, but o�en not all required

for the application of the seasonal di�erence �lter, (−Ls),
or the application of the seasonal summation �lter, S(L).
�us, these �lters should be modi�ed by applying a �l-

ter which removes the unit roots at the frequencies where

they were found, and not at the frequencies where no unit

roots can be detected. Another and maybe more satisfac-

tory possibility would be to continue the analysis applying

the theory of seasonal cointegration.

Seasonal Cointegration
Seasonal cointegration exists at a particular seasonal fre-

quency if at least one linear combination of series, which

are seasonally integrated at the particular frequency, is

integrated of a lower order. For ease of exposition we will

concentrate on quarterly time series integrated of order .

Quarterly time series may have unit roots at the annual

frequency π/ with period  quarters, at the semian-
nual frequency π with period  quarters, and/or at the

long-run frequency . �e cointegration theory at the

semiannual frequency, where the root on the unit cir-

cle is real, is a straightforward extension of the cointe-

gration theory at the long run frequency. However, the

complex unit roots at the annual frequency leads to the

concept of polynomial cointegration, where cointegration

exists if one can �nd at least one linear combination

including a lag of the seasonally integrated series which is

stationary.

In Hylleberg et al. () seasonal cointegration was

analyzed along the path set up in Engle andGranger ().

Consider the quarterly VAR model Π (L)Xt = εt , t =
, , ....T, where Π (L) is a p × p matrix of lag polynomials
of �nite dimension, Xt is a p ×  vector of observations on
the demeaned variables, while the p ×  disturbance vec-
tor is εt ∼ NID (, Ω). Under the assumptions that the

p variables are integrated at the frequencies , π/, π/,
and π, and that cointegration exists at these frequencies as

well, the VAR model can be rewritten as a seasonal error

correction model

Φ(L)Xt = ΠX,t− +ΠX,t− +ΠX,t− +ΠX,t− + εt ,

Π = αβ
′
, Π = αβ

′
, Π = αβ

′
 − αβ

′
,

Π = αβ
′
 + αβ

′
, ()

where the transformed p ×  vectors Xj,t , j = , , , , are
de�ned as in a similar way as yj,t , j = , , ,  above, and
where Zt = β′Xt and Zt = β′Xt contain the cointegrat-
ing relations at the long-run and semiannual frequencies,

respectively, while Zt = (β′ + β′L)Xt contains the poly-
nomial cointegrating vectors at the annual frequency. In

Engle et al. () seasonal and non-seasonal cointegrating

relations were analyzed between the Japanese consump-

tion and income, estimating the relations for Zjt , j = , , ,
in the �rst step following the Granger-Engle two step

procedure.

�e well known drawbacks of this method, especially

when the number of variables included exceeds two, is

partly overcome by Lee () who extended the max-

imum likelihood based methods of Johansen () for

cointegration at the long run frequency, to cointegration

at the semiannual frequency π.

To adopt the ML based cointegration analysis at the

annual frequency π/ with the complex pair of unit
roots ±i, is somewhat more complicated, however.
To facilitate the analysis, a slightly di�erent formula-

tion of the seasonal error correction model is given in

Johansen and Schaumburg (). In our notation the

formulation is

Φ(L)Xt = αβ
′
X,t− + αβ

′
X,t− + α∗β

′
∗X∗,t

+ α∗∗β
′
∗∗X∗∗,t + εt

α∗ = α + iα, α∗∗ = α − iα, β∗ = β + iβ, β∗∗
= β − iβ

X∗,t = (Xt− − Xt−) + i(Xt− − Xt−)
= −X,t− − iX,t−

X∗∗,t = (Xt− − Xt−) − i(Xt− − Xt−)
= −X,t− + iX,t−. ()

�e formulation in (), writes the error correction model

with two complex cointegrating relations, Z∗,t = β′∗X∗,t
and Z∗∗,t = β′∗∗X∗∗,t , corresponding to the complex pair
of roots ±i. Notice that ()) can be obtained from () by
inserting the de�nitions of α∗, β∗, X∗,t , and their complex
conjugates α∗∗, β∗∗, X∗∗,t , and order the terms.
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Note that () and () show the isomorphi between

polynomial lags and complex variables.�e general results

may be found in Johansen and Schaumburg () and

Cubbada (). �e relation between the cointegration

vector βm and polynomial cointegration vector βm(L) is
βm(L) = βm for ωm = , π, and βm(L) = [Re(βm) −
Im(βm)] cos(ωm)−L

sin(ωm) for ωm ∈ (, π).
Based on the extension of the 7canonical correlation

analysis to the case of complex variables by Brillinger

(), Cubbada applies the Johansen ML approach based

on canonical correlations to obtain tests for cointegration

at all the frequencies of interest, i.e., at the frequencies 

and π with the real unit roots ± and at the frequency π/
with the complex roots ±i.
Hence, for each of the frequencies of interest the like-

lihood function is concentrated by a regression of Xt
and X,t−, X,t− or the complex pair (X∗,t , X∗∗,t) on the
other regressors, resulting in the complex residual matri-

cesU∗,t andV∗,t with complex conjugatesU∗∗,t andV∗∗,t ,
respectively. A�er having purged Xt and X,t−, X,t− or
the complex pair (X∗,t , X∗∗,t) for the e�ects of the other
regressors, the cointegration analysis is based on a canon-

ical correlation analysis of the relations between U∗,t and
V∗,t .�e product matrices are SUU = T−∑Tt= U∗,tU′∗∗,t ,
SVV = T−∑Tt= V∗,tV′∗∗,t , and SUV = T−∑Tt= U∗,tV′∗∗,t ,
and the trace test of r or more cointegrating vectors

is found as TR = −T∑pi=r+ ln( − λ̂i), where λ̂ >
λ̂ > .....̂λp are the ordered eigenvalues of the problem
∣λSVV − SVUS−UUSUV ∣ =  .�e corresponding (possibly

complex) eigenvectors properly normalized are νj, j =
, ...., p, where the �rst r vectors form the cointegrating

matrix β.

Critical values of the trace tests for the complex roots

are supplied by Johansen and Schaumburg () and

Cubadda (), while the critical values for cointegra-

tion at the real root cases are found in Lee () and

Osterwald-Lenum ().

Furthermore, tests of linear hypotheses on the poly-

nomial cointegration vectors may be executed as χ test,

similar to the test applied in the long-run cointegration

case.

Although economic time series o�en exhibit non-

stationary behavior, stationary economic variables exist as

well, especially when conditioned on some deterministic

pattern such as linear trends, seasonal dummies, breaks

etc. However, a set of stationary economic times series

may also exhibit common behavior, and for instance share

a common seasonal pattern. �e technique for �nding

such patterns, known as Common Seasonal Features were

introduced by Engle and Hylleberg () and further

developed by Cubadda ().
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Introduction
Seasonality customarily refers to the annual cycle in time

series sampled at intervals that are integer fractions of the

annual, such as quarterly or monthly observations. �e

concept can easily be generalized to analogous features,

such as the daily cycle in hourly observations.

�e characteristics of seasonality are most easily visu-

alized in the frequency-domain representation of the time

series. Denoting the number of observations per year by S,

the seasonal cycle is represented by peaks in the spectral

density at π/S and at integer multiples of this frequency
kπ/S,  ≤ k ≤ S/. Seasonal cycles are distinct from other
cycles by their time-constant length, though their shapes

o�en change over time.�ese shapes o�en di�er strongly

from pure sine waves, and two peaks and troughs over the

year are not uncommon.

�e occurrence of seasonal cycles in time series has

generated two related but distinct strands of literature,

which can be roughly labeled as seasonal modeling and

seasonal adjustment.

Seasonal modeling is concerned with typically para-

metric time-series models that describe the seasonal

behavior of the observed variable as well as the remain-

ing characteristics. In the spectral density interpretation,

a seasonal model captures the spectral mass at the sea-

sonal frequencies as well as the remaining characteristics

of the spectral density, for example the low frequencies that

represent the long run.

Seasonal adjustment builds on the concept of a decom-

position of the data-generating process into a seasonal and

a non-seasonal component. �is decomposition can be

additive (X = Xs + Xns) or multiplicative (X = Xs ⋅ Xns).
�e aim of adjustment is to retrieve the non-seasonal part

Xns from the observed X.

Seasonal Adjustment
Seasonality is not con�ned to economics data. Exam-

ples for seasonal variables range from river-�ow data

to incidences of �u epidemics. �e practice of seasonal

adjustment, however, is mainly restricted to economic

aggregates.

In economics, seasonal adjustment is so popular that

many variables – for example, some variables of national

accounts – are only available in their adjusted form, that is

as an estimate ofXns. It has o�en been pointed out that this

preference tacitly assumes that Xs is generated by forces

outside the economic world, such that the seasonal com-

ponent of a variable does not contain useful information

on the non-seasonal component of the same and of other

variables. A famous citation by SvendHylleberg (Hylleberg

) sees seasonal cycles as a�ected by cultural traditions,

technological developments, and the preferences of eco-

nomic agents, which can be viewed as a critique of this

approach.

Currently, seasonal adjustment of economic data is

mainly enacted by standardized methods, typically X- in

the U.S. and TRAMO-SEATS in Europe. �e conceptual

basis of X- is a sequence of two-sided linear �lters, out-

lier adjustments, and the application of linear time-series

models to isolate the components (see Findley et al. ).

TRAMO-SEATS aims at isolating the components using

the concepts of unobserved-components representations

and of signal extraction.�e assessment of the strengths

and weaknesses of these procedures is di�cult, as the true

components are never observed.

Seasonal Modeling
�e current literature on seasonal modeling builds on

the SARIMA (seasonal autoregressive integrated moving-

average) models by Box and Jenkins (), who
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recommend usage of the seasonal di�erence Xt − Xt−S , fol-
lowed by traditional linear modeling of the �ltered series.

�e application of this �lter assumes the existence of the

factor −BS in the generalizedARMA representation of the
original series, where B denotes the lag operator.�is fac-

tor has zeros at S equidistant points around the unit circle,

hence the name seasonal unit roots. Apart from+ and pos-
sibly −, these unit roots come in complex pairs, such that
the S roots correspond to [S/]+ frequencies or unit-root
events, if [.] denotes the largest integer.

�e s saw an increasing interest in replacing the

Box-Jenkins visual analysis on di�erencing by statistical

hypothesis tests. An o�spring of the unit-root test by

Dickey and Fuller is the test for seasonal unit roots by

Hylleberg et al. (), the HEGY test. A regression is run

for seasonal di�erences of the variable on S speci�c trans-

forms. F– and t–statistics allow investigating the unit-root

events separately. Under the null of seasonal unit roots

will the HEGY statistics follow non-standard distributions

that can be represented as Brownianmotion integrals or as

mixtures of normal distributions.

For example, consider quarterly data (S = ). In the
HEGY regression, Xt − Xt− is regressed on four lagged
‘spectral’ transforms, i.e., on Xt− + Xt− + Xt− + Xt−,
on −Xt− + Xt− − Xt− + Xt−, on Xt− − Xt− and on
Xt− − Xt−.�e t–statistic on the �rst regressor tests for
the unit root at +, the t on the second regressor for the
root at −, and an F–statistic on the latter two terms tests
for the complex root pair at ±i.
Testing for seasonal unit roots can be interpreted

as testing whether seasonal cycles experience persistent

changes over time or whether seasonal di�erencing is

really necessary to yield a stationary variable. A process

with seasonal unit roots is o�en called seasonally inte-

grated. A variable transformed into white noise by seasonal

di�erencing is a special seasonally integrated process and

is called a seasonal 7random walk.
�e HEGY test was generalized to multivariate mod-

els, to cointegration testing, and recently to panel analysis.

Other tests for seasonal unit roots have been developed,

some of them with unit roots as the alternative (for exam-

ple, Canova and Hansen ). A detailed description of

many of these tests and also of other issues in seasonality

can be found in Ghysels and Osborn ().

While the seasonal unit-root analysis is con�ned to

extensions of the Box-Jenkins SARIMAclass,more sophis-

ticated seasonal models have been suggested, for example

models with evolving seasonality, seasonal long memory,

and seasonality in higher moments. �e most intensely

investigated class among them is the periodic model (see

Franses ).

An Example
�e time series variable is the quarterly number of

overnight stays in the Austrian region of Tyrol for the

years  to , which is constructed from the Austrian

WIFO data base.�e time-series plot in Fig.  shows the

seasonal structure clearly.

It is a common and recommended practice to plot

such series by quarters.�e changes of ranks of quarters

re�ect the changes in the seasonal cycle. Figure  shows

the increasing importance of winter tourism (skiing) over

the observation period.

In an estimate of the spectral density (see Fig. ),

the seasonal peaks at π and π/ are recognizable, as is
another non-seasonal peak at the zero frequency (the

1975 1980 1985 1990 1995 2000 2005

Seasonality. Fig.  Overnight stays in Tyrol, quarterly observa-

tions –

1975 1980 1985 1990 1995 2000 2005

III
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IV

Seasonality. Fig.  Overnight stays in Tyrol, plotted by quar-

ters. Curves represent quarters I (solid), II (dashes), III (dots), and
IV (dash-dotted)
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Seasonality. Fig.  Spectral density estimate for the series on
Tyrolean overnight stays

trend). Similar information is provided by the correlo-

gram. Statistical tests con�rm that this variable appears to

have ‘seasonal unit roots’. For example, the HEGY regres-

sion introduced above, with quarterly dummies, a trend,

and a lagged Xt− − Xt− as additional regressors, deliv-
ers t–statistics of −. and −., and an F–statistic of
.. All of these values are insigni�cant at %.�e sea-

sonal di�erencing operator is required to yield a stationary

variable.
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Selection of Appropriate
Statistical Methods in Developing
Countries
Raymond Zepp

Dewey International University, Battambang, Cambodia

Statistical procedures are dictated by the nature of the

research design. To the extent that comparisons of group

means, searching for trends, or measuring central ten-

dency and dispersion are universal objectives in all

societies, it might be argued that the choice of statistical

methods should be independent of the country or culture

in question.

On the other hand, research in developing countries

presents several challenges that are not as prevalent in

developed countries, and therefore, the appropriateness of

the statistical treatment may vary according to the type of

data available.

First, data collected in developing countries can su�er

fromde�ciencies of reliability. Industries, for example,may

submit their production �gures to the national statistics

o�ce in a variety of units ofmeasurement (kilograms, tons,

pounds), and these discrepancies are not always noticed by

untrained workers in the statistics o�ce.

As a result, statistics should be kept simple and

transparent, so that problems of reliability can surface

and be spotted easily. Research reports should include

7sensitivity analysis, that is, an analysis of howmuch vari-
ation in outputs could be caused by small variations in

inputs.

Second, experimenters may �nd it more di�cult in

developing countries to control all variables. For example,

social researchmay �nd it di�cult to control the socioeco-

nomic status of the subjects of a study. In this case, it may

be more di�cult to identify the real variable that gives rise

to group di�erences.�us, factoring out extraneous vari-

ables, for example by the7analysis of covariance, may be a
primary focus of research designs in developing countries.
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�ird, probability distributions may stray from the

normal bell-shaped curve. Many developing countries

have not only widely disparate populations, but may have

two or three subpopulations such as tribal cultures or

rich-poor splits that can yield bimodal distributions, or

even distributions with most of the data occurring at the

extremes of the curve rather than in the middle.

For this reason, there may be a tendency to use non-

parametric statistical models in the analysis of data. Or,

if parametric methods are to be used, careful study of the

robustness of the procedure should be taken into account.

If slight discrepancies from normality can result in large

deviations in results, then the use of the parametric statis-

tics should be called into question.

Fourth, technical and educational facilities in devel-

oping countries may limit the capacity to use more

sophisticated statistical methods. For one thing, computer

capability may be limited in either hardware or so�ware,

or else local statisticians may not be fully conversant with

statistical so�ware packages. In either case, it is probably

more appropriate to adopt statistical methods that are as

simple as possible.

A note needs to be made concerning statistical edu-

cation in developing countries. Because schools and even

universities lack the necessary computers, statistics as a

subject is o�en taught by the old-fashioned method of

calculations by hand-held calculators or even by pencil-

and-paper. In such an educational system, the emphasis is

o�en on the calculation algorithms of, say,means and stan-

dard deviations, rather on the interpretation of results. In

developed countries where the entire class has unlimited

access to computers with statistical so�ware, the calcula-

tions can be done very easily, so that the emphasis can

be placed on interpreting the results, or on assessing the

appropriateness of the statistical method in question. In

developing countries, however, students o�en “lose sight

of the forest for the trees,” that is, their academic assess-

ment is entirely dependent on their ability to calculate

algorithms that they do not focus on design of experiments

and interpretation of results.

A second point about education in developing coun-

tries is the lack of teachers trained in locally appropriate

methods. A university teacher quite likely has been trained

in the developed world, and therefore wishes to teach stu-

dents themost sophisticated and up-to-datemethods, even

though those methods may not be the most appropriate in

the local context.

Related to the above point is the fact that the publica-

tion of research results is o�en biased by the complexity

of the statistical methods used. A journal editor may reject

a research study simply because the statistics used do not

appear sophisticated enough to merit publication.�us, a

researcher may reject a simple but appropriate method in

favor of a more complicated one in order to impress the

readers.

One may summarize the above points in four recom-

mendations:

. When in doubt, opt for the simpler statistical procedure.

. Be prepared to use nonparametric statistics.

. Sensitivity Analysis should be carried out to compen-

sate for possibilities of unreliable data.

. Students should be trained in the appropriateness of

statistical design and interpretation of results, not just

in the calculation of statistical algorithms.
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In statistics, semiparametric regression includes regres-

sion models that combine parametric and nonparametric

models.�ey are o�en used in situations where the fully

nonparametric model may not perform well or when the

researcher wants to use a parametric model but the func-

tional form with respect to a subset of the regressors or the

density of the errors is not known. Suppose Y is a response

and X = (x, ..., xp) are covariates. A basic goal is to esti-
mate m(x) = E(Y ∣X = x) or the model Y = m(X) + ε

with E(ε∣X) =  almost surely. Without any information
about the structure of the function, it is di�cult to estimate

m(x) well when p > , and as a consequence many para-
metric and semiparametric models have been proposed

that impose structural constraints or special functional

forms uponm(x). Popular semiparametricmodels include
partially linear models, see for example Speckman (),

in which

Y = βx + ... + βp−xp− + gp(xp) + ε,

additive models, see for example Hastie and Tibshirani

(), in which

Y = g(x) + g(x) + ... + gp(xp) + ε,

single-index models, see for example Ichimura (), in

which

Y = g(βx + ... + βpxp) + ε,

varying coe�cient models, see for example Chen and Tsay

() and Hastie and Tibshirani (), in which

Y = g(x) + g(x)x + ... + gp(x)xp + ε.

and extended partially linear single-index model, see Xia

et al. (), in which

Y = βx + ... + βpxp + g(θx + ... + θpxp) + ε.

In all the above models, g, ..., gp and g are unknown

functions and β, ..., βp, θ, ..., θp are parameters need to be

estimated. A general form of the semiparametric model

including all the models above is

µ{E(Y ∣x, ..., xp)} = G(g, β,X),

where g = (g, ..., gq)T are unknown smooth functions, G
is known up to a parameter vector β, function µ is known

and usually monotonic.

Both splines smoothing and Kernel smoothing can be

used to estimate these models.�e general model can be

estimated by the method proposed by Xia et al. ().

�eoretically, all these models can avoid the “curse of

dimensionality” in the estimation. �e estimators of the

unknown functions g, ..., gp and g can achieve the optimal

consistency rate of univariate function, and the parameters

such as β, ..., βp and θ are root-n consistent.

�ese models have been found very useful in applica-

tion; see for exampleHastie and Tibshirani (), Fan and

Gijbels () and Ruppert et al. ().
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For any random variable X with �nite variance, and any

constant t

E{(X − t)} = E{(X − t)−} + E{(X − t)+}.

If t = µ = EX, then E{(X − t)} = σ , the vari-

ance of X.�e quantity E{(X − µ)−} is called the (lower)
semi-variance of X whereas E{(X − µ)+} is called the
upper semi-variance of X. In �nancial applications where

X represents return on an investment, σ is widely used

as a measure of risk of an investment (portfolio). In that

context σ is called volatility since it measures volatility of

returns. Risk-averse investors like consistency of returns

and hence lower volatility. In order to compare two or

more investments one compares their returns per unit of

risk, that is, µ/σ = /coe�cient of variation. A modi�ed
version of this measure is due to Sharpe () who uses

the ratio excess returns (over risk free returns) divided by

volatility. Another widely used measure of investors’ risk

is beta, the coe�cient of linear regression of returns over

some benchmark returns such as Standard and Poor 

index.�us, a value of beta over  means that the invest-

ment under consideration is more volatile (risky) than the

benchmark.

For risk-averse investors neither of these twomeasures

�ts their need.�ey are more interested in the downside

risk, the risk of losing money or falling below the target

return. For instance, variance assigns equal weight to both

deviations, those above the mean and those below the

mean. In that sense it ismore suitable for symmetric return

distributions in which case σ  = E{(X − µ)−}. In prac-
tice the return distributions are o�en skewed to the right.

No investor is averse to returns in excess of the target. He

or she prefers positive skewness because the chance of large

deviations from the target rate is much less.

Markowitz () introduced

σ

D(t) = E{(X − t)−}

as a measure of downside risk. Here t may be called the

target rate of return which could be the riskless rate such

as the three month T-bill rate or the Libor rate. Recall that

E{(X − t)} is minimized for t = µ. On the other hand

σ D(t) is an increasing function of t and a Chebyshev type
inequality holds:

P (X < µ − kσD(t)) ≤ /k for k ≥ .

As an estimate of σ D(t) one generally uses the substitution
principle estimator

(/n)
n

∑
i=

{(xi − t)−}


and when t = µ we use the estimator

(/n)
n

∑


{(xi − x)−}

.

Markowitz () was the �rst to propose amethod of con-

struction of portfolios based on mean returns, and their

variances and covariances (see 7Portfolio theory). In 
he proposed semivariance as a measure of downside risk

and advocated its use in portfolio selection. Due to compu-

tational complexity of semivariance and semicovariance,

however, he used the variance measure of risk instead.

A�er the advent of desktop computers and their com-

putational power in s the focus shi�ed to portfolio

selection based on semivariance as a measure of downside

risk. See for example Markowitz et al. ().

Both σD(t) and σU(t) (σ U(t) = E{(X − t)+}) have
been used inQualityControl (see7StatisticalQualityCon-
trol) in constructing process capability indices. See for

example, Kotz and Cynthia (). Other uses are in spa-

tial statistics and in construction of con�dence intervals in

simulation output analysis Coobineh and Branting ().

�e semi-standard deviation σD(µ) can also be used in
setting up dynamic stop loss points in security trading.
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Existing guidelines for impact assessment recommend that

mathematical modeling of real or man-made system be

accompanied by a ‘sensitivity analysis’ - SA (EC ;

EPA ; OMB ).�e same recommendation can be

found in textbooks for practitioners (e.g., Kennedy ,

Saltelli et al. ). Mathematical models can be seen as

machines capable of mapping from a set of assumptions

(data, parameters, scenarios) into an inference (model

output).

In this respect modelers should tackle:

● Uncertainty. Characterize the empirical probability
density function and the con�dence bounds for a

model output. �is can be viewed as the numeri-

cal equivalent of the measurement error for physical

experiments.�e question answered is “Howuncertain

is this inference?”

● Sensitivity. Identify factors or groups of factors
mostly responsible for the uncertainty in the predic-

tion. �e question answered is “Where is this uncer-

tainty coming from?”

�e two terms are o�en used di�erently, with sensitiv-

ity analysis used for both challenges (e.g., Leamer ).

We focus on sensitivity analysis proper, i.e., the e�ect of

individual factors or group of factors in driving the output

and its uncertainty.

Basic Concepts
�e ingredients of a sensitivity analysis are the model’s

uncertain input factors and model’s outputs. Here and in

the following we shall interpret as factor all that can be

plausibly changed at the level of model formulation or

model input in the quest tomap the space of themodel pre-

dictions.�us a factor could be an input datum acquired

with a known uncertainty, as well as a parameter estimated

with known uncertainty in a previous stage ofmodeling, as

well a trigger acting on the model’s structure (e.g., a mesh

size choice), or a trigger selecting the choice of amodel ver-

sus another, or the selection of a scenario.Modelers usually

have considerable latitude of choice as to how to combine

factors in a sensitivity analysis, e.g., what to vary, what

to keep �xed. Also a modeler’s choice is, to some extent,

whether to treat factors as dependent upon one another or

as independent.�e design and the interpretation of this

ensemble of the model simulations constitute a sensitivity

analysis.

Use of Sensitivity Analysis
Sensitivity analysis is a tool to test the quality of a model

or better the quality of an inference based on a model.�is

is investigated by looking at the robustness of an inference.

�ere is a trade o� here between how scrupulous an analyst

is in exploring the input assumptions and how wide the

resulting inference will be. Edward E. Leamer () calls

this an organized sensitivity analysis:

7 I have proposed a form of organized sensitivity analysis that

I call ‘global sensitivity analysis’ in which a neighborhood of

alternative assumptions is selected and the corresponding

interval of inferences is identified. Conclusions are judged to

be sturdy only if the neighborhood of assumptions is wide

enough to be credible and the corresponding interval of infer-

ences is narrow enough to be useful.

In fact it is easy to invalidate a model demonstrating that

it is fragile with respect to the uncertainty in the assump-

tions. Likewise one can criticize a sensitivity analysis by

showing that its assumptions have not been taken ‘wide

enough.’

Examples of application of SA are: robustness assess-

ment in the context of impact assessment; model simpli�-

cation in the context of complex and computer demanding

models; quality assurance for detecting coding errors or
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misspeci�cations. Sensitivity analysis can also highlight

the region in the space of input factors for which themodel

output assumes extreme values, as can be relevant in7risk
analysis. Likewise it can identify model instability regions

within the space of the factors for use in a subsequent

calibration study.

Local Vs Global Methods
In the model Y = f (X ,X, . . . ,Xk) Y is the output and Xis
are the input factors.�e model is linear if each factor Xi
enters linearly in f .�e model is additive if the function f

may be decomposed into a sum of k functions fi ≡ fi(Xi),
each fi depending only on its own factor Xi.

�ere are ‘local’ and ‘global’ methods for SA. If the

model is linear, a local approach based on �rst derivatives

of the output with respect to the input factors will provide

all the information that is needed for SA. If the model is

non linear but additive, i.e., there are no interactions among

factors, then derivatives of higher and cross order will be

needed. When a-priori information on the nature of the

model is not available (model-free setting) or the model is

acknowledged to be non additive, then global methods are

needed whereby all the space of the uncertain input fac-

tors is explored. Note that o�en modelers cannot assume

linearity and additivity as their models come in the form

of computer programs, possibly including several compu-

tational steps. In this situation it is better to use ‘global’

methods (EPA ; Saltelli et al. ).

A Very Popular Practice: OAT-SA
Most sensitivity analysis met in the literature are realized

by varying one factor at a time – OAT approaches. Model-

ers have many good reasons to adopt OAT, including the

use of a common ‘baseline’ value from which all factors

aremoved. Derivative based approaches - when the deriva-

tives stop at the �rst order - are a particular case of OAT.

Typical arguments in favor of OAT are: () �e baseline

vector is a safe starting point where the model properties

are well known; () Whatever e�ect is detected on the out-

put, this is solely due to that factor which was moved and

to none other; ()�e chances of the model to crash or to

give unacceptable results are minimized as these generally

increase with the distance from the baseline.

Despite all these points in favor to an OAT sensitivity

analysis we would like to discourage as much as possible

this practice (Saltelli and Annoni ). OAT is ine�cient

in exploring the input space as the coverage of the design

space is extremely poor already with few input factors.�e

issue of uniformly covering the hyperspace in high dimen-

sions is a well known and widely discussed matter under

the name curse of dimensionality (Hastie et al. ).�ere
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are various ways to visualize this ‘curse’. Figure  may be

e�ective. It shows that, as the number of dimensions k

increases, the volume of the hyper-sphere inscribed in the

unitary hyper-cube goes rapidly to zero (it is less than %

already for k = ).
�e OAT approach – moving always one step away

from the same baseline – can be shown to generate points

inside the hyper-sphere. Of course when one throws a

handful of points in a multidimensional space these points

will be sparse, and in no way the space will be fully

explored. Still, even if one has only a handful of points at

disposal, there is no reason why one should concentrate all

these points in the hyper-sphere, i.e., closer to the origin

on average than randomly generated points in the cube.

An additional shortcoming of OAT is that it cannot

detect factor interactions. It may be the case that a fac-

tor is detected as no in�uential while it is actually relevant

but only through its interaction with the other factors. In a

model free setting,OAT is by nomeans thewinning choice.

Design and Estimators
Unlike OAT, a good experimental design will tend to

change more factors simultaneously. �is design can be

realized using the same techniques used for experimental

design (e.g., a saturated two-level design or an unsaturated

designwithmore levels). A practical alternative for numer-

ical experiments is a Monte Carlo method. Beside design,

sensitivity analysis needs sensitivity estimators which will

translate the function values computed at the design points

into sensitivity coe�cients for the various factors.
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Model’s predictions have to be evaluated at di�erent

points within the parameter space, whose dimensional-

ity is equal to the number k of input factors. To explore

the k-dimensional factor space (the hyperspace) the �rst

step in usually to reduce the problem to traveling across

the k-dimensional unit cube by using the inverse cumu-

lative distribution function of input factors. �e input

space can be explored using ad hoc trajectories (such as in

the elementary e�ects method below), random numbers

or quasi-random numbers. Quasi-random numbers are

speci�cally designed to generate samples from the space

of input factors as uniformly as possible. For a review on

quasi random sequences and their properties see Bratley

and Fox ().

A�er sampling the space of input factors, various

methods may be applied to compute di�erent sensitivity

measures. Selected practices are given next.

Morris’ Elementary Effects
�e Elementary E�ect method (Morris ) provides a

ranking of input factors according to a sensitivity mea-

sure simply based on averages of derivatives over the space

of factors. In the Morris setting each input factor is dis-

cretized into p levels and the exploration of the input

space is carried out along r trajectories of (k + ) points,
where each point di�ers from the previous one in only

one component. Each trajectory provides rough sensitivity

measures for each factor called elementary e�ect EE.�e

elementary e�ect of trajectory j for factor i is:

EE
(j)
i =

Y(X,. . .,Xi−,Xi + ∆,Xi+,. . .,Xk) − Y(X,. . .,Xk)
∆

()

where convenient choices for p and ∆ are p even and

∆ equal to p/[(p − )]. �e point (X, . . . ,Xk) is any
point in the input space such that the incremental point

(X, . . . ,Xi−,Xi+∆,Xi+, . . . ,Xk) still belongs to the input
space (for each i = , . . . , k). Elementary e�ect EE(j)i pro-

vides a sensitivity index which highly depends on the par-

ticular trajectory, being in this sense local. To compute a

more global sensitivity measure, many trajectories are cho-

sen and the average value of EE
( j)
i over j is computed.

Following a recent revision of original Morris’ measure,

factors may be ranked according to µ∗ (Campolongo et al.
):

µ
∗
i =



r

r

∑
j=

∣EE(j)i ∣ ()

�e elementary e�ects sensitivity measure is an e�cient

alternative toOAT. It is used for factor screening, especially

with large and complex models. When modellers are con-

strained by computational costs, a recommended practice

is to perform a preliminary analysis by means of Morris’

trajectories to detect possible non in�uential factors. More

computationally intensive methodsmay be then applied to

a smaller set of input factors.

Monte Carlo Filtering
An alternative setting for sensitivity analysis is the ‘fac-

tor mapping’ which relates to situations when there is a

special concern towards a particular portion of the distri-

bution of the output Y , e.g., one is concerned with Y above

or below a given threshold – e.g., an investment loss or a

toxicity level not to be exceeded.�is is the typical setting

of Monte Carlo Filtering MCF (see Saltelli et al.  for

a review).�e realizations of Y are classi�ed into ‘good’ –

behavioral – and ‘bad - non-behavioral depending on the

value of Y with respect to the threshold. AMCF analysis is

divided into the following steps:

. Compute di�erent realizations of Y corresponding to

di�erent sampled points in the space of input factor by

means of a Monte Carlo experiment;

. Classify each realization as either behavioral (B) or
non behavioral (B);

. For each Xi de�ne two subsets, one including all the

values of Xi which give behavioral Y , denoted (Xi∣B),
the other including all the remaining values (Xi∣B);

. Compute the statistical di�erence between the two

empirical distribution functions of (Xi∣B) and (Xi∣B).
A factor is considered in�uential if the two distribution

functions are statistically di�erent. Classical statistical

tests, such as Smirnov two-sample test may be used to

the purpose.

Variance-Based Sensitivity Measures
With variance-based sensitivity analysis (VB-SA) input

factors can be ranked according to their contribution to

the output variance. VB-SA also tackles interaction e�ects

instructing the analyst about cooperative behavior of fac-

tors. Interactions can lead to extremal values of model

output and are thus relevant to the analysis. In VB-SA sen-

sitivity analysis the two most relevant measures are ‘�rst

order’ and ‘total order’ indices.

�e best systematization of the theory of variance-

based methods is due to Sobol’ (Sobol ), while total

sensitivity indices were introduced by Homma and Saltelli

(). For reviews see also Saltelli et al. () or Helton

et al. (). Variance-based SA uses measures as

Si =
VXi (EX∼i(Y ∣Xi))

V(Y)
()
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and

STi =
EX∼i (VXi(Y ∣X∼i))

V(Y)
=  − VX∼i (EXi(Y ∣X∼i))

V(Y)
()

where X∼i = {X,X, . . . ,Xi−,Xi+, . . . ,Xk}.
EX∼i(Y ∣Xi) is the value of Y obtained by averaging

over all factors but Xi, and is thus a function of Xi alone.

VXi (EX∼i(Y ∣Xi)) is the variance of this function over Xi
itself. Intuitively a high value of this statistics implies an

in�uent factor.

�e quantity Si corresponds to the fraction of V(Y)
that can be attributed toXi alone. It can be viewed as amea-

sure of how well EX∼i(Y ∣Xi) �ts Y : if the �tting is optimal
then Si ≅  and factor Xi is highly relevant. �e quan-
tity STi corresponds to the fraction of V(Y) that can be
attributed to Xi and all its interactions with other factors.

For additive models the two measures Si and STi are equal

to one another for each factor Xi. For an interacting factor

the di�erence STi − Si is a measure of the strength of the
interactions.

�e estimation of Si and STi requires the computation

of k-dimensional integrals. �ey are generally approxi-

mated assuming independency among input factors and

using Monte-Carlo or quasi-Monte-Carlo sampling from

the joint distribution of the space of input factors. Alterna-

tive procedures for the computation of Si and STi are avail-

able which use direct calculations. �ey all derive from

metamodels, which provide cheap emulators of complex

and large computational models (see for example Oakley

and O’Hagan ; Storlie et al. ).
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Introduction
�e use of humans as measurement instruments is playing

an increasing role in product development and user-driven

innovation in many industries. �is ranges from the use

of experts and trained human test panels to market stud-

ies where the consumer population is tested for preference

and behavior patterns.�is calls for improved understand-

ing on one side of the human measurement instrument

itself and on the other side the modeling and empirical

treatment of data. �e scienti�c grounds for obtaining

improvements within a given industry span from exper-

imental psychology to mathematical modeling, statistics,

chemometrics, and machine learning together with spe-

ci�c product knowledge be it food, TVs, hearing aids,

mobile phones, or whatever.

In particular in the food industry, sensory and con-

sumer data is frequently produced and applied as the basis

for decisionmaking. And in the �eld of food research, sen-

sory and consumer data is produced and used similar to

the industrial use, and academic environments speci�cally

for sensory and consumer sciences exist worldwide. �e

development and application of statistics and data analysis

within this area is called sensometrics.

Sensory Science and Sensometrics
As the name indicates, sensometrics really grew out of

and is still closely linked to sensory science, where the

use of trained sensory panels plays a central role. Sen-

sory science is the cross-disciplinary scienti�c �eld deal-

ing with human perception of stimuli and the way they

act upon sensory input. Sensory food research focuses

on better understanding of how the senses react during

food intake, but also how our senses can be used in qual-

ity control and innovative product development. Histor-

ically it can be viewed as a merger of simple industrial

product testing with psychophysics as originated by G.T.

Fechner and S.S. Stevens in the nineteenth century. Prob-

ably the �rst exposition of the modern sensory science

is given by Amerine et al. (). Rose Marie Pangborn

(–) was considered one of the pioneers of sen-

sory analysis of food and the main global scienti�c con-

ference in sensory science is named a�er her. �e �rst

Pangborn Symposium was held in Helsinki, Finland, in

 and these conferences are approaching in the order of

, participants – the ninth was planned for in Bangkok,

�ailand, in . Jointly with this, international senso-

metrics conferences have been held also since , where

the �rst took place in Leiden, Holland (as a small work-

shop), and the tenth took place in Rotterdam, Holland,

in . �e sensometrics conferences have a participa-

tion level of around –. Both conferences are working

together with the Elsevier Journal Food Quality and Prefer-

ence, which is also the o�cial membership journal for the

Sensometrics Society (www.sensometric.org).

Sensometrics: Statistics, Psychometrics,
or Chemometrics?
�e “sensometrician” is faced with a vast collection of data

types froma large number of experimental settings ranging

from a simple one-sample binomial outcome to complex

dynamical and/or multivariate data sets; see, e.g., Bredie

et al. () for a recent review of quantitative sensory

methodology. So what is really (good) sensometrics?�e

answer will depend on the background of the sensometri-

cian, who for the majority, if not a food scientist, is coming

from one of the following �elds: generic statistics, psy-

chophysics/experimental psychology, or chemometrics.

�e generic statistician arch type would commonly

carry out the data analysis as a purely “empirical” exercise

in the sense that methods are not based on any models for

the fundamental psychological characteristics underlying

the sensory phenomena that the measurements express.

�e advantage of a strong link to the generic scienti�c

�elds of mathematical and applied statistics is the ability

to employ the most modern statistical techniques when

relevant for sensory data and to be on top of sampling

uncertainty and formal statistical inferential reasoning.

And this is certainly needed for the sensory �eld as for

any other �eld producing experimental data. �e weak-

ness is that the lack of proper psychophysical models may

lead to inadequate interpretations of the analysis results.

In, e.g., MacKay () the �rst sentence of the abstract

is expressing this concern rather severely: “Sensory and

hedonic variability are fundamental psychological char-

acteristics that must be explicitly modeled if one is to

develop meaningful statistical models of sensory phenom-

ena.” A fundamental challenge of this ambitious approach

is that the required psychophysical (probabilistic) models

of behavior are on one hand only vaguely veri�able, since

they are based on models of a (partly) unobserved sys-

tem, the human brain and perceptual system, and on the

other handmay lead to rather complicated statistical mod-

els. MacKay () is published in a special sensory data

issue of�e Journal of Chemometrics; see Brockho� et al.

(). Chemometricians are the third and �nal arch type
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of a sensometrician. In chemometrics the focus is more on

multivariate data analysis (see 7Multivariate Data Analy-
sis: An Overview) and for some the explorative principle

is at the very heart of the �eld; see, e.g., Munck () and

Martens andMartens ().�e advantage of the chemo-

metrics approach is that usually all multivariate features

of the data are studied without forcing certain potentially

inadequate model structures on the data.�e weakness is

exactly also this lack ofmodeling rendering potentially cer-

tain well-understood psychophysical phenomena for the

explorative modeling to �nd out by itself. Also, linked with

the explorative approach, the formal statistical inferential

reasoning is sometimes considered less important by the

chemometrician.

Now, none of these arch types are (at their best) unin-

telligent and they would, all three of them, understand

(some of) the limitations of their pure versions of analysis

approach. And they all have ways of dealing with (some of)

these concerns for practical data analysis, such that o�en,

at the end of the day, the end results may not di�er that

much.�ere is though, in the point of view of this author,

a lack of comprehensive comparisons between these di�er-

ent approaches where they all are used at their best.

Example : Sensory Profile Data
As an example, consider the so-called descriptive sensory

analysis, also called sensory pro�ling. In sensory pro�ling

the panelists develop a test vocabulary (de�ning attributes)

for the product category and rate the intensity of these

attributes for a set of di�erent samples within the cate-

gory.�us, a sensory pro�le of each product is provided

for each of the panelists, and most o�en this is replicated;

see Lawless and Heymann (). Hence, data is inher-

ently multivariate as many characteristics of the products

are measured.

�e statistics arch type would focus on the ANOVA

structure of the setting and perform univariate and mul-

tivariate analyses of variance (ANOVA) and would make

sure that the proper version of a mixed model ANOVA is

used; see, e.g., Lea et al. () and Næs et al. (). For

studying the multivariate product structure the Canonical

Variates Analysis (CVA) within the Multivariate ANOVA

(MANOVA) framework would be the natural choice (see,

e.g., Schlich ()) since it would be an analysis that

incorporates the within-product (co)variability.

�e chemometrics arch type would begin with prin-

cipal components analysis (PCA) on averaged and/or

unfolded data. For more elaborate analysis maybe three-

way methods (see Brockho� et al. (), Bro et al. ())

or other more ANOVA-like extensions would be used (see,

e.g., Luciano and Næs ()). Analysis accounting for

within-product (co)variability could be provided by exten-

sions as presented in Bro et al. () or in Martens et al.

().

In MacKay () the approach for this type of

data is that of probabilistic multidimensional scaling

(PROSCAL). In short, a formal statistical model for prod-

uct di�erences is expressed as variability on the (low-

dimensional) underlying latent sensory scale. It is usually

presented as superior to the use of, e.g., standard PCA,

focusing on the point that it naturally includes models

for di�erent within-product variability, which in the stan-

dard PCA could be confounded with the “signal” – the

inter-product distances.

Example : Sensory Difference and
Similarity Test Data
�e so-called di�erence and/or similarity tests are a com-

monly used sensory technique resulting in binary and/or

categorical frequency data – the so-called triangle test is a

classical example. In the triangle test an individual is pre-

sented with three samples, two of which are the same, and

then asked to select the odd sample.�e result is binary:

correct or incorrect. Such sensory tests were already in

the s treated by the statistical community; see, e.g.,

Hopkins () and Bradley ().�ese types of tests and

results have also been treated extensively from amore psy-

chophysical approach, o�en here denoted a �urstonian

approach. �e focus in the �urstonian approach is on

quantifying/estimating the underlying sensory di�erence

d between the two products that are compared in the di�er-

ence test.�is is done by setting up mathematical/psycho-

physical models for the cognitive decision processes that

are used by assessors in each sensory test protocol see;

e.g., Ennis (). For the triangle test, the usual model

for how the cognitive decision process is taking place is

that the most deviating product would be the answer –

sometimes called that the assessors are using a so-called

tau-strategy. Using basic probability calculus on three real-

izations from two di�erent normal distributions, di�ering

by exactly the true underlying sensory di�erence d, one

can deduce the probability of getting the answer correct

for such a strategy.�is function is called the psychome-

tric function and relates the observed number of correct

answers to the underlying sensory di�erence d. Di�er-

ent test protocols will then lead to di�erent psychometric

functions. InBock and Jones () probably the �rst sys-

tematic exposition of the psychological scaling theory and

methods by�urstone was given.�is included a sound

psychological basis as well as a statistical one with the use

and theory of maximum likelihood methods. Within the

�eld known as signal detection theory (see, e.g., Green and
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Swets () or Macmillan and Creelman ()), meth-

ods of this kind were further developed, originally with

special emphasis on detecting weak visual or auditory sig-

nals. Further developments of such methods and their use

within food testing and sensory science have developed

over the last couple of decades with the numerous con-

tributions of D. Ennis as a corner stone; see, e.g., Ennis

(). In Brockho� and Christensen () it was empha-

sized and exploited that the�urstonian-based statistical

analysis of data from the basic sensory discrimination test

protocols can be identi�ed as 7generalized linear models
using the inverse psychometric functions as link functions.

With this in place, it is possible to extend and combine

designed experimentation with discrimination/similarity

testing and combine standard statistical modeling/analysis

with�urstonian modeling.

Summary
One recurrent issue in sensometrics is the monitoring

and/or accounting for individual di�erences in sensory

panel data, also called dealing with panel performance.

A model-based approach within the univariate ANOVA

framework was introduced in Brockho� and Skovgaard

(), leading to multiplicative models for interaction

e�ect expressing the individual varying scale usage. In

Smith et al. () and in Brockho� and Sommer ()

random e�ect versions of such analyses were put forward

leading to either a multiplicative (nonlinear) mixed model

or a linear random coe�cient model. Another recurring

issue is the relation of multivariate data sets, e.g., trying

to predict sensory response by instrumental/spectroscopic

and/or chemicalmeasurements. Similarly there is a wish to

be able to predict how the market (consumers) will react

to sensory changes in food products – then called Prefer-

enceMapping (McEwen ).�is links the area closely to

the chemometrics �eld and also naturally to the (machine)

learning area, which in part is explored in Meullenet et al.

(). Another commonly used sensory and consumer

survey methodology is to use rankings or scoring on an

ordinal scale. InRayner et al. () standard and extended

rank-based non-parametrics is presented speci�cally for

sensory and consumer data.

As indicated, there are yet many other examples of

sensory and consumer data together with other purposes

of analysis challenging the sensometrician whoever he or

she is. Recently some open-source dedicated sensometrics

so�ware have appeared: the R-based SensoMiner (Lê and

Husson ), the stand-alone tool PanelCheck (Tomic

et al. ), and the R-package sensR (Christensen and

Brockho� ).
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and Preference and Journal of Chemometrics.

Cross References
7Analysis of Variance
7Chemometrics
7Multidimensional Scaling
7Nonlinear Mixed E�ects Models
7Random Coe�cient Models
7Random Coe�cient Models

References and Further Reading
Amerine MA, Pangborn RM, Roessler EB () Principles of

sensory evaluation of food. Academic, New York

Bock DR, Jones LV () The measurement and prediction of

judgment and choice. Holden-Day, San Francisco

Bradley RA () Triangle, duo-trio, and difference-from-control

tests in taste testing. Biometrics :

Bredie WLP, Dehlholm C, Byrne DV, Martens M () Descrip-

tive sensory analysis of food: a review. Submitted to Food Qual

Prefer

Bro R, Sidiropoulos ND, Smilde AK () Maximum likelihood

fitting using ordinary least squares algorithms. J Chemometr

(–):–

Bro R, Qannari EM, Kiers HA, Næs TA, Frøst MB () Multi-

way models for sensory profiling data. J Chemometr :

–

Brockhoff PM, Skovgaard IM () Modelling individual differ-

ences between assessors in sensory evaluations. Food Qual

Prefer :–

Brockhoff PB, Sommer NA () Accounting for scaling differ-

ences in sensory profile data. Proceedings of Tenth European

Symposium on Statistical Methods for the Food Industry.

pp –, Louvain-La-Neuve, Belgium

Brockhoff P, Hirst D, Næs T () Analysing individual profiles by

three-way factor analysis. In: Næs T, Risvik E (eds) Multivari-

ate analysis of data in sensory science, vol , Data handling in

science and technology. Elsevier Science, B.V., pp –



Sequential Probability Ratio Test S 

S

Brockhoff PB, Næs T, Qannari M () Editorship. J Chemometr

():

Brockhoff PB, Christensen RHB () Thurstonian models for sen-

sory discrimination tests as generalized linear models. Food

Qual Pref :–

Christensen RHB, Brockhoff PB () sensR: An R-package for

thurstonian modelling of discrete sensory data. R-package

version ... (www.cran.r-project.org/package=sensR/)

Ennis DM () The power of sensory discrimination methods.

J Sens Stud :–

Ennis DM () Foundations of sensory science. In:

Moskowitz HR, Munoz AM, Gacula MC (eds) Viewpoints

and Controversies in Sensory Science and Consumer Product

Testing. Food and Nutrition, Trumbull, CT

Green DM, Swets JA () Signal detection theory and psy-

chophysics. Wiley, New York

Hopkins JW () A Procedure for quantifying subjective

appraisals of odor, flavour and texture of foodstuffs. Biometrics

():–

Lawless HT, Heymann H () Sensory evaluation of food. Princi-

ples and Practices. Chapman and Hall, New York

Lê S, Husson F () SensoMineR: a package for sensory data

analysis. J Sens Stud ():–

Lea P, Næs T, Rødbotten M () Analysis of variance of sensory

data. Wiley, New York

Luciano G, Næs T () Interpreting sensory data by combining

principal component analysis and analysis of variance. Food

Qual Pref :–

MacKay DB () Probabilistic scaling analyses of sensory profile,

instrumental and hedonic data. J Chemometr ():–

Macmillan NA, Creelman CD () Detection theory, a user’s

guide, nd edn. Mahwah, N.J.: Lawrence Erlbaum Associates

Martens H, Martens M () Multivariate analysis of quality: an

introduction. Wiley, Chicester, UK

Martens H, Hoy M, Wise B, Bro R, Brockhoff PB () Pre-

whitening of data by covariance-weighted pre-processing.

J Chemometr ():–

McEwen JA () Preference mapping for product optimization.

In: Næs T, Risvik E (eds) Multivariate analysis of data in sen-

sory science, vol , Data handeling in science and technology.

Elsevier Science, B.V., pp –

Meullenet J-F, Xiong R, Findlay CJ () Multivariate and

probabilistic analysis of sensory science problems. Blackwell,

Ames, USA

Munck L () A new holistic exploratory approach to Systems

biology by near infrared spectroscopy evaluated by chemomet-

rics and data inspection. J Chemometr :–

Næs T, Tomic O, Brockhoff PB () Statistics for sensory and

consumer science. Wiley, New York

Rayner JCW, Best DJ, Brockhoff PB, Rayner GD () Nonpara-

metrics for Sensory science: a more informative approach.

Blackwell, USA

Schlich P () What are the sensory differences among coffees?

Multi-panel analysis of variance and flash analysis. Food Qual

Prefer :

Smith A, Cullis B, Brockhoff P, Thompson R () Multiplicative

mixed models for the analysis of sensory evaluation data. Food

Qual Prefer (–):–

Tomic O, Nilsen AN, Martens M, Næs T () Visualization of sen-

sory profiling data for performance monitoring. LWT – Food

Sci Technol :–

Sequential Probability Ratio Test

WalterW. Piegorsch

, William J. Padgett




Professor, Chair

University of Arizona, Tucson, AZ, USA

Distinguished Professor Emeritus of Statistics

University of South Carolina, Columbia, SC, USA

Introduction: Sequential Testing and
Sequential Probability Ratios
An important topic in statistical theory and practice con-

cerns the analysis of data that are sampled sequentially.

�e development of powerful mathematical and statistical

tools for the analysis of sequential data is a critical area in

statistical research. Our emphasis in this short, introduc-

tory exposition is on sequential testing, and in particular

on the best-known version for such testing, the sequential

probability ratio test.

Suppose we are given two hypotheses about the under-

lying distribution of a random variable X: H : X ∼ f(x)
vs Ha : X ∼ f(x), for two probability density functions
(pdfs) or probability mass functions (pmfs) fi(x), i = , .
To perform a sequential test of H vs. Ha, we sample indi-

vidual observations one at a time, and assess in a series of

separate stepswhether or not the accumulated information

favors departure from H:

Step : Begin by setting two constants, A and B, such that

 < A <  < B.
Step : Observe X. Compute the probability ratio Λ =
f(x)/f(x). Since very large values of this ratio support
Ha, reject H if Λ ≥ B. Alternatively, since very small
values of this ratio support H, accept H if Λ ≤ A.�e
sequential approach also allows for an indeterminate out-

come, so ifA < Λ < B, continue sampling and go to Step .
Step : Observe X. Compute the probability ratio Λ =
f(x, x)/f(x, x). As in Step , if Λ ≥ B, rejectH, while
if Λ ≤ A, acceptH. IfA < Λ < B, continue sampling and
observe X.

⋮
Step n: Observe Xn. Compute the probability ratio Λn =
f(x, x, . . . , xn)/ f(x, x, . . . , xn). As in Step , if Λn ≥ B,
reject H, while if Λn ≤ A, accept H. If A < Λn < B, con-
tinue sampling and observe Xn+. (etc.)

�is is known as a Sequential Probability Ratio Test

(SPRT), due to Wald (a; b).

Notice that in the typical setting where the indi-

vidual observations are sampled independently from

f(x) or f(x), the probability ratios take the form



 S Sequential Probability Ratio Test

Λn =
n

∏
i=

{ f(xi)/f(xi)}. �en, the continuance con-

dition A < Λn < B is equivalent to log{A} <

log{
n

∏
i=

[ f(xi)/f(xi)]} < log{B}. For Di = log{ f(xi)} −

log{ f(xi)} at any i = , , . . . , this simpli�es to

log{A} <
n

∑
i=
Di < log{B}. ()

An idealized schematic of this procedure can be given,

analogous to Fig. – of Lindgren (), for example. For

speci�c choices of f and f, one can o�en simplify () even

further. Example  illustrates the approach.

Example  �e Exponential Family

Suppose we test the simple hypotheses H : θ = θ vs

Ha : θ = θ. Let theXis be independent and identically dis-

tributed (i.i.d.) with underlying pdf or pmf taken from the

exponential family of probability functions (Pierce ):

f (x) = h(x)c(θ)eω(θ)t(x)
.�en, the continuance condi-

tion simpli�es to log{A} < n log{c(θ)/c(θ)}+ [ω(θ)−
ω(θ)]

n

∑
i=
t(Xi) < log{B}, which if ω(θ) − ω(θ) > 

becomes

an <
n

∑
i=
t(Xi) < bn, ()

where

an =
log{A} − n log [ c(θ)

c(θ)
]

ω(θ) − ω(θ)
and

bn =
log{B} − n log [ c(θ)

c(θ)
]

ω(θ) − ω(θ)
.

[If ω(θ) − ω(θ) < , then the inequalities in () are
reversed.] Notice that the central quantity in () is the

su�cient statistic Tn =
n

∑
i=
t(Xi).

For instance, suppose we sample randomly from

the single-parameter exponential distribution with mean

θ,Xi ∼i.i.d. Exp(θ), and wish to test H : θ = θ vs

Ha : θ = θ, where θ > θ.�e pdf has the form f (x∣θ) =
θ− exp{−x/θ}I(,∞)(x), which is a member of the expo-
nential family with c(θ) = θ−,ω(θ) = −θ−, and t(x) = x.
�us log{Λn} = n log{θ/θ}+[θ− − θ− ]

n

∑
i=
Xi.�e con-

tinuance region’s form can be simpli�ed here by noting that

since θ > θ, we have ω(θ) − ω(θ) = θ− − θ− > , so

() applies: continue sampling when an <
n

∑
i=
Xi < bn, for

an =
log{A} − n log [ θ

θ
]

θ− − θ−
and

bn =
log{B} − n log [ θ

θ
]

θ− − θ−
.

Otherwise, reject H when
n

∑
i=
Xi ≥ bn, or accept H when

n

∑
i=
Xi ≤ an.

Choosing the Sequential Limits A and B
For most hypothesis tests, concern centers on the test-

ing error rates, i.e., the Type I error rate, α =
P[reject H∣H true], and the Type II error rate, β =
P[accept H∣H false]. For the SPRT these quantities will
both be functions of A and B, thus one could in principle

invert the relationships and select A and B as functions of

α and β. Unfortunately, SPRT error rates in these forms

are di�cult to evaluate. It is possible to approximate them,

however, as the following theorem shows.

�eorem  �e SPRT as de�ned above relates its contin-

uance limits and Type I and II error rates via

B ≤ ( − β)/α and A ≥ β/( − α). ()

See, e.g., Wald (, §.) for a proof. �e �eorem

may be used to de�ne A and B as functions of α and β

by choosing A and B to satisfy the equalities in (): given

nominal error rates α∗ and β∗, use () to set

B = ( − β
∗)/α

∗
and A = β

∗/( − α
∗). ()

Of course, these choices of A and B do not ensure that the

actual underlying Type I and Type II error rates, α and β,

respectively, will attain the nominally-chosen rates α∗ and
β∗. However, one can produce a series of upper bounds
using () and () to obtain α+β ≤ α∗+β∗, α ≤ α∗/(−β∗)
and β ≤ β∗/(− α∗). Wald (, §.) notes that for most
typical values of α∗ and β∗ these bounds are o�en rather
tight and may even be negligible in practice.

Example  Supposewe set the nominal error rates to α∗ =
. and β∗ = ..�en we �nd α + β ≤ ., while the
individual error rates are bounded as α ≤ (.)/(.) =
. and β ≤ (.)/(.) = ..

Finite Termination and Average Sample
Number (ASN)
Notice that the (�nal) sample size N of any sequential test

procedure is not a �xed quantity, but is in fact a random
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variable determined from the data. As such, an obvious

concern with any form of sequential test is whether or not

the method eventually terminates. Luckily, for i.i.d. sam-

pling the SPRT possesses a �nite termination characteristic

in that P[N < ∞] = . �is holds under either H or
Ha, and is based on a more general result given by Wald

(); also see Lehmann (, §.).�e larger literature

on �nite termination of sequential tests is quite diverse;

some historically interesting expositions are available in,

e.g., David and Kruskal (), Savage and Savage (),

or Wijsman ().

When P[N < ∞] = , it is reasonable to ask what
the expected sample size, E[N], is for a given SPRT.�is
is known as the average sample number (ASN) or expected

sample number (ESN). A basic result for the ASN is avail-

able via the following theorem (Wald b):

�eorem  (Wald’s Equation): Let D,D, . . . be a

sequence of i.i.d. random variables with E[ ∣Di∣ ] <∞. Let
N >  be an integer-valued random variable whose real-
ized value, n, depends only onD, . . . ,Dn, with E[N] <∞.
�en E[D +D + . . . +DN] = E[N] ⋅ E[D].
A consequence of Wald’s Equation is the immediate

application to the SPRT and its ASN. Clearly log{ΛN} =

log{ f(x)/f(x)}+⋯+ log{ f(xN)/f(xN)} =
N

∑
i=
Di. So,

applyingWald’s equation yieldsE[N] = E[log{ΛN}]/E[D],
where D= log{ f(X)/f(X)}. �is result lends itself
to a series of approximations. For instance, if H
is rejected at some N, log{ΛN}≈ log{B}. Or, if H is
accepted at some N, log{ΛN}≈ log{A}. �us, under
H, E[log{ΛN}∣H]≈ α ⋅ log{B} + ( − α) log{A}, so
E[N∣H]≈ [α⋅log{B}+(−α) log{A}]/E[D∣H]. Similarly,
E[N∣Ha]≈ [(− β) log{B}+ β ⋅ log{A}]/E[D∣Ha]. For any
given parametric con�guration, these relationships may

be used to determine approximate values for ASN. Wald

() gives some further results on ways to manipulate

the ASN.

An important reason for employing the SPRT, at least

for the case of testing simple hypotheses, is that it achieves

optimal ASNs: if the Xis are i.i.d., then for testing H : θ =
θ vs. Ha : θ = θ both E[N∣H] and E[N∣Ha] are mini-
mized among all sequential tests whose error probabilities

are atmost equal to those of the SPRT (Wald andWolfowitz

). For testing composite hypotheses, the theory of

SPRTs is more complex, although a variety of interesting

results are possible (Stuart et al. , §.–; Lai ,

§). In his original article, Wald (a) himself discussed

the problem of sequential testing of composite hypothe-

ses on a binomial parameter; also see Siegmund (,

§II.). For testing with normally distributed samples, var-

ious forms of sequential t-tests have been proposed; see

Jennison and Turnbull () and the references therein for

a useful discussion on sequential t-tests (and sequential χ-

and F-tests) that includes the important problem of group

sequential testing.

Since Wald’s formalization of the SPRT, a number of

powerful, alternative formulations/constructions have led

to wide application of the method.We provide here a short

introduction to the basic mathematical underpinnings;

however, comprehensive reviews on the larger area of

sequential analysis date as far back as Johnson (), along

with more modern expositions given by Lai (, ,

) and Ghosh (). For a perspective emphasizing

7sequential sampling, seeMukhopadhyay (). Also see
the book-length treatments by Siegmund (), Ghosh

and Sen (), or Mukhopadhyay and de Silva (),

along with Wald’s () classic text. For cutting-edge

developments a dedicated scienti�c journal exists: Sequen-

tial Analysis, with more information available online at the

website http://www.informaworld.com/smpp/title~db=

all~content=t.
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To discuss sequential ranks it will be more helpful to

present them in comparison with ordinary ranks.

Suppose X, . . . ,Xn is a sequence of random variables.

Denote by IA the indicator function of an eventA. For each
Xi consider now what one can call its “ordinary” rank:

Rin =
n

∑
j=

I{Xj≤Xi}.

So, Rin counts the number of our random variables that

take values not exceeding Xi. For example, if Xi happens

to be the smallest, its rank will be , and if it happens to

be the largest, its rank will be n. If the joint distribution of

X, . . . ,Xn is absolutely continuous, then with probability 

all values of our random variables will be di�erent.�ere-

fore, for any integer k = , . . . ,n there will be one and only
one random variable with rank equal to k. For example, for

n = , if our Xi-s happened to be

−., ., −., . and .,

their ranks will be

, , ,  and .

Hence, the vector of “ordinary” ranksRn = {Rn, . . . ,Rnn}
is a random permutation of the numbers {, . . . ,n}.�us,
its distribution possesses a certain degeneracy. In partic-

ular, even if X, . . . ,Xn are independent and identically

distributed, the ordinary ranks are dependent random

variables – for example, if Rin =  it precludes any other
rank Rjn, j ≠ i, from taking the value , so that the condi-
tional probability P(Rjn = ∣Rin = ) = , while without
this condition P(Rjn = ) does not need to be  at all.
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Moreover, any symmetric statistic from the vector Rn is
not random and, for given n, must be constant: if ψ is a

symmetric function of its n arguments, then

ψ(Rn, . . . ,Rnn) = ψ(, . . . ,n), e.g.,
n

∑
i=
ϕ(Rin) =

n

∑
i=
ϕ(i).

�e de�nition of sequential ranks is slightly di�erent,

but the di�erence in their properties is quite remarkable.

Namely, the sequential rank of Xi is de�ned as

Si =
i

∑
j=

I{Xj≤Xi}.

�erefore, it is the rank of Xi among only “previous”

observations, including Xi itself, but not “later” observa-

tions Xi+, . . . ,Xn. For the sample values given above, their
sequential ranks are

, , , , .

�e relationship between the vectors of ordinary ranks

and sequential ranks is one-to-one. Namely, given vector

Rn = {Rn, . . . ,Rnn} of ordinary ranks, the sums

Si =
i

∑
j=

I{Rjn≤Rin}

return sequential ranks of X, . . . ,Xn and the other way

around, given a vector of sequential ranks Sn, if

Si,i+ = Si + I{Si≥Si+}, Si,i+ = Si,i+ + I{Si,i+≥Si+}, . . . ,

then �nally

Si,n = Rin.

Because of this one-to-oneness, the vector Sn also must
have some sort of degeneracy. It does, but in a very mild

form: S is always .

Assume that X, . . . ,Xn are independent and identi-

cally distributed random variables with continuous distri-

bution function F.�en U = F(X), . . . ,Un = F(Xn) are
independent uniformly distributed on [, ] random vari-
ables.�e values of Rin and Si will not change, if we replace

Xi-s byUi-s.�erefore, the distribution of both ranksmust

be independent of F – they both are “distribution free.” We

list some properties of Sn in this situation – they can be
found, e.g., in Barndolf-Nielsen (), Renyi (, ),

Sen ().

�e distribution of each Si is P(Si = k) = /i, k =
, . . . , i, and, therefore, the distribution function of Si/(i+)
quickly converges to the uniform distribution function:

P ( Si
i + 

= k

i + 
) = 

i
, and ∣P ( Si

i + 
≤ x) − x∣ ≤ 

i + 
.

Recall that, similarly, for ordinary ranks P(Rin = k) =
/n, k = , . . . ,n, see, e.g., Hajek and Shidak (). How-
ever, unlike ordinary ranks, sequential ranks S, . . . , Sn are

independent random variables. Hence symmetric statis-

tics from sequential ranks are non-degenerate random

variables. For example,

n

∑
i=
ϕ(Si)

is a sum of independent random variables. Also unlike

ordinary ranks, with arrival of a new observation Xn+
sequential ranks S, . . . , Sn stay unchanged and only one

new rank Sn+ is to be calculated.
�erefore, asymptotic theory of sequential ranks

is relatively simple and computationally they are very

convenient.

�e ordinary ranks are used in testing problems, usu-

ally, through the application of two types of statistics–widely

used linear rank statistics and goodness of �t statistics,

based on the empirical �eld

zR(t,u) =
nt

∑
i=

[I{Rin≤u(n+)} −
[nu]
n + 

] , (t,u) ∈ [, ].

Linear rank statistics can also be thought of as based on

the �eld zR(t,u), and, more exactly, are linear functionals
from it:

ψ(Rn) = ∫ ψ(t,u)zR(dt,du)

=
n

∑
i=

[ψ ( i
n
,
Rin

n + 
) − Eψ ( i

n
,
Rin

n + 
)]

(the term “linear” would not be very understandable oth-

erwise). Without loss of generality one can assume that

∫



ψ(t,u)dt = .
One of the central results in the theory of rank tests,

see Hajek and Shidak (), is the optimality statement

about linear rank statistics. If under the null hypothesis the

sample is i.i.d.(F) while under the alternative hypothesis

the distribution Ai of each Xi is such that

dAi(x)
dF(x)

= + √
n
a( i
n
,F(x))+smaller terms, asn→∞,

()

where ∫



a(t,F(x))dt = , then the linear rank statistic,

with ψ equal to a from (),

a(Rn) =
n

∑
i=
a( i
n
,
Rin

n + 
),

is asymptotically optimal against this alternative. Indeed,

the statistic
n

∑
i=
a( i
n
,F(Xi))
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is the statistic of the asymptotically optimal test for our

alternative, based on the observations X, . . . ,Xn “them-

selves,” and Rin/(n + ) is a “natural” approximation for
F(Xi).
Returning to sequential ranks, one can again consider

the empirical �eld

zS(t,u) =
nt

∑
i=

[I{Si≤u(i+)} −
[iu]
i + 

] , (t,u) ∈ [.],

and sequential linear rank statistics, based on it:

ϕ(Sn) = ∫ ϕ(t,u)zS(dt,du) =
n

∑
i=

[ϕ ( i
n
,
Si

i + 
)

−Eϕ ( i
n
,
Si

i + 
)] .

Although Si/(i + ) is no less “natural” an approximation
for F(Xi), the statistic

a(Sn) =
n

∑
i=
a( i
n
,
Si

i + 
)

is not optimal for the alternative () any more.�e papers

(Khmaladze ) and (Pardzhanadze ) derived the

form of this optimal statistic, and hence established the

theory of sequential ranks to the same extent as the theory

of “ordinary” rank statistics.

More Speci�cally, it was shown that the empirical �elds

zR and zS are asymptotically linear transformations of each

other and, as a consequence, the two linear rank statistics

ψ(Rn) and ϕ(Sn) have the same limit distribution under
the null hypothesis and under any alternative () as soon as

functions ψ and ϕ are linked as below:

ψ(t,u) − 
t
∫

t


ψ(τ,u)dτ = ϕ(t,u) or

ϕ(t,u) − ∫


t



τ
ϕ(τ,u)dτ = ψ(t,u).

In particular, both linear rank statistics

n

∑
i=
a( i
n
,
Rin

n + 
) and

n

∑
i=

[a( i
n
,
Si

i + 
)

−n
i
∫

i/n


a(τ,

Si

i + 
)dτ] ()

are asymptotically optimal test statistics against alterna-

tive ().

Two examples of particular interest should clarify the

situation further.

Example  (Wilcoxon rank (or rank-sum) statistic). In the

two-sample problem, when we test if both samples came

from the same distribution or not, the followingWilcoxon

rank statistic
m

∑
i=

Rin

n + 

is most widely used (see 7Wilcoxon–Mann–Whitney
Test). Its sequential analogue is not mentioned o�en, but

according to () there is such an analogue, which is

−
n

∑
i=m+

m

i

Si

i + 
.

In general, the following two statistics are asymptotically

equivalent:

m

∑
i=
a( Rin
n + 

) and −
n

∑
i=m+

m

i
a( Si
i + 

).

Note again, that if the sizem of the �rst sample is �xed, but

we keep adding new observations to the second sample, so

that n−m keeps increasing, wewould only need to add new
summands to the sequential rank statistics, on the right,

without changing the previous summands.

Example  (Kendall’s τ and Spearman’s ρ rank correlation

coe�cients).�e latter correlation coe�cient has the form

ρn =
n

∑
i=

i

n
( Rin
n + 

− 

)

while the former is

τn =
n

∑
i=

i

n
( Si
i + 

− 

).

�ese two coe�cients are usually perceived as di�erent

statistics. However, from () it follows that they also are

asymptotically equivalent.

Among other papers that helped to form and advance

the theory of sequential ranks we refer to Müller-Funk

(), Renyi (, ), and Reynolds (). Among

more recent papers and applications to change-point prob-

lem we would point to Bhattacharya and Zhou (),

Gordon and Pollak (), and Malov ().

About the Author
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Introduction
Sequential sampling entails observing data in a sequence.

How long should one keep observing data?�atwill largely

depend on the preset levels of errors that one may be

willing to live with and the optimization techniques that

may be required. In the early s, AbrahamWald devel-

oped the theory and practice of the famous sequential

probability ratio test (SPRT) to decide between a sim-

ple null hypothesis and a simple alternative hypothesis

(Wald ). Wald and Wolfowitz () proved optimal-

ity of Wald’s SPRT within a large class of tests, includ-

ing Neyman and Pearson’s () UMP test, in the sense

that the SPRT needs on an average fewer observations

under either hypothesis.�ese were mentioned in another

chapter.

For a comprehensive review, one should refer to the

Handbook of Sequential Analysis, a landmark volume that

was edited by Ghosh and Sen ().�is nearly  years

old handbook is still one of themost prized resource in this

whole �eld.

Section 7“Why Sequential Sampling?” explains with
Examples  and  why one must use sequential sam-

pling strategies to solve certain statistical problems. We

especially highlight the Stein (, ) path-breaking

two-stage and the Ray () and Chow and Robbins

() purely sequential �xed-width con�dence interval

procedures in sections 7“Stein’s Two-stage Sampling” and
“Purely Sequential Sampling” respectively.

Sections 7“Two-stage Sampling” and “Purely Sequen-
tial Sampling” analogously highlight the Ghosh and

Mukhopadhyay () two-stage and the Robbins ()

purely sequential bounded-risk point estimation pro-

cedures respectively. Both sections 7“Two-stage and
Sequential Fixed-width Con�dence Interval” and “Two-

stage and Sequential Bounded Risk Point Estimation”

handle the problems of estimating an unknown mean

of a normal distribution whose variance is also assumed

unknown.

Section 7“Which Areas Are Hot Beds for Sequential
Sampling?” brie�ymentions applications of sequential and

multi-stage sampling strategies in concrete problems that

are in the cutting edge of statistical research today.

Why Sequential Sampling?
�ere is a large body of statistical inference problems that

cannot be solved by any �xed-sample-size procedure. We

will highlight two speci�c examples. Suppose thatX, ...,Xn
are iid N(µ, σ ) where −∞ < µ <∞,  < σ  <∞ are both
unknown parameters, and n(≥ ) is �xed.

Example  We want to construct a con�dence interval I

for µ such that (i) the length of I is d(> ) where d is
preassigned, and (ii) the associated con�dence coe�cient,

Pµ ,σ {µ ∈ I} ≥  − α where  < α <  is also preassigned.
Dantzig () showed that this problem has no solution

regardless of the form of the con�dence interval I when n

is �xed in advance.

Example  Suppose that Xn, the sample mean, estimates

µ and we want to claim its bounded-risk property, namely

that supµ ,σ  E[(Xn − µ)
] ≤ ω where ω(> ) is a pre-

assigned risk-bound. �is problem also has no solution

regardless of the form of the estimator of µ.

�eorem  Suppose that X,⋯,Xn are iid with a proba-
bility density function 

σ
f (σ−(x − θ)) where −∞ < θ <

∞,  < σ < ∞ are two unknown parameters. For esti-

mating θ, let the loss function be given by W(θ, δ(x)) =
H(∣δ(x) − θ∣) where x = (x,⋯, xn) is a realization of
X = (X,⋯,Xn). Assume that H(∣u∣) ↑ ∣u∣, and let M =
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sup−∞<u<∞H(∣u∣), which may be in�nite. �en, for any
�xed L < M, there does not exist an estimator δ(X) such
that supθ ,σ Eθ ,σ {W (θ, δ(X))} ≤ L.

�is statement is similar to that of �eorem .. in

Ghosh et al. () and�eorem .. in Mukhopadhyay

and de Silva (). It was originally proved in Lehmann

().

�eorem  proves immediately the non-existence of

a �xed-sample-size methodology to solve the problems

mentioned in Examples – exactly. �ere are these and

numerous other inference problems where we have no

�xed-sample-size procedure at all to talk about. In order

to address this class of important inference problems, an

appropriately designed sequential sampling procedure is a

must.

Two-Stage and Sequential Fixed-Width
Confidence Interval
In the context of Example , we �rst summarize Stein’s

(, ) two-stage procedure and then the purely

sequential procedure due to Ray () and Chow and

Robbins ().

Stein’s Two-Stage Sampling
Stein (, ) gave his path-breaking two-stage sam-

pling design to solve exactly the problem mentioned in

Example . One begins with pilot observations X,⋯,Xm
with a pilot or initial sample size m(≥). Let am− ≡
am−,α/ be the upper α% point of the Student’s

t distribution with m −  degrees of freedom. Now,
based on X,⋯,Xm, we obtain the sample variance,
Sm = (m − )−Σmi=(Xi − Xm) which estimates unknown
σ . Let us denote ⟨u⟩ = the largest integer < u, u > .
We de�ne the �nal sample size as

N ≡ N(d) = max{m, ⟨a

m−S


m

d
⟩ + } . ()

It is easy to see that N is �nite with probability one.�is

two-stage procedure is implemented as follows:

If N = m, it indicates that we already have too many
observations at the pilot stage. Hence, we do not need any

more observations at the second stage.

But, if N > m, it indicates that we have started with
too few observations at the pilot stage. Hence, we sam-

ple the di�erence at the second stage by gathering new

observations Xm+,⋯,XN at the second stage.

Case . If N = m, the �nal dataset is X,⋯,Xm

Case . If N > m, the �nal dataset is X,⋯,Xm,
Xm+,⋯,XN

Combining the two possibilities, one can say that the �nal

dataset is composed of N and X,⋯,XN . �is gives rise
to the sample mean XN and the associated �xed-width

interval IN = [XN ± d] .
It is clear that (i) the event {N = n} depends only

on the random variable Sm, and (ii) Xn, S

m are indepen-

dent random variables, for all �xed n(≥ m). So, any event
de�ned only throughXn must be independent of the event

{N = n}. Using these tools, Stein (, ) proved the
following result that is considered a breakthrough. More

details can be found inMukhopadhyay and de Silva (,

Sect. ..).

�eorem  Pµ ,σ  {µ ∈ [XN ± d]} ≥  − α for all �xed

d > ,  < α < , µ, and σ .

It is clear that the �nal sample size N from () tried

to mimic the optimal �xed sample size C, the smallest

integer ≥ zα/σ
d−, had σ  been known.�is procedure,

however, is known for its signi�cant oversampling on an

average.

Purely Sequential Sampling
In order to overcome signi�cant oversampling, Ray

() and Chow and Robbins () proposed a purely

sequential procedure. One begins with pilot observations

X,⋯,Xm with a pilot or initial sample size m(≥), and
then proceed by taking one additional observation at-a-

time until the sampling process terminates according to

the following stopping rule: With Xn = n−Σni=Xi and
Sn = (n − )−Σni=(Xi − Xn), let

N ≡ N(d) = inf
⎧⎪⎪⎨⎪⎪⎩
n ≥ m : n ≥

zα/S

n

d

⎫⎪⎪⎬⎪⎪⎭
. ()

It is easy to see that N is �nite with probability one.

Based on the �nal dataset composed of N and X,⋯,XN ,
one �nds XN and proposes the associated �xed-width

interval IN = [XN ± d] . Now, one can prove that asymptot-
ically, Pµ ,σ {µ ∈ [XN ± d]} →  − α for all �xed  < α < ,
µ, and σ  as C →∞ whenm ≥ .
One can also prove that Eσ [N −C] = −. ifm ≥ .

�is property is referred to as the asymptotic second-order

e�ciency according to Ghosh and Mukhopadhyay ().

One has to employ mathematical tools from nonlinear

renewal theory to prove such a property. �e nonlinear

renewal theory has been fully developed by Woodroofe

() and Lai and Siegmund (, ).
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Two-Stage and Sequential Bounded Risk
Point Estimation
In the context of Example , we �rst summarize a two-

stage procedure from Ghosh and Mukhopadhyay ()

followed by a purely sequential procedure along the line

of Robbins ().

Two-Stage Sampling
Ghosh and Mukhopadhyay () discussed a two-stage

sampling design analogous to () to solve exactly the prob-

lem mentioned in Example . We again start with pilot

observations X,⋯,Xm where m(≥) is the pilot size and
obtain Sm. De�ne the �nal sample size as:

N ≡ N(ω) = max{m, ⟨bmS

m

ω
⟩ + } ()

where bm = m−
m− . It is easy to see that N is �nite with

probability one.

�e two-stage sampling scheme is implemented as

before.

Case . If N = m, the �nal dataset is X,⋯,Xm

Case . If N > m, the �nal dataset is X,⋯,Xm,
Xm+,⋯,XN

Combining the two situations, one can see that the �nal

dataset is again composed of N and X,⋯,XN which give
rise to an estimator XN for µ.

Now, we recall that Xn is independent of the event

{N = n} for all �xed n(≥ m). Hence, we can express the
risk associated with the estimator XN as follows:

Eµ ,σ  {(XN − µ)} = σ Eµ ,σ  [N−] ,

which will not exceed the set risk-bound ω for all �xed µ

and σ . More details can be found in Mukhopadhyay and

de Silva (, Sect. .).

It is clear that the �nal sample size N from () tried to

mimic the optimal �xed sample size n∗, the smallest inte-
ger ≥ σ ω−, had σ  been known.�is procedure is also

well-known for its signi�cant oversampling on an average.

For either problem, there are more e�cient two-stage,

three-stage, accelerated sequential, and other estimation

methodologies available in the literature. One may begin

by reviewing this �eld from Mukhopadhyay and Solanky

(), Ghosh et al. (), Mukhopadhyay and de Silva

(), among other sources.

Purely Sequential Sampling
In order to overcome signi�cant oversampling, along the

line of Robbins (), one can propose the following

purely sequential procedure. One begins with pilot obser-

vations X,⋯,Xm with a pilot or initial sample sizem(≥),
and then proceed by taking one additional observation at-

a-time until the sampling process terminates according to

the following stopping rule: Let

N ≡ N(ω) = inf {n ≥ m : n ≥ S

n

ω
} . ()

It is easy to see that N is �nite with probability

one. Based on the �nal dataset composed of N and

X,⋯,XN , one �nds XN and proposes the associated esti-
mator XN for µ. Now, one can prove that asymptotically,

ω−Eµ ,σ  {(XN − µ)} →  for all �xed µ, and σ  as n∗ →
∞ whenm ≥ .
One can again prove that Eσ [N − C] is bounded by

appealing to nonlinear renewal theory. �is property is

referred to as the asymptotic second-order e�ciency accord-

ing to Ghosh and Mukhopadhyay ().

Which Areas Are Hot Beds for Sequential
Sampling?
First, we should add that all computer programs neces-

sary to implement the sampling strategies mentioned in

sections 7“Two-stage and Sequential Fixed-width Con�-
dence Interval” and “Two-stage and Sequential Bounded

Risk Point Estimation” are available in conjunction with

the recent book of Mukhopadhyay and de Silva ().

Sequential and multi-stage sampling techniques are

implemented practically in all major areas of statistical

science today. Some modern areas of numerous appli-

cations include change-point detection, clinical trials,

computer network security, computer simulations, 7data
mining, disease mapping, educational psychology, �nan-

cial mathematics, group sequential experiments, horticul-

ture, infestation, kernel density estimation, longitudinal

responses, multiple comparisons, nonparametric func-

tional estimation, ordering of genes,7randomization tests,
reliability analysis, scan statistics, selection and ranking,

sonar, surveillance, survival analysis, tracking, and water

quality.

In amajority of associated statistical problems, sequen-

tial and multi-stage sampling techniques are absolutely

essential in the sense of our prior discussions in section

7“Why Sequential Sampling?”. In other problems, appro-
priate sequential and multi-stage sampling techniques

are more e�cient than their �xed-sample-size counter-

parts, if any.

For an appreciation of concrete real-life problems

involving many aspects of sequential sampling, one may

refer to Applied Sequential Methodologies, a volume edited

by Mukhopadhyay et al. ().



 S Sex Ratio at Birth

About the Author
Dr. Nitis Mukhopadhyay is professor of statistics, Depart-

ment of Statistics, University of Connecticut, USA. He is

Editor-in-Chief of Sequential Analysis since . He is

Associate Editor for Calcutta Statistical Association Bul-

letin (since ),Communications in Statistics (since )

and Statistical Methodology (since ). He is Chair of

the National Committee on Filming Distinguished Statis-

ticians of the American Statistical Association since .

In , he has been named IMS fellow for “outstanding

contribution in sequential analysis and multistage sam-

pling; pathbreaking research in selection and ranking;

authoritative books; exemplary editorial service; innova-

tive teaching and advising; and exceptional dedication

to preserve and celebrate statistical history through �lms

and scienti�c interviews.” He is also an Elected Fellow of

�e American Statistical Association (), and Elected

Ordinary Member of �e International Statistical Insti-

tute (), and a life member of: the International Indian

Statistical Association, the Calcutta Statistical Associa-

tion and the Statistical Society of Sri Lanka. Professor

Mukhopadhyay was elected a Director of the Calcutta

Statistical Association for the period –. He has

authored/coauthored about  papers in international

journals and  books including, Sequential Methods and

�eir Applications (Chapman & Hall/CRC, Boca Raton,

).

Cross References
7Acceptance Sampling
7Loss Function
7Optimal Stopping Rules
7Ranking and Selection Procedures and Related Inference
Problems

7Sampling Algorithms
7Sequential Probability Ratio Test

References and Further Reading
Chow YS, Robbins H () On the asymptotic theory of fixed width

sequential confidence intervals for the mean. Ann Math Stat

:–

Dantzig GB () On the non-existence of tests of Student’s hypoth-

esis having power functions independent of σ . Ann Math Stat

:–

Ghosh BK, Sen PK (eds) () Handbook of sequential analysis.

Marcel Dekker, New York

Ghosh M, Mukhopadhyay N () On two fundamental problems

of sequential estimation. Sankhya B :–

Ghosh M, Mukhopadhyay N () Consistency and asymptotic

efficiency of two-stage and sequential procedures. Sankhya A

:–

Ghosh M, Mukhopadhyay N, Sen PK () Sequential estimation.

Wiley, New York

Lai TL, Siegmund D () A nonlinear renewal theory with appli-

cations to sequential analysis I. Ann Stat :–

Lai TL, Siegmund D () A nonlinear renewal theory with appli-

cations to sequential analysis II. Ann Stat :–

Lehmann EL () Notes on the theory of estimation. University of

California, Berkeley

Mukhopadhyay N, Datta S, Chattopadhyay S () Applied sequen-

tial methodologies, edited volume. Marcel Dekker, New York

Mukhopadhyay N, de Silva BM () Sequential methods and their

applications. CRC, New York

Mukhopadhyay N, Solanky TKS () Multistage selection and

ranking procedures: second-order asymptotics. Marcel Dekker,

New York

Neyman J, Pearson ES () On the problem of the most efficient

tests of statistical hypotheses. Philos Trans R Soc A :–

Ray WD () Sequential confidence intervals for the mean of

a normal population with unknown variance. J R Stat Soc B

:–

Robbins H () Sequential estimation of the mean of a normal

Population. In: Grenander U (ed) Probability and statistics

(Harald Cramér Volume). Almquist and Wiksell, Uppsala, pp

–

Stein C () A two sample test for a linear hypothesis whose power

is independent of the variance. Ann Math Stat :–

Stein C () Some problems in sequential estimation. Economet-

rica :–

Wald A () Sequential analysis. Wiley, New York

Wald A, Wolfowitz J () Optimum character of the sequential

probability ratio test. Ann Math Stat :–

Woodroofe M () Second order approximations for sequential

point and interval estimation. Ann Stat :–

Sex Ratio at Birth

Johan Fellman

Professor Emeritus

Folkhälsan Institute of Genetics, Helsinki, Finland

Sex Ratio in National Birth Registers
�e sex ratio at birth, also called the secondary sex ratio,

and here denoted SR, is usually de�ned as the number of

males per  females. Among newborns there is almost

always a slight excess of boys. Consequently, the SR is

greater than , mainly around .

John Graunt (–) was the �rst person to com-

pile data showing an excess of male births to female

births and to note spatial and temporal variation in the

SR. John Arbuthnot (–) demonstrated that the

excess of males was statistically signi�cant and asserted

that the SR is uniform over time and space (Campbell

). Referring to christenings in London in the 

years up to , Arbuthnot suggested that the regular-

ity in the SR and the dominance of males over females
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could not be attributed to chance and must be an indica-

tion of divine providence. Nicholas Bernoulli’s (–)

counter-argument was that Arbuthnot’s model was too

restrictive. Instead of a fair coin model, the model should

be based on an asymmetric coin. Based on the generalized

model, chance could give uniform dominance of males

over females. Later, Daniel Bernoulli (–), Pierre

Simon de Laplace (–) and Siméon-Denis Pois-

son (–) also contributed to this discussion (David

; Hacking ).

Some general features of the SR can be noted. Stillbirth

rates are usually higher amongmales than females, and the

SR among stillborn infants ismarkedly higher than normal

values, but the excess ofmales has decreased during the last

decades. Hence, the SR among liveborn infants is slightly

lower than among all births, but this di�erence is today

very minute. Further, the SR among multiple maternities

is lower than among singletons. In addition to these gen-

eral �ndings, the SR shows marked regional and temporal

variations.

In a long series of papers, attempts have been made

to identify factors in�uencing the SR, but statistical analy-

ses have shown that comparisons demand large data sets.

Variations in the SR that have been reliably identi�ed in

family data have in general been slight andwithout notable

in�uence on national birth registers. Attempts to iden-

tify reliable associations between SRs and stillbirth rates

have been made, but no consistent results have emerged.

Hawley () stated that where prenatal losses are low,

as in the high standard of living in Western countries,

the SRs at birth are usually around  to . By con-

trast, in areas with a lower standard of living, where the

frequencies of prenatal losses are relatively high, SRs are

around . Visaria () stressed that available data on

late fetal mortality lend at best only weak support for these

�ndings and concluded that racial di�erences seem to exist

in the SR. He also discussed the perplexing �nding that the

SR among Koreans is high, around .

A common pattern observed in di�erent countries

is that during the �rst half of the twentieth century the

SR showed increasing trends, but during the second half

the trend decreased. Di�erent studies have found marked

peaks in the proportion of males during the First and Sec-

ond World War. It has been questioned whether temporal

or spatial variations of the SR are evident, and whether

they constitute a essential health event. A commonopinion

is that secular increases are caused by improved socio-

economic conditions.�e recent downward trends in the

SRs have been attributed to new reproductive hazards,

speci�cally exposure to environmental oestrogens. How-

ever, the turning point of the SR preceded the period

of global industrialization and particularly the introduc-

tion of pesticides or hormonal drugs, rendering a causal

association unlikely.

Sex Ratio in Family Data
In general, factors that a�ect the SR within families remain

poorly understood. In a long series of papers, using family

data, attempts have beenmade to identify factors in�uenc-

ing the SR. Increasing evidence con�rms that exposure to

chemicals, including pollutants from incinerators, dioxin,

pesticides, alcohol, lead and other such workplace haz-

ards, has produced childrenwith reducedmale proportion,

Variables reported to be associated with an increase in the

SR are large family size, high ancestral longevity, pater-

nal baldness, excessive co�ee-drinking, intensive coital

frequency and some male reproductive tract disorders.

Some striking examples can be found in the literature

of unisexual pedigrees extending over several generations.

Slater () stated that aberrant SRs tend, to some extent,

to run in families. �e �nding by Lindsey and Altham

() that the probability of couples being only capa-

ble of having children of one sex is very low contradicts

Slater’s statement. �e variation in the SR that has been

reliably identi�ed in family studies has invariable been

slight compared with what we have observed in families

with X-linked recessive retinoschisis (cleavage of retinal

layers). We noted a marked excess of males within such

families, in contrast to normal SRs in families with the

X-linked recessive disorders haemophilia and color blind-

ness (Eriksson et al. ; Fellman et al. ). However,

with the exception of the X-linked recessive retinoschi-

sis, no unequivocal examples exist of genes in man that

a�ect the SR, and X-linked retinoschisis is universally very

rare. Summing up, in�uential factors, although they have

an e�ect on family data, have not been identi�ed in large

national birth registers.
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�e sign test is a nonparametric test for hypotheses about

a population median given a sample of observations from

that population, or for testing for equality of medians, or

for a prespeci�ed constant median di�erence, given paired

sample (i.e., matched pairs) values from two populations.

�ese tests are analogues of the one-sample and matched

pairs t-test for means in a parametric test such as the

t-test.

�e sign test is one of the simplest and oldest non-

parametric tests.�e name re�ects the fact that each more

detailed observation is e�ectively replaced by one of the

signs plus (+) or minus (−).�is was basically the test used
by Arbuthnot () to refute claims that births are equally

likely to be male or female. Records in London showed

that for each of  consecutive years an excess of male over

female births. Calling such a di�erence a plus, Arbuthnot

argued that if births were equally likely to be of either gen-

der, then the probability of such an outcome was, (.),
or e�ectively zero.

Given a sample of n observations from any popula-

tion which may be discrete or continuous and not nec-

essarily symmetric, the test is used to test a hypothesis

H : M = M where M is the population median. If

H holds the number of values less than M will have a

binomial distribution with parameters n and p = ..�e
symmetry of the 7binomial distribution when p = .
means the number of sample values greater than M (a

plus) may be used as an alternative equivalent statistic in

a one or two-tail test.

Although not a commonly arising case, the test is still

valid if each observation in a sample is from a di�er-

ent population providing each such population has the

same median. For example, the populations may di�er in

7variance or in 7skewness.
Among tests for location the sign test thus requires

fewer assumptions for validity than any other well estab-

lished test.�e main disadvantage of the test is that it o�en

has lower e�ciency and lower power than tests that require

stronger assumptions when those assumptions are valid.

However, when the stronger assumptions are not valid the

sign test may have greater power and e�ciency. If the sam-

ple is from a normal distribution with known variance the

asymptotic relative e�ciency (ARE) of the sign test relative

to the normal theory test is /π. However if the sample is

from a double exponential distribution the ARE of the sign

test is twice that attained using the t-test.

For continuous data except in special cases like sam-

ples from a double exponential distribution the sign test

is usually less e�cient than some parametric test or non-

parametric test that makes more use of information about

the data. For example, the t-test is preferable for sam-

ples from a normal, or near normal, distribution and the

7Wilcoxon-signed-rank test performs better if an assump-
tion of symmetry can be made.

Even when a sign test is less e�cient than some other

test itmay prove economically bene�cial if exact data of the

type needed for that other test is expensive to collect but it

is easy to determine whether such data, if it were available,

would indicate a value less than or greater than anhypothe-

sised median valueM. For example, if in a manufacturing

process rods produced should have a median diameter of

mm it may be di�cult to measure diameters precisely,

but easy to determine whether the diameter of each rod

is less than mm by attempting to pass it through a cir-

cular aperture of diameter mm.�ose that pass though

have a diameter less than mm (recorded as a minus);

those that fail to pass through have a greater diameter

(recorded as a plus). If diameters can be assumed to be

normally distributed and a sample size of  is required

to give the required power with a normal theory test when

exact measurements are available, the ARE for a sign test

(which gives a fairly good idea of the e�ciency for a sam-

ple of this size) suggests that if we only have information

on whether each item has diameter less than (or greater
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than) mm, then a sample of size  × π/ ≈  should
have similar power. An assumption here is that e�ciency

for smaller samples is close to the ARE, a result veri�ed in

some empirical studies.�us if the cost of obtaining each

exact measurement were twice that of determining only

whether or not a diameter exceeded mm there would be

a clear cost saving in measuring simply whether diameters

were more or less than mm for a sample of  com-

pared to that for taking exact measurements for a sample

of .

Sample values exactly equal toM are usually ignored

when using the test and the sample size used in

assessing signi�cance is reduced by  for each such

value.

In the case of matched pair samples from distributions

that may be assumed to di�er if at all only in their medi-

ans, the test may be applied using the signs of the paired

di�erences to test if the di�erence is consistent with a zero

median and by a slight modi�cation to test the hypothesis

that themedian di�erence has some speci�ed value θ.�e

test is available in most standard statistical so�ware pack-

ages or may be conducted using tables for the binomial

distribution when p = . and the relevant n (sample size).
For continuous data one may determine con�dence inter-

vals based on this test with the aid of such tables. Details

are given in most textbooks covering basic nonparamet-

ric methods such as Gibbons and Chakraborti () or

Sprent and Smeeton ().

An interesting case that leads to a test equivalent to

the sign test with heavy tying was proposed by McNemar

() and is usually referred to asMcNemar’s test.�is test

is relevant where observations are made to test if there are

nonneutralizing changes in attitudes of individuals before

or a�er exposure to a treatment or stimulus. For exam-

ple, a group of  motorists may be asked whether or

not they think the legal maximum permissible level of

blood alcohol for drivers should be lowered. �e num-

bers answering yes or no are recorded.�e group are then

shown a video illustrating the seriousness of accidents

where drivers have exceeded the legal limit.�eir answers

to the same question about lowering the level are now

recorded and tabulated as shown in this table:

Before video Lower limit

Yes No

After video Lower limit Yes  

No  

If we denote a change from No before the video to Yes

a�er the video by a plus there are  plus, and a change

from Yes before to No a�erwards there are  minus.�us,

although the video seems to have in�uenced some changes

of opinion in both directions more () who did not sup-

port a reduction before seeing the video appear to have

been persuaded to support a reduction a�er seeing the

video, whereas  have switched opinions in the opposite

direction, opposing a ban a�er seeing the video although

they supported one before seeing the video.

A sign test may be applied on the basis of  plus and

 minus being observed in an e�ective sample of size .

�e diagonal values of  and  represent “ties” in the

sense that they represent drivers who are not in�uenced

by the video and so are ignored.
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Introduction
A signi�cance test is a statistical procedure for testing a

hypothesis based on experimental or observational data.

Let, for example, X and X be the average scores obtained

in two groups of randomly selected subjects and let µ
and µ denote the corresponding population averages.�e

observed averages can be used to test the null hypothesis

µ = µ, which expresses the idea that both populations
have equal average scores. A signi�cant result occurs if

X and X are very di�erent from each other, because

this contradicts or falsi�es the null hypothesis. If the two

group averages are similar to each other, the null hypoth-

esis is not contradicted by the data. What exact values of

the di�erence X − X of the group averages are judged
as signi�cant depends on various elements.�e variation

of the scores between the subjects, for example, must be

taken into account.�is variation creates uncertainty and

is the reason why the testing of hypotheses is not a triv-

ial matter. Because of the uncertainty in the outcome of

the experiment, it is possible that a seemingly signi�cant

result is obtained, even though the null hypothesis is true.

Conversely, the null hypothesis being false does not mean

that the experiment will necessarily result in a signi�cant

result.

�e signi�cance of a test is usually measured in terms

of a tail-error probability of the null distribution of a test

statistic. In the above example, assume the groups are nor-

mally distributed with common known variance σ .�e

Z-test statistic is Z = (X − X)/SE[X − X], where
SE[X − X] = σ {/n + /n} is the standard error of
the di�erence. Here n,n are the respective sample sizes

for the two groups. Under the null hypothesis, Z has the

standard normal distribution with cumulative distribution

P(Z ≤ z) = Φ(z). A large observed value Z = Zobs cor-
responds to a small tail area probability P(Z ≥ Zobs) =
Φ(−Zobs).�e smaller this probability the more the evi-
dence against the null in the direction of the alternative

µ > µ. For a two-sided alternative µ ≠ µ, a test statis-
tic is ∣Z∣ and the evidence against the null is measured by
the smallness of P(∣Z∣ ≥ ∣Zobs∣) = Φ(−∣Zobs∣).�ese tail-
error probabilities are examples of p-values for one- and

two-sided tests.

To carry out a signi�cance test then one needs, �rst,

a statistic S(X) (real function of the data X) that orders
the outcomes X of a study so that larger values of S(X)
cast more doubt on the null hypothesis than smaller ones;

and second, the probability distribution P of S(X) when
the null hypothesis is true. One may be interested in

simply assessing the evidence in the value obtained for

the statistic S in an experiment, the Fisherian approach,

or in making a decision to reject the null hypothesis in

favor of an alternative hypothesis, the Neyman–Pearson

approach.

Significance Tests for Assessing Evidence
By far the most prevalent concept for assessing evidence

in S is the p-value, promoted by the in�uential scientist

R.A. Fisher through his many articles and books, see the

collection Fisher ().

The p-Value
Having observed data X = x, and hence S(x) = Sobs,

the p-value is de�ned by p = P(S ≥ Sobs). It is the
probability of obtaining as much or more evidence against

the null hypothesis as just observed with Sobs, assuming

the null hypothesis is true.�e p-value is decreasing with

increasing Sobs, which means that smaller 7p-values are
indicative of a more signi�cant result. Fisher (, pp.

, , and ), o�ered some rough guidelines for inter-

preting the strength of evidence measured by the p-value,

based on his experience with agricultural experiments.

He suggested that a p-value larger than . was not small

enough to be signi�cant, a p-value as small as . could

seldom be disregarded, and a p-value less then . was

clearly signi�cant.�us according to Fisher “signi�cance

testing” is the conducting of an experiment that will give

the data a chance to provide evidence Sobs against the null

hypothesis. Very small values of the p-value correspond

to signi�cant evidence, where “signi�cant” is somewhat

arbitrarily de�ned. It is a matter of history that Fisher’s

rough guideline “a value as small as . could seldom be

disregarded” became a de facto necessity for publication

of experimental results in many scienti�c �elds. However,

despite its usefulness for �ltering out many inconsequen-

tial results, the p-value is o�en confused with �xed signif-

icance levels (see section 7“Signi�cance Tests for Making
Decisions”).
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Finding the Null Distribution
It is not always easy to �nd the null distribution of a test

statistic. It must be chosen carefully. For example, in the

Z-test example of section 7“Introduction”, three assump-
tions weremade, normality of the observations, equality of

the group variances and knowledge of the common vari-

ance σ . If the �rst two assumptions hold, but the latter is

relaxed to σ  > , then the distribution of the Z-test statis-
tic depends on the unknown nuisance parameter σ , so one

does not have a unique null distribution. An appropriate

test statistic is the two-sample pooled t-statistic, which is

just the Z-test statistic with σ replaced by spooled, where

spooled = {(n − )s + (n − )s} /(n + n − ), and s ,
s are the the respective sample variances. �is t statis-

tic has, under the null µ = µ a Student-t distribution
with ν = n + n −  degrees of freedom, which allows for
computation of p-values.

If the assumption of normality of the groups is

retained, but their variances are not assumed equal, then

one can estimate them separately using the respective sam-

ple variances. An approximating t distribution for the

resulting standardized mean di�erence is known as the

Welch t-test see Welch (). If the assumption of nor-

mality is relaxed to a continuous distribution then a com-

parison can be based on the sum S of the ranks of one

samplewithin the ranking of the combined sets of observa-

tions.�e null hypothesis is that each group has the same

continuous distribution F and then Shas a unique distribu-

tion.�is test is known as the 7Wilcoxon–Mann–Whitney
test. It is an example of a distribution-free test, because F is

unspeci�ed.

Another way of computing a p-value when the null

hypothesis distribution is not uniquely speci�ed is to sam-

ple repeatedly from the empirical distribution of the data

and for each sample compute the value of the test statistic;

the proportion of values greater than the original Sobs is a

bootstrap estimate of the p-value.

Significance Tests for Making Decisions
Neyman and Pearson (), Neyman () formulated

the signi�cance testing problem as one of decisionmaking.

�e dataX are assumed to have distributionsPθ indexed by

the parameter θ known to lie in one of twomutually exclu-

sive sets Θ, Θ, and onemust choose between them, using

only X.�e parameter sets Θ and Θ are called the null

and alternative hypotheses, respectively. Each may be sim-

ple, containing only a single value, or composite. If X ∼ Pθ

for some θ ∈ Θ, and one chooses Θ a Type I error, (or,
error of the �rst kind), is committed. If X ∼ Pθ for some

θ ∈ Θ, and one chooses Θ a Type II error, (or, error of
the second kind), is committed. Because the consequences

of Type I and Type II errors are o�en incommensurate, see

Neyman (), the Neyman–Pearson framework places a

bound α on Type I error probabilities, called the level of the

test, and subject to this constraint seeks a decision rule that

in some sense minimizes the Type II error probabilities,

β(θ) for θ ∈ Θ.
A decision rule equals  or  depending on whether Θ

or Θ is chosen, a�er observing X = x. It is by de�nition
the indicator function IC(x) of the critical region C, which
is the set of values of X for which Θ is chosen.�is region

is critical in the sense that if X ∈ C, one rejects the null
hypothesis and risks making a Type I error.�e size of a

critical region is supθ∈Θ Pθ(X ∈ C). One seeks a critical
region (test) for which the size is no greater than the level

α and which has large power of detecting alternatives.�e

size may be set equal to the desired level α by choice of C

when the distributions Pθ are continuous, but in the case

of discrete Pθ , the size will o�en be less than α, unless some

formof7randomization is employed, see Lehmann ().

Power Function of a Test and Optimal Test
Statistics
�e power of a test for detecting an alternative θ ∈ Θ is
de�ned by Π(θ) = Pθ (X ∈ C) =  − β(θ). It is the prob-
ability of making the right decision (rejecting Θ) when
θ ∈ Θ; and as indicated, it is also  minus the probability
of making a Type II error for this θ.�e power function

is de�ned by Π(θ), for each θ ∈ Θ. Let fθ be the den-
sity of Pθ with respect to a dominating measure for the

distributions of X. Neyman and Pearson showed that for a

simple hypothesis θ and simple alternative θ, there exists

a most powerful level-α test which rejects the null when

the likelihood ratio λ(x) = fθ (x)/fθ(x) is large.�at is,
the critical region is of the form C = {x : λ(x) ≥ c},
where the critical value c de�ning the boundary of the crit-

ical region is chosen so Pθ{λ(X) ≥ c} = α. For composite

hypotheses, the likelihood test statistic de�ned by λ(x) =
sup

Θ
fθ(x)/ supΘ fθ(x) is the basis formany tests, because

its large sample distribution is known. A uniformly most

powerful level-α test maximizes the power for each value

of the alternative amongst all level-α tests. Uniformlymost

powerful tests for composite alternatives are desirable, but

such tests do not usually exist. See Lehmann () for a

comprehensive development of the theory of hypothesis

testing.

Inversion of a Family of Tests to Obtain
Confidence Regions
A con�dence region of level −α for a parameter θ is a ran-

dom set R(X) for which Pθ{θ ∈ R(X)} ≥  − α for all

θ ∈ Θ. When Θ is a subset of the real line, the region is
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usually in the form of a random con�dence interval [L,U],
where L = L(X),U = U(X).�e inversion procedure, due
to Neyman (), supposes that for each θ ∈ Θ there is
a level−α test with critical region Cα(θ) for testing the
simple null hypothesis Θ = {θ} against its complement
Θ
c
 = {θ ∈ Θ : θ ≠ θ}. �is family of tests can be
converted into a level  − α con�dence region for θ, given

by R(X) = {θ ∈ Θ : X ∉ Cα(θ)}.�us a parameter
θ belongs to the con�dence region if and only if it is not

rejected by the level α test of θ = θ against θ ≠ θ.

On p-Values and Fixed Significance Levels
�e purpose of choosing a �xed level α as a prior upper

bound on the probability of Type I errors is to avoid mak-

ing decisions that are in�uenced by the observed data x.

�e p-value, on the other hand, requires knowledge of x

for its computation, and subsequent interpretation as evi-

dence against the null hypothesis.�us when used for the

separate purposes for which they were designed, there is

no confusion. However, having observed S(x) = Sobs, the
p-value is equal to the level α for which Sobs = cα ; that is,
the smallest �xed level for which the test rejects the null.

For this reason, it is sometimes called the observed signi�-

cance level. One rejects the null at level α if and only if the

p-value ≤ α. It is widespread practice to use the Neyman–

Pearson framework to obtain a powerful test of level α =
., and then to report the p-value.�us there has evolved

in practice a combination of concepts that can prove con-

fusing to the uninitiated, see Berger () Hubbard and

Bayarri () and Lehmann ().

Bayesian Hypothesis Testing
�e Bayesian framework for signi�cance testing assumes a

prior probability measure π(θ) over the parameter space
Θ = Θ ∪ Θ.�is yields prior probabilities π = π(Θ),
 − π on the null and alternative hypotheses Θ, Θ,

respectively, and the prior odds π/( − π) in favor of
the null. It is further assumed that for each θ, the data

X has a conditional distribution f (x∣θ) for X, given θ.

�e posterior probability of the null is then P(Θ∣x) =
∫Θ f (x∣θ)dπ(θ)/fX(x), where fX(x) = ∫Θ f (x∣θ)dπ(θ).
One can, if a decision is required, reject the null in favor

of the alternative when P(Θ∣x) is less than some preas-
signed level, as in NP testing; or, one can simply choose to

interpret it as a measure of support for Θ.

Bayes Factor
It turns out that the posterior odds for Θ are related to its

prior odds by P(Θ∣x)/(−P(Θ∣x)) = B(x) π/(−π),
�e Bayes factor B(x) = fΘ(x)/fΘ(x), where fΘi(x) =
∫Θi f (x∣θ)dπ(θ)/π(Θi), i = , . �e Bayes factor mea-
sures the change in odds for the null hypothesis Θ a�er

observation of X = x. It is also o�en interpreted as a

measure of support for Θ, but this interpretation is not

without controversy; for further discussion see Kass ()

and Lavine and Schervish ().

Significance Tests for Special Purposes
When one wants to adopt the model X ∼ {Pθ : θ ∈ Θ}
for inference, be it testing or estimation, a goodness-of-

�t test rejects the entire model if a suitable test statistic

S(X) has small p-value.�us if the data do not cast doubt
on the model, the statistician happily proceeds to adopt

it.�is procedure is informal in that many other models

might equally pass such a test, but are not considered. Tests

for submodel selection in regression have the same fea-

ture; one “backs into” acceptance of a submodel because an

F-test does not reject it. All such signi�cance tests are sim-

ply informal guides to 7model selection, with little regard
for Type II errors, or the subsequent e�ects on inference

with the chosen model. Equivalence tests, on the other

hand, place great emphasis on formal testing, and do pro-

vide evidence for a null hypothesis of no e�ect. �ey do

this by interchanging the traditional roles of null and alter-

native hypotheses. For example, if θ represents the mean

di�erence in e�ects of two drugs, one might be interested

in evidence for ∣θ∣ ≤ θ, where θ de�nes a region of

“equivalence.” �is is taken as the alternative hypothesis,

to a null ∣θ∣ ≥ θ, where θ > θ is large, say. One also

simultaneously tests the null θ ≤ −θ against the alternative

of equivalence. If one rejects both these null hypotheses in

favor of the alternative, evidence for equivalence is found.

See Wellek () for a complete development.

Final Remarks and Additional Literature
Statistical signi�cance of a test, meaning a null hypothe-

sis is rejected at a pre-speci�ed level such as ., is not

evidence for a result which has practical or scienti�c sig-

ni�cance. �is has led many practitioners to move away

from the simple reporting of p-values to reporting of con-

�dence intervals for e�ects; see Krantz () for example.

Ameasure of evidence for a positive e�ect that leads to con-

�dence intervals for e�ects is developed inKulinskaya et al.

(). Fuzzy hypothesis tests and con�dence intervals are

introduced in Dollinger et al. () and explored in Geyer

and Meeden ().
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By most accounts, the �rst signi�cance test was published

in  by the Scottish mathematician, physician, and

author John Arbuthnot. He believed that, because males

were subject to more external accidents than females, they
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enjoyed an advantage of a higher birthrate. Arbuthnot cal-

culated the expectation, or the probability, of the data from

 years of birth records in London given a chance hypoth-

esis of equal birthrates for both sexes. Because this expecta-

tion was very low he concluded “that it is Art, not Chance,

that governs” (p. ), and that this result constituted a

proof of existence of an active god. Although he never

used the terms signi�cance or signi�cant – these termswere

�rst used at the end of the nineteenth century by Francis

Ysidro Edgeworth () and John Venn () – his argu-

ment is strikingly similar to the logic underlying modern

null hypothesis testing as implemented in Ronald Fisher’s

signi�cance testing approach (e.g., , ).

�e beginning of the twentieth century saw the

development of the �rst modern signi�cance tests: Karl

Pearson’s () chi-squared test andWilliamSealyGosset’s

(or Student’s ) t-test (although the term t-test appeared

only later, in  in the fourth edition of Fisher’s Statistical

Methods for Research Workers). Both are examples of tail-

area signi�cance tests, in which a hypothesis is rejected if

the tail of the null distribution beyond the observed value

is less than a prescribed small number. Gosset’s article was

also the beginning of the �eld of small sample statistics,

where the earlier asymptotics (n → ∞) were replaced by
exact probabilities.

�e use of signi�cance tests really took root among

applied researchers a�er the publication of Fisher’s in�uen-

tial books, Statistical Methods for Research Workers ()

and�e Design of Experiments (). Fisher rejected the

(older)methods of inverse probability (of hypothesis given

data) and proposed a method of inductive inference, a for-

mal way of getting from data to hypothesis. His approach

can be summarized as follows: �e researcher sets up a

null hypothesis that a sample statistic comes from a hypo-

thetical in�nite population with a known sampling distri-

bution.�e null hypothesis is rejected or, as Fisher called

it, “disproved,” if the sample statistic deviates from the

mean of the sampling distribution by more than a speci-

�ed criterion. �is criterion – or level of signi�cance – is

typically set to %, although Fisher later recommended

reporting the exact probability. In this approach, no claims

about the validity of alternative hypotheses are possible.

It is nevertheless tempting to view the complement of the

null hypothesis as an alternative hypothesis and argue, as

Arbouthnot did, that the rejection of the null hypothe-

sis gives credit to an unspeci�ed alternative hypothesis.

Fisher’s approach is also associatedwith an epistemic inter-

pretation of signi�cance: A Fisherian p-value is thought

to measure the strength of evidence against the null

hypothesis and to allow the researcher to learn about the

truth or falsehood of a speci�c hypothesis from a single

experiment.

�e major rival to Fisher’s approach was Jerzy Neyman

and Egon Pearson’s (a, b, ) approach to

hypothesis testing, originally viewed as an extension and

improvement of Fisher’s ideas. Neyman and Pearson

rejected the idea of inductive inference and replaced it with

the concept of inductive behavior.�ey sought to establish

rules for making decisions between di�erent hypotheses

regardless of researcher’s beliefs about the truth of those

hypotheses.�ey argued for specifying both a null hypoth-

esis and an alternative hypothesis, which allows for the

calculation of two error probabilities,Type I error andType

 error, based on considerations regarding decision crite-

ria, sample size and e�ect size. Type I error occurs when

the null hypothesis is rejected although it is true.�e prob-

ability of a Type I error is called α. Type II error occurs

when the alternative hypothesis is rejected although it is

true.�e probability of a Type II error is called β and -β

is called the power of the test or the long run frequency of

accepting the alternative hypothesis if it is true.�e deci-

sion to accept or reject hypotheses in theNeyman–Pearson

approach depends on the costs associated with Type I and

Type II errors. �e cost considerations lie outside of the

formal statistical theory and must be based on context-

dependent pragmatic personal judgment.�e goal, then,

for a researcher is to design an experiment that controls for

α and β and use a test that minimizes β given a bound on

α. In contrast to the data dependent 7p-values in Fisher’s
approach, α is speci�ed before collecting the data. Despite

the di�erent conceptual foundations of Fisher’s approach

and Neyman-Pearson’s approach, classical statistical infer-

ence, as commonly presented, is essentially an incoher-

ent hybrid of the two approaches (Hubbard and Bayarri

; Gigerenzer ), although there exist attempts to

reconcile them (Lehmann ). �ere is a considerable

literature discussing the pros and cons of classical statisti-

cal inference, especially null hypothesis signi�cance testing

in the Fisherian tradition (e.g., Berger and Wolpert ;

Royall ; Morrison and Henkel ).�e major alter-

native to classical signi�cance and hypothesis testing is

Bayesian hypothesis testing (Je�reys ; Kass and Ra�ery

).
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Significance Tests: A Critique

Bruno Lecoutre

ERIS, Laboratoire de Mathématiques Raphaël Salem,

C.N.R.S. and Université de Rouen, Mont Saint Aignan,

France

7 It is very bad practice to summarise an important investi-
gation solely by a value of P.

(Cox , p )

In spite of some recent changes, signi�cance tests are

again conventionally used in most scienti�c experimental

publications. According to this publication practice, each

experimental result is dichotomized: signi�cant vs. non-

signi�cant. But scientists cannot in this way �nd appropri-

ate answers to their precise questions, especially in terms

of e�ect size evaluation. It is not surprising that, from

the outset (e.g., Boring ), signi�cance tests have been

subject to intense criticism.�eir use has been explicitly

denounced by themost eminent andmost experienced sci-

entists, both on theoretical and methodological grounds,

not to mention the sharp controversies on the very foun-

dations of statistical inference that opposed Fisher to

Neyman and Pearson, and continue to oppose frequen-

tists to Bayesians. In the s there was more and more

criticism, especially in the behavioral and social sciences,

denouncing the shortcomings of signi�cance tests: the sig-

ni�cance test controversy (Morrison and Henkel ).

Significance Test Are Not a Good Scientific
Practice
7 It is foolish to ask ‘Are the effects of A and B different?’ They

are always different - for some decimal place.
(Tukey , p )

In most applications, no one can seriously believe

that the di�erent treatments have produced no e�ect: the

point null hypothesis is only a straw man and a signi�cant

result is an evidence against an hypothesis known to be

false before the data are collected, but not an evidence in

favor of the alternative hypothesis. It is certainly not a good

scienti�c practice, where one is expected to present argu-

ments that support the hypothesis in which one is really

interested.�e real problem is to obtain estimates of the

sizes of the di�erences.

The innumerable misuses of significance
tests
7 The psychological literature is filled with misinterpretations

of the nature of the tests of significance.
(Bakan , in Morrison and Henkel , p )

Due to their inadequacy in experimental data analysis,

the practice of signi�cance tests entails considerable dis-

tortions in the designing and monitoring of experiments.

It leads to innumerable misuses in the selection and inter-

pretation of results. �e consequence is the existence of

publication biases denounced bymany authors: while non-

signi�cant results are – theoretically – only statements of

ignorance, only the signi�cant results would really deserve

publication.

�e evidence of distortions is the use of the symbols

NS, *, **, and *** in scienti�c journals, as if the degree

of signi�cance was correlated with the meaningfulness

of research results. Many researchers and journal editors

appear to be “star worshippers”: see Guttman (), who

openly attacked the fact that some scienti�c journals, and

Science in particular, consider the signi�cance test as a cri-

terion of scienti�cness. A consequence of this overeliance
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on signi�cant e�ects is that most users of statistics over-

estimate the probability of replicating a signi�cant result

(Lecoutre et al. ).

The Considerable Difficulties Due to the
Frequentist Approach
7 What the use of P implies, therefore, is that a hypothe-

sis that may be true may be rejected because it has not
predicted observable results that have not occurred. This
seems a remarkable procedure.

(Jeffreys /, Sect. .)

Since the p-value is the proportion of samples that are

“at least as extreme” as the observed data (under the null

hypothesis), the rejection of the null hypothesis is based on

the probability of the samples that have not been observed,

what Je�reys ironically expressed in the above terms.�is

mysterious and unrealistic use of the sampling distribution

for justifying null hypothesis signi�cance tests is for the

least highly counterintuitive.�is is revealed by questions

frequently asked by students and statistical users: “why

one considers the probability of samples outcomes that are

more extreme than the one observed?”

Actually, due to their frequentist conception, signi�-

cance tests involve considerable di�culties in practice. In

particular, many statistical users misinterpret the p-values

as inverse (Bayesian) probabilities:  − p is “the probability
that the alternative hypothesis is true.” All the attempts to

rectify this misinterpretation have been a loosing battle.

Significance Tests Users’ Dissatisfaction
7 Neither Fisher’s null hypothesis testing nor Neyman-

Pearson decision theory can answer most scientific prob-
lems.

(Gigerenzer , p )

Several empirical studies emphasized the widespread

existence of common misinterpretations of signi�cance

tests among students and scientists (for a review, see

Lecoutre et al. ). Many methodology instructors who

teach statistics, including professors who work in the area

of statistics, appear to share their students’ misinterpre-

tations. Moreover, even professional applied statisticians

are not immune to misinterpretations of signi�cance tests,

especially if the test is nonsigni�cant. It is hard to interpret

these �nding as an individual’s lack of mastery: they reveal

that signi�cance test do not address the questions that are

of primary interest for the scienti�c research.

In particular, the dichotomous signi�cant/non signi�-

cant outcome of signi�cance tests strongly suggests binary

research decisions: “reject/accept the null hypothesis.” “But

the primary aim of a scienti�c experiment is not to precip-

itate decisions, but to make an appropriate adjustment in

the degree to which one accepts, or believes, the hypothe-

sis or hypotheses being tested” (Rozeboom, in Morrison

and Henkel , p. ). �e “reject/accept” attitude is

obviously a poor and unfortunate decision practice.

● A statistically signi�cant test provides no information

about the departure from the null hypothesis. When

the sample is large a descriptively small departure may

be signi�cant.

● A nonsigni�cant test is not evidence favoring the null

hypothesis. In particular, a descriptively large depar-

ture from the null hypothesis may be nonsigni�cant if

the experiment is insu�ciently sensitive.

In fact, in order to interpret their data in a reasonable

way, users must resort to a more or less naive mixture of

signi�cance tests outcomes and other information. But this

is not an easy task!�is leads users to make adaptative dis-

tortions, designed to make an ill-suited tool �t their true

needs. Actually, many users explicitly appear to have a real

consciousness of the stranglehold of signi�cance tests: in

many cases they use themonly because they knowno other

alternative.

Concluding Remarks
7 Inevitably, students (and essentially everyone else) give an

inverse or Bayesian twist to frequentist measures such as
confidence intervals and P values.

(Berry , p )

It is not acceptable that statistical inference meth-

ods users will continue using nonappropriate procedures

because they know no other alternative. Nowadays, pro-

posals for changes in reporting experimental results are

constantly made. In all �elds these changes, especially

in presenting and interpreting e�ect sizes, are more and

more enforced within editorial policies. Unfortunately,

academic debates continue and give a discouraging feeling

of déjà-vu. Rather than stimulating the interest of experi-

mental scientists, this endless controversy is without doubt

detrimental to the impact of new proposals, if not to the

image of statistical inference.

�emajority o�cial trend is to advocate the use of con-

�dence intervals, in addition to or instead of signi�cance

tests. However, reporting con�dence intervals appears to

have very little impact on the way the authors interpret

their data. Most of them continue to focus on the statistical

signi�cance of the results.�ey only wonder whether the
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interval includes the null hypothesis value, rather than on

the full implications of con�dence intervals: the steam-

roller of signi�cance tests cannot be escaped.

Furthermore, for many reasons due to their frequentist

conception, con�dence intervals can hardly be seen as the

ultimate method. We then naturally have to ask ourselves

whether the “Bayesian choice” will not, sooner or later, be

unavoidable. It can be argued that an objective Bayes theory

is by nomeans a speculative viewpoint but on the contrary

is perfectly feasible (Rouanet et al. ; Lecoutre et al.

; Lecoutre ).

Cross References
7Frequentist Hypothesis Testing: A Defense
7Null-Hypothesis Signi�cance Testing: Misconceptions
7Presentation of Statistical Testimony
7Psychology, Statistics in
7P-Values
7Signi�cance Testing: An Overview
7Signi�cance Tests, History and Logic of
7Statistical Evidence
7Statistical Inference: An Overview
7Statistical Signi�cance

References and Further Reading
Berry DA () Teaching elementary Bayesian statistics with real

applications in science. Am Stat :–

Boring EG () Mathematical versus scientific significance. Psy-

chol Bull :–

Cox DR () Statistical significance tests. Br J Clin Pharmacol

:–

Gigerenzer G () Mindless statistics. J Socio-Economics :–



Guttman L () What is not what in statistics? Statistician

:–

Jeffreys H () Theory of probability, rd edn (st edn: ).

Clarendon, Oxford

Lecoutre B () Bayesian methods for experimental data analysis.

In: Rao CR, Miller J, Rao DC (eds) Handbook of statistics: epi-

demiology and medical statistics, vol . Elsevier, Amsterdam,

pp –

Lecoutre B, Lecoutre M-P, Poitevineau J () Uses, abuses and mis-

uses of significance tests in the scientific community: Won’t the

Bayesian choice be unavoidable? Int Stat Rev :–

Lecoutre B, Lecoutre M-P, Poitevineau J () Killeen’s probability

of replication and predictive probabilities: How to compute, use

and interpret them. Psychol Methods :–

Morrison DE, Henkel RE (eds) () The Significance test

controversy - a reader. Butterworths, London

Rouanet H, Bernard J-M, Bert M-C, Lecoutre B, Lecoutre M-P,

Le Roux B () New ways in statistical methodology: from

significance tests to Bayesian inference, nd edn. Peter Lang,

Bern, CH

Tukey JW () The philosophy of multiple comparisons. Stat Sci

:–

Simes’ Test in Multiple Testing

Sanat K. Sarkar

Professor
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Over the past decade there has been a revival of interest

in the �eld of multiple testing due to its increased rele-

vance in modern scienti�c investigations, such as DNA

microarray and functional magnetic resonance imaging

(fMRI) studies. Simes’ () test plays an important role

in the developments of a number of multiple testing meth-

ods. Given a family of null hypotheses H, . . . ,Hn and the

corresponding p-values P, . . . ,Pn, it is a global test of the

intersection null hypothesis H :
n

⋂
i=
Hi based on these

p-values. It rejectsH at a signi�cance level α if P(i) ≤ iα/n
for at least one i = , . . . ,n, where P() ≤ ⋯ ≤ P(n) are the
ordered p-values.

Simes’ test is more powerful than the Bonferroni test.

However, to control the Type I error rate at the desired

level, it requires certain assumptions about dependence

structure of the p-values under H, unlike the Bonferroni

test. For instance, if p-values are either independent or

positively dependent in the following sense:

EH {ϕ(P, . . . ,Pn)∣Pi = u} is non-decreasing in u ()

for each i = , . . . ,n, and any coordinatewise non-

decreasing function φ(P, . . . ,Pn) of P, . . . ,Pn, then
Simes’ test controls the Type I error rate at α; that is, the

following inequality holds:

Pr H{Rejecting H} = Pr H {
n

⋃
i=

(P(i) ≤ iα/n)} ≤ α.

Such positive dependence is exhibited by p-values in

some commonly encountered multiple testing situations.

For instance, p-values generated from (I) dependent stan-

dard normal variates with non-negative correlations, (II)

absolute values of dependent standard normal variates

with a correlation matrix R such that the o�-diagonal

entries of −DR−D are non-negative for some diagonal
matrixD with diagonal entries ±, (III) multivariate t with
the associated normal variates having non-negative corre-

lations (under a minor restriction on the range of values

of u), and (IV) absolute values of multivariate t with the
associated normal variates having a correlation matrix as

in (II), satisfy () (Sarkar , a; Sarkar and Chang

).

For simultaneous testing of H, . . . ,Hn, the family-

wise error rate (FWER), which is the probability of falsely
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rejecting at least one null hypothesis, is o�en used as a

measure of overall Type I error. Methods strongly control-

ling the FWER, that is, with this probability not exceeding

a pre-speci�ed value α under any con�guration of true

and false null hypotheses, have been proposed. Hochberg

() suggested such a method. It rejects Hi if Pi ≤ P(î),
where

î = max{i : P(i) ≤ α/(n − i + )}

provided the maximum exists, otherwise accepts all null

hypotheses.�is is a stepupmethodwith the critical values

αi = α/(n − i + ), i = , . . . ,n. For any stepup method
with critical values α ≤ ⋯ ≤ αn, the FWER is  if n, the

number of true null hypotheses, is , otherwise it satis�es

the following inequality:

FWER ≤ Pr{
n

⋃
i=

(P̂(i) ≤ αn−n+i)} ,

where P̂() ≤ ⋯ ≤ P̂(n) are the ordered versions of
the p-values corresponding to the n true null hypothe-

ses (Romano and Shaikh ). For theHochbergmethod,

since

αn−n+i = α/(n − i + ) ≤ iα/n for i = , . . . ,n,

its FWER is bounded above by the Type I error rate

of the level α Simes’ test for the intersection of n null

hypotheses based on their p-values. In other words, the

Hochberg method controls its FWER in situations where

Simes’ global test controls its Type I error rate.

�e closed testing method of Marcus et al. () is

o�en used to construct multiple testing method with a

strong control of the FWER. It operates as follows. Given a

�nite family of null hypotheses {Hi, i = , . . . ,n} , form the
closure of this family by considering all non-empty inter-

sections HJ = ⋂
i∈J
Hi for J ⊆ {, . . . ,n}. Suppose a level-α

global test is available for each HJ .�en, a closed testing

method rejects HJ if and only if every HK with K ⊇ J
is rejected by its level-α test. Hommel () used Simes’

global test in the closed testing method to construct an

improvement of the Hochberg method. It �nds

ĵ = max{i : P(n−i+k) ≥ kα/i for all k = , . . . , i} ,

and rejects Hi if Pi ≤ α/̂j, provided the maximum exists,
otherwise rejects all null hypotheses.

Benjamini and Hochberg () introduced the 7false
discovery rate (FDR), which is a less conservative notion of

error rate than the FWER.With R andV denoting the total

number rejections and the total number of false rejections,

respectively, of null hypotheses, it is de�ned as follows:

FDR = E(V/max{R, }).

�e FDR is said to be strongly controlled at α by a multiple

testing method if the above expectation does not exceed

α, irrespective of the number of true null hypotheses. As

noted in Hommel (), while making decisions on the

individual null hypotheses using the stepup method based

on the critical values in the Simes’ test, which are αi =
iα/n, i = , . . . ,n, the FWER is not strongly controlled.
However, the false discovery rate (FDR) is strongly con-

trolled, again if the p-values are independent or positively

dependent in the sense of (), but with the Pi now rep-

resenting the p-value corresponding to a null hypothesis

(Benjamini and Hochberg ; Benjamini and Yekutieli

; Sarkar ). A proof of this result can be seen in

Sarkar (b), who gave the following expression for the

FDR of a stepup method with critical values α ≤ ⋯ ≤ αn:

FDR =∑
i∈J
E

⎡⎢⎢⎢⎢⎢⎣

I (Pi ≤ α
R
(−i)

n− +
)

R
(−i)
n− + 

⎤⎥⎥⎥⎥⎥⎦
,

where I is the indicator function, J is the set of indices cor-

responding to the true null hypotheses,R
(−i)
n− is the number

of rejections in the stepup method based on the n − 
p-values other than Pi and the critical values α ≤ ⋯ ≤ αn.

Examples of p-values satisfying this positive dependence

condition are those that are generated from test statistics

in (I) and (III).
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Regression analysis is a collection of statistical modeling

techniques that usually describes the behavior of a ran-

dom variable of interest by using one or more quantitative

variables. �e variable of interest may be the crop yield,

the price of oil in the world market, the tensile strength

of metal wire, and so on.�is variable of interest is called

the dependent variable, or response variable and denoted

with Y . Other variables that are thought to provide infor-

mation on the dependent variable are incorporated into

themodel as independent variables.�ese variables are also

called the predictor, or regressor, or explanatory variables,

and are denoted by Xs. If the height of a son is a�ected by

the height of his father, then the height of the father is X

and the height of the son becomes Y .

�eXs are assumed to be known constants. In addition

to the Xs, all models involve unknown constants, called

parameters, which control the behavior of the model. In

practical situations, the statistical models usually fall into

the class of models that are linear in the parameters.�at

is, the parameters enter themodel as simple coe�cients on

the independent variables. Such models are referred to as

7linear regressionmodels. If there is only one independent
variable X for the dependent variable of interest Y , and the

functional relationship between Y and X is a straight line,

this model is called the simple linear regressionmodel.

In a nonstatistical context, the word regression means

“to return to an earlier place or state.” �e term “regres-

sion” was �rst used by Francis Galton (–), who

observed that children’s heights tended to “revert” to the

average height of the population rather than diverting from

it. Galton applied “a regression line” to explain that the

future generations of o�spring who are taller than average

are not progressively taller than their respective parents,

and parents who are shorter than average do not beget suc-

cessively smaller children. But the term is now applied to

any linear or nonlinear functional relationships in general.

In the simple linear model, the true mean of Y changes

at a constant rate as the value of X increases or decreases.

�us, the functional relationship between the truemean of

Y , denoted by E(Y), andX is the equation of a straight line

E(Y) = β + βX.

Here, β is the intercept, the value ofE(Y)whenX = , and
β is the slope of the line, the rate of change inE(Y)per unit
change in X. Suppose we have n observations on Y , say,

Y,Y,Y, . . . ,Yn at X,X,X, . . . ,Xn, respectively.�e i
th

observation on the dependent variable Yi at Xi is assumed

to be a random observation with the random error εi to

give the statistical model

Yi = β + βXi + εi. ()

�e random errors εi have zero mean and assumed to have

common variance σ  and to be pairwise independent.�e

random error assumptions are frequently stated as

εi ∼ NID(, σ )

where NID stands for normally and independently dis-

tributed. �e quantities in parentheses denote the mean

and the variance, respectively, of the normal distribution.

Once β and β in Eq.  have been estimated from a

given set of data on X and Y , the following prediction

equation results:

Ŷ = β̂ + β̂X or Ŷi = β̂ + β̂Xi ()

�e “hats” (as they are called) above β and β signify that

those parameters are being estimated, but the hat above

Y means that the dependent variable is being predicted.

Point estimates of β and β are needed to obtain the �t-

ted line given in Eq. . One way is to minimize the sum

of the absolute values of the vertical distances with each

distance measured from each point to the �tted line (see,
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e.g., Birkes and Dodge ).�ese vertical distances are

called 7residuals. �e standard approach, however, is to
minimize the sum of the squares of the vertical distances,

and this is accomplished by using the method of least

squares.

�e starting point of the method of7least squares is to
write the estimated model as

e = Ŷ − (β̂ + β̂X)

since the residual e represents the vertical distanceY to the

line.�en the estimates β̂ and β̂ are chosen thatminimize

the sum of the squares of residuals

S = Σe i = Σ (Yi − β̂ − β̂Xi)


.

To minimize S, we take the partial derivative of S with

respect to each of the two estimates and set the resulting

expressions equal to zero.�us we obtain

β̂n + β̂ΣXi = 

β̂ΣXi + β̂ΣX

i = 

which are called the normal equations. If we solve these

equations for β̂ and β̂, we obtain

β̂ =
∑(Xi − X)(Yi − Y)

∑(Xi − X)

β̂ = Y − β̂X.

�e method of least squares, on which most methods

of estimation for regression analysis are based was appar-

ently �rst published by Legendre (), but the �rst treat-

ment along the lines now familiar was given by Gauss (for

the details regarding history of least squares see 7Gauss–
Markov theorem). Gauss showed that the least squares

method gives estimators of the unknown parameters with

minimumvariance amongunbiased linear estimators.�is

basic result is now known as the Gauss–Markov theorem,

and the least squares estimators as Gauss–Markov estima-

tors.�at is, there is no other choice of values for the two

parameters β and β that provide a smaller ∑e i . If a

residual, ei, is too large compared with the other residu-

als, the corresponding Yi may be an outlier or may be an

in�uential observation that in�uences the estimates of two

parameters β and β. Detection of an outlier or an in�u-

ential observation is an important research area, andmany

books such as Belsley et al. () and Cook and Weisberg

(), deal with this topic. (see also 7Cook’s distance,
7Regression diagnostics, 7In�uential observations).
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A7census, surveying every element in a �nite population,
is used to discover characteristics of the population. If the

population is large, a census can be costly, time consuming,

or impracticable. Alternatively, a simple random sample

can be used to obtain information and draw inferences

about the population. It is customary to sample elements

without replacement. �at is, once an element has been
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selected, it is removed from the population so that it can-

not be selected a second time. A simple random sampling

procedure is used to obtain a simple random sample.�e

procedure selects a sample of size n from a �nite popu-

lation of size N < n such that each of the NCn =
N!/[n!(N − n)!] possible samples is equally likely to be
selected. If sample elements are returned to the population

a�er being selected – sampling with replacement – each of

the N+n−Cn = (N +n− )!/{n![(N +n− )−n]!} possible
samples is equally likely to be selected.

Simple random sampling is a type of probability sam-

pling. All probability sampling procedures have three char-

acteristics in common: (a) the elements that compose the

population are explicitly de�ned, (b) every potential sam-

ple of a given size that could be drawn from the population

can be enumerated, and (c) the probability of selecting any

potential sample can be speci�ed. Non-probability sam-

pling procedures do not satisfy one or more of the three

characteristics. An example of a non-probability sampling

procedure is convenience sampling-elements are selected

because they are readily available. For simple random sam-

pling without replacement, the probability of a particu-

lar sample being selected is /(NCn). For sampling with
replacement, the probability of a particular sample being

selected is /(N+n−Cn). When sampling with replacement
the inclusions of the ith and jth (i ≠ j)members of the pop-
ulation are statistically independent.However, these events

are not statistically independent when sampling without

replacement. For this case, the probability of the inclusions

of ith and jth population members is n(n− )/[N(N − )]
(McLeod ).

Simple random samples have two interrelated advan-

tages over non-probability samples. First, randomness

avoids bias, that is, a systematic or long-run misrepre-

sentation of the population. Second, randomness enables

researchers to apply the laws of probability in determining

the likely error of sample statistics. A particular random

sample rarely yields an estimate of the population charac-

teristic that equals the population characteristic. However,

the expected value of the sample estimate will over an

inde�nitely large number of samples equal the popula-

tion characteristic. Furthermore, for any simple random

sample, it is possible to estimate the magnitude of the

error associated with the estimate. For large populations

the error depends only on the sample size, a fact that is

counterintuitive (Anderson ).

�e �rst step in obtaining a simple random sample is to

develop a sampling frame: a list of all of the elements in the

population of interest. �e sampling frame operationally

de�nes the population from which the sample is drawn

and to which the sample results can be generalized. Once

the sampling frame has been developed, a simple random

sample can be obtained in a variety of ways. For example,

a researcher can record on a slip of paper the identifying

code for each element in the sampling frame.�e slips of

paper are placed in a container and thoroughly shu�ed.

�e �rst n unique slips drawn without bias from the con-

tainer compose the sample.�e most common method of

obtaining a simple random sample uses random numbers.

Tables of random numbers are available in many statistics

textbooks.�e tables contain a sequence of random digits

whose terms are chosen so that each digit is equally likely to

be , , . . . ,  and the choices at any two di�erent places in

the sequence are independent. For ease in reading the dig-

its in a random number table, the digits are o�en grouped

with two digits in a group, four digits in a group, and so

on. To use a table to select a simple random sample of size,

say, n =  from a population of size N = , assign the
numbers , , . . . ,  to the elements in the sampling

frame. Select a starting point in the table by dropping a

pointed object on the table. Choose three-digit numbers

beginning at the starting point until  distinct numbers

between  and  are obtained.�e sample consists of

the elements corresponding to the  numbers selected.

�is procedure illustrates sampling without replacement

because once a number has been selected, the number

is ignored if it is encountered again. Computer packages

such as SAS, SPSS, and MINITAB and many hand calcu-

lators have routines that produce numbers that in every

observable way appear to be random. For an in-depth

discussion of sampling procedures, see Schae�er et al.

().
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An association measurement between two variables X

and Y may be dramatically changed from positive

to negative by omitting a third variable Z, which is

called Simpson’s paradox or the Yule-Simpson para-

dox (Yule, ; Simpson, ). A numerical exam-

ple is shown in Table . �e risk di�erence (RD) is

de�ned as the di�erence between the recovery propor-

tion in the treated group and that in the placebo group,

RD = (/) − (/) = −.. If the population is
split into two populations of male and female, a dramatic

change can be seen from Table .�e risk di�erences for

male and female are both changed to ..�us we obtain

a self-contradictory conclusion that the new drug is e�ec-

tive for both male and female but it is ine�ective for the

whole population. Should patients in the population take

the new drug or not? Should the correct answer depend on

whether the doctor know the gender of patients?

FromTable , we can see that most males took placebo,

but most females took the new drug. As depicted in Fig. ,

theremay be a spurious association between treatment and

response because gender associates with both treatment

and response. Such a factor that is associated with both

treatment and response is called a confounding factor or

a confounder. If a confounder is known and observed, the

bias due to the confounder can be removed by strati�cation

or standardization. If there are unknown or unobserved

Simpson’s Paradox. Table  Recovery proportions in

treatment and placebo groups

Treatment Recovery Non-recovery Total

New drug   

Placebo   

RD = 


− 


= −.

Simpson’s Paradox. Table  Populations stratified by gender

Male Female

Treatment Recovery Non-recovery Recovery Non-recovery

New drug    

Placebo    

RDM = . RDF = .

Gender

RecoveryTreatment

Simpson’s Paradox. Fig.  A confounding factor: gender
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Simpson’s Paradox. Fig.  Randomized experiment

confounders, in order to remove the confounding bias,

we can randomize the treatment assignment such that

the association path between the confounders and the

treatment is broken. In Fig. , we depict a randomized

experiment for this example, where  males (M) and
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Simpson’s Paradox. Table  Subscription renewal rates in 

Source of current subscription

Previous Direct Subscription Catalog
Month Gift renewal mail service agent Overall

January

Total , , , ,  ,

Renewals , , , ,  ,

Rate . . . . . .

February

Total  , ,   ,

Renewals  , ,   ,

Rate . . . . . .

Simpson’s Paradox. Table  Total income and total tax (in  dollars) and tax rate

 

Adjusted Tax Tax
gross income Income Tax rate Income Tax rate

Under $, ,, ,, . ,, , .

$, to $, ,, ,, . ,, ,, .

$, to $, ,, ,, . ,, ,, .

$, to $, ,, ,, . ,, ,, .

$, or more ,, ,, . ,, ,, .

Total ,, ,, . ,,, ,, .

 females (F) are randomly assigned into the new drug

group (T) and the placebo group (M).�e recovery pro-

portion is / in the new drug group of males, and

thus  of  treated males recover (R) and the other

 do not recover (N). From Fig. , the total number of

recovered people is += and the recovery propor-

tion is / in the new drug group; the total number

is += and the recovery proportion is / in the

placebo group. �us, we conclude on that the new drug

increases recovery proportion by %, which is consistent

with that shown in Table .

Two real-life examples of Simpson’s paradox were

showed by Wagner ().�e �rst example, as shown in

Table , illustrates that the overall renewal rate ofAmerican

History Illustrated magazine increased from . percent

in January  to . percent in February , but the

renewal rates actually declined in every subscription cate-

gory.�e second example, as shown in Table , illustrates

that the overall income tax rate increased from . percent

in  to . percent in , but the tax rate decreased

in each income category. Reintjes et al. () gave the

following example from hospital epidemiology:  gyne-

cology patients from eight hospitals in a nonexperimental

study were used to study the association between antibi-

otic prophylaxis (AB-proph.) and urinary tract infections

(UTI).�e eight hospitals were strati�ed into two groups

with a low incidence percentage (< .%) and a high per-
centage (> .%) of UTI. By Table , the relative risk (RR)
was (/)/(/) = . for the overall eight hospi-

tals, which means that AB-proph. had a protective e�ect

on UTI. But the RRs were . and . for the low and

the high incidence groups, respectively, which means that
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Simpson’s Paradox. Table  Data on UTI and AB-proph. stratified by incidence of UTI per hospital

Hospitals with low UTI Hospitals with high UTI All hospitals

AB-proph. UTI no-UTI UTI no-UTI UTI no-UTI

Yes      

No      

RRL = . RRH = . RR = .

AB-proph. had a risk e�ect on UTI for both groups.�e

real e�ect of AB-proph. on UTI has been shown to be pro-

tective in randomized clinical trials, which is consistent

with the crude analysis rather than the strati�ed analysis.

�is result explains that there were more unidenti�ed con-

founders which canceled their e�ects each other out in the

crude analysis.

�ere are many topics related to Simpson’s para-

dox. Collapsibility of association measurements deals

with conditions under which association measurements

are unchanged by omitting other variables (Cox and

Wermuth, ; Ma et al. ). From the viewpoint of

causality, Simpson’s paradox occurs because there are con-

founders such that associationmeasurement is biased from

causal e�ects (Pearl, ; Geng et al. ). A variation

of Simpson’s paradox is a surrogate paradox, which means

that a treatment has a positive e�ect on an intermediate

variable called a surrogate, which in turn has a positive

e�ect on the true endpoint, but the treatment has a negative

e�ect on the true endpoint (Chen et al. ; Ju and Geng,

). Moore () describes a real trial of antiarrhyth-

mic drugs in which an irregular heartbeat is a risk factor

of early mortality but correction of the heartbeat increased

mortality.
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�e �nancial market turmoil has been shocking the world

since early . As is aptly stated by the president of the

European Central Bank, Trichet (), the widespread
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undervaluation of risk is one of the most important issues

in this context and appropriate operational risk manage-

ment is a crucial issue to be investigated. A seemingly

unrelated issue is to measure and predict the treatment

e�ect of education on income.�is issue is crucial for any

country that increasingly relies on the “knowledge econ-

omy. ” In recent research by the authors it is stressed that

these seemingly unrelated issues pose similar questions
and have common components from a modeling and sta-
tistical viewpoint.

�ere exist connections between dynamic time series

models used in the �rst issue and treatment e�ect models.

�is common problem structure is explained in research

by the authors as follows: the restricted reduced form of

the instrumental variable (IV) model and the Vector Error

Correction Model (VECM) under cointegration are both

instances of the general reduced rank regression model

with di�erent variables and parameters playing the same

roles, as summarized in the Table .

In these models with near reduced rank one may

encounter non-elliptical posteriors. In the Bayesian anal-

ysis of treatment e�ects, for example in the instrumental

variable (IV) model, we o�en encounter posterior distri-

butions that display these shapes. �e reason for this is

Simulation Based Bayes Procedures for Model Structures with Non-Elliptical Posteriors. Table  Common model structures

Model
Restricted reduced form (RRF)
of instrumental variable (IV) model

Vector Error Correction Model
(VECM) under cointegration

Endogenous variables Dependent variable and (possibly)
endogenous regressors

Vector of variables’ changes
(= current − previous values)

Predetermined variables corresponding
to parameter matrix with reduced rank

Instrumental variables (having no direct
effect on the dependent variable, only
an indirect effect via the (possibly)
endogenous regressors)

Vector of previous values

Predetermined variables corresponding to
unrestricted parameter matrix

Control variables (having a direct effect
on both the dependent variable and the
(possibly) endogenous regressors)

Vector of other explanatory variables
and past variables’ changes

1

0.8

20

15

10

5

5

0

–5
–0.2 –0.1 0 0.1 0.2

0.6

0.4

0.2

0
10

–10

0
pi

pi

beta
beta

5

0

–5
–0.1

0.1
0.2

–0.2

posterior (p, b) under flat prior: posterior (p, b ) under Jeffreys prior:

Simulation Based Bayes Procedures for Model Structures with Non-Elliptical Posteriors. Fig.  Posterior density of π (expected
difference in years of education between children born in April-December and January-March) and β (treatment effect of
education on income) for , data (used by Angrist and Krueger ()) from men born in the state of New York
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local non-identi�cation: if some of the model parame-
ters (re�ecting the strength of the instruments) tend to ,

i.e., the case of weak instruments, other model parameters

(corresponding to the relevant treatment e�ect) become

unidenti�ed.

Angrist and Krueger () consider the estimation

of the treatment e�ect β of education on income, which

is non-trivial due to unobserved (intellectual) capabilities

that not only in�uence education but also directly a�ect

income, and due to measurement errors in the reported

education level. Angrist and Krueger () use Amer-

ican data and suggest using quarter of birth to form

7instrumental variables. �ese instruments exploit that
students born in di�erent quarters have di�erent average

education.�is results since most school districts require

students to have turned age six by a certain date, a so-called

“birthday cuto�” which is typically near the end of the

year, in the year they enter school, whereas compulsory

schooling laws compel students to remain at school until

their th, th or th birthday.�is asymmetry between

school-entry requirements and compulsory schooling laws

compels students born in certain months to attend school

longer than students born in other months: students born

earlier in the year enter school at an older age and reach the

legal dropout age a�er less education. Hence, for students

who leave school as soon as the schooling laws allow for

it, those born in the �rst quarter have on average attended

school for three quarters less than those born in the fourth

quarter. Suppose we use as a single instrument a / indi-

cator variable with value  indicating birth in the �rst

quarter; the strength of this instrument is given by its e�ect

on education, parameter π.�e le� panel of Fig.  shows the

posterior density of π and β (under a �at prior) for ,

data frommen born in the state of New York in –.

�is shows a clear “ridge” around π = , indicating that for
π tending to  a wide range of values of β becomes possi-

ble. An alternative prior, the Je�reys prior, regularizes the

posterior shapes in the sense that it eliminates the asymp-

tote around π =  for the marginal posterior of π, yet the

joint posterior shapes in the right panel of Fig.  are still far

from elliptical.�is example illustrates that the weakness

of the instruments may imply that even for large data sets

posterior distributions may be highly non-elliptical.

�us for the Bayesian analysis of (non-linear) exten-

sions of the IV model, we need �exible simulation meth-

ods. �e use of neural network based simulation is then

particularly useful. A Bayesian optimal information pro-

cessing procedure using advanced simulation techniques

based on arti�cial neural networks (ANN) is recently

developed and it can be used as a powerful tool for fore-

casting and policy advice.�ese simulation methods have

already been successfully applied to evaluate risk mea-

sures (Value-at-Risk, Expected Shortfall) for a single asset.

�e procedures proposed by the authors are just one step

forward on the path of understanding these issues and

these involve a novel manner of processing the informa-

tion �ow on these issues. It is – of course – the inten-

tion of this research that its results improve forecasting

of risk and uncertainty that in�uence the e�ectiveness of

interventions and treatments.
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Singular spectrum analysis (SSA) is a technique of time

series analysis and forecasting. It combines elements of

classical time series analysis, multivariate statistics, mul-

tivariate geometry, dynamical systems and signal process-

ing. SSA aims at decomposing the original series into a sum

of a small number of interpretable components such as a

slowly varying trend, oscillatory components and a “struc-

tureless” noise. It is based on the singular-value decompo-

sition of a speci�c matrix constructed upon time series.

Neither a parametric model nor stationarity-type condi-

tions have to be assumed for the time series; this makes

SSA a model-free technique.

�e commencement of SSA is usually associated with

publication of the papers (Broomhead and King a, b)

by Broomhead and King. Nowadays SSA is becoming

more and more popular, especially in applications.�ere

are several hundred papers published on methodologi-

cal aspects and applications of SSA, see Golyandina et al.

(), Vautard et al. (), Vautard andGhil (), Allen

and Smith (), and Zhigljavsky () and references

therein. SSA has proved to be very successful, and has

already become a standard tool in the analysis of climatic,

meteorological and geophysical time series; see, for exam-

ple, Vautard et al. (), Vautard and Ghil (), and

Allen and Smith (). More recent areas of application

of SSA include engineering, medicine, econometrics and

many other �elds. Most recent developments in the the-

ory and methodology of SSA can be found in Zhigljavsky

(). We start with ‘Basic SSA’ , which is the most com-

mon version of SSA.

Basic SSA
Let x, . . . , xN be a time series of length N. Given a win-

dow length L (<L<N), we construct the L-lagged vectors
Xi =(xi, . . . , xi+L−)T , i = , , . . . ,K=N−L+, and compose
these vectors into the matrix X = (xi+j−)L,Ki,j= = [X : . . . :
XK] .�is matrix has size L ×K and is o�en called “trajec-
torymatrix.” It is a Hankel matrix, whichmeans that all the

elements along the diagonal i+j=const are equal.
�e columns Xj of X, considered as vectors, lie in the

L-dimensional space RL. �e singular-value decomposi-
tion of the matrix X XT yields a collection of L eigen-
values and eigenvectors. A particular combination of a

certain number l < L of these eigenvectors determines
an l-dimensional subspace in RL.�e L-dimensional data
{X, . . . ,XK} is then projected onto this l-dimensional
subspace and the subsequent averaging over the diagonals

gives us some Hankel matrix X̃ which is considered as an
approximation to X.�e series reconstructed from X̃ sat-
is�es some linear recurrent formula whichmay be used for

forecasting.

In addition to forecasting, the Basic SSA can be

used for smoothing, �ltration, noise reduction, extrac-

tion of trends of di�erent resolution, extraction of peri-

odicities in the form of modulated harmonics, gap-�lling

(Kondrashov and Ghil ; Golyandina and Osipov

) and other tasks, see Golyandina et al. (). Also,

the Basic SSA can be modi�ed and extended in many

di�erent ways some of which are discussed below.

Extensions of the Basic SSA
SSA for analyzing stationary series (Vautard andGhil ).

Under the assumption that the series x, . . . , xN is station-

ary, the matrix X XT of the Basic SSA is replaced with the
so-called lag-covariance matrix Cwhose elements are cij =


N−k ∑
N−k
t= xtxt+k with i, j = , . . . ,L and k = ∣i − j∣. In the

terminology of Golyandina et al. (), this is “Toeplitz

SSA.”
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Monte-Carlo SSA (Allen and Smith ). In the Basic

SSA we implicitly associate the “structureless” component

of the resulting SSAdecompositionwith “white noise” (this

noise may not necessarily be random). In some applica-

tions, however, it is more natural to assume that the noise

is “colored”. In this case, special tests based on Monte

Carlo simulations may be used to test the hypothesis of the

presence of a signal.

Improvement or replacement of the singular-value

decomposition (SVD) procedure. �ere are two main rea-

sons why it may be worthwhile to replace the SVD oper-

ation in the Basic SSA with some another operation.�e

�rst reason is simplicity: in problems where the dimen-

sions of the trajectory matrix is large, SVD may simply

be too costly to perform; substitutions of SVD are avail-

able, see Golub and van Loan () and Moskvina and

Schmidt ().�e second reason is the analysis of the

accuracy of SSA procedures based on the perturbation the-

ory (Zhigljavsky ). For example, in the problems of

separating signal from noise, some parts of the noise are

o�en found in SVD components corresponding to the sig-

nal. As a result, a small adjustment of the eigenvalues and

eigenvectors is advisable to diminish this e�ect.�e sim-

plest version of the Basic SSA with a constant adjustment

in all eigenvalues was suggested in VanHu�el () and is

sometimes called the minimum-variance SSA.

Low-rank matrix approximations, Cadzow iterations,

connections with signal processing. As an approximation to

the trajectory matrix X, the Basic SSA yields the Hankel
matrix X̃.�is matrix is obtained as a result of the diagonal
averaging of amatrix of rank l. Hence X̃ is typically amatrix
of full rank. However, in many signal processing applica-

tions, when a parametric form of an approximation is of

prime importance, one may wish to �nd a Hankel matrix

of size L×K and rank lwhich gives the best approximation
to X; this is a problem of the structured low-rank approxi-
mation (Markovsky et al. ).�e simplest procedure of

�nding a solution to this problem (not necessarily the glob-

ally optimal one though) is the so-called Cadzow iterations

(Cadzow ) which are the repeated alternating projec-

tions of the matrices (starting at X) to the set of matrices
of rank l (by performing the singular-value decomposi-

tions) and to the set of Hankel matrices (by making the

diagonal averaging).�at is, Cadzow iterations are simply

the repeats of the Basic SSA. It is not guaranteed however

that Cadzow iterations lead to more accurate forecasting

formulas than the Basic SSA (Zhigljavsky ).

SSA for change-point detection and subspace track-

ing (Moskvina and Zhigljavsky ). Assume that the

observations x, x, . . . of the series arrive sequentially in

time and we apply the Basic SSA to the observations

at hand. �en we can monitor the distances from the

sequence of the trajectory matrices to the l-dimensional

subspaces we construct and also the distances between

these l-dimensional subspaces. Signi�cant changes in any

of these distances may indicate on a change in the mech-

anism generating the time series. Note that this change in

the mechanism does not have to a�ect the whole structure

of the series but rather only a few of its components.

SSA for multivariate time series. Multivariate (or mul-

tichannel) SSA (shortly, MSSA) is a direct extension of

the standard SSA for simultaneous analysis of several time

series. Assume that we have two series, X = {x, . . . , xN}
and Y = {y, . . . , yN}.�e (joint) trajectory matrix of the
two-variate series (X,Y) can be de�ned as either Z =
(X,Y) or Z = (X,Y)T , where X and Y are the trajec-
tory matrices of the individual series X and Y . Matrix Z
is block-Hankel rather than simply Hankel. Other stages

of MSSA are identical to the stages of the univariate SSA

except that we build a block-Hankel (rather than ordinary

Hankel) approximation Z̃ to the trajectory matrix Z.
MSSA may be very useful for analyzing several series

with common structure. MSSAmay also be used for estab-

lishing a causality between two series. Indeed, the absence

of causality of Y on X implies that the knowledge of Y

does not improve the quality of forecasts of X. Hence an

improvement in the quality of forecasts for X which we

obtain using MSSA against univariate SSA forecasts for X

gives us a family of SSA-causality tests, see Hassani et al.

().
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7Six Sigma can be de�ned as a highly structured strategy for
acquiring, assessing, and applying customer, competitor, and

enterprise intelligence in order to produce superior product,

system or enterprise innovation and designs (Klefsjö et al.

). Focal to this de�nition is the customer and indeed

the customer functions as the pivot point for this contri-

bution as customer needs and wants drive change in most

organizations.

Six Sigma originated at Motorola approximately

 decades ago as a means of generating near-perfect prod-

ucts via focus on associated manufacturing processes and

while initially applied almost exclusively in manufactur-

ing environments, its inherent sensibilities and organiza-

tion facilitated migration to service operations. Similarly,

while Six Sigma was at the outset used to generate signi�-

cant innovation in and improvement of existing products,

those same sensibilities led to its adaptation to new prod-

uct and process design environments. In statistical terms

a process operating at a “true” six sigma level produces

an average of only . defects per million opportunities

(DPMO) for defects where this �gure is associated with a

process with a  standard deviation spread between lower

and upper speci�cation limits, but wherein the . DPMO

�gure is based on allowance for a . standard deviation

non-centrality factor or shi� away from “perfect centering”

so that, in essence, one speci�cation limit is . standard

deviations away from the targeted or ideal performance

level whereas the other speci�cation limit is . standard

deviations away from that performance level.

Within the context of a structured problem-solving

context Six Sigma integrates various strategies and tools

fromStatistics,Quality, Business, andEngineeringwith the

adoption of newones likely as its use expands tomore busi-

ness sectors and areas of application. Its focus divides into

two signi�cant and related branches that share a number of

tools, techniques and objectives, but o�en apply these tools

and techniques di�erently and its use has added multiple

billions in any currency to the �nancial bottom lines of

numerous organizations across many sectors of the econ-

omy, including �nancial, healthcare, military, and general

manufacturing. Six Sigma’s branches are ones that focus

on signi�cant innovation/redesign in or of existing prod-

ucts, processes, and systems and a second that is directed

at design of new products, processes or systems. Included

among the leading companies emphasizing Six Sigma are

GE, M, Raytheon, Sun Microsystems, DuPont, Bank of

America, American Express, Motorola, Rolls Royce, and

Boeing.

Central to business �ow is the familiar SIPOC model

(Suppliers→ Inputs→Processes→Outputs→Customers)
indicating that, commonly, suppliers provide inputs that

are transformed by internal processes into outputs that are

in turn provided to customers. While this �ow is com-

mon and logical, its optimization is far less so, but can be

approached application of StephenCovey’s familiar “habit”

of “beginning with the end inmind” (Covey ), a mani-

festation of which in the present case is COPIS (Customers

→ Outputs→ Processes→ Inputs→ Suppliers).
Organizations that practice COPIS – o�en as part of a

quality management or six sigma culture – do so by �rst

carefully elaborating who their customers are as well as the

needs and wants of those customers (called the “Voice of

the Customer” or “VOC”). Customer-driven organizations

will ensure that these needs and wants are re�ected in and

ful�lled by the outputs of processes that must be optimally
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SIPOC and COPIS: Business Flow – Business Optimization Connection in a Six Sigma Context. Fig. 

con�gured in order to deliver these outputs by transform-

ing themost appropriate inputs that have been provided by

the most apt suppliers. It can be seen from this that, con-

sistent with Covey, “see the end from the beginning,” that

is, to be customer-driven. In a continuous improvement

culture this occurs not once, but cyclically.�ese ideas are

portrayed in Fig. .

Statistical and other quantitatively oriented methods

that can be brought to bear throughout the COPIS-SIPOC

�ow include the use of sample survey methods to elicit the

VOC and numerous additional analytical techniques from

across the statistical spectrum can be used to assess the

VOC.Optimal process con�guration is notmerely amatter

of work �ow and equipment, but also of ensuring that how-

ever those are assembled, that the outputs themselves are

optimized. While many tools can be employed, generally

outputs can be regarded as response variables, Y , where

Y = f (X ,X, . . . ,XP) + ε,

whereX,X, . . . ,XP are controllable variables, the optimal

combination of settings of which can be determined using

response surface methods, steepest ascent methods, and

evolutionary operations or EVOP (Myers et al. ). In

a similar way, such methods can be used to assist in selec-

tion of inputs and subsequently the suppliers from whom

these should be obtained.

In all, what we see is that as best practice, business is

conceived of as COPIS to yield optimal results as deter-

mined by the VOC, but subsequently deployed as SIPOC.

While SIPOC is common to most business environments,

employment of COPIS is practiced far less o�en and then

typically only in customer-driven environments. Prac-

tice of COPIS o�ers rich opportunities for application of

statistical methods as well as subsequent rewards.
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Six Sigma is a quality improvement systemoriginally devel-

oped by Motorola in the mid-s. A�er seeing the

huge �nancial successes at Motorola, GE, and other early

adopters of Six Sigma, many companies worldwide have

now instituted Six Sigma to improve e�ciency, cut costs,

eliminate defects, and reduce product variation (see Arndt

; Cyger ; Hahn et al. ; Snee ). Six Sigma

o�ers a more prescriptive and systematic approach to pro-

cess improvement than TQM. It is also distinguished from

other quality improvement systems by its clear focus on

achieving bottom-line results in a relatively short - to

-month period of time.

�e name Six Sigma comes from the fact that it is

a managerial approach designed to create processes that

result in no more than . defects per million. �e Six

Sigma approach assumes that processes are designed so

that the upper and lower speci�cation limits are six stan-

dard deviations away from themean.�en, if the processes

are monitored correctly with 7control charts, the worst
possible scenario is for the mean to shi� to within .

standard deviations from the nearest speci�cation limit.

�e area under the normal curve less than . standard

deviations below the mean is approximately . out of a

million.

The DMAIC Model
To guide managers in their task of improving short- and

long-term results, Six Sigma uses a �ve-step process known

as the DMAIC model – named for the �ve steps in the

process:

● De�ne. �e problem is de�ned, along with the costs,

the bene�ts, and the impact on the customer.

● Measure. Operational de�nitions for each critical-to-

quality (CTQ) variable are developed. In addition, the

measurement procedure is veri�ed so that it is consis-

tent over repeated measurements.

● Analyze.�e root causes ofwhy defects occur are deter-

mined, and variables in the process causing the defects

are identi�ed. Data are collected to determine bench-

mark values for each process variable. �is analysis

o�en uses control charts.

● Improve. �e importance of each process variable on

the CTQ variable is studied using designed experi-

ments.�e objective is to determine the best level for

each variable.

● Control. �e objective is to maintain the bene�ts for

the long term by avoiding potential problems that can

occur when a process is changed.

�e De�ne phase of a Six Sigma project consists of the

development of a project charter, performing a SIPOC

analysis, and identifying the customers for the output of

the process.�e development of a project charter involves

forming a table of business objectives and indicators for

all potential Six Sigma projects. Importance ratings are

assigned by top management, projects are prioritized, and

themost important project is selected. A SIPOC analysis is

used to identify the Suppliers to the process, list the Input

provided to the suppliers, �owchart the Process, list the

process Outputs, and identify the Customers of the pro-

cess.�is is followed by a Voice of the Customer analysis

that involves market segmentation in which di�erent types

of users of the process are identi�ed and the circumstances

of their use of the process are identi�ed. Statistical meth-

ods used in the De�ne phase include tables and charts,

descriptive statistics, and control charts.

In the Measure phase of a Six Sigma project, members

of a team �rst develop operational de�nitions of each CTQ

variable. �is is done so that everyone will have a �rm

understanding of the CTQ. �en studies are undertaken

to ensure that there is a valid measurement system for

the CTQ that is consistent across measurements. Finally,

baseline data are collected to determine the capability and

stability of the current process. Statistical methods used in

the Measure phase include tables and charts, descriptive

statistics, the normal distribution, theAnalysis ofVariance,

and control charts.

�e Analyze phase of a Six Sigma project focuses on

the factors that a�ect the central tendency, variation, and

shape of each CTQ variable. Factors are identi�ed, related

to each CTQ, have operational de�nitions developed, and

have measurement systems established. Statistical meth-

ods used in the Analyze phase include tables and charts,

descriptive statistics, the7Analysis of Variance, regression
analysis, and control charts.

In the Improve phase of a Six Sigma project, team

members carry out designed experiments to actively inter-

vene in a process.�e objective of the experimental design

is to determine the settings of the factors that will optimize

the central tendency, variation, and shape of each CTQ

variable. Statistical methods used in the Improve phase

include tables and charts, descriptive statistics, regression
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analysis, hypothesis testing, the Analysis of Variance, and

designed experiments.

�e Control phase of a Six Sigma project focuses on

the maintenance of improvements that have been made in

the Improve phase. A risk abatement plan is developed to

identify elements that can cause damage to a process. Sta-

tistical methods used in the Control phase include tables

and charts, descriptive statistics, and control charts.
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Skewness is a measure of distributional asymmetry. Con-

ceptually, skewness describes which side of a distribution

has a longer tail. If the long tail is on the right, then the

skewness is rightward or positive; if the long tail is on the

le�, then the skewness is le�ward or negative. Right skew-

ness is common when a variable is bounded on the le� but

unbounded on the right. For example, durations (response

time, time to failure) typically have right skewness since

they cannot take values less than zero; many �nancial vari-

ables (income, wealth, prices) typically have right skewness

since they rarely take values less than zero; and adult body

weight has right skewness since most people are closer

to the lower limit than to the upper limit of viable body

weight. Le� skewness is less common in practice, but it can

occur when a variable tends to be closer to its maximum

than its minimum value. For example, scores on an easy
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examare likely to have le� skewness, withmost scores close

to % and lower scores tailing o� to the le�.Well-known

right-skewed distributions include the Poisson, chi-square,

exponential, lognormal, and gamma distributions. I am

not aware of any widely used distributions that always have

le� skewness, but there are several distributions that can

have either right or le� skew depending on their parame-

ters. Such ambidextrous distributions include the binomial

and the beta.

Mathematically, skewness is usually measured by the

third standardized moment E((X − µ)/σ)), where X
is a random variable with mean µ and standard devia-

tion σ .�e third standardized moment can take any pos-

itive or negative value, although in practical settings it

rarely exceeds  or  in absolute value. Because it involves

cubed values, the third standardizedmoment is sensitive to

7outliers (Kim andWhite ), and it can even be unde-
�ned for heavy-tailed distributions such as the Cauchy

density or the Pareto density with a shape parameter of .

When the third standardized moment is �nite, it is zero

for symmetric distributions, although a value of zero does

not necessarily mean that the distribution is symmetric

(Ord ; Johnson and Kotz , p. ). To estimate

the third standardized moment from a sample of n obser-

vations, a biased but simple estimator is the third sample

moment /n∑((x − x)/s), where x is the sample mean
and s is the sample standard deviation. An unbiased esti-

mator is the third k statistic, which is obtained by taking the

third sample moment and replacing /n with the quantity
n/((n − )(n − )) (Rose and Smith ).
Although the third standardized moment is far and

away the most popular de�nition of skewness, alternative

de�nitions have been proposed (MacGillivray ).�e

leading alternatives are bounded by − and +, and are
zero for symmetric distributions, although again a value

of zero does not guarantee symmetry. One alternative is

Bowley’s () quartile formula for skew: ((q−m)−(m−
q))/(q − q), or more simply (q + q − m)/(q − q),
where m is the median and q and q are the �rst (or

le�) and third (or right) quartiles. Bowley’s skew focuses

on the part of the distribution that �ts in between the

quartiles: if the right quartile is further from the median

than is the le� quartile, then Bowley’s skew is positive;

if the le� quartile is further from the median than the

right quartile, then Bowley’s skew is negative. Because it

doesn’t cube any values and doesn’t use any values more

extreme than the quartiles, Bowley’s skew is more robust

to outliers than is the conventional third-moment formula

(Kim and White ). But the quantities in Bowley’s for-

mula are arbitrary: instead of the le� and right quartiles –

i.e., the th and th percentiles – Bowley could just as

plausibly have used the th and th percentiles, the th

and th percentiles, or more generally the pth and

( − p)th percentiles F−(p) and F−( − p). Substi-
tuting these last two expressions into Bowley’s formula,

Hinkley () proposed the generalized skewness formula

(F−(−p)+F−(p)−m)/(F−(−p)−F−(p)), which is a
function of high and low percentiles de�ned by p. Since it is

not clear what value of p is most appropriate, Groeneveld

and Meeden () averaged Hinkley’s formula across all

ps from  to .. Groeneveld and Meeden’s average was

(µ − m)/E∣X − m∣, which is similar to an old skewness
formula that is attributed to Pearson: (µ−m)/σ (Yule ).

�e Pearson and Groeneveld–Meeden formulas are

consistent with a widely taught rule of thumb claiming

that the skewness determines the relative positions of the

median and mean. According to this rule, in a distribu-

tion with positive skew the mean lies to the right of the

median, and in a distribution with negative skew the mean

lies to the le� of the median. If we de�ne skewness using

the Pearson or Groeneveld–Meeden formulas, this rule is

self-evident: since the numerator of both formulas is sim-

ply the di�erence between the mean and the median, both

will give positive skew when the mean is greater than the

median, and negative skew when the situation is reversed.

But if we de�ne skewness more conventionally, using the

third standardized moment, the rule of thumb can fail.

Violations of the rule are rare for continuous variables, but

common for discrete variables (von Hippel ). A sim-

ple discrete violation is the 7binomial distribution with
n =  and π = . (cf. Lesser ). In this distribu-
tion, the mean . is le� of the median , but the skewness

as de�ned by the third standardized moment is positive,

at ., and the distribution, with its long right tail, looks

like a textbook example of positive skew. Examples like this

one argue against using the Pearson, Groeneveld-Meeden,

or Bowley formulas, all of which yield a negative value

for this clearly right-skewed distribution. Most versions

of Hinkley’s skew also contradict intuition here: Hinkley’s

skew is negative for . > p > ., zero for . ≥ p >
., and doesn’t become positive until p ≤ ..
Since many statistical inferences assume that vari-

ables are symmetrically or evennormally distributed, those

inferences can be inaccurate if applied to a variable that

is skewed. Inferences grow more accurate as the sample

size grows, with the required sample size depending on

the amount of skew and the desired level of accuracy.

A useful rule states that, if you are using the normal or t

distribution to calculate a nominal % con�dence inter-

val for the mean of a skewed variable, the interval will have

at least % coverage if the sample size is at least  times

the absolute value of the (third-moment) skew (Cochran
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; Boos and Hughes-Oliver ). For example, a sam-

ple of  observations should be plenty even if the skew is

as large as  (or −).
In order to use statistical techniques that assume

symmetry, researchers sometimes transform a variable to

reduce its skew (von Hippel ). �e most common

transformations for reducing positive skew are the loga-

rithm and the square root, and a much broader family

of skew-reducing transformations has been de�ned (Box

and Cox ). But reducing skew has costs as well as

bene�ts. A transformed variable can be hard to interpret,

and conclusions about the transformed variable may not

apply to the original variable before transformation (Levin

et al. ). In addition, transformation can change the

shape of relationships among variables; for example, if X

is right-skewed and has a linear relationship with Y , then

the square root of X, although less skewed, will have a

curved relationship with Y (von Hippel ). In short,

skew reduction is rarely by itself a su�cient reason to trans-

form a variable. Skew should be treated as an important

characteristic of the variable, not just a nuisance to be

eliminated.
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Skew-Normal Distribution
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In its simplest reading, the term “skew-normal” refers to a

family of continuous probability distributions on the real

line having density function of form

φ(z; α) =  φ(z) Φ(αz), (−∞ < z <∞), ()

where φ(⋅) andΦ(⋅) denote theN(, ) density and cumu-
lative distribution function, respectively, and α is a real

parameter which regulates the shape of the density. �e

fact that () integrates to  holds by a more general result,

given by Azzalini (), where φ and Φ are replaced by

analogous functions for any choice of two distributions

symmetric around .

It is immediate that the choice α =  lends the N(, )
distribution, and that, ifZ is a randomvariablewith density

(), denoted Z ∼ SN(α), then −Z ∼ SN(−α). Figure a
displays φ(z; α) for a few choices of α; only positive values
of this parameter are considered, because of the property

just stated.

An interesting property is that Z ∼ χ , if Z ∼ SN(α),
irrespectively of α.�e 7moment generating function of
Z is

M(t) =  exp(t/)Φ(δt) , δ = α/
√
 + α , ()

and from M(t) it is simple to obtain the mean, the vari-
ance, the index of skewness and the index of kurtosis,
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Skew-Normal Distribution. Fig.  Some examples of skew-normal density function, for the scalar case (left) and for the bivariate

case in the form of contour level plots (right)

which are

µα =
√


π
δ, σ


α =  − µα ,

γ =
 − π



µα

σ α
, γ =  (π − ) µ


α

σ α
()

respectively. Multiplication of M(t) by exp(t/) shows
another interesting property: if U ∼ N(, ) independent
of Z, then (Z + U)/

√
 ∼ SN (α/

√
 + α). Additional

facts about this distribution are given by Azzalini; Azzalini

(; ), Henze () and Chiogna ().

For practical statistical work, we need to consider the

three-parameter distribution ofY = ξ+ωZ, where ξ and ω

are a location and a scale parameter, respectively (ω > ).
Extension of the above results to the distribution of Y is

immediate.

For the d-dimensional version of () we introduce

directly a location parameter ξ ∈ Rd and a scale d×dmatrix
Ω which is symmetric and positive de�nite, and we denote

by ω a d × d diagonal matrix formed by the square roots
of the diagonal elements of Ω.�e density function of the

multivariate skew-normal distribution at x is

 φd(x − ξ; Ω)Φ (α
⊺

ω
−(x − ξ)) , (x ∈ Rd) , ()

where φd(x; Ω) denotes the Nd(, Ω) density function,
and the shape parameter α is a vector in Rd. Figure b
displays function  for two choices of the parameter set

(ξ, Ω, α). Initial results on this distribution have been
obtained byAzzalini andDallaValle () and byAzzalini

and Capitanio ().

�e multivariate skew-normal distribution enjoys a

number of formal properties. If Y is a d-dimensional

random variable with density (), its moment generating

function is

M(t) = exp(ξ
⊺
t + 

t
⊺
Ωt)Φ(δ

⊺
ωt) ,

δ = 

( + α⊺Ωα)/
Ωα ()

where Ω = ω−Ωω− is the correlation matrix associated
to Ω. FromM(t) one obtains that

E{Y} = ξ +
√


π
ωδ , var{Y} = Ω − 

π
ωδδ

⊺
ω ,

while the marginal indices of skewness and kurtosis are

computed by applying expressions γ and γ in () to each

component of δ. Another result derived from () is that an

a�ne transformation a+AY , where a ∈ Rp and A ∈ Rp×d,
is still of type (), with suitably modi�ed dimension and

parameters.�is fact implies closure of this family of dis-

tributions with respect to marginalization. Closure of the

class under conditioning holds if one extends the class by

inserting an additional parameter in the argument of Φ in

(), and adapting the normalizing constant correspond-

ingly; for details on this extended class, see Arnold and

Beaver () and Capitanio et al. ().

�e chi-square distribution property stated for the

scalar case extends substantially in the multivariate case.

If Y has density () with ξ = , then a quadratic form
Y⊺AY , where A is a symmetric d × d matrix, has the same
distribution of X⊺AX where X ∼ Nd(, Ω); for instance
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Y⊺Ω−Y ∼ χd.�is distributional result can be obtained

from �rst principles, but it is mosty simply derived as a

special case of the distributional invariance property of

the family of skew-symmetric distributions, of which the

skew-normal distribution is a special instance. According

to this property, the distribution of T(Y) is the same of
T(X) for any function T, possibly multi-valued, such that
T(x) = T(−x) for all x ∈ Rd.
An attractive feature of this distribution is that it admits

various stochastics representations, which are relevant for

random number generation and also for supporting the

adoption of this distribution in statistical modelling work.

Here we restrict ourselves to one of these representations,

which is related to a selective sampling mechanism: if

⎛
⎜
⎝

X

X

⎞
⎟
⎠
∼ N+d(, Ω∗), Ω

∗ =
⎛
⎜
⎝

 δ⊺ω

ωδ Ω

⎞
⎟
⎠
> ,

where X and X have dimension  and d, respectively, then

Y = ξ +
⎧⎪⎪⎨⎪⎪⎩

X if X > ,
−X otherwise

has density function () where α = (−δ⊺Ω
−

δ)−/Ω−δ.
Additional information on the skew-normal distribu-

tion and related areas is presented in the review paper

of Azzalini (), followed by a set of comments of

Marc Genton, and rejoinder of the author.�emes consid-

ered include: additional properties and types of stochastic

representation, aspects of statistical inference, histori-

cal development, extensions to skew-ellitical and skew-

symmetric type of distributions, and connections with

various application areas.
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Skew-Symmetric Families of
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�e term ‘skew-symmetric distributions’ refers to the con-

struction of a continuous probability distribution obtained

by applying a certain form of perturbation to a symmetric

density function.

To bemore speci�c, a concept of symmetric distribution

must be adopted �rst, since in the multivariate setting var-

ious forms of symmetry have been introduced.�e variant

used in this context is the one of central symmetry, a nat-

ural extension of the traditional one-dimensional form to

the d-dimensional case: if f is a density function on Rd

and ξ is a point ofRd, central symmetry around ξ requires

that f(t − ξ) = f(−t − ξ) for all t ∈ Rd, ignoring sets of
 probability. To avoid notational complications, we shall

concentrate on the case with ξ = ; it is immediate to
rephrasewhat follows in the case of general ξ, which simply

amounts to a shi� of the location of the distribution.
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If f is a probability density function on Rd cen-
trally symmetric around , there are two largely equivalent

expressions to build skew-symmetric densities. For the �rst

one, introduce a one-dimensional continuous distribution

function G such that G(−x) =  − G(x) for all x ∈ R,
and w(⋅) a real-valued function on Rd such that w(−t)
= −w(t) for all t ∈ Rd.�en it can be shown that

f (t) =  f(t)G{w(t)} ()

is a density function onRd. Notice that in generalG{w(t)}
is not a probability distribution. In the second type of for-

mulation, consider a function π(t) such that  ≤ π(t) ≤ 
and π(t) + π(−t) =  for all t ∈ Rd, which leads to the
density function

f (t) =  f(t) π(t) . ()

Formulations () and () have been obtained indepen-

dently by Azzalini and Capitanio () and by Wang

et al. (), who adopted the term ‘skew-symmetric dis-

tribution’. Each of the two forms has its advantages. Any

expression of type G{w(t)} in () automatically satis�es
the requirements for π(t) in (), but it is not unique:
there are several forms G{w(t)} corresponding to the
same π(t). On the other hand, any π(t) can be written
in the form G{w(t)}. Hence the two sets of distributions
coincide.

�e proof that () and () are proper density functions

is exceptionally simple.�e argument below refers to () in

the univariate case; the multivariate case is essentially the

same with only a minor technical complication. If Y is a

random variable with density function f and X is an inde-

pendent variable with distribution function G, then w(Y)
is symmetrically distributed around  and




= P{X − w(Y) ≤ } = EY{P{X ≤ w(y)∣Y = y}}

= ∫
Rd
G{w(y)} f(y)dy .

�is proof also shows the intimate connection of this

formulation with a selective sampling mechanism where

a value Y sampled from f is retained with probability

G{w(t)}, and it is otherwise rejected. A re�nement of this
scheme says that

Z =
⎧⎪⎪⎨⎪⎪⎩

Y if X ≤ w(Y),
−Y otherwise

()

has density (). Since () avoids rejection of samples, it is

well suited for random numbers generation.

In spite of their name, skew-symmetric distributions

are not per se linked to any idea of 7skewness.�e name
is due to the historical connection with the 7skew-normal
distribution, which has been the �rst construction of this

type.�e skew-normal density function is

 φd(y; Ω)Φ(η
⊺
y), (y ∈ Rd), ()

where φd(y; Ω) is the Nd(, Ω) density function, Φ is
the N(, ) distribution function and η is a vector param-

eter. �is density is of type () with f(y) = φd(y; Ω)
and G{w(y)} = Φ(η⊺y). In this case the perturbation
of the original density φd does indeed lead to an asym-

metric density, as it typically occurs when w(y) is a linear
function.

To illustrate visually the �exibility which can be

achieved by the perturbationmechanism, consider f to be

the product of two symmetric Beta densities of parameters

(a, a) and (b, b), say, both shi�ed and scaled to the inter-
val (−, ), G equal to the standard logistic distribution
function and

w(y) = sin(py + py)
 + cos(qy + qy)

, y = (y, y)⊺ ∈ (−, )

where p = (p, p) and q = (q, q) are additional parame-
ters. Figure  displays a few of the shapes produced with

various choices of the parameters a, b, p, q. �ese skew-

symmetric densities do not exhibit any obvious sign of

skewness.

An important implication of representation () is the

following property of distributional invariance: if Y has

density f and Z has density (), then T(Z) and T(Y) have
the same distribution for any function T(⋅) from Rd to
Rq which is even, in the sense that T(z) = T(−z) for all
z ∈ Rd. For instance, if Z has skew-normal distribution
(), then a quadratic form T(Z) = Z⊺AZ has the same
distribution of T(Y) = Y⊺AY when Y ∼ Nd(, Ω), for
any symmetric matrix A; a further specialization says that

Z⊺Ω−Z ∼ χd. Other results on skew-elliptical distribu-

tions have been given by Arellano-Valle et al. () and

Umbach ().

An important subset of the skew-symmetric distribu-

tions occurs if f in () or () is an elliptically contoured

density, or brie�y an elliptical density, in which case we

obtain a skew-elliptical distribution. In fact, this subset

was the �rst considered, in chronological order, starting

from the skew-normal distribution, and the formulation

evolved via a sequence of successive generalizations.�is

development is visible in the following sequence of papers,

to be complemented with those already quoted: Azzalini

and Capitanio (), Branco and Dey (), Genton and
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Skew-Symmetric Families of Distributions. Fig.  Densities obtained by perturbation of the product of two symmetric Beta
densities for some choices of the parameters a,b,p,q

Loper�do () and the collection of papers in the book

edited by Genton ().
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Introduction
Over the past three decades there is a growing demand

in many countries for reliable estimates of small domain

parameters such as means, counts, proportions or

quantiles. Common examples include the estimation of

unemployment rates, proportions of people under poverty,

disease incidence and use of illicit drugs. �ese esti-

mates are used for fund allocations, new social or health

programs, and more generally, for short and long term

planning. Recently, small area estimates are employed for

testing, the administrative records used for modern cen-

suses (see7Census). Although commonly known as “small
area estimation” (SAE), the domain of studies may actu-

ally consist of socio-demographic subgroups as de�ned,

for example, by gender, age and race, or the intersection

of such domains with geographical location.

�e problem of SAE is that the sample sizes in at least

some of the domains of study are very small, and o�en

there are no samples available for many or even most of

these domains. As a result, the direct estimates obtained

from the survey are unreliable (large, unacceptable vari-

ances), and no direct survey estimates can be computed

for areas with no samples. SAE methodology addresses

therefore the following two major problems:
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. How to obtain reliable estimates for each of these areas.

. How to assess the error of the estimators (MSE, con�-

dence intervals, etc.).

Notice in this regard that even if direct survey estimates can

be used for areas with samples, no design-basedmethodol-

ogy exists for estimating the quantities of interest in areas

with no samples.�e term “Design-based inference” refers

to inference based on the randomization distribution over

all the samples possibly selected from the �nite popula-

tion under study, with the population values considered as

�xed numbers. Note also that the sample sizes in the var-

ious areas are random, unless when some of the domains

of study are de�ned as strata and samples of �xed sizes are

taken in these domains.

In what follows I describe brie�y some of the basic

methods used for SAE, assuming, for simplicity, that the

sample is selected by simple random sampling. More

advanced methods and related theory, with many exam-

ples and references can be found in the book of Rao

() and the review papers by Ghosh and Rao (),

Rao (), Pfe�ermann (), and Rao (). See also

Chaps.  and  in the new Handbook of Statistics, B

(eds. Pfe�ermann and Rao ).

Design-Based Methods
Let Y de�ne the characteristic of interest and denote by
yij the outcome value for unit j belonging to area i, i =
, . . . ,M; j = , . . . ,Ni, where Ni is the area size. Let s =
s∪⋯∪sm denote the sample, where si of size ni is the
sample observed for area i. Suppose that it is required to

estimate the true area mean Y i =
Ni

∑
j=

yij/Ni. If no auxil-

iary information is available, the direct design unbiased
estimator and its design variance over the randomization
distribution (the distribution induced by the random selec-
tion of the sample with the population values held �xed),

are given by

ˆ
Y i =

ni

∑
j=

yij/ni ; VarD [ ˆY i ∣ni] = (S i /ni) [ − (ni/Ni)]= S∗i ,

()

where Si =
Ni

∑
k=

(yik −Y i)/(Ni − ). Clearly, for small ni the

variance will be large, unless the variability of the y-values

is su�ciently small. Suppose, however, that values xij of p

concomitant variables x, . . . , xp are measured for each of

the sample units and that the area means Xi =
Ni

∑
k=

xik/Ni
are likewise known. Such information may be obtained

from a recent census or some other administrative records.

In this case, a more e�cient design-based estimator is the

regression estimator,

ˆY i,reg = yi + (Xi − xi)′βi; VarD(yreg ,i∣ni) = S
∗
i ( − R i ) ,

()

where yi and xi are the sample means of Y and X in area

i, and βi and Ri are correspondingly the vector of regres-

sion coe�cients and the multiple correlation coe�cient

between Y and x, . . . , xp in area i. �us, by use of the
concomitant variables, the variance is reduced by the fac-

tor ( − R i ) , illustrating the importance of using auxiliary
information with good prediction power for SAE.

In practice, the coe�cients βi are unknown. Replacing

βi by its ordinary least square estimator from the sample si
may not be e�ective in the case of a small sample size. If,

however, the regression relationships are “similar” across

the areas and assuming xij, =  for all (i,j), a more stable
estimator is the synthetic regression estimator,

ˆY i,syn =
Ni

∑
j=
ŷik/Ni = X

′
i B̂, ()

where ŷik = x′ikB̂ and B̂ = [∑
i,j∈S

xijx
′
ij]
−

∑
i,j∈S

xijyij is the ordi-

nary least squares estimator computed from all the sample

data.�e prominent advantage of synthetic estimation is

the substantial variance reduction since the estimator uses

all the sample data, but it can lead to severe biases if the

regression relationships di�er between the areas.

An approximately design-unbiased estimator is

obtained by replacing the synthetic estimator by the GREC

estimator,

ˆY i,greg =
Ni

∑
k=
ŷik/Ni +∑

j∈Si
(yij − ŷij)/ni. ()

However, this estimator may again be very unstable in

small samples. �e choice between the synthetic estima-

tor and the GREG is therefore a trade o� between bias and

variance. A compromise is achieved by using a composite

estimator of the form,

ˆY i,com = αi
ˆY i,greg + ( − αi) ˆY i,syn, ()

but there is no principled theory of how to determine the

coe�cients αi.

Design-based estimators are basically model free but

the requirement for approximate design-unbiasedness

generally yields estimators with large variance due to the

small sample sizes.�e construction of con�dence inter-

vals requires large sample normality assumptions, which

do not generally hold in SAE problems. No design-based

theory exists for estimation in areas with no samples.
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Model-Dependent Estimators
In view of the problems underlying the use of design-based

methods, it is common practice in many applications to

use instead statistical models that de�ne how to “borrow

strength” from other areas and/or over time in case of

repeated surveys. Let θ i de�ne the parameter of interest in

area i, i = , . . . ,M, and let yi, xi denote the data observed
for this area. When the only available information is at the

area level, yi is typically the direct estimator of θ i and xi
is a vector of area level covariates. When unit level infor-

mation is available, yi is a vector of individual outcomes

and xi is the corresponding matrix of individual covariate
information.

A typical small area model consists of two parts:�e

�rst part models the distribution of yi∣θ i; Ψ(). �e sec-
ond part models the distribution of θ i∣xi; Ψ() linking
θ i to the parameters in other areas and to the covari-

ates.�e (vector) parameters Ψ() and Ψ() are typically
unknown and are estimated from all the available data

D(s) = {yi, xi; , . . . ,m}. In what follows I de�ne and
discuss brie�y three models in common use.

“Unit Level Random Effects Model”
�e model, employed originally by Battese et al. (),

assumes,

yij = x′ijβ + ui + εij, ()

where ui and εij aremutually independent error termswith

zero means and variances σ u and σ ε respectively.�e ran-

dom term ui represents the joint e�ect of area characteris-

tics not accounted for by the concomitant variables. Under

the model, the true small area means areY i = X
′
iβ+ui+ εi,

but since εi =
Ni

∑
k=

εik/Ni ≅  for large Ni, the target parame-

ters are o�en de�ned as θ i = X
′
iβ+ui. For known variances

(σ u , σ

ε ) , the Best Linear Unbiased Predictor (BLUP) of θ i

is,

θ̂ i = γi[ yi + (Xi − xi)′ β̂GLS] + ( − γi)X
′
i β̂GLS, ()

where β̂GLS is the generalized least square (GLS) estima-

tor of β computed from all the observed data and γi =
σ u/ (σ u + σ ε /ni) . For areas lwith no samples, θ̂ l = X

′
l β̂GLS.

Notice that unlike under the randomization distribution,

the synthetic estimatorX
′
i β̂GLS is unbiased for θ i under the

model in the sense that E(X′i β̂GLS − θ i) = .
�e BLUP θ̂ i is also the Bayesian predictor (posterior

mean) under normality of the error terms and a di�use

prior for β. In practice, however, the variances σ u and

σ ε are seldom known. A Bayesian solution to this prob-

lem is to set prior distributions for the unknown variances

and then compute the corresponding posterior mean and

variance of θ i∣{yk, xk; k ∈ s} by aid of Markov Chain
Monte Carlo (MCMC) simulations (see 7Markov Chain
Monte Carlo).�e common procedure under the frequen-

tist approach is to replace the unknown variances in the

BLUP formula by standard variance components estimates

like Maximum Likelihood Estimators (MLE), Restricted

MLE (REML) or Analysis of Variance (ANOVA) estima-

tors.�e resulting predictors are known as the Empirical

BLUP (EBLUP). See the references listed in the intro-

duction for estimation of the MSE of the EBLUP under

di�erent methods of variance estimation.

“Area Level Random Effects Model”
�is model is in broad use when the concomitant informa-

tion is only at the area level. It was used originally by Fay

and Herriot () for predicting the mean income in geo-

graphical areas of less than  inhabitants. Denote by θ̃ i
the direct sample estimator of θ i.�e model assumes that,

θ̃ i = θ i + ei; θ i = x′iβ + ui, ()

such that ei represents the sampling error, assumed to have

zero mean and known design variance VarD(ei) = σ Di,

(= S∗i if θ̃ i = yi, see Eq. ).�e model integrates there-
forex a model dependent random e�ect ui and a sampling

error ei with the two errors being independent.�e BLUP

under this model is,

θ̂ i = γi θ̃ i+(−γi)x′i β̂GLS = x′i β̂GLS+γi (θ̃ i − x′i β̂GLS) , ()

which again is a composite estimator with coe�cient γi =
σ u/ (σ Di + σ u) . As with the unit level model, the variance
σ u is usually unknown and is either assigned a prior dis-

tribution under the Bayesian approach, or is replaced by a

sample estimate in (), yielding the corresponding EBLUP

predictor.

Unit Level Random Effects Model for Binary
Data
�e previous two models are for continuous measure-

ments. Suppose now that yij is a binary variable taking the

values  or . For example, yij =  if individual j in area i is
unemployed (or su�ers from a certain disease), and yij = 

otherwise, such that pi = N−i
Ni

∑
k=

yik is the true unemploy-

ment rate (true disease incidence).�e following model is

o�en used for predicting the proportions pi:

yij∣pij
indep.∼ Bernoulli(pij)

logit(pij) = log[ pij/( − pij)] = x′ijβ + ui;

ui
indep.∼ N (, σ u ) ,

()
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where as in (), xij is a vector of concomitant values, β

is a vector of �xed regression coe�cients and ui is a ran-

dom e�ect representing the unexplained variability of the

individual probabilities between the areas.

For this model there is no explicit expression for the

predictor p̂i. Writing pi = N−i
⎡⎢⎢⎢⎣
∑
j∈si

yij +∑
l/∈si

yil

⎤⎥⎥⎥⎦
, predicting

pi by its best predictor is equivalent to the prediction of

the sum∑
l/∈si

yil of the missing observations. See Jiang et al.

() for the computation of the empirical best predictor

and estimation of its MSE.
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Univariate Smoothing Splines
Univariate smoothing splines were introduced by

I.J. Schoenberg in the s, an early paper is (Schoenberg

). Given data yi = f (x(i)) + єi, i = ,⋯,n, where the
єi are i.i.d samples from a zero mean Gaussian distribution

and  < x() < ⋯. < x(n) < , the (univariate) polyno-
mial smoothing spline is the solution to: �nd f inWm

 to

minimize



n



∑
i=

( yi − f (x(i)) + λ∫



( f (m)(x))dx,

where Wm
 is the Sobolev space of functions with square

integralmth derivative.�e solution is well known to be a

piecewise polynomial of degree m −  between each pair
{x( j+), x( j)}, j = ,⋯,n− and of degreem− in [, x()]
and [x(n), ], and the pieces are joined so that the func-
tion has m −  continuous derivatives. Figure  illustrates
the cubic smoothing spline (m = ) and how it depends
on the smoothing parameter λ.�e dashed line in each of

the three panels is the underlying function f (x) used to
generate the data. �e observations yi were generated as

yi = f (xi)+ єi where the єi were samples from a zero mean
Gaussian distribution with common variance.�e wiggly

solid line in the top panel was obtained with a λ that is too

small.�e solid line in the middle panel has λ too large.
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If λ had been even larger, the solid line would have tended

to �atten out towards the least squares straight line best �t-

ting the data. Note that linear functions are in the null space

of the penalty functional ∫ ( f ′′), that is, their second
derivatives are . In the third panel, λ has been chosen by

the GCV (Generalized Cross Validation) method (Craven

andWahba ; Golub et al. ). Generalizations of the

univariate smoothing spline include penalties that replace

( f (m)) with (Lf ), where Lf is a linear di�erential oper-
ator of order m, see Kimeldorf and Wahba () and

Ramsay and Silverman (). Code for smoothing splines

is available in the R library http://cran.r-project.org, for

example pspline and elsewhere. Other generalizations
include replacing the residual sum of squares by the nega-

tive log likelihood for Bernoulli, Poisson or othermembers

of the exponential family, by robust or quantile function-

als, or by the so-called hinge function to get a Support

Vector Machine (Cristianini and Shawe-Taylor ). In

each case the solution will be a piecewise polynomial of the

same form as before as a consequence of the so called rep-

resenter theorems in Kimeldorf and Wahba (). Other

tuning criteria are appropriate for the other functionals, for

example the GACV (Xiang andWahba ) for Bernoulli

data.

Thin Plate Splines
�in Plate Splines (TPS) appeared in French in 

(Duchon ) and were combined with the GCV for tun-

ing in Wahba and Wendelberger ().�e TPS of order

 in two dimensions is the minimizer of



n

n

∑
i=

( yi − f (x(i), x(i)) + λJ,( f )

where J, is given by

∫
∞

−∞
∫

∞

−∞
f

xx + f


xx + f


xxdxdx.

In this case f is known to have a representation

f (x) = d + dx + dx +
n

∑
i=
ciE(x, x(i))

where

E(x, x(i)) = ∥x − x(i)∥log∥x − x(i)∥,

where ∥ ⋅ ∥ is the Euclidean norm.
�ere is no penalty on linear functions of the com-

ponents (x, x) of the attribute vector (the “null space”
of J,). It is known that the ci for the solution satisfy

∑ni= ci = , ∑ni= cix(i) =  and ∑ni= cix(i) = , and

furthermore,

J,( f ) = ∑
i,j=,⋯,n

cicjE(x(i), x(j)).

�e TPS is available for general d and for anym with m−
d > .�e general TPS penalty functional in d dimensions
andm derivatives is

Jd,m = ∑
α+⋯+αd=m

m!

α!⋯αd!
∫

∞

−∞
⋯

∫
∞

−∞
( ∂mf

∂xα
 ⋯∂x

αd
d

)


∏
j

dxj.

See Wahba (). Note that there is no penalty on poly-

nomials of degree less than m, so that the TPS with d

greater than  or  is rarely attempted because of the very

high dimensional null space of Jd,m. As λ tends to in�nity,

the solution tends to its best �t in the unpenalized space,

and as λ tends to , the solution attempts to interpolate

the data. Public codes in R containing TPS codes include

assist, fields, gss, mgcv. Again, the residual
sum of squares may be replaced by other functionals as in

the univariate spline and the form of the solution will be

the same.

Splines on the Sphere
Splines on the sphere were proposed in Wahba; Wahba

(; ). �e penalty functional J( f ) for splines on
the sphere is J( f ) = ∫ (∆)m/f where ∆ is the (surface)
Laplacian on the the (unit) sphere given by

∆f = 

cos ϕ
fθθ +



cos ϕ
(cos ϕfϕ)ϕ

where θ is the longitude, ( ≤ θ ≤ π) and ϕ is the lati-
tude (− π


≤ ϕ ≤ π


). Here we are using subscripts θ and ϕ

to indicate derivatives with respect to θ and ϕ. Closed form

expressions for theminimizer f are not in general available,

but closed form expressions for a close approximation are,

see Wahba; Wahba (; ).

Splines on Riemannian Manifolds
�e splines we have mentioned above have penalty func-

tionals associated with the Laplacian (note the form is

di�erent for the compact domain cases of splines on the

unit interval and splines on the sphere, as opposed to the

thin plate spline on the in�nite plane). Splines on arbitrary

compact Riemannian manifolds can be de�ned, implicitly

or explicitly involving the eigenfunctions and eigenval-

ues of the m-iterated Laplacian, see Kim (), Pesenson

(), Belkin and Niyogi (, Sect. .).
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Smoothing Spline ANOVA Models
Let x = (x,⋯, xd), where xα ∈ T (α)

, α = ,⋯, d and
yi = f (x(i)) + єi, i = ,⋯,n. where the єi are as before.�e
T (α)

can be quite arbitrary domains. It is desired to esti-

mate f (x) for x in some region of interest contained in T =
T ()⊗⋯⊗T (d)

. f is expanded as f (x) = C+∑α fα(xα)+
∑α<β fαβ(xα , tβ) + ⋯, where the terms satisfy side con-
ditions analogous to those in ordinary ANOVA which

guarantee identi�ability, and the decomposition is usually

truncated at some point.�e model is �t by minimizing

the residual sum of squares plus

Jλ( f ) =∑
α

λαJα( fα) +∑
α<β

λαβJαβ( fαβ) +⋯.

�e Jα , Jαβ ,⋯ are composites of penalty functionals on the
individual components and closed form expressions are

available when they are available for the components. As

before, the residual sum of squares may be replaced by the

negative log likelihood and other functionals depending

on yi and f (x(i)). Details may be found in Wahba et al.
() and Gu (), and the R codes assist and gss
are available to �t these models.
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�e idea of smoothing techniques is to identify trends, pat-

terns, relationships and shapes in data without adopting

strong assumptions about the speci�c nature of these.�e

one assumption that is made is that any trends and pat-

terns are smooth. �e term nonparametric is o�en used

in the context of smoothing techniques to distinguish the

methods from parametric modelling where speci�c dis-

tributional shapes (such as normal) or trends (such as

linear) are adopted, leaving only some parameters to be

estimated.

�ere are many situations where smoothing can be

applied and many ways in which it can be implemented.

�is short article will give some simple examples in just

two areas, namely density estimation and regression, and

show how the latter techniques can be used in the context

of wider regression modelling.

Density Estimation
�e histogram is a time-honored way of presenting the

shape of the variation in a set of data in graphical form.

In fact, when the histogram is scaled to have area  it can

be viewed as an estimate of the underlying density function

f (y). However, from that perspective it can be criticized
because of its sharp edges. Instead of building the esti-

mate from rectangular blocks, a kernel density estimate

uses smooth functions, called kernels, in the estimate

f̂ (y) = 
n

n

∑
i=
w(y − yi;h)

constructed from a sample of data {y, . . . , yn}.�e kernel
w(.;h) might conveniently be chosen as a normal den-
sity function with mean  and standard deviation h. It

remains to make a choice of the bandwidth, or smooth-

ing parameter, h which is the equivalent of the bin width

in a histogram. One e�ective means of doing this is to

estimate the optimal value produced by a theoretical anal-

ysis. However, a very simple choice, which can also be very

e�ective, is to use the optimal value associated with a nor-

mal distribution.�at is the solution used in the examples

below.
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�e le� panel of the �gure above shows a histogram

of data on the waiting times between eruptions of the Old

Faithful geyser inYellowstoneNational Park. A kernel den-

sity estimate has been superimposed for comparison.�e

right panel shows the same density estimate along with

estimates produced with larger (short dashed line) and

smaller (long dashed line) degrees of smoothing.

�ese simple principles extend without di�culty to

other types of data, simply by adopting a suitable form of

kernel function. For example, the le� hand panel below

shows a plot of waiting time and the subsequent eruption

time.�e right panel shows the sameplotwith the contours

of a density estimate superimposed. �e kernel function

here is simply a two-dimensional normal density function,

with two smoothing parameters, one for each dimension.

Although the scatterplot clearly shows a cluster of erup-

tions with shorter durations, the density estimate draws

attention to the presence of two clusters in the eruptions

with longer durations. In general, smoothing techniques

such as density estimation can be helpful in identifying

structure which is sometimes obscured by the variation in

the data.
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Silverman () gave one of the �rst discussions of

density estimation, with Scott () focussing on themul-

tivariate case. Wand and Jones () is a source of very
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useful theoretical analysiswhile Simono� () is particu-

larly helpful in its broad coverage and extensive references.

Nonparametric Regression
In the case of regression with a single covariate, smoothing

techniques assume the model

yi = m(xi) + εi

for observed data {(x , y), . . . , (xn , yn)}, where the εi
denote errors terms.�e smooth function m can be esti-

mated in a wide variety of ways. A kernel approach �ts a

standard model, such as a linear regression, but does so

locally by solving the weighted least squares problem

min
α ,β

n

∑
i=

{yi − α − β(xi − x)}w(xi − x;h).

�e solution α̂ provides the estimate. However, there are

many other approaches, many of these based on splines.

For example, 7smoothing splines arise as the solution
of the problem minm∑ni={yi − m(xi)} + λ ∫

b

a
m′′(x)dx.

Regression splines �t amodel which is constructed as a lin-

ear combination of a set of basis functions while penalized

splines place a smoothness penalty on these coe�cients.

�is is a research topic with a large literature. Fan and

Gijbels () and Bowman and Azzalini () describe

the theory and applications of the kernel approach while

Green and Silverman () andRuppert et al. () focus

on spline representations. In broad terms, these di�erent

methods have di�erent approaches but a common aim.�e

method chosen for a particular problem can be a matter of

convenience.
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�e panels above illustrate local linear smoothing on

water quality data, expressed in dissolved oxygen (DO)

at a particular sampling station on the River Clyde near

Glasgow. �e le� hand panel shows DO against time in

years, with little evidence of trend. �e right hand plot

adds a nonparametric regression curve which suggests that

some trend may in fact be present, obscured by the large

degree of variation in the data.�e vector of �tted values

from local linear, and indeed most other, forms of regres-

sion smoothing can be represented in vector–matrix form

as m̂ = Sy, where S is an n × n smoothing matrix.�is lin-
ear structure gives relatively easy access to standard errors

and to the quanti�cation of the level of smoothing through

approximate degrees of freedom, by analogy with standard

linear models.�e right hand panel above has added two

standard errors on either side of the nonparametric regres-

sion line, to indicate the precision of estimation. Bias is

an inevitable consequence of smoothing so this cannot be

strictly interpreted as a con�dence band.

�e two panels below show DO against temperature

and Salinity on a log scale. Here the patterns are close to

linear and the suitability of this model can be assessed by

displaying a reference band around the linearmodel, based

on two standard errors of the di�erence between a linear

and a nonparametric model. Linearity looks reasonable for

temperature but less so for Salinity.
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�e plots above were created by specifying the level of

smoothing through the approximate number of degrees of

freedom ().�e level of smoothing can also be chosen in

a data-adaptive manner, through principles such as cross-

validation or AIC.

�ese methods of nonparametric smoothing can be

adapted to a wide variety of situations, such as more than

one covariate or other types of response data.

Additive Models
Smoothing techniques can be built into widermodels, par-

ticularly where several covariates are involved. An attrac-

tive framework is provided by additive models, described

byHastie and Tibshirani () with an updated treatment

by Wood (). Here, the regression model is de�ned as

yi = α +m(xi) + . . . +mp(xpi) + εi

for covariates x , . . . , xp . Each covariate xj is allowed to

in�uence the response variable through its own regression

function mj, which may be nonparametric but could in

fact be linear or some other standard form.�e back�tting
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algorithm provides a means of �tting this type of model

through the iterations de�ned by

m̂
(r+)
j = Sj

⎛
⎝
y − α̂ −∑

k<j
m̂

(r+)
k

−∑
k>j
m̂

(r)
k

⎞
⎠
.

At each stage, the regression function mj is estimated

by smoothing the partial residuals by Sj, the smooth-

ing matrix associated with covariate j. For identi�ability,

the constraint that each component sums to  over the

observed covariate values should also be added.
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�e panels above illustrate an additive model for the

Clyde data. Instead of examining the e�ects of the covari-

ates separately, they are combined into a single model

which estimates the e�ects of one covariate while adjust-

ing for the e�ects of the others.�is much more powerful

description now shows a much clearer time trend. �e

e�ects of temperature and salinity remain broadly linear

but some unusual behavior is evident at high temperature

and high salinity.

Bowman () gives a more extended discussion of

this example, using a di�erent sampling station on the

Clyde while McMullan et al. () develop a more com-

plex model for the whole river.
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Social Networks
Social Network Analysis is concerned with the study of

relations between social actors. Examples are friendship

between persons, collaboration between employees in a

�rm, or trade between countries.�e relation is regarded

as a collection of dyadic ties, i.e., ties between pairs of

actors. In most cases, data collection is either sociocentric,

where a given group of actors is speci�ed (in the examples

this could be, e.g., a school class, a department of the �rm,

or all countries in the world), and all ties of the speci�c

kind between actors in this group are considered; or ego-

centric, where a sample of actors is taken, and all ties of the

sampled actors are considered. Other types of data collec-

tion exist, of which snowball sampling is themain example.

�e most interesting contributions of network analysis are

made by considering indirect ties – in the sense that the

way in which actors i and j are tied is better understood

by considering the other ties of these two actors. Informa-

tion about these is obtainedmuch better from sociocentric

than from egocentric approaches. �erefore, this article

considers only statistical models for sociocentric network

data.

�e �rst step for the collection of sociocentric network

data is to de�ne the relation and the group of actors.�is

group will usually be treated as an isolated group, and any

ties outside this group are disregarded.�is is called the

network boundary problem. An overview of methods for

collecting network data is given by Marsden ().

Notation
�e group of actors is denoted by N = {, . . . ,n}. Rela-
tions under study o�en are directed, which means that the

tie i→ j is distinct from the tie j→ i.�e relation can then
be represented by a nonre�exive directed graph (digraph)

onN or, alternatively, by an n× n adjacency matrix with a
structurally zero diagonal.�e actors i ∈ N are the nodes
of the graph.�e adjacency matrix y = (yij) indicates by
yij =  or yij = , respectively, that there is a tie, or there
is no tie, from actor i to actor j.�e nonre�exivity means

that self-ties are not considered, so that yii =  for all i.�e
variables yij are referred to as tie variables. If the network

is nondirected, the representation is by a simple graph,

or a symmetric adjacency matrix. Models for social net-

works in this article will be random graphs or digraphs and

denoted by Y.

Exponential Random Graph Models
Exponential families of probability distributions for graphs

or digraphs are usually called Exponential Random Graph

Models or ERGMs. �e �rst model of this kind was the

so-called p model proposed by Holland and Leinhardt

(). In this model the symmetrically positioned pairs

(Yij,Yji) are assumed to be independent.�is very restric-
tive assumption was li�ed in the de�nition by Frank and

Strauss () ofMarkov graphs.�is model can represent

tendencies toward transitivity. It postulates that edge indi-

cators Yij and Yhk, when i, j, k,h are four distinct nodes,

are independent conditional on the rest of the graph,

i.e., conditional on the collection of tie indicators Yrs for

(r, s) ≠ (i, j), (r, s) ≠ (h, k). For non-directed networks
with distributions not depending on the node labels, they

proved that this property holds if and only if the probability

distribution for Y can be expressed as

Pθ {Y = y} = exp(∑
h

θhzh(y) − ψ(θ)), ()

where the zh(y) are functions of y each of which can be
either the number of k-stars embedded in the graph y (for
some k,  ≤ k ≤ n− ) or the number of triangles embedded
in y.�ese are the statistics Sk and T de�ned by

S(y) =∑≤i<j≤n yij number of edges

Sk(y) =∑≤i≤n (yi+
k
) number of k-stars (k ≥ ) ()

T(y) =∑
≤i<j<h≤n yij yih yjh number of triangles.

�e Markov model was generalized by Frank ()

and Wasserman and Pattison () to the Exponential

Random Graph Model, in which the statistics zh(y) in ()
can be any functions of y and of covariates. Markov chain
Monte Carlo (MCMC) methods (see 7Markov Chain
Monte Carlo) for parameter estimation for thismodel were

proposed by Snijders (). Some interesting properties

of this model are discussed by Robins et al. (). It

appeared in applications, however, that in most cases the

Markov model is not plausible as a model for transitivity.

An model speci�cation with more appropriate choices of

the functions zh(y) was proposed in Snijders et al. (),
and this has turned out to be a very useful model for

representing empirically observed networks.
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�is model can represent dependencies between tie

variables Yij in a reasonable manner. It can be used when

the representation of these dependencies (transitivity, hier-

archy, brokerage etc.) is an aim in itself; but also when the

dependencies are a nuisance and the aim of the statistical

analysis is the dependence of tie variables on covariates.

Latent Structure Models
Another way to represent dependencies between tie vari-

ables is to postulate a latent space of which the nodes are

elements, and which probabilistically determines the ties.

�is is an application of the ideas of Latent Structure Anal-

ysis (Lazarsfeld and Henry ), and closely related to

Latent Class Analysis.�e tie variables Yij – or sometimes

the dyads (Yij,Yji) – then are assumed to be conditionally
independent given the latent structure.

Various latent space models have been proposed.

● A discrete (categorical) space, where the nodes have

‘colors’ and the distribution of the dyad (Yij,Yji)
depends on the colors of i and j: see Nowicki and

Snijders ().

● A general or Euclidean metric space, where the proba-

bility of a tie Yij =  depends on the distance between
nodes i and j: see Ho� et al. ().

● An ultrametric space, where the probability of a tie

Yij =  depends on the ultrametric distance between
nodes i and j: see Schweinberger and Snijders ().

● A partially ordered space, where the probability of a tie

Yij =  depends on how i and j are ordered: see Mogapi
().

Compared to Exponential Random Graph Models, these

models have less �exibility to represent dependence struc-

tures between tie variables, so that they will usually achieve

a less satisfactory goodness of �t. However, the representa-

tion of the nodes in the latent space can o�en provide an

illuminating representation in itself and may be regarded

as a helpful type of data reduction.

Longitudinal Models
Models for longitudinally observed networks were pro-

posed by Snijders (). �e most usual observational

design is a panel design, where the observations of the

network are Y(t), . . . ,Y(tM) for observation moments
t, . . . , tM (M ≥ ). A �exible class of models for panel data
on networks can be obtained by assuming that the data

aremomentary observations of a continuous-timeMarkov

process (see 7Markov Processes), in which each tie vari-
ableXij(t) develops in stochastic dependence on the entire
network X(t). An actor-based model is o�en plausible,

where tie changes are based on hypothetical choices of the

actors. Such a model can be de�ned by the following steps,

formulated in such a way that they can easily be repre-

sented by a computer simulation model. To obtain a parsi-

moniousmodel, it is assumed that only one tie variable can

change at any givenmoment.�emodel is characterized by

so-called rate functions λi(y) and objective functions fi(y),
de�ned on the set of all digraphs.

. �e current state of the network is denoted y.
. �e time until the next change is an exponentially dis-

tributed waiting time, with an expected duration of

/λ+(y) where λ+(y) = ∑i λi(y).
. When this change occurs, the probability that an out-

going tie variable Yij of actor i can be changed, is

λi(y)/λ(y).
. If actor i can change on outgoing tie variable, the set of

new possible states of the network is

C(y) = {y′ ∣ y′hk ≠ yhk only for h = i,
and for at most one k} .

�e probability that the new state is y′ is

exp (fi(y′))
∑y′′∈C(y) exp ( fi(y′′))

.

�e model speci�cation is done in the �rst place by the

appropriate de�nition of the objective function. �is is

usually speci�ed as a linear combination,

fi(β, y) =∑
k

βk ski(y) . ()

�e functions ski(y) represent ways in which the cre-
ation andmaintenance of ties depend on currently existing

ties, e.g.,

sik(, y) =∑
j
yij (outdegree)

∑
j
yij yji (reciprocated ties)

∑
j,k

yij yjk yik (transitive triplets),

and they can also depend on combinations of network

structure and covariates.

For this model, estimation procedures and algorithms

according to a method of moments were proposed by

Snijders (), Bayesian procedures by Koskinen and

Snijders (), and an algorithm formaximum likelihood

estimation by Snijders et al. ().

�is model was generalized to a model for the simul-

taneous dynamics of networks and actor characteristics



 S Social Statistics

(“networks and behavior”) by Snijders et al. (). Sta-

tistical procedures for this model are available in the

R package RSiena.
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Social statistics is one of the largest domains of mod-

ern statistical science and practice, the subject of which

is the exposure and study of regularity for formation and

alteration of social phenomena with statistical techniques.

It has grown and developed at the borders of other

sciences (7demography, economics, political science, phi-
losophy, ethics, and psychology) as the discipline that

integrates statistical resources and bases of humanitarian

information studying human beings and society. It gained

intensive development in the 
th
and 

th
centuries as a

science studying social dynamics, which was initiated in

the United States by Russian-American sociologist Pitirim

Sorokin, although the �rst record of it one can �nd in

ancient origins at the beginning of AD.

Social statistics operates with the branched system

of indicators characterizing standards of life and human

activities and further groups of people, public societies,

nations, and civilizations, their evolution and structure,

ways and standards of life, households, culture, education,

moral, and human values, freedoms, rights, etc.

In contrast to many other statistical disciplines, its

main emphasis is on the study of quantitatively immea-

surable indicators as most common in social science.



Sociology, Statistics in S 

S

It also scrutinizes and forecasts unobservable and non-

registering “shadow,” illegal, and informal social phenom-

ena, by means of analysis techniques of social projects and

doctrines, votes, and elections in particular.

In its work, along with the methods of sample sur-

veys and7public opinion polls, social statistics extensively
applies special methods, among which are various meth-

ods of multivariate factor analysis, cluster analysis (see

7Cluster Analysis: An Introduction), and latent analysis.
�e particular classes are the methods of social model-

ing and managerial social analysis, on the basis of which

a new section of modern statistics, called sociometrics

evolved.

At present time, social statistics is positioned as an

instrument of the application of its methods and informa-

tion about social sciences, the main aim and product of

which is qualitativemeasurement of social andwidely spir-

itual aspects ofmaterial production and their integration as

superior values and achievements of modern society into

the socio-economic context.

�ere are an extensive collection of models, not only

for common but also for applied social changes, in partic-

ular, the dynamics of climate change, epidemics, catastro-

phes, health care and diseases, crime, cloning, psycholog-

ical and psychotropic conspiracies and wars, application

of up-to-date and specialized computer and mathematical

methods in demographics, medicine and sanitary statis-

tics, as well as in biology, anthropology and other related

sciences.

Social statistics also develops as social groups statis-

tics, in particular poverty statistics, behavioral statistics,

i.e., behavior of people in the exotic environment, statis-

tics of crime, statistics of fair competition, and statistics on

globalization and mass protests.

Another area is a statistics of interethnic con�icts and

wars, terrorism, crisis and anthropogenic catastrophes,

which threaten the existence of world civilizations.

Social statistics is formed on the basis of sampling sur-

veys and public opinion polls; it actually relies upon opin-

ions about facts rather than on the facts themselves, it char-

acterizes mainly feedback, original responses to events in

the surrounding world, rather than the events themselves.

Without reliable criteria of estimation for data quality.

Social statistics and its indicators, where applicable, require

preliminary veri�cation of their results and publications as

they are least of all true and acceptable.

Main Social Statistics Centers:

● Harvard Institute for Quantitative Social Science

● Inter-University Consortium for Political and Social

Research

● Social Statistics Division, School of Social Sciences, Uni-

versity of Southampton, UK

● Social Statistics Research Group, University of Auckland,

New Zealand

● UN Statistics Division - Demographic and Social Statis-

tics

● Organization for Economic Co-operation and Develop-

ment (OECD)

Cross References
7Economic Statistics
7Public Opinion Polls
7Small Area Estimation
7Sociology, Statistics in

References and Further Reading
EuroStat () European social statistics-social protection,

Luxembourg

Irvine J, Miles I, Evans J (eds) () Demystifying social statistics

(). Pluto Press, London

Sociology, Statistics in

Gudmund R. Iversen

Professor Emeritus

Swarthmore College, Swarthmore,

PA, USA

Introduction
Statistics and sociology have a strong relationship that goes

back several centuries. As new social theories andmethods

have been developed, statistics has responded by develop-

ing appropriate statistical methods. Also, sociologists have

been quick adopting new statistical methods not neces-

sarily developed with them in mind.�e same is also the

case with other social sciences such as political science,

economics and psychology.

A few social sciences have reliedmore on statistics than

others. Perhaps, the heaviest user of statistics has been eco-

nomics, and the uses of statistics there have led to their

own branch of statistics known as econometrics. With the

abundance of economic data, econometrics has led to new

uses of regression analysis. In turn, econometrics has been

adopted by other social sciences, such as sociology and

psychology.

Psychology is another social science where statistics

has led to its own branch of statistics known as psy-

chometrics. Psychology has an abundance of scores on
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tests administered to college students and people seeking

employment as well as psychiatry trying do diagnose peo-

ple with suspected mental disorders.�e most well known

statistical methods in psychometrics is known as factor

analysis of various kinds.

�e abundance of survey analysis with the uses of

questionnaires (see 7Questionnaire) in sociology would
not have been possible without modern statistical sam-

pling methods. Needs of sociology have led statisticians

to develop sampling methods such as strati�ed sampling,

7cluster sampling and other sampling procedures. In turn,
this has spilled over into the uses of samplingwhen the goal

is obtain a complete 7census of some population. One of
the leading organizations in the development of modern

sampling methods for the collection of social science data

has been the United States Bureau of the Census.

Sampling Theory
Sociologists, as well as others, have long collected data on

individuals to study how people feel about issues of the

day. In addition, political scientists have used sample sur-

veys to try to predict outcomes of elections to be held

sometime in the future. One of the most famous examples

of such a prediction being wrong took place during the

presidential election in the United States in . On the

night of the elections many surveys showed that�omas

E. Dewey had won and the incumbent Harry S. Truman

had lost the election. Instead, Truman woke up the next

day and found he had been elected president for the next

four years. Another famous example took place during the

US presidential election of  when a well-known pub-

lication predicted on the basis of their poll that Governor

Alf Landon would win the election. Instead, Franklin D.

Roosevelt won almost two thirds of the popular vote that

year and went on to win the next two elections as well.

What went wrong in both of these two cases was that

statisticians had not stressed hard enough is that in order to

generalize from a sample to a larger population, the sample

must have been selected according to proper random sta-

tisticalmethods. In  the samplewas drawn from lists of

people who owned cars. But this was in the middle of the

economic depression years, and only reasonably wealthy

people owned cars while most people without cars voted

for Roosevelt. In  George Gallup and others made use

of the so-called quota sampling method. Each interviewer

was told to go out and select respondents in such a way that

the sample would re�ect the population on characteristics

such as gender and age. But that way interviewers would

miss people who worked during o� hours like a night shi�

at a factory and slept during the daytimewhen interviewers

were seeking people with the right characteristic to satisfy

the quotas they were given. An occasional survey still uses

quota sampling for the selection of respondents, in spite

of the well-known shortcomings of quota sampling.�ese

days it is much more common to chose respondents by

making a random selection of telephone numbers and dial

those numbers.

Demography
For centuries, states have wanted to count the number of

inhabitants for tax andmilitary purposes. For this purpose,

the German word Statistik was introduced more than two

hundred and ��y years ago to denote matters of state, and

the word probably comes from the Latin word Statisticum.

In principle, a census does not require the use of statistical

methods, but it is very di�cult to take an accurate census

without the use of sampling to count people who otherwise

would be hard to include in the �nal count.

Simultaneous Structural Equations
�e analysis of complex sociological models has led to

generalizations of simple regressions models to models

involving several regression equations where the param-

eters in all the equations are estimated at the same time.

�is formulation of a model has led both statisticians

and sociologists to fruitful collaborations on how to esti-

mate the parameters and how to interpret the estimates.

�e estimation procedure has moved from ordinary least

squares estimation to what is known as two-stage and even

three-stage estimation, depending upon the model.�is is

a case where theoretical work by economists have made

major contributions to statistical theory and major uses in

sociology.

Such models also go under the name of causal analy-

sis or path analysis. Path analysis seems to have originated

in biology around , and it caught on in sociology in

the ies. A leading person in this �eld was the sociol-

ogist Hubert Blalock, perhaps best known for his famous

textbook Social Statistics in addition to his writings on

causal models. Causal modeling using path analysis has

lost some of its attraction a�er people realized that estab-

lishing causality using statisticalmodels did not necessarily

lead to truly causal connections between variables.

Contingency Table Analysis
Much of the data in sociology consist of nominal (qual-

itative) variables such as gender (female, male), religious

a�liation (protestant, catholic, Muslim, Jewish, etc.) and

others. Because there are no meaningful numerical values

attached to these categories, such data cannot be analyzed
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by using means, standard deviations, single or multiple

regression, etc. Instead, perhaps the best-known and old-

est statistical method for the analysis of the relationship

between two such variables is the chi-square analysis. It is

based on the di�erence between the observed frequencies

and expected frequencies computed as what the frequen-

cies would have been if there were no relationship between

the two variables.

A more recent development is the multivariate chi-

square analysis for more than two categorical variables.

�is permits the study of interaction e�ects of the indepen-

dent variables onto the dependent variable. Also, 7logistic
regression has become popular for the case where the

dependent variable has only two values. Finally, the use of

7dummy variables for quantitative variables have become
possible using so�ware so designed. Any quantitative vari-

able with k di�erent categories can be represented by

k −  dummy variable, each having values of  and . With
the data in this form it is possible to use ordinary linear

regression for the study of the relationship between the

dependent and the independent variables.

Conclusion
�e empirical part of sociology could not exist without

the use of statistics. Statistics has become an integral part

of empirical sociological research. Any randomly cho-

sen issue of a major sociological journal will have several

articles making using of data analysis and statistics.

At one time it looked as if mathematics could play a

similar role for sociology, but that e�ort has not paid o�

the way it was hoped.�is takes us back to the importance

of statistics for sociology. However, a major obstacle is that

most sociologists lack the necessary background in statis-

tics, partly due to the fact that they do not know enough

mathematics to fully understand the statistical methods

they are using. Similarly, most statisticians lack the knowl-

edge of sociology needed to understand what statistical

methods sociologists need. A few people have been able to

bridge this gap, but most sociology students, even sociol-

ogy graduate students, see the study of statistics as a hard

task, perhaps mostly because statistics for sociologist has

not been taught very well.
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Introduction
A spatial point pattern is a set of data consisting of the loca-

tions, xi : i = , . . . ,n, of all events of a particular kind
within a designated spatial region A. Typically, the pattern

is assumed to be the outcome of a stochastic point process

(see 7Point Processes) whose properties are of scienti�c
interest.

An example would be the locations xi of all trees in

a designated region within a naturally regenerated forest.

�e observed pattern could be the result of a complex

mix of natural processes. For example: regeneration from

seedlings around the base of a mature tree could produce

clusters of young trees; variation in soil fertility could pro-

duce patches of relatively low and high intensity of regener-

ation; competition for limited nutrient or light could lead

to a spatially regular pattern is which only the dominant

member of a cluster of seedlings survives.
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Complete Spatial Randomness
�e simplest statistical model for a spatial point process

is the homogeneous Poisson process (see 7Poisson Pro-
cesses). One of several possible de�nitions of this process

is that:

. �e number of points in any planar region A follows a

Poisson distribution with mean λ∣A∣, where ∣ ⋅ ∣ denotes
area and the parameter λ >  is the intensity, or mean
number of points per unit area.

. �e numbers of events in any two disjoint areas are

independent.

Properties () and () imply that, conditionally on the

number of points inA, their locations forman independent

random sample from the uniform distribution on A.

Models
�e Poisson process provides a standard of complete spa-

tial randomness, but is inadequate as amodel formost nat-

urally occurring phenomena. As would be the case in our

hypothetical forestry example, we need models to describe

a response to an inhomoegeneous environment, or a ten-

dency for points either to cluster together or to inhibit the

occurrence of mutually close sets of points.

To model a response to an inhomogeous environment,

a �rst possibility is to replace the constant intensity λ by

a function λ(x). In practice, this is only useful if we can
model λ(x) as a function of spatially referenced explana-
tory variables, for example height above sea-level. In the

absence of such information, we can treat λ(x) as a reali-
sation of an unobserved stochastic process, so de�ning the

class of Cox processes (Cox ).

�e �rst, and still widely used, model for clustering of

points is the Neyman–Scott process (Neyman and Scott

), in which parents form a homogeneous Poisson pro-

cess and each parent generates a family of o�spring that

are spatially dispersed around their parent. Bartlett ()

showed that in some cases the resulting process is indis-

tinguishable from a Cox process; speci�cally, a process in

which family sizes are independent Poisson variates and

the positions of o�spring relative to their parents are an

independent random sample from a bivariate distribution

with density f (⋅) is also a Cox proicess with stochastic
intensity proportional to ∑∞

i= f (x − Xi), where the Xi are
the points of a homogeneous Poisson process.

�e most widely used model for an inhibitory pro-

cess is a Markov point process (Ripley and Kelly ).

A Markov point process can be de�ned by its likelihood

ratio with respect to a Poisson process with intensity

λ = . A useful sub-class of such processes is the pair-

wise interaction process, in which the likelihood ratio for

a realization X = {xi : i = , . . . ,n} is

ℓ(X ) = β
n∏
j≠i
h(∣∣xi − xj∣∣),

where ∣∣ ⋅ ∣∣ denotes distance, h(⋅) is an interaction function
and β >  determines the intensity of the process. A suf-
�cient condition for validity of the model is that h(⋅) is
inhibitory, meaning that  ≤ h(u) ≤  for all u.�e case
h(u) =  yields a homogeneous Poisson process.

Inference
Until relatively recently, likelihood-based inference was

considered intractable for most spatial point process

models. Instead, sensible ad hoc methods based on

functional summary statistics were used. �ese included

so-called nearest neighbor methods and moment-based

methods (Ripley ). Recent developments in Monte

Carlo methods of inference have made likelihood-based

inference a feasible, albeit computationally intensive, alter-

native (Møller and Waagepetersen ).

General accounts of statistical models andmethods for

spatial point pattern data include Diggle () and Ilian

et al. ().
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Introduction
Spatial statistics is concerned with modeling and analysis

of spatial data. By spatial data wemean datawhere, in addi-

tion to the (primary) phenomenon of interest the relative

spatial locations of observations are recorded, too, because

these may be important for the interpretation of data.�is

is of primary importance in earth-related sciences such as

geography, geology, hydrology, ecology and environmental

sciences, but also in other scienti�c disciplines concerned

with spatial variations and patterns such as astrophysics,

economics, agriculture, forestry, epidemiology and, at a

microscopic scale, medical and health research.

In contrast to non-spatial data analysis, which is con-

cerned with statistical modelling and analysis of data

which just happen to phenomena in space and time, spatial

statistics focuses on methods and techniques which con-

sider explicitly the importance of the locations, or the spa-

tial arrangement of the objects being analysed.�e basic

di�erence from classical statistics is that in spatial statistics

we are concerned with non-independence of observations.

In spatial problems, observations come from a spa-

tial random process Z = {Z(s) : s ∈ S}, indexed by a
spatial/spatiotemporal set S ⊂ Rd, with Z(s) taking val-
ues in some state space.�e positions of observation sites

s ∈ S are either �xed in advance or random. Typically,
S ⊂ R, the study of spatial dynamics adds a tempo-
ral dimension, i.e., S ⊂ R × (,∞). However, S could
also be one-dimensional (e.g., �eld trials along transect

lines) or a subset of R (oil and mineral prospection, D
imaging). In some �elds such as Bayesian data analysis

and simulation one even requires spaces S of dimension

d≥ , this pertains, in particular, to the design and analysis
of computer experiments with a moderate to large num-

ber of input variables. Comprehensive treatments of the

whole �eld of spatial statistics are given in Ripley (),

Cressie () and Gaetan and Guyon (). Statisti-

cal Methods for spatio-temporal systems are given in

Finkenstädt et al. ().

Basically, there are four classes of problems which

spatial statistics is concerned with: point pattern analy-

sis, geostatistical data analysis, areal/lattice data analysis

and spatial interaction analysis. �ese subproblems are

treated separately in a number of papers in this volume:

Mase (), Kazianka and Pilz (), Vere-Jones (),

Diggle () and Spöck and Pilz ().�erefore, in this

paper we limit ourselves to a brief overview over the areas

comprising spatial statistics.

For a good overview on so�ware for di�erent problem

areas of spatial data analysis we recommend the book by

Bivand et al. (), for the important issue of simulation

of spatial models we refer to Lantuéjoul () and Gaetan

and Guyon ().

Geostatistics
Here, S is a continuous subspace of Rd and the random
�eld is observed at n �xed sites {s, . . . , sn} ⊂ S. Typical
examples include rainfall data, data on soil, characteristics

(porosity, humidity etc.), oil and mineral exploration data,

airquality and groundwater data a.s.o. For d ≥  the ran-
domprocessZ = {Z(s) : s ∈ S} is usually termed a random
�eld.�e mathematical structure and the most important

properties of random �elds are described in Moklyachuk

().

�e concept of stationarity is key in the analysis of

spatial and/or temporal variation: roughly spoken, station-

arity means that the statistical properties. (e.g., mean and
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variance) of the variable of interest do not change over

the considered area. However, testing for stationarity is

not possible. For spatial prediction the performance of a

stationary and a nonstationary model could be compared

through assessment of the accuracy of predictions.

�e random �eld is characterised by its �nite dimen-

sional distributions P(Z(s) ≤ z, . . . , Z(sn) ≤ zn) for
all n ∈ N and sj ∈ S; j = , . . . ,n. If all these distri-

butions are Gaussian then Z is called a Gaussian ran-
dom �eld (GRF). A GRF is completely determined by its

expectation (trend function) m(s) = E(Z(s)) and covari-
ance function C(s, s) = Cov(Z(s),Z(s)). Contrary to
traditional statistics, in a geostatistical setting we usually

observe only one realization of Z at a �nite number of loca-

tions s, . . . , sn.�erefore, the distribution underlying the

random �eld cannot be inferred without imposing further

assumptions.�emost simple assumption is that of (strict)

stationarity, which means that the �nite dimensional dis-

tributions do not change when all positions are translated

by the same (lag) vector h, i.e., (Z(s), . . . ,Z(sn)) and
(Z(s + h), . . . ,Z(sn + h)) are identically distributed for
all n ∈ N and locations sj ∈ S; j = , . . . ,n. For a GRF
this implies that m(s) = const for all s ∈ S, and C(s, s)
= C(s − s) for all s, s ∈ S. For arbitrary RF’s, the invari-
ance of the �rst two moments is denoted as the property

of weak stationarity. In geostatistics it is common to use

the so-called semi-variogram γ(s, s) = . ∗ Var(Z(s +
h)−Z(s)) instead of the covariance function and to assume
intrinsic stationarity: m(s) = const and γ(s, s + h) =
γ(h) for all s,h ∈ S. If Z(⋅) is weakly stationary then
γ(h) = C() − C(h). Weak stationarity implies intrinsic
stationarity, the converse is not true.

For d = , however, intrinsic stationarity is equiva-
lent to weak stationarity of the �rst order di�erences of

the underlying random process, a well-known fact from

time series analysis. For an intrinsically stationary RF the

semi-variogram has the important property of conditional

negative de�niteness, i.e.,

Var(aZ(s) + . . . + anZ(sn)) = −
n

∑
i=
∑
j/=i
aiajγ(si − sj) ≥ 

for all n ∈ N and real numbers a, . . . , an such that∑ ai = .
�is is the reason why one usually employs parametric

models (e.g., spherical, exponential, Gaussian or Matérn

models) for �tting variogram functions to the data. More-

over, �tting is o�en done under the additional assump-

tion of isotropy: γ(h) = γ(∣h∣), ∣h∣ = length of h ∈ S.
For “classical” estimation methods for variogram param-

eters see Mase (), for Bayesian approaches we refer to

Banerjee et al. () and Kazianka and Pilz (). For

non-stationary variogrammodeling we refer to the review

provided by Sampson et al. () and Schabenberger and

Gotway ().

Now, let us step to predicting Z at an unobserved loca-

tion s ∈ S, based on the observations Z:= (Z(s), . . . ,Z
(sn))T , such that the mean squared error of prediction
(MSEP) E[Z(s) − Ẑ(s)] is minimized. For a GRF, the
optimal predictor is known to be the mean of the condi-

tional distribution of Z(s) given the data:

Ẑ(s) = E(Z(s)∣Z) = E(Z(s)) + cTK−(Z − E(Z)) ()

where the vector c has elements C(s − si); i = , . . . ,n;
and K is the covariance matrix of the observations. For

non-GaussianRF’s, the predictor () is the best linear unbi-
ased predictor (BLUP). Inserting the optimal estimators

for EZ(s) and E(Z) into  we get various forms of Krig-
ing predictors: assuming EZ(s) = m to be constant we get
ÊZ(s) = m̂ = (TK−Z)/(K−Z) and E(Z) = m̂, where
 denotes the n-vector of one’s, and this is known as the
ordinary Kriging predictor. For non-constantm, assuming

a linear regression setup for m(s), one arrives at the uni-
versal Kriging predictor. Clearly, for non-Gaussian data,

the best predictor w.r.t. MSEP is no longer linear in the

observations. Comprehensive accounts of “classical” linear

and nonlinear geostatistics are given in Chilés andDel�ner

() and Webster and Oliver ().

In a Bayesian setting, assuming a prior distribution for

the covariance parameters, one has to determine the pre-

dictive density of Z(s)∣Z via the posterior distribution of
the covariance parameters given Z, fromwhich an optimal
predictor and the associated uncertainty can be derived.

For non-Gaussian data, the framework of generalized lin-

ear models or the copula framework can be used to arrive

at optimal predictors (see Banerjee et al. (), Diggle and

Ribeiro () and Kazianka and Pilz ()).�is exten-

sion of the classical geostatisticalmethodology has become

known under the heading of model-based geostatistics.

Concerning so�ware for geostatistical analysis, we rec-

ommend the freely available R-packages “gstat,” “geoR,”

“geoRglm” and the functions contained in the R-library

“intamap.” For spatio-temporal analysis and prediction of

environmental processes we refer to Le and Zidek ()

where also so�ware is being described. For geostatistical

space-timemodels particular care is needed for combining

spatial and temporal variables (separability versus non-

separability), a thorough treatment of this issue is given in

Gneiting et al. (). A very exciting new development

has been opened by Rue et al. () who consider approx-

imate Bayesian inference in latent Gaussian models, using

an integrated nested Laplace approximation (INLA).�is
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approach o�ers computational advantages, the approxi-

mations are accurate and orders of magnitude faster than

MCMC algorithms, and its generality also allows the com-

putation of various predictive measures for doing model

comparisons.

Point Process Analysis and Random Sets
By a (spatial) point process (PP) or point pattern we mean

a random, locally �nite collectionZ = {s, s, . . .} of points
si ∈ S ⊂ Rd such that si /= sj for i /= j. Here, locally �nite
means that the number of points is �nite in each bounded

subset of S.�e process is said to bemarked if at each site si
we additionally record a (random) value, for example the

length of the material cracks, height or diameter of plants,

intensity of earthquakes a.s.o. For statistical analysis, the

process is observed in a windowW ⊂ S leading to a real-
ization z = {s, . . . , sn} with a random number n = n(z)
of points si ∈ S.�us, contrary to geostatistical data anal-
ysis, in point pattern analysis the set of observation sites

{s, . . . , sn} is random, along with the number of sites n.
7Point processes are important in a variety of appli-

cations, in ecology and forestry (spatial, spatiotempo-

ral distribution of plant/animal species), epidemiology

(location of sick individuals, spatiotemporal spread of

diseases), seismology (earthquake epicenters), materials

science (locations of cracks and porosities), biology and

medicine (centers of cells/tumours in histological sec-

tions), crime scene analysis (locations and intensities of

burglaries) etc.

�e probabilistic theory of PP’s is quite technical and

requires a good knowledge of measure theory, for a good

introductory account we refer to the review articles by

Møller and Waagepetersen (), Vere-Jones () and

Diggle ().

�e PP Z is characterized through the �nite-dimen-
sional distributions (N(B), . . . ,N(Bk)) for all k ∈ N and
bounded subsets B, . . . ,Bk inRd, where the random vari-
able N(Bi) counts the number of points in Bi.�e point
pattern is called stationary, i� its �nite-dimensional distri-

butions are invariant under translations, and isotropic i� all

these distributions are invariant under rotations.

One of the major problems is to �nd out whether a

given point pattern can be considered as completely ran-

dom, or if there is a tendency to clustering or to some

“regularity.” As the reference model for “no interaction

between points” or “complete spatial randomness (CSR)”

the Poisson Process (see7Poisson Processes) is chosen (cf.
Diggle ).

In general the mean structure of the count variables

is modelled by a non-negative intensity function λ(⋅)
such that µ(B) := ∫B λ(s)ds for all B in Rd. Here the

interpretation is that λ(s)ds is the probability that there
is precisely one point in the ball with center at s and

area/volume ds. Likewise, the second order moment mea-

sure µ(A × B) := E{N(A)N(B)} is modelled by a sec-
ond order product density λ such that µ(A × B) =
∫
A
∫
B

IA×B(u, v)λ(u, v)dudv. For a Poisson PP one then

has: µ(a × B) = µ(A)µ(B), λ(u, v) = λ(u)λ(v).
�e tendency of attraction or repulsion between points

can be characterized by the so-called pair correlation func-

tion g(u, v) := λ(u, v)/[λ(u)λ(v)]. If points appear
independently from each other then we have λ(u, v) =
λ(u)λ(v) and thus g(u, v) = . �us, there is attraction
between points ofZ at locations u and v i� g(u, v) >  and
repulsion i� g(u, v) < .

�e characterization of point patterns becomes rela-

tively easy in case of stationarity and additional isotropy.

�en λ(u) = λ = const, λ(u, v) = λ(∣u − v∣),
g(u, v) = g(∣u − v∣) and it su�ces to work with the so-
called K-function K(r) = (/λ)E {number of extra points
within distance r of a randomly chosen point}.�is takes

the form

K(r) = (νd/λ
)∫

r


u
d−

λ(u)du

where νd stands for the surface area of the unit sphere in

Rd. For the Poisson PP inR, for example, we have K(r) =
πr. We remark, however, that second order moments and

the related K function describe the dependence in point

patterns only partly, i.e., the visual appearance of two point

patterns may be di�erent even if their �rst and second

order moments are the same.�erefore, other features are

considered as well, in particular the empty space function

Fs and the nearest neighbour function Gs. �e former is

de�ned as Fs(r) = P(N(b(s, r)) > ), where b(s, r) is the
ball with radius r >  and centered at a �xed location s ∈ Rd

(not necessarily s ∈ Z). For a stationary PP the function Fs
does not depend on s.�e function Gs is the distribution

function of the distance of a given point s ∈ Z to its near-
est neighbour in Z , i.e., Gs(r) = P(N(b(s, r) > ∣s ∈ Z).
For the sake of comparison, the functions F and G are

compared to those of a homogeneous Poisson (constant

intensity) PP, for which F(r) =  − exp(−λ∣b(, r)∣) =
G(r), r > . Popular models of processes with dependence
between points include theCox PPs (less regular than Pois-

son PPs) and the Gibbs PPs (more regular than Poisson

PPs).�e Cox-process is de�ned by a two-stage model Z∣ζ
with random intensity µ(B) = ∫ ζ(s)ds where ζ is a latent

(non-observable) non-negative random �eld. For exam-

ple, Z describes the (random) locations of the plants and
ζ models the random environmental conditions at these
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locations.�erefore, a Cox process is o�en termed a “dou-

bly stochastic” Poisson PP (Poisson PPwith random inten-

sity). Assuming log ζ(⋅) to be a Gaussian RF leads to the
widely used log-Gaussian Cox process: log ζ(s) = g(s)Tβ +
ε(s), g(s) includes the covariates, β is a parameter vector

modeling (random) e�ects and ε(s) is a centered Gaus-
sian RF. Choosing ζ(s) = λ∑

i
k(s − si), where {s, s, . . .}

form a stationary Poisson PP and k(⋅) is a density on S cen-
tered at si ∈ Rd, we arrive at a so-called Neyman–Scott
process. �is way clustering tendencies can be modelled

interpreting the points si as cluster centers (positions of

parents) around which clusters with random numbers of

descendants (children) are formed. Various special cases

arise with particular choices of the density function k(⋅),
choosing e.g., a Gaussian density results in a�omas PP.

�e class of Cox models allows for many generalizations

of�omas and Neyman–Scott processes: di�erent spatial

con�guration of the parents PP, interdependence (compe-

tition) and nonidentical distribution for children (variable

fertility of parents) etc., all leading to aggregated PPswhich

are less regular than the Poisson PP.

One way to “regularize” a spatial point pattern is to

disallow close points. �is is appropriate for modeling

situations such as tree distributions in forests and cell dis-

tributions in cellular tissues.�esemodels are special cases

of Gibbs models which are conditionally speci�ed through

the probabilities that there is a point at location s given

the pattern on Rd ∖ {s}: λ(s∣z)ds := P(N(b(s,ds)) =
∣Z ∩ (Rd ∖ {s}) = z).�e conditional intensity λ(s∣z) is
usuallymodelled through some energy functionalU(s, z) :
λ(s∣z) = exp(−U(s, z)). For example, Strauss PP’s corre-
spond to the choice U(s, z) = exp ( − a − b∑

i
I(∣∣s − si∣∣ ≤

r)) including only the energy of the singletons and pair
potentials. For b >  we have repulsion and, conversely,
b <  implies attraction. We remark that the Strauss PPs
are examples of Markov PPs since the conditional density

λ(s, z) depends only on neighboring points of s belonging
to the pattern z.

For testing the CSR hypothesis, the parameters and

functions introduced before (λ, λ,K,F,G) have to be esti-
mated on the basis of an observation window W ⊂ Rd

(usually a (hyper-) rectangle). For testing this hypothe-

sis, estimates of the following two summary statistics are

in common use: L(r) = {K(r)/bd}/d and J(r) = ( −
G(r))/(−F(r)), bd denotes the volume of the unit sphere
in Rd. For a stationary PP, J > , J =  and J >  indi-
cate respectively that the PP is more, equally or less regular

than a Poisson PP. For estimation of G the well-known

7Kaplan–Meier-estimator can be used, for a comprehen-
sive discussion of estimators and its properties we refer to

Illian et al. (). Baddeley et al. () present a number

of interesting case studies in spatial point process model-

ing, in areas as diverse as human and animal epidemiology,

materials sciences, social sciences, biology and seismology.

For practical estimation and testing we recommend the

freely available R-package “spatstat.”

Random Sets
�ese are generalizations of point patterns in such a way

that Z de�nes an arbitrary random closed subset (RACS)
of Rd. Again, stationarity means that the distributions of
Z are invariant w.r.t. translations. In this case, random
closed sets can be characterized by some simple numbers

and functions, resp., e.g., by (a) the covariance function

C(h) = P({s ∈ Z} ∩ {s + h ∈ Z}) and (b) the contact
distributionHB(r) = −P(Z ∩ rB = /)/(−P(s ∈ Z)) for
some (test) set B ⊂ Rd, e.g., a ball or polygon.

�e most simple models for RACS are Boolean mod-

els,Z =
∞
∪
i=

{Zi + si}, where {s, s, . . .} is a Poisson PP with
constant intensity and Z,Z, . . . a sequence of i.i.d. RACS

which are independent of the PP. For instance, Zi can be

assumed to be spheres with random radii, or segments of

random length and direction. In applications, the random

sets are not of that simple type. However, more realistic

models can be built on the basis of Boolean models using

the opening and closure operations of mathematical mor-

phology, see e.g., Serra () and Lantuéjoul (); for

interesting applications in the materials sciences we refer

to Ohser and Mücklich ().

Lattice Data Analysis
In areal/lattice data analysis we observe the random �eld

Z = {Z(s) : s ∈ S} at the points of a �xed, discrete and
non-random set S ⊂ Rd, which is then o�en called a lattice.
�en it is su�cient to describe the joint probability func-

tion or density on S. Typical examples of such type of data

are population characteristics and infections disease num-

bers at district or country level, remote sensing imagery

and image texture data frommaterials sciences.�e lattice

may be regularly or irregularly spaced. In areal data anal-

ysis, the measurements are aggregated over spatial zones

(administrative units, land parcel sections) and the points

si are geographical regions (areas) represented as a network

with a given adjacency graph. In image analysis, the lattice

S is a regularly spaced set of pixels or voxels. Goals of the

analysis for these types of data include the quanti�cation of

spatial correlations, prediction, classi�cation and synthesis

of textures and image smoothing and reconstruction.

For areal data analysis usually autoregressive models

are employed, the spatial correlation structure is induced

by the particular model chosen, e.g., SAR or CAR models.

For a detailed account of this type of analysis we refer to
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Lloyd () and Anselin and Rey (), for an overview

and further references see Spöck and Pilz (). A par-

ticular area of lattice data analysis is image analysis where

d =  (or ), S = {, . . . ,N}d and N = k for some inte-
ger k > . For modelling, Markov random �elds are widely
used. We call Z = {Z(s) : s ∈ S} a Markov random
�eld if the conditional density of Z(s) given Z(y), y /= s,
only depends on realizations of Z(y) for which y belongs
to some neighbourhood N (s) of s. As a simple exam-
ple, consider a Gaussian Markov random �eld (GMRF).

�e neighborhood of s is usually de�ned via a symmet-

ric neighborhood relation s ∼ y which is non-re�exive,
i.e., s /∼ s. �en the joint density on S can be written as
p(z)∝ exp(−.(z − µ)TΣ−(z − µ)) and the conditional
density ofZ(s) givenZ(y), y /= s, is easily seen to be normal
with expectation

E(Z(s)∣Z(y) = zy, y ∈ S ∖ {s}) = µs −


ass
∑
y/=s
asy(zy − µy)

and variance /ass, where µy = E(Z(y)) and asy denotes
the element of the inverse of Σ = (Cov(Z(s),Z(y)))s,y∈S.
�erefore, a Gaussian RF is Markovian i� asy /=  →
y ∈ N (s), i.e., i� Σ− is sparse. For a detailed account of
GMRF we refer to Rue and Held (). According to the

Hammersley–Cli�ord theorem (see Besag ()), MRF

can be characterized as Gibbs RFs with local interaction

potentials.�e state space of a Gibbs random �eld can be

rather general:N for count variables, e.g., in epidemiology,
R+
for a positive-valuedRF, e.g., a GammaRF, a �nite set of

labels for categorical RFs, as e.g., in texture analysis, {, }
for binary RFs labeling presence or absence or alternative

con�gurations as in Ising models, Rd for GRF, or mixtures
of qualitative and quantitative states. Gibbs RFs are associ-

ated with families of conditional distributions pΦ de�ned

w.r.t. interaction potentials Φ = {ϕA,A ∈ S} where S is
a family of �nite subsets of S. In Bayesian image restora-

tion, with k >  qualitative states (e.g., colours, textures or
features) and �nite set S = {, , . . . , } one o�en uses
models of the form pΦ(z)∝ exp(−U(z)) whereU stands
for the energy associated with Φ. In the simplest case one

has only one interaction parameter β and U(z) = β ⋅ n(z),
where n(z) is the number of points of neighbouring sites
with the same state. Here β plays the role of a regulariza-

tion parameter: decreasing β leads to more regularity.�e

central goal in (Bayesian) image and signal processing is

then to reconstruct an object z based on a noisy observa-

tion y from the posterior pΦ(⋅∣y) of Z given y, e.g., on the
basis of the MAP = maximum (mode) of the a posteriori

distribution.

A good summary of the theory and applications of

image data analysis based on the theory of random �elds

is given in Li () and Winkler (); for description,

classi�cation and simulation of D-image data we refer to

Ohser and Schladitz ().
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Introduction
�e term spectral analysis surely for most of us is con-

nected with the experiment where a beam of sunlight is

sent through a prism and split into many components

of di�erent colors, the spectrum. What looks nice is the

starting point of a deeper understanding of nature, too.

�e idea of splitting into components was copied by

statisticians whenworking on time series. At �rst they pro-

ceeded like Kepler, who found his rules by �tting a model

to data gathered by Tycho de Brahe. Deterministic model-

ing is a standard procedure in time series analysis. Given an

economic time series xt , one tries to �t xt = Gt+Zt+St+Rt
where G stands for trend, Z is a cyclic component, S a

seasonal component, and R stands for the rest, the so-

called noise. Regression is the important tool to study these

models.�e book by Davis still is a good starter. Unfor-

tunately, this approach is not always as successful as with

Kepler, “too many suns,” Hotelling once complained.

Quite another approach is to interpret a time series

{xt}tєT as a realization of a stochastic process {X(t)}tєT .
From now on we assume T to be a countable set. �en

we might go in the direction of ARIMA-models – see, for

instance, the book by Box and Jenkins – or choose spectral

analysis as we will do here. So we are looking for a prism

to work with.

A stochastic process is based on a system Fn(u, . . . ,un;
t, . . . , tn) of distribution functions. For these func-
tions certain rules are valid, i.e., symmetric conditions

F(u,u; t, t) = F(u,u : t, t), or consistency con-
ditions such as F(u; t) = F(u,∞; t, t). Let E stand
for the expectation operator. �en the mean function of

the process is de�ned as M(t) = E[X(t)] and the (auto-
)covariance function as C(t, t) = E[X(t)X(t)]. A pro-
cess is stationary ifM(t) = m andC(t, s) = C(t−s) = C(τ)
for all t, sєT.

For such stationary processes the autocovariance func-

tion can be represented as C(τ) = ∫ eiτωdF(ω). �e
function F(ω) is called spectral distribution.Whenwe have
dF(ω) = f (ω)dω the function f (ω) is called spectral den-
sity. �e integration borders are −∞,∞ for continuous

index set T and π, π for countable T. As can be seen by

C() = ∫ dF(ω), the spectral distribution splits the vari-
ance into components. dF(ω) is the contribution to the
variance of the frequencies in the interval between ω and

ω+ dω. Such a stationary process can be written as X(t) =
∫ eitωdZ(ω). For ω ≠ ωj dZ(ωi), dZ(ωj) are orthogo-
nal random variables with E[dZ(ω)dZ(ω) = dF(ω). So
the process {X(t)}tєT is split into orthogonal components
eitωdZ(ω).
What can be gained by spectral analysis may be seen

by two simple examples.

Example  Firstly, take the process {X(t)} = {ξ cosωt+
η sinωt}where ξ and η are random variables with E[ξ] =
E[η] = , E[ξ] = E[η] = c, and E[ξη] = .�e object
is to get information about ω.�e covariance function of

this process is C(τ) = c cosωτ. In Fig.  the function C

and the corresponding spectral density, cπ{δ(ω − ω) +



Spectral Analysis S 

S

a cos(w0t)

t

t-space

−w0 w0

w -space

Spectral Analysis. Fig.  Covariance function (left) Spectral density (right)

δ(ω + ω)}, demonstrate how the latter provides a much
clearer picture of the structure of the process.

Example  Next let us take a stationary process {X(t)}tєT
with autocovariance function CX(τ) and spectral density
fX(ω). Y(t)tєT is a linear time invariant transformation of
{X(t)}tєT . If w(t) is the impulse function of the trans-
formation, we have Y(t) = ∫

∞
−∞ w(τ)X(t − τ)dτ. Doing

some mathematics, we get for the autocovariance func-

tion CY(τ) = ∫
∞
−∞∫

∞
−∞ w(τ)w(τ)CX(τ− τ − τ)dτdτ.

Turning to the spectral densities of the processes, we get

fY(ω) = ∣ϕ(ω)∣fX(ω), with ϕ(ω) = ∫
∞
−∞ w(τ)eiτωdτ, a

nice, simple multiplication of a spectral density with the

square of a Fourier transform.

From now on we assume that we deal with discrete

stationary processes. For these the covariance function

C(τ) = ∫
π

−π
eiτωf (ω)dω and the spectral density f (ω) =



π ∑
∞
τ=−∞ e

−iτωC(τ) are a pair of Fourier transforms that
are the base for further steps.

Estimation of the Spectral Density
In applications we usually don’t have the full ensemble

but only one member – a piece of a member – of the

sample space. To go on, we have to assume that the pro-

cess {X(t)}tєT is ergodic.�at is, limT→ 

T
∑Tt= X(t) =

E(X(t) (mean ergodic) and limT→ 

T
∑Tt= X(t+τ)X(t) =

E(X(t + τ)X(t) (covariance ergodic). In both cases, the
convergence is in quadratic mean. A simple su�cient con-

dition for mean ergodic is ∣C(τ)∣ < є, i.e., events far away

are not correlated –might be true inmany applications. For

covariance ergodic the same must be true for the process

Z(t) = X(t + τ)X(t).
To get an estimate for the spectral density there

are two approaches. Either one starts with an estimate

of the covariance function and take its Fourier trans-

form as an estimate for the spectral density. Or one

starts from the representation X(t) = ∫ eitωdZ(ω) and
E[dZ(ω)dZ(ω) = dF(ω). �e so-called periodogram
Pn(ω) = 

πn
∣∑nt= x(t)eitω ∣ combines these features.�is

approach is backed by the fast Fourier transform (FFT).

Cooley and Tukey found this famous algorithm.

In each case, applying spectral analysis to time series

of �nite length leads to a lot of problems. So we only have

estimates C(τ) for ∣τ∣ ≤ τ.�eory calls for an estimator

for all τ. A function L(τ) with L() = , L(τ) = L(−τ) for
∣τ∣ ≤ τ, and L(τ) =  elsewhere may be a solution. C̃(τ) =
L(τ)C(τ) is de�ned for all τ. Further problems emerge

immediately. How does one choose τ? Is this estimator

unbiased, consistent? What is a good L(τ)? And so on.
�eoretically, these questions are hard to solve. Simulation

is an aid in studying these problems.�e book by Jenkins

and Watts may be a good introduction to this approach.

Multivariate Spectral Analysis
�e simplest cases of multiple spectral analysis are two

stochastic processes, {X(t)}tєT and {Y(t)}tєT . �e base
of our analysis is the cross-variance function CXY(t , t) =
E[X(t)Y(t)] = CXY(t − t). For this function we
have the representation Cxy(τ) = ∫ eiτωdFXY(ω). From
Cxy(τ) = ∫ eiτωdFXY(ω) we get the complex cross-
spectral density fXY(ω) = k(ω) + iq(ω) k(ω) is called
co-spectrum and q(ω) quadrature spectrum. A num-
ber of functions are based on these two spectra, e.g.,

the amplitude A(ω) =
√

{k(ω}) + {q(ω)}, the phase
ϕ(ω) = arctan(q(ω)/k(ω)), and the coherence C(ω) =
A(ω)

fX(ω)fY(ω) . Plots of these functions are nice tools to study

the relation between {X(t)}tєT and {Y(t)}tєT .

An Application
Finally we will deal with an application of spectral meth-

ods.�is example is a very short version taken from the

book by Venables and Ripley p.  f.�e details are shown

in Figs.  and . Figure  depicts the time series of monthly

deaths from lung diseases in the UK –. Figure 

shows one estimate of the spectrum. All calculation were

done with R.�e function spectrum is based on FFT and

smoothing by running means.

�e interpretation of spectral functions and graphs cal-

culated in applications is not an easy task. �e book by

Granger – the late Nobel Prize winner – might be a good

starting place.
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Fans love statistics about sport – sets of numbers that

describe and summarise what is happening on the �eld.

With developments in computer technology, global posi-

tioning systems and the internet, the range and availability

of sports statistics is growing at a rapid rate. In tennis

majors, for example, an on-court statistician enters the

result of every rally, whether the �nal shot was a forehand

or backhand drive or volley, a winner or forced or unforced

error, and whether either or both players were at the net.

Cumulative results are immediately available to spectators,

the media, and the general population through the inter-

net. Only a few years ago, the number of kicks marks and

handballs each player obtained in anAustralian Rules foot-

ballmatchwas provided in printed tables two days a�er the

match. Now over  statistics are collected in real time and

immediately available to coaches and the general public.

�e science of statistics can be used to add value, to make

sense, to discern patterns, to separate random variation

from underlying trends in these sports data.

We are discussing here not just the collection and accu-

mulation of statistics, but statistical modeling. Collection

of raw statistics is one thing (how long is it since a batsman

made over  in an international match? how old was

Stanley Matthews when he played his last soccer game?)

and statistical modeling (how can statistics be used) by

analysts is another. If we are interested in the chance a

male player might break  in a golf tournament next year,

past statisticsmight tell us the percentage of all tournament

rounds in which this has occurred. But if we want to esti-

mate the chance TigerWoods will break  in the USmas-

ters next year, this is of little use.We need to do somemod-

eling. For example we might use past statistics to obtain

Tiger’s scores on each hole in previous masters, and by

sampling from these use simulation to get a useful estimate.

Cricket has the distinction of being the �rst sport

used for the illustration of statistics. In Primer in Statis-

tics, (Elderton and Elderton ) used individual scores

of batsmen to illustrate frequency distributions and ele-

mentary statistics. Some previous work on correlation and

consistency resulted in (Wood ) and (Elderton )

reading separate papers at the same meeting of the Royal

Statistical Society.�ese papers investigated the distribu-

tion of individual and pairs of batsmen scores, and have

some claim as the �rst full quantitative papers applying

statistics to sport.

�e literature now contains hundreds of papers detail-

ing applications of statistical modeling in virtually every

sport. Researchers in the area are not con�ned to Statisti-

cians. Other disciplines include Mathematics, Operational

research, Engineering, Economics and Sports Science.

Learned societies such as the American Statistical Associa-

tion, the AustralianMathematical Society and the Institute

of Mathematics and its Applications have sections of their

membership or conferences devoted to this area.�e range

of journals which publish articles on sport o�en makes it

di�cult to search for previous work in a particular topic.

Much early work in the area is covered in the two texts

(Machol et al. ) and (Ladany and Machol ). More

recently (Bennett ) gives an excellent overview, with

chapters on particular sports: American football, baseball,

basketball, cricket, soccer, golf, ice hockey, tennis, track

and �eld; and theme chapters on design of tournaments,

statistical data graphics, predicting outcomes and hierar-

chicalmodels. Later collections of papers include (Butenko

et al. ) and (Albert and Koning ).�ese provide

good examples of the issues currently being investigated by

researchers. We discuss here some of these issues.

As mentioned above, �tting known distributions to

sporting data was amongst the earliest work performed

in this area. If the performance data follow a known dis-

tribution, that tells you something about the underlying

behavior of the sportsman. If a batsman’s cricket scores fol-

low an exponential (or geometric) distribution, then he has

a constant hazard, or probability of dismissal, throughout
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his innings. If the number of successful shots a basketball

player makes in a given number of tries can be modeled by

the 7Binomial distribution, then he has a constant prob-
ability of success, and is not a�ected by previous success

or failure. If goals scored each match by a soccer team are

Poisson distributed, this implies their form is not variable

throughout the season, and they are not a�ected by early

success or failure in a match. Departures from known dis-

tributions can be used to investigate the existence of the

“hot hand” in basketball or baseball, or “momentum” in

tennis or soccer.

Predicting the outcomes of sporting contests is of great

interest to modelers and fans alike. Statistical modelers

are usually interested in not only predicting the winner,

but in estimating the chance of each participant win-

ning and likely scores or margins.�ese predictions have

become increasingly important with the introduction of

sports betting.�e estimated chances developed from the

statistical model can be compared with the bookmaker’s

odds, and ine�ciencies of betting markets investigated (or

exploited). If the probabilities of head to head encounters

can be estimated, then the chances of various outcomes of

whole tournaments or competitions can be estimated via

simulation.

A usual by-product of prediction is the rating of

individuals or teams. For example a simple model might

predict the winning margin between two teams as the dif-

ference in their ratings plus a home advantage. 7Least
squares, maximum likelihood or other methods are then

used to obtain the ratings and home advantage that give

the best �t to previous results. Chess has a rating system

based on exponential smoothing that is applicable to past

and present players frombeginners toworld champions. In

golf, much e�ort has gone into developing ratings of play-

ers (handicaps) that are fair to players of all standards from

all courses.

Home advantage, the degree to which a team performs

better at home than away, is present inmost sports. (Stefani

and Clarke ) show that in balanced competitions the

home side wins anywhere from % (baseball) to %

(international soccer) of the matches. In scoring terms 

goal in  in international soccer can be attributed to home

advantage, while in baseball the home advantage con-

tributes  run in . While home advantage can be quan-

ti�ed it is more di�cult to isolate its causes. Many papers

have looked at the e�ects of travel, crowd, ground famil-

iarity and referee bias without much consensus. Other

research has shown thatmodels assuming a di�erent home

advantage for di�erent teams or groups of teams provide

a better �t to the data than ones with a common home

advantage.

�ere are many di�erent scoring systems in sport, (for

example in racquet sports), and researchers are interested

in their operating characteristics. To what extent do the

scoring systems a�ect the probabilities of each player win-

ning, and the distribution of the number of rallies in the

match? What is the chance of winning from any score-

line? Generally the longer the match the more chance for

the better player. For example, a player who wins % of

the points at tennis, will win % of the games, % of

the sets and % of  set matches. But the few breaks of

serve in men’s tennis makes the scoring system relatively

ine�cient. �e better player may win a higher percent-

age of his serves than his opponent, but the set score still

reaches  all. Researchers have suggested alternative scor-

ing systems, such as - tennis, where the server still has

to win  points to win the game, but the receiver only has

to win  points.�ey have also looked at the importance

of points – the change in a player’s chance of winning the

game (or match) resulting by winning or losing the point.

(In tennis the most important point in a game is the ser-

vice break point).�e assertion that better players win the

important points can then be tested.

What o�en makes sport interesting is the choice of

alternative strategies. Should a baseball player try and steal

a base or not? Should a footballer try for a �eld goal or a

touchdown? Should a tennis player use a fast or slow serve?

Should an orienteer choose a short steep route or a longer

�atter one? When should the coach pull the goalie in ice-

hockey? Operational Researchers �nd this a fertile �eld

for study (Wright ), with techniques such as Dynamic

Programming and simulation used to determine optimal

strategies. (Norman ) gives one example of the use of

Dynamic Programming in each of  sports.

Sport is an important area for the application of sta-

tistical modeling. Sport is big business, and occupies an

important role in today’s society. By the use of a range of

modeling and analysis techniques Statisticians can assist

players, coaches, administrators and fans to better under-

stand and improve their performance and enjoyment.
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Spreadsheet is a computer program thatmanipulates tables

consisting of rows and columns of cells. It transforms a

computer screen into a ledger sheet or grid of coded rows

and columns simulating a paper worksheet.�e program

environment consists of one ormore huge electronicwork-

sheets (each worksheet can contain up to one million rows

by a few thousands columns) organized in the form of an

electronic workbook.

�e general features of such programs are powerful

computing and graphical capabilities, �exibility, excellent

report generating feature, easy-to-use capability, and com-

patibility with many other data analytical so�ware tools.

�ese features are responsible for the substantial popular-

ity and wide practical usage of the program.�us, spread-

sheet so�ware is being used in academic, government, and

business organizations for tasks that require summarizing,

reporting, data analysis, and business modeling.

�e spreadsheet concept became widely known in the

late s and early s due to the Dan Bricklin’s imple-

mentation of VisiCalc which is considered to be the �rst

electronic spreadsheet. It was the �rst spreadsheet program

that combined all essential features of modern spreadsheet

applications, such as: WYSIWYG (What You See Is What

You Get), interactive user interface, automatic recalcula-

tion, existence of status and formula lines, copy of cell

range with relative and absolute references, and formula

building by selecting referenced cells. Lotus –– was the

leading spreadsheet program in the period when DOS

(Disk Operating System) prevailed as an operating system.

Later on, Microso� Excel took the lead and became the

dominant spreadsheet program in the commercial elec-

tronic spreadsheet market.

�e basic building blocks of a spreadsheet program

are cells that represent the intersections of the rows and

columns in a table. Each individual cell in the spreadsheet

has a unique column and row identi�er that takes spe-

ci�c forms in di�erent spreadsheet programs. �us, the

top le�-hand cell in the worksheet may be designated with

symbols A, , or A. �e content of the cell may be a

value (numerical or textual data) or a formula. When the

formula is entered in a particular cell, it de�nes how the

content of that cell is calculated and updated depending

on the content of another cell (or combination of cells)

that is/are referenced to in the formula. References can

be relative (e.g., A1, or C1:C3), absolute (e.g., $B$1,
or $C$1:$C$3), mixed row-wise or column-wise abso-
lute/relative (e.g., $B1 is column-wise absolute and B$1 is
row-wise absolute), three-dimensional (e.g., Sheet!A), or

external (e.g., [Book]Sheet!A).�is well-de�ned struc-

ture of cell addresses enables a smooth data �ow regardless

whether data are stored in just one or several worksheets or

workbooks. In most implementations, a cell (or range of

cells) can be “named” enabling the user to refer to that cell

(or cell range) by its name rather than by grid reference.

Names must be unique within a spreadsheet, but when

using multiple sheets in a spreadsheet �le, an identically

named cell range on each sheet can be used if it is distin-

guished by adding the sheet name.Name usage is primarily

justi�ed by the need for creating and running macros that

repeat a command across many sheets.

What makes the spreadsheet program a powerful data

analytical tool is the wide range of integrated data pro-

cessing functions. Functions are organized into logically

distinct groups, such as: Arithmetic functions, Statistical

functions, Logical functions, Financial functions, Date and

Time functions, Text functions, Information, Mathemati-

cal function, etc. In general, each function is determined

by its name (written in uppercase by convention) and
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appropriate argument(s) which is/are placed in parenthe-

sis.�e arguments are a set of values, separated by semi-

colons, to which the function applies. �us, a function

called FUNCTION would be written as follows: FUNC-

TION (argument; argument; etc.).

Spreadsheet so�ware integrates a large number of

built-in statistical functionalities, but some caveats about

its statistical computations have been observed. A few

authors have criticized the use of spreadsheets for statis-

tical data processing and have presented some program

shortcomings, such as: no log �le or audit trail, inconsistent

behavior of computational dialogs, poor handling of miss-

ing values, low-level of accuracy of built-in spreadsheet

statistical calculations, and no sophisticated data coding

techniques for speci�c statistical calculations. In response

to such criticism directed against the statistical “incor-

rectness” and limitations of spreadsheet programs, many

e�orts have been made (both in the academic and com-

mercial community) to compensate for them.�us, many

statistics add-ins have appeared, granting robust statisti-

cal power to the spreadsheet program environment.�ese

add-ins are usually seamlessly integrated into a spread-

sheet program and cover the range of most commonly

used statistical procedures, such as: descriptive statistics,

7normality tests, group comparisons, correlation, regres-
sion analysis, forecast, etc. Some leading statistical so�ware

vendors have provided statistical modules and function-

alities for spreadsheet users. For example, the statistical

so�ware package PASWStatistics . o�ered the following

additional techniques and features for Excel spreadsheet

program (SPSS Advantage for Excel ): Recency, Fre-

quency, and Monetary value (RFM) analysis for direct

marketing research (where most pro�table customers are

identi�ed), classi�cation tree analysis for group identi�ca-

tion, unusual data detection, procedure for data prepara-

tion and transformation, and the option to save spread-

sheet data as a statistical so�ware data �le.

One of the crucial spreadsheet package features is its

capability to carry out “What-if ” data analysis. “What-if ”

analysis is the process of observing and learning how the

changes in some cells (as an input) a�ect the outcome of

formulas (as an output) in the other cells in the work-

sheet. For example, Microso� Excel provides the following

“what-if ” analytical tools: scenario manager, data tables,

and Goal Seek. Scenario manager and data tables operate

in a very simple way: they take sets of input values and

determine possible results. While a data table works only

with one or two variables, accepting many di�erent values

for those variables, a scenario manager can handle multi-

ple variables, but has a limitation of accommodating only

up to  values.�ese tools are appropriate for running the

sensitivity analysis, which determines how a spreadsheet’s

output varies in response to changes to the input values.

Contrary to the functioning of scenario manager and data

tables, Goal Seek allows the user to compute a value for a

spreadsheet input that makes the value of a given formula

match a speci�ed goal.

In the era of the Internet, networked computing, and

web applications, online spreadsheet programs also came

about. An online spreadsheet is a spreadsheet document

edited through a web-based application that allows multi-

ple users to have access, to edit and to share it online (mul-

tiple users can work with a spreadsheet, view changes in

real time, and discuss changes). Equippedwith a rich Inter-

net application user interface, the best web-based online

spreadsheets have many of the features seen in desktop

spreadsheet applications and some of them have strong

multiuser collaboration features. Also, there are spread-

sheet programs that o�er real time updates from remote

sources. �is feature allows updating of a cell’s content

when its value is derived from an external source - such

as a cell in another “remote” spreadsheet. For shared,

web-based spreadsheets, this results in the “immediate”

updating of the content of cells that have been altered by

another user and, also, in the updating of all dependent

cells.
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A well-known weakness of regression modeling based on

observational data is that the observed association between
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two variables may be because both are related to a third

variable that has been omitted from the regression model.

�is phenomenon is commonly referred to as “spurious

correlation.”�e term spurious correlation dates back to

at least Pearson ().

Neyman (, pp. –) provides an example based

on �ctitious data which dramatically illustrates spurious

correlation. According to Kronmal (, p. ), a �c-

titious friend of Neyman was interested in empirically

examining the theory that storks bring babies and col-

lected data on the number of women, babies born and

storks in each of  counties.�is �ctitious data set was

reported in Kronmal (, p. ) and it can be found

on the web page associated with Sheather (), namely,

http://www.stat.tamu.edu/~sheather/book.

Figure  shows scatter plots of all three variables from

the stork data set along with the least squares �ts. Ignoring

the data on the number of women and �tting the following

straight-line regression model produces the output shown

below.

Babies = β + βStorks + e ()

�e regression output for model () shows that there

is very strong evidence of a positive linear association

between the number of storks and the number of babies

born (p-value < .). However, to date we have ignored
the data available on the other potential predictor variable,

namely, the number of women.

Regression output for model ()

Coefficients

Estimate Std. Error t value Pr(> ∣t∣)

(Intercept) . . . .

Storks . . . .e- ***

Residual standard error: . on  degrees of freedom

Multiple R-Squared: ., Adjusted R-squared: .

Next we consider the other potential predictor vari-

able, namely, the number of women.�us, we consider the

following regression model:

Babies = β + βStorks + βWomen + e ()

Given below is the output from R for a regression model

(). Notice that the estimated regression coe�cient for the

number of storks is zero to many decimal places. �us,

correlation between the number of babies and the num-

ber of storks calculated from () is said to be spurious as

it is due to both variables being associated with the num-

ber of women. In other words, a predictor (the number of

women) exists which is related to both the other predictor

(the number of storks) and the outcome variable (the num-

ber of babies), and which accounts for all of the observed

association between the latter two variables.�e number

of women predictor variable is commonly called either an

omitted variable or a confounding covariate.

Regression output for model ()

Coefficients

Estimate Std. Error t value Pr(> ∣t∣)

(Intercept) .e
+

.e
+

. .e
−***

Women .e
+

.e
−

. .e
−***

Storks −.e
−

.e
−

−.e
−



Residual standard error: . on  degrees of freedom

Multiple R-Squared: ., Adjusted R-squared: .

We next brie�y present some mathematics wish

quanti�es the e�ect of spurious correlation due to omit-

ted variables. We shall consider the situation in which an

important predictor is omitted from a regression model.

We shall denote the omitted predictor variable by ν and

the predictor variable included in the one-predictor regres-

sion model by x. In the �ctitious stork data x corresponds

to the number of storks and ν corresponds to the number

of women.

To make things as straightforward as possible we shall

consider the situation in which Y is related to two predic-

tors x and ν as follows:

Y = β + βx + βν + eY⋅x,ν ()

Similarly, suppose that ν is related to x as follows:

ν = α + αx + eν⋅x ()

Substituting () into () we will be able to discover what

happens if omit ν from the regression model.�e result is

as follows:

Y = (β + βα) + (β + βα)x + (eY⋅x,ν + βeν⋅x) ()

Notice that the regression coe�cient of x in () is the sum

of two terms, namely, β + βα.
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We next consider two distinct cases:

. α =  and/or β = :�en the omitted variable has no
e�ect on the regression model, which includes just x as

a predictor.

. α ≠  and β ≠ :�en the omitted variable has an
e�ect on the regression model, which includes just x

as a predictor. For example, Y and x can be strongly

linearly associated (i.e., highly correlated) even when

β = . (�is is exactly the situation in the �ctitious
stork data.) Alternatively, Y and x can be strongly

negatively associated even when β > .

Spurious correlation due to omitted variables is most

problematic in observational studies. We next look at a

real example, which exempli�es the issues.�e example is

based on a series of papers (Cochrane et al. ; Hinds

; Jayachandran and Jarvis ) that model the rela-

tionship between the prevalence of doctors and the infant

mortality rate. �e controversy was the subject of a 

Lancet editorial entitled “�e anomaly that wouldn’t go

away.” In the words of one of the authors of the original

paper, Selwyn St. Leger ():

7 When Archie Cochrane, Fred Moore and I conceived of
trying to relate mortality in developed countries to mea-

sures of health service provision little did we imagine that
it would set a hare running  years into the future. . . The
hare was not that a statistical association between health

service provision and mortality was absent. Rather it was

the marked positive correlation between the prevalence
of doctors and infant mortality. Whatever way we looked

at our data we could not make that association disappear.
Moreover, we could identify no plausible mechanism that

would give rise to this association.

Kronmal (, p. ) reports that Sankrithi et al.

() found a signi�cant negative association (p< .)
between infant mortality rate and the prevalence of doc-

tors a�er adjusting for population size.�us, this spurious

correlation was due to an omitted variable. In summary,

the possibility of spurious correlation due to omitted vari-

ables should be considered when the temptation arises

to over interpret the results of any regression analysis

based on observational data. Stigler () advises that

we “discipline this predisposition (to accept the results of

observational studies) by a heavy dose of skepticism.”
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�e St. Petersburg “Paradox” concerns a betting situa-

tion in which a gambler’s fortune will be increased by

$
n
if the �rst tail appears on the nth toss a fair coin.

Nicholas Bernoulli introduced this problem in  as a

challenge to the then prevailing view that the fair price

of a wager (the price at which one should be equally

happy to buy or sell it) is equal to its expected monetary

payo�. While Bernoulli’s wager has an in�nite expected

payo�, any reasonable person will sell it for $. By 

Gabriel Cramer had recognized that the prevailing view

goes wrong because it assumes that people value money

linearly. As he wrote, “mathematicians evaluate money in

proportion to its quantity while, in practice, people with

common sense evaluate money in proportion to the (prac-

tical value) they can obtain from it” (Bernoulli , p. ).

Since an extra increment of money buys less happiness for

a prince than a pauper, Cramer observed, the St. Petersburg

wager can have a �nite “practical value” provided that

the worth of an extra dollar falls o� rapidly enough as

a person’s fortune grows. In modern terms, Cramer had

understood that money has declining marginal utility and

that the St. Petersburg wager can have a �nite expected

utility if the marginal decrease in utility is su�ciently

steep. He noted, for example, that a utility function of

the form u($x) = x/ produces an expected utility of

∑
n

(/)
n

n/ ≈ . for Bernoulli’s wager, which is

equivalent to a fair price of $..

Cramer never published, and it was le� to Daniel

Bernoulli to report Cramer’s contributions and to write the

de�nitive treatment () of his cousin Nicholas’s prob-

lem in the St. Petersburg Academy Proceedings of , from

which the Paradox derives its name. Daniel, who hit upon

the declining utility of money independently of Cramer,

went further by advocating the general principle that ratio-

nal agents should value wagers according to their expected

utility. He also argued that a person’s marginal utility for

an extra sum of money should be both inversely propor-

tional to the person’s fortune and directly proportional to

the size of the sum.�is means that the utility of $x is a

function of the form u($x) = k ⋅ ln(x). When evaluated
using such a utility function, the St. Petersburg wager has

a �nite expected utility of k ⋅ ln().
Bernoulli was also explicit that, as a general matter,

the value of any gamble is its expected utility, and not its

expected payo�. Speci�cally, he maintained that if the util-

ity function u(x)measures the “practical value” of having
fortune $x, then the value of any wager X is E(u(X)) =
∫



P(X = x) ⋅ u(x)dx and its fair price is that sum $f such

that u( f ) = E(u(X)).�ough this was perhaps Bernoulli’s
deepest insight, its implications were not fully appreciated

until the early s when the work of Savage () and

vonNeumann andMorgenstern () moved the hypoth-

esis of expected utility maximization to the very center of

both microeconomics and 7Bayesian statistics.
Until that time, Bernoulli was better known among

economists and statisticians for postulating thatmoney has

decliningmarginal utility and for solving the St. Petersburg



 S Standard Deviation

Paradox. �e thesis that money has declining marginal

utility has been immensely in�uential since it serves as

the basis for the standard theory of risk aversion, which

explains a wide variety of economic phenomena. In eco-

nomic parlance, a risk averse agent prefers a straight pay-

ment of a gamble’s expected payo� to the gamble itself.

Economists seek to explain risk aversion by postulating

concave utility functions for money, with greater concav-

ity signaling more aversion. If u(x) is concave for a ≤
x ≤ b, and if a wager X’s payouts are con�ned to [a, b],
then it is automatic that E(u(X)) ≥ u(E(X)). Moreover,
if v is a concave transformation of u, the absolute risk

aversion associated with v exceeds that associated with u,

where absolute risk aversion is measured by the Arrow

()–Pratt () coe�cient v′′(x)/v′(x). Agents with
Bernoulli’s logarithmic utility are everywhere risk averse,

and their absolute level of risk aversion decreases with

increases in x since u′′(x)/u′(x) = /x.
Interestingly, the Cramer/Bernoulli solution to the

St. Petersburg Paradox failed the test of time. As Karl

Menger () �rst recognized (Basset ), if money has

unbounded utility then one can always construct a “Super

St. Petersburg Paradox.” For example, using u($x) = ln(x),
a wager that pays e, e, e, . . . if a tail appears �rst on

the st, nd, rd,. . . toss will have in�nite expected utility.

One can avoid this either by insisting that realistic util-

ity functions are bounded or by restricting the allowable

gambles so that events of high utility are always assigned

such low probabilities that gambles with in�nite expected

utilities never arise. On either view, the St. Petersburg Para-

dox ceases to be a problem since there is no chance that

anyone will ever face it. Most standard treatments, e.g.,

(Ingersoll ), endorse bounded utility functions on the

grounds that arbitrarily large payo�s are impossible in a

�nite economy. Others, who want to leave open the theo-

retical possibility of unbounded utility, require all realiz-

able wagers to be limits of wagers with uniformly bounded

support, where limits are taken in the weak topology. For

a well-developed approach of this sort see (Kreps ,

pp. –).
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Introduction
Standard deviation is a measure of variability or disper-

sion.�e term Standard deviation was �rst used in writ-

ing by Karl Pearson in . �is was a replacement for

earlier alternative names for the same idea: for example,

“mean error” (Gauss), “mean square error,” and “error of

mean square” (Airy) have all been used to denote standard

deviation. Standard deviation is the most useful and most

frequently used measure of dispersion. It is expressed in

the same units as the data. Standard deviation is a number

between  and∞. A large standard deviation indicates that
observations/data points are far from themean and a small

standard deviation indicates that they are clustered closely

around the mean.

Definition
If X is a random variable with mean value µ = E(x), the
standard deviation of X is de�ned by

σ =
√
E(X − µ). ()
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�at is, the standard deviation σ is the square root of

the average value of (X − µ).�e standard deviation of a
continuous real-valued randomvariableXwith probability

density function f (x) is

σ =
√
∫ (x − µ)f (x)dx, ()

where µ = ∫ x f (x)dx, and the integrals are the de�nite
integrals taken over the range of X. If the variable X is dis-

crete with probability function f (x), the integral signs are
replaced by summation signs.

In the case where X takes random values from a �nite

data set x, x,⋯, xN , the standard deviation is given by

σ =

¿
ÁÁÀ 

N

N

∑
i=

(xi − µ), ()

where µ is the mean of X.

Estimation
For estimating the standard deviation from sample obser-

vations, µ in Eq.  is to be replaced by the sample mean

x given by x =
n

∑
i=

xi/n, and then it is denoted by sn.

�is sn is the maximum likelihood estimate of σ when the

population is normally distributed.

For estimating the standard deviation from a small

sample, the sample standard deviation, denoted by s, can

be computed by

s =

¿
ÁÁÀ 

n − 

n

∑
i=

(xi − x), ()

where {x, x,⋯, xn} is the sample, and x is the sample
mean.�is correction (use of n −  instead of n), known
as Bessel’s correction, makes s an unbiased estimator for

the variance σ .

It can be shown that σ̂ = IQR/., where IQR is the
interquartile range of the sample, is a consistent estimate of

σ .�e asymptotic relative e�ciency of this estimator with

respect to sample standard deviation is .. It is, therefore,

better to use sample standard deviation for normal data,

while σ̂ can be more e�cient when the distribution of data

is with thicker tail

. Standard deviation is independent of

change of origin but not of scale.

Interpretation and Application
Standard deviation is the most useful and frequently used

measure of dispersion. Standard deviation is used both as

a separate entity and as a part of other analyses, such as

computing con�dence intervals and in hypotheses testing.

Standard deviation is zero if all the elements of a popula-

tion or data set are identical. It becomes larger if the data

tend to spread over a larger range of values.

In science, researchers use standard deviation of exper-

imental data for testing statistical signi�cance. σ and σ̂ are

used inmaking certain tests of statistical signi�cance. Stan-

dard deviation of a group of repeated measurements gives

the precision of those measurements. In �nance, it is used

as a measure of risk on an investment. Standard deviation

can be used to examine if a professional is consistent in his

work. Similarly, standard deviation of scores (runs) made

by a cricket player in a season tells about the consistency

in his performance.

Standard deviation of an estimate, called the Standard

error, is used to have an idea of the precision of that

estimate.

7Chebyshev’s inequality, (which enables to �nd prob-
ability without knowing probability function of a random

variable), throws light on the connection between stan-

dard deviation and dispersion. For all distributions for

which standard distribution is de�ned, it states that at least

( − 

k
) %of the values arewithin k standard deviation

from the mean.
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Introduction
Essential to the e�cacy of performance of drug deliv-

ery systems is the ability of the drug to di�use from the

said delivery systems and dissolve within the biological

medium. Following this, the drug may di�use through the

biological media and subsequently di�use across the atten-

dant biological membranes, thereby gaining entry into the

systemic circulation. In certain systems, the rate at which

the drug dissolves within the biological �uid is the slowest

and hence the rate-limiting step whereas in other scenarios

the di�usion of the drug across the biological membrane

may present the greatest challenge. In light of the impor-

tance of drug release, it is essential to ensure that the

statistical analysis of the data from such experiments is

successfully performed to enable rational conclusions to be

drawn.

�e conductance and design of drug release experi-

ments is relatively straightforward and is de�ned within

the scienti�c literature and within Pharmacopoeial mono-

graphs, e.g., the British Pharmacopoeia, the United States

Pharmacopoeia. However, there is a relative paucity of

information concerning methods that may be used to

statistically quantify the outcomes of these experiments.

Experimentally the analysis of drug release is typically

performed by immersion of the dosage form within a

de�ned volume of �uid designed to mimic a particular

biological matrix, e.g., simulated gastric �uid, simulated

intestinal �uid. �e volume of �uid is chosen to ensure

that the subsequent dissolution is typically not a�ected

by the concentration of dissolved drug within the �uid.

�erea�er, at de�ned time intervals, a sample of the sur-

rounding �uid is removed and the mass of drug quanti�ed

using an appropriate analytical method, e.g., ultraviolet

spectroscopy, �uorescence spectroscopy. A�er this analy-

sis, there are two major challenges to the pharmaceutical

scientist to ensure that the interpretation of the data is

satisfactorily performed, namely:

() Selection of the appropriate mathematical model to

de�ne release.

() Use of statistical methods to examine formulation

e�ects or release �uid e�ects on drug release.

�e intention of this paper is to de�ne appropriate sta-

tistical methods to address the above issues and thereby

to de�ne a protocol for the analysis of data that has been

derived from drug release experiments.

Drug Release from Pharmaceutical
Systems
Since the �rst publication of papers on the modelling of

drug release for drug delivery systems (see Baker ,

Chien ) there have been several papers that have

applied mathematical concepts to understand the mecha-

nism of drug release from such systems. For the purpose of

this article, these methods may be summarised into three

categories de�ned according to the mechanism of drug

release, as follows:

(a) Controlled (Fickian) release from monolithic devices
In this method the release of a homogeneously dispersed

drug from the delivery system is controlled by conven-

tional di�usion (as initially described by Adolf Fick).

Mathematically, Fickian di�usion of a drug from a slab

geometry may be de�ned as follows:

Mt

M∞
=  −

∞
∑
n=

 exp [−D(n + )πt/l]
(n + )π

. ()

At early time approximations ( ≤ Mt

M∞

≤ .) , the fol-
lowing approximation may be made:

Mt

M∞
= ( Dt

πl
)
.

, ()

where: D is the di�usion coe�cient of the drug

t is time

l is the thickness of the slab geometry

M is the mass of drug released.

Accordingly it may be observed that the fraction of drug

release is proportional to the square root of time.

(b) Reservoir devices

In these systems, drug di�usion from the device is con-

trolled by the presence of a membrane. Mathematically,

drug di�usion from the core of the device is de�ned by the

following equations:

dMt

dt
= DAKCs

l
for a slab geometry ()

dMt

dt
= πhDKCs

ln( r
r
)

for a cylinder geometry ()

dMt

dt
= πhDKCsrr

r − r
for a sphere geometry ()
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where: D is the di�usion coe�cient

l is the thickness of the slab geometry

Mt is the mass of drug released at time t

h is the length of the cylinder

r and r are the outside and inside radii of the

cylinder/sphere

A is the area of the device

K is the partition coe�cient of the drug between

the core and membrane

Under the above circumstances it may be observed that the

mass of drug released is directly proportional to time.

More recently, Peppas () described the use of a

generic equation to model and characterise drug release

from pharmaceutical platforms, as follows:

Mt

M∞
= ktn ()

where:

k is the release constant
Mt

M∞

is the fractional drug release

n is the release exponent.

In this approach, the equation encompasses the previ-

ous mathematical model, the value of the release expo-

nent being used to de�ne whether the mechanism of drug

release from slab systems is:

(a) Fickian (n = .)
(b) Reservoir controlled (n = )
(c) Anomalous (. < n < )

Defining the Statistical Problem
Whilst themathematical approaches described above seem

quite straightforward, there is an ongoing issue with the

application of these models within a statistical framework.

�ere are several issues, which may be de�ned as follows:

() Use of the incorrect mathematical model

�e choice of the correct mathematical model should

be performed following consideration of the design of

the dosage form and also the experimental conditions.

In many situations, the limitations of the models are

overlooked to render the mathematical analysis more

straightforward. For example, in Fickian di�usion con-

trolled systems, the mathematical model may only be

used whenever there is no swelling of the pharmaceutical

device. Furthermore, as highlighted in one of the examples

above, the geometry of the device will a�ect the choice of

equation. However, whilst the above concerns may seem

obvious to those experienced in the pharmaceutical sci-

ences, one common concern regards the modelling pro-

cess. Typically the Peppas model is used to model release

data however, in the early stages the model may yield an

exponent of unity which may not be a true re�ection of

the release kinetics of the system as both di�usion con-

trolled release and anomalous release will also yield similar

exponents over this period of testing.

() Choice of Statistical Tests

Having acquired drug di�usion/dissolution data, the

next challenge to the pharmaceutical scientist concerns the

choice of the correct statistical method. One test that is

recommended by the FDA is the f test, which is used to

compare the dissolution of two products, typically a test

product (e.g., a generic product) and a reference prod-

uct.�e f value is calculated using the following equation

(Bolton and Bon ):

f =  log([ +


N
]∑(Rt − Tt) × ), ()

where: Rt and Tt are the % dissolution of the reference and

test product at time t.

In this test an f value > illustrates similarity of dis-
solution pro�les. However, it should be noted that this

test has several limitations; most notably individual dif-

ferences at early time points may render the dissolution

of two formulations di�erent whenever the overall pro-

�les are similar. �e f test has been principally used in

the pharmaceutical industry to compare the dissolution of

two dosage forms however; it is not commonly usedwithin

pharmaceutical research due to its relative in�exibility.�e

questionmay then be asked, “How are the drug release pro-

�les of two, or more than two dosage forms compared?”

Examples of the strategies that may be used are provided

below.

(a) Comparison of the release rates of the di�erent

formulations

Mathematically the release of a drug from a dosage

form is frequently described using the release rate, i.e., the

slope of the plot of cumulative drug release against time
n
.

To use this method it must initially be correctly proven

that the mechanisms of drug release from the di�erent

formulations are similar, a point o�en overlooked within

the scienti�c literature. In light of the potential similari-

ties of the kinetics of drug release for di�usion controlled,

anomalous and zero order systems at early time points, it is

essential to statistically establish similarity.�erefore, drug

release should be allowed to progress to ensure that up to

% release has occurred. To establish similarity of release

mechanisms, it is appropriate to model drug release using

the Peppas model and to then compare the release expo-

nent values. For this purpose the Peppas model is trans-

formed logarithmically, the release exponent (n) being the
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resultant slope of the line following linear regression.

ln
Mt

M∞
= ln k + n ln t. ()

�e underlying prerequisite of this approach is the require-

ment for linearity. Typically linearity should be proven

using both an7Analysis of Variance and reference to Pear-
son’s correlation coe�cient (this should be greater than

. [Jones ]). To facilitate meaningful statistical anal-

ysis of the data, it is suggested that approximately six repli-

cate measurements should be performed as this increase

the likelihood of the use of parametric tests for subsequent

comparisons of the release exponents. Following the acqui-

sition of this information the following points should be

considered:

● To establish the release mechanism of the drugs from

the pharmaceutical systems, the calculated release

exponent should be statistically compared to . and

also to ..�is is typically performed using a one sam-

ple t test. Retaining of the null hypothesis in these

tests con�rms that the release is either zero-order or

di�usion controlled. Rejection of the null hypothesis

veri�es that the release mechanism is anomalous, i.e.,

. < n < ..�e reader should note that the values of
n representative of di�usion controlled and zero-order

release are dependent on the geometry of the system.

For a cylindrical system the release exponents are .

and . for Fickian controlled and zero-order systems,

respectively whereas for spherical systems these values

become . and ..

● Assuming that the release mechanism of all formu-

lations under examination is similar, it is therefore

appropriate to statistically compare the drug release

kinetics from the various formulations.�erefore, for

reservoir systems (in which the mechanism of release

is zero-order), the plot of cumulative drug release

against time is linear whereas in Fickian di�usion,

the plot of cumulative drug release against
√
time is

linear. Using linear regression analysis (and remem-

bering not to include the point , in the analysis),

the slope of the plot may be statistically determined

for each individual replicate, which for di�usion con-

trolled release and reservoir (zero-order) controlled

release have the units of (concentration)(time)
−.
and

(concentration)(time)
−
. Replication of these analyses

(e.g., n = ) enables calculation of the mean ± stan-
dard deviation or the median and ranges of the rates

of release. Finally comparison of the rates of release

may be easily performed using either the Analysis of

Variance or the Kruskal-Wallis test if more than two

samples/formulations require to be compared or, alter-

natively, the unpaired t test or the Mann Whitney U

test, if the number of formulations under comparison

is two. �e choice of parametric or non-parametric

tests to analyse the data is performed according to con-

ventional statistical theory, the former tests being used

if the populations from which the data were sampled

were normally distributed (commonly tested using,

e.g., the 7Kolmogorov-Smirnov test or the Shapiro-
Wilk test) and if the variances of the populations

from which the data were samples were statistically

similar (commonly tested using e.g., Leveine’s test or

7Bartlett’s test). It should be noted that this approach
is employed if the release mechanisms of di�erent for-

mulations are statistically similar, independent of the

mechanism of drug release. Accordingly, the release

exponent of di�erent formulations may be identical

within the range of . < n < ..

(b) Comparing drug release from pharmaceutical systems

that exhibit di�erent release mechanisms

In the above scenarios, the release rate of the drug from

the pharmaceutical platform was obtained from linear

regression of the associated cumulative drug release plot,

i.e., cumulative drug release against time for the zero-order

system and cumulative drug release against the square root

of time for di�usion control systems.�e above approach

is predicated on the identical mechanisms of drug release;

however, this requirement does raise a statistical dilemma.

Consequently if the release mechanisms (and hence mea-

sured units) are di�erent, therefore it is impossible to gen-

erate a single parameter that may be used as the basis for

comparisons of the various formulations.

Under these conditions there are two approaches that

may be employed to generate meaningful comparisons of

drug release from di�erent formulations.

() Analysis of the data sets using a repeated measures

Analysis of Variance

�is approach uses a repeated measures experimental

design to compare drug release from di�erent formula-

tions. In this the repeated measure is time (which should

be identical for each formulation) and the factor is for-

mulation type. Individual di�erences between the various

formulations may then be identi�ed using an appropriate

post hoc test. It is essential to ensure that the experimental

design does not become overly complicated and that the

demands of the ANOVA (with respect to homogeneity of

population variances and the use of normally-distributed

populations) hold.
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() Analysis of data at single time points

�e main requirements for the use of the repeated

measures Analysis of Variance are, �rstly that the require-

ments for the use of this test are met and secondly, that the

times at which the data were collected (sampled) are iden-

tical for each formulation. In practice these problems are

straightforward to overcome at the experimental design

stage however, theremay be issues concerning the ability to

perform the required number of replicates (typically ≥) to
allow a parametric test is suitable to use for the data anal-

ysis. For example, experiments in which the release is rel-

atively rapid (< h) may be easier to perform with many
replicates whereas the converse is true for experiments in

which the release is protracted. In such circumstances (e.g.,

whenever there are few replicates, typically n ≤ ), one
method that may be employed to compare the drug release

pro�les of di�erent formulation involves the comparison

of the formulations at each sampling point using a multi-

ple hypothesis test, e.g., the Kruskal-Wallis test. In a similar

fashion, individual di�erences between formulations may

be identi�ed by the application of an appropriate post hoc

test, e.g., Dunn’s test, Nemenyi’s test.

In an alternative approach, typically encountered

whenever the sampling periods di�er, comparison of the

drug release kinetics of candidate formulationsmay be per-

formed by ascertaining the time required for a de�ned

fraction of the initial drug loading to be released. A regres-

sion of the release pro�le (using the Peppas model) is per-

formed and, using the output from this model, the times

required for each formulation to release a de�ned fraction

is obtained and statistically compared using the appropri-

ate statistical test (Jones et al. ; Jones et al. ).�e

choice if test to perform the analysis is important and the

reader should be reminded that the use of parametric sta-

tistical tests (the unpaired t test and the ANOVA) should

be validated.

Conclusions
Analysing release data is an essential component in the

development and assessment of the performance of phar-

maceutical systems. In spite of this, suitable methods to

analyse release data are not clearly de�ned. In this mono-

graph strategies for the statistical comparisons of release

data are de�ned.
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Statistical Analysis of
Longitudinal and Correlated Data

David Todem

Michigan State University, East Lansing, MI, USA

Introduction
Correlated data are typically generated from studies where

the outcomes under investigation are collected on clus-

tered units. Speci�c examples include; () longitudinal data

where outcomes are collected on the same experimen-

tal unit (for instance, the same person) at two or more

di�erent points in time; and () studies where outcomes
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are recorded at one single point in time on clustered

units. Such studies have one major attraction, the abil-

ity to control for unobserved variables in making infer-

ences. Sampled units serve as controls for other units in

the same cluster. As an example, in a longitudinal study,

each subject serves as his or her own control in the study

of change across time. �erefore, these studies allow the

researcher to eliminate a number of competing explana-

tions for observed e�ects. �e determination of causal

ordering in making solid inferences contitutes another

attraction for longitudinal studies.

Despite these advantages, statistical analysis of cor-

related data raises a number of challenging issues. It is

well known, for example, that the multiplicity of outcomes

recorded over time on the same unit necessitates the use

of methods for correlated data. �is entry reviews some

of the common statistical techniques to analyze such data.

A focus is on longitudinal data as statistical models for

clustered data are typically simple versions of techniques

for longitudinal data. In longitudinal data analysis, the

response y(t) is a time-varying variable and the covariate

can be a baseline vector x, a time-varying covariate vec-

tor x(t), or a combination of both. A key issue for such

data is to relate the longitudinal mean responses to covari-

ates and draw related inferences while accounting for the

within-subject association. In essence, two classes of mod-

els exist for modeling the mean outcomes and covariates

relationship; () the parametric models and; () the semi-

parametric and nonparametric models.�is entry exam-

ines each of these models in some detail, with an eye to

discerning their relative advantages and disadvantages. A

discussion on emerging issues in analyzing longitudinal

data is also given but touched on brie�y.

Parametric Models
Parametric models are the predominant approaches for

longitudinal data. �ey make parametric assumptions

about the relationship between the mean of a longitu-

dinal response to covariates. �ey are known as growth

curve models and include the popular mixed-e�ects mod-

els (Laird and Ware ) and generalized estimating

equations models (Liang and Zeger ). Verbeke and

Molenberghs () and Diggle et al. () provide an

extensive review of this literature.

Mixed-Effects Models
Mixed-e�ects models are a useful tool to analyze repeated

measurements recorded on the same subject. �ey were

primarily developed for continuous outcomes in time

(Laird and Ware ) and were later extended to cate-

gorical and discrete data (Breslow and Clayton ). For

continuous outcomes with an identity link, they are known

as linear mixed-e�ects models. Generalized linear mixed-

e�ects models constitute the broader class of mixed-e�ects

models for correlated continuous, binary, multinomial,

ordinal and count data (Breslow and Clayton ).�ey

are likelihood-based and o�en are formulated as hierar-

chical models. At the �rst stage, a conditional distribution

of the responses given random e�ects is speci�ed, usually

assumed to be a member of the exponential family. At the

second stage, a prior distribution is imposed on the ran-

dom e�ects.�e conditional expectations (given random

e�ects) are made of two components, a �xed-e�ects and

a random-e�ects term. �e �xed-e�ects term represents

covariate e�ects that do not change with the subject. Ran-

dom e�ects represent a deviation of a subject’s pro�le from

the average pro�le. Most importantly, they account for

the within-subject correlation across time under the con-

ditional independence assumption. For continuous out-

comes with an identity link function, these models have an

appealing feature in that the �xed-e�ects parameters have a

subject-speci�c as well as a population-averaged interpre-

tation (Verbeke andMolenberghs ). For non continu-

ous data and nonlinear relationships, this elegant property

is lost.�e �xed-e�ects parameters, with the exception of

few link functions, only have a subject-speci�c interpreta-

tion, conditional on random e�ects.�is interpretation is

only meaningful for covariates that change within a sub-

ject such as time-varying covariates.�ese e�ects capture

the change occurringwithin an individual pro�le. To assess

changes for time-independent covariates, the modeler is

then required to integrate out the random e�ects from the

quantities of interest.

Mixed-e�ects models are likelihood-based and there-

fore can be highly sensitive to any distribution misspec-

i�cation. But they are known to be robust against less

restrictive missing data mechanisms. �ere exist other

likelihood-based methods for analyzing correlated data.

Before the advent of 7linear mixed models, longitudinal
continuous data were analyzed using techniques such as

repeated measures analysis of variance (ANOVA). �is

approach has a number of disadvantages and has generally

been superseded by linear mixed-e�ects models, which

can easily be �t in mainstream statistical so�ware. For

example, repeatedmeasures ANOVAmodels require a bal-

anced design in that measurements should be recorded

at the same time points for all subjects, a condition not

required by linear mixed models.

Generalized Estimating Equations Models
Although there is a variety of standard likelihood-based

models available to analyze data when the outcome is

approximately normal, models for discrete outcomes (such
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as binary outcomes) generally require a di�erent method-

ology. Liang and Zeger () have proposed the so-called

Generalized Estimating Equations-GEE model, which is

an extension of 7generalized linear models to corre-
lated data. �e basic idea of this family of models is to

specify a function that links the linear predictor to the

mean response, and use a set of estimating functions

with any working correlation model for parameter esti-

mation. A sandwich estimator that corrects for any mis-

speci�cation of the working correlationmodel is then used

to compute the parameters’ standard errors. GEE-based

models are very popular as an all-round technique to ana-

lyze correlated data when the exact likelihood is di�cult

to specify. One of the strong points of this methodol-

ogy is that the full joint distribution of the data does not

need to be speci�ed to guarantee asymptotically consis-

tent and normal parameter estimates. Instead, a working

correlation model between the clustered observations is

required for estimation. GEE regression parameter esti-

mates have a population-averaged interpretation, analo-

gous to those obtained from a cross-sectional data anal-

ysis. �is property makes GEE-based models desirable

in population-based studies, where the focus is on aver-

age a�ects accounting for the within-subject association

viewed as a nuisance term.

�e GEE approach has several advantages over a

likelihood-based model. It is computationally tractable in

applications where the parametric approaches are compu-

tationally very demanding, if not impossible. It is also less

sensitive to distribution misspeci�cation as compared to

full likelihood-based models. A major limitation of GEE-

based models at least in their  original formulation

is that they require a more stringent missing data mech-

anism (missing data completely at random) to produce

valid inferences. Weighted GEE-based models have been

proposed to accommodate a less stringent missing data

mechanism, the missing data at random process (Robins

et al. ).

Semiparametric and Nonparametric
Models
A major limitation of parametric models is that the

relationship of the mean of a longitudinal response to

covariates is assumed fully parametric. Although such

parametricmeanmodels enjoy simplicity and ease of inter-

pretation, they o�en su�ered from in�exibility in model-

ing complicated relationships between the response and

covariates in various longitudinal studies. Speci�c exam-

ples include modeling of; () longitudinal CD+ counts
as function of time in HIV/AIDS research; and () tra-

jectories of angiogenic and antiogenic factors in mater-

nal plasma concentrations (s-eng, sVEGFR- and PlGF)

in perinatal research. Parametric models typically require

higher degree polynomials to capture the relationship

between these mean responses and covariates. �is has

been seen as an indication of poor �t and has motivated

the development of more complex and �exible approaches

to model these data. Semiparametric and nonparametric

regression models, well known to be more data adap-

tive, have emerged as promising alternative to paramet-

ric models in these settings. Nonparametric models make

no parametric assumption about the relationship between

themean response and covariates. Semiparametric models

assume a parametric relationship between some covariates

and the mean response while maintaining a nonparamet-

ric relationship between other covariates and the mean

response.�ese methods are well developed for indepen-

dent data, but their extensions to longitudinal data remain

an active area of research. A major di�culty o�en cited

in the literature for this extension is the inherent within-

subject correlation in longitudinal studies. �is correla-

tion presents signi�cant challenges in the development

of kernel and spline smoothing methods for longitudinal

data. Speci�cally, as reported by many researchers in the

�eld (see for example, Lin and Carroll ; Lin et al.

), local likelihood-based kernel methods are not able

to e�ectively account for the within-subject correlation in

longitudinal data.

Discussion
�is entry has reviewed some of the common techniques to

model longitudinal data. A focus was on parametric mod-

els. Nonparametric and semiparametric approaches based

on smoothing techniques have emerged as a �exible way

to model longitudinal data. Other approaches that do not

require smoothing have recently been proposed (Lin and

Ying ). But much research, especially from a theoret-

ical standpoint, is needed to understand these methods.

Moreover, statistical so�ware to �t these models routinely

in real time is much needed.�is is in contrast to paramet-

ric models which can be �t using mainstream statistical

so�ware such as SAS, Stata, R, Splus and SPSS.�ere are

emerging areas in connection to longitudinal data analysis

that need further research such as; () the joint modeling

of longitudinal and 7survival data, () missing data and
() causal inference.�ese areas have enjoyed some signif-

icant developments in the past several years. But there are

numerous open questions that remain unanswered and are

the subject of future research.
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Many national statistical agencies, survey organizations,

and researchers – henceforth all called agencies – collect

data that they intend to share with others. Wide dissem-

ination of data facilitates advances in science and public

policy, enables students to develop skills at data analysis,

and helps ordinary citizens learn about their communities.

O�en, however, agencies cannot release data as collected,

because doing so could reveal data subjects’ identities or

values of sensitive attributes. Failure to protect con�den-

tiality can have serious consequences for agencies, since

they may be violating laws or institutional rules enacted

to protect con�dentiality. Additionally, when con�dential-

ity is compromised, the agencies may lose the trust of the

public, so that potential respondents are less willing to give

accurate answers, or even to participate, in future studies

(Reiter ).

At �rst glance, sharing safe data with others seems a

straightforward task: simply strip unique identi�ers like

names, tax identi�cation numbers, and exact addresses

before releasing data. However, these actions alone may

not su�ce when quasi-identi�ers, such as demographic

variables, employment/education histories, or establish-

ment sizes, remain on the �le.�ese quasi-identi�ers can

be used to match units in the released data to other

databases. For example, Sweeney () showed that %

of the records in a medical database for Cambridge, MA,

could be identi�ed using only birth date and nine-digit

ZIP code by linking them to a publicly available voter

registration list.

Agencies therefore further limit what they release, typi-

cally by altering the collected data (Willenborg anddeWaal

). Common strategies include those listed below.Most

public use data sets released by national statistical agencies

have undergone at least one of these methods of statistical

disclosure limitation.

Aggregation. Aggregation reduces disclosure risks by turn-

ing atypical records – which generally are most at risk –

into typical records. For example, there may be only one

person with a particular combination of demographic

characteristics in a city, but many people with those char-

acteristics in a state. Releasing data for this person with

geography at the city level might have a high disclosure

risk, whereas releasing the data at the state level might not.

Unfortunately, aggregation makes analysis at �ner levels

di�cult and o�en impossible, and it creates problems of

ecological inferences.

Top coding. Agencies can report sensitive values exactly

only when they are above or below certain thresholds,

for example reporting all incomes above $, as

“$, or more. ” Monetary variables and ages are

frequently reported with top codes, and sometimes with

bottom codes as well. Top or bottom coding by de�ni-

tion eliminates detailed inferences about the distribution
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beyond the thresholds. Chopping o� tails also negatively

impacts estimation of whole-data quantities.

Suppression. Agencies can delete sensitive values from the

released data.�ey might suppress entire variables or just

at-risk data values. Suppression of particular data values

generally creates data that are not missing at random,

which are di�cult to analyze properly.

Data swapping. Agencies can swap data values for selected

records – for example, switch values of age, race, and sex

for at-risk records with those for other records – to dis-

courage users frommatching, since matches may be based

on incorrect data (Dalenius and Reiss ). Swapping is

used extensively by government agencies. It is generally

presumed that swapping fractions are low – agencies do

not reveal the rates to the public – because swapping at

high levels destroys relationships involving the swapped

and unswapped variables.

Adding random noise. Agencies can protect numerical

data by adding some randomly selected amount to the

observed values, for example a random draw from a nor-

mal distribution with mean equal to zero (Fuller ).

�is can reduce the possibilities of accurate matching on

the perturbed data and distort the values of sensitive vari-

ables.�e degree of con�dentiality protection depends on

the nature of the noise distribution; for example, using

a large variance provides greater protection. However,

adding noise with large variance introduces measurement

error that stretches marginal distributions and attenuates

regression coe�cients (Yancey et al. ).

Synthetic data.�e basic idea of synthetic data is to replace

original data values at high risk of disclosure with val-

ues simulated from probability distributions (Rubin ).

�ese distributions are speci�ed to reproduce as many of

the relationships in the original data as possible. Synthetic

data approaches come in two �avors: partial and full syn-

thesis (Reiter and Raghunathan ). Partially synthetic

data comprise the units originally surveyedwith some sub-

set of collected values replaced with simulated values. For

example, the agencymight simulate sensitive or identifying

variables for units in the sample with rare combinations of

demographic characteristics; or, the agency might replace

all data for selected sensitive variables. Fully synthetic data

comprise an entirely simulated data set; the originally sam-

pled units are not on the �le. In both types, the agency

generates and releases multiple versions of the data (as

in multiple imputation for missing data, see 7Multiple
Imputation). Synthetic data can provide valid inferences

for analyses that are in accord with the synthesis models,

but they may not give good results for other analyses.

Statisticians play an important role in determining

agencies’ data sharing strategies. First, they measure the

risks of disclosures of con�dential information in the data,

both before and a�er application of data protection meth-

ods. Assessing disclosure risks is a challenging task involv-

ingmodeling of data snoopers’ behavior and resources; see

Reiter () and Elamir and Skinner () for exam-

ples. Second, they advise agencies on which protection

methods to apply and with what level of intensity. Gen-

erally, increasing the amount of data alteration decreases

the risks of disclosures; but, it also decreases the accuracy

of inferences obtained from the released data, since these

methods distort relationships among the variables. Statisti-

cians quantify the disclosure risks and data quality of com-

peting protection methods to select ones with acceptable

properties.�ird, they develop new approaches to sharing

con�dential data (see 7Data Privacy and Con�dential-
ity). Currently, for example, there do not exist statistical

approaches for safe and useful sharing of network and rela-

tional data, remote sensing data, and genomic data. As

complex new data types become readily available, there

will be an increased need for statisticians to develop new

protection methods that facilitate data sharing.
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Hurricanes are complex, natural phenomena that can

cause property damage on a catastrophic scale.�e human

toll depends on the preparedness of the population – his-

torical events with thousands of casualties are rare but

do occur (e.g., the  Galveston storm – Larson ).

Depending on where hurricanes form and traverse, they

have other names such as typhoons (western Paci�c) and

cyclones (Indian Ocean and Australia). O�cially, a hur-

ricane is de�ned as a closed circulation, warm core, and

convective weather system with maximum -min average

winds of m/s or higher, measured at m above ground

level (WMO ).�is precise and technical de�nition is

important since insurance payouts for losses o�en depend

on the declaration of a hurricane event.�e de�nition also

provides a threshold for establishing the event frequency

at speci�c locations, a criterion especially important for

climate change studies. For planning purposes, the return

period of hurricanes of various intensities is needed – i.e.,

what is the probability that mphwinds will strike a spe-

ci�c location this season or what wind speed corresponds

to the  year worst event? Fortunately, hurricanes are

relatively rare events (as compared to thunderstorms or

tornadoes) and thus, extreme value methods are used to

assess their frequencies (Embrechts et al. ). An excel-

lent introduction to hurricanes is given by Emanuel ()

while a more technical treatise is available by Anthes

().

Iman et al. () reviewed many aspects of statistical

forecasting and planning in the premier Interdisciplinary

Section of�e American Statistician.�e invitation to pre-

pare this article was motivated in part by the hyperactive

 and  Atlantic hurricane seasons which stunned

the American public following relatively minor hurricane

activity in the United States since Hurricane Andrew in

. Various researchers took these two seasons as the

onset of sustained, increased activity, only to witness the

four subsequent years of little hurricane activity impacting

Florida (O’Hagan et al. ).�is perspective illustrates

a United States-centric perspective regarding hurricane

activity.�e  season endured two very strong events

(Hurricanes Dean and Erin) which pummeled the Mexi-

can Yucatan and the Gulf of Campeche, causing massive

havoc with their oil and gas industry. Similarly, in ,

the Philippines experienced multiple typhoons le� nearly

, dead, thousands homeless, and widespread agricul-

tural devastation, yet received little media attention.

Forecasting hurricane track and intensity are key prob-

lems that must be addressed in real time for actual

events under a harsh public and media spotlight as hur-

ricane watches and warnings go into e�ect. �e “obvi-

ous” forecast is to extrapolate the current track with a

linear trend in intensity. A more sophisticated version

of this forecast is to draw upon the historical record to

develop a regression model using comparable informa-

tion on the movement of storms getting to the current

position of the storm (CLIPER and CLIPER in use by

the National Hurricane Center). More advanced models

take into account current and forecast upper level winds

(“steering currents”), while the most advanced include

�uid dynamics calculations of mesoscale storm structure.

In addition to themany individual forecastmodels, ensem-

ble models are also in use (for a technical summary, see

www.nhc.noaa.gov/modelsummary.shtml). �e increase

in skill (accuracy of prediction) of the more sophisticated

models is o�set by data input needs and computational run

times. Forecasts must be timely – a  h forecast that takes

 h to produce may be inferior to a much simpler fore-

cast that can be formulated in a matter of minutes. For a

further discussion of themany pitfalls associatedwith fore-

casts, especially the problems encountered with Hurricane

Charley in , see the aforementioned article by Iman

et al. ().

In determining hurricane impacts for insurance pur-

poses, a more leisurely time frame for computation is

available. �e computational burden is severe in that a

probabilistic assessment of hurricane losses is necessary.
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Most approaches have proceeded by choosing speci�c,

individual models of hurricane frequency, wind �eld,

track, friction impacts, wind �eld decay, damage, and

actuarial summaries. Given the approximately  year

Atlantic storm history, less in other regions, practitioners

have tended to �t probability distributions to key charac-

teristics and then proceed to simulate –, years

of future hurricane seasons, accumulating losses for each

generated event. To assess the uncertainty and sensitiv-

ity of the parameter speci�cations for these models, the

Florida Commission on Hurricane Loss Methodology has

prescribed the use of Latin hypercube sampling (McKay

et al. ). One speci�c implementation pertinent to hur-

ricane modeling is described by Iman et al. (a, b).�e

latest research focuses on the use of climate models to pro-

vide track and intensity guidance (Watson and Johnson

).

A basic issue with evaluating hurricane modeling

e�orts is that every hurricane is somewhat di�erent and

anymodel that “�ne tunes” its modeling approach to a spe-

ci�c event will ultimately su�er for it (not all future events

are just like the particular event. For somehistorical events,

a very simple hurricane wind�eld model can do extremely

well with respect to matching modeled to actual losses. An

approach used by the Florida Commission to address this

di�culty follows the contextual analysis developed byWat-

son and Johnson () and expounded from an actuarial

perspective byWatson, Johnson and Simons. In brief, a fac-

torial combination of model components are considered

(nine wind �elds, four friction models, nine damage func-

tions and three frequency approaches) and the loss costs

for speci�c models are placed in the context of  model

combination results.7Outliers with respect to the range of
the factorial models generate relevant probing questions of

speci�c models.

Nelder () noted the importance of learning

another jargon for statisticians doing interdisciplinary

research.�e e�ort is well-rewarded for statisticians deal-

ing with the topic of hurricanes which will likely entail

collaborations withmeteorologists, atmospheric scientists,

geophysicists, and wind engineers.
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What Is Statistical Consulting?
Here is a sketch of a normal consultation in the con-

sulting unit of my department, in a faculty of sciences.

One or a couple of researchers/Ph.D-students from a biol-

ogy/geology/... department contact us asking for help with

the analysis of data from a study they are carrying out.

At the meeting the client �rst describes the background,

the set-up, and (some of) the data of the study.�e aims

of the study are o�en in a general, vague form that needs

speci�cation and statistical reformulation in quanti�able

units. What is the client’s problem, really, and what kind

of questions can possibly be answered from that kind of

data? O�en the clients will be forced to think about their

problems in fresh ways.�e consultant will also ask a lot

of questions in order to make clear how the data were

collected. What populations do the data represent? Was

there 7randomization, strati�cation, censoring, etc? On
what parts of the data should the focus be? Explore the

data! What is the structure of these data? �is can lead

up to a tentative statistical model, and later to parameter

estimation procedures and hypothesis tests, etc.

�e �rst meeting hopefully ends at a stage where the

client and the statistician have agreed about what ques-

tions should be addressed statistically, and how this might

be attempted on the data. Either this appears so simple

and clear that the clients want and can do this themselves,

or else a time plan and a work plan for the contribution

by the statistician is agreed on. A�er a week or two, with

some e-mail correspondence in between, client and con-

sultant meet again to discuss the results so far and what

kind of report from the statistician that the clients might

want. O�en also the answer to one question triggers new

questions.

Another statistical consultation type of work could be

more of a collaborative/partnership character, where the

statistician is a member of a team, and the aims are more

far-reaching. �e statistician then invests a lot of time

and e�ort, to become knowledgeable in the subject matter

area and expert in the applications of statistical methods

in that area, but can therefore also expect more in�u-

ence and credit, and is a natural coauthor of the project

publications.

Also a consultation where the client is seen only once

or twice is rewarding for the statistician, but in a more

indirect way. Hopefully it will be an intellectually stimu-

lating challenge that together with other such experiences

can have a profound in�uence on our personal develop-

ment as statisticians. And it might still lead to a joint

publication.

Consultation work is typically done under time pres-

sure from one or both parties. Too o�en the client has

unrealistic expectations in this respect. On the other hand,

the clients usually do not need or want a perfect model

for data (remember the George Box phrase: “All models

are wrong, but some are useful”) or the most sophisticated

method of analysis. A solution that is approximately right

is much better than one that is precisely wrong.�e con-

sultant should think of the acronym KISS, here read out

as “Keep It Simple, but Scienti�c,” or rephrased as another

quotation: “as simple as possible, but no simpler.” “Errors

of the third kind” (testing the wrong hypothesis) are most

dangerous, Common sense and a critical mind are impor-

tant. As statistical consultants we must beware of falling in

the traps of being a More Data Yeller or a Nit Picker, or

any other of the consultant stereotypes coined by Hyams

().

Desirable Qualities for a Statistical
Consultant
Among the desirable qualities to be possessed by an ideal

consultant are:

● Interest in the statistical problems of others (Derr:

“Regard each client as a potential collaborator”), and a

general interest in science, technology, nature, society.
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● Sound basis in theoretical and applied statistics. As

a start it should certainly include linear and loglin-

ear models (7generalized linear models), some exper-
imental design (and sampling), and some multivari-

ate analysis, but also experience from a few courses

in methods for particular �elds of application, and

experience from applying such methods to data.

● Eagerness to extend and improve one’s statistical

knowledge.

● Computer skills in at least one (preferably more) statis-

tical packages.

● Good ability to communicate with clients (includes

understanding and adjusting to the client’s statistical

level).

● Skills in report writing (using a word processor).

● E�ciency under time restrictions and time pressure.

● Awareness of ethical dilemmas that can appear, and an

ability to deal with problematic clients.

Teaching Statistical Consulting
Nowadays a large number of universities provide educa-

tion in statistical consulting, in one form or the other. At

my department, as an example, this is a master level course

for mathematical statistics students, involving real clients,

and real problems in real time. Much of the training in the

course is orientated towards three aspects:

● �e �rst meeting with a client (in particular asking

questions to �nd out about the problem)

● Statistical thinking

● Structuring problems and seeing the structure in data

�e students are also provided some extended knowledge

of statistical methods and models, and they are in a con-

crete way involved in one consulting project, ending with

the writing of a project report.

Some Suggested Reading
�e entry by Stinnet et al. () in Encyclopedia of Bio-

statistics describes the roles of biostatisticians in a variety

ofmedical/biological environments (medical school, phar-

maceutical industry, governmental agency, etc.), and dis-

cusses some of the special challenges in consulting with

physicians, as well as the training of consultants in bio-

statistics. Joiner’s () older entry in Encyclopedia of

Statistical Sciences also exempli�es what consulting statis-

ticians might do, before it sets up and discusses a list of

desirable skills.�e discussion of computers and literature

is a bit out-of-date, for natural reasons.

Mallows () discusses “statistical thinking” and the

question “how do the data relate to the problem?”, in an

attempt to formulate a “theory of applied statistics.” Cox

() provides a review of applied statistics in his typical

style, while Chat�eld’s () nicely written book provides

more concrete advice.

E�cient communication is a key element in statis-

tical consultation, and it is the topic of Derr’s ()

book, with an accompanying CD-ROM showing illustra-

tive short movies of positive and negative examples. Com-

munication is themain topic also of Boen and Zahn (),

who provide much discussion of how to deal with clients,

not least with di�cult clients, cf. Hyams ().

Cabrera andMcDougall () is written as a textbook

on the whole topic. �e �rst half is on consulting, com-

munication, and statistical methods. I do not agree fully

with the statistical methods chapter, but who would expect

two statisticians to agree fully? �e second half consists

of case studies. Such a mix also characterizes Chat�eld’s

() book, and the older book by Cox and Snell (),

that can be recommended in this context for a section on

strategy and for its many case studies. More case studies

are found in Hand and Everitt () and in Tweedie et al.

(). Green�eld’s contribution to the former is an enter-

taining chapter on the encounters he has had with some

di�cult client characters (cf. Hyams , again).

To �nish, here is a quote from one of Terry Speed’s

columns in the IMS Bulletin (), entitled “How to do

Statistical Research.” Former IMS President Speed explains

his research strategy to be that of doing

● Consulting: a very large amount

● Collaboration: quite a bit

● Research: some

“Why? A very large amount of consulting means meeting

many people and many problems, learning a lot, includ-

ing �nding out where we are ignorant.�en wemight spot

some low-hanging fruit.”
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Model and Denotations
As in regression analysis, DoE is concerned with mod-

elling the dependence of a random target variable Y in

dependence of a number of controllable deterministic vari-

ables x, . . . , xk (called factors).�e major goal of DoE is

to �nd con�gurations for x = (x, . . . , xk) out of a given
regionV ⊂ Rk which lead to “optimal” results for the target
variable under consideration.�e di�erent con�gurations

x(), . . . , x(n) for the factors are summarized in a statistical
design dn = (x(), . . . , x(n)) ∈ Vn of size n.�e optimality
criterion is usually de�ned through some objective func-

tion, e.g., the information or 7entropy associated with an
experiment, the variance of some predictor Ŷ(x∗) for an

unobserved con�guration x∗ = (x∗ , . . . , x∗k ) etc.�e main
areas of concern in DoE are:

(a) statistical design in regression analysis and analysis of

variance

(b) factorial designs

(c) identi�cation and elimination of disturbing in�u-

ences (blocking)

�is o�en includes, as a �rst step, the design of the size

of the experiment; i.e., the number of observations n to

be taken in order to achieve a prede�ned goal, see e.g.,

Rasch et al. ().�e mean function of Y = Y(x) given
x = (x, . . . , xk) ∈ V is called the response surface, usually
denoted by η(x) = EY(x), and the model becomes

Y(x) = η(x) + ε, x ∈ V ()

where the random error term is assumed to be indepen-

dent of x and such that E(ε) = Var(ε) = σ . Interpreting

x as realisation of a random vector X = (X, . . . ,Xk), the
response function is simply the regression function of Y

w.r.t. X.�e unknown response surface is o�en modelled
through a linear setup

η(x) = β + βf(x) + . . . + βrfr(x) ()

with given functions f, . . . , fr . For example, η(x) could be
a second order polynomial setup

η(x) = β +
k

∑
i=

βixi +
k

∑
i≤j=

βijxixj ()

arising from a second order Taylor expansion of η. Here,

the �rst sum contains all main e�ects x, . . . , xk and the

second sum contains the (second order) interactions xixj.

Optimal Designs
For any given concrete design dn = (x(), . . . , x(n)) of size
n; where x(i) = (xi, xi, . . . , xik); i =  . . . n are not nec-
essarily distinct from each other, it is well-known that the

estimated response surface yields the best linear unbiased

estimate (BLUE)

η̂(x) = β̂ + β̂ f(x) + . . . + β̂rfr(x) = f (x)T β̂

where f (x)= (, f(x), . . . , fr(x))T and β̂ = (β̂, β̂, . . . , β̂r)T
provided the parameters are estimated by the method of

7least squares (LS); i.e., β̂ = (XTX)−XTY .
Here Y = (Y(x()), . . . ,Y(x(n))) stands for the vector
of observations taken at the design points and X for the

so-called design matrix

X = ( fj(x(i))) =

⎛
⎜⎜⎜⎜⎜
⎝

 f(x()) . . . fr(x())

⋮ ⋮ ⋮

 f(x(n)) fr(x(n))

⎞
⎟⎟⎟⎟⎟
⎠

()
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which is of type n×(r+). For a �rst order regression setup
η(x) = β + βx + . . . + βkxk we have r = k and the design
matrix has the simple form

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

 x . . . xk

 x . . . xk

⋮

 xn . . . xnk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

 xT()

⋮ ⋮

 xT(n)

⎞
⎟⎟⎟⎟⎟
⎠

()

Criteria for the optimal choice of a design, as e.g., min-

imum prediction variance, are based on the covariance

matrix

Cov(β̂) = σ
(XTX)−

of the LSE β̂. For i.i.d. normally distributed observa-

tions this matrix is proportional to the Fisher information

matrix, therefore

M(dn) =


n
X
T
X ()

is called the information matrix of the design dn =
(x(), . . . , x(n)). �us it makes sense to base optimality
criteria for designs on functionals of (the inverse of) this

matrix.

De�nition �e design d∗n is called

(a) L-optimal w.r.t. some positive de�nite matrix U if

tr (UM (d∗n)
−) = min

dn
tr(UM(dn)−)

(b) G-optimal if it minimizes the maximum variance of

η̂(x) = f (x)T β̂ over some region H ⊂ Rk, i.e., max
x∈H

f (x)TM (d∗n)
−
f (x) = min

dn
max
x∈H
f (x)TM(dn)−f (x)

(c) D-optimal if it minimizes the determinant:

det (M (d∗n)
−) = min

dn
det (M(dn)−)

Important special cases of L-optimality include A-opti-

mality and c-optimality, where U = Ir+ and U = ccT for
a given vector c ∈ Rr+, respectively. An A-optimal design
minimizes the sumof the variancesVar(β̂)+. . .+Var(β̂r)
and thus the average variance of the regression coe�cients,

and a c-optimal design minimizes the variance of the lin-
ear combination Var(cT β̂) = Var(c β̂ + c β̂ + . . .+ cr β̂r).
A D-optimal design minimizes the volume of the disper-

sion (con�dence) ellipsoid for β̂.
Further criteria and numerical procedures for the con-

struction of optimal designs may be found in Pukelsheim

(), Atkinson et al. (), and Fedorov and Hackl

() on the basis of fundamental results by Kiefer and

Wolfowitz in the late s and early s. Bayesian

extensions of this theory are given in Pilz () and

Chaloner and Verdinelli (). An extensive theory of

optimal designs for correlated errors in a spatial setting

can be found in Müller (), Pilz and Spöck ()

and Spöck and Pilz () develop a theory of optimal

spatial design for the construction of environmental mon-

itoring networks using spectral theory for random �elds.

Optimal designs for higher-dimensional random �elds

are considered in Santner et al. (), with applications

in the area of the design of computer experiments, see

also Fang et al. (). Here, Kriging approximation mod-

els are constructed and then used as surrogates for the

computer model. �e design problem then refers to the

optimal choice of the inputs at which to evaluate the

computer model. Several so�ware toolboxes are available

for constructing optimal designs, see, e.g., Santner et al.

(), DACE (http://www..imm.dtu.dk/hbn/dace) and

the R-toolbox DoE (see Rasch et al. ).

Factorial Designs
Contrary to the mathematically well-de�ned optimality

criteria considered in the last section, it is also customary

to consider heuristically motivated and “practically use-

ful” criteria for the construction of designs. Brie�y, the �rst

branch is called the “Kiefer design theory” and the latter

branch is referred to as “Box design theory, ” in honour of

their pioneers.

We assume that the response surface can be su�ciently

well described by a polynomial of degree g ≥  in k ≥  fac-
tors x, . . . , xk. In order to guarantee the non-singularity

of the information matrix it is necessary that each factor

can take at least g +  di�erent values, the latter are called
the levels of the factors. A factorial design then means a

design which de�nes a subset of all possible combinations

of the levels of the k factors. It is said to be a full facto-

rial design if it contains all of the (g + )k combinations
of the levels, otherwise it is said to be a fractional facto-

rial design. In most applications the response surface is

investigated in a sequentialmanner. In a �rst step, a screen-

ing of the essential factors has to be made, using tools

from regression analysis or frommultivariate analysis (e.g.,

7principal component analysis). Herea�er, a �rst order
polynomial in the remaining (essential) factors is formed

to study the response surface and quantities of interest

(e.g., extrema). If this setup is insu�cient then a second or

third order polynomial setup is chosen and the factor levels

are updated until no further signi�cant improvements are

obtained. A formal way for proceeding in this manner had

already been developed byBox andWilson in , with the

aim of �nding factor con�gurations leading to optimum

experimental results.
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Full Factorial Designs of the Type k

Usually, one starts with a full factorial design, where all

factors are controlled at two levels, “high” and “low, ” say.

Such a design contains 
k
con�gurations (design points).

By an appropriate scaling the design region can be trans-

formed to the k-dimensional cube V = {x = (x, . . . , xk) :
− ≤ xi ≤ +, i = , . . . , k} and the design points are just
the vertices of the cube. �e full factorial design of size

n = k, dn = FF(k) for short, allows the estimation of
all 

k
parameters of the model

η(x) = β +
k

∑
i=

βixi +∑
i,j=
i<j

βijxixj+. . .+β.. .kxx . . . xk

()

As an example, consider a full factorial 

design with fac-

tors x, x, and x which can be adjusted at two levels −
(“low”) and + (“high”), respectively.�e design has n = 
points and allows the estimation of all parameters of the

model η(x) = β + βx + βx + βx + βxx + βxx +
βxx + βxxx.�e basic structure of this design is

displayed in the following table:

Trial no. Coding x x x xx xx xx xxx

 () − − − + + + −

 a + − − − − + +

 b − + − − + − +

 c − − + + − − +

 ab + + − + − − −

 ac + − + − + − −

 bc − + + − − + −

 abc + + + + + + +

�e coding follows the usual standard in the litera-

ture; the letters a, b, c, . . . represent the factors x, x, x, . . .

and are used to indicate that the corresponding factor is

adjusted at the level +.
It is easily seen that M(dn) = 

n
XTX = In for a full

factorial dn = FF(k) and the estimated regression coef-
�cients are uncorrelated, in case of normally distributed

observations they are even independent, and have a simple

structure: β̂ = 

n
XTY , Cov(β̂) = σ 

n
In.

Such designs are called orthogonal, they can easily be

constructed using Hadamard matrices. When restricting

attention to �rst order polynomials η(x) = β+βx+ . . .+

βkxk then an FF(k) design leads to minimum variance
estimates with Var(β̂i) = σ /n, moreover these full facto-
rial designs turn out to be A-, D- and G-optimal. Finally,

the estimated response surface has variance Var(η̂(x)) =
σ 

n
( + xTx) which only depends on the distance of x =

(x, . . . , xk) from the center point  = (, . . . , )T of the
design region V . Such designs are called rotatable, i.e., for

�rst order polynomial setups full factorial designs of the

type 
k
are rotatable.

Fractional Factorial Designs of the Type k−p

If the number of factors is getting large, then one is inter-

ested in having less than 
k
observations to reduce the

experimental e�orts. On the other hand, such a reduc-

tion is justi�ed if it is clear that there are no higher-order

interactions between all or some of the factors. In practical

applications it is very common that only the main e�ects

and second-order interaction e�ects matter. To illustrate

this: a full factorial 

design requires n =  observa-

tions, but only  degrees of freedom are needed to estimate

the main e�ects and another  are needed for the exti-

mation of the two-factorial interchanging e�ects. �us,

only one third of the  observations would be needed

for parameter estimation if third- and higher-order inter-

actions were negligible.�erefore, fractional (incomplete)

factorial designs are widely used in practice.�ey had �rst

been introduced by Finney in .

We call a design dn of size n = k−p,  ≤ p < k, a frac-
tional factorial design of the type k−p if it forms the −p-th
part of a full factorial design of type 

k
. Such designs are

constructed algorithmically by means of p de�ning rela-

tions. To illustrate the ideas, let k =  and p = , i.e., we
construct a half replication of the FF(k) using the de�n-
ing relation x = xxx or, equivalently, multiplying by
x,  = xxxx.
Using the coding of the previous full factorial FF()

for the new FF() and observing the de�ning relation
 = xxxx we arrive at the coding for the required frac-
tional factorial 

−
design: (), ab, ac, ad, bc, bd, cd, abcd.

Finally, using the alternative de�ning relation  =
−xxxx we arrive at the alternative − design:
a, b, c,d, abc, abd, acd, bcd.�e unionof both half replicates

results in the full factorial FF() design.
�e reduction of the number of observations achieved

with fractional factorial designs, however, comes at the

price of confounded parameter estimates. In our example,

multiplying the de�ning relation  = xxxx by x, x, x,
and x, respectively, we obtain x = xxx, x = xxx,
x = xxx, x = xxx, which implies that the main
e�ects parameters β, β, β, and β are confounded with
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the third-order interaction parameters β, β, β, and

β, respectively. From the de�ning relation  = xxxx
itself follows that the intercept term β is confounded

with the fourth-order interaction parameter β. How-

ever, there is no confounding of main e�ects with low-

order interaction (second order interaction) parameters

β, . . . , β. Designs dn for which n = s for some inte-
ger s ≥  are called regular, designs for which n = r + 
(= number of unknown regressin parameters) are called
saturated. Clearly, full factorial as well as fractional facto-

rial designs are regular; full factorial designs FF(k) are
saturated for the linear regression setup () including all

possible interactions between the main factors.�e con-

struction of saturated orthogonal designs for the hyper-

cube region V = {x = (x, . . . , xk) : − ≤ xi ≤ +, i =
, . . . , k} is only possible for sizes n which are multiples of
, such designs had already been constructed by Plackett

and Burman in .

Blocking in Factorial Designs
Random disturbances in the experimental conditions lead

to an increased variance of the experimental error. In order

to reduce this variance it is necessary to randomize the

sequence of level combinations of a given design. If the

number of factors k is getting larger (which usually implies

an increased duration of experimentation in time) then

systematic changes in the experimental conditions can

occur (e.g., changing weather conditions in agricultural

experiments). In this case, reductions in the variance of the

experimental error can be achieved by blocking. Blocks are

subsets of an experimental design which are constructed

such that they guarantee the homogeneity of experimental

conditions within the corresponding subsets. Such blocks

can be formed, e.g., from subsets of full or fractional facto-

rial designs, the sequence of trials within the blocks again

chosen at random. For example, having k factors x, . . . , xk
and assuming that only the main e�ects and two-factorial

interaction e�ects are signi�cant, then the response surface

takes the form

η(x) = β +
k

∑
i=

βixi +
k

∑
i,j=
i<j

βijxixj

For an unconfounded estimation of the e�ects a full facto-

rial FF(k) may be chosen, or, for k ≥ , some fractional
factorial 

k−p
with small p ≥ . In order to take account of

the block e�ect a block factor xB is introduced, adjusted to

the levels of the product xx . . . xk (or some other gener-

ator when starting with a fractional factorial).�e block

factor xB can then be interpreted as an indicator variable

taking values + and −, and the resulting design can be

interpreted as a fractional factorial design of type 
(k+)−

wtih the de�ning relation  = xx . . . xkxB. Assuming the
interaction e�ects βB, . . . , βkB, βB, βB, . . . , β.. .kB to be

negligible, the main e�ects and two-factorial interaction

e�ects can be estimated without confounding. Moreover,

since the design is orthogonal, blocking has no in�uence

on these estimates.

For further results on fractional factorial designs,

blocking, multilevel designs and other topics relevant in

the vast �eld of statistical (optimum) experimental design

we refer to the extensive monograph by Wu and Hamada

().
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Introduction
Statistical distributions are used to model sample data that

were collected from a population or to model the out-

comes of a random experiment.�e statistical distribution

is simply the probability distribution of a random vari-

able.�ese probabilitymodels are commonly used inmany

applied areas such as economics, education, engineering,

social, health, and biological sciences. �e distributions

of discrete random variables (whose possible values are

countable) are referred to as the discrete distribution while

those of continuous random variables are called continu-

ous distribution. To begin with an example, let X denote

the number of heads that can be observed by �ipping a

fair coin three times.�e sample space of X includes eight

outcomes, namely, HHH, HTH, THH, TTH, HHT, HTT,

THT, TTT, where H denotes the head and T denotes the

tail. �e probability that X equals one is the probability

of observing any one of the mutually exclusive outcomes

TTH, HTT and THT. As all eight outcomes are equally

likely, P(X = ) = 


. Proceeding this way, we obtain the

probability distribution of X as

x    

P(X = x) 











�e above distribution is a member of the family of

binomial distributions indexed by n and p, where n is the

number of independent Bernoulli trials (each trial results

into either “success” or “failure”) and p is the probability

of observing a success in each trial.�e function that gives

the probability that a discrete randomvariable takes a spec-

i�ed value is referred to as the probability mass function

(pmf). For example, the pmf of a binomial randomvariable

is given by

P(X = x∣n, p) =
⎛
⎜⎜
⎝

n

x

⎞
⎟⎟
⎠
p
x( − p)n−x, x = , , , . . . ,n.

For a continuous random variable X, P(X = x) =  for any
�xed x, and so we consider only P(X ∈ A) for any given
interval A ∈ R, and this probability can be evaluated as
P(X ∈ A) = ∫A f (x; θ)dx, where f (x; θ) is called the prob-
ability density function (pdf), and θ is a parameter vector.

�e pdf f (x) should satisfy two conditions: f (x) ≥  for all
x, and ∫

∞
−∞ f (x; θ)dx = .

In the following we shall list some commonly used

discrete and continuous distributions, their physical sig-

ni�cance, relations among them and some measures that

describe features of a distribution.

Discrete Distributions
Most commonly used discrete distributions are the bino-

mial, Poisson, hyper geometric, negative binomial and log-

arithmic series distributions. �e �rst four distributions

are closely related.�e 7binomial distribution is used to
estimate the proportion of individual with an attribute

of interest in a population. In particular, the number of

individuals with an attribute of interest in a random sam-

ple from a large population (e.g., proportion of defective

items in a large shipment) is a binomial random vari-

able with the sample size as the value of n, and the true

proportion (usually unknown) in the sampled popula-

tion is the parameter p. On the other hand, if the sample

is drawn (without replacement) from a �nite population,

then the number of units in the sample with the char-

acteristic of interest is a hypergeometric random variable

with the size of the population N (usually known) as the

“lot size,” the true number of units M (usually unknown)

with the attribute in the population as the parameter, and

the sample size n as another (known) parameter.�e pmf

of a hypergeometric random variable is given by P(X =
x∣n,M,N) = (M

x
)(N−M

n−x )/(
N

n
), L ≤ x ≤ U, where L =

max{,M −N +n} andU = min{n,M}. If the population
is reasonably large, then one could use the binomial model

instead of the hypergeometric.

�e Poisson distribution (see 7Poisson Distribution
and Its Application in Statistics) is postulated to model

the probability distribution of rare events. Speci�cally, if
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Statistical Distributions: An Overview. Table  Some discrete distributions

Distribution Probability mass function Description

Uniform f(x; N) = 
N

, k = , . . . , N. Positive integer N

Binomial f(x; n, p) = (n
x
)px( − p)n−x x = , , . . . , n n = No. of trials

p = Success probability

Hypergeometric f(x; n, M, N) =
(

M

x
)(

N−M

n−x
)

(
N

n
)

,

max{, M − N + n} ≤ x ≤ U = min{n, M}

n = Sample size; M = No. of defects
N = Lot size

Poisson f(x; λ) = e−λ λx

x!
, x = , , , . . . λ = Mean

Geometric f(x; p) = ( − p)x p, x = , , , . . . p = Success probability
x = No. of failures until the first success

Negative binomial f(x; r, p) = (r+x−
x

)pr( − p)x , x = , , , . . . p = Success probability
x = Number of failures until the rth success

Logarithmic series f(x; θ) = − θx

x ln(−θ)  < θ < 

an event is almost unlikely to occur in a moment of time,

but the number of occurrences over a long period of time

could be very large, then a Poisson model is appropriate

to describe the frequency distribution of the event. �is

description implies that the binomial distribution with

large n and small p can be approximated by a Poisson

distribution with mean λ = np. More speci�cally, for a
binomial(n, p) random variable with large n and small p,
P(X ≤ x∣n, p) ≃ ∑xi= e

−λ λi

i!
, x = , , . . . ,n, where λ = np

and e−λ λx/x! is the pmf of a Poisson random variable with
mean λ.

�e geometric distribution arises as the probability

distribution of number of trials in a sequence of indepen-

dent Bernoulli trials needed to get the �rst success. �e

negative-binomial distribution is a generalization of the

geometric distribution where we consider the number of

trials required to get r successes. Note that in the binomial

distribution, the number of successes in a �xed number of

independent Bernoulli trials is a random variable where as

in the case of negative-binomial the number of trials is a

random variable.�e number of failures K in a sequence

of independent Bernoulli trials that can be observed before

observing exactly r successes is also referred to as the

negative-binomial random variable. In the former case,

n takes on values r, r + , r + , . . . . whereas in the lat-
ter case K takes on values , , ,…. Both binomial and

negative-binomial distributions are related to the beta dis-

tribution: If X is a binomial(n, p) random variable then,
for x ≠ , P(X ≥ x∣n, p) = P(Y ≤ p), where Y is a
beta(x, n − x + ) random variable. Also, for x ≠ n P(X ≤
x∣n, p) = P(W ≥ p), whereW is a beta(x+ , n−x) random

variable. If X is the number of failures before the rth suc-

cess (in a sequence of independent Bernoulli trials), then

P(X ≤ x∣r, p) = P(W ≤ p), whereW is a beta(r, x+ ) ran-
dom variable. Similar relation exists between the Poisson

and the chi-square distributions. Speci�cally, P (χn > x) =
P(Y ≤ n/− ), where Y is a Poisson random variable with
mean x/.

�e probability mass function of a logarithmic series

distribution with parameter θ is given by P(X = k) =
aθk

k
,  < θ < , k = , , . . . , where a = −/[ln( − θ)].

�e logarithmic series distribution is useful to describe a

variety of biological and ecological data. It is o�en used to

model the number of individuals per species.�is distri-

bution is also used to �t the number of products requested

per order from a retailer.

Some popular discrete distributions are listed in

Table . For detailed descriptions, properties and appli-

cations of various discrete distributions, see the books

by Johnson et al. (), Evans et al. (), and

Krishnamoorthy ().

Continuous Distributions
Continuous distributions are grouped into a few fam-

ilies based on the form of pdfs: location family, scale

family, location-scale family and exponential family,

etc. In the following we shall describe some of these

families.

Location-Scale Family: �e pdf of a location-scale dis-

tribution can be expressed as 

σ
f ( x−µ

σ
) , where µ is the

location parameter, σ >  is the scale parameter and f is any
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pdf that does not depend on any parameter. As an example,

the pdf of a normal distribution can be expressed as

f (x; µ, σ) = √
πσ

e
− (x−µ)

σ = 
σ
f (x − µ

σ
) , with

f (z) = 
√
π
e
−x/

.

�e two-parameter exponential distribution, normal,

Cauchy, double exponential (Laplace), extreme-value and

logistic are popular location-scale distributions. �e

cumulative distribution function (cdf) of a location-scale

random variable can be computed using its standard form

as P (X ≤ x) = P (Z ≤ x−µ
σ

). For a location-scale family,
µ̂−µ

σ
and σ̂

σ
are pivotal quantities provided µ̂ and σ̂ are

equivariant estimators.�ese pivotal quantities are useful

to �nd inferential procedures for µ, σ or for any invariant

function of (µ, σ).
�e normal distribution is themost popular among the

location-scale families. In fact there is nothing inherently

normal about the normal distribution, and its commonuse

in applications is due its simplicity. Distributions of many

commonly used statistics can be approximated by the stan-

dard normal distribution via the central limit theorem (see

7Central Limit �eorems). Furthermore, the asymptotic
distribution of a maximum likelihood estimator is normal

with the variance determined by the Fisher information

matrix.

Exponential Family: A family of distributions whose

pdf or pmf can be written in the form f (x; θ) = h(x)c(θ)
exp (∑ki= qi(θ)wi(x)) is called an exponential family. As
an example, the binomial family is an exponential family

because thepmf f (x; p) = h(x)c(p) exp(q(p)w(x)),with
h(x) = (n

x
), c(p) = ( − p)n, q(p) = ln(p/( − p)) and

w(x) = x.�enormaldistributionandlognormaldistribu-
tionaremembersofexponentialfamilies.Astatisticalmodel

from an exponential family is easy to work with because

exponential families have some nice mathematical proper-

ties. For instance, it is easier to �nd su�cient statistics for

an exponential family. In fact, for a sampleX, . . . ,Xn from

an exponential family, (∑ni= w(Xi), . . . ,∑ni= wk(Xi)) is a
su�cient statistic for θ.

Some distributions are routinely used tomodel lifetime

data, and they are referred to as lifetimes (or failure times)

distributions.�e7Weibull distribution is one of the most
widely used lifetime distributions in reliability and survival

analysis. It is a versatile distribution that can take on the

characteristics of other types of distributions, based on the

value of the shape parameter. If X follows a Weibull dis-

tribution with shape parameter c and the scale parameter

b, then ln(X) has the extreme-value distribution with the

location parameter µ = ln(b) and the scale parameter σ =
/c.�is one–one relation allows us to transform the results
based on aWeibull model to an extreme-value distribution

(see 7Weibull distribution). Other lifetime distributions
include exponential, two-parameter exponential, lognor-

mal, and gamma distributions. Some popular continuous

distributions are listed in Table .

Relations Among Distributions: Many of the continu-

ous distributions have one–one relation with others. For

example, normal and lognormal (via logarithmic trans-

formation of lognormal random variable), two-parameter

exponential and Pareto (via logarithmic transformation

of Pareto random variable), two-parameter exponential

and power distribution (via negative log transformation

of power random variable).�is one–one relation enables

us to transform some invariant inferential procedures for

one distribution to another. Another important distribu-

tion that has relation with the t, F, binomial and negative

binomial distributions is the beta distribution. An e�cient

program that evaluates the beta distribution can be used to

computes the cumulative distribution functions (cdfs) of

other related random variables just cited.�e gamma dis-

tribution with the shape parameter α = n/ and the scale
parameter β =  specializes to the 7chi-square distribu-
tion with n degrees of freedom; when α = , it simpli�es to
the exponential distribution with mean β. A diagram that

describes relations among various distributions is given in

Casella and Berger (, p. ).

Moments and Other Measures
Moments are set of measures that are useful to judge some

important properties of a probability distribution. Mean

and median are commonly used measure of location or

center of the distribution. Range and variance are used to

quantify the variability of a random variable. We shall now

overview some of these measures that describe important

characteristics of a distribution.

�emean of a random variable is usually denoted by µ,

which is expectation of the random variable. For a discrete

random variable X, µ = E(X) = ∑k kP(X = k), where
the sum is over all possible values of X. If X is continuous,

then µ = ∫
∞
−∞ xf (x)dx, where f (x) is the pdf of X. �e

expectation E(Xk), k = , , . . ., is referred to as the kth
moment about the origin, while E(X− µ)k is called the kth
moment about the mean or the kth central moment.�e

second moment about the mean is the variance (denoted

by σ ), and its positive square root is called the standard

deviation.�e absolute moment E(∣X − µ∣) is referred to
as the mean deviation. �e mean deviation and variance
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Statistical Distributions: An Overview. Table  Some continuous distributions

Distribution Probability density function Description of parameters

Uniform f(x; a, b) = 
b−a

, a ≤ x ≤ b a < b; known or unknown

Normal f(x; µ, σ) = 
σ
√

π
exp [− (x−µ)

σ ] ,−∞ < x <∞ −∞ < µ <∞, σ > 
Mean µ
Standard deviation σ

Chi-square f(x; n) = 
n/Γ(n/)

e−x/xn/−, x >  Degrees of freedom (df) n > 

F-distribution f(x; m, n) =
Γ( m+n


)

Γ( m

)Γ( n


)

(
m

)

m/
xm/−

(
n

)

m/
[+ mx

n
]

m/+n/ , x > 
m = Numerator df
n = Denominator df

Student’s-t f(x; n) = Γ[(n+)/]
Γ(n/)

√

nπ


(+x

/n)(n+)/ , −∞ < x <∞ df n ≥ 

Exponential f(x; µ, σ) = 
σ

exp(− (x−µ)
σ

) , x > µ Location µ
Scale σ > 

Gamma f(x; a, b) = 
Γ(a)ba e−x/bxa−, x >  Shape a > 

Scale b > 

Beta f(x; a, b) = 
B(a,b)

xa−( − x)b−,  < x <  Shape a > 
Scale b > 

Noncentral
Chi-square

f(x; n, δ) =
∞

∑
k=

exp(− δ


)(

δ


)

k

k!

exp(− x

)x

n+k
 −


n+k

 Γ( n+k


)

df n > 
δ = Noncentrality parameter > 

Noncentral F cdf =
∞

∑
k=

exp(− δ


)(

δ


)

k

k!
P (Fm+k,n ≤ mx

m+k
) Numerator df m > 

Denominator df n > 
Noncentrality parameter δ > 

Noncentral t f(x; n, δ) = nn/ exp(−δ
/)

√

π Γ(n/)(n+x
)
(n+)/

∞

∑
i=

Γ[(n+i+)/]
i!

( xδ
√


√

n+x
)

i
df n ≥ 
−∞ < δ <∞

Laplace (Double exponential) f(x; a, b) = 
b

exp [− ∣x−a∣
b

], −∞ < x <∞ −∞ < a <∞, b > 
Location a, scale b > 

Logistic f(x; a, b) = 
b

exp{−( x−a
b
)}

[+exp{−( x−a
b
)}]

 , −∞ < x <∞ Location a, scale b > 

Lognormal f(x; µ, σ) = 
√

πxσ
exp [− (ln x−µ)

σ ] , x >  σ > , −∞ < µ <∞

Pareto f(x; a, b) = bab

xb+ , x ≥ a a > ; b > 

Weibull f(x; b, c, m) = c
b
( x−m

b
)c− exp{− [ x−m

b
]c} , x > m Scale b > 

Shape c > 
Location m

Extreme-value f(x; a, b) = 
b

exp [− x−a
b

] exp{− exp [− x−a
b

]} Location a
Scale b > 

Cauchy f(x; a, b) = 
π b[+((x−a)/b)

]
, −∞ < x <∞ Location a, scale b > 

Inverse Gaussian f(x; µ, λ) = ( λ

πx )

 exp(−λ(x−µ)

µ x
) , x >  λ > , µ > 

are used to judge the spread of a distribution.�e measure

of variability that is independent of the units of measure-

ments is called coe�cient of variation, and is de�ned as

(standard deviation/mean = σ/µ).

�e measures that are used to judge the shape of a dis-

tribution are the coe�cient of7skewness and the coe�cient
of kurtosis (see 7Kurtosis: An Overview).�e coe�cient
of skewness is de�ned as (the third moment about the
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mean)/(variance)
/
. �e skewness measures the lack of

symmetry. A negative coe�cient of skewness indicates that

the distribution is le�-skewed (larger proportion of the

population is below the mean) while a positive value indi-

cates that the distribution is right-skewed.�e coe�cient

of kurtosis, de�ned as γ = (the fourth moment about the
mean)/(variance)


, is a measure of peakedness or �atness

of the probability density curve. As an example, for the

normal distribution, the coe�cient of skewness is zero

(symmetric about the mean), and the coe�cient of kurto-

sis is three. For a Student t distribution with n degrees of

freedom, the coe�cient of skewness is zero and the coe�-

cient of kurtosis is (n−)/(n−), which approaches  as
n→∞.

�e 7moment generating function for a random vari-
able is de�ned asMX(t) = E[etX] provided the expectation
exists for t in some neighborhood of zero. Note that the

kth derivative ofMX(t) evaluated at t =  is E(Xk), the kth
moment about the origin.�e logarithmofmoment gener-

ating function,GX(t) = ln(MX(t)), is called the cumulant
generating function. �e kth derivative of GX(t) evalu-
ated at t =  is the kth moment about the mean. �us,
G′(t)∣t= = µ, G′′(t)∣t= = σ , and so on.

Fitting a Probability Model
�ere are several methods available to �t a probability

distribution for a given sample data. A popular simple

method is quantile–quantile plot (Q-Q plot) which is the

plot of the sample quantiles (percentiles) and the corre-

sponding population quantiles. �e population quantiles

are usually unknown, and they are obtained using the esti-

mates of the model parameters. If the Q–Q plot exhibits

a linear pattern, then the data can be regarded as a sam-

ple from the postulated probability distribution.�ere are

other rigorous approaches available to check if the sam-

ple is from a speci�c family of distributions. For instance,

theWilks–Shapiro test and the Anderson–Darling test (see

7Anderson-Darling Tests of Goodness-of-Fit) are popular
tests to determine if the sample is from a normal pop-

ulation. Another well-known nonparametric test is the

7Kolmogorov–Smirnov test which is based on the di�er-
ence between the empirical distribution of the sample and

the cumulative distribution function of the hypothesized

probability model.

Multivariate Distributions
�e probability distribution of a random vector is called

multivariate distribution. In general, it is assumed that

all the components of the random vector are continuous

or all of them are discrete.�e most popular continuous

multivariate distribution is the multivariate normal (see

7Multivariate Normal Distributions). A random vector X
is multivariate normally distributed with mean vector µ
and the variance–covariance matrix Σ if and only if αX ∼
N(α′µ, α′Σα) for every non-zero α′ ∈ Rp. Many results
and properties of the univariate normal can be extended

to the multivariate normal distribution (see 7Multivariate
Normal Distributions) using this de�nition. Even though

there are other multivariate distributions, such as mul-

tivariate gamma and multivariate beta, are available in

literature, their practical applications are not well-known.

One of the most popular books in the area of multivariate

analysis is Anderson () and its earlier editions.

A popular multivariate discrete distribution is the

7multinomial distribution, which is a generalization of
the 7binomial distribution.�is distribution is routinely
used to analyze the categorical data in the form of con-

tingency table. Another distribution to model a sample of

categorical vector observations from a �nite population is

the multivariate hypergeometric distribution. A useful ref-

erence formultivariate discrete distributions is the book by

Johnson et al. ().
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Ecologists study complex systems, and o�en need to use

non-standard methods of sampling and data analysis.�e

datamight be collected over a long-time scale, involve little

spatial replication, or be highly aggregated in space.�ere

have been many fruitful collaborations between ecologists

and statisticians, o�en leading to the development of new

statistical methods. In this brief overview of the subject,

I will focus on three areas that have been of particular

interest in the management of animal populations. I will

also discuss the use of statistical methods in other areas

of ecology, the aim being to highlight interesting areas of

development rather than a comprehensive review.

Mark-Recapture Methods
Mark-recapture methods are commonly used to esti-

mate abundance and survival rates of animal populations

(Lebreton et al. ; Williams et al. ). Typically, a

number of individuals are physically captured,marked and

released. �e information obtained from successive cap-

ture occasions is summarized in a “capture history,” which

indicates whether or not an individual was captured on the

di�erent occasions.�e likelihood is speci�ed in terms of

demographic parameters of interest, such as annual sur-

vival probabilities, and nuisance parameters that model

the capture process. A range of goodness-of-�t diagnostics

have been developed, including estimation of overdisper-

sion (Anderson et al. ). Overdispersion usually arises

as a consequence of heterogeneity, or lack of indepen-

dence, amongst individuals in the survival and/or cap-

ture probabilities; attempts have also been made to model

such heterogeneity directly (Pledger et al. ). 7Model
selection o�en involves use of 7Akaike’s information cri-
terion (AIC), and model-averaging is also commonly used

(Johnson and Omland ). Bayesian methods are

becoming popular, particularly as means of �tting hierar-

chical models (Brooks et al. ). Recent developments

include the use of genotyping of fecal, hair or skin samples

to identify individuals (Lukacs and Burnham ;Wright

et al. ), and spatially-explicitmodels that allow estima-

tion of population density (Borchers and E�ord ). A

related area of recent interest has been the estimation of the

occupancy rate, i.e., the proportion of a set of geograph-

ical locations that are occupied by a species (MacKenzie

et al. ). �is can be of interest in large-scale moni-

toring programs, for which estimation of abundance is too

costly, and in understandingmetapopulation dynamics. In

this setting, the “individuals” are locations and the “capture

history” records whether or not a species was observed at

that location, on each of several occasions.

Distance Sampling
A common alternative method for estimating population

abundance or density is distance sampling. �is involves

recording the distance of each observed individual from
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a transect line or a point.�e analysis then involves esti-

mation of the probability of detection of an individual as a

function of distance (Buckland et al. ), thereby allow-

ing estimation of the number of individuals that have not

been detected. Two important assumptions in using this

method is that detection is certain for an individual on

the line or point and that individuals do not move during

the observation process, althoughmodi�cations have been

suggested for situations inwhich these assumptions are not

met (Borchers et al. ; Buckland and Turnock ).

Compared to the use of mark-recapture methods for esti-

mating abundance, distance sampling typically provides

savings in terms of �eld e�ort, and will usually be more

appropriate when the population is widely dispersed. A

useful discussion of the theory underlying use of distance

sampling is given by Fewster and Buckland (), while

Schwarz and Seber () provide an extensive review of

methods for estimating abundance.

Population Modeling
Population projectionmodels have long been used as a tool

in the process of managing animal and plant populations,

most o�en as means of assessing the impact of manage-

ment on the population growth rate or on the probability

of quasi-extinction (Caswell ; Burgman et al. ).

A population model will typically involve one or more

demographic parameters, such as annual survival proba-

bilities and annual reproductive rates, for individuals in

di�erent ages or stages. In the past, estimation of the

parameters has been performed by separately �tting statis-

tical models to the di�erent sets of data; recent work in this

area has focussed on regarding the population model as a

statistical model that can be �tted to all the available data

(Buckland et al. ).�e bene�t of this approach is that

all the uncertainty can be allowed for, and that estimation

of the parameters can be improved by including data that

provide a direct indication of the population growth rate

(Besbeas et al. ).�is development has the potential

to allow ecologists to �t a broad range of population mod-

els to their data, including ones that allow for immigration

(cf., Nichols and Hines ; Peery et al. ).

Other Developments
A key aspect of studying many plant and animal popula-

tions is their aggregated spatial distribution. �is distri-

bution might be of interest in itself, or be something that

needs to be allowed for in the sampling and data analysis.

�ere is a long tradition of the analysis of spatial pattern in

ecology, involving a range of statistical techniques, includ-

ing distance-based methods and spatial 7point processes

(Fortin and Dale ). Various statistical distributions

have been suggested as ameans of allowing for the fact that

aggregation o�en leads to zero-in�ated and/or positively

skewed data.�ese include the negative binomial, lognor-

mal and gamma distributions, plus zero-in�ated versions

of these (Dennis and Patil ;Martin et al. ; Fletcher

). Likewise, methods have been developed for �tting

models that incorporate spatial autocorrelation (Legendre

; Fortin and Dale ).

7Adaptive sampling is a modi�cation of classical sam-
pling that aims to allow for spatial aggregation by adap-

tively increasing the sample size in those locations where

the highest abundances have been found in an initial sam-

ple (�ompson and Seber ; Brown and Manly ).

Information on the number and relative abundance of

individual species in one or more geographical areas has

been of interest to many ecologists, leading to the use of

species abundance models (Hughes ; Hill and Hamer

), estimation of species richness (Chao ), model-

ing species-area relationships (Connor and McCoy ),

and the analysis of species co-occurrence (Mackenzie et al.

; Navarro-Alberto and Manly ).

In studying ecological communities, it is o�en natural

to consider the use ofmultivariatemethods.�ere is a large

literature in this area, primarily focussing on classi�ca-

tion and ordination techniques for providing informative

summaries of the data (McGarigal et al. ). Likewise,

multivariate analysis of variance (see 7Multivariate Anal-
ysis of Variance (MANOVA)) has been used to assess the

ecological impact of human disturbance on a range of

species (Anderson and Ter Braak ).

In order to study processes operating at large spatial

scales, it is useful to carry out studies at those scales. In

doing so, there is a tension between satisfying the statis-

tical requirements of replication and keeping the study at

a scale that is large enough to provide meaningful results

(Schindler ; Hewitt et al. ).�ere has been some

discussion in the ecological literature regarding appropri-

ate statistical methods for such studies (Cottenie and De

Meester ). One approach is to consider a single large-

scale study as insu�cient to provide the level of evidence

that is usually required of a small-scale experiment, with

the hope that information from a number of studies can

eventually be combined, either informally of using meta

analysis (Gurevitch and Hedges ).

Future
It is clear that the increasing popularity of computationally-

intensive Bayesian methods of analysis will lead to ecolo-

gists being able to �t statistical models that provide them
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with a better understanding of the spatial and tempo-

ral processes operating in their study populations (Clark

). Likewise, recently-developed techniques such as

7neural networks (Lek et al. ) and boosted trees (Elith
et al. ), are likely to appear more frequently in the

ecological literature. In tandem with the development of

new techniques, there will always be a need to balance

complexity and simplicity in the analysis of ecological data

(Murtaugh ).
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Statistical Estimation of Actuarial
Risk Measures for Heavy-Tailed
Claim Amounts
Abdelhakim Necir
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Mohamed Khider University of Biskra, Biskra, Algeria

Introduction
Risk measures are used to quantify insurance losses and

measure �nancial risk assessments. Several risk measures

have been proposed in actuarial science literature, namely,

the value at risk, the expected shortfall or the condi-

tional tail expectation, and the distorted risk measures

(DRM). Let X be a nonnegative random variable (rv) rep-

resenting losses of an insurance company with a continu-

ous distribution function (df) F.�e DRM of X is de�ned

by

Πg = ∫
∞


g ( − F (x)) dx,

where the distortion function g is an increasing function

such that g () =  and g () =  (see, Wang ).

In terms of the generalized inverse function Q(s) := inf
{x : F(x) ≥ s} , the DRMmay rewritten as

Πg = ∫



g
′ (s)Q ( − s)ds,

provided that g is di�erentiable. In this entry, we con-

sider the DRM corresponding to the distortion function

g (s) = s/ρ
, ρ ≥  called the proportional hazard transform

(PHT) risk measure. In this case we write

Πρ = ρ
−
∫




s
/ρ−

Q ( − s)ds.

Empirical Estimation ofΠρ

Supposewehave independent randomvariablesX,X, . . . ,

each with the cdf F, and let X:n < . . . < Xn:n be the 7order
statistics corresponding to X, . . . ,Xn. It is most natural to

de�ne an empirical estimator of Πρ as follows

Π̂ρ := ρ
−
∫




s
/ρ−

Qn ( − s)ds, ρ ≥ , ()

where Qn(s) is the empirical quantile function, which is
equal to the ith order statisticXi:n when s ∈ ((i−)/n, i/n],
i = , . . . ,n. We note that Π̂ρ is a linear combinations

order statistics, that is, Π̂ρ = ∑ni= ai,nXn−i+,n, with ai,n :=
ρ− ∫

i/n
(i−)/n s

/ρ−ds, i = , . . . ,n, and n ∈ N. A statistic hav-
ing the form () is an L-statistic (see, for instance, Shorack

and Wellner , p. ).�e 7asymptotic normality of
the estimator Π̂ρ is discussed in Jones and Zitikis ().

�eorem  (Jones and Zitikis, ). For any  < ρ < ,
we have

n
/ (Π̂ρ − Πρ)

D→ N (, σ ρ) , as n→∞,

where

σ

ρ : = ρ

−
∫




∫




(min(s, t) − st)s/ρ−

t
/ρ−

dQ ( − s)

dQ ( − t) ,

provided that E [Xη] <∞ for some η > ρ/ ( − ρ) .

�e premium, which is greater than or equal to the mean

risk,must be�nite for any ρ ≥ .�at is,wehave  ≤ ρ < /γ.

For γ > /, the second-order moment E [X] is in�nite
and  ≤ ρ < . In this case, we have ρ/ ( − ρ) >  that
implies that E [∣X∣η] is in�nite for any η > ρ/ ( − ρ) .
�erefore,�eorem  does not hold for regularly varying
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distributions with tail indices −/γ > −/. To solve this
problem, we propose an alternative estimator for Πρ with

normal asymptotic distribution for any−/γ > −/. To get
into a more general setting, assume that F is heavy-tailed,

which means that lim
x→∞

eλx( − F(x)) =∞ for every λ > .
�e class of regularly varying cdfs is a good example for

heavy-tailedmodels:�ecdfF is said toberegularlyvarying

at in�nity with index (−/γ) <  if the condition

lim
t→∞

 − F(tx)
 − F(t)

= x−/γ
, ()

is satis�ed for every x > . �is class includes a num-
ber of popular distributions such as Pareto, Generalized

Pareto, Burr, Fréchet, Student,…, which are known to be

appropriate models for �tting large insurance claims, large

�uctuations of prices, log-returns, etc. (see, e.g., Beirlant

et al. ). In the remainder of this entry, we therefore

restrict ourselves to this class of distributions, and formore

information on themwe refer to, for example, de Haan and

Ferreira ().

New Estimator forΠρ : Extreme Values
Based Estimation
Wehave already noted that the estimator Π̂ρ does not yield

asymptotic normality beyond the condition E[X] < ∞.
For this reason, Necir and Meraghni () proposed

an alternative of PHT estimator, which would take into

account di�erences between moderate and high quantiles,

that is

Π̃ρ :=
n

∑
i=k+

ai,nXn−i+,n + (k/n)/ρ Xn−k,n
 − ργ̂n

,

whereweassume that the tail indexγ ∈ [/, )andestimate

it using the Hill () estimator γ̂n := k−
k

∑
i=
logXn−i+:n

− logXn−k:n. Here, let k = kn be a sequence such that

k → ∞, and k/n →  as n → ∞.�e construction of this
estimator is inspired from the work of Necir et al. ()

and Necir and Boukhetala ().

Asymptotic Normality of Π̃ρ

�e main theoretical result of this entry is �eorem ,

below, in which we establish weak approximations for Π̃ρ

by functional of Brownian bridges and therefore asymp-

totic con�dence bounds for Πρ . To formulate it, we need

to introduce an assumption that ensures the weak approxi-

mation of Hill’s estimator γ̂n.�e assumption is equivalent

to the following second-order condition (see Geluk et al.

). Namely, it said that the cdf F satis�es the generalized

second-order regular variation condition with second-

order parameter β ≤  (see de Haan and Stadtmüller )

if there exists a function a(s), which does not change its
sign in a neighborhood of in�nity and is such that, for

every x > ,

lim
s→∞

(a(s))− {  − F(sx)
 − F(s)

− x−/γ} = x−/γ x
ρ/γ − 
ρ/γ

, ()

where ρ ≤  is the so-called second-order parameter; when
ρ = , then the ratio on the right-hand side of Eq. ()
should be interpreted as log x. In the formulation of�eo-

rem , we shall use A(z) := γa(U(z)) with a(s) as above
and U(z) := Q( − /z).

�eorem  (Necir and Meraghni ). Let F be a df

satisfying () with γ > / and suppose that Q (⋅) is con-
tinuously di�erentiable on [, ) . Let k = kn be such that
k → ∞, k/n →  and k/A (n/k)→  as n → ∞. For any
 ≤ ρ < /γ, there exists a sequence of independent Brownian

bridges (Bn) such that

n/ (Π̃ρ − Πρ)

(k/n)/ρ−/
Q ( − k/n)

=d L (Bn, ρ, γ) + op () ,

where

L (Bn, ρ, γ) : = δ (ρ, γ) (n/k)/ Bn ( − k/n)

− λρ ,γ (n/k)/∫


−k/n

Bn (s)
 − s

ds

−
ρ− ∫



k/n s
/ρ−Bn ( − s)Q′ ( − s)ds

(k/n)/ρ−/
Q ( − k/n)

,

with δ (ρ, γ) := λρ ,γ (ργ − γ +  − γλ−ρ ,γ) , and λρ ,γ :=
ργ

( − ργ)
.

corollary  Under the assumptions of�eorem , we have

n/ (Π̃ρ ,n − Πρ)

(k/n)/ρ−/
Xn−k:n

D→ N (, σ ρ ,γ) , as n→∞,

where the asymptotic variance σ ρ ,γ is given by the sum of

the following terms

κ =
(γρ − γ + γρ)

( − ργ)
, κ =

ργ

( − ργ)

κ =
γ

( − ρ − ργ) ( − ρ − ργ)
, κ =

ργ (γ − γρ − γρ)
( − ργ)

and κ = −
ργ

( − ργ)
.
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Scientists want to know how nature works. Di�erent

scientists have di�erent ideas or hypotheses about the

mechanisms that underlie a phenomenon. To test the

validity of these ideas about mechanisms, they need to be

translated into quantitative form in a mathematical model

that is capable of predicting the possible outcomes from

suchmechanisms. Observations of real outcomes, whether

obtained by designed experiment or observational study,

are used to help discriminate between di�erent mech-

anisms. �e classical approach of hypothesis refutation

depends on showing that the data are impossible under

a speci�c hypothesis. However, because of the intrinsic

stochasticity in nature, appropriate mathematical models

tend to be statistical rather than deterministic. No data are

impossible under a statistical model and hence this clas-

sic approach cannot be used to falsify a statistical model.

On the other hand, although not impossible, data could

be more improbable under one statistical model than a

competing one. Quantifying evidence for one statistical

model vis-à-vis a competing one is one of the major tasks

of statistics.�e evidential paradigm in statistics addresses

the fundamental question: How should we interpret the

observed data as evidence for one hypothesis over the

other? Various researchers have tried to formulate ways

of quantifying evidence, most notably Barnard () and

Edwards (). �e monograph by Hacking (Hacking

) explicitly stated the problem and its solution in terms

of the law of the likelihood:

7 If hypothesis A implies that the probability that a random vari-

able X takes the value x is pA(x), while hypothesis B implies

that the probability is pB(x), then the observation X= x is evi-

dence supporting A over B if and only if pA(x) > pB(x) and

the likelihood ratio pA(x) > pB(x), measures the strength of

that evidence.

Royall () developed this simple yet powerful idea

and turned it into something that is applicable in practice.

He emphasized that the commonly used approaches in

statistics are either decision-theoretic (Neyman-Pearson-

Wald) that address the question “given these data, what

should I do?” or, are belief based (Bayesian) that address

the question “given these data, how do I change my beliefs

about the two hypotheses?” He suggested that statisticians

should �rst address the more fundamental question “how

should we interpret the observed data as evidence for one

hypothesis over the other?”, and only then think about how

the beliefs should be changed or decisions should be made

in the light of this evidence. Royall also pointed out that

evidence is a strictly comparative concept. We need two

competing hypotheses beforewe can compare the evidence

for one over the other. His critique of the commonly used

evidence measures showed that the practice of using Fish-

erian p-value as a measure of evidence is incorrect because

it is not a comparative measure, while the Bayesian poste-

rior probability, aside from being dependent on the prior

beliefs and not solely on the observed data, is also an incor-

rect measure of evidence because it is not invariant to the

choice of the parameterization.
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One of the reasons, the Neyman-Pearson ideas are

prominent in science is that they accept the fact that

decisions can go wrong. Hence in scienti�c practice, one

quanti�es and controls the probabilities of such wrong

decisions. Royall () introduced concepts of error prob-

abilities that are similar to the Type-I and Type-II error

probabilities in the Neyman-Pearson formulation, but rel-

evant to the evidential paradigm. He realized, evidence,

properly interpreted, can be misleading and asked how

o�enwould bewe bemisled by strong evidence (see below)

if we use the law of the likelihood and how o�en would we

be in a situation that neither hypothesis is supported to the

threshold of strong evidence.

�ree concepts answer those questions. Supposewe say

that hypothesis A has strong evidence supporting it over

hypothesis B if the likelihood ratio is greater than K, for

some a priori �xed K > .�en:

(a) �e probability of misleading strong evidence:

M(K) = PA (x : pB(x)pA(x) > K),
(b) �e probability ofweak evidence:W(K) = PA (x : K <

pB(x)
pA(x) < K),

(c) �e probability of strong evidence for the correct

model: S(K) = PA (x : pA(x)pB(x) > K).

A remarkable result that follows is that there exists a

universal upper bound on the probability of misleading

evidence under any model, namely M(K) ≤ /K. Fur-
thermore, as one increases the sample size, both M(K)
and W(K) converge to  and S(K) → . �us, with

enough observations we are sure to reach the right con-

clusion without any error. �is is in stark contrast with

the Neyman-Pearson Type-I error that remains �xed, no

matter how large the sample size. In the Neyman-Pearson

formulation, as sample size increases, K increases while

error probability is held constant. �us, as one increases

the sample size, the criterion for rejection changes so that

it is harder and harder to distinguish the hypotheses.�is

seems quite counter-intuitive andmakes it di�cult to com-

pare tests of di�erent sample size.

�e concepts of misleading and weak evidence have

implications in the sample size calculations and opti-

mal experimental designs. For example, the experimenter

should make sure the minimal sample size is such that

probability of weak evidence is quite small and at the end

of the experiment one can reach a conclusion. Further-

more, by controlling the probability ofmisleading evidence

through sample size, experimental/sampling design and

evidence threshold one can also make sure that the con-

clusions reached are likely to be correct. Besides these a

priori uses, the probability of misleading evidence can be

calculated as a post data error statistic reminiscent of a

p-value, but explicitly constructed for the comparison of

two hypotheses (Taper and Lele ).

�ere are, however, limitations to the evidential ideas

developed by Royall and described above. One major lim-

itation is that the law of likelihood can only quantify evi-

dence when the hypotheses are simple, but most scienti�c

problems involve comparing composite hypotheses. �is

may arise because the scientist may be interested in test-

ing only some feature of the model without restrictions

on the rest of the features. Similarly, a proper statistical

model might involve in�nitely many nuisance parameters

in order to model the underlying mechanism realistically

but the parameters of interest may be �nite. Such cases

arise in many practically situations, for example, the lon-

gitudinal data analysis or random e�ects models among

others. Aside from raising the need to consider composite

hypothesis, in these situations, the full likelihood function

may be di�cult to write down. One may want to specify

only a few features of the model such as the mean or the

variance, leading to the use of quasi-likelihood, estimating

functions and such other modi�cations. �e question of

7model selection where one is selecting between families
of models instead of a speci�c element of a given family

is important in scienti�c practice. For example, whether

to use a linear regression model (see 7Linear Regression
Models) or a non-linear regressionmodel (see7Nonlinear
Regression) is critical for forecasting.

Can we generalize the law of likelihood and concepts

of error probabilities to make it applicable in such sit-

uations? An initial attempt is described in Lele (),

Taper and Lele (, ).�e key observation in such

a generalization is that quantifying the strength of evi-

dence is the same as comparing distances between the

truth and the competing models that are estimated from

data.�e likelihood ratio simply compares an estimate of

the 7Kullback-Leibler divergence.
One can consider many di�erent kinds of divergences,

each leading to di�erent desirable properties. For exam-

ple, if one uses Hellinger distance to quantify strength

of evidence, one gets a measure that is robust against

7outliers. If one uses Je�rey’s divergence, one needs to
specify only the mean and variance function, similar to

the quasi-likelihood formulation, to quantify strength of

evidence. One can use pro�le likelihood or integrated

likelihood or conditional likelihood to compare evidence

about a parameter of interest in the presence of nuisance

parameters. �ese simply correspond to di�erent diver-

gence measures and hence have di�erent properties. Lele

() terms these as “evidence functions”. �ey may be
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compared in terms of how fast the probability of strong

evidence for the correct model converges to . Not sur-

prisingly, for simple versus simple hypothesis comparison,

it turns out that the Kullback-Leibler divergence or the

likelihood ratio is the best evidence function, provided

the model is correctly speci�ed. Other evidence functions,

however, might be more robust against outliers or may

need less speci�cation; and hence may be more desirable

in practice.

Error probabilities can be calculated for general evi-

dence functions using bootstrapping (Taper and Lele

). When the data are independent and identically dis-

tributed one can circumvent the conceptual constraint that

the true model is in one of the alternative hypotheses

by using a non-parametric bootstrap. We brie�y describe

this in the likelihood ratio context. Notice that the like-

lihood ratio is simply a statistic, a function of the data.

One can generate a 7simple random sample with replace-
ment from the original data and compute the strength of

evidence based on this new sample. By repeating this pro-

cedure large number of times, one obtains the bootstrap

estimate of the distribution of the strength of evidence.

�e percentile-based con�dence interval tells us the small-

est level of strength of evidence one is likely to obtain if

the experiment is repeated. One of the vexing questions in

evidential paradigm is how to relate evidence to decision

making without invoking beliefs. It may be possible to use

the bootstrap distribution of the strength of evidence, in

conjunction with the7loss function, for decision-making.
Because this distribution is obtained empirically from the

observations, such decisions will be robust against model

speci�cations.

�e evidential paradigm is still in its adolescence, with

much scope for innovation. Nevertheless the paradigm is

su�ciently developed to make immediate contributions;

in fact, information criterion comparisons, which are evi-

dence functions, have already revolutionized the practice

of many sciences. �e references below will be useful to

further widen the reader’s knowledge and understanding

beyond just our views.
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�e range of possible fallacies in statistics is as wide as

the range of statistics itself (see Cohen ; Good ,

; Moran  for convenient overviews); there is prob-

ably no application and no theory where one does not �nd

examples of intentional or unintentional misuse of statis-

tical facts and theories (which of course is not unique to

statistics – there is probably no science or social science

whatsoever which is immune to such abuse). When col-

lecting data, there is the well known problem of biased or

self-selected samples, or ill-phrased questionnaires where

answers are already imbedded in the questions. A nice

example is provided by two surveys on workers’ attitude

towards working on Saturdays which were conducted in

Germany in the same months of the same year (Krämer

, p. ).�e �rst survey produced a rejection rate of

% whereas in the second survey, % of workers who

were asked were happy to work on Saturdays if only they

could. A�er inspection of the questionnaires it was clear

how these results came about:�e �rst survey was spon-

sored by a trade union and started with reminding the

audience of the hard work it had taken to push through the

�ve day work week, ending with the question (I exagger-

ate slightly): Are you really prepared to sacri�ce all of what

your fellow workers have fought about so hard?�e sec-

ond survey started with a comment on �erce competition

for German industry from Asia which in the end let to the

�nal question of whether workers were prepared to work

on Saturdays if otherwise their employer went bankrupt.

Such extreme examples are of course quite rare, but

it is rather easy to lead people in any direction which is

convenient from the researcher’s point of view.

In the area of biased and self-selected samples, the

best known example is of course the historical disaster

of the Literary Digest magazine back in .�e maga-

zine had asked well above ten million Americans, a record

sample by any standards, whom they intended to vote for

in the upcoming presidential election. According to this

survey, the republican candidate was going to win hand-

somely whereas in reality Roosevelt, the incumbent, won

by a landslide.�e Digest’s sample was drawn from lists of

automobile and telephone owners (likely to vote republi-

can) and among those asked, less than a quarter actually

replied (presumably voters with an axe to grind with the

incumbent; see Bryson ).

Other fallacies arise in the context of interpreting or

presenting the results of statistical analyses. �ere is the

obvious area of confusing correlation and causation or of

misreading the meaning of statistical tests of signi�cance,

where even professional statisticians have a hard time to

correctly interpret a positive test result at – say – a % level

of signi�cance (there are even textbooks which state that

this means: “�e null hypothesis is wrong with % prob-

ability”). Another problem here is that true signi�cance

levels are in many applications much higher then nomi-

nal ones due to the fact that only “signi�cant” outcomes

are reported.
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Such problems with interpreting statistical tests are

tightly connected with the misuse of conditional proba-

bilities, which is probably the both most widespread and

most dangerous way that one can misread statistical evi-

dence (Krämer and Gigerenzer ). One of these is to

infer, from a conditional probability P(A∣B) that is seen as
“large,” that the conditional event A is “favorable” to the

conditioning event B, in the sense that P(B∣A) > P(B).
�is confusion occurs in various contexts and is

possibly the most frequent logical error that is made in

the interpretation of statistical information. Here are some

examples from theGermanpress (with the headlines trans-

lated into English):

● “Beware of German tourists” (According toDer Spiegel

magazine, most skiers involved in accidents in a Swiss

skiing resort came from Germany).

● “Boys more at risk on bicycles” (the newspaper Han-

noversche Allgemeine Zeitung reported that among

children involved in bicycle accidents, the majority

were boys).

● “Soccer most dangerous sport” (the weekly magazine

Stern commenting on a survey of accidents in sports).

● “Private homes as danger spots” (the newspaper Die

Welt musing about the fact that a third of all fatal

accidents in Germany occur in private homes).

● “German shepherd most dangerous dog around” (�e

newspaperRuhr-Nachrichten on a statistic according to

which German shepherds account for a record % of

all reported attacks by dogs).

● “Women more disoriented drivers” (�e newspaper

Bild commenting on the fact that among cars that were

found entering a one-way street in the wrong direction,

most were driven by women).

�ese examples can easily be extended.Most of them result

from unintentionally misreading the statistical evidence.

When there are cherished stereotypes to conserve, such

as the German tourist bullying his fellow vacationers, or

women somehow lost in space, perhaps some intentional

neglect of logic may have played a role as well. Also, not

all of the above statements are necessarily false. It might,

for instance, well be true that when , men and ,

women drivers are given a chance to enter a one-way street

the wrong way, more women than men will actually do so,

but the survey by Bild simply counted wrongly entering

cars and this is certainly no proof of their claim. For exam-

ple, what if there were no men on the street at that time of

the day? And in the case of the Swiss skiing resort, where

almost all foreign tourists came from Germany, the attri-

bution of abnormally dangerous behavior to this class of

visitors is clearly wrong.

In terms of favorable events, Der Spiegel, on observ-

ing that P(German tourist ∣ skiing accident) was “large,”
concluded that the reverse conditional probability was also

large, in particular, that being a German tourist increases

the chances of being involved in a skiing accident:

P(skiing accident∣German tourist) > P(skiing accident).

Similarly, Hannoversche Allgemeine Zeitung concluded

from P(boy ∣ bicycle accident) = large that P(bicycle acci-
dent ∣ boy) > P(bicycle accident) and so on. In all these
examples, the point of departure was always a large value

of P(A∣B), which then led to the – possibly unwarranted –
conclusion that P(B∣A) > P(B). From the symmetry

P(B∣A) > P(B)⇐⇒ P(A∣B) > P(A)

it is clear, however, that one cannot infer anything regard-

ingA’s favorableness forB from P(A∣B) alone, and that one
needs information on P(A) as well.
Another avenue through which the attribute of favor-

ableness can be incorrectly attached to certain events is

7Simpson’s paradox, which in our context asserts that it
is possible that B is favorable to A when C holds, B is

also favorable to A when C does not hold, yet overall, B

is unfavorable to A. Formally, one has

P(A∣B ∩ C) > P(A) and

P(A∣B ∩ C) > P(A) yet

P(A∣B) < P(A).

�is paradox also extends to situations where C ∪ . . . ∪
Cn = Ω, Ci ∩ C = / (i ≠ j).
One instance where Simpson’s paradox (to be precise:

the refusal to take account of Simpson’s paradox) has been

deliberately used to mislead the public is the debate on

the causes of cancer in Germany.�e o�cial and �ercely

defended credo of the Green movement has it that the

increase in cancer deaths fromwell below % of all deaths

a�er the war to almost % today, is mostly due to indus-

trial pollution and chemical waste of all sorts. However,

as Table  shows, among women, the probability of dying

from cancer has actually decreased for young and old alike!

Similar results hold for men.

A �nal and more trivial example for faulty inferences

from conditional probabilities concerns the inequality

P(A∣B ∩D) > P(A∣C ∩D).

Plainly, this does not imply

P(A∣B) > P(A∣C),

yet this conclusion is still sometimes drawn. A German

newspaper once claimed that people get happier as they
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Statistical Fallacies. Table  Probability of dying from
cancer Number of women (among , in the respective
age groups) who died from cancer in Germany

Age  

–  

–  

–  

–  

–  

–  

–  

–  

–  

–  

–  

–  

–  

–  

–  

–  

–  

(Statistisches Jahrbuch für die Bundesrepublik Deutschland)

grow older. �e paper’s “proof ” runs as follows: Among

people who die at age –, about % commit suicide.

�is percentage then decreases with advancing age; thus,

for instance, among people who die over the age of , only

% commit suicide. Formally, one can put these observa-

tions as

P(suicide ∣ age  −  and death)
> P(suicide ∣ age >  and death),

and while this is true, it certainly does not imply

P(suicide ∣ age  − ) > P(suicide ∣ age > ).

In fact, a glance at any statistical almanac shows that quite

the opposite is true.

Here is a more recent example from the US, where

likewise P(A∣B) is confused with P(A∣B ∩ D). �is time

the confusion is spread by renowned Harvard Law pro-

fessor who advised the O. J. Simpson defense team. �e

prosecution had argued that Simpson’s history of spousal

abuse re�ects a motive to kill, advancing the premise that

“a slap is a prelude to homicide.”�e defence – in the end

successfully – argued that the probability of the event K

that a husband killed his wife if he battered her was rather

small, so battering showed not be viewed as evidence of

murder.

P(K ∣ battered) = /, .

�e relevant probability, however, is not this one. It is that

of a man murdering his partner given that he battered her

and that she was murdered:

P(K ∣ battered and murdered).

�is probability is about / (Good ). It must not of

course be confused with the probability that O. J. Simp-

son is guilty. But it shows that battering is a fairly good

predictor of guilt for murder.
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Statistical Fallacies:
Misconceptions, and Myths
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Compilations and illustrations of statistical fallacies, mis-

conceptions, and myths abound (e.g., Brewer ; Huck

; Hu� ; Hunter and May ; King ;

Sawilowsky , a, b, c, d, , a, b; Vandenberg

).�e statistical faux pas is appealing, intuitive, log-

ical, and persuasive, but demonstrably false. �ey are

uniformly presented based on authority and supported

based on assertion. Unfortunately, these errors sponta-

neously regenerate every few years, propagating in peer

reviewed journal articles; popular college textbooks; and

most prominently, in the alternate (e.g., qualitative), non-

professional (e.g., Wikipedia), and dissident literature.

Some of the most egregious and grievous are noted

below.

. Law of Large Numbers, Central Limit�eorem (CLT),

population normality, and asymptotic theory. �is

quartet is asserted to inform the statistical prop-

erties (i.e., Type I and II errors, comparative sta-

tistical power) of parametric tests for small sam-

ples (e.g., n≤ or so). In fact, much of what was
asserted regarding small samples based on these eigh-

teenth to nineteenth century theorems was wrong.

Most of what is correctly known about the proper-

ties of parametric statistics has been learned through

Monte Carlo studies and related methods conducted

in the last quarter of the twentieth century to the

present.

Examples ofwrong statements include (a) random

selection is mooted by drawing a su�ciently large

sample, (b) the CLT guarantees X is normally dis-

tributed, (c) the CLT safeguards parametric tests as

long as n ≥ , and (d) asymptotic relative e�ciency
is a meaningful predictor of small sample power. A

corollary that is particularly destructive is journal edi-

tor and reviewer bias in favor of this quartet over

MonteCarlo evidence, relegating the inelegance of the

latter to be a function of “anyone who has a personal

computer and knowledge of Algebra I.”

(e) Perhaps the most pervasive myth is that real

variables are normally distributed. Micceri ()

canvassed authors of psychology and education

research over a number of years and determined that

less than % of their data sets (even those where

n > ,) could be considered even remotely bell-
shaped (e.g., symmetric with light tails). Not a single

data set was able to pass any known statistical test

of normality. Similar studies have been conducted

in other disciplines with the same result. Population

normality is not the norm.

(f) Journal editors and reviewers mistakenly

attach more importance to lemmas, theorems, and

corollaries from this quartet than on evidence from

small samples Monte Carlo studies and related

methods.

. Random assignment. It is commonly asserted that

the lack of random assignment can be rehabili-

tated via matching, ANCOVA, regression, economet-

ric simultaneous modeling, latent-variable modeling,

etc. In truth, “there is no substitute for randomization”

(Sawilowsky b, p .)

. Control group. It is frequently asserted by journal edi-

tors and referees, and funding agency reviewers, that

science and rigorous experimental design demand the

use of a control, comparison, or second treatment

group. Actually, there are many designs that do not

require this, such as factorial ANOVA, times series,

and single subject repeated measures layouts.

. Data transformations. (a)One reason for transforming

data is to better meet a parametric test’s underlying

assumptions. �e inexplicable pressure to shoehorn

a parametric test into a situation where doesn’t �t

has prompted textbook authors to recommend trans-

forming data to better meet underlying assumptions.

For example, if the data are skewed then the square

root transformation is recommended.�e debate on

the utility of transforming for this purpose is known

as the Games-Levine controversy that was waged in

the early s, primarily recorded in Psychological

Bulletin.

�ere is a misguided presumption that the statis-

tician has a priori knowledge of when or how best to

transform. Also, it is a fallacy to interpret results from

a transformation in the original metric. What does it

mean to conclude that the arcsin of children’s weight

in the intervention groupwas statistically signi�cantly

higher than the arcsin of children’s weight in the com-

parison group?When was the last time a patient chal-
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lenged the physician’s recommended medication by

demanding to know the logarithm of the expected

reduction in weight as predicted from the clinical

trial?

(b) Another reason for transforming the data is to

convert a parametric procedure into a nonparamet-

ric procedure.�e rank transformation is the prime

example. Based on asymptotic theory published in

very prestigious journals, and subsequent recommen-

dations from high pro�le statistical so�ware compa-

nies, data analysts were encouraged to routinely run

their data through a ranking procedure, and follow

with the standard parametric test on those ranks.

Careful data analysts have shown through Monte

Carlo studies that good results may be obtained for

the two independent samples, one-way independent

ANOVA, and two independent samples multivariate

layouts. �e myth persists, however, that this pro-

cedure is a panacea. �ose same careful data ana-

lyst have also shown the rank transformation does

not work in the context of two dependent samples,

factorial ANOVA, factorial ANCOVA, MANOVA,

or MANCOVA layouts, yielding Type I error rates

as high as , and greatly suppressed power (e.g.,

Sawilowsky a; Sawilowsky et al. ; Blair et al.

). Yet, so�ware vendors continue to promote this

procedure.

(c) It is also a myth that secondary transforma-

tions resolve this problem.�e original data are trans-

formed into ranks, and the ranks are in turn trans-

formed into expected normal scores, random normal

scores, or some other type of score. However, careful

data analysts have also shown that secondary transfor-

mations fare no better than the rank transformation

in terms of displaying poor Type I error control and

severely depressed power (Sawilowsky b).

. p values. (a) Signi�cance testing, as opposed to

hypothesis testing, is mistakenly asserted to be sci-

enti�c. Whereas hypothesis testing is objective due

to the a priori stated threshold of what constitutes a

rare event, signi�cance testing is not objective. With

the advent of easily obtained (and even exact) p val-

ues through statistical so�ware, signi�cance testing

permits citing the resulting p value and letting the

reader decide a posteriori if it is signi�cant. Unfortu-

nately, post and ad hoc signi�cance testing obviates

objectivity in interpreting the results, which is a fatal

violation of a cornerstone of science. (b) Obtained p

values are asserted to be transitory. For example, a p

value that is close to nominal alpha (e.g., α = .
and p = .) is incorrectly claimed to be approaching

statistical signi�cance, when in fact the result of the

experiment is quite stationary. (c)�e magnitude of

the p value is asserted to inform the magnitude of the

treatment e�ect. A p value of . is erroneously

claimed to mean the e�ect is of great practical impor-

tance. Although that may be true, it is not because of

any evidence based on the magnitude of p.

. E�ect Size. Statistical philosophers stipulate that the

null hypothesis can never literally be true. By virtue

of all phenomena existing in a closed universe, at

some part of the mantissa the population values must

diverge from zero.�us, it is claimed that e�ect sizes

should be reported even if a hypothesis test was not

conducted, or even if the result of a hypothesis test is

not statistically signi�cant.

�is viewpoint is presaged on an imputed meta-

analytic intent that will arise in the future even if there

is no such intent at the time the experiment was con-

ducted.�is fallacy arises, as do many errors in inter-

pretation of statistics, by ignoring the null hypothesis

being tested. Under the truth of the null hypothesis

observed results for the sample are not statistically sig-

ni�cantly di�erent from zero, and thus themagnitude

of the observed result is meaningless. Hence, e�ect

sizes are only meaningfully reported in conjunction

with a statistically signi�cant hypothesis test.

. Experiment-wise Type I error. It is universally rec-

ommended that prudent statisticians should con-

duct preliminary tests of underlying assumptions

(e.g., homoscedasticity, normality) prior to testing for

e�ects. It is asserted that this does no harm to the

experiment-wise Type I error rate. However, Monte

Carlo evidence demonstrates that the experiment-

wise Type I error rate will in�ate if preliminary tests

are conducted without statistical adjustment for mul-

tiple testing. Moreover, there will be a Type I in�ation

even if the decision to proceed is based on eye-balling

the data.

. Con�dence Intervals. Con�dence intervals have

recently been promoted over the use of hypothesis

tests for a litany of unsupported reasons. (a) Among

its supposed bene�ts is the assertion that con�dence

intervals providemore con�dence than do hypothesis

tests.�is is based on the fallacy that con�dence inter-

vals are based on some system of probability theory

other than that of hypothesis tests, when in fact they

are the same. (b) Another prevalent misconception is

con�dence intervals must be symmetric.

. 7Robust statistics. Typically, proposed expansions of
descriptive robust statistics into inferential proce-

dures are substantiated via comparisons with para-
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metric methods. It is rare to �nd direct comparisons

of inferential robust statistics with nonparametric

procedures. (a) It is asserted that robust descrip-

tive statistics maintain their robustness when evolved

into inferential counterparts. �is is a fallacy, how-

ever, because robust descriptive statistics were derived

under parametric models confronted with pertur-

bations. �erefore, Monte Carlo studies show they

exhibit in�ated Type I errors in many layouts. (b) It

is similarly asserted that robust inferential statistics

are high in comparative statistical power, but they are

generally less powerful than rank based nonparamet-

ric methods when testing hypotheses for which the

latter are intended.

. 7Permutation tests. Permutation analogs to paramet-
ric tests are correctly stated to have equal power,

and indeed can rehabilitate parametric tests’ poor

Type I error properties. However, it is incorrectly

asserted that they are more powerful than nonpara-

metric methods when testing for shi� in location,

when in fact the power spectrum of permutation tests

generally follows (albeit somewhat higher) the power

spectrum of their parametric counterparts, which

is considerably less powerful than nonparametric

procedures.

. Exact statistics. Exact statistics, recently prevalent due

to the advent of statistical so�ware, are o�en adver-

tised by so�ware venders as being the most powerful

procedure available to the statistician for the analy-

sis of small samples. Actually, the advantage of exact

statistics is that the p values are correct, but as o�en as

not a smaller p value will result from the use of tabled

asymptotic p values.

. Parametric tests.�e t and F tests are asserted to be

(a) completely robust to Type I errors with respect

to departures from population normality, (b) gener-

ally robustwith respect to departures frompopulation

homoscedasticity, and (c) at least somewhat robust

with respect to departures from independence. All

three of these assertions are patently false. (d) Para-

metric tests are incorrectly asserted to trump the need

for random selection or assignment of data, particu-

larly due to Sir Ronald Fisher’s paradigm of analysis

on the data at hand.

(e) Parametric tests (e.g., t,F) are asserted to

be more powerful than nonparametric tests (e.g.,

Wilcoxon Rank Sum (see 7Wilcoxon–Mann–
Whitney Test), Wilcoxon Signed Ranks

(see 7Wilcoxon-signed-rank test)) when testing for
shi� in location. In fact, for skewed distributions,

the nonparametric tests are o�en three to four times

more powerful than their parametric counterparts. (f)

As sample size increases, these parametric tests are

asserted to increase their power advantages over non-

parametric tests. In fact, the opposite is true until the

upper part of the power spectrum is reached (e.g., the

ceiling is ) when the parametric tests eventually con-

verge with the nonparametric test’s statistical power.

. Nonparametric rank tests.�e assertions denigrating

the Wilcoxon tests are so pervasive (to the extent

that the two independent samples case is more fre-

quently attributed as the Mann Whitney U, even

though Wilcoxon had priority by  years) that the

reader is referred to Sawilowsky () for a list-

ing of  frequently cited fallacies, misconceptions,

and myths. Among the highlights are the incorrect

beliefs that (a) the uniformly most powerful unbiased

moniker follows the usage of the parametric t test for

data sampled from nonnormally distributed popula-

tions, (b) theWilcoxon tests should only be used with

small data sets, (c) the Wilcoxon tests should only be

used with ordinal scaled data, and (d) the Wilcoxon

tests’ power properties are oblivious to 7outliers.
. χ. (a) We live in a χ society due to political cor-

rectness that dictates equality of outcome instead of

equality of opportunity.�e test of independence ver-

sion of this statistic is accepted sans voire dire bymany

legal systems as the single most important arbiter of

truth, justice, and salvation. It has been asserted that

any statistical di�erence between (o�en even nonran-

domly selected) samples of ethnicity, gender, or other

demographic as compared with (o�en even inaccu-

rate, incomplete, and outdated) census data is pri-

mae faciea evidence of institutional racism, sexism, or

other ism. A plainti� allegation that is supportable by

a signi�cant χ is o�en accepted by the court (judges

and juries) praesumptio iuris et de iure. Similarly, the

goodness of �t version of this statistic is also placed

on an unwarranted pedestal.

In fact, χ is super powered for any arbitrary large

number of observations. For example, in the good-

ness of �t application where the number of observed

data points is very large and the obtained χ can be

of an order of magnitude greater than three, there is

the custom not to even bother with the divisor Ei,

and instead to proclaim a good �t if the new empir-

ical process results in a reduced obtained value of the

numerator.�e converse is true where the number of

observed data points are small (e.g., N <  or ),
in which case the χ test of independence is among

the least powerful methods available in a statistician’s

repertoire.
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. Stepwise regression. Stepwise (or “unwise”, Leamer

) regression and replicability are two mutually

exclusive concepts. It is asserted to be an appropriate

datamining technique (see7DataMining). However,
it is analogous to talking awalk in the dark in the park,

tripping over a du�e bag, inspecting the bag and �nd-

ing data sheets crumpled together, transcribing and

entering the data into a statistical so�ware program,

having the so�ware command the CPU to regress all

possible combinations of independent variables on

the dependent variable until the probability to enter

has been met, reporting the results, and eyeballing

the results to construct an explanation or prediction

about an as yet unstated research hypothesis.�ere is

nothing scienti�cally rigorous about Stepwise regres-

sion, even when it is adorned with the appellation

of nonmodel-based regression. It is tantamount to a

search for Type I errors.

. ANOVA main and interaction e�ects. (a) It is asserted

that because certain transformations can be invoked

to make interaction e�ects apparently vanish, main

e�ects are real and interaction e�ects are illusion-

ary. Actually, it is easily demonstrated through sym-

bolic modeling that main e�ects in the presence of

interactions are spurious.

(b) It is a misguided tendency to interpret sig-

ni�cant main e�ects �rst and signi�cant interaction

e�ects second.�e correct interpreting and stopping

rules (see Sawilowsky a) are to begin with the

highest order e�ect, and cease with the highest order

statistically signi�cant e�ect(s) on that level.

For example, in a  ×  ×  ANOVA layout,
meaningful interpretation begins with the a × b × c
interaction. Analysis should cease if it is statistically

signi�cant. If it is not, then the focus of analysis

descends to the a × b, a × c, and b × c lower order
interactions. If none are statistically signi�cant, it is

then appropriate to give attention to the a, b, and

c main e�ects. (c) It is true that MANOVA is use-

ful even when there are only univariate hypothe-

ses, because the sole reason for invoking it is to

provide increased statistical power.�us, it is mean-

ingful to follow with univartiate tests to provide fur-

ther insight a�er a statistically signi�cant MANOVA

result. However, it is a misconception that so-called

step-down univariate tests are necessary, or meaning-

ful, to interpret a statistically signi�cant MANOVA

that was conducted to examine amultivariate hypoth-

esis, which by de�nition is multivariate because it

consists of hopelessly intertwined dependent vari-

ables (see Sawilowsky a).

. ANCOVA. (a)�is procedure is the Catch- of sta-

tistical methods. Because it is erroneously assumed

to correct for baseline di�erences, and baseline di�er-

ences are concomitant with the lack of

7randomization, the myth has arisen that using
ANCOVA rehabilitates the lack of randomization.

Unfortunately, to be a legitimate test ANCOVA

requires randomization, only a�er which it serves to

decrease the error term in the denominator of the F

ratio, and hence increase statistical power.

(b) ANCOVA, even when legitimately applicable

due to randomization, is used to control for unwanted

e�ects.�e logic of partitioning and then removing

sums of squares of an e�ect known to be signi�cant is

nearlymeritless. It is by farmore realistic to retain and

model the unwanted e�ects by entering it (by some

technique other than dummy coding) into a general

linear model (i.e., regression) than it is to remove it

from consideration.

Consider a hypothetical treatment for the fresh

water �sh disease ichthyophthirius multi�lis (ich).

Suppose to determine its e�ectiveness the following

veterinarian prescribed treatment protocol must be

followed: () Remove the water while the �sh remain

in the aquarium. () Wait ten days until all mois-

ture is guaranteed to have evaporated from the �sh.

() Apply Sawilowsky’s miracle ich-b-goneTMr© salve

to the �sh. () Wait an additional ten days for the

salve to completely dry. () Re�ll the aquarium with

water. Results of the experiment show no evidence of

ich. Hence, the salve is marketable as a cure for ich,

controlling for water.

(c) �ere is a propensity, especially among doc-

toral dissertation proposals, and proposals submitted

to funding agencies, to invoke as many covariates into

ANCOVA as possible, under themistaken impression

that any covariate will reduce the error term and result

in a more powerful test. In fact, a covariate must be

carefully chosen. If it is not highly correlated with the

dependent variable the trivial sum of squares that it

may remove from the residual in the denominatorwill

not overcome the impact of the loss of the df, result-

ing in a less powerful test. See Sawilowsky (b) for

other myths regarding ANCOVA.

. Readership’s view on publication di�ers from retrac-

tion and errata. One of the most unfortunate, and

sometimes insidious, characteristics of peer reviewed

statistical outlets is the propensity to publish new and

exciting statistical procedures that were derived via

elegant squiggles, but were never subjected to Monte

Carlo or other real data analysis methodologies to
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determine their small samples Type I error and power

properties. It appears that the more prestigious the

outlet, the greater is the reluctance in publishing sub-

sequent notices to the readership that the statistic or

procedure fails, is severely limited, or has no practical

value. If an editor imagines an article is so important

to the readership that it is publishable, it is a miscon-

ception for editors to presume that the same reader-

ship would be uninterested in subsequently learning

that the article was erroneous.

Some editors and reviewers, in an e�ort to pro-

tect the prestige of the outlet, create great barriers to

correcting previously published erroneous work, such

as demanding that the critical manuscript also solve

the original problem in order to be worthy of publi-

cation (e.g., Hyman ). For example, this removes

oversight if an ine�ective or counter-productive cure

for cancer was published by demanding the rebuttal

author �rst cure cancer in order to demonstrate the

published cure was vacuous.

. Mathematical and applied statistics/data analysis. It

is a myth that mathematical statistics and applied

statistics/data analysis share a common mission and

toolkit. �e former is a branch of mathematics,

whereas the latter are not.�e consumer of real world

statistics rejoices over an innovation that increases

the ability to analyze data to draw a practical conclu-

sion that will improve the quality of life, even if the

memoir in which it was enshrined will never appear

in theAmericanMathematical Society’sMathematical

Reviews and itsMathSciNet online database.

. Statisticians, authors of statistical textbooks, and statis-

tics. �e following are myths: (a) Statisticians are

subject matter experts in all disciplines. (b) Statisti-

cians are mathematician wannabes. (c) Anyone who

has a cookbook of statistical procedures is a quali�ed

statistician. Corollary: Only the British need to certify

statisticians. (d)Anyonewhohas taken an undergrad-

uate course in statistics is quali�ed to teach statistics

or serve as an expert witness in court. (e) Statis-

tics textbooks are free from computational errors.

(f) Statistics textbook authors are consistent in their

use of symbols. (g) If three randomly selected statis-

tics textbook authors opine the same view it must

be true. Corollary: It is a myth that if a statistical

topic is examined in three randomly selected statis-

tics textbooks the explanations will be i.i.d. (h) t, F,

regression, etc., aren’t statistics – they are data analy-

sis. (i) It is amyth that statistics can be used to perform

miracles.
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Statistical genetics broadly refers to the development and

application of statistical methods to problems arising in

genetics. Genetic data analysis covers a broad range of top-

ics, from the search for the genetic background a�ecting

manifestation of human diseases to understanding genetic

traits of economic importance in domestic plants and ani-

mals.�e nature of genetic data has been evolving rapidly,

particularly in the past decade, due mainly to ongoing

advancements in technology.

�e work over a century ago of Gregor Mendel, using

inbred pea lines that di�ered in easily scored character-

istics, marks the start of collecting and analysing genetic

data. Today we can easily, and relatively inexpensively,

obtain many thousands, even millions or more, of genetic

and phenotypic, as well as environmental, observations on

each individual. Such data include high-throughput gene

expression data, single nucleotide polymorphism (SNP)

data and high-throughput functional genomic data, such

as those that examine genome copy number variations,

chromatin structure, methylation status and transcrip-

tion factor binding. �e data are being generated using

technologies like microarrays, and very recently, next-

generation sequencing. In the next few years, it is antici-

pated that it will be possible to sequence an entire human

genome for $, in a matter of days or even hours.�e

sheer size and wealth of these new data are posing many,

ongoing, challenges.

Traditionally there have been close links between

developments in genetics and in statistics. For example Sir

RA Fisher’s proposal of 7analysis of variance (ANOVA)
can be traced back to the genetic problems in which he was

interested. It is not widely known that probabilistic graph-

ical models have their origins at about the same time in

S Wright’s genetic path analysis. A current thrust of mod-

ern statistical science concerns research into methods for

dealing with data in very high dimensional space, such

as is being generated today in molecular biology labora-

tories. New opportunities abound for analysing extremely

complex biological data structures.

Basic analyses of genetic data include estimation of

allele and haplotype frequencies, determining if Hardy-

Weinberg equilibrium holds, and evaluating linkage dise-

quilibrium. Statistical analyses of sequence, structure and

expression data cover a range of di�erent types of data and

questions, from mapping, to �nding sequence homolo-

gies and gene prediction, and to �nding protein structure.

Although many tools appear ad hoc, o�en it is found that

there are some solid, statistical underpinnings. For exam-

ple, the very widely used heuristic computational biology

tool, Basic Local Alignment Sequence Tool (BLAST) is

based on random walk theory (see 7RandomWalk).
In animal and plant breeding, there are a range of

approaches to �nding and mapping quantitative trait loci,

in both inbred lines and outbred pedigrees. Population

genetics is a large topic in its own right, and is con-

cerned with the analysis of factors a�ecting the genetic

composition of a population. Hence it is centrally con-

cerned with evolutionary questions, namely the change in

the genetic composition of a population over time due to
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natural selection, mutation, migration, and other factors.

�e knowledge of the structure of genes as DNA sequences

has completely changed population genetics, including ret-

rospective theory, in which a sample of genes is taken,

DNA sequence determined, and the questions relate to

the way in which, through evolution, the population has

arrived at its presently observed state. For intrapopula-

tion genetic inferences, coalescent theory (whereby from

a sample of genes one traces ancestry back to the common

ancestor) is fundamental. Evolutionary genetics is another,

huge, topic. Many approaches have been developed for

phylogenetic analyses, from applying likelihood methods,

to use of parsimony and distance methods. In forensics,

the use of DNA pro�les for human identi�cation o�en

requires statistical genetic calculations. �e probabilities

for a matching DNA pro�le can be evaluated under alter-

native hypotheses about the contributor(s) to the pro�le,

and presented as likelihood ratios. Conditional probabil-

ities are needed, namely the probabilities of the pro�les

given that they have already been seen, and these depend

on the relationships between known and unknown people.

Genetic epidemiology is a growing area, especiallywith

current research to �nd the genes underpinning complex

genetic diseases. “Methodological research in genetic epi-

demiology (is developing) at an ever-accelerating pace, and

such work currently comprises one of themost active areas

of methodological research in both 7biostatistics and epi-
demiology. �rough an understanding of the underlying

genetic architecture of common, complex diseasesmodern

medicine has the potential to revolutionize approaches to

treatment and prevention of disease” (Elston et al. ).

Pharmacogenetics research is concerned with the identi-

�cation and characterization of genes that in�uence indi-

vidual responses to drug treatments and other exogenous

stimuli.Modern pharmacogenetics involves the evaluation

of associations between genetic polymorphisms and out-

comes in large-scale clinical trials typically undertaken to

evaluate the e�cacy of a particular drug in the population

at large. Meta-analysis methods (see 7Meta-Analysis) are
an increasingly important tool formodern genetic analysis.

A starting point for the whole area of statistical

genetics is the “Handbook” (Balding et al. ) that

is also available online. Interestingly, the �nal chap-

ter addresses ethics in the use of statistics in genet-

ics. An encyclopaedic approach is used in the reference

text of Elston et al. (). So�ware also is prolif-

erating, and a good starting point is the suite of R

packages in the Comprehensive R Archive Network

(CRAN) Task View: Statistical Genetics (http://cran.r-

project.org/web/views/Genetics.html) and in Bioconduc-

tor (http://www.bioconductor.org), an open source and

open development so�ware project for the analysis of

genomic data.
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At the heart of statistics lie the ideas of statistical inference.

Methods of statistical inference enable the investigator to

argue from the particular observations in a sample to the

general case. In contrast to logical deductions from the

general case to the speci�c case, a statistical inference can

sometimes be incorrect. Nevertheless, one of the great

intellectual advances of the twentieth century is the real-

ization that strong scienti�c evidence can be developed on

the basis of many, highly variable, observations.

�e subject of statistical inference extends well beyond

statistics’ historical purposes of describing and displaying

data. It deals with collecting informative data, interpreting

these data, and drawing conclusions. Statistical inference

includes all processes of acquiring knowledge that involve

fact �nding through the collection and examination of

data.�ese processes are as diverse as opinion polls, agri-

cultural �eld trials, clinical trials of newmedicines, and the

studying of properties of exotic new materials. As a con-

sequence, statistical inference has permeated all �elds of

human endeavor in which the evaluation of information

must be grounded in data-based evidence.
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A few characteristics are common to all studies involv-

ing fact �nding through the collection and interpretation

of data. First, in order to acquire new knowledge, rele-

vant data must be collected. Second, some variability is

unavoidable even when observations are made under the

same or very similar conditions.�e third, which sets the

stage for statistical inference, is that access to a complete

set of data is either not feasible from a practical standpoint

or is physically impossible to obtain.

To more fully describe statistical inference, it is neces-

sary to introduce several key terminologies and concepts.

�e �rst step in making a statistical inference is to model

the population(s) by a probability distribution which has a

numerical feature of interest called a parameter.�e prob-

lem of statistical inference arises once we want to make

generalizations about the population when only a sample

is available.

A statistic, based on a sample, must serve as the

source of information about a parameter. �ree salient

points guide the development of procedures for statistical

inference

. Because a sample is only part of the population, the

numerical value of the statistic will not be the exact

value of the parameter.

. �e observed value of the statistic depends on the

particular sample selected.

. Some variability in the values of a statistic, over di�er-

ent samples, is unavoidable.

�e two main classes of inference problems are esti-

mation of parameter(s) and testing hypotheses about the

value of the parameter(s).�e �rst class consists of point

estimators, a single number estimate of the value of the

parameter, and interval estimates. Typically, the interval

estimate speci�es an interval of plausible values for the

parameter but the subclass also includes prediction inter-

vals for future observations. A test of hypotheses provides

a yes/no answer as to whether the parameter lies in a

speci�ed region of values.

Because statistical inferences are based on a sample,

they will sometimes be in error. Because the actual value

of the parameter is unknown, a test of hypotheses may

yield the wrong yes/no answer and the interval of plausible

values may not contain the true value of the parameter.

Statistical inferences, or generalizations from the sam-

ple to the population, are founded on an understanding

of the manner in which variation in the population is

transmitted, via sampling, to variation in a statistic. Most

introductory texts (see Johnson and Bhattacharyya ;

Johnson, Freund, and Miller ) give expanded discus-

sions of these topics.

�ere are two primary approaches, frequentist and

Bayesian, for making statistical inferences. Both are

based on the likelihood but their frameworks are entirely

di�erent.

�e frequentist treats parameters as �xed but unknown

quantities in the distribution which governs variation in

the sample. �en, the frequentist tries to protect against

errors in inference by controlling the probabilities of

errors. �e long-run relative frequency interpretation of

probability then guarantees that if the experiment is

repeated many times only a small proportion of times will

produce incorrect inferences. Most importantly, using this

approach in many di�erent problems keeps the overall

proportion of errors small.

Frequentists are divided on the problem of testing

hypotheses. Some statisticians (Cox ) follow R. A.

Fisher and perform signi�cance tests where the decision

to reject a null hypothesis is based on values of the statis-

tic that are extreme in directions considered important

by subject matter interest. It is more common to take a

Neyman–Pearson approachwhere an alternative hypothesis

is clearly speci�ed together with the corresponding distri-

butions for the statistic. Power, the probability of rejecting

the null hypothesis when it is false, can then be optimized.

A de�nitive account of Neyman–Pearson theory is given in

Lehmann and Casella () and Lehmann and Romano

().

In contrast, Bayesians consider unknown parameters

to be random variables and, prior to sampling, assign a

prior distribution for the parameters. A�er the data are

obtained, the Bayesian takes the product prior times likeli-

hood and obtains the posterior distribution of the parame-

ter a�er a suitable normalization. Depending on the goal of

the investigation, a pertinent feature or features of the pos-

terior distribution are used to make inferences.�e mean

is o�en a suitable point estimator and a suitable region of

highest posterior density gives an interval of plausible val-

ues. See Box and Tiao () and Gelman et al. () for

discussions of Bayesian approaches.

A second phase of statistical inference,model checking,

is required for both frequentist and Bayesian approaches.

Are the data consonant with the model or must the model

be modi�ed in some way? Checks on the model are o�en

subjective and rely on graphical diagnostics.

D. R. Cox, gives an excellent introduction to statisti-

cal inference in Cox () where he compares Bayesian

and frequentist approaches and highlights many of the

important issues.

Statistical inferences have been extended to semipara-

metric and fully nonparametric models where functions

are the in�nite dimension parameters.
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With the advent of lasers and optical communication it was

realized that speci�c restrictions on the �delity of infor-

mation transmission due to quantum-mechanical nature

of a communication channel need be taken into account

and require a special approach. In the –s this

led to creation of a consistent quantum statistical deci-

sion theory which gave the framework for investigation

of fundamental limits for detection and estimation of the

states of quantum systems (Helstrom; Holevo ; ).

In this theory statistical uncertainty is described by using

mathematical apparatus of quantum mechanics – opera-

tor theory in a Hilbert space.�us, the quantum statistical

decision theory is a “noncommutative” counterpart of the

classical one which was based on the Kolmogorov prob-

ability model and both of them can be embedded into a

general framework (Holevo ). �e interest to quan-

tum statistical inference got the new impetus at the turn of

the century (Barndor�-Nielsen et al. ). In high preci-

sion and quantum optics experiments researchers became

able to operate with elementary quantum systems such

as single ions, atoms and photons leading to potentially

important applications such as quantum cryptography and

novel communication protocols. In currently discussed

proposals for quantumcomputing, the information iswrit-

ten into states of elementary quantum cells – qubits, and is

read o� via quantummeasurements.�erefore the issue of

extracting the maximum statistical information from the

state of a given quantum system becomes important. On

the other hand, building a consistent statistical theory of

quantum measurement has signi�cant impact onto foun-

dations of quantum mechanics resulting in clari�cation of

several subtle points. Last but not the least, quantum sta-

tistical inference has a number of appealing speci�cally
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noncommutative featureswhich open newperspectives for

avantgarde research in the mathematical statistics.

As in the classical statistical decision theory, there is a

set Θ of values of an unknown parameter θ, a setX of deci-
sions x and a loss function Lθ(x), de�ning the quality of
the decision x for a given value of parameter θ.�e di�er-

ence comes with the description of statistical uncertainty:

here to each θ corresponds a density operator ρθ in the sep-

arable Hilbert spaceH of the system. Density operator ρ is

a positive operator in H with unit trace, describing state
of the quantum system. In physical problems the quantum

system is the information carrier such as coherent electro-

magnetic �eld, prepared by transmitter in a state which

depends on the signal θ.

A decision rule is de�ned by a quantum measurement

with outcomes x ∈ X . In the case of �nite set X corre-
sponding to hypotheses testing (detection), decision rule is

described mathematically by a resolution of the identity in

H, i.e., the family of operatorsM = {Mx; x ∈ X} satisfying

Mx ≥ , ∑
x∈X
Mx = I, ()

where I is the identity operator.�e probability of making

decision x in the state ρθ is de�ned by the basic formula

generalizing the Born-von Neumann statistical postulate

PM(x∣θ) = TrρθMx.

Decision rule is implemented by a receivermaking a quan-

tum measurement and the problem is to �nd the optimal

measurement performance.

�e mean risk corresponding to the decision ruleM is

given by the usual formula

Rθ{M} = ∑
x∈X
Lθ(x)PM(x∣θ). ()

In this way one has a family {Rθ{M}, θ ∈ Θ} of a�ne
functionals de�ned on the convex set M(X ) of decision
rules ().�e notions of admissible, minimax, Bayes deci-

sion rule are then de�ned as in the classical Wald’s theory.

�e profounddi�erence lies in themuchmore complicated

convex structure of the sets of quantum states and decision

rules.

�e Bayes risk corresponding to a priori distribution π

on Θ is

Rπ{M} = ∫
θ∈Θ
Rθ{M}dπ(θ) = Tr∑

x∈X
L̂(x)Mx, ()

where

L̂(x) = ∫
θ∈Θ

ρθLθ(x)dπ(θ) ()

is the operator-valued posterior loss function. Bayes deci-

sion rule minimizing Rπ{M} always exists and can be

found among extreme points of the convex setM(X ). An
illustration of the e�ect of noncommutativity is the follow-

ing analog of the classical rule saying that Bayes procedure

minimizes posterior loss: M is Bayes if and only if there

exists Hermitian trace-class operator Λ such that

Λ ≤ L̂(x), (L̂(x) − Λ)Mx = , x ∈ X . ()

�e operator Λ plays here the role of the minimized pos-

terior loss.

�e Bayes problem can be solved explicitly in a number

of important cases, notably in the case of two hypotheses

and for the families of stateswith certain symmetry. In gen-

eral, symmetry and invariance play in quantum statistical

inferencemuch greater role; on the other hand, the concept

of su�ciency has less applicability because of the severe

restrictions onto existence of conditional expectations in

the noncommutative probability theory (Petz ).

�e optimum is found among the extreme points of

the convex set of decision rules which therefore play a

central role. In the classical case the extreme points are pre-

cisely deterministic decision rules.�eir quantum analog

are orthogonal resolutions of the identity satisfyingMxMy =
δxyMx in addition to (). However in the noncommuta-

tive case these form only a subset of all extreme decision

rules. According to a classical result of Naimark, any res-

olution of the identity can be extended to an orthogonal

one in a larger Hilbert space. In statistical terms, such an

extension amounts to an outer quantum randomization.

Consequently, there are quantumBayes problems in which

the optimal rule is inherently “randomized” (Holevo ).

�is paradoxical fact has a profound physical background,

namely, the measurement entanglement between the sys-

tem and the outer randomizer, which is a kind of intrinsi-

cally quantum correlation due to tensor product structure

of the composite systems in quantum theory. Notably, in

standard approach to quantum mechanics only orthogo-

nal resolutions of the identity (namely, spectral measures

of self-adjoint operators) were considered as representing

observables (i.e., random variables).�us, quantum statis-

tical decision theory gives a strong argument in favor of

the substantial generalization of the fundamental notion

of quantum observable.

As in the classics, the case of two simple hypothe-

ses ρ, ρ is the most tractable one: there are quantum

counterparts of the Neumann-Pearson criterion and of the

asymptotics for the error probability and for the Bayes risk

(the quantumCherno� bound). However the derivation of

these asymptotics is much more involved due to possible

noncommutativity of the density operators ρ, ρ (Hayashi

).
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In estimation problems Θ and X are parametric vari-
eties (typically X = Θ ⊂ Rs) and the decision rules are
given by positive operator-valued measures on Θ which

are (generalized) spectral measures for operators repre-

senting the estimates. Solution of the Bayes estimation

problem can be obtained by generalizing results for �nite

X with appropriate integration technique (Holevo ).
Explicit solutions are obtained for problems with sym-

metry and for estimation of the mean value of Bosonic

Gaussian states.�e last is quantum analog of the classi-

cal “signal+noise” problem, however with the noise having

quantum-mechanical origin and satisfying the canonical

commutation relations (Holevo ).

Quantum statistical treatment of models with the shi�

or rotation parameter provides a consistent approach to

the issue of canonical conjugacy and nonstandard uncer-

tainty relations in quantum mechanics, such as time-

energy, phase-number of quanta, as well as to approximate

joint measurability of incompatible observables. In the

quantum case estimation problems withmultidimensional

parameter are inherently more complex than those with

one-dimensional parameter. �is is due to the possible

non-commutativity of the components re�ecting existence

of incompatible quantities that in principle cannot be mea-

sured exactly in one experiment.�is sets new statistical

limitations to the components of multidimensional esti-

mates, absent in the classical case, and results in essential

non-uniqueness of logarithmic derivatives and of the cor-

responding quantum Cramér–Rao inequalities (Helstrom

; Holevo ).

Another special feature of quantum statistical infer-

ence appears when considering series of i.i.d. quantum

systems: the statistical information in quantum models

with independent observations can be strictly superaddi-

tive.�is means that the value of a measure of statistical

information for a quantum system consisting of indepen-

dent components can be strictly greater than the sum of

its values for the individual systems.�e property of strict

superadditivity is again due to the existence of entan-

gled (collective) measurements over the composite system

(Hayashi ).

One of the most important quantum estimation mod-

els is the full model, in which the state is assumed com-

pletely unknown. In the case of �nite dimensionality d this

is a parametric model with a speci�c group of symmetries

(the unitary group), in particular, for d =  it is the model
of unknown qubit state (i.e.,  × -density matrix), with
the three-dimensional Stokes parameter varying inside the

Bloch sphere. �e most advanced results here concern

the asymptotic estimation theory for the i.i.d. observa-

tions, culminating in the noncommutative analog of Le

Cam’s local asymptotic normality for estimation of an arbi-

trary mixed state of a �nite dimensional quantum system

(Guta and Kahn ; Hayashi ). �e full model in

in�nite dimensions belongs to nonparametric quantum

mathematical statistics, which is at present in a stage of

development. In this connection the method of homodyne

tomography of a density operator widely used in quantum

optics is particularly important (Artiles et al. ).

Quantum statistical decision theory provides power-

ful general methods for computing fundamental limits

to accuracy of physical measurements, which serve as

benchmarks for evaluating the quality of existing physical

measurement procedures. It also gives the mathematical

description of the optimal decision rule; however the quan-

tum theory in principle provides no universal recipe for

constructing a measuring device from the corresponding

resolution of the identity and such kind of problems have

to be treated separately in each concrete situation. Still,

in several cases methods of quantum statistical inference

give important hints towards the realization (based, e.g.,

on covariance with respect to the relevant symmetries)

and can provide an applicable description of the required

(sub)optimal measurement procedure (Artiles et al. ;

Hayashi ; Helstrom ) .
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Statistical inference for 7stochastic processes deals with
dependent observations made at time points in {, , ,⋯}
or [,∞).�us, the time parameter can be either discrete
or continuous in nature.

Markov Chains and Sequences
Let {Xt , t = , , , . . .} be a time-homogeneous L-

order Markov sequence with the state-space S. Let

pθ(xt ∣xt−, xt−,⋯xt−L)be the conditional probabilitymass
function(p.m.f.)orprobabilitydensity function(p.d.f.)ofXt
givenXt−,Xt−,⋯Xt−L, θ being an unknown parameter in
Θ, an open set in the K-dimensional Euclidean space.

�e (conditional) log-likelihood (given (X(),X(),⋯,

X(L))) is given by ln(LT(θ)) = ∑t=L,T ln[pθ(xt ∣xt−,
xt−,⋯, xt−L)], T > L. We assume that the conditional
p.m.f./p.d.f. satis�es the Cramer regularity conditions and

that {Xt , t = , , , . . .} is a strictly stationary and ergodic
sequence.�e Fisher Information matrix is de�ned by

I(θ) = (( −E[∂ ln(pθ(Xt ∣Xt−,Xt−,⋯Xt−L))/∂θ i∂θ j] ))

and is assumed to be positive de�nite (the expectation is

with respect to the joint distribution of (Xt ,Xt−,⋯,Xt−L)
and is computed under the assumption of stationarity).

Under these conditions, it can be shown that there exists a

consistent solution θ̂ of the likelihood equations, such that√
T(θ̂ − θ)→ NK(, [I(θ)]−) in distribution (Billingsley

). We apply the 7martingale central limit theorem
to the score function (i.e., the vector of ∂ ln(LT(θ))/∂θ i,

i = , ,⋯,K) (Billingsley ; Hall and Heyde ) and
the Strong Law of Large numbers for various sample aver-

ages of stationary and ergodic sequences to prove this

result.�e large-sample distribution theory of Likelihood

Ratio Tests (LRTs) and con�dence sets follows in a man-

ner similar to the case of independently and identically

distributed (i.i.d.) observations.

Some of the assumptions made above can be relaxed,

cf. Basawa andPrakasa Rao (), Chap. .�e LRT can be

used for selecting the order of a model by testing a model

against the alternatives of a higher order model. However,

the 7Akaike’s Information Criterion (AIC) and Bayes cri-
terion (BIC), respectively given by AIC = − lnLT(θ̂) + K
and BIC = − lnLT(θ̂) + K ln(T) are more appropriate
for selection of a model and an order.�e model with the

least AIC/BIC is selected. When S is �nite, the procedure

based onBIC yields a consistent estimator of the true order,

cf. Katz (). �e AIC is an inconsistent procedure, cf.

Davison (), Sect. .. For �nite Markov chains, Pear-

son’s χ-statistic can be used in place of the LRT for various

hypotheses of interest. Inmoderate samples, the chi-square

approximation to Pearson’s χ-statistic is better than the

same to LRT.

First order Markov models o�er a satisfactory �t to

observations somewhat infrequently. Lindsey (, p.

) discusses approaches based on 7logistic regression
and log-linear models (contingency table analysis) for

higher order �nite 7Markov chains. A distinct advan-
tage of such a modeling is that both time-dependent and

time-independent covariates can be incorporated, see dis-

cussion of Generalized Auto-Regressive Moving Average

(GARMA) models below. A limitation of such models is

that the conditional probabilities depend upon the numer-

ical values (coding) assigned to the states, which is not suit-

able for models for data without any numerical structure,

such as linguistic classes.
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Higher order Markov chains and sequences can be

handicapped by a large number of parameters. An impor-

tant Markov model of order L with a substantially small

number of parameters is due to Ra�ery () and it is

given by

pθ(xt ∣xt−, xt−,⋯xt−L) = ∑
l=,L

λlqxt−l ,xt , λl ≥ , ∑
l

λl = .

Here, qx,y is a transition probability matrix (t.p.m.) or a

transition density.�e model is known as Mixture Tran-

sition Density (MTD) model. For an M-state chain, the

number of parameters of the MTD model is M(M − ) +
L − , far less (particularly for M > ) than (ML)(M −
), the number of parameters in the corresponding satu-
rated Markov chain. In the MTD models, like the Auto-

Regressive (AR) time series models, we need to add only

a single parameter to the r-order model to get the (r +
)-order model. Wemay note that if the state-space is con-
tinuous or countably in�nite, the transition density qx,y is

a speci�ed function of K unknown parameters.

Non-Markovian Models

Hidden Markov Model (HMM). HMM was introduced

in speech recognition studies. It has a very wide range

of applications. Let {Yt , t = , , , . . .} be a �rst-order
Markov chain with the state-space Sy = {, ,⋯M} and the
one-step t.p.m. P. �e Markov chain {Yt , t = , , , . . .}
is not observable. Let {Xt , t = , , , . . .} be an observ-
able process taking values in Sx with M elements such

that P[Xt = j∣Yt = i,Yt−,⋯Y,Xt−⋯Xt−,⋯,X] = qij,
i ∈ Sx, j ∈ Sy.�us, ifM = M, the number of parameters
of a Hidden Markov chain is M(M − ) which is con-
siderably smaller than a higher order Markov chain. For

estimation of unobserved states {Yt , t = , , , . . .T} and
estimation of parameters, the Baum-Welsch algorithm is

widely used, which is an early instance of the Expectation-

Maximization (EM) algorithm.

For a discussion of Hidden Markov chains, we refer to

MacDonald and Zucchini () and Elliot et al. ().

Cappe et al. () give a thorough and more recent

account of a general state-space HMM.

ARMAModels for integer valued random variables. A non-

negative Integer-valued ARMA (INARMA) sequence is

de�ned as follows.�e binomial operator γ ○W is de�ned
by a binomial random variable with W as the number of

trials and γ as the success probability (if W = , γ ○
W = ). Let {Zt , t = ,±,±,⋯} be a sequence of
i.i.d. non-negative integer valued random variables with a

�nite variance.�en, the INARMA(p, q) process is de�ned
by Xt = ∑i=,p αi ○ Xt−i + ∑j=,q βj ○ Zt−j + Zt . All the

binomial experiments required in the de�nition of the pro-

cess are independent.�e process {Zt} is not observable.
�e process {Xt} is (second order) stationary if ∑ αi < 
and is invertible if ∑ βj < . An excellent review of such
processes has been given in McKenzie (). Interesting

special cases such as AR, MA and Poisson, Binomial, Neg-

ative Binomial as the stationary distributions are reported

therein.

GARMAmodels.�ese are extensions of the7Generalized
Linear Models based on an exponential family of dis-

tributions and can incorporate vector of time-dependent

covariates zt along with past observations. �e condi-

tional mean of Xt given the past is given by h(ηt) where
h− = g (say) is the link function of the chosen expo-

nential family and ηt = z′tγ +∑i=,p ϕi [g (xt−i) − z′t−iγ] +
∑j=,q θ j[g(xt−j) − ηt−j]. �e parameters {ϕi} and {θ j}
denote the auto-regressive andmoving average parameters

respectively.�e parameter γ explains the e�ect of covari-

ates. A modi�cation of the mean function is required to

take care of the range of the observations. A limitation of

this class of models is that in the absence of regressors or

when the vector γ is null, it may not be possible to have

a stationary series. We refer to Benjamin et al. () and

Fahrmeir and Tutz (), Chap.  for more details.

Bienayme-Galton-Watson Branching Process
Billingsley’s work based on martingale methods for deriv-

ing asymptotic properties of the maximum likelihood

estimator paved the way for many interesting theoretical

developments for non-ergodicmodels such as a Bienayme-

Galton-Watson (BGW) branching process.

Let {Xt , t = , ,⋯} be a BGW Branching process with
the state-space S = {, ,⋯} and the o�-spring distribu-
tion pk, k = , ,⋯. Parameters of interest are the o�spring
distribution and its functions such as the mean µ and the

variance σ . A number of estimators for µ have been sug-

gested: Lotka’s estimator XT/XT− (taken to be  if XT− =
), Heyde’s estimator (XT)/T and the nonparametricmax-
imum likelihood estimator µ̂T = (YT − X)/YT− with
Yt = X + X + . . . + Xt . �e maximum likelihood esti-
mator has a natural interpretation that it is the ratio of

the total number of o�-springs (in the realization) born

to the total number of parents. By using the Scott cen-

tral limit theorem for martingales (Scott ), it can be

shown that, on the non-extinction path,
√
YT−(µ̂T−µ)/σ

is asymptotically standard Normal. A natural estimator of

σ , resulting from regression considerations, is given by

(/T)∑t Xt−(Xt/Xt− − µ̂T). �is can be shown to be
consistent and asymptotic normal with

√
T-norming, if
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the fourth moment of the o�spring distribution is �nite.

�ese results are useful to construct tests and con�dence

intervals for µ.

Based on a single realization, only µ and σ  are

estimable on the non-extinction path of the process (i.e.,

consistent estimators exist for these parameters), if no

parametric form of the o�spring distribution is assumed.

A good account of inference for branching processes, their

extensions and related population processes along with

applications can be found in Guttorp ().

Non-parametric Modeling Based on
Functional Estimation
For a stationary process, where every �nite dimensional

distribution is absolutely continuous, we may opt for a

non-parametric approach. We estimate the conditional

density of Xt given Xt−,Xt−, . . . ,Xt−L by the ratio of
estimators of appropriate joint densities. �e joint den-

sity of p consecutive random variables is estimated by

a kernel-based estimator as follows. Let Kp(x) be a
probability density function, where x ∈ Rp, the p-

dimensional Euclidean space. Let hT be a sequence of

positive constants such that hT →  and �
p

T → ∞
as T → ∞. �e estimator of joint density of consec-
utive p observations at (x, x,⋯, xp) is then given by
f̂ (x, x,⋯, xp) = [/(�p

T)]∑j=,T−p K((x−Xj)/hT , (x−
Xj+)/hT ,⋯, (xp−Xj+p)/hT). Based on the estimator of the
conditional p.d.f., one can estimate the conditional mean

(or other parameters such as conditionalmedian ormode).

Properties of conditional density estimators are estab-

lished assuming that the random sequence {Xt , t =
, , ,⋯} satis�es certain mixing conditions. We dis-
cuss strong or α-mixing, since most of the other forms

of mixing imply the strong mixing. Let F,s be the σ-

�eld generated by the random variables (X,X,⋯,Xs)
and let Fs+t,∞ be the σ-�eld generated by the collec-

tion of random variables {Xs+t ,Xs+t+,⋯}.�e stationary
sequence {Xt , t = , , ,⋯} is said to be strong mixing
if supA∈F,s ,B∈Fs+t,∞{∣P(A⋂B) − P(A)P(B)∣} ≤ α(t) and
α(t)→  as t →∞. For most of the results, we need faster
rates of decay of α(t). Asymptotic properties of the kernel-
based estimator have been established in Robinson ()

who also illustrates how plots of conditional means can

be helpful in bringing out nonlinear relationships. Prakasa

Rao () discusses, in detail, non-parametric analysis of

time series based on functional estimation.

Non-parametric inference. Tests for median or tests and

estimation procedures based on order or rank statistics,

like the widely used tests in the case of i.i.d. observations

can be suggested. However, the exact distribution is nei-

ther free from the unknown parameters, nor it is known,

except in some special cases.�us, such procedures for sta-

tionary observations lack simplicity and elegance of the

rank-based tests. Further, robustness of an estimator is

much more complex for dependent observations, since

the e�ect of a spurious observation or an outlier (which

can be an innovation outlier in an ARMA model) spreads

over a number of succeeding observations. In an important

paper,Martin and Yohai () discuss in�uence functions

of estimators obtained from ARMA Time Series model.

Bootstrap. Efron’s Bootstrap (see 7Bootstrap Methods) for
i.i.d. samples is now routinely used to estimate the variance

or the sampling distributions of estimators, test statistics

and approximate pivotals. Inmost of the situations of prac-

tical interests, it gives amore accurate estimator of the sam-

pling distribution than the one obtained by the traditional

methods based on the Central Limit�eorem. In the i.i.d.

case, we obtain B bootstrap samples, each sample being a

Simple Random Sample With Replacement (SRSWR) of

size T from the observed sample.�is generates B values

of a statistic or pivotal of interest.

For a stationary AR model of order L, the �rst L val-

ues of a bootstrap series may be the same as those of the

observed time series.We take a SRSWR sample of sizeT−L
from residuals.�e randomly selected residuals are then

successively used to generate a bootstrap time series. We

then have B time series, each of length T. For stationary

and invertible MA or ARMA models, a bootstrap series is

constructed from a SRSWR sample of the residuals. Rest

of the methodology is the same as the usual bootstrap pro-

cedure. Bose () (AR models) and () (MAmodels)

has shown that such a bootstrap approximation to the sam-

pling distribution of the least square estimators is superior

to the traditional normal approximation.

Bootstrap procedures for (strictly) stationary and

ergodic sequence are based on blocks of consecutive obser-

vations. Bootstrap procedure is a boon for stochastic mod-

els, since in most of the cases, working out the variance of

a statistic or its sampling distribution is very complex. By

and large, it is beyond the reach of an end-user of statistics.

(Consider, for example, computing the variance of a  per

cent trimmed mean computed from stationary observa-

tions.) In a Moving Blocks Bootstrap (MBB)(Kunsch ;

Liu and Singh ), we form K blocks of L consecutive

observations to capture the dependence structure of the

process.�ere are N = T − L +  blocks of L consecutive
observations. We obtain a SRSWR of size K from these N

blocks to get a bootstrap sample of size T∗ = KL. If T is
divisible by L,K = T/L, otherwise, it can be taken to be the
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integer nearest to T/L. Let FT be the empirical distribution
function of T observations and let H be a functional on

the space of distribution functions, computed at FT (such

as the trimmedmean or a percentile). A bootstrap statistic

H∗ is computed from the empirical distribution function
of T∗ bootstrap observations. Other procedures are NBB
(Non-overlapping Blocks Bootstrap) and CBB (Circular

Blocks Bootstrap), cf. Lahiri (), Chap. . Carlstein

() considers non-overlapping subseries of size L.

Let us assume that L → ∞, T → ∞ such that

T/L → ∞. Kunsch has shown that the bootstrap estima-
tor of the variance of the normalized sample mean (

√
TX)

is consistent. (He further discusses jackknife procedures

wherein we delete a block at a time.)�e MBB procedure

correctly estimates the sampling distribution of the sample

mean.�is property holds for a large number of mean-like

statistics and smooth (continuously di�erentiable) func-

tions of the mean vector, see Lahiri ( p. ). Statistics

based on averages of consecutive observations or their

smooth functions (such as serial correlation coe�cients)

can be similarly bootstrapped. Second-order properties of

the bootstrap estimator of the sampling distribution of the

normalized/Studentized smooth functions of the sample

mean (vector) have been obtained by Lahiri () and

Gotze and Kunsch (). Let G(µ), a third order di�er-
entiable function of the population mean vector µ, be the

parameter of interest. While constructing the bootstrap

version of the pivotal, we need to considerG(X∗)−G(µ̂T),
where µ̂T = E∗(X∗). If the block length L is of the order
T/, the best possible error rate of theMBB approximation
for estimation of the distribution function is O(T−/).
�ough it is not as good as the accuracy that we have in the

case of i.i.d. or residual based ARMA bootstrap, it is still

better than the normal approximation to an asymptotic

pivotal. Optimal block lengths for estimator of variance

and the sampling distribution of a smooth statistics have

been discussed in Chap.  of Lahiri ().

Under certain conditions, it is possible to bootstrap the

empirical process, cf. Radulovic (). Such results as well

as those discussed above for block based bootstrap, assume

that the underlying process is strong mixing with a spec-

i�ed rate of decay of the mixing coe�cients along with

the block lengths L. We can construct con�dence bands

for the distribution function, by using the bootstrap dis-

tribution of the empirical process. Further, a number of

statistics such as natural estimators of a compactly dif-

ferentiable functional of the distribution function can be

bootstrapped. Such a class of estimators include most of

the estimators that we use in practice.

Kulperger and Prakasa Rao () discuss bootstrap

estimation of the sampling distribution of the estimator

of a suitable function of P, the one-step t.p.m. of a

�nite ergodic irreducible Markov chain.�ey consider the

expected value of time taken to reach a state from another

state of a Markov chain, as a parametric function P. Com-

puting the variance of such an estimator is very tedious.

Bootstrap samples are generated by regarding the maxi-

mum likelihood estimate of the t.p.m. P as the underlying

parameter.

State-space models (Doubly stochastic processes/Randomly

driven stochastic processes). Let {Xt , t = , ,⋯} be
an unobservable process. Let {Yt , t = , ,⋯} be an
observable process with the conditional p.m.f. or p.d.f.

f (y, y,⋯, yt ∣ x, x,⋯, xt) . In practice, o�en the process
{Xt , t = , ,⋯} is a Markov sequence and the condi-
tional distribution of Yt given (y, y,⋯, yt−, x, x,⋯, xt)
depends upon xt and yt− only. Such models are useful
in situations where parameters vary slowly over time. It

may be noted that models such as HMM, MTD or ARMA

among others can be conveniently viewed as state-space

models. Varying parameters can be modeled by a random

process, see Guttorp (, p. ) for an example involving

a two state Markov chain.

Counting and Pure Jump Markov
Processes
Let {X(t), t ≥ } be a counting process with X() = .
Let F(t−) be the complete history up to t but not includ-
ing t (technically the σ-�eld generated by the collection of

random variables {X(u),u < t}).�e intensity function
λ(t) can be stochastic (a random variable with respect to
F(t−)). It is characterized by the properties that P[X(t +
dt) − X(t) = ∣F(t−)] = λ(t)dt + o(dt), P[X(t + dt) −
X(t) = ∣F(t−)] =  − λ(t)dt + o(dt) and P[X(t +
dt) − X(t) ≥ ∣F(t−)] = o(dt) for small dt. We assume
that E(X(t)) < ∞ for every t. Let M(t) = X(t) −
E[X(t)∣F(t−)]. It can be shown that {M(t), t > } is
a continuous time martingale with respect to F(t−), i.e.,
E[M(t + s) − M(t) ∣ F(t−)] =  for every s > . Time-
dependent or time independent regressors can be included

in the intensity function λ(t).
Let the intensity λ(t) be λ(t, θ), a speci�ed function

of the time and the parameters θ. In practice, to informally

compute the likelihood, a partition t = , t, t, . . . , tN = T
of [,T] is selected and the likelihood for such a partition is
computed �rst. One then allows the norm of this partition

to converge to . It turns out that the likelihood is given by

ln(L(θ) = ∫ ln(λ(u, θ))dX(u) − ∫ λ(u, θ)I(u)du, where
I(t) = , if there is a jump at t and , otherwise. Such a
general formulation linking counting processes inference

withmartingales in continuous time is due toAalen ().
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Important special cases include (a) Poisson process

(see 7Poisson process) with λ(t) = λ for all t; (b) a

Non-homogeneous Poisson Process where λ(t) is a deter-
ministic function, (c) Pure birth process λ(t) = λX(t−),
and (d) Renewal process (see 7Renewal Processes) λ(t) =
h[t − t(x(t))] where h(t) is the failure rate or hazard
function of the absolutely continuous lifetime distribution

of the underlying i.i.d. lifetimes and t(x(t)) is the time
epoch at which the last failure before t takes place. (d)

Semi-Markov or Markov renewal process. Here the inten-

sity function depends on the state of the process at t(x(t))
and the state observed at t (assuming that there is an

event at t).

Inference for counting processes and asymptotic prop-

erties of the maximum likelihood estimators have been

discussed in Karr () and Andersen et al. ().

Likelihood of a time-homogeneous continuous time

Pure Jump Markov process follows similarly. Let, for i ≠ j,
P[X(t + dt) = j∣X(t) = i] = λijdt + o(dt) and let P[X(t +
dt) = i∣X(t) = i] = −Qiidt+o(dt).�e probability of other
events is o(dt). Here, Qii = −∑j≠i λij. If the state space is
�nite, each of the row-sums of the matrixQ = ((Qij)) is .
�e transition function P[X(t) = j∣X() = i] of the pro-
cess is assumed to be di�erentiable in t for every i, j.�e

log-likelihood, conditional on X() = x(), is given by
lnL = ∑i≠j Nij lnQij −∑i Qiiτi, where Nij is the number of
direct transitions from i to j and τi is the time spent in the

state i, both during [,T]. If the number of states is �nite,
the non-parametric maximum likelihood estimator of Qij
is given by Nij/τi. Properties of maximum likelihood esti-

mators have been discussed in Adke andManjunath ()

and Guttorp (, Chap. ). Important cases include (Lin-

ear or Non-linear) Birth-Death-Immigration-Emigration

processes and Markovian Queuing models.

Goodness of �t procedures are both graphical and for-

mal. �e Q-Q plot of the times spent in a state i scaled

by the maximum likelihood estimates of their expected

values, reveals departures from the exponential distribu-

tion. Since Nij’s form transition counts of the embedded

Markov chain, one can check whether such transitions

have any memory. If the model under study has a station-

ary distribution, the observed frequencies of the test can

be compared with the �tted stationary distribution, see

Keiding () who analyzes a Birth-Death-Immigration

process model.

Diffusion Processes
Let {X(t), t ≥ } be a di�usion process with µ(x, θ) and
σ (x) as the trend anddi�usion functions respectively.�e
likelihood for the observed path {X(t),  ≤ t ≤ T} is the

Radon-Nikodym derivative of the probability measure of

{X(t),  ≤ t ≤ T} under the assumed di�usion process
with respect to the probability measure of {X(t),  ≤ t ≤
T} under the assumption of a di�usion process with the
mean function equal to  for all x and the variance func-

tion σ (x). It is assumed that σ (x) is a known function.
�e log-likelihood is given by

ln(L(θ)) = ∫
,T
µ(x(t), θ)/(σ(x(t))dx(t)

− /∫
,T
µ
(x(t), θ)/(σ(x(t))dt.

(If the variance functions is unknown, a time transfor-

mation is used to reduce the process with a known variance

function.) Some special cases are (a) Brownianmotion, (b)

Geometric BrownianMotion, and (c)Ornstein-Uhlenbeck

process.
√
T− consistency and 7asymptotic normality of

the estimator of the mean of the process can be shown

under the assumption that the process is non-null persis-

tent (i.e., the process almost surely returns to any bounded

set and the corresponding mean return time is �nite). In

this case, we can obtain non-parametric estimators of the

common distribution function and the probability den-

sity function of X(t). We refer to Prakasa Rao (a)
and Kutoyants () for details. Kutoyants () also

discusses asymptotic distributions of the estimator of the

mean of the process in the null persistent case.

Observing a continuous time process may not be

always feasible. We choose a partition of [,T], write the
likelihood of such a partially observed process and then

take the limit as the norm of the partition tends to . Valid-

ity of such operations has been established in Kutoyants

(). Sorensen () gives an extensive review for

inference for stationary and ergodic di�usion processes

observed at discrete points.�e following techniques are

discussed therein: (a) estimating functions with special

emphasis onmartingale estimating functions and so-called

simple estimating functions, (b) analytical and numerical

approximations of the likelihood function which can, in

principle, be made arbitrarily accurate, (c) Bayesian analy-

sis and MCMC methods, and (d) indirect inference and

Generalized Method of Moments which both introduce

auxiliary (but wrong) models and correct for the implied

bias by simulation.

Statistical analysis and theoretical derivation of di�u-

sion processes (as well as counting processes) is based on

the theory of semimartingales. A semimartingale is a sum

of a local martingale and a function of bounded variation.

A class of di�usion processes and counting processes form
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a subclass of the family of submartingales. A uni�ed theory

of statistical inference for semimartingales is presented in

Prakasa Rao (b).

A fractional di�usion process is driven by the frac-

tional Brownian motion (see 7Brownian Motion and Dif-
fusions), which is not a semimartingale. Such processes

can be useful in modeling phenomena with long range

dependence, but the earlier techniques based on the theory

of semimartingales are not applicable. Statistical inference

for fractional di�usion processes has been discussed in

Prakasa Rao ().

Concluding Remarks
Computational aspects. Computation of likelihood and its

subsequent maximization are involved for most of the

stochastic models. �ere are many procedures such as

Kalman Filter, EM algorithm and Monte Carlo EM algo-

rithm (which is based on Markov Chain Monte Carlo

methods, see 7Markov Chain Monte Carlo), to compute
the likelihood and the maximum likelihood estimator.

From a computer programming view-point, implemen-

tation of the EM algorithm and its stochastic versions,

require a special routine for each model.�e conditional

expectation step may require extensive simulations from

a joint density, the constant of integration of which is not

known. For state-space models, one needs to carry out a

T-tuple integral (or a sum) to compute the likelihood. It

seems that various methods based on numerical analysis

to get a good approximation to the likelihood, its max-

imization and derivatives (which are needed to compute

standard error of the maximum likelihood estimator), are

preferred to other procedures. Possibly this is due to a very

slow rate for convergence of the EM algorithm (and its

stochastic versions) and yet another round of computa-

tions required to compute the estimator of the variance of

the maximum likelihood estimator.

Efficiency of Estimators
(a)Finite sampleoptimality.Godambe’scriterion(Godambe

) of a �nite sample optimality of an estimator is based

onoptimalityof theestimatingequation it solves.Under the

usual di�erentiability-based regularity conditions, an esti-

mating function g∗ is said to beoptimal inG, if itminimizes
E(g(A))/(E(∂g(A)/∂θ)). Let Ft be the σ−�eld gener-
atedbythecollectionofrandomvariables{Xs, s = , ,⋯, t}.
Let g(t, θ) be an Ft measurable random variable involving
θ, a real parameter, such that E[g(t, θ) ∣ Ft−] =  and
Var[g(t, θ) ∣ Ft−] = V(t). Let g(A) = ∑t A(t)g(t, θ),
where A(t) is an Ft− measurable random variable, t ≥ .
Let G = {g(A)} be the class of estimating functions g(A)
which satisfy the regularity conditions together with the

assumptions that E(g(A)) < ∞ and E(∂g(A)/∂θ) ≠ .
Godambe proves that the optimal choice ofA(t) is given by
E[∂g(t, θ)/∂θ ∣ Ft−]/V(t). In practice, we need to assume
that such optimal weights do not involve other (incidental

or nuisance) parameters.

A number of widely used estimators turn out to be

solutions of such an optimal estimating equations g∗ = .
Further, Godambe’s result justi�es the estimator for each

�nite sample size and in addition, it broadens the class

of parametric models to a larger class of semi-parametric

models, for which the estimating function is optimal.�e

score function is optimal in a class of regular estimat-

ing functions, justifying use of the maximum likelihood

estimator in �nite samples. Continuous time analogues of

these results with applications to counting processes have

been discussed in a number of papers in a volume edited

by Godambe () and Prakasa Rao and Bhat ().

Optimality of an estimating function in a class is also

equivalent to an optimal property of con�dence intervals

based on it. In large samples, the optimal g∗ leads to a
shortest con�dence interval for θ at a given con�dence

coe�cient. In a number of situations, the con�dence inter-

val, obtained from a Studentized estimating function, is

typically better than the approximate pivotal obtained by

Studentizing the corresponding estimator, in the sense that

the true coverage rate of the procedure based on estimat-

ing function is closer to the nominal con�dence coe�cient.

Bootstrapping the Studentized estimating function further

improves performance of the corresponding con�dence

interval.

(b) Asymptotic e�ciency. In non-ergodic models such as

a BGW process, large-sample e�ciency issues are rather

complex.�ough the random norming is convenient from

an application view-point, the non-random norming is

more appropriate and meaningful for e�ciency issues.

Further, notions of asymptotic e�ciency based on vari-

ance of an estimator are no more applicable, since the

variance of the asymptotic distribution for a large num-

ber of estimators does not exist. �e W-e�ciency of the

maximum likelihood estimator, under certain regularity

conditions, has been established by Hall and Heyde ()

and Basawa and Scott (). Estimators based on other

criteria can also beW-e�cient.�e Bayes estimator, under

certain conditions, is asymptotically distributed like the

maximum likelihood estimator.�is result is known as the

Bernstein-von Mises theorem and for its proof in the case

of stochastic processes, we refer to Chap.  of Basawa and

Prakasa Rao ().

Inference problems in stochastic processes have

enrichedboththeoreticalinvestigationsandappliedstatistics.
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�eoretical research in bootstrap, estimating functions,

functional estimation and non-Gaussian non-Markov pro-

cesses has widened scope of stochastic models. Use of fast

and cheap computing has been helpful in computing likeli-

hood,maximumlikelihoodestimatorsandBayesestimators

in very complicated stochastic models.
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Researchers in ecology and evolution have long recog-

nized the importance of understanding randomness in

nature in order to distinguish the underlying pattern. Sir

Francis Galton developed regression analysis to answer

questions about heredity; Karl Pearson’s systems of dis-

tributions were motivated by the desire to �t evolution-

ary data on the size of crab claws. Fisher’s contributions

from the fundamental theorem of evolution to �elds of

quantitative genetics, species abundance distributions and

measurement of diversity are legendary. Studies on the

geographic distribution of species led to the study of spatial

statistics in ecology in the early part of the th century.

�e classi�cation and discrimination methods developed

by Fisher and others for numerical taxonomy and commu-

nity ecology are still commonly used in ecology.

Unfortunately, Karl Pearson believed that causation

was an illusion of scienti�c perception, stating in the intro-

duction to the  rd edition of �e Grammar of Sci-

ence, “Nobody believes now that science explains anything;

we all look upon it as a shorthand description, as an

economy of thought.” Under Pearson’s in�uence, statisti-

cal techniques in ecology tended, until recently, to bemore

descriptive than predictive with a major early exception

of path analysis developed by Sewall Wright in the �rst

decades of the th century.

In curious contradiction, mathematical models used

by ecologists to model population dynamics and related

processes were highly sophisticated and predictive in

nature. For example, Lotka–Volterra models were devel-

oped in the s. Generalization of thesemodels tomulti-

species cases such as the Predator-Prey, Host-Parasitoid

and other systems of models were available soon a�er

that. Skellam () pioneered the use of spatial di�usion

processes to model spread of invasive species.

Gause’s work (Gause ) was unique in that he tried

to validate the mathematical models using experimental

data. He used non-linear regression to �t Logistic growth

model to the population growth series for paramecia.

Most of this work was based on the assumption that error

comes into the process only through observational inaccu-

racies, and thus he missed the modern nuance of inherent

randomness or process variation.

Statistical ecology received a large impetus in the s

a�er the publication of Professor E.C. Pielou’s numerous

classic books (e.g., Pielou ) and number of conferences

and the resultant edited volumes by Professor G.P. Patil

(e.g., Patil et al. ).�ese provided nice summaries of

what was known then and also indicated future directions.

Driven by the passage of the  Endangered Species Act

(ESA) and the dozens of other environmental laws passed

in the United States during the ’s the �eld of ecology

gained substantial prominence in the context of managing

and not simply describing ecosystems. �is necessitated

the development of models that were predictive and not

simply descriptive.
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Population Viability Analysis (PVA) where one uses

stochastic models to predict the distribution of extinction

times for a population or species of concern became an

important tool for studying the e�ect of various human

activities on nature. Political decisions regarding the con-

servation of species are o�en legally required by the

ESA to consider the results of a PVA. �e importance

of demographic and environmental stochasticity as well

as the measurement error in forecasting became appar-

ent. Expanding beyond a single population focus, the

development of meta-population theory was based on

probabilisticmodels for spatial dispersal and growth. Ecol-

ogists became more familiar and comfortable with the

idea of modeling randomness and studying its impact on

prediction. While much of what is modeled as random

in ecology undoubtedly represents unrecognized deter-

ministic in�uences, it seems likely that true stochastic-

ity is as much a fundamental part of ecology as it is in

physics. For example, demographic events such as the

sex of o�spring are truly random, and not simply the

consequence unrecognized deterministic in�uences. Such

demographic stochasticity strongly in�uences population

dynamics when population size is low.

Although stochastic models became prominent in the

s and s, statistical inference, the methods that con-

nect theoretical models to data, or inductive inference,

was still limited. Most of the statistical techniques used

were based on linear regression and its derivatives such

as the 7Analysis of Variance.�e main hurdles were lim-
ited data, limited computational power and mathemati-

cal nature of the statistical inferential tools. Dennis et al.

() and Dennis and Taper () made a major advance

by incorporating stochastic population dynamic models

as the skeleton for a full likelihood based inference in

ecological time series.

�e rapid rise in computational power available to

ecologists, coupled with the development of computa-

tional statistical techniques especially the bootstrap (see

7Bootstrap Methods) and Monte-Carlo approaches have
reduced the threshold of mathematical expertise neces-

sary to apply sophisticated statistical inference techniques

making the analysis of complex ecological models feasi-

ble.�is has provided signi�cant impetus for developing

strong inferential tools in ecology.

Following are some of the important examples of the

application of statistical thinking in ecology.

. Sampling methods for estimation of population abun-

dances and occurrences: Mark-Capture-Recapture

(Seber ) methods have formed an important tool

in the statistical ecology toolbox, but have also led

to development of new statistical methods that have

found applications in epidemiology and other sciences.

Capture probabilities may change temporally or spa-

tially. 7Generalized Linear models and mixed models
have proved their usefulness in these situations. Biases

due to visibility are adjusted using distance based sam-

pling methods. In many instances, it is too expensive

to conduct abundance estimation and one has to settle

for site occupancy models based on presence-absence

data. Site occupancy data and methods have made a

broader range of ecologists aware of the ubiquitous

nature of measurement error. Although a species may

be present, it may not be detected because of various

factors such as lack of visibility, time of the day when

birds may not be singing etc. (MacKenzie et al. ).

�is is an active area of research.

. Resource selection by animals: Ecologists need to know

what resources animals select and how does this selec-

tion a�ect their �tness and survival. Human develop-

ments such as dams or a gas pipe line across a habitat

that might be critical to the animals can doom their

survival. Recent technological advances such as GPS

collars and DNA analysis help in collecting informa-

tion on where animals spend their time and what they

eat.�e resource selection probability function (RSPF)

(Manly et al. ; Lele and Allen ) and habitat

suitability maps (Hirzel et al. ) have been essential

tools for environmental impact assessments (EIA) for

studying impact of various developments.

. Model identi�cation and selection:�e statistical mod-

els used for prediction can be either process driven

or phenomenological, “black box”, models (Breiman

). Predictions from ecological models are o�en

made for the distant and not the immediate future.�is

extrapolation makes it essential that ecological mod-

els be process driven.�e use of powerful likelihood

methods for analyzing population time series models

is a relatively new development. �e predictions are

strongly a�ected by the particular process basedmodel

chosen. �is has forced ecologist to consider many

models simultaneously and to search for good meth-

ods for 7model selection. Information based model
selection (Burnham and Anderson ) has received

considerable attention in this context. Although alter-

native methods andmodi�cations are constantly being

suggested and tested (Taper et al. ).

. Hierarchical models: �is is one of the most exciting

developments in statistical ecology. General hierarchi-

cal models are also known as latent variable models,

random e�ects models, mixed models and 7mixture
models. �ese models are natural models to account
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for the hierarchical structure inherent in many eco-

logical processes.�ey also simplify statistical analysis

in the presence of missing data, sampling variability,

covariates measured with error and other problems

commonly faced by ecologists. Reviews of the use of

hierarchical models in ecology are available in Royle

and Dorazio (), Cressie et al. () or Clark

and Gelfand (). Survival analysis methods and

random e�ects models have found important appli-

cations in avian nest survival studies (Natarajan and

McCulloch ). Linear mixed e�ects models have

been used in evolution and animal breeding since the

’s. However, generalization of those ideas to more

complex models was not possible until recently. Writ-

ing down the likelihood function for general hierar-

chical models is di�cult (Lele et al. ) and hence

use of standard likelihood based inference is not pop-

ular. On the other hand, non-informative Bayesian

inference using Markov Chain Monte Carlo algorithm

(see 7Markov Chain Monte Carlo) is computationally
feasible. �ese calculations are simulation based and

replicate the causal processes that ecologists seek to

understand. Due to its simplicity, the non-informative

Bayesian approach has become quite popular in ecol-

ogy. However, there are important philosophical and

pragmatic issues that should be considered before

using this approach (Lele and Allen , Lele and

Dennis ). Moreover, the recent development of

the data-cloning algorithm (Lele et al. ; Ponciano

et al. ) has removed the computational obstacle to

likelihood inference for general hierarchical models.

Powerful statistical methods are being developed for ecol-

ogy, generally coupled with so�ware.�e development of

accessible tools has greatly facilitated the application of

complex statistical analysis to ecological problems.�ese

advances have come at a cost. Researchers are under pres-

sure to be cutting edge and consequently tend to use tech-

niques because they are convenient and fashionable not

necessarily because they are appropriate.

Ecological statistics is vibrant and contributing greatly

to the advancement of the science, but what are the future

directions? One clear recommendation that can be made

is in the realm of teaching. Education in ecological statis-

tics has not kept pace with statistical practice in ecol-

ogy, and improvements are desperately needed (Lele and

Taper , Dennis ). While methods instruction will

always be essential, what is needed most by young ecol-

ogists is the development of strong foundational thinking

about the role of statistical inference in ecological research.

On the other hand, recommendations regarding the devel-

opment of new statistics are less clear. Techniques generally

follow the questions that need to be answered. However,

we are con�dent that while descriptive statistics and black

box prediction will have their place, the greatest advances

to knowledge in ecology will come from challenging the

probabilistic predictions from explicit models of ecologi-

cal process with data from well-designed experiments and

surveys.
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Introduction
Statistical inference concerns the application and appraisal

of methods and procedures with a view to learn from data

about observable stochastic phenomena of interest using

probabilistic constructs known as statistical models. �e

basic idea is to construct statistical models using proba-

bilistic assumptions that “capture” the chance regularities

in the data with a view to adequately account for the

underlying data-generating mechanism; see ? (?). �e

discussion that follows focuses primarily on frequentist

inference, and to a lesser extent on Bayesian inference.

�e perspective on statistical inference adopted here

is broader than earlier accounts, such as: “making infer-

ences about a population from a random sample drawn

from it” (Dodge ), in so far as it extends its intended

scope beyond random samples and static populations, to

include dynamic phenomena giving rise to observational

(non-experimental) data. In addition, the discussion takes

into account the fact that the demarcation of the intended

scope of statistical inference is intrinsically challenging

because it is commonly part of broader scienti�c inquiries;

see Lehmann (). In such a broader context statistical

inference is o�en preceded with substantive questions of

interest, combined with the selection of data pertaining

to the phenomenon being studied, and succeeded with the

desideratum to relate the inference results to the original

substantive questions.

�is special placing of statistical inference raises a

number of crucial methodological problems pertaining to

the adequateness of the statistical model to provide a well-

grounded link between the phenomenon of interest, at one

end of the process, and furnishing evidence for or against

the substantive hypotheses of interest, at the other. �e

link between the phenomenon of interest and the statis-

tical model – thru the data – raises several methodologi-

cal issues including: the role of substantive and statistical

information (Lehmann ), as well as the criteria for

selecting a statistical model and establishing its adequacy

Spanos ().�e link between the data – construed in

the context of a statistical model – and evidence for or

against particular substantive claims also raises a num-

ber of di�cult problems including the fact that “accept”

or “reject” the null hypothesis (or a small p-value) does

not mean that there is evidence for the null or the alterna-

tive, respectively. Indeed, one can make a case that most of

the foundational problems bedeviling statistical inference

since the s stem from its special place in this broader

scienti�c inquiry; see Mayo ().

Frequentist Statistical Inference
Modern statistical inference was founded by Fisher ()

who initiated a change of paradigms in statistics by

recasting the then dominating Bayesian-oriented induc-

tion, relying on large sample size (n) approximations

(Pearson ), into a frequentist statistical model-based

induction, relying on �nite sampling distributions, inspired

by Gosset’s () derivation of the Student’s t distribution

for any sample size n > . Before Fisher, the notion of a
statistical model was implicit, and its role was primarily

con�ned to the description of the distributional features
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of the data in hand using the histogram and the �rst few

sample moments. Unlike Karl Pearson who would com-

mence with data x: = (x, . . . , xn) in search of a frequency
curve to describe the histogramof x, he proposed to begin
with (a) a prespeci�ed model (a hypothetical in�nite pop-

ulation), and (b) view x as a realization thereof. Indeed,
he made the initial choice (speci�cation) of the prespeci-

�ed statistical model a response to the question: “Of what

population is this a random sample?” (Fisher , p. ),

emphasizing that: “the adequacy of our choice may be

tested a posteriori” (ibid., p. ).

The Notion of a Statistical Model
Fisher’s notion of a prespeci�ed statistical model can be

formalized in terms of the stochastic process {Xk, k∈N},
underlying data x.�is takes the form of parameterizing
the probabilistic structure of {Xk, k∈N} to specify a statis-
tical model:

Mθ(x) = { f (x; θ), θ ∈Θ}, x ∈ RnX , for Θ⊂Rm,
m < n. ()

f (x; θ) denotes the joint distribution of the sample X:
= (X, . . . ,Xn) that encapsulates the whole of the proba-
bilistic information inMθ(x), by giving a general descrip-
tion of the probabilistic structure of {Xk, k∈N} (Doob
).Mθ(x) is chosen to provide an idealized descrip-
tion of the mechanism that generated data x with a
view to appraise and address the substantive questions of

interest.

�e quintessential example of a statistical model is the

simple Normal model:

Mθ(x): Xk ∽ NIID(µ, σ ), θ: = (µ, σ )∈R×R+,

k = , , . . . ,n, . . . , ()

where “∽ NIID(µ, σ )” stands for “distributed as Normal,
Independent and Identically Distributed, with mean µ and

variance σ ”.

�e statistical modelMθ(x) plays a pivotal role in sta-
tistical inference in so far as it determines what constitutes

a legitimate:

(a) Event — any well-behaved (Borel) functions of the

sample X—
(b) Assignment of probabilities to legitimate events via

f (x; θ)
(c) Data x for inference purposes
(d) Hypothesis or inferential claim

(e) Optimal inference procedure and the associated error

probabilities

Formally an event is legitimate when it belongs to the

σ-�eld generated by X (Billingsley ). Legitimate data
come in the form of data x that can be realistically viewed
as a truly typical realization of the process {Xk, k∈N},
as speci�ed byMθ(x). Legitimate hypotheses and infer-
ential claims are invariably about the data-generating

mechanism and framed in terms of the unknown parame-

ters θ. Moreover, the optimality (e�ectiveness) of the var-

ious inference procedures depends on the validity of the

probabilistic assumptions constitutingMθ(x); see Spanos
().

�e interpretation of probability underlying frequen-

tist inference associates probability with the limit of rel-

ative frequencies anchored on the Strong Law of Large

Numbers (SLLN). “Stable relative frequencies” (Neyman

), i.e., one’s that satisfy the SLLN, constitute a cru-

cial feature of real-world phenomena we call stochastic.

�e long-runmetaphor associated with this interpretation

enables one to conceptualize probability in terms of view-

ing Mθ(x), x ∈ RnX as an idealized description of the
data-generating mechanism. �e appropriateness of this

interpretation stems primarily from its capacity to facilitate

the task of bridging the gap between stochastic phenomena

and the mathematical underpinnings ofMθ(x), as well as
elucidate a number of issues pertaining to modeling and

inference; see Spanos ().

Different Forms of Statistical Inference
Fisher (), almost single-handedly, put forward a fre-

quentist theory of optimal estimation, and Neyman and

Pearson () modi�ed Fisher’s signi�cance testing to

propose an analogous theory for optimal testing; see Cox

and Hinkley (). Optimality of inference in frequen-

tist statistics is de�ned in terms of the capacity of di�erent

procedures to give rise to valid inferences, evaluated in

terms of the associated error probabilities: how o�en these

procedures lead to erroneous inferences.

�e main forms of statistical inference in frequentist

statistics are: (a) point estimation, (b) interval estimation,

(c) hypothesis testing, and (d) prediction.

All these forms share the following features:

(a) Assume that the prespeci�ed statisticalmodelMθ(x)
is valid vis-à-vis data x.

(b) �e objective of inference is always to learn about

the underlying data-generating mechanism, and it is

framed in terms of the unknown parameter(s) θ.

(c) An inference procedure is based on a statistic (estima-

tor, test statistic,predictor), sayYn = g(X,X, . . . ,Xn),
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whose sampling distribution provides the rele-

vant error probabilities that calibrate its reliability.

In principle, the sampling distribution ofYn is derived

via:

P(Yn ≤ y) = ∫∫ ⋅ ⋅ ⋅∫
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

{x: g(x ,. . .,xn)≤y}

f (x; θ)dxdx⋯dxn. ()

Point estimation centers on amapping: h(.):RnX → Θ,
say θ̂n(X) = h(X,X, . . . ,Xn), known as an estimator of
θ. �e idea underlying optimal estimation is to select a

mapping h(.) that locates, as closely as possible, the true
value of θ; whatever that happens to be.�e quali�cation

“as closely as possible” is quanti�ed in terms of certain

features of the sampling distribution of θ̂n(X), known as
estimation properties: unbiasedness, e�ciency, su�ciency,

consistency, etc.; see Cox and Hinkley ().

A key concept in Fisher’s approach to inference is the

likelihood function:

L(θ; x) = ℓ(x) ⋅ f (x; θ), θ ∈Θ, ()

where ℓ(x) >  denotes a proportionality constant. Fisher
() de�ned the Maximum Likelihood (ML) estimator

θ̂ML(X) of θ to be the one that maximizes L(θ; x). He was
also the �rst to draw a sharp distinction between the esti-

mator θ̂(X) and the estimate θ̂(x), and emphasized the
importance of using the sampling distribution of θ̂(X) to
evaluate the reliability of inference in terms of the relevant

error probabilities.

Example In the case of the simple Normal model, the

statistics:

Xn =


n
Σ
n
k=Xk ∽ N(µ, σ 

n
),

s
 = 

(n − )
Σ
n
k=(Xk−Xn)

 ∽ ( σ 

n − 
) χ

(n−), ()

whereN (., .) and χ(.) denote theNormal and chis-square
distributions, constitute “good” estimators of (µ, σ ) is
terms of satisfying most of the above properties.

Point estimation is o�en considered inadequate for
the purposes of scienti�c inquiry because a “good” point

estimator θ̂n(X), by itself, does not provide any mea-
sure of the reliability and precision associated with the

estimate θ̂n(x). �is is the reason why θ̂n(x) is o�en
accompanied by some signi�cance test result (e.g., p-value)

associated with the generic hypothesis θ = .
Interval estimation recti�es this crucial weakness of

point estimation by providing the relevant error probabili-

ties associated with inferences pertaining to “covering” the

true value of θ.�is comes in the form of the Con�dence

Interval (CI):

P (L(X) ≤ θ ≤ U(X)) =  − α, ()

where the statistics L(X) and U(X) denote the lower
and upper (random) bounds that “covers” the true value

θ∗ with probability (−α), or equivalently, the “coverage
error” probability is α.

Example In the case of the simple Normal model:

P(Xn − c α

( s√
n
) ≤ µ ≤ Xn + c α


( s√
n
)) =  − α, ()

provides a (−α) Con�dence Interval (CI) for µ.�e eval-
uation of the coverage probability (−α) is based on the
following sampling distribution result:

√
n(Xn − µ)
s

∽ St(n−), ()

where St(n − ) denotes the Student’s t distribution with
(n − ) degrees of freedom, attributed to Gosset ().

What is o�en not appreciated su�ciently about esti-

mation in general, and CIs in particular, is the underlying

reasoning that gives rise to sampling distribution results

such as () and ().�e reasoning that underlies estimation

is factual, based on evaluating the relevant sampling dis-

tributions “under the True State of Nature” (TSN), i.e., the

true data-generating mechanism:M∗(x) = { f (x; θ∗)},
x ∈ RnX , where θ∗ denotes the true value of the unknown
parameter(s) θ. Hence, the generic CI in () is more accu-

rately stated as:

P (L(X) ≤ θ ≤ U(X); θ = θ
∗) =  − α, ()

where θ = θ∗ denotes ‘evaluated under the TSN’. �e
remarkable thing about factual reasoning is that one can

make probabilistic statements like (), with a precise error

probability (α), without knowing the true θ∗.

Example In the case of the simpleNormalmodel, the dis-

tributional results () and () aremore accurately stated as:

Xn
TSN∽ N(µ∗,

σ ∗
n

) , (n − )s

σ ∗

TSN∽ χ
(n−),

√
n(Xn − µ∗)

s

TSN∽ St(n−), ()

where θ∗: = (µ∗, σ ∗) denote the “true” values of the
unknown parameters θ: = (µ, σ ).
Prediction is similar to estimation in terms of its

underlying factual reasoning, but it di�ers from it in so

far as it is concerned with �nding the most representative
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value ofXk beyond the observed data, sayXn+. An optimal
predictor of Xn+ is given by:

X̂n+ = Xn, ()

whose reliability can be calibrated using the sampling

distribution of the prediction error:

ûn+ = (Xn+ − Xn) TSN∽ N(, σ ∗ ( +


n
)) , ()

to construct a (−α) prediction interval:

P
⎛
⎝
Xn − c α



⎛
⎝
s

√
( + 

n
)
⎞
⎠
≤ Xn+ ≤ Xn

+c α


⎛
⎝
s

√
( + 

n
)
⎞
⎠
; θ = θ

∗⎞
⎠
=  − α. ()

Hypothesis testing. In contrast to estimation, the rea-
soning underlying hypothesis testing is hypothetical. �e

sampling distribution of a test statistic is evaluated under

several hypothetical scenarios concerning the statistical

modelMθ(x), referred to as “under the null” and “under
the alternative” hypotheses of interest.

Example Consider testing the hypotheses in the context

of ():

H: µ ≤ µ vs. H: µ > µ. ()

What renders the hypotheses in () legitimate is that:

(a) they pose questions concerning the underlying data-

generating mechanism, (b) they are framed in terms of

the unknown parameter θ, and (c) in a way that partitions

Mθ(x). In relation to (c), it is important to stress that even
in cases where substantive information excludes or focuses

exclusively on certain subsets (or values) of the parameter

space, the entire Θ is relevant for statistical inference pur-

poses. Ignoring this, and focusing only on the substantively

relevant subsets of Θ, gives rise to fallacious results.

�e N-P test for the hypotheses () Tα :={τ(X),
C(α)}, where:

τ(X) =
√
n(Xn−µ)
s

, C(α) = {x: d(x) > cα}, ()

can be shown to beUniformlyMost Powerful (UMP) in the

sense that, its type I error probability (signi�cance level) is:

(a) α = maxµ≤µP(x: τ(X) > cα ;H)
= P(x: τ(X) > cα ; µ = µ), ()

and among all the α-level tests Tα has highest power

(Lehmann ):

(b) P(x : τ(X) > cα ; µ = µ), for all µ > µ,
µ = µ+γ, γ ≥ ; ()

In this sense, aUMP test provides themost e�ective α-level

probing procedure for detecting any discrepancy (γ ≥ ) of
interest from the null.

To evaluate the error probabilities in () and () one

needs to derive the sampling distribution of τ(X) under
several hypothetical values of µ relating to ():

(a) τ(X) µ=µ∽ St(n−), (b) τ(X) µ=µ∽ St(δ(µ);n−),
for any µ > µ, ()

where δ(µ) =
√
n(µ−µ)

σ
is known as the non-centrality

parameter.�e sampling distribution in (a) is also used

to evaluate Fisher’s () p-value:

p(x) = P(x: τ(X) > τ(x); µ = µ), ()

where a small enough p(x) can be interpreted as indicat-
ing discordance with H.

Remark It is unfortunate that most statistics books use

the vertical bar (∣) instead of the semi-colon (;) in for-
mulae ()–() to denote the evaluation under H or H,

as it relates to (), encouraging practitioners to misin-

terpret error probabilities as being conditional on H or

H; see Cohen (). It is worth emphasizing these error

probabilities are: () never conditional, () always assigned

to inference procedures (never to hypotheses), and ()

invariably depend on the sample size n > .

Comparing the sampling distributions in () with

those in () brings out the key di�erence between hypo-

thetical and factual reasoning: in the latter case there is

only one unique scenario, but in hypothetical reasoning

there is usually an in�nity of scenarios. �e remarkable

thing about hypothetical reasoning is that one can pose

sharp questions by comparingMθ(x), x ∈ RnX , for dif-
ferent hypothetical values of θ, with M∗(x), to learn
aboutM∗(x), x ∈ RnX .�is o�en elicits more informative
answers from x than factual reasoning.�is di�erence is
important in understanding the nature of the error proba-

bilities associated with each type of inference as well as in

interpreting the results of these procedures.

In particular, factual reasoning can only be used pre-

data to generate the relevant error probabilities, because

when data x is observed (i.e., post-data) the unique factual
scenario has been realized and the sampling distribution

in question becomes degenerate.�is is the reason why the

p-value in () is a well-de�ned post-data error probability,

but one cannot attach error probabilities to an observedCI:

(L(x) ≤ θ ≤ U(x)) ; see the exchange between Fisher
() and Neyman (). In contrast, the scenarios in

hypothetical reasoning are equally relevant to both pre-

data and post-data assessments. Indeed, one can go a long
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way towards delineating some of the confusions surround-

ing frequentist testing, as well as addressing some of the

criticisms leveled against it – statistical vs. substantive sig-

ni�cance, with a large enough n one can reject any null

hypothesis, no evidence against the null is not evidence for

it – using post-data error probabilities to provide an evi-

dential interpretation of frequentist testing based on the

severity rationale; see Mayo and Spanos () for further

discussion.

Bayesian Inference
Bayesian inference also begins with a prespeci�ed statistical

modelMθ(x), as speci�ed in (), but modi�es it in three
crucial respects:

() Probability is now interpreted as (subjective or ratio-

nal) degrees of belief (not as the limit of relative fre-

quencies).

() �e unknown parameter(s) θ are now viewed as ran-

dom variables (not as constants) with their own dis-

tribution π(θ), known as the prior distribution.
() �e distribution of the sample is now viewed as con-

ditional on θ, and denoted by f (x ∣ θ) instead of
f (x; θ).

All three of these modi�cations have been questioned

in the statistics literature, but the most prominent contro-

versies concern the nature and choice of the prior distribu-

tion.�ere are ongoing disputes concerning subjective vs.

default (reference) priors, informative vs. non-informative

(invariant) priors, proper vs. improper priors, conjugate

vs. non-conjugate, matching vs. non-matching priors, and

how should these choices bemade in practice; see Kass and

Wasserman () and Roberts ().

In light of these modi�cations, one can use the de�-

nition of conditional probability distribution between two

jointly distributed random vectors, say (Z,W):

f (z ∣ w) = f (z,w)
f (w)

= f (z,w)
∫z f (z,w)dz

= f (w ∣ z)f (z)
∫z f (w ∣ z)f (z)dz

,

to de�ne Bayes formula that determines the posterior dis-

tribution of θ:

π(θ ∣ x

) = f (x∣θ) ⋅ π(θ)

∫θ
f (x∣θ) ⋅ π(θ)dθ

∝ π(θ)⋅L(θ ∣ x

), θ ∈ Θ,

()

where L(θ ∣ x

) denotes the reinterpreted likelihood func-

tion, not ().

Bayesian inference is based exclusively on the poste-

rior distribution π(θ ∣ x) which is viewed as the revised
(from the initial π(θ)) degrees of belief for di�erent val-
ues of θ in light of the summary of the data by L(θ ∣ x


).

A Bayesian point estimate of θ speci�ed by selecting the

mean (θ̂B(x) = E(π(θ ∣ x))) or the mode of the poste-
rior. A Bayesian interval estimate for θ is given by �nding

two values a < b such that:

∫
b

a
π(θ ∣ x)dθ =  − α, ()

known as a ( − α) posterior (or credible) interval.
Bayesian testing of hypotheses ismore di�cult to handle

in terms of the posterior distribution, especially for point

hypotheses, because of the technical di�culty in attaching

probabilities to particular values of θ, since the parameter

space Θ is usually uncountable. �ere have been numer-

ous attempts to address this di�culty, but no agreement

seems to have emerged; see Roberts (). Assuming that

one adopts his/her preferred way to sidestep this di�culty,

Bayesian testing forH: θ = θ vs.H: θ = θ relies on com-

paring their respective degrees of belief using the posterior

ratio:

π(θ∣x)
π(θ∣x)

=
L(θ∣x) ⋅ π(θ)
L(θ∣x) ⋅ π(θ)

, ()

or, its more widely used modi�cation in the form of the

Bayes Factor (BF):

BF(x) = (
π(θ∣x)
π(θ∣x)

) /(π(θ)
π(θ)

) = L(θ∣x)
L(θ∣x)

, ()

together with certain rules of thumb, concerning the

strength of the degrees of belief against H based on the

magnitude of lnBF(x): for  ≤ lnBF(x) ≤ ., . <
lnBF(x) ≤ ,  < lnBF(x) ≤  and lnBF(x) > ,
the degree of belief against H is poor, substantial, strong

and decisive, respectively; see Roberts (). Despite their

intuitive appeal, these rules of thumbhave been questioned

by Kass and Ra�ery () inter alia.

�e question that naturally arises at this stage con-

cerns the nature of the reasoning underlying Bayesian

inference. In Bayesian inference learning is about revising

one’s degrees of belief pertaining to θ ∈ Θ, from π(θ)
(pre-data) to π(θ ∣ x


) (post-data). In contrast to frequen-

tist inference—which pertains to the true data-generating

mechanismM∗(x), x ∈ RnX — Bayesian inference is con-
cernedwithmore or less appropriate (in terms of π(θ ∣ x))
models withinMθ(x), θ ∈ Θ. In terms of the underlying
reasoning the Bayesian is similar to the decision theo-

retic inference which is also about selecting among more

or less cost (or utility)-appropriate models.�is questions

attempts to present N-P testing as naturally belonging to

the decision theoretic approach.

�e problem with the inference not pertaining to the

underlying data-generating mechanism can be brought

out more clearly when Bayesian inference is viewed in
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the context of the broader scienti�c inquiry. In that con-

text, one begins with substantive questions pertaining to

the phenomenon of interest, and the objective is to learn

about the phenomenon itself. Contrasting frequentist with

Bayesian inference, using interval estimation as an exam-

ple, Wasserman () argued: “Frequentist methods have

coverage guarantees; Bayesian methods don’t. In science,

coverage matters” (p. ).
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Statistical Literacy, Reasoning,
and Thinking
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Statistics educators o�en talk about their desired learning

goals for students, and invariably, refer to outcomes such as

being statistically literate, thinking statistically, and using

good statistical reasoning. Despite the frequent reference

to these outcomes and terms, there have been no agreed

upon de�nitions or distinctions.�erefore, the following

de�nitions were proposed by Gar�eld ( and have been

elaborated in Gar�eld and Ben-Zvi ().

Statistical literacy is regarded as a key ability expected

of citizens in information-laden societies, and is o�en

touted as an expected outcome of schooling and as a nec-

essary component of adults’ numeracy and literacy. Statis-

tical literacy involves understanding and using the basic

language and tools of statistics: knowingwhat basic statisti-

cal terms mean, understanding the use of simple statistical

symbols, and recognizing and being able to interpret dif-

ferent representations of data (Gar�eld ; Rumsey ;

Snell ).

�ere are other views of statistical literacy such as Gal’s

(, ), whose focus is on the data consumer: Statisti-

cal literacy is portrayed as the ability to interpret, critically

evaluate, and communicate about statistical information

and messages. Gal () argues that statistically literate

behavior is predicated on the joint activation of �ve inter-

related knowledge bases (literacy, statistical, mathematical,

context, and critical), together with a cluster of supporting

dispositions and enabling beliefs. Watson and Callingham

() proposed and validated a model of three levels

of statistical literacy (knowledge of terms, understand-

ing of terms in context, and critiquing claims in the

media).

Statistical reasoning is the way people reason with sta-

tistical ideas and make sense of statistical information.

Statistical reasoning may involve connecting one concept

to another (e.g., understanding the relationship between

the mean and standard deviation in a distribution) or may

combine ideas about data and chance (e.g., understand-

ing the idea of con�dence when making an estimate about

a population mean based on a sample of data). Statisti-

cal reasoning also means understanding and being able

to explain statistical processes, and being able to interpret

statistical results (Gar�eld ). For example, being able

to explain the process of creating a sampling distribution

for a statsistics and why this distribution has particular

features. Statistical reasoning invovles the mental repre-

sentations and connections that students have regarding

statistical concepts. Another examples is being able to see

how and why an outlier makes the mean and standard

deviation larger than when that outlier is removed, or rea-

soning about the e�ect of an in�uential data value on the

correlation coe�cient.

Statistical thinking involves a higher order of think-

ing than statistical reasoning. Statistical thinking is the

way professional statisticians think (Wild and Pfannkuch

). It includes knowing how and why to use a particular

method, measure, design or statistical model; deep under-

standing of the theories underlying statistical processes

and methods; as well as understanding the constraints and

limitations of statistics and statistical inference. Statisti-

cal thinking is also about understanding how statistical

models are used to simulate random phenomena, under-

standing how data are produced to estimate probabilities,

recognizing how, when, and why existing inferential tools

can be used, and being able to understand and utilize the

context of a problem to plan and evaluate investigations

and to draw conclusions (Chance ). Finally, statistical

thinking is the normative use of statistical models, meth-

ods, and applications in considering or solving statistical

problems.

Statistical literacy, reasoning, and thinking are unique

learning outcomes, but there is some overlap as well as

a type of hierarchy, where statistical literacy provides the

foundation for reasoning and thinking (see Fig. ). A sum-

mary of additional models of statistical reasoning and

thinking can be found in Jones et al. ().

�ere is a growing network of researchers who are

interested in studying the development of students’ sta-

tistical literacy, reasoning, and thinking (e.g., SRTL –�e
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Statistical Literacy, Reasoning, and Thinking. Fig.  The over-
lap and hierarchy of statistical literacy, reasoning, and thinking

(Artist Website, https://app.gen.umn.edu/artist)

International Statistical Reasoning,�inking, and Literacy

Research Forums, http://srtl.stat.auckland.ac.nz/). �e

topics of the research studies conducted by members of

this community re�ect a shi� in emphasis in statistics

instruction, from developing procedural understanding,

i.e., statistical techniques, formulas, computations and pro-

cedures; to developing conceptual understanding and sta-

tistical literacy, reasoning, and thinking.

Words That Characterize Assessment
Items for Statistical Literacy, Reasoning,
and Thinking
One way to distinguish between these related outcomes

is by examining the types of words used in assessment of

each outcome. Table  (modi�ed from delMas ()) lists

words associated with di�erent assessment items or tasks.

Statistical Literacy, Reasoning, and Thinking. Table. 
Typical words associated with different assessment items

or tasks

Basic Literacy Reasoning Thinking

Identify Explain why Apply

Describe Explain how Critique

Translate Evaluate

Interpret Generalize

Read

Compute

�e following three examples (from Gar�eld and Ben-

Zvi ) illustrate how statistical literacy, reasoning, and

thinking may be assessed.

Example of an Item Designed

to Measure Statistical Literacy

A random sample of  first-year students was selected
at a public university to estimate the average score on a

mathematics placement test that the state mandates for all

freshmen. The average score for the sample was found to
be . with a sample standard deviation of .. Describe

to someone who has not studied statistics what the stan-
dard deviation tells you about the variability of placement

scores for this sample.

�is item assesses statistical literacy because it focuses

on understanding (knowing) what the term “standard

deviation” means.

Example of an Item Designed

to Measure Statistical Reasoning

The following stem plot displays the average annual snow-

fall amounts (in inches, with the stems being tens and
leaves being ones) for a random sample of  American

cities:

 

 

 

 

 

 

 

Without doing any calculations, would you expect the

mean of the snowfall amounts to be larger, smaller, or
about the same as the median? Why?

�is item assess statistical reasoning because students

need to connect and reason about how shape of a distribu-

tion a�ects the relative locations of measures of center, in
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this case, reasoning that the mean would be larger than the

mean because of the positive skew.

Example of an Item Designed

to Assess Statistical Thinking

A random sample of  first year students was selected
at a public university to estimate the average score on a
mathematics placement test that the state mandates for
all freshmen. The average score for the sample was found
to be . with a sample standard deviation of ..

A psychology professor at a state college has read the
results of the university study. The professor wants to know
if students at his college are similar to students at the uni-
versity with respect to their mathematics placement exam
scores. This professor collects information for all  first
year students enrolled this semester in a large section (
students) of his “Introduction to Psychology”course. Based
on this sample, he calculates a % confidence interval
for the average mathematics placement scores exam to
be . to .. Below are two possible conclusions that
the psychology professor might draw. For each conclu-
sion, state whether it is valid or invalid. Explain your choice
for both statements. Note that it is possible that neither
conclusion is valid.

(a) The average mathematics placement exam score for
first year students at the state college is lower than the
average mathematics placement exam score of first
year students at the university.

(b) The average mathematics placement exam score for
the  students in this section is lower than the aver-
age mathematics placement exam score of first year
students at the university.

�is item assesses statistical thinking because it asks stu-

dents to think about the entire process involved in this

research study in critiquing and justifying di�erent possi-

ble conclusions.

Comparing Statistical Literacy,
Reasoning, and Thinking to Bloom’s
Taxonomy
�ese three statistics learning outcomes also seem to coin-

cide somewhat with Bloom’s more general categories of

learning outcomes (). In particular, some currentmea-

surement experts feel that Bloom’s taxonomy is best used if

it is collapsed into three general levels (knowing, compre-

hending, and applying). Statistical literacy may be viewed

as consistent with the “knowing” category, statistical rea-

soning as consistent with the “comprehending” category

(with perhaps some aspects of application and analysis)

and statistical thinking as encompassing many elements

of the top three levels of Bloom’s taxonomy (application,

analysis, and synthesis).
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Non-Precise Data
Real data obtained from measurement processes are not

precise numbers or vectors, but more or less non-precise,

also called fuzzy.�is uncertainty is di�erent from mea-

surement errors and has to be described formally in order

to obtain realistic results from data analysis. A real life

example is the water level of a river at a �xed time. It is

typically not a precise multiple of the scale unit for height

measurements. In the past this kind of uncertainty was

mostly neglected in describing such data.�e reason for

that is the idea of the existence of a “true” water level which

is identi�ed with a real number times the measurement

unit. But this is not realistic.�e formal description of such

non-precise water levels can be given using the intensity

of the wetness of the gauge to obtain the so called charac-

terizing functions from the next section. Further examples

of non-precise data are readings on digital measurement

equipments, readings of pointers on scales, color intensity

pictures, and light points on screens.

Remark  Non-precise data are di�erent from measure-

ment errors because in error models the observed values

yi are considered to be numbers, i.e., yi = xi + єi, where єi
denotes the error of the i-th observation.

Historically non-precise data were not studied su�-

ciently. Some earlier workwas done in interval arithmetics.

General non-precise data in form of so called fuzzy num-

bers were considered in the s and �rst publications

combining fuzzy imprecision and stochastic uncertainty

came up, see Kacprzyk and Fedrizzi (). Some of these

approaches are more theoretically oriented. An applicable

approach for statistical analysis of non-precise data is given

in Viertl ().

Characterizing Functions of Non-Precise
Data
In case of measurements of one-dimensional quantities

non-precise observations can be reasonably described by

so-called fuzzy numbers x⋆. Fuzzy numbers are general-
izations of real numbers in the following sense. Each real

number x ∈ IR is characterized by its indicator function
I{x}(⋅). A fuzzy number is characterized by its so-called
characterizing function ξ(⋅) which is a generalization of
an indicator function. A characterizing function is a real

function of a real variable obeying the following:

. ξ : IRÐ→ [, ]
. ∀ δ ∈ (, ] the so called δ-cut Cδ(x⋆) := {x ∈ IR :

ξ(x) ≥ δ} is a non-empty and closed bounded interval

Remark  A characterizing function is describing the

imprecision of one observation. It should not be confused

with a probability density which is describing the stochas-

tic variation of a random quantity X.

A fundamental problem is how to obtain the character-

izing function of a non-precise observation.�is depends

on the area of application. Some examples can be given.

Example  For data in form of gray intensities in one

dimension as boundaries of regions the gray intensity g(x)
as an increasing function of one real variable x can be used

to obtain the characterizing function ξ(⋅) in the follow-
ing way. Take the derivative d

dx
g(x) and divide it by its

maximum then the resulting function or its convex hull

can be used as characterizing function of the non-precise

observation.
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Non-Precise Samples
Taking observations of a one-dimensional continuous

quantity X in order to estimate the distribution of X usu-

ally a �nite sequence x⋆ ,⋯, x⋆n of non-precise numbers is
obtained. �ese non-precise data are given in form of n

characterizing functions ξ(⋅),⋯, ξn(⋅) corresponding to
x⋆ ,⋯, x⋆n . Facing this kind of samples even themost simple
concepts like histograms have to be modi�ed.�is is nec-

essary by the fact that for a given class Kj of a histogram in

case of a non-precise observation x⋆i with characterizing
function ξi(⋅) obeying ξi(x) >  for an element x ∈ Kj and
ξi(y) >  for an element y ∈ Kcj it is not possible to decide
if x⋆i is an element of Kj or not.
A generalization of the concept of histograms is possi-

ble by so-called fuzzy histograms. For those histograms the

height of the histogram over a �xed classKj is a fuzzy num-

ber h⋆j . For the de�nition of the characterizing function of
h⋆j compare Viertl (). For other concepts of statistics
in case of non-precise data compare Viertl ().

Fuzzy Vectors
In case of multivariate continuous data x = (x,⋯, xn), for
example the position of an object on a radar screen, the

observations are non-precise vectors x⋆. Such non-precise
vectors are characterized by so called vector-characterizing

functions ζx⋆(⋅,⋯, ⋅). �ese vector-characterizing func-
tions are real functions of n real variables x,⋯, xn obeying
the following:

() ζx⋆ : IR
n Ð→ [, ]

() ∀δ ∈ (, ] the δ-cut Cδ(x⋆) := {x ∈ IRn : ζx⋆(x) ≥ δ}
is a non-empty, closed and star shaped subset of IRn

with �nite n-dimensional content

In order to generalize statistics t(x,⋯, xn) to the situ-
ation of fuzzy data the fuzzy sample has to be combinded

into a fuzzy vector called fuzzy combined sample.

Generalized Classical Inference
Based on combined fuzzy samples point estimators for

parameters can be generalized using the so-called exten-

sion principle from fuzzy set theory. If ϑ(x,⋯, xn) is a
classical point estimator for θ, then ϑ (x⋆ ,⋯, x⋆n) = ϑ(x⋆)
yields a fuzzy element θ̂⋆ of the parameter space Θ.
Generalized con�dence regions for θ can be con-

structed in the following way. Let κ(x,⋯, xn) be a classical
con�dence function for θ with coverage probability  − α,

i.e., Θ−α is the corresponding con�dence set. For fuzzy

data x⋆ ,⋯, x⋆n a generalized con�dence set Θ⋆−α is de�ned

as the fuzzy subset of Θ whose membership function φ(⋅)
is given by its values

φ(θ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

sup{ζ(x) : x ∈MnX , θ ∈ κ(x)} if ∃ x : θ ∈ κ(x)

 if ∃/ x : θ ∈ κ(x)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

∀θ ∈ Θ.

Statistical tests are mostly based on so-called test

statistics t(x,⋯, xn). For non-precise data the values
t (x⋆ ,⋯, x⋆n) become non-precise numbers.�erefore test
decisions are not as simple as in the classical (frequently

arti�cial) situation.�ere are di�erent generalizations pos-

sible. Also in case of non-precise values of the test statistic

it is possible to �nd 7p-values and the test decision is pos-
sible similar to the classical case. Another possibility is to

de�ne fuzzy p-values which seems to be more problem

adequate. For details see Viertl ().

�ere are other approaches for the generalization of

classical inference procedures to the situation of fuzzy data.

References for that are Gil et al. () and Näther ().

Generalized Bayesian Inference
In Bayesian inference for non-precise data, besides the

imprecision of data there is also imprecision of the a-

priori distribution. So 7Bayes’ theorem is generalized in
order to take care of this. �e result of this generalized

Bayes’ theorem is a so-called fuzzy a-posteriori distribu-

tion π⋆ (⋅ ∣ x⋆ ,⋯, x⋆n)which is given by its so-called δ-level

functions πδ(⋅ ∣ x
⋆) and πδ(⋅ ∣ x⋆) respectively.

From the fuzzy a-posteriori distributions generalized

Bayesian con�dence regions, fuzzy highest a-posteriori

density regions, and fuzzy predictive distributions can be

constructed. Moreover also decision analysis can be gen-

eralized to the situation of fuzzy utilities and non-precise

data.

Applications
Whenever measurements of continuous quantities have to

be modeled non-precise data appear.�is is the case with

initial conditions for di�erential equations, time depen-

dent description of quantities, as well as in statistical anal-

ysis of environmental data.
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Introduction
Epidemiology is the study of the distribution and determi-

nants of health-related states or events in speci�ed pop-

ulations and the translation of study results to control

health problems at the group level. �e major objectives

of epidemiologic studies are to describe the extent of dis-

ease in the community, to identify risk factors (factors

that in�uence a persons risk of acquiring a disease), to

determine etiology, to evaluate both existing and new pre-

ventive and therapeutic measures (including health care

delivery), and to provide the foundation for developing

public policy and regulatory decisions regarding public

health practice. Epidemiologic studies provide research

strategies for investigating public health questions in a sys-

tematic fashion relating a given health outcome to the

factors that might cause and/or prevent this outcome in

human populations. Statistics informs many decisions in

epidemiologic study design and statistical tools are used

extensively to study the association between risk factors

and health outcomes.

When analyzing data for epidemiologic research, the

intent is usually to extrapolate the �ndings from a sample

of individuals to the population of all similar individuals

to draw generalizable conclusions. Despite the enormous

variety of epidemiologic problems and statistical solu-

tions, there are two basic approaches to statistical analysis:

regression and non-regression methods.

Types of Epidemiologic Studies
and Related Risk Measures
Epidemiologist, in conceptualizing basic types of epi-

demiologic studies, o�en group them as experimental

(e.g., randomized control trials) and observational (cohort,

case-control, and cross-sectional) studies.�is manuscript

will focus on cohort and 7case-control studies.�e study
design determines how risk is measured (e.g., person-time

at risk, absolute risk, odds) and which probability model

should be employed.

Cohort Studies
In a cohort study, a group of persons are followed over

a period of time to determine if an exposure of interest

is associated with an outcome of interest. �e key factor

identifying a cohort study is that the exposure of inter-

est precedes the outcome of interest. Depending on the

exposure, di�erent levels of exposure are identi�ed for each

subject and the subjects are subsequently followed over a

period of time to determine if they experienced the out-

come of interest (usually, health-related). Cohort studies

are also called prospective studies, retrospective cohort

studies, follow-up studies or longitudinal studies. Among

all the observational studies (which includes cohort, case-

control, and cross-section studies), cohort studies are the

“gold standard.” However, the major limitation of cohort

studies is that they may require a large number of study
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participants and usually many years of follow-up (which

can be expensive). Loss to follow-up is another concern for

cohort studies. Disease prevalence in the population under

study may also determine the practicality of conducting a

cohort study. Should the prevalence of an outcome be very

low, the number of subjects needed to determine if there is

an association between an exposure and outcome may be

prohibitive within that population.

Cohort studies may result in counts, incidence (cumu-

lative incidence or incidence proportion), or incidence rate

of the outcome of interest. Suppose each subject in a large

population-based cohort study is classi�ed as exposed or

unexposed to a certain risk factor and positive (case) or

negative (noncase) for some disease state. Due to the loss-

to-follow-up or late entry in the study, the data are usually

presented in terms of number of diseases developed per

person-years at risk.

�e incidence rate in the exposed group and unex-

posed groups are then expressed as π = y/t per
person-year and π = y/t per person-year, respectively
(Table ). In this situation, the numbers of disease devel-

oped in exposed and unexposed groups are usually mod-

eled assuming a Poisson distribution when the event is

relatively rare (see, Haight ; Johnson et al. ).

If there is no loss-to-follow-up or late entry in the study

(closed cohort in which all participants contribute equal

follow-up time), itmay be convenient to present the data in

terms of proportion experiencing the outcome (i.e., cumu-

lative incidence or incidence proportion). A  ×  table of
sample person-count data in a cohort study is presented in

Table .

Let p and p be the probabilities denoting risks for

developing cases in the population for exposed and unex-

posed groups, respectively.�emost commonly used sam-

ple estimates for p and p are obtained as

π =
x

n
and π =

x

n
.

Statistical Methods in Epidemiology. Table  Data
presented in terms of person-year at risk and the number of
diseases developed

Exposed Unexposed

Disease develops y y

Person-year at risk t t

Incidence rate y/t y/t

Statistical Methods in Epidemiology. Table   ×  table of
sample person-count data

Exposed Unexposed Total

Cases x x m

Noncases x x m

Total n n N

Note that p and p are the incidence proportion in the

exposed and unexposed groups, respectively. In this situa-

tion, the probability of disease in exposed and unexposed

groups are usually modeled assuming a 7binomial distri-
bution. Statistical estimation and related inference for inci-

dence can be found in Lui () and Sahai and Khurshid

().

It is o�entimes the goal in epidemiologic studies to

measure the association between an exposure and an out-

come. Depending upon how subjects are followed, in

regard to time, di�erent measures of risk are used. Relative

risk (RR) is de�ned as

RR =
incidence proportion (or rate) in exposed group

incidence proportion (or rate) in unexposed group
=

π

π
.

�e relative risk is a ratio, therefore, it is dimensionless

and without unit. It is a measure of the strength of an

association between an exposure and a disease, and is the

measure used in etiologic studies. In most real-world situ-

ations, subjects enter the study at di�erent times and they

are follow for variable lengths of time. In this situation, we

should consider the number of cases per the total person-

time contributed and the relative rate that approximates

the RR de�ned as

Relative rate = incidence rate in exposed group

incidence rate in unexposed group
= π

π
.

Note that the units for π and π are per person-year. As it

is a ratio, it is also unitless. Another measure of risk is the

attributable risk (AR) which is de�ned as:

AR = incidence rate in exposed group − incidence rate
in unexposed group = π − π.

In the rare event of a closed cohort study framework, π
and π can be replaced by p and p. Attributable risk is

the magnitude of disease incidence attributable to a spe-

ci�c exposure. It tells us the most we can hope to accom-

plish in reducing the risk of disease among the exposed

if we totally eliminated the exposure. In other words,

AR is a measure of how much of the disease incidence

is attributable to the exposure. It is useful in assessing

the exposures public health importance. Attributable risk
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percent (ARP) in exposed group, the percent of disease

incidence attributable to a speci�c exposure, is also used

to measure the risk of disease

ARP = (RR − )
RR

× .

ARP tells us what percent of disease in the exposed pop-

ulation is due to the exposure.�e statistical inference on

these measures of risk is discussed extensively in the liter-

ature, see, for example, Lui () and Sahai and Khurshid

().

Case-Control Studies
Case-control studies (see also 7Case-Control Studies)
compare a group of persons with a disease (cases) with

a group of persons without the disease (controls) with

respect to history of past exposures of interest. In contrast

to a cohort study where an exposure of interest is deter-

mined preceding the development of future outcome, in a

case-control, the disease status is known a priori while the

exposure of interest is subsequently assessed among cases

and controls.

Although the underlying concept of case-control stud-

ies is di�erent from cohort study, the data for case-control

study can be summarized as in a  ×  table in Table . We
can calculate the probability that cases were exposed as

Pr(exposed∣case) = x
m

and the probability that cases were not exposed as

Pr(unexposed∣case) = x
m
.

We can also calculate the odds of a case being exposed as

x/m
x/m

= x
x

and the odds of a case not being exposed as x/x. In case-
control studies, although risk factors might contribute to

the development of the disease, we cannot distinguish

between risk factors for the development of the disease

and risk factors for cure or survival. A major weakness in

case control studies is that they are inherently unable to

discern whether the exposure of interest precedes the out-

come (with few exceptions). Additionally, there is some

di�culty in the selection of controls. It is o�en the case

that selected controls are not necessarily from the source

population that gave rise to the cases. �erefore, mea-

surement of association can be problematic. We cannot

measure incidence rate (or proportion) in the exposed and

non-exposed groups, and therefore cannot calculate rate

ratios or relative risk directly. Because direct measures of

risk are not applicable here, it is necessary to describe the

relationship between an exposure and outcome using odds

of exposure. �e odds ratio (OR), ratio of the odds of

exposure in cases and the odds of exposure in controls, is

OR = x/x
x/x

= xx
xx

.

�e odds ratio is the cross-product ratio in the  × 
table.�e odds ratio is a good approximation of the relative

risk when the disease being studied occurs infrequently

in the population under study (case-control studies are

conducted most frequently in this situation). An OR = 
indicates that there is no association between exposure and

outcome. When OR >  (OR < ), it indicates a positive
(negative) association between the exposure and disease

and the larger (smaller) the OR, the stronger the associ-

ation. An example of the calculation and interpretation of

the odds ratio is given by Bland and Altman ().

Note that there are other variations in case-control

studies and related statistical techniques which are appli-

cable in particular situations. For instance, McNemar’s test

is used in matched case-control studies. For an exten-

sive review on major development on statistical analysis of

case-control studies, one can refer to Breslow ().

Regression vs. Non-Regression Methods
In analyzing data from epidemiologic studies, non-

regression and regression methods are o�en used to study

the relationship between an outcome and exposure. Non-

regression methods of analysis control for di�erences in

the distribution of covariates among subjects in exposure

groups of interest by stratifying, while regression methods

control for covariates by including possible confounders

(see 7Confounding and Confounder Control) of the asso-
ciation of interest in a regression model. In some situa-

tions, regardless ofwhether regression techniques are used,

strati�cation may still be necessary.

Statistical techniques used in epidemiologic stud-

ies are determined by the study design and data type.

For cohort or case-control studies dealing with propor-

tions, non-regression statistical methods based on bino-

mial or negative binomial distribution could be applied,

depending on the sampling method used (if any). Mantel-

Haenszel procedures and 7Chi-square tests are the com-
mon approaches to access the association between the

disease and risk factorwith orwithout strati�cation.Logis-
tic regression and generalized linear models are other
possible regression methods that can be used for obser-

vational studies (see, for example, Harrell ). For stud-
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ies with count data, statistical methods based on Poisson

distribution could be applied (Cameron and Trivedi ).

Study designs that employmatched pairs or one-to-one

matching are o�en approached by methods that assume a

certain uniqueness of each member of the pair.�e ratio-

nale for matching resembles that of blocking in statistical

design, in that each stratum formed by the matching strat-

egy is essentially the same with respect to the factors being

controlled.Whenmatching in cohort or case-control stud-

ies, McNemar’s test, Mantel-Haenszel test and conditional

logistic regression are normally used for analysis.

When the outcome variable is time-to-event, non-

regression statistical estimation techniques for survival

curves and log-rank tests can be applied, for example, the

well-known Kaplan-Meier estimator can be used to esti-
mate the survival curve. Lifetime parametric or semipara-
metric regression models, such as the Weibull regression
model and Cox proportional hazard model (see 7Hazard
Regression Models), can be used to model time-to-event

data while controlling for possible confounders.

Cross References
7Binomial Distribution
7Biostatistics
7Case-Control Studies
7Confounding and Confounder Control
7Geometric and Negative Binomial Distributions
7Hazard Regression Models
7Incomplete Data in Clinical and Epidemiological Studies
7Medical Statistics
7Modeling Count Data
7Poisson Regression
7Time Series Models to Determine the Death Rate of a
Given Disease
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Overview
Optimal investment strategies and e�cient risk manage-

ment o�en need high-performance predictions of market

evolutions.�ese predictions are usually provided by sta-

tistical models based on both statistical analyses of �nan-

cial historical data and theoretical modeling of �nancial

market working.

One of the pioneering works of �nancial market sta-

tistical modeling is the Ph.D. thesis of Bachelier ()

who was the �rst to note that �nancial stock prices have

unforecastable and apparently random variations. Bache-

lier introduced the Brownian process to model the price

movements and to assess contingent claims in �nancial

markets. He also introduced the random walk assump-

tion (see7RandomWalk) according to which future stock
price movements are generally unforecastable. More pre-

cisely, he assumed that the price evolves as a continuous

homogeneous Markov process (see 7Markov Processes).
�en, by considering the price process as a limit of random

walks, he showed that this process satis�es the Chapman–

Kolmogorov equation and that the Gaussian distribution

with the linearly increasing variance solves this equation.

Between the s and the s,many economists and

statisticians (Coles, Working, Kendall, Samuelson, etc.)

analyzed several historical stock prices data and supported

the random walk assumption.

In the s, Samuelson and Fama gave both theoreti-

cal and empirical proofs of the random walk assumption.

�ey introduced the important e�cient market hypothesis

stating that, in e�cient markets, price movements should

be unforecastable since they should fully incorporate the

expectations and informations of all market participants.

Mandelbrot in  criticized the Bachelier Gaussian

assumptionandstated that “Despite the fundamental impor-

tance of the Brownian motion, (see 7Brownian Motion and
Di�usions) it is now obvious that it does not account for

the abundant data accumulated since  by empirical

economists, simply because the empirical distributions of

price changes are usually too peaked to be relative to sam-

ples from Gaussian population.” It is consensually assumed

now that �nancial returns are generally leptokurtic and

should be modeled by heavy tailed probability distribu-

tions. Many mathematical tools were suggested to model
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this heavy tailed property: Levy process (see 7Lévy Pro-
cesses), alpha-stable processes, Pareto-type distributions,

Extreme value theory, long memory processes, GARCH

time series, etc. Leptokurtosis and heteroskedasticity are

stylized facts observed in log-returns of a large variety

of �nancial data (security prices, stock indices, foreign

exchange rates, etc.).

In the following, it will be assumed that a market

economy containsN �nancial assets, Sjt andRjt will denote,

respectively, the daily price and log-return of the j-th asset

on day t (Rjt = log(Sjt/Sjt−)). R(m)t will denote the log-

return on day t of the market portfolio. It will also be

assumed that there exists a single deterministic lending

and borrowing risk-free rate denoted r.

Markowitz in  developed the mean-variance port-

folio optimization, where it is assumed that rational

investors choose among risky assets purely on the basis of

expected return and risk (measured as returns variance).

Sharpe in  presented the Capital Asset Pricing Model

(CAPM) where the excess return over the risk-free rate

r of each asset j is, up to noise, a linear function of the

excess return of the market portfolio. In other words, for

each asset j: Rjt − r = αj + βj(R(m)t − r) + єjt ; where the

noise sequence єjt is uncorrelatedwith themarket portfolio

return.

A thirdmajor step in the history of statistical modeling

of�nancialmarketsconcerns theproblemofpricingderiva-

tive securities. Merton, Black, and Scholes introduced a

reference paradigm for pricing and hedging derivatives

on �nancial assets.�eir paradigm, known as the Black–

Scholes formula, is based on continuous time modeling of

asset price movements. It gave an explicit formula for pric-

ing European options and got tremendous impact on the

�nancial engineering �eld. Since , the Black–Scholes

model was used to develop several extensions combining

�nancial, mathematical, and algorithmic re�nements.

Alternative statistical modeling approaches used time

series statistical tools. Since the s, time series tools

are very frequently used in everyday manipulations and

statistical analysis of �nancial data. Statistical Time series

models, such as ARMA, ARIMA, ARCH, GARCH, state

space models, and the important Granger cointegration

concept, are o�en used to analyze the statistical inter-

nal structure of �nancial time series. �ese models, and

especially the Engel Auto-Regressed Conditionally Het-

eroskedastic (ARCH) model, are well suited to the nature

of �nancial markets, they capture time dependencies,

volatility clustering, comovements, etc.

In the s, the statistical modeling of �nancial mar-

kets data was linked to the rich literature of Extreme Value

�eory (EVT). Many researchers found that EVT is well

suited to model maxima and minima of �nancial returns.

�is yielded amore e�cient assessment of �nancialmarket

risks. New EVT-based methods were developed to esti-

mate the Value-at-Risk (VaR), which is now one of the

most used quantitative benchmarks formanaging �nancial

risk (recommended by the Basel international committee

of banking supervision).

In the last  years, copula functions (see7Copulas and
7Copulas: Distribution Functions and Simulation) have
been used by many �nance researchers to handle observed

comovements betweenmarkets, risk factors, and other rel-

evant dependent �nancial variables.�e use of copula for

modeling multivariate �nancial series open many chal-

lenging methodological questions to statisticians, espe-

cially concerning the estimation of copula parameters and

the choice of the appropriate copula function.

It is worth noting that many works combining statis-

tical science and market �nance were rewarded by Nobel

prizes in economics: Samuelson in , Markowitz and

Sharpe in , Merton and Scholes in , and Engle and

Granger in .

Due to space limitations, only two selected topics

will be detailed in the following: Black–Scholes modeling

paradigm and the contribution of Extreme Value�eory

to the market risk estimation.

Black–Scholes Model
�e Black–Scholes model is one of the most used option-

pricing models in the trading rooms. For liquid secu-

rities, quotations could occur every  sec; continuous

time models could therefore give good approximations to

the variations of asset prices. Price evolution of a single

asset is modeled here by a continuous time random pro-

cess denoted {St}t∈R+ . Black and Scholes assume that the
studied market has some ideal conditions: Market e�-

ciency, no transaction costs in buying or selling the stock,

the studied stock pays no dividend, and known and con-

stant risk-free interest-rate r.

�e basic modeling equation of Black, Scholes, and

Merton, comes from the updating of a risky investment

in a continuous time modeling: (St+ dt − St)/St = µ dt +
σ(Bt+ dt −Bt), where µ is a constant parameter called dri�
giving the global trend of the stock price; σ is a nonnegative

constant called volatility giving the magnitude of the price

variations and Bt+ dt −Bt are independent increments (the
independence results from the market e�ciency assump-

tion) fromaBrownianmotion, i.e., randomcenteredGaus-

sian variables. So in Black–Scholes dynamics, the stock

price {St}t∈R+ satis�es the following stochastic di�erential
equation :dSt/St = µ dt + σdBt .
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Using Itô lemma on Black–Scholes equation gives the

explicit solution of the previous stochastic di�erential

equation: St = S exp [(µ − σ /) t + σBt], which is a geo-
metric Brownian motion.�e model parameters µ and σ

are easily estimated from data.

�e Black–Scholes model is still a reference tool for

pricing �nancial derivatives. Its simple formula makes it

an everyday benchmark tool in all trading rooms. But

its restrictive assumptions contradict many stylized facts

recognized by all �nancial analysts (volatility clustering,

leptokurtosis, and le� asymmetry of the �nancial returns).

Many works have extended the Black–Scholes model:

in the stochastic volatility extensions, for example, prices

aremodeled by the two following equations: dSt = St[µ dt+
σt dBt] and dσt = σt[νdt + ζdWt], where B and W are

two correlated Brownian motions having a constant cor-

relation coe�cient ρ. Both parametric and nonparametric

estimators are available for the parameters µ, ν, ζ , ρ, and σ.

Challenging research topics now concern the problem

of pricing sophisticated derivative products (American

options, Asian or Bermudian options, swaptions, etc.).

Longsta� and Schwartz, for example, gave an interesting

pricing algorithm for American options, where they com-

binedMonte Carlo simulations with7least squares to esti-
mate the conditional expected payo� of the optionholder.

Monte Carlo simulation is now widely used in �nancial

engineering; for example, Broadie and Glasserman 

used simulations to estimate security price derivatives

within amodeling frameworkmuchmore realistically than

the simple Black–Scholes paradigm. Monte Carlo simula-

tions are also used in stress testing (which identi�es poten-

tial losses under simulated extreme market conditions)

and in the estimation of nonlinear stochastic volatility

models.

EVT and Financial Risks
�e Extreme Value theory (EVT) gives interesting tools

for modeling and estimating extreme �nancial risk (see

Embrecht et al.  for a general survey). One com-

mon use of EVT concerns the estimation of Value-at-

Risk (an extreme quantile of the loss distribution). If at

day t, VaRt(α) denotes the Value-at-Risk of a single asset
at con�dence level  − α with a prediction horizon of

one day, then VaR writes: Pr(Rt+ ≤ −VaRt(α)∣Ht) =
α, where Rt+ is the return at t +  and Ht denotes
the σ−algebra modeling all the information available at
time t. Many statistical methods were used to estimate the

extreme quantile VaRt(α). McNeil and Frey (), for
example, combined ARCH and EVT to take into account

volatility clustering and leptokurtosis.�ey used an AR()

model for the average returns µt and a GARCH(,) with

pseudo-maximum-likelihood estimation for the stochastic

volatility dynamics σt . McNeil and Frey used the previous

AR-GARCH for estimating the parameters of the model

Rt = µt + σtZt where {Zt}t is a strict white noise process.
EVT peaks-over-threshold approach is then used on the

AR-GARCH-residuals z, . . . , zk in order to estimate their

extreme quantiles.�ese estimates are plugged in the esti-

mator of the VaRt(α).�e idea behind this method is the
elimination of data dependence by the use of time series

models and then the use of EVT tools to estimate extreme

quantiles of the i.i.d. residuals.

When VaR of a multi-asset portfolio is considered,

multivariate statistical tools should be used: variance–

covariance, multivariate GARCH, simulation approach,

Multivariate Extreme �eory, dynamic copula approach,

etc. In the variance–covariance approach, for example, the

portfolio returns are modeled as a linear combination of

slectedmarket factors.�e copula approach gives generally

more e�cient portfolio VaR estimations since it improves

the modeling of the dependence structure between the

studied assets and the risk factors.

Conclusions
Statistical science has provided essential tools for market

�nance.�ese important contributions concern the prob-

lems of portfolio selection and performance analysis, the

pricing and hedging of derivative securities, the assess-

ment of �nancial risks (market risk, operational risk, credit

risk), the modeling of crises contagion, etc. Many chal-

lenging research topics concern both statistics and �nance:

the huge amount of data (called high-frequency data) need

new statistical modeling approaches. �e high complex-

ity of the new �nancial products and the management of

portfolios with high number of assets need more tractable

multivariate statistical models. New research challenges

are also given by the multivariate extreme value theory

where copula functions gave promising results when used

to model extreme comovements of asset prices or stock

indices. Copulamodeling has become an increasingly pop-

ular tool in �nance, especially for modeling dependency

between di�erent assets. However many statistical ques-

tions remain open: copula parameter estimations, sta-

tistical comparison of competitive copula, etc. Another

use of copula functions in market �nance concerns the

modeling of crises contagion (see, e.g., Rodriguez ).

Many empirical works proved that dependence struc-

ture between international markets during crises is gen-

erally nonlinear and therefore better modeled by copula

functions.
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Mathematical modelling is a key element of quantitative

marketing and helps companies around the globe in mak-

ing important marketing decisions about launching new

products and managing existing ones. Most mathemati-

cal models used in marketing research are either purely

statistical or include elements of statistical models.

An extensive discussion (by the top market research

academics) of the state-of-art in the �eld of marketing

modelling and its prospects for the future is contained

in Steemkamp (), a special issue of the Interna-

tional Journal of Research in Marketing. One can consult

Steemkamp () for many references related to the sub-

ject; see also recent books (Wierenga ; Wittink et al.

; Mort ; Zikmund and Babin ).

We look at the �eld of market modelling from a view-

point of a professional statistician with twenty years of

experience on designing and using statistical models in

market research.We startwith distinguishing the following

types of statistical models used in market research:

. Direct simulation models

. Standard statistical models

. Models of consumer purchase behaviour

. Dynamic models for modelling competition, pricing

and advertising strategies

. Statistical components of inventory and othermanage-

ment science models

Let us brie�y consider these types of models separately.

. Direct simulationmodels.�ese are specializedmod-

els based on attempts to directly imitate the market (e.g.,

via the behaviour of individual customers) using a syn-

ergy of stochastic and deterministic rules. �ese models

were popular – years ago but are less popular now.

�e reasons are the lack of predictive power, huge num-

ber of parameters in the models and impossibility of their

validation.

. Standard statistical models. All standard statistical

models and methods can be used in market research,

see Mort (); Zikmund and Babin (); Rossi et al.

(); Hanssens et al. ().Most commonly, the follow-

ing statistical models are used:

● Various types of regression

● ARIMA and other time series models

● Bayesian models

● Models and methods of multivariate statistics; espe-

cially, structural equation and multinomial response

models, conjoint, factor, and principal component

analyses

.Models of consumer purchase behaviour. Several types

of statistical models are used for modelling consumer pur-

chase behaviour including brand choice. �e following

three basic models (and some of their extensions) have
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proved to be the most useful: Mixed 7Poisson processes,
the Dirichlet model, and Markovian models.

�e mixed Poisson process model assumes that a cus-

tomer makes his/her purchase according to a Poisson pro-

cess with some intensity λ where λ is random across the

population. In the most popular model, called Gamma-

Poisson, λ has Gamma distribution (with two unknown

parameters); this yields that the number of purchases for

a given period is the Negative Binomial Distribution. Typ-

ical questions, which the Poisson process model answers,

is the forecasting of the behaviour of the market research

measures (like penetration, purchase frequency and repeat

buying measures) in the form of the so-called growth

curves. Extensions of the mixed Poisson models cover the

issues like the zero-buyer problem (some zero-buyers do

have a positive propensity to buy but some other don’t),

seasonality of the market and the panel �ow-through.

�e Dirichlet model is a brand-choice model. It

assumes that customers make their brand choice inde-

pendently with certain propensities; these propensities are

di�erent for all customers and are independent realiza-

tions from the Dirichlet distribution which parameters are

determined by the market shares of the brands. In Marko-

vian brand-choice models, the propensity to buy a given

brand for a random customer may vary depending on

either the previous purchase or other market variables.

�ese models are more complicated than the mixed Pois-

son process and Dirichlet models but in some circum-

stances are easily applicable and sometimes are able to

accurately describe some features of the market.

Of course, the models above are unrealistic on the

individual level (e.g., few people have the Poisson pro-

cess pattern as their purchase sequence). However, these

models (and especially the mixed Poisson model) o�en �t

data extremely accurately on the aggregated level (when

the time period considered and the number of customers

are su�ciently large). �ese models can be classi�ed as

descriptive (rather than “prescriptive”) andhelp in explain-

ing di�erent aspects of market research dynamics and

some phenomena related to the brand-choice.

. Dynamic models for modelling competition, pricing

and advertising strategies. �ere is extensive literature on

this subject, see, e.g., Erickson ().�e majority of the

models are so-called di�erential games or simpler models

still written in terms of di�erential equations. �e mod-

els are deterministic and the statistical aspect only arrives

through the assumption that the data contain random

errors. Statistical modelling part is therefore negligible in

these models. Alternatively, in some Markovian brand-

choice models mentioned above, there is an option of

including the market variables (e.g., promotion) into the

updating rule for the buying propensities. �ese models

are proper stochasticmodels but they are o�en too compli-

cated (have toomany parameters) and therefore di�cult to

validate.

. Statistical components of inventory and other man-

agement science models. Inventory and other management

science models applied in market research are typically

standard models of Operations Research, see Ingene and

Parry () for a recent review of these models. Despite

these models o�en have a large stochastic component,

they do not represent anything special from the statistics

view-point.

Statistical models are used for the following purposes:

(a) forecasting themarket behaviour of a new brand to pre-

pare its launch and (b) managing existing brands. In case

(a), themodels are usually based solely on standard statisti-

calmodels, type  above. Sometimes, other types ofmodels

(especially, large simulation models, type ) are used too.

A lot of speci�c market research data are o�en collected

to feed these models.�ese data includes market surveys,

various types of questionnaires and focus group research

in direct contact with customers. All available market data,

for example economic trends and speci�c industry sector

reports, is used too. In case (b), the models are used for

making decisions about pricing, promotion and advertis-

ing strategies, production and inventory management etc.

All available statistical models and methods are used to

help managers to make their decisions.

While reading academic papers and books on market-

ing research, one can get an impression that mathematical

and statistical modelling in marketing is a mature sub-

ject with many models developed and used constantly for

helping market research managers in working out their

decisions. Indeed, there are many models available (some

of them are quite sophisticated). However, only a small

number of them are really used in practice: the major-

ity of practical models can be reduced either to a simple

regression or sometimes to another standardmodel among

thosementioned above. One of the reasons for this gloomy

observation is the fact that managers rarely want a descrip-

tion of the market. Instead, they want ‘a prescription’; that

is, a number (with a hope that no con�dence interval is

attached to this number) which would lead them to a right

decision. Another reason is the fact that only a very few

models used in market research satisfy the following natu-

ral requirements for a good statisticalmodel: (a) simplicity,

(b) robustness to the deviations from the model assump-

tions, (c) clear range of applicability, and (d) empirical

character, which means that the models have to be built

with the data (and data analysis) in view and with the

purpose of explaining/�tting/forecasting relevant data.
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Despite huge amounts of market data is available to

analysts, these data are typically messy, not reliable, badly

structured and become outdated very quickly. Develop-

ment of reliable statistical models dealing with such data

is hard.�e progress in understanding all these issues and

tackling them by means of the development of appropriate

models andmaking them correctly applicable is visible but

it is justi�ably slow.
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Natural language processing (NLP) is a �eld of arti�-

cial intelligence concerned with the interactions between

computers and human (natural) languages. It refers to a

technology that creates and implements ways of executing

various tasks concerning natural language (such as design-

ing natural language based interfaces with databases,

machine translation, etc.). NLP applications belong to

three main categories:

. Text-based applications (such as knowledge acqui-

sition, information retrieval, information extraction,

text summarization, machine translation, etc.)

. Dialog-based applications (such as learning systems,

question answering systems, etc.)

. Speech processing (although NLP may refer to both

text and speech, work on speech processing has grad-

ually evolved into a separate �eld)

Natural language engineering deals with the implementa-

tion of large-scale natural language–based systems. It refers

to the related �eld of Human Language Technology (HLT).

NLP represents a di�cult and largely unsolved task.

�is is mainly due to the interdisciplinary nature of the

problem that requires interaction between many sciences

and �elds: linguistics, psycholinguistics, computational

linguistics, philosophy, statistics, computer science in gen-

eral, and arti�cial intelligence in particular.

Statistical NLP has been the most widely used term to

refer to nonsymbolic and nonlogical work on NLP over

the past decade. Statistical NLP comprises all quantitative

approaches to automated language processing, including

probabilistic modeling, information theory, and linear

algebra (Manning and Schütze ).

As computational problems, many problems posed

by NLP (such as WSD – word sense disambiguation)

were o�en described as AI-complete, that is, problems

whose solutions presuppose a solution to complete natu-

ral language understanding or common-sense reasoning.

�is view originated from the fact that possible statisti-

cal approaches to such problems were almost completely

ignored in the past. As it is well known, starting with the

early s, the arti�cial intelligence community witnessed

a great revival of empirical methods, especially statistical

ones. �is is due to the success of statistical approaches,

as well as of machine learning, in solving problems such

as speech recognition or part-of-speech tagging. It was

mainly research into speech recognition that inspired the

revival of statistical methods within NLP, and many of the

techniques used nowadays were developed �rst for speech

and then spread over into NLP (Manning and Schütze

). Nowadays statistical methods and machine learn-

ing algorithms are used for solving a great number of

problems posed by arti�cial intelligence in general and by

NLP in particular. Furthermore, the availability of large
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text corpora has changed the scienti�c approach to lan-

guage in linguistics and cognitive science, with language

and cognition being viewed as probabilistic phenomena.

From the point of view of NLP, the two main compo-

nents of statistics are:

. Descriptive statistics: methods for summarizing (large)

datasets

. Inferential statistics: methods for drawing inferences

from (large) datasets

�e use of statistics in NLP falls mainly into three cate-

gories (Nivre ):

. Processing: We may use probabilistic models or algo-

rithms to process natural language input or output.

. Learning: We may use inferential statistics to learn

from examples (corpus data). In particular, we may

estimate the parameters of probabilistic models that

can be used in processing.

. Evaluation: We may use statistics to assess the perfor-

mance of language processing systems.

As pointed out in Manning and Schütze (), “com-

plex probabilistic models can be as explanatory as complex

non-probabilistic models – but with the added advantage

that they can explain phenomena that involve the type

of uncertainty and incompleteness that is so pervasive in

cognition in general and in language in particular.”

A practical NLP system must be good at making dis-

ambiguation decisions of word sense, word category, syn-

tactic structure, and semantic scope. One could say that

disambiguation abilities, together with robustness, repre-

sent the two main hallmarks of statistical natural language

processing models. Again as underlined in Manning and

Schütze (), “a statistical NLP approach seeks to solve

these problems by automatically learning lexical and struc-

tural preferences from corpora. . . �e use of statistical

models o�ers a good solution to the ambiguity problem:

statistical models are robust, generalize well, and behave

gracefully in the presence of errors and new data. �us

statistical NLP methods have led the way in providing

successful disambiguation in large scale systems using nat-

urally occurring text. Moreover, the parameters of Sta-

tistical NLP models can o�en be estimated automatically

from text corpora, and this possibility of automatic learn-

ing not only reduces the human e�ort in producing NLP

systems, but raises interesting scienti�c issues regarding

human language acquisition.”
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Problem Description
Mathematically, pattern recognition is a classi�cation

problem. Consider the recognition of characters. We wish

to design a system such that a handwritten symbol will be

recognized as an “A,” a “B,” etc. In other words, themachine

we design must classify the observed handwritten charac-

ter into one of  classes.�e handwritten characters are

o�en ambiguous, and therewill bemisclassi�ed characters.

�emajor goal in designing a pattern recognitionmachine

is to have a low probability of misclassi�cation.

�ere are many problems that can be formulated as

pattern classi�cation problems. For example, the weather

may be divided into three classes, fair, rain, and possible

rain, and the problem is to classify tomorrow’s weather into

one of these three classes. In the recognition of electrocar-

diograms, the classes are disease categories plus the class of

normal subjects. In binary data transmission, a “one” and a

“zero” are represented by signals of amplitudes A and A,

respectively.�e signals are distorted or corrupted by noise

when transmitted over communication channels, and the
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receiver must classify the received signal into “ones” and

“zeros.” Hence, many of the ideas and principles in pattern

recognition may be applied to the design of communica-

tion systems and vice versa (Nechval ; Nechval and

Nechval ).

Pattern recognition theory deals with the mathemati-

cal aspects common to all pattern recognition problems.

Application of the theory to a speci�c problem, however,

requires a thorough understanding of the problem, includ-

ing its peculiarities and special di�culties (Bishop ).

�e input to a pattern recognition machine is a set of

p measurements, and the output is the classi�cation. It is

convenient to represent the input by a p-dimensional vec-

tor x, called a pattern vector, with its components being the
p measurements.�e classi�cation at the output depends

on the input vector x, hence we write

C = d(x). ()

In other words, the machine must make a decision as to

the class to which x belongs, and d(x) is called a decision
function.

A pattern recognition machine may be divided into

two parts, a feature extractor and a classi�er. �e classi-

�er performs the classi�cation, while the feature extractor

reduces the dimensionality of input vectors to the clas-

si�er. �us, feature extraction is a linear or nonlinear

transformation

y = Y(x), ()

which transforms a pattern vector x (in the pattern space
Ωx) into a feature vector y (in a feature space Ωy). �e
classi�er then classi�es x based on y. Since Ωy is of lower
dimensionality than Ωx, the transformation is singular

and some information is lost.�e feature extractor should

reduce the dimensionality but at the same time maintain a

high level of machine performance. A special case of fea-

ture extraction is feature selection, which selects as features

a subset of the given measurements.

�e division of a pattern recognition machine into fea-

ture extractor and classi�er is done out of convenience

rather than necessity. It is conceivable that the two could be

designed in an uni�ed manner using a single performance

criterion. When the structure of the machine is very com-

plex and the dimensionality p of the pattern space is high,

it is more convenient to design the feature extractor and

the classi�er separately.

�e problem of pattern classi�cation may be discussed

in the framework of hypothesis testing. Let us consider a

simple example. Suppose that we wish to predict a stu-

dent’s success or failure in graduate study based on his

GRE (Graduate Record Examination) score. We have two

hypotheses – the null hypothesisH, that he or she will be

successful, and the alternative hypothesisH, that he or she

will fail. Let x be the GRE score, f(x) be the conditional
probability density of x, given that the student will be suc-

cessful, and f(x) be the conditional density of x, given that
he or she will fail.�e density functions f(x) and f(x) are
assumed known fromour past experience on this problem.

�is is a hypothesis testing problem and an obvious deci-

sion rule is to retain H and reject H if x is greater than

a certain threshold value h, and accept H and reject H
if x ≤ h. A typical example of multiple hypothesis testing
is the recognition of English alphabets where we have 

hypotheses.

Illustrative Examples
Applicant Recognition for Project
Realization with Good Contract Risk
One of the most important activities that an employer has

to perform is recognition of applicant for realization of

project with good contract risk. �e employer is de�ned

as a �rm or an institution or an individual who is investing

in a development.�e above problem is a typical example

of a pattern classi�cation problem. An applicant for con-

tract can be represented by a random p ×  vector X =
(X, . . . ,Xp)′ of features or characteristics.We call this p×
vector the applicant’s pattern vector. Using historical data

and the applicant’s pattern vector, a decision-maker must

decide whether to accept or reject the contract request.�e

historical data are summarized in a collection of pattern

vectors.�ere are pattern vectors of former applicants who

received contract and proved to be good risks, and there

are patterns of former applicants who were accepted and

proved to be poor risks.�e historical data should include

the pattern vectors and eventual contract status of appli-

cants who were rejected. �e eventual contract status of

rejected applicants is di�cult to determine objectively, but

without this information, the historical data will contain

the basis of former decision rules.�e historical data con-

sist of the pattern vectors and eventual contract status of

n applicants; n = n + n: n of the n applicants proved to
be good contract risks, and n proved to be poor contract

risks. Given this situation and a new applicant’s pattern

vector, the decision-maker deals with the problem of how

to form his or her decision rule in order to accept or reject

new applicants. In this entry, we shall restrict attention to

the case when p(X;Hi), i = , , are multivariate normal
with unknown parameters. All statistical information is

contained in the historical data. In this case, the procedure

based on a generalized likelihood ratio test is proposed.

�is procedure is relatively simple to carry out and can be
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recommended in those situations when we deal with small

samples of the historical data (Nechval and Nechval ).

Generalized LikelihoodRatio Test for Applicant Recogni-

tion. LetX be a random p× vector that is distributed in the
population Πi (i = , , ) according to the p-variate non-
singular normal distribution N(ai,Qi) (i = , , ). Let x
be an observation on X in Π.�e ni independent obser-
vations from Πi will be denoted by {xij, j = , , . . . ,ni}
distributed with the density p(xij; ai,Qi) for i = ,  and
the density of the unidenti�ed observation x will be taken
as p(x; a,Q). �e ais and Qis are unknown and it is
assumed that either (a,Q) = (a,Q), or (a,Q) =
(a,Q), and a ≠ a, Q ≠ Q. Assume for the moment
that there are prior odds of ξ/( − ξ) in favor of type  for
x. �en the likelihood ratio statistic for testing the null
hypothesis H : (a = a, Q = Q) versus the alternative
hypothesis H : (a = a, Q = Q) is given by

LR =
ξmax
H
p(x; a,Q)



∏
i=

ni

∏
j=

p(xij; ai,Qi)

( − ξ)max
H
p(x; a,Q)



∏
i=

ni

∏
j=

p(xij; ai,Qi)
, ()

where

p(x; a,Q) = (π)−P/∣Q∣
−/

exp{− 

(x − a)′Q− (x − a)} , ()

p(xij; ai,Qi) = (π)−P/∣Qi∣
−/

exp{− 

(xij − ai)′Q−i (xij − ai)} . ()

�e maximum likelihood estimators of the unknown

parameters under H are

â =
nx + x
n + 

, ()

â = x, ()

Q̂ =


n + 
[(n − )S+

n

n + 
(x − x)(x − x)′] , ()

Q̂ =
n − 
n
S, ()

where

xi =
ni

∑
j=
xij/ni, ()

Si =
ni

∑
j=

(xij − xi)(xij − xi)′/(ni − ), i = , , ()

with obvious changes for the corresponding estimators

under H. Substitution of the estimators in () gives, a�er

some simpli�cation,

LR=[(n + )(n − )
(n + )(n − )

]
p/
=
⎡⎢⎢⎢⎢⎣

(n/(n + ))pn/

(n/(n + ))pn/
( ∣S∣
∣S∣

)
/

×
( + nv(x)/ (n  − ))

(n+)/

( + nv(x)/(n  − ))
(n+)/

⎤⎥⎥⎥⎥⎦
( ξ

 − ξ
) , ()

where

vi(x) = (x − xi)′S−i (x − xi), i = , . ()

ForQ = Q, the likelihood ratio statistic simpli�es to

LR =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

+ nv(x)
(n + )(n + n − )

+ nv(x)
(n + )(n + n − )

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(n+n+)/

( ξ

 − ξ
) , ()

and hypothesis H or H is favoured according to whether

LR is greater or less than , that is,

LR

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

> , then H

≤ , then H

. ()

Signal Detection in Clutter
�e problem of detecting the unknown deterministic

signal s in the presence of a clutter process, which is incom-
pletely speci�ed, can be viewed as a binary hypothesis-

testing problem (Nechval ; Nechval et al. ).�e

decision is based on a sample of observation vectors xi =
(xi, . . . , xip)′, i = ()n, each of which is composed of
clutter wi = (wi, . . . ,wip)′ under the null hypothesis H
and a signal s = (s, . . . , sp)′ added to clutter wi under the
alternative H, where n > p.�e two hypotheses that the
detector must distinguish are given by

H : X =W (clutter alone), ()

H : X =W + cs′ (signal present), ()

where

X = (x, . . . , xn)′, ()

W = (w, . . . ,wn)′, ()

are n × p random matrices, and

c = (, . . . , )′ ()

is a column vector of n units. It is assumed that wi,
i = ()n, are independent and normally distributed with
common mean  and covariance matrix (positive de�nite)

Q, i.e.,
wi ∼ Np(,Q), ∀i = ()n. ()
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�us, for �xed n, the problem is to construct a test, which

consists of testing the null hypothesis

H : xi ∼ Np(,Q), ∀i = ()n, ()

versus the alternative

H : xi ∼ Np(s,Q), ∀i = ()n, ()

where the parameters Q and s are unknown.
One of the possible statistics for testing H versus

H is given by the generalized maximum likelihood ratio

(GMLR)

GMLR = max
θ∈Θ

LH(X; θ)/max
θ∈Θ

LH(X; θ), ()

where θ = (s,Q),Θ = {(s,Q) : s = ,Q ∈ Qp}, Θ =
Θ − Θ, Θ = {(s,Q) : s ∈ Rp,Q ∈ Qp}, Qp denotes the
set of p × p positive de�nite matrices. Under H, the joint
likelihood for X based on () is

LH(X; θ) = (π)−np/∣Q∣−n/ exp(−
n

∑
i=
x′iQ

−xi/) .

()

Under H, the joint likelihood for X based on () is

LH(X; θ) = (π)−np/∣Q∣−n/

exp(−
n

∑
i=

(xi − s)′Q−(xi − s)/) . ()

It can be shown that

GMLR = ∣Q̂∣
n/∣Q̂∣

−n/
, ()

and

Q̂ = X
′X/n, ()

Q̂ = (X′ − ŝc′)(X′ − ŝc′)′/n, ()

and

ŝ = X′c/n ()

are the well-knownmaximum likelihood estimators of the

unknown parameters Q and s under the hypotheses H
and H, respectively. It can be shown, a�er some algebra,

that () is equivalent �nally to the statistic

y = T′T− T/n, ()

where T = X′c, T = X′X. It is known that (T,T) is a
complete su�cient statistic for the parameter θ = (s,Q).
�us, the problemhas been reduced to consideration of the

su�cient statistic (T,T). It can be shown that underH,
the result () is aQ-free statistic y, which has the property

that its distribution does not depend on the actual covari-

ance matrixQ. It is clear that the statistic y is equivalent to
the statistic

v = [(n − p)/p] y/( − y) = [n(n − p)/p] (ŝ′[Ĝ]
− ŝ) ,
()

where

Ĝ = nQ̂ = (X′ − ŝc′)(X′ − ŝc′)′ =
n

∑
i=

(xi − ŝ)(xi − ŝ)′.

()

Under H, the statistic v is subject to a noncentral F-

distribution with p and n − p degrees of freedom, the
probability density function of which is (Nechval ;

Nechval et al. )

fH(v;n, q) = [B(p

,
n − p


)]
− (

p

n − p
)
p/
vp/−

( + p

n − p
v)
n/

× e−q/F
⎛
⎝
n


;
p


;
q



⎛
⎝
p

n−p
v(+ p

n−p
v)

−⎞
⎠
⎞
⎠
,

 < v <∞, ()

where F(a; b; x) is the con�uent hypergeometric function
(Abramowitz and Stegun ),

q = n (s′Q−s) ()

is a noncentrality parameter representing the generalized

signal-to-noise ratio (GSNR). Under H, when q = ,

() reduces to a standard F-distribution with p and n − p
degrees of freedom,

fH(v;n) = [B(p

,
n − p


)]
− (

p

n − p
)
p/
vp/−

( + p

n − p
v)
n/ ,  < v <∞.

()

�e test of H versus H, based on the GMLR statistic

v, is given by

v{> h, then H (signal present),

≤ h, then H (clutter alone),
()

and can be written in the form of a decision rule u(v) over
{v : v ∈ (,∞)},

u(v) = {, v > h (H),
, v ≤ h (H),

()
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where h >  is a threshold of the test that is uniquely
determined for a prescribed level of signi�cance so that

sup
θ∈Θ

Eθ {u(v)} = α. ()

For �xed n, in terms of the probability density function

(), tables of the central F-distribution permit one to

choose h to achieve the desired test size (false alarm prob-

ability PFA),

PFA = α =
∞

∫
h

fH(v;n)dv. ()

Furthermore, once h is chosen, tables of the noncentral

F-distribution permit one to evaluate, in terms of the

probability density function (), the power (detection

probability PD) of the test,

PD = γ =
∞

∫
h

fH(v;n, q)dv. ()

�e probability of a miss is given by

β =  − γ. ()

It follows from () and () that the GMLR test is

invariant to intensity changes in the clutter background

and achieves a �xed probability of a false alarm, that is, the

resulting analyses indicate that the test has the property of a

constant false alarm rate (CFAR). Also, no learning process

is necessary in order to achieve the CFAR.�us, operat-

ing in accordance to the local clutter situation, the test is

adaptive.
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Statistical publications are editions that contain summa-

rized numerical data about socio-economic phenomena,

usually presented in the form of statistical tables, charts,

diagrams, graphs, etc.�ese statistical publications are an

inseparable part of common numerical information con-

cerning the state and development of healthcare, educa-

tion, science, and culture provided by the statistical author-

ities.

Depending on the common purpose, one may distin-

guish their various types. �ese include Statistical Year-

book, Annual Statistics; Statistical Abstract; Manual Guide,

Handbook of Statistics; overview of census, and othermajor

surveys. By order of coverage, statistical publications can

be common (National Accounts), industrial (Industrial

Indicators), or may deal with other activities of an econ-

omy (for example, Financial Statistics). By the level of

details they can be complete (Yearbooks, Almanacs, etc.) or

short (Pocket Book and Statistisches Handbook are themost

common types).

�ere are also di�erences by the domain of coverage

among one or another statistical publication: an entire

country, an administrative territorial part of the country

(for example, state, region, land, county, etc.); in interna-

tional statistical publications, this could be several coun-

tries, an entire continent, or the whole world (for example,

UN Statistical Publications).

�e outcomes of large surveys are presented in non-

recurrent statistical publications; among the recurrent sta-

tistical publications, the most signi�cant are periodical

statistical publications (published annually, quarterly, or

monthly), the least signi�cant are non-periodical statistical

publications (containing demographic �gures, birth and

death rates, marriage status, etc.).

�e statistical publications cover current and previous

years (retrospective statistical publications) with the scope

of decades and centuries (Historical Statistics of theUS from

, Colonial Times to , , , and ; USSR’s

Economics  years, ; Russia:  Years of Economic

Growth – Historical Series; Annuaire Statistique

de la France, vols. –, –).

Statistical publications have various forms of editions:

yearbooks, reports, series of books (for example, a cen-

sus of the population), bulletins, and journals, “notebooks”,

which contain statistical reviews (quarterly, monthly, Bul-

letin of Statistics, Journal of Statistics, Survey of Statistics and

Review of Statistics), summaries, and reports.

�e form and content of statistical publications have

been changing along with history.

�e �rst statistical publications (similar to modern

ones) appeared in 
th
century in Venice and then later

on in Holland (a series of  small volumes under a com-

mon name “Elsevier republics,” from ). In England

numerical statistical �gures appeared in the 
th
century

in works by the founders of “political arithmetic,” William

Petty and JohnGraunt, and in the 
th
century in the works

by Gregory King. In Germany (“�e Holy Roman Empire

of the German Nation”), the second half of the 
th
and


th
centuries were predominated by “descriptive govern-

ment statistics” (H.Conring,G.Achenwall, A. L. Schlözer);

only in the last quarter of the 
th
century did a new type

of statistical publications appeared, i.e., the works of “lin-

ear arithmeticians” tending to represent numerical data

about one or several countries in the shape of statistical

graphs—diagrams and cartograms (the founder of these

statistical publications is August Friedrich Crome, who

published “Producten-Karte von Europa” () and Über

die Größe und Bevölkerung der sämtlichen europäischen

Staaten ()). In Russia, the �rst statistical publications

date back to  (historical, ethnographic, and economic

atlases with a statistical description of Russia by I. K. Kir-

ilov).�e classi�ed yearbooks (with the scope of data for

a period of  years and more by various types of �gures

describing territories, natural resources, population, GDP,

standard of living etc.) of the USA have been published

in the United States since  ( yearbooks), in Great

Britain since  ( yearbooks), in France since  (

yearbooks of old series and  of new series), in Germany

since , in Canada since , in Sweden since , and

in Japan since .

Apart from yearbooks there are also many other spe-

cialized statistical publications, themost important among

them being “Census of Population,” “Census of Manufac-

turers,” etc., annual surveys on separate industries “Annual

Survey on Manufacturers,” enterprises “Moody’s manual”

in the U.S. “Compas” in Germany, France, and Belgium,

and also personal references such as “Who’s Who,” “Who’s

Who in the world,” “Poor’s Register of Corporations Direc-

tors and Executives,” “GreatMinds of the 
st
Century,” etc.

�e �rst international statistical dictionary was by

Michael G. Mulhall, “�e Dictionary of Statistics,” which

ran into several editions (, , , ) included

�gures on – countries for a period from  to .

Augustus D. Webb’s “�e New Dictionary of Statistics”x

covered –. From  to , the International
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Statistical Institute (ISI) published the “International Sta-

tistical Yearbook” (from – there were editions

from the International Statistical Congresses). With the

establishment of the League of Nations () the number

of statistical publications increased.�e signi�cant statis-

tical publications by the League of Nations were “Statistical

Yearbook of the League of Nations” ( yearbooks for a

period from  to ), “Monthly Bulletin of Statistics,”

“World Economic Surveys” (–,  issues), “World

Production and Prices” (–,  issues), “Review of

World Trade” (–,  issues), etc. In , the Inter-

national Labour Organization began publication of the

“Yearbook of Labour Statistics,” and in  the Interna-

tional Institute of Agriculture started publication of the

“International Yearbook of Agriculture Statistics”.

In , the United Nations Organization (UN) and

its specialized institutions started a new stage of statis-

tical publications subdivided into nine series - A, B, C,

D, J, K, M, P, F. �e most important of them are: “Sta-

tistical Yearbook,” “Demographic Yearbook,” “Yearbook

of National Accounts Statistics,” “Yearbook of Interna-

tional Trade Statistics,” “Balance of Payments Yearbook,”

“Annual Epidemiological and Vital Statistics,” “United

Nations Juridical Yearbook,” and “Yearbook of the United

Nations.”

�e Food and Agriculture Organization publishes

“Yearbook of Food and Agricultural Statistics,” “Yearbook

of Fishery Statistics,” and “Yearbook of Forest Products.”

UNESCOpublishes “International Yearbook of Educa-

tion,” “Yearbook of Youth Organizations,” and “UNESCO

Statistical Yearbook.”

EU, OECD, WHO, EuroStat, IMF, and World Bank

have their own statistical publications. �e most impor-

tant statistical publications are world economic reviews

(published separately by the UN and its commissions for

Europe, Asia, Africa and Latin America, on annual basis)

and various statistical editions. �ere are also statistical

journals, for example, theUN’s “Monthly Bulletin of Statis-

tics” and the UN’s reference books, “World Weight and

Measures,” “Nomenclature of Geographic Areas for Sta-

tistical Purposes,” “Name’s of Countries and Adjectives of

Nationality,” etc.�e international bibliographies, indexes,

dictionaries, and encyclopedias are also considered to be

statistical publications.

�e specialized editions and international statistical

classi�ers, questionnaires, systems, methods, and stan-

dards (there are over , of titles including  stan-

dard classi�ers in the world) regulate the procedures of

the international comparisons, the most recognized stan-

dards of which are UN’s System of National Accounts,

trade, banking and monetary transactions, and standards

of EuroStat and IMF on the statistical ethics and assess-

ment of data quality.
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Quality: A Brief Introduction
�e main objective of statistical quality control (SQC) is

to achieve quality in production and service organizations,

through the use of adequate statistical techniques.�e fol-

lowing survey relates to manufacturing rather than to the

service industry, but the principles of SQC can be suc-

cessfully applied to either. For an example of how SQC

applies to a service environment, see Roberts ().Qual-

ity of a product can be de�ned as its adequacy to be used

(Montgomery ), which is evaluated by the so-called

quality characteristics. �ose are random variables in a

probability language, and are usually classi�ed as: physi-

cal, like length and weight; sensorial, like �avor and color;

temporally oriented, like the maintenance of a system.

Quality Control (QC) has been an activity of engi-

neers and managers, who have felt the need to work

jointly with statisticians. Di�erent quality characteristics

are measured and compared with pre-determined speci�-

cations, the quality norms. QC began a long time ago, when

manufacturing began and competition accompanied it,
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with consumers comparing and choosing the most attrac-

tive product. �e Industrial Revolution, with a clear dis-

tinction between producer and consumer, led producers

to the need of developing methods for the control of their

manufactured products. On the other hand, SQC is com-

paratively new, and its greatest developments have taken

place during the twentieth century. In , at the Bell

Laboratories, Shewhart developed the concept of control

chart and, more generally, statistical process control (SPC),

shi�ing the attention from the product to the production

process (Shewhart ). Dodge and Romig (), also in

the Bell Laboratories, developed sampling inspection, as an

alternative to the % inspection.

Among the pioneers in SPC we also distinguish W.E.

Deming, J.M. Juran, P.B. Crosby andK. Ishikawa (see other

references in Juran and Gryna ). But it was during the

Second World War that there was a generalized use and

acceptance of SQC, largely used in USA and considered as

primordial for the defeat of Japan. In , the American

Society for Quality Controlwas founded, and this enabled a

huge push to the generalization and improvement of SQC

methods.

A�er the IIWorldWar, Japan was confronted with rare

food and lodging, and the factories were in ruin.�ey eval-

uated and corrected the causes of such a defeat.�e quality

of the products was an area where USA had de�nitely over

passed Japan, and this was one of the items they tried to

correct, becoming rapidly masters in inspection sampling

and SQC, and leaders of quality around . Recently, the

quality developments have also been devoted to the moti-

vation of workers, a key element in the expansion of the

Japanese industry and economy.

Quality is more and more the prime decision factor

in the consumer preferences, and quality is o�en pointed

out as the key factor for the success of organizations.

�e implementation of a production QC clearly leads to

a reduction in the manufacturing costs, and the money

spent with control is almost irrelevant. At the moment,

the quality improvement in all areas of an organization, a

philosophy known as Total Quality Management (TQM)

is considered crucial (see Vardeman and Jobe ).�e

challenges are obviously di�cult. But the modern SQC

methods surely provide a basis for a positive answer to

these challenges. SQC is at this moment much more than

a set of statistical instruments. It is a global way of thinking

of workers in an organization, with the objective of mak-

ing things right in the �rst place.�is is mainly achieved

through the systematic reduction of the variance of relevant

quality characteristics.

Usual Statistical Techniques in SQC
�e statistical techniques useful in SQC are quite diverse.

In this survey, we shall brie�y mention SPC, an on-line

control technique of a process production with the use

of 7control charts. 7Acceptance sampling, performed out
of the line production (before it, for sentencing incoming

batches, and a�er it, for evaluating the �nal product), is

another important topic in SQC (see Duncan [] and

Pandey [], among others). A similar comment applies

to reliability theory and reliability engineering, o�-line tech-

niques performed when the product is complete, in order

to detect the resistance to failure of a device or system (see

Pandey [], also among others).

It is however sensible to mention that, additionally to

these techniques, there exist other statistical topics useful

in the improvement of a process. We mention a few exam-

ples: in a line of production, we have the input variables,

the manufacturing process and the �nal product (output).

It is thus necessary to model the relationship between

input and output. Among the statistical techniques useful

in the building of thesemodels, wementionRegression and

Time Series Analysis.�e area of Experimental Design (see

Taguchi et al. ) has also proved to be powerful in the

detection of the most relevant input variables. Its adequate

use enables a reduction of variance and the identi�cation

of the controllable variables that enable the optimization of

the production process.

Statistical Process Control (SPC). Key monitoring and
investigating tools in SPC include histograms, Pareto

charts, cause and e�ect diagrams, scatter diagrams and

control charts. We shall here focus on control chart

methodology.

A control chart is a popular statistical tool for moni-

toring and improving quality, and its success is based on

the idea that no matter how well the process is designed,

there exists a certain amount of nature variability in out-

put measurements. When the variation in process quality

is due to random causes alone, the process is said to be

in-control. If the process variation includes both random

and special causes of variation, the process is said to be

out-of-control.�e control chart is supposed to detect the

presence of special causes of variation.

Generally speaking, the main steps in the construc-

tion of a control chart, performed at a stable stage of the

process, are the following: determine the process param-

eter you want to monitor, choose a convenient statistic,

sayW, and create a central line (CL), a lower control limit

(LCL) and an upper control limit (UCL).�en, sample the
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production process along time, and group the processmea-

surements into rational subgroups of size n, by time period

t. For each rational subgroup, compute wt , the observed

value ofWt , and plot it against time t.�emajority ofmea-

surements should fall in the so-called continuation interval

C = [LCL,UCL]. Data can be collected at �xed sampling
intervals (FSI), with a size equal to d, or alternatively, at

variable sampling intervals (VSI), usually with sampling

intervals of sizes d,d ( < d < d).�e region C is then
split in two disjoint regions C and C, with C around CL.

�e sampling interval d is used as soon as a measurement

falls inC; otherwise, it is used the largest sampling interval

d. If themeasurements fall within LCL andUCLno action

is taken and the process is considered to be in-control. A

point wt that exceeds the control limits signals an alarm,

i.e., it indicates that the process is out of control, and some

action should be taken, ranging from taking a re-check

sample to the tracing and elimination of these causes. Of

course, there is a slight chance that is a false alarm, the

so-called α-risk. �e design of control charts is a com-

promise between the risks of not detecting real changes

(β-risks) and of α-risks. Other relevant primary character-

istics of a chart are the run length (RL) or number of samples

to signal (NSS) and the associated mean value, the aver-

age run length, ARL=E(RL) = /( − β), as well as the
capability indices, Ck and Cpk (see Pearn and Kotz ).

Essentially, a control chart is a test, performed along time

t, of the hypothesis H : the process is in-control versus

H : the process is out-of-control.

Stated di�erently, we use historical data to compute the

initial control limits.�en the data are compared against

these initial limits. Points that fall outside of the limits are

investigated and, perhaps, some will later be discarded.

If so, the limits need to be recomputed and the process

repeated.�is is referred to as Phase I. Real-time process

monitoring, using the limits from the end of Phase I, is

Phase II. �ere thus exists a strong link between control

charts and hypothesis testing performed along time.

Note that a preliminary statistical data analysis (usu-

ally histograms andQ-Q plots) should be performed on the

prior collected data. A common assumption in SPC is that

quality characteristics are distributed according to a nor-

mal distribution. However, this is not always the case, and

in practice, if data seemvery far frommeeting this assump-

tion, it is common to transform them through a7Box–Cox
transformation (Box and Cox ). But muchmore could

be said about the case of nonnormal data, like the use of

robust control charts (see Figueiredo and Gomes [],

among others).

With its emphasis on early detection and prevention of

problems, SPC has a distinct advantage over quality meth-

ods such as inspection, that apply resources to detecting

and correcting problems in the �nal product or service. In

addition to reducing waste, SPC can lead to a reduction in

the time required to produce the �nal products. SPC is rec-

ognized as a valuable tool from both a cost reduction and

a customer satisfaction standpoint. SPC indicates when an

action should be taken in a process, but it also indicates

when no action should be taken.

Classical Shewhart Control Charts: A Simple
Example. In this type of charts, measurements are
assumed to be independent and distributed according to a

normal distribution.Moreover, the statisticsWt built upon

those measurements are also assumed to be independent.

�e main idea underlying these charts is to �nd a simple

and convenient statistic, W, with a sampling distribution

easy to �nd under the validity of the in-control state, so

that we can easily construct a con�dence interval for a

location or spread measure of that statistic. For continu-

ous quality characteristics, the most common Shewhart-

charts are the average chart (X-chart) and the range chart

(R-chart), as an alternative to the standard-deviation

chart (S-chart). For discrete quality characteristics, the

most usual charts are the p-charts and np-charts in a

Binomial(n, p) background, and the so-called c-charts and
u-charts for Poisson(c) backgrounds.

Example  (X-chart). Imagine a breakfast cereal packag-

ing line, designed to �ll each cereal box with  grams of

product.�e production manager wants to monitor on-line

the mean weight of the boxes, and it is known that, for a sin-

gle pack, an estimate of the weight standard-deviation σ is

 g. Daily samples of n =  packs are taken during a stable
period of the process, the weights xi,  ≤ i ≤ n, are recorded,
and their average, x = ∑ni= xi/n, is computed.�ese aver-
ages are estimates of the processmean value µ, the parameter

to be monitored.�e center line is CL =  g (the target).
If we assume that data are normally distributed, i.e., X ⌢
N(µ = , σ = ), the control limits can be determined
on the basis that X ⌢ N(µ = , σ/

√
n = /

√
 = .).

In-control, it thus expected that ( − α)% of the average
weights are between  + . ξα/ and  − . ξα/
where ξα/ is the (α/)-quantile of a standard normal dis-
tribution. For a α-risk equal to . (a common value
in English literature), ξα/ = −.. �e American Stan-
dard is based on “ − sigma” control limits (corresponding
to .% of false alarms), while the British Standard uses
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“.−sigma” limits (corresponding to .%of false alarms).
In this case, the -sigma control limits are LCL =  −  ×
/

√
 = . and UCL =  +  × /

√
 = ..

Other Control Charts. Shewhart-type charts are e�cient
in detecting medium to large shi�s, but are insensitive to

small shi�s. One attempt to increase the power of these

charts is by adding supplementary stopping rules based

on runs.�e most popular stopping rules, supplementing

the ordinary rule, “one point exceeds the control limits,”

are: two out of three consecutive points fall outside warn-

ing (-sigma) limits; four out of �ve consecutive points fall

beyond -sigma limits; eight consecutive points fall on one

side of the centerline.

Another possible attempt is to consider some kind of

dependency between the statistics computed at the di�er-

ent sampling points. To control themean value of a process

at a target µ, one of the most common control charts

of this type is the cumulative sum (CUSUM) chart, with

an associated control statistic given by St := ∑tj=(xj −
µ) = St− + (xt − µ), t = , ,⋯ (S = ). Under
the validity of H : X ⌢ N(µ, σ), we thus have a ran-
dom walk with null mean value (see 7Random Walk). It
is also common to use the exponentially weighted moving

average (EWMA) statistic, given byZt := λxt+(−λ)Zt− =
λ∑t−j=( − λ)j xt−j + ( − λ)tZ, t = , , . . . , Z =
x,  < λ < , where x denotes the overall average of a
small number of averages collected a priori, when the pro-

cess is considered stable and in-control. Note that it is also

possible to replace averages by individual observations (for

details, see Montgomery ).

ISO , Management and Quality
�e main objective of this survey was to speak about sta-

tistical instruments useful in the improvement of quality.

But these instruments are a small part of the total e�ort

needed to achieve quality. Nowadays, essentially due to

an initiative of the International Organization for Stan-

dardization (ISO), founded in , all organizations are

pushed towards quality. In , ISO published the ISO

 series, with general norms for quality management

and quality guarantee, and additional norms were estab-

lished later on diversi�ed topics. �e ISO  norms

provide a guide for producers, whowant to implement e�-

cient quality.�ey can also be used by consumers, in order

to evaluate the producers’ quality. In the past, the produc-

ers were motivated to the establishment of quality through

the increasing satisfaction of consumers. Nowadays, most

of the them are motivated by the ISO  certi�cation –

if they do not have it, they will lose potential clients.

Regarding management and quality: as managers have

a �nal control of all organization resources, management

has a ultimate responsibility in the quality of all products.

Management should thus establish a quality policy, mak-

ing it perfectly clear to all workers (see Burrill and Ledolter

, for details).
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Statistical quality control aims to achieve the product or

process quality by utilizing statistical techniques, in which

statistical process control (SPC) has been demonstrated to

be one primary tool for monitoring the process or product

quality. Since s, the control chart, as one of the most

important SPC techniques, has been widely studied.

Univariate Control Charts Versus
Multivariate Control Charts
In terms of the number of variables,7control charts can be
classi�ed into two types, that is, univariate control charts

and multivariate control charts.

�e performance of the conventional univariate con-

trol charts, including Shewhart control charts, cumulative

sum (CUSUM) control charts and exponentially weighted

moving average (EWMA) control charts have been exten-

sively reviewed. �e research demonstrates that the She-

whart chart is more sensitive to large shi�s than the

EWMA and CUSUM chart and vice versa. �ese tra-

ditional control charts usually assume that the observa-

tions are independent and identically follow the normal

distribution. In some practical situations, however, these

assumptions are not valid.�erefore, other control charts

that are di�erent or extended from the traditional charts

are developed for some special cases, such as monitoring

autocorrelated processes and/or processes with huge sam-

ple data, detecting dynamicmean change and/or a range of

mean shi�s. See Han and Tsung (, , , ),

Han et al. (a, b), Wang and Tsung (), Zhao et al.

() and Zou et al. (c) for detailed discussion.

Although the aforementioned univariate charts per-

formwell inmonitoring some process or product qualities,

their performance is not satisfactory when the quality of

a product or process is characterized by several correlated

variables.�erefore,multivariate statistical process control

(MSPC) techniques were developed and widely applied.

Hotelling’s T chart, the traditional multivariate control

chart, was proposed in  (Hotelling ) to deal with

the multivariate monitoring case, which assumed that sev-

eral variables follow the multivariate normal distribution

(see 7Multivariate Normal Distributions). Following that,
a variety of studies extended this research further. Among

others, see Tracy et al. (), Mason et al. (), and Sul-

livan and Woodall () for discussion concerning the

property and performance of the T chart.

Besides the Hotelling’s T chart, the other traditional

multivariate control charts include theMultivariate cumu-

lative sum (MCUSUM) chart presented by Crosier ()

and Pignatiello and Runger () and the multivariate

exponentially weighted moving average (MEWMA) chart

proposed by Lowry et al. (). Similarly toHotelling’sT,

these two charts are sensitive to moderate and small mean

shi�s. Other extensions of traditional MSPC techniques,

i.e., adaptive T chart for dynamic processes (see Wang

and Tsung (, )), have been analyzed. Besides

the multivariate charts for mean shi�s, the multivariate

charts for monitoring the process variation were also pre-

sented recently, such as the multivariate exponentially

weighted mean squared deviation (MEWMS) chart and

a multivariate exponentially weighted moving variance

(MEWMV) chart (Huwang et al. ()).�e extensive lit-

erature reviews were provided by Kourti and MacGregor

() and Bersimis et al. (), in which other statisti-

cal methods applied in MSPC, i.e., 7principal component
analysis (PCA) and partial least square (PLS), are also

reviewed.

Most of thementioned charts have a common assump-

tion that process variables follow normal distributions.

When there is no distribution assumption, nonparamet-

ric methods, like the depth function (Zuo and Ser�ing

()), can be used, the advantages ofwhich are examined

by Chakraborti et al. (). However, with the develop-

ment of technology, a more complicate situation occurs.

Numerical process variables may be mixed up with the

categorical process variables to represent the real condi-

tion of a process. Direct application of the aforementioned

methods may lead to inappropriate ARL and unsatisfac-

tory false alarms. An alternative way to solve this prob-

lem is to use some distribution-free methods, like the

K-chart proposed by Sun and Tsung (). More research

is needed in this area.
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SPC for Profile Monitoring
In most SPC applications, either in the univariate or mul-

tivariate cases, it is assumed that the quality of a process

or product can be adequately represented by the distri-

bution of a single quality characteristic or by the general

multivariate distribution of the several correlated quality

characteristics. In some practical situations, however, the

quality of a process or product is better characterized and

summarized by a relationship between a response vari-

able and one or more explanatory variables (Woodall et al.

).�erefore, studies on pro�le monitoring have been

steadily increasing.

�e early research on pro�le monitoring usually

assumes that the relationship can be represented by the

linear model. �ere has been extensive existing research

on linear pro�le monitoring in the literature. For example,

as early as , Kang and Albin presented two methods

in order to monitor the linear pro�les. One approach is

to monitor the intercept and slope of the linear model by

constructing the multivariate chart (T

chart).�e other

is to monitor the average residuals by using the exponen-

tial weighted moving average (EWMA) chart and rang (R)

chart simultaneously. It can be noted that some di�erent

control schemes were also developed for solving di�er-

ent linear pro�le monitoring problems, i.e., the self-staring

control chart for linear pro�les with unknown parame-

ters (Zou et al. (a)). In addition, Zou et al. (b)

proposed a multivariate EWMA (MEWMA) scheme for

monitoring the general linear pro�le. Furthermore, recent

studies on the nonlinear pro�lemonitoring can be sourced

in the relevant literature. Among others, the nonparamet-

ric methods are commonly used in monitoring the non-

linear pro�les (see Zou et al. b, Jensen et al. ).

Besides,Woodall et al. () provided an extensive review

on pro�lemonitoring. Recent research focused on the con-

trol scheme for monitoring pro�les with categorical data

rather than continuous data (Yeh et al. )), in which a

Phase I monitoring scheme for pro�les with binary output

variables was proposed.

SPC for Processes with Multiple Stages
In modern manufacturing and service environments, it

is very common that most manufacturing and/or service

processes involve a large number of operating stages rather

than one single stage. Many examples of such multistage

processes can be found in semiconductor manufactur-

ing, automobile assembly lines and bank services, etc.

For instance, the print circuit board (PCB) manufactur-

ing process includes several stages, that is, exposure to

black oxide, lay-up, hot press, cutting, drilling, and inspec-

tion. However, most of the abovementioned conventional

SPCmethods focus on single-stage processes without con-

sidering the multistage scenario, which do not consider

the relationship among di�erent stages. �erefore, the

recent research on multistage processes has been widely

conducted.

�e existing popular SPC methods for multistage pro-

cesses usually involve three types of approaches, which

are the regression adjustment method, the cause-selecting

method and methods based on linear state space mod-

els. �e regression adjustment method was developed

by Hawkins (, ), while Zhang (, , ,

) proposed the cause-selecting method. A review of

the cause-selecting method can be found in Wade and

Woodall (). Recent research on the use of cause-

selecting charts for multistage processes can be found in

Shu et al. (), Shu and Tsung (), Shu et al. ()

and Shu et al. (). A variety of current studies on mul-

tistage processes also adopt engineering models with a

linear state space model structure. �is model incorpo-

rates physical laws and engineering knowledge in order

to describe the quality linkage among multiple stages in

a process. Latest works on multistage process monitoring

and diagnosis can be referred to Xiang and Tsung (),

Zou et al. (a), Jin and Tsung (), and Li and Tsung

(). With respect to multistage processes with categor-

ical variables, some monitoring schemes were developed

recently. For example, Skinner et al. (, ) proposed

the generalized linear model (GLM)-based control chart

for the Poisson data obtained from multiple stages.

An extensive review on the quality control of mul-

tistage systems including monitoring and diagnosing

schemes was presented by Shi and Zhou ().

SPC Applications in Service Industries
SPC techniques can be applied in di�erent industries such

as manufacturing or service industries, although most

of these techniques are originally developed for manu-

facturing industries, i.e., machining processes, assembly

processes, semiconductor processes etc. Because the SPC

techniques have been demonstrated to be e�cient forman-

ufacturing processes, the application of these techniques in

service processes was argued in some papers (see Wycko�

(), Palm et al. () and Sulek ()). In the existing

literature, several control charts have been applied in ser-

vice processes, i.e., quick service restaurant, the auto loan

process that provides better service from the loan com-

pany to car dealers and buyers, and invoicing processes.

See Apte and Reynolds (), Mehring (), Cartwright

and Hogg () for detailed discussion. In addition, the

control charts were also widely applied in health-care

and public-health �elds (see Wardell and Candia (),
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Green ()). Recently,Woodall () discussed in great

detail di�erent control charts that have been proposed in

health-care and public-health �elds. Both the manufactur-

ing process and the service operation process involve mul-

tiple operating stages rather than a single stage.�erefore,

Sulek et al. () proposed to use the cause selecting con-

trol chart for monitoring the service process with multiple

stages in the grocery store and showed that it outperformed

the Shewhart chart in monitoring the multistage service

process. More recent studies on the application of SPC

techniques, especially in service industries, were reviewed

by Maccarthy and Wasusri () and Tsung et al. ().

All these applications showed that SPC techniques were

e�cient in monitoring and identifying service processes.

Statistical ProcessControl as one primary tool for qual-

ity control is very e�cient and important in monitoring

the process/product quality. SPC techniqueswill be applied

inmore industries with di�erent characteristics.�erefore,

more advanced studies on SPC schemeswill bewidely con-

ducted in order to achieve the quality required for products

or processes.
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Statistical Signal Processing
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Signal processingmay broadly be considered to involve the

recovery of information from physical observations. �e

received signals is usually disturbed by thermal, electri-

cal, atmospheric or intentional interferences. Due to the

random nature of the signal, statistical techniques play an

important role in signal processing. Statistics is used in the

formulation of appropriatemodels to describe the behavior

of the system, the development of appropriate techniques
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for estimation of model parameters, and the assessment of

model performances. Statistical Signal Processing basically

refers to the analysis of random signals using appropriate

statistical techniques. �e main purpose of this article is

to introduce di�erent signal processing models and di�er-

ent statistical and computational issues involved in solving

them.

The Multiple Sinusoids Model
�e multiple sinusoids model may be expressed as

y(t) =
M

∑
k=

{Ak cos(ωkt)+Bk sinωkt)}+n(t); t = , . . . ,N.

()

Here Ak’s and Bk’s represent the amplitudes of the signal,

ωk’s represent the real radian frequencies of the signals,

n(t)’s are error random variables withmean zero and �nite
variance. �e assumption of independence of the error

random variables is not that critical to the development

of the inferential procedures. �e problem of interest is

to estimate the unknown parameters {Ak,Bk,ωk} for k =
, . . . ,M, given a sample of sizeN. In practical applications

o�en M is also unknown. Usually, when M is unknown,

�rst estimateM using some model selection criterion, and

then it is assumed that M is known, and estimate the

amplitudes and frequencies.

�e sum of sinusoidal model () plays the most impor-

tant role in the Statistical Signal Processing literature.Most

of the periodic signals can be well approximated by the

model () with the proper choice ofM and with the ampli-

tudes and frequencies. For several applications of this

model in di�erent �elds see Brillinger ().

�e problem is an extremely challenging problem both

from the theoretical and computational points of view.

As a statistician Fisher () �rst considered this prob-

lem. It seems that the standard least squares estimators

will be the natural choice in this case, but �nding the least

squares estimators, and establishing their properties are far

from trivial issues. Although, the model () is a non-linear

regression model, but the standard su�cient conditions

needed for the least squares estimators to be consistent

and asymptotically normal do not hold true in this case.

Special care is needed in establishing the consistency and

7asymptotic normality properties of the least squares esti-
mators, see for example Hannan () and Kundu ()

in this respect. Moreover, for computing the least squares

estimators, most of the standard techniques like Newton–

Raphson or its variants do not o�en converge even from

good starting values. Even if it converges, it may converge

to a localminimumrather than the globalminimumdue to

highly non-linear nature of the least squares surface. Spe-

cial purpose algorithms have been developed to solve this

problem.

Several approximate solutions have been suggested in

the literature. Among several approximate estimators, For-

ward Backward Linear Prediction (FBLP) and modi�ed

EquiVariance Linear Prediction (EVLP) work very well.

But it should be mentioned that none of these methods

behaves uniformly better than the other. More than 

references on this topic can be found in Stoica (), and

see also Quinn and Hannan (), the only monograph

written by statisticians in this topic.

Two-Dimensional Sinusoidal Model
Two dimensional periodic signals are o�en being analyzed

by the two-dimensional sinusoidal model, which can be

written as follows:

y(s, t) =
M

∑
k=

{Ak cos(ωks + µkt) + Bk cos(ωks + µkt)}

+ n(s, t), s = , . . . S, t = . . . ,T. ()

Here Ak’s and Bk’s are amplitudes and ωk’s and µk’s are fre-

quencies.�e problem once again involves the estimation

of the signal parameters namely Ak’s, Bk’s, ωk’s and µk’s

from the data {y(s, t)}.
�e model () has been used very successfully for ana-

lyzing two dimensional gray texture data, see for example

Zhang andMandrekar (). A three dimensional version

of it can be used for analyzing color texture data also, see

Prasad () and Prasad and Kundu (). Some of the

estimation procedures available for the one-dimensional

problem may be extended quite easily to two or three

dimensions. However, several di�culties arise when deal-

ing with high dimensional data. �ere are several open

problems in multidimensional frequency estimation, and

this continues to be an active area of research.

Array Model
�e area of array processing has received a considerable

attention in the past several decades.�e signals recorded

at the sensors contain information about the structure of

the generating signals including the frequency and ampli-

tude of the underlying sources. Consider an array of P

sensors receiving signals from M sources (P > M). �e
array geometry is speci�ed by the applications of interest.

In array processing, the signals received at the i− th censor
is given by

yi(t) =
M

∑
j=
ai(θ j)xj(t) + ni(t), i = , . . . ,P. ()
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Here xj(t) represents the signal emitted by the j−th source,
and ni(t) represents additive noise.�e model () may be
written in the matrix form as;

y(t) = [a(θ) : . . . : a(θM)] x(t) + n(t)
= A(θ)x(t) + n(t), t = , . . . ,N. ()

�e matrix A(θ) has a Vandermonde structure if the
underlying array is assumed to be uniform linear array.�e

signal vector x(t) and the noise vector n(t) are assumed
to be independent and zero mean random processes with

covariancematrices Γ and σ I respectively.�emain prob-

lem here is to estimate the signal vector θ, based on the

sample y(), . . . , y(N), when the structure of A is known.
Interestingly, instead of using the traditionalmaximum

likelihoodmethod, di�erent subspace �ttingmethods, like

MUltipe SIgnal Classi�cation (MUSIC) and Estimation

of Signal Parameters via Rotational Invariance Technique

(ESPRIT) and their variants are being used more success-

fully, see for example the text by Pillai () for detailed

descriptions of the di�erent methods.

For basic introduction of the subject the readers are

referred to Kay () and Srinath et al. () and for

advanced materials see Bose and Rao () and Quinn

and Hannan ().
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Statistical thinking pervades the empirical sciences. It is

used to provide principles of initial description, concept

formation, model development, observational design, the-

ory development and theory testing, and much more.

Some of these activities consist in computing signi�cance

tests for statistical hypotheses. Such a hypothesis typically

is a statement about a regression coe�cient in a linear

regression or a relative risk for a chosen life-course event,

such as marriage formation or death.�e hypothesis can

state that the regression coe�cient equals zero (or that

the relative risk equals ), implying that the correspond-

ing covariate has no impact on the transition in question

and thus does not a�ect the behavior it represents, or that

for all practical purposes the analyst may act as if this
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were the case. Alternatively the hypothesis may predict the

sign of the coe�cient, for example that higher education

leads to lower marriage rates, ceteris paribus, as argued by

some economists. �e converse (namely that the sign is

zero or positive) would be called the null hypothesis. Other

hypotheses concern the form of the statistical model for

the behavior in question. In such a case the null hypothe-

sis would be that the model speci�ed is correct; this leads

to questions of goodness of �t. In any case the statistician’s

task is to state whether the data at hand justify rejecting

whatever null hypothesis has been formulated.

�e null hypothesis is typically rejected when a suit-

able test statistic has a value that is unlikely when the null

hypothesis is correct; usually the criterion is that the test

statistic lies in (say) the upper tail of the probability dis-

tribution it has when the hypothesis is correct. An upper

bound on the probability of rejecting the null hypothesis

when it actually is correct is called the level of signi�cance of

the test method. It is an important task for the investigator

to keep control of this upper bound. A test of signi�cance

is supposed to prevent that a conclusion is drawn (about

a regression coe�cient, say) when the data set is so small

that a pattern “detected” can be caused by random varia-

tion. Operationally an investigator will o�en compute the

probability (when the null hypothesis is correct) that in a

new data set, say, the test statistic would exceed the value

actually observed and reject the null hypothesis when this

so-called p-value is very small, since a small p-value is

equivalent to a large value of the test statistic.

Ideally, hypotheses should be developed on the basis of

pre-existing theory and common sense as well as of empir-

ical features known from the existing literature. Strict

protocols should be followed that require any hypothesis

experimentation to be made on one part of the current

data set, with testing subsequently to be carried out on a

virgin part of the same data, or on a new data set. Unfor-

tunately, most empirical scientists in the economic, social,

biological, and medical disciplines, say, �nd such a proce-

dure too con�ning (assuming that they even know about

it). It is commonpractice to use all available data to develop

a model, formulate scienti�c hypotheses, and to compute

test statistics or 7p-values from the same data, perhaps
using canned computer programs that provide values of

test statistics as if scienti�c statistical protocol could be

ignored (Ziliak and McCloskey ).�e danger of such

practices is that the investigator loses control over any

signi�cance levels, a fact which has been of concern to

professional statisticians for a good while (For some con-

tributions from recent decades see Guttman (), Cox

(), Schweder (), and Hurvich and Tsai ().

Such concerns also extend to many others. For instance,

Chow () describes a litany of criticism appearing in

the psychological literature in Chapter  of a book actu-

ally written to defend the null-hypothesis signi�cance-test

procedure. [See Hoem () for a discussion of further

problems connected to common practices of signi�cance

testing, namely the need to embed an investigation into a

genuine theory of behavior rather than to rely on mechan-

ical signi�cance testing, the avoidance of grouped p-values

(o�en using a system of asterisks), the selection of sub-

stantively interesting contrasts rather than those thrown

up mechanically by standard so�ware, and other issues]).

For twenty years and more, remedies have been avail-

able to overcome the weaknesses of the procedures just

described, including rigorous methods for model develop-

ment and data snooping. Such methods prevent the usual

loss of control over the signi�cance level and also allow the

user to handle model misspeci�cation (�e latter feature

is important because a model invariably is an imperfect

representation of reality.). Users of event-history analysis

may want to consult Hjort (, ), Sverdrup (),

and previous contributions from these authors and their

predecessors.

Unfortunately such contributions seem to be little

known outside a circle of professional statisticians, a fact

which for example led Rothman () to attempt to erad-

icate signi�cance tests from his own journal (Epidemiol-

ogy). He underlined the need to see the interpretation of a

study based not on statistical signi�cance, or lack of it, for

one or more study variables, but rather on careful quan-

titative consideration of the data in light of competing

explanations for the �ndings. For example, he would pre-

fer a researcher to consider whether the magnitude of an

estimated e�ect could be readily explained by uncontrolled

confounding or selection biases, rather than simply to o�er

the uninspired interpretation that the estimated e�ect is

signi�cant, as if neither chance nor bias could then account

for the �ndings.
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Introduction
It is generally acknowledged that the most important

changes in statistics in the last  years are driven by

technology. More speci�cally, by the development and

universal availability of fast computers and of devices

to collect and store ever-increasing amounts of data.

Satellite remote sensing, large-scale sensor networks,

continuous environmental monitoring, medical imaging,

micro-arrays, the various genomes, and computerized sur-

veys have not just created a need for new statistical tech-

niques. �ese new forms of massive data collection also

require e�cient implementation of these new techniques

in so�ware. �us development of statistical so�ware has

become more and more important in the last decades.

Large data sets also create new problems of their own.

In the early days, in which the t-test reigned, including the

data in a published article was easy, and reproducing the

results of the analysis did not take much e�ort. In fact, it

was usually enough to provide the values of a small num-

ber of su�cient statistics.�is is clearly no longer the case.

Large data sets require a great deal of manipulation before

they are ready for analysis, and the more complicated data

analysis techniques o�en use special-purpose so�ware and

some tuning.�is makes reproducibility a very signi�cant

problem.�ere is no science without replication, and the

weakest form of replication is that two scientists analyzing

the same data should arrive at the same results.

It is not possible to give a complete overviewof all avail-

able statistical so�ware.�ere are older publications, such

as Francis (), in which detailed feature matrices for

the various packages and libraries are given.�is does not

seem to be a useful approach anymore, there simply are too

many programs and packages. In fact many statisticians

develop ad-hoc so�ware packages for their own projects.

We will give a short historical overview, mentioning

the main general purpose packages, and emphasizing the

present state of the art. Niche players and special purpose

so�ware will be largely ignored. �ere is a well-known

quote from Brian Ripley (): “Let’s not kid ourselves:

the most widely used piece of so�ware for statistics is

Excel.”�is is surely true, but it is equally true that only

a tiny minority of statisticians have a degree in statistics.

We have to distinguish between “statistical so�ware” and

the much wider terrain of “so�ware for statistics.” Only the

�rst type is of interest to us here – we will go on kidding

ourselves.

BMDP, SAS, SPSS
�e original statistical so�ware packages were written for

IBM mainframes. BMDP was the �rst. Its development

started in , at the UCLA Health Computing Facil-

ity. SPSS arrived second, developed by social scientists at

the University of Chicago, starting around . SAS was

almost simultaneous with SPSS, developed since  by

computational statisticians at North Carolina State Uni-

versity.�e three competitors di�ered mainly in the type

of clients they were targeting. And of course health scien-

tists, social scientists, and business clients all needed the

standard repertoire of statistical techniques, but in addi-

tion some more specialized methods important in their

�eld.�us the packages diverged somewhat, although their

basic components were very much the same.
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Around  all three packages added a version for per-

sonal computers, eventually developing WIMP (window,

icon, menu, pointer) interfaces. Somewhat later they also

added matrix languages, thus introducing at least some

form of extensibility and code sharing.

As in other branches of industry, there has been some

consolidation. In  SPSS bought BMDP, and basically

killed it, although BMDP- is still sold in Europe by

Statistical Solutions. It is now, however, no longer a serious

contender. In  SPSS itself was bought by IBM, where

it now continues as PASW (Predictive Analytics So�ware).

As the name change indicates, the emphasis in SPSS has

shi�ed from social science data analysis to business analyt-

ics.�e same development is going on at SAS, which was

originally the Statistical Analysis System. Currently SAS is

not an acronym any more. Its main products are SAS Ana-

lytics and SAS Business Intelligence, indicating that the

main client base is now in the corporate and business com-

munity. Both SPSS (now PASW) and SAS continue to have

their statistics modules, but the keywords have de�nitely

shi�ed to analytics, forecasting, decision, and marketing.

Data Desk, JMP, Stata
�e second generation of statistics packages started

appearing in the ’s, with the breakthrough of the per-

sonal computer. Both Data Desk () and JMP ()

were, from the start, written for Macintosh, i.e., for the

WIMP interface. �ey had no mainframe heritage and

baggage. As a consequence they had a much stronger

emphasis on graphics, visualization, and exploratory data

analysis.

Data Desk was developed by Paul Velleman, a former

student of John Tukey. JMP was the brain child of John

Sall, one of the co-founders and owners of SAS, although

it existed and developed largely independent of the main

SAS products. Both packages featured dynamic graphics,

and used graphical widgets to portray and interactively

manipulate data sets.�ere was much emphasis on brush-

ing, zooming, and spinning. Both Data Desk and JMP

have their users and admirers, but both packages never

became dominant in either statistical research or statisti-

cal applications. �ey were important, precisely because

they emphasized graphics and interaction, but they were

still too rigid and too di�cult to extend.

Stata, another second generation package for the per-

sonal computer, was an interesting hybrid of a di�erent

kind. It was developed since , like BMDP starting in

Los Angeles, near UCLA. Stata had a CLI (command line

interface), and did not get a GUI until . It empha-

sized, from the start, extensibility and user-contributed

code. Stata did not get its own matrix language Mata until

Stata-, in .

Much of Stata’s popularity is due to its huge archive

of contributed code, and a delivery mechanism that uses

the Internet to allow for automatic downloads of updates

and new submissions. Stata is very popular in the social

sciences, where it attracts those users that need to develop

and customize techniques, instead of using the more

in�exible procedures of SPSS or SAS. For such users a CLI

is o�en preferable to a GUI.

Until Stata developed its contributed code techniques,

the main repository had been CMU’s statlib, modeled on

netlib, which was based on the older network interfaces

provided by �p and email. �ere were no clear organiz-

ing principles, and the code generally was FORTRAN or

C, which had to be compiled to be useful. We will see that

the graphics from Data Desk and JMP, and the command

line and code delivery methods from Stata, were carried

over into the next generation.

S, LISP-STAT, R
Work had on the next generation of statistical computing

systems had already started before , but it mostly took

place in research labs. Bell Laboratories in Murray Hill,

N.J., as was to be expected, was the main center for these

developments.

At Bell John Chambers and his group started develop-

ing the S language in the late seventies. S can be thought

of as a statistical version of MATLAB, as a language and

an interpreter wrapped around compiled code for numeri-

cal analysis and probability. It went through various major

upgrades and implementations in the eighties, moving

from mainframes to VAX’es and then to PC’s. S developed

into a general purpose language, with a strong compiled

library of linear algebra, probability and optimization, and

with implementations of both classical and modern sta-

tistical procedures.�e �rst  years of S history are ably

reviewed by Becker (), and there is a  year history

of the S language in Chambers (, Appendix A) .�e

statistical techniques that were implemented, for example

in theWhite Book (Chambers and Hastie ), were con-

siderably more up-to-date than techniques typically found

in SPSS or SAS. Moreover the S system was build on a

rich language, unlike Stata, which until recently just had a

fairly large number of isolated datamanipulation and anal-

ysis commands. Statlib started a valuable code exchange of

public domain S programs.

For a long time S was freely available to academic

institutions, but it remained a product used only in the

higher reaches of academia. AT&T, later Lucent, sold S to
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the Insightful corporation, which marketed the product as

S-plus, initially quite successfully. Books such as Venables

and Ripley; Venables and Ripley (; ) e�ectively

promoted its use in both applied and theoretical statis-

tics. Its popularity was increasing rapidly, even before the

advent of R in the late nineties. S-plus has been quite com-

pletely overtaken by R. Insightful was recently acquired by

TIBCO, and S-plus is now TIBCO Spot�re S+. We need

not longer consider it as a serious contender.

�ere were two truly exciting developments in the

early nineties. Luke Tierney () developed LISP-STAT,

a statistics environment embedded in a Lisp interpreter.

It provided a good alternative to S, because it was more

readily available, more friendly to personal computers, and

completely open source. It could, like S, easily be extended

with code written in either Lisp or C. �is made it suit-

able as a research tool, because statisticians could rapidly

prototype their new techniques, and distribute them along

with their articles. LISP-STAT, likeDataDesk and JMP, also

had interesting dynamic graphics capabilities, but now the

graphics could be programmed and extended quite easily.

Around  active development of LISP-STAT stopped,

and R became available as an alternative (Valero-Mora and

Udina ).

R was written as an alternative implementation of the

S language, using some ideas from the world of Lisp and

Scheme (Ihaka and Gentleman ).�e short history of

R is a quite unbelievable success story. It has rapidly taken

over the academic world of statistical computation and

computational statistics, and to an ever-increasing extend

the world of statistics teaching, publishing, and real-world

application. SAS and SPSS, which initially tended to ignore

and in some cases belittle R, have been forced to include

interfaces to R, or even complete R interpreters, in their

main products. SPSS has a Python extension, which can

run R since SPSS-.�e SAS matrix language SAS/IML,

starting at version .. has an interface to an R interpreter.

R is many things to many people: a rapid prototyping

environment for statistical techniques, a vehicle for com-

putational statistics, an environment for routine statistical

analysis, and a basis for teaching statistics at all levels. Or,

going back to the origins of S, a convenient interpreter to

wrap existing compiled code. R, like S, was never designed

for this all-encompassing role, and the basic engine is

straining to support the rate of change in the size and

nature of data, and the developments in hardware.

�e success of R is both dynamic and liberating. But

it remains an open source project, and nobody is really

in charge. One can continue to tag on packages extending

the basic functionality of R to incorporate XML, multicore

processing, cluster and grid computing, web scraping, and

so on. But the resulting system is in danger of bursting

at the seams.�ere are now four ways to do (or pretend

to do) object-oriented programming, four di�erent sys-

tems to do graphics, and four di�erent ways to link in

compiled C code. �ere are thousands of add-on pack-

ages, with enormous redundancies, and o�en with code

that is not very good anddocumentation that is poor.Many

statisticians, and many future statisticians, learn R as their

�rst programming language, instead of learning real pro-

gramming languages such as Python, Lisp, or even C and

FORTRAN. It seems realistic to worry at least somewhat

about the future, and to anticipate the possibility that all of

those thousands of �owers that are now bloomingmaywilt

rather quickly.

Open Source and Reproducibility
One of the consequences of the computer and Internet

revolution is that more and more scientists promote open

source so�ware and reproducible research. Science should

be, per de�nition, both open and reproducible. In the

context of statistics (Gentleman and Temple-Lang )

this means that the published article or report is not the

complete scienti�c result. In order for the results to be

reproducible, we should also have access to the data and

to a copy of the computational environment in which the

calculations were made.

Publishing is becoming more open, with e-journals,

preprint servers, and open access. Electronic publish-

ing makes both open source and reproducibility more

easy to realize. �e Journal of Statistical So�ware, at

http://www.jstatso�.org, the only journal that publishes

and reviews statistical so�ware, insists on complete code

and completely reproducible examples. Literate Pro-

gramming systems such as Sweave, at http://www.stat.

uni-muenchen.de/~leisch/Sweave/, are becoming more

popular ways to integrate text and computations in statis-

tical publications.

We started this overview of statistical so�ware by indi-

cating that the computer revolution has driven much of

the recent development of statistics, by increasing the size

and availability of data. Replacement of mainframes by

minis, and eventually by powerful personal computers, has

determined the directions in the development of statisti-

cal so�ware. In more recent times the Internet revolution

has accelerated these trends, and is changing the way sci-

enti�c knowledge, of which statistical so�ware is just one

example, is disseminated.
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Information �eory has origins and applications in sev-

eral �elds such as: thermodynamics, communication the-

ory, computer science, economics, biology, mathematics,

probability and statistics. Due to this diversity, there are

numerous informationmeasures in the literature. Kullback

(), Sakamoto et al. (), and Pardo () have

applied several of these measures to almost all statistical

inference problems.

According to�e LikelihoodPrinciple, all experimental

information relevant to a parameter θ is mainly con-

tained in the likelihood function L(θ) of the underly-
ing distribution. Bartlett’s information measure is given

by − log(L(θ)). Entropy measures (see 7Entropy) are
expectations of functions of the likelihood. Divergence

measures are also expectations of functions of likeli-

hood ratios. In addition, Fisher-like information measures

are expectations of functions of derivatives of the log-

likelihood. DasGupta (, Chap. ) reported several

relations among members of these information measures.

In sequential analysis, Wald (, p. ) showed earlier

that the average sample number depends on a divergence

measure of the form

Eθ [log f (X, θ)
f (X, θ)

]

where θ and θ are the assumed values of the parameter

θ of the density function f of the random variable X under

the null and the alternative hypothesis, respectively.

It is worth noting that, and from the point of view

of decision making, the expected change in utility can be
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used as a quantitative measure of the worth of an experi-

ment. In this regard Bayes’ rule can be viewed as a mech-

anism that processes information contained in data to

update the prior distribution into the posterior probability

distribution.

Furthermore, according to Jaynes’ Principle of Maxi-

mum Entropy (), information in a probabilistic model

is the available moment constraints on this model. �is

principle is in fact a generalization of Laplace’s Principle

of Insu�cient Reason.

From a statistical point of view, one should concentrate

on the statistical interpretation of properties of entropy-

information measures with regard to the extent of their

agreement with statistical theorems and to their degree of

success in statistical applications.

�e following provides a discussion of preceding issues

with particular concentration on Shannon’s entropy. For

more details, the reader can consult the list of references.

. Consider a discrete random variable X taking a �nite

number of values
Ð→
X = (x, . . . , xn) with probability

vector P = ( p, . . . , pn). Shannon’s entropy (informa-
tion) of P or of X () is given by

H(X) = H(P) = −
n

∑
i=
pi log(pi).

�e most common bases of the logarithm are  and e.

With base , H is measured in bits whereas, in base e,

the units of H are nats. In coding theory the base is 

whereas, in statistics the base is e.

. It is quite clear that H(P) is symmetric in the com-
ponents of the vector P.�is implies that components

of P can be rearranged to get di�erent density func-

tions which are either: symmetric, negatively skewed,

positively skewed, unimodal or bimodal. Such distri-

butions carry di�erent information even though they

all have same value ofH(P).�erefore,H(P) is unable
to re�ect the information implied by the shape of the

underlying distribution.

. 7Entropy of a discrete distribution is always posi-

tive while the di�erential entropy H( f ) = −
∞
∫
−∞
f (x)

log( f (x)) dx of a continuous variableXwith pdf f may
take any value on the extended real line.�is is due to

the fact that the density f (x) need not be less than one
as in the discrete case.�us, Shannon’s entropy lacks

the ability to give a proper assessment of information

when the random variable is continuous. To overcome

this problem, Awad () introduced sup-entropy as

−E[log(f (X)/s)], where s is the supremum of f (x).

. Based on a random sample On = (X, . . . ,Xn) of size
n from a distribution and according to Fisher (), a

su�cient statistic T carries all information in the sam-

ple while any other statistic carries less information

than T. �e question that arises here is that: “Does

Shannon’s entropy agree with Fisher’s de�nition of a

su�cient statistic?”. Let us consider the following two

examples.

First, let Y : N(θ, σ ) denote a normal random
variable with mean θ and variance σ . It can be shown

that H(Y) = log(πeσ )/ which is free of θ. Let On
be a random sample of size n from X : N(θ, ) then by
the additivity property of Shannon’s entropy,H(On) =
nH(X) = n log(πe)/. On the other hand, Shan-
non’s entropy of the su�cient statistic Xn is H(Xn) =
log(πe/n)/ = H(X) − log(n)/. Since H(X) is pos-
itive, H(On) ≥ H(Xn) with equality if n = , i.e.,
Shannon’s entropy of su�cient statistic is less than that

of the sample.

Second, consider a random sample On of size n

from a continuous uniform distribution on the inter-

val [, θ]. Let X:n and Xn:n denote the minimum and
the maximum 7order statistics in On. It can be shown
that H(X:n) = H(Xn:n), i.e., Shannon’s entropy of
su�cient statistic Xn:n equals Shannon’s entropy of a

non-su�cient statistic X:n. �ese examples illustrate

that Shannon’s entropy does not agree with Fisher’s

de�nition of a su�cient statistic.

. If Y = α + βX, β ≠ , then H(Y) = H(X) when X is
a discrete random variable. However, if X is continu-

ous, H(Y) = H(X) + log(∣β∣). So, this result implies
that two su�cient statistics T and T = βT will carry

(according to Shannon’s entropy) unequal amounts

of information, which contradicts the su�ciency

concept.

. Referring to the �rst example in (), it is clear that

Shannon’s information in the samplemean is a decreas-

ing function of the sample size n. �is is in direct

con�ict with the usual contention that the larger the

sample size is the more information one has. It is

also interesting to recall in this regard Basu’s exam-

ple (), where a sample of size  is more informa-

tive (about an unknown parameter) than a sample of

size . In fact, a rewording of Basu’s conclusion is that

some observations in the sample are more in�uential

than others.
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What Does Climate Change Hold for the
Future?
�ere is general agreement among experts that we

can expect a rise in temperatures and an increase

in the number of extreme events, but for other cli-

mate variables such as rainfall there is no clear pre-

diction. However there does not seem to be any doubt

that communities coping with poverty will be particu-

larly vulnerable – this means developing countries like

Africa will be the hardest hit (Cooper et al. ;

Washington et al. ; Climate Proo�ng Africa, DFID

; Burton and van Aaist ).�e climate change dia-

logue brings with it an enormous need for more and better

climate data and greater rigor in its analysis. To understand

both risks and opportunities associatedwith the season-to-

season variability that is characteristic of current climates

as well as changes in the nature of that variability due to

climate change, there is need for all stakeholders, including

the statistical community, policy makers, and scientists, to

work together to propose appropriate strategies to coun-

teract one and enhance the other. Such strategies must be

based on scienti�c studies of climate risk and trend analy-

ses and not fashionable perceptions or anecdotal evidence.

Statisticians have a vital role to play here.

What Is Needed?
One of the ways of approaching this issue of climate

change as it a�ects the people in the developing countries

is through a better understanding of the season-to-season

variability in weather that is a de�ned characteristic of cur-

rent climate (Climate: �e statistical description in terms

of means and variability of key weather parameters for a

given area over a period of time – usually at least  years)

and using this to address future change. Managing current

climate-induced risk is already an issue for farmers who

practice rain-fed agriculture. Helping them to cope bet-

ter with this risk while preparing for future change seems

to be the best way of supporting the needy both for the

present and for the future. Agriculture is one �eld where
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the vagaries of climate have an impact but other �elds such

as health, construction, and transport among others would

bene�t equally from this approach.

Why Do Statisticians Need to Be
Involved?
Meteorology departments are the custodians of climate

data and, especially in many developing countries, data

quality and management, rather than analysis, have been

priority issues and the institutions have limited themselves

mainly to providing data to users. �ere is now a move

to shi� from providing basic data and services to meeting

increasingly challenging user needs.

E�ective use of climatic summaries and especially

applications require an understanding of statistical con-

cepts underlying these summaries as well as pro�ciency

in using and interpreting the advanced statistical tech-

niques and models that are being suggested to understand

climate change.

Statistics is the glue that brings the di�erent dis-

ciplines together and statisticians need to form an

integral part of multidisciplinary teams to understand,

extend, and share knowledge of existing and upcom-

ing technologies and statistical methods for development

purposes.

Where Should Changes Occur?
�e three areas where statisticians can be proactive in

addressing the climate change issue are:

. Working actively with researchers in various disci-

plines in guiding research to develop and test adapta-

tion strategies.

For example, if, as is expected, temperatures are

going to rise, and this a�ects crop growth, it is now that

research agendas must be set if we are to meet the new

challenges. �ere needs to be a clear understanding

about the implications of such conditions.

. Being aggressively involved in building capacities of

data producers and data users. At present the capac-

ity in many developing countries for modeling and

interpreting data is highly inadequate

For example, creating awareness of the need

for quantity, quality, and timeliness of climate data

required for use in modeling climate processes and

for using and extending these models in collab-

oration with agriculture scientists and extension

workers.

. Promoting changes in statistics training at all levels to

meet the expanding needs.

For example, innovative statistics curriculum at

universities & colleges that mainstream climate data

analysis and that emphasize understanding and appli-

cation of concepts using a data-based approach.

Some Available Resources
Given the availability and a�ordability of computers today,

they should now form an integral part of good statistics

training. Among the many resources available to enhance

statistics training in general, and training in climatic statis-

tics in particular are:

● CAST forAfrica (www.cast.massey.ac.nz), an electronic

statistics textbook that provides an interesting interac-

tive way of understanding statistical concepts with a

number of real-life data sets from di�erent disciplines.

Climate CAST, which is an o�shoot of this, provides

the slant for exploring climatic data.�e textbook goes

from the very basic to reasonably complex topics.

● Instat (www.reading.ac.uk/ssc), a simple so�ware pack-

age with a special climatemenu and a number of useful

guides in the help section to facilitate training as well

as self study.

● GenStat (www.vsni.co.uk), a major statistical package,

is an all-embracing data analysis tool, o�ering ease of

use through comprehensive menu system reinforced

with the �exibility of a sophisticated programming lan-

guage. It has many useful facilities including analysis

of extremes.�e discovery version is provided free for

nonpro�t organizations while the latest version is avail-

able at very reasonable rates to training and research

institutions. Here again there is wealth of informa-

tion for the user in terms of guides, including a guide

to climatic analyses, and tutorials and examples from

diverse �elds.

● DSSAT (www.icasa.net/dssat) andApSim (www.apsim.

info/apsim), crop simulation models, driven by long-

term daily climatic data, which can be used to simulate

realistic long-term �eld experiments.�ese are prob-

ably more useful at postgraduate or faculty levels but

have great potential for statisticians working with agri-

culture scientists to explore possible scenarios without

actually undertaking long costly �eld experiments.

Some Working Initiatives
● Statistics Curriculum, at Faculty of Agriculture, Univer-

sity of Nairobi, Kenya

An innovative data-based problem-solving app-

roach to service teaching for the Agriculture Faculty

uses building blocks approach – from descriptive to

modeling to application – to broaden and deepen
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the students’ understanding of how statistics is used

in practice. �e curriculum includes computer pro-

�ciency and so� skills as an integral part of the

curriculum and exposes students to all types of data,

including climatic data, which is not only important in

its own right but also an important example of mon-

itoring data. Examples of how climatic analyses have

been incorporated into the service teaching of statistics

are given by Kurji and Stern ().

● Masters in Climate Data Analysis, at Science Faculty,

Maseno University, Kenya

Currently there are a number of students who are

working on their postgraduate degree with speci�c

climate-related projects, both advancing the science,

encouraging statisticians to embrace the new chal-

lenges of development, and building capacity in the

�eld of climate analysis.

● Statistics forAppliedClimatology (SIAC) at IMTR (Insti-

tute of Meteorological Training & Research), Kenya

�is is a regional program run by the Institute

for groups comprising o�cers from National Met ser-

vices and Agriculture Research Scientists to develop

statistical skills and build networks for further col-

laborative work. �e course has two components, a

-week e-learning course followed by a -week face-to-

face course, which culminates in a project that can be

continued a�er the participants return to their bases.
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Introduction
Statistics can broadly be de�ned as the science of decision-

making in the face of (random) uncertainty. Gambling has

the same de�nition, except in the narrower domain of a

gambler making decisions that a�ect his fortune in games

of chance. It is hardly surprising, then, that the two sub-

jects are closely related. Indeed, if the de�nitions of “game,”

“decision,” and “fortune” in the context of gambling are

su�ciently broadened, the two subjects become almost

indistinguishable.

Let’s review a bit of the history of the in�uence of

gambling on the development of probability and statistics.

First, of course, gambling is one of the oldest of human

activities. �e use of a certain type of animal heel bone

(called the astragalus) as a crude die dates to about 

BCE (andpossiblymuch earlier).�emodern six-sided die

dates to about  BCE.

�e early development of probability as amathematical

theory is intimately related to gambling. Indeed, the �rst

probability problems to be analyzed mathematically were

gambling problems:

. De Mere’s problem (), named for Chevalier De

Mere and analyzed by Blaise Pascal and Pierre de

Fermat, asks whether it is more likely to get at least one

six with  throws of a fair die or at least one double six

in  throws of two fair dice.

. �e problem of points (), also posed by De Mere

and analyzed by Pascal and Fermat, asks for the fair

division of stakes when a sequence of games between

two players (Bernoulli trials in modern parlance) is

interrupted before its conclusion.

. Pepys’ Problem (), named for Samuel Pepys and

analyzed by Isaac Newton, asks whether it is more

likely to get at least one six in six rolls of a fair die or

at least two sixes in  rolls of the die.
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. �e matching problem (), analyzed by Pierre-

Redmond de Montmort, is to �nd the probability that

in a sequence of card draws, the value of a card is the

same as the draw number.

. St. Petersburg Paradox (), analyzed by Daniel

Bernoulli, deals with a gambler betting on a sequence

of coin tosses who doubles his bet each time he loses

(and leads to a random variable with in�nite expected

value).

Similarly, the �rst books on probability were written by

mathematician-gamblers to analyze games of chance: Liber

de Ludo Aleae written sometime in the s by the col-

orful Girolamo Cardano and published posthumously in

, and Essay d’Analyse sur les Jeux de Hazard by Mont-

mort, published in . See David  and Epstein 

for more on the in�uence of gambling on the early devel-

opment of probability and statistics.

In more modern times, the interplay between statistics

and game theory has been enormously fruitful. Hypothe-

sis testing, developed by Ronald Fisher and Karl Pearson

and formalized by Jerzy Neyman and Egon Pearson is one

of the cornerstones of modern statistics, and has a game-

theory �avor. �e basic problem is choosing between a

presumed null hypothesis and a conjectured alternative

hypothesis, with the decision based on the data at hand and

the probability of a type  error (rejecting the null hypoth-

esis when it’s true). In�uenced by the seminal work of John

vonNeumann andOscarMorgenstern on game theory and

economics (von Neumann ), the Neyman-Pearson

hypothesis-testing framework was extended by Abraham

Wald in the s to statistical decision theory (Wald ).

In this completely game-theoretic framework, the statis-

tician (much like the gambler) chooses among a set of

possible decisions, based on the data at hand according

to some sort of value function. Statistical decision theory

remains one of the fundamental paradigms of statistical

inference to this day.

Bold Play in Red and Black
Gambling continue to be a source of interesting and deep

problems in probability and statistics. In this section, we

brie�y describe a particularly beautiful problem analyzed

by Dubins and Savage (). A gambler bets, at even

stakes, on a sequence of Bernoulli trials (independent,

identically distributed trials) with success parameter p ∈
(, ).�e gambler starts with an initial fortune and must
continue playing until he is ruined or reaches a �xed tar-

get fortune. (�e last two sentences form themathematical

de�nition of red and black.) On each trial, the gambler can

bet any proportion of his current fortune, so it’s conve-

nient to normalize the target fortune to ; thus the space

of fortunes is the interval [, ].
�e gambler’s goal is to maximize the probability F(x)

of reaching the target fortune , starting with an initial

fortune x (thus, F is the value function in the context of

statistical decision theory).�e gambler’s strategy consists

of decisions on how much to bet on each trial. Since the

trials are independent, the only information of use to the

gambler on a given trial is his current fortune. �us, we

need only consider stationary, deterministic strategies. Such

a strategy is de�ned by a betting function S(x) that gives
the amount bet on a trial as a function of the current

fortune x.

Dubins and Savage showed that in the sub-fair case

(p ≤ 


), an optimal strategy is bold play, whereby the gam-

bler, on each trial, bets his entire fortune or the amount

needed to reach the target (whichever is smaller).�at is,

the betting function for bold play is

S(x) =
⎧⎪⎪⎨⎪⎪⎩

x,  ≤ x ≤ 



 − x, 


≤ x ≤ 

Conditioning on the �rst trial shows that the value

function F for bold play satis�es the functional equation

F(x) =
⎧⎪⎪⎨⎪⎪⎩

pF(x), x ∈ [, 

]

p + ( − p)F(x − ), x ∈ [ 

, ]

()

with boundary conditions F() = , F() = . More-
over, F is the unique bounded solution of () satisfying

the boundary conditions.�is functional equation is one

of the keys in the analysis of bold play. In particular, the

proof of optimality involves showing that if the gambler

starts with some other strategy on the �rst trial, and then

plays boldly therea�er, the new value function is no better

than the value function with bold play.

Interestingly, as Dubins and Savage also showed, bold

play is not the unique optimal strategy. Consider the fol-

lowing strategy: Starting with fortune x ∈ [, 

) , the

gambler plays boldly, but with the goal of reaching 

. Start-

ing with fortune x ∈ ( 

, ] , the gambler plays boldly, but

with the goal of not falling below 


. In either case, if the

gambler’s fortune reaches 

, he plays boldly and bets 


.

�us, the betting function S for this new strategy is related

to the betting function S of bold play by

S(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩




S(x),  ≤ x < 






S(x − ), 


< x ≤ 




, x = 
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By taking the three cases x ∈ [, 

) , x = 


, and x ∈ ( 


, ] ,

it’s easy to see that that the value function F for strategy S
satis�es the functional equation (). Trivially the boundary

conditions are also satis�ed, so by uniqueness, F = F and
thus S is also optimal.

Once one sees that this new strategy is also optimal,

it’s easy to construct an entire sequence of optimal strate-

gies. Speci�cally, let S = S denote the betting function for
ordinary bold play and then de�ne Sn recursively by

Sn+(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩




Sn(x),  ≤ x < 






Sn(x − ), 


< x ≤ 




, x = 



�en Sn has the same value function F as bold play and so

is optimal for each n. Moreover, if x ∈ (, ) is not a binary
rational (that is, does not have the form k

n
for some k and

n), then there exist optimal strategies that place arbitrarily

small bets when the fortune is x.�is is a surprising result

that seems to run counter to a naive interpretation of the

law of large numbers.

Bold play in red and black leads to some exotic func-

tions of the type that are not usually associated with a

simple, applied problem.�e value function F can be inter-

preted as the distribution function of a random variable X

(the variable whose binary digits are the complements of

the trial outcomes).�us F is continuous, but has deriva-

tive  almost everywhere if p ≠ 


(singular continuous). If

p = 


, X is uniformly distributed on [, ] and F(x) = x.

If G(x) denotes the expected number of trials under bold
play, starting with fortune x, thenG is discontinuous at the

binary rationals and continuous at the binary irrationals.

Finally, note that when the gambler plays boldly, his

fortune process follows the deterministic map x↦ x
mod , until the trial that ends the game (with fortune 

or ).�us, bold play is intimately connectedwith a discrete

dynamical system.�is connection leads to other interest-

ing avenues of research (see Pendergrass and Siegrist ).
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�e role of the statistician in litigation has much in com-

monwith that of a consultant in any �eld. To be an e�ective

expert witness, we should be certain that we know what

questionsmust be answered andwhat data will be required

in order to answer them. Other guidelines include

● Promoting and preserving the con�dence of the client

and the public without exaggerating the accuracy or

explanatory power of the data

● Avoiding unrealistic expectations and not promising

more than you can deliver

● Being responsible and accountable, guarding your

reputation
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● Providing adequate information to permit methods,

procedures, techniques, and �ndings to be assessed

● Addressing rather than minimizing uncertainty

However, the statistician must understand that litigation

is an adversarial process; one must consider the strategy

of the other side and be prepared for what is likely to be

presented.�e keys to e�ective statistical evidence are

● Early involvement by the statistician (as is the case in

any situation)

● Adequate data

● Clarity of presentation

● E�ective supplemental anecdotal evidence (not the

task of the statistician, but an important complement

to it)

● Understanding of the statistics by the litigator

● Recognizing that the statistician cannot reach legal

conclusions nor can s/he be an advocate (for anything

other than statistics!)

In the United States statistical evidence has been used in

cases involving

● Race, sex, and age discrimination in employment and

education

● Evidence-based medicine

● Environmental e�ects of business practices

● DNA, ear prints, bullet composition

● Death penalty

● Product liability

● Intellectual property and many other issues

● On the international scene, statistical evidence was

used in the war crimes trial of Milosevic and in other

human rights cases.

�e techniques used span the range of statistical method-

ology from descriptive statistics to t-tests to regression

(nearly ubiquitous), non-parametric tests, capture-recapture,

urnmodels, change point analysis, multiple systems analy-

sis, Mantel-Hanszel tests to Bayesian techniques (not gen-

erally popular with the courts) and a variety of other

sophisticated methods. Courts have a great deal of di�-

culty with the concept of sampling, especially when the

sample is very small in comparisonwith a population.�ey

also o�enhave di�culty in seeing the applicability of statis-

tics to an individual case. For example, evidence that, all

else being equal, the death penalty was far more likely to

be imposed when the victim was white than when the vic-

timwas black, has not kept individuals whose victims were

white from being sentenced to death.

An important observation to keep in mind is that an

expert with a newly-developed techniquemay not fare well

in court.�e usual standard for admission of statistical or

other scienti�c evidence is that

. �e testimony is based upon su�cient facts or data,

. �e testimony is the product of reliable principles and

methods, and

. �e witness has applied the principles and methods

reliably to the facts of the case

Peer-reviewed publication usually meets the second

requirement.

�e classic example of the 7misuse of statistics is
in People v. Collins (), where the following analy-

sis sent Malcolm Collins to prison. Witnesses reported

various characteristics, characteristics that Malcolm and

Janet Collins had, and the prosecutor got the expert

to agree to certain hypothetical probabilities as follows

(expert witnesses can testify about their opinions based on

hypotheses).

Characteristic Probability

Partly yellow automobile /

Man with mustache /

Woman with ponytail /

Blond woman /

Black man with beard /

Interracial couple in a car /

�en the prosecutor said: the probability of having

all of these characteristics is /,,, overriding the

expert’s objection about their lack of independence. He

continued: since there are ,, people in metropoli-

tan Los Angeles Malcolm and Janet Collins must be the

only couple with these characteristics and thus the per-

petrators of the mugging in question. In addition to the

problem with independence, of course, the probability of

“more than one given at least one” in a Poisson distribu-

tion turns out to be ., hardly the “beyond a reasonable

doubt” required for a criminal conviction.�e unfortunate

Malcolm spent some time in prison before his conviction

was overturned on appeal, as did the Garrett Wilson of
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Maryland v. Wilson (), where not only was the prob-

ability of two children dying of Sudden Infant Death Syn-

drome similarly miscalculated, but the prosecutor argued

not only that there was a low probability that two deaths

would occur in one family but that there was a low prob-

ability that the defendant was innocent (�is is called the

“prosecutor’s fallacy.”). Analogous bad statistics in the UK

led to the physician who testi�ed about statistics being

stricken from the registry and  prior convictions being

reviewed. Unfortunately one of the victims of the erro-

neous testimony, faced with a ruined career as a solicitor,

committed suicide when eventually released from prison.

But there are better results: statistics in cases I have

worked on helped convince the courts that similarly sit-

uated women and men should receive equal pensions and

that women’s sports teams should be supported in colleges

and universities as well as are men’s. In the former case a

man who had the same accumulation of pension funds in

a de�ned contribution plan as a woman, was getting %

more in monthly bene�ts on the stated grounds that (sta-

tistically speaking!) women live longer than men.�e U.S.

law clearly stated that discrimination on the basis of sex in

employment-related matters such as pensions was forbid-

den, but the pension fund administrators insisted that the

discrimination was on the basis of longevity, admitting of

course that no individual woman could be expected to live

long than any individual man. We showed that of a cohort

of  men and women at age , % of the population

would bewomen could be expected to live longer thanmen

with whom they could be matched and % of the popu-

lation would be men who would die young, unmatched

by women’s early deaths. Hence % of the population

could be paired up as to age at death – i.e., % of the

men and women “died at the same age” (for statistical pur-

poses). �us for % of the population, those “similarly

situated with respect to longevity,” men and women were

being treated di�erently.�is together with the fact that,

at least at the time (more than  years ago) men indulged

in more voluntary life-shortening behavior like smoking

and drinking to excess and the – what seemed to many –

clear statutory mandate of equal treatment, convinced the

courts.

In the sports case it was simply that % of the under-

graduate students at Brown University were women, while

only % of the student athletes were.�e probability of

such a disparity were it due to chance was about  in a

million.�us the courts found that the distribution of ath-

letes by sex was not “substantially proportionate” to the

distribution of students by sex. Statistical signi�cance isn’t

everything, but in this case it prevented the cancellation of

university support for some of the women’s teams.

My late husband used to say that mathematics and the

law both have axiom systems – it is just that the law’s is

inconsistent. Sometimes we all feel that way, but statistics

can sometimes help bring justice.
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Overview
Statistics education at all levels, school, undergraduate,

graduate, and in the workplace, has been the subject of

much debate over most of the th century and into the

st. Proposals to make statistics a part of everyone’s basic

education surfaced in the s and s, but gained

little traction. World War II forced a renewed emphasis

on scienti�c thinking and statistics gained attention as

an essential component of applied science and industrial

management. �is led to the few existing graduate pro-

grams in statistics being expanded and new ones being

developed at various universities around the world, a trend

that went on for about the subsequent forty years. Some of

these programs emphasized application and some theory,

but as the need for statistics in many di�erent �elds (busi-

ness, engineering, health sciences, social sciences, to name

a few) became essential and the advent of electronic com-

puting made it possible to meet those needs, graduate pro-

grams in statistics tended to merge toward a combination

of application and theory, a very healthy trend indeed.

During that same period, introductory undergraduate

courses were developed, but these courses stayed on the

theory track perhaps too long and only since about 

have been giving more attention to applications emphasiz-

ing data analysis, again with the assistance of ubiquitous

computing. Work beyond the introductory course has not

kept pace with the need; even todaymost colleges and uni-

versities o�er little in the way of undergraduate statistics

beyond the basic course.

Although overtures to making statistics a part of the

school curriculumwere advanced prior to the s, noth-

ing in that arena really took root until the early s as

well. Today, there is great debate on the place of statistics

in the school curriculum, but most educators agree that it

should be included in the broader picture of mathemati-

cal sciences to which all school students should be exposed

before moving on to college or the workplace.

An enlightened st century view of the role of statistics

in society was presented quite clearly in a recent article by

Hal Varian of Google:

7 The ability to take data – to be able to understand it, to
process it, to extract value from it, to visualize it, to com-
municate it – that’s going to be a hugely important skill
in the next decades, not only at the professional level but
even at the educational level for elementary school kids, for
high school kids, for college kids. Because now we really do
have essentially free and ubiquitous data. So the compli-
mentary scarce factor is the ability to understand that data
and extract value from it. (The McKinsey Quarterly, January
)
�is view of the importance of statistics is becoming

the predominant one among those a�ecting education in

the mathematical sciences, and it appears that statistics

education is on an upward swing as the information age

continues.

University Education in Statistics
�e American Statistical Association (http://www.amstat.

org/) has links to lists that contain information on over

 college and university programs in statistics around

the world.�is is a relatively small number, compared to,

say, mathematics, and many of the programs are small

or highly specialized (7biostatistics, for example). In the
United States, the nearly one hundred graduate programs

in statistics produced about  doctoral degrees and

 master’s degrees in the – academic year. A

much smaller number of bachelors degree programs pro-

duced about  degrees in that same year. �ese num-

bers are underestimates, especially at the master’s level, as

they come from a survey of mathematical science depart-

ments conducted by the American Mathematical Society

(http://www.ams.org/), but they do give a perspective on

the relatively small numbers of degrees awarded in statis-

tics at all levels. Yet, the number of job opportunities in

statistics remains large even in times of economic down-

turn, especially for those with at least a master’s degree
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in the subject, and the number of degrees awarded lags

behind demand.

Enrollments and other details on the undergraduate

teaching of statistics in the United States can be found at

in the CBMS  Survey: Statistical Abstract of Under-

graduate Programs in the Mathematical Sciences in the

United States (http://www.cbmsweb.org/). Details on cur-

rent thinking in the teaching of statistics at the college level

can be found in one of two journals, the Journal of Statistics

Education (http://www.amstat.org/PUBLICATIONS/JSE/)

and the Statistics Education Research Journal of the

International Association for Statistics Education (IASE)

(http://www.stat.auckland.ac.nz/~iase/). �e former is

directed toward experiences with teaching practices in the

classroom, o�en including useful data sets, while the lat-

ter is directed toward research on e�ective teaching and

learning of statistics. A good resource on all aspects of

undergraduate statistics education can be found at the

Consortium for Advancing Undergraduate Statistics Edu-

cation (CAUSE) (http://www.causeweb.org/).

School Education in Statistics
�e modern era of statistics education at the school level

dates from the late s, when the United Kingdom, Aus-

tralia, New Zealand and Sweden led the way in developing

educational programs and materials that were e�ective in

enlisting the interest of school children (as well as their

teachers) in data analysis. �e journal Teaching Statistics

(http://ts.rsscse.org.uk/), now a product of the Royal Sta-

tistical Society’s Center for Statistics Education, was an

outcome of those e�orts in the UK and still remains a

premier source of information on e�ective teaching of

statistics in the schools.�ese e�orts in�uenced work in

the United States that led the National Council of Teachers

of Mathematics (NCTM) (http://www.nctm.org/) to place

an emphasis on data analysis in their Principles and Stan-

dards for School Mathematics, �rst published in  and

revised in .

Over the years, national and international assessments

of school mathematics have included increasingly larger

emphases on data analysis, statistics and probability. In

its  framework, the OECD Program for International

Student Assessment (PISA) (http://www.pisa.oecd.org/)

lists Uncertainty as one of the four main areas of math-

ematics, along with Space and shape, Change and rela-

tionships, and Quantity. �ere description of this area is

enlightening:

7 As an overarching idea, uncertainty suggests two related
topics: data and chance. These phenomena are respectively

the subject of mathematical study in statistics and prob-
ability. Relatively recent recommendations concerning
school curricula are unanimous in suggesting that statis-
tics and probability should occupy a much more promi-
nent place than has been the case in the past. Specific
mathematical concepts and activities that are important
in this area are collecting data, data analysis and dis-
play/visualization, probability and inference.

For the United States, the  framework of the

National Assessment of Educational Progress (NAEP)

(http://www.nagb.org/publications/frameworks/math-fra

mework.pdf) gives data analysis, statistics and proba-

bility % of the weight of questions at the high school

level, in connection with number properties (%), mea-

surement and geometry (%) and algebra (%).

As to content emphases, the Guidelines for Assess-

ment and Instruction in Statistics Education (GAISE)

(http://www.amstat.org/education/gaise/) report of the

American Statistical Association has been instrumental in

shaping the revision of mathematics standards for many

states and some other countries. GAISE views statistics as

a problem-solving process built around the steps of:

● Formulate questions

● Collect data

● Analyze data

● Interpret results

Its guiding principles for teaching statistics are:

● Conceptual understanding takes precedence over pro-

cedural skill.

● Active learning is key to the development of conceptual

understanding.

● Real-world data must be used wherever possible in

statistics education.

● Appropriate technology is essential in order to empha-

size concepts over calculations.

● All four steps of the investigative process should be

encountered at each grade level.

● �e illustrative investigations should show situations in

which the statistics is essential to the answering of a

question, not just an add-on.

● Such investigations should be tied to the mathematics

that they illustrate, motivate and emphasize.

Statistics in the Workplace
As Hal Varian expressed it in the article cited above,

“I keep saying the sexy job in the next ten years will be

statisticians.”�ere seems to be no end of the demand for
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statisticians, or those trained in statistics, so long as they

can combine theoretical knowledge and problem-solving

skills with the ability to do practical work with data

and computers. Another manifestation of the huge need

for statistical knowledge lies in the area of productiv-

ity and product improvement in industry, as re�ected

by the interest and excitement that surrounds the Six

Sigma program. (See the American Society for Quality,

Six Sigma program at http://www.asq.org/learn-about-

quality/six-sigma/overview/overview.html.)

Statistics has a bright future, and statistics education

must expand and adapt to meet the increasing needs of a

world economy that runs on data.

About the Author
Dr. Richard Schea�er is Professor Emeritus in statistics at

Department of Statistics, Florida State University. He was

Chairman of the Department for a period of  years. He

has published numerous papers in the statistical literature

and is co-author of �ve textbooks covering aspects of sam-

pling, probability and mathematical statistics. In recent

years, he focused on statistics education throughout the

school and college curriculum. He was one of the devel-

opers of the Quantitative Literacy Project in the United

States that formed the basis of the data analysis emphasis

in the mathematics curriculum standards recommended

by the National Council of Teachers of Mathematics. He

continues to work on educational projects at the elemen-

tary, secondary and college levels, and served as the Chief

Faculty Consultant for the Advanced Placement Statistics

Program in the United States during its �rst two years

(–). Dr. Schea�er is a Fellow and Past President of

theAmerican Statistical Association (), fromwhomhe

has received a Founder’s Award.

Cross References
7Business Statistics
7Careers in Statistics
7Data Analysis
7Decision Trees for the Teaching of Statistical Estimation
7Learning Statistics in a Foreign Language
7Online Statistics Education
7Promoting, Fostering and Development of Statistics in
Developing Countries

7Rise of Statistics in the Twenty First Century
7Role of Statistics in Advancing Quantitative Education
7Statistical Literacy, Reasoning, and�inking
7Statistics and Climate Change
7Statistics: Nelder’s view

References and Further Reading
American Mathematical Society: http://www.ams.org/

American Society for Quality, Six Sigma

American Statistical Association, Guidelines for Assessment and

Instruction in Statistics Education (GAISE): http://www.amstat.

org/education/gaise/

Consortium for advancing undergraduate statistics education

(CAUSE): http://www.causeweb.org/

http://www.asq.org/learn-about-quality/six-sigma/overview/over

view.html

International Association for Statistics Education (IASE), Stati-

stics Education Research Journal: http://www.stat.auckland.

ac.nz/~iase/

Journal of Statistics Education: http://www.amstat.org/

PUBLICATIONS/JSE/

National Council of Teachers of Mathematics (NCTM): http://

www.nctm.org/

Statistical abstract of undergraduate programs in the mathematical

sciences in the United States: http://www.cbmsweb.org/

Teaching statistics: http://ts.rsscse.org.uk/

Conference Board of the Mathematical Sciences (CBMS) 

Survey

National Assessment of Educational Progress (NAEP), Mathematics

framework for : http://www.nagb.org/publications/

frameworks/math- framework.pdf

OECD Programme for International Student Assessment (PISA), A

framework for PISA : http://www.pisa.oecd.org/

Statistics of Extremes

Anthony C. Davison

Professor

Ecole Polytechnique Fédérale de Lausanne,

EPFL-FSB-IMA-STAT, Lausanne, Switzerland

Introduction
Statistics of extremes concerns the occurrence of rare

events: catastrophic �ooding due to very high tides or

landslides following unusually heavy rain, structural fail-

ure of dams and bridges, massive earthquakes, stock

market crashes, and so forth. It has applications in many

domains of engineering, in meteorology, hydrology and

other earth sciences, in telecommunications, in �nance

and insurance – indeed, in any domain in which major

risks arise due to unusual events or combinations thereof.

In applications the available data are o�en very limited

in relation to the event of interest, so a key issue is the

validity of extrapolation far into the tail of a distribution,

based on data that are less extreme.�is is usually formu-

lated mathematically in terms of stability properties that

reasonable models ought to possess, and these properties

place strong restrictions on the families of distributions on



Statistics of Extremes S 

S

which extrapolation should be based.�e relevance of such

properties to an application must be carefully considered,

and any relevant subject-matter knowledge incorporated,

if wholly inappropriate extrapolation is to be avoided.

Maxima
Consider the maximum Mk = max(X, . . . ,Xk) of inde-
pendent identically distributed continuous random vari-

ablesX, . . . ,Xk from a distribution Fwhose upper support

point is xmax = sup{x : F(x) < }. In analogy with the
central limit theorem (see 7Central Limit�eorems), we
seek a useful limiting distribution forMk as m → ∞.�e
distribution function of Mk is F

k(x), but this converges
to a degenerate distribution putting unit mass at xmax, so

instead we consider the sequence of linearly rescaled max-

ima Yk = (Mk − bk)/ak for bk ∈ R and ak > , and ask
whether the sequences {ak}, {bk} can be chosen so that a
non-degenerate limiting distribution exists. Remarkably it

can be shown that if such a limit exists, it must lie in the

generalized extreme-value family

H(y) = exp{− [ + ξ (y − η

τ
)]

−/ξ

+
} ,

−∞ < η, ξ <∞, τ > , ()

where x+ = max(x, ).�is result, known as the extremal
types theorem, provides strong motivation for the use of

() when modeling maxima, in analogy with the use of the

Gaussian distribution for averages. Note however the con-

ditional nature of the theorem: there is no guarantee that

such a limiting distribution will exist in practice.�e con-

nection with the stability properties mentioned above is

that () is the entire class of so-called max-stable distribu-

tions, i.e., those satisfying the natural functional stability

relation H(y)m = H(bm + amy) for suitable sequences
{am}, {bm} for allm ∈ N.

�e parameters η and τ in () are location and scale

parameters.�e shape parameter ξ plays a central role, as

it controls the behavior of the upper tail of the distribu-

tion H. Taking ξ >  gives distributions with heavy upper
tails and taking ξ <  gives distributions with a �nite
upper endpoint, while the Gumbel distribution function

exp{− exp[−(y − η)/τ]} valid for −∞ < y < ∞ emerges

as ξ → . Fisher and Tippett () derived these three

classes of distributions, which are known as the Gumbel

or Type I class when ξ = , the Fréchet or Type II class
when ξ > , and the (negative or reversed) Weibull or
Type III class when ξ < .�e appearance of the 7Weibull
distribution signals that there is a close link with reliabil-

ity and with survival analysis, though in those contexts

the behavior of minima is typically the focus of interest.

Since min(X, . . . ,Xk) = −max(−X, . . . ,−Xk), results for
maxima may readily be converted into results for minima;

for example, the extremal types theorem implies that if a

limiting distribution for linearly rescaled minima exists, it

be of form  − H(−y). Below we describe the analysis of
maxima, but the ideas apply equally to minima.

Application
A typical situation in environmental science is that n years

of daily observations are available, and then it is usual to

�t the generalized extreme-value distribution () to the n

annual maxima, e�ectively taking k =  and ignoring
any seasonality or dependence in the series. �e �tting

is typically performed by maximum likelihood estimation

or by Bayesian techniques. �e method of moments is

generally quite ine�cient relative to maximum likelihood

because () has a �nite rth moment only if rξ < . O�en in
environmental applications it is found that ∣ξ∣ < /, but
in �nancial applications second and even �rst moments

may not exist. Probability weighted moments �tting of ()

is quite widely performed by hydrologists, but unlike likeli-

hood estimation, thismethod is too in�exible to deal easily

more complex settings, for example trend in location or

censored observations.

�e parameters of () are rarely the �nal goal of the

analysis, which usually focuses on quantities such as the

/p-year return level, i.e., the level exceeded once on aver-l
age every /p years; here  < p < . �e quantity /p
is known as the return period and is important in engi-

neering design.�e usual return level estimate is the  − p
quantile of (),

y−p = η + τ

ξ
{[− ln( − p)]−ξ − } ,

with parameters replaced by estimates. Analogous quan-

tities, the value at risk and expected shortfall, play a cen-

tral role in the regulation of modern �nancial markets.

Two major concerns in practice are that inference is o�en

required for a return period much longer than the amount

of data available, i.e., np ≪ , and that the �tted distri-

bution is very sensitive to the values of the most extreme

observations; these di�culties are inherent in the subject.

Threshold Exceedances
�e use of annual maxima alone seems to be wasteful

of data: much sample information is ignored. A poten-

tially more e�cient approach may be based on the fol-

lowing characterization. Let X, . . . ,Xnk be a set of nk

independent identically distributed random variables, and

consider the planar point pattern with points at (x, y)
coordinates ( j/(nk + ), ak(Xj − bk)), j = , . . . ,nk.
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�en provided ak and bk are chosen so that the limiting

distribution for (Mk −bk)/ak as k→∞ is given by expres-
sion (), the empirical point pattern above a high threshold

t will converge to a nonhomogeneous Poisson process (see

7Poisson Processes) with measure

Λ{(x, x) × (u,∞)}

= exp [ − n(x − x) ( + ξ
u − η

τ
)
−/ξ

+
] ,

 < x < x < ,u > t. ()

A variety of results follow. For example, on noting that the

rescaled maximum of k observations,Mk, is less than y> t
only if there are no points in the set (, /n) × (y,∞), ()
immediately gives ().�emodel () shows that ifN obser-

vations, y, . . . , yN , exceed a threshold u > t over a period
of n years, their joint probability density function is

exp [−n( + ξ
u − η

τ
)
−/ξ

+
]
N

∏
j=



τ
( + ξ

yj − η

τ
)
−/ξ−

+
,

which can be used as a likelihood for η, τ, and ξ. Maxi-

mum likelihood inference can be performed numerically

for this point process model (see 7Point Processes) and
regression models based on it. A popular and closely

related approach is the �tting of the generalized Pareto

distribution

Pr(X ≤ t + y ∣ X > t) = G(y) = − ( + ξy/τ)−/ξ

+ , y > ;
()

to the exceedances over the threshold t. As ξ →  expres-
sion () becomes the exponential distributionwithmean τ,

which here occupies the same central role as the Gumbel

distribution for maxima.�e distribution () has the sta-

bility property that if X ∼ G, then conditional on X > u,
X − u also has distribution G, but with parameters ξ and

τu = τ + uξ. �e conditioning in () appears to remove

dependence on the location parameter η, but this is illu-

sory because the probability of an exceedance of t must be

modeled in this setting.

One important practical matter is the choice of thresh-

old t. Too high a value for twill result in loss of information

about the process of extremes, while too low a value will

lead to bias because the point process model applies only

asymptotically for high thresholds.�e value of t is usually

chosen empirically, by calculating parameter estimates and

other quantities of interest for a number of thresholds and

choosing the lowest above which the results appear to be

stable. In practice the threshold exceedances are typically

dependent owing to clustering of rare events, and this is

usually dealt with by identifying clusters of exceedances,

and �tting () to the cluster maxima, a procedure that may

be justi�ed using the asymptotic theory.

Dependence
�e discussion above has assumed that the data are inde-

pendent, but this is rare in practice. Fortunately there

is a well-developed probabilistic theory of extremes for

stationary dependent continuous time series. To summa-

rize: under mild conditions on the dependence struc-

ture, the limiting distribution () again emerges as the

limit for the maximum, but with a twist. Suppose that

X, . . . ,Xk are consecutive observations from such a series,

that X∗ , . . . ,X
∗
k are independent observations with the

samemarginal distribution, F, and thatMk andM
∗
k are the

corresponding maxima.�en it turns out that there exist

sequences {ak} and {bk} such that (M∗
k − bk) /ak has lim-

iting distributionH if and only if (Mk−bk)/ak has limiting
distribution Hθ

, where the parameter θ ∈ (, ] is known
as the extremal index (Leadbetter et al. ).�is quantity

has various interpretations, the most direct being that θ−

is the mean size of the clusters of extremes that appear in

dependent data.�e case θ =  corresponds to indepen-
dence but also covers many other situations: for example,

Gaussian autoregressions of order p also have θ = .�is
raises a general problem in the statistics of extremes, that

of the relevance of asymptotic arguments to applications:

this result indicates that extremely rare events will occur

singly, but for levels of interest, there may be appreciable

clustering that must be modeled.

Further Reading
�e probabilistic basis of extremes is discussed from dif-

ferent points of view by Galambos (), Resnick ()

and de Haan and Ferreira (), and Resnick () dis-

cusses the closely related topic of heavy-tailed modeling.

A historically important book on statistics of extremes

is Gumbel (). Coles () and Beirlant et al. ()

give modern accounts, the former focusing exclusively on

modeling using likelihood methods, and the latter taking

a broader approach. Embrechts et al. () give an dis-

cussion oriented towards �nance, while Castillo () is

turned towards applications in engineering; as mentioned

above there is a close connection to the extensive literature

on survival analysis and reliability modeling.�e essays in

Finkenstädt and Rootzén () provide useful overviews

of various topics in extremes.

One important topic not discussed above is multivari-

ate extremes, such as the simultaneous occurrence of rare

events in many �nancial time series, or environmental

events such as heatwaves or severe rainstorms. Much cur-

rent research activity is devoted to this domain, which has
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obvious implications for 7risk analysis and management.
In addition to the treatments in the books cited above,

Kotz and Nadarajah () provide extensive references to

the early literature on multivariate extremes. Balkema and

Embrechts () take a more geometric approach.

�e journal Extremes (http://www.springer.com/

statistics/journal/) provides an outlet for both theo-

retical and applied work on extremal statistics and related

topics.
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Introduction
In various �elds of application, we are confronted with lists

of distinct objects in rank order because we can always

rank objects according to their position on a scale. When

we have variate values (interval or ratio scale), we might

replace them by corresponding ranks. In the latter case,

there is a loss of accuracy but a gain in generality. �e

ordering might be due to a measure of strength of evi-

dence or to an assessment based on expert knowledge or

a technical device. Taking advantage of the generality of

the rank scale, we are in the position of ranking objects

which might otherwise not be comparable across lists, for

instance, because of di�erent assessment technologies or

levels of measurement error.�is is a direct result of the

fact that rankings are invariant under the stretching of the

scale.

In this article, we focus primarily on statistics for two

ranked lists comprising all elements of a set of objects (i.e.,

nomissing elements). Due to limited space, wewill not dis-

cussmethods form lists in detail but give an example at the

end and some references. Let us assume two (but it could be
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up to m) assessors, one of which ranks N distinct objects

according to the extent to which a particular attribute is

present.�e ranking is from  toN, without ties.�e other

assessor also ranks the objects from  to N. Historically,

the goal of rank order statistics was to have a handle that

allows the avoidance of the di�culty of setting up an objec-

tive scale in certain applications such as in psychometrics.

It all started about  years ago with seminal work of the

psychologist and statistician Charles E. Spearman (–

) aiming at a measure of association between ranked

lists. Nowadays, there are four primary tasks when ana-

lyzing rank scale data: () measuring association between

ranked lists, () measuring distance between ranked lists,

() identi�cation of signi�cantly overlapping sublists (esti-

mation of the point of degeneration of paired rankings

into noise), and () aggregation of ranked full lists or

sublist.

Association between Ranked Lists
Suppose we have N =  major cities ranked according to
a measure of air pollution (e.g., particulate matter) and the

prevalence of respiratory disease (Table ).

We are interested in the degree of association between

these two rankings representing air pollution and disease

prevalence. Such a measure of association is the Kendall’s

τ coe�cient (Kendall , ). Let us consider any pair

of objects (oi, oj). Is the pair in direct order, we score for
this pair +, is it in inverse order, we score for this pair −.
�en the scores obtained for the two lists for a �xed pair of

objects are multiplied, giving a common score.�is proce-

dure is performed for all 

N(N − ) possible pairs ( in

this example). Finally, the total of the positive scores, say P,

and of the negative scores, say Q, is calculated.�e overall

score S = P +Q is divided by the maximum possible score
(the value that S takes when all rankings are identical).�is

heuristic procedure de�nes the τ coe�cient which in our

example is τ = .. A zero valuewould indicate indepen-
dence (no association). τ takes  for complete agreement

and − for complete disagreement. In practice, there are
more e�cient ways to calculate τ. �e coe�cient can be

interpreted as a measure of concordance between two sets

of N rankings (P is the number of concordant pairs, Q of

Statistics on Ranked Lists. Table  Example of two rankings
for ten cities ordered according to pollution rank

City (object) o o o o o o o o o o

Pollution          

Disease          

discordant pairs, and S is the excess of concordant over dis-

cordant pairs) as well as a coe�cient of disarray (minimum

moves necessary to transform the second list into the natu-

ral order of the �rst one by successively interchanging pairs

of neighbors).

Another famous measure of association is Spearman’s

ρ, also called rank correlation coe�cient (Spearman ).

Let di be the di�erence between the ranks in the two lists

for object oi (for the N objects these di�erences sum to

zero).�e coe�cient is of the form

ρ =  − ∑i d

i

N −N
. ()

When two rankings are identical, it follows from () that

ρ = , in the case of reverse order we have ρ = − (in
our example ρ = .). Q, the total of the negative scores
for Kendall’s τ coe�cient, is equivalent to the number of

pairs which occur in di�erent orders in the two lists form-

ing so-called inversions.�us τ is a linear function of the

number of inversions and ρ can be interpreted as a coef-

�cient of inversion when each inversion is weighted. If a

pair of ranks (i, j) is inverted (i < j), we score ( j − i) for
any inversion, then the sum of all such scores totals to V .

One can show that

ρ =  − V

N −N
,

where V can also be expressed as 
 ∑i d


i .

A detailed account of rank correlation methods sum-

marizing the classical literature up to  can be found in

Kendall and Gibbons (). Around that time there was

little interest in procedures for ranked data, some of them,

like Spearman’s L-based footrule (Spearman ), were

almost unknown in the statistical community because of

technical and computational shortcomings, as well as a

lack of relevance for common applications. Most recently,

there has been a dramatic shi� in relevance because of

emerging technologies producing huge amounts of ranked

lists, such as Web search engines o�ering selected server-

based information and high-throughput techniques in

genomics providing insight into gene expression. �ese

and others have given rise to new developments concern-

ing the statistical handling of rank scale information. An

essential aspect is the measurement of distance between

ranked lists.

Distance between Ranked Lists
�e most popular distance measure is Kendall’s τ intrin-

sic to his already introduced measure of association. It

is equal to the number of adjacent pairwise exchanges

required to convert one ranking to another. Let us have two
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permutations τ and τ′ of a set O of objects.�en Kendall’s
τ distance is given by

K(τ, τ
′) = ∑

{i,j}∈O
Ki,j(τ, τ

′),

where Ki,j(τ, τ′) takes  if the orderings of the ranks of
objects i and j agree in the two lists and otherwise . Its

maximum is 

N(N − ) where N is the list length.

An alternative measure of distance is Spearman’s

footrule (related to the Manhattan distance for variate val-

ues). Let us again assume two permutations τ and τ′ of a
setO of objects. Spearman’s footrule distance is the sum of

the absolute di�erences between the ranks of the two lists

over the N elements in O,

S(τ, τ
′) =

N

∑
i=

∣Rτ(oi) − Rτ′(oi)∣,

where Rτ(oi) is the rank of object oi in list τ, and Rτ′(oi)
in list τ′, respectively. As can be seen from the above for-
mulae, Spearman’s footrule takes the actual rankings of the

elements into consideration, whereas, in Kendall’s τ only

relative rankings matter. �e maximum Spearman’s dis-

tance is 

∣N∣ for N even, and 


(∣N∣ + )(∣N∣ − ) for N

odd, which corresponds to the situation in which the two

lists are exactly the reverse of each other.

For a mathematical theory of distance measures, we

refer to Fagin et al. (). Recent developments as well

as novel applications are discussed in Schimek et al. ().

Degeneration of Rankings into Noise
Typically, when the number N of objects is large or even

huge, it is unlikely that consensus between two rankings of

interest prevails. Only the top-ranked elements might be

relevant. For the remainder objects their ordering is more

or less at random.�is is not only true for surveys of con-

sumer preferences but also for many other applications of

topical interest such as the 7meta-analysis of gene expres-
sion data from several laboratories. In many instances, we

observe a general decrease of the probability for consen-

sus rankings with increasing distance from the top rank

position. Typically, there is reasonable conformity in the

rankings for the �rst, say k, elements of the lists, motivating

the notion of top-k ranked lists.

�e statistical challenge is to identify the length of the

top list. So far, heuristics have been used in practice to

specify k. Recently Hall and Schimek () could derive

a moderate deviation-based inference procedure for ran-

dom degeneration in paired ranked lists.�e result is an

estimate k̂ for the length of the so-called partial (top-k) list.

Such an inference procedure is not straightforward since

the degree of correspondence between ranked lists (full or

partial) is not necessarily high, due to various irregularities

of the assessments.

Let us de�ne a sequence of indicators, where Ij =  if the
ranking given by the second assessor to the object ranked j

by the �rst assessor, is not distant more than δ index posi-

tions from j, and otherwise Ij = . Further, let us assume ()
independent Bernoulli random variables I, . . . , IN , with

pj ≥ 


for each j ≤ j − , pj− > 


, and pj = 


for j ≥ j; ()

a general decrease of pj for increasing j that does not need

to be monotone.�e index j is the point of degeneration

into noise and needs to be estimated ( ĵ −  = k̂). �en
for a pilot sample size ν a constant C >  is chosen such
that zν ≡ (C ν− log ν)/ is a moderate-deviation bound
for testing the null hypothesisH that pk = 


for ν consec-

utive values of k, versus the alternativeH that pk > 


for at

least one of the values of k. In particular, it is assumed that

H applies to the ν consecutive values of k in the respective

series de�ned by

p̂
+
j =



ν

j+ν−
∑
ℓ=j

Iℓ and p̂
−
j =



ν

j

∑
ℓ=j−ν+

Iℓ ,

where p̂+j and p̂
−
j are estimates of pj computed from the ν

data pairs Iℓ for which ℓ lies immediately to the right of j,

or immediately to the le� of j, respectively. We reject H
if and only if p̂±j − 


> zν . Under H, the variance of p̂

±
j

equals (ν)− (this implies C > 


). Taking advantage of

this inference procedure, the complex decision problem is

solved via an iterative algorithm, adjustable for irregularity

in the rankings.

Aggregation of Ranked Lists
�e task of rank aggregation is to provide consensus rank-

ings (majority preferences) of objects across lists, thereby

producing a conforming subset of objects O∗.�e above
described inference procedure facilitates rank aggregation

because it helps to specify the partial list length k which

means a substantial reduction in the associated computa-

tional burden. As amatter of fact, list aggregation bymeans

of brute force is limited to the situation where N is unre-

alistically small.�e approach proposed in Lin and Ding

() which we describe below, outperforms most of the

aggregation techniques so far but for large setsO, the spec-

i�cation of k beforehand remains crucial. It is a stochastic

search algorithm that provides an optimal solution, i.e., a

consolidated list of objects, for a given distance measure

such as Kendall’s τ or Spearman’s footrule, to be precise,

for their penalized versions because of the partial nature

of the input lists (for details see Schimek et al. ). Lin’s

and Ding’s algorithm is preferable to those that do not aim

to optimize any criterion, thus only providing approximate
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solutions under unknown statistical properties (examples

are Dwork et al. , DeConde et al. ).

Let us assume a random matrix (X)N×k with elements
 and  with the constraints of its columns summing up

to  and its rows summing up to, at most, . Under this

setup, each realization of X, x, uniquely determines an
ordered list (permutation) of length k by the position of ’s

in each column from le� to right. Let p = (pjr)N×k denote
the corresponding probability matrix (each column sums

to ). For each column variable, Xr = (Xr ,Xr , . . . ,XNr),
a 7multinomial distribution with sample size  and prob-
ability vector pr = (pr , pr , . . . , pNr) is assumed.�en the
probability mass function is of the form

Pv(x)∝
N

∏
j=

k

∏
r=

( pjr)xjr I (
k

∑
r=
xjr ≤ ,  ≤ j ≤ N;

N

∑
j=
xjr = ,  ≤ r ≤ k

⎞
⎠
.

Any realization x of X uniquely determines the cor-
responding top-k candidate list without reference to the

probability matrix p.�e idea is to construct a stochastic
search algorithm to �nd an ordering x∗ that corresponds
to an optimal τ∗ satisfying the minimization criterion. Lin
and Ding () use a cross-entropy Monte Carlo tech-

nique in combination with an Order Explicit algorithm

(since the orders of the objects in the optimal list are

explicitly given in the probability matrix p). Cross-entropy
Monte Carlo is iterating between two steps: a simulation

step in which random samples from Pv(x) are drawn,
and an update step producing improved samples increas-

ingly concentrating around an x∗ corresponding to an
optimal τ∗.
Let us �nally illustrate the application of the inference

procedure together with rank aggregation as outlined in

this paper. We simulated m =  ranked lists τj of gene

expression data (N =  genes) fromaknown central rank-
ing as outlined in DeConde et al. ().�e length of the

top-k list was set to . In Table , we display the input lists

and the output top-k list for δ =  and ν = , apply-
ing the (penalized) Kendall’s τ distance. We obtained an

estimated k̂ =  instead of the true k = . Most objects
ranked in input position  and  are displaced due to

irregular (random) assignments.�erefore our procedure

was short-cutting the top-ranked elements for the sake of

clear separation. However, a longer partial list could have

been obtained by parameter adaptations in the moderate

deviation-based inference procedure. All calculations were

carried out with the R package TopKLists of the author and

collaborators.

Statistics on Ranked Lists. Table  Example of the
aggregation of five rankings of N =  objects (genes)

and the consensus top-ranking set of
∧

k =  objects

Input lists Output list

Rank τ τ τ τ τ τ∗

 o o o o o o

 o o o o o o

 o o o o o o

 o o o o o o

 o o o o o o

 o o o o o o

 o o o o o o

 o o o o o o

 o o o o o –

 o o o o o –

 o o o o o –

 o o o o o –

 o o o o o –

 o o o o o –

 o o o o o –

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

 o o o o o –
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Statistics Targeted Clinical Trials
Stratified and Personalized
Medicines
AboubakarMaitournam

University Abdou Moumouni of Niamey, Niamey, Niger

�e rapid breakthroughs in genomics-based technolo-

gies like DNA sequencing, microarrays for gene expres-

sion andmRNA transcript pro�ling, comparative genomic

hybridization (CGH), and mass spectrometry for pro-

tein characterization and identi�cation of metabolic and

regulatory pathways and networks announce the advent

of strati�ed medicine and its immediate corollary called

personalized medicine. Both strati�ed and personalized

medicine are in their infancy. But, they already raise statis-

tical and stochastic modeling challenges partially handled

by the growing multidisciplinary �eld of 7bioinformatics.

Statistics, Targeted Clinical Trials,
and Stratified Medicine
With the actual progress in the burgeoning �eld of

genomic science, most of the common diseases like can-

cer can be strati�ed at the molecular level.�e aim is to

re�ne disease taxonomies and to allocate patients tomolec-

ularly targeted therapy subgroups based on prognostic and

predictive biomarkers.�is will improve the e�ciency of

the treatment by adapting it to the patient prognostic pro-

�le. However, molecularly targeted therapy bene�ts only a

subset of patients (Betensky et al. ).�e re�nement of

the disease classi�cation is based on gene expression tran-

script pro�ling, and the prediction of which patients will

be more responsive to the experimental treatment than to

the control regimen may be based on a molecular assay

measuring, for example, expression of targeted proteins.

For strati�ed medicine, both molecular signatures of

patients and of the diseases can be used, �rstly for strati�-

cation of patients into responder and nonresponder groups

and, secondly, in the near future also for individualized

therapy. Strati�cation of patients into responder or nonre-

sponder groups based on theranostics (molecular diagno-

sis assays) is the basis of strati�ed medicine.�is implies

that the �rst steps toward strati�ed medicine are random-

ized clinical trials for the evaluation of molecularly tar-

geted therapy called targeted clinical trials (Simon ).

Targeted clinical trials have eligibility restricted to patients

predicted to be responsive to the molecularly targeted

drug.

In a modeling of phase III randomized clinical tri-

als for the evaluation of molecularly targeted therapy,

(Maitournamand Simon and Simon andMaitournam

) established that the targeted clinical trial design is

more e�cient than a conventional untargeted design with

broad eligibility.�ey evaluated relative e�ciencies, e and

e, of the two designs, respectively, with respect to the

number of patients required for randomization (e =
n

nT
)

and relatively to the number required for screening

(e = n/ (
nT
/(( − λspec)γ + λsens( − γ)))) ,

where n is the total number of randomized patients for

untargeted design, nT is that of targeted design, λspec and

λsens are the speci�city and the sensitivity of the molecular

diagnosis assay, and γ is the proportion of not responders

in the referral population. Indeed, for untargeted design, n

patients are allocated to control group and n other patients

to treatment group. Consequently, the total number of

randomized patients for untargeted design is n. In the

same way, for targeted design the total number of ran-

domized patients is nT .�us, the relative e�ciencies are

respectively

e =
n

nT
= n

nT
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and

e =
n

(nT/(( − λspec)γ + λsens( − γ)))

= n

(nT/(( − λspec)γ + λsens( − γ)))

�ey derived explicit formulas for calculating the above

relative e�ciencies, in the case of continuous outcome

based on normal mixture, and in the binary case by

using the Ury and Fleiss formula. In the continuous

case, outcomes are also compared by using a two-sample

Wilcoxon test, and in that nonparametric setting rela-

tive e�ciencies are evaluated by Monte Carlo simulation.

Online e�ciency calculation for binary case is available at

(http://linus.nci.nih.gov/brb/samplesize/td.html).

However, some statistical challenges related to the

design of targeted clinical trials remain. For example, ana-

lytical expressions of relative e�ciencies of targeted versus

untargeted clinical trial designs for continuous outcomes

are not trivial in the nonparametric and Bayesian settings.

Furthermore, the conventional statistical challenges raised

by genomics and microarrays (see Simon et al.  and

Sebastini et al. ) like experimental design, data quality,

normalization, choice of data analysis method, correction

of multiple hypotheses testing, validation of cluster, and

classi�er (see Simon et al.  for a comprehensive syn-

thesis) slow the progress of theranostics and subsequently

that of targeted clinical trials and strati�ed medicine.�e

latter announces the advent of Personalized Medicine.

Statistics and Personalized Medicine
Personalized medicine (Langreth andWaldholz ) is in

a restrictive and ideal sense, the determination of the right

dose at the right time for the right patient or the evaluation

of his predisposition to disease by using genomics-based

technologies andhis genomicmakeup.More precisely, per-

sonalized medicine relies on patient polymorphic mark-

ers like single nucleotide polymorphisms (SNPs), variable

number of tandem repeats (VNTR), short tandem repeats

(STRs), and other mutations (Bentley ). Personalized

medicine is sometimes mistaken as strati�ed medicine. In

fact, strati�ed medicine is the precursor of personalized

medicine.

Personalized medicine is opening huge opportunities

for mathematical formalization sketched, for example, for

molecular biology of DNA (Carbone and Gromov, ).

Indeed, the upcoming era of personalized medicine coin-

cides with the actual era of data (Donoho ) char-

acterized by massive records of various individual data

generated almost continuously. Individual i will thus be

identi�ed as a high-dimensional heterogeneous vector

(Xi, . . . ,Xim), where m is an integer, the Xij, j = , . . . ,m;
are deterministic or random qualitative and quantita-

tive variables. �e latter are for instance: biometric and

genomic �ngerprints, family records, age, gender, height,

weight, diseases status, diet, medical images, personal

medical history, family history, conventional prognostic

pro�les, and so on.

However, as personalized medicine will rely on huge

technological infrastructures, it will generate a lot of data

at the individual level.�is will lead to enormous problems

of:

● Correlation

● Multiple hypotheses testing

● Sensitivity and speci�city of molecular diagnosis tools

● Choice ofmetrics for comparisons between individuals

and between individuals and databases

● Integration of heterogeneous data and, subsequently,

qualitative and quantitative standardization.
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Statistics: Origin of that Term
Many authors discussed this, notably Karl Pearson ().

It is widely believed that the term statistics originated

from the Latin Status (situation, condition) of population

and economics; in late Latin, the same term meant State.

Another root of the term comes from the Italian word stato

(state), and a statista (a person who deals with a�airs of

state). According to Kendall (:) the �rst use of the

word statistics “occurs in a work by an Italian historian

GirolamoGhilini, who in  refers to an account of civile,

politica, statistica e militare scienza.” In  Giovanni

Botero described the political structure of several states

in his Della ragione di stato (English translation )

latinized as De Disciplina status. Humboldt () wrote

“political arithmetic (see Staatswissenscha� and Political

Arithmetic) or, in latino-barbare (late Latin), statistics.”

None of the above belonged to statistics or statisti-

cians in the modern sense and the same is true for later

sources: Shakespeare’s Hamlet (), Helenus Politanus’

() Microscopium statisticum, and for Hermann Con-

ring’s lectures (from , published ).

In English, the word statist appeared in Shakespeare’s

Hamlet, Act V, Scene  (c. ), and Cymbeline, Act II,

Scene  (c. ), and the word statistics was �rst intro-

duced into English in  byW. Hooper in his translation

of J. F. Von Bielfeld’s �e elements of universal erudition,

Containing an analytical argument of the sciences, polite

arts, and belles letters ( vols): “�e science, that is called

statistics, teaches us what is the political arrangement of all

the modern states of the known world.” (vol , p ).�e

word statistics was used again in this old sense in  by

E. A.W. Zimmermann in his book A Political Survey of the

Present State of Europe. According to Karl Pearson (:),

John Sinclair was the �rst who had attachedmodernmean-

ing to the word statistics in�e statistical account of Scot-

land drawn up from the communications of the ministers of

the di�erent parishes ( vols, –).

Staatswissenschaft and Political
Arithmetic
�e Staatswissenscha� or University statistics was born in

Germany in the mid-seventeenth century and a century

later Achenwall established its Göttingen school which

described various aspects of a given state, mostly without

use of numbers. His successor Schlözer (:) coined

a pithy saying: History is statistics �owing, and statistics is

history standing still. His followers adopted it as the de�-

nition of statistics (which did not involve studies of causes

and e�ects).

Also during that time political arithmetic had appeared

(Graunt, Petty). It widely used numbers and elemen-

tary stochastic considerations and discussed causes and

relations, thus heralding the birth of statistics. Graunt

(/) stated that it was necessary to know “how

many people there be” of each sex, age, religion, trade,

etc. (p. ), provided appropriate estimates (sometimes

quite wrongly), especially concerning 7medical statistics.
He was able to use sketchy and unreliable statistical data

for estimating the population of London and England

as well as the in�uence of various diseases on mortality

and attempted to discover regularities in the movement

of population. Contradicting the prevailing opinion, he

established that both sexes were approximately equally

numerous and derived a rough estimate of the sex ratio
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at birth (p. ). Graunt also reasonably noted that mor-

tality from syphilis was underestimated because of moral

considerations (p. ). Graunt doubted, however, that sta-

tistical investigations were needed for anyone except the

King and his main ministers (p. ).

He also compiled the �rst ever mortality table (p. );

although rather faulty but of great methodological impor-

tance, it was applied by Jakob Bernoulli and Huygens.

One of the main subjects of political arithmetic was

indeed population statistics, and it certainly con�rmed

that “In a multitude of people is the glory of a king, but

without people a prince is ruined” (Proverbs :). And

here is another link between the Old Testament and that

new discipline: Moses sent spies to the land of Canaan to

�nd out “whether the people [there] are strong or weak,

whether they are few ormany, […] whether the land is rich

or poor […]” (Numbers : –).

Tabular statisticswhich appeared in themid-eighteenth

century could have served as a link between the two new

disciplines, but its representatives were being scorned as

“slaves of tables” (Knies :). However, in the s

Leibniz recommended to compile “statistical tables” with

or without numbers and wrote several papers belonging

to both those disciplines.�ey were �rst published in the

nineteenth century, then reprinted (Leibniz ).

Numerical description of phenomena without study-

ing causes and e�ects also came into being.�e London

Statistical Society established in  declared that all

conclusions “shall admit of mathematical demonstra-

tions” (which was too di�cult to achieve), and stipulated

that statistics did not discuss causes and e�ects (which

was impossible to enforce) (see Anonymous ). Louis

() described the numerical method which was actually

applied previously. Its partisans (including D’Alembert)

advocated compilation of numerical data on diseases,

scarcely applied probability, and believed that theory was

hardly needed.

A similar attitude had appeared in other natural sci-

ences; the astronomer Proctor () plotted  thousand

stars on his charts wrongly stating that no underlying the-

ory was necessary. Compilation of statistical yearbooks,

star catalogues, etc., can bementioned as positive examples

of applying the same method, but they certainly demand

preliminary discussion of data. Empiricism underlying

the numerical method was also evident in the Biometric

school (�e Two Streams of Statistical�ought).

�e Staatswissenscha� continued to exist, although

in a narrower sense; climate, for example, fell away. At

least in Germany it is still taught at universities, certainly

includes numerical data, and studies causes and e�ects. It

thus is partly the application of the statistical method to

various disciplines and a given state. Chuprov’s opinion

(/:, :) that the Staatswissenscha� will

revive, although with an emphasis on numbers, and deter-

mine the essence of statistics was partly wrong: that science

did not at all die, neither does it determine statistics.

Statistics and the Statistical Method:
The Theory of Errors
Kolmogorov and Prokhorov  de�ned mathematical

statistics as a branch of mathematics devoted to system-

atizing, processing, and utilizing statistical data, i.e., the

number of objects in some totality. Understandably, they

excluded the collection of data and their exploratory anal-

ysis.�e latter is an important stage of theoretical statistics

which properly came into being in the mid-twentieth cen-

tury. Debates about mathematical versus theoretical statis-

tics can be resolved by stating that both data analysis and

collection of data only belong to the latter and determine

the di�erence between it and the former.

�e �rst de�nition of the theory of statistics (which

seems to be almost the same as theoretical statistics) worth

citing is due to Butte (:XI): It is a science of under-

standing and estimating statistical data, their collection,

and systematization. It is unclear whether Butte implied

applications of statistics as well. Innumerable de�nitions of

statistics (without any adjectives) had been o�ered begin-

ning with Schlözer (Staatswissenscha� and Political Arith-

metic), but the above su�ces, and I only adduce the de�ni-

tion of its aims due toGatterer (:) which seems partly

to describe both political arithmetic and the newStaatswis-

senscha� (Staatswissenscha� and Political Arithmetic): To

understand the state of a nation by studying its previous

states.

�e statistical method is reasoning based on mathe-

matical treatment of numerical data and the term ismostly

applied to data of natural sciences. �e method under-

went two previous stages. During the �rst one, statements

based on unrecorded general notions were made, witness

an aphorism (Hippocrates ): Fat men are apt (!) to

die earlier than others. Such statements express qualitative

correlation quite conforming to the qualitative nature of

ancient science.

�e second stage was distinguished by the availability

of statistical data (Graunt).�e present, third stage began

by the mid-nineteenth century when the �rst stochastic

criteria for checking statistical inferences had appeared

(Poisson, see Sheynin , Sect. .). True, those stages

are not really separated one from another: even ancient

astronomers had collected numerical observations.

Most important discoveries were made even without

such criteria. Mortality from cholera experienced by those

whose drinking water was puri�ed was eight times lower

than usual (Snow :–) which explained the spread
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of cholera. Likewise, smallpox vaccination (Jenner )

proved absolutely successful.

�e theory of errors belongs to the statistical method.

Its peculiar feature is the use of the “true value” of the

constants sought. Fourier (/:–) de�ned it as

the limit of the arithmetic mean of observations which is

heuristically similar to the frequentist de�nition of proba-

bility and which means that residual systematic errors are

included in that value.

From its birth in the second half of the eighteenth cen-

tury (Simpson, Lambert who also coined that term (,

Sect. )) to the s it constituted the main �eld of

application for the probability theory, and mathematical

statistics borrowed its principles of maximal likelihood

(Lambert , Sect. ) and least variance (Gauss ,

Sect. ) from it (from the theory of errors).

Gauss’ �rst justi�cation of themethod of7least squares
() for adjusting “indirect observations” (ofmagnitudes

serving as free terms in a system of redundant linear alge-

braic equations with unknowns sought and coe�cients

provided by the appropriate theory) was based on the

(independently introduced) principle of maximum likeli-

hood and on the assumption that the arithmetic mean of

the “direct observations” was the best estimator of obser-

vations. He abandoned that approach and o�ered a sec-

ond substantiation (), extremely di�cult to examine,

which rested on the choice of least variance. Kolmogorov

() noted in passing that it was possible to assume as

the starting point minimal sample variance (whose for-

mulaGauss hadderived) –with themethodof least squares

following at once!

Gauss (, Sect. ) stated that he only considered

random errors. Quite a few authors had been favor-

ing this second substantiation; best known is Markov

(/:) who (p. ) nevertheless declared that the

method of least squares was not optimal in any sense.

On the contrary, in case of normally distributed errors it

provides jointly e�cient estimators (Petrov ).

One of the previous main methods for treating indi-

rect observations was due to Boscovich (Cubranic ,

; Sheynin ) who participated in the measurement

of a meridian arc. In a sense it led to the median. Already

Kepler (Sheynin , Sect. ..) indirectly considered

the arithmetic mean “the letter of the law.” When adjust-

ing indirect observations, he likely applied elements of the

minimax method (choosing a “solution” of a redundant

systemof equations that corresponded to the leastmaximal

absolute residual free term) and of statistical simulation:

He corrupted observations by small arbitrary “corrections”

so that they conform to each other. Ancient astronomers

regarded observations as their private property, did not

report rejected results, and chose any reasonable estimate.

Errors of observation were large, and it is now known that

with “bad” distributions the arithmetic mean is not better

(possibly worse) than a separate observation.

Al-Biruni, the Arab scholar (th–th cc.) who sur-

passed Ptolemy, did not yet keep to the arithmetic mean

but chose various estimators as he saw �t (Sheynin ).

�ere also exists a determinate theory of errors which

examines the entire process of measurement without

applying stochastic reasoning and which is related to

the exploratory data analysis and experimental design.

Ancient astronomers selected optimal conditions for

observation, when errors least in�uenced the end result

(Aaboe and De Solla Price ). Bessel () found out

where should the two supports of a measuring bar be

situated to ensure the least possible change of its length

due to its weight. At least in the seventeenth century, nat-

ural scientists including Newton gave much thought to

suchlike considerations. Daniel Bernoulli () expressly

distinguished random and systematic errors. Gauss and

Bessel originated a new stage in experimental science by

assuming that each instrument was faulty unless and until

examined and adjusted.

Another example: the choice of the initial data. Some

natural scientists of old mistakenly thought that hetero-

geneous material could be safely used. �us, the English

surgeon Simpson (–/:) vainly studiedmor-

tality from amputations performed in many hospitals dur-

ing  years. On the other hand, conclusions were some-

times formulated without any empirical support. William

Herschel (/:) indicated that the size of a star

randomly chosen from many thousands of them will

hardly di�er much from their mean size. He did not know

that stars enormously di�ered in size so that their mean

size did not really exist and in any case nothing follows

from ignorance: Ex nihilo nihil!

Jakob Bernoulli, De Moivre, Bayes:
Chance and Design
�e theory of probability emerged in the mid-seventeenth

century (Pascal, Fermat) with an e�ective introduction of

expectation of a random event. At �rst, it studied games of

chance, then (Halley ) tables of mortality and insur-

ance, and (Huygens ) problems in mortality. Halley’s

research, although classical, contained a dubious state-

ment. Breslau, the city whose population he studied, had

a yearly rate of mortality equal to /, the same as in

London, and yet he considered it as a statistical standard.

If such a concept is at all appropriate, there should be

standards of several levels.

Equally possible cases necessary for calculating chances

(not yet probabilities) were lacking in those applica-

tions, and Jakob Bernoulli (, posthumously) proved
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that posterior statistical chances of the occurrence of

an event stochastically tended to the unknown prior

chances. In addition, his law of large numbers (the term

was due to Poisson) determined the rapidity of that

process; Markov (/:–) improved Bernoulli’s

crude intermediate calculations and strengthened his esti-

mate. Pearson () achieved even better results, but only

by applying the Stirling formula unknown to Bernoulli

(as did Markov providing a parallel alternative improve-

ment on pp –). Pearson also unreasonably compared

Bernoulli’s estimate with the wrong Ptolemaic system of

the world. He obviously did not appreciate theorems of

existence (of the limiting property of statistical chances).

Statisticians never took notice of that rapidity, nei-

ther did they cite Bernoulli’s law if not sure that the prior

probability really existed and they barely recognized the

bene�ts of the theory of probability (and hardlymentioned

the more powerful forms of that law due to Poisson and

Chebyshev).�ey did not knowor forgot thatmathematics

as a science did not depend on the existence of its objects

of study. �e actual problem was to investigate whether

the assumptions of the Bernoulli trials (their mutual inde-

pendence and constancy of the probability of the studied

event) were obeyed, and it was Lexis (�e Two Streams of

Statistical�ought) who formulated it.�e previous state-

ment of Cournot (; Sect. ), whose outstanding book

was not duly appreciated, that prior probability can be

replaced by statistics in accord with the Bernoulli’s principle

was unnoticed.

�e classical de�nition of probability, due toDeMoivre

(, Introduction) rather than to Laplace, with its equally

possible cases is still with us.�e axiomatic approach does

not help statisticians and, moreover, practitioners have to

issue from data, hence from the Mises frequentist theory

developed in the s which is not, however, recognized

as a rigorous mathematical discovery.

Arbuthnot () applied quite simple probability to

prove that only Divine Providence explained why during

 years more boys were invariably born in London than

girls since the chances of a random occurrence of that fact

were quite negligible. Cf. however the D’Alembert–Laplace

problem: a long word is composed of printer’s letters;

was the composition random? Unlike D’Alembert, Laplace

(/:) decided that, although all the arrangements

of the letters were equally unlikely, the word had a de�nite

meaning, and therefore composed with an aim. His was a

practical solution of a general and yet unsolved problem:

to distinguish between a random and a determinate �nite

sequence of unities and zeros.

Arbuthnot could have noticed that Design was

expressed by the binomial law, but it was still unknown.

Even its introduction by Jakob Bernoulli and later sci-

entists failed to become generally accepted: philosophers

of the eighteenth century almost always only understood

randomness in the “uniform” sense.

While extending Arbuthnot’s study of the sex ratio at

birth, De Moivre () essentially strengthened the law of

large numbers by proving the �rst version of the central

limit theorem (see 7Central Limit�eorems) thus intro-
ducing the normal distribution, as it became called in the

end of the nineteenth century. Laplace o�ered a some-

what better result, and Markov (/:) called their

proposition the De Moivre–Laplace theorem.

De Moivre devoted the �rst edition of his Doctrine of

Chances () to Newton, and there, in the Dedication,

reprinted in  (p. ), we �nd his understanding of the

aims of the new theory: separation of chance from Divine

design, not yet the study of various and still unknown

distributions, etc.

Such separations were being made in everyday life

even in ancient India in cases of testimonies (Bühler

/:). A misfortune encountered by a witness

during a week a�er testifying was attributed to Divine

punishment for perjury and to chance otherwise.

Newton himself (manuscript –/:–)

considered geometric probability and statistical estimation

of the probability of various throws of an irregular die.

Bayes (), a memoir with a supplement published

next year (Price and Bayes ), in�uenced statistics not

less than Laplace.�e so-called 7Bayes’ theorem actually
introduced by Laplace (/:) was lacking there, but

here is in essence his pertinent problem: ai urns (i = , )
contain white and black balls in the ratio of αi/βi. A ball

is extracted from a randomly chosen urn, determine the

probability of its beingwhite.�e di�culty here is of a logi-

cal nature:maywe assign a probability to an isolated event?

�is, however, is done, for example, when considering a

throw of a coin. True, prior probabilities such as αi/(αi +
βi) are rarely known, but we may keep to Laplace’s princi-
ple (:xi): adopt a hypothesis and repeatedly correct it

by new observations – if available!

Owing to these di�culties English and American

statisticians for about  years had been abandoning the

Bayes approach, but then (Corn�eld ) the Bayes theo-

rem had returned from the cemetery.

�e main part of the Bayes memoir was his stochastic

estimation of the unknown prior probability of the stud-

ied event as the number of Bernoulli trials increased.�is

is the inverse problem as compared with the investigations

of Bernoulli and DeMoivre, and H. E. Timerding, the Edi-

tor of the German translation of Bayes (), presented

his result as a limit theorem. Bayes himself had not done it
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for reasons concerned with rigor: unlike other mathemati-

cians of his time (including DeMoivre), he avoided the use

of divergent series. Bayes’ great discovery also needed by

statisticians was never mentioned by them. Great, because

it did not at all follow from previous �ndings and con-

cluded the creation of the initial version of the theory of

probability.

Both Bernoulli and DeMoivre estimated the statistical

probability given its theoretical counterpart and declared

that they had at the same time solved the inverse problem

(which Bayes expressly considered). Actually, the matter

concerned the study of two di�erent randomvariableswith

di�ering variances (a notion introduced by Gauss ),

and only Bayes understood that theDeMoivre formula did

not ensure a good enough solution of the inverse problem.

Statistics in the Eighteenth Century
Later statisticians took up De Moivre’s aim (Jakob

Bernoulli, De Moirre, Bayes: Chance and Design) who

actually extendedNewton’s idea of discovering theDivinely

provided laws of nature. �ey, and especially Süssmilch,

made the next logical step by attempting to discover the

laws of the movement of population, hence to discern the

pertinent Divine design. Euler essentially participated in

compiling the most important chapter of the second edi-

tion, –, of Süssmilch (), and Malthus ()

picked up one of its conclusions, viz., that population

increases in a geometric progression.

Süssmilch also initiatedmoral statistics by studying the

number of marriages, of children born out of wedlock, etc.

Its proper appearance was connected with A. M. Guerry

and A. Quetelet (s and later).

Euler published a few elegant andmethodically impor-

tant memoirs on population statistics and introduced such

concepts as increase in population and period of its dou-

bling (see Euler ). Also methodically interesting were

Lambert’s studies of the same subject.When examining the

number of children in families he (, Sect. ) arbitrar-

ily increased by a half their total number as given in his data

likely allowing for stillbirths and mortality.

Most noteworthy were Daniel Bernoulli’s investiga-

tions of several statistical subjects. His �rst memoir was

devoted to inoculation (), to not a quite safe com-

munication of a mild form of the deadly smallpox from

one person to another (Jenner introduced vaccination of

smallpox at the turn of that century) and proved that

it lengthened mean life by two years plus and was thus

highly bene�cial (in the �rst place, for the nation).�en,

he investigated the duration ofmarriages (), whichwas

necessary for insurance depending on two lives. Finally,

he (–) turned to the sex ratio at birth. He evi-

dently wished to discover the true value of the ratio of

male/female births (which does not really exist) but rea-

sonably hesitated to make a �nal choice. However, he also

derived the normal distribution although without men-

tioning De Moivre whose statistical work only became

known on the Continent by the end of the nineteenth

century.

Laplace (, Chapter ) estimated the population of

France by sampling (New Times: Great Progress and the

Soviet cul-de-sac) and studied the sex ratio at birth. In this

latter case he introduced functions of very large numbers (of

births a and b) xa( − x)b and managed to integrate them.
As usual, he had not given thought to thoroughly present-

ing his memoirs. While calculating the probability that

male births will remain prevalent for the next  years,

he did not add under the same conditions of life; and the

�nal estimate of France’s population was stated carelessly:

Poisson, who published a review of that classic, mistakenly

quoted another �gure. Laplace’s Essai philosophique ()

turned general attention to probability and statistics.

The Theory of Probability and Statistics:
Quetelet
Both Cournot () and Poisson () thought that

mathematics should be the base of statistics. Poisson with

coauthors () were the �rst to state publicly that statis-

tics was “the functioning mechanism of the calculus of

probability” and had to do with mass observations. �e

most in�uential scholars of the time shared the �rst state-

ment and likely the second as well. Fourier, in a letter to

Quetelet (, t. , p ) written around , declared

that statistics must be based on mathematical theories,

and Cauchy (/:)maintained that statistics pro-

vided means for judging doctrines and institutions and

should be applied “avec tout la rigueur.”

However, Poisson and Gavarret, his former student

who became a physician and the author of the �rst book

onmedical statistics (), only thought about large num-

bers (e.g., when comparing two empirical frequencies)

and a German physician Liebermeister (ca. ) com-

plained that the alternative, i.e., the mathematical statisti-

cal approach was needed.

�e relations between statistics and mathematics

remained undecided. �e German statistician Knapp

(:–) declared that placing colored balls in

Laplacean urns was not enough for shaking scienti�c

statistics out of them. Much later mathematicians had

apparently been attempting to achieve something of the
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sort since Chuprov (:) remarked that “Mathemati-

cians playing statistics can only be overcome by mathe-

matically armed statisticians.” In the nineteenth, and the

beginning of the twentieth century statisticians had still

been lacking such armament.

Quetelet, who dominated statistics for several decades

around the mid-nineteenth century, popularized the the-

ory of probability. He tirelessly treated statistical data,

attempted to standardize population statistics on an inter-

national scale, initiated anthropometry, declared that

statistics ought to help foresee how various innova-

tions will in�uence society, and collected and system-

atized meteorological data. Being a religious person, he

(:) denied any evolution of organisms which to

some extent explains why Continental statisticians were

far behind their English colleagues in studying biologi-

cal problems. And Quetelet was careless in his writings

so that Knapp (:) stated that his spirit was rich in

ideas but unmethodical and therefore un-philosophical.

�us, Quetelet (, t. , p ) stated without due jus-

ti�cation that the crime rate was constant although he

reasonably but not quite expressly added: under invariable

social conditions.

Quetelet paid attention to preliminary treatment of

data and thus initiated elements of the exploratory data

analysis (Statistics and the Statistical Method:�e�eory

of Errors); for example, he (:)maintained that a too

detailed subdivision of the material was a charlatanisme

scienti�que. He (:) introduced the concept of Aver-

age man both in the impossible physical sense (e.g., mean

stature and mean weight cannot coexist) and in the moral

sphere, attributed to himmean inclinations to crime (,

t. , p ) and marriage (, p ) and declared that that

�ctitious being was a specimen of mankind (, p ).

Only in passing did hemention the Poisson law of large

numbers, so that even his moral mean was hardly substan-

tiated. Worse, he had not emphasized that the inclinations

should not be attributed to individuals, and a�er his death

German statisticians, without understanding the essence

of the matter, ridiculed his innovations (and the theory of

probability in general!) which brought about the downfall

of Queteletism.

Fréchet () replaced the Average man by homme

typique, by an individual closest to the average. In any case,

an average man (although not quite in Quetelet’s sense) is

meant when discussing per capita economic indications.

New Times: Great Progress and the
Soviet cul-de-sac
In the main states of Europe and America statistical insti-

tutions and/or national statistical societies, which studied

and developed population statistics, came into being dur-

ing the �rst �ve decades of the nineteenth century. Inter-

national statistical congresses aiming at unifying o�cial

statistical data had been held from  onward, and in

 the still active International Statistical Institute was

established instead.

A century earlier Condorcet initiated and later Laplace

and Poisson developed the application of probability for

studying the administration of justice.�e French math-

ematician and mechanician Poinsot () declared that

calculus should not be applied to subjects permeated

by imperfect knowledge, ignorance, and passions, and

severe criticism was leveled at applications to jurispru-

dence for tacitly assuming independence of judges or

jurors: “In law courts people behave like themoutons de

Panurge” (Poincaré :). Better known is Mill’s decla-

ration (/:): Such applications disgrace mathe-

matics. Laplace (, Supplement of /:) only

once and in passing mentioned that assumption.

However, stochastic reasoning can provide a “guide-

line” for determining the number of witnesses and jurors

(Gauss, before /:–) and the worth of major-

ity verdicts. Poisson (:) introduced the mean prior

(statistically justi�ed) probability of the defendant’s guilt,

not to be assigned to any individual and akin to Quetelet’s

inclination to crime. Statistical data was also certainly

needed here. Quetelet (, t. , p ) studied the rate

of conviction as a function of the defendant’s personality,

noted that in Belgium the rate of conviction was con-

siderably higher than in France (:) and correctly

explained this by the absence, in the former, of the insti-

tution of jurors (:).

Statistical theory was also invariably involved in

jurisprudence in connection with errors of the �rst and

second kind. �us (Sheynin :), the Talmud stipu-

lated that a state of emergency (leading to losses) had to

be declared in a town if a certain number of its inhabitants

died during three consecutive days. Another example per-

taining to ancient India is in Jakob Bernoulli, De Moirre,

Bayes: Chance and Design.

A number of new disciplines belonging to natural sci-

ence and essentially depending on statistics had appeared

in the nineteenth century. Stellar statistics was initiated

earlier by William Herschel (:) who attempted to

catalogue all the visible stars and thus to discover the form

of our (�nite, as he thought at the time) universe. In one

section of the Milky Way he replaced counting by sample

estimation (p. ). He () also estimated the parame-

ters of the Sun’s motion by attributing to it the common

component of the proper motion of a number of stars.

Galileo () applied the same principle for estimating the
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period of rotation of the Sun about its axis: he equated it

with the (largely) common period of rotation of sunspots.

Most various statistical studies of the solar system

(Cournot ) and the starry heaven (F. G. W. Struve,

O. Struve, Newcomb) followed in the mid-nineteenth cen-

tury and later (Kapteyn). Newcomb (Sheynin ) pro-

cessed more than  thousand observations of the Sun and

the planets and revised astronomical constants. His meth-

ods of treating observationswere sometimes quite unusual.

Hill and Elkin (:) concluded that the “great Cos-

mical questions” concerned not particular stars, but rather

their average parallaxes and the general relations between

star parameters.

Daniel Bernoulli was meritorious as the pioneer

of epidemiology (Statistics in the Eighteenth Century).

It came into being in the nineteenth century mostly

while studying cholera epidemics. �e other new dis-

ciplines were public hygiene (the forerunner of ecol-

ogy), geography of plants, zoogeography, biometry, and

climatology.

�us, in Halley published a chart of NorthAtlantic

showing (contour) lines of equal magnetic declination,

and Humboldt () followed suit by inventing lines

of equal mean yearly temperatures (isotherms) replac-

ing thousands of observations and thus separating clima-

tology from meteorology. �ese were splendid examples

of exploratory data analysis (Statistics and the Statistical

Method:�e�eory of Errors). Also inmeteorology, a shi�

occurred from studyingmean values (Humboldt) to exam-

ining deviations from them, hence to temporal and spatial

distributions of meteorological elements.

Statistics ensured the importance of public hygiene.

Having this circumstance inmind, Farr (:) declared

that “Any deaths in a people exceeding  in , annually

are unnatural deaths.” Data pertaining to populations in

hospitals (hospitalism, mortality due to bad hygienic con-

ditions), barracks, and prisons were collected and studied,

causes of excessive mortality indicated and measures for

preventing it made obvious.

At least medicine had not submitted to statistics with-

out opposition since many respected physicians did not

understand its essence or role. A staunch supporter of

“rational” statistics was Pirogov, a cofounder of modern

surgery and founder of military surgery. He stressed the

di�culty of collecting data under war conditions and rea-

sonably interpreted them.

Around the mid-nineteenth century, statistics essen-

tially fostered the introduction of anesthesia since that

new procedure sometimes led to serious complications.

Another important subject statistically studied was the

notorious hospitalism, see above.

Biometry indirectly owed its origin to Darwin, witness

the Editorial in the �rst issue of Biometrika in : “�e

problem of evolution is a problem of statistics. […] Every

idea of Darwin […] seems at once to �t itself to mathemat-

ical de�nition and to demand statistical analysis.”

Extremely important was the recognition of the statis-

tical laws of nature (theory of evolution, in spite of Darwin

himself), kinetic theory of gases (Maxwell), and stellar

astronomy (Kapteyn). And the discovery of the laws of

heredity (Mendel ) would have been impossible with-

out statistics. Methodologically these laws were based on

the understanding that randomness in individual cases

becomes regularity in mass (Kant, Laplace, and actually all

the stochastic laws).

Laplace (; English translation :) declared that

randomness was only occasioned by our failure to com-

prehend all the natural forces and by the imperfection of

analysis, and he was time and time again thought only to

recognize determinism.However, the causes hementioned

were su�ciently serious; he expressly formulated statisti-

cal determinism (e.g., stability of the relative number of

dead letters, an example of transition from randomness

to regularity); and his work in astronomy and theory of

errors was based on the understanding of the action of

random errors. It is also opportune to note here that ran-

domness occurs in connection with unstable movement

(Poincaré) and that a new phenomenon, chaotic behavior

(an especially unpleasant version of instability of motion),

was discovered several decades ago. Finally, Laplace was

not original: Maupertuis (:) and Boscovich (,

Sect. ) preceded him.

In the nineteenth century, but mostly perhaps in the

twentieth, the statistical method penetrated many other

sciences and disciplines beyond natural sciences so that it

is now di�cult to say whether any branch of knowledge

can manage without it.

�ere are other points worth mentioning. Correlation

theory continued to be denied even in  (Markov),

actually because it was not yet su�ciently developed. Its

appearance (Galton, Pearson) was not achieved at once.

In – the German astronomer and mathemati-

cian Seidel quantitatively estimated the dependence of the

number of cases of typhoid fever on the level of subsoil

water and precipitation but made no attempt to general-

ize his study. And in the s several scientists connected

some terrestrial phenomenawith solar activity but without

providing any such estimates.

According to Gauss (:), for series of observations

to be independent, it was necessary for themnot to contain

common measurements, and geodesists without referring

to him have been intuitively keeping to his viewpoint.
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For two series of about m observations each, n of them

common to both, the measure of their interdependence

was thought to be n/m. Kapteyn () made the same
proposal without mentioning anyone.

Estimation of precision was considered super�uous

(Bortkiewicz –, Bd , pp –): it is a

luxury as opposed to the statistical feeling. Sampling met

with protracted opposition although even in  the

German statistician Lueder (Lueder :) complained

about the appearance of “legions” of numbers. In a crude

form, it existed long ago, witness the title of Stigler ().

In the seventeenth century in large Russian estates it was

applied for estimating the quantity of the harvested grain,

and, early in the next century Marshal Vauban, the French

Petty, made similar estimations for France as a whole.

No wonder that Laplace, in , had estimated the

population of France by sampling, and, muchmore impor-

tant, calculated the ensuing error. True, Pearson () dis-

covered a logical inconsistency in his model. As a worthy

method, sampling penetrated statistics at the turn of the

nineteenth century (the Norwegian statistician Kiaer) and

Kapteyn () initiated the study of the starry heaven by

strati�ed sampling, but opposition continued (Bortkiewicz

).

�e study of public opinion and statistical control of

quality of industrial production, also based on sampling,

had to wait until the s (true, Ostrogradsky () pro-

posed to check samples of goods supplied in batches), and

econometrics was born even later, in the s.

A curious side issue of statistics, sociography, emerged

in the beginning of the twentieth century. It studies eth-

nic, religious, etc., subgroups of society, does not anymore

belong solely to statistics, and seems not yet to be really

scienti�c. And in sociology it became gradually under-

stood that serious changes in the life of a society or a large

commercial enterprise should be based on preliminary

statistical studies.

Soviet statistics became a dangerous pseudoscience

alienated from the world (Sheynin ). Its main goal

was to preserve appearances by protectingMarxist dogmas

from the pernicious in�uence of contemporary science

and it frustrated any quantitative studies of economics and

banishedmathematics from statistics. In , Lenin called

Pearson a Machian and an enemy of materialism which

was more than enough for Soviet statisticians to deny the

work of the Biometric school lock, stock, and barrel.

Culmination of the success in that direction occurred

in , during a high-ranking conference in Moscow. Its

participants even declared that statistics did not studymass

random phenomena which, moreover, did not possess any

special features. Kolmogorov, who was present at least for

his own report, criticizedWestern statisticians for adopting

unwarranted hypotheses…

Soviet statisticians invariably demanded that quantita-

tive investigations be inseparably linked with the qualita-

tive content of social life (read: subordinated to Marxism),

but they never repeated such restrictions when discussing

the statistical method as applied to natural sciences.

The Two Streams of Statistical Thought
Lexis () proposed a distribution-free test for the

equality of probabilities of the studied event in a series

of observations, the ratio Q of the standard deviation of

the frequency of the occurrence of the studied event, as

calculated by the Gauss formula, to that peculiar to the

7binomial distribution. �at ratio would have exceeded
unity had the probability changed; been equal to unity oth-

erwise, all this taking place if the trials were independent;

and been less than unity for interdependent trials. Lexis

(, Sect. ) also qualitatively isolated several types of

statistical series and attempted to de�ne stationarity and

trend.

Bortkiewicz initiated the study of the expectation of Q

and in  introduced his celebrated law of small num-

bers which actually only essentially popularized the barely

remembered Poisson distribution. In general, his works

remain insu�ciently known because of his pedestrian

manner, excessive attention to detail, and bad composition

which he refused to improve. Winkler (:) quoted

his letter (date not given) stating that he expected to have

�ve readers (!) of his (unnamed) contribution.

Markov and mostly Chuprov (–) refuted the

applicability of Q but anyway Lexis put into motion the

Continental direction of statistics by attempting to base

statistical investigations on a stochastic basis. Lexis was

not, however, consistent: even in  he held that the

law of large numbers ought to be justi�ed by empirical

data. Poisson can be considered the godfather of the new

direction.

On the other hand, the Biometric school with its leader

Pearson was notorious for disregarding stochastic theory

and thus for remaining empirical. Yet he developed the

principles of correlation theory and contingency, intro-

duced Pearsonian curves for describing asymmetrical dis-

tributions, devised the most important chi-square test (see

7Chi-Square Tests), and published many useful statisti-
cal tables. To a large extent his work ensured the birth of

mathematical statistics.

Pearson successfully advocated the application of the

new statistics in various branches of science and studied

his own discipline in the context of general history (,

posthumous).�ere (p ) we �nd: “I do feel how wrongful
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it was to work for so many years at statistics and neglect its

history.” He acquiredmany partisans and enemies (includ-

ing Fisher). Here is Newcomb in a letter to Pearson of 

(Sheynin , Sect. ..) and Hald (:): “You are

the one living author whose production I nearly always

read when I have time […] and with whom I hold imagi-

nary interviews […]”; “Between  and  [he] created

his own kingdom of mathematical statistics and biom-

etry in which he reigned supremely, defending its ever

expanding frontiers against attacks.”

Nevertheless, the work of his school was scorned

by Continental scientists, especially Markov, the apostle

of rigor. Chuprov, however, tirelessly, although without

much success, strove to unite the two streams of statis-

tical thought. Slutsky also perceived the importance of

the Biometric school. He () expounded its results and,

although only in a letter to Markov of , when he was

not yet su�ciently known, remarked that Pearson’s short-

comingswill be overcome just as it happenedwith the non-

rigorous mathematics of the seventeenth and eighteenth

centuries.

Chuprov also achieved important results, discovering

for example �nite exchangeability (Seneta ).Hemainly

considered problems of the most general nature, hence

inevitably derived unwieldy and too complicated formulas,

and his contributions were barely studied. In addition, his

system of notations was horrible. In one case he (:)

applied two-storey superscripts and, again, two-storey sub-

scripts in the same formula!

Markov, the great mathematician, was to some extent

a victim of his own rigidity. Even allowing for the horrible

conditions in Russia from  to his death in , it seems

strange that he failed, or did not wish to notice the new tide

of opinion in statistics (and even in probability theory).

Mathematical Statistics
In what sense is mathematical statistics di�erent from

biometry? New subjects have been examined such as

sequential analysis, the treatment of previously studied

problems (sampling, time series, hypothesis testing) essen-

tially developed, links with probability theory greatly

strengthened (Pearson’s empirical approach is not toler-

ated anymore). New concepts have also appeared and this

seems to be a most important innovation. Fisher ()

introduced statistical estimators with such properties as

consistency, e�ciency, etc., some of which go back to

Gauss who had used and advocated the principle of unbi-

ased minimum variance.

It is known that the development of mathematics has

been invariably connected with its moving ever away from

Nature (e.g., to imaginaries) and that the more abstract it

was becoming, the more it bene�ted natural sciences.�e

transition from true values to estimating parameters was

therefore a step in the right direction. Nevertheless, the

former, being necessary for the theory of errors, are still

being used in statistics, and even for objects not existing in

Nature, seeWilks (, Sect. .), also preceded by Gauss

(, Sects.  and ) in the theory of errors.

Rao (Math. Rev. k:) noted that modern

statistics has problems with choosing models, measuring

uncertainty, testing hypotheses, and treating massive sets

of data, and, in addition, that statisticians are not acquiring

su�cient knowledge in any branch of natural science.
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One can de�ne statistics in various ways. My favorite de�-

nition is bipartite:

7 Statistics is both the science of uncertainty and the technol-

ogy of extracting information from data.

�is de�nition captures the two aspects of the discipline:

that it is about understanding (and indeed manipulating)

chance, and also about collecting and analyzing data to

enable us to understand the world around us. More specif-

ically, of course, statistics can have di�erent aims, includ-

ing prediction and forecasting, classi�cation, estimation,

description, summarization, decision-making, and others.

Statistics has several roots, which merged to form

the modern discipline. �ese include () the theory of

probability, initially formalized around the middle of the

seventeenth century in attempts to understand games of

chance, and then put on a sound mathematical footing

withKolmogorov’s axioms around ; () surveys of peo-

ple for governmental administrative and economic pur-

poses, as well as work aimed at constructing life tables

(see 7Life Table) for insurance purposes (see 7Insurance,
Statistics in); and () the development of arithmetic meth-

ods for coping with measurement errors in areas like

astronomy and mechanics, by people such as Gauss, in the

eighteenth and nineteenth centuries.

�is diversity of the roots of statistics has beenmatched

by the changing nature of discipline.�is is illustrated by,

for example, the papers which have appeared in the journal

of the Royal Statistical Society (the journal was launched in

). In the earlier decades, there was a marked empha-

sis on social matters, which gradually gave way around the

turn of the century, to more mathematical material. �e

�rst half of the twentieth century then saw the dramatic

development of deep and powerful ideas of statistical infer-

ence, which continue to be re�ned to the present day.

In more recent decades, however, the computer has had

an equally profound impact on the discipline. Not only

has this led to the development of entirely new classes

of methods, it has also put powerful tools into the hands

of statistically unsophisticated users – users who do not

understand the deepmathematics underlying the tools. As

might be expected, this can be a mixed blessing: power-

ful tools in hands which understand and know how to

use them properly can be a tremendous asset, but those
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same tools in hands which can misapply them may lead

to misunderstandings.

Although the majority of statisticians are still ini-

tially trained in university mathematics departments (with

statistics courses typically being part of a mathematics

degree), statistics should not be regarded as a branch of

mathematics – just as physics, engineering, surveying, and

so on have a mathematical base but are not considered

as branches of mathematics. Statistics also has a mathe-

matical base, but modern statistics involves many other

intrinsically non-mathematical ideas.

An illustration of this di�erence is given by the con-

trast between probability (properly considered as a branch

of mathematics – based on an axiom system) and statis-

tics (which is not axiomatic). Given a system or process

which is producing data, probability theory tells us what

the data will be like. If we repeatedly toss a fair coin, for

example, probability theory tells us about the properties of

the sequences of heads and tails we will observe. In con-

trast, given a set of data, statistics seeks to tell us about the

properties of the system which generated the data. Since,

of course, many di�erent systems could typically have

generated any given data set, statistics is fundamentally

inductive, whereas probability is fundamentally deductive.

At its simplest level, statistics is used to describe or

summarize data. A set of , numerical values can

be summarized by their mean and dispersion – though

whether this simple two-value summary will be adequate

will depend on the purpose for which the summary is

being made. At a much more sophisticated level, o�cial

statistics are used to describe the properties of the entire

population and economy of a country: the distribution

of ages, how many are unemployed, the Gross National

Product, and so on. �e e�ective governance of a coun-

try, management of a business, operation of an education

system, running of a health service, and so on, all depend

on accurate descriptive statistics, as well as on statistical

extrapolations of how things are likely to change in the

future.

O�en, however, mere descriptions are not enough.

O�en the observed data are not the entire population, but

are simply a sample from this population, and the aim is to

infer something about the entire population. Indeed, o�en

the “entire population” may not be well-de�ned; what, for

example, would be the entire population of possible mea-

surements of the speed of light in repeated experiments? In

such cases, the aim is to use the observed sample of values

as the basis for an estimate of the “true underlying” value

(of the speed of light in this example).

A single “point” estimate is all very well, but we must

recognize that if we had chosen a di�erent sample of val-

ues we would probably have obtained a di�erent estimate

– there is uncertainty associated with our estimate. A point

estimate can be complemented by indicating the range of

this uncertainty: indicating how con�dent we can be that

the true unobserved value lies in a speci�ed interval of val-

ues. Basic rules of probability tell us that increasing the

sample size allows us to narrow down this range of uncer-

tainty (provided the sample is collected in a certain way),

so that we can be as con�dent as we wish (or as we can

a�ord) about the unknown true value.

Estimation is one aspect of statistics, but o�en one has

more pointed questions. For example, one might be evalu-

ating a new medicine, and want to test whether it is more

e�ective than the current drug of choice. Or one might

want to see how well the data support a particular the-

ory – that the speed of light takes a certain speci�ed value,

for example. Since, in the �rst example, people respond

di�erently, and, in the second, measurement error means

that repeated observations will di�er, the data will typically

consist of several observations – a sample, as noted above

– rather than just one. Statistical tests, based on the sample,

are then used to evaluate the various theories. Hypothe-

sis testing methods (Neyman-Pearson hypothesis tests) are

used for comparing competing explanations for the data

(that the proposed new medicine is more e�ective than or

is as e�ective as the old one, for example). Such tests use

probability theory to calculate the chance that some sum-

mary statistic of the data will take values in given ranges. If

the observed value of the summary statistic is very unlikely

under one hypothesis, but much more likely under the

other, one feels justi�ed in rejecting the former and accept-

ing the latter. Signi�cance testing methods (Fisherian tests)

are used to see how well the observed data match a partic-

ular given hypothesis. If probability calculations show that

one is very unlikely to obtain a value at least as extreme

as the observed value of the summary statistic then this is

taken as evidence against the hypothesis.

Such testing approaches are not uncontroversial.

Intrinsic to them is the calculation of how o�en one would

expect to obtain such results in repeated experiments,

assuming that the data arose from a distribution speci�ed

by a given hypothesis.�ey are thus based on a particular

interpretation of probability – the frequentist view. How-

ever, one might argue that hypothetical repeated exper-

iments are all very well, but in reality we have just the

one observed set of data, and we want to draw a conclu-

sion using that one set.�is leads to 7Bayesian statistics.
Bayesian statistics is based on a di�erent interpretation

of probability – the subjective view. In this view, proba-

bility is regarded as having no external reality, but rather

as a degree of belief. In particular, in the testing context,

the di�erent values of the parameters of the distribution

producing the data are themselves assumed to take some
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distribution. In this approach to inference, one then uses

the data to re�ne one’s beliefs about the likely form of the

distribution of the parameters, and hence of the distribu-

tion from which the data were generated.

�e likelihood function plays an important role in all

schools of inference; it is de�ned as the probability of

obtaining the observed data, viewed as a function of the

parameters of the hypothesized distribution. �e likeli-

hood function is used in Bayesian inference to update one’s

initial beliefs about the distribution of the parameters.

A further school of statistics, the likelihood school, focuses

attention on the likelihood function, on the grounds that

it is this which contains all the relevant information in

the data. Comparative discussions of the various schools

of inference, along with the various profound concepts

involved, are given by Barnett () and Cox ().

�e choice of the term “Bayesian” to describe a

particular school of inference is perhaps unfortunate:

7Bayes’ theorem is accepted and used by all schools.

�e key distinguishing feature of Bayesian statistics is

the subjective interpretation of probability and the inter-

pretation of the parameters of the distributions as random

variables themselves.

�e di�erences between the various schools of infer-

ence have stimulated profound, and sometimes �erce

debates. Increasingly, however, things seem to be mov-

ing towards a recognition that di�erent approaches are

suited to di�erent questions. For example, one might dis-

tinguish between what information the data contain, what

we should believe a�er having observed the data, and

what action we should take a�er having observed the

data.

�us far I have been talking about data without men-

tioning how it was collected. But data collection is a

key part of statistical science. Properly designed data col-

lection strategies lead to faster, cheaper collection, and

to more accurate results. Indeed, poorly designed data

collection strategies can completely invalidate the con-

clusions. For example, an experiment to compare two

medicines in which one purposively gave one treatment to

the sicker patients is unlikely to allow one to decide which

is the more e�ective treatment. Sub-disciplines of statis-

tics such as experimental design and survey sampling are

concerned with e�ective data collection strategies. Exper-

imental design studies situations in which it is possible

to manipulate the subject matter: one can choose which

patient will get which treatment, one can control the tem-

perature of a reaction vessel, etc. Survey design is con-

cerned with situations involving observational data, in

which one studies the population as it is, without being

able to intervene: in a salary survey, for example, one sim-

ply records the salaries. Observational data are weaker in

the sense that causality cannot be unambiguously estab-

lished: with such data there is always the possibility that

other factors have caused an observed correlation. With

experimental data, on the other hand, one can ensure that

the only di�erence between two groups is a controlled dif-

ference, so that this must be the cause of any observed

outcome di�erence. Key notions in experimental design

are control groups, so that like is being compared with like,

and random assignment of subjects to di�erent treatments.

A key notion in survey sampling is the random selection of

the sample to be analyzed. In both cases, 7randomization
serves the dual roles of reducing the chance of biases which

could arise (even subconsciously) if purposive selection

were to be used (as in the example of giving one treat-

ment to sicker patients), and permitting valid statistical

inference.

Once the data set has been collected, one has to analyze

it. �ere exist a huge number of statistical data analy-

sis tools. A popular misconception is that one can think

of these tools as constituting a toolbox, from which one

chooses that tool which best matches the question one

wishes to answer.�is notion has probably been promoted

by the advent of powerful and extensive so�ware pack-

ages, such as SAS and SPSS, which have modules struc-

tured around particular analytic techniques. However, the

notion is a misleading one: in fact, statistical techniques

constitute a complex web of related ideas, with, for exam-

ple, some being special cases of others, and others being

variants applied to di�erent kinds of data. Rather than a

toolbox, it is better to think of statistics as a language,

which enables one to construct a way to answer any par-

ticular scienti�c question.�is perspective is illustrated by

statistical languages such as Splus and R. Statistical tools

are underwritten by complex and powerful theory, which

ties them together in various ways. For example:

● We can compare two groups using a t-test.

● If we are uneasy about the t-test assumptions, we

might use a nonparametric alternative, or perhaps a

7randomization test.
● �e t-test can be generalized to deal with more than

two groups, as in 7analysis of variance.
● And it can be generalized to deal with a continuous

“independent” variable in regression.

● Analysis of variance and regression are each special

cases of 7analysis of covariance.
● And all these are examples of linear models.

● Linear models can be extended by generalizing the

assumed distributional forms, in 7generalized linear
models.

● Analysis of variance itself can be generalized to

the multivariate situation in multivariate analysis
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of variance (see 7Multivariate Analysis of Vari-
ance (MANOVA)) and the general linear model (see

7General Linear Models).
● And linear discriminant analysis (see 7Discriminant
Analysis: An Overview, and 7Discriminant Analysis:
Issues and Problems) can be regarded as a special case

of multivariate analysis of variance.

● Linear discriminant analysis is a special case of

supervised classi�cation, with other such tools being

7logistic regression,7neural networks, support vector
machines, recursive partitioning classi�ers, and so on.

● And on and on.

�ere are some very important subdomains of statis-

tics which have been the focus of vast amounts of work,

because of the importance of the problems with which

they deal. �ese include (but are certainly not limited

to) areas such as time series analysis, supervised classi-

�cation, nonparametric methods, latent variable models,

neural networks, belief networks, and so on.

Certain important theoretical ideas pervade statistical

thinking. I have already referred to the likelihood function

as a central concept in inference. Another example is the

concept of over�tting. When one seeks to model a sample

of observations with a view to understanding the mech-

anism which gave rise to it, it is important to recognize

that the sample is just that, a sample. A di�erent sample

would probably be rather di�erent from the observed sam-

ple.What one is really seeking to do is capture the common

underlying characteristics of the various possible samples,

not the peculiar characteristics of the sample one happens

to have drawn. Too close a �t of a model to the observed

data risks capturing the idiosyncrasies of these data.�ere

are various strategies for avoiding this, including smooth-

ing a model, using a weaker model, averaging multiple

models based on subsets of the data or random perturba-

tions of it, adding a penalization term to the measure of

goodness of �t of the model to the data so that over�tting

is avoided, and others.

I have already noted how the discipline of statistics

has evolved over the past two centuries.�is evolution is

continuing, driven by the advent of new application areas

(e.g., 7bioinformatics, retail banking, etc.) and, perhaps
especially, the computer. �e impact of the computer is

being felt inmanyways. A signi�cant one is the appearance

of very large data sets – in all domains, from telecom-

munications, through banking and supermarket sales, to

astronomy, genomics, and others. Such large data sets pose

new challenges.�ese are not merely housekeeping ones

of keeping track of the data, and of the time required to

analyze them, but also new theoretical challenges. Closely

related to the appearance of these very large data sets is

the growth of interest in streaming data: data which simply

keep on coming, like water from a hose. Again, such data

sets are ubiquitous, and typically require real-time analysis.

�e computer has also enabled signi�cant advances

through computer intensive methods, such as 7bootstrap
methods and 7Markov chain Monte Carlo. Bootstrap
methods approximate the relationship between a sample

and a population in terms of the observed relationship

between a subsample and the sample.�ey are a powerful

idea, which can be used to explore properties of even very

complex estimators and procedures. Markov chain Monte

Carlomethods (see7MarkovChainMonteCarlo) are sim-
ulation methods which have enabled the practical imple-

mentation of Bayesian approaches, which were otherwise

stymied to a large extent by impractical mathematics.

Graphical displays have long been a familiar staple

of statistics – on the principle that a picture is worth a

thousand words, provided it is well-constructed. Comput-

ers have opened up the possibility of interactive dynamic

graphics for exploring and displaying data. However, while

some exciting illustrations exist, the promise has not yet

been properly ful�lled – though this appears to be simply

a matter of time.

Another important change driven by the computer has

been the advent of other data analytic disciplines, such as

machine learning, 7data mining, image processing, and
pattern recognition (see 7Pattern Recognition, 7Aspects
of and Statistical Pattern Recognition Principles). All of

these have very considerable overlaps with statistics – to

the extent that one might regard them as part of “greater

statistics,” to use JohnChambers’s phrase (Chambers ).

Such disciplines have their own emphasis and �avor (e.g.,

data mining being concerned with large data sets, machine

learning with an emphasis on algorithms rather thanmod-

els, etc.) but it is futile to try to draw sharp distinctions

between them and statistics.

From an external perspective, perhaps the single most

striking thing about statistics is how pervasive it is. One

cannot run a country e�ectively without measures of

its social and economic characteristics, without know-

ing its needs and resources. One cannot run a corpora-

tion successfully without understanding its customer base,

its manufacturing and service operations, and its work-

force. One cannot develop new medicines without rigor-

ous clinical trials. One cannot control epidemics without

forecasting and extrapolation models. One cannot extract

information from physics or chemistry experiments with-

out proper statistical techniques for analyzing the resulting

data. And so on and on. All of these requiremeasurements,

projections, and understanding based on statistical analy-

sis. �e fact is that the modern world is a very complex

place. Statistical methods are vital tools for understanding
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its complexity, grasping its subtleties, and coping with its

ambiguities and uncertainties.

An excellent overview of statistics is given by

Wasserman (), and a short introduction describing

the power and fascination of themodern discipline is given

by Hand (). Aspects of the modern discipline are set

in context in Hand ().
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Controversies may arise when statistical methods are

applied to real problems.�e reasons vary, but some pos-

sible sources are () the user fails to appreciate the lim-

itations of the methods and makes claims that are not

justi�ed, () the use of statistical methods is a�ected by

non-statistical considerations, and () researchers disagree

on the appropriate statistical methods to use. In what fol-

lows, we provide examples of controversies involving all

these sources.�e references allow readers to explore these

examples in more detail. We hope that this article will

help readers identify and assess controversies that they

encounter in practice.

Example : Web Surveys
Using the Internet to conduct “Web surveys” is becom-

ing increasingly popular. Web surveys allow one to collect

large amounts of survey data at lower costs than traditional

methods. Anyone can put survey questions on dedicated

sites o�ering free services, thus large-scale data collection

is available to almost every person with access to the Inter-

net. Some argue that eventually Web surveys will replace

traditional survey methods.

Web surveys are not easy to do well. Problems faced by

those who conduct them include () participants may be

self-selected, () certain members of the target population

may be systematically underrepresented and () nonre-

sponse.�ese problems are not unique toWeb surveys, but

how to overcome them in Web surveys is not always clear.

For a more complete discussion, see Couper ().

Controversy arises because those who doWeb surveys

may make claims about their results that are not justi�ed.

�e controversy can be seen in the Harris Poll Online.

�e Harris Poll Online has created an online research

panel of over  million volunteers, consisting “of a diverse

cross-section of people residing in the United States, as

well as in over  countries around the world” (see

www.harrispollonline.com/question.asp). When the Har-

ris Poll Online conducts a survey, a probability sample is

selected from the panel and statistical methods are used

to weight the responses and provide assurance of accuracy

and representativeness. As a result, the Harris Poll Online

believes their results generalize to somewell-de�ned larger

population. But the panel members (and hence partic-

ipants) are self-selected, and no weighting scheme can

account for all the ways in which the panel is di�erent from

the target population.

Example : Accessibility of Data
Research in many disciplines involves the collection and

analysis of data. In order to assess the validity of the

research, it may be important for others to verify the qual-

ity of the data and its analysis. Scienti�c journals, as a

rule, require that published experimental �ndings include

enough information to allow other researchers to repro-

duce the results. But how much information is enough?

Some argue that all data that form the basis for the con-

clusions in a research paper should be publicly available,

or at least available to those who review the research for

possible publication.

Controversy arises because of non-statistical consider-

ations. Data collection can be time consuming and expen-

sive. Researchers expect to use the data they collect as

the basis for several research papers.�ey are reluctant to

make it available to others until they have a chance to fully

exploit the data themselves.

An example of this controversy occurred when mass

spectrometry data from a sample of a fossilized femur of

a Tyrannosaurus rex indicated that fragments of protein

closely matched sequences of collagen, the most common

protein found in bones, from birds (see Asara et al. 

and Schweitzer et al. ). �is was the �rst molecular

con�rmation of the long-theorized relationship between

dinosaurs and birds.Many researcherswere skeptical of the

results (see, for example, Pevzner et al. ).�ey ques-

tioned the quality of the data, the statistical analyses, and

doubted that collagen could survive so long, even partially

intact. Critics demanded that all the data be made publicly

available. Eventually researchers posted all the spectra in

an online database. Although there was evidence that some

of the data may have been contaminated, a reanalysis (see

Bern et al. ) supported the original �ndings.

Example : Placeboes in Surgery
Randomized, double-blind, placebo-controlled trials are

the gold standard for evaluating newmedical interventions

and are routinely used to assess new medical therapies.

However, only a small percentage of studies of surgery use

randomized comparisons. Surgeons think their operations

succeed, but even if the patients are helped, the placebo
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e�ect may be responsible. To �nd out, one should con-

duct a proper experiment that includes a “sham surgery” to

serve as a placebo. See Freeman et al. () and Macklin

() for discussion of the use of placeboes in surgery

trials.

�e use of placeboes in surgery trials is controver-

sial. Arguments against the use of placeboes include non-

statistical considerations. Placebo surgery always carries

some risk, such as postoperative infection. A fundamental

principle is that “the interests of the subject must always

prevail.” Even great future bene�ts cannot justify risks to

subjects today unless those subjects receive some bene�t.

No doctor would do a sham surgery as ordinary therapy,

because there is some risk. If we would not use it in med-

ical practice, it is not ethical to use it in a clinical trial. Do

these arguments outweigh the acknowledged bene�ts of a

proper experiment?

Example : Hypothesis Testing in
Psychology Research
Research studies inmany �elds rely on tests of signi�cance.

Custommay dictate that results should be signi�cant at the

% level in order to be published. Overreliance on statisti-

cal testing can lead to bad habits. One simply formulates

a hypothesis, decides on a statistical test, and does the

test. One may never look carefully at the data.�e limita-

tions of tests are so severe, the risks of misinterpretation so

high, and bad habits so ingrained, that some critics in psy-

chology have suggested signi�cance tests be banned from

professional journals in psychology.

Here the controversy involves the appropriate statis-

tical method. To help resolve the controversy, the Amer-

ican Psychological Association appointed a Task Force

on Statistical Inference. �e Task Force did not want to

ban tests. Its report (see Wilkinson ) discusses good

statistical practice in general. Regarding hypothesis test-

ing, the report states “It is hard to imagine a situation

in which a dichotomous accept-reject decision is better

than reporting an actual p-value or, better still, a con�-

dence interval.…Always provide some e�ect-size estimate

when reporting a p-value.” Although banning tests might

eliminate some abuses, the committee thought there were

enough counterexamples to justify forbearance.
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Statistical Science is a Wonderful Subject
Many scientists in their training take a basic course in

statistics, and from it most of them learn almost nothing
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that will be useful to them in the practice of their science.

In the wider world statistics has a bad name:

7 There are lies, dams lies, and statistics
You can prove anything with statistics
and so on.

I give here a personal view of my subject, what its com-

ponents are, and what can be done with it. It should have

not have a bad name; rather it should be regarded as a won-

derful subject in which there are many new discoveries to

be made.

Statistical Science
“Statistics” is an unfortunate term, because it can refer

both to data and methods used to analyze those data. I,

therefore, propose to use the term “Statistical science.” It

embraces all the techniques that can be used tomake sense

of �gures. In principle it can be useful in the analysis of data

from any scienti�c experiment or survey. It is above all a

scienti�cally useful activity. A good statistical analysis will

reveal; it will not obscure. I shall use the term “statistician”

as a short form of “statistical scientist.”

The Components of Statistical Science
Mathematics
�e statistician must know some mathematics. Certain

components are vital; for example, matrix algebra and

methods for describing the structures of data. Remember

always that mathematics, or parts of it, are tools for the

statistician in his work. One part of mathematics is special

and will be described separately.

Probability Theory
�e statistician’s use of probability theory is primarily for

the construction of statistical models. �ese involve the

use of probability distributions of one or more random

variables to describe the assumed random components in

the data, that is those aspects of the data that can only

be described by their mass behavior. In addition models

include what are described as �xed e�ects, that is e�ects

that are assumed to stay constant across di�erent data sets.

In their statistics course scientists are usually introduced

to the idea of statistical signi�cance. Many come to believe

that the sole purpose of a statistical analysis is to show that

a di�erence between the e�ects of two treatments applied

in an experiment is signi�cant.�e statistician knows that

the size of a signi�cant di�erence depends both on the size

of the e�ect, the size of the sample and the underlying vari-

ation in themeasurements. It is of course important that an

experiment should be big enough to show clearly the dif-

ferences it is sought tomeasure.Why is there this mistaken

stress on the idea of statistical signi�cance? I believe that

it is because it gives the lecturer an opportunity to prove

some mathematical theorems from probability theory.

Very o�en the lecturer is only interested in probability

theory, whereas the statistician’s interests are much wider.

It is very important to stress that statistical science is not

the same as probability theory.

Statistical Inference
Here we reach what I believe to be the heart of statistical

science, namely what inferences may be legitimately made

from the data we are analyzing.�e components are the

data we have, past data on a similar topic, and a statistical

model for describing the data (we hope). When we have

data from a number of experiments we shall be looking for

e�ects that are constant across these experiments, in other

word looking for statistical sameness rather than statistical

di�erences. If we can �nd such e�ects we have extended

the scope of our inferences about the e�ects in question.

How do we come by the statistical model that drives

our inferences?

Sometimes there is a standard model from past work

that has stood the test of time, but quite o�en the statis-

tician has to draw on his own experience to formulate a

suitable model.

�e inference problem then becomes “given this

model, de�ned by a set of unknown parameters, which

values of those parameters do the data point to?”

�e basic idea here is that of 7likelihood, �rst intro-
duced by Fisher in the s. A likelihood is not a probabil-

ity, and so requires new methods for its manipulation, not

covered by probability theory. Unlike random variables,

which can be integrated over any part of their distribution,

likelihoods can be compared only at di�erent ordinates.

Fisher introduced the idea of maximum likelihood for

de�ning the most likely values of the parameters given

the data. However it may be that the model is unsuitable

for describing the data; then the inference will be false.

�e statistician can test this by de�ning a goodness-of-�t

statistic and testing the statistic against its null distribution.

Models can be extended by adding terms, deleting terms,

or exchanging terms, or by replacing a linear term by a

smooth curve driven by the data, etc.

The Experimental Cycle
Both experiments and surveys need to be designed, and

the statistician can be helpful at this stage if he is knowl-

edgeable. �e need for design is still not known as well

as it should be: remember that double-blind trials, now
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widely used inmedicine, took  years to become accepted!

�e next stage is the execution of an experiment or survey.

Many things can go wrong at this stage, biases introduced

and so on, and a good statistician will be aware of such

things. It is a good thing if all statisticians in their train-

ing actually do at least one experiment themselves, so that

they get �rst-hand experience of the di�culties an exper-

imenter may encounter. A�er execution comes analysis,

which is o�en of major concern to the statistician. Output

from analysis will include estimates of the e�ects of inter-

est to the experimenter, together with estimates of their

uncertainty.

Experiments rarely stand on their own, so �nally a

stage of consolidation is required, where results from the

current experiment are compared with previous exper-

iments on the same topic. �is is o�en called 7meta-
analysis, though I prefer the older combination of infor-

mation. �is completes the experimental cycle except

for writing-up of the results; then the whole cycle can

start again.

The Status of Bayesian Statistics
Many statisticians espouse methods based on Bayes’s the-

orem for the analysis of experiments. In this framework

there are no �xed e�ects and every parameter in the model

is assigned a prior probability distribution. Much has been

written about making these prior distributions uninfor-

mative etc., and some Bayesians regard these as purely

subjective assessments. Given data, there is still no way of

checking these prior assumptions. Various theorems can

be proved from the Bayesian speci�cation, but in my view

these have nothing to do with the problems of scienti�c

inference. Indeed I regard the problem given by Bayes in

his original paper as much better described by a two-stage

likelihood, than by a prior probability.

The Statistician and His Clients
A statistician will usually be working with other scientists

who have statistical problems in the analysis of their data.

�e statisticianmust establish a closeworking relationwith

those he is helping, and to do this it is essential to learn

some of the scientist’s jargon. In my �rst job I had to learn

at least six di�erent jargons.�e statistician should encour-

age his clients to learn something of his own jargon, so

that his methods are not thought of as being some kind

of magic!

Conclusion
Statistical science has a wider scope than any other science,

because the idea of inference is not subject-dependent.

Its scope is therefore huge and its processes are

continually both challenging and interesting. Remember

only that statistical science is not the same as probabil-

ity theory; it is much wider and (I think) much more

interesting.
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A stem-and-leaf plot (or simply stemplot), was invented by

John Tukey (�e idea behind the stemplot can be traced

back to the work of Arthur Bowley in the early s.)

in his paper “Some Graphic and Semigraphic Displays” in

. It is a valuable tool in exploratory data analysis, since

it displays the relative density and shape of data.�erefore,

it is used as an alternative to the histogram. In order to con-

struct a stem-and-leaf plot the following steps have to be

taken:

. �e data have to be sorted in ascending order.

. �e stem-and-leaf units have to be determined. �is

means that we have to de�ne what will be the stems

and what will be the leaves for observations of interest.

Each stem can consist of any number of digits, but each

leaf can have only a single digit.

Data are grouped according to their leading digits, called

stems, which are placed on the le� side of the vertical

line, while on the right hand side of the vertical line in

ascending order follow the �nal digits of each observation

called leaves.We can illustrate the way to construct a stem-

and-leaf plot using the following data set for number of

customers per day in a shop:

                    

First we have to sort data in ascending order:

                    .

Let us decide that the stem unit is , and the leaf unit

is .�us, the stem-and-leaf has the following appearance:

Stem Leaf

 ∣  

 ∣    

 ∣      

 ∣   

 ∣   

 ∣  

 ∣ 

If a stem-and leaf is turned on its side, it looks like

a histogram constructed from the digits of the data. It is

important to list each stem even they do not have associ-

ated leaves. If a larger number of bins is desired then there

may be two stems for each digit.

If some of the observations are not integers then these

numbers have to be rounded. If there are some negative

numbers in data set then aminus sign has to be put in front

of the stem unit.

Typically in statistical so�ware packages (like Minitab

or Statgraphics) stem-and-leaf display is preceded by

another column of numbers to the le� of the plot. It repre-

sents depths, which give cumulative counts from the top

and bottom of the table, stopping at the row that con-

tains the median, and the number for this row is given in

parentheses. Recalling the example given above, we obtain

Stem Leaf

  ∣  

  ∣    

()  ∣      

  ∣   

  ∣   

  ∣  

  ∣ 

Although the stem and leaf plot is very similar to his-

togram it has some advantages over it. First, it keeps data in
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their original form and the values of each individual data

can be recovered from the plot. Second, it can be easily con-

structed without using computer, especially when the data

set we are dealing with is not very large (in a range from 

to  data points). For very large data set the histogram is

prefered.
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Introduction
To ascertain the service life and reliability of a product, or

to compare alternative manufacturing designs, life testing

at normal conditions is clearly the most reliable method.

Due to continual advances in engineering science and

improvement in manufacturing designs, one o�en deals

with products that are highly reliable with a substan-

tially long life span. Electronic products and devices (e.g.,

toasters, washers, and electronic chips), for example, are

expected to last over a period of time much longer than

what laboratory testingwould allow. In these situations, the

standard life testing methods may require long and pro-

hibitively expensive testing time in order to get enough

failure data necessary tomake inferences about its relation-

ship with external stress variables.

In order to shorten the testing period, test units are

subjected to conditions more severe than normal. Such

accelerated life testing (ALT) results in shorter lives than

would be observed under normal conditions. Commonly,

each test unit is run to failure at a constant stress, then

a model for the relationship between the life of the unit

and the constant stress is �tted to the data. �is rela-

tionship is then extrapolated to estimate the life distri-

bution of the product and get the desired information

on its performance under normal use. Stress factors can

include humidity, temperature, vibration, voltage, load, or

any other factor a�ecting the life of the units. For a recent

account of work on accelerated testing and test plans, we

refer the reader to Nelson (a, b).

When constant-stress testing is considered too lengthy,

step-stress testing may be used to reduce the times to fail-

ure still further. Such testing involves starting a test unit

at a speci�ed low stress. If the unit does not fail in a spec-

i�ed time, then the stress on it is raised to a higher value

and held for another speci�ed time.�e stress is repeatedly

increased and held this way until failure occurs.�e time

in the step-stress pattern when a test unit fails is recorded

as the data on that unit. Applications of this type of test-

ing include metal fatigue under varying load in service,

cryogenic cable insulation, and electronics applications to

reveal failure modes (elephant testing), so they can be

designed out of the product.

When more constraints on the length of a life test are

present, some form of censoring is commonly adopted. If

for example, removing unfailed items from the life test at

prespeci�ed times is adopted, we have type I censoring.

Instead, if we terminate the life test at the time of a failed

item and remove all remaining unfailed items from the test,

we have type II censoring.

One advantage of step-stress accelerated life testing

(SSALT) is that the experimenters need not start with a

high stress that could be harsh for the product, hence

avoiding excessive extrapolation of test results.�e obvi-

ous drawback is that it requires stronger assumptions and

more complex analysis, compared to constant-stress ALT.

�e simplest form of SSALT is the partial ALT intro-

duced by DeGroot and Goel () and in which the prod-

ucts are �rst tested under use conditions for a period of

time before the stress is increased and maintained at the

higher level throughout the test.�ey modeled the e�ect

of switching the stress from normal conditions stress to

the single accelerated stress by multiplying the remaining

lifetime of the item by some unknown factor α > .�ey
studied the issues of estimation and optimal design in the

framework of Bayesian decision theory.

Another formulation of this type of ALT, called the

cumulative exposure (CE) model, was proposed by Nelson

(). It assumes that the remaining life of test units

depends on the current cumulative fraction failed and cur-

rent stress. Survivors will fail according to the cdf for that

stress but starting at the previously accumulated fraction

failed. Nelson () and Miller and Nelson () studied
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maximum likelihood estimation (MLE) under this type

of parametric model when the underlying distribution is

taken to be the Weibull and exponential, respectively.

Bhattacharyya and Soejoeti () proposed the tam-

pered failure rate (TFR) model for SSALT. �eir model

assumes that a change in the stress has a multiplicative

e�ect on the failure rate function over the remaining life.

In the special setting of a two-step partially accelerated

life test, and assuming that the initial distribution belongs

to a two-parameter Weibull family, they studied MLE and

derived the Fisher information matrix.

�ere are mainly two types of SSALTs: a simple SSALT

where there is a single change of stress during the test

andmutliple-step SSALTwhere change of the stress occurs

more than once. Madi () generalized the TFR model

from the simple step-stress model to the multiple step-

stress model.

Acceleration Models and Lifetime
Distributions
Stress Functions
Unless a nonparametric approach is used (see Shaked

and Singpurwalla (), McNichols and Padgett (),

and Tyoskin and Krivolapov ()), an SSALT model

(ALT model in general) consists of a theoretical life dis-

tribution whose parameters are functions of accelerating

stress and unknown coe�cients to be estimated from

the test data. �ese simple relationships, called stress

functions, are widely used in practice, and special cases

include the Arrhenius, inverse power, and Eyring laws (see

Nelson ()). For example, Nelson () used the

Weibull with parameters (α, β), as the lifetime distri-
bution, where the scale parameter α depends on stress

according to an inverse power law α(V) = (V/V)p.

Lifetime Distribution Under Step-stress
Pattern
The Cumulative Exposure Model
�e basic idea for this model, introduced byNelson (),

is to assume that the remaining life of specimens depends

only on the current cumulative fraction failed and cur-

rent stress, regardless of how the fraction accumulated.

Speci�cally, if we let Fi denote the cumulative distribution

function (cdf) of the time to failure under stress si, the

cdf of the time to failure under a step-stress pattern, F, is

obtained by considering that the lifetime ti−under si− has
an equivalent time ui under si such that Fi−(ti−) = Fi(ui).
�en the model is built as follows:

We assume that the population cumulative fraction of

specimens failing under stress s, in Step , is

F(t) = F(t),  ≤ t ≤ t

In Step , we write F(u) = F(t) to obtain u that is
the time to failure that would have produced the popula-

tion cumulative fraction failing under s.�e population

cumulative fraction of specimens failing in Step  by total

time t is

F(t) = F(t − t + u), t ≤ t ≤ t

Similarly, in Step , the unit has survived Step  and we

consider an equivalent time u under s such that

F(u) = F(t − t + u)

where t − t + u is an equivalent time under s.�en we
have

F(t) = F(t − t + u), t ≤ t ≤ t

In general, Step i has the equivalent start time ui− that
is the solution of

Fi(ui−) = Fi−(ti− − ti− + ui−)

and

F(t) = Fi(t − ti− + ui−), ti− ≤ t ≤ ti

Finally, the CE model can then be written as

F(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(t),  ≤ t ≤ t
F(t − t + u), t ≤ t ≤ t
F(t − t + u), t ≤ t ≤ t

. . . . . .

. . . . . .

Fi(t − ti− + ui−), ti− ≤ t ≤ ti

u = t =  and ui is the solution of Fi+(ui) = Fi(ti − ti− +
ui−), for i = , . . . ,m − .
If the stress function is taken to be the inverse power

law and Fi is a 7Weibull distribution, then the cdf for the
fraction of specimens failing by time t for the constant

stress Vi is

Fi(t) =  − exp[−{t(Vi/V)p}β],

and for ti− ≤ t ≤ ti,

F(t) =  − exp[−{(t − ti− + ui−)(Vi/V)p}β].
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The Tampered Failure Rate Model
Consider the experiment in which n units are simultane-

ously put on test at time t =  to a stress setting x.

Starting at time t > , the surviving units are subjected
to a higher stress level x while in the time interval [t, t).
At time t, the stress is increased on the surviving units to

x over [t, t) and so on until the kth and last time inter-
val [tk−,∞), where the remaining units are subjected to xk
until they all fail.�e TFRmodel assumes that the e�ect of

changing the stress from xi− to xi is to multiply the failure
rate function by αi−.�e resulting step-stress failure rate
function is given by

λ
∗(t) =

⎛
⎝

j−
∏
i=

αi
⎞
⎠

λ(t), tj− ≤ t ≤ tj, j = , . . . , k

where t = , tk =∞ and α− = α = .�e corresponding
survival function is

F
∗(t) =

⎛
⎜⎜⎜⎜
⎝

j−
∏
i=
F(ti)

(−αi)
i−
∏
l=−

αl
⎞
⎟⎟⎟⎟
⎠

F(t)

j−
∏
i=

αi
,

tj− ≤ t ≤ tj, j = , . . . , k

Substituting the Weibull survival function with scale

parameter θ and shape parameter β,F(t) = exp[−(y/θ)β],
F
∗(t) becomes

F
∗(t) =

⎛
⎝

j−
∏
i=
exp{(

i

∏
l=−

αl)( ti
θ
)

β

− (
i−
∏
l=−

αl)( ti
θ
)

β

}
⎞
⎠

× exp
⎧⎪⎪⎨⎪⎪⎩
−
⎛
⎝

j−
∏
i=

αi
⎞
⎠
( t

θ
)

β⎫⎪⎪⎬⎪⎪⎭

Putting δj = θ
⎛
⎝

j−
∏
i=

αi
⎞
⎠

−β−

, we have

F
∗(t) =

⎛
⎝

j−
∏
i=
exp{(ti/δi+)β − (ti/δi)β}

⎞
⎠

× exp{−(t/δj)β},

which can be rewritten as

F
∗(t) = exp

⎧⎪⎪⎨⎪⎪⎩

j−
∑
i=

((ti/δi+)β − (ti/δi)β)
⎫⎪⎪⎬⎪⎪⎭

× exp{−(t/δj)β} , tj− ≤ t ≤ tj, j = , . . . , k

Inference
Di�erent �tting methods can be used in the context

of SSALT. �ey include maximum likelihood estima-

tion, 7least squares, best linear unbiased, and graphical

methods. MLE is used frequently because it is straight-

forward and yields approximate variances and con�dence

limits for the parameters and percentiles.�e major draw-

back is the computational complexity.�e estimators are

rarely obtained in closed form and extensive iterative

methods must be used to determine the MLE.

Recent inferential work based on maximum likeli-

hood for the CE model under di�erent censoring schemes

include Gouno et al. (), Zhao and Elsayed (),

Wu et al. (), Balakrishnan and Xie (a, b), and

Balakrishnan and Han (). Madi () considered the

MLE for the multiple step-stress TFR model when the life

distribution under constant stress is Weibull.

Optimal Designs
Di�erent optimization criteria have been used to design

SSALT plans.Most are based on the variance of theMLE of

the parameter of interest (variance optimality) or the deter-

minant of the Fisher information matrix (D-optimality).

One question arising is is on the duration that items need

to be exposed to each stress level.

For example, Miller and Nelson () presented opti-

mal design for simple SSALT under the assumption of an

exponential distribution.�eir optimization criterion is to

minimize the asymptotic variance of the MLE of the mean

at a speci�ed design stress. �is criterion leads to opti-

mizing the levels of the �rst and the second test stresses

and the time of stress change. Bai et al. () extended

their work to the case in which a prescribed censoring time

is involved. Gouno et al. () considered the multiple

SSALT with equal duration steps τ and progressive type I

censoring and addressed the problemof optimizing τ using

variance optimality as well as D-optimality.
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A �rst-order di�erence equation of the form

xn+ = F(n, xn), n ∈ N, ()

may be used to describe phenomena that evolve in discrete

time, where the size of the each generation is a function of

that preceding. But the real world o�en refuses to conform

to such a neat mathematical representation. Unpredictable

e�ects can be included in the formof a sequence of random

variables {ξn}n∈N, and the result is a stochastic di�erence
equation:

Xn+ = F(n,Xn) +G(n,Xn)ξn+, n ∈ N. ()

�e solution of () is a discrete time stochastic pro-

cess adapted to the natural �ltration of {ξn}n∈N. Stochas-
tic di�erence equations also arise as discretizations of

7stochastic di�erential equations, though their asymptotic
properties can be harder to analyze. Although a thor-

ough introduction to the theory of deterministic di�erence

equations can be found in Elaydi () (for example),

no comparable text exists for their stochastic counterparts.

Nonetheless the recent development of powerful analytic

tools is driving research e�orts forward, and our under-

standing of discrete stochastic dynamics is growing.�is

has implications both for the modeling of real-world phe-

nomena that evolve in discrete time, and the analysis of

numerical methods for stochastic di�erential equations.

Both are discussed in this article.

Mathematical biology is a good place to look for real-

world phenomena that evolve in discrete time (see Murray

). Certain species, for example periodic cicadas and

fruit �ies, reproduce in non-overlapping generations, and

the change in biomass from one generation to the nextmay

be represented as a stochastic di�erence equation of the

form

Xn+ = Xn [N(Xn) +Q(Xn)ξn+] , n ∈ N. ()

Notice that the form of () guarantees the existence of an

equilibrium solution at X ≡ , corresponding to absence
of the species.�e sequence of random variables {ξn}n∈N
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captures random in�uences like disease and natural vari-

ability in fecundity between generations. In order tomodel

predator-prey interaction, competition or mutualism, it is

essential to have a good understanding of the role of the

coe�cient functions N and Q in the dynamics of systems

of such equations. For example, an equilibrium solution

displaying almost sure asymptotic stability indicates that

a species is not viable in the long run, as its biomass will

decay to an unsustainable level over time. In the stochas-

tic context, almost sure means with probability one and is

usually written a.s.

�eoretical tools for investigating the a.s. asymptotic

stability of the equilibrium of the similar equation

Xn+ = Xn [ + R(Xn) +Q(Xn)ξn+] , n ∈ N, ()

were developed in Appleby et al. (a), in the form of a

semi-martingale convergence theorem and a discrete form

of the Itô formula. It turns out that the relative speed of

decay of R and Q close to equilibrium determines the a.s.

asymptotic stability of the equilibrium. One consequence

of this is that an unstable equilibrium in a deterministic

system may be stabilized by an appropriate perturbation

coe�cient Q. In the special case where R and Q are poly-

nomials, a more detailed description is possible. If the a.s.

stability is a result of a dominant R then solutions decay at

an exact power law rate, however if the systemhas been sta-

bilized by a dominantQ no such rate is possible. Moreover,

solutions can be shown to change sign a random (though

�nite) number of times, indicating that discrete equations

with stabilizing noise may be inappropriate in the context

of a population model: biomass is inherently nonnegative.

�e closely related question of the role played byR andQ in

the oscillatory behavior of solutions of () was investigated

in Appleby et al. ().

�e in�uence of random perturbations can be hid-

den from any observer of a single trajectory. In Rod-

kina () it was shown that when R and Q are poly-

nomial, there exist solutions of () that, with arbitrar-

ily high probability, converge to zero monotonically and

inside a well-de�ned deterministic envelope.�e �uctua-

tions that ordinarily characterize the presence of random

noise are absent.�is phenomenon is impossible in contin-

uous time, since solutions of stochastic di�erential equa-

tions have trajectories that are non-di�erentiable almost

everywhere.

Stochastic di�erence equations also �nd applications

in economic modeling. Consider a self regulating island

economy in the tropics, and suppose one wishes to model

the e�ects of the annual hurricane season on economic

activity. �e essential mechanism underlying dynamic

equilibrium in an idealized model of such an economy can

be represented by the equation

xn+ = xn + f (xn), n ∈ N, ()

under appropriate conditions on f (see Appleby et al.

() for details).

�e degree to which activity during a hurricane sea-

son in�uences such a model varies randomly from year

to year, depending on the number and intensity of storm

systems, and how close the centre of each storm passes to

the island. �ese e�ects may be incorporated by adding

the term σnξn+ at each iteration, where again {ξn}n∈N is
a sequence of independent random variables, and each σn
represents intensity of seasonal activity. Notice that includ-

ing a state-independent perturbation in themodel destroys

the equilibrium.

In Appleby et al. () it was shown that, if () is

globally asymptotically stable, the perturbed model will

eventually return to the vicinity of the former equilibrium,

provided the intensity of seasonal activity converges to zero

su�ciently quickly. However, no matter how e�ective the

self-regulatory property of the system, if the seasonal activ-

ity fades outmore slowly than a critical rate, which depends

on the “heaviness” of the tails of the distribution of each ξn,

then the system will not return to the former equilibrium.

Hence (in thismodel), even if seasonal activity lessens each

year, the economy may be prevented from settling back to

near-equilibrium if the storms that do occur tend to be

extremely violent. For models which are only locally sta-

ble in the absence of perturbations, the potential exists for

an external shock to push a fundamentally stable economic

situation over into instability.

Stochastic di�erence equations arise in numerical anal-

ysis, since they are the end product of the discretization of

a stochastic di�erential equation. Consider

dX(t) = f (X(t))dt + g(X(t))dB(t), t ≥ , ()

where B is a standard Brownian motion. In general, solu-

tions of () cannot be written in closed form; to explore

their properties we can try to simulate them on a com-

puter. Since computers are �nite-state machines we must

discretize the time set of () with, for example, a one-step

Euler-Maruyama numerical scheme on a uniform mesh.

�is yields the stochastic di�erence equation

Xn+ = Xn + hf (Xn) +
√
hg(Xn)ξn+, n ∈ N, ()

where {ξn}n∈N is a sequence of i.i.d. standard normal ran-
dom variables, and h is the mesh size. A good discussion

of numerical methods for stochastic di�erential equations

may be found in Kloeden and Platen ().
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But discretization can alter the very properties of ()

that we are trying to examine. For example, a geometric

Brownianmotion (see7BrownianMotion andDi�usions)
with positive initial value remains positive with probabil-

ity one. However, the Euler-Maruyama discretization does

not: discrete processes can jump across equilibrium given

a su�ciently large input from the stochastic component.

�is is a concern as geometric Brownian motion is o�en

used tomodel asset prices in �nancial markets, which (like

biomass in the populationmodel) are inherently nonnega-

tive. However, the probability of positivity can be increased

over a �nite simulation interval by increasing the density

of mesh-points.

Nonetheless, any practical simulation must be carried

out with a �xed non-zero stepsize h, so it is also necessary

to study the e�ect of discretization with �xed h on care-

fully chosen test equations with known dynamics. A linear

stability analysis seeks to discover when the asymptotic

stability of an equilibrium solution of the test equation is

preserved a�er discretization. Direct analysis of solutions

of the stochastic di�erence equation arising from the dis-

cretization is necessary. Since these solutions are stochastic

processes, asymptotic stability may be de�ned in several

ways, each of which speaks to a di�erence aspect of the

process. For example, a.s. asymptotic stability is a property

of almost all trajectories, whereas mean-square asymptotic

stability is a property of the distribution.

�e literature surrounding mean-square stability anal-

ysis of stochastic numerical methods is extensive. For

example an analysis of the stochastic θ-method using a

scalar geometric Brownian motion as test equation may

be found in Higham (), with an extension to systems

of two equations in Saito and Mitsui (), using a tech-

nique outlined in Kloeden and Platen (). By contrast,

developments in a.s. asymptotic stability analysis are more

recent: Rodkina and Schurz () have investigated a.s.

asymptotic stability for the θ-method applied to a scalar

stochastic di�erential equation, and Higham et al. ()

have shown that a.s. exponential asymptotic stability in

systems of equationswith linearly bounded coe�cients can

be recovered in a θ-discretisation for su�ciently small h.

We anticipate an expansion of the literature in the coming

years.

Finally, we comment that it is o�en possible to repro-

duce a speci�c continuous-time dynamic in a discrete

stochastic process by through careful manipulation of the

mesh, presenting two examples from the literature. First,

a.s. oscillatory behavior in linear stochastic di�erential

equations with a fading point delay has been reproduced

in Appleby and Kelly () using a pre-transformation of

the di�erential equation and a mesh that contracts at the

same rate as the delay function. Second, state-dependent

meshes have been used to reproduce �nite-time explosions

in a discretization of () (see for example Dávila et al.,

).
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A scalar stochastic di�erential equation (SDE)

dXt = f (t,Xt)dt + g(t,Xt)dWt ()

involves a the Wiener process Wt , t ≥ , which is one of
the most fundamental 7stochastic processes and is o�en
called a Brownian motion (see 7Brownian Motion and
Di�usions). A Wiener process is a Gaussian process with

W = with probability  andN (, t−s)-distributed incre-
mentsWt−Ws for  ≤ s < t where the incrementsWt −Wt

and Wt − Wt on non-overlapping intervals, (i.e., with

 ≤ t < t ≤ t < t) are independent random variables.
It follows from the Kolmogorov criterion that the sample

paths of a Wiener process are continuous. However, they

are nowhere di�erentiable.

Consequently, an SDE is not a di�erential equation at

all, but only a symbolic representation for the stochastic

integral equation

Xt = Xt + ∫
t

t

f (s,Xs)ds + ∫
t

t

g(s,Xs)dWs,

where the �rst integral is a deterministic Riemann inte-

gral for each sample path.�e second integral cannot be

de�ned pathwise as a Riemann-Stieltjes integral because

the sample paths of the Wiener process do not have even

bounded variation on any bounded time interval, but

requires a new type of stochastic integral. An Itô stochas-

tic integral ∫
T

t
f (t)dWt is de�ned as themean-square limit

of sums of products of an integrand f evaluated at the le�

end point of each partition subinterval times [tn, tn+] the
increment of the Wiener process, i.e.,

∫
T

t

f (t)dWt := m.s. − lim
N∆→∞

N∆−
∑
j=
f (tn) (Wtn+ −Wtn),

where tn+−tn =∆/N∆ for n= , , . . .,N∆−.�e integrand
function f may be random or even depend on the path

of the Wiener process, but f (t) should be independent of
future increments of the Wiener process, i.e., Wt+h −Wt

for h > .
�e Itô stochastic integral has the important properties

(the second is called the Itô isometry) that

E [∫
T

t

f (t)dWt] = ,

E [(∫
T

t

f (t)dWt)


] = ∫
T

t

E [f (t)]dt.

However, the solutions of Itô SDE satisfy a di�erent chain

rule to that in deterministic calculus, called the Itô formula,

i.e.,

U(t,Xt) = U(t,Xt) + ∫
t

t

L

U(s,Xs)ds

+ ∫
t

t

L
(s,Xs)dWs,

where

L

U = ∂U

∂t
+ f ∂U

∂x
+ 

g
 ∂
U

∂x
, L


U = g ∂U

∂x
.

An immediate consequence is that the integration rules

and tricks from deterministic calculus do not hold and

di�erent expressions result, e.g.,

∫
T


Ws dWs =




W

T −




T.

�ere is another stochastic integral called the

Stratonovich integral, for which the integrand function is

evaluated at the mid-point of each partition subinterval

rather than at the le� end point. It is written with ○dWt to

distinguish it from the 7Itô integral. A Stratonovich SDE
is thus written

dXt = f (t,Xt)dt + g(t,Xt) ○ dWt .

Note that the Itô and Stratonovich versions of an SDEmay

have di�erent solutions, e.g.,

dXt = Xt dWt ⇒Xt = XeWt−  t Itô

dXt = Xt ○ dWt⇒Xt = XeWt Stratonovich

However, the Itô SDE () has the same solutions as the

Stratonovich SDE with the modi�ed dri� coe�cient, i.e.,

dXt = f (t,Xt)dt + g(t,Xt) ○ dWt , f := f − 

g
∂g

∂x
.

In particular, the Itô and Stratonovich versions of an SDE

with additive noise, i.e., with g independent of x, are the

same.
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Stratonovich stochastic calculus has the same chain

rule as deterministic calculus, which means that

Stratonovich SDE can be solved with the same integra-

tion tricks as for ordinary di�erential equations. However,

Stratonovich stochastic integrals do not satisfy the nice

properties above for Itô stochastic integrals, nor does the

Stratonovich SDE have the same direct connection with

di�usion process theory as the Itô SDE, e.g., the coe�cient

of the Fokker-Planck equation correspond to those of the

Itô SDE (), i.e.,

∂p

∂t
+ f ∂

∂x
+ 

g
 ∂
p

∂x
= .

�e Itô and Stratonovich stochastic calculi are both math-

ematically correct. Which one should be used is really a

modeling issue, but once one has been chosen, the advan-

tages of the other can be used through the above dri�

modi�cation.

�e situation for vector valued SDE and vector valued

Wiener processes is similar. Details can be found in the

given references.
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Stochastic global optimization methods are methods for

solving a global optimization problem incorporating prob-

abilistic (stochastic) elements, either in the problem data

(the objective function, the constraints, etc.), or in the

algorithm itself, or in both.

Global optimization is a very important part of applied

mathematics and computer science. �e importance of

global optimization is primarily related to the applied areas

such as engineering, computational chemistry, �nance and

medicine amongst many other �elds. For the state of the

art in the theory and methodology of global optimization

we refer to the “Journal of Global Optimization” and two

volumes of the “Handbook of Global Optimization” (Horst

and Pardalos ; Pardalos and Romeijn ). If the

objective function is given as a “black box” computer code,

the optimization problem is especially di�cult. Stochas-

tic approaches can o�en deal with problems of this kind

much easier and more e�ciently than the deterministic

algorithms.

�e problem of global minimization. Consider a gen-

eral minimization problem f (x)→minx∈X with objective



 S Stochastic Global Optimization

function f (⋅) and feasible regionX. Let x∗ be a global min-
imizer of f (⋅); that is, x∗ is a point inX such that f (x∗) = f∗
where f∗ = minx∈Xf (x). Global optimization problems
are usually formulated so that the structure of the feasi-

ble region X is relatively simple; this can be done on the

expense of increased complexity of the objective function.

A global minimization algorithm is a rule for con-

structing a sequence of points x, x, . . . in X such that the

sequence of record values yon = mini=...nf (xi) approaches
the minimum f∗ as n increases. In addition to approximat-
ing the minimal value f∗, one o�en needs to approximate
at least one of the minimizers x∗.
Heuristics. Many stochastic optimization algorithms

where randomness is involved have been proposed heuris-

tically. Some of these algorithms are based on analogies

with natural processes; the well-known examples are evo-

lutionary algorithms (Glover and Kochenberger ) and

simulated annealing (Van Laarhoven and Aarts ).

Heuristic global optimization algorithms are very popular

in applications, especially in discrete optimization prob-

lems. Unfortunately, there is a large gap between practical

e�ciency of stochastic global optimization algorithms and

their theoretical rigor.

Stochastic assumptions about the objective function. In

deterministic global optimization, Lipschitz-type condi-

tions on the objective function are heavily exploited. Much

research have been done in stochastic global optimization

where stochastic assumptions about the objective function

are used in amanner similar to how the Lipschitz condition

is used in deterministic algorithms. A typical example of a

stochastic assumption of this kind is the postulation that

f (⋅) is a realization of a certain stochastic process.�is part
of stochastic optimization is well described in Zhigljavsky

and Zilinskas (), Chap.  and will not be pursued in

this article.

Global random search (GRS). �e main research in

stochastic global optimization deals with the so-called

global random search (GRS) algorithms which involve

random decisions in the process of choosing the obser-

vation points. A general GRS algorithm assumes that

a sequence of random points x, x, . . . , xn is generated

where for each j ≥  the point xj has some probability dis-
tribution Pj. For each j ≥ , the distribution Pj may depend
on the previous points x, . . . , xj− and on the results of the
objective function evaluations at these points (the function

evaluations may not be noise-free).�e number of points

n,  ≤ n ≤∞ (the stopping rule) can be either determinis-
tic or random and may depend on the results of function

evaluation at the points x, . . . , xn.

�ree important classes of GRS algorithms. In the algo-

rithm which is o�en called ‘pure random search’ (PRS) all

the distributions Pj are the same (that is, Pj =P for all j)
and the points xj are independent. In Markovian algo-

rithms the distribution Pj depends only on the previous

point xj− and f (xj−), the objective function value at xj−.
In the so-called population-based algorithms the distribu-

tions Pj are updated only a�er a certain number of points

with previous distribution have been generated.

Attractive features of GRS. GRS algorithms are very

popular in both theory and practice. �eir popularity is

owed to several attractive features that many global ran-

dom search algorithms share: (a) the structure of GRS

algorithms is usually simple; (b) these algorithms are o�en

rather insensitive to the irregularity of the objective func-

tion behavior, to the shape of the feasible region, to the

presence of noise in the objective function evaluations,

and even to the growth of dimensionality; (c) it is very

easy to construct GRS algorithms guaranteeing theoretical

convergence.

Drawbacks of GRS. Firstly, the practical e�ciency of the

algorithms o�en depends on a number of parameters, but

the problem of the choice of these parameters frequently

has little relevance to the theoretical results concerning the

convergence of the algorithms. Secondly, for many global

random search algorithms an analysis on good parameter

values is lacking or just impossible. �irdly, the conver-

gence rate can be painfully slow, see discussion below.

Improving the convergence rate (or e�ciency of the algo-

rithms) is a problem that much research in the theory of

global random search is devoted to.

Main principles of GRS. A very large number of spe-

ci�c global random search algorithms exist, but only a few

main principles form their basis.�ese principles can be

summarized as follows:

() Random sampling of points at which f (⋅) is evaluated,
() Random covering of the space,

() Combination with local optimization techniques,

() �e use of di�erent heuristics including cluster-

analysis techniques to avoid clumping of points

around a particular local minima,

() Markovian construction of algorithms,

() More frequent selection of new trial points in the

vicinity of “good” previous points,

() Use of statistical inference, and

() Decrease of randomness in the selection rules for the

trial points.

In constructing a particular global random searchmethod,

one usually incorporates several of these principles, see

Zhigljavsky and Zilinskas  where all these principles

are carefully considered.
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Convergence of GRS. To establish the convergence of

a particular GRS algorithm, the classical Borel-Cantelli

theorem (see 7Borel–Cantelli Lemma and Its Generaliza-
tions) is usually used. �e corresponding result can be

formulated as follows, see Zhigljavsky and Zilinskas ,

�eorem .. Assume that X ⊆ Rd with  < vol(X) <∞
and∑∞

j= inf Pj(B(x, ε)) =∞ for all x ∈ X and ε > , where
B(x, ε) = {y∈X : ∣∣y−x∣∣


≤ ε} and the in�mum is taken

over all possible locations of previous points x, . . . , xj−
and the results of the objective function evaluations at

these points. �en with probability one, the sequence of

points x, x, . . . falls in�nitely o�en into any �xed neigh-

borhood of any global minimizer.

In practice, a very popular rule for selecting the se-

quence of probability measures Pj is Pj = αjP+(−αj)Qj,
where  ≤ αj ≤ , P is the uniform distribution on X and
Qj is an arbitrary probabilitymeasure onX. In this case, the

corresponding GRS algorithm converges if∑∞
j= αj =∞.

Rate of convergence of PRS. Assume X ⊆ Rd with
vol(X) =  and the points x, x, . . . , xn are independent
andhave uniformdistribution onX (that is, GRS algorithm

is PRS).�e rate of convergence of PRS to the minimizer

x∗ is the fastest possible (for the worst continuous objec-
tive function) among all GRS algorithms. To guarantee that

PRS reaches the ε-neighborhood B(x∗, ε) of a point x∗
with probability at least  − γ, we need to perform at least

n∗ = ⌈−log(γ)⋅Γ ( d

+)/ (π

d
 εd)⌉ iterations, where Γ(⋅)

is the Gamma-function.�is may be a very large number

even for reasonable values of d, ε and γ. For example, if

d =  and ε = γ = . then n∗ ≃ . ⋅ . See Sect. ..
in Zhigljavsky and Zilinskas () for an extensive dis-

cussion on convergence and convergence rates of PRS and

other GRS algorithms.

Markovian GRS algorithms. In a Markovian GRS algo-

rithm, the distribution Pj depends only on the previ-

ous point xj− and its function value f (xj−); that is,
the sequence of points x, x, . . . constitutes a Markov

chain (see 7Markov Chains). �e most known Marko-
vian GRS algorithms are the simulated annealing methods

(Van Laarhoven and Aarts ). If a particular simulated

annealing method creates a time-homogeneous Markov

chain then the corresponding stationary distribution of

this Markov chain is called Gibbs distribution. Param-

eters of the simulated annealing can be chosen so that

the related Gibbs distribution is concentrated in a narrow

neighborhood of the global minimizer x∗. �e conver-
gence to the Gibbs distribution can be very slow result-

ing in a slow convergence of the corresponding simulated

annealing algorithm. �e convergence of all Markovian

GRS algorithms is generally slow as the information about

the objective function obtained during the search process

is used ine�ectively.

Population-based methods. Population-based methods

are very popular in practice (Glover and Kochenberger

).�ese methods generalize theMarkovian GRS algo-

rithms in the following way: rather than to allow the dis-

tribution Pj of the next point xj to depend on the previous

point xj−, it is now the distribution of a population of
points (descendants, or children) depends on the previous

population of points (parents) and the objective function

values at these points.�ere are many heuristic arguments

associated with these methods (Glover and Kochenberger

). �ere are also various probabilistic models of the

population-based algorithms (Zhigljavsky ).

Statistical inference in GRS.�e use of statistical proce-

dures can signi�cantly accelerate the convergence of GRS

algorithms. Statistical procedures can be especially useful

for de�ning the stopping rules and the population sizes

in the population-based algorithms.�ese statistical pro-

cedures are based on the use of the asymptotic theory of

extreme order statistics and the related theory of record

moments. As an example, consider PRS and the corre-

sponding sample S = {f (xj), j = , . . . ,n}.�is is an inde-
pendent sample of values from the distribution with c.d.f.

F(t) = ∫f (x)≤t P(dx) and the support [f∗, f
∗], where f ∗ =

supx∈X f (x). It can be shown that undermild conditions on
f and P, this distribution belongs to the domain of attrac-

tion of the 7Weibull distribution, one of the 7extreme
value distributions. Based on this fact, one can construct

e�cient statistical procedures for f∗ using several minimal
order statistics from the sample S.

For the theory, methodology and the use of probabilis-

tic models and statistical inference in GRS, we refer to

Zhigljavsky and Zilinskas () and Zhigljavsky ().

Cross References
7Borel–Cantelli Lemma and Its Generalizations
7Markov Chains
7Weibull Distribution
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�e term Stochastic Modeling is related to the theory and

applications of probability in the modeling of phenom-

ena in real life applications. Stochastic is a term coming

from the ancient Greek period and is related to “stochastes”

(people who are philosophers or intellectuals, scientists

in recent notation) and “stochazomai” (I am involved in

highly theoretical and intellectual issues as are philosophy

and science).

�e term model accounts for the representation of the

reality (a real situation) by a verbal, logical or mathemat-

ical form. It is clear that the model includes a part of the

main characteristics of the real situation. As far as the real

situation is better explained the model will be termed as

successful or not.

�e science or even the art to construct and apply a

model to real situations is termed as modeling. It includes

model building and model adaptation, application to spe-

ci�c data and even simulation; that is producing a realiza-

tion of a real situation.

It is clear that it is essential to organise and apply a good

method or even process of collecting, restoring, classify-

ing, organising and �tting data related to the speci�c case;

that is to develop the “data analysis” scienti�c �eld.

Modeling is related to the use of past data to express the

future developments of a real system. To this endmodeling

accounts for two major intellectual and scienti�c schools;

the school of determinism and the school of probabilistic

or stochastic modeling.

Deterministic modeling is related to determinism; that

is the expression of the reality with a modeling approach

that uses the data from the past and could lead to a good

and even precise determination of the future paths of a nat-

ural system. Determinismwas a school of thought that was

the basis of very many developments in various scienti�c

�elds last centuries. Deterministic models of innovation

di�usion appear in (Skiadas , , ).

From the other part, it was clear from the very begin-

ning even from the rising of philosophy and science from

the ancient Greek period that the future was unpredictable

(probabilistic) or even chaotic. However, the successful

solutions of several problems last centuries, especially in

physics, straighten determinism as a school of thought.

Probabilistic methods came more recently with many

applications. Of course the basic elements were developed

during the last centuries but with only few applications.

Some of the famous contributors are P.-S. Laplace and

J.C.F. Gauss. A main development was done by studying

and modeling the heat transfer by proposing and solv-

ing a partial di�erential equation for the space and time

propagation of heat (see Fourier (, ) and Fick

()). However radical progress came by modeling the

Brownian motion, Brown (), (see the seminal paper

by Einstein () followed by Smoluchowski ()). (See

also 7Brownian Motion and Di�usions)

Modeling by Stochastic Differential
Equations
Time was needed to understand and introduce probabilis-

tic ideas into di�erential equations; thus called7stochastic
di�erential equations.�is was achieved only during the

twentieth century. Even more some very important details

weremissing. One important point had to dowith calculus

and how to apply calculus in stochastic di�erential equa-

tions. �e solution came with Itô and his postulate that

the in�nitesimal second order terms of a stochastic pro-

cess do not vanish thus accepting to apply rules of what

is now called as the Itô calculus or stochastic calculus.

Stochastic calculus is also proposed by others di�eren-

tiating their work from Itô’s calculus on the summation

process applied in de�ning the stochastic integral (R.L.

Stratonovich, P.Malliavin). Itô’s proposition can be given in

the following form useful to apply in stochastic di�erential

equations, Oksendal (), Gardiner ():

df (xt , t) =
∂f (xt , t)
∂xt

dxt +




∂f (xt , t)
∂x t

(dxt)

where xt is a stochastic process over time t and f (xt , t) is a
stochastic function of the speci�c process.

�e above form for the function f (xt , t) usually is used
as a transformation function to reduce a nonlinear stochas-

tic di�erential equation to a linear one and thus �nding a

closed form solution.

Although the �rst proposal of a probabilistic di�eren-

tial equation is merely due to P. Langevin, in recent years it
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was generally accepted the following stochastic di�erential

equations form:

dxt = µ(xt , t)dt + σ(xt , t)dwt ,

wherewt is the so-calledWiener process.�is is a stochas-

tic process with mean value zero and variance  and

is usually termed as the standard Wiener process with

N(, ) property, the process is characterized by indepen-
dent increments normally distributed.

By using the above Itô’s rule and the appropriate trans-

formation function the exact solutions of several nonlinear

stochastic di�erential equations arise. Except of the useful-

ness of the exact solutions of stochastic di�erential equa-

tions when dealing with speci�c cases and applications

their use is very important in order to check how precise

the approximate methods of solution of stochastic di�er-

ential equations are. A general method of solution was

proposed by Kloeden et al. (, , ). Related the-

oretical solutionswith applications can be found in Skiadas

et al. (, ), Giovanis and Skiadas (), Skiadas and

Giovanis (), Skiadas ().

�e main stochastic di�erential equations solved can

be summarized into two categories:�e stochastic di�er-

ential equations with a multiplicative error term of the

form: dxt = µ(xt , t)dt+σ(t)xtdwt , frequently used inmar-
ket applications, and the stochastic di�erential equations

with non-multiplicative or additive error term of the form:

dxt = µ(xt , t)dt + σ(t)dwt . In the later case there appear
applications with a constant σ .

�e most known model with a multiplicative error

term is the so-called Black and Scholes () model in

�nance: dxt = µxtdt + σxtdwt (in most applications xt is

replaced by St).
�e famous Ornstein–Uhlenbeck () process is the

most typical model with an additive error term: dxt =
ϑ(µ − xt)dt + σdwt .

�ere are very many stochastic di�erential equations

that could �nd interesting applications. As it was shown

(Skiadas-Katsamaki ) even a general stochastic expo-

nential model could give realistic paths especially during

the �rst stages of a di�usion process: dxt = µ(xt)bdt +
σdwt . In the same paper three methods for estimating the

parameter σ are given.

Modeling using stochastic di�erential equations has

several applications but also faces the problems arising

from the introduction of stochastic theory. First of all, a

stochastic di�erential equation gives a solution which may

provide several stochastic paths during a simulation. How-

ever, one cannot �nd one �nal path as it is the case in

a deterministic process. In most cases the deterministic

solution arises by eliminating the error term. An in�nite

number of stochastic paths could provide the mean value

of the stochastic process as a limit of a summation. When

there exists an exact solution of the stochastic di�erential

equation it can be estimated the mean value and if pos-

sible the variance. More useful, a�er estimating the mean

value and the variance, is the estimation of the con�dence

intervals, thus informing regarding the limits of the real life

application modeled.
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�e classical random �ow and Newtonian mechanics are

two theoretical approaches to analyze dynamic processes

in biological, engineering, physical and social sciences

under random perturbations. Historically, in the classi-

cal approach (Bartlett; , Ross; ), one considers

a dynamic system as a random �ow or process with a

certain probabilistic laws such as: di�usion, Markovian,

nonmarkovian and etc. From this type consideration,

one attempts to determine the state transition probabil-

ity distributions/density functions (STPDF) of the ran-

dom process.�e determination of the unknown STPDF

leads to the study of deterministic problems in the the-

ory of ordinary or partial or integro-di�erential equa-

tions (Lakshmikantham and Leela a, b). For example,

a random �ow that obeys a Markovian probabilistic law

leads to

∂

∂s
P(s, x, t,B) = q(s, x)P(s, x, t,B) − ∫

Rn−{x}

P(s, y, t,B)Q(s, x,dy), ()

that is, Kolmogorov’s backward equation, where, P(s, x,
t,B) is STPDF; Q(s, x,dy) is the state transition intensity
function (STIF) and q(s, x) = −Q(s, x,{x}). In particular,
in the case of Markov chain (see 7Markov Chains) with
�nite number of states r, equation () reduces to:

∂

∂s
P(s, t) = Q(s)P(s, t), P(t, t) = I, ()

where, Pij(s, t) = P(s, i, t,{j}); P(s, t) = (Pij(s, t))r×r ; an
intensity matrix Q(s) and the identity I are r × r matrices.
�ese types of equations are referred as master equations

in the literature (Arnold ; Bartlett ; Gihman ;

Gikhman and Skorokhod ; Goel and Richter-Dyn

; Kimura and Ohta ; Kloeden and Platen ;

Ladde ; Ladde and Sambandham ; Ricciardi ;

Soong ). �e solution processes of such di�erential

equations are used to �nd the higher moments and other

statistical properties of dynamic processes described by

random �ows or processes in sciences. We remark that in

general, Kolmogorov’s backward or forward (master equa-

tions) are nonlinear and non stationary deterministic dif-

ferential equations (Arnold ; Gihman ; Gikhman

and Skorokhod ; Goel andRichter-Dyn ; Ricciardi

; Soong ). As a result of this, the close form STPDF

are not feasible.

A modern approach (Arnold ; Gihman ; Ito

, Kloeden and Platen ; Ladde and Ladde ;

Ladde ; Ladde and Lakshmikantham ; Ladde and

Sambandham ; Nelson ; Øksendal ; Ricciardi

; Soong ; Wong ) of stochastic modeling of

dynamic processes in sciences and engineering sciences

is based on fundamental theoretical information, a prac-

tical experimental setup and basic laws in science and

engineering sciences. Depending on the nature of stochas-

tic disturbances, there are several probabilistic models,

namely, 7Random walk, Poisson, Brownian motion (see
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7Brownian Motion and Di�usions), Colored Noise pro-
cesses. In the following, we very brie�y outline the salient

features of Random Walk and Colored Noise dynamic

modeling approaches (Kloeden and Platen ; Ladde

and Ladde ; Wong ).

Random Walk Modeling Approach
(Ladde and Ladde )
Let x(t) be a state of a system at a time t.�e state of the
system is observed over an interval of [t, t + ∆t], where ∆t
is a small increment in t. Without loss in generality, it is

assumed that x(t) is -dimensional state and ∆t is posi-
tive.�e state is under the in�uence of random perturba-

tions. We experimentally observe the data-set of the state:

x(t) = x(t), x(t), x(t), . . . , x(ti), . . . , x (tn) = x(t+∆t)
of a system at t = t, t = t + τ, t = t + τ, . . . , ti = t +
iτ, . . . , tn = t+∆t = t+nτ over the interval [t, t+∆t], where
n belongs to {, , , . . . } and τ = ∆t

n
.�ese observations

are made under the following conditions:

RWM  �e system is under the in�uence of inde-

pendent and identical random impulses that are taking

place at t, t, . . . , ti, . . . , tn.

RWM  �e in�uence of a random impact on the

state of the system is observed on every time subinterval of

length τ.

RWM  For each i ∈ I(,n) = {, , . . . , k, . . . ,n},
it is assumed that the state is either increased by

∆x(ti) (“success”-the positive increment (∆x (ti) > ))
or decreased by ∆x (ti) (“failure”-the negative increment
(∆x (ti) < )). We refer ∆x (ti) as a microscopic/local
experimentally or knowledge-base observed increment to

the state of the system at the ith impact on the subinterval

of length τ.

RWM  It is assumed that ∆x (ti) is constant for
i ∈ I(,n) and is denoted by ∆x (ti) ≡ Zi = Z with ∣Zi∣ =
∆x > . �us, for each i ∈ I(,n), there is a constant
random increment Z of magnitude ∆x to the state of the

system per impact on the subinterval of length τ.

RWM  For each random impact and any real num-

ber p satisfying  < p < , it is assumed that

P({Zi = ∆x > }) = p and P({Zi = −∆x < }) = − p = q.
()

From RWM, RWM and RWM, under n indepen-

dent and identical random impacts, the initial state and n

experimental or knowledge-base observed random incre-

ments Zi of constant magnitude ∆x in the state, the aggre-

gate change of the state of the system x(t + ∆t) − x(t)

under n observations of the system over the given interval

[t, t + ∆t] of length ∆t is described by

x(t + ∆t) − x(t) = n
[
n

∑
i=
Zi]

n
= ∆t

τ
Sn, ()

where Sn = 

n
[
n

∑
i=
Zi] and Zi = x (ti) − x (ti−). Sn is the

sample average of the state aggregate incremental data. It

is clear that x(t + ∆t) − x(t) = x (tn) − x(t) is a discrete-
time-real-valued stochastic process which is the sum of

n independent Bernoulli random variables Zi (Zi = Z),
i = , , . . . ,n. We also note that for each n, x (tn)−x (t) is
a binomial random variable with parameters (n, p). More-
over, the random variable x (tn) − x(t) takes values from
the set {−n∆x, (− n)∆x, . . . , (m− n)∆x, . . . ,n∆x}.�e
stochastic process x (tn) − x(t) is referred to as a Random
Walk process. Letm be a number of positive increments ∆x

to the state of the system out of total n changes. (n −m) is
the number of negative increments −∆x to the state of the
system out of total n changes. Furthermore, m ∈ I(,n),
we further note that

Sn =


n
[(m − n)S+n ] , ()

where S+n = 

n
[
n

∑
i=

∣Zi∣].

�erefore, the aggregate change of state, x(t+∆t)−x(t)
under n identical random impacts on the system over the

given interval [t, t + ∆t] of time is described by

x(t + ∆t) − x(t) = 
n
(m − n) S

+
n

τ
∆t. ()

Moreover, from (), we have:

E[x(t + ∆t) − x(t)] = (p − q) S
+
n

τ
∆t ()

and

Var(x(t + ∆t) − x(t)) = pq
(S+n )



τ
∆t. ()

S+
n

τ
and

(S+
n
)

τ
are sample microscopic or local average

increment and sample microscopic or local average square

increment per unit time over the uniform length of sample

subintervals [tk−, tk], k = , , . . . ,n of interval [t, t + ∆t],
respectively.

We note that the physical nature of the problem

imposes certain restrictions on ∆x and τ. Similarly, the

parameter p cannot be taken arbitrary. In fact, the follow-

ing conditions seem to be natural for su�ciently large n:
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For x(t +∆t)− x(t) = n∆x, ∆t = nτ, pq = (p+ q) − (p−
q) =  − (p − q), and

lim
τ→

⎡⎢⎢⎢⎢⎣

(S+n )


τ

⎤⎥⎥⎥⎥⎦
= D, lim

∆x→
lim
τ→

[(p − q)S
+
n

τ
]

= C and lim
∆x→

lim
τ→
pq = , ()

where C and D are certain constants, the former is called

a dri� coe�cient, and the latter is called a di�usion

coe�cient. Moreover, C can be interpreted as the aver-

age/mean/expected rate of change of state of the system per

unit time, andD can be interpreted as themean square rate

of change of the system per unit time over an interval of

length ∆t. From (), () and (), we obtain

lim
∆x→

lim
τ→
E[x(t + ∆t) − x(t)] = C∆t, ()

and

lim
∆x→

lim
τ→
Var(x(t + ∆t) − x(t)) = D∆t. ()

Now, we de�ne

y(t,n, ∆t) = x(t + ∆t) − x(t) − n(p − q)S
+
n√

npq (S+n )
. ()

By the application of the DeMoivre–Laplace Central

Limit �eorem, we conclude that the process y(t,n, ∆t)
is approximated by standard normal random variable for

each t (zero mean and variance one). Moreover,

lim
∆x→

lim
τ→
y(t,n, ∆t) = x(t + ∆t) − x(t) − C∆t√

D∆t
. ()

For �xed ∆t, the random variable lim
∆x→

lim
τ→
y(t,n, ∆t)

has standard normal distribution (zero mean and variance

one). Now, by rearranging the expressions in (), we get

x(t + ∆t) − x(t) = C∆t +
√
D∆w(t) ()

where
√
∆t [ lim

∆x→
lim
τ→
y(t,n, ∆t)] = ∆w(t) = w(t + ∆t) −

w(t), w(t) is a Wiener process.�us the aggregate change
of state of the system x(t + ∆t) − x(t) in () under
independent and identical random impacts over the given

interval [t, t + ∆t] is interpreted as the sum of the aver-
age/expected/mean change (C∆t) and the mean square

change (
√
D∆w(t)) of state of the system due to the

random environmental perturbations.

If ∆t is very small, then its di�erential dt = ∆t, and
from () the Itô–Doob di�erential dx is de�ned by

dx(t) = Cdt +
√
Ddw(t), ()

where C and D are as de�ned before.�e equation in ()

is called the Itô–Doob type stochastic di�erential equa-

tion (Arnold ; Gihman and Skorohod ; Ito ;

Kloeden and Platen ; Laddle and Laddle ; Laddle

and Lakshmikantham ; Øksendal ; Soong ;

Wong ).

Observation ()We recall that the experimental or knowl-

edge base observed constant random variables: x (t) =
x(t),Z,Z, . . . ,Zk, . . . ,Zn in () are mutually indepen-
dent.�erefore, expectations

E[x(t + ∆t) − x(t)] and E [(x(t + ∆t) − x(t))]
= Var(x(t + ∆t) − x(t))

in () and () can be replaced by the conditional expecta-

tions as:

E[x(t + ∆t)− x(t)] = E[x(t + ∆t)− x(t) ∣ x(t) = x] ()

and

Var(x(t + ∆t) − x(t)) = E [(x(t + ∆t)
−x(t)) ∣ x(t) = x] . ()

() We further note that based on experimental obser-

vations, information and basic scienti�c laws/principles in

biological, chemical, engineering, medical, physical and

social sciences, we infer that in general the magnitude of

the microscopic or local increment depends on both the

initial time t and the initial state x(t) ≡ x of a system. As a
result of this, in general, the dri� (C) and the di�usion (D)

coe�cients de�ned in () need not be absolute constants.

�ey may depend on both the initial time t and the initial

state x(t) ≡ x of the system, as long as their dependence
on t and x is very smooth. From this discussion, () and

(), one can incorporate both time and state dependent

random environmental perturbation e�ects. As a result of

this, () reduces to:

x(t + ∆t) − x(t) = C(t, x)∆t + σ(t, x)∆w(t), ()

whereC(t, x) and σ (t, x) = D(t, x) are also referred to as
the average/expected/mean rate and the mean square rate

of the state of the systemon the interval of length ∆t.More-

over, the Itô–Doob type stochastic di�erential equation

() becomes:

dx(t) = C(t, x)dt + σ(t, x)dw(t). ()

() From (), () and (), we have

d

dt
E[x(t) ∣ x(t) = x] = C(t, x), ()

dx = C(t, x)dt + σ(t, x)ξ(t)dt, ()

dx = C(t, x)dt ()

where w(t) is the Wiener process and ξ(t) is the white
noise process. We further remark that either () or ()

is considered as a stochastic perturbation of deterministic
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di�erential equation ().�e random terms σ(t, x)dw(t)
and σ(t, x)ξ(t) in the right-hand side of () and (),
respectively, can be, normally, interpreted as random per-

turbations caused by the presence of microscopic and/or

the imperfectness of the controlled conditions, either

known or unknown and/or either environmental or inter-

nal �uctuations in the parameters in C(t, x). It is this idea
that motivates us to build a more general and feasible

stochastic mathematical model for dynamic processes in

biological, chemical, engineering, medical, physical and

social sciences.

Sequential Colored Noise Modeling
Approach (Ladde and Ladde ; Wong
)
�e idea is to start with a deterministic mathematical

model () that is based on phenomenological or bio-

logical or chemical/medical/physical social laws and the

knowledge of systemor environmental parameter(s). From

Observation (), one can identify parameter(s) and the

source of random internal or environmental perturbations

of parameter(s) of the mathematical model (), and for-

mulate a stochasticmathematicalmodel in general formas:

dx = F(t, x, ξ(t)) dt, x (t) = x, ()

and, in particular,

dx = C(t, x)dx + σ(t, x)ξ(t)dt, x (t) = x, ()

where ξ is a stochastic process that belongs to R[[a, b],
R[Ω,R]]; rate functions F, C(t, x) and σ(t, x) are su�-
ciently smooth, and are de�ned on [a, b]×R into R, x ∈ R
and t ∈ [a, b]. If the sample paths ξ(t,ω) of ξ(t) are
smooth functions (sample continuous), then one can uti-

lize the usual deterministic calculus, and can look for the

solution process determined by () and ().We note that

such a solution process is a random function with all sam-

ple paths starting at x. In general this is not feasible, for

example, if ξ(t) in () or () is a Gaussian process.�e
sequential colored noise modeling (CNM) approach alle-

viates the limitations of a one-shotmodeling approach.�e

basic ideas are as follows:

CNM  Let us start with a sequence {ξn(t)}∞n= of
su�ciently smooth (sample path wise continuous) Gaus-

sian processes which converges in some sense to a Gaus-

sian white noise process ξ(t) in (). For each n, we
associate a stochastic di�erential equation with a smooth

random process as follows:

dxn = C (t, xn) + σ (t, xn) ξn(t)dt, xn (t) = x ()

where C(t, x) and σ(t, x) are described in ().

CNM  We assume that the IVP () has a unique

solution process. �e IVP () generates a sequence

{xn(t)}∞n= of solution processes corresponding to the
chosen Gaussian sequence {ξn(t)}∞n= in CNM.
CNM  Under reasonable conditions on rate func-

tions C(t, x), σ(t, x) in () and a suitable convergent
sequence of Gaussian processes {ξn(t)}∞n= in CNM, it is
shown that the sequence of solution processes {xn(t)}∞n=
determined by () converges in almost surely or in

quadratic mean or even in probability to a process x(t).
Moreover, x(t) is the solution process of ().
CNM  �e above described ideas CNM, CNM

and CNM make a precise mathematical interpretation

of (). However, we still need to show that () can be

modeled by an Itô–Doob form of stochastic di�erential

equation (). Moreover, one needs to highlight on the

concept of convergence of {ξn(t)}∞n= to the white noise
process in (). For this purpose, we de�ne

wn(t) − wn (t) = ∫
t

t

ξn(s)ds, ()

and rewrite the IVP () into its equivalent integral form:

xn(t) = xn (t) + ∫
t

t

C (s, xn(s)) ds

+ ∫
t

t

σ (s, xn(s)) ξn(s) ds

= xn (t) + ∫
t

t

C (s, xn(s)) ds

+ ∫
t

t

σ (s, xn(s)) dwn(s). ()

CNM  To conclude the convergence of {xn(t)}∞n=,
we need to show the convergence of both terms in the

right-hand side of (). �e procedure for showing this

convergence generates the following two mathematical

steps:

Step :�is step is to establish the following as in Ladde
and Ladde () and Wong ():

lim
n→∞

[yn(t)] = lim
n→∞

[∫
t

tn

ϕ (s,wn(s)) dwn(s)]

= ∫
t

t

ϕ(s,w(s)) dw(s)

+ 

∫

t

t

∂

∂z
ϕ(s,w(s)) ds, ()

where ϕ is a known smooth function of two variables.�is

is achieved by considering a deterministic partial inde�nite

integral of a given smooth deterministic function ϕ:

ψ(t, x) = ∫
x


ϕ(t, z)dz. ()
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Step :�is step deals with the procedure of �nding
a limit of the sequence of the solution process {xn(t)}∞n=
determined by () or its equivalent stochastic di�erential

equation () as in Ladde and Ladde;  andWong; :

dxn = C (t, xn)dt + σ (t, xn)dwn(t),
xn (t) = x, ()

where wn(t) is as de�ned in (). For this purpose,
we assume that σ(t, z) in () satis�es the conditions:
σ(t, z) ≠ , and it is continuously di�erentiable. We set
ϕ(t, z) = 

σ(t,z) in (). Under the smoothness conditions
on rate functionsC, σ and imitating the procedure outlined

in Step , one can conclude that {xn(t)}∞n= converges to
a process x(t) on [t, b].�e �nal conclusion is to show
that x(t) satis�es the following Itô–Doob type stochastic
di�erential equation:

dx = [C(t, x) + 


σ(t, x) ∂

∂x
σ(t, x)]

dt + σ(t, x)dw(t), x (t) = x. ()

�is is achieved by the procedure of solving the Itô–Doob

type stochastic di�erential equation in the form of ().

�e procedure is to reduce di�erential equation () into

the following reduced integrable di�erential equation as in

(Gihman and Skorohod (); Kloeden and Platen ();

Ladde and Ladde () and Wong ()):

dm = f (t)dt + g(t)dw(t), ()

where f (t) and g(t) are suitable stochastic processes deter-
mined by rate functions C and σ in ().�e extra term



σ(t, x) ∂

∂x
σ(t, x) in () is referred to as the correction

term.

In summary, it is further detailed as shown in Ladde

and Ladde () and Wong () that if we interpret

Gaussian white-noise driven di�erential equation () by

the limit of a sequence of stochastic di�erential equa-

tions () with a sequential colored noise process, then

the Gaussian white-noise driven di�erential equation ()

is equivalent to the Itˆo–Doob type stochastic di�eren-

tial equation (). Moreover, this material is -dimensional

state variable, however, it can be easily extended to multi-

dimensional state space.

Several dynamic processes are under both internal

and external random distributions. �e usage of this

information coupled with di�erent modes in probabilis-

tic analysis, namely, an approach through sample calcu-

lus, Lp-calculus, and Itô–Doob calculus as in (Ladde and

Lakshmikantham; , Ladde and Sambandham; ,

Nelson; , Øksendal;  and Soong; ) leads to dif-

ferent dynamic models.�e majority of the dynamic mod-

els are in the context of Itô–Doob calculus (Arnold; ,

Gihman; , Ito; , Kloeden and Platen; , Ladde;

, Ladde andLadde; , Ladde andLakshmikantham;

; Nelson; , Øksendal; , Soong; , Wong;

) and are described by systems of stochastic di�erential

equations

dx = f (t, x)dt + σ(t, x)w(t), x (t) = x, ()

where dx is the Itô–Doob type stochastic di�erential of x,

x ∈ Rn, w is m-dimensional normalized Wiener process
de�ned on a complete probability space (Ω,I,P), f (t, x) is
dri� rate vector, and σ(t, x) is a di�usion rate matrix of
size n × m. Various qualitative properties (Arnold; ,
Ladde; , Ladde and Lakshmikantham; , Ladde

and Sambandham; , Soong; , Wong; ) have

played a very signi�cant role in state estimation and sys-

tem designing processes since the beginning or middle of

the twentieth century.
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�e transport process X(t) = (X(t), . . . ,Xm(t)) in the
Euclidean space, Rm, m ≥ , is generated by the stochas-
tic motion of a particle that, at the time instant t = , starts
from some initial point (e.g., origin) ofRm andmoves with
some �nite speed c in random direction. �e motion is

controlled by some stochastic process x(t), t ≥ , causing,
at random time instants, the changes of direction cho-

sen randomly according to some distribution on the unit

sphere Sm ⊂ Rm. Such stochastic motions, also called ran-
dom �ights, represent the most important type of random

evolutions (for limit and asymptotic theorems for general

random evolutions see, for instance, Papanicolaou [],

Pinsky [], Korolyuk and Swishchuk [] and the bib-

liographies therein). While the �niteness of the velocity is

the basic feature of such motions, the models di�er with

respect to the way of choosing the new directions (the

scattering function), the type of the governing stochas-

tic process x(t), and the dimension of the space Rm. If
the new directions are taken on according to the uniform

probability law and the phase space Rm is isotropic and
homogeneous, X(t) is referred to as the isotropic trans-
port process.�emost studiedmodel is referred to the case

when the speed c is constant and x(t) is the homogeneous
Poisson process (see 7Poisson Processes).

�e simplest one-dimensional isotropic transport pro-

cess with constant �nite speed c driven by a homogeneous

Poisson process of rate λ >  was �rst studied by Goldstein
() and Kac ().�ey have shown that the transition

density f = f (x, t), x ∈ R, t > , of the process satis�es
the telegraph equation

∂f

∂t
+ λ ∂f

∂t
− c ∂

f

∂x
= , ()

and can be found by solving this equation with the initial

conditions f (x, ) = δ(x), ∂f

∂t
∣
t=

= , where δ(x) is the
one-dimensionalDirac delta-function.�e explicit formof
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the transition density of the process (i.e., the fundamental

solution to ()) is given by the formula

f (x, t) = e
−λt


[δ(ct + x) + δ(ct − x)]

+ e
−λt

c
[λI (

λ

c

√
ct − x)

+ λct√
ct − x

I (
λ

c

√
ct − x)]Θ(ct − ∣x∣),

x ∈ R, ∣x∣ ≤ ct, t > , ()

where I(x) and I(x) are the Bessel functions of zero
and �rst orders, respectively, with imaginary argument

and Θ(x) is the Heaviside function.�e �rst term in ()
represents the density of the singular component of the

distribution (which is concentrated in two terminal points

±ct of the interval [−ct, ct]), while the second one repre-
sents the density of the absolutely continuous part of the

distribution (which is concentrated in the open interval

(−ct, ct)).
Let X(t), t > , be the isotropic transport process in

the Euclidean plane, R, generated by the random motion
of a particle moving with constant speed c and choosing

new directions at random Poissonian (λ) instants accord-

ing to the uniform probability law on the unit circumfer-

ence.�en the transition density f = f (x, t), x ∈ R, t > ,
of X(t) has the form (Stadje ; Masoliver et al. ;
Kolesnik and Orsingher )

f (x, t) = e
−λt

πct
δ(ct − ∥x∥)

+ λ

πc

exp (−λt + λ
c

√
ct − ∥x∥))

√
ct − ∥x∥

×Θ (ct − ∥x∥) ,

x = (x, x) ∈ R, ∥x∥ =
√
x + x ≤ ct,

t > . ()

Similar to the one-dimensional case, the density () is

the fundamental solution (the Green’s function) to the

two-dimensional telegraph equation

∂f

∂t
+ λ ∂f

∂t
= c { ∂

f

∂x
+ ∂f

∂x
} . ()

�e transition density f = f (x, t), x ∈ R, t > , of the
isotropic transport process X(t) with unit speed c =  in
the three-dimensional Euclidean space,R, is given by the

formula (Stadje )

f (x, t) = e
−λt

πt
δ(t − ∥x∥) + λ e−λt

π∥x∥

⎡⎢⎢⎢⎢⎢⎣
λ

−∥x∥/t

∫
−

exp(λ(ξt

+∥x∥)arth ξ) (arth ξ) dξ

+ 
t
arth(∥x∥

t
)]Θ (t − ∥x∥) ,

x = (x, x, x) ∈ R,

∥x∥ =
√
x + x + x ≤ t, t > , ()

where arth(x) is the hyperbolic inverse tangent function.
In the four-dimensional Euclidean space,R, the tran-

sition density f = f (x, t), x ∈ R, t > , of the isotropic
transport process X(t) has the following form (Kolesnik
)

f (x, t) = e−λt

π(ct)
δ(ct − ∥x∥) + λt

π(ct)

× [ + λt ( − ∥x∥

ct
)] exp(− λ

ct
∥x∥)

×Θ (ct − ∥x∥) ,
x = (x, x, x, x) ∈ R,

∥x∥ =
√
x + x + x + x ≤ ct, t > . ()

We see that in the spacesR andR, the transition den-
sities of X(t) have very simple analytical forms () and ()
expressed in terms of elementary functions. In contrast,

the three-dimensional density () has the fairly compli-

cated form of an integral with variable limits which, appar-

ently, cannot be explicitly evaluated.�is fact shows that

the behavior of transport processes in the Euclidean spaces

Rm substantially depends on the dimension m. Moreover,
while the transition densities of the processes on the line

R and in the plane R are the fundamental solutions (i.e.,
the Green’s functions) to the telegraph equations () and

(), respectively, the similar results for other spaces have

not been obtained so far.

However, for the integral transforms of the distribu-

tions of X(t), one can give the most general formulas that
are valid in any dimensions. Let H(t) = E{ei(α ,X(t))}
be the characteristic function (Fourier transform) of the

isotropic transport processX(t) in the Euclidean spaceRm

of arbitrary dimensionm ≥ .Here, α = (α, . . . , αm) ∈ Rm

is the real m-dimensional vector of inversion parameters
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and (α,X(t)) means the inner product of the vectors α
and X(t). Introduce the function

φ(t) = (m−)/ Γ (m

)
J(m−)/(ct∥α∥)
(ct∥α∥)(m−)/

, m ≥ ,

()

where ∥α∥ =
√

α + ⋅ ⋅ ⋅ + αm, Γ(x) is the Euler gamma-
function and J(m−)/(x) is the Bessel function of order
(m − )/ with real argument. Note that () is the charac-
teristic function of the uniform distribution on the surface

of the sphere of radius ct in the spaceRm, m ≥ .�en the
characteristic function H(t), t ≥ , satis�es the following
convolution-typeVolterra integral equation of second kind

(Kolesnik ):

H(t) = e−λt
φ(t)+λ∫

t


e
−λ(t−τ)

φ(t−τ)H(τ) dτ, t ≥ .
()

In the class of continuous functions, the integral equa-

tion () has the unique solution given by the uniformly

converging series

H(t) = e−λt
∞
∑
n=

λ
n [φ(t)]∗(n+) , ()

where [φ(t)]∗(n+)means the (n+)-multiple convolution
of function () with itself.�e Laplace transform L of the
characteristic functionH(t) has the form (Kolesnik )

L [H(t)] (s)

=
F ( 


, m−

; m

;

(c∥α∥)
(s+λ)+(c∥α∥) )

√
(s + λ) + (c∥α∥) − λ F ( 


, m−

; m

;

(c∥α∥)
(s+λ)+(c∥α∥) )

,

m ≥ , ()

for Re s > , where F(ξ, η; ζ ; z) is the Gauss hypergeomet-
ric function.

One of the most remarkable features of the isotropic

transport processes in Rm, m ≥ , is their weak conver-
gence to the Brownian motion (see 7Brownian Motion
and Di�usions) as both the speed c and the intensity of

switchings λ tend to in�nity in such a way that the follow-

ing Kac condition holds:

c→∞, λ →∞, c

λ
→ ρ, ρ > . ()

Under this condition (), the transition density f =
f (x, t), x ∈ Rm, m ≥ , t > , of the isotropic trans-
port process X(t) converges to the transition density of

the homogeneous Brownian motion with zero dri� and

di�usion coe�cient σ  = ρ/m (Kolesnik ), i.e.,

lim
c, λ→∞
(c/λ)→ρ

f (x, t) = ( m

ρπt
)
m/

× exp(− m
ρt

∥x∥) , m ≥ ,

where ∥x∥ = x + ⋅ ⋅ ⋅ + xm.
Some of these results are also valid for the trans-

port processes with arbitrary scattering functions. Suppose

that both the initial and each new direction are taken on

according to some arbitrary distribution on the unit sphere

Sm ⊂ Rm, m ≥ . Let χ(x), x ∈ Sm denote the density of
this distribution, assumed to exist. Introduce the function

ψ(t) = ∫
Sm


e
ict(α ,x)

χ(x) µ(dx),

where µ(dx) is the Lebesgue measure on Sm . �en the
characteristic function of such a transport process satis-

�es a Volterra integral equation similar to (), in which

the function φ(t) is replaced everywhere by the function
ψ(t).�e unique continuous solution of such an equation
is similar to () with the same replacement.
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�e word “stochastic process” is derived from the Greek

noun “stokhos” whichmeans “aim.” Another related Greek

word “stokhastikos,” “the dart game,” provides an alterna-

tive image for randomness or chance. Although the con-

cept of Probability is o�en associated with dice games,

the dart game seems to be more adapted to the modern

approach to both Probability�eory and Stochastic Pro-

cesses. Indeed, the fundamental di�erence between a dice

game and darts is that while in the �rst, one cannot con-

trol the issue of the game, in the dart game, one tries to

attain an objective with di�erent degrees of success, thus,

the player increases his knowledge of the game at each trial.

As a result, time is crucial in the dart game, the longer you

play, the better you increase your skills.

Definition of a Stochastic Process
�e mathematical de�nition of a stochastic process, in the

Kolmogorov model of Probability�eory, is given as fol-

lows. Let (Ω,F ,P) be a probability space, that is, Ω is a
non empty set called sample space,F is a sigma �eld of sub-
sets of Ω, which represents the family of events, and P is a
probability measure de�ned on F . T is another non empty
set, and (E,E) a measurable space to represent all possible
states.�en, a stochastic process with states in E is a map

X : T × Ω → E such that for all t ∈ T, ω ↦ X(t,ω) is a
measurable function. In other words, a primary interpre-

tation of a stochastic processX is as a collection of random

variables, and as such, notations like (Xt)t∈T are used to
refer to X, that is Xt(ω) = X(t,ω), for all (t,ω) ∈ T × Ω.
If T is an ordered number set, (e.g., N, Z, R+

, R), it is
o�en referred as the set of time variables and taken as a

subset of integers or real numbers. For each ω ∈ Ω, the
map X(⋅,ω) : t ↦ X(t,ω) is called the trajectory of the
process.�us, each trajectory is an element of ET , the set

of all E-valued functions de�ned on T. Particularly, if T is

a countable set, the process is said to be indexed by discrete

times (the expression Time Series is also in use in this case).

Discrete time stochastic processes were the �rst studied in

Probability�eory under the name of chains (see7Markov
Chains).

Example 

. Consider a sequence (ξn)n≥ of real random variables.
According to the de�nition, this is a stochastic process.

New stochastic processes can be de�ned on this basis.

For instance, take (Sn)n≥, de�ned as, Sn = ξ+ . . .+ ξn,

for each n ≥ .
Suppose now that the random variables (ξn)n≥ are

independent and identically distributed on {−, }with
P(ξ = ±) = /. �en, (Sn)n≥ becomes a Simple
Symmetric RandomWalk.

. Consider a real function x : [,∞[→ R, this is also a
stochastic process. It su�ces to consider any probabil-

ity space (Ω,F ,P) and de�ne X(ω, t) = x(t), for all
ω ∈ Ω, t ≥ .�is is a trivial stochastic process.

. Consider an initial value problem given by

⎧⎪⎪⎨⎪⎪⎩

x′ = f (t, x);
x() = x,

()

where f is a continuous function on the two variables

(t, x). NewtonianMechanics can bewrittenwithin this
framework, which is usually referred as a mathemat-

ical model for a closed dynamical system in Physics.

�at is, the system has no interaction with the environ-

ment, and time is reversible. Now de�ne Ω as the set of

all continuous functions from [,∞[ into R. Endow
Ω with the topology of uniform convergence on com-

pact subsets of the positive real line and call F the
corresponding Borel σ-�eld.�us, any ω ∈ Ω is a func-
tion ω = (ω(t); t ≥ ). De�ne the stochastic process
X(ω, t) = ω(t), known as the canonical process.�e
initial value problem is then written as

X(ω, t) = x + ∫
t


f (s,X(ω, s))ds. ()

�is can be phrased as an example of a Stochastic

Di�erential Equation, without noise term.�e solution
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is a deterministic process which provides a descrip-

tion of the given closed dynamical system. Apparently,

there is no great novelty and one can wonder whether

the introduction of Ω is useful. However, this frame-

work includes processes describing open dynamical

systems too, embracing the interaction of the main

system with the environment, and that is an impor-

tant merit of the stochastic approach. Typically, the

interaction of a given system with the environment is

described through the action of so-called noises inter-

fering with the main dynamics. Let us complete our

example adding a noise term to the closed dynamics.

To consider the action of a noise, take a sequence

(ξn)n≥ of random variables de�ned on Ω, such that
ξn(ω) ∈ {−, }. Let be given a probability P on the
measurable space (Ω,F) such that P(ξn = ±) = /.
Call Sn = ξ+ . . .+ξn and denote [t] the greatest integer
≤ t.�e equation

X(ω, t) = x + ∫
t


f (s,X(ω, s))ds + S[t](ω), ()

is an example of a stochastic di�erential equation

driven by a 7random walk. �e stochastic process
obtained as a solution is no longer deterministic and

describes an open system dynamics. ▽

Distributions
�e space of trajectories ET is usually endowed with the

product σ-�eld E⊗T generated by all projections πt : E
T →

E, which associate to each function x ∈ ET its value x(t) ∈
E, t ∈ T. �us, a stochastic process is, equivalently, a
random variable X : Ω → ET , ω ↦ X(⋅,ω). �e Law
or Probability Distribution PX of a stochastic process X is

the image of the probability P on the measurable space
(ET ,E⊗T) of all trajectories. Given a probability measure
P on the space (ET ,E⊗T), one may construct a Canonical
Process X whose distribution PX coincides with P. Indeed,

it su�ces to consider Ω = ET , F = E⊗T , P = P, X(t,ω) =
ω(t), for each ω = (ω(s); s ∈ T) ∈ ET , t ∈ T.
Let a �nite set I = {t, . . . , tn} ⊂ T be given, and

denote πI the canonical projection de�ned on E
T
with val-

ues in EI , such that x ↦ (x(t), . . . , x(tn)). Call Pf (T)
the family of all �nite subsets of T.�e Finite Dimensional

Distributions or Marginal Probability Distributions of an

E-valued stochastic process is the family (PX,I)I∈Pf (T) of
distributions, where PX,I is de�ned as

PX,I(A) = PX (π
−
i (A)) = P ((X(t, ⋅), . . . ,X(tn, ⋅)) ∈ A) ,

()

for all A ∈ E⊗I .

Example 

. A Poisson Process (Nt)t≥ is de�ned as a stochastic
process with values in N such that
(a) N(ω) =  and t ↦ Nt(ω) is increasing, for all

ω ∈ N.
(b) For all  ≤ s ≤ t < ∞, Nt − Ns is independent of

(Nu; u ≤ s).
(c) For all  ≤ s ≤ t <∞, the distribution of Nt −Ns

is Poisson with parameter t − s, that is

P(Nt −Ns = k) =
(t − s)k

k!
e
−(t−s)

.

. A d-dimensional Brownian Motion (see also

7BrownianMotion andDi�usions) is a stochastic pro-
cess (Bt)t≥, taking values in Rd such that:
(a) If  ≤ s < t < ∞, then Bt − Bs is independent of

(Bu; u ≤ s).
(b) If  ≤ s < t <∞, then

P(Bt −Bs ∈ A) = (π(t− s))−d/ ∫
A
e
−∣x∣/(t−s)

dx,

where dx represents the Lebesguemeasure onRd

and ∣x∣ is the euclidian norm in that space.
�e Brownian Motion starts at x if P(B =

x) = . ▽

Construction of Canonical Processes
An important problem in the construction of a canonical

stochastic process given the family of its �nite dimensional

distributions was solved by Kolmogorov in the case of a

countable set T and extended to continuous time later

by several authors. At present, a particular case, general

enough for applications, is the following version of the

Daniell–Kolmogorov�eorem. Suppose that E is a Polish

space (complete separable metric space) and let E be its
Borel σ-�eld. LetT be a subset ofR+

. Suppose that for each

I ∈ Pf (T) a probability PI is given on the space (E,E⊗I).
�en, there exists a probability P on (ET ,E⊗T) such that
for all I ∈ Pf (T),

PI(A) = P ○ π
−
I (A) = P (π

−
I (A)) , ()

for all A ∈ E⊗I , if and only if the following Consistency
Condition is satis�ed:

PI = PJ ○ π
−
J ,I , ()

for all I, J ∈ Pf (T) such that I ⊂ J, where πJ ,I denotes the

canonical projection from the space EJ onto EI .
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Example  Consider J = {t, . . . , tn} and let Φt be
the normal distribution of mean zero and variance t ≥
, that is,

Φt(A) = (πt)−/ ∫
A
e
−x/t

dx.

Let PJ = Φt ⊗Φt−t ⊗ . . . Φtn−tn− , that is for all Borel sets
A, . . . ,An,

PJ(A×A×. . .×An) = Φt(A)Φt−t(A) . . . Φtn−tn−(An).

�is is a probability on Rn. Take I = {t, . . . , tn−}. Notice
that π−J ,I(A × . . . × An−) = A × . . . × An− ×R, thus

PI(A × A × . . . × An−) = Φt(A)Φt−t(A) . . .
Φtn−−tn−(An−)

= PJ(A × A × . . . ×R). ▽

Regularity of Trajectories
Another interpretation of a stochastic process is based on

regularity properties of trajectories. Indeed, if one knows

that each trajectory belongs almost surely to a function

space S ⊂ ET , endowed with a σ-�eld S , one may provide
another characterization of the stochastic process X as an

S-valued random variable, ω ↦ X(⋅,ω) de�ned on Ω.
Regarding the regularity, Kolmogorov �rst proved one

of the most useful criteria on continuity of trajectories.

Suppose that X = (X(t,ω); t ∈ [, ], ω ∈ Ω) is a real-
valued stochastic process and assume that there exist α, δ >
 and  < C <∞ such that

E (∣X(t + h) − X(t)∣α) < C ∣h∣+δ
, ()

for all t ∈ [, ] and all su�ciently small h > , then
X has continuous trajectories with probability . �ere-

fore, if X satis�es (), then there exists a random vari-

able X̃ : Ω → C[, ], where C[, ] is the metric
space of real continuous functions de�ned on [, ],
endowed with the metric of uniform distance, such that

P ({ω ∈ Ω : X(⋅,ω) = X̃(ω)}) = .

Wiener Measure, Brownian Motion
�e above result is crucial to construct theWienerMeasure

on the space C[, ] or, more generally, on C(R+), which
is the law of the Brownian Motion (see also 7Brownian
Motion and Di�usions). Indeed, by means of Kolmogorv’s

Consistency �eorem, one �rst constructs a probability

measure P on the product space (RR+
,B(R)⊗R+), where

B(R) is the Borel σ-�eld of R, considering the consistent
family of probability distributions

PI = Φt ⊗Φt−t ⊗ . . . ⊗Φtn−tn− , ()

where I = {t, . . . , tn}, and Φt denotes the normal dis-
tribution with mean  and variance t. Since the family

(PI)I∈Pf (R+) is consistent, there exists a unique P proba-

bility measure on (RR+
,B(R)⊗R+) such that PI = P ○ π−I .

One can construct the canonical process with law P which

should correspond to the Brownian Motion. Unfortu-

nately, the set of real-valued continuous functions de�ned

on R+
is not an element of B(R)⊗R+

. However, thanks

to () one proves that the exterior probability measure P∗

de�ned by P is concentrated on the subset C(R+) of RR+

thus, the restriction PW of P
∗
toC(R+) gives the good def-

inition ofWienerMeasure.�us, a canonical version of the

Brownian Motion is given by the canonical process on the

space C(R+).

Series Expansion in L

In the early years of the �eory of Stochastic Processes,

a number of authors, among them Karhunen and Loève,

explored other regularity properties of trajectories, deriv-

ing some useful representations by means of series expan-

sions in an L space. More precisely, let T ∈ B(R+) be
given and call h = L(T) theHilbert space of all real-valued
Lebesgue-square integrable functions de�ned on T. Sup-

pose that all trajectories X(⋅,ω) belong to h for all ω ∈ Ω,
and denote (en)n∈N an orthonormal basis of h.�erefore,
xn(ω) = ⟨X(⋅,ω), en⟩ satis�es ∑n∈N ∣xn(ω)∣ < ∞, for all
ω ∈ Ω. And the series

∑
n∈N
xn(ω)en, ()

converges in h, providing a representation of X(⋅,ω). So
that, by an abuse of language one can represent X(t,ω) by
∑n∈N xn(ω)en(t).

Example  Consider T = [, ] and the Haar orthonor-
mal basis on the space h = L([, ]) constructed by
induction as follows: e(t) =  for all t ∈ [, ];

em+ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩


m/
, if  ≤ t < −m− ,

−m/, if −m− ≤ t < −m,
, otherwise.

And �nally, de�ne em+j(t) = em+ (t − −m(j − )), for
j = , . . . , m, m = , , . . .. Given a sequence (bn)n≥ of
independent standard normal random variables (that is,

with distribution N (, )), the L(Ω × [, ])-convergent
series ∑n≥ bn(ω)fn(t) provides a representation of the
Brownian Motion (Bt)t∈[,], where fn(t) = ∫

t


en(s)ds,

(t ∈ [, ], n ∈ N). ▽
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The General Theory of Processes
�e General �eory of Processes emerged in the seven-

ties as a contribution of the Strasbourg School initiated

by Paul André Meyer. �is �eory uses the concept of a

History or Filtration, which consists of an increasing fam-

ily of σ-�elds F = (Ft)t∈T , where T is an ordered set,
Fs ⊂ Ft ⊂ F for all s ≤ t. �us, a stochastic process
X is adapted to F if for all t ∈ T, the variable X(t, ⋅) is
Ft/E–measurable. Strongermeasurability conditionsmix-
ing regularity conditions have been introduced motivated

by the construction of stochastic integrals and the modern

theory of Stochastic Di�erential Equations. Let T = R+

and assume E to be a Polish space endowed with the σ-

�eld of its Borel sets. Denote CE = C(R+
,E) (respectively

DE = D(R+
,E)) the space of all E-valued continuous func-

tions de�ned on R+
to E (resp. the space of all E-valued

functions which have le� hand limit at each point t > 
and are right-continuous at t > , endowed with the Sko-
rokhod’s topology). Consider now the family CE (resp.DE)
of all F-adapted stochastic processes X : R+ ×Ω → E such
that their trajectories belong to CE (resp. to DE).�e Pre-

dictable (resp. Optional) σ-�eld on the product setR+ ×Ω
is the one generated by CE (resp. DE), that is P = σ(CE),
(resp. O = σ(DE)).�en, a process X is predictable (resp.
optional) if (t,ω) ↦ X(t,ω) is measurable with respect to
P , (resp. O). A crucial notion in the development of this
theory is that of Stopping Time: a function τ : Ω → [,∞]
is a stopping time if for all t > , {ω ∈ Ω : τ(ω) ≤ t} is
an element of the σ-�eld Ft .�is de�nition is equivalent
to say that τ is a stopping time if and only if (t,ω) ↦
[,τ(ω)[(t) is an optional process, where the notation
A is used for the indicator or characteristic function of

a set A.

�e development of the General�eory of Processes

encountered at least two serious di�culties which could

not be solved in the framework of Measure �eory and

required a use of Capacity �eory. �ey are the Section

�eorem and the Projection�eorem.�e Section�eorem

asserts that if the probability space (Ω,F ,P) is complete
(that is F contains all P-null sets) and A ∈ O, then there
exists a stopping time τ such that its graph is included

in A. And the Projection �eorem states that given an

optional set A ⊂ R+ × Ω, the projection π(A) on Ω
belongs to the complete σ-�eldF . For instance, this result
allows to prove that given a Borel set B of the real line,

the random variable τB(ω) = inf {t ≥  : X(t,ω) ∈ B}
(inf / = ∞), de�nes a stopping time for an F-adapted
process X with trajectories in D almost surely, provided

the �ltration F is right-continuous, that is, for all t ≥
, Ft = Ft+ := ⋂s>t Fs, and in addition each σ-�eld

contains all P-null sets. Within this theory, the system

(Ω,F , (Ft)t∈R+ ,P) is usually called a Stochastic Basis
and a system (Ω,F , (Ft)t∈T ,E,E ,P, (Xt)t∈T) provides the
whole structure needed to de�ne an E-valued adapted

stochastic process.

Attending to measurability properties only, stochas-

tic processes may be classi�ed as optional or predictable,

as mentioned before, for which no probability is needed.

However, richer properties of processes strongly depend

on the probability considered in the stochastic basis. For

instance, the de�nitions of martingales, submartingales,

supermartingales, semimartingales depend on a speci�c

probability measure, through the concept of conditional

expectation. Let us mention that semimartingales form the

most general class of possible integrands to give a rigorous

meaning to Stochastic Integrals and Stochastic Di�erential

Equations.

Probability is moreover fundamental for introduc-

ing concepts as Markov Process (see 7Markov Processes),
Gaussian Process, Stationary Sequence and Stationary

Process.

Extensions of the Theory
Extensions to the theory have included changing either the

nature of T to consider Random Fields, where t ∈ T may
have the meaning of a space label (T is no more a subset of

the real line), or the state space E, to deal for instance with

measure-valued processes, or random distributions.

Example  Let (T,T , ν) be a σ-�nitemeasure space, and

(Ω,F ,P) a probability space. Call Tν the family of all sets

A ∈ T such that ν(A) < ∞. A Gaussian white noise based
on ν is a random set functionW de�ned on Tν and values

in R such that

(a) W(A) is centeredGaussian andE (W(A)) = ν(A),
for all A ∈ Tν ;

(b) IfA∩B = /, thenW(A) andW(B) are independent.

In particular, if T = R+
, T the corresponding Borel

σ-�eld, and ν = λ the product Lebesgue measure, de�ne

Bt ,t = W(], t]×], t]), for all (t, t) ∈ T.�e process
(Bt ,t)(t ,t)∈T is called the Brownian sheet. ▽

Going further, on the state space E consider the algebra

E of all bounded E-measurable complex-valued functions.
�en, to each E-valued stochastic process X one associates

a family of maps jt : E → L∞C (Ω,F ,P), where jt( f )(ω) =
f (X(t,ω)), for all t ≥ , ω ∈ Ω.�e family ( jt)t∈R+ , known
as the Algebraic Flow can be viewed as a family of complex

randommeasures (each jt is a Dirac measure supported by

X(t,ω)) or, better, as a ∗-homomorphism between the two
∗
-algebras E, L∞C (Ω,F ,P), the ∗ operation being here the
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complex conjugation.�e stochastic process is completely

determined by the algebraic �ow ( jt)t∈R+ .
Example  Consider a Brownian motion B de�ned on a

stochastic basis (Ω,F , (Ft)t∈R+ ,P), with states in R, and
callB the algebra of bounded complex valued Borel func-

tion de�ned on the real line.B is a
∗
-algebra of functions,

that is, there exists an involution
∗
(the conjugation), such

that f ↦ f ∗ is antilinear and ( fg)∗ = g∗f ∗, for all f , g ∈ B.
�e algebraic �ow associated toB is given by jt( f ) = f (Bt),
for all t ≥ , and any f ∈ B, that is jt : B→ L∞C (Ω,F ,P). If
P(B = x) = , then j( f ) = f (x) almost surely. Moreover,
notice that Itô’s formula implies that for all bounded f of

class C, it holds

jt( f ) = f (x)+∫
t


js (
d

dx
f)dBs +∫

t


js (




d

dx
f)ds. ▽

Algebraic �ows provide a suitable framework to deal

with more generalized evolutions, like those arising in the

description of Open Quantum System Dynamics, where

the algebras are non commutative. �us, given two uni-

tal
∗
-algebras (possibly non commutative) A,B, a notion

of Algebraic Stochastic Process is given by a �ow ( jt)t∈R+ ,
where jt : B→ A is a ∗-homomorphisms, for all t ≥ .�at
is, each jt is a linear map, which satis�es ( jt(b))∗ = jt(b∗),
jt(a∗b) = jt(a)∗jt(b), for all a, b ∈ B, and jt(B) = A,
where A (resp. B) is the unit of A (resp.B).

The Dawning of Stochastic Analysis as a
Pillar of Modern Mathematics
�ese days, Stochastic Processes provide the better

description of complex evolutionary phenomena inNature.

Coming from our understanding of the macro world,

through our everyday life, exploring matter at its small-

est component, stochastic modeling has become funda-

mental. In other words, stochastic processes have become

in�uential in all sciences, namely, in biology (popula-

tion dynamics, ecology, neurosciences), computer science,

engineering (especially electric and operation research),

economics (via �nance), physics, among others.�e new

branch of Mathematics, known as Stochastic Analysis, is

founded on stochastic processes. Stochastics is invading

all branches of Mathematics: Combinatorics, Graph�e-

ory, Partial and Ordinary Di�erential Equations, Group

�eory, Dynamical Systems, Geometry, Functional Anal-

ysis, among many other speci�c subjects.�e dawning of

Stochastic Analysis era is a fundamental step in the evo-

lution of human understanding of Chance as a natural

interconnection and interaction of matter in Nature.�is

has been a long historical process which started centuries

ago with the dart game.
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�e applications of 7stochastic processes and martingale
methods (see7Martingales) in �nance and insurance have
attracted much attention in recent years.

Martingales in Finance
Let us consider a continuous time arbitrage free �nan-

cial market with one risk-free investment (bond) and one

risky asset (stock). All processes are assumed to be de�ned

on the complete probability space (Ω,FT , (Ft),P) and
adapted to the �ltration (Ft), t ≤ T.�e bond yields a
constant rate of return r ≥  over each time period.�e
risk-free bond represents an accumulation factor and its

price process B equals

dBt = rBtdt, t ∈ [,T], B = , ()

or Bt = ert .�e evolution of the stock price St is described
by the linear stochastic di�erential equation

dSt = St(µdt + σdWt), t ∈ [,T], S = S, ()

where the expected rate of return µ and the volatility coef-

�cient σ are constants.�e stochastic processWt , t ≥  is
a one-dimensional Brownianmotion.�e solution of Eq. 

is given by

St = S exp(σWt + (µ − σ 


) t), t ∈ [,T]. ()

�e process () is considered by Samuelson () and is

called a geometric Brownian motion.�e market with two

securities is called a standard di�usion (B, S)market and is
suggested by F. Black andM. Scholes ().�e references

are given in Shiryaev () and Rolski et al. ().

A European call (put) option, written on risky security

gives its holder the right, but not obligation to buy (sell) a

givennumber of shares of a stock for a �xed price at a future

date T.�e exercise date T is called maturity date and the

price K is called a strike price.�e problem of option pric-

ing is to determine the value to assign to the option at a

time t ∈ [,T].�e writer of the option has to calculate
the fair price as the smallest initial investment that would
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allow him to replicate the value of the option throughout

the time T.�e replication portfolio can be used to hedge

the risk inherent in writing the option.

De�nition  (Martingale measure) A probability mea-
sure P de�ned on (Ω,FT) is called a martingale measure
if it is equivalent to P (P ∼ P) and the discounted process
St = StB−t is a P− local martingale.

For the Black–Scholes model, the martingale mea-

sure is unique and is de�ned by the following theorem of

Girsanov type.

�eorem  �e unique martingale measure P is given by

the Radon–Nikodym derivative

dP

dP
= exp(− µ − r

σ
WT −




( µ − r

σ
)


T), P − a.s.

Under themartingale measure, P, the discounted stock

price St satis�es the equation

dSt = σStdW t , t ≥ ,

where

W t =Wt +
µ − r

σ
t, t ≤ T

is a standard Brownian motion (see 7Brownian Motion
and Di�usions) with respect to the mea-

sure P.

�e new probability measure P is called also a risk-

neutral measure.�e ratio
µ−r

σ
is called a market price of

risk.

Consider a European call option written on a stock

St , with exercise date T and strike price K. If we assume

that the price of a stock is described by () and the payo�

function is fT = max(ST − K, ), then the fair price Ct of
the European call option at time t is given by the famous

Black–Scholes formula Black F, Scholes M ().

�eorem  (Black–Scholes formula) �e value Ct at
time t of the European call option is given by

Ct = StΦ(d) − Ke−r(T−t)Φ(d), t ≤ T

where

d =
log ( St

K
) + (T − t) (r + σ 


)

σ
√
T − t

,

d =
log ( St

K
) + (T − t) (r − σ 


)

σ
√
T − t

= d − σ
√
T − t

and Φ is the standard Gaussian cumulative distribution

function.

Insurance Risk Model
�e standard model of an insurance company, called risk

process {X(t), t ≥ } is given by

X(t) = ct −
N(t)
∑
k=
Zk, (



∑


= ). ()

Here c is a positive real constant representing the risk pre-

mium rate.�e sequence {Zk}∞k= of mutually independent
and identically distributed random variables, with com-

mon distribution function F, F() = , and mean value
µ, is independent of the counting process N(t), t ≥ .
�e process N(t) is interpreted as the number of claims
on the company during the interval [, t]. In the classi-
cal risk model, also called the Cramér–Lundberg model,

the process N(t) is a homogeneous Poisson process (see
7Poisson Processes), see for instance Grandell ().�e
ruin probability of a company with initial capital u ≥  is
given by

Ψ(u) = P (u + X(t) <  for some t > ).

�e martingale techniques have been introduced by

H. Gerber in  (see Gerber ). Since then, the mar-

tingale approach is a basic tool in risk theory (see the

References in Schmidli (), Rolski et al. (), and

Embrechts et al. ()).

Under the net pro�t condition θ = c
λµ

−  > , the
following fundamental result holds (Embrechts et al. ).

�eorem  (Cramér–Lundberg theorem) Assume that
there exists R >  such that

∫
∞


e
Rx
dFI(x) =  + θ, ()

where FI(x) = ∫
x


( − F(y))dy is the integrated tail distri-

bution of F.

a) For all u ≥ ,

Ψ(u) ≤ e−Ru; ()

b) limu→∞ e
Ru
Ψ(u)=[ R

θµ ∫
∞

xeRx(−F(x))dx]

−
<∞,

provided that

∫
∞


xe
Rx( − F(x))dx <∞.

c)

 − Ψ(u) = θ

 + θ

∞
∑
n=

( 

 + θ
)
n

F
∗n
I (u). ()
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�e condition () is known as the Cramér condition.

Inequality () is called theLundberg inequality and the con-

stant R is the adjustment coe�cient or Lundberg exponent

(see Grandell ). Formula () is known as Pollaczek–

Khinchin formula.

Example  (Exponentially Distributed Claims) Suppose
that the claim sizes are exponentially distributed with

parameter µ, that is F(z) =  − e−
z
µ , z ≥ , µ > .

In this case, FI(z) is also an exponential distribution
function and the solution of equation () is

R = 
µ

θ

 + θ
.

�e Pollaczek–Khinchin formula () gives the ruin proba-

bility

Ψ(u) = 

 + θ
e
− 

µ
θ
+θ
u
, u ≥ .
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Definitions
Let {Ω,F ,P} be a complete probability space where Ω is
the sample space, F is the σ-�eld associated with the sam-

ple space containing all the null sets of Ω, and P is the

probability measure de�ned on the �eld F . Let {R,R)
be a measurable range space called the state space, where

R ≡ (−∞,∞) is the real line and R is the σ-�eld associ-

ated with the real lineR. A random variable X is a function
that assigns a rule of correspondence between each ω ∈ Ω
and each x ∈ R.�is correspondence will induce a proba-
bility measure PX de�ned on the �eldR.�us, Xmaps the
probability space {Ω,F ,P} to the probability range space
{R,R,PX}

X : {Ω,F ,P}Ð→ {R,R,PX). ()

�e distribution function FX(x) of X is given by

P{ω : X(ω) ≤ x} = P{X ≤ x} = FX(x), x ∈ R ()

and the density function fX(x), whichmay include impulse
functions of x, is the derivative of FX(x).

�e de�nition (see, e.g., Gikhman and Skorokhod

, p.  and ) of a stochastic (or random) process

requires a parameter set Θ and an increasing sequence of

sub σ-�elds {Fθ ⊂ F , θ ∈ Θ} called the �ltration σ-�eld

such that Fζ ⊂ Fθ for each {θ, ζ ∈ Θ, ζ < θ}. �e �l-
tration σ-�eld is a consequence of the distinction between

the uncertainty of the future and the knowledge of the past.

�e family {X(θ),Fθ} of random variables de�ned on the
probability space {Ω,F ,P} will be called a random func-
tion if the parameter set Θ is arbitrary and a stochastic

process if the parameter set Θ is the time setT ≡ (−∞,∞),
and θ is interpreted as time t.�us, X(t) ∈ Ft is a stochas-
tic process thatmaps the probability space {Ω,F ,P} to the
range space {R,R,PX} for every point ω ∈ Ω and t ∈ T.
X(t) is said to be adapted to the �ltration �eld {Ft , t ∈ T}
if X(t) isFt-measurable in the sense the inverse image set
{X(t)−[B]} ∈ Ft for every subsetB of the real lineR ∈R.

�e important point to emphasize is that a stochastic

process is not a single time function but an ensemble of

time functions. If the time parameter t belongs to a set

of integers Z ≡ {. . . ,−,−, , , , . . .} then X(n) or Xn
denotes a discrete-time stochastic process.
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A non-negative real line will be represented by R+ ≡
[,∞) and non-negative time set by T+ ≡ [,∞). A set
of non-negative integers will be denoted by N ≡ {, , . . .}
and a set of positive integers by N+ ≡ {, , . . . ,N}.
Since X(t) is a random variable for every t ∈ T, the

distribution function FX(x : t) will be given by

P{X(ω, t) ≤ x} = P{X(t) ≤ x} ≡ FX(x : t), x ∈ R, t ∈ T
()

and the density function fX(x : t), which againmay include
impulse functions of x, is the partial derivative of FX(x; t)
with respect to x.

Autocorrelation and autocovariance functions for a

stochastic process X(t) for {t, t ∈ T} are de�ned by:

RX(t, t) = [X(t)X(t)]

= ∫
∞

−∞
∫

∞

−∞
xxf (x, x : t, t)dxdx, ()

CX(t, t) = E{[X(t) − µx(t)][X(t) − µx(t)]}

= ∫
∞

−∞
∫

∞

−∞
[x − µx(t)][x − µx(t)]

f (x, x : t, t)dxdx, ()

where µx(t) and µx(t) are the mean values of X(t) at
times t and t respectively.

Stochastic processes can be classi�ed in di�erent cate-

gories but many of them straddle categories.

Stationary and Ergodic Process
A stochastic process X(t) is nth order stationary if the nth
order distribution function satis�es

FX(x, . . . , xn : t, . . . , tn) = FX(x, . . . , xn :
t + τ, . . . , tn + τ)for any τ ∈ T. ()

It is strictly stationary if Eq. () is true for all n ∈ Z. How-
ever, the most useful concepts of stationarity are the �rst

order stationarity de�ned by

FX(x : t) = FX(x : t + τ) = FX(x), ()

and the second order stationarity called wide sense

stationary de�ned by

FX(x, x : t, t) = FX(x, xn : t+τ, t+τ) = FX(x, x : τ).
()

Wide sense stationarity can be determined from the fol-

lowing two criteria:

. �e expected value E[X(t)] = µX = a constant.
. �e autocorrelation function RX(t, t) = RX(t − t) =
RX(τ) is a function of the time di�erence τ.

A stationary process X(t) is mean ergodic if the ensemble
average is equal to the time average of the sample function

X(t).

lim
T→∞



T
∫

T

−T
X(t)dt = ∫

∞

−∞
xfX(t)dt = µX , ()

or, equivalently the covariance CX(τ) satis�es the condi-
tion ∫

∞

−∞

∣CX(τ)∣dτ <∞.
A stationary process is correlation ergodic if

lim
T→∞



T
∫

T

−T
X(t)X(t + τ)dt

= ∫
∞

−∞
∫

∞

−∞
xxfX(x, x : τ)dxdx = RX(τ), ()

which is equivalent to the condition

∫
∞

−∞

∣E{[X(t)X(t + τ)]} − E{[X(t)]}∣dτ <∞.

State and Time Discretized Process
�e stochastic process X(t) can be classi�ed into four
broad categories depending upon whether the state space

is discretized with R ≡ Z or the time is discretized with
T ≡ Z or both. Asmentioned earlier, discrete-time random
processes will be denoted by Xn or X(n) where n ∈ Z.

. Discrete State Discrete Time Process (DSDT)

At any given time i >  a particle takes a positive
step from X =  with probability p and a nega-

tive step with probability q with p + q = . �e

random variable Zi representing each step is indepen-

dent and identically distributed. �e position Xn of

the particle at time n is a stochastic process Xn =
Z + Z + ⋯ + Zn. It represents a DSDT process with
discrete time set N+ = {, . . . ,n, . . .} and discrete state
spaceR = Z = {. . . ,−, , , . . .} representing the posi-
tion of the particle. �is process known as a simple

7random walk (see, e.g., Cox and Miller , p. )
is nonstationary. If p = q then the process is called a
symmetric simple random walk.

. Discrete State Continuous Time Process (DSCT)

A customer arrives at the service counter of a super-

market at a random time t ≥  at an average rate of λ

per unit time interval. If N(t) is the stochastic process
representing the number of customers arriving in the

time interval [, t] then N(t) is a DSCT process with
time set T+ = { ≤ t < ∞} and discrete state space
N = {, , . . .} representing the number of customers.
�is process known as Poisson process (see 7Poisson
Processes) is nonstationary.

. Continuous State Discrete Time Process (CSDT)

In the DSDT process of (), each step of the particle

at any time i >  is a continuous random variable Z
instead of a discrete one, governed by a distribution

function FZ(z) with mean µZ . If Xn is the position of
the particle at time i = n then Xn represents a CSDT
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process with discrete time set N+ = {, . . . ,n, . . .},
and continuous state space R+ = { ≤ x < ∞} rep-
resenting the position of the particle. �is process is

nonstationary.

. Continuous State Continuous Time Process (CSCT)

In the DSDT process of () the particle undergoes

a positive or negative step of ∆x in a time interval

∆t. If certain limiting conditions on ∆x and ∆t are

satis�ed then as ∆x and ∆t tend to , a CSCT pro-

cess results, which is called Wiener process (see, e.g.,

Cox and Miller , p. ) or Brownian motion (see

7BrownianMotion andDi�usions). Extrusion of plas-
tic shopping bags where the thicknesses of the bags

vary constantly with respect to time with the statistics

being constant over long periods of time is an example

of a CSCT process.�ese processes are nonstationary.

Gaussian Process
A stochastic process X(t) de�ned on a complete probabil-
ity space is aGaussian stochastic process if for any collection

of times {t, t, . . . , tn} ∈ T, the random variables X =
X(t),X = X(t), . . . ,Xn = X(tn) are jointly Gaussian
distributed for all n ∈ Z, with joint probability function

fXXX . . .Xn(x)=


()n/∣CX ∣
exp(−

(x−µX)
TC−X (x−µX)


)

()

where µX is the mean vector and CX is the covari-
ance matrix of the random variables {X,X, . . . ,Xn}.�e
Wiener process is also an example of a Gaussian process.

Markov Process
Let the σ-�eld Ft generated by {X(s), s ≤ t, t ∈ T} rep-
resent the past history up to the present and the σ-�eld

F ct generated by {X(s), s > t, t ∈ T} represent the future
evolution. Let a random variable Y be Ft-measurable and
another random variable Z be F ct -measurable. �en the
process {X(t), t ∈ T} is called a Markov process (see
Markov Processes) if the following hold:

. Given the present informationX(t), the pastY and the
future Z are conditionally independent.

E[YZ∣X(t)] = E[Y ∣X(t)]E[Z∣X(t)]. ()

. �e future Z, conditioned on the past history up to the

present Ft , is equal to the future given the present.

E[Z∣Ft] = E[Z∣X(t)]. ()

. �e future Z, conditioned on the past value X(s) is the
future conditioned on the present valueX(t) and again

conditioned on the past value X(s).

E[Z∣X(s)] = E{E[Z∣X(t)]∣X(s)} for s < t. ()

�is is known as the Chapman-Kolmogorov equation

(see, e.g., Ross , p. ).

In terms of probability, with τ >  and states xh, xi, xj,
Eq. () is equivalent to:

P{X(t + τ) = xj∣X(t) = xi,X(u)
= xh,  ≤ u < t} = P{X(t + τ)
= xj∣X(t) = xi}. ()

Or, for t < t < . . . < tn− < tn, and {xk, k = , . . . ,n, . . .}
belonging to some discrete-state space

P{X(tn+) = xn+∣X(tn) = xn,X(tn−)
= xn−, . . . ,X(t) = x}
= P{X(tn+) = xn+∣X(tn) = xn}. ()

AMarkov process has an important property that the den-

sity fτi(t) of the random time τi spent in any given state xi
is an exponential and hence it is calledmemoryless.

Markov Chains
Discrete state Markov processes are called chains, and if

time is continuous they are called continuous 7Markov
chains, and if time is discrete they are called discrete

Markov Chains. �e Poisson process is an example of a

continuous Markov chain.

A stochastic process {X(t), t ∈ T+} is a continuous-
time Markov chain if for each of the discrete states h, i, j

and any time τ > 

P{X(t + τ) = j∣X(t) = i,X(u) = h,  ≤ u < t}
= P{X(t + τ) = j∣X(t) = i}. (a)

�e quantity P{X(t + τ) = j∣X(t) = i} is the time depen-
dent transition probability de�ned by pij(t, τ), which is
generally a function of times t and τ. If the transition from

the state i to the state j is dependent only on the time dif-

ference τ = (t + τ) − t then the transition probability is
stationary and the Markov chain is called homogeneous. In

this case transition probability becomes pij(τ).
�e probability density function fτi(t) of the random

time τi spent in any given state i for a continuous Markov

chain is exponential and hence it is calledmemoryless.

A stochastic process {X(n),n = , , . . .} is a discrete-
time Markov chain if for each of the discrete states i, j and

{ik, k = , , . . . ,n − } and any timem > ,

P{X(n +m) = j∣X(n) = i,X(n − ) = in−, . . . ,X() = i}
= P{X(n +m) = j∣X(n) = i}. (b)
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�e quantity P{X(n+m) = j∣X(n) = i} is called them-step
transition probability de�ned by p

(m)
ij (n), which is gener-

ally a function of time n. If the transition from the state

i to the state j is dependent only on the time di�erence

m = (n +m) − n then the transition probability is station-
ary and the Markov chain is homogeneous. In this case the

m-step transition probability becomes p
(m)
ij .

�e one-step probability from state i to state j of a

homogeneous discrete Markov chain is given by:

P{X(n + ) = j∣X(n) = i} = pij. ()

�e probability mass function fτi of the random time τi
spent in any given state i for a discrete Markov chain is

geometric and hence it is calledmemoryless.

Semi-Markov Process
In a Markov process the distributions of state transition

times are exponential for a continuous process, and geo-

metric for a discrete process and hence they are considered

memoryless. While the de�nition of a semi-Markov pro-

cess X(t) de�ned on a complete probability space is the
same as that of a Markov process (Eqs.  and ), the dis-

tributions of transition times τi ∈ T between states need
not be memoryless but can be arbitrary. For a continuous-

time semi-Markov process the state transitions can occur

at any instant of time t ∈ T with an arbitrary density
fτi(t) for the time τi spent in state xi and for a discrete-

time semi-Markov process the state transitions can occur

at time instants Z = {. . . ,−, , , . . .} with an arbitrary
probability mass fτi for the time τi spent in state i. If the

amount of time spent in each state is  then this semi-

Markov process is a Markov chain. Markov processes are

a subclass of semi-Markov processes.

Independent Increment Process
A stochastic process {X(t), t ∈ T} is de�ned on a com-
plete probability space with a sequence of time variables

{t < t < . . . < tn} ∈ T. If the increments X(t), [X(t) −
X(t)], . . . , [X(tn)−X(tn−)] of the process {X(t), t ∈ T}
are a sequence of independent random variables then the

process is called an independent increment process (see,

e.g., Krishnan , p. ). If the distribution of the incre-

ments Xt − Xs, t > s depends only on the time di�erence
t − s = τ, then the process is a stationary independent

increment process.

If the time set is discrete given by N+ = {, , . . .}
then the independent increment process is a sequence of

independent random variables given by Z = X,{Zi =
Xi−Xi−, i ∈ N+}. Independent increment process is a spe-
cial case of a Markov process. It is not a stationary process

because of the following (see, e.g., Krishnan , p. ):

E[X(t)] = µ + µt, where µ = E[X(t)] and
µ = E[X(t)] − µ;

Var[X(t)] = σ

 + σ


 t, where σ


 = E[X(t) − µ] and

σ

 = E[X(t) − µ] − σ


 . ()

Poisson and Wiener processes are examples of stationary

independent increment processes.

Uncorrelated and Orthogonal Increment
Process
A stochastic process {X(t), t ∈ T} with s < t, s < t and
t ≤ t

. Has uncorrelated increments (see, e.g., Krishnan ,

p. ) if

E[(Xt−Xs)(Xt−Xs)] = E[(Xt−Xs)]E[(Xt−Xs)].
()

. Has orthogonal increments (see, e.g., Krishnan , p.

) if

E[(Xt − Xs)(Xt − Xs)] = . ()

Clearly, independent increments imply uncorrelated incre-

ments but the converse is not true.

General Random Walk Process
�e simple random walk discussed earlier can be gener-

alized. Starting from X =  a particle takes independent
identically distributed random steps Z,Z, . . . , Zn, whose

values are drawn from an arbitrary distribution, which do

not change with the state of the process.�is distribution

may be continuous with density function fZ(z) or discrete
with probability of transition from state i to state j being pij.

In the latter case pij will be dependent on the di�erence j−i,
or, pij = pj−i.�e position Xn = Z +Z +⋯ + Zn, n ∈ N+

of the particle is a stochastic process where n is the num-

ber of state transitions, which is always forward from state

xi to xi+. Depending upon whether the instants of these
transitions are taken from the set T+ orN+

the process Xn
is either a continuous-time or a discrete-time general ran-

dom walk (see, e.g., Cox and Miller , p. ). In either

case the distribution of the time intervals between these

transitions is arbitrary and hence it is a special case of a

semi-Markov process.

Birth and Death Process
Let{X(t), t ≥ }be a continuousMarkov chain. State tran-
sitions can occur only from the state xi = i to xi+ = i + ,
or xi− = i − , or stays at xi = i. X(t) is called a birth and
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death process (see, e.g., Kleinrock , p. ) if in a small

interval ∆t

P{X(t + ∆t) − X(t) = j∣X(t) = i}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

λi∆t + o(∆t), if j = ,

µi∆t + o(∆t), if j = −,

o(∆t), if ∣j∣ > .

()

and P{X(t + ∆t) − X(t) = ∣X(t) = i}
=  − (λi + µi)∆t + o(∆t), ()

where o(∆t)/∆t →  as ∆t → . λi is the rate at which

births occur and µi is the rate at which deaths occur when

the population size is i.�e probability of the population

size being i at any time t >  is given by P{X(t) = i} =
Pi(t). �is is a Markov process with independent incre-
ments. If λi = i λ and µi = i µ then this process is called a
linear birth and death process.

�e pure birth process is a sub-class of birth and death

process with µi ≡  for all i. State transitions can occur only
from the state xi = i to xi+ = i +  with rate λi or stays in

the same state xi = i.
�ePoisson process is a sub-class of pure birth processes

with λi ≡ λ a constant for all i. Here the probability of i

events in time t is given by Pi(t, λ) = [(λt)i/i!]e−λt
, t > .

�is process has stationary independent increments.

Renewal Process
In the general random walk process Xn discussed in the

previous section the interest was in the probability of the

state of the particle a�er n transitions. In 7renewal pro-
cesses the concern is only in the number of transitions that

occur in a time interval [, t] and not on the state. Start-
ing from t =  the transitions occur at sequence of times
 < t < t < . . . < tn ,n >  with inter-arrival times de�ned
by random variables Y = t ,Y = (t − t), . . . ,Yn =
(tn − tn−).�e random variables Yi, i ∈ N+

are indepen-

dent and identically distributed with an arbitrary density

function f (y) with E[Yi] = µ for all i.
�e stochastic process de�ned byXn = Y+Y+⋯+Yn

is called a renewal process (see, e.g., Cox andMiller , p.

), where a renewal occurs at the epochs at t < t < ⋯ <
tn . In this processXn represents the time of the nth renewal

whereas in the random walk Xn represents the state of the

process at time n.�is process is a subclass of semi-Markov

processes and also a subclass of random walk processes. If

the density function f (y) is either exponential or geomet-
ric then this process isMarkov.�e relationship among the

various discrete-state random processes similar to the one

in Kleinrock (, p. ) is shown in Fig. .

Martingale Process
Amartingale process (see, e.g., Doob , p.  and p. ;

7Martingales) is a stochastic process where the best esti-
mate of the future value conditioned on the past history

Random walk
Pij = Pj– i

fτi any

Birth
mi = 0

Semi-Markov : Pij any : fτi any

Markov : Pij any : fτi memoryless

Pij  : transition probability from states i to j
fτi : pdf of transition time in state i 

Independent Increment : Pij any : fτi memoryless

Poisson
li = l constant

Renewal
Pj– i = 1, j – i = 1

fτi any

Birth and Death
Pij  = 0,⏐j – i ⏐> 1
fτi memoryless
li : birth rate
mi : death rate

Stochastic Processes: Classification. Fig.  Relationships among some discrete state stochastic processes
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including the present is the present value. Since there is

no trend to the process it is unpredictable. Many problems

in engineering and �nance can be cast in the martingale

framework. Pricing stock options (see, e.g., Ross , p.

) and bonds has been cast in themartingale framework.

Let {Ω,F ,P} be a complete probability space and let
{Fn,n ∈ N} be an increasing family of sub σ-�elds of

F .�e real valued sequence of random variables {Xn,n ∈
N} adapted to the family {Fn,n ∈ N} is a discrete
Fn-martingale if for all n:

. E∣Xn∣ <∞
. E{Xn∣Fm} = Xm form ≤ n

If condition () is modi�ed as

. E{Xn∣Fm} ≥ Xm form ≤ n submartingale
. E{Xn∣Fm} ≤ Xm form ≤ n supermartingale

Analogously, let {Ft , t ∈ T+} be an increasing family of
sub σ-�elds of F of a complete probability space.�e real
valued stochastic process {X(t), t ∈ T+} adapted to the
family {Ft , t ∈ T+} is a continuousFt-martingale if for all
t ∈ T+:

. E∣X(t)∣ <∞,
. E{X(t)∣Fs} = Xs for s ≤ t.

If condition () is modi�ed as

. E{X(t)∣Fs} ≥ Xs for s ≤ t submartingale.
. E{X(t)∣Fs} ≤ Xs for s ≤ t supermartingale.

Note that any martingale is both a submartingale and a

supermartingale.

In the simple random walk process given in DSDT, if

n(p− q) is subtracted from Xn, then Yn = [Xn − n(p− q)]
is an example of a discrete martingale with respect to the

sequence {Zk, k = , . . . ,n − } even though Xn is not.�e
Wiener process W(t) is an example of a continuous Ft-
martingale. In the Poisson process N(t), if the mean λt is

subtracted then Y(t) = [N(t) − λt] is another example
of a continuous Ft-martingale even though N(t) is not.
However, both Xn and N(t) are Markov processes leading
to the conclusion that a Markov process is not necessarily

a martingale. It can also be shown that a martingale is not

necessarily a Markov process.

�e martingale property captures the notion of a fair

game. A fair coin is tossed and a player wins a dollar if the

toss is heads and loses a dollar if the toss is tails. At the end

of the mth toss the player has Xm dollars. �e estimated

amount of money a�er the m + st toss is still Xm dollars
since the expected value of them + st toss is zero.

Periodic Process
Let {X(t), t ∈ T} be a stochastic process de�ned on
a complete probability space taking values in the range

space {R,R}. X(t) is periodic in the wide sense (see, e.g.,
Krishnan , p. ) with period Tc(Tc > ) if the mean
µX(t) and the autocorrelation function RX(t, s) satisfy

µX(t) = µX(t + kTc) for all t and integer k ()

RX(t, s) = RX(t + kTc, s)
= RX(t, s + kTc) for all t, s and integer k. ()

Note that RX(t, s) is periodic in both arguments t and s.
However, for a stationary periodic process X(t) with

τ = t − s, Eq. () simpli�es to

RX(τ) = RX(τ + kTc) for all τ and integer k. ()

Since RX(τ) is uniformly continuous, a zero mean sta-
tionary periodic stochastic processX(t)with fundamental
frequency ωc = π/Tc can be represented in the mean
square sense by a Fourier series

X(t) =
∞
∑
n=−∞
Xn exp(jnωt),X = 

where Xn =


Tc
∫

Tc


X(t) exp(−jnωt)dt. ()

Cyclostationary process
Allied to the periodic process is the cyclostationary process

(see, e.g., Krishnan , p. ). A strict sense cyclosta-

tionary process X(t) on a complete probability space with
period Tc(Tc > ) is de�ned by

FX(x, . . . , xn; t, . . . , tn)
= FX(x, . . . , xn; t + kTc, . . . , tn + kTc) ()

for all n and k.

Since the above de�nition is too restrictive, awide sense

cyclostationary X(t) can be de�ned by

µX(t) = µX(t + kTc)

RX(t, t) = RX(t + kTc, t + kTc).
()
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Strati�cation refers to dividing a population into groups,

called strata, such that pairs of population units within

the same stratum are deemed more similar (homogeneous)

than pairs from di�erent strata. �e strata are mutually

exclusive (non-overlapping) and exhaustive of the popu-

lation. Clearly su�cient information on each population

unit must be available before we can divide the population

into strata.

�e primary reason for dividing a population into

strata is to make use of the strata in drawing a sample.

For example, instead of drawing a simple random sam-

ple of sample size n from the population, one may draw

a 7simple random sample of sample size nh from stratum
h of L strata, where n = n+⋯+nL.�e sample selection for
any stratum is done independently of the other strata.�e

stratum sample sizes nh are o�en chosen proportional to

the number of population units in stratum h but other allo-

cations of the stratum samples may be preferred in speci�c

situations.

�ere are two major reasons for drawing a strati�ed

sample instead of an unstrati�ed one:

. Such samples are generally more e�cient (in the sense

that estimates have smaller variances) than samples

that do not use strati�cation.�ere are exceptions, pri-

marily when the strata are far from homogeneous with

respect to the variable being estimated.

. �e sample sizes are controlled (rather than random)

for the population strata.�ismeans, in particular, that

one may guarantee adequate sample size for estimates

that depend only on certain strata. For instance, if men

and women are in separate strata, one can assure the

sample size for estimates for men and for women.

Estimation Under Simple Random
Sampling Within Strata
�e independence of the sample selection by strata allows

for straightforward variance calculation when simple ran-

dom sampling is employed within strata. LetYT denote the

population total for a variable Y for which an estimate is

sought. Let Nh and nh denote respectively the population

size and sample size for stratum h. Let, moreover, Yhj and

yhi denote respectively the Y-value of the jth population

element or ith sample element in stratum h.�en, if

Yh =


Nh

Nh

∑
j=
Yhj and yh =



nh

nh

∑
i=
yhi,

de�ne

S

h =



Nh − 

Nh

∑
j=

(Yhj − Yh) and sh =


nh − 

nh

∑
i=

(yhi − yh)

.
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We estimate YT by ŷ where ŷ =
L

∑
h=
Nhyh. �e variance

of ŷ is

V(ŷ) =
L

∑
h=

Nh
nh

( − nh/Nh)Sh

and the variance is estimated by

V̂(ŷ) =
L

∑
h=

Nh
nh

( − nh/Nh)sh.

Similarly, the population mean Y = YT/N, where N =
L

∑
h=
Nh is the size of the population, is estimated by ŷ/N and

its variance by V̂(ŷ)/N.

Allocation of Sample Sizes to Strata
Under Simple Random Sampling within
Strata
For a total sample size of n and given values of Sh, the ques-

tion arises how should one allocate the sample to the strata;

that is, how should one choose the nh, h = , . . . ,L, so that
n = n +⋯+ nL and V(ŷ) is minimized?�is is a straight-
forward constrained minimization problem (solved with

Lagrange multipliers) that yields the solution:

nh =
nNhSh
L

∑
k=
NkSk

Note that, as one would expect, the more variability in

a stratum (larger Sh), the larger the relative sample size
in that stratum.�is method of determining the stratum

sample sizes is termed Neyman allocation in view of the

seminal paper on strati�ed sampling by Neyman ().

Sometimes the strata are not equally costly to sample.

For example, there may be additional travel costs in sam-

pling a rural geographically-determined stratum over an

urban one. If it costs Ch to sample a unit in stratum h, then

the allocation

nh =
nNhSh/

√
Ch

L

∑
k=
NkSk/

√
Ck

is best in two senses: It minimizes V(ŷ) subject to �xed
total cost (a �xed budget) CT = C + ⋯ + CL and it mini-
mizes CT subject to �xed V(ŷ).

�ese allocations assume that the Sh, h = , . . . ,L, are
known. In practice, rough estimates, perhaps based on a

similar previous survey, will serve. �e same comment

applies to the costs for the cost-based allocation.

In the absence of any prior information, even approx-

imate, the simple proportional allocation nh = nNh/N is

o�en used. In this case, the estimator ŷ has a particularly

simple form

ŷ =
L

∑
h=
Nhyh =

L

∑
h=

Nh

nh

nh

∑
i=
yhi =

L

∑
h=

Nh

(nNh/N)

nh

∑
i=
yhi

= N
n

L

∑
h=

nh

∑
i=
yhi.

�erefore ŷ is just the sum of the sample values expanded

by N/n. In many surveys a wide variety of quantities
are estimated and their within-stratum variability may

di�er so proportional allocation may be employed as a

compromise.

Unbiased estimation requires at least one sample selec-

tion per stratum. Unbiased variance estimation requires at

least two selections per stratum.

Stratum Boundaries
Sometimes strati�cation is based on small discrete cate-

gories like gender or race. Other times, one may have data

on a variable that can be regarded as continuous closely

related to the variable one wants to estimate from the sam-

ple. For example, one may want to estimate the output of

factories based on strata de�ned by the number of work-

ers at the factory. One stratum might be all factories with

– workers. In this case,  and  are said to be

the stratum boundaries. How should these boundaries be

chosen?

One method that has been shown to be good is the

cumulative square root of frequencies method developed

by Dalenius and Hodges (): Start by assuming (in our

example) that the factories have been divided into a rather

large number of categories based on the numbers of work-

ers, numbered from fewest workers to the most workers.

If fk is the number of factories in category k, calculate

Qk =
√
f+⋯+

√
fk. Divide the factories into strata so that

the di�erences between the at adjacent stratum boundary

points are as equal as possible.

More recently, Lavallée and Hidiroglou () devel-

oped an iterative procedure especially designed for skewed

populations.

Variance Estimation for Stratified
Samples
For simple estimators and strati�ed sampling, direct for-

mulas are available to calculate variance estimates.�ese

formulas are tailored to the speci�c estimator whose vari-

ance is sought. General purpose variance estimators have
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been developed, however, that allow one to estimate vari-

ances for a wide class of estimators using a single pro-

cedure. See Wolter () and Shao and Tu () for a

complete discussion of these procedures.

�e procedure balance half-sample replication (or bal-

anced repeated replication) has been developed as a vari-

ance estimation procedure when two primary sampling

units (PSUs) are selected from each stratum. �ere may

be additional sampling within each PSU so the sample

design may be complex.�e variance estimation is based

on half sample replicates, each replicate consisting of one

PSU from each stratum.�e pattern that determineswhich

PSU to choose from each stratum for a particular replicate

is based on a special kind of matrix, called a Hadamard

matrix.

A form of the jackknife method (see 7Jackknife) is
also widely employed with two PSU per stratum sample

designs (although it can be extended to other designs).�is

jackknife method is based on forming replicates, but the

replicate consists of one PSU selected to be in the repli-

cate from a speci�c stratum, with both PSUs being in the

replicate for all other strata.

Various forms of the bootstrapmethod (see7Bootstrap
Methods) have been employed in recent years as general

variance estimation methods for strati�ed sampling.

Although not as generic, the Taylor series (or lineariza-

tion) method is a powerful technique for estimating vari-

ances in complex samples.

Stratified Sampling with Maximal
Overlap (Keyfitzing)
Sometimes it is worthwhile to select a strati�ed sample

in a manner that maximizes overlap with another strati-

�ed sample, subject to the constraint that the probabilities

of selection are the ones desired. For example, cost sav-

ings may arise if a new strati�ed sample is similar to a

previous one, yet births, deaths, andmigration in the popu-

lationmay preclude it being exactly the same. Key�tz ()

developed amethod to deal with this problem, so it is o�en

called Key�tzing. More recent researchers have extended

the method to more general situations.

Stratification in Two Phases
It may be that it is clearly desirable to stratify on a certain

characteristic, but that characteristic may not be available

on the sampling frame (list of units fromwhich the sample

is selected). For example, in travel surveys one would likely

want to stratify onhousehold type (e.g., single adult head of

household or adult couple with children) but this informa-

tion is usually not provided on an address list. One solution

is to �rst conduct a large, relatively inexpensive �rst phase

of the survey for the sole purpose of obtaining the informa-

tion needed to stratify.�is information is then employed

in the strati�cation of the second stage of the survey.�is

process is called two-phase sampling or double sampling.

Let nIh be the size of the �rst stage sample that lies

in stratum h and let nI = nI + ⋯ + nIL be the �rst-stage
sample size. At the second stage, nIIh units with Y-values

yh, . . . , yhnII
h
are sampled in stratum h.�en one can esti-

mate YT by

ỹ = N
L

∑
h=

nIh
nI

nII
h

∑
i=

yhi

nII
h

Approximate variance formulas can also be given. See,

e.g., Raj and Chandhok () or Schea�er et al. ().

Because the nIh are random, the usual (one-phase) variance

formulas would underestimate the variance.

Poststratification
A�er a sample has been selected and the data collected,

sometimes the estimation procedures of strati�cation can

be employed even if the sample selection was for an

unstrati�ed design. An important requirement is that the

population proportions Nh/N must be known, at least
approximately. If so, then

ŷ = N
L

∑
h=

Nh

N

nh

∑
i=

yhi

nh
= N

L

∑
h=

Nh

N
yh

is an improved estimate of the population total.�e usual

variance estimator V̂( ŷ), however, is no longer valid as
it does not account for the randomness of the nh. More

complicated variance estimators can be developed for this

purpose.

Another reason to employ poststrati�cation is to

reduce bias due to nonresponse.

Controlled Selection
Controlled selection is a sample selection method that

is related to strati�ed sampling but di�ers in that inde-

pendent selections are not made from the cells (“strata”).

�e method was introduced by Goodman and Kish

(). For an example of controlled selection, imagine a

two-dimensional array of cells of population units, say of

industrial classi�cation categories by geographic areas. All

population units lie in exactly one cell, analogous to strata.

�e sample size is not large enough for there to be the two

selections per cell needed for unbiased variance estimation

if the selectionswere independent by cell. Under controlled

selection, only certain balanced patterns of cell combina-

tions can be selected. When properly carried out, this is a

valid probability selection technique.
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Strong approximations in Probability and Statistics are

results that describe the closeness almost surely of random

processes such as partial sums and7empirical processes to
certain 7Gaussian processes. As a result, strong laws such
as the law of the iterated logarithm and weak laws such as

the central limit theorem (see 7Central Limit�eorems)
follow.

Let X,X, . . . be a sequence of independent random

variables with the same distribution function. Put Sn =
X + ⋅ ⋅ ⋅ + Xn. If the mean m = E(X) exists (�nite), then
the strong law of large numbers states that Sn/n → m,

almost surely, as n → ∞. One can ask the question, at
what rate does this convergence take place?�is question

is answered, in  by Hartman andWintner, who proved

the law of the iterated logarithm (LIL): If, in addition, the

variance σ  of X is �nite, then

lim sup
n→∞

Sn − nm
σ
√
n log logn

→a.s. ,

lim inf
n→∞

Sn − nm
σ
√
n log logn

→a.s. −.
()

To gain further insight about the asymptotic behav-

ior of partial sums, we can consider S⌊nt⌋,  ≤ t ≤ ,
as a random process. In , Strassen proved that it can

be approximated by a standard Brownian motion pro-

cess (see 7Brownian Motion and Di�usions). A standard
Brownian motion (or Wiener process) is a random pro-

cess {W(t); t ≥ } that has stationary and independent
increments, where the distribution ofW(t) is normal with
mean  and variance t, for any �xed t >  andW() = .
Strassen showed that if m = E(X) and Var(X) =

σ  < ∞, then there exists a common probability space
on which one can de�ne a standard Brownian motion

process W and a sequence of independent and identi-

cally distributed random variables Y,Y, . . . such that

{Sn = ∑ni= Xi : n ≥ } =D {S̃n = ∑ni= Yi : n ≥ } and, as
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n→∞,

sup
≤t≤

∣σ−(S̃⌊nt⌋ −m⌊nt⌋) −W(nt)∣
√
n log logn

→a.s. , ()

where ⌊nt⌋ is the largest integer less than or equal nt.
Statement () is an example of a strong approximation

which gives rise to the strong invariance principle. From

it one can deduce the law of the iterated logarithm for

partial sums () from that of standard Brownian motion

(Khinchin’s LIL). Alternately, one can prove it for a speci�c

sequence of random variables, say simple coin tossing, and

then, via (), it is inherited by any independent sequence

with a common distribution having �nite variance.

If one assumes further conditions on the moments of

the random variables (beyond �nite variance) then the

rate of convergence in () can be improved. In particu-

lar, if one assumes that X has a �nite moment generating

function in an open interval containing the origin, then

Komlós et al. () have proven a�eorem -type result

with convergence statement:

lim sup
n→∞

sup
≤t≤

∣σ−(S̃⌊nt⌋ −m⌊nt⌋) − B(nt)∣
logn

≤ C, a.s. ()

for some constant C > .
Many almost-sure results including () are proven

by �rst establishing an inequality for the maximal devi-

ations and then applying a Borel-Cantelli lemma (see

7Borel–Cantelli Lemma and Its Generalizations). �e
Komlós et al. inequality is:

P{max
≤k≤n

∣σ−(S̃k −mk) − B(k)∣ > c logn + x} < ce−cx,

where c, c, c are positive constants depending only on

the distribution ofX.�e Borel-Cantelli lemma to be used

is: for any sequence of eventsAn,n ≥ , if∑∞
n= P(An) <∞,

then P(An, in�nitely o�en) = . Massart () proved a
multivariate version of ().

�e rateO(logn) in () is the best rate possible.�is is
a consequence of the Erdös- Rényi laws of large numbers:

Let X,X, . . . be a sequence of independent and

identically distributed random variables with mean

E(X) = m and where the 7moment generating func-
tion M(t) = E(et(X−m) of X − m is �nite in an interval
containing t = .�en, for any c > ,

max
≤k≤n−⌊c log n⌋

Sk+⌊c log n⌋ − Sk −m⌊c logn⌋
⌊c logn⌋

→a.s. α(c),

where α(c) = sup{x : (x) ≥ e−/c}, with (x) =
inf t e

−txM(t), the Cherno� function of X −m.
If the le� side of () converged to , almost surely,

then σ−(Xi − m) and B(i) − B(i − ) would share the

same function α. Since α uniquely determines the dis-

tribution function of a random variable, σ−(Xi − m) =
DB(i) − B(i − ), a standard normal distribution.
Empirical process are important in many areas of

statistics. If X,X, . . . is a sequence of independent k-

dimensional random vectors with distribution function F,

let Fn(x) = n−∑ni= I[Xi ≤ x], x ∈ R, is the proportion
of X,X, . . . ,Xn that are less than or equal to the real vec-

tor x = (x, . . . , xk) in the usual partial ordering of Rk.�e
empirical process is de�ned as

αn(x) =
√
n[Fn(x) − F(x)], x ∈ Rk.

Strong approximation results are available for the

empirical process which describe its behavior in terms of

both x ∈ Rk and the sample size. A Kiefer process KF(x, y)
is a Gaussian process de�ned on Rk×[,∞) that has mean
zero and covariance function E(K(x, y)K(x′, y′)) =
(min{y, y′})(F(x ∧ x′) − F(x)F(x′)), where x ∧ x′ =
(min{x, x′} , . . . ,min{xk, x′k}).
In , Csörgő and Horváth proved that there exists

a common probability space on which one can de�ne a

Kiefer process K and a sequence of independent and iden-

tically distributed random variables Y,Y, . . . such that

its empirical process {α̃n(x); x ∈ Rk,n = , , . . . } =
D{αn(x); x ∈ Rk,n = , , . . . }, the empirical process of
the original sequence of Xi, and

lim sup
n→∞

max
≤j≤n

sup
x∈Rk

∣α̃j(x) − j−/K(x, j)∣
n−/(k)(logn)/

≤ C, a.s. ()

When the dimension k = , the denominator in () can
be improved to n−/(logn). Similar to partial sums, the
law of the iterated logarithm for the empirical process can

be deduced from that of the Kiefer process, that is

lim sup
n→∞

sup
x∈Rk

∣αn(x)∣√



log logn

=a.s. .

Other results involve the strong approximation of the

empirical process by a sequence of Brownian bridges Bn,

where each is a Gaussian process de�ned on Rk and each

has mean zero and covariance function EBn(x)Bn(x′) =
F(x ∧ x′) − F(x)F(x′). For general F, Borisov proved an
approximation with rateO(n−/((k−))logn), a.s.When F
has a density, Rio obtained a rate ofO(n−/(logn)(k+)/),
a.s. Here the exponent of n is independent of the

dimension. When F is the uniform distribution on

[, ]k, Massart, in , proved () with a rate of
O(n−/((k+))(logn)) and obtained an approximation in
terms of sequences of Brownian bridges with a rate of

O(n−/(k)(logn)/).
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Introduction
A structural equation model is a representation of a

series of hypothesized relationships between observed

variables and latent variables into a composite hypoth-

esis concerning patterns of statistical dependencies. �e

hypothesized relationships are described by parameters

that indicate the magnitude of the relationship (direct or

indirect) that independent (exogenous) variables (either

observed or latent) have on dependent (endogenous)

variables (either observed or latent). By enabling the

representation of hypothesized relationships into testable

mathematical models, a structural equation model o�ers a

comprehensive method for the quanti�cation and testing

of theoretical models. Once a theory has been proposed, it

can be tested against empirical data.

�e term structural equation model was �rst coined

by econometricians and is probably the most appropriate

name for the process just brie�y sketched. Path analysis,

developed by Sewall Wright (), is an early form of

SEM that is restricted to observed variables.�e exogenous

observed variables are assumed to have been measured

without error and have unidirectional (recursive) relations

with one another. As it turns out, path analysis rules are

still used today to identify the structural equations under-

lying themodels. Using the path analysis approach,models

are presented in the form of a drawing (o�en called a path

diagram), and the structural equations of the model are

inferred by reading the diagram correctly. However, the

term path analysis implies too many restrictions on the

form of the model. Structural equation modeling (SEM),

on the other hand, has grown to incorporate latent and

observed variables that can be measured with and with-

out error and have bidirectional (nonrecursive) relation-

ships among variables. Another term used frequently is

causal analysis. Unfortunately, this is also a misleading

term. Although SEM may appear to imply causality, the

structural equations are not causal relations but functional

relations.Covariance structuremodeling is another popular

term that is used mostly by psychologists. Unfortunately,

it too is restrictive. Although the covariance structure of

observed data is the most commonly modeled, SEM can

be used to model other moments of the data. For example,

mean structures are occasionally modeled, and facilities

are provided for this in a number of SEM so�ware pro-

grams. Modeling the third (skew) and fourth (kurtosis)

moments of the data is also possible.

Mathematical Representation
To date, several mathematical models for SEM have been

proposed. Although thesemathematical models can trans-

late data equally well into the model parameters, they

di�er in how parsimoniously this translation process is

conducted. Perhaps the most well known of these math-

ematical models, the Keesling–Wiley–Jöreskog (LISREL)

model, can require up to nine symbols in order to represent

a model. In contrast, the COSAN model can generally

represent the samemodel using only two symbols. Striking
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a compromise between the LISREL and COSAN models,

the Benter-Weeks (EQS) model can represent any model

using only four symbols. Mathematically, the EQS model

is represented by

η = βη + γξ

where β and γ are coe�cient matrices, and η and ξ are
vectors of random variables.�e random variables within

η are endogenous variables and the variables within ξ are
exogenous variables. Endogenous and exogenous variables

can be either latent or observed.�e matrix β consists of
coe�cients (parameters) that describe the relations among

the endogenous variables. �e matrix ξ consists of coef-
�cients (parameters) that describe the relations between

exogenous and endogenous variables.

It is important to note that the primary interest in SEM

centers on describing the network of relations among the

variables (implying that one is generally interested in

the covariance structure among the variables). Although

the structural equation model is written in terms of equa-

tions lining the variables, the data used to solve the model

parameters are actually covariances or correlations. In fact,

this approach is no di�erent from how many other multi-

variate statisticalmodels are evaluated. For example,multi-

ple regression uses a series of equations that link dependent

to independent variables, but it is the correlational struc-

ture of the data that is used to solve for the regression coef-

�cients. Similarly, in the EQSmodel, the sample covariance

structure (C) among a set of variables x, y is de�ned as

C = (x + y)(x + y)′ = J(I − β)−ΓΦΓ′(I − β)−J′

where Γ is amatrix of coe�cients linking exogenous ξwith

endogenous η variables, β is amatrix of coe�cients linking
endogenous variables, and Φ represents the covariances
among the exogenous variables. �e J matrix serves as a
“�lter” for selecting the observed variables from the total

number of variables to be included in the model.

The Confirmatory Factor Analysis Model
A popular type of structural equation model is the con-

�rmatory factor analysis model. In contrast to exploratory

factor analysis (EFA), where all loadings are free to vary,

con�rmatory factor analysis (CFA) allows for the explicit

constraint of certain loadings to be zero. As traditionally

given, the con�rmatory factor model in matrix notation is

Y = Λξ + ε

where Y is a vector of scores on the observed variables,
Λ is a factor pattern loading matrix, ξ is a matrix of com-
mon factors, and ε is a matrix of measurement errors in
the observed variables. As such, the covariance structure

implied by the con�rmatory factor model is de�ned as

C = ΛΦΛ′ +Ψ

where C is the sample variance-covariance matrix, Φ is
a matrix of the factor variance-covariances, and Ψ is

a variance-covariance matrix among the measurement

errors.

In the EQS representation, the con�rmatory factor

model is generally expressed as

η = βη + γξ with β = 

and the covariance structure implied by the model is

given as

C(ηη
′) = (η + γξ)(η + γξ)′ = ΓΦΓ′

where the asymmetric relations in the model (the e�ects

of the common and error factors on the observed vari-

ables) are in Γ and the symmetric relations (the factor and
error variances and covariances) are inΦ. Note that for the
con�rmatory factor model the matrix β is dropped from
the EQS model because in CFA there are no regression

relations between endogenous variables.

Model Estimation
Model estimation proceeds by rewriting the structural

equations so that each of the parameters of the equations is

a function of the elements of the sample covariance matrix

C. Subsequently, a�er obtaining values for the parameters,

it one were to substitute these values back into the expres-

sion for the covariance structure implied by the model, the

resulting sample matrix C can be represented as Ĉ. Clearly,

Ĉ should be very close toC because it was the elements ofC

that assisted in solving for the model parameters:�e dif-

ference should be small if the model is consistent with the

data.

�e evaluation of C − Ĉ depends on the estimation
method used to solve for the model parameters. �e

most commonly used estimation methods for solving the

parameters are unweighted least squares (ULS), generalized

(weighted) least squares (GLS), and maximum likelihood
(ML). With each estimation method, the structural equa-

tions are solved iteratively, until optimal estimates of the

parameters are obtained. Optimal parameter values are

values that imply covariances (Ĉ) close to the observed
covariances (C).�e di�erenceC−Ĉ is known as a discrep-
ancy function (F). In order to minimize this discrepancy
function, the partial derivatives of F are taken with respect

to the elements of C − Ĉ. �e form of the discrepancy
function varies across the di�erent estimation methods.

However, the general form of this discrepancy function is
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F =∑
ij

(C − Ĉ)′W(C − Ĉ)

in which a weighted sum of di�erences between the I J

elements of C and Ĉ is calculated. As C and Ĉ become

more di�erent, the discrepancy function becomes larger

implying less correspondence between the model-implied

covariances and the observed covariances. Most currently

available SEM programs (e.g., SPSS’ AMOS, EQS, LIS-

REL, Mplus, Mx, the SEM package in R, SAS PROC

CALIS) include ULS, GLS, and ML as standard estimation

methods.

Model Assessment and Fit
For a model with positive df degrees of freedom, it is

very unlikely that the discrepancy function will equal ,

implying a model with perfect �t to the data.�us, there

must be some measure of how large the discrepancy func-

tion must be in order to determine that the model does

not �t the data. If multivariate normality is present, a chi-

square goodness-of-�t test for the model is available using

the sample size and the value of the discrepancy function

χ
 = (N − )(F)

with df = (the number of unique elements of C) − (the
number of parameters solved). If chi-square is not signif-

icant, then no signi�cant discrepancy exists between the

model-implied and observed covariancematrices. As such,

the model �ts the data and is con�rmed. However, the chi-

square test su�ers from several weaknesses, including a

dependence on sample size, and vulnerability to departures

frommultivariate normality.�us, it is recommended that

other descriptive �t criteria (e.g., ratio of χ to df ) and �t
indices (e.g., the comparative �t index, the rootmean square

error of approximation) be examined in addition to the χ

value to assess the �t of the proposed model. Quite a few

�t criteria and indices have been developed, each with its

own strengths and weaknesses, and is it usually advisable

to report a range of them.

Model Identification
Only identi�ed models should be estimated.�e process

of model identi�cation involves con�rming that a unique

numerical solution exists for each of the parameters of the

model. Model identi�cation should be distinguished from

empirical identi�cation, which involves assessing whether

the rank of the information matrix is not de�cit. Most

SEM programs automatically check for empirical identi-

�cation. On the other, model identi�cation is not as easily

or automatically assessed. For structural equation models

in general, themost frequently invoked identi�cation rules

are the t-rule and the rank and order conditions. �e t-

rule is a simple rule to apply, but is only a necessary not

a su�cient condition of identi�cation. �e t-rule is that

the number of nonredundant elements in the covariance

matrix of the observed variables (p) must be greater than
or equal to the number of unknown parameters in the

proposed model. �us, if t ≤ p(p + )/ the necessary
condition of identi�cation is met. Unfortunately, although

the t-rule is simple to apply, it is only good for determin-

ing underidenti�ed models.�e order condition requires

that for the model to be identi�ed, the number of p vari-

ables excluded from each structural equation must equal

p − . Unfortunately, the order condition is also a neces-
sary bit not su�cient condition for identi�cation. Only the

rank condition is a necessary and su�cient condition for

identi�cation; however, it is not easy to apply. In general

terms, the rank condition requires that the rank of any

model matrices (e.g.,Φ, β, Γ) be of at least rank p−  for all
submatrices formed by removing the parameter of inter-

est. However, the usefulness of these criteria is doubtful

because a failure to meet them does not necessarily mean

the model is not identi�ed. As it turns out, the only sure

way to assess the identi�cation status of a model prior to

model �tting is to show through algebraic manipulation

that each of the model parameters can be solved in terms

of the p variances and p(p − )/ covariances.

Equivalent Structural Equation Models
Equivalent structural equation models may be de�ned as

the set of models that, regardless of the data, yield identi-

cal (a) implied covariance, correlation, and other moment

matrices when �t to the same data, which in turn imply

identical (b) residuals and �tted moment matrices, (c) �t

functions and chi-square values, and (d) goodness-of-�t

indices based on �t functions and chi-square. One most

frequently thinks of equivalent models as described in

(a) above. To be precise, consider two alternative models,

denotedM andM, each of which is associated with a set

of estimated parameters and a covariance implied by those

parameter estimates (denoted as ĈM and ĈM). Mod-
elsM andM are considered equivalent if, for any sample

covariance matrix C, the implied matrices ĈM = ĈM or
alternatively,(C−ĈM) = (C−ĈM). Because of this equiv-
alence, the values of statistical tests of �t that are based

on the discrepancy between the sample covariance matrix

and themodel-implied covariancematrix will be identical.

�us, even when a hypothesized model �ts well accord-

ing to multiple �t indices, there may be equivalent models

with identical �t – even if the theoretical implications of

those models are very di�erent. However, model equiva-

lence is not unique to SEM. For example, in exploratory

factor analysis, without the arbitrary constraint of extract-

ing orthogonal factors in decreasing order of magnitude,
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there would potentially be an in�nite number of equivalent

initial solutions.
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Introduction
�e basic idea of structural time series models is that they

are set up as regression models in which the explana-

tory variables are functions of time with coe�cients which

change over time. �us within a regression framework a

simple trend would be modeled in terms of a constant and

a time with a random disturbance added on, that is

yt = α + βt + εt , t = , . . . ,n. ()

�is model is easy to estimate using ordinary 7least
squares, but su�ers from the disadvantage that the trend

is deterministic. In general, this is too restrictive, however,

the necessary �exibility is introduced by letting the coe�-

cients α and β evolve over time as stochastic processes. In

this way the trend can adapt to underlying changes.�e

current, or �ltered, estimate of the trend is estimated by

putting the model in state space form and applying the

Kalman �lter. Related algorithms are used for making pre-

dictions and for smoothing, which means computing the

best estimate of the trend at all points in the sample using

the full set of observations.�e extent to which the param-

eters are allowed to change is governed by hyperparame-

ters.�ese can be estimated by maximum likelihood but,

again, the key to this is the state space form and theKalman

�lter.�e STAMP package of Koopman et al. () car-

ries out all the calculations and is set up so as to leave the

user free to concentrate on choosing a suitable model.

An excellent general presentation of the Kalman �l-

ter is given in this Encyclopedia by M. S. Grewal under

the title Kalman Filtering. We give below a set of partic-

ular results about the �lter that are for application within

the areas covered by Time Series and Econometric. Simi-

larly, a general presentation of smoothing is given as well in

this Encyclopedia byA.W. Bowmanunder the title Smooth-

ing Techniques. We recall that in our context smoothing

means computing the best estimates based on the full sam-

ple, therefore we give below a set of particular results that

are for application within the areas covered by Time Series

and Econometric.

�e classical approach to time series modeling is based

on the fact that a general model for any indeterministic

stationary series is the autoregressive-moving average of

order (p, q).�is is usually referred to as ARMA(p, q).�e
modeling strategy consists of �rst specifying suitable val-

ues of p and q on the basis of an analysis of the correlogram

and other relevant statistics.�e model is then estimated,

usually under the assumption that the disturbance is Gaus-

sian.�e residuals are then examined to see if they appear

to be random, and various test statistics are computed. In

particular, the Box–LjungQ-statistic, which is based on the

�rst P residual autocorrelations, is used to test for resid-

ual serial correlation. Box and Jenkins () refer to these

stages as identi�cation, estimation and diagnostic check-

ing. If the diagnostic checks are satisfactory, the model is

ready to be used for forecasting. If they are not, another

speci�cation must be tried. Box and Jenkins stress the role



 S Structural Time Series Models

of parsimony in selecting p and q to be small. However, it

is sometimes argued, particularly in econometrics, that a

less parsimonious pure autoregressive (AR) model is o�en

to be preferred as it is easier to handle.

Many series are not stationary. In order to handle such

situations Box and Jenkins proposed that a series be dif-

ferenced to make it stationary. A�er �tting an ARMA

model to the di�erenced series, the corresponding inte-

grated model is used for forecasting. If the series is di�er-

enced d times, the overall model is called ARIMA( p,d, q).
Seasonal e�ects can be captured by seasonal di�erencing.

�e model selection methodology for structural mod-

els is somewhat di�erent in that there is less emphasis on

looking at the correlograms of various transformations of

the series in order to get an initial speci�cation. �is is

not to say that correlograms should never be examined,

but the experience is that they can be di�cult to interpret

without prior knowledge of the nature of the series and in

small samples and/or withmessy data they can bemislead-

ing. Instead the emphasis is on formulating the model in

terms of components which knowledge of the application

or an inspection of the graph suggests might be present.

For example, with monthly observations, one would prob-

ably wish to build a seasonal pattern into the model at the

outset and only drop it if it proved to be insigni�cant. Once

a model has been estimated, the same type of diagnostics

tests as are used for ARIMA models can be performed on

the residuals. In particular the Box–Ljung statistic can be

computed, with the number of relative hyperparameters

subtracted from the number of residual autocorrelations to

allow for the loss of degrees of freedom. Standard tests for

non-normality and heteroscedasticity can also be carried

out, as can tests of predictive performance in a post-sample

period. Plots of residuals should be examined, a point

which Box and Jenkins stress for ARIMA model building.

In a structural time series model, such plots can be aug-

mented by graphs of the smoothed components.�ese can

o�en be very informative since it enables themodel builder

to check whether the movements in the components cor-

respond to what might be expected on the basis of prior

knowledge.

State Space Form, Kalman Filtering
and Smoothing
As we say before, a structural time series model is one

in which the trend, seasonal and error terms in the

basic model, plus other relevant components, are mod-

eled explicitly.�is is in sharp contrast to the philosophy

underlying ARIMA models where trend and seasonal are

removed by di�erencing prior to detailed analysis.

�e statistical treatment of the structural time series

models is based on the state space form, the Kalman �lter

and the associated smoother.�e likelihood is constructed

from the Kalman �lter in terms of the one-step ahead

prediction errors andmaximizedwith respect to the hyper-

parameters by numerical optimization. �e score vector

for the parameters can be obtained via a smoothing algo-

rithm which is associated with the Kalman �lter. Once the

hyperparameters have been estimated, the �lter is used

to produced one-step ahead predictions residuals which

enables us to compute diagnostic statistics for normality,

serial correlation and goodness of �t.�e smoother is used

to estimate unobserved components, such as trends and

seasonals, and to compute diagnostic statistics for detect-

ing 7outliers and structural breaks. ARIMA models can
also be handled using the Kalman �lter. �e state space

approach becomes particularly attractive when the data are

subject to missing values or temporal aggregation.

State Space Form
All linear time series have a state space representation.

�is representation relates the disturbance vector {εt} to
the observation vector {yt} via a Markov process (see
7Markov Processes) {αt}. A convenient expression of the
state space form is

yt = Ztαt + εt , εt ∼ N(,Ht),

αt = Ttαt− + Rtηt , ηt ∼ N(,Qt), t = , . . . n,
()

where yt is a p ×  vector of observations and αt is an
unobserved m ×  vector called the state vector.�e idea
underlying the model is that the development of the sys-

tem over time is determined by αt according to the second
equation of (), but because αt cannot be observed directly
we must base the analysis on observations yt . �e �rst
equation of () is called themeasurement equation, and the

second one, the transition equation.�e system matrices

Zt , Tt and Rt have dimensions p × m, m × m and m × g
respectively.�e disturbance terms εt and ηt are assume
to be serially independent and independent of each other

at all time points.�e matrixHt has dimension p × p with
rank p, and the matrix Qt has dimension g × g with rank
g ≤ m.�ematricesZt ,Tt ,Rt ,Ht andQt are �xed and their
unknown elements, if any, are place in the hyperparameter

vector ψ which can be estimated by maximum likelihood.
In univariate time series p = , so Zt is a row vector.

�e initial state vector α is assumed to be N(a,P)
where a andP are known.When a andP are unknown,
α is taken as di�use. An adequate approximation can



Structural Time Series Models S 

S

o�en be achieved numerically by taking a =  and P =
κIm, where κ is a scalar which tends to in�nity.

Kalman Filter
In the Gaussian state space model (), the Kalman �lter

evaluate the minimum mean squared error estimator of

the state vector αt+ using the set of observations Yt =
{y

, . . . , yt}, denoted at+ = E(αt+∣Yt), and the corre-

sponding variance matrix Pt+ = Var(αt+∣Yt), for all t.
�is means that the Kalman �lter allows to continuously

update the estimation of the state vector whenever a new

observation is available. Since all distributions are normal,

conditional distributions are also normal. Let vt = yt−Ztat ,
then vt is the one-step ahead forecast error yt−E(yt ∣Yt−).
Demote its variance matrix by Ft .�en

Ft = ZtPtZ′t +Ht , t = , . . . n. ()

It is possible to show that the updating recursion is given

by

at+ = Tt+at +Ktvt , ()

where

Kt = Tt+PtZ′tF−t , ()

and

Pt+ = Tt+Pt (T′t+ − Z′tK′t) + Rt+Qt+R
′
t+, ()

for t = , , . . . ,n − , with K = .
�e set () to () constitute the Kalman �lter for model

().�e derivation of the Kalman recursions can be found

inAnderson andMoore (),Harvey (), Abril ()

and Durbin and Koopman ().

�e output of the Kalman �lter is used to compute

the log-likelihood function logL(yt ,ψ), conditional on the
hyperparameter vector ψ, as given by

logL(yt ,ψ) = −np

log(π)− 



n

∑
t=
log ∣Ft ∣−





n

∑
t=
v′tF

−
t vt ,

()

apart from a possible constant. Numericalmaximization of

() with respect to the hyperparameter vector ψ yields the
maximum likelihood estimator ψ̃. Usually () is called the
prediction error decomposition of the likelihood.

Smoothing
�e work of de Jong (, ), Kohn and Ansley ()

and Koopman () leads to a smoothing algorithm from

which di�erent estimators can be computed based on the

full sample Yn. Smoothing takes the form of a backwards

recursion

ut = F−t vt −K′trt , Mt = F−t +K′tNtKt ,

rt− = Z′tF−t vt + L′trt , Nt− = Z′tF−t Zt + L′tNtLt , ()

for t = n,n − , . . . , , where Lt = Tt+ − KtZt , rn =  and
Nn = .�e recursions require memory space for storing
the Kalman output vt , Ft and Kt for t = , . . . ,n.�e series
{ut}will be referred to as smoothing errors.�e smoothing
quantities ut and rt play a pivotal role in the construction
of diagnostic tests for outliers and structural breaks.�e

smoother can be used to compute the smoothed estimator

of the disturbance vector ε̃t = E( εt ∣Yn). �e smoothed
estimator of the state vector α̂t = E(αt ∣Yn) is constructed
as follows

α̂t = at + Ptrt−, ()

for t = , . . . ,n, where rt satis�es the backwards recursions
given in ().
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Student’s t-Distribution
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We say that a random variable X has a Student t distribu-

tion with ν >  degrees of freedom, a scaling parameter
δ >  and a location parameter µ ∈ R, denoted T(ν, δ, µ),
if its probability density function (pdf) is

fX(x) =
Γ ( 


(ν + ))

√
πδΓ ( 


ν)

[ + (x − µ
δ

)


]
− ν+



, x ∈ R,

where Γ(z) is the Euler’s gamma function. T(, δ, µ) is the
Cauchy distribution. T(ν, δ, µ) is heavy tailed and for an
integer r

E(X − µ)r =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

δr−νrΓ( r

+)Γ( ν


−r)

√
πΓ( 


ν) , if r < ν,

+∞, if r ≥ ν.

Because

fX(x) =
∞

∫


√
πy
e
− (x−µ)

y g(y)dy, x ∈ R,

where

g(y) =
( 

δ)

ν


Γ ( 

ν)
y
− ν

−
e
− δ

y dy, y > 

is pdf of the inverse (reciprocal) gamma distribution,

which is a member of the�orin class, the Student t distri-

bution is a marginal distribution of a�orin subordinated

Gaussian Lévy process (see, e.g., Grigelionis,  and ref-

erences therein). �is property implies that T(ν, δ, µ) is
self-decomposable, i.e., for every c ∈ (, ), there exists

a random variable Xc, independent of X, such that X
law=

cX+Xc, and therefore T(ν, δ, µ) is in�nitely divisible. Self-
decomposability of T(ν, δ, µ) permits to construct several
classes of stationary stochastic processes with marginal

Student t distributions and various types of dependence

structure, relevant for modeling of economic and �nan-

cial time series. In the �elds of �nance Lévy processes

with marginal Student t distributions can o�en be �tted

extremely well to model distributions of logarithmic asset

returns (see Heyde and Leonenko, ).

�e classical Student t distribution was introduced in

 byW.S. Gosset (“Student”), proving that the distribu-

tion law L(tn) = T (n − ,
√
n − , ), where

tn =
√
n(Xn − µ)
sn

, n ≥ ,

X, . . . ,Xn are independent normally distributed random

variables, L(Xi) = N(µ, σ ), Xn = 

n ∑
n
i= Xi, s


n =



n− ∑
n
i=(Xi − Xn). Properties of the classical Student t

distributions are surveyed in Johnson, Kotz, .

During last century the theory of Student t statistics

has evolved into the theory of general Studentized statistics

and self-normalized processes, and the Student t distribu-

tion was generalized to the multivariate case, leading to

multivariate processes with matrix self-normalization (see

de la Peña et al., ).

We say that a random d-dimensional vector X has a

Student t distribution with ν >  degrees of freedom,

a symmetric positive de�nite scaling d × d matrix Σ and
a location vector µ ∈ Rd, denoted Td(ν, Σ, µ), if its pdf is

fX(x) =
Γ ( 


(ν + d))

(νπ)d/Γ ( 

ν) ∣Σ∣/

×
⎛
⎝
 +

((x − µ)Σ−, x − µ)
ν

⎞
⎠

− ν+d


, x ∈ Rd,

where (x, y) = ∑di= xiyi, x, y ∈ Rd, ∣Σ∣ := detΣ (see Johnson
and Kotz, ).

We have that

Ee
i(z,X) = e

i(µ ,z)


ν

−Γ ( 


ν)

× (ν(zΣ, z))
ν
K ν


(
√

ν(zΣ, z)) , z ∈ Rd,

where Kν is the modi�ed Bessel function of the third kind,

i.e.,

Kν(x) =



∫

∞


u
−ν−

exp{− 

x(u + u−)} du,

x > , ν ∈ R,
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implying that for c ∈ Rd, c ≠ , L((c,X)) =
T (ν,

√
ν (cΣ, c), (c, µ)), which means that Td(ν,∑, µ) is

marginal self-decomposable (see, Barndor�–Nielsen and

Pérez-Abreu, ).

If ν > d + , EX = µ and E(c,X − µ)(c,X − µ) =
ν(cΣ−, c)Γ ( ν−d−


) , c, c ∈ Rd.

As ν → ∞, Td(ν, Σ, µ) ⇒ Nd(µ, Σ) and, in partic-
ular, T (ν,

√
νσ , µ) ⇒ N(µ, σ ), where “⇒” means weak

convergence of probability laws.

LetMd be an Euclidean space of symmetric d×dmatri-
ces with the scalar product ⟨A,A⟩ := tr(AA), A,A ∈
Md, M

+
d ⊂Md be the cone of non-negative de�nite matri-

ces, P (M+
d ) be the class of probability distributions on

M+
d .

Since

Ee
i(z,X) = ei(z,µ) ∫

M+

d

e
− 

(zA,z)

U(dA),

where

ϕU(Θ) := ∫
M+
d

e
−tr(ΘA)U(dA)

=
[νtr(ΣΘ)]

ν



ν

−
Γ ( 


ν)
K ν

(
√
νtr(ΣΘ)) ,

Θ ∈M+
d , U ∈ P (M+

d ) ,

L(X−µ) is aU-mixture of centeredGaussian distributions
(see Grigelionis, ).

If ν ≥ d is an integer, U = L (νW−
ν ), where Wν =

∑ν
i= Y

T
i Yi,Y, . . . ,Yν are independent d-dimensional cen-

tered Gaussian vectors with the covariance matrix Σ, zT

is the transposed vector z, i.e., U is the inverse Wishart

distribution.
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Introduction
Student’s t-tests are parametric tests based on the Stu-

dent’s or t-distribution. Student’s distribution is named

in honor of William Sealy Gosset (–), who �rst

determined it in . Gosset, “one of the most original

minds in contemporary science” (Fisher ), was one of

the best Oxford graduates in chemistry and mathematics

in his generation. In , he took up a job as a brewer
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at Arthur Guinness Son & Co, Ltd in Dublin, Ireland.

Working for the Guinness brewery, he was interested in

quality control based on small samples in various stages

of the production process. Since Guinness prohibited its

employees from publishing any papers to prevent disclo-

sure of con�dential information, Gosset had published his

work under the pseudonym “Student” (the other possible

pseudonym he was o�ered by the managing director La

Touche was “Pupil,” see Box , p. ), and his iden-

tity was not known for some time a�er the publication

of his most famous achievements, so the distribution was

named Student’s or t-distribution, leaving his name less

well known than his important results in statistics. His,

now, famous paper “�e Probable Error of a Mean” pub-

lished inBiometrika in , where he introduced the t-test

(initially he called it the z-test), was essentially ignored by

most statisticians for more than  decades, since the “sta-

tistical community” was not interested in small samples

(“only naughty brewers take n so small,” Karl Pearson writ-

ing to Gosset, September , , quoted by E.S. Pearson

, p. ). It was only R. Fisher who appreciated the

importance ofGosset’s small-samplework, andwho recon-

�gured and extended it to two independent samples, cor-

relation and regression, and provided correct number of

degrees of freedom. “It took the genius and drive of a Fisher

to give Student’s work general currency” (Zabel , p. );

“�e importance of  article is due to what Fisher found

there, not what Gosset placed there” (Aldrich , p. ).

One-Sample t-Test
In the simplest form, also called the one-sample t-test,

Student’s t-test is used for testing a statistical hypoth-

esis (Miller and Miller ) about the mean µ of a

normal population whose variance σ  is unknown and

sample size n is relatively small (n ≤ ). For a com-
parison of means of two independent univariate nor-

mal populations with equal (but unknown) variances

we use two-sample t-test, and both of these tests have

their multivariate counterparts based on multivariate

extension of the t-variable called Hotelling’s T statis-

tic 7Hotelling’s T statistic (Johnson and Wichern ).
Student’s t-test also serves as the basis for the analysis

of dependent samples (populations) in paired di�erence

t-test or repeated measures design, in both univariate

(Bhattacharyya and Johnson ) and multivariate cases

(Johnson and Wichern ).

To understand the motivation for Student’s t-test, sup-

pose that we have at our disposal a relatively large sample of

size n >  from a normal population with unknownmean
µ and known variance σ . What we want is to determine

the mean µ, i.e., to test our supposition (null hypothesis)

H : µ = µ against one of the alternative hypotheses

µ ≠ µ or µ > µ or µ < µ. Maximum likelihood prin-
ciple (method) (Hogg et al. , or Anderson ) leads

to the sample mean X as the test statistic, and it is known

that X has Gaussian or normal distribution with mean µ

and variance σ /n. Hence, we might calculate (provided
σ ) the probability of observing x in a certain range under
the assumption of the supposed distribution N(µ, σ /n)
and thereby assess our supposition about the unknown µ.

Yet, this would require (numerical) evaluation of the inte-

gral of normal density for every particular pair (µ, σ )
and, therefore, we construct the universal standard normal

variable or z-score

Z = X − µ
σ/

√
n
, ()

which, in our example, represents the distance from the

observed X to the hypothesized population mean µ,

expressed in terms (units) of standard deviation σ/
√
n of

X.�us, variable Z is an independent parameter and it has

a standard normal distribution that has been extensively

tabulated and is readily available in statistical books and

so�ware.�e test itself is nowbased onZ as the test statistic

and the rationale behind the test is that if the null hypoth-

esis is true, then the larger the distance from x to µ (larger

∣z∣-value), the smaller the probability of observing such an
x.�erefore, given a level of signi�cance α, we reject H
if ∣z∣ ≥ zα/, z ≥ zα or z ≤ −zα , respectively, where zα is

the Z-value corresponding to the probability α for a ran-

dom variable having standard normal distribution to take

a value greater than zα , i.e., P(z ≥ zα) = α. By virtue of

the central limit theorem (Anderson ) and provided

that the sample is large enough (n > ), we apply the
same test even though the population distribution cannot

be assumed to be normal, the only precondition being that

the variance is known. Of course, in real applications we

rarely know exact population variance σ , so we substitute

sample variance S

S
 = 

n − 

n

∑
i=

(Xi − X)


()

for σ  and likelihood ratio test statistic () becomes

Students’s t-variable

T = X − µ
S/

√
n
. ()

Having at our disposal a su�ciently large sample (n > ),
we consider s to be a “faithful” estimate of σ and we might

still apply the same test, i.e., compare t with zα values.�is

would then be only an approximate large-sample test, but
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its result would likely correspond to the real truth. How-

ever, when population variance σ  is not known and the

sample size is relatively small (n ≤ ), the test we have
been discussing is not reliable anymore because t in () is

not a faithful approximation of z in (), as a direct conse-

quence of the fact that sample variance S determined from

too small a sample does not approximate σ  well. Con-

struction of a reliable test under such conditions requires

knowledge of the exact distribution of variable T in (),

and due to Gosset, we know that it is a t-distribution with

n−  degrees of freedom.�e same as with z-test, the ratio-
nale behind the t-test is that if the null hypothesis is true,

then observing x too much distant from µ is not likely.

Speci�cally, for a given level of signi�cance α and one of

the alternatives µ ≠ µ or µ < µ or µ > µ, following
the Neyman–Pearson approach, we calculate the critical

value tn−(α/) or tn−(α) de�ned by P(t ≥ tn−(α)) = α,

i.e., tn−(α) is the value corresponding to probability α

for a random variable having t-distribution to take a value

greater than tn−(α), and

reject H if ∣t∣ ≥ tn−(α/) with the alternative

hypothesis µ ≠ µ,
t ≥ tn−(α) with the alternative

hypothesis µ > µ,
t ≤ −tn−(α) with the alternative

hypothesis µ < µ. ()

Statistical tests imply reject–do not reject results, but it is

usually more informative to express conclusions in the

form of con�dence intervals. In the case of the two-sided

t-test (H : µ ≠ µ) constructed from a random sample of
size n, ( − α)% con�dence interval for the mean of a
normal population is

x − tn−(α/) s√
n
< µ < x + tn−(α/) s√

n
. ()

Two-Sample t-Test
When we compare parameters of two populations (means,

variances, or proportions), we need to distinguish two

cases: samples may be independent or dependent accord-

ing to how they were selected. Two random samples are

independent if the sample selected from one population is

not related in any way to the sample from the other popu-

lation. However, if the random samples are chosen in such

a way that each measurement in one sample can be natu-

rally or by design paired or matched with a measurement

in the other sample, then the samples are called dependent.

Dependent samples occur in two situations:

(a) Repeated measures design, when the same subject

or unit is measured twice, before and a�er a treat-

ment (e.g., the blood pressure of each subject in the

study is recorded twice, before and a�er a drug is

administered)

(b) Matched pairs design, when subjects are matched as

closely as possible, and then one of each pair is ran-

domly assigned to each of the treatment group and

control group (see 7Research Designs).

Two Independent Samples
(a) Equal variances σ  = σ  = σ 

�is is a simpler situation because variances of con-

sidered populations, though unknown, are equal.

With the respective sample sizes being n and n,

maximum likelihood principle yields a test based on

test statistic

T =
(X − X) − (µ − µ)

Sp

√


n
+ 

n

, ()

where Sp is the pooled estimator of commonvariance

σ  given by

S

p =

(n − )S + (n − )S
n + n − 

. ()

�e pooled t-test is based on the fact that variable

T in () has Student’s distribution with n + n − 
degrees of freedom, i.e., P(t ≥ tn+n−(α)) = α.

Hence, for instance, we reject the null hypothesis

that both population means are equal (H : µ = µ)
if ∣t∣ ≥ tn+n−(α/).

(b) Unequal variances σ  ≠ σ 
When the assumption of equal variances is unten-

able, we are confronted with what is known as

7Behrens–Fisher problem, which is still an open
challenge. �ere are, however, approximate solu-

tions and a commonly accepted technique is Welch’s

t-test, also referred to as Welch–Aspin, Welch–

Satterthwaite, or Smith–Satterthwaite test (Winer

; Johnson ).�e test statistic is

T =
(X − X) − (µ − µ)√

S

n
+ S




n

()

and it has approximately t-distribution with degrees

of freedom estimated as

ν = (g + g)

g / (n − ) + g/ (n − )
; gi =

si
ni
. ()
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�e di�erence between the denominators in () and

() should be noticed; in () we have the estimate

of the common variance, while in () we have the

estimate of variance of the di�erence.

�e test procedure is to calculate the value t of

the test statistics given by () and degrees of freedom

ν according to () (if ν is not an integer we round

it down rather than up in order to take a conserva-

tive approach).�en, given the level of signi�cance

α, we use the obtained ν and Student’s distribution

to calculate critical value tν(α) and draw conclu-
sions comparing t and tν(α) like in an ordinary
one-sample t-test.

Two Dependent Samples
�e test procedure is essentially the same as for one-sample

t-test, the only di�erence being that we enter () with the

mean and standard deviation of paired di�erences instead

of with the original data. Number of degrees of freedom is

n − , where n is the number of the observed di�erences
(number of pairs). �is test is based on the assumption

that the population of paired di�erences follows normal

distribution.

Robustness of t-Test
Since the t-test requires certain assumptions in order to

be exact, it is of interest to know how strongly the under-

lying assumptions can be violated without degrading the

test results considerably. In general, a test is said to be

robust if it is relatively insensitive to violation of its under-

lying assumptions. �at is, a robust test is one in which

the actual value of signi�cance is una�ected by failure to

meet assumptions (i.e., it is near the nominal level of sig-

ni�cance), and at the same time the test maintains high

power.

�e one-sample t-test is widely considered reasonably

robust against the violation of the normality assumption

for large sample sizes, except for extremely skewed popu-

lations (see Bartlett  or Bradley ). Departure from

normality is most severe when sample sizes are small and

becomes less serious as sample sizes increase (since the

sampling distribution of the mean approaches a normal

distribution; see 7Central Limit�eorems). However, for
extremely skewed distribution even for quite large samples

(e.g., ), t-test may not be robust (Pocock ).

Numerous studies have dealt with the adequacy of the

two-sample t-test if at least one assumption is violated.

In case of unequal variances, it has been shown that the

t-test is only robust if sample sizes are equal (e.g., Sche�é

; Posten et al. ; Zimmerman ). However, if

two equal sample sizes are very small, the t-test may not be

robust (see Huck , pp. –). If both sample size

and variances are unequal, the Welch t-test is preferred to

as a better procedure.

If the normality assumption is not met, a researcher

can select one of the nonparametric alternatives of the

t-test – in one-sample scenario 7Wilcoxon–signed–rank
test, in two independent samples case 7Wilcoxon–Mann–
Whitney test, and if the samples are dependent Wilcoxon-

matched pair rank test (for the asymptotic e�ciency

comparison, see 7Asymptotic Relative E�ciency in Test-
ing).

Extension to comparison of an arbitrary number

of independent samples ends up in a technique called

7analysis of variance, abbreviated ANOVA. Multivariate
counterparts of one-sample and two-sample t-tests are

based on Hotelling’s T statistic (Johnson and Wichern

), and ANOVA generalizes to multivariate analysis of

variance, abbreviated MANOVA (see 7Multivariate Anal-
ysis of Variance (MANOVA)).
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Introduction
�e fundamental object of modern statistics is the ran-

dom variable X and its associated probability law. �e

probability law may be given by the cumulative probabil-

ity distribution F(x), or equivalently by the probability
density function f (x) = F′(x), assuming the continu-
ous case. In practice, estimation of the probability density

may approached either parametrically or nonparametri-

cally. If a parametric model f (x∣θ) is assumed, then the
unknown parameter θ may be estimated from a random

sample using maximum likelihood methods, for example.

If no parametric model is available, then a nonparamet-

ric estimator such as the histogram may be chosen. �is

article describes two di�erent methods of specifying the

construction of a histogram from a random sample.

Histogram as Density Estimator
�e histogram is a convenient graphical object for rep-

resenting the shape of an unknown density function. We

begin by reviewing the stem-and-leaf diagram, introduced

by Tukey (). Tukey reanalyzed Lord Rayleigh’s  mea-

surements of the weight of nitrogen. Using the 7R lan-
guage, the stem-and-leaf diagram of the weights is given

in Fig. . One of the  raw numbers is x = .. Where
does x appear in the diagram?�e three digits to the le� of

“∣” are called the stem.�e stems correspond to the bins of
a histogram. Here there are four stems, de�ned by the �ve

cut points (., ., ., ., .).�e bin counts
are (, , , ), with x falling in the second bin. Round-
ing x to . and removing the stem “,” leaves the leaf

value of “,” which is what appears to the right of the second

stem in Figure . In the fourth stem, all seven measure-

ments rounded to ..�is sample was measured to high

accuracy to estimate the atomic weight of nitrogen, but

instead its highly non-normal shape led to the discovery

of the noble gas argon.

�e ordinary histogram depicts only the bin counts,

which we denote by {νk}, where the integer k indicates the
bin number.�en∑k νk = n, where n denotes the sample
size. Given an ordered set of cut points {tk}, the kth bin
Bk is the half-open interval [tk, tk+). If all of the bins have
the same width, then plotting the bin counts gives an indi-

cation of the shape of the underlying density; see the le�

frame of Figure  for an example.

�e le� frame of Fig.  depicts a frequency histogram,

since the bin counts {νk} are plotted. �e density his-
togram is de�ned by the formula

f̂ (x) = νk

nh
x ∈ Bk. ()

�e density histogram estimator is nonnegative and inte-

grates to . �e right frame of Fig.  shows a density

histogram with a narrower bin width.

> stem (wts)

The decimal point is 2 digit (s) to the left of the |

229 | 889999
230 | 12
230 |
231 | 0000000

Sturges’ and Scott’s Rules. Fig.  Tukey’s stem-and-leaf plot of
the Raleigh data (n = )
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Sturges’ Rule
�e origins of the histogram may be traced back to 

and the invention of actuarial tables by JohnGraunt ().

But the �rst practical rule for the construction of his-

tograms took another  years. Sturges () essentially

developed a normal reference rule, that is, a formula for

the number of bins appropriate for normal data. Sturges

sought a discrete distribution that was approximately nor-

mal to develop his formula. While several come to mind,

clearly a binomial random variable Y ∼ B(m, p) with
p = 


is suitable. If we imagine appropriately re-scaled

normal data, which are continuous, rounded to integer

values (, , . . . ,m) in them +  bins (each of width h = )

B = (− 

,



] B = ( 


,



] . . . Bm = (m − 


,m + 


],

()

then the Binomial probability in the kth bin is given by

P(Y = k) = (m
k
) pk (−p)m−k = (m

k
)( 

)
m

=
(m
k
)

m ⋅ 
. ()

Comparing the density formulae in Eqs.  and , we have

νk = (m
k
), n = m, and h = . ()

If we letK denote the number of bins, thenK = m+ for the
binomial density, as well as for the appropriately re-scaled

normal data. From Eq. , we compute

n = m = K− ; hence K =  + log

(n). ()

�e formula for K in Eq.  is called Sturges’ Rule.

Scott’s Rule
�e density histogram f̂ (x) = νk/nh is not di�cult to ana-
lyze for a random sample of size n from a density f (x).
Given a set of equal-width bins, the bin counts {νk} are

individually a Binomial random variable B(n, pk), with
probability

pk = ∫
Bk

f (t)dt = ∫
tk+

tk

f (t) dt = ∫
tk+h

tk

f (t)dt.

So Eνk = npk .�us for a �xed point x, the expected value
of the density histogram f̂ (x) is (npk)/nh = pk/h. Scott
() shows that this is close to the unknown true value

f (x) when the bin width h is small.
On the other hand, the variance of νk is npk(− pk), so

that the variance of f̂ (x) is npk( − pk)/(nh) ∼ pk/nh.
�is variance will be small if h is large. Since h cannot

be both small and large, and using the integrated mean

squared error as the criterion, Scott () derived the

asymptotically optimal bin width to be

h
∗
S = ( 

n ∫ f ′(t) dt
)
/
. ()

While the formula for h∗ in Eq.  seems to require
knowledge of the unknown density, it is perfectly suit-

able for deriving Scott’s normal-reference bin-width rule.

If f ∼ N(µ, σ ), then

∫
∞

−∞
f
′(t) dt = 


√

πσ 
and

h
∗
S = (

√
πσ 

n
)
/

≈ .σn−/ . ()

Scott’s rule ĥS replaces σ in the formula for h∗S by the usual
maximum likelihood estimate of the standard deviation.

The Rules in Practice
For the birth count data used in Fig. , n = , σ̂ = .,
and the sample range is (, ); hence, Sturges’ and
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Scott’s rules give

K = .(or ĥ =  − 
.

= .) and ĥS = ..

Note the density histogram in the right frame of Fig. 

uses h = , which has ten bins. Interestingly, the le�
frame shows the default histogram in R, which implements

Sturges’ rule as well. However, instead of �nding ten bins

exactly, R uses the function pretty to pick approximately

ten binswith “convenient” values for {tk}.�e result in this
case is  bins, and h = . Scott’s rule (not shown) is close
to h = .

The Rules with Massive Datasets
While the two rules o�en give similar results for sample

sizes less than a couple hundred, they diverge for larger

values of n for any density, including the normal. To see

this, let us reconsider the binomial/normal construction

at Eq.  we used to �nd Sturges’ rule. (�e data are basi-

cally rounded to one of them+ integer values , , . . . ,m.)
�us we have K = m+  bins, n = K−, µ = mp = m/,
and σ  = mp(− p) = m/. Note that the variance of this
density increases with the sample size in such a way that

Sturges’ rule always gives h =  for any sample size.
By way of contrast, Scott’s rule from Eq.  is given by

h
∗
S = .

√
m


n
−/ = .

√
K − n−/

= .
√
log


(n)n−/. ()

Observe that h∗S →  as the sample size n → ∞. In fact,
h∗S <  for all n >  for these data. When n = ,
h∗S = ., only % less than Sturges’ h = . However, when
n = , h∗S = ..�us the optimal histogram would
have nearly  (/.) times as many bins as when using

Sturges’ rule.

�e bin width given in Eq.  is also the ratio of Scott’s

rule to the Sturges bin width (since h = ). If the nor-
mal data have any other scale, then the ratio is the same.

�e trick of using the Binomial model facilitates the con-

version of bin counts to bin widths. Otherwise, a more

careful analysis of the sample range of normal data would

be necessary.

Discussion
Both Sturges’ and Scott’s rules use the normal-reference

principle. However, Sturges makes a deterministic calcula-

tion, whereas Scott’s rule is based upon a balancing of the

global variance and squared bias of the histogram estima-

tor. For normal data, we have seen that Sturges’ rule greatly

understates the optimal number of bins (according to inte-

grated mean squared error).�us we say that Sturges’ rule

tends to oversmooth the resulting histogram. Sturges’ rule

wastes a large fraction of the information available in large

samples.

Why are these rules useful in practice? Terrell and

Scott;  show that there exists an “easiest” smooth den-

sity, whose optimal bin width is only . times as wide

as Scott’s normal reference rule. Terrell concludes that for

any other density, the (unknown) optimal bin width will

be narrower still.�us, the normal reference rule is always

useful as a �rst look at the data. Narrower bin widths can

be investigated if the sample size is large enough and there

is obvious non-normal structure.

Hyndman;  cautions that since both νk and n in

Eqs.  and  could be multiplied by a constant factor, that

K could take the general form c + log

(n).�e fact that

Sturges’ rule (c = ) continues to be used is probably due to
its simple form and its closeness to the optimal number of

bins for textbook-sized problems (n < ). Of course, if
you impose the boundary condition that with one sample

(n = ) you should choose one bin (K = ), then you would
conclude that c =  is appropriate.
A variation of Scott’s rule was independently proposed

by Freedman and Diaconis; , who suggested using a

multiple of the interquartile range rather than σ̂ in the nor-

mal reference rule. Of course, there are more advanced

methods of cross-validation for histograms introduced by

Rudemo; . Surveys of these and other ideas may be

found in Scott; , Wand; , and Doane . Finally,

we note that if the bin widths are not of equal width, then

the shape of the frequency histogram can be grossly mis-

leading. �e appropriate density histogram has the form

νk/nhk, but more research is required to successfully con-
struct these generalized histograms in practice.
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Introduction
In the entry 7Su�cient statistics, it was mentioned that
we wished to work with a su�cient or minimal su�cient

statistic T because such a statistic will summarize data,
but preserve all “information” about an unknown param-

eter θ contained in the original data. Here, θ may be real
or vector valued. But, how much (Fisher-)information do

we have in the original data which we attempt to preserve

through data summary?Our present concern is to quantify

Fisher-information content within some data.

�e notion of the information about θ contained in
data was introduced by F. Y. Edgeworth in a series of

papers, published in the J. Roy. Statist. Soc., during –

. Fisher () articulated the systematic development

of this concept. �e reader is referred to Efron’s (,

p. ) commentaries on Fisher-information.

Section “7One Parameter Case” introduces a one-
parameter situation. Section “7Multi-Parameter Case” dis-
cusses the two-parameter case which easily extends

to a multi-parameter situation. When one is forced

to utilize some less than full information data sum-

mary, we discuss in section “7Role in the Recov-
ery of Full Information” how the lost information

may be recovered by conditioning on ancillary statis-

tics. Mukhopadhyay (, Chap. ) includes in-depth

discussions.

One-Parameter Case
Suppose that X is an observable real valued random vari-

able with the pmf or pdf f (x; θ) where the unknown
parameter θ ∈ Θ, an open subinterval of R, while the
X space is assumed not to depend upon θ. We assume

throughout that the partial derivative ∂
∂θ
f (x; θ) is �nite for

all x ∈ X , θ ∈ Θ. We also assume that we can interchange
the derivative (with respect to θ) and the integral (with
respect to x).

De�nition  �e Fisher-information or simply the infor-

mation about θ, contained in the data, is given by

IX(θ) = Eθ [{ ∂

∂θ
log f (X; θ)}



] .

�e informationIX(θ)measures the square of the sen-
sitivity of f (x; θ) on an average due to an in�nitesimal
subtle change in the true parameter value θ.�is concept

may be understood as follows: Consider

lim
∆θ→

f (x; θ + ∆θ) − f (x; θ)
∆θ

÷ f (x; θ)

which is ∂
∂θ
log f (x; θ). Obviously, Eθ [ ∂

∂θ
log f (X; θ)] ≡ ,

and hence one goes on to de�ne IX(θ) = Eθ[ { ∂
∂θ
log

f (X; θ)} ].

Example  Let X be Poisson(λ), λ > . One veri�es that
IX(λ) = λ−. �at is, as we contemplate having larger
and larger values of λ, the variability built in X increases,

and hence it seems natural that the information about the

unknown parameter λ contained in the data X will go

down further and further. ▲
Example  Let X be N(µ, σ ) where µ ∈ (−∞,∞) is an
unknown parameter. Here, σ ∈ (,∞) is assumed known.
One veri�es that IX(µ) = σ−. Again, as we contemplate
having larger and larger values of σ , the variability built in



Sufficient Statistical Information S 

S

X increases, and hence it seems natural that the informa-

tion about the unknown parameter µ contained in the data

X will go down further and further. ▲
�e following result quanti�es the information about

an unknown parameter θ contained in a random sample

X, . . . ,Xn of size n.

�eorem  Let X, . . . ,Xn be iid with a common pmf or

pdf given by f (x; θ). We denote Eθ [{ ∂
∂θ
log f (X; θ)}

] =
IX(θ), the information contained in the observation X.
�en, the information IX(θ), contained in the random
sample X = (X, . . . ,Xn), is given by

IX(θ) = nIX(θ) for all θ ∈ Θ.

Next, suppose that we have collected random samples

X, . . . ,Xn from a population and we have somehow evalu-

ated the informationIX(θ) contained inX = (X, . . . ,Xn).
Also, suppose that we have a summary statistic T = T(X)
in mind for which we have evaluated the information

IT(θ) contained in T. If it turns out that IT(θ) = IX(θ),
can we then claim that the statistic T is indeed su�cient

for θ?�e answer is yes, we certainly can.

We state the following result by referring to Rao (,

result (iii), p. ) for details. In an exchange of personal

communications, C.R. Rao had provided a simple way to

look at the next �eorem . In Mukhopadhyay (),

the Exercise .. gives an outline of Rao’s elegant proof

whereas in the Examples ..–.. of Mukhopadhyay

(), one �nds opportunities to apply this theorem.

�eorem  Suppose that X is the whole data and T =
T (X) is some statistic.�en, IX(θ) ≥ IT(θ) for all θ ∈ Θ.
�e two information measures will be equal for all θ if and

only if T is a su�cient statistic for θ.

Multi-Parameter Case
When the unknown parameter θ is multidimensional, the
de�nition of the Fisher information measure gets more

involved. To keep the presentation simple, we only discuss

the case of a two-dimensional parameter.

Suppose that X is an observable real valued random

variable with the pmf or pdf f (x; θ) where the parame-
ter θ = (θ, θ) ∈ Θ, an open rectangle ⊆ R, and the X
space does not depend upon θ.We assume throughout that
∂
∂θ i
f (x; θ) exists, i = , , for all x ∈ X , θ ∈ Θ, and that we

can also interchange the partial derivative (with respect to

θ, θ) and the integral (with respect to x).

De�nition  Denote Iij(θ) = Eθ [{ ∂
∂θ i
log f (X; θ)}

{ ∂
∂θ j
log f (X; θ)}] , for i, j = , . �e Fisher-information

matrix or simply the information matrix about θ is given

by

IX(θ) =
⎛
⎜⎜
⎝

I(θ) I(θ)

I(θ) I(θ)

⎞
⎟⎟
⎠
.

In situations where ∂

∂θ i∂θ j
f (x; θ) exists for all x ∈ X , for all

i, j = , , and for all θ ∈ Θ, we can alternatively express

Iij(θ) = −Eθ [ ∂

∂θ i∂θ j
log f (X; θ)] for i, j = , ,

and rewrite IX(θ) accordingly.
Having a statistic T = T(X, . . . ,Xn), however, the

associated information matrix about θ will simply be cal-
culated as IT(θ)where onewould replace the original pmf
or pdf f (x; θ) by that of T, namely g(t; θ), t ∈ T . In order
to compare two summary statistics T and T, we have

to consider their individual two-dimensional information

matrices IT(θ) and IT(θ). It would be tempting to say
that T is more informative about θ than T provided that

the matrix IT(θ) − IT(θ) is positive semi de�nite.

A version of�eorem . holds in the multiparameter case.

One may refer to Rao (, Sect. a.).

Example  Let X, . . . ,Xn be iid N(µ, σ ) where µ ∈
(−∞,∞) and σ  ∈ (,∞) are both unknown parameters.
Denote θ = (µ, σ ),X = (X, . . . ,Xn). One can verify that
the information matrix is given by

IX(θ) = nIX(θ) =
⎛
⎜⎜
⎝

nσ− 





nσ−

⎞
⎟⎟
⎠
,

for the whole data X. ▲
Example  (Example . Continued) LetX = n−Σni=Xi, the
sample mean and S = (n − )−Σni=(Xi − X), the sample
variance, n ≥ . One can check that

IX(θ) =
⎛
⎜⎜
⎝

nσ− 





σ−

⎞
⎟⎟
⎠
,

IS(θ) =
⎛
⎜⎜
⎝

 





(n − )σ−

⎞
⎟⎟
⎠
.

Surely, X and S are independent, and hence

IX,S(θ) = IX(θ) + IS(θ) =
⎛
⎜⎜
⎝

nσ− 





nσ−

⎞
⎟⎟
⎠
,

which coincides with IX(θ). ▲
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Role in the Recovery of Full Information
In the entry 7Su�cient statistics, we had seen how ancil-
lary statistics could play signi�cant roles in conjunction

with non-su�cient statistics. Suppose that T is a non-

su�cient statistic for θ and T is ancillary for θ. In other

words, in terms of the information content, IT(θ) <
IX(θ) where X is the whole data and IT(θ) =  for all
θ ∈ Θ. Can we recover all the information contained in X
by reporting T while conditioning on the observed value

of T?�e answer is: we can do so and it is a fairly simple

process.

Such a process of conditioning has far reaching impli-

cations as emphasized by Fisher (, ) in his famous

“Nile” example. Onemay also refer to Basu (), Hinkley

(), Ghosh () and Reid () for fuller discus-

sions of conditional inference. Also, refer toMukhopadhyay

(, Sect. .).

�e approach goes through the following steps. One

�rst �nds the conditional pdf of T when T = u given that
T = v, denoted by gT ∣ v(u; θ). Using this conditional pdf,
one can obtain the information content:

IT ∣ v(θ) = Eθ [{ ∂

∂θ
log{gT ∣ v(T; θ)}}



] .

In general, the expression of IT ∣ v(θ) would depend on v,
that is, the �xed value of T. Next, one averages IT ∣ v(θ)
over all possible values v, that is, evaluates ET[IT ∣T(θ)].
Once this last bit of averaging is done, it will coincide with

the information content in the joint statistic (T,T), that
is, one can claim:

IT ,T(θ) = ET [IT ∣T(θ)] .

�is analysis provides a way to recover the lost information

due to reporting T alone via conditioning on an ancil-

lary statistic T. Two examples follow that are taken from

Mukhopadhyay (, pp. –).

Example  Let X,X be iid N(θ, ) where θ ∈ (−∞,∞)
is an unknown parameter. We know that X is su�cient

for θ. Now, X is distributed as N (θ, 

) so that we can

immediately write IX(θ) = . Now, T = X is not suf-
�cient for θ since IX(θ) =  < IX(θ). �at is, if we
report only X a�er the data (X,X) has been collected,
there will be some loss of information. Next, consider an

ancillary statistic, T = X − X and now the joint dis-
tribution of (T,T) is N (θ, , , , ρ = √


) . Hence, we

�nd that the conditional distribution of T given T = v is
N (θ + 


v, 

) , v ∈ (−∞,∞).�us,we �rst haveIT ∣v(θ) =

ET ∣ v [ (T − θ − 


v)] =  and since this expression does

not involve v, we then have ET [IT ∣T(θ)] =  which

equalsI
X(θ). In otherwords, by conditioning on the ancil-

lary statistic T, we have recovered the full information

which is IX(θ). ▲
Example  Suppose that (X,Y) is distributed as N(, ,
, , ρ) where the unknown parameter is the correlation
coe�cient ρ ∈ (−, ). Now consider the two individual
statistics X and Y . Individually, both T = X and T = Y
are ancillary for ρ. We note that the conditional distribu-

tion of X given Y = y isN(ρy, − ρ) for y ∈ (−∞,∞) and
accordingly have,

∂

∂ρ
log fX∣ Y=y(x; ρ) =

ρ

 − ρ

− [ ρ(x − ρy)

( − ρ)
− y(x − ρy)

( − ρ)
] .

In other words, the information about ρ contained in the

conditional distribution of T ∣ T = v, v ∈ R, is given by

ρ

( − ρ)
+ v

( − ρ)
,

which depends on the value v unlike what we had in Exam-

ple . �en, the information contained in (X,Y) will be
given by

IX,Y(ρ) = ET
⎡⎢⎢⎢⎢⎣
ET ∣ T=v

⎛
⎝
{ ∂

∂ρ
log fT ∣ T=v(T; ρ)}

⎞
⎠

⎤⎥⎥⎥⎥⎦

= ET [
ρ

( − ρ)
+ T



( − ρ)
]

= ρ

( − ρ)
+ 

( − ρ)
=  + ρ

( − ρ)
.

In other words, even though the statistic X tells us nothing

about ρ, by averaging the conditional (on the statistic Y )

information in X, we have recovered the full information

about ρ contained in the whole data (X,Y). ▲
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Introduction
Many fundamental concepts and principles of statistical

inference originated in Fisher’s work. Perhaps the deep-

est of all statistical concepts and principles is su�ciency.

It originated from Fisher () and blossomed further in

Fisher ().We introduce the notion of su�ciencywhich

helps in summarizing data without any loss of information.

Section “7Su�ciency” introduces su�ciency andNey-
man factorization. Section “7Minimal Su�ciency” dis-
cussesminimal su�ciency, the Lehmann-Sche�é approach,

and completeness. Section “7NeymanFactorization” shows
the importance of ancillary statistics including Basu’s theo-

rem. Mukhopadhyay (, Chap. ) provides many more

details.

Sufficiency
Let X, . . . ,Xn be independent real-valued observations

having a common probability mass function (pmf) or

probability density function (pdf) f (x; θ), x ∈ X , the
domain space for x. Here, n is known, but θ ∈ Θ(⊆ R)
is unknown. In general, however, the X’s and θ are allowed

to be vector valued.�is should be clear from the context.

A summary from data X ≡ (X, . . . ,Xn) is provided by
some appropriate statistic, T ≡ T(X) which may be vector
valued.

De�nition  A real valued statistic T is called su�cient

for parameter θ if and only if the conditional distribution of

the random sample X = (X, . . . ,Xn) given T = t does not
involve θ, for all t ∈ T , the domain space for T.

In other words, given the value t of a su�cient statis-

tic T, conditionally there is no more information le� in the

original data regarding θ. �at is, once a su�cient sum-

mary T becomes available, the original data X becomes
redundant.

De�nition  A statistic T ≡ (T, . . . ,Tk) where Ti ≡
Ti(X, . . . ,Xn), i = , . . . , k, is called jointly su�cient for
parameter θ if and only if the conditional distribution of

X = (X, . . . ,Xn) given T = t does not involve θ, for all

t ∈ T ⊆ Rk.

Example  Suppose that X, . . . ,Xn are independent

and identically distributed (iid) Poisson(λ) where λ is

unknown,  < λ < ∞. Here, X = {, , , . . .}, θ = λ,

and Θ = (,∞).�en, T = Σni=Xi is a su�cient statistic
for λ.

Neyman Factorization
Suppose that we have observable real valued iid observa-

tions X, . . . ,Xn from a population with a common pmf

or pdf f (x; θ). �en, the likelihood function is given by
L(θ) = Πni= f (xi; θ), θ ∈ Θ. Fisher () discovered the
fundamental idea of factorization whereas Neyman ()

rediscovered a re�ned approach to factorize a likelihood

function. Halmos and Savage () and Bahadur ()

introduced measure-theoretic treatments.

�eorem  (Neyman Factorization�eorem). A vector
valued statistic T = T(X, . . . ,Xn) is jointly su�cient for θ
if and only if the following factorization holds:

L(θ) = g (T(x, . . . , xn); θ)h(x, . . . , xn),
for all x, . . . , xn ∈ X ,

where the functions g(T; θ) and h(.) are both nonnega-
tive, h(x, . . . , xn) is free from θ, and g(T; θ) depends on
x, . . . , xn only through the observed value T(x, . . . , xn)
of T.

Example  Let X, . . . ,Xn be iid N(µ, σ ) where θ =
(µ, σ ) ∈ R × R+ is an unknown parameter vector. Let
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X, S respectively be the sample mean and variance.�en,

T = (X, S) is jointly su�cient for θ. However, this
does not imply component-wise su�ciency. To appreciate

this �ne line, pretend for a moment that one could claim

component-wise su�ciency. But, since (X, S), and hence
(S,X), is jointly su�cient for (µ, σ ). Now, how many
would be willing to push an idea that component-wise, S

is su�cient for µ or X is su�cient for σ !

�eorem  (Su�ciency in an Exponential Family).
Suppose that X, . . . ,Xn are iid with a common pmf or the

pdf belonging to a regular k-parameter exponential family,

namely

f (x; θ) = a(θ)g(x)exp{Σki=bi(θ)Ri(x)}

with appropriate forms for g(x) ≥ , a(θ) ≥ , bi(θ) and
Ri(x), i = , . . . , k. Denote Tj = Σni=Rj(Xi), j = , . . . , k.
�en, the statistic T = (T, . . . ,Tk) is jointly su�cient for θ.

Minimal Sufficiency
From the factorization�eorems –, it should be clear that

thewhole dataXmust always be su�cient for the unknown
parameter θ. But, we ought to reduce the data by means of
summary statistics in lieu of considering X itself. What is
a natural way to de�ne the notion of a “shortest su�cient”

or “best su�cient” summary statistic?�e other concern

should be to get hold of such a summary, if there is one.

Lehmann and Sche�é () gave a mathematical for-

mulation of the concept known asminimal su�ciency and

proposed a technique to locate minimal su�cient statis-

tics. Lehmann and Sche�é (, ) included crucial

follow-ups.

De�nition  A statistic T is called minimal su�cient for
the unknown parameter θ if and only if

. T is su�cient for θ, and
. T is minimal or “shortest′′ in the sense that T is a func-
tion of any other su�cient statistic.

Lehmann–Scheffé Approach
�e following result was proved in Lehmann and Sche�é

(). Its proof requires some understanding of the cor-

respondence between a statistic and so called partitions it

induces on a sample space.

�eorem  (Minimal Su�cient Statistics). Let us
denote h(x, y; θ) = Π

n
i= f (xi; θ)/Πni= f (yi; θ), the ratio

of the likelihood functions at x and y, for x, y ∈ X n. Let
T ≡ T(X, . . . ,Xn) = (T, . . . ,Tk) be a statistic such that
the following holds:

7 With any two arbitrary but fixed data points x = (x , . . . , xn),
y = (y , . . . , yn) fromX n,h(x, y; θ) does not involve θ if and

only if T(x) = T(y).

�en, T is minimal su�cient for θ.
In Examples – and�eorem , the reported su�cient

statistics also happen to be the minimal su�cient statis-

tics. It should be noted, however, that a minimal su�cient

statistic may exist for some distributions from outside a

regular exponential family. For example, let X, . . . ,Xn be

iid Uniform(, θ)where θ ∈ R+ is an unknown parameter.
Here,Xn:n, the largest order statistic, is aminimal su�cient

statistic for θ.

�eorem  (Distribution of a Minimal Su�cient
Statistic in an Exponential Family). Under the conditions
of �eorem , the pmf or the pdf of the minimal su�-

cient statistic (T, . . . ,Tk) also belongs to a k-parameter
exponential family.

In the case of population distributions not belonging to

a regular exponential family, however, sometimes one may

not achieve any substantial data reduction by invoking the

concept of minimal su�ciency. For example, suppose that

we have iid observations X, . . . ,Xn having the following

Cauchy pdf:



π



 + (x − θ)
,−∞ < x, θ <∞.

Here, −∞ < θ < ∞ is an unknown location parameter.

Now, let T = (Xn:, . . . ,Xn:n) where Xn: ≤ . . . ≤ Xn:n
are the sample order statistics. One can verify that T is a
minimal su�cient statistic for θ.

A Complete Sufficient Statistic
Consider a real valued random variable X whose pmf or

pdf is f (x; θ) for x ∈ X and θ ∈ Θ. LetT = T(X) be a statis-
tic and suppose that its pmf or pdf is denoted by g(t; θ) for
t ∈ T and θ ∈ Θ.�en, {g(t; θ): θ ∈ Θ} is called the family
of distributions induced by T.

De�nition  �e family {g(t; θ): θ ∈ Θ} is called com-
plete if and only if the following condition holds. Consider

any real valued function h(t) de�ned for t ∈ T , having a
�nite expectation, such that

Eθ [h(T)] =  for all θ ∈ Θ implies h(t) ≡  w.p..

A statistic T is said to be complete if and only if {g(t; θ): θ ∈
Θ} is complete. A statistic T is called complete su�cient for
θ if and only if () T is su�cient for θ and () T is complete.

A complete su�cient statistic, if it exists, is also a min-

imal su�cient statistic. For example, let X, . . . ,Xn be iid
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Uniform(, θ) where θ ∈ R+ is unknown. Here, Xn:n, the
largest order statistic, is a complete su�cient statistic for

θ. Hence, Xn:n is also minimal su�cient for θ.�is proof

bypasses�eorem . Now, we state a remarkably general

result (�eorem ) in the case of a regular exponential fam-

ily of distributions. One may refer to Lehmann (, pp.

–) for a proof of this result.

�eorem  (Completeness of a Minimal Su�cient
Statistic in an Exponential Family). Under the conditions
of�eorem , the minimal su�cient statistic (T, . . . ,Tk) is
complete.

Ancillary Statistics
�e concept called ancillarity of a statistic is perhaps the

furthest away from the notion of su�ciency. A su�cient

statistic T preserves all the information about θ contained
in the data X. In contrast, an ancillary statistic T by itself
provides no information about θ. �is concept evolved
from Fisher () and later it blossomed into the vast area

of conditional inference. In his  book, Fisher empha-

sized many positive aspects of ancillarity in analyzing real

data. For fuller discussions of conditional inference onemay

look at Basu (), Hinkley () andGhosh (). Reid

() provides an assessment of conditional inference

procedures.

Consider the real valued observable random variables

X, . . . ,Xn from some population having the common pmf

or pdf f (x; θ), where the unknown parameter vector θ ∈
Θ ⊆ Rp. Let us continue writing X for the full data and
T = T(X) for a vector valued statistic.

De�nition  A statistic T is called ancillary for θ or sim-
ply ancillary provided that the pmf or the pdf of T does not
involve θ.

Here is an important result that ties the notions of com-

plete su�ciency and ancillarity. Basu () came up with

this elegant result which we state here under full generality.

�eorem  (Basu’s�eorem). Suppose that we have two
vector valued statistics, U = U(X) which is complete su�-
cient for θ andW = W(X) which is ancillary for θ.�en,
U andW are independently distributed.

An ancillary statistic by itself tells one nothing about

θ! Hence, one may think that an ancillary statistic may
not play a role to come up with a su�cient summary

statistic. But, thatmay not be the case.�e following exam-

ples will highlight the fundamental importance of ancillary

statistics.

Example  Suppose that (X,Y) has a curved exponential
family of distributions with the joint pdf given by

f (x, y; θ) = {
exp{−θx − θ−y} if  < x, y <∞

 elsewhere,

where θ(> ) is an unknown parameter.�is distribution
was discussed by Fisher (, ) in the context of his

famous “Nile” example. Denote U = XY ,V = X/Y . One
can show that U is ancillary for θ, V does not provide the

full information about θ, but (U,V) is minimal su�cient
for θ. Note that V / is the maximum likelihood estimator
of θ, but it is not minimal su�cient for θ.

Example  �is example was due to D. Basu. Let (X,Y)
be distributed as bivariate normal with zero means,

unit variances, and an unknown correlation coe�cient

ρ, − < ρ < . �en, marginally, both X and Y are dis-
tributed as standard normal variables. Clearly, X by itself

is an ancillary statistic, Y by itself is an ancillary statistic,

but X and Y combined has all the information about ρ.

About the Author
For biography see the entry 7Sequential Sampling.
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Summarizing Data with Boxplots

Boris Iglewicz

Professor

Temple University, Philadelphia, PA, USA

Introduction
Statisticians have created a variety of techniques for sum-

marizing data graphically. For continuous univariate data

the most commonly used graphical display is the his-

togram. Once the interval width is carefully determined,

the histogram provides a visual summary of the data cen-

ter, spread, 7skewness, and unusual observations, which
may be7outliers.While these features are visible, there are
no speci�c numeric summarymeasures that are part of the

histogram display.

Tukey () introduced a simple alternative to the his-

togram that contains similar features as the histogram, is

easier to graph, and includes measures of location, spread,

skewness, and a rule for �agging outliers. He called this

graphic summary the boxplot.�e key components of the

boxplot consist of Tukey’s �ve number summary.�ese are:

the median = Q; upper quartile = Q; lower quartile =
Q; largest value = X(n); and the smallest value = X().

�is information is all that is needed to graph the sim-

plest version of the boxplot, called the box-and-whisker

plot. Such a plot is illustrated as the le� plot of Fig. .�e

data consists of daily percent changes in the Dow Jones

industrial average closing values for days when the mar-

ket is open.�us, if Yt is the closing Dow Jones Industrial

Average at day t, then the data for the boxplots in Fig. 

consists of Xt = (Yt − Yt−)/Yt−.
�e box-and-whisker plot has a box at the center that

contains approximately % of the middle observations.

�e horizontal line inside the plot is themedian,Q, which

provides a nice summary measure for the data center.�e

upper and lower horizontal lines enclosing the box are

the values of Q, and Q, respectively. From these one can

obtain the interquartile range, IQR = Q − Q, which is a
common robust measure of spread. Skewness can also be

observed by comparingQ −Q withQ −Q or X(n) −Q
with Q − X().
Tukey () also added a simple rule for �agging

observations as potential outliers. �at rule �ags obser-

vations as outliers if they fall outside the interval (Q −
k(IQR), Q + k(IQR)). Tukey suggested using k = . for
a liberal interval with out values so designated. He also

suggested using k =  to designate far out values. �e
box-and-whisker plot that incorporates the rule for �ag-

ging outliers is called a boxplot.�e second from le� plot

in Fig.  illustrates such a boxplot for the June  data.

In addition, this boxplot contains an X in the middle des-

ignating the location of the sample mean. �e inclusion

of the sample mean is a useful added feature that some

statistical computer packages incorporate.

Although the boxplot is a simple graphic summary

procedure, a number ofmodi�cations have been suggested

and properties studied. In section “7VariedVersions of the
Basic Boxplot” we will brie�y review other variants of the

basic boxplot. In section “7Outlier Rule” we will consider
further the properties of the outlier identi�cation rule and

suggest modi�ed versions. In section “7Quartiles” we will
consider the computation of quartiles. A brief summary

will be provided in section “7Summary”.

Varied Versions of the Basic Boxplot
A fair number of alternative versions of the basic boxplot

have been introduced and used. Tu�e () suggested a

slight modi�cation that is useful in summarizing a large

number of parallel boxplots that can be especially useful

when dealing with data collected over many time peri-

ods. Tu�e suggested removing the box, as in the three

right most graphs in Fig. , representing the data for Jan-

uary, February, and March , respectively.�e box can

now be represented by either a solid line or empty space.
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Summarizing Data with Boxplots. Fig.  Graph contains several versions of boxplot construction based on daily percent changes
of the Dow Jones industrial average grouped by month. The two left hand boxplots consist of June  data with the right one

including potential outliers. The next two to the right represent notched boxplots. The three right side boxplots are based on a

version suggested by Tufte

�e point inside the solid line designates the location of

the median.�e dashed lines go towards the largest and

smallest observations excluding �agged outliers, which are

individually plotted on the boxplot graph.

Another avenue of innovation is the thickness of the

box.�e simplest suggestion, given by McGill et al. (),

is to make the width proportional to the square root of

the sample size, thus showing precision. �is is further

re�ned by Benjamini (), who suggested replacing the

two outer vertical lines of the box by density plots. Such

density plots depend on the kernel and window width and

are thus not unique. He called these plots histplots. Ben-

jamini also introduced density plots for the entire vertical

length of the boxplots.�ese plots he called vaseplots. Both

the hisplots and vaseplots consist of lines.�e vaseplot is

further re�ned by Hintze and Nelson () who used a

curved density plot as a replacement. As the resulting plot

o�en looks like a violin, they called their modi�cation a

violin plot.

A further re�nement is the notched boxplot intro-

duced byMcGill et al. ().�e goal is to provide a visual

signi�cance test comparing the medians of two adjacent

boxplots. If the two medians lie within the two notches,

then we can say that the two population medians are not

signi�cantly di�erent. Two notched boxplots are shown as

the April and May data in Fig. , where we can see that

the two population medians are not signi�cantly di�er-

ent.�e intervals are based on asymptotic results from the

normal distribution.�ese are re�ned in common statis-

tical packages by using sign test type intervals. Benjamini

() suggested using the standard boxplot, but represent

the notches by a shaded horizontal region.

Outlier Rule
Tukey’s simple outlier labeling rule is heavily used, typi-

cally with k = ., where observations are labeled as outliers
if they lie outside the interval (Q−k(IQR), Q+k(IQR)).
Hoaglin et al. () studied the performance of this rule

for random normal data. �ey found that the rule with

k = . is very liberal for moderate to large data sets. For
example, for n =  random normal observations there is
an % chance that at least one observation will be falsely
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labeled as an outlier. Even with n =  that percentage
stays at %. For the conservative k = . rule, these out
probabilities drop drastically to . percent for n = .
�e problem is that this k = . rule does not take sample-
size into account. Consequently, the chances of labeling

regular observations as outliers increase with increasing

sample-size.

Let B(k,n) = probability that all observations of a ran-
domnormal sample lie inside (Q−k(IQR), Q+k(IQR)).
Hoaglin and Iglewicz () obtained values of k as func-

tions of n to keep B(k,n) = . or B(k,n) = ..�at is,
all n observations are inside the outlier labeling interval.

�us, for n = , B(k,n) = ., they obtained k = .,
while for n = , k = .. Iglewicz and Banerjee ()
extended this procedure to random samples from a variety

of both symmetric and skewed distributions in addition to

the normal.�eir work was further extended by Sim et al.

() and Banerjee and Iglewicz ().

Quartiles
Although the computation of quartiles seems to be quite

simple on the surface, there are actually a number of

choices for computing quartiles. As an example, Frigge

et al. () discuss eight options for computing quar-

tiles. Although these choices will have limited e�ect for

large samples, they can di�er noticeably for small sam-

ples. �at can lead to di�erent boundaries for the box

part of the boxplot and di�erent values of k to maintain

B(k,n) = ..
Consider the non-negative number f = j+ g, where j is

the integer part of f and g the fractional part. For example,

if f = ., then j =  and g = .. Consider the ordered
observations X() ≤ X() ≤ X() ≤ ⋯ ≤ X(n), then X(f ) =
( − g)X(j) + gX(j+).�e median is typically obtained as
Q() = X(f ), where f = (n + )/. Letting n = N +  for n
odd, Q() = X(N+). For n = N, n even, Q() = (X(N) +
X(N+))/. Tukey () suggested a very simple rule for
obtaining Q() and Q(), as Q() = X(f ), where f = (j +
)/ and j = the integer part of (n + )/. �en Q() =
X(n+−f ). An alternative popular choice for f inX(f ) = Q()
is f = (n + )/.

Summary
�e boxplot is a heavily used graphical tool for summa-

rizing univariate continuous data. Although the boxplot

option shown on the second from the le� plot of Fig.  is

by far the most popular version, a variety of other useful

choices have been discussed. �ese include the notched

boxplots that are useful in comparing two population

medians, the Tu�e version useful when comparing many

samples, and plots that incorporate density information.

On some occasions, professionals are content with the sim-

pler box-and-whisker plot illustrated as the le�most plot

of Fig. . While the illustrations of Fig.  consist of vertical

boxplots, these could have just as e�ectively been drawn

horizontally.

While this write-up has been devoted to discussion of

the popular univariate boxplot, there have been a num-

ber of successful introductions of bivariate boxplots.�ese

again use robustmeasures, but incorporate information on

the correlation between the variables. Two bivariate box-

plot versions worthy of note are by Goldberg and Iglewicz

() and Rousseeuw et al. ().
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Classical sampling theory considers a �nite population,

U = {, . . . ,N} , of known size, N, with a vector of �xed
unknown values of a variable of interest, y = (y, . . . , yN).
A sample of size n, s = {si , . . . , sin} , is selected by a sam-
ple design, which assigns to each possible sub-set of U

a known probability – p(s). �e objective is to estimate
some function of y, which can be assumed, without loss

of generality, to be the population total, y =
N

∑
i=

yi, on the

basis of the sample observations, {yi , . . . , yin} , and the
sample probabilities – p(s). Inference based only on the
sample selection probabilities is known as design based (or

7randomization) inference and the properties of estima-
tors are considered in this framework solely with respect

to the known sample selection probabilities. Although

design-based inference is widely applied in practice for the

estimation of �nite population parameters, it su�ers from

several drawbacks:

. It can be shown that there is no unbiased estimator,

say of the total, which is optimal, in the sense that

its randomization variance is minimal for all sets of

possible values of the population variables (Godambe

).

. While the use of auxiliary data, e.g., known values

of an auxiliary variable for all population units, X =
(X, . . . ,XN), for sample design (e.g., strati�cation) or
for estimation (e.g., ratio estimation) is widely applied,

in practice, it cannot strictly be justi�ed under the

design-based paradigm, unless some model relating

the values of X and Y is assumed. For instance the e�-

ciency of ratio estimation is based on the premise that

there is a linear relationship between the values of X

and Y (without an intercept) – Cochran ().

. �e use of sample survey data for analytical purposes,

which has developed extensively over the past few

decades, cannot be treated on a solid theoretical basis

solely under design-based inference -see e.g., Kish and

Frankel ().�us, although a regression analysis can

formally be carried out on sample data, the results can-

not be interpreted easily when the dependent and the

independent variables are considered as �xed values,

rather than as realizations of random variables, i.e.,

unless a linear model with random errors is assumed

- Brewer and Mellor ().

�is has led sample survey theoreticians and practitioners

to consider a model based, or superpopulation approach,

which assumes that each population unit is associated with

a random variable for which a stochastic structure is spec-

i�ed and the actual value associated with a population unit

is considered as the realization of the random variable,

rather than a �xed unknown value - Cassel et al. .�us

the vector of population values, y, is assumed to be the
realization of a random vector variable: Y = (Y, . . . ,YN).
�e form of the joint distribution of Y, . . . ,YN , o�en

denoted by ξ, is usually assumed to be known, except

for unknown parameters.�us, if we assume a regression

model between Y and X, we might consider ξ as multi-

variate normal, i.e., Y ∣X ∼N (Xβ, Σ) , where β and Σ are
unknown parameters.

�ere are several di�erent possible interpretations of

the superpopulation concept, such as the following - see

also Särndal et al. :

. �e �nite population may be considered as actually

selected from a larger universe by a real world random

mechanism or process.�is would be the interpreta-

tion of a statistical model in the social sciences, such

as econometric models. �is is the approach usually

used by practitioners who wish to analyze sample sur-

vey data created by complex sample designs – see, for
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instance, Nathan and Holt (), Skinner et al. (),

Pfe�ermann () and Chambers and Skinner ().

. �e superpopulation joint distribution, ξ, may be

considered under a Bayesian approach, as a prior

distribution, which re�ects the subjective belief in

the unknown values of Y, . . . ,YN , so that we consider

the problem of �nding the posterior distribution of the

�nite population parameter, given the sample values.

. �e superpopulation distribution may be considered

as re�ecting nonsampling errors, such asmeasurement

errors, which account for di�erences between observed

values of the variables and their ‘true’ values.

. �e superpopulation distribution, ξ, may be consid-

ered as a purely mathematical device, not associated

with any physical process or subjective belief, in order

to make explicit theoretical derivations. �us di�er-

ent estimators or sample designs may be considered

and compared, with respect to their performance and

characteristics (e.g., bias and variance), under di�er-

ent models. Since in most cases our certainty about

the true models is very limited, this can provide a use-

ful tool for checking the robustness of estimators and

sample designs to departures from assumed models.

�e rapid development of sample survey theory and prac-

tice over the past  years has occurred in all aspects

of sample surveys. However the rapid integration of the

superpopulation concept and model-based ideas in main-

stream theory and practice of sample survey inference has

been one of the major developments. �irty �ve years

ago, the fundamental divide between advocates of clas-

sical design-based inference and design, and those who

preferred basing both the sample design and inference

only on superpopulation models was still at its zenith and

the controversies of the two previous decades, exempli�ed

by Brewer and Mellor (), were still raging. �e early

randomization-based approach, developed by the pioneers

of classical design-based sampling theory, was challenged

by the study of the logical foundations of estimation the-

ory in survey sampling, for example, Godambe (), and

by early advocates of pure superpopulation model-based

design and prediction approach to inference, for example,

Royall ().�ese controversies continued to be �ercely

discussed well into the s, see, for example, Hansen

et al. (), and pure superpopulation based prediction

approaches are still being advocated – see Valliant ().

However the extreme views, relating to both approaches,

have mellowed considerably over the past  decades, and

sample survey theory and practice are currently, by and

large, based on a variety of combined approaches, such

as model-assisted methods, which integrate superpopula-

tion models with a randomization-based approach – see

for example the variety of approaches, many of them based

on superpopulationmodels, used in the latestHandbook of

Statistics (volume ), devoted to sample surveys –Rao and

Pfe�ermann ().

�e superpopulation concept has served and continues

to serve as an extremely important and useful tool for the

development of the theory and practice of sample surveys –

in their design, estimation and analysis.
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The Need for Statistical Surveillance
�e aim of statistical surveillance is the timely detection of

important changes in the process that generates the data.

Already at birth surveillance is used, as described by Frisén

().�e baby might get the umbilical cord around the

neck at any time during labour.�is will cause a lack of

oxygen, and a Caesarean section is urgent.�e electrical

signal of the heart of the baby during labour is the base

for the surveillance system. Detection has to be made as

soon as possible to ensure that the baby is deliveredwithout

brain damage.

Around , Walter A. Shewhart developed the �rst

versions of sequential surveillance by introducing control

charts for industrial applications (see 7Control Charts).
Although industrial applications are still important, many

new applications have come into focus.

In �nance, transaction strategies are of great interest

and the timeliness of transactions is important. Most the-

ory of stochastic �nance is based on the assumption of an

e�cient market. When the stochastic model is assumed

to be completely known, we can use probability theory

to calculate the optimal transaction conditions. When the

information about the process is incomplete, as for exam-

plewhen a change can occur in the process, theremay be an

arbitrage opportunity, as demonstrated by Shiryaev ().

In these situations, observations should be analysed con-

tinuously to decide whether a transaction at that time is

pro�table as measured either by return or by risk. Statisti-

cal inference is needed for the decision. Di�erent aspects

of the subject of �nancial surveillance are described in the

book edited by Frisén ().�ere are also other appli-

cations in the �eld of economics.�e detection of turning

points in business cycles is important for both government

and industry.

In public health surveillance, the timely detection of

various types of adverse health events is crucial.�e mon-

itoring of incidences of di�erent diseases and symptoms is

carried out by international, national and local authorities

to detect outbreaks of infectious diseases. Epidemics, such

as in�uenza, are for several reasons very costly to society,

and it is therefore of great value to monitor in�uenza data,

both for the outbreak detection and during the epidemic

period in order to allocate medical resources. Methods

for surveillance for common diseases also serve as mod-

els for the detection of new diseases as well as for detecting

bioterrorism. Surveillance for the onset of an outbreak is

described in Frisén et al. (). Reviews of methods for

the surveillance of public health are given by Sonesson and

Bock () and Woodall et al. ().

The Statistical Surveillance Problem
Terminology
�e terminology is diverse. “Optimal stopping rules” (see

7Optimal StoppingRules) ismost o�enused in probability
theory, especially in connection with �nancial problems.

Literature on “change-point problems” does not always

treat the case of sequentially obtained observations but

o�en refers to the retrospective analysis of a �xed number

of observations.�e term “early warning system” is some-

times used in economic and medical literature. “Monitor-

ing” is most o�en used in medical literature and with a

broad meaning.�e notations “statistical process control”

and “quality control” are used in the literature on industrial

production.

Overviews
Surveys and bibliographies on statistical surveillance are

given for example by Lai (), who gives a full treatment

of the �eld but concentrates on the minimax properties of

stopping rules, by Woodall and Montgomery () and

Ryan (), who concentrate on control charts, and by

Frisén (), who characterisesmethods by di�erent opti-

mality properties.�e overview by Frisén () and the

adjoining discussion takes up many recent issues.
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Differences between hypothesis testing
and surveillance
In the initial example, the decision concerning whether the

baby is at risk has to be made sequentially, based on the

data collected so far. Each new time demands a new deci-

sion.�ere is no �xed data set but an increasing number

of observations. In sequential hypothesis testing, we have

sequentially obtained observations and repeated decisions,

but the hypotheses are �xed. In contrast, there are no �xed

hypotheses in surveillance. We can never accept any null

hypotheses and turn our backs on the mother, since the

baby might get the umbilical cord around the neck in the

next minute.

Statistical specifications
We denote the process by X = {X(t) : t = , , . . .}, where
X(t) is the observation (vector) made at time t, which is
usually discrete.�e purpose of themonitoring is to detect

a possible change, for example the change in distribution

of the observations due to the baby’s lack of oxygen.�e

time of the change is denoted by τ. Before the change, the

distribution belongs to the family f D, and a�er the time

τ, the distribution belongs to the family f C. At each deci-

sion time s, we want to discriminate between two events,

C(s) andD(s). For most applications, these can be further
speci�ed as C(s) = {τ ≤ s} (a change has occurred) and
D(s) = {τ > s} (no change has occurred yet), respectively.
We use the observations Xs = {X(t); t ≤ s} to form

an alarm criterion which, when ful�lled, is an indication

that the process is in state C(s), and an alarm is triggered.
We use an alarm statistic, p(Xs), and a control limit, G(s),
and the alarm time, tA, is tA = min{s; p(Xs) > G(s)}.�e
change point τ can be regarded either as a random vari-

able or as a deterministic but unknown value, depending

on what is most relevant for the application.

Evaluation and Optimality
Quick detection and few false alarms are desired proper-

ties of methods for surveillance. Di�erent error rates and

their implications for active and passive surveillance were

discussed by Frisén and de Maré ().

Evaluation by signi�cance level, power, speci�city, sen-

sitivity, or otherwell-knownmetricsmay seem convenient.

However, these are not easily interpreted in a surveillance

situation. For example, when the surveillance continues,

the speci�city will tend to zero formost surveillancemeth-

ods. �us, there is not one unique speci�city value in a

surveillance situation.

Special metrics such as the expected time to a false

alarm ARL

and the expected delay of a warranted alarm

are used (see Frisén ()).�e expected delay is di�er-

ent for early changes as compared with late ones.�e most

commonly used delay measure is ARL

, the expected delay

for a change that appears at the start of the surveillance.

In addition, the optimality criteria are di�erent in

surveillance as compared with hypothesis testing. �e

minimax optimality and the expected delay over the dis-

tribution of the change point are frequently used.

Methods
In surveillance, it is important to aggregate the sequen-

tially obtained information in order to take advantage of all

information. Di�erent ways of aggregation meet di�erent

optimality criteria. Expressing methods for surveillance

through likelihood functions makes it possible to link the

methods to various optimality criteria. Many methods for

surveillance can be expressed by a combination of partial

likelihood ratios (Frisén ()).�e likelihood ratio for

a �xed value of τ is L(s, t) = fXs(xs∣τ = t)/fXs(xs∣D).�e
exact formula for these likelihood components will vary

between situations.

�e full likelihood ratio method (LR) can be expressed

as a weighted sum of the partial likelihoods L(s, t). It is
optimal with respect to the criterion of minimal expected

delay, as demonstrated by Shiryaev ().

�e simplest way to aggregate the likelihood com-

ponents is to add them. Shiryaev () and Roberts

() suggested what is now called the Shiryaev-Roberts

method.�is means that all possible change times, up to

the decision time s, are given equal weight.

�e method by Shewhart () is simple and the most

commonly usedmethod for surveillance. An alarm is given

as soon as an observation deviates too much from the

target.�us, only the last observation is considered. �e

alarm criterion can be expressed by the condition L(s, s) >
G, where G is a constant.

�e CUSUM method was �rst suggested by Page

(). �e alarm condition of the method can be

expressed by the partial likelihood ratios as tA =
min{s;max(L(s, t); t = , , . . . , s) > G}, where G is a con-
stant.�e CUSUMmethod satis�es the minimax criterion

of optimality, as proved by Moustakides ().

�e alarm statistic of the EWMA method is an expo-

nentially weighted moving average, Zs = ( − λ)Zs− +
λX(s), s = , , . . . where  < λ <  and Z is the tar-
get value.�e EWMA method was described by Roberts

().

Complex Situations
Applications contain complexities such as autocorrela-

tions, complex distributions, complex types of changes and
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spatial as well as othermultivariate settings.�us, the basic

surveillance theory has to be adapted to special cases.

Time series with special dependencies have been

treated for example by Basseville and Nikiforov (),

Schmid () and Lai (). Surveillance for special dis-

tributions such as, for example, discrete ones were dis-

cussed for example by Woodall (). Complex changes

such as gradual ones from an unknown baseline are of

interest at the outbreak of in�uenza or other diseases.�e

maximal partial maximum likelihood will give a CUSUM

variant.�is was used for semiparametric surveillance by

Frisén et al. ().

Multivariate surveillance is of interest in many areas.

In industry, the monitoring of several components in an

assembly process requires multivariate surveillance. An

example in �nance is the on-line decisions on the optimal

portfolio of stocks, as described by Okhrin and Schmid

(). �e surveillance of several distribution parame-

ters, such as the mean and the variance (see e.g., Knoth

and Schmid ()), is another example of multivariate

surveillance.

In spatial surveillance, observations are made at dif-

ferent locations. Most methods for spatial surveillance

are aimed at detecting spatial clusters, but other relations

between the variables can also be of interest.�e surveil-

lance of a set of variables for di�erent locations is a special

case of multivariate surveillance, as discussed by Sonesson

and Frisén () and Sonesson ().
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Preliminaries
�e most immediate examples of survival data come from

7demography and actuarial science and concern the dura-
tion of human life. �e issues of statistical analysis that

arise are similar to those in many �elds. �us survival

time may be the length of time before a piece of industrial

equipment fails, the length of time before a �rm becomes

bankrupt, the duration of a period of employment or, par-

ticularly in a medical or epidemiological context, the time

between diagnosis of a speci�c condition and death from

that condition.

Depending on the perspective involved the term failure

time may be used instead of survival time.

Central requirements are that for each study individ-

ual we have a clear time origin and a clear end point. For

example, time may be measured from the instant an indi-

vidual enters the study population and the end point may

be death from a speci�c cause, or death (all causes) or cure.

Normally the passage of time is clearly de�ned in the nat-

ural way.�ere may be other possibilities, for example the

investigation of tire life in terms of km driven. In appli-

cations considerable care is needed over these de�nitions,

ensuring that they are precise and relevant.

A common characteristic of such data is that the fre-

quency distributions are widely dispersed with positive

skewness. Another is the presence of right censoring.�at

is for some, or in some cases, for many individuals, all that

is known is that by the end of the study the critical event in

question has not occurred, implying that the survival time

in question exceeds some given value. In industrial life test-

ing censoring may be by design but more commonly it is

just a feature of the data acquisition process.

Formalization
We represent survival time by a random variable T, treated

for simplicity as continuously distributed; there is a closely

parallel discussion for discrete random variables.

For a given population of individuals the distribution

of T can be described in several mutually equivalent ways,

for example by

● the survivor function

S(t) = P(T > t), ()

● the probability density function

f (t) = −S′(t) ()

● the hazard or age-speci�c failure rate

h(t) = f (t)/S(t) = − d
dt
log S(t). ()

A more interpretable speci�cation of the hazard at time t

is as a failure rate conditional on survival to time t, that is

as

lim P(T < t + δ ∣ t < T)/δ

as δ tends to zero through positive values.

�ese three speci�cations are mathematically equiva-

lent; all have their uses in applications.

A central role is played in some parts of the subject

by the exponential distribution of rate ρ and mean /ρ,

namely the special case

S(t) = e−ρt
, f (t) = ρe

−ρt
, h(t) = ρ. ()

�e last property shows that failure occurs at random

with respect to “age.” If h(t) increases with t there is age-
ing whereas if h(t) decreases with t then in a certain sense
old is better than new. �ere are other possibilities, in

particular a bath-tub e�ect in which high initial values

are followed by a decrease followed in turn by a gradual

increase.

Many other formsmay be used in applications, notably

the 7Weibull distribution with h(t) = ρ(ρt)γ
.

Statistical Analysis
For n independent individuals from a homogenous popu-

lation it is convenient to write the data in the form

(t,d), . . . , (tn,dn). ()

Here for individual j, tj is a time and if dj =  this is the rel-
evant value of T whereas if dj =  the individual is right
censored. �is is interpreted to mean that all we know

about the value of T for that individual exceeds tj, a non-

trivial assumption implying what is rather misleadingly

called uninformative censoring. It excludes for example the

deliberate or unwitting withdrawal of individuals from a

study because of a presumption of imminent failure.

�ere are two broad approaches to analysis, parametric

based on an assumed form for the distribution, and non-

parametric.

�e former is typically tackled by the method of max-

imum likelihood. Let θ denote the parameter specifying

the distribution, for example ρ for the exponential distri-

bution and (ρ, γ) for the Weibull distribution. �en the
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likelihood is

Π{f (tj; θ}dj{S(tj; θ)}−dj . ()

�at is, each failed individual contributes a term

depending on the density whereas each censored individ-

ual contributes a term depending on the survivor function.

�e method of maximum likelihood may now be applied

(or a Bayesian posterior density calculated).

For the exponential distribution the likelihood takes

the form

ρ
Σdj exp(−ρΣtj). ()

where Σdj is the total number of failures. It follows that the

maximum likelihood estimate of ρ, obtained by maximiz-

ing this expression with respect to ρ, is

Σdj

Σtj
, ()

that is, the total number of failures divided by the total

time at risk calculated from all individuals those who fail

and those who are censored.�is is sometimes called the

fundamental theorem of epidemiology.

For a nonparametric analysis a limiting form of a life-

table approach is used called the Kaplan-Meier method.

Essentially the hazard is estimated as zero at all times at

which failures do not occur and as the number of fail-

ures divided by the number at risk of failure at times at

which failure does occur.�e estimated survivor function

is reconstructed from this by a discrete version of (). If

required, estimates of, say, the median survival time can

be found by interpolation, assuming that su�cient failures

have occurred to allow this part of the distribution to be

estimated e�ectively.

Dependencies and Comparisons
O�en there are more than a single group of observa-

tions and comparisons are required, say between groups

of individuals treated di�erently. In simple cases this can

be achieved either by comparing parameters in paramet-

ric models �tted separately to the di�erent groups or by

graphical comparison of the Kaplan-Meier estimates (see

7Kaplan-Meier Estimator).
In more complicated cases, for example when several

explanatory variables are addressed simultaneously, mod-

els analogous to regression models are helpful.�e most

widely used of these is the proportional hazardsmodel. For

each individual we suppose available a vector z of explana-

tory variables and that the corresponding hazard function

is

h(t) exp(β
T
z). ()

Here h(t), called the baseline hazard, speci�es the hazard
for a reference individual with z = .
A typical example with critical event death from

cardio-vascular causes might have z, age at entry, z, sys-

tolic blood pressure at entry, both typically measured from

some reference level, z, zero for men, one for women and

z, zero for control and one for a new drug under test. A

component of β, say the �rst component β, speci�es the

increase in hazard per unit increase in the component z of

z, with all other components of z held �xed.�at is for �xed

gender, treatment and blood pressure the hazard increases

by a factor eβ per extra year of age.

If the baseline hazard is constant or speci�ed paramet-

rically maximum likelihood estimation is possible, essen-

tially generalizing (). For example if h(t) is an unknown
constant, a baseline individual has an exponential distribu-

tion. If h(t) is le� arbitrary amodi�ed form of likelihood-
based inference is used called partial likelihood. Problems

of interpretation, model choice, etc., are essentially the

same as in multiple linear regression. An important pos-

sibility is that some components of z may be functions of

time.

Generalizations and Literature
�ere are many generalizations of these ideas of which

the most notable is to event-history analysis in which a

sequence of events, possibly of di�erent types, may occur

on each individual.

�ere is a very extensive literature, some of it speci�c

to application �elds. Cox and Oakes () give a broad

introduction and Kalb�eisch and Prentice () a more

specialized and thorough account. For a discussion with

attention to mathematical detail, see Andersen et al. ()

and Aalen et al. ().
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Target Estimation: A New
Approach to Parametric
Estimation
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Introduction and Definition
Target estimation is a computer intensive procedure intro-
duced by Cabrera and Fernholz () that has proved to
be e�ective in reducing the bias as well as the L and L
errors of statistics in parametric settings.
For a statistical functional T, let the statistic T(Fn)

estimate the parameter T(Fθ), where Fn is the empirical
d.f. corresponding to the sampleX, . . . ,Xn of i.i.d. random
variables. Suppose that all the Xi’s have common d.f. Fθ
where θ ∈ Θ, an open subset of real numbers. If the expec-
tation of T(Fn), g(θ) = Eθ(T(Fn)), exists for all θ ∈ Θ
and is one-to-one and di�erentiable, then the functional T̃
induced by T from the relation

g−(T) = T̃

will be called the target functional of T.�e statistic T̃(Fn)
will be called the target estimator.

Remarks
a. Note that the target estimate of θ corresponds to choos-
ing the value θ̃ = T̃(F̂n), which solves the equation

g(θ̃) = Eθ̃(T(Fn)) = T(F̂n)

where F̂n is the observed value of Fn.�at is, we set the
expectation of a statistic equal to its observed value and
we solve for θ. Also, note that g depends on the sample
size n which will remain �xed.

b. It is a direct consequence of the de�nition that if T is a
statistical functional with g(θ) = aθ +b for a ≠ , then
the corresponding target estimator will be unbiased.
�e variance of T̃ will satisfy

Var(T̃) = (/a)Var(T)

and the variance of the target estimator will be reduced
if and only if a > .

Properties of Target Estimators
For general estimators, Cabrera and Fernholz () give
some results regarding bias and variance reduction a�er
targeting.�ese results can be summarized as follows:
If g(θ) > θ and g is increasing, then:

. If  < g′(θ) < b then ∣BT̃(θ)∣ < ∣BT(θ)∣,
. If  < ∣g′(θ)∣ then MSE(T̃) < Var(T) and

E∣T̃ − θ∣ < E∣T − θ∣ + ∣Med(T) − E(T)∣,

where BT(θ) and BT̃ denote the bias of T and T̃ respec-
tively, Med(T) is the median of T, and MSE is the mean
square error.

von Mises Expansions of Target
Functionals
�e von Mises expansions for the target functional T̃ can
be obtained using the Hadamard or Fréchet derivatives of
the functionalT.�ese expansions are useful to analyze the
bias of T̃ as well as the asymptotics and robustness proper-
ties of T̃. For T(Fn) the �rst order von Mises expansion
is: T(Fn) = θ + 

n ∑
n
 φ(Xi) + Rem. �en, under some

regularity conditions, the remainder satis�es
√
nRem =

oP() , and the statistic T(Fn) is asymptotically normal
(see Fernholz ).Moreover, when φ is properly normal-
ized, the expectation of T(Fn) gives: g(θ) = θ + Eθ(Rem)

so that T = T̃+ET̃(Rem), and the bias of the target estima-
tor is BT̃(θ) = Eθ(Rem −ET̃(Rem)), which under certain
conditions satis�es,

∣BT̃(θ)∣ = ∣Eθ(Rem − ET̃(Rem))∣ < ∣Eθ(Rem)∣ = ∣Bθ(T)∣.

Using the von Mises expansions of T , it can be shown
that the 7asymptotic normality of T̃ is inherited from the
asymptotic normality of T , with some gain in asymptotic
e�ciency when ∣g′(θ)∣ > . �e robustness aspects of
target functionals are also analyzed using the von Mises
approach and the in�uence functions of T̃ and T are
related by:

IFT̃(x) = (/g′(θ))IFT(x).

Miodrag Lovric (ed.), International Encyclopedia of Statistical Science, DOI ./----,
© Springer-Verlag Berlin Heidelberg 
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�is shows that the gross-error sensitivity of the target
functional is lower when ∣g′(θ)∣ > . See Fernholz ()
and Cabrera and Fernholz ().

Target Estimation in Multidimensional
Settings
Multivariate target estimation was treated in Cabrera and
Fernholz () where p-dimensional statistical function-
als T = (T, . . . ,Tp) estimate a p-dimensional parameter
vector θ = (θ, . . . , θp). In this case the expectation func-
tion g(θ), as de�ned in section “7Introduction and De�-
nition”, is p-dimensional, and for the simple case where g is
an a�ne function of the parameter vector, the bias can be
removed entirely and, under certain conditions, the vari-
ability of the bias corrected functional is reduced in the
sense of smaller trace and smaller determinant. Examples
ofmultivariate targeting for location-scale equivariant esti-
mators and the location-scale exponential model are given
in Cabrera and Fernholz ().
In practice, we seldom have linearity of the p-

dimensional expectation function g. Quite o�en, the
p-dimensional estimator T is de�ned implicitly and the
corresponding target estimator must be found by solv-
ing multidimensional implicit equations in θ, of the form
g(θ) = T(Fn)where T(Fn) has been observed and g(θ) =
Eθ(T(Fn)) is multidimensional.�is amounts to invert-
ing the function g which, if unknown, must �rst be esti-
mated.�emethod of stochastic approximation introduced
by Robbins and Munro () and modi�ed by Cabrera
and Hu () was successfully used to �nd the target esti-
mates in many situations. For details and description of
thismethods seeCabrera andFernholz () andCabrera
et al. ().

Applications and Examples
Target estimation has been successfully used for bias and
variance reduction in many cases. �e following are just
some of the more important cases developed:

. Ellipse estimation.�e case of ellipse estimation when
only an arc of data points is available is of particu-
lar importance in computer vision since many real life
problems encounter this di�culty. A study regarding
the least squares estimators of �ve parameters identi-
fying an ellipse can be found in Cabrera and Fernholz
() where a comparison of the target estimators
with both the bootstrap (see7BootstrapMethods) and
the jackknife estimators (see 7Jackknife) shows the
advantages of the target estimation method in terms
of reducing bias and lowering the variability of the
estimators.

. AutoregressiveModels. Simulations were performed for
autoregressive models AR() of the form Xt+  = θXt

+єt , where the error term єt is Gaussian.�emaximum
likelihood estimator (MLE) of the parameter θ was
compared to the corresponding target estimator for
di�erent sample sizes and di�erent values of θ.�ese
simulations showed a substantial reduction in the bias
of the target estimator as compared to the bias of the
MLE for every case considered, and they also showed
that the MSE of the target estimator was reduced in
most of the cases. See Cabrera and Fernholz ().

. Errors-in-variables Models. General errors-in-variables
models of the form Y = a+bU+є when the observable
variables are X = U + δ, where є and δ are independent
Gaussian errors. In all the simulations performed for
di�erent sample sizes and di�erent values of b the bias
of the target estimator was substantially reduced when
compared to the bias of the MLE, and in all cases the
MSE of the target estimatorwas smaller than that of the
MLE. See Cabrera and Fernholz ().

. Logistic Regression Models. A treatment of logistic
regression models (see 7Logistic Regression) of one
and two parameters was given in Cabrera et al. ()
where it is shown that the transformed MLE, i.e., the
target estimator, has lower bias andMSE that the origi-
nal MLE. It was also shown that another bene�t of tar-
geting is that it corrects the asymmetry of the statistic
thus producing target statistics with more symmetric
distributions.

Final Remarks
. Comparison to the Bootstrap. Target estimation has
been compared to other methods of reducing bias and
variability such as the jackknife and the bootstrap.�is
comparison is treated in Cabrera and Fernholz (,
), where for di�erent situations it was shown that
targeting can provide considerable improvement over
both the jackknife and the bootstrap in lowering the
bias and the MSE.

. Median Target. When the sampling distribution of the
statistic is skewed or has heavy tails, the mean of
the statistic may not be the proper measure of loca-
tion to be considered, or may not even be de�ned.
In such cases the mean target de�ned above may not
be the proper approach. However, in these situations
we can consider the median of the statistic as a func-
tion of θ by taking g(θ) = medθT(Fn) and de�ning
the median target estimate in an analogous way. �e
resulting median target estimate will always bemedian
unbiased when the g function is monotone; this is a
drastic di�erence with the mean target situation where
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some additional regularity conditions for g are needed.
Results in this direction can be found in Cabrera and
Watson () and Cabrera et al. (), but many
open questions aboutmedian target estimates and their
variability are still awaiting their answers.

About the Author
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Statistics: Asymptotics and Robustness.
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Telephone Sampling: Frames and
Selection Techniques

JamesM. Lepkowski
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Telephone sampling is a set of techniques used to generate
samples in telephone survey data collection. Telephone
surveys have lower cost and time of data collection than

face-to-face survey methods. (Telephone surveys are also
conducted for other types of units, such as business estab-
lishments.�is discussion is limited to telephone house-
hold surveys.). Cost and timeliness advantages outweigh
potential loss in accuracy due to failure to cover house-
holds without telephones. However, since households
without telephones vary in character over time and across
countries and key subgroups, researchers must decide in
any particular application whether non-coverage bias is a
potentially serious source of error before choosing to use a
telephone survey.
Telephone sampling methods use traditional sampling

techniques or modi�cations of those techniques designed
to address the nature of the materials available for sample
selection.�e materials, or frames, are of two basic types:
lists of telephone household numbers and lists of groups of
potential telephone household numbers.
Telephone household number lists come from com-

mercial or government sources. Some cover virtually all,
or a high percentage of all, telephone households in a
target population, such as those obtained from a govern-
ment agency providing telephone service. Alternatively,
list frame numbers may be from published telephone
directories that include a majority but not all telephone
households. Telephone directories do not cover recent sub-
scribers or subscribers who do not want to have a number
appear in the directory, and substantial telephone house-
hold non-coverage arising from out-of-date or absent
entries has led alternative frames with more complete
coverage.
Telephone sampling for list frames uses traditional ele-

ment sampling techniques such as systematic selection and
strati�ed random sampling. �e lists and samples con-
tain numbers that are not telephone household numbers,
which requires screening during data collection to elimi-
nate non-household numbers. Some telephone households
have more than one telephone number in the list, which in
turn have higher chances of selection. Weights are used to
compensate for the duplicate numbers. If persons within
households are to be sub-selected, within household selec-
tion methods choose one or more sample persons within a
household, yielding additional adjustment weights.
Alternative frames or sets of materials provide more

complete, if not virtually complete, coverage than direc-
tory list frames. �e alternative frames are used to com-
plete through random generation of some portion of a
telephone number telephone numbers where only an area
code and local pre�x combination are available, and are
o�en referred to as random digit dialing (RDD; see Groves
and Kahn ). �e frame consists of all area code and
local area pre�xes for a country or region obtained from
government or commercial sources. �ese combinations
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are not complete telephone numbers, but randomly gen-
erated ‘su�xes’ added to a selected combination yield
a valid and complete telephone number. �e combina-
tion plus random digits cover, in principle, all telephone
households provided all combinations in the region are
available.
Simple RDD telephone number generation is typically

very ine�cient due to a large percentage of randomly gen-
erated numbers (sometimes in excess of  percent) that
are not telephone households, increasing costs through
screening to �nd telephone households among randomly
generated numbers. Specialized techniques reduce the per-
centage of non-household numbers obtained, and improve
e�ciency. For example, Mitofsky–Waksberg RDD sam-
pling (Waksberg ) is a two-stage sampling technique
devised to randomly generate numbers that have a much
lower percentage of non-telephone households, below 
percent in early applications in the United States. Prac-
tical de�ciencies led to variations to improve e�ciency
of the two-stage methods (see, for example, Pottho�
).
List-assisted methods seek e�ciency gains as well, but

start from a directory frame to extend coverage to all
telephone households (Tucker et al. ). Many have a
slight loss of coverage, though, compared to RDD meth-
ods. Numbers selected from a directory are selected and
digits in the number altered to cover numbers that are not
in the directory. Plus-one dialing, for example, replaces
the last digit of a directory number with a number one
larger –  instead of , for instance, replaces the last digit
of a phone number ending in . While in principle this
method should cover all telephone numbers, in practice
the coverage is incomplete, anddi�cult to determine.Vari-
ations include changing the last digit or the last two digits
randomly (Sudman ).
Commercial sources compile lists of all directory num-

bers in a country, metropolitan area, or region that are
used to generate telephone numbers with higher levels of
coverage. Phone numbers can be divided into sets of 
consecutive numbers de�ned by all but the last two dig-
its of a telephone number. For example, directory entry
 de�nes  consecutive numbers 
to . Commercial sources use directory entries
to �nd all  “banks” where at least one directory num-
ber is present. Telephone numbers are selected at random
from all numbers occurring in the set of  ‘banks’ that
contain one or more directory numbers. �ese methods
provide today higher e�ciency than even the two-stage
RDD methods (Casady and Lepkowski ).
Finally, dual frame sampling designs have been used to

select samples separately from directory and RDD frames

and combine the results in estimation (Lepkowski ).
�ese methods are also currently being used to include
telephone households that have only mobile or cell tele-
phones and are not covered by list assisted sampling
frames.
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�e exponential distribution, de�ned on the positive half-
line R+ with scale parameter λ > , has distribution
function and density

Fλ(x) =  − e−λx, fλ(x) = λe−λx, x ≥ .

It plays a very prominent role in probability theory
and statistics, especially as a model for random times
until some event, like emission of radioactive particles
(Rutherford et al. ), or an earthquake (Gardner and
Knopo� ), or failure of equipment (Pham ), or
occurrence of abnormally high levels of a random process
(Cramér and Leadbetter ), like unusually high prices
(Shiryaev ), etc.

�e characteristic “memoryless” property of the expo-
nential distribution says that, ifX is an exponential random
variable, then

P{X > y + x∣X > y} = P{X > x}, or
 − Fλ(x + y) = [ − Fλ(x)][ − Fλ(y)], ()

which means that the chances to wait for longer than some
time x do not change, if you have been waiting already
for some time y: X “does not remember” if waiting has
occurred already or not. Connected to this is another char-
acteristic property of the exponential distribution, which
states that its failure rate is constant:

fλ(x)
 − Fλ(x)

= λ. ()

Given a sample X, . . . ,Xn, denote by Fn and vn the
empirical distribution function and the empirical process,
respectively:

Fn(x) =

n

n

∑
i=

I{Xi ≤ x}, vn(x) =
√
n[Fn(x) − Fλ(x)],

where I{A} denotes the indicator function of the event A.
As is well known, a�er time transformation t = Fλ(x), the
process vn ○ F−λ (t) = vn (F−λ (t)) converges in distribu-
tion to a standard Brownian bridge u(t), t ∈ [, ]. Since
in the majority of problems the value of the parameter λ is

unknown, inference can not be based on vn but must use
the parametric (or estimated) empirical process v̂n,

v̂n(x) = vn(x, λ̂n) =
√
n[Fn(x) − Fλ̂n

(x)],

where λ̂n is an estimator of λ, based on the sample.
In any testing procedure one can use either of two types

of statistics from v̂n, or a combination of the two: linear,
or asymptotically linear, statistics and nonlinear omnibus
statistics. Asymptotically linear statistics of the form

ln(X, . . . ,Xn;Fλ̂n
) = ∫

∞


g(x)dv̂n(x) + oP() ()

typically lead to asymptotically optimal tests against spe-
ci�c “local” (or contiguous) alternatives, but have very
poor power against the hugemajority of other alternatives.
In contrast, nonlinear statistics like

sup
x

∣v̂n(x)∣ or ∫

∞


v̂n(x)dFλ̂n

(x),

which may not have best power against any given alterna-
tive, have reasonable power against more or less all alter-
natives.�ese are used in goodness of �t testing problems.
It is for these omnibus tests that the asymptotic behav-

ior of the empirical process v̂n is somewhat unpleasant:
a�er time transformation t = Fλ̂(x) it does not converge
to a standard Brownian bridge, but to a di�erent Gaus-
sian process with more complicated distribution. While
it is true that the distribution of each omnibus statistic
can in principle be calculated and tables prepared, this
would involve a considerable amount of computational
work. Below we show versions of 7empirical processes
that are distribution free and, moreover, the distribution
of many statistics from these processes are already known.

Asymptotically Linear Statistics
�ere are several asymptotically linear statistics, which are
widely used for testing exponentiality. Papers (Deshpande
) and (Bandyopadhyay and Basu ) are based on
testing whether  − Fλ(bx) = [ − Fλ(x)]b, and the test
statistic is

Dn =


n(n − )∑i≠j
I{Xj > bXi}.

A statistic known as the Gini index (or coe�cient),

Gn =
∑i≠j ∣Xi − Xj∣

n(n − )X
, with X =


n

n

∑
i=

Xi,

was originally designed as a measure of spread and is com-
monly used as a measure of inequality, e.g., see Deaton
(). In Gail and Gastwirth (), and later Nikitin and
Tchirina (), it was considered and recommended as a
test of exponentiality.
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�e so-calledMoran statistic was introduced inMoran
() as the score statistic for testing exponentiality against
the alternative of a Gamma distribution and has the form

Mn =

n

n

∑
i=
log

Xi

X
.

One more test of exponentiality, known as the Cox-
Oakes statistic, was suggested in Cox and Oakes () as
the score test statistic against the alternative of a 7Weibull
distribution:

Cn =

n

n

∑
i=

( −
Xi

X
) log

Xi

X
.

One can show that all four statistics are asymptot-
ically linear, e.g., see Haywood and Khmaladze (),
and hence are asymptotically Gaussian. Somewhat surpris-
ingly, although the kernels g of representation () in all four
statistics look di�erent, their correlation is extremely high,
which means that all four statistics lead to the same test in
practice; see Haywood and Khmaladze ().

Distribution Free Versions of Empirical
Processes
As we noted above, unlike the empirical process vn, the
time transformed parametric empirical process v̂n ○ F−λ
does not converge to a standard Brownian bridge u. How-
ever, a beautiful observation, see Barlow and Campo (;
Barlow and Proschan ), leads to another version of
empirical process, which does. It is based on the “total
time on test” (or TTT) notion of Epstein and Sobel ().
Consider

ηn(x) =
∫

x
 [ − Fn(y)]dy

∫
∞

 [ − Fn(y)]dy
,

where ∫
∞


[ − Fn(y)]dy = X, x ≥ .

If one interprets random variable Xi as a survival time (or
time until failure) of the ith item on test, then ηn(x)mea-
sures the time all items spent on test before the moment x,
relative to the total time spent on test by all n items until
they all failed.�e process

ξn(x) =
√
n[Fn(x) − ηn(x)]

will converge in distribution to a Brownian bridge in
time Fλ , and hence the time transformed empirical pro-
cess ξn ○ F−λ converges in distribution to a standard
Brownian bridge. To explain why this is true, cf. (Gill ;
Khmaladze ), note that the process

Bn(x) =
√
n [Fn(x) − ∫

x



 − Fn(y)
 − F(y)

dF(y)]

is a martingale (see 7Martingales) with respect to the nat-
ural �ltration {Fx} generated by Fn, for any i.i.d. observa-
tions. Using (), in the case of the exponential distribution
it reduces to

Bn(x, λ) =
√
n [Fn(x) − λ∫

x


 − Fn(y)dy].

If we estimate the parameter λ through the equation
Bn(∞, λ) = , we get the usual estimator λ̂n = / ∫

∞

 [ −
Fn(y)]dy = /Xn and Bn(x, λ̂n) = ξn(x). �e process
Bn (F−λ (t), λ) converges in distribution to standard Brow-
nian motion on [, ] and hence ξn ○F−λ converges to “tied
up” Brownian motion, i.e., a standard Brownian bridge.
Another version of empirical process was investigated

in Haywood and Khmaladze (). It has the form

wn(x) =
√
n[Fn(x) − K(x,Fn)],

where

K(x,Fn) =
λ̂
n ∑i:Xi≤x

(Xi −
λ̂

Xi )

+ λ̂ ( +
λ̂

x) x[ − Fn(x)] − x

λ̂

n ∑
i:Xi>x

Xi .

Asymptotically, the process wn is also a martingale, but
with respect to the “enriched” �ltration {F̂x}, where each
σ-�eld is generated by the past of Fn and also the estima-
tor λ̂n; F̂x = σ{Fn(y), y ≤ x,Xn}. �e idea behind this
process follows from the general suggestion in Khmaladze
(), but the form of compensator K(x,Fn) for the expo-
nential distribution is computationally particularly sim-
ple. Haywood and Khmaladze () demonstrated quick
convergence of the time transformed process wn ○ F−λ to
a standard Brownian motion (see 7Brownian Motion and
Di�usions).
Althoughnot proved formally, the relationship between

processes ξn andwn is clear: the latter is asymptotically the
innovationmartingale for the former and therefore the two
stay in one-to-one correspondence.�e limit distribution
of many statistics based on both ξn ○ F−λ and wn ○ F−λ are
well known.
Koul () considered an empirical version of the

memoryless property () of the exponential distribution
and studied the empirical process

αn(x, y) = −
√
n{ − Fn(x + y) − [ − Fn(x)][ − Fn(y)]}.

�e asymptotic form of Koul’s process is

αn(x, y) = vn(x + y) − [ − Fλ(x)]vn(y)
− [ − Fλ(y)]vn(x) + op()
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and therefore, a�er the usual time transformation, it
converges in distribution to β,

β(t, s) = u(ts) − tu(s) − su(t),

which is again a distribution free process in t and s.
A particular form of this process,

αn(x) = −
√
n{ − Fn(bx) − [ − Fn(x)]b}

with b =  was studied in Angus () and Nikitin ().
Note that the limit distributions of omnibus statistics from
these αn processes are not easy to obtain.

P-P Plots
It is easy and quick to calculate random variables Ûi =

 − Fλ̂n
(Xi) = e−λ̂nXi and plot their 7order statistics Û(i:n)

against expected values i/(n+), i = , . . . ,n, of the uniform
order statistics. Under exponentiality the graph should be
approximately linear, as Ûi, i = , . . . ,n are almost inde-
pendent and almost uniformly distributed on [, ]: they
would exactly have these properties if λ was known and
used instead, but with λ̂n they are not. Visual inspection
of the graph is a useful preliminary tool. However, the
normalized di�erences

√
n [Û(i:n) −

i
n + 

]

as a process in t = i/(n + ), has the same drawback as the
time transformed parametric empirical process v̂n ○ F−λ :
distributions of many statistics from it are not known and
would require extra computational e�ort.

Uniform Spacings
If  = V(:n−) < V(:n−) < ⋅ ⋅ ⋅ < V(n−:n−) < V(n:n−) = 
denote the uniform order statistics from a sample of size
n − , the di�erences ∆V(i−:n−) = V(i:n−) − V(i−:n−),
form uniform spacings. Random variables

Xi

∑
n
j= Xj

=
Xi

nX
, i = , . . . ,n,

have the same distribution as ∆V(i−:n−), i = , . . . ,n, if
and only if X, . . . ,Xn are i.i.d. exponential random vari-
ables.�is characteristic property was systematically used
in testing problems pertaining to uniform spacings, (Pyke
).
Although the normalized spacings n∆V(i−:n−) form

a distribution free statistic, they are dependent, and the
empirical process based on them does not converge to
a Brownian bridge. It can be shown that this empirical
process is asymptotically equivalent to the process v̂n ○F−λ .
Other approaches for testing exponentiality include

tests based on functionals from the empirical charac-
teristic function and Laplace transform, studied, e.g., in

Baringhaus and Henze (), Epps and Pulley () and
Henze (), and on the empirical likelihood principle,
e.g., Einmahl and McKeague (). Surveys on tests for
exponentiality, including numerical studies of their relative
power against �xed alternatives, can be found in Ascher
() and Henze and Meintanis ().
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Testing Variance Components in
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Introduction
Consider the mixed model

Y = Xβ + Zγ + ε, ()

where Y is an n×  observable random vector, X is an n×p
known matrix, β is a p ×  vector of unknown parameters,
Z is another known n × m matrix, γ is an m ×  unob-
servable random vector such that γ ∼ Nm(, θI), θ ≥ ,
and ε is another unobservable n ×  random vector such
that ε ∼ Nn(, θ I), θ > . It is also assumed that γ and
ε are independent and that n > rank(X,Z) > rank(X).
�erefore, we have

Y ∼ Nn(Xβ, θI + θZZ′). ()

Model () can be generalized to more than two variance
components and has proven useful to practitioners in a
variety of �elds such as genetics, biology, psychology, and
agriculture, where it is usually of interest to test the null
hypothesis θ =  against the alternative θ > , or
equivalently,
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H : ρ = , vs H : ρ > , ()

where ρ = θ/θ.

Wald Test
Wald () proposed an exact procedure to construct
con�dence intervals for ρ, which can be used to test the
hypotheses in ().�is test is based on the usual ANOVA
F-statistic and uses the readily available F tables to deter-
mine the critical region and that is why it has been widely
used in applications.�eWald test was shown by Spjotvoll
() to be optimal against large alternatives. Further,
unless the design is strongly unbalanced and the alterna-
tive is fairly small, El-Bassiouni and Seely () showed
that the Wald test has reasonable e�ciency relative to the
corresponding MP tests.
Seely and El-Bassiouni () obtained the Wald test

via reduction sums of squares.�is circumvents the neces-
sity of transforming to independent variables and/or mod-
ifyingWald’smethod as discussed by Spjotvoll ().�ey
also give necessary and su�cient conditions under which
the Wald test can be used in mixed models as well as a
uniqueness property that allows one to immediately deter-
mine whether or not a proposed variance component test
in a mixed model is the Wald test.

Likelihood Ratio (LR) Tests
Likelihood (LR) tests were developed by Hartley and Rao
() who showed that such tests are consistent and unbi-
ased and recommended that the LR tests be carried out by
comparing the observed values of the test statistics with
the (approximate) cuto�points obtained from the standard
χ tables. However, such cuto� points can yield sizes quite
di�erent from the nominal sizes (Garbade ). Since the
computationof themaximumlikelihoodestimates requires
thenumerical solutionofaconstrainednonlinearoptimiza-
tion problem, the LR tests have not been used much in
practice. Nevertheless, Harville () gives some results
to facilitate the computation of LR tests. It should also
be noted that even for balanced models, when a UMPU
(uniformlymost powerful unbiased) F-test is available, the
LR approach does not necessarily yield the UMPU F-test
(Herbach ). Using the likelihood induced by maxi-
mal location-invariant statistics leads to the restricted LR
(RLR) tests. For balancedmodels, these RLR tests are for all
practical purposes equivalent to the F-tests (El-Bassiouni
, ).
For a discussion of LR and RLR tests and their com-

parison with the Wald and LMPI (locally most powerful
invariant) tests, the reader is referred to Li et al. () and
the references therein.

Uniformly Most Powerful Unbiased
(UMPU) Tests
Optimal tests for certain functions of the parameters of
the covariance matrix were developed by El-Bassiouni and
Seely (), where the theory in Chap.  of Lehmann
() for determining UMPU tests in exponential fami-
lies is applied to a zero mean multivariate normal family
that admits a complete su�cient statistic.�e special case
when the matrices in the covariance structure commute
was emphasized. It appears that while completeness buys
similarity, it is the additional assumption of commutativ-
ity that buys simple test procedures.�e case of a nonzero
mean family was also discussed as were some results on the
completeness of families of product measures.
In balanced models, Mathew and Sinha () showed

that the usual ANOVA F-test is UMPU and UMPIU (uni-
formly most powerful invariant unbiased), but in unbal-
anced models, no such UMP test exists (Spjotvoll ).

Similar and Location-Invariant Tests
In the context of unbalanced mixed models, if one has a
speci�c alternative ρ∗ >  in mind, a most powerful test
among similar location-invariant tests, which is also MPI
(most powerful among location- and scale-invariant tests),
was developed by Spjotvoll ().
As ρ∗ →∞, Spjotvoll () showed that the MPI test

reduces to the exact F-test of Wald (). On the other
hand, to guard against small alternatives (ρ∗ → ), the
LMPI test was considered by Westfall (, ) who
compared theWald andLMPI tests in classi�cation designs
and concluded that the LMPI test is better in large designs
whereas the Wald test may be preferable in small designs.
Further, Westfall () found that theWald test is inferior
to the LMPI test whenever there is a small proportion of
relatively large group sizes.�e 7harmonic mean method
was used by �omas and Hultquist () to construct
con�dence intervals for ρ in unbalanced random one-way
models.�emethod was generalized to unbalancedmixed
models by Harville and Fenech (). A modi�ed har-
monic mean procedure that compares favorably with the
Wald and LMPI tests was proposed by El-Bassiouni and
Seely () for testing the hypotheses in ().
For ρℓ < ρ < ρu, Lin andHarville () combined the

two MPI tests against ρℓ and ρu to obtain a two-sided test
of H : ρ = ρ vs H : ρ ≠ ρ and showed that their NP
(Neyman–Pearson) test, although computationally inten-
sive, can be better than the Wald test in some designs.
Motivated by this idea, El-Bassiouni and Halawa ()
proposed a test that combines the LMPI test (ρℓ → ) and
the Wald test (ρu → ∞) to obtain a test of H : ρ =  vs
H : ρ > .�e combined test statistic is easily computed
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and its null distribution may be approximated by a central
F distribution with the degrees of freedom of the numera-
tor adjusted in accordance with the degree of imbalance of
the design. It is also shown to be amember of the complete
class of tests of El-Bassiouni and Seely (). Numeri-
cal methods were used to show that the approximation is
accurate over a wide range of conditions and that the e�-
ciency of the combined test, relative to the power envelope,
is satisfactorily high overall.

�e combined test was also adapted to the case where
n = rank(X,Z) (El-Bassiouni and Charif ). Such
models with zero degrees of freedom for error occur in
many applications including plant and animal breeding
and time-varying regression coe�cients.
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Introduction
�e Neyman–Pearson theory of hypothesis testing applies
if the models belong to the same family of distributions.
Alternatively, special procedures are needed if the models
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belong to families that are separate or non-nested, in the
sense that an arbitrary member of one family cannot be
obtained as a limit of members of the other.
Let y = (y, . . . , yn) be independent observations from

some unknown distribution. Suppose that there are null
and alternative hypothesesHf andHg specifying paramet-
ric densities f (y, α) and g(y, β) for the random vector y.
Hence α and β are unknown vector parameters and it is
assumed that the families are separate.

�e asymptotic tests developed by Cox (, )
were based on a modi�cation of the Neyman–Pearson
maximum likelihood ratio. If Hf is the null hypothesis
and Hg the alternative hypothesis, the test statistics con-
sidered was

Tfg = Tfg(α̂, β̂) − Eα̂{Tfg(α, βα)}

where for a random sample of size n, α̂ and β̂ denote the
maximum likelihood estimators of α and β respectively,
Tfg(α, β) = f (α) − g(β) is the log likelihood ratio, βα

is the probability limit, as n → ∞, of β̂ under Hf and
the subscript αmeans that expectations, etc. are calculated
under Hf .
Cox showed that, asymptotically, under the alternative

hypothesis Tfg has a negative mean and that under the null
hypothesis Tfg is normally distributed with mean zero and
variance

Vα(Tfg) = Vα{ITfg(α, βα)} − C−α I−Cα

where Cα = ∂Eα{Tfg(α, βα)}/∂α, and Iα the information
matrix of α. When Hg is the null hypothesis and Hf is
the alternative hypothesis analogous results are obtained
for a statistics Tg f .�erefore T∗fg = Tfg{Vα(Tfg)}

−/ and

T∗g f = Tg f {Vβ(Tg f )}
−/ underHf andHg respectively can

be considered as approximately standard normal variables
and two-tailed tests can be performed. �e outcomes of
application of both tests are shown in the Table .
As an alternative to his test, Cox () suggested combin-
ing the twomodels in a general model of which they would
be both special cases.�e density could be proportional to
the exponential mixture

{f (y, α)}λ
{g(y, β)}−λ

and inferences made about λ. It should be notice that these
mixtures can be generalized for testing more than two
models. In particular, the exponential mixture is the base
of the tests developed in econometrics.
Cox also suggested a Bayesian approach and gives a

general expression when losses are associated and a large
sample approximation.

�e posterior odds for Hf versus Hg is

πf ∫ f (y; α)πf (α)dα
πg∫ g(y; β)πg(β)dβ

=
πf

πg
Bfg(y)

where πf and πg are the prior probabilities of Hf and Hg

respectively, πf (α) and πg(β) are the prior probabilities
for the parameters conditionally on Hf and Hg . Bfg(y) is
the Bayes Factor and represents the weight of evidence in
the data for Hf over Hg .
One di�culty with this approach lies in the fact that

the prior knowledge expressed by πf and πf (α) must be
coherent with that of πg and πg(β). If the parameter spaces
have di�erent dimensions and there is no simple relation
between the parameters, the problem is not simple. When
prior information is weak and improper prior is used there
are also di�culties and paradox with the use of Bayes
factors which is unspeci�ed.

Alternative Approaches
Alternative approaches present in Cox () were further
developed under Cox supervision in unpublished Ph.D.
thesis at Imperial College : O.A.Y. Jackson in  and
B. de B. Pereira in  obtained further results on the
modi�ed likelihood ratio, A.C. Atkinson in  devel-
oped the exponential compound model approach, J. K.
Lindsey in  used a direct relative likelihood approach.
Later in  A. C. Atkinson supervised L. R. Pericchi
on the Bayesian approach. Published references from this
work can be traced in Pereira (a, b). Further con-
tributions of Cox in this area are Cox (), Cox and
Brandwood (), Atkinson and Cox (), Chambers
and Cox ().
Further alternative approaches such as: linear mix-

tures, relative likelihoods, tests based on information
and divergence measures,7moment generating functions,
multiple combinations, methods based on invariant statis-
tics and method of moments and bootstrap are reviewed
in Pereira (, ).
A huge amount of research on separate families of

hypothesis was developed since the fundamental work
of Cox (, ). In the s econometricians, using
the exponential compound model took a great interest
in the subject. Bayesian statisticians in the s devel-
oped alternative Bayes factors (see Araújo and Pereira
). For reviews and references seeMcAller et al. (),
Gourieroux and Monfort (), McAller (), Pereira
(b, a, , ), and Pesaran and Weeks ().
A test based on descriptive statistics for the mean and

the variance of the log-likelihood ratio has been proposed
by Vuong () but this has not been compared with Cox
test that has been shown to be consistent (Pereira a)
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Tests for Discriminating Separate or Non-Nested Models. Table  Possible results of Cox test

Tfg

Tgf Significant negative Not significant Significant positive

Significant negative Reject both Accept Hf Reject both

Not significant Accept Hg Accept both Possible acceptance Hg

Significant positive Reject both Possible acceptance Hf Reject both

and the only that can be extend to multivariate problems
(Araújo et al. ; Timm and Al-Subaihi ) and that
approaches the normal asymptotic result faster (Pereira
).
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Introduction
Homogeneity of variance (homoscedasticity) is an impor-
tant assumption shared by many parametric statistical
methods. �is assumption requires that the variance
within each population be equal for all populations (two
or more, depending on the method). For example, this
assumption is used in the two-sample t-test and ANOVA.
If the variances are not homogeneous, they are said to be
heterogeneous. If this is the case, we say that the underly-
ing populations, or random variables, are heteroscedastic
(sometimes spelled as heteroskedastic).
In this entry we will initially discuss the case when we

compare variances of two populations, and subsequently
will extend to k populations.

Comparison of Two Population Variances
�e standard F-test is used to test whether two populations
have the same variance. �e test statistic for testing the
hypothesis if σ  = σ  where σ  and σ  are the variances
of two populations, is

F =
s 
s 
, ()

where s  and s  are the sample variances for two inde-
pendent random samples of n and n observations from
normally distributed populations with variances σ  and
σ  , respectively. If the null hypothesis is true (i.e., H :
σ  = σ  ), the test statistic has the F-distribution with
(n − ) degrees of freedom for the numerator and (n − )
degrees of freedom for the denominator. �e F-test is
extremely sensitive to non-normality and should not be

used unless there is strong evidence that the data do not
depart from normality.
In practical applications, the F ratio in () is usually

calculated so that the larger sample variance is in the
numerator, that is, s  > s  . �us, F statistic is always
greater than one and only the upper critical values of the
F-distribution are used. At the signi�cance level α, the
test rejects the hypothesis that the variances are equal if
F > F(α ;n−;n−), where F(α ;n−;n−) is the upper critical
value of the F distributionwith (n−) and (n−) degrees
of freedom.

Tests for Equality of Variances of k
Populations
�e Bartlett’s test (Bartlett ) is used to test if k-groups
(populations) have equal variances. Hypotheses are stated
as follows:

H : σ  = σ  = . . . = σ k

H : σ i ≠ σ j for at least one pair (i, j).

To test for equality of variance against the alternative that
variances are not equal for at least two groups, the test
statistic is de�ned as

χ =

(N − k) ln

⎛
⎜
⎜
⎜
⎜
⎝

k

∑

i=
(ni − )s i

N − k

⎞
⎟
⎟
⎟
⎟
⎠

−
k

∑

i=
(ni − ) ln (s i )

 + 
 (k − )

[(
k

∑

i=


ni − 

) −


N − k
]

()

where k is the number of samples (groups), ni is the size of
the ith sample with sample variance s i , and N is the sum
of all samples sizes.

�e test statistic follows a 7chi-square distribution
with(k − ) degrees of freedom and the standard chi-
squared test with (k − ) degrees of freedom is applied.

�e Bartlett’s test rejects the null hypothesis that the
variances are equal if χ > χ(α ,k−), where χ(α ,k−) is
the upper critical value of the chi-square distribution with
(k − ) degrees of freedom and a signi�cance level of α.

�e test is very sensitive to departures from normality
and/or to di�erences in group sizes and is not recom-
mended for routine use. However, if there is strong evi-
dence that the underlying distribution is normal (or nearly
normal), the Bartlett’s test has good performance.

�e Levene’s test (Levene ) is another test used to
test if k groups have equal variances, as an alternative to



 T Tests for Homogeneity of Variance

the Bartlett’s test. It is less sensitive to departures from
normality and/or to di�erences in group sizes and is con-
sidered to be the standard test for homogeneity of vari-
ances.�e idea of this test is to transform the original val-
ues of the dependent variable Y and obtain a new variable
known as the “dispersion variable.” A standard 7analysis
of variance based on these transformed values will test the
assumption of homogeneity of variances.

�e test has two options. Given a variable Y with sam-
ple of size N divided into k-subgroups, Yij will be the jth
individual score belonging to the ith subgroup. �e �rst
option of the test is to de�ne the transformed variable as
the absolute deviation of the individual’s score from the
mean of the subgroup to which the individual belongs,
that is, as Zij = ∣Yij − Y i.∣ where Y i. is the mean of the ith
subgroup.�e transformed variable is known as the dis-
persion variable, since it “measures” how far the individual
is displaced from its subgroup mean.

�e Levene’s test statistic is de�ned as

FL
=

(N − k)
k

∑

i=
ni(Zi. − Z)

(k − )
k

∑

i=

ni
∑

j=
(Zij − Zi.)


()

where ni is the sample size of the ith subgroup, Zij =

∣Yij − Y i.∣ is the dispersion variable, Zi. are the subgroup
means of Zij and Z is the overall mean of Zij.

�e test statistic follows the F-distribution with (k− )
and (N − k) degrees of freedom and the standard F-test is
applied.

�e Levene’s test will reject the hypothesis that the vari-
ances are equal if FL

> Fα
(k−,N−k) where F

α
(k−,N−k) is the

upper critical value of the F distribution with (k − ) and
(N − k) degrees of freedom at the signi�cance level α.

�e second option is to de�ne the dispersion variable
as the square of the absolute deviation from the subgroup
mean, that is, as Zij = ∣Yij − Y i.∣

.

�e Brown–Forsythe test (Brown and Forsythe ) is a
modi�cation of the Levene’s test, based on the same logic,
except that the dispersion variable Zij is de�ned as the
absolute deviation from the subgroup median rather than
the subgroup mean, that is, Zij = ∣Yij −Mi.∣, where Mi. is
the median of the ith subgroup. Such a de�nition, based
on medians instead of means, provides good robustness
against many types of non-normal data while retaining
good power, and is therefore recommended in practical
applications.

�e O’Brien test (O’Brien ) is a modi�cation of the
Levene’sZ ij test. In theO’Brien test, the dispersion variable
Z ij is modi�ed in a way to include an additional scalarW
(weight) to account for the suspected kurtosis of the under-
lying distribution.�e dispersion variable in the O’Brien
test is de�ned as

Z B
ij =

(W + ni − )niZ ij −W (ni − ) s i
(ni − ) (ni − )

()

where Z ij is the square of the absolute deviation from the
subgroup mean and ni is the size of the ith subgroup with
its sample variance s i .W is a constant with values between
 and  and is used to adjust the transformation.�e most
commonly usedweight isW = ., as suggested byO’Brien
().

�e previously discussed tests are the tests that are
mostly used in empirical research and easily available
in most statistical so�ware packages. However, there are
also other homogeneity of variance tests, both parametric
and nonparametric. Among them are Hartley’s Fmax test,
David’s multiple test, and Cochran’s G test (also known as
Cochran’s C test).�e Bartlett–Kendall test (like Bartlett’s
test) uses log transformation of the variance to approxi-
mate the normal distribution. An example of a nonpara-
metric test is the Sidney–Tukey test that uses ranks and the
chi-square approximation. A good discussion on the topic
can be found in Zhang ().

Cross References
7Analysis of Variance Model, E�ects of Departures from
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Introduction: Tests for Continuous
Distributions
Suppose a random sample x, x,⋯, xn is given and we
wish to test H: the parent population is the (continuous)
distribution F(x; θ), where θ is a vector of parameters.
�e empirical distribution function (EDF) of the sample
is de�ned by

Fn(x) = n(x)/n,

where n(x) is the number of xi which are less than or equal
to x.�e goodness-of-�t tests to be discussed are EDF tests,
that is, based on the discrepancy

Y(x) = Fn(x) − F(x; θ)

�e most well known are the Kolmogorov-Smirnov
family:

D+n = sup Y(x)

D−n = sup{−Y(x)}

Dn = sup∣Y(x)∣

and the Cramér-von Mises family:

W
n = n∫

∞

−∞
Y(x)dF(x; θ)

Un = n∫
∞

−∞
{Y(x) − ∫

∞

−∞
Y(x)dF(x; θ)}


dF(x; θ)

and

An = n∫
∞

−∞
Y(x)ψ(x)dF(x; θ)

where ψ(x) = [F(x; θ)( − F(x; θ))]−

Statistic W
n is the original Cramér-von Mises statis-

tic, originally called nω. Statistic Un was introduced by
Watson () for testing distributions around a circle; it
has the merit that its value does not depend on the ori-
gin used for measuring the observations. Statistic An is the
Anderson-Darling () statistic: it emphasises the tails of
the tested distribution.
Statistic Dn was introduced by Kolmogorov ().

Distribution theory for theKolmogorov–Smirnov family is
known for the case when parameters are known; but when
parameters are unknown and must be estimated from the

sample, even asymptotic theory is not available and signif-
icance points must be obtained by Monte Carlo. Tables of
signi�cance points for testing a number of distributions are
in Stephens ().

�e statistics D+n and D−n have good power when the
sample EDF lies mostly on one side of the tested distri-
bution, but the Dn statistic, in general, is less powerful
as an omnibus test than the Cramér-von Mises statistics.
More information on this statistic is given by Lopes ()
in an article in this Encyclopedia and here it will not be
considered further.

The Probability Integral Transformation
In practice, it is easier to work with the EDF of the trans-
formed set z(i) = F(x(i); θ), i = ,⋯,n; where x() ≤

x() ≤ . . . ≤ x(n) is the ordered sample.�is transforma-
tion is called the probability integral transformation (PIT).
If θ is known, the z(i) are ordered uniform variates. If θ is
not known, an e�cient estimate (for example, the MLE)
should be used for the transformation.�e EDF statistics
are easier to calculate from the z-values, as follows.
Let Fn(z) be the empirical distribution function of the

z-values, and de�ne

yn(z) =
√
n{Fn(z) − z}.

�e Cramér-von Mises statistics now become, in terms of
yn(z):

W
n = ∫




{yn(z)}dz, ()

Un = ∫



{yn(z) − y}dz, ()

An = ∫



{yn(z)}w(z)dz, ()

where

y = ∫



yn(z)dz and w(z) = /(z − z).

�e computing formulas are

W
n =∑{z(i) − (i − )/n} + /(n) ()

Un =W
− n(z − .) ()

and

An = −n − (/n)∑(i − ) {ln(z(i)) + ln( − z(n+−i))}.
()

�e distributions of these statistics, when estimated
parameters are location or scale, will depend on the tested
distribution, but not on the true values of the parame-
ters. However, when an unknown parameter is a shape
parameter, the distribution will depend on the shape.
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Asymptotic theory of these statistics was �rst given by
Anderson and Darling (), and Darling (); see also
Anderson (), an entry in this Encyclopedia. Stephens
() used the theory to give signi�cance points for tests
of normality and exponentiality; points for other distribu-
tions are in Stephens () and in Lockhart and Stephens
(, ).
In general,W andA have been shown to be powerful

in testing many distributions; A has comparable power to
the Shapiro-Wilk statistic for testing normality.

Tests for Discrete Distributions
EDF tests may be adapted for testing discrete distribu-
tions, by comparing the cumulated histogram of observed
numbers in the cells with the cumulated histogram of the
expected numbers. Choulakian et al. () have given dis-
tribution theory for the Cramér-von Mises family when
parameters are known, and Lockhart et al. () have dis-
cussed the case when parameters must be estimated from
the sample; see Stephens (), an entry in this Encyclo-
pedia. �ese statistics are generally more powerful than
Pearson’s χ statistic.

About the Author
For biography see the entry 7Cramér-Von Mises Statistics
for Discrete Distributions.
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Testing for Interdependence
Testing independence between two of more components
of a random vector is an important problem in statis-
tics. For sake of simplicity, suppose that the law of each
component is continuous. In the bivariate case, for test-
ing independence between random variables X and X,
most of the tests proposed initially were based on some
dependence measure ρ, taking usually value  under the
null hypothesis of independence. Once a random sam-
ple (X,X), . . . , (Xn,Xn) is collected, that is, the pairs
(Xi,Xi), i = , . . . ,n, are independent observations of
(X,X), an estimator ρ̂n of ρ is obtained and it is com-
pared with the value of ρ under the null hypothesis. In
general, ρ̂n must be a “good” estimator of ρ in the sense
that as n → ∞, n/ (ρ̂n − ρ) ↝ N (, σ ), where “↝”
denotes convergence in law, and σ is the limiting variance
of n/ ρ̂n.�emost known example is the one based on the
Pearson correlation coe�cient, de�ned by

ρ =
Cov(X,Y)

√
Var(X,Y)Var(X,Y)

=
E(XY) − E(X)E(Y)

√
{E(X) − E(X)} {E(Y) − E(Y)}

,

provided E(X) and E(Y) are �nite. In that case,

ρ̂n = rn =
∑

n
i=(Xi − X̄)(Xi − X̄)

√
∑

n
i=(Xi − X̄)

√
∑

n
i=(Xi − X̄)

.
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Under the null hypothesis of independence, ρ =  and
n/rn ↝ N(, ), as n → ∞. If in addition the joint dis-
tribution of (X,X) is Gaussian, then rn√

(−rn)/(n−)
has a

Student distribution with n −  degrees of freedom.
Manyother popular empiricalmeasures of dependence

are based on ranks. Recall that the ranks Rij, i = , . . . ,n,
j = , , are de�ned as follows: Ri is the rank of Xi

amongst X, . . . ,Xn, while Ri is the rank of Xi amongst
X, . . . ,Xn, and so on, where the smallest observation has
rank . In particular, these measures do not depend on the
margins, only on the so-called copula (see7Copulas).�at
notion will be de�ned later.�e most known rank-based
measures of dependence are7Kendall’s tau and Spearman’s
rho. Kendall’s tau is de�ned by

τn =


n(n − )
(Cn −Dn),

where Cn is the number of concordant pairs of ranks, and
Dn is the number of discordant pairs, the pairs (Ri,Ri)

and (Rj,Rj) being concordant if (Ri−Rj)(Ri−Rj) > 
and discordant otherwise. Recall that τn is an estimation of
τ = P{(X − Y)(X − Y) > } − , where (Y,Y) is an
independent copy of (X,X). Under the null hypothesis
of independence, τ =  and it can be shown that n/τn ↝
N(, /), as n→∞.
Spearman’s rho, denoted by ρS

n, is simply de�ned as the
correlation between the ranks (R,R), . . . , (Rn,Rn).
�en ρS

n is an estimator of ρS, the correlation between
U = F(X) and U = F(X), where Fj is the distribu-
tion function of Xj, j = , . Under the null hypothesis of
independence, ρS

=  and n/ρS
n ↝ N(, ), as n→∞.

All tests based on a single measure of dependence usu-
ally have the same weakness:�ey are not consistent for
testing independence in the sense that under some alterna-
tives, the power of the test does not tend to  as the sample
size tends to in�nity. One such example of alternative is
the following: Let X be uniformly distributed over (, ),
denoted by X ∼ Unif(, ) and set X = T(X), where T
is the tent map, i.e., T(u) = min(u,  − u).�en X ∼

Unif(, ) and X and X are strongly dependent. How-
ever, for any of the three measures of dependence ρ stated
previously, the value of ρ is , the same value as for inde-
pendence, and it can be shown than n/ ρ̂n ↝ N(, σ ),
for some σ >  depending on ρ. As a result, the power
of the associated test of level % tends to Φ (−. σ

σ ),
where σ  is the asymptotic variance under the null hypoth-
esis of independence and Φ is the distribution function of
the standardGaussian. For example, in the case of the Pear-
son correlation, σ  =  and σ  = /, so the power tends to
., as n→∞.

To overcome the inconsistency problem, it was sug-
gested in Blum et al. () to use statistics based on
the empirical distribution function. More precisely, in the
bivariate case, one can compare the joint empirical distri-
bution function Hn, given by

Hn(x, x) =

n

n

∑
i=

I(Xi ≤ x,Xi ≤ x)

with the product of its margins, i.e., Fn(x) = Hn(x,∞)

and Fn(x) = Hn(∞, x). It can then be shown that
Hn(x, x) = n/{Hn(x, x) − Fn(x)Fn(x)} ↝

H(x, x), where the convergence is in the Skorohod space
D ([−∞,+∞]


) and H(x, x) = B{F(x),F(x)},

where F and F are the margins of the joint distribution
function H of (X,X), and B is a continuous centered
Gaussian process with covariance function

Γ(u,u, v, v) =Cov{B(u,u),B(v, v)}

={min(u, v) − uv}

×{min(u, v) − uv}.

Recall that by Sklar (), when the marginal distri-
butions are continuous, there exists a unique distribution
function C with uniform margins, called a copula, so that

H(x, x) = P(X ≤ x,X ≤ x)
= C{F(x),F(x)}, x, x ∈ R.

�us X and X are independent if and only if the copula is
the independence copula C⊥ de�ned by

C⊥(u,u) = uu, u,u ∈ [, ].

�at relationship lead Deheuvels () to proposed
tests of interdependence based on the empirical copulaCn,
where

Cn(u,u) =

n

n

∑
i=

I(Ri

n
≤ u,

Ri

n
≤ u) , u,u ∈ [, ].

�e empirical copula seems to have been studied �rst by
Rüschendorf ().
To tackle the d-dimensional case, d > , where the

covariance of the limiting process H under independence
is much more intricate than when d = , Blum et al. ()
proposed a decomposition of Hn based on Möbius for-
mula, leading to processes Hn,A, for all A ⊂ {, . . . ,d}, so
that each processHn,A is asymptotically independent of the
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others and where the covariance is similar to one obtained
in the bivariate case. More precisely, the covariance of the
continuous centered limiting processesHA is given by

Cov{HA(x),HA(y)} =∏
j∈A

[min{Fj(xj),Fj(yj)}

− Fj(xj)Fj(yj)], x, y ∈ Rd.

�at decomposition then appeared in Deheuvels ()
for copulas, but the author came short of propos-
ing tests of independence. �at decomposition was
then rediscovered by Ghoudi et al. (), who where
also able to test independence between non-observable
error terms in regression models, using the residu-
als. With the notable exception of the regression case,
testing independence using residuals or more gener-
ally pseudo-observations can be quite di�cult. See,
e.g., Ghoudi and Rémillard (). Building on the
previous work, Genest and Rémillard () applied
the Möbius decomposition method to empirical copu-
las to test interdependence and serial dependence. �at
lead them to de�ne the so-called “dependogram.” �e
work of Genest and Rémillard () has been extended
recently by Beran et al. () and Kojadinovic and
Holmes () for testing independence between ran-
dom vectors. In addition to test statistics constructed
from empirical distribution functions, some researchers
considered empirical 7characteristic functions. See, e.g.,
Feuerverger (), Bilodeau and Lafaye de Micheaux
(), and more recently Székely and Rizzo ().
Because independence can be characterized in terms of
characteristic functions, the associated tests are consistent
in general.
Finally it is worth mentioning Genest and Rémillard

(), Genest et al. () and Genest et al. ()
where power comparisons were made for tests of inter-
dependence, the last two for Cramér-von Mises type test
statistics.

Testing for Serial Independence
�e treatment of serial dependence in (stationary) time
series is almost the same as in the previous case, fewmodi-
�cations being necessary for taking into account their par-
ticular nature. In fact, ifY, . . . ,Yn represent the time series
values for n consecutive periods, then in the bivariate case,
one just have to de�ne Xi = Yi and Xi = Yi+ℓ , for some
lag ℓ ≥ .�en the correlation is called autocorrelation of
lag ℓ, etc.�e so-called correlogram of order k, introduced
by Wold in his  Ph.D. thesis, is the graph of the auto-
correlations for lags ℓ = , . . . , k. Under the null hypothesis
of serial independence, n/rn(), . . . ,n/rn(k) converge
jointly to independent standard Gaussian variables. One

can also adapt the rank-based measures to time series
context. More precisely, if R, . . . ,Rn are the ranks of
Y, . . . ,Yn, then one can measure dependence between
the pairs (Ri,Ri+ℓ), i = , . . . ,n − ℓ. For more details on
rank-based measures of dependence and their properties,
see e.g., Hallin et al. () and Ferguson et al. ().
As before, the tests based on autocorrelations or rank-
based measures are not consistent in general, so Skaug and
Tjøstheim () proposed to adapt the empirical distri-
bution function methodology to time series context. More
precisely, they considered the joint distribution function

H̃n(x, x) =


n − 

n−

∑
i=

I(Yi ≤ x,Yi+ℓ ≤ x)

which was compared to F̃n(x)F̃n(x), where F̃n(x) =

H̃n(x,∞). It is remarkable that the limiting distribution of
n/{H̃n(x, x) − F̃n(x)F̃n(x)} is the same as the limit-
ing distribution ofHn, de�ned in the previous section.�at
property was extended by Genest and Rémillard () to
themultivariate case, using the associated empirical copula
and Möbius decomposition. Other work using 7empirical
processes in a serial context includes Genest et al. ()
and Kojadinovic and Yan ().
Finally, one important problem in time series is check-

ing the serial independence of the non-observable inno-
vations, which is o�en considered as a test of adequacy for
the underlyingmodel. Unfortunately, inmost applications,
replacing the innovations by residuals changes completely
the limiting distribution. See, e.g., Ghoudi and Rémillard
(). However, using an idea of Brock et al. (),
Genest et al. () were able to propose tests of indepen-
dence so that their limiting distributionwas not a�ected by
using residuals instead of innovations. However the type of
models covered by theirmethodology is limited to additive
models, so it does not include GARCHmodels.
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A central goal of science, and indeed of a great number of
human activities, is to make use of current information in
order to obtain useful forecasts of what may happen in the
future. If the future is completely independent of the cur-
rently available information then this information is of no
help. However if there is dependence then we would like
to use it to make forecasts which are as accurate as possible
in some speci�ed sense.�is is one of the key goals of time
series analysis (although there are others as we shall see).
A time series is a set of observations {xt}, each one

associated with a particular time t and usually displayed
in a time series plot, i.e., a graph of xt as a function of
t. An example is the following graph of the natural log-
arithm of the daily closing value in US dollars of the
Dow-Jones Industrial Average, plotted for successive trad-
ing days from August st,  until August th, .
In general the set of times T at which observations are

recorded may be a discrete set, as is the case when obser-
vations are made at uniformly spaced times (e.g., daily
rainfall, annual income etc.) or it may be a continuous
interval. For reasons of space we shall restrict attention
here to observations at uniformly spaced times, in which
case we can label the times , , . . . . In order to account for
randomness, we suppose that for each t the observation xt
is just one of many possible values of a random variable
Xt that we might have observed at time t.�e term time
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series is frequently used to denote both the sequence of ran-
dom variables {X,X, . . .} and the particular sequence of
observed values {x, x, . . .}.
To illustrate the general problem of forecasting in con-

crete terms, suppose we have a sequence of jointly dis-
tributed random variables {X,X, . . .}. Such a sequence
is known as a time series indexed by the positive integers.
Suppose also that our ’information’ at time n consists of
the observed values of X, . . . ,Xn. Our problem then is
to predict Xn+h, the value of the random sequence at the
future time n + h using some suitably chosen function
X̂n+h of (X, . . . ,Xn). In order to assess the performance
of our forecast we need somemeasure of the error of X̂n+h.
An especially convenient measure, if EXn < ∞ for all n,
is the expected squared error, namely E(Xn+h − X̂n+h)

.
�en a rather simple calculation shows that the best fore-
cast, i.e., the function of (X, . . . ,Xn) which minimizes
the expected squared error is the conditional expectation,
E(Xn+h∣X, . . . ,Xn). Unfortunately the calculation of this
conditional expectation requires knowledge of the con-
ditional distribution of Xn+h given (X, . . . ,Xn) which is
generally unknown and also di�cult to estimate fromdata.
(If {X,X, . . .} is an independent sequence then the con-
ditional expectation is independent of {Xj, j ≤ n}, showing
that the current information at time n is of no help in
predicting Xn+h in this case. Time series is therefore pri-
marily concerned with dependent random variables and
the analysis and utilization of this dependence.) A simpler
approach to forecastingXn+h is to look for the linear combi-
nation, X̂n+h = a + aXn +⋯+ anX which minimizes the
expected squared error E(Xn+h − X̂n+h)

.�is is a much
simpler problem, the solution of which depends only on
the expected values EXi and EXiXj, i, j = , , . . . Moreover
if the joint distribution of (X,X, . . . ,Xk) is multivariate
normal for every positive integer k then this best linear
forecast is the same as the best forecast.
Forecasting is just one of the many objectives of time

series analysis. �ese depend on the particular �eld of
application. For example, from observed values x, x, . . .
of the random variables X,X, . . . we may wish to under-
stand the mechanism generating the data or perhaps to
extract a deterministic ‘signal’ in the data which is masked
by the presence of random noise. We may simply wish to
�nd a compact representation of the available observations
or to �nd a mathematical model which appears to repre-
sent the observations well and to use it to simulate further
realizations of the series.
For these applications we need to �nd a mathemati-

cal model which gives a good representation of the data.
Typically we select the best-�tting member of a speci-
�ed family of models by estimating parameters from the

observed data and then testing the goodness of �t of the
model to the data. Once we are satis�ed that the selected
model is satisfactory we use it to address the questions of
interest. Complete speci�cation of a model for the time
series {X,X, . . .} would consist of a speci�cation of the
joint distribution of (X, . . . ,Xk) for every positive integer
k. However if we are concerned with issues (such as best
linear prediction) which depend only on of �rst and sec-
ond order moments of the time series, then a model which
speci�es only �rst and second-order moments will su�ce.
Much of time series analysis is concerned with sta-

tionary time series. It is clear that if we wish to make
predictions, we must assume that something does not vary
with time. In extrapolating deterministic functions it is
common practice to assume that either the function itself
or one of its derivatives is constant. �e assumption of
a constant �rst derivative leads to linear extrapolation as
a means of prediction. In time series we need to predict
a series that is typically not deterministic but which con-
tains a random component.�e concept of stationarity is
used to extend the notion of constancy in time to incor-
porate randomness. Strict stationarity of the series {Xn}

means that (X, . . . ,Xk) has the same joint distribution as
(Xh+, . . . ,Xh+k) for all positive integers h and k.Weak sta-
tionarity means that EXj and E(Xj+hXj) exist and are both
independent of j.�us stationarity requires the probabilis-
tic properties (or, in the case of weak stationarity, the �rst
and second moment properties) of the series to be invari-
ant to shi�s along the time axis. Information concerning
the properties of stationary processes and estimation of
their parameters can be found in the many books deal-
ing with time series analysis. Without the assumption of
stationarity the formulation of appropriate models and
estimation of their parameters becomes much more dif-
�cult, although in recent years progress has been made in
this direction.

�e practical importance of stationary processes lies
in the fact that many empirically observed series, which
themselves cannot be well �tted by a stationary time series
model, can be simply transformed into a new series which
can. If a stationarymodel is �tted to the transformed series,
it can be used to generate forecasts of the transformed
series which can then be transformed back to generate cor-
responding forecasts for the original series. For example if
we denote by Xn the natural logarithm of the closing value
of the Dow-Jones Index on day n and consider the di�er-
enced series Yn := Xn − Xn− (known as the log return
for day n) then Yn can be rather well represented as a
stationary time series. �e realization of the series {Yn}

corresponding to the realization of {Xn} in Fig.  is shown
in Fig. .
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�e dependence between observations of a stationary
time series {Xn} is frequently measured by the autocovari-
ance function,

γ(h) := E[(Xt+h − µ)(Xt − µ)],

where µ := EXt , or the autocorrelation function,

ρ(h) := γ(h)/γ(),

which speci�es the correlation between any two obser-
vations separated by a time interval of length h. �ese

quantities can be estimated by the sample autocovariance
function,

γ̂(h)) = n−
n−h

∑
j=

(xj+h − x)(xj − x),

and sample autocorrelation function,

ρ̂(h) = γ̂(h)/γ̂(),

respectively, where x denotes the samplemean, n−∑n
j= xj.
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�e graph on the le� of Fig.  shows the sample auto-
correlation function of the di�erenced series in Fig.  with
% signi�cance bounds for testing the deviation of each
sample autocorrelation value from zero. As there is no
autocorrelation signi�cantly di�erent from zero from lags
 through , it appears that the di�erenced series is uncor-
related.�e best linear forecast of any future di�erence is
therefore equal to the estimated mean of the di�erences
(which is actually .).�e best linear forecast of the
natural logarithm of the Dow-Jones Industrial Average h
trading days a�er August th,  is therefore the value
on August th (.) plus .h.

�e autocorrelations in this example however do not
tell the whole story. If the series of di�erences, instead of
being merely uncorrelated with mean ., had been
independent, then the mean value would have been the
best rather than just the best linear forecast of future dif-
ferences. However the graph on the right of Fig. , the
sample autocorrelation function of the absolute values of
the di�erences is clearly signi�cantly di�erent from zero
at a number of lags. Since this implies that the abso-
lute di�erences are not independent, it implies also that
the di�erences themselves are not independent.�is phe-
nomenon of dependence with negligible correlation is a
striking feature of many �nancial time series and has led to
the development of a variety of intriguing models such as
ARCH andGARCHmodels to account for this and related
phenomena.
Probably the most widely used models for stationary

time series have been the so-called ARMA (or autore-
gressive moving average) models. �e series {Xn ,n =

,±,±, . . .} is said to be an ARMA(p, q) process if it is
a stationary solution of the linear di�erence equations,

Xn − ϕXn− −⋯ − ϕpXn−p = Z + θ +⋯θqZt−q,

where ϕ, . . . , ϕp, θ , . . . , θq are real valued coe�cients,
ϕp ≠ , θq ≠ , and {Zn} is a sequence of independent
(or sometimes just uncorrelated) random variables, each
with mean  and variance σ . Depending on the values
of p and q and the coe�cients ϕj and θ j, an enormous
range of sample autocorrelation functions can be repli-
cated by members of the ARMA family. �ere is a vast
literature dealing with problems of7model selection, esti-
mation and forecasting for these processes. A standard
technique (developed andpopularized byBox and Jenkins)
for dealing with observed time series which appear to
be non-stationary is to apply di�erencing until the data
appears to be representable by a stationarymodel and then
to �t an ARMA model to the resulting series. �e origi-
nal data is then said to be represented by an ARIMA (or
integrated ARMA) model.
In the last thirty years there has been an explo-

sion of interest in more elaborate non-linear models to
account for phenomena which cannot be accounted for in
the classical linear framework provided by ARMA mod-
els. �ese include threshold, bilinear, ARCH, GARCH,
Markov switching models and many others too numerous
to be discussed here in any detail. Details can be found in
some of the following references.
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Statistics as a scienti�c subject of decision making under
uncertainty is critical to the evaluation of health indica-
tors that are of paramount importance to public health.
Health issues, in most cases, are nondeterministic, which
leaves their study to use the most suitable probabilistic
approaches. Statistical research in health can be conducted
in the following areas:

(a) 7Meta-analysis: Meta-analysis mathematically com-
bine the results of numerous studies in order to
improve the reliability of the results. Studies chosen
for inclusion in a meta-analysis must be su�ciently
similar in a number of characteristics in order to
accurately combine their results; for instance, issues
surrounding meta-analyses of individual patient data
could be analyzed, and missing data can be dealt with
at the patient level.

(b) Statistical Epidemiology: �is aspect is broad and
includes the following: (i) Clustered observational
studies in which sample clusters of people are utilized
for health research. �is is becoming increasingly
common, especially with patients in various health
practices, people within health districts, and children
within schools. �e hierarchical nature of the data
then takes on a multi-level structure that needs to be
accounted for in the analysis. (ii) Ecological studies
are carried out at an aggregate level, for example, the
ward or district level, and can be used to investigate
the relationship between socio-economic risk factors
and ill-health. (iii) Longitudinal studies are useful
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because following people over time is costly and time
consuming and may have problems of missing data
and consistency of measurement over time. Research
of interest in this area could include amatched cohort
study of coping and depression in parents of children
newly diagnosed with terminal diseases.

(c) Survival Analysis:�is is the analysis of time-to-event
data, and is relevant to many clinical studies where
the outcome of interest relates to the time taken for
some event to occur, for instance, time to �rst seizure
or time to death following 7randomization.

�e most important aspect of survival analysis is the mea-
sures of health indicator, especially the study of death
rate for emerging and re-emerging diseases. Deliberation
is continuing on how best to estimate the death rate of
an emerging contagious disease, which is of paramount
importance to global public health. �e  outbreak
of in�uenza caused by a novel in�uenza A (HN) virus
has given the World Health Organization (WHO) con-
cern on how best to estimate the death rate arising from
HN throughout the world. As a matter of fact, the case
of estimating the global death rate arising from the out-
break of severe acute respiratory syndrome (SARS) in 
also generated much public controversy (Altman ()).
�eWHO’s convectional formula for computation of death
rate is simply the ratio of the number of known deaths to
the total number of con�rmed cases (Mathers and Loncar
()), however, this formula is likely to underestimate
the true death rate because the outcomes of many cases
were still unknown or uncertain at the time these �gures
might have being compiled. In other words, the WHO
approach has a problem of “selection” bias because the
conditional probability of death among cases of known
outcomes need not be equal to the unconditional proba-
bility of death. Another notable model of estimating the
death rate of an emerging disease is the cohort approach. In
this model cases from the same day constitute a cohort and
the binomial analysis is restricted to the cases from a com-
plete cohort, that is, cases with a known outcome at the end
of the study period.�e restrictions in this model lead to
loss of a substantial volume of data and require some data
that may not be accessible to researchers.�e generalized
mixed e�ect model of estimating death rate discussed by
Chan and Tong () is less biased and converges quickly
to the death rate computed from the complete data, but
the model speci�ed leads to a singular precision matrix
for the unknown parameters. In addition, the choice of
the singular value decomposition presented may restrain
this approach for practical use. Chang and Tong concluded
that further research was needed on how to carry out the

estimation of the conditional mean death rate with the
constraint that the estimated death rate should be greater
than or equal to zero. Shangodoyin () pro�ers another
method by using a novel time series model to estimate the
mean death rate of an emerging or re-emerging disease
with bilinear induced parameters; from the applied point
of view, both the Tong and Chan () and Shangodoyin
() models could be used by experts in monitoring and
evaluating the death rate of a disease over time. For a gen-
eral linear model (see 7General Linear Model) the mean
death rate could be speci�ed as:

µt =
a
∑
a
pjCt−j

where a, a ≥  are lower and upper bounds of time to
death.�emodel is bilinear for estimating themean deaths
at time t as:

µt = αµt− + βµt−et− +
u

∑

pjCt−j + et .

By making all the necessary mathematical assumptions,
the overall death rate for one-step time to death is given
by

ṗ =

n

∑


µ̇Ct−

n

∑


Ct−

where Ct−j is the number of con�rmed cases at time t −

j, µ̇t =

t

∑


Dt

t
; ∀t = , , . . . and Dt is the number of deaths

at time t. Readers should refer to the paper by Shangodoyin
() for details of the derivations.
In conclusion, statistical models play signi�cant roles

in the evaluation and monitoring of death rates from both
emerging and re-emerging disease; and the use of most
suitable time series models will provide the best insight to
the future mortality rate for the given disease.
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Introduction
A regression model is used to study the relationship of a
dependent variable with one or several independent vari-
ables.�e standard regression model is represented by the
following equation:

Y = β + βX + βX +⋯ + βkXk + ε,

where Y is the dependent variable, X, . . . ,Xk are the inde-
pendent variables, β, β, . . . , βk are the regression coe�-
cients, and ε is the error term. When time series data are
used in the model, it becomes time series regression, and
the model is o�en written as

Yt = β + βX,t + βX,t +⋯ + βkXk,t + εt ,

or equivalently

Yt = X′tβ + εt , ()

where X′t = [,X,t , . . . ,Xk,t] and β = [β, β, . . . , βk]
′.

�e standard regression assumptions on the error vari-
able are that the εt are i.i.d. N (, σ ε ) . Under these stan-
dard assumptions, it is well known that the ordinary least
squares (OLS) estimator β̂ of β is a minimum variance

unbiased estimator, distributed as multivariate normal,
N (β, σ ε I) .WhenX′t is stochastic inModel (), conditional
on X′t , the results about the OLS estimator β̂ of β also
hold as long as εs and X′t are independent for all s and t.
However, the standard assumptions associated with these
models are o�en violated when time series data are used.

Regression with Autocorrelated Errors
When X′t is a vector of a constant  and k lagged values
of Yt , i.e., X′t = [,Yt−, . . . ,Yt−k], and εt is white noise,
the model in () states that the variable Yt is regressed
on its own past k lagged values and hence is known as
autoregressive model of order k, i.e., AR(k)model

Yt = β + βYt− +⋯ + βkYt−k + εt . ()

�e OLS estimator β̂ of β is still a minimum variance unbi-
ased estimator. However, this result no longer holds when
the εt are autocorrelated. In fact, when this is the case,
the estimator is not even consistent and the usual tests of
signi�cance are invalid.�is is an important caveat. When
time series are used in a model, it is the norm rather than
the exception that the error terms are autocorrelated. Even
in univariate time series analysis when the underlying pro-
cess is known to be an AR model as in (), the error terms
εt could still be autocorrelated unless the correct order of k
is chosen.�us, a residual analysis is an important step in
regression analysis when time series variables are involved
in the study.

�ere are many methods that can be used to test for
autocorrelation of the error term. For example, one can use
the test based on the Durbin–Watson statistic,

d =

n

∑
t=

(ε̂t − ε̂t−)

n

∑
t=

ε̂t
≈ ( − ρ̂), ()

where ε̂t is residual series from theOLS procedure. Clearly,
d lies between  and . A value close to  indicates no �rst-
order autocorrelation, a value much less than  and close
to  indicates a positive �rst-order autocorrelation and a
value much greater than  and close to  indicates a neg-
ative �rst-order autocorrelation. To help make decision,
in terms of the null hypothesis of no �rst-order auto-
correlation against the alternative hypothesis of positive
�rst-order autocorrelation, the critical values of Durbin-
Watson, dL and dU can be constructed, which are functions
of the number independent variables, the number of obser-
vations, and the signi�cance level.�e null hypothesis is
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rejected if  < d < dL, is not rejected if dU < d < , and
inconclusive if dL < d < dU . For the null hypothesis of no
�rst-order autocorrelation against the alternative hypoth-
esis of negative �rst-order autocorrelation, the same table
can be used since it is simply the mirror image of the for-
mer case when we look at the case from the endpoint of 
instead of the endpoint of .�us, the null hypothesis is
rejected if  − dL < d < , is not rejected if  < d <  − dU ,
and inconclusive if  − dU < d <  − dL.
More generally, to study the autocorrelation structure

of the error term, we can perform the residual analysis with
time series model identi�cation statistics like the sample
autocorrelation function (ACF) and sample partial auto-
correlation function (PACF).�rough these identi�cation
statistics, one can detect not only whether the residuals
are autocorrelated but also identify its possible underlying
model. A �nal analysis can then be performed on a model
with autocorrelated errors as follows:

Yt = X′tβ + εt ()

for t = , , . . . ,n, where

εt = φεt− +⋯ + φpεt−p + at ()

and the at are i.i.d. N(, σ ).
Let

Y =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Y

⋮

Yn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, X =

⎡
⎢
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X′

⋮

X′n

⎤
⎥
⎥
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⎥
⎥
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⎥
⎦

, and ξ =
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⎥
⎥
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⎥
⎥
⎥
⎥
⎦

�e matrix form of the model in () is

Y = Xβ + ξ ()

where ξ follows a multivariate normal distribution (see
7Multivariate Normal Distributions) N(,Σ) When φ,
. . . ,φp, and σ  are known in (), Σ can be easily calculated.
�e diagonal element of Σ is the variance of εt , the jth o�-
diagonal element corresponds to the jth autocovariance of
εt , and they can be easily computed from (). Given Σ, the
generalized least squares (GLS) estimator

β̂ = (X′Σ−X)
−X′Σ−Y ()

is known to be a minimum variance unbiased estimator.
Normally, we will not know the variance-covariance

matrix Σ of ξ because even if εt follows an AR(p)
model given in (), the σ  and AR parameters φj are usu-

ally unknown. As a remedy, the following iterative GLS is
o�en used:

() Calculate OLS residuals ε̂t from OLS �tting of Model
().

() Estimate φj and σ  for the AR(p)model in () based
on theOLS residuals, ε̂t , using any time series estima-
tion method. For example, a simple conditional OLS
estimation can be used.

() Compute Σ from the model () using the values of φj

and σ  obtained in step ().
() Compute GLS estimator, β̂ = (X′Σ−X)

−X′Σ−Y,
using the Σ obtained in step (). Compute the resid-
uals ε̂t from the GLS model �tting in step (), and
repeat the above steps () through () until some
convergence criterion (such as the maximum abso-
lute value change in the estimates between itera-
tions becoming less than some speci�ed quantity) is
reached.

More generally, the error structure can be modi�ed to
include an ARMAmodel.�e above GLS iterative estima-
tion can still be used except that a nonlinear least squares
estimation instead of OLS is needed to estimate the param-
eters in the error model. Alternatively, by substituting the
error model in the regression equation (), we can also
use the nonlinear estimation or maximum likelihood esti-
mation to jointly estimate the regression and error model
parameters β and φ′j s, which is available in standard so�-
ware.
It should be pointed out that although the error term,

εt , can be autocorrelated in the regression model, it should
be stationary. A nonstationary error structure could pro-
duce a spurious regression where a signi�cant regression
can be achieved for totally unrelated series.

Regression with Heteroscedasticity
One of the main assumptions of the standard regression
model in Eq.  or the regression model with autocorre-
lated errors in Eq.  is that the variance, σ ε , is constant.
Inmany applications, this assumptionmay not be realistic.
For example, in �nancial investment, it is generally agreed
that stock markets’ volatility is rarely constant.
Such a model having a non-constant error variance

is called a heteroscedasticity model. �ere are many
approaches which can be used to deal with heterocedastic-
ity. For example, theweighted regression is o�en used if the
error variances at di�erent times are known or if the vari-
ance of the error term varies proportionally to the value of
an independent variable. In time series regression we o�en
have the situation where the variance of the error term is
related to themagnitude of the past errors.�is leads to the
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conditional heteroscedasticity model, introduced by Engle
(), where in terms of Eq.  we assume that

εt = σtet , ()

the et are i.i.d. random variable withmean  and variance ,
and

σ t = θ + θε t− + θε t− +⋯ + θsε t−s. ()

Given all the information up to time (t−) the conditional
variance of the εt becomes

Vart−(εt)= Et− (εt ) = E (εt ∣εt−, εt−, . . .) = σ t

= θ + θε t− + θε t− +⋯ + θsε t−s.
()

which is related to the squares of past errors, and it changes
over time. A large error through εt−j gives rise to the vari-
ancewhich tends to be followed by another large error.�is
is a common phenomenon of volatility clustering in many
�nancial time series.
From the forecasting results, we see that Eq.  is simply

the optimal forecast of εt from the followingAR(s)model:

εt = θ + θε t− + θε t− +⋯ + θsε t−s + at , ()

where the at is aN (, σ a)white noise process.�us, Engle
() called the model of the error term εt with the vari-
ance speci�cation given in () and () or equivalently in
() as autoregressive conditional heteroscedasticitymodel
of order s (ARCH(s)).
Bollerslev () extends the ARCH(s) model to the

GARCH(r, s) model (generalized autoregressive condi-
tional heteroscedasticity model of order (r, s)) so that the
conditional variance of the error process is related not only
to the squares of past errors but also to the past conditional
variances.�us, we have the following more general case

εt = σtet , ()

where the et are i.i.d. random variable with mean  and
variance ,

σ t = θ + ϕσ t− +⋯ + ϕrσ t−r + θεt− +⋯ + θsεt−s, ()

and the roots of ( − ϕB − ⋯ − ϕrBr
) =  are outside the

unit circle. To guarantee σ t >  we assume that θ >  and
ϕi and θ j are nonnegative.
More generally, the regression model with autocor-

related error can be combined with the conditional het-
eroscedasticity model, i.e.,

Yt = X′tβ + εt , ()

where

εt = ϕεt− +⋯ + ϕpεt−p + at , ()
at = σtet , ()
σ t = θ + ϕσ t− +⋯ + ϕrσ t−r + θat−

+⋯ + θsat−s, ()

and the et are i.i.d.N(, ). To test for the heteroscedasticity
in this model, we follow:

() Calculate OLS residuals ε̂t from the OLS �tting of
().

() Fit an AR(p) model () to the ε̂t .
() Obtain the residuals ât from the AR �tting in ().
() Form the series ât , compute its sample ACF, PACF,

and check whether these ACF and PACF follow any
pattern. A pattern of these ACF and PACF not only
indicates ARCH or GARCH errors, it also forms a
good basis for their order speci�cation.

For more detailed discussions and examples, we refer
readers to Wei ().
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Total survey error refers to the totality of error that can
arise in the design, collection, processing and analysis of
survey data. �e concept dates back to the early ’s
although it has been revised and re�ned by amany authors
over the years. Deming (), in one of the earliest works,
describes “ factors that a�ect the usefulness of surveys.”
�ese factors include sampling errors as well as nonsam-
pling errors; i.e., the other factors that will cause an esti-
mate to di�er from the population parameter it is intended
to estimate. Prior to Deming’s work, not much attention
was being paid to nonsampling errors and, in fact, text-
books on survey sampling made little mention of them.
Indeed, classical sampling theory (Neyman ) assumes
survey data are error free except for sampling error.�e
term “total survey error” originated with an edited volume
of the same name (Andersen et al. ()).
A number of authors have provided a listing of the gen-

eral sources of nonsampling error. For example, Biemer
and Lyberg () list �ve sources: speci�cation, frame,
nonresponse, measurement and data processing (includ-
ing post-survey adjustment). A speci�cation error arises
when the concept implied by the survey question and
the concept that should be measured in the survey dif-
fer. Frame error arises in the process for constructing,
maintaining, and using the sampling frame(s) for select-
ing the survey sample. It includes the inclusion of non-
population members, exclusions of population members,
and frame duplications. Nonresponse error encompasses
both unit and item nonresponse. Unit nonresponse occurs
when a sampled unit does not respond to any part of
a 7questionnaire. Item nonresponse error occurs when
the questionnaire is only partially completed because
an interview was prematurely terminated or some items
that should have been answered were skipped or le�
blank. Measurement error includes errors arising from
respondents, interviewers, survey questions and factors
which a�ect survey responses. Finally, data processing error
includes errors in editing, data entry, coding, computation
of weights, and tabulation of the survey data.

�e total survey error in a survey estimator, θ̂, for a
population parameter, θ, can be summarized by the mean
squared error of the estimator de�ned as

MSE(θ)= E(θ̂ − θ)

= B(θ̂) + Var(θ̂)
()

where B(θ̂) = E(θ̂ − θ) is the bias in the estimator
and Var(θ̂) = E(θ̂ − θ) is the variance of the estimator.
For estimating the population mean, biases arise from sys-
tematic errors in the survey process; i.e., errors that are
either predominately positive or predominately negative.
As an example, sensitive items such as drug use tend to
be underreported in surveys causing a negative bias in the
estimated proportion of drug users. Nonresponse can also
create a bias by systematically excluding from the survey
data, individuals who di�er on the survey characteristics
from respondents.

�e variance component of the MSE arises as a result
of sampling error as well as variable nonsampling errors.
Variable nonsampling error can be described roughly as
the error remaining a�er accounting for the systematic
errors. Variable errors tend to �uctuate randomly from
unit to unit and have little or no e�ect on bias. As an
example, interviewer estimates of housing values or neigh-
borhood income levels may vary randomly from their true
values.
To illustrate the e�ects of systematic and variable error,

consider a7simple random sample of size n to estimate the
mean, µ, of a large population. An elementarymodel for an
observation, yi, for characteristic y on sample unit i is

yi = µi + εi ()

where µi is the true value of the characteristic (i.e., the
value that would have been observed without error), and
εi is the error in the observation. Here εi represents
the cumulative e�ect of all systematic and variable error
sources for the ith unit. If the net error is , i.e., if E(εi) =

, then there is no bias in the estimator y = n−
n

∑

i=
yi.

In that case, the errors are variable; i.e., no systematic
errors. When systematic errors arise in the observations,
E(εi) = β ≠  where β is the bias in y. Under this model,
MSE(y) can be written as

MSE(y) = β +
σ µ + σ ε

n
()

where σ µ = Var(µi) and σ ε = Var(εi). In this expression,
β is the nonsampling bias, n−σ µ is the sampling variance
and n−σ ε is the nonsampling variance.
It is o�en useful to decompose both the nonsampling

bias and variance components further by terms represent-
ing for the various sources of error in the survey process.
As an example, suppose the major sources of bias include
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the sampling frame, nonresponse and measurement bias.
�en bias squared component can be expanded to include
bias components for these sources as follows:

β = BFR + BNR + BMEAS ()

where BFR denotes frame bias, BNR, nonresponse bias and
BMEAS, measurement bias. �e variance component can
also be expanded to include terms for all themajor contrib-
utors of variable error such as sampling error, interviewers,
respondents and other variable errors. Now the MSE can
be rewritten as

MSE(y) = (BFR + BNR + BMEAS + BDP)


+
σ µ + σ int + σ res + σ e

n
()

where σ int is the interviewer variance component, σ res is
the respondent variance component, and σ e is the variance
associated with all other sources. �us, σ ε in () can be
decomposed as σ ε = σ µ + σ int + σres + σ e .�is form of the
MSE assumes uncorrelated errors; however, the MSE can
be also expanded to include correlations among the error
from the same or di�erence error sources (see, for exam-
ple, Biemer ()).�e estimation of the components of
the MSE can be quite challenging (see Mulry and Spencer
, for an application of the total survey error concept
to the  Decennial Census). Biemer () provides a
simpli�ed estimator of the total MSE when multiple error
sources are considered.
Finally, a critical part of the total survey error con-

cept is error reduction and control. It is seldom possible
to conduct every stage of the survey process at maximum

accuracy since that would likely entail exceeding the sur-
vey budget and schedule by a considerable margin. Even
under the best circumstances, some errors will necessarily
remain in the data so that other, more serious errors can
be avoided or reduced. For example, training interviewers
adequately may require eliminating or limiting some qual-
ity control activities during data processing; but that might
increase the data processing error. E�orts to reduce nonre-
sponse bias may require substantial reductions during the
survey pretesting phase to stay within budget. How should
these resource allocation decisions be made? Making wise
trade-o�s requires an understanding of the sources of non-
sampling error, their relative importance to data quality,
and how they can be controlled. One answer is optimal
survey design.
Optimal survey design aims to minimize the MSE

(expressed in terms of the major error sources in the sur-
vey) subject to constraints on the survey process imposed
by the budget, timeliness and other design considera-
tions. Provide a design that is truly optimal (i.e., the best
possible) may be an unattainable goal though it can be
approximated. Doing so requires knowledge of the major
error sources, their relative magnitudes and the most e�-
cient and e�ective methods for nonsampling error reduc-
tion. Careful planning is then required to allocate survey
resources to the various stages of the survey process so that
themajor sources of error are controlled to optimal, or near
optimal levels.
To illustrate, Figure  depicts three possible resource

allocation strategies satisfying the same budget constraint.
Allocation A sacri�ces sampling precision (i.e., sample
size) for the sake of nonsampling error minimization by
allocating more resources to editing, interviewer train-
ing, nonresponse reduction and questionnaire pretesting.

Editing
Interviewer training
Nonresponse reduction
Pretesting

Sample size

Allocation A

Budget

Allocation B Allocation C

Total Survey Error. Fig.  Three potential cost allocations for the same fixed budget, each with very different implications for total
survey error
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Allocation C reduces these nonsampling error control
strategies in order to boost the sample size thereby achiev-
ing greater sampling precision. Allocation B is a compro-
mise between these two designs. Many other allocation
schemes are possible.�e challenge for the survey designer
is to choose a single allocation strategy that provides the
optimal balance between sampling error reduction and
nonsampling error control while staying within budget.
�is is made even more di�cult if there is insu�cient
information on the magnitudes of the total error compo-
nents and scant knowledge regarding nonsampling error
control strategies that are most e�ective at reducing the
components of total survey error.
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�e development of consistent measures of tourism has
challenged tourism statisticians and economists since the
s (Smith ). �e challenges arise, in part, from
the nature of tourism as an economic activity. Although
tourism is o�en referred to as an industry, it is funda-
mentally di�erent than conventional industries; it is these
di�erences that complicate the measurement of tourism
(the de�nition of “tourism” and the nature of a “tourism
industry” are discussed below). Further, the development
of tourism statistics consistent among nations has required
extensive negotiations among national statistical agencies
as well as other international organizations to reach a
consensus on the de�nition of tourism and associated
concepts.

�ese concepts have been operationalized throughnew
analytical tools, particularly the Tourism Satellite Account
(UNWTO ). International agreement on core de�ni-
tions andmeasurement techniques has now been achieved
in principle. �e tasks facing tourism statisticians are to
re�ne, apply, and extend the concepts and tools that have
been developed.
Fundamental to tourism statistics is, of course, the

de�nition of “tourism.” �e World Tourism Organiza-
tion de�nes tourism as the set of activities engaged in
by persons temporarily away from their usual environ-
ment for a period of not more than one year, and for a
broad range of leisure, business, religious, health, and per-
sonal reasons, excluding the pursuit of remuneration from
within the place visited or long-term change of residence
(UNWTO ). �us, tourism fundamentally is some-
thing people do in certain circumstances (particularly
travel outside their usual environment), not a commodity
businesses produce.
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�ere are several related concepts that are important
for tourism policy, planning, marketing, and measure-
ment purposes. One of these is tourism commodity – a
good or service that would be produced only in a sub-
stantially reduced volume in the absence of tourism (such
as passenger air services). A tourism industry is an indus-
try characterized by the production of a tourism com-
modity (such as an airline o�ering scheduled passenger
service). �us, while tourism, per se, is not an industry,
there are tourism industries such as accommodation, pas-
senger transportation, food service, and recreation and
entertainment.
Core tourism statistics include measures of the num-

ber of visitor arrivals in a destination (annually, seasonally,
and/or monthly), their spending levels (o�en by category
of commodity purchased), numbers of businesses serv-
ing visitors (by tourism industry), numbers of tourism
employees, tourism’s contribution to GDP, and govern-
ment revenues attributable to tourism. Many specialized
statistics related to persons engaged in tourism trips are
also collected such as mode(s) of travel on a trip, mode(s)
of accommodation used on a trip, activities engaged in
during a trip, information sources used in planning a trip,
routes taken, speci�c destinations visited, levels of satisfac-
tion with services consumer, and so on.
Statistics related to activities not directly associated

with individual behavior on speci�c trips are normally
not considered to be tourism statistics, even though such
information may be important for other purposes.�us,
government spending on infrastructure or tourism mar-
keting, and investment in real estate or equipment (hotels,
casinos, aircra�) are not considered to be within the scope
of tourism statistics because they related to forms of pro-
duction, and are more properly viewed as data relating to
construction, manufacturing, marketing, real estate, and
other forms of economic activity.
Sources of tourism statistics are numerous and diverse.

�ey include surveys of border-crossing counts, visitors
(during a trip or a�erwards), business surveys, general
social surveys (especially those covering household expen-
ditures), and administrative records such as attraction
ticket sales or hotel reservation records.

About the Author
Dr. Stephen L.J. Smith is Professor in the Department
of Recreation and Leisure Studies and Director of the
Tourism Policy and Planning Program at the University of
Waterloo, Canada. He is an Elected Fellow of the Interna-
tional Statistical Institute () and of the International
Academy for the Study of Tourism (). He has authored
more than  papers and eight books.His twomost recent

books are Practical Tourism Research (published by CABI,
) and�e Discovery of Tourism (published by Emerald
PublishingGroup, ).Hewas involved in the creation of
the Canadian Tourism Satellite Account through his lead-
ership in the Canadian National Task Force on Tourism
Data. Dr. Smith is Associate Editor for Tourism Recreation
Research and the book review editor for Annals of Tourism
Research.

Cross References
7Economic Statistics
7Seasonality
7Statistical Fallacies

References and Further Reading
Smith SLJ () The measurement of global tourism: Old

debates, new consensus, and continuing challenges. In: Lew
AA, Hall CM, Williams AM (eds) A companion to tourism.
Blackwell, Oxford, UK, pp –

UNWTO () Guidelines for tourism statistics. UNWTO, Madrid,
Spain

UNWTO () Tourism satellite account (TS): The conceptual
framework. UNWTO, Madrid, Spain

Trend Estimation

Tommaso Proietti
Professor of Economic Statistics
University of Rome “Tor Vergata”, Rome, Italy

Trend estimation deals with the characterization of the
underlying, or long–run, evolution of a time series. Despite
being a very pervasive theme in time series analysis since
its inception, it still raises a lot of controversies.�e dif-
�culties, or better, the challenges, lie in the identi�cation
of the sources of the trend dynamics, and in the de�nition
of the time horizon which de�nes the long run.�e preva-
lent view in the literature considers the trend as a genuinely
latent component, i.e., as the component of the evolu-
tion of a series that is persistent and cannot be ascribed
to observable factors. As a matter of fact, the univariate
approaches reviewed here assume that the trend is either
a deterministic or random function of time.
A variety of approaches is available, which can be clas-

si�ed as nonparametric (kernel methods, local polynomial
regression, band-pass �lters, and wavelet multiresolution
analysis), semiparametric (splines and Gaussian random
�elds) and parametric, when the trend is modeled as a
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stochastic process.�ey will be discussed with respect to
the additive decomposition of a time series y(t):

y(t) = µ(t) + є(t), t = , . . . ,n, ()

where µ(t) is the trend component, and є(t) is the noise, or
irregular, component.We assume throughout that є(t) = 
is a zero mean stationary process, whereas µ(t) can be
a random or deterministic function of time. �e above
decomposition bears di�erent meanings in di�erent �elds.
In experimental sciences є(t) is usually interpreted as a
pure measurement error, so that a signal is observed with
superimposed random noise. However, in behavioral sci-
ences such has economics, quite o�en є(t) is interpreted
as a stationary stochastic cycle or as the transitory compo-
nent of y(t).�e underlying idea is that trends and cycles
can be ascribed to di�erent economic mechanisms. More-
over, according to some approaches µ(t) is an underlying
deterministic function of time, whereas for other it is a ran-
dom function (e.g., a randomwalk, or a Gaussian process),
although this distinction becomesmore blurred in the case
of splines. For some methods, like band pass �ltering, the
underlying true value µ(t) is de�ned by the analyst via
the choice of a cuto� frequency which determines the time
horizon for the trend.

�e simplest and historically oldest approach to trend
estimation adopted a global polynomial model for µt :
µ(t) = ∑

p
j= βjtj.�e statistical treatment, based on least

squares, is provided in Anderson (). It turns out that
global polynomials are amenable to mathematical treat-
ment, but are not very �exible: they can provide bad local
approximations and behave ratherweirdly at the beginning
and at the end of the sample period, which is inconvenient
for forecasting purposes. More up to date methodolo-
gies make the representationmore �exible either assuming
that certain features, like the coe�cients or the deriva-
tives, evolve over time, or that a low order polynomial
representation is adequate only as a local approximation.
Local polynomial regression (LPR) is a nonparametric

approach that assumes that µ(t) is a smooth but unknown
deterministic function of time, which can be approximated
in a neighborhood of time t by a polynomial of degree p of
the time distance with time t.�e polynomial is �tted by
locally weighted least squares, and the weighting function
is known as the kernel. LPR generates linear signal extrac-
tion �lters (also known as moving average �lters) whose
properties depend on three key ingredients: the order of
the approximating polynomial, the size of the neighbor-
hood, also known as the bandwidth, and the choice of the
kernel function. �e simplest example is the arithmetic
moving average mt = 

h+ ∑
h
j=−h yt+j, which is the LPR

estimator of a local linear trend (p = ) in discrete time
using a bandwidth of h +  consecutive observations and
the uniform kernel.
Trend �lters that arise from �tting a locally weighted

polynomial to a time series have a well established
tradition in time series analysis and signal extrac-
tion; see Kendall et al. () and Loader (). For
instance, the Maculay’s moving average �lters and the
Henderson () �lters are integral part of the X- sea-
sonal adjustment procedure adopted by the US Census
Bureau.
�e methodology further encompasses the Nayadara-
Watson kernel smoother.
An important class of nonparametric �lters arises

from the frequency domain notion of a band-pass �l-
ter, that is popular in engineering. An ideal low-pass
�lter retains only the low frequency �uctuations in the
series and reduces the amplitude of �uctuations with fre-
quencies higher than a cuto� frequency ωc. Such a �lter
is available analytically, but unfeasible, since it requires
a doubly in�nite sequence of observations; however, it
can be approximated using various strategies (see Per-
cival and Walden ). Wavelet multiresolution analy-
sis provides a systematic way of performing band-pass
�ltering.
An alternative way of overcoming the limitations of

the global polynomial model is to add polynomial pieces
at given points, called knots, so that the polynomial sec-
tions are joined together ensuring that certain continuity
properties are ful�lled. Given the set of points t < . . . <
ti < . . . tk, a polynomial spline function of degree p with k
knots t, . . . , tk is a polynomial of degree p in each of the
k +  intervals [ti, ti+), with p −  continuous derivatives,
whereas the p−-st derivative has jumps at the knots. It can
be represented as follows:

µ(t) = β+β(t−t)+⋯+βp(t−t)p+
k

∑
i=

ηi(t−ti)
p
+, ()

where the set of functions

(t − ti)
p
+ = {

(t − ti)p, t − ti ≥ ,
, t − ti < 

de�nes what is usually called the truncated power basis of
degree p.
According to () the spline is a linear combination of

polynomial pieces; at each knot a new polynomial piece,
starting o� at zero, is added so that the derivatives at that
point are continuous up to the order p−.�emost popular
special case arises for p =  (cubic spline); the addi-
tional natural boundary conditions, which constrain the
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spline to be linear outside the boundary knots, is imposed.
See Green and Silverman () and Ruppert et al.
().
An important class of semiparametric and parametric

time series models are encompassed by ().�e piecewise
nature of the spline “re�ects the occurrence of structural
change” (Poirier ).�e knot ti is the timing of a struc-
tural break. �e change is “smooth,” since certain conti-
nuity conditions are ensured. �e coe�cients ηi, which
regulate the size of the break, may be considered as �xed
or random. In the latter case µ(t) is a stochastic process,
ηi is interpreted as a random shock that drives the evolu-
tion of µ(t), whereas the truncated power function (t−ti)

p
+

describes its impulse response function, that is the impact
on the future values of the trend.
If the ηi’s are considered as random, the spline model

can be formulated as a 7linear mixed model, which is a
traditional regression model extended so as to incorpo-
rate random e�ects. Denoting y = [ y(t), . . . , y(tn)]′, η =

[η, . . . , ηn]
′, є = [є(t), . . . , є(tn)]′, µ = Xβ + Zη,

y = µ + є = Xβ + Zη + є, ()

where the t-th row of X is [, (t − ), . . . , (t − )p], and Z is
a known matrix whose i-th column contains the impulse
response signature of the shock ηi, (t − ti)

p
+.

�e trend is usually �tted by penalized least squares
(PLS), which chooses µ so as to minimize

(y − µ)′(y − µ) + λ∫ [
dp−µ(t)
dtp−

]



dt, ()

where λ ≥  is the smoothness parameter.
PLS is among the most popular criteria for design-

ing �lters that has a long and well established tradi-
tion in actuarial sciences and economics (see Whit-
taker , Leser , and, more recently, Hodrick and
Prescott ). UnderGaussian independentmeasurement
noise minimizing the PLS criterion amounts to �nding
the conditional mode of µ given y, �is is a solution to
the smoothing problem. If µ(t) is random, the minimum
mean square estimator of the signal is E(µ(t)∣y). If the
model () is Gaussian, these inferences are linear in the
observations.�e computations are carried out e�ciently
by the Kalman �lter and the associated smoother (see
Wecker and Ansley ).

�e linear mixed model representation () encom-
passes other approaches, according to which the compo-
nent Zη is a Gaussian random process (Rasmussen and
Williams ), or a (possibly nonstationary) time series
process with a Markovian representation, such as in the
structural time series approach see Harvey (), and in

the canonical decomposition of time series (see Hillmer
and Tiao ). �e Markovian nature of the opens the
way to the statistical treatment by the state space method-
ology and signal extraction is carried out e�ciently by
the Kalman �lter and smoother. Popular predictors, such
as exponential smoothing and Holt and Winters, arise as
special cases (see Harvey ). �e representation the-
ory for the estimator of the trend component, Wiener-
Kolmogorov �lter, is established in Whittle ().

�e analysis of economic time series has contributed
to trend estimation in several ways.�e �rst contribution
is the attempt to relate the trend to a particular economic
mechanism. �e issue at stake is whether µ(t) is bet-
ter characterized as a deterministic or stochastic trends.
�is problem was addressed in a very in�uential paper by
Nelson and Plosser (), who adopted the (augmented)
Dickey Fuller test for testing the hypothesis that the series
is integrated of order , I(), implying that y(t)− y(t − ) is
a stationary process versus the alternative that it is trend-
stationary, e.g.,m(t) = β + βt. Using a set of annual U.S.
macroeconomic time series they are unable to reject the
null for most series and discuss the implications for eco-
nomic interpretation.�e trend in economic aggregate is
the cumulative e�ect of supply shocks, i.e., shocks to tech-
nology that occur randomly and propagate through the
economic systemvia a persistent transmissionmechanism.
A fundamental contribution is the notion of cointegra-

tion (Engle and Granger ), according to which two or
more series are cointegrated if they are themselves nonsta-
tionary (e.g., integrated of order ), but a linear combina-
tion of them is stationary. Cointegration results from the
presence of a long run equilibrium relationship among the
series, so that the same random trends drive the nonsta-
tionary dynamics of the series; also, part of the short run
dynamics are also due to the adjustment to the equilibrium.
A third contribution, related to trend estimation, is the

notion of spurious cycles that may result from inappropri-
ate detrending of a nonstationary time series. �is e�ect
is known as the Slutzky–Yule e�ect, and concerned with
the fact that an ad hoc �lter to a purely random series can
introduce arti�cial cycles.
Finally, large dimensional dynamic factor models

have become increasingly popular in empirical macroeco-
nomics.�e essential idea is that the precision bywhich the
common components are estimated can be increased by
bringing in more information from related series: suppose
for simplicity that yi(t) = θ iµ(t) + єi(t), where the i-th
series, i = , . . . ,N, depends on the same stationary com-
mon factor, which is responsible for the observed comove-
ments of economic time series, plus an idiosyncratic
component, which includes measurement error and local
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shocks. Generally,multivariatemethods providemore reli-
able measurements provided that a set of related series can
be viewed as repeated measures of the same underlying
latent variable. Stock and Watson () and Forni et al.
() discuss the conditions on µt and єit under which
dynamic or static principal components yield consistent
estimates of the underlying factor µt as both N and the
number of time series observations tend to in�nity.
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Two-Stage Least Squares

Roberto S. Mariano
Dean and Professor of Economics and Statistics
Singapore Management University, Singapore, Singapore

In the linear regressionmodel, y = Xβ+Yβ+u = Zβ+u,
there are real-life situations when some of the regressors,
denoted by Y in the model, are correlated with the dis-
turbance term.�e vector and matrices y,X, and Y are
N × ,N ×K, andN × (G− ) data matrices from a sample
of size N. u is the N ×  vector of disturbances, assumed
to have mean zero and variance-covariance matrix σ I. In
this model, X is assumed to be statistically independent of
the disturbance term and the analysis is done conditional
on X.
In such situations where correlation between error and

regressor exists, ordinary least squares (OLS) estimates of
regression coe�cients become not only biased but also
inconsistent (as sample size increases inde�nitely). One
of the earlier e�orts to correct for this inconsistency is a
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two step procedure called two-stage least squares in the
econometric literature. �e procedure �rst regresses the
“disturbance-correlated” variables, Y, on a selected set of
�rst-stage regressors (X) and obtains the calculated regres-
sion values PX(Y) = X(X′X)

−X′Y, the projection of Y
on the column space of X. For the second stage of the pro-
cedure, y is then regressed on X and PX(Y) to obtain the
SLS estimate bSLS. Typically X = (X,X) where X is
N×K, and is independent of u, andX has full column rank
equal to at leastK+G− . Intuitively, the �rst-stage regres-
sion serves to “purge”Y of its component that is correlated
with u and this leads to consistency in the regression at the
second stage where Y is replaced by PX(Y).
SLS was developed in the econometric literature in

dealing with the estimation of the linear regression model
(see7Linear RegressionModels) as part of a simultaneous
equations system. In this context, the joint probability dis-
tribution of y and Y is speci�ed and X is determined from
the model.
SLS appeared in an earlier form as an intermediate

step in the iteration towards the calculation of the limited-
information-maximum-likelihood (LIML) estimator in
simultaneous equation models.�e SLS estimator in the
linear regression model also can be interpreted as an
instrumental variable (IV) estimator, using the instrument
matrixWSLS = PXZ for Z; that is,

bIV = (W′
SLSZ)

−W′
SLSy = (Z′PXZ)−Z′PXy = bSLS.

�e SLS estimator also can be interpreted as a generalized
least squares (GLS) estimator in the derived linear model
X′y = X′Zβ + X′u.
When Z has a large dimension, modi�ed two-stage

least squares has been suggested as an alternative approach.
�is is also a two-step regression procedure where the �rst
stage of SLS ismodi�ed by regressingY onH, aN×h sub-
matrix spanning a column subspace ofX.H is chosen to be
of full column rank and rank [(I − P)H] ≥ G − , where
P is the projection matrix on the column space of X. One
suggested manner of constructingH is to start with X and
then add at leastG− of the remaining columns ofX or the
�rst K principal components of (I − P)X. In this case,
the modi�ed SLS is exactly equivalent to the IV estimator
using (X,PHY) as the instrument matrix.
Ordinary least squares also can be interpreted as an

IV estimator with Z as the instrument for itself. Another
variation of an IV estimator that has been suggested is
�eil’s k-class estimator.�is uses as its instrument matrix
a linear combination of the instrument matrices for OLS
and SLS and k is chosen by the investigator and can be

stochastic or non-stochastic.�us, withW(k) = kWSLS +

( − k)W(OLS) = kPXZ + ( − k)Z, the k-class estimator is

b(k) = (W′
(k)Z)

−W′
(k)y = β + (W′

(k)Z)
−W′

(k)u,

Assuming that plim(k) is �nite, a necessary and su�-
cient condition for consistency of the k-class estimator is
plim( − k) =  – that is, the contribution of the OLS
instrument matrix dies out in the limit.

�e limited information maximum likelihood (LIML)
estimator is closely related to the SLS and other estima-
tors introduced here and is a member of the k-class of
estimators.�ink of the linear regression equation intro-
duced above as part of a complete simultaneous-equations
model for the joint stochastic behavior of y,Y, and other
dependent variables showing up in other equations of the
model.�e LIML estimator of β maximizes the likelihood
of (y,Y) subject to any identi�ability restrictions, and is
called limited in the sense that it ignores the dependent
variables that do not show up in the regression equation.
�e constrained maximization process in LIML reduces
to minimizing the following variance ratio with respect to
β∗ = (, β′)′

ν = (β∗′Aβ∗)/(β∗′Sβ∗) =  + (β∗′Wβ∗)/(β∗′Sβ∗),

where Y = (y,Y); S = Y ′(I − PX)Y ; W = Y ′(PX − P);
and A = S +W = Y ′(I − P)Y .

�isminimization problem yields the solution bLIML as
a characteristic vector ofAwith respect to S corresponding
to the smallest root h of det(A − νS) = , and

h = (b∗LIML
′Ab∗LIML) / (b

∗
LIML

′Sb∗LIML) .

Note that (β∗′Wβ∗) is the marginal regression sum of
squares due to X given X in the regression of Yβ∗ on
X, while β∗′Sβ∗/(N − K) provides an unbiased estima-
tor of the error variance in the regression equation.�us
LIMLminimizes the marginal contribution of X given X
relative to an estimate of the error variance. SLS simply
minimizes this marginal contribution in absolute terms.

�e LIML estimator b∗LIML needs to be normalized to
have a unit value in its �rst element, to be comparable with
the other estimators we have discussed so far. With such a
normalization, the LIML estimator of β and β turns out
to be a k-class estimator as well, where the value of k is h,
the smallest root of det(A − νS) = . Note that h =  + f ,
where f is the smallest root of det(W−νS) = .�us, LIML
is an IV estimator also, whose instrument matrix is a lin-
ear combination of theOLS and SLS instrumentmatrices,
with k stochastic and k at least equal to unity.
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Two-stage least squares and the other estimators dis-
cussed above have been analyzed for statistical proper-
ties in small samples, under the standard large-sample
asymptotics, and in alternative nonstandard asymptotic
settings such as error variances going to zero, number of
instruments going to in�nity at the same rate as sample
size, and so-called weak instrument asymptotics.
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Unbiased Estimators and Their
Applications
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Probability models and statistical inferential methods are
widely used in the study of various physical, chemical,
engineering, biological, medical, social, and other phe-
nomena. As a rule, these models depend on unknown
parameters, the values of which are to be estimated. Meth-
ods of mathematical statistics and, in particular, meth-
ods of statistical estimation of parametric functions are
mainly used in processing the results of experiments.
�e theory of unbiased estimation plays a very important
role in the theory of point estimation, since in many real
situations it is of importance to obtain the unbiased esti-
mator that will have no systematical errors (see, e.g., Fisher
(), Stigler ()). �e problem of unbiased estima-
tion attracted the attention of famous statisticians in the
late ’s: Neyman (), Cramér (), Kolmogorov
() , Halmos (), Lehmann (), Rao (), etc.
A great amount of work has been carried out in this �eld
up to the present time: an elegant theory of unbiased esti-
mation based on the theory of su�cient statistics has been
constructed, techniques for constructing the best unbiased
estimators have been well developed and a great number
of theoretical and applied problems have been solved (see
Rao (), Zacks (), Voinov andNikulin (, )).
Unbiased in the mean or simply unbiased estimator is a
statistic, the mathematical expectation of which equals the
quantity to be estimated.
Suppose that, using the realization of a random vari-

able X that takes values in a sample space (X ,B,Pθ , θ∈Θ),
a parametric function f : Θ → Y that maps the parametric
space Θ into a certain set Y has to be estimated. Suppose
that such an estimator T = T(X) of f (θ), T : X → Y ,

has been constructed. If the statistic T is such that the
unbiasedness equation

EθT = ∫
X
T(x)dPθ(x) = f (θ), θ ∈ Θ,

holds, then T is called an unbiased in the mean or simply
unbiased estimator for f (θ). Median and mode unbiased
estimators can also be considered (see Voinov and Nikulin
()) but they have much less applications compared to
unbiased in the mean ones.
Example  Let X = (X, . . . ,Xn) be a sample of size n, i.e.,
X, . . . ,Xn are independent identically distributed random
variables. If EX exists, then

X̄ =

n

n

∑

i=
Xi, and S =


n − 

n

∑

i=
(Xi − X̄)



will be the unbiased estimators of the mean EX and the
variance VarX of X.
Example  Let X = (X, . . . ,Xn) be a sample. Suppose
that the distribution function F of the random variable X
is unknown. We have a non-parametric problem, since in
continuous case the parameter F is in�nite-dimensional,
F ∈ F = Θ, where F is space of a distribution function.
Consider the statistic

Fn(x) =

n

n

∑

i=
{Xi≤x}, x ∈ R.

Fn(⋅) is the empirical distribution function based on the
sampleX = (X, . . . ,Xn).�e statistic Fn(x) is an unbiased
estimator for the unknown distribution function F(x),
since for any x ∈ R

EFFn(x) = F(x), F ∈ F .

Example  Let X be a random variable following the geo-
metric distribution with parameter of succes θ, i.e., for any
k = , , , . . . .

Pθ{X = k} = θ( − θ)k−,  ≤ θ ≤ .

�e unique solution of the unbiasedness equation

∞
∑

k=
T(k)θ( − θ)k− = θ, θ ∈ Θ = [, ],

Miodrag Lovric (ed.), International Encyclopedia of Statistical Science, DOI ./----,
© Springer-Verlag Berlin Heidelberg 
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is

T(X) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

, if X = ,

, if X ≥ .

One sees that the statisticT(x) is good only when θ is close
to  or , otherwise T(x) contains no useful information.
Example  Suppose that a random variable X possesses
the discrete Pólya distribution with a parameter θ =

(p, λ)T

Pθ{X = x} = (
n
x
)
p[x;λ]( − p)[n−x;λ]

[n;λ]
;

x = , , . . . ,n;  < p < ,

where λ is supposed to be known such that p+λ(n−) > ;
 − p + λ(n − ) > ; and a[r;λ] is the generalized power
of a de�ned by a[r;λ] = ∏

r−
h=(a + λh); a[;λ] = .�is

distribution and its generalizations are o�en used in the
quality control, (see Lumelskii et al. ()). If λ = , then
the discrete Pólya distribution reduces to the 7binomial
distribution. For negative values of λ the Pólya distribution
reduces to a hypergeometric probability distribution.�e
unbiased estimator p̂ of the parameter p and the unbiased
estimator V̂arθ(p̂) of its variance Varθ(p̂) =

p(−p)(+nλ)
n(+λ)

are (Lumelskii et al. ):

p̂ =
X
n
, V̂arθ(p̂) =

X(n − X)( + nλ)
n(n − )

.

In assessing the properties of point statistical estimators a
statistician concentrates his attention on three main fea-
tures of their quality: consistency, unbiasedness and risk.
Consistency is known to be the asymptotical property
appearing only when the dimension of the vector of obser-
vation X tends to in�nity. It is the risk of estimator, in
particular, the quadratic risk that is the main characteris-
tic of its quality for small n. For an unbiased estimator it
coincides with its variance. So it is natural that from two
unbiased estimators of the same parameter the best estima-
torwill be thatwhose variance is smaller. From this point of
view the Rao-Cramér information inequality plays a very
important role, indicating the existence of the lower bound
of a point estimator risk functionwith respect to the square
loss function.�e Rao-Cramér inequality has a very sim-
ple form for unbiased estimators. Namely, if T = T(X) is
an unbiased estimator for a function f (θ), i.e.,EθT = f (θ),
then under some regularity conditions on the family {Pθ}

and function f , the Rao-Cramér inequality implies that

VarθT = Eθ(T − f (θ)) ≥
[ f ′(θ)]

I(θ)
, ()

where I(θ) is the Fisher information on θ, contained in the
observation ofX.�us in the right side of the inequality ()
one can see a lower bound [ f ′(θ)]/I(θ) for the variance
of an unbiased estimator T of f (θ). In particular , when
f (θ) ≡ θ, from () it follows that

VarθT = Eθ(T − θ) ≥


I(θ)
. ()

A statistical estimator, for which the equality is attained
in () or (), is called e�cient.�e most important prob-
lem of the theory of unbiased estimation is the con-
struction of the e�cient estimators, if it is possible. Note
that the lower bound is not an exact lower bound, so a
statistician has to search for the best unbiased estima-
tors whose variances reaches the exact lower bound.�ese
estimators are known also as the minimum variance unbi-
ased estimators (MVUEs). In this context an important
role is played by Rao-Blackwell-Kolmogorov theorem (see
7Rao–Blackwell�eorem), which allows to construct an
unbiased estimator of minimal variance. �is theorem
asserts that if the family {Pθ} has a su�cient statistic U =

U(X) andT = T(X) is an arbitrary unbiased estimator of a
function f (θ), then the statisticT∗ = E{T∣U}, obtained by
averaging T over the �xed su�cient statistic U, has a risk
not exceeding that of T relative to any convex loss func-
tion for all θ ∈ Θ. If the family {Pθ} is complete, then the
statistic T∗ will be unique. From this theorem it follows
that the best unbiased estimators must be constructed in
terms of su�cient statistics.�ere exist tables of MVUEs
of unknown parameters for more then  univariate and
multivariate probability distributions (Voinov and Nikulin
, ).
Example  Let X = (X, . . . ,Xn) be a normal N(µ, σ )
sample. Denote θ = (µ, σ ). In this case maximum likeli-
hood estimator θ̂ = (X̄n, sn) for θ is the complete minimal
su�cient statistic for the family of normal distributions,
where sn = ∑n

i=(Xi − X̄n)

/n is the variance of the empiri-

cal distribution. Following to Kolmogorov () it is easy
to construct the best unbiased estimator Φ∗(x) for the
distribution function Φ (

x−µ
σ ) of the normal lawN(µ, σ ):

Φ∗(x) = E (Fn(x)∣X̄n, sn)

= Sn−

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

√

n −  ( x−X̄n
sn

)

√

n −  − (
x−X̄n
sn

)



⎫
⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪
⎭

, x ∈ R,

where Sf (⋅) is the Student distribution function with f
degrees of freedom. It is the best unbiased estimator and it
di�ers from the maximum likelihood estimator Φ (

x−X̄n
sn

),
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which is biased, and from another unbiased estimator
Fn(x).
To this end we would like to note that the theory

of unbiased estimation, the theory of su�ciency, and the
theory of constructing the best unbiased estimators are
used today, e.g., for constructing the modi�ed chi-squared
type tests (Bol’shev and Mirvaliev (), Voinov and
Nikulin (), Greenwood andNikulin (), Chichagov
()), for constructing con�dence intervals (Lumelskii
et al. ()), etc.
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Vesna Jevremović
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Uniform distribution, the simplest probability distribu-
tion, plays an important role in Statistics since it is indis-
pensable in modeling random variables, and therefore in
traditional and Quasi-Monte Carlo simulation. It is o�en
used to represent the distribution of roundo� errors in
values tabulated to the nearest k decimal places (Johnson
et al. ).We candistinguish between the continuous and
discrete uniform distribution.

Properties of the Uniform Distribution
�e continuous random variable X is said to be uniformly
distributed, or having rectangular distribution on the inter-
val [a, b], and we write X : U(a, b), if its probability
density function (p.d.f) equals f (x) =


b − a , x ∈ [a, b] ,

and  elsewhere. It follows that the distribution function
is F(x) =

x − a
b − a , x ∈ [a, b] . �e moments are mr =


r + 

br+ − ar+
b − a , r ∈ N, while the central moments are

µk− = , µk =


k + (
b − a


)

k
, k ∈ N (Djorić et al.

).�e distribution mode is not unique; the median is
obviously (a+b)/ because of the symmetry of the uniform
distribution. From the symmetry it follows also that the
Pearson coe�cient of skewness is , while the coe�cient
of kurtosis is −..

�e uniform distribution is a special case of the 7beta
distribution. Namely, the uniform distribution U(, ) is
B(, ) distribution.Moreover, if (X, . . . ,Xn) is a random
sample from the U(, ) distribution, then the kth order
statistic X(k) has the beta distribution B(k,n − k + ).
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Unlike most continuous distributions, the uniform
distribution has a discrete counterpart. A random variable
X that assumes a �nite number of distinct values x, . . . , xn
each with the same probability

P(X = xj) =

n

j = , . . . ,n,

where n is a positive integer, is called a discrete uniform
distribution.

�e relationship between the continuous uniform dis-
tribution U(, ) and the discrete uniform distribution

Y : (
   ⋯ 

. . . ⋯ .
) is given by the following

theorem (Sobol~ ).
Let γ = .uu . . . un . . . be a realization of a random

variable X : U(, ). �en u,u, . . . ,un, . . . are indepen-
dent realizations of a discrete uniform distribution Y , and
vice versa.
If X : U(a, b), where a and/or b are unknown, we may

estimate them using a sample (X, . . . ,Xn) from this dis-
tribution. Since the uniform distribution is not regular in
the Rao-Cramér sense, the estimators based on the maxi-
mum likelihoodmethod have some distinctive, interesting
properties. We will provide some examples, “where stan-
dard frequentist inference procedures are not applicable”
(Rohde ).
Let us �rst analyze the case ofU(, b). Maximum like-

lihood method (ML) yields the estimator b̂ = max
≤j≤n

Xj =

X(n), and the method of moments (MM) gives bn = Xn.
We have:

E(b̂) = nb/(n + ), Var(b̂) = nb/(n + )(n + )

E(bn) = b, Var(bn) = b/n.

We can see that the ML estimator is biased but has
smaller variance than the unbiased MM estimator. �e
estimator n + 

n
b̂ is unbiased and its variance is still smaller

than the variance of the MM estimator (see Larsen and
Marx , p. ). In addition, the variance of this esti-
mator is less than the lower bound of variance from the
Rao-Cramér inequality, which is b/n. Furthermore, the
statistic b̂ = max

≤j≤n
Xj = X(n) is a complete su�cient statistic

for the parameter b; it is also consistent and even squared-
error consistent since lim

n→∞
E(b̂ − b) = . Using 7order

statistics we can �nd other unbiased estimators such as
b̂ = (n + )min

≤j≤n
Xj = (n + )X(), or, in the case of odd

n, n = k + , the estimator based on the sample median
b̂ = X(k+).

In the case of U(a, ) distribution, the ML estimator
for a is â = min

≤j≤n
Xj = X().

As a second example we take the distributionX : U(a−
/, a+/), for which theML estimator is not unique, and
every statisticV satisfying the inequality max

≤j≤n
Xj−



≤ V ≤

min
≤j≤n

Xj +


could be taken as an ML estimator for a. For

more discussion on this distribution, see Dexter and Hogg
() and Romano and Siegel (, p. ).
Finally in the case of the family of distributions X :

U(−a, a), a > , we have to say that this family is not
complete,andthejointsu�cientstatisticforais(X(),X(n)),
while theML estimator â = max(−X(),X(n)) is aminimal
su�cient statistic for this parameter. More examples could
be found in Hogg et al. () and Larsen and Marx
().

Uniform Distribution andModeling
of RandomVariables
Modeling random variables is the �rst step inMonte Carlo
methods (see7Monte CarloMethods in Statistics), and for
this step the uniformdistribution is necessary.Methods for
modeling random variables (simulation) vary depending
on the nature of randomvariables, but they all usemodeled
values of the uniform distribution U(, ). A single value
of the uniform distribution U(, ) is referred to as “ran-
dom number,” and will be denoted γ. To be more precise,
Monte Carlo methods use pseudo-random numbers, i.e.,
series of numbers from the interval (, ) having statistical
properties of the random sample from the uniform distri-
bution.�ese numbers are generated by computers using
some appropriate devices or formulae, as it is explained in
[] and in 7Uniform Random Number Generators. �e
accuracy of the Monte Carlo methods generally improves
with an increase of pseudo-random numbers used.
When modeling random variables, the next two prop-

erties of the uniform distribution are o�en used: () If X :
U(, ), then −X : U(, ) and () If the random variable
X has the distribution function F(x), then random vari-
able F(X) is uniformly distributed on the interval [, ],
i.e., F(X) : U(, ).

�e basic ideas and methods for modeling random
variables are as follows.
(a) Discrete r.v. Let X be a discrete random variable

(r.v.) with a �nite set of values and with distribution P(X =

xj) = pj, j = , . . . ,n where
n

∑
k=

pk = . Let γ be one ran-

dom number. If γ ≤ p, then we assume that the value x

of r.v. X is realized. If
k−

∑
j=

pj < γ ≤

k

∑
j=

pj, then we assume
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that the value xk of r.v. X is realized. In this way, for every
realization of r.v. X one random number is used.

�e same idea could be applied in modeling real-
izations of some random event using the corresponding
indicator r.v.

�is is the general approach for modeling discrete r.v.,
while there are many special solutions depending on the
nature of r.v. to be modeled [].
If X is a discrete r.v. with an in�nite set of values, then

in purpose of modeling r.v. X we use truncated r.v. XZ with
�nite set of values such that P(X ≠ XZ) =  − δ, where δ is
an arbitrarily chosen small positive number. Realizations
of this r.v. XZ are modeled using the procedure previously
described and are taken as realizations of the r.v. X.
(b) Continuous r.v. If X is a continuous r.v., then its

realizations could be modeled using the inversion method
(one random number per realization) or the rejection
method (the number of random numbers used has the
geometric distribution, and so could be in�nite) or some
special method as is the case with the normal distribu-
tion.�e inverse function method cannot be applied with
the normal distribution, while the rejection method can,
using the corresponding truncated r.v., but is not usually
used. One of the many procedures of modeling values for
a normally distributed r.v. (Sobol~ ) is based on a
central limit theorem (see 7Central Limit�eorems), and
uses random numbers. Let Y,Y, . . . be independent r.v.

with the uniform distribution U(, ).�e sum Sn =
n

∑
j=

Yj

has expectation and variance E(Sn) =
n

, Var(Sn) =

n

, and following the central limit theorem the r.v. S∗n =

Sn − E(Sn)√
Var(Sn)

=

√

n

n

∑
j=

(Yj − ) converges in distribution to

the normally distributed r.v. N(, ).
�e convergence is fast and with n =  the di�er-

ence between S∗n and N(, ) is small enough, so we can

take s∗ =


∑
j=

γj −  as a realized value for r.v. with N(, )

distribution. In this way, one needs  random numbers
γj, j = ,  for one realization of r.v. with N(, ) distri-
bution. It should be noticed that even n =  gives a good
result (Sobol~ ).
More on simulation can be found in the entry

7Nonuniform Random Variate Generations.
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In the past decades computer experiments or computer-
based simulation have become a hot topic in statistics and
engineering. �e uniform experimental design (UD for
short) proposed by Fang and Wang (Fang ; Wang and
Fang ) is one of the space-�lling designs for com-
puter experiments and is also one of robust designs for
experiments with model uncertainty. Suppose that there
are s factors, X, . . . ,Xs, in an experiment.�e experimen-
tal region of the factors is denoted by T , very o�en, T
is a rectangle [a, b] × ⋯ × [as, bs]. From now on we
always assume T to be a rectangle. Without any gen-
erality we can assume that T is a unit cube, [, ]s, in
the space Rs. A uniform design is a set of points that
are uniformly scattered over the region T in a certain
sense.
Consider the problem of estimating the response (y)

as a function of several controlled factors (X, . . . ,Xs) in a
computer experiment.�e true model is

y = f (x) = f (x, . . . , xs), x = (x, . . . , xs) ∈ T , ()
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where the function f is known, but it is too complicated
to manage and to analyze. Researchers want to �nd an
approximate model or a meta model, y = g(x, . . . , xs),
to replace the true model in practice. In physical experi-
ments there exists random error and the true model can
been expressed as

y = f (x) = f (x, . . . , xs) + ε, x = (x, . . . , xs) ∈ T , ()

where ε stands for the random error. In traditional experi-
ment designs, such as factorial designs and optimal regres-
sion designs, the function f in () is known up to some
unknown parameters, but in many experiments includ-
ing high tech experiments the function f is completely
unknown. �e experimenter wants to estimate the true
model f by an experiment.

�eory of the uniform design consists of two parts:
design andmodeling.�e following gives a brief introduc-
tion to these two parts.

Design Let P ={x, . . . , xn} be a set of points on T .
A measure of uniformity of P on T is a function of P .
�ere are so many existing measures in the literature,
among them the so-called various discrepancies, such as
the star Lp-discrepancy and the centered L-discrepancy,
have been popularly used.�e computational formula for
the centered L-discrepancy (CD for short) is given by

(CD(P))

= (



)

s
−

n

n

∑

k=

s

∏

j=
[ +



∣xkj − .∣

−


∣xkj − .∣


]

+

n

n

∑

k=

n

∑

j=

s

∏

i=
[ +



∣xki − .∣

+


∣xji − .∣ −



∣xki − xji∣] , ()

where xk = (xk, . . . , xks) ∈ [, ]s, k = , . . . ,n are experi-
mental points.�e smaller value of CD, the better unifor-
mity the setP has. A n-runUD is a set of n points on [, ]s

with the minimum pre-decided discrepancy. Due to the
computation complexity for searching a UD when n and
s increase, nearly UDs are recommended.�ere are many
ways to �ndUDs such as the good lattice pointmethod, the
cutting method, the resolvable balanced incomplete block
design method, etc. Readers can �nd many used UDs at
the web site “http://math.hkbu.edu.hk/UniformDesign.”

Modeling Based on the experimental data one wishes
to �nd a metamodel to �t the data. �is metamodel
should approximate the true model well over the region

T , where the true model is known in computer exper-
iments and may be unknown in some physical experi-
ments. �ere are many modeling techniques in the lit-
erature, such as linear, quadratic, polynomial or non-
linear regression (See 7Nonlinear Regression), local
polynomial regression, spline, Kriging, the Bayesian
approach, and neural network (see 7Neural Networks),
etc.�e reader may refer to Fang et al. () and refer-
ences therein for details.
It has been shown that the UD is robust against the

model change. Many users appreciate advantages of the
uniform design: (a) high representativeness in the studied
experimental domain; (b) do not impose strong assump-
tions on the underlying model; and (c) �exibility in the
number of runs and the number of factors.�e uniform
design has been widely used not only in various �elds such
as industry, space engineering, chemical engineering, and
high tech, but also in numerical optimization algorithms,
arti�cial neural network (ANN), 7data mining, and so
on.�e uniformity measure (CD, for example) has played
an important role in the construction of the supersatu-
rated design, comparison of orthogonal arrays, detection
of non-isomorphic orthogonal arrays.
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Introduction
A growing number of modern statistical tools are based
on Monte Carlo ideas; they sample independent random
variables by computer to estimate distributions, averages,
quantiles, roots or optima of functions, etc.�ese meth-
ods are developed and studied in the abstract framework
of probability theory, in which the notion of an in�nite
sequence of independent random variables uniformly dis-
tributed over the interval (, ) (i.i.d.U(, )), for example,
is well-de�ned, and the theory is built under the assump-
tion that such random variables can be sampled at will.
But in reality, the notion of i.i.d. random variables can-
not be implemented exactly on current computers. It can
be approximated to some extent by physical devices, but
these approximations are cumbersome, inconvenient, and
not always reliable, so they are rarely used for compu-
tational statistics. Random number generators used for
Monte Carlo applications are in reality deterministic algo-
rithms whose behavior imitates i.i.d. U(, ) random vari-
ables.�ey are pure masquerade. It may be surprising that
they work so well, but fortunately they do, or at least some
of them do. Here we brie�y explain how they are built
and tested, and what is the theory behind. Many widely
available generators should be avoided and we give exam-
ples. We point out reliable ones that can be recommended.
More detailed discussions can be found in L’Ecuyer (),

L’Ecuyer and Panneton (), and L’Ecuyer and Simard
().

Physical Devices
Hardware devices such as ampli�ers of heat noise in elec-
tric resistances, photon counting and photon trajectory
detectors, and several others, can be used to produce
sequences of random bits, which can in turn be used to
construct a sequence of �oating-point numbers between 
and  that provides a good approximation of i.i.d. U(, )
random variables. Most of these devices sample a signal
at a given (low) frequency and return  if the signal is
above a given threshold,  otherwise. To improve unifor-
mity and reduce the dependence between successive bits of
this sequence, the bits can be cleverly combined via sim-
ple operations such as exclusive-or and addition modulo
, to produce a higher-quality sequence, but at a lower fre-
quency (Chor and Goldreich ).�ese types of “truly
random” sequences are needed for applications such as
cryptography and gambling machines, for example, where
security and unpredictability are essential. But for Monte
Carlo algorithms and computational statistics in general,
su�ciently good statistical behavior can be achieved by
much more practical and less cumbersome algorithmic
generators, which require no special hardware.

Algorithmic Generators
�ese generators are in fact deterministic algorithms that
implement a �nite-state automaton.�ey are o�en called
pseudorandom. For the remainder of this article, a ran-
dom number generator (RNG)means a systemwith a �nite
set of states S , a transition function that determines the
next state from the current one, and an output function
that assigns to each possible state a real number in (, ).
�e system starts from an initial state s (the seed) and at
each step i, its output ui and the next state si ∈ S are deter-
mined uniquely by the output function and the transition
function, respectively.�e output values {ui, i ≥ } are the
so-called random numbers (an abuse of language) returned
by the RNG. In practice, a few truly random bits could be
used to select the seed s (although this is rarely done),
then everything else is deterministic. In some applications
such as for gambling machines in casinos, for example, the
state is reseeded frequently with true random bits coming
from a physical source, to break the periodicity and deter-
minism. But for Monte Carlo methods, there is no good
reason for doing this, sowe assumehenceforth that no such
reseeding is done.
Because the number of states is �nite, the RNG will

eventually revisit a state that it has already seen, and from
then on the same sequence of states (and output values)
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will repeat over and over again.�at is, for some l ≥  and
j > ,we have si+j = si andui+j = ui for all i ≥ l.�e smallest
j >  that satis�es this condition is the period length ρ of the
RNG. It can never exceed the total number of states.�is
means that if the state �ts in b bits of memory, the period
cannot exceed b.�is is not really restrictive, because no
current computer can generate more than (say)  num-
bers in a lifetime, and a state of three -bit integers would
su�ce to achieve this.
Compared with generators that exploit physical noise,

algorithmic RNGs have the advantage that their sequence
can be repeated exactly, as many times as we want, with-
out storing it.�is is convenient for program veri�cation
and debugging, and turns out to be even more important
(crucial, in fact) for key variance reduction methods such
as common random numbers, which are used all the time
for comparing similar systems, for 7sensitivity analysis,
for sample-path optimization, for external control vari-
ates, and for antithetic variates, for example (Asmussen
and Glynn ; Glasserman )

Multiple Streams and Substreams
In modern simulation so�ware, RNGs are o�en imple-
mented to o�er multiple streams and substreams of
random numbers. In object-oriented implementations, a
stream can be seen as a object that produces a long sequ-
ence of U(, ) random numbers, and such objects can be
created in a practically unlimited number, just like other
types of objects.�ese streams are usually partitioned into
substreams and methods (or procedures) are readily avail-
able to jump ahead to the next substream, or rewind to the
beginning of the current substream, or to the beginning of
the stream (L’Ecuyer ; L’Ecuyer et al. ). Of course,
a good implementation must make sure that the streams
and substreams are long enough so there is no chance of
overlap.
To give an example where these facilities are useful,

suppose we want to simulate two similar systems with
well-synchronized common random numbers (Asmussen
and Glynn ; Glasserman ; Law and Kelton ).
�ink for instance of a large supply chain model or a
queueing network, for which we need to estimate the sen-
sitivity of some performance measure with respect to a
small change in the operating policy or in some parame-
ter of the system. We want to simulate the system n times
(say), with and without the change, with the same random
numbers used for the same purpose (as much as possible)
in the two systems.�e latter is not always easy to imple-
ment, because o�en, the random numbers are generated
in a di�erent order for the two systems, and their required
quantity is random and di�ers across the two systems. For

that reason, one would usually create and assign a di�erent
random stream for each type of random numbers used in
these systems (e.g., each type of arrival, each type of service
time, routing decisions at each node,machine breakdowns,
etc.) (Law et al. ; L’Ecuyer ). To make sure that
the same randomnumbers from each stream are reused for
the two systems for each simulation run, one would simply
advance all streams to a new substream at the beginning
of a simulation run, simulate the �rst system, bring these
streams back to the beginning of the current substream,
simulate the second system, then advance them again to
their next substream for the next simulation run. Good
simulation and statistical so�ware tools now incorporate
these types of facilities.

Basic requirements
From what we have seen so far, obvious requirements for
a good RNG are a very long period, the ability to imple-
ment the generator easily in a platform-independent way,
the possibility of repeating the same sequence over an over
again, the facility of splitting the sequence into several dis-
joint streams and substreams and jumping across them
quickly, and of course good speed for the generator itself.
Nowadays, fast generators can produce over  million
U(, ) random numbers per second on laptop computers.
But these requirements are not su�cient. To see this, con-
sider a RNG that returns ui = (i/) mod  at step i. It
has all the above properties, but no reasonable statistician
would trust it, because of the obvious correlation between
the successive outputs. So what else do we need?

Multivariate Uniformity
Both uniformity and independence are covered by the fol-
lowing (joint) statement: For every number of dimensions
s > , the vector of s successive output values (u, . . . ,us−)
of the RNG is a random vector with the uniform distribu-
tion over the unit hypercube (, )s. Of course, this cannot
be true, because there are just a �nite number of possibil-
ities for that vector. �ese possibilities are the vectors in
the set Ψs = {(u, . . . ,us−) : s ∈ S}, whose cardinality
cannot exceed ∣S ∣. For a random initial seed, we basically
pick a point at random in Ψs as an approximation of pick-
ing it at random in (, )s. For the approximation to be
good, Ψs must provide a very even (uniform) coverage of
the unit hypercube, for s as large as possible. Good RNGs
are constructed based on a mathematical analysis of this
uniformity. A large Ψs (i.e., a large S) is needed to provide
a good coverage in high dimensions, and this is the main
motivation for having a large state space.

�ere is no universal measure of this uniformity; in
practice, the measure is de�ned di�erently for di�erent
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classes of RNGs, depending on their mathematical struc-
ture, in a way that it is computable without generating the
points explicitly (which would be impossible).�is is the
main reason why themost popular RNGs are based on lin-
ear recurrences: their period length and uniformity can be
analyzed much more easily than for nonlinear RNGs. To
design a RNG, we �rst select a construction type that can
be implemented in an e�cient way, and a size of the state
space, then we search for parameters that provide a maxi-
mal period given that size and the best possible uniformity
of Ψs for all s up to a certain preselected threshold. A�er
that, the RNG is implemented and submitted to empirical
statistical tests.

Empirical Statistical Testing
An unlimited number of statistical tests can be applied to
RNGs.�ese tests take a stream of successive output values
and look for evidence against the null hypothesis that they
are the realizations of independent U(, ) random vari-
ables.�e hypothesis is rejected when the p-value of the
test is extremely close to  (which typically indicates strong
departure from uniformity) or  (which indicates excessive
uniformity). As a very simple illustration, one might par-
tition the unit hypercube (, )s in k boxes of volume /k,
sample n “independent” points at random in (, )s by gen-
erating sU(, ) random variates for each point, and count
the number of times C that a point falls in a box already
occupied. If both k and n are very large and λ = n/(k)
is not too large, then C is supposed to behave approxi-
mately as a Poisson random variable withmean λ, which is
approximately the same as a normal random variable with
mean and variance λ when λ is not too small. If c denotes
the realization of C, then the p-value can be approximated
by the probability that such a Poisson random variable is
at least c. If the p-value is much too small (C is much too
large), this means that the points tend to fall in the same
boxesmore o�en than they should, whereas if it is too large
(C is too small), this means that the points fall too rarely in
the same boxes.�e latter represents a form of excessive
uniformity which is also a departure from randomness.
If the outcome is suspicious but unclear (for example,

a small p-value but not excessively small), one can reap-
ply the test (independently), perhaps with a larger sample
size. Typically, when the suspicious p-value really indicates
a problem, increasing the sample size will clarify things
rapidly. When problems are detected, it is frequent to �nd
p-values smaller than −, for example. And this hap-
pens for many RNGs used in popular so�ware products
(L’Ecuyer and Simard ).
It is known that constructing a RNG that passes all

possible tests is impossible (L’Ecuyer ).�e common

practice is to forget about the very complicated tests that
are too di�cult to �nd and implement, and care only about
relatively simple tests. In fact, one could argue that the dif-
ference between the good and bad RNGs is that the bad
ones fail very simple tests whereas the good ones fail only
very complicated tests.
Collections of statistical tests for RNGs have been pro-

posed and implemented in (Knuth ; L’Ecuyer and
Simard ; Marsaglia ), for example. Statistical tests
can never prove that a RNG is defect-free.�ey can catch
some problems and miss others. For this reason, theo-
retical tests that measure the uniformity by examining
the mathematical structure are more important. Empirical
tests can improve our con�dence in some RNGs and help
us discard bad ones, but they should not be taken as the
primary selection criterion.

Linear recurrences modulom
Most algorithmic RNGs in simulation so�ware have a
transition function de�ned by a linear recurrence of the
type

xi = (axi− +⋯ + akxi−k) mod m, ()

for some positive integers k and m, and coe�cients
a, . . . , ak in {, , . . . ,m − }, with ak /= . �is recur-
rence can also be written in matrix form as xi = Axi−
mod m where xi = (xi−k+, . . . , xi)t. One can obtain a
period length of mk

−  by taking m as a prime number
and choosing the coe�cients aj appropriately (Knuth ;
L’Ecuyer ).�e output can be de�ned as ui = xi/m, or
ui = (xi + )/(m + ), or ui = (xi + /)/m, for example.
�is type of RNG is known as a multiple recursive genera-
tor (MRG). For k = , we obtain the classical (but obsolete)
linear congruential generator (LCG). It is easy to advance
the state of the MRG by an arbitrary number of steps in
a single large jump: xi+ν = (Aν mod m)xi mod m, a�er
Aν mod m has been precomputed (L’Ecuyer ).

�e uniformity of Ψs for the MRG can be measured by
exploiting the fact that this point set has a lattice structure.
Figures ofmerit (some related to the so-called spectral test)
have been de�ned to measure the quality of this lattice
(Knuth ; L’Ecuyer a).
Typically, m is chosen as a prime number that �ts

the -bit or -bit word of the computer and the mul-
tipliers aj are chosen so that the recurrence can be com-
puted very quickly. But the quest for speed o�en goes
too far. For example, popular types of generators known
as lagged-Fibonacci, add-with-carry, and subtract-with-
borrow (which are slight modi�cations of the MRG)
employ only two nonzero coe�cients, say ar and ak,
both equal to ±. It turns out that all triples of the form
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(ui,ui−r ,ui−k) produced by these generators lie in only
two parallel planes in the three-dimensional unit cube
(L’Ecuyer ).�ese generators have already given totally
wrong results in real-life Monte Carlo applications and
should not be used. LCGs with modulus m ≤  should
also be discarded, because their state space is too small.
An e�ective construction technique for good MRGs

is to combine (say) two or three of them, for example
by adding their outputs modulo . �e idea is to select
the components so that a fast implementation is avail-
able, while the combined MRG has a long period and its
point set Ψs has good uniformity. Good parameters can
be found by extensive computer searches. For speci�c con-
structions of this type, see (L’Ecuyer a; L’Ecuyer ;
L’Ecuyer and Simard ). One of them is theMRG32k3a
generator (L’Ecuyer a; L’Ecuyer et al. ), now avail-
able with streams and substreams in many statistical and
simulation so�ware products.

Linear Recurrences Modulo 
Given that current computers work in binary arithmetic, it
is no surprise thatmany of the fastest goodRNGs are based
on linear recurrencesmodulo .�at is, recurrence () with
m = .�is can be framed in matrix notation (L’Ecuyer
; L’Ecuyer and Panneton ) as:

xi = Axi− mod ,
yi = Bxi mod ,

ui =
w

∑

ℓ=
yi,ℓ−−ℓ

where xi = (xi,, . . . , xi,k−)t is the k-bit state vector at step
i, yi = (yi,, . . . , yi,w−)t is a w-bit output vector, k and w
are positive integers,A is a k× k binary matrix, B is a w× k
binarymatrix, and ui ∈ [, ) is the output at step i. In prac-
tice, the output can be modi�ed slightly to make sure that
the generator never returns exactly .
Many popular generators belong to this class, includ-

ing the Tausworthe or linear feedback shi� register (LFSR)
generator, polynomial LCG, generalized feedback shi�
register (GFSR), twisted GFSR, Mersenne twister, WELL,
xorshi�, linear cellular automaton, and combinations of
these (L’Ecuyer b, ; L’Ecuyer and Panneton ;
Matsumoto and Nishimura ). �e largest possible
period is k − , reached when the characteristic polyno-
mial ofA is a primitive polynomialmodulo .�ematrices
A and B are always selected to allow a fast implemen-
tation by using just a few simple binary operations such
as or, exclusive-or, shi�, and rotation, on blocks of bits,
while still providing good uniformity for the point set Ψs.
�is uniformity is assessed bymeasures of equidistribution

of the points in the diadic rectangular boxes obtained by
partitioning (, ) for each axis j into intervals of lengths
−qj for some integers qj ≥  (L’Ecuyer and Panneton
). Combined generators of this type, obtained by a bit-
wise exclusive-or of the output vectors yi of two or more
generators from that class, are equivalent to yet another
generator from the same class (L’Ecuyer b; L’Ecuyer
and Panneton ).�eir motivation is the same as for
combined MRGs.

Nonlinear Generators
Linear RNGs have a regular structure that can eventu-
ally be detected by statistical tests cleverly designed for
that detection. Cryptologists know well about that and use
(slower) nonlinear RNGs for that reason. ForMonte Carlo,
the linearity itself is practically never a problem, because
the random numbers are almost always transformed in
some nonlinear way by the simulation algorithm. But there
are situations where linearity matters. For example, if we
generate large random binary matrices and the rank of the
matrix must have the right distribution, then we should
not use a linear generator modulo , because there are too
many linear dependencies between the bits (L’Ecuyer and
Simard ).
A nonlinear RNG can be obtained, for example, by

simply adding a nonlinear output transformation to a lin-
ear RNG, or by shu�ing its output values using another
generator, or by using a nonlinear recurrence in the con-
struction, or by combining two generators of di�erent
types, such as an MRG and a generator based on a linear
recurrence modulo . For nonlinear RNGs, the unifor-
mity of Ψs is generally too di�cult to analyze. But for the
last type of combination just mentioned, useful bounds
can be obtained on uniformity measures (L’Ecuyer and
Granger-Piché ). It is also important to understand
that combining generators does not necessarily leads to an
improvement. Nonlinear RNGs are also slower in general
than their linear cousins. On the other hand, they tend to
perform better in empirical statistical tests (L’Ecuyer and
Simard ).

Recommendations
When asked for recommendations on uniform RNGs,
my natural response is to say which ones I use for my
own experiments. �e RNG I use most of the time in
my lab is MRG32k3a, from (L’Ecuyer a). It is very
robust and reliable, based on a solid theoretical analy-
sis, and it also provides multiple streams and substreams
(L’Ecuyer et al. ). It is not the fastest one, though.
If the uniform RNG’s speed really matters, good alterna-
tives are MRG31k3p from (L’Ecuyer and Touzin ),
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LFSR113 and LFSR258 from (L’Ecuyer b), and
some small WELL generators from (Panneton et al. ),
for which multiple streams and substreams are also avail-
able in (L’Ecuyer ). For very fast generators with huge
periods, the Mersenne twister MT19937 (Matsumoto and
Nishimura ) and the WELL generators of (Panneton
et al. ) are good choices. On the other hand, these gen-
erators have a very large state, so using them for multiple
streams is not very e�cient.�ey are more appropriate for
situations where a single stream su�ces.

�e list of widely-used generators that should be dis-
carded is much longer, as can be seen from the empiri-
cal results in (L’Ecuyer and Simard ). Do not trust
blindly the so�ware vendors. Check the default RNG of
your favorite so�ware and be ready to replace it if needed.
�is last recommendation has been made over and over
again over the past  years. Perhaps amazingly, it remains
as relevant today as it was  years ago.
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Univariate Discrete
Distributions: An Overview
AdrienneW. Kemp
University of St. Andrews, St. Andrews, UK

Introduction
A random variable (rv) is said to be discrete if it can
take a �nite or a countably in�nite number of values,
i.e., has a discrete state space. �ese values need not be
equally spaced but almost all discrete random variables
of use in statistics take equally spaced values and so are
said to have lattice distributions. Examples are numbers
of aircra� accidents, numbers of bank failures, cosmic
ray counts (x = , , , . . .), counts of occupants per car
(x = , . . .), and numbers of albino children in families
of  children (x = , , . . . , ). Lattice variables are not
restricted to count events; they can also be obtained by dis-
cretization of continuousmeasurements, e.g., �ood heights
(x = , ., , ., . . . meters).

�e set of all possible outcomes from an experiment
or sampling scheme is called the sample space, Ω. In uni-
variate situations a single real value is associatedwith every
outcome.�e function X that determines these numerical
values is the randomvariable and the individual values that
it takes are denoted by x.�e set of values that X can take
is called its support.
Distributions of rv’s are concerned with the probabil-

ities with which the observed values occur. If the method
of experimentation or themethod of sampling is stochastic
(probabilistic), not deterministic, then every value x occurs
with a probability Pr[X = x] = p(x) = px called its prob-
ability mass function (pmf). Necessary constraints on the
probabilities are px ≥  and∑x px = .�e distribution of a

rv depends therefore on Ω, X and Pr[X = x]. Discrete dis-
tributions are called logconvex when pxpx+/px+ >  and
logconcave when pxpx+/px+ < .
Important mathematical functions associated with a

discrete distribution are the cumulative distribution func-
tion (cdf) (a step function)

F(x) = Pr[X ≤ x] =∑
y≤x

py,

the probability generating function (pgf)

GX(z) = G(z) = E[zX] =
∞
∑

x=
pxzx,

and the characteristic function (cf)

φX(t) = φ(t) = E[eitX] =∑
x
Pr[X = x]eitx = GX(eit).

A cf for a discrete distribution is in�nitely divisible if
φ(t) = {φn(t)}n for all positive integers n, where φn(t)
is a cf. It is decomposible if there exist two nondegenerate
cf ’s, φ(t) and φ(t) such that φ(t) = φ(t)φ(t). Usually
the cf for a limiting distribution is the limiting cf .
Important survival concepts are the survival (survivor)

function

S = , St =  − Pr(T < t) =∑
j≥t

pj, t = , , . . . ,

and the hazard function (o�en called the failure rate, FR)

ht = pt/∑
j≥t

pj = (St − St+)/St .

A discrete distribution is said to have amonotonically non-
decreasing failure rate with time (IFR) or a monotonically
non-increasing failure rate with time (DFR) according as
pt+/pt ≷ pt+/pt+.

Historical Perspective
Until the mid-twentieth century interest in discrete distri-
butions centered mainly on (i) the solution of particular
problems such as the number of tails thrown before the
appearance of the �rst head, and (ii) the empirical �tting
of discrete data such as haemocytometer counts.�e distri-
butions in general use were the binomial, hypergeometric,
uniform (discrete rectangular), Poisson and negative bino-
mial. Others weremainly used in limited application areas,
for example in linguistics the Zipf-Estoup distribution
(Estoup ) with pmf

px = x−η
/

∞
∑

x=
x−η , η > , x = , , . . . and pgf

G(z) =
∞
∑

x=
zxx−η

/

∞
∑

x=
x−η ,
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in taxonomy Yule’s () distribution with pmf

px = ρ(ρ!)(x − )!/(x + ρ)!, ρ > , x = , , . . . and pgf
G(z) = ρz F[, ; ρ + ; z]/(ρ + ),

and in ecology Fisher’s () logarithmic distribution
with pmf

px = −[ln( − θ]−θx
/x,  < θ < , x = , , . . . and pgf

G(z) = ln( − θz)/ ln( − θ).

Post mid-twentieth century there has been a shi� away
from the graduation of data toward the creation of distri-
butions with more complicated underlying mathematical
models. With this came an increased understanding of
families of distributions and the realization that the same
distribution, e.g., the negative binomial, can arise from
several di�erent models.

�e very broad class of power series distributions has
pmf ’s of the form

Pr[X = x] =
axθx

η(θ)
, θ > , ax ≥ ,

η(θ) =
∞
∑

x=
axθx, x = , , . . . ;

θ is the power parameter and η(⋅) is the series func-
tion. �ese are discrete linear exponential distributions
and so have important inference properties.�is class was
explored in depth by Patil; see e.g., Patil (). It includes
most of the distributions mentioned above. Generalized
power series distributions and modi�ed power series dis-
tributions are extensions of this family.

�e Katz family is a discrete analogue of the Pearson
system of continuous distributions; see Katz ().�eir
pmf ’s satisfy

px+/px = (a + bx)/( + x), a > , b < , x = , , . . . .

For Ord’s () di�erence equation family we have

px − px− = (a − x)px/{(a + b) + (b − )x + bx(x − )},

where x takes a range of integer values. Sundt and Jewell
() and Klugman et al. () have found distributions
of these kinds, with the possible modi�cation of p, very
useful in actuarial studies.
Kemp’s () family of generalized hypergeometric

probability distributions (GHPD) have pgf ’s have the form

G(z) = pFq[a, . . . , ap; b, . . . , bq; λz]/pFq
[a, . . . , ap; b, . . . , bq; λ]

where pFq[a, . . . , ap; b, . . . , bq; y] is a generalized hyper-
geometric function; Kem and Kemp () family of

generalized hypergeometric factorial moment distribu-
tions (GHFD) have pgf ’s of the form

G(z) = pFq[a, . . . , ap; b, . . . , bq; λ( − z)].

�ese families include very many distributions used in
applied statistics, including important matching and occu-
pancy distributions; models and properties are discussed
in Johnson et al. ().
Other important families are the Lagrangian family

(see Consul and Famoye ) and the order-k family (see
Balakrishnan and Koutras ).�ere has been renewed
interest in q-hypergeometric series distributions and in the
Lerch family in the last twenty years; details and references
are in Johnson et al. ().
Discrete stochastic processes are random processes

that have a discrete state space and evolve in time. �ey
include random walks (see 7Random Walk), the Poisson
process (see 7Poisson Processes), 7Markov chains, birth-
and-death processes and branching processes. Doob ()
and Feller () brought the work of earlier probabilists
to the attention of applied statisticians who came to real-
ize that these processes provide further models for many
existing discrete distributions; see e.g., Jones and Smith
().
Distributions can be made more �exible by weighting.

Let X be a rv with pmf px, and suppose that when the
event X = x occurs the probability of recording it is w(x).
�en the pmf for the ascertained distribution is a weighted
distribution with pmf

p∗x = w(x)p(x)/∑
x
w(x)p(x).

Hurdle models assume di�erent underlying statisti-
cal processes, fa(x) below the hurdle and fb(x) above the
hurdle. When the hurdle is at zero (the most o�en used
hurdle), the outcome has the pmf

p = fa(), px = {−fa()}fb(x)/{−fb()}, x = , , . . . ;

see e.g., Winkelmann (). �e hurdle-at-zero model
allows for over- and under-in�ation of the probability at
zero, also over- and under-dispersion.
Models of physical situations o�en involve the combi-

nation of distributions.�ree important ways are convolu-
tion, mixing, and compounding.

�e distribution of the sum X = X + X of two inde-
pendent rv’s X and X with pgf ’s G(z) and G(z) has the
pmf

Pr[X = i] =∑
j
Pr[X = i − j]Pr[X = j] and pgf

G(z) = G(z)G(z).
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If A, B and C are the names of the distributions of X,X
and X, then C is called the convolution of X and X; we
write C ∼ A∗B. Kemp’s () weapon defense model
involves the convolution of several independent binomial
distributions.
Secondly, consider a rv with pmf Pr[X = x∣θ, . . . , θk]

dependent on the parameters θ i , i = , . . . , k, where some
or all of the parameters vary.�e outcome is a mixture dis-
tribution (sometimes called a compound distribution in
the early literature) with the pmf E[Pr[X = x∣θ, . . . , θℓ]],
where expectation is with respect to the joint distribution
of the varying parameters. If only one parameter varies,
then the mixture is denoted symbolically by F ⋀

Θ
F,

where F is the original distribution and F is the distri-
bution of Θ (the mixing distribution). If Θ has a discrete
distribution with probabilities p∗j , j = , , . . ., then the
outcome has pmf

Pr[X = x] =∑
j≥

p∗j Pr[Xj = x∣θ].

Gelfand and Soloman’s () analysis of jury decisions
used a mixture of two binomials with di�erent values of
p. Such mixtures have a Bayesian interpretation; if p∗j is
the pmf for a discrete prior distribution then p∗j × Pr[Xj =

x∣θ]/Pr[X = x] is the pmf for a posterior distribution.
When the mixing distribution is continuous, the outcome
has pmf

Pr[X = x] = ∫ Pr[X = x∣θ] f (θ)dθ,

where the probability density function of Θ is f (θ) and
integration is over all values of Θ. For the beta-binomial
distribution the binomial parameter p has a beta distribu-
tion; see e.g., the study concerning dead fetuses by Brooks
et al. ().
A third method for combining distributions was called

“generalizing” or “compounding” in the early literature. A
more recent, less confusing, name is “random [stopped]
sum.” Suppose that the size N of the initial generation in a
branching process has the pgfG(z), and that each individ-
ual i in this initial generation gives rise independently toYi

�rst generation individuals; suppose also that the pgf forYi

is G(z).�e total number of �rst generation individuals
is then SN = Y + Y + . . . + YN , with pgf

E[zSN ] = EN[E[zSN ∣N]] = G(G(z)).

Here SN has a “generalized” distribution and the distribu-
tion of Yi is the “generalizing” distribution. More recently
SN is said to have a randomlyF-stopped summed-F dis-
tribution, whereG(z) is the pgf forF andG(z) is the pgf
forF. It is symbolized by SN ∼ F⋁F. An early example

is Neyman’s () model for the distribution of insect lar-
vae; it assumes Poissonian numbers of clusters of eggs per
unit area and Poissonian numbers of eggs per cluster. Mix-
ture and random stopped-sum distributions are discussed
at length in Johnson et al. ().
For very large data sets, the ability to regress on ele-

ments of particular interest is important. �is has led to
the use of discrete distributions that are particularly suit-
able for regression models such as those that are linear
exponential.
In recent years there has been much interest in resam-

pling methods of analysis where discrete distributions are
formed by resampling from discrete data. Further explo-
ration of the properties of such distributions would be
useful; see e.g., Good () for methodology and Gentle
() for theory.

Properties
�e moment properties of a discrete distribution are easily
obtainable from the pgf.
�e (uncorrected) 7moment generating function (mgf) is
M(t) = G(et) whence

µ′r =
∞
∑

x=
xrpx = [drG(et)/dtr]t=, r = , , . . . .

�e central (corrected) moment generating function
(cmgf) is

e−µtM(t) = e−µtG(et) =
∞
∑


µrtr/r!.

�e cumulant generating function (cgf) is

K(t) = lnG(et) =
∞
∑


κrtr/r!.

�e factorial moment generating function (fmgf) is

E[( + t)X] = G( + t) =  +∑
r≥

µ′[r]/t
rr!

and the factorial cumulant generating function (fcgf) is

lnG( + t) =
∞
∑


κ[r]t

r
/r!.

�e fmgf is useful because the (descending) factorial
moments are obtainable by successive di�erentiation of
the pgf:

µ′[r] =
∞
∑

j=r

j!
( j − r)!

pj = [
drG(z)
dzr

]

z=
= [

drG( + t)
dtr

]

t=
;



Univariate Discrete Distributions: An Overview U 

U

the moments can then be obtained from the factorial
moments as

µ = µ′[], µ′ = µ′[] + µ, µ′ = µ′[] + µ
′
[] + µ,

µ′ = µ′[] + µ
′
[] + µ

′
[] + µ, etc.;

in general

µ′r =
r

∑

j=
S(r, j)µ′[j] and µ′[r] =

r

∑

j=
s(r, j)µ′j

where S(r, j) and s(r, j) are the Stirling numbers of the
second kind and �rst kind, respectively.

�e �rst uncorrected moment µ = µ′ = µ′[] is the
mean; the second central moment µ = µ′ − µ is the
variance (Var(X) ≡ σ X), and its positive square root is
the standard deviation σ . �e coe�cient of variation is
σ/µ. Moment ratios are used as indices of shape; α(X) =
√

β(X) = µ(µ)−/ is used as an index of skewness and
α(X) = β(X) = µ(µ)− is used as an index of kurtosis.

�e distribution of the sum X = X + X of two inde-
pendent rv’s X and X with pgf ’s G(z) and G(z) has the
pgf G(z) = G(z)G(z).�eir di�erence X − X has the
pgf GX−X(z) = G(z)G(/z); X − X may take negative
values.

�e median for a discrete distribution with N + 
points of support is the value of the (N + )th point of
support; for a discrete distribution with N points of sup-
port the median is usually taken to be the average of the
Nth and (N + )th points of support. A mode of a discrete
distribution is at X = x if

Pr[X = x − a] ≤ ⋯ ≤ Pr[X = x] and
Pr[X = x] ≥ ⋯ ≥ Pr[X = x + b]

where  ≤ a < b. A discrete distribution is unimodal if it
has only one mode; otherwise it is multimodal. A discrete
distribution is said to have a half-mode at X =  and to be
sesquimodal if

p > p ≥ p ≥ . . . .

Estimation methods for the parameters of discrete dis-
tributions have been studied extensively but it is di�cult to
construct con�dence intervals

Pr(θ ∈ {c ≤ θ ≤ d}) =  − α

for an exact value of the con�dence level α. Estimation by
the method of moments is usually simpler than maximum
likelihood. It equates the �rst k sample moments about
zero,

m′
r = n−

n

∑

j=
xrj , r = , . . . , k,

to their corresponding theoretical expressions, µ′r (k is
the number of unknown parameters). �e method of
moments and zero frequency uses the equations for k − 
moments and one equating p to its expected value.
Maximum likelihood estimation with its very desirable

properties is achieved by solving the equations

∂L(x, x, . . . , xn∣θ, θ, . . . , θk)

∂θ i
= , i = , , . . . , k.

�eir solution o�en requires iteration. Computer packages
or optimization methods are used; good initial estimates
are helpful. Several variants of ML estimation have been
developed such as conditional, pro�le and marginal likeli-
hood procedures; see Johnson et al. () for references.
Bayesian methods of estimation for discrete distributions
have been studied in depth; see e.g., Congdon ().
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�e class of U-statistics was introduced in the seminal
paper of Hoe�ding (), motivated by the work of
Halmos () on unbiased estimators. Let X,X, . . . ,Xn

be independent and identically distributed observations
from a distribution F(x, θ), where θ is some parameter
of interest. If g is a function of m variables such that
Eg(X, . . . ,Xm) = θ then a natural unbiased estimator
for θ can be constructed by evaluating g at all subsets of

sizem that can be formed from the observations and then
averaging these values. Write

Un = n−(m)∑ g(Xi , . . . ,Xim),

where n(m) = n(n − ) . . . (n − m + ) and the sum
is over all m-tuples (i, . . . , im) of distinct elements of
{, , . . . ,n}. Note we can consider the symmetric function
formed by �rst averaging over all permutations of a given
set of indices, so h(x, . . . , xm) = (m!)−∑ g(xi , . . . , xim),
where the sum is over all m! permutations (i, . . . , im) of
(, . . . ,m).�us, in general,U is de�ned in terms of a func-
tion h, called the kernel, that is symmetric in its arguments
and

Un = (
n
m
)

−

∑

≤i<i<. . .<im≤n
h(Xi , . . . ,Xim).

�e valuem is known as the degree of the kernel.
U-statistics are the focus of much research as many

commonly used statistics, including nonparametric and
spatial statistics, can be expressed in this format by appro-
priate choice of kernel, or they can be closely approximated
by U-statistics. For example, the kth sample moment is a
U-statistic of degree  with kernel h(x) = xk; if h(x, y) =


 (x − y) then we obtain the sample variance, and if
h(x, y) = I(x+ y ≤ ) we obtain the Wilcoxon one-sample
statistic. In the case whereXi is a bivariate observation and
h(x, y) = I((x−x)(y−y) > ) then Un−  is Kendall’s
coe�cient of concordance, τ.

�ere are natural extensions to multiple sample U-
statistics. If we have c independent samples, then the kernel
is a function of mj terms from the jth sample, j = , . . . , c,
and the statistic is formed by averaging over all possible
combinations of m terms from sample , m terms from
sample  and so on. We will restrict attention to the sin-
gle sample case. For a comprehensive introduction to the
broad range of U-statistics, see Lee ().
For a U-statistic with kernel h let hc(x, . . . , xc) =

E (h(x, . . . , xc,Xc+, . . . ,Xm)) and let σ c = Var(hc(X, . . . ,
Xc)). If σ c = , c = , . . . , d −  and σ d >  then Un is said
to be degenerate of order d−.�e variance of aU-statistic
can be written as

Var(Un) = (
n
m
)

− m

∑

c=
(
m
c
)(

n −m
m − c

)σ c .

General moment results can be derived.When E∣h(X, . . . ,
Xm)∣

r
<∞, for r ≥ , E∣Un − θ∣r = O(n−r/).

�ere has been a rich theory developed describing
the behavior of U-statistics. Key to these results are sev-
eral useful representations. First, provided E∣h(X, . . .,
Xm)∣ < ∞, the U-statistic can be represented as a reverse
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martingale and this leads naturally to various strong con-
vergence results.

�e most widely used representation is the
H-decomposition developed by Hoe�ding where Un =

θ + ∑
m
j= (

m
j )Unj, where Unj is a U-statistic of degree j

with kernel gj. �e Unj are uncorrelated and Egj(x, . . . ,
xj−,Xj)= .
From Hoe�ding’s original paper if σ  > , that is

the U-statistic is non-denegerate, then
√

n(Un − θ) con-
verges in distribution to an asymptotic normal distribu-
tion with mean  and variance mσ  . If the U-statistic
is degenerate then the asymptotic behavior is more com-
plex. For example, consider the Rayleigh statistic which is
a U-statistic with kernel h(x, y) =  cos(x − y). If Xi has
a uniform distribution on (, π) then Un is degenerate
of order  and n−Un has an asymptotic, mean adjusted,
chi-squared distribution with  degrees of freedom. If
σ = . . . = σd− = , σd > , d >  then nd/(Un − θ) has
a nondegenerate limit which can be expressed in terms of
multiple Wiener integrals (see Dynkin and Mandelbaum
). For a thorough coverage of the asymptotic theory of
U-statistics including asymptotic expansions, large devia-
tion results, rates of convergence and the law of the iterated
logarithm, see themonograph byKoroljuk andBorovskikh
().

�e theory of U-statistics has been extended to statis-
tics of this format based on weakly dependent samples,
such as observations based on samples from �nite pop-
ulations, and to statistics where the kernel depends on
the sample size, n. Further there is a well developed
theory for 7empirical processes related to the empirical
distribution function Hn of h(Xi , . . . ,Xim). U-processes
are collections of U-statistics indexed by families of ker-
nels, {Un(h),h ∈H}. �e study of these processes was

originally motivated by a problem on cross-validation in
density estimation. See de la Peña and Giné () for an
explanation of decoupling theory and its application to the
theory of these processes.
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Validity of Scales
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�e concepts of quality of measurements made by rat-
ing scales and multi-scale questionnaires are validity and
reliability. Corresponding concepts for quantitative data
(interval and ratio data) are accuracy and precision. A
rating scale is valid if it measures what it is intended to
measure in the speci�c study.�e validity of self-estimated
subjective phenomena is relative and cannot be assessed
absolutely.�e validity of a scale is study speci�c, andmust
be considered each time the scale or the 7questionnaire is
chosen for a new study.�erefore there are various con-
cepts of validity, each addressing a speci�c type of quality
assessment.�emain concepts are criterion, construct, and
content validity, but a large number of sub concepts are
used.�e meaning of these concepts is not univocal and
depends on applications and research paradigms.Criterion
validity refers to the conformity of a scale to a true state or a
gold standard, and depending on the purpose of the study
sub concepts like clinical, predictive and concurrent validity
will be used.
Construct validity refers to the consistency between

scales having the same theoretical de�nition in the absence
of a true state or a gold standard. Sub concepts like con-
vergent, descriptive, discriminant, divergent, factorial, trans-
lation validity and parallel reliability have been used in
studies. Biologic validity refers to the closeness of scale
assessments to the hypothesized expectation when com-
paring with other measures in a speci�c population. Dis-
criminative rating scales are used to distinguish between
individuals or groups, when no external criterion is avail-
able, then discriminant validity is to be assessed. Parallel
reliability refers to the interchangeability of scales.

�e concept content validity refers to the completeness
of the scale or multi-scale questionnaire in the coverage
of important areas. Sub concepts like face, ecological, deci-
sion, consensual, sampling validity, comprehensiveness and
feasibility have been used.

Assessments on rating scales generate ordinal data hav-
ing rank-invariant properties only, which means that the
responses indicate a rank order and not a mathematical
value. �e results of statistical treatments of data must
not being changed when relabeling the ordered responses.
Appropriate statistical methods for evaluation of criterion
and construct validity o�en refer to the order consistency
or to the relationship between the scales of comparison.

�e scatter plot of  paired assessments of perceived
back pain on a visual analogue scale (VAS) and on a verbal
descriptive scale (VDS-) having �ve ordered categorical
responses is shown the Fig. .
As evident from the plot there is a large overlapping

between the assessments. �e probability of discordance
in paired observations (X,Y),

P [(Xℓ < Xk) ∩ (Yℓ > Yk)] + P [(Xℓ > Xk) ∩ (Yℓ < Yk)] ,

is estimated by the empirical measure of disorder D. In
this case D equals ., which means that % of all pos-
sible combinations of di�erent pairs are disordered. �e
expected pattern of complete order consistency, the rank-
transformable pattern of agreement (RTPA), is constructed
by pairing o� the two sets of distributions of data against
each other.�emeasure of disorder expresses the observed
dispersion of pairs from this order consistent distribu-
tion of inter-changeability between the scales.�e cut-o�
response values for inter-scale calibration are also pro-
vided, and it is obvious that there is no linear correspon-
dence between VAS and discrete scale assessments (see
Fig. ).

�ere are other measures that could be applied to eval-
uation of various kinds of validity of scales. Dependent on
the purpose the Spearman rank-order correlations coe�-
cient,�e Goodman-Kruskal’s gamma, the Kendall’s tau-b
(see 7Kendall’s Tau), the Somers delta or the Stuart’s tau-c
could be suitable. Spearman rank order correlation coef-
�cient is a commonly used non-parametric measure of
association. However, a strong association does not nec-
essarily mean a high level of order consistency, and does
not indicate that two scales are interchangeable.

�e Pearson correlation coe�cient, the t-test and the
7Analysis of Variance are also common in validity studies.
A serious drawback is that thesemethods assume normally

Miodrag Lovric (ed.), International Encyclopedia of Statistical Science, DOI ./----,
© Springer-Verlag Berlin Heidelberg 
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Validity of Scales. Fig.  The distribution of paired assessments of back pain on a visual analogue pain scale and a five point verbal

descriptive pain scale
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Validity of Scales. Fig.  The rank-transformable pattern of agreement, RTPA, uniquely defined by the two sets of frequency
distributions of data in Fig. 

distributed quantitative data, and such requirements are
not met by data from rating scales. When applying sta-
tistical methods on data that do not have the assumed
properties then the results run the risk of being invalid and
unreliable.
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A variable is a characteristic that can take several values of
a set of possible data uponwhich ameasure or a quality can
be applied.�us, a variable varies in value among subjects
in a sample or population. Each subject of the observed set
has a particular value for a variable.
Examples of variables are gender (with values

being female and male), nationality (American, French,
German, . . .), level of education (Ph.D., Master, Bachelor,
Baccalaureate, . . .), number of children in a family (, , ,
. . .), and annual income in Euros.
Variables can be classi�ed in many ways and terminol-

ogy varies between di�erent �elds. For example, we may
classify variables as (a) qualitative or quantitative, (b) inde-
pendent or dependent, (c) univariate (one dimensional)
or multivariate (multidimensional), (d) latent (hidden) or
observed, (e) endogenous or exogenous, (f) explanatory,
intermediate, or response, and (g) monitoring or moderat-
ing. Classi�cation is further complicated because mixtures
of di�erent types occur quite commonly. Depending on
the nature of measurement there are also di�erent scales
for measuring the variable: nominal, ordinal, interval, and
ratiomeasurements.�e scale ofmeasurement determines
the amount of information contained in a set of data and
shows the most appropriate statistical methods for analyz-
ing that data.Wewill focus only on the distinction between
qualitative and quantitative variables.

Qualitative Variables
Qualitative variables contain values that express a qual-
ity in a descriptive way, such as sex, nationality, or level
of education. Qualitative variables, also called categorical
variables, are divided into nominal and ordinal ones.

● Nominal variables imply the fact that the labels are
unordered. Indeed, there is no criterion that allows
determining a label (a value) to be greater than or
smaller than other labels.�us the gender and nation-
ality are nominal variables. Accordingly, the marital

status, name, and country of residence are also nominal
variables, which are measured on a nominal scale.

● Ordinal variables represent labels that can be ordered
according to some logical criterion. Hence, the level of
education is an ordinal variable as are opinions con-
cerning a subject (excellent, good, poor. . .). �e set
of labels that satis�es a hierarchical criterion and is
measured on an ordinal scale is an ordinal variable.

Mathematical operations are not allowed in qualitative
variables, but for ordinal variables, counting and compar-
ison are permitted. Qualitative nominal and ordinal vari-
ables can be numerically encoded. Indeed, for instance, it
can be supposed that the variable “gender” takes the value 
for female and  for male. Also, if the variable considered
is an opinion, the value  can be used to represent excel-
lent,  for good, and  for poor. However, these numbers
have no meaning as such and cannot be the object of any
mathematical operations.

Quantitative Variables
Quantitative variables are expressed through measurable
values, that is, in terms of numbers.�ey can be measured
on an interval or ratio scale and can be classi�ed as either
discrete or continuous.

● Discrete variables take only a countable and usually
�nite number of real values that are the result of a
counting process.�ese variables typically take integer
values. For instance, discrete variables are the num-
ber of children in a family, the number of students
attending a class, and the number of employees in a
company.

● Continuous variables take an in�nite number of real
values arising from a measuring process. In prac-
tice the number of values that continuous variables
can take depends on the precision of the measuring
instruments. For instance, the height or the weight is
expressed in decimal points when they are measured.

In practice, it is sometimes di�cult to distinguish dis-
crete and continuous variables because of the way they
are actually measured. Quantitative variables can be used
to performmore admissible mathematical operations.�e
use of quantitative variables is widespread because it con-
tributes to obtaining important results as more statistical
methods for analyzing can be applied.
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�e term “variance” was coined by Ronald Fisher in 
in his famous paper on population genetics,�e Correla-
tion Between Relatives on the Supposition of Mendelian
Inheritance, published by Royal Society of Edinburgh: “It
is… desirable in analyzing the causes of variability to deal
with the square of the standard deviation as the measure
of variability. We shall term this quantity the Variance…”
(p. ). Interestingly, according to O. Kempthorne, this
paper was initially rejected by the Royal Society of London,
“probably the reason was that it constituted such a great
advance on the thought in the area that the reviewers were
unable to make a reasonable assessment.”

�e variance of a random variable (or a data set) is a
measure of variable (data) dispersion or spread around the
mean (expected value).

De�nition Let X be a random variable with second
moment E(X) and let µ = E(X) be its mean.�e variance
of X is de�ned by (see, e.g., Feller , p. )

Var(X) = E [(X − µ)] = E(X) − µ. ()

�e variance of a random variable is also frequently
denoted by V(X), σ X or simply σ , when the context is

clear. �e positive square root of variance is called the
standard deviation.

From (), the variance of X can be interpreted as the
“mean of the squares of deviations from themean” (Kendall
, p. ). Since the deviations are squared, it is clear that
variance cannot be negative. Variance is a measure of dis-
persion “since if the values of a random variable X tend to
be far from theirmean, the variance ofX will be larger than
the variance of a comparable randomvariableY whose val-
ues tend to be near their mean” (Mood et al. , p. ).
It is obvious that a constant has variance , since there is
no spread. Because the deviations are squared, the variance
is expressed in the original units squared (inches, euro)
which are di�cult to interpret.
To compute the variance of a random variable, it is

required to know the probability distribution of X. If X is
a discrete random variable, then

Var(X) =∑
i
(xi − µ)P(X = xi) =∑

i
xiP(X = xi) − µ.

()
When X is a continuous random variable with probability
density function f (x), then

Var(X) = ∫
+∞

−∞
(x − µ)f (x)dx = ∫

+∞

−∞
xf (x)dx − µ.

()

Example  If X has a Uniform distribution on [a, b], with
pdf /(b − a), then

E(X) = 
b − a ∫

b

a
xdx = b − a

(b − a)
= a + b


,

and

E(X) = 
b − a ∫

b

a
xdx = b − a

(b − a)
= a

 + ab + b


.

Hence the variance is equal to

Var(X) = E(X) − µ = (b − a)


.

�e following table provides expressions for variance
for some standard univariate discrete and continuous
probability distributions.

�e Cauchy distribution possesses neither mean nor
variance.

Next, we list some important properties of variance.

. �e variance of a constant is ; in other words, if all
observations in the data set are identical, the variance
takes its minimum possible value, which is zero.

. If b is a constant then
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Distribution Notation Variance

Bernoulli Be(p) pq

Binomial Bin(n,p) npq

Geometric Ge(p) q/p

Poisson Po(λ) λ

Uniform U(a,b) (b − a)/

Exponential Exp(λ) /λ

Normal N(µ, σ) σ

Standard Normal N(, ) 

Student t(ν) ν(ν − ) for ν > 

F F(ν, ν)
ν

(ν + ν − )
ν(ν − )(ν − )

for ν > 

Chi-square Chi(ν) ν

Var(X + b) = Var X,

which means that adding a constant to a random vari-
able does not change the variance.

. If a and b are constants, then

Var(aX + b) = aVar X

. If two variables X and Y are independent, then

Var(X + Y) = Var X + Var Y
Var(X − Y) = Var X + Var Y

. �e previous property can be generalized, i.e., the vari-
ance of the sum of independent random variables is
equal to the sumof variances of these randomvariables

Var (
n

∑
i=
Xi) =

n

∑
i=
Var(Xi).

�is result is called Bienaymé equality (see Loève ,
p. , or Roussas p. ).

. If two random variables X and Y are independent and
a and b are constants, then

Var(aX + bY) = aVar X + bVar Y .

In practice, the variance of a population, σ , is usually not
known, and therefore it can only be estimated using the
information contained in a sample of observations drawn
from that population. If x, x, . . . , xn is a random sample
of size n selected from a population with mean µ, then the

sample variance is usually denoted by s and is de�ned by

S = ∑
(xi − x)

n − 
, ()

where x is the sample mean.�e sample variance depicts
the dispersion of sample observations around the sam-
ple mean. �e squared deviations in () are divided by
n − , not by n, in order to obtain the unbiased estima-
tor of the population variance, E(s) = σ . �e factor
/(n − ) increases sample variance enough to make it
unbiased.�is factor is known as Bessel’s correction (a�er
Friedrich Bessel). Although the sample variance de�ned as
in () is an unbiased estimator of population variance, the
same does not relate to its square root, standard deviation;
the sample standard deviation is a biased estimate of the
population standard deviation.

Example  �e �rst column of the following table con-
tains �rst �vemeasurements of the speed of light in suitable
units ( km/s) from the classical experiments performed
by Michelson in  (data obtained from the Ernest N.
Dorsey’s  paper “�e Velocity of Light”).

xi xi − x (xi − x) x 
i

. −. . ,.

. −. . ,.

. . . ,.

. . . ,.

. . . ,.

Σ . . . ,.

Since the sample mean is equal to x =



∑
i=
xi


= .


=

. using the formula given in () results in the vari-
ance value

S = ∑
(xi − x)

n − 
= .


= ..

In the past, instead of the “de�nitional” formula (), the
following (so-called shorthand) formula was commonly
used, but it has become obsolete with the wide access of
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statistical so�ware, spreadsheets, and Internet java applets:

S =
∑xi −

(∑xi)


n
n − 

=
, .− , .






= ..
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Variation for Categorical
Variables
Tarald O. Kvålseth
Professor Emeritus
University of Minnesota, Minneapolis, MN, USA

By de�nition, a categorical variable has a measurement
scale that consists of a set of categories, either nominal
(i.e., categories without any natural ordering) or ordinal
(i.e., categories that are ordered). For a categorical vari-
able with n categories and the probability distribution

Pn = (p, . . . , pn) where pi ≥  for i= , . . . ,n and
n

∑
i= 
pi = ,

some measurement of variation (dispersion) is sometimes
of interest. Any such measure will necessarily depend on
whether the variable (or set of categories or data) is nomi-
nal or ordinal.

Nominal Case
In the nominal case, variation is generally considered
to increase strictly as the probabilities (or proportions)
pi(i = , . . . ,n) become increasingly equal, with the
variation being maximum for the uniform distribution
Pn = (/n, . . . , /n) and minimum for the degenerate dis-
tribution Pn = (, . . . , , , , . . . , ) and for any given n.
In terms ofmajorization theory (Marshall and Olkin ,
Ch. ), this requires that a nominal variation measure be
strictly Schur-concave. Another typically imposed require-
ment is that the measure should be normed to the [,] -
interval for ease of interpretation.

�e best known measures meeting those two require-
ments are the index of qualitative variation (IQV), the
normed entropy (H∗), and the normed form of the varia-
tion ratio (VR∗) de�ned as follows (e.g., Weisberg ):

IQV = ( n
n − 

)( −
n

∑
i=
p i ) , ()
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H∗ =
−
n

∑
i=
pi log pi

logn
, ()

VR∗ = ( n
n − 

) ( −max{p, . . . , pn}). ()

Note that the logarithmic terms in () can be to any
base since such terms appear both in the numerator and
denominator.�ose three measures range in value from 
(when Pn = Pn) to  (when Pn = Pn) where

Pn = (, . . . , , , , . . . , ), Pn = (/n, . . . , /n), ()

and for any given n.�emeasures in () and () can be seen
to be strictly Schur-concave, while VR∗ in () is Schur-
concave but not strictly so (see Marshall and Olkin ,
Ch. ). Also, while IQV and H∗ are continuous func-
tions of all the probability components p, . . . , pn, VR∗ is
a function of only the modal probability.
Although IQV and H∗ in ()–() have a number of

nice properties, they both lack an important one: they
both overstate the true extent of variation. To illustrate this
fact, consider P = (., .) for which each element
is the arithmetic mean of the corresponding elements of
P = (, ) and P = (., .) so that one would
reasonably expect that the variation for this P should
be ., i.e., the mean of the variations for P and
P (i.e.,  and , respectively). However, one �nds the
IQV(., .)= . and H∗(., .)= .. In order
for a variation measure to take on reasonable numerical
values, and thereby avoid invalid and misleading results
and conclusions, Kvälseth () proposed the following
coe�cient of nominal variation (CNV) as a simple trans-
formation of IQV :

CNV =  −
√
 − IQV . ()

Besides having the same types of properties as IQV , this
CNV takes on values that appear to be entirely rea-
sonable throughout the [, ] – interval. For instance,
CNV(., .) = . as is only reasonable.
Note also that theCNV in () can be expressed in terms

of metric distances as follows. In terms of the Euclidean

distance d(X,Y) = [
n

∑
i=

(xi − yi)]
/
between the two

points X = (x, . . . , xn) and Y = (y, . . . , yn), CNV can
be expressed as

CNV =  −
d (Pn,Pn)
d (Pn,Pn)

, ()

for any distribution Pn, with Pn and Pn de�ned in ().�at
is, CNV is the relative extent to which the Euclidean dis-
tance d (Pn,Pn) is less than its maximum possible value.

Or, CNV is the relative (metric) proximity of Pn to Pn.
�us, the expression in () providesCNV with a reasonable
interpretation and a solid basis.
In terms of the standard deviation s of p, . . . , pn (using

the usual divisor n − ), it is readily seen that CNV
is given by

CNV =  − s
√
n. ()

Similarly, in terms of the pair-wise di�erences between
the pi’s,

CNV =  −
⎛
⎝

n −  ∑∑≤i<j≤n

∣pi − pj∣
⎞
⎠

/
. ()

A parameterized family of such di�erence-based variation
measures may also be formulated (Kvälseth ), but no
other family member appears to be superior to CNV .

Ordinal Case
In the ordinal case, and when the order information is
accounted for, it is considered that variation is zero for the
degenerate distribution Pn and maximal for the polarized
distribution P()n de�ned as

Pn = (, . . . , , , , . . . , ), P()n = (., , . . . , , .),
()

(see, e.g., Leik ;Weisberg ).When the n categories
are ordered, it makes sense to use cumulative probabilities

Fi =
i

∑
j=
pj for i = , . . . ,n with Fn = .�us, for any given

Pn = (p, . . . , pn), and for the particular distributions in
(), the following cumulative distributions can be de�ned:

F(n) = (F, . . . ,Fn−, ), F(n) = (, . . . , , , , . . . , ),

F()(n) = (., . . . , ., ). ()

Ameasure of variation for ordinal categorical datamay
then be based on cumulative probabilities.

�e �rst such proposed measure appears to be Leik’s
() ordinal variation measure (LOV), which can be
expressed as

LOV =  −

n−

∑
i=

∣Fi − ∣

n − 
, ()

which ranges in value from  to , equals  for F()(n) and

 for F()(n) in (). An alternative measure is the coe�cient
of ordinal variation (COV) by Kvälseth (a,b) de�ned,



 V Variation for Categorical Variables

and somewhat analogous to CNV in (), as

COV =  −
√
 − ∆∗, ∆∗ = 

n − 

n

∑
i=

n

∑
j=

∣i − j∣pipj

= 
n − 

n−
∑
i=
Fi( − Fi) ()

whereCOV ∈ [, ], COV (F(n)) = , andCOV (F()(n)) = .
�e COV can also be expressed as

COV =  −

⎛
⎜⎜⎜⎜
⎝

n−

∑
i=

∣Fi − ∣

n − 

⎞
⎟⎟⎟⎟
⎠

/

. ()

It would appear from () and () that LOV and COV
are both members of the same family. In fact, expressed
in terms of an α – order arithmetic mean, both measures
belong to the family of ordinal variation measures

OVα =  −

⎛
⎜⎜⎜⎜
⎝

n−

∑
i=

∣Fi − ∣α

n − 

⎞
⎟⎟⎟⎟
⎠

/α

, −∞ < α <∞ ()

where LOV = OV, and COV = OV. Furthermore, in
terms of the Minkowski metric distance of order α ≥ 

(i.e., dα(X,Y) = (
n

∑
i=

∣xi − yi∣α)
/α
),

OVα =  −
dα (F(n),F

()
(n))

dα (F(n),F
()
(n))

, α ≥  ()

with F(n),F
()
(n), and F

()
(n) de�ned in (). Clearly, dα

(F(n)F
()
(n)) ≤ dα (F(n),F

()
(n)) since ∣Fi − .∣ ≤ . for all i.

�us, OVα ∈ [, ],OVα (F(n)) = , and OVα (F()(n)) = .
�e expressions in () – (), especially (), provide inter-
pretations and bases for LOV and COV , with LOV and
COV being based, respectively, on city-block (Hamming)
distances (α = ) and Euclidean distances (α = ) (see also
Blair and Lacy ).

Statistical Inferences
For a generic variation measure V , consider now (a) that
V(Pn) is the sample value based on the distribution Pn =
(p, . . . , pn) of sample probabilities ni/N for i = , . . . ,n
with sample size N =

n

∑
i=
ni and (b) that V(Πn) is the

population value based on the corresponding population
distributionΠn = (π, . . . , πn). Itmay then be of interest to
construct a con�dence interval or test an hypothesis about

V(Πn).�is can be done using the delta method (Agresti
, Ch. ). Accordingly, under multinomial sampling
withN reasonably large, V(Pn) is approximately normally
distributed with mean V(Πn) and estimated variance

σ̂ V = 
N

⎡⎢⎢⎢⎣

n

∑
i=
pi ϕ̂ Vi − (

n

∑
i=
pi ϕ̂Vi)

⎤⎥⎥⎥⎦
, ()

where

ϕ̂Vi =
∂V(Πn)

∂πi
∣
πi=pi

, i = , . . . ,n ()

i.e., ϕ̂Vi is the partial derivative of V(Πn) with respect to
πi, which is then replaced with pi, for i = , . . . ,n.
In the case of CNV in (), it follows from () (with

V = CNV) that

ϕ̂CNVi =
−n

(n − )( − CNV)
pi, i = , . . . ,n,

so that; from (),

σ̂ CNV = ( 
N

)( n
(n − )( − CNV)

)
 ⎡⎢⎢⎢⎣

n

∑
i=
p i − (

n

∑
i=
p i )

⎤⎥⎥⎥⎦
.

()

For the case of COV in (), and withV = COV , it is found
from () that

ϕ̂COVi =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩


(n − )( − COV)

⎡⎢⎢⎢⎢⎣
n − i − 

n−
∑
j=
Fj
⎤⎥⎥⎥⎥⎦
, i = , . . . ,n − 

 , i = n

()

which can then be used to compute σ̂ COV from ().
As a numerical example, consider the respective

multinomial frequencies ni = , , ,  so that, with
N = , P(., ., ., .). From () and (), IQV =
. and CNV = .. From (), with CNV =
., σ̂ CNV = .. �erefore, an approximate %
con�dence interval for the population measure CNV(Π)
becomes . ± .

√
. or (., .). If the four

categories are ordinal so that Fi = ., ., .,  for
i = , . . . , , it follows from () and () thatCOV = .
and ϕ̂COVi = ., ., .,  for i = , . . . ,  so
that, from (), with V = COV , σ̂ COV = ..�erefore,
an approximate % con�dence interval for COV(Π)
becomes . ± .

√
., or (., .).
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Vector Autoregressive Models
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Vector autoregressive (VAR) processes are popular in
economics and other sciences because they are �exi-
ble and simple models for multivariate time series data.
In econometrics they became standard tools when Sims
() questioned theway classical simultaneous equations
models were speci�ed and identi�ed and advocated VAR
models as alternatives. A textbook treatment of thesemod-
els with details on the issues mentioned in the following
introductory exposition is available in Lütkepohl ().

The Model Setup
�e basic form of a VAR process is

yt = Ddt + Ayt− +⋯ + Apyt−p + ut ,

where yt = (yt , . . . , yKt)′ (the prime denotes the trans-
pose) is a vector of K observed time series variables, dt is
a vector of deterministic terms such as a constant, a linear
trend and/or seasonal 7dummy variables, D is the asso-
ciated parameter matrix, the Ai’s are (K × K) parameter
matrices attached to the lagged values of yt , p is the lag

order or VAR order and ut is an error process which is
assumed to be white noise with zero mean, that is, E(ut) =
, the covariance matrix, E (utu′t) = Σu, is time invariant
and the ut ’s are serially uncorrelated or independent.
VAR models are useful tools for forecasting. If the

ut ’s are independent white noise, the minimum mean
squared error (MSE) h-step forecast of yt+h at time t is the
conditional expectation given ys, s ≤ t,

yt+h∣t = E(yt+h∣yt , yt−, . . . )
= Ddt+h + Ayt+h−∣t +⋯ + Apyt+h−p∣t ,

where yt+j∣t = yt+j for j ≤ .Using this formula, the forecasts
can be computed recursively for h = , , . . . .�e forecasts
are unbiased, that is, the forecast error yt+h − yt+h∣t has
mean zero and the forecast error covariance is equal to the
MSE matrix.�e -step ahead forecast errors are the ut ’s.
VAR models can also be used for analyzing the rela-

tion between the variables involved. For example, Granger
() de�ned a concept of causality which speci�es that a
variable yt is causal for a variable yt if the information in
yt is helpful for improving the forecasts of yt . If the two
variables are jointly generated by a VAR process, it turns
out that yt is not Granger-causal for yt if a simple set of
zero restrictions for the coe�cients of the VAR process are
satis�ed. Hence, Granger-causality is easy to check in VAR
processes.
Impulse responses o�er another possibility for analyz-

ing the relation between the variables of a VAR process by
tracing the responses of the variables to impulses hitting
the system. If the VAR process is stable and stationary, it
has a moving average representation of the form

yt = D∗dt +
∞
∑
j=
Φjut−j,

where the Φj’s are (K × K) coe�cient matrices which can
be computed from the VAR coe�cient matrices Ai with
Φ = IK , the (K × K) identity matrix.�is representation
can be used for tracing the e�ect of a speci�c forecast error
through the system. For example, if ut = (, , . . . , )′, the
coe�cients of the �rst columns of the Φj matrices repre-
sent the marginal reactions of the yt ’s. Unfortunately, these
so-called forecast error impulse responses are o�en not of
interest for economists because they may not re�ect prop-
erly what actually happens in a system of variables. Given
that the components ofut are typically instantaneously cor-
related, such shocks or impulses are not likely to appear in
isolation. Impulses or shocks of interest for economists are
usually instantaneously uncorrelated. �ey are obtained
from the forecast errors, the ut ’s, by some transformation,
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for example, εt = But may be a vector of shocks of inter-
est if the (K × K) matrix B is such that εt ∼ (, Σε) has a
diagonal covariancematrix Σε .�e correspondingmoving
average representation in terms of the εt ’s becomes

yt = D∗dt +
∞
∑
j=
Θjεt−j,

where Θj = ΦjB−.
�ere aremanyBmatrices with the property that But is

a random vector with diagonal covariance matrix. Hence,
there are many shocks εt of potential interest. Finding
thosewhich are interesting froman economic point of view
is the subject of structural VAR analysis.

Estimation and Model Specification
In practice the process which has generated the time series
under investigation is usually unknown. In that case, if
VAR models are regarded as suitable, the lag order has
to be speci�ed and the parameters have to be estimated.
For a given VAR order p, estimation can be conveniently
done by equationwise ordinary 7least squares (OLS). For
a sample of size T, y, . . . , yT , and assuming that in addi-
tion presample values y−p+, . . . , y are also available, the
OLS estimator of the parameters B = [D,A, . . . ,Ap] can
be written as

B̂ = (
T

∑
t=
ytZ′t−)(

T

∑
t=
Zt−Z′t−)

−
,

where Z′t− = (d′t , y′t−, . . . , y′t−p). Under standard assump-
tions the estimator is consistent and asymptotically nor-
mally distributed. In fact, if the residuals and, hence, the
yt ’s are normally distributed, that is, ut ∼ i.i.d.N (, Σu),
the OLS estimator is equal to the maximum likelihood
(ML) estimator with the usual asymptotic optimality prop-
erties. If the dimension K of the process is large, then the
number of parameters is also large and estimation preci-
sion may be low if a sample of typical size in macroeco-
nomic studies is available for estimation. In that case itmay
be useful to exclude redundant lags of some of the variables
from some of the equations and �t so-called subset VAR
models. In general, if zero or other restrictions are imposed
on the parameter matrices, other estimation methods may
be more e�cient.
VAR order selection is usually done by sequential

tests or model selection criteria (see 7Model Selection).
7Akaike’s information criterion (AIC) is, for instance, a
popular model selection criterion (Akaike, ). It has the
form

AIC(m) = log det(Σ̂m) + mK/T,

where Σ̂m = T−∑Tt= ûtû′t is the residual covariancematrix
of a VAR(m) model estimated by OLS.�e criterion con-
sists of the determinant of the residual covariance matrix
which tends to decline with increasing VAR order whereas
the penalty term mK/T, which involves the number of
parameters, grows withm.�e VAR order is chosen which
optimally balances both terms. In other words, models of
orders m = , . . . , pmax are estimated and the order p is
chosen such that it minimizes the value of AIC.
Once a model is estimated it should be checked that

it represents the data features adequately. For this pur-
pose a rich toolkit is available. For example, descriptive
tools such as plotting the residuals and residual autocorre-
lations may help to detect model de�ciencies. In addition,
more formal methods such as tests for residual autocor-
relation, conditional heteroskedasticity, nonnormality and
structural stability or tests for parameter redundancy may
be applied.

Extensions
If some of the time series variables to be modeled with
a VAR have stochastic trends, that is, they behave simi-
larly to a 7random walk, then another model setup may
be more useful for analyzing especially the trending prop-
erties of the variables. Stochastic trends in some of the
variables are generated by models with unit roots in the
VAR operator, that is, det(IK − Az − ⋯ − Apzp) =  for
z = . Variables with such trends are nonstationary and not
stable.�ey are o�en called integrated.�ey can be made
stationary by di�erencing. Moreover, they are called coin-
tegrated if stationary linear combinations exist or, in other
words, if some variables are driven by the same stochastic
trend. Cointegration relations are o�en of particular inter-
est in economic studies. In that case, reparameterizing the
standard VAR model such that the cointegration relations
appear directly may be useful. �e so-called vector error
correction model (VECM) of the form

∆yt = Ddt + Πyt− + Γ∆yt− +⋯ + Γp−∆yt−p+ + ut

is a simple example of such a reparametrization, where ∆
denotes the di�erencing operator de�ned such that ∆yt =
yt−yt−, Π = −(IK−A−⋯−Ap) and Γi = −(Ai++⋯+Ap)
for i = , . . . , p − . �is parametrization is obtained by
subtracting yt− from both sides of the standard VAR rep-
resentation and rearranging terms. Its advantage is that
Π can be decomposed such that the cointegration rela-
tions are directly present in themodel.More precisely, if all
variables are stationary a�er di�erencing once, and there
are K − r common trends, then the matrix Π has rank r
and can be decomposed as Π = αβ′, where α and β are
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(K × r) matrices of rank r and β contains the cointegra-
tion relations. A detailed statistical analysis of this model is
presented in Johansen () (see also Part II of Lütkepohl
()).

�ere are also other extensions of the basic VARmodel
which are o�en useful and have been discussed extensively
in the associated literature. For instance, in the standard
model all observed variables are treated as endogenous,
that is, they are jointly generated. �is setup o�en leads
to heavily parameterized models, imprecise estimates and
poor forecasts. Depending on the context, it may be pos-
sible to classify some of the variables as exogenous and
consider partial models which condition on some of the
variables.�e latter variables remain unmodeled.
One may also question the focus on �nite order VAR

models and allow for an in�nite order.�is can be done
by either augmenting a �nite order VAR by a �nite order
MA term or by accounting explicitly for the fact that the
�nite order VAR approximates some more general model.
Details on these and other extensions are provided, e.g., by
Hannan and Deistler () and Lütkepohl ().

About the Author
Professor Lütkepohl was Dean of the School of Economics
andBusinessAdministration,HumboldtUniversity, Berlin
(–); Head of the Economics Department,
European University Institute, Florence (–).

Cross References
7Akaike’s Information Criterion
7Akaike’s InformationCriterion: Background,Derivation,
Properties, and Re�nements
7Asymptotic Normality
7Econometrics: A Failed Science?
7Forecasting: An Overview
7Likelihood
7RandomWalk
7Residuals
7Seasonal Integration and Cointegration in Economic
Time Series
7Time Series

References and Further Reading
Akaike H () Information theory and an extension of the max-

imum likelihood principle. In: Petrov B, Csáki F (eds) nd
International Symposium on Information Theory, Académiai
Kiadó, Budapest, pp –

Granger CWJ () Investigating causal relations by econometric
models and cross-spectral methods. Econometrica :–

Hannan EJ, Deistler M () The statistical theory of linear systems.
Wiley, New York

Johansen S () Likelihood-based inference in cointegrated vector
autoregressive models. Oxford University Press, Oxford

Lütkepohl H () New introduction to multiple time series
analysis. Springer-Verlag, Berlin

Sims CA () Macroeconomics and reality. Econometrica :–





W

Weak Convergence of Probability
Measures
MilanMerkle
Professor, Faculty of Electrical Engineering
University of Belgrade, Belgrade, Serbia

Weak Convergence of Probability
Measures on Rd

Among several concepts of convergence that are being
used in Probability theory, the weak convergence has a
special role, as it is related not to values of random vari-
ables, but to their probability distributions. In a simplest
case of a sequence {Xn} of real valued random variables
(or vectors with values in Rd, d ≥ ) de�ned on prob-
ability spaces (Ωn,Fn,Pn), we say that a sequence {Xn}
converges weakly (or in law) to a random variable X if

lim
n→+∞

Fn(x) = F(x) ()

for each x ∈ Rwhere the function F is continuous. Here Fn
and F are distribution functions of Xn and X, respectively.
�e notation for this kind of convergence is Xn ⇒ X, or
Xn

L→ X. �e convergence de�ned by () can be as well
thought of as being a convergence of corresponding distri-
butions, i.e., probability measures de�ned on (Rd,Bd) by
µn(B) = Pn({ω ∈ Ωn ∣ Xn(ω) ∈ B}), where B ∈ B andB is
a Borel sigma-�eld onR. Hence we say also that a sequence
of probability measures µn on (Rd,Bd) converges weakly
to µ, in notation µn ⇒ µ.

�e following result is known as Lévy-Cramér Conti-
nuity�eorem.

�eorem  Let µn be a sequence of probability measures
on (Rd,Bd).�en µn ⇒ µ if and only if the corresponding
7characteristic functions converge pointwise:

lim
n→+∞

E ei⟨t,Xn⟩ = E ei⟨t,X⟩ for every t ∈ Rd,

where Xn,X are random vectors with distributions µn and
µ, respectively.

In d = , the Lévy’s metric dL (see Lévy ) is de�ned
as a distance between two univariate distribution functions

dL(F,G) = inf{ε >  ∣ F(x − ε) − ε ≤ G(x)
≤ F(x + ε) + ε for all x ∈ R}.

If φF and φG are characteristic functions that corre-
spond to F,G, respectively, then

dL(F,G) ≤ 
π ∫

T


∣φF(t) − φG(t)∣

dt
t
+ e logT

T
, T > e.

�e weak convergence Xn ⇒ X is implied by conver-
gence in probability, and consequently with all stronger
notions of convergence (with probability one and in the
pth mean, p ≥ ). To see that the weak convergence does
not imply nearness of values of corresponding random
variables, we may recall that for any symmetric random
variable (N (, ), say), X and −X have the same distribu-
tion. However, for any given sequence µn of d-dimensional
distributions such that µn ⇒ µ, there exists a probabil-
ity space (Ω,F ,P) and random mappings Xn and X from
(Ω,F) to (Rd,Bd) such that µn and µ are distributions
of Xn and X and also limn→+∞ Xn = X almost surely.�is
result on separable metric spaces is obtained by Skorohod
and later generalized to nets by Wichura ().

Some Typical Roles of Weak Convergence
in Probability
�e weak convergence appears in Probability chie�y in the
following classes of problems.

● Knowing that µn ⇒ µ, we may replace µn by µ for n
large enough. A typical example is the Central Limit
�eorem (any of its versions), which enables us to con-
clude that the properly normalized sum of random
variables has approximately a unit Gaussian law.

● Conversely, if µn ⇒ µ thenwemay approximate µwith
µn, for n large enough. A typical example of this sort
is the approximation of Dirac’s delta function (under-
stood as a density of a point mass at zero) by, say
triangle-shaped functions.

● It is not always easy to construct a measure with
speci�ed properties. If we need to show just its exis-
tence, sometimes we are able to construct a sequence

Miodrag Lovric (ed.), International Encyclopedia of Statistical Science, DOI ./----,
© Springer-Verlag Berlin Heidelberg 
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(or a net) ofmeasureswhich can be proved to beweakly
convergent and that its limit satis�es the desired prop-
erties. For example, this procedure is usually applied to
show the existence of theWienermeasure (themeasure
induced by Brownian Motion process (see 7Brownian
Motion and Di�usions) on the space of continuous
functions).

�e last mentioned example is related to measures in
in�nitely dimensional spaces, the case which usually arises
in the context of assigning measures to the set of trajec-
tories of a stochastic process. In fact, what is called weak
convergence in Probability theory, is inherited from so
called weak-star convergence in Topology, where it can be
de�ned in duals of arbitrary topological spaces. In Prob-
ability theory we do not need such a generality, as we are
interested only in spaces of measures. Since the spaces of
measures always appear as dual spaces of continuous func-
tions, the most general de�nition of weak convergence of
probability measures is the following.

De�nition  Let X be a topological space. Let µn(n =
, , . . .) and µ be probabilitymeasures de�ned on theBorel
sigma �eld generated by open subsets ofX .We say that the
sequence {µn} converges weakly to µ, in notation µn ⇒ µ
if

lim
n→+∞∫X

f (x) dµn(x) = ∫
X
f (x) dµ(x) ,

for every continuous and bounded real valued function f :
X ↦ R. �e set of these functions is denoted by C(X ).

In terms of random variables, let Xn (n = , , . . .) and
X beX -valued random variables and let µn and µ be corre-
sponding distributions.�en we say that the sequence Xn

converges weakly to X and write Xn ⇒ X if and only if
µn ⇒ µ. A setup that yields in�nitely dimensional spaces
X is when Xn is a sequence of random processes and X is
a space of functions where paths of Xn belong. Finally, in
a general situation, we may think of nets {Xd} and {µd}
instead of sequences.

Weak Convergence of Measures on
Metric Spaces
Let nowX be a metric space and letB be the sigma �eld of
Borel subsets ofX . LetM(X ) be the set of all probability
measures on X .

�eorem  Let µd be a net of probability measures on X
and let µ be a probability measure on X . �e following
statements are equivalent (Billingsley ; Stroock ):

(i) µd ⇒ µ, i.e., lim
d
∫ f dµd

= ∫ f dµ, for each f ∈ C(X ).
(ii) lim

d
∫ f dµd = ∫ f dµ for each f ∈ Cu(X )

(uniformly continuous and bounded functions).
(iii) lim µd(F) ≤ µ(F) for any closed set F ⊂ X .
(iv) lim µd(G) ≥ µ(G) for each open set G ⊂ X .
(v) lim µd(A) = µ(A) for each continuity set A for

µ (that is, µ(∂A) = , where ∂A is the bound-
ary of A).

(vi) lim ∫ f dµd ≤ ∫ f dµ for each upper semi-
continuous and bounded from above function f :
X ↦ R.

(vii) lim ∫ f dµd ≥ ∫ f dµ for each lower semi-
continuous and bounded from below function f :
X ↦ R.

(viii) lim∫ f dµd = ∫ f dµ for each µ–a.e. continu-
ous function f : X ↦ R.

In concrete metric spaces, the conditions can be
checked to hold only for some special families of sets,
so called convergence determining families. For example, a
convergence determining family in R is a family of sets
of the form (−∞, b], b ∈ R, and using this family in
the condition (v), we get the standard de�nition from the
beginning of section “7Weak Convergence of Probability
Measures on Rd”. Similarly, it can su�ce to check condi-
tion (i) only for special families of functions –�eorem 
gives an example of such a family.
If X is a separable metric space, the topology of weak

convergence of probability measures is metrizable by the
metric

d(P,Q) = inf{ε >  ∣ Q(B) ≤ P(Bε) + ε, P(B)
≤ Q(Bε) + ε, B ∈ B},

where Bε = {x ∈ X ∣ d(x,B) < ε}, andB is the Borel sigma
algebra on X .�is metric is called Prohorov’s metric, and
it is a generalization of Lévy’s metric from section “7Weak
Convergence of Probability Measures on Rd”. �ere are
metrics which are known to be equivalent to Prohorov’s
metrics (see, for example, [Stroock , p.]).

Relative Compactness, Tightness and
Prohorov’s Theorem
Let X be a metric space, B a Borel sigma-algebra gen-
erated by open subsets of X . In in�nitely dimensional
metric spaces, the weak convergence of �nite dimensional
distributions alone is not su�cient condition forweak con-
vergence of measures.�e additional condition is relative
compactness.
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De�nition  We say that a setP of probability measures
on (X ,B) is relatively compact if any sequence of proba-
bility measures Pn ∈ P contains a subsequence Pnk which
converges weakly to a probability measure inM(X).

�eorem  Let {µn} be a relatively compact sequence of
probability measures on X . If all �nite-dimensional distri-
butions converge weakly to corresponding �nite-dimensional
distributions of a measure µ, then µn ⇒ µ.

Hence, an usual procedure to show weak convergence
on a metric space is to �rst show convergence of �nite
dimensional distributions (via 7characteristic functions),
and then to prove relative compactness. If X is compact,
then any set P of probability measures is relatively com-
pact. Otherwise, we need some conditions which are easier
to check, a convenient tool is the notion of tightness.

De�nition  Let P be a set of probability measures on
(X ,B). We say that P is tight if for any ε >  there is a
compact setK ⊂ X such that µ(K′) ≤ ε for any µ ∈ P .

Next theorem links tightnesswith relative compactness.

�eorem (Prohorov ) (a)Any tight set ofmeasures
in arbitrary metric space is relatively compact. (b) If X is a
complete separable metric space, then any relatively compact
set of probability measures is tight.

In particular metric spaces, it is useful to have simpler
equivalent conditions for tightness. For example, observe
themetric spaceC[, ] of continuous functions de�ned on
[, ], with the metric of uniform convergence, d(x, y) =
sup
t∈[,]

∣x(t) − y(t)∣. �en a sequence {µn} of probability

measures (de�ned on Borel sets of this metric space) is
tight if an only if

lim
K→+∞
n→+∞

µn{x ∈ C[, ] ∣ ∣x()∣ ≥ K} =  and

lim
δ→
lim sup
n→+∞

µn{x ∈ C[, ] ∣ wx(δ) ≥ ε} = ,

for each ε > ,

where wx is de�ned as

wx(δ) = sup
∣s−t∣≤δ

∣x(s) − x(t)∣,  < δ ≤ 

(modulus of continuity of x).
Similar conditions exist in the space D[, ] of

all right - continuous functions with le� limits (càdlàg
functions), equipped with Skorohod’s metric (Billingsley
).
Finally, let usmention that in aHilbert spaceH with an

inner product ⟨. , . ⟩, wemay de�ne characteristic function

of a random variableX with a probability distribution µ, in
the same way as in the �nite dimensional spaces:

φ(x) = ∫
H
ei⟨x,y⟩ dµ(y), x ∈ H.

�eorem  Let {Pn} be a sequence of probability mea-
sures on H and let φn be the corresponding characteristic
functions. Let P and φ be a probability measure and its char-
acteristic function. If Pn ⇒ P then limn φn(x) = φ(x) for
all x ∈ H.

Conversely, if a sequence Pn of probabilitymeasures onH
is relatively compact and limn φn(x) = φ(x) for all x ∈ H,
then there exists a probability measure P such that φ is its
characteristic function and Pn ⇒ P.
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�e Weibull family of probability distributions (see also
7Generalized Weibull Distributions) is one the most
widely used parametric families of distributions for
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modeling failure times or lifetimes.�is is especially true
in engineering and science applications (as suggested orig-
inally by Weibull ) and is mainly due to the variety of
shapes of its density function and the behaviors of its fail-
ure rate function. Literally thousands of references to the
Weibull distribution can be found in the scienti�c litera-
ture. See Johnson et al. () or a more recent treatment
by Rinne () for a detailed comprehensive overview of
this family of distributions.
Let T denote a random variable (rv) representing the

failure time or lifetime of an item under study. �is rv
has a Weibull distribution with shape parameter α > 
and scale parameter β >  if its probability density func-
tion (pdf) is f (t) = αtα−β−α exp[−(t/β)α] for t ≥ .
�e cumulative distribution function (cdf) is then F(t) =
 − exp[−(t/β)α], t ≥ , and the survival or reliability
function is R(t) =  − F(t).�en the failure rate (or haz-
ard rate) function is h(t) = f (t)/R(t) = αβ−α tα−. For
shape parameter α = , the Weibull reduces to the expo-
nential distribution with scale β, and when α =  the
resultingWeibull distribution is referred to as the Rayleigh
distribution (see “Generalized Rayleigh distribution”).
A major reason that the Weibull distributions are so

useful is that the failure rate function can be increasing
if the shape α > , decreasing if α < , or constant for
α = . An increasing failure rate function corresponds to
the common assumption that the item whose lifetime is
under study fails due to wearout over time, that is, an “age-
ing process” occurs where failure becomes more likely as
time increases. �e case of decreasing failure rate is less
common but sometimes holds for types of items that tend
to fail early due to defects or low quality and that tend to
last longer if no defects are present, perhaps with very slow
ageing. �e constant failure rate corresponds to random
failures occurring over time, which is the “memoryless”
property of the exponential distribution.�at is, there is
no ageing process so that an item is always as good as
new over time. Although the ageless property might seem
to be unrealistic, some high-quality electronic items o�en
approximately satisfy such an assumption for a period of
time. So, Weibull distributions provide good models over
a wide variety of “ageing” scenarios.
For integer r >  the rth moment of a Weibull rv T is

E(Tr) = βrΓ( + r/α), where Γ(c) = ∫ ∞


xc−e−xdx is the
gamma function.�erefore, themean of theWeibull distri-
bution is µ = E(T) = βΓ( + /α) and the variance is σ  =
E(T)− µ = βΓ(+ /α)− βΓ(+ /α).�ese expres-
sions are generally not very easy to use, but they can be
obtained by computing approximate values of the gamma
function. Since calculation of the mean lifetime is not very
user-friendly, the value of the scale parameter itself is o�en

used as a measure of “typical” lifetime, referred to as the
characteristic life of the item. Since R(β) = exp(−) ≈ .,
the characteristic life β is approximately the rd percentile
of the distribution. Also, the variance is proportional to the
square of the characteristic life.

�eWeibull distribution arises also as the limiting dis-
tribution of the �rst order statistic from some probability
distribution, so the Weibull is a limit of extreme-value dis-
tributions in this sense. �at is, let X() denote the �rst
order statistic from n independent identically distributed
(iid) random variables, X, . . . ,Xn, from a speci�ed cdf.
�en as n → ∞, the distribution of X() approaches a
Weibull distribution (see Mann et al. , or Rinne ).
In fact, the Weibull distribution satis�es the important
“weakest-link” property which is another reason for its
applicability. Suppose that X, . . . ,Xn are n iid random
variables each with the Weibull cdf F(t) and reliability
function R(t) = exp[−(t/β)α], t ≥ . �en the relia-
bility function of the �rst order statistic, i.e. the “weak-
est” or smallest observation, X() = min{X, . . . ,Xn}, is
R(t) = Pr[Xi > t for all i = , . . . ,n] = [R(t)]n =
{exp[−(t/β)α]}n = exp[−(t/βn−/α)α]. �us, X() also
has the Weibull distribution with the same shape parame-
ter α and new scale parameter βn−/α .�is implies that in
the increasing failure rate case, α > , a long chain of “links”
has a higher probability of failure than a shorter chain.�is
idea is important in modeling the failure of materials (see,
for example, Smith , and Wolstenholme ), as well
as the failure of a series system of n iid components.
Several generalizations of theWeibull distribution have

been proposed, three of which will be mentioned here.
A frequently used version is obtained by adding a “shi�
parameter,” γ, also referred to as a “guarantee time.”�at
is, the Weibull pdf and cdf are shi�ed from zero to γ,

so f (t) = α(t − γ)α−β−α exp [−( t − γ
β

)
α
] and F(t) =

−exp[−((t−γ)/β)α], t ≥ γ, to obtain the three-parameter
Weibull distribution. Another generalization introduced
by Mudholkar and Srivastava () is known as the expo-
nentiated Weibull distribution which has cdf FEW(t) =
{ − exp[−(t/β)α]}θ , t ≥ , with another parameter
θ > . For α =  and β = , this exponentiated Wei-
bull distribution reduces to the Burr type X distribution
(see Burr ).�e third generalization mentioned here
is called the brittle fracture distribution (see Black et al.
), whose reliability function is of the form RBF(t) =
exp[−δtρ exp(−θ/t)], t > .�is distribution was found
to provide good model �ts speci�cally to observed break-
ing stress data for boron �bers and carbon �bers. Taking
θ =  and ρ = a yields the usual two-parameter Weibull
distribution with shape parameter α.
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Estimation of the parameters for �tting theWeibull dis-
tribution to observed failure data is typically accomplished
by the method of maximum likelihood. �is involves
numerical solution since the likelihood equations yield
nonlinear functions of the shape parameter. For example,
see Mann et al. () and Rinne (). Weibull plot-
ting is a graphical technique that is o�en used for quick
(not maximum likelihood) estimation of the parameters
(for examples, refer to Rinne () and Wolstenholme
()). Tests of hypotheses for the parameters, interval
estimation, and other inferences for the Weibull model
are discussed by Mann et al. () and Rinne () as
well as by many other authors.�ere are several available
statistical or engineering so�ware packages that include
Weibull modeling procedures. Among others, two dedi-
cated so�ware packages for Weibull analysis of lifetime
data may be found at http://Weibull.ReliaSo�.com and
http://www.relex.com/products/weibull.asp.
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Introduction
Weighted correlation is concerned with the use of weights
assigned to the subjects in the calculation of a corre-
lation coe�cient (see 7Correlation Coe�cient) between
two variables X and Y .�e weights can either be naturally
available beforehand or chosen by the user to serve a spe-
ci�c purpose. For instance, if there is a di�erent number
of measurements on each subject, it is natural to use these
numbers as weights and calculate the correlation between
the subject means. On the other hand, if the variables X
and Y represent, for instance, the ranks of preferences of
two human beings over a set of n items, one might want to
give largerweights to the �rst preferences, as these aremore
accurate. In another situation, if we want to calculate the
correlation between two stocks in a stock exchange mar-
ket during last year, we might want to favor (larger weight)
the more recent observations, as these are more important
for the present situation. Suppose that Xi and Yi are the
pair of values corresponding to observation i in each sam-
ple and wi the weight attributed to this observation, such
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that ∑n
i= wi = . �en, the sample weighted correlation

coe�cient is given by the formula

rw = ∑wi(Xi − Xw)(Yi − Yw)√
∑wi(Xi − Xw)

√
∑wi(Yi − Yw)

= ∑wiXiYi −∑wiXi∑wiYi√
∑wiXi − (∑wiXi)

√
∑wiYi − (∑wiYi)

, ()

where the sums are from i =  to n and Xw = ∑wiXi

and Yw = ∑wiYi are the weighted means. When all the
wi are equal they cancel out, giving the usual formula for
the Pearson product–moment correlation coe�cient.

Weighted Rank Correlation
Rank correlation coe�cients are nonparametric statis-
tics that are less restrictive than others (e.g., Pear-
son’s correlation coe�cient), because they do not try
to �t one particular kind of relationship, linear or
other, to the data. �eir objective is to assess the
degree of monotonicity between two series of paired
data. Common rank correlation coe�cients are Spear-
man’s and Kendall’s (Neave and Worthington ).
One interesting fact about rank correlation is that, con-
trary to other correlation methods, it can be used not
only on numerical data but on any data that can be
ranked.
Blest () proposed an alternative weighted mea-

sure of rank correlation that gives more importance to
the �rst ranks but has some drawbacks because it is not
a symmetric function of the two vectors of ranks. Later,
Pinto da Costa and Soares (Pinto da Costa and Soares
; Soares et al. ) presented a new weighted rank
correlation coe�cient that gives larger weight to the �rst
ranks and does not have the problems of Blest’s coe�cient.

�is coe�cient is

rW =  −
∑n

i=(Ri −Qi)(n +  − Ri −Qi)
n + n − n − n

, ()

where Ri is the rank corresponding to the ith observation
of the �rst variable, X, and Qi is the rank corresponding
to the ith observation of the second variable, Y . rW , which
yields values between − and +, uses a linear weight func-
tion: n +  − Ri − Qi . Some properties of the distribution
of the statistic rW , including its sample distribution, are
analyzed in Pinto da Costa and Soares () and Pinto
da Costa and Roque (); in particular, the expected
value of this statistic is zero when the two variables are
independent, and its sampling distribution converges to
the Gaussian when the sample size increases. Later, Pinto
da Costa and Soares () introduced a new weighted
rank correlation coe�cient that uses a quadratic weight
function:

rW =  −
∑n

i= (Ri −Qi) (n +  − Ri −Qi)

n(n − )(n + )(n + )(n + ) . ()

A New Way of Developing Weighted
Correlation Coefficients
It can be proved that the coe�cient rW is equal to the
Pearson’s correlation coe�cient of the transformed ranks
R′i = Ri (n +  − Ri) and Q′i = Qi (n +  −Qi) and
this suggests a new and easy way of developing weighted
correlation coe�cients. In fact, by applying a transforma-
tion to the ranks so that the �rst ones are favored and
then computing the Pearson’s correlation coe�cient of the
transformed ranks, we can de�ne many new measures of
weighted correlation (Pinto da Costa and Soares ).
In Fig.  we can see four di�erent cases. �e �rst, when
R′ = R, corresponds to Spearman’s coe�cient and so it
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Weighted Correlation. Fig.  Scatterplot for four different rank transformations
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does not correspond to a weighted measure; when R′ =
R(n +  − R) we have rW. We can now use other func-
tions such as R′ = R/ or R′ = −e−R. In order to be able
to represent the four cases in the same diagram some of
the transformations had to be multiplied by a constant and
in the last case another constant was also added, but these
operations do not change the value of Pearson’s correlation.
�us, the importance given to the �rst ranks is larger when
R′ = −e−R and smaller when R′ = R.�is means that the
ranks that are in a �atter region are given smaller weight.
From this perspective, and in case we want to give

larger weight to the �rst ranks, all that is needed is that the
transformation is monotone and the last ranks are more
�attened by the transformation compared with the �rst
ranks. However, if we want to give larger weight to other
ranks, not the �rst, we just have to �nd an appropriate
transformation to do that; one that is less �at where the
weights are to be larger. �is in turn has two additional
advantages. First, we can use di�erent transformations to
each variable and so we are not obliged to give the same set
of weights to the two variables. Secondly, this strategy can
be used with the original data, not only ranks, and somany
new measures of weighted correlation can be developed.
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Following the seminal papers of Hoe�ding (, ),
let Tn be a linear combination de�ned by

Tn =
,n

∑
i ,. . .,im

ηn,i⋯imϕ(Xi , . . . ,Xim), ()

such that: (a) ηn,i⋯im are weight functions, (b) ∑,ni ,. . .,im is
taken on all strictly ordered permutations of , . . . ,n, (c)
ϕ(⋅, . . . , ⋅) is a kernel of degree m, stationary of order r
( ≤ r ≤ m), for which we let θ = Eϕ(X, . . . ,Xm), and
(d)X,X, . . . are i.i.d. random vectors of dimensionK, not
necessarily quantitative in nature (Pinheiro et al. ).
Some con�gurations of ηn,i⋯im lead to special classes of

(generalized) 7U-statistics, as follows: If ηn,i⋯im ≡ (n
m)

−

and r ≥ , Tn is a degenerateU-statistics of degreemwhose
projection variances are such that  = σ  = ⋯ = σ r < σ r+;
then Tn has a degeneracy of order r and n(r+)/(Tn − θ)
converges to a (possibly) in�nite linear combination of
independent random variables, each distributed accord-
ingly to a (r+)-dimensionalWiener integral (Dynkin and
Mandelbaum ).
If K =  and the ηn,i⋯im assume  or  values only, Tn is

said to be an incomplete U-statistic (Janson ). Asymp-
totic distribution of Tn will be either a linear combination
of independentWiener integrals or amixture of such a dis-
tribution with an independent normal r.v., under suitable
sampling conditions (Janson ). For a class of condi-
tional U-statistics, where the weights can be decomposed
as ηn,i⋯im = e(i)⋯ e(im), e(⋅) being the marginal weight
function,7asymptotic normality follows fromStute ().
Moreover, the conditional nature of the class derives from
the fact that weights are de�ned as random functions of
another set of r.v.’s.
For K = , O’Neil and Redner () and Major ()

present asymptotic results in a more general setup for
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the class of weighted U-statistics, de�ned by ().�e case
m =  using moment matching techniques to determine
the asymptotic distribution of Tn is discussed in O’Neil
and Redner (). Under some regularity conditions on
ηn,i⋯im , a non-normal limit is proven for either r =  or
r = . For r = , a class of weightedU-statistics is proved to
be asymptotically normal under a second set of conditions
on weights. 7Asymptotic normality is also established for
r =  and incomplete designs.�e common idea behind all
weight-designs is the orthogonality on the set of (possibly
random) weights. Major () points out that the afore-
mentioned approach cannot be adapted form ≥ ; Poisson
approximation is then used to pursue asymptotic behavior
of Tn.
A class of quasi U-statistics having the novelty that

it can be applied to any i.i.d. random vectors of arbi-
trary (and even increasing) dimension K, is introduced
in Pinheiro et al. ().�e proposed class is constructed
in such a way that, although ϕ can be degenerate,
the chosen weights lead to a contrast, i.e., such that
∑,ni ,. . .,im ηn,i⋯im = , providing asymptotically normal dis-
tributions. For the quasi U-statistics, the aforementioned
contrast condition is an essential requirement. Otherwise,
for degenerate U-statistics the asymptotic distribution is
non-normal.
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Wilcoxon–Mann–Whitney Test
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Germany

�e Wilcoxon–Mann–Whitney (WMW) test was pro-
posed by Frank Wilcoxon in  (“Wilcoxon rank sum
test”) and by Henry Mann and Donald Whitney in 
(“Mann–Whitney U test”). However, the test is older:
Gustav Deuchler introduced it in  (see Kruskal ).
Nowadays, this test is a commonly used nonparametric test
for the two-sample location problem. As with many other
nonparametric tests, this is based on ranks rather than on
the original observations.

�e sample sizes of the two groups or random sam-
ples are denoted by n andm.�e observations within each
sample are independent and identically distributed, andwe
assume independence between the two samples.�e null
hypothesis, H, is one of no di�erence between the two
groups.
Let F and G be the distribution functions correspond-

ing to the two samples.�en we have the null hypothesis
H : F(t) = G(t) for every t. Under the two-sided alter-
native there is a di�erence between F and G. O�en, it is
assumed that F and G are identical except a possible shi�
in location (location-shi� model), i.e., F(t) = G(t − θ) for
every t. �en, the null hypothesis states θ = , and the
two-sided alternative is H : θ ≠ . Of course, one-sided
alternatives are possible, too.
Let Vi =  when the ith smallest of the N = n + m

observations is from the �rst sample and Vi =  otherwise.
�eWilcoxon rank sum is a linear rank statistic de�ned by

W =
N

∑
i=
i ⋅Vi. Hence,W is the sum of the n ranks of group ;

the ranks are determined based on the pooled sample of all
N values.

�e Mann–Whitney statistic U is de�ned as U =
n

∑
i=

m

∑
j=

ψ(Xi,Yj) where Xi (Yj) is an observation from
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group  (group ), and

ψ(Xi,Yj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

 if Xi > Yj

. if Xi = Yj

 if Xi < Yj.

Because ofW = U + n

(n+ ), the tests based onW and U

are equivalent.
�e standardized statistic ZW can be computed as

ZW = W − E(W)√
Var(W)

with E(W)= n(N + )


and Var(W)=

nm(N + )


. In the presence of ties mean ranks can be
recommended for tied observations. �en, the variance
changes, in this case we have

Var(W) = nm


⎛
⎜⎜⎜⎜⎜
⎝

N +  −

g

∑
i=

(ti − )ti(ti + )

N(N − )

⎞
⎟⎟⎟⎟⎟
⎠

,

where g is the number of tied groups and ti the number of
observations within the ith tied group. An untied value is
regarded as a tied group with ti =  (Hollander and Wolfe
, p. ).
Under H, the standardized Wilcoxon statistic asymp-

totically follows a standard normal distribution.�is result
can be used to carry out the test and to calculate an asymp-
totic p-value. According to Brunner and Munzel (,
p. ) the normal approximation is acceptable in case of
min(n,m) ≥ , if there were no ties.�e two-sided asymp-
totic WMW test can reject H if ∣ZW ∣ ≥ z−α/, the cor-
responding p-value can be computed as ( − Φ(∣ZW ∣)),
where z−α/ and Φ denote the ( − α/)-quantile and the
distribution function, respectively, of the standard normal
distribution.
Alternatively, the exact permutation null distribution

of W can be determined and used for inference (see
the chapter about7permutation tests). Some monographs
include tables of critical values for the permutation test, but
these tables can only be used if there were no ties. A per-
mutation test, however, is also possible in the presence of
ties, because the exact conditional distribution ofW can be
obtained.
As a rank test theWMW test does not use all the avail-

able information; despite this, it is quite powerful. If the
normal distribution is a reasonable assumption, little is
lost by using the Wilcoxon test instead of the parametric
t test. On the other hand, when the assumption of nor-
mality is not satis�ed, the nonparametric Wilcoxon test

may have considerable advantages in terms of e�ciency. To
be precise, the asymptotic relative e�ciency (ARE) of the
WMWtest in comparison to Student’s t test (see7Student’s
t-Tests) cannot be smaller than .. However, there is
no upper limit. If the data follow a normal distribution the
ARE is /π = . (Hodges and Lehmann ).

�e two-sidedWMWtest is consistent against all alter-
natives with Pr(Xi < Yj) ≠ .. However, the WMW
test can give a signi�cant result for a test at the % level
with much more than % probability when the population
medians are identical, but the population variances di�er.
A generalization exists that can be applied for testing a dif-
ference in location irrespective of a possible di�erence in
variability (Brunner and Munzel ).
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Wilcoxon-Signed-Rank Test
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�e Wilcoxon-signed-rank test was proposed together
with the Wilcoxon-rank-sum test (see 7Wilcoxon–Mann
–Whitney Test) in the same paper by Frank Wilcoxon in
 (Wilcoxon ) and is a nonparametric test for the
one-sample location problem. �e test is usually applied
to the comparison of locations of two dependent samples.
Other applications are also possible, e.g., to test the hypoth-
esis that the median of a symmetrical distribution equals
a given constant. As with many nonparametric tests, the
distribution-free test is based on ranks.
To introduce the classical Wilcoxon-signed-rank test

and also important further developments of it we denote by
Di = Yi−Xi, i = , . . . ,N the di�erence between two paired
random variables.�e classicalWilcoxon-signed-rank test
assumes that the di�erences Di are mutually independent
and Di, i = , . . . ,N comes from a continuous distribu-
tion F that is symmetric about a median θ.�e continuity
assumption on the distribution of the di�erences implies
that di�erences which are equal in absolute value may not
occur, i.e., the classicalWilcoxon-signed-rank test assumes
no ties in the di�erences ∣di∣ ≠ ∣dj∣ for i ≠ j and  ≤ i, j ≤ N.
Moreover, it is assumed that the sample is free of zero dif-
ferences, i.e., di ≠ ,∀i = , . . . ,N.We further denote byN
andM the number of zero and the number of non-zero dif-
ferences in the sample, respectively. It follows N = N +M
with N =  for the classical Wilcoxon-signed-rank test.

�e null hypothesis states that H : θ = , i.e., the
distibution of the di�erences is symmetric about zero cor-
responding to no di�erence in location between the two
samples.�e two-sided alternative isH : θ ≠ . One-sided
alternatives are also possible.

�e Wilcoxon-signed-rank test statistic is the linear
rank statistic R+ = ∑N

i= RiVi where Vi = Di>, is the indi-
cator for the sign of the di�erence and Ri is the rank of ∣Di∣,

i = , . . . ,N.�erefore, the test statistic represents the sum
of the positive signed ranks. (�e test statistic could also be
build in terms of the sum of negative signed ranks, R− or
the di�erence of both R = R+ − R−.�e three statistics are
equivalent. For theoretical investigations is R o�en more
suitable. Nevertheless, in literature R+ and R− are wide-
spread.)�e critical values wα for the exact distribution of
R+ are tabulated. Reject the null hypothesis at the α level
of signi�cance if R+ ≥ wα/ or R+ ≤ N(N+)

 − wα/.
Nowadays, the exact distribution can be determined by

generating all N sign permutations of the ranked di�er-
ences. For each permutation, the value of the test statistic
has to be calculated.�e proportion of permutations that
give a value as or more extreme than observed, is the
p-value of the resulting exact test. Hence, in terms of p-
values and due to the symmetry of the distribution, we
reject the null hypothesis if the p-value p = P(R+ ≥ r+) ≤
α where r+ is the observed value of the test statistic.
A large-sample approximation uses the asymptotic

normal distribution of R+. Under the null hypothesis
we have

E(R+) =
N(N + )


, Var(R+) =
N(N + )(N + )


and the standardized version of R+ is asymptotically

R∗+ =
R+ − E(R+)√

Var(R+)
H∼ N(, ).

Reject the null hypothesis if ∣R∗+∣ ≥ z−α/.
In applications, the assumptions of the classical

Wilcoxon-signed-rank test of non-zero di�erences and no
ties in the sample are o�en not ful�lled.
We still assume that zero values are not possible but

allow ties among the non-zero di�erences (the conti-
nuity assumption on the distribution of the di�erences
is relaxed). �en one can apply the classical Wilcoxon-
signed-rank test on themean ranks that are associatedwith
the tied group. In the case of ties among the non-zero dif-
ferences, a conditional test based on the exact conditional
distribution of theWilcoxon signed-rank statistic given the
set of tied ranks and by means of mean ranks is possible
(Hollander and Wolfe  p. ).
For the large-sample approximation in the case of

non-zero di�erences but existing tied observations among
the non-zero di�erences, the variance of the test statistic
changes to

Var(R+) =



(N(N + )(N + )

− 


C

∑
i=

Ti(Ti − )(Ti + )) ()
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where we have denoted by C the number of groups with
ties and by Ti ≥ , i = , . . . ,C the number of observations
within tie group i. It holds for this case N = M = ∑C

i= Ti.
An untied observation is then considered to be a group of
size  (Hollander and Wolfe  p. ). We remark that
the classical Wilcoxon-signed-rank test assumes Ti = ,
∀i = , . . . ,C.�e test statistic R∗+ adapted by equation ()
is then computed with respect to mean ranks. Under the
null hypothesis it is asymptotically normal distributed and
corresponding tests can be applied.
In applications zero di�erences do o�en exist.Wilcoxon

suggested dropping the zeros from the initial data and go
on with the test on the reduced data.
Another method for handling zero di�erences was

given by Pratt (Pratt ). Pratt suggested to rank all
observations, including the zeros, from smallest to largest
in absolutemagnitude and a�erwards drop the ranks of the
zeros without changing the ranks of the non-zero values
and proceed with the testing. In this case we have N > 
and ranks start by N + , . . . ,N. Pratt motivated this pro-
cedure by showing that contradictory test decisions could
occur when zero di�erences are ignored. More exactly, he
showed that dropping the zeros before ranking fails to sat-
isfy a monotonicity requirement:�e probability under a
test based on the signed rank statistic and randomized to
have exact α level of calling a sample signi�cantly positive
should be a nondecreasing function of the observations
(Pratt , p. ). Tables of critical values for a con-
ditional exact Pratt test where a certain number of zero
di�erences are allowed andmean ranks for ties are involved
are computed by Buck (Buck ). Analogously, running
through all N sign permutations allows the computation
of the exact distribution of the test statistic independent of
tabulated values.
Asymptotically, the standardized test statistic where

expectation and variance is properly adapted for the mod-
i�cation of Pratt is under the null hypothesis normal dis-
tributed and corresponding tests can be applied (Buck
).
Conover (Conover , p. ) showed that there

are cases (e.g., the uniform distribution) for which the
Wilcoxon test with the Pratt modi�cation for handling

zero di�erences and mean ranks for the non-zero di�er-
ences has a greater asymptotic e�ciency than the clas-
sical Wilcoxon test. Moreover he showed that there are
also cases (e.g., the 7binomial distribution) for which the
Wilcoxon test with non-zero di�erences and mean ranks
for the non-zero di�erences gives better asymptotic e�-
ciency than the Pratt method.
Another well-known test for the one-sample location

problem is the 7sign test. Compared to the sign test, the
Wilcoxon-signed-rank test has the additional assumption
of the symmetry of the distribution but uses the ordering
of the di�erences as additional information. In literature
we �nd that there are advantageous cases with respect to
the asymptotic e�ciency for both the sign test and the
Wilcoxon-signed-rank test (Higgins ).
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