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PREFACE 

Real-time computing plays a crucial role in our society since an increasing num­
ber of complex systems rely, in part or completely, on processor control. Ex­
amples of applications that require real-time computing include nuclear power 
plants, railway switching systems, automotive electronics, air traffic control, 
telecommunications, robotics, and military systems. 

In spite of this large application domain, most of the current real-time systems 
are still designed and implemented using low-level programming and empirical 
techniques, without the support of a scientific methodology. This approach 
results in a lack of reliability, which in critical applications may cause serious 
environmental damage or even loss of life. 

This book is a basic treatise on real-time computing, with particular emphasis 
on predictable scheduling algorithms. The main objectives of the book are to 
introduce the basic concepts of real-time computing, illustrate the most sig­
nificant results in the field, and provide the basic methodologies for designing 
predictable computing systems useful in supporting critical control applica­
tions. 

The book is written for instructional use and is organized to enable readers 
without a strong knowledge of the subject matter to quickly grasp the material. 
Technical concepts are clearly defined at the beginning of each chapter, and 
algorithm descriptions are reinforced through concrete examples, illustrations, 
and tables. 

Contents of the chapters 
Chapter 1 presents a general introduction to real-time computing and real-time 
operating systems. It introduces the basic terminology and concepts used in the 
book and clearly illustrates the main characteristics that distinguish real-time 
processing from other types of computing. 



HARD REAL-TIME COMPUTING SYSTEMS 

Chapter 2 treats the general issue of scheduUng tasks on a single processor 
system. Objectives, performance metrics, and hypotheses are clearly presented, 
and the scheduling problem is precisely formalized. The different algorithms 
proposed in the literature are then classified in a taxonomy, which provides 
a useful reference framework for understanding the different approaches. At 
the end of the chapter, a number of multiprocessor scheduling anomalies are 
illustrated to show that real-time computing is not equivalent to fast computing. 

The rest of the book is dedicated to specific scheduling algorithms, which are 
presented as a function of the task characteristics. 

Chapter 3 introduces a number of real-time scheduling algorithms for handling 
aperiodic tasks with explicit deadlines. Each algorithm is examined in regard to 
the task set assumptions, formal properties, performance, and implementation 
complexity. 

Chapter 4 treats the problem of scheduling a set of real-time tasks with periodic 
activation requirements. In particular, three classical algorithms are presented 
in detail: Rate Monotonic, Earliest Deadline First, and Deadline Monotonic. 
A schedulability test is derived for each algorithm. 

Chapter 5 deals with the problem of scheduling hybrid sets consisting of hard 
periodic and soft aperiodic tasks, in the context of fixed-priority assignments. 
Several algorithms proposed in the literature are analyzed in detail. Each 
algorithm is compared with respect to the assumptions made on the task set, 
its formal properties, its performance, and its implementation complexity. 

Chapter 6 considers the same problem addressed in Chapter 5, but in the 
context of a dynamic priority assignment. Performance results and comparisons 
are presented at the end of the chapter. 

Chapter 7 introduces the problem of scheduling a set of real-time tasks that 
may interact through shared resources and hence have both time and resource 
constraints. Three important resource access protocols are described in detail: 
the Priority Inheritance Protocol, the Priority Ceiling Protocol, and the Stack 
Resource Policy. These protocols are essential for achieving predictable behav­
ior, since they bound the maximum blocking time of a process when accessing 
shared resources. The latter two protocols also prevent deadlocks and chained 
blocking. 

Chapter 8 deals with the problem of real-time scheduling during transient over­
load conditions; that is, those situations in which the total task demand exceeds 
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the available processing time. These conditions are critical for real-time sys­
tems, since not all tasks can complete within their timing constraints. This 
chapter introduces new metrics for evaluating the performance of a system 
and presents a new class of scheduling algorithms capable of achieving graceful 
degradation in overload conditions. 

Chapter 9 describes some basic guidelines that should be considered during 
the design and the development of a hard real-time kernel for critical control 
applications. An example of a small real-time kernel is presented. The problem 
of time predictable intertask communication is also discussed, and a particular 
communication mechanism for exchanging asynchronous messages among peri­
odic tasks is illustrated. The final section shows how the runtime overhead of 
the kernel can be evaluated and taken into account in the guarantee tests. 

Chapter 10 discusses some important issues related to the design of real-time 
applications. A robot control system is considered as a specific example for 
illustrating why control applications need real-time computing and how time 
constraints can be derived from the application requirements, even though they 
are not explicitly specified by the user. Finally, the basic set of kernel primitives 
presented in Chapter 9 is used to illustrate a concrete programming example 
of real-time tasks for sensory processing and control activities. 

Chapter 11 concludes the book by presenting a number of hard real-time op­
erating systems proposed in the literature. The systems examined include 
MARS, Spring, RK, ARTS, and HARTIK. Each system is considered in terms 
of supported architecture, scheduling algorithm, communication mechanism, 
and interrupt handling. 
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1 
A GENERAL VIEW 

1.1 INTRODUCTION 

Real-time systems are computing systems that must react within precise time 
constraints to events in the environment. As a consequence, the correct behav­
ior of these systems depends not only on the value of the computation but also 
on the time at which the results are produced [SR88]. A reaction that occurs 
too late could be useless or even dangerous. Today, real-time computing plays 
a crucial role in our society, since an increasing number of complex systems 
rely, in part or completely, on computer control. Examples of applications that 
require real-time computing include 

Chemical and nuclear plant control. 

Control of complex production processes, 

Railway switching systems, 

Automotive applications. 

Flight control systems. 

Environmental acquisition and monitoring. 

Telecommunication systems. 

Industrial automation. 

Robotics, 

Military systems. 



C H A P T E R 1 

• Space missions, and 

• Virtual reality. 

Despite this large application domain, many researchers, developers, and tech­
nical managers have serious misconceptions about real-time computing [Sta88], 
and most of today's real-time control systems are still designed using ad hoc 
techniques and heuristic approaches. Very often, control applications with 
stringent time constraints are implemented by writing large portions of code 
in assembly language, programming timers, writing low-level drivers for device 
handling, and manipulating task and interrupt priorities. Although the code 
produced by these techniques can be optimized to run very efficiently, this 
approach has the following disadvantages: 

• Tedious programming. The implementation of large and complex ap­
plications in assembly language is much more difficult and time consuming 
than high-level programming. Moreover, the efficiency of the code strongly 
depends on the programmer's ability. 

• Difficult code understanding. Except for the programmers who de­
velop the application, very few people can fully understand the function­
ality of the software produced. Clever hand-coding introduces additional 
complexity and makes a program more difficult to comprehend. 

• Difficult software maintainability. As the the complexity of the pro­
gram increases, the modification of large assembly programs becomes dif­
ficult even for the original programmer. 

• Difficult verification of time constraints. Without the support of 
specific tools and methodologies for code and schedulability analysis, the 
verification of time constraints becomes practically impossible. 

The major consequence of this approach is that the control software produced 
by empirical techniques can be highly unpredictable. If all critical time con­
straints cannot be verified a priori and the operating system does not include 
specific features for handling real-time tasks, the system could apparently work 
well for a period of time, but it could collapse in certain rare, but possible, 
situations. The consequences of a failure can sometimes be catastrophic and 
may injure people or cause serious damage to the environment. 

A high percentage of accidents that occur in nuclear power plants, in space 
missions, or in defensive systems are often caused by software bugs in the 
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control system. In some cases, these accidents have caused huge economic 
losses or even catastrophic consequences including the loss of human lives. 

As an example, the first flight of the space shuttle was delayed, at considerable 
cost, because of a timing bug that arose from a transient CPU overload during 
system initialization on one of the redundant processors dedicated to the control 
of the aircraft [Sta88]. Although the shuttle control system was intensively 
tested, the timing error was never discovered before. Later, by analyzing the 
code of the processes, it has been found that there was only a 1 in 67 probability 
(about 1.5 percent) that a transient overload during initialization could push 
the redundant processor out of synchronization. 

Another software bug was discovered on the real-time control system of the 
Patriot missiles, used to protect Saudi Arabia during the Gulf War.^ When 
a Patriot radar sights a flying object, the on-board computer calculates its 
trajectory and, to ensure that no missiles are launched in vain, it performs a 
verification. If the flying object passes through a specific location, computed 
based on the predicted trajectory, then the Patriot is launched against the 
target, otherwise the phenomenon is classified as a false alarm. 

On February 25, 1991, the radar sighted a Scud missile directed at Saudi Arabia, 
and the on-board computer predicted its trajectory, performed the verification, 
but classified the event as a false alarm. A few minutes later, the Scud fell on 
the city of Dhahran, causing victims and enormous economic damage. Later 
on, it was discovered that, because of a subtle software bug, the real-time clock 
of the on-board computer was accumulating a delay of about 57 microseconds 
per minute. The day of the accident, the computer had been working for about 
100 hours (an exceptional condition that was never experienced before), thus 
accumulating a total delay of 343 milliseconds. This delay caused a prediction 
error in the verification phase of 687 meters! The bug was corrected on February 
26, the day after the accident. 

The examples of failures described above show that software testing, although 
important, does not represent a solution for achieving predictability in real-time 
systems. This is mainly due to the fact that, in real-time control applications, 
the program flow depends on input sensory data and environmental conditions, 
which cannot be fully replicated during the testing phase. As a consequence, 
the testing phase can provide only a partial verification of the software behavior, 
relative to the particular subset of data provided as input. 

^L'Espresso, Vol. XXXVIII, No. 14, 5 April 1992, p. 167. 



C H A P T E R 1 

A more robust guarantee of the performance of a real-time system under all 
possible operating conditions can be achieved only by using more sophisticated 
design methodologies, combined with a static analysis of the source code and 
specific operating systems mechanisms, purposely designed to support compu­
tation under time constraints. Moreover, in critical applications, the control 
system must be capable of handling all anticipated scenarios, including peak 
load situations, and its design must be driven by pessimistic assumptions on 
the events generated by the environment. 

In 1949, an aeronautical engineer of the U.S. Air Force, Captain Ed Mur­
phy, observed the evolution of his experiments and said: "If something can go 
wrong, it will go wrong." Several years later. Captain Ed Murphy became fa­
mous around the world, not for his work in avionics but for his phrase, simple 
but ineluctable, today known as Murphy's Law [Blo77, BI08O, BI088]. Since 
that time, many other laws on existential pessimism have been formulated to 
describe unfortunate events in a humorous fashion. Due to the relevance that 
pessimistic assumptions have on the design of real-time systems. Table 1.1 lists 
the most significant laws on the topic, which a software engineer should always 
keep in mind. 

1.2 W H A T DOES REAL TIME MEAN? 

1.2.1 The concept of t ime 

The main characteristic that distinguishes real-time computing from other 
types of computation is time. Let us consider the meaning of the words time 
and real more closely. 

The word time means that the correctness of the system depends not only on 
the logical result of the computation but also on the time at which the results 
are produced. 

The word real indicates that the reaction of the systems to external events must 
occur during their evolution. As a consequence, the system time (internal time) 
must be measured using the same time scale used for measuring the time in 
the controlled environment (external time). 

Although the term real time is frequently used in many application fields, it is 
subject to different interpretations, not always correct. Often, people say that 
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Murphy's General Law 

/ / something can go wrong, it will go wrong. 

Murphy's Constant 

Damage to an object is proportional to its value. 

Naeser's Law 

One can make something bomb-proof, not jinx-proof. 

Troutman Postulates 

1. Any software bug will tend to maximize the damage. 

2. The worst software bug will be discovered six months after the field test. 

Green's Law 

If a system is designed to be tolerant to a set of faults, there will always 
exist an idiot so skilled to cause a nontolerated fault. 

Corollary 

Dummies are always more skilled than measures taken to keep them 
from harm. 

Johnson's First Law 

/ / a system stops working, it will do it at the worst possible time. 

Sodd's Second Law 

Sooner or later, the worst possible combination of circumstances will 
happen. 

Corollary 

A system must always be designed to resist the worst possible combi­
nation of circumstances. 

Table 1.1 Murphy's laws on real-time systems. 
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a control system operates in real time if it is able to quickly react to external 
events. According to this interpretation, a system is considered to be real-time 
if it is fast. The term fast^ however, has a relative meaning and does not capture 
the main properties that characterize these types of systems. 

In nature, living beings act in real time in their habitat independently of their 
speed. For example, the reactions of a turtle to external stimuli coming from 
its natural habitat are as effective as those of a cat with respect to its habitat. 
In fact, although the turtle is much slower than a cat, in terms of absolute 
speed, the events that it has to deal with are proportional to the actions it can 
coordinate, and this is a necessary condition for any animal to survive within 
an environment. 

On the contrary, if the environment in which a biological system lives is modified 
by introducing events that evolve more rapidly than it can handle, its actions 
will no longer be as effective, and the survival of the animal is compromised. 
Thus, a quick fly can still be caught by a fly-swatter, a mouse can be captured 
by a trap, or a cat can be run down by a speeding car. In these examples, the 
fly-swatter, the trap, and the car represent unusual and anomalous events for 
the animals, out of their range of capabilities, which can seriously jeopardize 
their survival. The cartoons in Figure 1.1 schematically illustrate the concept 
expressed above. 

The previous examples show that the concept of time is not an intrinsic property 
of a control system, either natural or artificial, but that it is strictly related to 
the environment in which the system operates. It does not make sense to design 
a real-time computing system for flight control without considering the timing 
characteristics of the aircraft. Hence, the environment is always an essential 
component of any real-time system. Figure 1.2 shows a block diagram of a 
typical real-time architecture for controlling a physical system. 

Some people erroneously believe that it is not worth investing in real-time 
research because advances in computer hardware will take care of any real­
time requirements. Although advances in computer hardware technology will 
improve system throughput and will increase the computational speed in terms 
of millions of instructions per second (MIPS), this does not mean that the 
timing constraints of an application will be met automatically. In fact, whereas 
the objective of fast computing is to minimize the average response time of a 
given set of tasks, the objective of real-time computing is to meet the individual 
timing requirement of each task [Sta88]. 
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Figure 1.1 Both the mouse (a) and the turtle (b) behave in real time with 
respect to their natural habitat. Nevertheless, the survival of fast animals such 
as a mouse or a fly can be jeopardized by events (c and d) quicker than their 
reactive capabilities. 

However short the average response time can be, without a scientific method­
ology we will never be able to guarantee the individual timing requirements of 
each task in all possible circumstances. When several computational activities 
have different timing constraints, average performance has little significance for 
the correct behavior of the system. To better understand this issue, it is worth 
thinking about this little story^: 

There was a man who drowned crossing a stream with an average depth 
of six inches. 

Hence, rather than being fast, a real-time computing system should be pre­
dictable. And one safe way to achieve predictability is to investigate and em­
ploy new methodologies at every stage of the development of an application, 
from design to testing. 

•^From John Stankovic's notes. 
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Control 
System 

Sensory 

System 
Actuation 

System 

ENVIRONMENT 

\ y 

Figure 1.2 Block diagram of a generic real-time control system. 

At the process level, the main difference between a real-time and a non-real­
time task is that a real-time task is characterized by a deadline^ which is the 
maximum time within which it must complete its execution. In critical ap­
plications, a result produced after the deadline is not only late but wrong! 
Depending on the consequences that may occur because of a missed deadline, 
real-time tasks are usually distinguished in two classes, hard and soft: 

• A real-time task is said to be hard if missing its deadline may cause catas­
trophic consequences on the environment under control. 

• A real-time task is said to be soft if meeting its deadline is desirable for per­
formance reasons, but missing its deadline does not cause serious damage 
to the environment and does not jeopardize correct system behavior. 

A real-time operating system that is able to handle hard real-time tasks is called 
a hard real-time system. Typically, real-world applications include hard and soft 
activities, and therefore a hard real-time system should be designed to handle 
both hard and soft tasks using two different strategies. In general, when an 
application consists of a hybrid task set, the objective of the operating system 
should be to guarantee the individual timing constraints of the hard tasks while 
minimizing the average response time of the soft activities. 
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Examples of hard activities that may be present in a control application include 

Sensory data acquisition, 

Detection of critical conditions, 

Actuator servoing, 

Low-level control of critical system components, and 

Planning sensory-motor actions that tightly interact with the environment. 

Examples of soft activities include 

The command interpreter of the user interface, 

Handling input data from the keyboard, 

Displaying messages on the screen. 

Representation of system state variables, 

Graphical activities, and 

Saving report data. 

1.2.2 Limits of current real-time systems 

Most of the real-time computing systems used to support control applications 
are based on kernels [AL86, Rea86, HHPD87, SBG86], which are modified 
versions of timesharing operating systems. As a consequence, they have the 
same basic features found in timesharing systems, which are not suited to 
support real-time activities. The main characteristics of such real-time systems 
include 

Multitasking. A support for concurrent programming is provided through 
a set of system calls for process management (such as create, activate, ter­
minate, delay, suspend, and resume). Many of these primitives do not take 
time into account and, even worse, introduce unbounded delays on tasks' 
execution time that may cause hard tasks to miss their deadlines in an 
unpredictable way. 
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Priority-based scheduling. This scheduling mechanism is quite flexible, 
since it allows the implementation of several strategies for process man­
agement just by changing the rule for assigning priorities to tasks. Never­
theless, when application tasks have explicit time requirements, mapping 
timing constraints into a set of priorities may not be simple, especially 
in dynamic environments. The major problem comes from the fact that 
these kernels have a limited number of priority levels (typically 128 or 256), 
whereas task deadlines can vary in a much wider range. Moreover, in dy­
namic environments, the arrival of a new task may require the remapping 
of the entire set of priorities. 

Ability to quickly respond to external interrupts. This feature is 
usually obtained by setting interrupt priorities higher than process priori­
ties and by reducing the portions of code executed with interrupts disabled. 
Note that, although this approach increases the reactivity of the system to 
external events, it introduces unbounded delays on processes' execution. 
In fact, an application process will be always interrupted by a driver, even 
though it is more important than the device that is going to be served. 
Moreover, in the general case, the number of interrupts that a process can 
experience during its execution cannot be bounded in advance, since it 
depends on the particular environmental conditions. 

Basic mechanisms for process communication and synchroniza­
tion. Binary semaphores are typically used to synchronize tasks and 
achieve mutual exclusion on shared resources. However, if no access pro­
tocols are used to enter critical sections, classical semaphores can cause 
a number of undesirable phenomena, such as priority inversion, chained 
blocking, and deadlock, which again introduce unbounded delays on real­
time activities. 

Small kernel and fast context switch. This feature reduces system 
overhead, thus improving the average response time of the task set. How­
ever, a small average response time on the task set does not provide any 
guarantee on the individual deadlines of the tasks. On the other hand, a 
small kernel implies limited functionality, which affects the predictability 
of the system. 

Support of a real-time clock as an internal time reference. This 
is an essential feature for any real-time kernel that handles time-critical 
activities that interact with the environment. Nevertheless, in most com­
mercial kernels this is the only mechanism for time management. In many 
cases, there are no primitives for explicitly specifying timing constraints 
(such as deadlines) on tasks, and there is no mechanism for automatic 
activation of periodic tasks. 



A General View 11 

From the above features, it is easy to see that those types of real-time kernels 
are developed under the same basic assumptions made in timesharing systems, 
where tasks are considered as unknown activities activated at random instants. 
Except for the priority, no other parameters are provided to the system. As 
a consequence, computation times, timing constraints, shared resources, or 
possible precedence relations among tasks are not considered in the scheduling 
algorithm, and hence no guarantee can be performed. 

The only objectives that can be pursued with these systems is a quick reaction 
to external events and a "small" average response time for the other tasks. 
Although this may be acceptable for some soft applications, the lack of any 
form of guarantee precludes the use of these systems for those control applica­
tions that require stringent timing constraints that must be met to ensure safe 
behavior of the system. 

1.2.3 Desirable features of real-time systems 

Complex control applications that require hard timing constraints on tasks' 
execution need to be supported by highly predictable operating systems. Pre­
dictability can be achieved only by introducing radical changes in the basic 
design paradigms found in classical timesharing systems. 

For example, in any real-time control system, the code of each task is known 
a priori and hence can be analyzed to determine its characteristics in terms of 
computation time, resources, and precedence relations with other tasks. There­
fore, there is no need to consider a task as an unknown processing entity; rather, 
its parameters can be used by the operating system to verify its schedulability 
within the specified timing requirements. Moreover, all hard tasks should be 
handled by the scheduler to meet their individual deadlines, not to reduce their 
average response time. 

In addition, in any typical real-time application, the various control activities 
can be seen as members of a team acting together to accomplish one common 
goal, which can be the control of a nuclear power plant or an aircraft. This 
means that tasks are not all independent and it is not strictly necessary to 
support independent address spaces. 

In summary, there are some very important basic properties that real-time 
systems must have to support critical applications. They include 
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Timeliness. Results have to be correct not only in their value but also 
in the time domain. As a consequence, the operating system must provide 
specific kernel mechanisms for time management and for handling tasks 
with explicit time constraints and different criticalness. 

Design for peak load. Real-time systems must not collapse when they 
are subject to peak-load conditions, so they must be designed to manage 
all anticipated scenarios. 

Predictability. To guarantee a minimum level of performance, the system 
must be able to predict the consequences of any scheduling decision. If 
some task cannot be guaranteed within its time constraints, the system 
must notify this fact in advance, so that alternative actions can be planned 
in time to cope with the event. 

Fault tolerance. Single hardware and software failures should not cause 
the system to crash. Therefore, critical components of the real-time system 
have to be designed to be fault tolerant. 

Maintainability. The architecture of a real-time system should be de­
signed according to a modular structure to ensure that possible system 
modifications are easy to perform. 

1.3 ACHIEVING PREDICTABILITY 

One of the most important properties that a hard real-time system should 
have is predictability [SR90]. That is, based on the kernel features and on the 
information associated with each task, the system should be able to predict 
the evolution of the tasks and guarantee in advance that all critical timing 
constraints will be met. The reliability of the guarantee, however, depends on 
a range of factors, which involve the architectural features of the hardware and 
the mechanisms and policies adopted in the kernel, up to the programming 
language used to implement the application. 

The first component that affects the predictability of the scheduling is the pro­
cessor itself. The internal characteristics of the processor, such as instruction 
prefetch, pipelining, cache memory, and direct memory access (DMA) mecha­
nisms, are the first cause of nondeterminism. In fact, although these features 
improve the average performance of the processor, they introduce nondetermin-
istic factors that prevent a precise analysis of the worst-case execution times. 
Other important components that influence the execution of the task set are 
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the internal characteristics of the real-time kernel, such as the scheduling algo­
rithm, the synchronization mechanism, the types of semaphores, the memory 
management policy, the communication semantics, and the interrupt handling 
mechanism. 

In the rest of this chapter, the main sources of nondeterminism are considered 
in more detail, from the physical level up to the programming level. 

1.3.1 D M A 

Direct memory access (DMA) is a technique used by many peripheral devices 
to transfer data between the device and the main memory. The purpose of 
DMA is to relieve the central processing unit (CPU) of the task of controlling 
the input/output (I/O) transfer. Since both the CPU and the I/O device share 
the same bus, the CPU has to be blocked when the DMA device is performing 
a data transfer. Several different transfer methods exist. 

One of the most common methods is called cycle stealing, according to which 
the DMA device steals a CPU memory cycle in order to execute a data transfer. 
During the DMA operation, the I/O transfer and the CPU program execution 
run in parallel. However, if the CPU and the DMA device require a memory 
cycle at the same time, the bus is assigned to the DMA device and the CPU 
waits until the DMA cycle is completed. Using the cycle stealing method, there 
is no way of predicting how many times the CPU will have to wait for DMA 
during the execution of a task; hence the response time of a task cannot be 
precisely determined. 

A possible solution to this problem is to adopt a different technique, which re­
quires the DMA device to use the memory time-slice method [SR88]. According 
to this method, each memory cycle is split into two adjacent time slots: one 
reserved for the CPU and the other for the DMA device. This solution is more 
expensive than cycle stealing but more predictable. In fact, since the CPU and 
DMA device do not conflict, the response time of the tasks do not increase due 
to DMA operations and hence can be predicted with higher accuracy. 

1.3.2 Cache 

The cache is a fast memory that is inserted as a buffer between the CPU and the 
random access memory (RAM) to speed up processes' execution. It is physically 
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located after the memory management unit (MMU) and is not visible at the 
software programming level. Once the physical address of a memory location is 
determined, the hardware checks whether the requested information is stored 
in the cache: if it is, data are read from the cache; otherwise the information is 
taken from the RAM, and the content of the accessed location is copied in the 
cache along with a set of adjacent locations. In this way, if the next memory 
access is done to one of these locations, the requested data can be read from 
the cache, without having to access the memory. 

This buffering technique is motivated by the fact that statistically the most 
frequent accesses to the main memory are limited to a small address space, a 
phenomenon called program locality. For example, it has been observed that 
with a 1 Mb memory and a 8 Kbyte cache, the data requested from a program 
are found in the cache 80 percent of the time {hit ratio). 

The need for having a fast cache appeared when memory was much slower. 
Today, however, since memory has an access time almost comparable to that 
of the cache, the main motivation for having a cache is not only to speed up 
process execution but also to reduce conflicts with other devices. In any case, 
the cache is considered as a processor attribute that speeds up the activities of 
a computer. 

In real-time systems, the cache introduces some degree of nondeterminism. 
In fact, although statistically the requested data are found in the cache 80 
percent of the time, it is also true that in the other 20 percent of the cases the 
performance degrades. This happens because, when data is not found in the 
cache (cache fault or miss), the access time to memory is longer, due to the 
additional data transfer from RAM to cache. Furthermore, when performing 
write operations in memory, the use of the cache is even more expensive in terms 
of access time because any modification made on the cache must be copied to 
the memory in order to maintain data consistency. Statistical observations 
show that 90 percent of the memory accesses are for read operations, whereas 
only 10 percent are for writes. 

Statistical observations, however, can provide only an estimation of the average 
behavior of an application but cannot be used for deriving worst-case bounds. 
To perform worst-case analysis, in fact, we should assume a cache fault for each 
memory access. The consequence of this is that, to obtain a higher degree of 
predictability at the low level, it would be more efficient to have processors 
without cache or with the cache disabled. In other approaches, the influence of 
the cache on the task execution time is taken into account by a multiplicative 
factor, which depends on an estimated percentage of cache faults. A more 
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precise estimation of the cache behavior can be achieved by analyzing the code 
of the tasks and estimating the execution times by using a mathematical model 
of the cache. 

1.3.3 Interrupts 

Interrupts generated by I/O peripheral devices represent a big problem for the 
predictability of a real-time system because, if not properly handled, they can 
introduce unbounded delays during process execution. In almost any operating 
system, the arrival of an interrupt signal causes the execution of a service 
routine (driver)^ dedicated to the management of its associated device. The 
advantage of this method is to encapsulate all hardware details of the device 
inside the driver, which acts as a server for the application tasks. For example, 
in order to get data from an I/O device, each task must enable the hardware to 
generate interrupts, wait for the interrupt, and read the data from a memory 
buffer shared with the driver, according to the following protocol: 

<enable device interrupts> 
<wait for interrupt> 

<get the result> 

In many operating systems, interrupts are served using a fixed priority scheme, 
according to which each driver is scheduled based on a static priority, higher 
than process priorities. This assignment rule is motivated by the fact that 
interrupt handling routines usually deal with I/O devices that have real-time 
constraints, whereas most application programs do not. In the context of real­
time systems, however, this assumption is certainly not valid because a control 
process could be more urgent than an interrupt handling routine. Since, in 
general, it is very difficult to bound a priori the number of interrupts that 
a task may experience, the delay introduced by the interrupt mechanism on 
tasks' execution becomes unpredictable. 

In order to reduce the interference of the drivers on the application tasks and 
still perform I/O operations with the external world, the peripheral devices 
must be handled in a different way. In the following, three possible techniques 
are illustrated. 
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Approach A 

The most radical solution to eliminate interrupt interference is to disable all 
external interrupts, except the one from the timer (necessary for basic system 
operations). In this case, all peripheral devices must be handled by the appli­
cation tasks, which have direct access to the registers of the interfacing boards. 
Since no interrupt is generated, data transfer takes place through polling. 

The direct access to I/O devices allows great programming flexibility and elim­
inates the delays caused by the drivers' execution. As a result, the time needed 
for transferring data can be precisely evaluated and charged to the task that 
performs the operation. Another advantage of this approach is that the kernel 
does not need to be modified as the I/O devices are replaced or added. 

The main disadvantage of this solution is a low processor efficiency on I/O op­
erations, due to the busy wait of the tasks while accessing the device registers. 
Another minor problem is that the application tasks must have the knowledge 
of all low-level details of the devices that they want to handle. However, this 
can be easily solved by encapsulating all device-dependent routines in a set of 
library functions that can be called by the application tasks. This approach is 
adopted in RK, a research hard real-time kernel designed to support multisen-
sory robotics applications [LKP88]. 

Approach B 

As in the previous approach, all interrupts from external devices are disabled, 
except the one from the timer. Unlike the previous solution, however, the 
devices are not directly handled by the application tasks but are managed in 
turn by dedicated kernel routines, periodically activated by the timer. 

This approach eliminates the unbounded delays due to the execution of inter­
rupt drivers and confines all I/O operations to one or more periodic kernel 
tasks, whose computational load can be computed once and for all and taken 
into account through a specific utilization factor. In some real-time systems, 
I/O devices are subdivided into two classes based on their speed: slow devices 
are multiplexed and served by a single cyclical I/O process running at a low 
rate, whereas fast devices are served by dedicated periodic system tasks, run­
ning at higher frequencies. The advantage of this approach with respect to the 
previous one is that all hardware details of the peripheral devices can be encap­
sulated into kernel procedures and do not need to be known to the application 
tasks. 
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Because the interrupts are disabled, the major problem of this approach is 
due to the busy wait of the kernel I/O handling routines, which makes the 
system less efficient during the I/O operations. With respect to the previous 
approach, this case is characterized by a little higher system overhead, due to 
the communication required among the application tasks and the I/O kernel 
routines for exchanging I/O data. Finally, since the device handling routines are 
part of the kernel, it has to be modified when some device is replaced or added. 
This type of solution is adopted in the MARS system [DRSK89, KDK+89]. 

Approach C 

A third approach that can be adopted in real-time systems to deal with the I/O 
devices is to leave all external interrupts enabled, while reducing the drivers 
to the least possible size. According to this method, the only purpose of each 
driver is to activate a proper task that will take care of the device management. 
Once activated, the device manager task executes under the direct control of 
the operating system, and it is guaranteed and scheduled just like any other 
application task. In this way, the priority that can be assigned to the device 
handling task is completely independent from other priorities and can be set 
according to the application requirements. Thus a control task can have a 
higher priority than a device handling task. 

The idea behind this approach is schematically illustrated in Figure 1.3. The 
occurrence of event E generates an interrupt, which causes the execution of 
a driver associated with that interrupt. Unlike the traditional approach, this 
driver does not handle the device directly but only activates a dedicated task, 
JE, which will be the actual device manager. 

event E E 
-J:^ 

Driver associated 
with event E 

Activation 
of task 

\ ^ 

Task J £ 

Handling 

of event 

E 

Figure 1.3 Activation of a device-handling task. 
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The major advantage of this approach with respect to the previous ones is to 
eUminate the busy wait during I/O operations. Moreover, compared to the 
traditional technique, the unbounded delays introduced by the drivers dur­
ing tasks' execution are also drastically reduced (although not completely re­
moved), so the task execution times become more predictable. As a matter 
of fact, a little unbounded overhead due to the execution of the small drivers 
still remains in the system, and it should be taken into account in the guar­
antee mechanism. However, it can be neglected in most practical cases. This 
type of solution is adopted in the ARTS system [TK88, TM89], in HARTIK 
[BD93, But93], and in SPRING [SR91]. 

1.3,4 System calls 

System predictability also depends on how the kernel primitives are imple­
mented. In order to precisely evaluate the worst-case execution time of each 
task, all kernel calls should be characterized by a bounded execution time, used 
by the guarantee mechanism while performing the schedulability analysis of the 
application. In addition, in order to simplify this analysis, it would be desir­
able that each kernel primitive be preemptable. In fact, any nonpreemptable 
section could possibly delay the activation or the execution of critical activities, 
causing a timing fault to hard deadlines. 

1.3,5 Semaphores 

The typical semaphore mechanism used in traditional operating systems is not 
suited for implementing real-time applications because it is subject to the prior­
ity inversion phenomenon, which occurs when a high-priority task is blocked by 
a low-priority task for an unbounded interval of time. Priority inversion must 
absolutely be avoided in real-time systems, since it introduces nondeterministic 
delays on the execution of critical tasks. 

For the mutual exclusion problem, priority inversion can be avoided by adopt­
ing particular protocols that must be used every time a task wants to enter a 
critical section. For instance, efficient solutions are provided by Basic Prior­
ity Inheritance [SRL90], Priority Ceiling [SRL90], and Stack Resource Policy 
[Bak91]. These protocols will be described and analyzed in Chapter 7. The 
basic idea behind these protocols is to modify the priority of the tasks based 
on the current resource usage and control the resource assignment through a 
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test executed at the entrance of each critical section. The aim of the test is to 
bound the maximum blocking time of the tasks that share critical sections. 

The implementation of such protocols may requires a substantial modification 
of the kernel, which concerns not only the wait and signal calls but also some 
data structures and mechanisms for task management. 

1.3.6 Memory management 

Similarly to other kernel mechanisms, memory management techniques must 
not introduce nondeterministic delays during the execution of real-time activi­
ties. For example, demand paging schemes are not suitable to real-time appli­
cations subject to rigid time constraints because of the large and unpredictable 
delays caused by page faults and page replacements. Typical solutions adopted 
in most real-time systems adhere to a memory segmentation rule with a fixed 
memory management scheme. Static partitioning is particularly efficient when 
application programs require similar amounts of memory. 

In general, static allocation schemes for resources and memory management in­
crease the predictability of the system but reduce its flexibility in dynamic en­
vironments. Therefore, depending on the particular application requirements, 
the system designer has to make the most suitable choices for balancing pre­
dictability against flexibility. 

1.3.7 Programming language 

Besides the hardware characteristics of the physical machine and the internal 
mechanisms implemented in the kernel, there are other factors that can deter­
mine the predictability of a real-time system. One of these factors is certainly 
the programming language used to develop the application. As the complexity 
of real-time systems increases, high demand will be placed on the programming 
abstractions provided by languages. 

Unfortunately, current programming languages are not expressive enough to 
prescribe certain timing behavior and hence are not suited for realizing pre­
dictable real-time applications. For example, the Ada language (demanded by 
the Department of Defense of the United States for implementing embedded 
real-time concurrent applications) does not allow the definition of explicit time 
constraints on tasks' execution. The delay statement puts only a lower bound 
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on the time the task is suspended, and there is no language support to guar­
antee that a task cannot be delayed longer than a desired upper bound. The 
existence of nondeterministic constructs, such as the select statement, prevents 
the performing of a reliable worst-case analysis of the concurrent activities. 
Moreover, the lack of protocols for accessing shared resources allows a high-
priority task to wait for a low-priority task for an unbounded duration. As a 
consequence, if a real-time application is implemented using the Ada language, 
the resulting timing behavior of the system is likely to be unpredictable. 

Recently, new high-level languages have been proposed to support the develop­
ment of hard real-time applications. For example, Real-Time Euclid [KS86] is a 
programming language specifically designed to address reliability and guaran­
teed schedulability issues in real-time systems. To achieve this goal, Real-Time 
Euclid forces the programmer to specify time bounds and timeout exceptions in 
all loops, waits, and device accessing statements. Moreover, it imposes several 
programming restrictions, such as the ones listed below: 

• Absence of dynamic data structures. Third-generation languages 
normally permit the use of dynamic arrays, pointers, and arbitrarily long 
strings. In real-time languages, however, these features must be eliminated 
because they would prevent a correct evaluation of the time required to 
allocate and deallocate dynamic structures. 

• Absence of recursion. If recursive calls were permitted, the schedu­
lability analyzer could not determine the execution time of subprograms 
involving recursion or how much storage will be required during execution. 

• Time-bounded loops. In order to estimate the duration of the cycles at 
compile time, Real-Time Euclid forces the programmer to specify for each 
loop construct the maximum number of iterations. 

Real-Time Euclid also allows the classification of processes as periodic or ape­
riodic and provides statements for specifying task timing constraints, such as 
activation time and period, as well as system timing parameters, such as the 
time resolution. 

Another high-level language for programming hard real-time applications is 
Real-Time Concurrent C [GR91]. It extends Concurrent C by providing fa­
cilities to specify periodicity and deadline constraints, to seek guarantees that 
timing constraints will be met, and to perform alternative actions when either 
the timing constraints cannot be met or guarantees are not available. With re­
spect to Real-Time Euclid, which has been designed to support static real-time 
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systems, where guarantees are made at compile time, Real-Time Concurrent 
C is oriented to dynamic systems, where tasks can be activated at run time. 
Another important feature of Real-Time Concurrent C is that it permits the 
association of a deadline with any statement, using the following construct: 

within deadline (d) statement-1 

[else statement-2] 

If the execution of statement-1 starts at time t and is not completed at time 
(t-\-d), then its execution is terminated and statement-2^ if specified, is executed. 

Clearly, any real-time construct introduced in a language must be supported 
by the operating system through dedicated kernel services, which must be de­
signed to be efficient and analyzable. Among all kernel mechanisms that in­
fluence predictability, the scheduling algorithm is certainly the most important 
factor, since it is responsible for satisfying timing and resource contention re­
quirements. 

In the rest of this book, several scheduling algorithms are illustrated and an­
alyzed under different constraints and assumptions. Each algorithm is car-
acterized in terms of performace and complexity to assist a designer in the 
development of reliable real-time applications. 

Exercises 

1.1 Explain the difference between fast computing and real-time computing. 

1.2 What are the main limitations of the current real-time kernels for the 
development of critical control applications? 

1.3 Discuss the features that a real-time system should have for exhibiting 
a predictable timing behavior. 

1.4 Describe the approches that can be used in a real-time system to handle 
peripheral I/O devices in a predictable fashion. 

1.5 Which programming restrictions should be used in a programming lan­
guage to permit the analysis of real-time applications? Suggest some 
extensions that could be included in a language for real-time systems. 



2 
BASIC CONCEPTS 

2.1 INTRODUCTION 

Over the last few years, several algorithms and methodologies have been pro­
posed in the literature to improve the predictability of real-time systems. In 
order to present these results we need to define some basic concepts that will 
be used throughout the book. We begin with the most important software en­
tity treated by any operating system, the process, A process is a computation 
that is executed by the CPU in a sequential fashion. In this text, the terms 
process and task are used as synonyms. However, it is worth saying that some 
authors prefer to distinguish them and define a task as a sequential execution 
of code that does not suspend itself during execution, whereas a process is a 
more complex computational activity, that can be composed by many tasks. 

When a single processor has to execute a set of concurrent tasks - that is, 
tasks that can overlap in time - the CPU has to be assigned to the various 
tasks according to a predefined criterion, called a scheduling policy. The set 
of rules that, at any time, determines the order in which tasks are executed is 
called a scheduling algorithm. The specific operation of allocating the CPU to 
a task selected by the scheduling algorithm is referred as dispatching. 

Thus, a task that could potentially execute on the CPU can be either in execu­
tion if it has been selected by the scheduling algorithm or waiting for the CPU 
if another task is executing. A task that can potentially execute on the pro­
cessor, independently on its actual availability, is called an active task. A task 
waiting for the processor is called a ready task, whereas the task in execution 
is called a running task. All ready tasks waiting for the processor are kept in 
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Figure 2.1 Queue of ready tcisks waiting for execution. 

a queue, called ready queue. Operating systems that handles different types of 
tasks, may have more than one ready queue. 

In many operating systems that allow dynamic task activation, the running task 
can be interrupted at any point, so that a more important task that arrives in 
the system can immediately gain the processor and does not need to wait in 
the ready queue. In this case, the running task is interrupted and inserted in 
the ready queue, while the CPU is assigned to the most important ready task 
which just arrived. The operation of suspending the running task and inserting 
it into the ready queue is called preemption. Figure 2.1 schematically illustrates 
the concepts presented above. In dynamic real-time systems, preemption is 
important for three reasons [SZ92]: 

• Tasks performing exception handling may need to preempt existing tasks 
so that responses to exceptions may be issued in a timely fashion. 

• When application tasks have different levels of criticalness expressing task 
importance, preemption permits to anticipate the execution of the most 
critical activities. 

• More efficient schedules can be produced to improve system responsiveness. 

Given a set of tasks, J = { J i , . . . , Jn}, a schedule is an assignment of tasks to 
the processor, so that each task is executed until completion. More formally, a 
schedule can be defined as a function a : R"^ —)• N such that Vi G R~ ,̂ 3^1,^2 
such that t e [ti,t2) and V '̂ G [̂ 1,̂ 2) cr(0 = ^(^0- ^^ other words, cr(^) is an 
integer step function and a{t) = k, with A: > 0, means that task Jk is executing 
at time t, while cr(t) = 0 means that the CPU is idle. Figure 2.2 shows an 
example of schedule obtained by executing three tasks: J i , J2, Js-

• At times ^i, 2̂ 5 3̂ 5 ^md ^4, the processor performs a context switch. 
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Figure 2.2 Schedule obtained by executing three tcisks J i , J2, ^ind J3. 

Each interval [tj, ti^_i) in which a{t) is constant is called time slice. Interval 
[x,y) identifies all values of t such that x < t < y. 

A preemptive schedule is a schedule in which the running task can be 
arbitrarily suspended at any time, to assign the CPU to another task 
according to a predefined scheduling policy. In preemptive schedules, tasks 
may be executed in disjointed interval of times. 

A schedule is said to be feasible if all tasks can be completed according to 
a set of specified constraints. 

A set of tasks is said to be schedulable if there exists at least one algorithm 
that can produce a feasible schedule. 

An example of preemptive schedule is shown in Figure 2.3. 

2.2 TYPES OF TASK CONSTRAINTS 

Typical constraints that can be specified on real-time tasks are of three classes: 
timing constraints, precedence relations, and mutual exclusion constraints on 
shared resources. 
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Figure 2.3 Example of a preemptive schedule. 

2.2.1 Timing constraints 

Real-time systems are characterized by computational activities with stringent 
timing constraints that must be met in order to achieve the desired behavior. 
A typical timing constraint on a task is the deadline, which represents the 
time before which a process should complete its execution without causing any 
damage to the system. Depending on the consequences of a missed deadline, 
real-time tasks are usually distinguished in two classes: 

Hard. A task is said to be hard if a completion after its deadline can 
cause catastrophic consequences on the system. In this case, any instance 
of the task should a priori be guaranteed in the worst-case scenario. 

Soft. A task is said to be soft if missing its deadline decreases the perfor­
mance of the system but does not jeopardize its correct behavior. 

In general, a real-time task Ji can be characterized by the following parameters: 

Arrival t ime af. is the time at which a task becomes ready for execution; 
it is also referred as request time or release time and indicated by r^; 
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Figure 2.4 Typical parameters of a real-time task. 

Computation time C :̂ is the time necessary to the processor for exe­
cuting the task without interruption; 

Deadline di: is the time before which a task should be complete to avoid 
damage to the system; 

Start t ime sf. is the time at which a task starts its execution; 

Finishing time ff. is the time at which a task finishes its execution; 

Criticalness: is a parameter related to the consequences of missing the 
deadline (typically, it can be hard or soft); 

Value Vi'. represents the relative importance of the task with respect to 
the other tasks in the system; 

Lateness L^: Li = fi — di represents the delay of a task completion with 
respect to its deadline; note that if a task completes before the deadline, 
its lateness is negative; 

Tardiness or Exceeding time Ei: Ei = max{0, Li) is the time a task stays 
active after its deadline; 

Laxity or Slack time Xi'. Xi — di — ai — Ci is the maximum time a task 
can be delayed on its activation to complete within its deadline. 

Some of the parameters defined above are illustrated in Figure 2.4. 

Another timing characteristic that can be specified on a real-time task concerns 
the regularity of its activation. In particular, tasks can be defined as periodic or 
aperiodic. Periodic tasks consist of an infinite sequence of identical activities, 
called instances or jobs, that are regularly activated at a constant rate. For the 
sake of clarity, from now on, a periodic task will be denoted by r^, whereas an 
aperiodic job by Jj. 
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Figure 2.5 Sequence of instances for a periodic and an aperiodic task. 

The activation time of the first periodic instance is called phase. If <pi is the 
phase of the periodic task r^, the activation time of the A:th instance is given 
by (pi + (k — l)Ti, where Ti is called period of the task. In many practical 
cases, a periodic process can be completely characterized by its computation 
time Ci and its relative deadline Di, which is often considered coincident to 
the end of the period. Moreover, the parameters C ,̂ Ti e Di are considered 
to be constant for each instance. Aperiodic tasks also consist of an infinite 
sequence of identical activities (instances); however, their activations are not 
regular. Figure 2.5 shows an example of task instances for a periodic and for 
an aperiodic task. 

2.2.2 Precedence constraints 

In certain applications, computational activities cannot be executed in arbitrary 
order but have to respect some precedence relations defined at the design stage. 
Such precedence relations are usually described through a directed acyclic graph 
G, where tasks are represented by nodes and precedence relations by arrows. 
A precedence graph G induces a partial order on the task set. 

The notation Ja -< Jb specifies that task Ja is a predecessor of task J5, 
meaning that G contains a directed path from node Ja to node J^. 

The notation Ja -^ Jb specifies that task Ja is an immediate predecessor 
of Jb, meaning that G contains an arc directed from node Ja to node Jb. 
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J 1 ^ J 2 

J i ^ J 4 

J 1 -7^ J 4 

Figure 2.6 Precedence relations among five tasks. 

Figure 2.6 illustrates a directed acyclic graph that describes the precedence 
constraints among five tasks. From the graph structure we observe that task 
Ji is the only one that can start executing since it does not have predecessors. 
Tasks with no predecessors are called beginning tasks. As Ji is completed, 
either J2 or J3 can start. Task J4 can start only when J2 is completed, whereas 
J5 must wait the completion of J2 and J3. Tasks with no successors, as J4 and 
J5, are called ending tasks. 

In order to understand how precedence graphs can be derived from tasks' rela­
tions, let us consider the application illustrated in Figure 2.7. Here, a number 
of objects moving on a conveyor belt must be recognized and classified using 
a stereo vision system, consisting of two cameras mounted in a suitable loca­
tion. Suppose that the recognition process is carried out by integrating the 
two-dimensional features of the top view of the objects with the height infor­
mation extracted by the pixel disparity on the two images. As a consequence, 
the computational activities of the application can be organized by defining the 
following tasks: 

Two tasks (one for each camera) dedicated to image acquisition, whose 
objective is to transfer the image from the camera to the processor memory 
(they are identified by acql and acq2); 

Two tasks (one for each camera) dedicated to low-level image processing 
(typical operations performed at this level include digital filtering for noise 
reduction and edge detection; we identify these tasks as edgel and edge2); 

A task for extracting two-dimensional features from the object contours 
(it is referred as shape); 



30 C H A P T E R 2 

,o 
Figure 2.7 Industrial application which requires a visual recognition of ob­
jects on a conveyor belt. 

• A task for computing the pixel disparities from the two images (it is re­
ferred as disp); 

• A task for determining the object height from the results achieved by the 
disp task (it is referred as H); 

• A task performing the final recognition (this task integrates the geometrical 
features of the object contour with the height information and tries to 
match these data with those stored in the data base; it is referred as rec). 

From the logic relations existing among the computations, it is easy to see that 
tasks acql and acq2 can be executed in parallel before any other activity. Tasks 
edgel and edge2 can also be executed in parallel, but each task cannot start 
before the associated acquisition task completes. Task shape is based on the 
object contour extracted by the low-level image processing, therefore it must 
wait the termination of both edgel and edge2. The same is true for task disp, 
which however can be executed in parallel with task shape. Then, task H can 
only start as disp completes and, finally, task rec must wait the completion of 
//"and shape. The resulting precedence graph is shown in Figure 2.8. 
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F i g u r e 2.8 Precedence graph associated with the robotic appHcation. 

2.2,3 Resource constraints 

From a process point of view, a resource is any software structure that can 
be used by the process to advance its execution. Typically, a resource can 
be a data structure, a set of variables, a main memory area, a file, a piece of 
program, or a set of registers of a peripheral device. A resource dedicated to a 
particular process is said to be private, whereas a resource that can be used by 
more tasks is called a shared resource. 

To maintain data consistency, many shared resources do not allow simultaneous 
accesses but require mutual exclusion among competing tasks. They are called 
exclusive resources. Let R be an exclusive resource shared by tasks Ja and J ,̂. 
If A is the operation performed on Ĵ  by Ja, and B is the operation performed 
on -R by Jh, then A and B must never be executed at the same time. A piece 
of code executed under mutual exclusion constraints is called a critical section. 

To ensure sequential accesses to exclusive resources, operating systems usually 
provide a synchronization mechanism (such as semaphores) that can be used by 
tasks to create critical sections of code. Hence, when we say that two or more 
tasks have resource constraints, we mean that they have to be synchronized 
since they share exclusive resources. 
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Figure 2.9 Structure of two tasks that share an exclusive resource. 

Consider two tasks Ji and J2 that share an exclusive resource R (for instance, a 
hst), on which two operations (such as insert and remove) are defined. The code 
implementing such operations is thus a critical section that must be executed 
in mutual exclusion. If a binary semaphore s is used for this purpose, then 
each critical section must begin with a wait(s) primitive and must end with a 
signal(s) primitive (see Figure 2.9). 

If preemption is allowed and Ji has a higher priority than J2, then Ji can block 
in the situation depicted in Figure 2.10. Here, task J2 is activated first, and, 
after a while, it enters the critical section and locks the semaphore. While J2 is 
executing the critical section, task Ji arrives, and, since it has a higher priority, 
it preempts J2 and starts executing. However, at time ^1, when attempting to 
enter its critical section, it is blocked on the semaphore and J2 is resumed. Ji 
is blocked until time ^2, when J2 releases the critical section by executing the 
signal(s) primitive, which unlocks the semaphore. 

A task waiting for an exclusive resource is said to be blocked on that resource. 
All tasks blocked on the same resource are kept in a queue associated with the 
semaphore, which protects the resource. When a running task executes a wait 
primitive on a locked semaphore, it enters a waiting state, until another task 
executes a signal primitive that unlocks the semaphore. When a task leaves 
the waiting state, it does not go in the running state, but in the ready state, 
so that the CPU can be assigned to the highest-priority task by the scheduling 
algorithm. The state transition diagram relative to the situation described 
above is shown in Figure 2.11. 
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F i g u r e 2.11 Waiting state caused by resource constraints. 
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2.3 DEFINITION OF SCHEDULING 
PROBLEMS 

In general, to define a scheduling problem we need to specify three sets: a set 
of n tasks J — {Ji, J2, • • •, «/n}, a set of m processors P = {Pi, P27 • • •, Pm} 
and a set of s types of resources R — {Ri,R2,... .Rs}- Moreover, precedence 
relations among tasks can be specified through a directed acyclic graph, and 
timing constraints can be associated with each task. In this context, scheduling 
means to assign processors from P and resources from R to tasks from J in 
order to complete all tasks under the imposed constraints [B"^93]. This prob­
lem, in its general form, has been shown to be NP-complete [GJ79] and hence 
computationally intractable. 

Indeed, the complexity of scheduling algorithms is of high relevance in dynamic 
real-time systems, where scheduling decisions must be taken on-line during task 
execution. A polynomial algorithm is one whose time complexity grows as a 
polynomial function p of the input length n of an instance. The complexity 
of such algorithms is denoted by 0{p{n)). Each algorithm whose complexity 
function cannot be bounded in that way is called an exponential time algorithm. 
In particular, N P is the class of all decision problems that can be solved in 
polynomial time by a nondeterministic Turing machine. A problem Q is said 
to be NF-complete if Q G N P and, for every Q' G N P , Q' is polynomially 
transformable to Q [GJ79]. A decision problem Q is said to be NF-hard if all 
problems in N P are polynomially transformable to Q, but we cannot show that 
Q e N P . 

Let us consider two algorithms with complexity functions n and 5"̂ , respectively, 
and let us assume that an elementary step for these algorithms lasts 1 /js. If 
the input length of the instance is n = 30, then it is easy to calculate that the 
polynomial algorithm can solve the problem in 30 jis, whereas the other needs 
about 3 • 10^ centuries. This example illustrates that the difference between 
polynomial and exponential time algorithms is large and, hence, it may have 
a strong influence on the performance of dynamic real-time systems. As a 
consequence, one of the research objectives on real-time scheduling is to restrict 
our attention to simpler, but still practical, problems that can be solved in 
polynomial time complexity. 

In order to reduce the complexity of constructing a feasible schedule, one may 
simplify the computer architecture (for example, by restricting to the case of 
uniprocessor systems), or one may adopt a preemptive model, use fixed priori­
ties, remove precedence and/or resource constraints, assume simultaneous task 
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activation, homogeneous task sets (solely periodic or solely aperiodic activities), 
and so on. The assumptions made on the system or on the tasks are typically 
used to classify the various scheduling algorithms proposed in the literature. 

2.3.1 Classification of scheduling algorithms 

Among the great variety of algorithms proposed for scheduling real-time tasks, 
we can identify the following main classes. 

• Preemptive. With preemptive algorithms, the running task can be inter­
rupted at any time to assign the processor to another active task, according 
to a predefined scheduling policy. 

• Non-preemptive. With non-preemptive algorithms, a task, once started, 
is executed by the processor until completion. In this case, all scheduling 
decisions are taken as a task terminates its execution. 

• Static. Static algorithms are those in which scheduling decisions are based 
on fixed parameters, assigned to tasks before their activation. 

• Dynamic. Dynamic algorithms are those in which scheduling decisions are 
based on dynamic parameters that may change during system evolution. 

• Off-line. We say that a scheduling algorithm is used off-line if it is ex­
ecuted on the entire task set before actual task activation. The schedule 
generated in this way is stored in a table and later executed by a dispatcher. 

• On-line. We say that a scheduling algorithm is used on-line if scheduling 
decisions are taken at runtime every time a new task enters the system or 
when a running task terminates. 

• Optimal. An algorithm is said to be optimal if it minimizes some given 
cost function defined over the task set. When no cost function is defined 
and the only concern is to achieve a feasible schedule, then an algorithm 
is said to be optimal if it may fail to meet a deadline only if no other 
algorithms of the same class can meet it. 

• Heuristic. An algorithm is said to be heuristic if it tends toward but does 
not guarantee to find the optimal schedule. 

Moreover, an algorithm is said to be clairvoyant if it knows the future; that 
is, if it knows in advance the arrival times of all the tasks. Although such an 
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algorithm does not exist in reality, it can be used for comparing the performance 
of real algorithms against the best possible one. 

Guarantee-based algorithms 

In hard real-time applications that require highly predictable behavior, the 
feasibility of the schedule should be guaranteed in advance; that is, before task 
execution. In this way, if a critical task cannot be scheduled within its deadline, 
the system is still in time to execute an alternative action, attempting to avoid 
catastrophic consequences. In order to check the feasibility of the schedule 
before tasks' execution, the system has to plan its actions by looking ahead in 
the future and by assuming a worst-case scenario. 

In static real-time systems, where the task set is fixed and known a priori, 
all task activations can be precalculated off-line, and the entire schedule can 
be stored in a table that contains all guaranteed tasks arranged in the proper 
order. Then, at runtime, a simple dispatcher simply removes the next task from 
the table and puts it in the running state. The main advantage of the static 
approach is that the run-time overhead does not depend on the complexity 
of the scheduling algorithm. This allows very sophisticated algorithms to be 
used to solve complex problems or find optimal scheduling sequences. On the 
other hand, however, the resulting system is quite inflexible to environmental 
changes; thus, predictability strongly relies on the observance of the hypotheses 
made on the environment. 

In dynamic real-time systems, since new tasks can be activated at runtime, 
the guarantee must be done on-line every time a new task enters the system. 
A scheme of the guarantee mechanism typically adopted in dynamic real-time 
systems is illustrated in Figure 2.12. 

scheduling 

activation 

NO * 

acceptance 
test 

YES ^ ^ ^ 

^ READY ) 

signal \ 
free resource \ . . ^ 

preemption 

^ ( WAITING y ^ 

^^^ " ^ termination 
L R U N ) * 

/ wait on 
^,,^ busy resource 

Figure 2.12 Scheme of the guarantee mechanism used in dynamic hard real­
time systems. 
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F i g u r e 2 .13 Example of domino effect. 

If J is the current task set that has been previously guaranteed, a newly arrived 
task Jnew is accepted into the system if and only if the task set J' = Ju{Jnew} 
is found schedulable. If J' is not schedulable, then task Jnew is rejected to 
preserve the feasibility of the current task set. 

It is worth to notice that, since the guarantee mechanism is based on worst-case 
assumptions, a task could unnecessarily be rejected. This means that the guar­
antee of hard tasks is achieved at the cost of reducing the average performance 
of the system. On the other hand, the benefit of having a guarantee mechanism 
is that potential overload situations can be detected in advance to avoid neg­
ative effects on the system. One of the most dangerous phenomena caused by 
a transient overload is called domino effect. It refers to the situation in which 
the arrival of a new task causes all previously guaranteed tasks to miss their 
deadlines. Let us consider for example the situation depicted in Figure 2.13, 
where tasks are scheduled based on their absolute deadlines. 

At time ô̂  if task Jnew was accepted, all other tasks (previously schedulable) 
would miss their deadlines. In planned-based algorithms, this situation is de­
tected at time ^o, when the guarantee is performed and causes task Jnew to be 
rejected. 

In summary, the guarantee test ensures that, once a task is accepted, it will 
complete within its deadline and, moreover, its execution will not jeopardize 
the feasibility of the tasks that have been previously guaranteed. 
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Best-effort algorithms 

In certain real-time applications, computational activities have soft timing con­
straints that should be met whenever possible to satisfy system requirements, 
however, no catastrophic events will occur if one or more tasks miss their dead­
lines. The only consequence associated with a timing fault is a performance 
degradation of the system. 

For example, in typical multimedia applications, the objective of the comput­
ing system is to handle different types of information (such as text, graphics, 
images, and sound) in order to achieve a certain quality of service for the users. 
In this case, the timing constraints associated with the computational activi­
ties depend on the quality of service requested by the users; hence, missing a 
deadline may only affect the performance of the system. 

To efficiently support soft real-time applications that do not have hard timing 
requirements, a best-effort approach may be adopted for scheduling. A best-
effort scheduling algorithm tries to "do its best" to meet deadlines, but there 
is no guarantee of finding a feasible schedule. In a best-effort approach, tasks 
may be queued according to policies that take time constraints into account; 
however, since feasibility is not checked, a task may be aborted during its 
execution. On the other hand, best-effort algorithms perform much better than 
guarantee-based schemes in the average case. In fact, whereas the pessimistic 
assumptions made in the guarantee mechanism may unnecessarily cause task 
rejections, in best-effort algorithms a task is aborted only under real overload 
conditions. 

Algorithms based on imprecise computation 

The concept of imprecise and approximate computation has emerged as a new 
approach to increasing fiexibility in dynamic scheduling by trading off com­
putation accuracy with timing requirements [Nat95, LNL87, LLN87, LLS"^91, 
L"^94]. In dynamic situations, where the time and resources are not enough for 
computations to complete within the deadline, there may still be enough re­
sources to produce approximate results that may at least prevent a catastrophe. 
The idea of using partial results when exact results cannot be produced within 
the deadline has been used for many years. Recently, however, this concept 
has been formalized, and specific techniques have been developed for designing 
programs that can produce partial results. 
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In a real-time system that supports imprecise computation, every task Ji is 
decomposed into a mandatory subtask Mi and an optional subtask Oi. The 
mandatory subtask is the portion of the computation that must be done in 
order to produce a result of acceptable quality, whereas the optional subtask 
refines this result [SLCG89]. Both subtasks have the same arrival time ai and 
the same deadline di as the original task J^; however, Oi becomes ready for 
execution when Mi is completed. If Ci is the computation time associated 
with Ji, subtasks Mi and Oi have computation times rui and Oj, such that 
rrii -\- Oi — Ci. In order to guarantee a minimum level of performance, Mi 
must be completed within its deadline, whereas Oi can be left incomplete, if 
necessary, at the expense of the quality of the result produced by the task. 

It is worth to notice that the task model used in traditional real-time systems 
is a special case of the one adopted for imprecise computation. In fact, a hard 
task corresponds to a task with no optional part {oi = 0), whereas a soft task 
is equivalent to a task with no mandatory part (m^ = 0). 

In systems that support imprecise computation, the error Ci in the result pro­
duced by Ji (or simply the error of Ji) is defined as the length of the portion 
of Oi discarded in the schedule. If CTJ is the total processor time assigned to Oi 
by the scheduler, the error of task Ji is equal to 

€i = Oi — ai. 

The average error I on the task set J is defined as 

e = y^WiCj, 

where Wi is the relative importance of Ji in the task set. An error ê  > 0 means 
that a portion of subtask Oi has been discarded in the schedule at the expense 
of the quality of the result produced by task Ji but for the benefit of other 
mandatory subtasks that can complete within their deadlines. 

In this model, a schedule is said to be feasible if every mandatory subtask Mi is 
completed in the interval [ai^di]. A schedule is said to be precise if the average 
error e on the task set is zero. In a precise schedule, all mandatory and optional 
subtasks are completed in the interval [ai.di]. 

As an illustrative example, let us consider the task set shown in Figure 2.14a. 
Notice that this task set cannot be precisely scheduled; however, a feasible 
schedule with an average error of e =: 4 can be found, and it is shown in 
Figure 2.14b. In fact, all mandatory subtasks finish within their deadlines. 
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Figure 2.14 An example of an imprecise schedule. 

whereas not all optional subtasks are able to complete. In particular, a time 
unit of execution is subtracted from Oi, two units from O3, and one unit from 
O5. Hence, assuming that all tasks have an importance value equal to one 
(wi ==1), the average error on the task set is 6 = 4. 

2.3.2 Metrics for performance evaluation 

The performance of scheduling algorithms is typically evaluated through a cost 
function defined over the task set. For example, classical scheduling algorithms 
try to minimize the average response time, the total completion time, the 
weighted sum of completion times, or the maximum lateness. When deadlines 
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Average response time: 

_ I -^ 
tr = - / ^ ( / i - Cli) 

i—\ 

Total completion time: 

tc - max(/i) - min(ai) 
i i 

Weighted sum of completion times: 

n 

tw = y^^mfi 

Maximum lateness: 

Lmax = max(/i - di) 

Maximum number of late tasks: 

Niate = ^missjfi) 
1 = 1 

miss(fi) = < ^ A ' •̂̂ ^ \ I otherwise 

where 
nrf} Qcl T • \ — / 

otherwise 

Table 2.1 Example of cost functions. 

are considered, they are usually added as constraints, imposing that all tasks 
must meet their deadlines. If some deadlines cannot be met with an algorithm 
A, the schedule is said to be infeasible by A. Table 2.1 shows some common 
cost functions used for evaluating the performance of a scheduling algorithm. 

The metrics adopted in the scheduling algorithm has strong implications on 
the performance of the real-time system [SSDB95], and it must be carefully 
chosen according to the specific application to be developed. For example, 
the average response time is generally not of interest for real-time applications 
because there is not direct assessment of individual timing properties such as 
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Figure 2.15 The schedule in a minimizes the maximum lateness, but all tasks 
miss their deadline. The schedule in b has a greater maximum lateness, but 
four tasks out of five complete before their deadline. 

periods or deadlines. The same is true for minimizing the total completion time. 
The weighted sum of completion times is relevant when tasks have different 
importance values that they impart to the system on completion. Minimizing 
the maximum lateness can be useful at design time when resources can be added 
until the maximum lateness achieved on the task set is less than or equal to 
zero. In that case, no task misses its deadline. In general, however, minimizing 
the maximum lateness does not minimize the number of tasks that miss their 
deadlines and does not necessarily prevent one or more tasks from missing their 
deadline. 

Let us consider, for example, the case depicted in Figure 2.15. The schedule 
shown in Figure 2.15a minimizes the maximum lateness, but all tasks miss their 
deadline. On the other hand, the schedule shown in Figure 2.15b has a greater 
maximum lateness, but four tasks out of five complete before their deadline. 

When tasks have soft deadlines and the application concern is to meet as many 
deadlines as possible (without a priori guarantee), then the scheduling algo­
rithm should use a cost function that minimizes the number of late tasks. 
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Figure 2.16 Example of cost functions for different types of tasks. 

In other applications, the benefit of executing a task may depend not only on 
the task importance but also on the time at which it is completed. This can 
be described by means of specific utility functions, which describe the value 
associated with the task as a function of its completion time. Figure 2.16 
illustrates some typical utility functions that can be defined on the application 
tasks. For instance, non-real-time tasks (a) do not have deadlines, thus the 
value achieved by the system is proportional to the task importance and does 
not depend on the completion time. Soft tasks (b) have noncritical deadlines; 
therefore, the value gained by the system is constant if the task finishes before 
its deadline but decreases with the exceeding time. In some cases (c), it is 
required to execute a task on-time; that is, not too early and not too late with 
respect to a given deadline. Hence, the value achieved by the system is high 
if the task is completed around the deadline, but it rapidly decreases with the 
absolute value of the lateness. In other cases (d), executing a task after its 
deadline does not cause catastrophic consequences, but there is no benefit for 
the system, thus the utility function is zero after the deadline. 

When utility functions are defined on the tasks, the performance of a scheduling 
algorithm can be measured by the cumulative value, given by the sum of the 
utility functions computed at each completion time: 

Cumulative-Value — /^^vifi)-
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This type of metrics is very useful for evaluating the performance of a system 
during overload conditions, and it is considered in more detail in Chapter 8. 

2.4 SCHEDULING ANOMALIES 

In this section we describe some singular examples that clearly illustrate that 
real-time computing is not equivalent to fast computing, and an increase of 
computational power in the supporting hardware does not always cause an 
improvement on the performance of a task set. These particular situations, 
called Richard's anomalies, have been described by Graham in 1976 and refer 
to task sets with precedence relations executed in a multiprocessor environment. 
Designers should be aware of such insidious anomalies so that they can avoid 
them. The most important anomalies are expressed by the following theorem 
[Gra76, SSDB95]: 

Theorem 2.1 (Graham) / / a task set is optimally scheduled on a multipro­
cessor with some priority assignment, a fixed number of processors, fixed ex­
ecution times, and precedence constraints, then increasing the number of pro­
cessors, reducing execution times, or weakening the precedence constraints can 
increase the schedule length. 

This result implies that if tasks have deadlines, then adding resources (for 
example, an extra processor) or relaxing constraints (less precedence among 
tasks or fewer execution times requirements) can make things worse. A few 
examples can best illustrate why this theorem is true. 

Let us consider a task set composed by nine tasks J = {Ji, J 2 , . . . , J9}, sorted 
by decreasing priorities, so that Ji priority is greater than Jj priority if and 
only \{ I < j . Moreover, tasks are subject to precedence constraints that are 
described through the graph shown in Figure 2.17. Computation times are 
indicated in parentheses. 

If the above set is executed on a parallel machine with three processors, we 
obtain the optimal schedule cr* illustrated in Figure 2.18, where the global 
completion time is ĉ = 12 units of time. 

Now we will show that adding an extra processor, reducing tasks' execution 
times, or weakening precedence constraints will increase the global completion 
time of the task set. 
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Figure 2.17 Precedence graph of the task set J ; numbers in parentheses 
indicate computation times. 
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Figure 2.18 Optimal schedule of task set J on a three-processor machine. 
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Figure 2.20 Schedule of task set J on three processors, with computation 
times reduced by one unit of time. 

Number of processors increased 

If we execute the task set J on a more powerful machine consisting of four pro­
cessors, we obtain the schedule illustrated in Figure 2.19, which is characterized 
by a global completion time oi tc = l^ units of time. 

Computation times reduced 

One could think that the global completion time of the task set J could be 
improved by reducing tasks' computation times of each task. However, we can 
surprisingly see that if we reduce the computation time of each task by one unit 
of time, the schedule length will increase with respect to the optimal schedule 
cr*, and the global completion time will be tc = 13, as shown in Figure 2.20. 
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Figure 2.21 a. Precedence graph of task set J obtained by removing the 
constraints on tasks J5 and JQ. b . Schedule of task set J on three processors, 
with precedence constraints weakened. 

Precedence constraints weakened 

Scheduling anomalies can also arise if we remove precedence constraints from 
the directed acyclic graph depicted in Figure 2.17. For instance, if we remove 
the precedence relations between task J4 and tasks J5 and JQ (see Figure 2.21a), 
we obtain the schedule shown in Figure 2.21b, which is characterized by a global 
completion time of tc — 16 units of time. 
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Figure 2.22 Example of anomaly under resource constraints. If J2 and J4 
share the same resource in exclusive mode, the optimal schedule length (a) 
increases if the computation time of task J i is reduced (b). Task are statically 
allocated on the processors. 

Anomalies under resource constraints 

As a last example of scheduling anomalies, we will show how the schedule 
length of a task set can increase when reducing tasks' computation times in 
the presence of shared resources. Consider the case illustrated in Figure 2.22, 
where five tasks are statically allocated on two processors: tasks Ji and J2 on 
processor PI , and tasks J3, J4 and J5 on processor P2. Moreover, tasks J2 and 
J4 share the same resource in exclusive mode, hence their execution cannot 
overlap in time. A schedule of this task set is shown in Figure 2.22a, where the 
total completion time is tc == 17. 

If we now reduce the computation time of task Ji on the first processor, then 
J2 can begin earlier and take the resource before task J4. As a consequence, 
task J4 must now block over the shared resource and possibly miss its deadline. 
This situation is illustrated in Figure 2.22b. As we can see, the blocking time 
experienced by J4 causes a delay in the execution of J5 (which may also miss 
its deadline), increasing the total completion time of the task set from 17 to 
22. 
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Notice that the scheduhng anomaly illustrated by the previous example is par­
ticularly insidious for hard real-time systems because tasks are guaranteed 
based on their worst-case behavior, but they may complete before their worst-
case computation time. A simple solution that avoids the anomaly is to keep 
the processor idle if tasks complete earlier, but this can be very inefficient. 
There are algorithms, such as the one proposed by Shen [SRS93], that tries 
to reclaim this idle time, while addressing the anomalies so that they will not 
occur. 

Exercises 

2.1 Give the formal definition of a schedule, explaining the difference between 
preemptive and non-preemptive scheduling. 

2.2 Explain the difference between periodic and aperiodic tasks, and describe 
the main timing parameters that can be defined for a real-time activity. 

2.3 Describe a real-time application as a number of tasks with precedence 
relations, and draw the corresponding precedence graph. 

2.4 Discuss the difference between static and dynamic, on-line and off-line, 
optimal, and heuristic scheduling algorithms. 

2.5 Provide an example of domino effect, caused by the arrival of a task J*, 
in a feasible set of three tasks. 



3 
APERIODIC TASK SCHEDULING 

3.1 INTRODUCTION 

In this chapter we present a variety of algorithms for scheduhng real-time ape­
riodic tasks on a single machine environment. Each algorithm represents a 
solution for a particular scheduling problem, which is expressed through a set 
of assumptions on the task set and by an optimality criterion to be used on 
the schedule. The restrictions made on the task set are aimed at simplifying 
the algorithm in terms of time complexity. When no restrictions are applied 
on the application tasks, the complexity can be reduced by employing heuristic 
approaches, which do not guarantee to find the optimal solution to a problem 
but can still guarantee a feasible schedule in a wide range of situations. 

Although the algorithms described in this chapter are presented for scheduling 
aperiodic tasks on uniprocessor systems, many of them can be extended to work 
on multiprocessor or distributed architectures and deal with more complex task 
models. 

To facilitate the description of the scheduling problems presented in this chapter 
we introduce a systematic notation that could serve as a basis for a classification 
scheme. Such a notation, proposed by Graham et al. [GLLK79], classifies all 
algorithms using three fields a | /? | 7, having the following meaning: 

The first field a describes the machine environment on which the task set 
has to be scheduled (uniprocessor, multiprocessor, distributed architecture, 
and so on). 
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The second field /? describes task and resource characteristics (preemptive, 
independent versus precedence constrained, synchronous activations, and 
so on). 

The third field 7 indicates the optimality criterion (performance measure) 
to be followed in the schedule. 

For example: 

1 I prec I Lmax denotes the problem of scheduling a set of tasks with 
precedence constraints on a uniprocessor machine in order to minimize the 
maximum lateness. If no additional constraints are indicated in the second 
field, preemption is allowed at any time, and tasks can have arbitrary 
arrivals. 

3 I nojpreem \ ^ fi denotes the problem of scheduling a set of tasks on a 
three-processor machine. Preemption is not allowed and the objective is 
to minimize the sum of the finishing times. Since no other constraints are 
indicated in the second field, tasks do not have precedence nor resource 
constraints but have arbitrary arrival times. 

2 I sync \ ^ Latei denotes the problem of scheduling a set of tasks on a 
two-processor machine. Tasks have synchronous arrival times and do not 
have other constraints. The objective is to minimize the number of late 
tasks. 

3.2 JACKSON'S ALGORITHM 

The problem considered by this algorithm is 1 | sync \ Lmax- That is, a set 
J oi n aperiodic tasks has to be scheduled on a single processor, minimizing 
the maximum lateness. All tasks consist of a single job, have synchronous 
arrival times, but can have different computation times and deadlines. No other 
constraints are considered, hence tasks must be independent; that is, cannot 
have precedence relations and cannot share resources in exclusive mode. 

Notice that, since all tasks arrive at the same time, preemption is not an issue 
in this problem. In fact, preemption is effective only when tasks may arrive 
dynamically and newly arriving tasks have higher priority than currently exe­
cuting tasks. 
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Without loss of generality, we assume that all tasks are activated at time ^ = 0, 
so that each job Ji can be completely characterized by two parameters: a 
computation time Ci and a relative deadline Di (which, in this case, is also 
equal to the absolute deadline). Thus, the task set J can be denoted as 

J = {Ji{CuDi), i - l , . . . , n } . 

A simple algorithm that solves this problem was found by Jackson in 1955. It 
is called Earliest Due Date (EDD) and can be expressed by the following rule 
[Jac55]: 

Theorem 3.1 (Jackson's rule) Given a set of n independent tasks, any al­
gorithm that executes the tasks in order of nondecreasing deadlines is optimal 
with respect to m^inimizing the maximum lateness. 

Proof. Jackson's theorem can be proved by a simple interchange argument. 
Let cr be a schedule produced by any algorithm A. If A is different than EDD, 
then there exist two tasks Ja and J^, with da < db, such that Jb immediately 
precedes Ja in cr. Now, let a' be a schedule obtained from a by exchanging J a 
with Jft, so that Ja immediately precedes J^ in a'. 

As illustrated in Figure 3.1, interchanging the position of J a and J^ in a cannot 
increase the maximum lateness. In fact, the maximum lateness between Ja and 
Jb in a is Lmax{ci,h) — fa — da, whereas the maximum lateness between J a 
and Jb in a' can be written as L'^^^{a,h) — max{L'^,L'^^). Two cases must be 
considered: 

1. If L ; > Lj,, then L'^^^{a,h) = fa - da, and, since /^ < /«, we have 

2. If L'^ < L[, then L'^^^{a,h) = fl^ - db = fa - db, and, since da < db, we 
have L'^^^{a,h) < Lmax{a^b). 

Since, in both cases, L'^^^{a, b) < Lmax{ci, b), we can conclude that interchang­
ing Ja and Jb in a cannot increase the maximum lateness of the task set. By a 
finite number of such transpositions, a can be transformed in (JEDD and, since 
in each transposition the maximum lateness cannot increase, CFEDD is optimal. 
D 
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Jb 
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ab 

ab ab 

F i g u r e 3 . 1 O p t i m a l i t y of J a c k s o n ' s a l g o r i t h m . 

The complexity required by Jackson's algorithm to build the optimal schedule 
is due to the procedure that sorts the tasks by increasing deadlines. Hence, 
if the task set consists of n tasks, the complexity of the EDD algorithm is 
0 (n log n). 

3.2.1 Examples 

Example 1 

Consider a set of five tasks, simultaneously activated at time t = 0, whose 
parameters (worst-case computation times and deadlines) are indicated in the 
table shown in Figure 3.2. The schedule of the tasks produced by the EDD 
algorithm is also depicted in Figure 3.2. The maximum lateness is equal to —1 
and it is due to task J4, which completes a unit of time before its deadline. 
Since the maximum lateness is negative, we can conclude that all tasks have 
been executed within their deadlines. 

Notice that the optimality of the EDD algorithm cannot guarantee the feasi­
bility of the schedule for any task set. It only guarantees that, if there exists a 
feasible schedule for a task set, then EDD will find it. 
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Figure 3.2 A feasible schedule produced by Jackson's algorithm. 
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Figure 3.3 An infeasible schedule produced by Jackson's algorithm. 

Example 2 

Figure 3.3 illustrates an example in which the task set cannot be feasibly sched­
uled. Still, however, EDD produces the optimal schedule that minimizes the 
maximum lateness. Notice that, since J4 misses its deadline, the maximum 
lateness is greater than zero {Lmax = L4 ==2). 
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3.2.2 Guarantee 

To guarantee that a set of tasks can be feasibly scheduled by the EDD algo­
rithm, we need to show that, in the worst case, all tasks can complete before 
their deadlines. This means that we have to show that for each task, the 
worst-case finishing time fi is less than or equal to its deadline di: 

Vz = 1, . . . , n fi < di. 

If tasks have hard timing requirements, such a schedulability analysis must be 
done before actual tasks' execution. Without loss of generality, we can assume 
that tasks J i , J 2 , . . . , Jn are listed by increasing deadlines, so that Ji is the task 
with the earliest deadline. In this case, the worst-case finishing time of task Ji 
can be easily computed as 

i 

fi - ^Ck. 
k=l 

Therefore, if the task set consists of n tasks, the guarantee test can be performed 
by verifying the following n conditions: 

i 

Vz = l , . . . , n ^Ck<di. (3.1) 
k=i 

3.3 HORN'S ALGORITHM 

If tasks are not synchronous but can have arbitrary arrival times (that is, tasks 
can be activated dynamically during execution), then preemption becomes an 
important factor. In general, a scheduling problem in which preemption is al­
lowed is always easier than its nonpreemptive counterpart. In a nonpreemptive 
scheduling algorithm, the scheduler must ensure that a newly arriving task will 
never need to interrupt a currently executing task in order to meet its own 
deadline. This guarantee requires a considerable amount of searching. If pre­
emption is allowed, however, this searching is unnecessary, since a task can be 
interrupted if a more important task arrives [WR91]. 

In 1974, Horn found an elegant solution to the problem of scheduling a set of 
n independent tasks on a uniprocessor system, when tasks may have dynamic 
arrivals and preemption is allowed (1 | preem \ Lmax)-

The algorithm, called Earliest Deadline First (EDF), can be expressed by the 
following theorem [Hor74]: 
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Theorem 3.2 (Horn) Given a set of n independent tasks with arbitrary ar­
rival times, any algorithm that at any instant executes the task with the earliest 
absolute deadline among all the ready tasks is optimal with respect to minimiz­
ing the maximum lateness. 

This result can be proved by an interchange argument similar to the one used by 
Jackson. The formal proof of the EDF optimality has been given by Dertouzos 
in 1974 [Der74] and it is illustrated below. The complexity of the algorithm 
is 0{n) per task, since inserting the newly arrived task into an ordered queue 
(the ready queue) of n elements may require up to n steps. Hence, the overall 
complexity of EDF for the whole task set is Oin^). 

3.3.1 EDF optimality 

The original proof provided by Dertouzos [Der74] shows that EDF is optimal 
in the sense of feasibility. This means that if there exists a feasible schedule 
for a task set J, then EDF is able to find it. The proof can easily be extended 
to show that EDF also minimizes the maximum lateness. This is more general 
because an algorithm that minimizes the maximum lateness is also optimal in 
the sense of feasibility. The contrary is not true. 

Using the same approach proposed by Dertouzos, let a be the schedule produced 
by a generic algorithm A and let GEDF be the schedule obtained by the EDF 
algorithm. Since preemption is allowed, each task can be executed in disjointed 
time intervals. Without loss of generality, the schedule a can be divided into 
time slices of one unit of time each. To simplify the formulation of the proof, 
let us define the following abbreviations: 

G{t) identifies the task executing in the slice [t,t -{- \)} 

E{i) identifies the ready task that, at time t, has the earliest deadline. 

tE{t) is the time (> t) at which the next slice of task E{t) begins its 
execution in the current schedule. 

If cr / (JEDF^ then in a there exists a time t such that a{t) 7̂  E{t). As 
illustrated in Figure 3.4, the basic idea used in the proof is that interchanging 
the position of a{t) and E{t) cannot increase the maximum lateness. If the 

^ [a,b) denotes an interval of values x such that a < x < b. 
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Figure 3.4 Proof of the optimality of the EDF algorithm, a. schedule a at 
time t = 4. b . new schedule obtained after a transposition. 

schedule a starts at time ^ = 0 and D is the latest deadline of the task set 
{D = max{ Ji}) then GEDF can be obtained from a by at most D transpositions. 

The algorithm used by Dertouzos to transform any schedule a into an EDF 
schedule is illustrated in Figure 3.5. For each time slice t, the algorithm verifies 
whether the task (T{t) scheduled in the slice t is the one with the earliest dead­
line, E{t). If it is, nothing is done, otherwise a transposition takes place and 
the slices at t and IE are exchanged (see Figure 3.4). In particular, the slice of 
task E{t) is anticipated at time ,̂ while the slice of task cr(^) is postponed at 
time IE' Using the same argument adopted in the proof of Jackson's theorem, 
it is easy to show that after each transposition the maximum lateness cannot 
increase; therefore, EDF is optimal. 

By applying the interchange algorithm to the schedule shown in Figure 3.4a, 
the first transposition occurs at time i == 4. At this time, in fact, the CPU is 
assigned to J4, but the task with the earliest deadline is J2, which is scheduled 
at time IE = 6. As a consequence, the two slices in gray are exchanged and the 



Aperiodic Task Scheduling 59 

Algorithm: interchange 

{ 
for (t=0 to D-1) { 

i{{a{t) ^ Eit)){ 

a{t) = E{t); 

} 

} 

Figure 3.5 Transformation algorithm used by Dertouzos to prove the opti-
mality of EDF. 

resulting schedule is shown in Figure 3.4b. The algorithm examines all slices, 
until t — D^ performing a slice exchange when necessary. 

To show that a transposition preserves the schedulability note that, at any 
instant, each slice in a can be either anticipated or postponed up to IE- If a 
slice is anticipated, the feasibility of that task is obviously preserved. If a slice 
of Ji is postponed at IE and a is feasible, it must be {IE + 1) < C?£;, being dE 
the earliest deadline. Since dE < di for any i, then we have ^£; + 1 < di, which 
guarantees the schedulability of the slice postponed at IE-

3.3.2 Example 

An example of schedule produced by the EDF algorithm on a set of five tasks is 
shown in Figure 3.6. At time ^ = 0, tasks Ji and J2 arrive and, since di < d^, 
the processor is assigned to J i , which completes at time i = 1. At time ^ = 2, 
when J2 is executing, task J3 arrives and preempts J2, being ds < d2. Note 
that, at time ^ = 3, the arrival of J4 does not interrupt the execution of J3, 
because ds < d^. As J3 is completed, the processor is assigned to J2, which 
resumes and executes until completion. Then J4 starts at ^ = 5, but, at time 
^ = 6, it is preempted by J5, which has an earlier deadline. Task J4 resumes 
at time t = 8, when J5 is completed. Notice that all tasks meet their deadlines 
and the maximum lateness is Lmax = L2 = 0. 
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Figure 3.6 Example of EDF schedule. 

3.3.3 Guarantee 

When tasks have dynamic activations and the arrival times are not known a 
priori, the guarantee test has to be done dynamically, whenever a new task 
enters the system. Let J be the current set of active tasks, which have been 
previously guaranteed, and let Jnew be a newly arrived task. In order to accept 
Jnew in the system we have to guarantee that the new task set J' = JU{Jnew} 
is also schedulable. 

Following the same approach used in EDD, to guarantee that the set J' is 
feasibly schedulable by EDF, we need to show that, in the worst case, all tasks 
in J' will complete before their deadlines. This means that we have to show 
that, for each task, the worst-case finishing time fi is less than or equal to its 
deadline di. 

Without loss of generality, we can assume that all tasks in J' (including Jnew) 
are ordered by increasing deadlines, so that Ji is the task with the earliest 
deadline. Moreover, since tasks are preemptable, when Jnew arrives at time t 
some tasks could have been partially executed. Thus, let Ci{t) be the remaining 
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Algorithm: EDF-guarantee(JT^, Jnew) 

{ 
J' = J \J {Jnew}', /* ordered by deadline */ 
t = current-time (); 
/o = 0; 
for (each Ji e J') { 

fi = fi-i +Ci{t); 
if (fi > di) return(INFEASIBLE); 

} 
return(FEASIBLE); 

} 

Figure 3.7 EDF guarantee algorithm. 

worst-case execution time of task Ji (notice that Ci{t) has an initial value equal 
to Ci and can be updated whenever Ji is preempted). Hence, at time t, the 
worst-case finishing time of task Ji can be easily computed as 

i 

fi = Y^cit). 

Thus, the schedulability can be guaranteed by the following conditions: 

i 

V i - l , . . . , n ^ C f c ( 0 <di. (3.2) 
k=i 

Noting that fi = fi-i + Ci{t), the dynamic guarantee test can be performed in 
0{n) by executing the algorithm shown in Figure 3.7. 

3.4 NON-PREEMPTIVE SCHEDULING 

When preemption is not allowed and tasks can have arbitrary arrivals, the 
problem of minimizing the maximum lateness and the problem of finding a 
feasible schedule become NP-hard [LRKB77, LRK77, KIM78]. Figure 3.8 illus­
trates an example that shows that EDF is no longer optimal if tasks cannot be 
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Figure 3.8 EDF is not optimal in a non-preemptive model. In fact, although 
there exists a feasible schedule (a), the schedule produced by EDF (b) is infea-
sible. 

preempted during their execution. In fact, although a feasible schedule exists 
for that task set (see Figure 3.8a), EDF does not produce a feasible schedule 
(see Figure 3.8b), since J2 executes one unit of time after its deadline. This 
happens because EDF immediately assigns the processor to task J i ; thus, when 
J2 arrives at time t = 1, Ji cannot be preempted. J2 can start only at time 
t = 4, after Ji completion, but it is too late to meet its deadline. 

Notice, however, that in the optimal schedule shown in Figure 3.8a the processor 
remains idle in the interval [0,1) although Ji is ready to execute. If arrival times 
are not known a priori, then no on-line algorithm can decide whether to stay idle 
at time 0 or execute task J i . A scheduling algorithm that does not permit the 
processor to be idle when there are active jobs is called a non-idle algorithm. 
By restricting to the case of non-idle scheduling algorithms, Jeffay, Stanat, 
and Martel [JSM91] proved that EDF is still optimal in a non-preemptive task 
model. 
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Figure 3.9 Search tree for producing a non-preemptive schedule. 

When arrival times are known a priori, non-preemptive scheduling problems 
are usually treated by branch-and-bound algorithms that perform well in the 
average case but degrade to exponential complexity in the worst case. The 
structure of the search space is a search tree, represented in Figure 3.9, where 
the root is an empty schedule^ an intermediate vertex is a partial schedule^ and 
a terminal vertex (leaf) is a complete schedule. Since not all leaves correspond 
to feasible schedules, the goal of the scheduling algorithm is to search for a leaf 
that corresponds to a feasible schedule. 

At each step of the search, the partial schedule associated with a vertex is 
extended by inserting a new task. If n is the total number of tasks in the set, 
the length of a path from the root to a leaf {tree depth) is also n, whereas the 
total number of leaves is n! (n factorial). An optimal algorithm, in the worst 
case, may make an exhaustive search to find the optimal schedule in such a 
tree, and this may require to analyze n paths of length n!, with a complexity 
of 0 (n • n!). Clearly, this approach is computationally intractable and cannot 
be used in practical systems when the number of tasks is high. 

In this section, two scheduling approaches are presented, whose objective is to 
limit the search space and reduce the computational complexity of the algo­
rithm. The first algorithm uses additional information to prune the tree and re­
duce the complexity in the average case. The second algorithm adopts suitable 
heuristics to follow promising paths on the tree and build a complete schedule 
in polynomial time. Heuristic algorithms may produce a feasible schedule in 
polynomial time; however, they do not guarantee to find it, since they do not 
explore all possible solutions. 
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3.4.1 Bratley's algorithm (l | no.preem \ feasible) 

The following algorithm was proposed by Bratley et al. in 1971 [BFR71] to 
solve the problem of finding a feasible schedule of a set of non-preemptive tasks 
with arbitrary arrival times. The algorithm starts with an empty schedule 
and, at each step of the search, visits a new vertex and adds a task in the 
partial schedule. With respect to the exhaustive search, Bratley's algorithm 
uses a pruning technique to determine when a current search can be reasonably 
abandoned. In particular, a branch is abandoned when 

The addition of any node to the current path causes a missed deadline; 

A feasible schedule is found at the current path. 

To better understand the pruning technique adopted by the algorithm, consider 
the task set shown in Figure 3.10, which also illustrates the paths analyzed in 
the tree space. 

To follow the evolution of the algorithm, the numbers inside each node of the 
tree indicate which task is being scheduled in that path, whereas the numbers 
beside the nodes represent the time at which the indicated task completes its 
execution. Whenever the addition of any node to the current path causes a 
missed deadline, the corresponding branch is abandoned and the task causing 
the timing fault is labeled with a (f). 

In the example, the first task considered for extending the empty schedule 
is J i , whose index is written in the first node of the leftmost branch of the 
tree. Since Ji arrives at ^ = 4 and requires two units of processing time, its 
worst-case finishing time is / i = 6, indicated beside the correspondent node. 
Before expanding the branch, however, the pruning mechanism checks whether 
the addition of any node to the current path may cause a timing fault, and it 
discovers that task J2 would miss its deadline, if added. As a consequence, the 
search on this branch is abandoned and a considerable amount of computation 
is avoided. 

In the average case, pruning techniques are very effective for reducing the search 
space. Nevertheless, the worst-case complexity of the algorithm is still 0{n'n\). 
For this reason, Bratley's algorithm can only be used in off-line mode, when all 
task parameters (including the arrival times) are known in advance. This can 
be the case of a time-triggered system, where tasks are activated at predefined 
instants by a timer process. 
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Figure 3.10 Example of search performed by Bratley's algorithm. 

As in most off-line real-time systems, the resulting schedule produced by Brat­
ley's algorithm can be stored in a data structure, called task activation list. 
Then, at run time, a dispatcher simply extracts the next task from the activa­
tion list and puts it in execution. 

3.4.2 The Spring algorithm 

Here we describe the scheduling algorithm adopted in the Spring kernel [SR87, 
SR91], a hard real-time kernel designed at the University of Massachusetts at 
Amherst by Stankovic and Ramamritham to support critical control applica­
tions in dynamic environments. The objective of the algorithm is to find a feasi-
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ble schedule when tasks have different types of constraints, such as precedence 
relations, resource constraints, arbitrary arrivals, non-preemptive properties, 
and importance levels. The Spring algorithm is used in a distributed computer 
architecture and can also be extended to include fault-tolerance requirements. 

Clearly, this problem is A^P-hard and finding a feasible schedule would be 
too expensive in terms of computation time, especially for dynamic systems. 
In order to make the algorithm computationally tractable even in the worst 
case, the search is driven by a heuristic function H, which actively directs the 
scheduling to a plausible path. On each level of the search, function H is applied 
to each of the tasks that remain to be scheduled. The task with the smallest 
value determined by the heuristic function H is selected to extend the current 
schedule. 

The heuristic function is a very flexible mechanism that allows to easily define 
and modify the scheduling policy of the kernel. For example, 'd H = ai (arrival 
time) the algorithm behaves as First Come First Served, li H — d (compu­
tation time) it works as Shortest Job First, whereas if H = di (deadline) the 
algorithm is equivalent to Earliest Deadline First. 

To consider resource constraints in the scheduling algorithm, each task Ji has 
to declare a binary array of resources Ri = [Ri{i),..., Rr{i)], where Rk{i) = 0 
if Ji does not use resource Rk, and Rkii) = 1 if Ji uses Rk in exclusive mode. 
Given a partial schedule, the algorithm determines, for each resource Rk, the 
earliest time the resource is available. This time is denoted as EATk (Earliest 
Available Time). Thus, the earliest start time that a task Ji can begin the 
execution without blocking on shared resources is 

Test{i) = maix[ai,mdix{EATk)], 
k 

where ai is the arrival time of Ji. Once Test is calculated for all the tasks, 
a possible search strategy is to select the task with the smallest value of Test-
Composed heuristic functions can also be used to integrate relevant information 
on the tasks, such as 

H = d + W'C 

H = d+W'Test. 

where VF is a weight that can be adjusted for different application environments. 
Figure 3.11 shows some possible heuristic functions that can be used in Spring 
to direct the search process. 
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H = a 

H = C 

H = d 

H = Test 

H = d + w 

H = d + w 

C 

Test 

First Come First Served (FCFS) 

Shortest Job First (SJF) 

Earliest Deadline First (EDF) 

Earliest Start Time First (ESTF) 

EDF + SJF 

EDF + ESTF 

Figure 3.11 Example of heuristic functions that can be adopted in the Spring 
algorithm. 

In order to handle precedence constraints, another factor E, called eligibility, 
is added to the heuristic function. A task becomes eligible to execute {Ei = 1) 
only when all its ancestors in the precedence graph are completed. If a task is 
not eligible, then Ei = oo; hence, it cannot be selected for extending a partial 
schedule. 

While extending a partial schedule, the algorithm determines whether the cur­
rent schedule is strongly feasible; that is, also feasible by extending it with any 
of the remaining tasks. If a partial schedule is found not to be strongly feasible, 
the algorithm stops the search process and announces that the task set is not 
schedulable, otherwise the search continues until a complete feasible schedule 
is met. Since a feasible schedule is reached through n nodes and each partial 
schedule requires the evaluation of at most n heuristic functions, the complexity 
of the Spring algorithm is 0{n'^). 

Backtracking can be used to continue the search after a failure. In this case, the 
algorithm returns to the previous partial schedule and extends it by the task 
with the second smallest heuristic value. To restrict the overhead of backtrack­
ing, however, the maximum number of possible backtracks must be limited. 
Another method to reduce the complexity is to restrict the number of evalu­
ations of the heuristic function. Do to that, if a partial schedule is found to 
be strongly feasible, the heuristic function is apphed not to all the remaining 
tasks but only to the k remaining tasks with the earliest deadlines. Given that 
only k tasks are considered at each step, the complexity becomes 0{kn). If 
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the value of k is constant (and small, compared to the task set size), then the 
complexity becomes linearly proportional to the number of tasks. 

A disadvantage of the heuristic scheduling approach is that it is not optimal. 
This means that, if there exists a feasible schedule, the Spring algorithm may 
not find it. 

3.5 SCHEDULING WITH PRECEDENCE 
CONSTRAINTS 

The problem of finding an optimal schedule for a set of tasks with precedence 
relations is in general A^P-hard. However, optimal algorithms that solve the 
problem in polynomial time can be found under particular assumptions on the 
tasks. In this section we present two algorithms that minimize the maximum 
lateness by assuming synchronous activations and preemptive scheduling, re­
spectively. 

3,5.1 Latest Deadline First ( 1 I prec.sync \ Lmax) 

In 1973, Lawler [Law73] presented an optimal algorithm that minimizes the 
maximum lateness of a set of tasks with precedence relations and simultaneous 
arrival times. The algorithm is called Latest Deadline First (LDF) and can be 
executed in polynomial time with respect to the number of tasks in the set. 

Given a set J oi n tasks and a directed acyclic graph (DAG) describing their 
precedence relations, LDF builds the scheduling queue from tail to head: among 
the tasks without successors or whose successors have been all selected, LDF 
selects the task with the latest deadline to be scheduled last. This procedure is 
repeated until all tasks in the set are selected. At run time, tasks are extracted 
from the head of the queue, so that the first task inserted in the queue will be 
executed last, whereas the last task inserted in the queue will be executed first. 

The correctness of this rule is proved as follows. Let J be the complete set of 
tasks to be scheduled, let P C JT' be the subset of tasks without successors, and 
let Ji be the task in F with the latest deadline di. If cr is any schedule that 
does not follow the EDL rule, then the last scheduled task, say Jfc, will not be 
the one with the latest deadline; thus dk < di. Since J/ is scheduled before Jfc, 
let us partition F into four subsets, so that T = Au {Ji} U B U {Jk}- Clearly, 
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in a the maximum lateness for F is greater or equal to L^ = f — dk, where 
/ — X]r=i ^i ŝ ^^^ finishing time of task J^. 

We show that moving J/ to the end of the schedule cannot increase the maxi­
mum lateness in F, which proves the optimality of LDF. To do that, let a* be 
the schedule obtained from a after moving task J/ to the end of the queue and 
shifting all other tasks to the left. The two schedules a and cr* are depicted in 
Figure 3.12. Clearly, in a* the maximum lateness for F is given by 

Each argument of the max function is no greater than Lmaxi"^)- ^^ i^c^t, 

L^max{A) = Lmax{A) < Lmax{^) becausc A is uot movcd; 

^*max{^) ^ Lmax{B) < Lmax{^) because B starts earlier in cr*; 

LI < Lk < I/max(F) because task Jk starts earlier in cr*; 

L* = f - di < f - dk < Lmaxi^) because dk <di. 

^A^ 
r 

A 

A 

J 1 

^ 

B Jk 

B Jk J l 

dk d , 

1 i 

dk d , 

1 1 

Figure 3.12 Proof of LDF optimality. 

Since l^nax^) ^ ^max(F), moviug J I to the end of the schedule does not 
increase the maximum lateness in F. This means that scheduling last the 
task J{ with the latest deadline minimizes the maximum lateness in F. Then, 
removing this task from J and repeating the argument for the remaining n — 1 
tasks in the set J — {Ji}^ LDF can find the second-to-last task in the schedule, 
and so on. The complexity of the LDF algorithm is 0{n'^)^ since for each of 
the n steps it needs to visit the precedence graph to find the subset F with no 
successors. 



70 C H A P T E R 3 

Consider the example depicted in Figure 3.13, which shows the parameters of six 
tasks together with their precedence graph. The numbers beside each node of 
the graph indicate task deadhnes. Figure 3.13 also shows the schedule produced 
by EDF to highlight the differences between the two approaches. The EDF 
schedule is constructed by selecting the task with the earliest deadline among 
the current eligible tasks. Notice that EDF is not optimal under precedence 
constraints, since it achieves a greater Lmax with respect to LDF. 
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Figure 3.13 Comparison between schedules produced by LDF and EDF on 
a set of tasks with precedence constraints. 
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3.5.2 EDF with precedence constraints 
(1 I prec.preem \ Lmax) 

The problem of scheduling a set of n tasks with precedence constraints and 
dynamic activations can be solved in polynomial time complexity only if tasks 
are preemptable. In 1990, Ghetto, Silly, and Bouchentouf [CSB90] presented 
an algorithm that solves this problem in elegant fashion. The basic idea of 
their approach is to transform a set J of dependent tasks into a set J7* of inde­
pendent tasks by an adequate modification of timing parameters. Then, tasks 
are scheduled by the Earliest Deadline First (EDF) algorithm. The transfor­
mation algorithm ensures that J is schedulable and the precedence constraints 
are obeyed if and only if J* is schedulable. Basically, all release times and 
deadlines are modified so that each task cannot start before its predecessors 
and cannot preempt their successors. 

Modification of the release times 

The rule for modifying tasks' release times is based on the following observation. 
Given two tasks J a and Jt, such that J a -^ Jb (that is, Ja is an immediate 
predecessor of Jfe), then in any valid schedule that meets precedence constraints 
the following conditions must be satisfied (see Figure 3.14): 

Sb > ^b (that is, Jb must start the execution not earlier than its 
release time); 

Sb > ^a -\- Ca (that is, Jb must start the execution not earlier than the 
minimum finishing time of Ja). 

s K > r 

s h > r ^̂  + C,, 

r b S b 

Figure 3 .14 If Ja —>• Jb, then the release time of J^ can be replaced by 
max(r5,ra + Ca). 
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Therefore, the release time r^ of Jh can be replaced by the maximum between 
Vh and {ra -\-Ca) without changing the problem. Let r^ be the new release time 
of Jb' Then, 

rl - max(rfe,ra + Ca). 

The algorithm that modifies the release times can be implemented in 0{n?) 
and can be described as follows: 

1. For any initial node of the precedence graph, set r* = ri. 

2. Select a task Ji such that its release time has not been modified but the 
release times of all immediate predecessors Jh have been modified. If no 
such task exists, exit. 

3. Set r* = max[ri, max(r^ -\- Ch '- Jh -^ Ji)]-

4. Return to step 2. 

Modification of the deadlines 

The rule for modifying tasks' deadlines is based on the following observation. 
Given two tasks J a and J^, such that Ja -^ Jb (that is, J a is an immediate 
predecessor of Jb), then in any feasible schedule that meets the precedence 
constraints the following conditions must be satisfied (see Figure 3.15): 

fa < da (that is, J a must finish the execution within its deadline); 

fa^db — Cb (that is, Ja must finish the execution not later than the 
maximum start time of J^). 

fn < d, 

fa ^ d b - Cb 

Figure 3.15 If Ja —>• Jh^ then the deadline of J a can be replaced by 
rmn(da,db - Cb). 
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Therefore, the deadhne da of Ja can be replaced by the minimum between da 
and {db — Cb) without changing the problem. Let d* be the new deadline of 
Ja. Then, 

dl = mm{da,db - Cb). 

The algorithm that modifies the deadlines can be implemented in 0{n'^) and 
can be described as follows: 

1. For any terminal node of the precedence graph, set c/* = di. 

2. Select a task Ji such that its deadline has not been modified but the 
deadlines of all immediate successors Jk have been modified. If no such 
task exists, exit. 

3. Set d* = xnin[di, mm{dl — Ck ' Ji -^ Jk)]-

4. Return to step 2. 

Proof of optimality 

The transformation algorithm ensures that if there exists a feasible schedule 
for the modified task set J* under EDF, then the original task set J is also 
schedulable, that is, all tasks in J meet both precedence and timing constraints. 
In fact, if J* is schedulable, all modified tasks start at or after time r* and are 
completed at or before time d*. Since r* > ri and d* < dj, the schedulability 
of J"" implies that J is also schedulable. 

To show that precedence relations in J are not violated, consider the example 
illustrated in Figure 3.16, where Ji must precede J^ (i.e., Ji -^ J2), but J2 
arrives before Ji and has an earlier deadline. Clearly, if the two tasks are 
executed under EDF, their precedence relation cannot be met. However, if 
we apply the transformation algorithm, the time constraints are modified as 
follows: 

= ri ( dl = min((ii,d2 - C2) 
= max(r2,ri-h Ci) y d^ = d2 

This means that, since r2 > r^, J2 cannot start before J i . Moreover, J2 cannot 
preempt Ji because d\ < d^ and, based on EDF, the processor is assigned to 
the task with the earliest deadline. Hence, the precedence relation is respected. 
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Q 
J i 

O 
J2 

r*2 = r 1 + C 

d 1 = d 2 - C2 
* 

d 2 = d 2 

J l 

r 2 r 2 d 9 = d ' 

Figure 3.16 The transformation algorithm preserves the timing and the 
precedence constraints. 

In general, for any pair of tasks such that Ji -< Jj, we have r* < TJ and d* < d*. 
This means that, if Ji is in execution, then all successors of Ji cannot start 
before r̂  because r* < r*. Moreover, they cannot preempt Ji because d* < d* 
and, according to EDF, the processor is assigned to the ready task having the 
earliest deadline. Therefore, both timing and precedence constraints specified 
for task set J are guaranteed by the schedulability of the modified set JT'*. 

3.6 SUMMARY 

The scheduling algorithms described in this chapter for handling real-time tasks 
with aperiodic arrivals can be compared in terms of assumptions on the task 
set and computational complexity. Figure 3.17 summarizes the main charac­
teristics of such algorithms and can be used for selecting the most appropriate 
scheduling policy for a particular problem. 
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independent 

precedence 
constraints 
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async. activation 

non-preemptive 
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EDD (Jackson '55) 

0(n logn) 

Optimal 

LDF (Lawier '73) 

0(n2) 

Optimal 

EDF (Horn '74) 

0(n2) 

Optimal 

EDF* 
(Ghetto et al. '90) 

0(n2) 

Optimal 

Tree search 
(Bratley '71) 

0(n n!) 

Optimal 

Spring (Stankovic & 
Ramamritham '87) 

0(n2) 

Heuristic 

Figure 3 .17 Scheduling algorithms for aperiodic tasks. 

Exercises 

3.1 Check whether the EarUest Due Date (EDD) algorithm produces a fea­
sible schedule for the following task set (all tasks are synchronous and 
start at time ^ = 0): 

3.2 

3.3 

3.4 

" ^ 
Di 

[_Ji_ 

FT" 
9 

J2 

5 
16 

Js 
2 
5 

JA 

3 
10 

Write an algorithm for finding the maximum lateness of a task set sched­
uled by the EDD algorithm. 

Draw the full scheduling tree for the following set of non-preemptive tasks 
and mark the branches that are pruned by the Bratley's algorithm. 

O'i 

Ci 

Di ! 

[ Jl 

ro~ 
6 

1 ^̂  

h 
4 
2 
4 

h 
2 
4 
7 

J A ' 

6 
2 
10 

On the scheduling tree developed in the previous exercise find the path 
produced by the Spring algorithm using the following heuristic function: 
H = a-\- C -\- D. Then find a heuristic function that produces a feasible 
schedule. 
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3.5 Given seven tasks, A, B, C, D, E, F , and G, construct the precedence 
graph from the following precedence relations: 

A^C 
B ->C 
C -^ E 
D -^ F 

B ^ D 
C -^ F 
D ^G 

Then, assuming that all tasks arrive at time ^ = 0, have deadline D = 
20, and computation times 2, 3, 3, 5, 1, 2, 5, respectively, modify their 
arrival times and deadlines to schedule them by EDF. 



4 
PERIODIC TASK SCHEDULING 

4.1 INTRODUCTION 

In many real-time control applications, periodic activities represent the major 
computational demand in the system. Periodic tasks typically arise from sen­
sory data acquisition, low-level servoing, control loops, action planning, and 
system monitoring. Such activities need to be cyclically executed at specific 
rates, which can be derived from the application requirements. Some specific 
examples of real-time applications are illustrated in Chapter 10. 

When a control application consists of several concurrent periodic tasks with 
individual timing constraints, the operating system has to guarantee that each 
periodic instance is regularly activated at its proper rate and is completed 
within its deadline (which, in general, could be different than its period). 

In this chapter three basic algorithms for handling periodic tasks are described 
in detail: Rate Monotonic, Earliest Deadline First, and Deadline Monotonic. 
Schedulability analysis is performed for each algorithm in order to derive a guar­
antee test for generic task sets. To facilitate the description of the scheduling 
results presented in this chapter, the following notation is introduced: 

r denotes a set of periodic tasks; 

Ti denotes a generic periodic task; 

Tij denotes the jth instance of task r^; 

rij denotes the release time of the jth instance of task r^; 
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^i denotes the phase of task r^; that is, the release time of its first 
instance {^i = Vi^i); 

Di denotes the relative deadline of task r^; 

dij denotes the absolute deadline of the j th instance of task r̂  {dij = 
^i-\-{j-l)Ti + Di). 

Si J denotes the start time of the jth instance of task r^; that is, the 
time at which it starts executing. 

fij denotes the finishing time of the jth instance of task r^; that is, 
the time at which it completes the execution. 

Moreover, in order to simplify the schedulability analysis, the following hy­
potheses are assumed on the tasks: 

A l . The instances of a periodic task TJ are regularly activated at a 
constant rate. The interval Ti between two consecutive activations 
is the period of the task. 

A2. All instances of a periodic task r̂  have the same worst case exe­
cution time Ci. 

A 3 . All instances of a periodic task TJ have the same relative deadline 
Di, which is equal to the period Tj. 

A4. All tasks in F are independent; that is, there are no precedence 
relations and no resource constraints. 

In addition, the following assumptions are implicitly made: 

A5 . No task can suspend itself, for example on I/O operations. 

A6. All tasks are released as soon as they arrive. 

A7. All overheads in the kernel are assumed to be zero. 

Notice that assumptions Al and A2 are not restrictive because in many control 
applications each periodic activity requires the execution of the same routine 
at regular intervals; therefore, both Ti and Ci are constant for every instance. 
On the other hand, assumptions A3 and A4 could be too tight for practical 
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applications. However, the four assumptions are initially considered to derive 
some important results on periodic task scheduling, then such results are ex­
tended to deal with more realistic cases, in which assumptions A3 and A4 are 
relaxed. In particular, the problem of scheduUng a set of tasks under resource 
constraints is considered in detail in Chapter 7. 

In those cases in which the assumptions Al, A2, A3, and A4 hold, a periodic 
task Ti can be completely characterized by the following three parameters: its 
phase ^i, its period Ti and its worst-case computation time Ci. Thus, a set of 
periodic tasks can be denoted by 

r = {ni^uTud), i - l , . . . , n } . 

The release time ri^k and the absolute deadline di^k of the generic kth instance 
can then be computed as 

n,fc = ^i-{-{k-l)Ti 

di,k = Vi^k+Ti^^i + kTi. 

Other parameters that are typically defined on a periodic task are described 
below. 

Response time of an instance. It is the time (measured from the release 
time) at which the instance is terminated: 

Ri,k — fi,k — Ti^k-

Critical instant of a task. It is the time at which the release of a task 
will produce the largest response time. 

Critical time zone of a task. It is the interval between the critical instant 
and the response time of the corresponding request of the task. 

Relative Release Jitter of a task. It is the maximum deviation of the 
start time of two consecutive instances: 

RRJi = max|(5i,fc-ri,fc) - (5i,fc-i-ri,fc-i)|. 
k 

Absolute Release Jitter of a task. It is the maximum deviation of the 
start time among all instances: 

ARJi - max(5i,fc - ri^k) - min(si,fc - ri,^). 
k k 
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Relative Finishing Jitter of a task. It is the maximum deviation of the 
finishing time of two consecutive instances: 

RFJi = max\{fi^k - ri^k) - {fi,k-i - ri^k-i)\' 
k 

Absolute Finishing Jitter of a task. It is the maximum deviation of 
the finishing time among all instances: 

AFJi = max(/i,fc - n^k) - min(/i,fc - n^k)-
k k 

In this context, a periodic task r̂  is said to be feasible if all its instances finish 
within their deadlines. A task set F is said to be schedulahle (or feasible) if all 
tasks in T are feasible. 

4.1.1 Processor utilization factor 

Given a set F of n periodic tasks, the processor utilization factor U is the 
fraction of processor time spent in the execution of the task set [LL73]. Since 
Ci/Ti is the fraction of processor time spent in executing task r^, the utilization 
factor for n tasks is given by 

The processor utilization factor provides a measure of the computational load 
on the CPU due to the periodic task set. Although the CPU utilization can 
be improved by increasing tasks' computation times or by decreasing their 
periods, there exists a maximum value of U below which F is schedulable and 
above which F is not schedulable. Such a limit depends on the task set (that 
is, on the particular relations among tasks' periods) and on the algorithm used 
to schedule the tasks. Let UubiX-i^) be the upper bound of the processor 
utilization factor for a task set F under a given algorithm A. 

When U = UuhiX.A)^ the set F is said to fully utilize the processor. In this 
situation, F is schedulable by A, but an increase in the computation time in 
any of the tasks will make the set infeasible. For a given algorithm A, the least 
upper bound Uiub{A) of the processor utilization factor is the minimum of the 
utilization factors over all task sets that fully utilize the processor: 

Uiub{A) = minUubi^^A). 
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Figure 4.1 Meaning of the least upper bound of the processor utilization 
factor. 

Figure 4.1 graphically illustrates the meaning of Uiub for a scheduling algorithm 
A. The task sets Fj shown in the figure differ for the number of tasks and for 
the configuration of their periods. When scheduled by the algorithm A, each 
task set F^ fully utilizes the processor when its utilization factor Ui (varied by 
changing tasks' computation times) reaches a particular upper bound Uub, • If 
Ui < Uubi-, then F^ is schedulable, else F^ is not schedulable. Notice that each 
task set may have a different upper bound. Since Uiub{A) is the minimum of all 
upper bounds, any task set having a processor utilization factor below Uiub{^) 
is certainly schedulable by A. 

Uiub defines an important characteristic of a scheduling algorithm because it 
allows to easily verify the schedulability of a task set. In fact, any task set 
whose processor utilization factor is below this bound is schedulable by the 
algorithm. On the other hand, utilization above this bound can be achieved 
only if the periods of the tasks are suitably related. 

If the utilization factor of a task set is greater than one, the task set cannot be 
scheduled by any algorithm, 
the periods: T = T1T2 . . . Tn 
written as 

To show this result, let T be the product of all 
If t/ > 1, we also have UT > T, which can be 

j:irc.>T. 
1 = 1 

Ti 
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The factor {T/Ti) represents the number of times that r̂  is executed in the 
interval T, whereas the quantity {T/Ti)Ci is the total computation time re­
quested by Ti in the interval T. Hence, the sum on the left hand side represents 
the total demand of computation time requested by all tasks in T. Clearly, 
if the total demand exceeds the available processor time, there is no feasible 
schedule for the task set. 

4.2 RATE MONOTONIC SCHEDULING 

The Rate Monotonic (RM) scheduling algorithm is a simple rule that assigns 
priorities to tasks according to their request rates. Specifically, tasks with 
higher request rates (that is, with shorter periods) will have higher priorities. 
Since periods are constant, RM is a fixed-priority assignment: priorities are 
assigned to tasks before execution and do not change over time. Moreover, 
RM is intrinsically preemptive: the currently executing task is preempted by a 
newly arrived task with shorter period. 

In 1973, Liu and Layland [LL73] showed that RM is optimal among all fixed-
priority assignments in the sense that no other fixed-priority algorithms can 
schedule a task set that cannot be scheduled by RM. Liu and Layland also 
derived the least upper bound of the processor utilization factor for a generic 
set of n periodic tasks. These issues are discussed in detail in the following 
subsections. 

4.2.1 Optimality 

In order to prove the optimality of the RM algorithm, we first show that a 
critical instant for any task occurs whenever the task is released simultaneously 
with all higher-priority tasks. Let T = { r i , r2 , . . . ,rn} be the set of periodic 
tasks ordered by increasing periods, with r^ being the task with the longest 
period. According to RM, Tn will also be the task with the lowest priority. 

As shown in Figure 4.2a, the response time of task r^ is delayed by the inter­
ference of Ti with higher priority. Moreover, from Figure 4.2b it is clear that 
advancing the release time of TJ may increase the completion time of r^. As 
a consequence, the response time of Tn is largest when it is released simulta­
neously with Ti. Repeating the argument for all r^, i = 2 , . . . , n — 1, we prove 
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(a) 

(b) 

^ t 

Figure 4.2 a. The response time of tcisk Tn is delayed by the interference of 
Ti with higher priority, b . The interference may increase advancing the release 
time of Ti. 

that the worst response time of a task occurs when it is released simultaneously 
with all higher-priority tasks. 

A first consequence of this result is that task schedulability can easily be checked 
at their critical instants. Specifically, if all tasks are feasible at their critical 
instants, then the task set is schedulable in any other condition. Based on 
this result, the optimality of RM is justified by showing that if a task set is 
schedulable by an arbitrary priority assignment, then it is also schedulable by 
RM. 

Consider a set of two periodic tasks ri and T2, with Ti < T2. If priorities are 
not assigned according to RM, then task T2 will receive the highest priority. 
This situation is depicted in Figure 4.3, from which it is easy to see that, at 
critical instants, the schedule is feasible if the following inequality is satisfied: 

Ci-f C2 < T i . (4.1) 

On the other hand, if priorities are assigned according to RM, task Ti will 
receive the highest priority. In this situation, illustrated in Figure 4.4, in order 
to guarantee a feasible schedule two cases must be considered. Let F = [T2/T1J 
be the number^ of periods of ri entirely contained in T2. 

^ [x\ denotes the largest integer smaller than or equal to x, whereas [x] denotes the 
smallest integer greater than or equal to x. 
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Figure 4.3 Tasks scheduled by an algorithm different from RM. 
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Figure 4.4 Schedule produced by RM in two different conditions. 

Case 1. The computation time C\ is short enough that all requests of ri 
within the critical time zone of T2 are completed before the second 
request of r2. That is, Ci < T2 - FTi. 

In this case, from Figure 4.4a we can see that the task set is schedulable if 

(F + l ) C i + C 2 <T2. (4.2) 

We now show that inequality (4.1) implies (4.2). In fact, by multiplying both 
sides of (4.1) by F we obtain 

FCiH-FC2 <FTi, 

and, since F > 1, we can write 

FCi + C2 < FCi + FC2 < FTi. 
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Adding C\ to each member we get 

(F-f l ) C i + C 2 < F r i H - C i . 

Since we assumed that Ci < T2 — FT\, we have 

{F + l)Ci + C2 < FTi + Ci < Ts, 

which satisfies (4.2). 

Case 2. The execution of the last request of ri in the critical time zone of 
T2 overlaps the second request of T2. That is, Ci > T2 — FTi. 

In this case, from Figure 4.4b we can see that the task set is schedulable if 

F C i - f C s <FTi, (4.3) 

Again, inequality (4.1) implies (4.3). In fact, by multiplying both sides of (4.1) 
by F we obtain 

FCi -\-FC2 <FTu 

and, since F > 1, we can write 

FCi + C2 < FCi + FC2 < FTu 

which satisfies (4.3). 

Basically, it has been shown that, given two periodic tasks ri and r2, with 
Ti < T2, if the schedule is feasible by an arbitrary priority assignment, then 
it is also feasible by RM. That is, RM is optimal. This result can easily be 
extended to a set of n periodic tasks. We now show how to compute the least 
upper bound Uiub of the processor utilization factor for the RM algorithm. 
The bound is first determined for two tasks and then extended for an arbitrary 
number of tasks. 

4.2.2 Calcula t ion of Uiub for two t a sks 

Consider a set of two periodic tasks ri and r2, with Ti < T2. In order to 
compute Uiub for RM, we have to 

• Assign priorities to tasks according to RM, so that ri is the task with the 
highest priority; 
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Compute the upper bound Uub for the set by setting tasks ' computat ion 
times to fully utilize the processor; 

Minimize the upper bound Uub with respect to all other task parameters . 

As before, let F = [T2/T1J be the number of periods of r i entirely contained 
in T2. Wi thout loss of generality, the computat ion t ime C2 is adjusted to fully 
utilize the processor. Again two cases must be considered. 

Case 1. The computat ion t ime Ci is short enough tha t all requests of TI 
within the critical t ime zone of T2 are completed before the second 
request of T2. Tha t is, Ci < T2 — FTi. 

In this si tuation, depicted in Figure 4.5, the largest possible value of C2 is 

C 2 = T 2 - C i ( F + l ) , 

and the corresponding upper bound Uub is 

, , Ci C2 Ci T 2 - C i ( F + l ) 
Uub — T^ + ^^ = ^^ -r — Ti T2 Ti T, 

J-l J-2 

2 

-I 
Since the quanti ty in square brackets is negative, Uub is monotonically decreas­
ing in C i , and, being Ci < T2 — FTi, the minimum of Uub occurs for 

Ci =T2-FTi. 

Case 2. The execution of the last request of r i in the critical t ime zone of 
r2 overlaps the second request of T2. T h a t is, Ci > T2 — F T i . 

In this si tuation, depicted in Figure 4.6, the largest possible value of C2 is 

C 2 - ( r i - C i ) F , 
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Ti ^ M 

1:2 

Figure 4.5 The second request of r2 is released when r i is idle. 

case (b) C, > T2 - F T 

X ] 

X2 

t ' 
1 - 1 1 

i 1 

L 1 
I i 

1 

i 

F T , T2 

Figure 4.6 The second request of T2 is released when TI is active. 

and the corresponding upper bound Uub is 

Uub Ti n Ti n 
Ti ^ Ci Ci 
— F+ -^ -F = 
T2 Ti T2 
Ti ^ Ci 
— F H 
T2 T2 

Ti 
(4.4) 

Since the quantity in square brackets is positive, Uub is monotonically increasing 
in Ci and, being Ci > T2 - FTi, the minimum of Uub occurs for 

Ci=T2-FTi. 

In both cases, the minimum value of Uub occurs for 

Ci =T2-TiK 
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Hence, using the minimum value of Ci, from equation (4.4) we have 

- = 1-1(1-) = 
T2 T2 \T, 

T2 
F + 

Ti 
n,| (4.5) 

To simplify the notation, let G = T2/T1 - F. Thus, 

U = 
Tx 

(F + G^) : 

(F + G^) 

jF + G^) ^ 

T2ITX 

F + G^ 

{T2/Ti-F) + F F + G 

[F + G) - [G - G'^) 
F + G 

= 1 
g ( l - G) 

F + G • 
(4.6) 

Since 0 < G < 1, the term G(l — G) is nonnegative. Hence, U is monotoni-
cally increasing with F. As a consequence, the minimum of U occurs for the 
minimum value of F; namely, F = 1. Thus, 

U = 
l+G^ 
1+G • 

(4.7) 

Minimizing U over G we have 

dU_ 

dG 

2G(1 + G ) - ( 1 + G^) 
(1 + G)2 

G^ + 2G - 1 
(1 + G)2 ' 

and dU/dG = 0 for G^ + 2G - 1 = 0, which has two solutions: 

Gi = - l - \ / 2 
G2 = - H - v / 2 . 

Since 0 < G < 1, the negative solution G = Gi is discarded. Thus, from 
equation (4.7), the least upper bound of U is given for G = G2: 

Ulub = 
1 + ( N / 2 - 1 ) 2 4 - 2 \ / 2 
l + (v /2 - l ) 72 

= 2 ( \ / 2 - l ) . 
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1 F 
r ^ 

2 
3 
4 
5 

k* 

~7^ 
Ve 
VT2 
x/20 
\/30 

t/* 
0.828 
0.899 
0.928 
0.944 
0.954 

Table 4.1 Values of fc* and C/* as a function of F . 

That is, 
t// .6 = 2(2^/2 - 1) 0.83. (4.8) 

Notice that if T2 is a multiple of Ti, G = 0 and the processor utilization factor 
becomes 1. In general, the utiUzation factor for two tasks can be computed as 
a function of the ratio k = T2/T1. For a given F, from equation (4.5) we can 
write 

U F+{k-Fy 

Minimizing U over k we have 

dk 
= 1 

k-2F + 

F{F+l) 
fc2 ' 

F ( F + 1) 
k 

and dU/dk = 0 for k* = ^/F{F + 1). Hence, for a given F , the minimum value 
ofUis 

(7* = 2{y/F{F-\-l)-F). 

Table 4.1 shows some values of fc* and t/* as a function of F , whereas Figure 4.7 
shows the upper bound of t/ as a function of A:. 

4.2.3 Calcula t ion of Uiub for n t a sks 

From the previous computation, the conditions that allow to compute the least 
upper bound of the processor utilization factor are 

F = 1 
Ci = T2- FT^ 
C2 = ( T i - C i ) F , 
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Figure 4.7 Upper bound of the processor utilization factor as a function of 
the ratio k = T2/T1. 

which can be rewrit ten as 

Ti < T2< 2Ti 
Ci = T2- Ti 
C2 = 2Ti -T2. 

GeneraUzing for an arbi t rary set of n tasks, the worst conditions for the schedu-
labihty of a task set tha t fully utilizes the processor are 

f Ti < Tn< 2Ti 
Ci = T2- Ti 
C2 — T3 — T2 

^ n —1 — -Ln ~ J-n — 1 

[ C„ = Ti - (Ci + C2 + . . . + C „ _ i ) = 2 r i - T„. 

Thus , the processor utiHzation factor becomes 

^ ^ T2-T1 ^ T3-T2 ^ ^ T„ - Tn-i ^ 2Ti - T„ 
Ti Tn-1 T„ 

Defining 
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and noting that 
Tn 

R1R2 . . .Rn-l = TfT^ 
-LI 

the utihzation factor may be written as 

n - l n - l 

u = 
z = l 

To minimize U over Ri, i — 1 , . . . , n — 1, we have 

at/ _ 2 

Thus, defining P = R1R2 .. ^ Rn-i, U is minimum when 

f RiP = 2 
R2P = 2 

Rn-\P = 2. 

That is, when all Ri have the same value: 

R\ — R2 — ''' — Rn-i —2'^. 

Substituting this value in IJ we obtain 

= n ( 2 i / " - l ) . 

Therefore, for an arbitrary set of periodic tasks, the least upper bound of the 
processor utihzation factor under the Rate-Monotonic scheduUng algorithm is 

t/(„6 = n(2i/" - 1). (4.9) 

This bound decreases with n, and values for some n are shown in Table 4.2. 

For high values of n, the least upper bound converges to 

Viuh = ln2 ~ 0.69. 

In fact, with the substitution y = (2^/" — 1), we obtain n = i„)"^^), and hence 

l i m n ( 2 i / " - l ) ^ ( ln2) l im-—-^—-
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1 n 

nr 
2 
3 
4 
5 

Ulub 

1.000 
0.828 
0.780 
0.757 
0.743 

1 ^ 
re" 

7 
8 
9 
10 

Ulub 

0.735 
0.729 
0.724 
0.721 
0.718 

Table 4.2 Values of L /̂̂ b a^ ^ function of n. 

and since (by the Hospital's rule) 

y lim ——^—— = lim -— — = \\m.{y + 1) 
y^O\n{y + \) y-̂ O l/(y-f- 1) y^O^"" 

we have that 
lim Uiub{n) = In 2. 

= 1, 

4.2.4 Concluding remarks on R M 

To summarize the most important results derived in this section, the Rate-
Monotonic algorithm has been proved to be optimal among all fixed-priority 
assignments, in the sense that no other fixed-priority algorithms can schedule 
a task set that cannot be scheduled by RM. Moreover, RM guarantees that an 
arbitrary set of periodic tasks is schedulable if the total processor utilization U 
does not exceed a value of 0.69. 

Notice that this schedulability condition is sufficient to guarantee the feasibility 
of any task set, but it is not necessary. This means that, if a task set has an 
utilization factor greater than Uiub and less than one, nothing can be said on 
the feasibility of the set. A sufficient and necessary condition for the schedu­
lability under RM has been derived by Audsley et al. [ABRW91] for the more 
general case of periodic tasks with relative deadlines less than periods, and it 
is presented in Section 4.4. 

A simulation study carried out by Lehoczky, Sha, and Ding [LSD89] showed 
that for random task sets the processor utilization bound is approximately 
0.88. However, since RM is optimal among all static assignments, an improve­
ment of the processor utilization bound can be achieved only by using dynamic 
scheduling algorithms. 
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4.3 EARLIEST DEADLINE FIRST 

The Earliest Deadline First (EDF) algorithm is a dynamic scheduling rule that 
selects tasks according to their absolute deadlines. Specifically, tasks with ear­
lier deadlines will be executed at higher priorities. Since the absolute deadline 
of a periodic task depends on the current j th instance as 

di^j = ^i-\-{j-l)Ti + Di, 

EDF is a dynamic priority assignment. Moreover, it is intrinsically preemptive: 
the currently executing task is preempted whenever another periodic instance 
with earlier deadline becomes active. 

Notice that EDF does not make any specific assumption on the periodicity of 
the tasks; hence, it can be used for scheduling periodic as well as aperiodic 
tasks. For the same reason, the optimality of EDF, proved in Chapter 3 for 
aperiodic tasks, also holds for periodic tasks. 

4.3.1 Schedulability analysis 

Under the assumptions Al, A2, A3, and A4, the schedulability of a periodic task 
set handled by EDF can be verified through the processor utilization factor. In 
this case, however, the least upper bound is one; therefore, tasks may utilize 
the processor up to 100% and still be schedulable. In particular, the following 
theorem holds [LL73, SBS95]: 

Theorem 4.1 A set of periodic tasks is schedulable with EDF if and only if 

n ^ 

^ Ti -

Proof. Only if. We show that a task set cannot be scheduled \i U > 1. 
In fact, by defining T = T1T2 .. .Tn, the total demand of computation time 
requested by all tasks in T can be calculated as 

T̂  rp 

1 -^i 

liU > 1 - that is, if the total demand UT exceeds the available processor time 
T - there is clearly no feasible schedule for the task set. 
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Xk 

idle 

tjjxjaijjjj^lijijjjjjijiiia 

/~ time overflow 

Figure 4.8 Interval of continuous utilization in an EDF schedule before a 
time-overflow. 

//. We show the sufficiency by contradiction. Assume that the condition U <\ 
is satisfied and yet the task set is not schedulable. Let 2̂ be the instant at which 
the time-overflow occurs and let [̂ 1,̂ 2] be the longest interval of continuous 
utilization, before the overflow, such that only instances with deadline less 
than or equal to 2̂ are executed in [̂ 1,̂ 2] (see Figure 4.8 for explanation). 
Note that i\ must be the release time of some periodic instance. Let Cp{ti,t2) 
be the total computation time demanded by periodic tasks in [̂ 1, ̂ 2], which can 
be computed as 

Cp{ti,t2) 

Now, observe that 

n 

Cp{ti,t2) = 2^ 

rk>ti,dk<t2 «=1 
Ti 

Ci. (4.10) 

Ti Ci <Y. 
t2-tl 

Ti 
Ci = {t2-h)U. 

Since a deadline is missed at t2, Cp{ti,t2) must be greater than the available 
processor time (̂ 2 — <i); thus, we must have 

{t2-ti) < CpihM) < {t2-tl)U. 

That is, U > 1, which is a contradiction, Q 
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RM 

-^2 

. 0 

1 p^ 
0 

tta ^ \^-
5 . 10 JJ5 

/ time overflow 

•'•^i r\ 1 1 \\ I / ' 
7 14 

h 
2« 

n r" 21 

• 
25 3 

1 1 1 • 
28 

^n 
0 

r~ 
^^ ^ 

(a) 

EDF 

Figure 4.9 Schedule produced by RM (a) and EDF (b) on the same set of 
periodic ta^ks. 

4.3.2 An example 

Consider the periodic task set illustrated in Figure 4.9, for which the processor 
utilization factor is 

This means that 97% of the processor time is used to execute the periodic tasks, 
whereas the CPU is idle in the remaining 3%. Being U' > In 2, the schedulability 
of the task set cannot be guaranteed under RM, whereas it is guaranteed under 
EDF. Indeed, as shown in Figure 4.9a, RM generates a time-overflow at time 
t = 7j whereas EDF completes all tasks within their deadlines (see Figure 4.9b). 
Another important difference between RM and EDF concerns the number of 
preemptions occurring in the schedule. As shown in Figure 4.9, under RM 
every instance of task r2 is preempted, for a total number of five preemptions 
in the interval T = T1T2. Under EDF, the same task is preempted only once 
in T. The small number of preemptions in EDF is a direct consequence of the 
dynamic priority assignment, which at any instant privileges the task with the 
earliest deadline, independently of tasks' periods. 
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4.4 DEADLINE MONOTONIC 

The algorithms and the schedulabihty bounds illustrated in the previous sec­
tions rely on the assumptions Al, A2, A3, and A4 presented at the beginning 
of this chapter. In particular, assumption A3 imposes a relative deadline equal 
to the period, allowing an instance to be executed anywhere within its period. 
This condition could not always be desired in real-time applications. For ex­
ample, relaxing assumption A3 would provide a more flexible process model, 
which could be adopted to handle tasks with jitter constraints or activities with 
short response times compared to their periods. 

The Deadline Monotonic (DM) priority assignment weakens the "period equals 
deadline" constraint within a static priority scheduling scheme. This algorithm 
was first proposed in 1982 by Leung and Whitehead [LW82] as an extension of 
Rate Monotonic where tasks can have a relative deadline less than their period. 
Specifically, each periodic task r̂  is characterized by four parameters: 

• A phase ^ i ; 

• A worst-case computation time Ci (constant for each instance); 

• A relative deadline Di (constant for each instance); 

• A period T .̂ 

These parameters are illustrated in Figure 4.10 and have the following relation­
ships: 

Ci<Di<Ti 
ri,k = ^i + {k- l)Ti 
di,k = Vi^k + Di. 

T i 

Ci 

D i 

Figure 4.10 Task parameters in Deadline-Monotonic scheduling. 
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According to the DM algorithm, each task is assigned a priority inversely pro­
portional to its relative deadline. Thus, at any instant, the task with the 
shortest relative deadline is executed. Since relative deadlines are constant, 
DM is a static priority assignment. As RM, DM is preemptive; that is, the 
currently executing task is preempted by a newly arrived task with shorter 
relative deadline. 

The Deadline-Monotonic priority assignment is optimal,^ meaning that if any 
static priority scheduling algorithm can schedule a set of tasks with deadlines 
unequal to their periods, then DM will also schedule that task set. 

4.4.1 Schedulability analysis 

The feasibility of a set of tasks with deadlines unequal to their periods could 
be guaranteed using the Rate-Monotonic schedulability test, by reducing tasks' 
periods to relative deadlines: 

J2§: < n(2i/"-l). 
1 = 1 

However, such a test would not be optimal as the workload on the processor 
would be overestimated. A less pessimistic schedulability test can be derived 
by noting that 

• The worst-case processor demand occurs when all tasks are released simul­
taneously; that is, at their critical instants; 

• For each task r^, the sum of its processing time and the interference (pre­
emption) imposed by higher priority tasks must be less than or equal to 

Assuming that tasks are ordered by increasing relative deadlines, so that 

i<j <=^ Di<Dj, 

such a test is given by 

\fi:l<i<n Ci + h < Di, (4.11) 

•^The proof of DM optimality is similar to the one done for RM and it can be found in 
[LW82]. 
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Xk 

Xi -TL 

Figure 4.11 
priority tasks. 

More accurate calculation of the interference on r̂  by higher 

where li is a measure of the interference on ri, which can be computed as the 
sum of the processing times of all higher-priority tasks released before Di: 

Di 
Cj. 

Notice that this test is sufficient but not necessary for guaranteeing the schedu-
lability of the task set. This is due to the fact that U is calculated by assuming 
that each higher-priority task TJ exactly interferes \j&~\ times on r^. However, 
as shown in Figure 4.11, the actual interference can be smaller than 7 ,̂ since 
Ti may terminate earlier. 

To find a sufficient and necessary schedulability test for DM, the exact inter­
leaving of higher-priority tasks must be evaluated for each process. In general, 
this procedure is quite costly since, for each task TI, it requires the construc­
tion of the schedule until Di. Audsley et al. [ABRW92, ABR+93] proposed 
an efficient method for evaluating the exact interference on periodic tasks and 
derived a sufficient and necessary schedulability test for DM. 

4.4.2 Sufficient and necessary schedulability 
test 

According to the method proposed by Audsley at al., the longest response time 
Ri of a periodic task r̂  is computed, at the critical instant, as the sum of its 
computation time and the interference due to preemption by higher-priority 
tasks: 
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where 
i-l 

3 = 1 
T c,. 

Ri 
Cj. (4.12) 

Hence, 
2 - 1 

Ri = Ci + y 
3 = 1 

No simple solution exists for this equation since Ri appears on both sides. Thus, 
the worst-case response time of task r̂  is given by the smallest value of Ri that 
satisfies equation (4.12). Notice, however, that only a subset of points in the 
interval [0,Di] need to be examined for feasibility. In fact, the interference on 
Ti only increases when there is a release of a higher-priority task. 

To simplify the notation, let R^ be the A:th estimate of Ri and let /f be the 
interference on task Ti in the interval [0,i?f]: 

Rf 
C,. (4.13) 

Then the calculation of Ri is performed as follows: 

1. Iteration starts with R^ = Ci, which is the first point in time that TJ could 
possibly complete. 

2. The actual interference /f in the interval [0, i?f ] is computed by equation 
(4.13). 

3. If I^ -\-Ci — R^, then R^ is the actual worst-case response time of task r^; 
that is, Ri = R^. Otherwise, the next estimate is given by 

and the iteration continues from step 2. 

Once Ri is calculated, the feasibility of task Ti is guaranteed if and only if 
Ri < Di. 

To clarify the schedulability test, consider the set of periodic tasks shown in 
Table 4.3, simultaneously activated at time ^ = 0. In order to guarantee r4, we 
have to calculate R4 and verify that R4 < D4. The schedule produced by DM 
is illustrated in Figure 4.12, and the iteration steps are shown below. 
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n 
^2 

T3 

T4 

Ci 

1 
1 
2 
1 

T, 

4 
5 
6 
11 

Di 

3 
4 
5 
10 

Table 4.3 A set of periodic tcisks with deadlines less than periods. 

-ci 

'^2 

^̂ 3 

T4 
n r 
3 4 10 II 12 

Figure 4.12 Example of schedule produced by DM. 
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Step 0: R^^ = C4 = 1, but /^ = 4 and I^ + C4 > R^^, 
hence r^ does not finish at R^. 

Step 1: Rl = l2-\-C4 = 5, but / ] = 5 and / ] + C4 > Rl 
hence T4 does not finish at Rl. 

Step 2: Rl = / ] + C4 = 6, but / | = 6 and / | + C4 > i? | 
hence r4 does not finish at Rl. 

Step 3: Rl = 7 | + C4 = 7, but 7 | = 7 and / | + C4 > i^| 
hence r4 does not finish at Rl. 

Step 4: î ^ = / | -h C4 ^ 9, but / | = 9 and I^ -]-C4 > Rj 
hence T4 does not finish at R^. 

Step 5: Rl = Ij-\-C4 = 10, but / | = 9 and / | + C4 = i?^ 
hence T4 finishes at R4 = 10. 

Since R4 < D4, T4 is schedulable within its deadhne. If Ri < Di for all tasks, 
we conclude that the task set is schedulable by DM. Such a schedulability test 
can be performed by the algorithm illustrated in Figure 4.13. 

DM_guarantee (F) { 

} 

for (each TJ € F) { 
7 = 0; 
d o { 

R = I + Ci; 

if {R > Di) 

^=Er=i [ 
} while (/ + d 

} 

return 

> R)\ 

return(SCHEDULABLE); 

(UNSCHEDULABLE); 

Figure 4 .13 Algorithm for testing the schedulabihty of a periodic task set T 
under DeadHne Monotonic. 
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4.5 EDF WITH DEADLINES LESS THAN 
PERIODS 

Under EDF, the analysis of periodic tasks with deadUnes less than periods 
can be performed using a processor demand criterion. This method has been 
described by Baruah, Rosier, and Howell in [BRH90] and later used by Jeffay 
and Stone [JS93] to account for interrupt handling costs under EDF. Here, we 
first illustrate this approach for the case of deadlines equal to periods and then 
extend it to more general task models. 

4.5.1 The processor demand approach 

In general, the processor demand of a task TJ in any interval [t,t + L] is the 
amount of processing time required by r̂  in [t, t + L] that has to complete at 
or before t -\- L. In a deadline-based system, it is the processing time required 
in [t, t -\- L] that has to be executed with deadlines less than or equal to ^ + L. 

For a set of periodic tasks (with deadlines equal to periods) invoked at time 
^ = 0 the cumulative processor demand in any interval [0, L] is the total amount 
of processing time Cp(0, L) that has to be executed with deadlines less than or 
equal to L. That is, 

Cp(0,L) = J 2 ^ ^ 
i=l 

Ti 
Ci. 

Given this definition, the schedulability of a periodic task set is guaranteed if 
and only if the cumulative processor demand in any interval [0, L] is less than 
the available time; that is, the interval length L. This is stated by the following 
theorem: 

Theorem 4.2 (JefFay and Stone) A set of periodic tasks is schedulahle by 
EDF if and only if for all L, L >0, 

^ ^ EI ^ k- (4.14) 
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Proof. The theorem is proved by showing that equation (4.14) is equivalent 
to the classical Liu and Layland's condition 

Ci 
^ = E ^ ^ i - (4.15) 

i=l 

(4.15) => (4.14). If ^ < 1, then for all L, L > 0, 

L>UL = ±(^)c, >± L_ 
Ci. 

To demonstrate (4.15) <^ (4.14) we show that -i(4.15) ^ ->(4.14). That is, we 
assume U > 1 and prove that there exist an L > 0 for which (4.14) does not 
hold. If ^ > 1, then for L = lcm{Ti,... ,Tn), 

^<^^ = E ^ F ' = E 
i=\ 

Tr 

L^ 

^ c.. 

D 

Notice that to apply Theorem 4.2 it suffices to test equation (4.14) only for 
values of L equal to release times less than the hyperperiod H. In fact, if 
equation (4.14) holds for L = r^, it will also hold for any L G [rk,rk-\-i), since 

yie [rfc,rfc+i). 
L 

7^ 
rk_ 

The values of L for which equation (4.14) has to be tested can still be reduced to 
the set of release times within the busy period. The busy period is the smallest 
interval [0, L] in which the total processing time W{L) requested in [0,L] is 
completely executed. The quantity W{L) can be computed as 

W{L) - Yl Ci. (4.16) 

Thus, the busy period Bp can be defined as 

Bp = min{L | W{L) = L} 

and computed by the algorithm shown in Figure 4.14. 

Notice that, when the system is overloaded, the processor is always busy and 
the busy period is equal to infinity. On the other hand, if the system is not 
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busy .period { 

V = W{L)\ 

H = lcm{Ti,... ,Tn); 

while (L' # L) and {V < H) { 
L = L'; 
L' = W(L); 

} 
if (V <H) Bp = L; 

else Bp = INFINITY; 

} 

Figure 4.14 Algorithm for computing the busy period. 

overloaded, the busy period coincides either with the beginning of an idle time 
(see Figure 4.15a) or with the release of a periodic instance (see Figure 4.15b). 

-Ci 

^ 2 

X l 

^ 2 

H H I w ^ L ^ 
n,i 

^2,1 

1,1 

^2,1 

n,2 n,3 

(a) 

.1,2 1,3 

n,4 

JiiiiiiiH p^^^^a, l i l i l i iM 1 ^ ^ ^ ^ 

1,4 

iL_-L 
(b) 

Figure 4.15 Examples of finite busy periods. 
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'̂ 1 fe^»a^3 
^-^ 

time overflow 

^2 

t 2 

li^-1-^yl 

i-v>j^>y»^gi-i 

I^MW..-ht.ml 

6 8 10 12 16 

Figure 4.16 Examples of processor demand analysis. 

L 

6 
8 
10 
12 

Cp(0,L) 

3 
5 
10 
13 

result 

OK 
OK 
OK 
N O 

Table 4.4 Results of the processor demand criterion. 

Based on the previous observations, to apply Theorem 4.2, equation (4.14) can 
be tested for all L e 7Z, where 

7^ = {nj I Tij < min(j5p, H), I < i < n, j > 1}. 

Example 

To illustrate the processor demand criterion, consider the example shown in 
Figure 4.16, where three periodic tasks with periods 6, 8, 10, and processing 
times 3, 2, 5, respectively, are executed under EDF. In this case, the set check­
ing points for equation (4.14) is given by 7^ = {6,8,10,12,16,. . .}. Applying 
Theorem 4.2 we have the results shown in Table 4.4. 



106 C H A P T E R 4 

4.5.2 Deadlines less than periods 

The processor demand criterion can easily be extended to deal with tasks with 
deadlines different than periods. For example, consider the two tasks shown in 
Figure 4.17. In this case, the processor demands for tasks ri and T2 in [0, L] 
are clearly given by 

Ci(0,L) = 

C2(0,L) = 

In general, we can write 

Ci(0,L) = 
L~Di 

+ l]Ci (4.17) 

1:2 ^ ^ j V ^^B Y ^^B 

Figure 4.17 Processor demand when deadlines are less than periods. 

In summary, the schedulability of a generic task set can be tested by the fol­
lowing theorem [BRH90], whose proof is very similar to the one shown for 
Theorem 4.2. 

Theorem 4.3 If V = {di^k \ di^k = kTi + Di, di^k < min{Bp,H), I < i < 
n, k > 0}, then a set of periodic tasks with deadlines less than periods is 
schedulable by EDF if and only if 

(4.18) 
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4.6 SUMMARY 

In conclusion, the problem of scheduling a set of independent and preemptable 
periodic tasks has been solved both under fixed and dynamic priority assign­
ments. The Rate-Monotonic (RM) algorithm is optimal among all fixed-priority 
assignments, whereas the Eearliest Deadline First (EDF) algorithm is optimal 
among all dynamic priority assignments. When deadlines are equal to periods, 
the guarantee test for both algorithms can be performed in 0{n) (being n the 
number of periodic tasks in the set), using the processor utilization approach. 
The test for RM, however, provides only a sufficient condition for guaranteeing 
the feasibility of the schedule. 

In the general case in which deadlines can be less or equal to periods, the 
schedulability analysis becomes more complex and can be performed in pseudo-
polynomial time [BRH90]. Under fixed-priority assignments, the feasibility of 
the task set can be tested using the response time approach, which uses a 
recurrent formula to calculate the worst-case finishing time of any task. Under 
dynamic priority assignments, the feasibility can be tested using the processor 
demand approach. In both cases the test provides a necessary and sufficient 
condition. The various methods are summarized in Figure 4.18. 

D ; < T ; 

Static 

priority 

Dynamic 

priority 

RM 

Processor utilization approach 

U < n(2 ^^''- J) 

EDF 

Processor utilization approach 

U < J 

DM 

Response time approach 

i- J 

Cj < 

EDF * 

Processor demand approach 

L- £>, 

- ) 

Di 

Ci 

Figure 4.18 Summary of guarantee tests for periodic tasks. 
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Exercises 

4.1 Verify the schedulability and construct the schedule according to the RM 
algorithm for the following set of periodic tasks: 

4.3 

4.4 

4.5 

4.6 

4.7 

4.8 

~c~] 
Ti 1 

1 Ti 

1 
3 

T2 

1 
4 

4.2 Given the following set of periodic tasks 

~cr] 
Ti 

1 '̂ i 
["T" 

4 

T2 

2 
6 

T3 

3 
10 j 

verify the schedulability under RM using the processor utilization ap­
proach. Then, perform the worst-case response time analysis and con­
struct the schedule. 

Verify the schedulability under RM and construct the schedule of the 
following task set: 

~c~^ 
Ti 

'̂ 1 

1 
4 

^2 

2 
6 

T3 

3 
8 

Verify the schedulability under EDF of the task set shown in Exercise 
4.3, and then construct the corresponding schedule. 

Compute the busy period for the task set described in Exercise 4.2. 

Compute the busy period for the task set described in Exercise 4.3. 

Verify the schedulability under EDF and construct the schedule of the 
following task set: 

~c~\ 
Di 
Ti 

r\ 

r2~ 
5 
6 

r2 

2 
4 
8 

T3 

4 
8 
12 

Verify the schedulability of the task set described in Exercise 4.7 using 
the Deadline-Monotonic algorithm. Then construct the schedule. 



5 
FIXED-PRIORITY SERVERS 

5.1 INTRODUCTION 

The scheduling algorithms treated in the previous chapters deal with homo­
geneous sets of tasks, where all computational activities are either aperiodic 
or periodic. Many real-time control applications, however, require both types 
of processes, which may also differ for their criticalness. Typically, periodic 
tasks are time-driven and execute critical control activities with hard timing 
constraints aimed at guaranteeing regular activation rates. Aperiodic tasks are 
usually event-driven and may have hard, soft, or non-real-time requirements 
depending on the specific application. 

When dealing with hybrid task sets, the main objective of the kernel is to 
guarantee the schedulability of all critical tasks in worst-case conditions and 
provide good average response times for soft and non-real-time activities. Off­
line guarantee of event-driven aperiodic tasks with critical timing constraints 
can be done only by making proper assumptions on the environment; that is, 
by assuming a maximum arrival rate for each critical event. This implies that 
aperiodic tasks associated with critical events are characterized by a minimum 
interarrival time between consecutive instances, which bounds the aperiodic 
load. Aperiodic tasks characterized by a minimum interarrival time are called 
sporadic. They are guaranteed under peak-load situations by assuming their 
maximum arrival rate. 

If the maximum arrival rate of some event cannot be bounded a priori, the 
associated aperiodic task cannot be guaranteed off-line, although an on-line 
guarantee of individual aperiodic requests can still be done. Aperiodic tasks 
requiring on-line guarantee on individual instances are called firm. Whenever 
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a firm aperiodic request enters the system, an acceptance test can be executed 
by the kernel to verify whether the request can be served within its deadhne. 
If such a guarantee cannot be done, the request is rejected. 

In the next sections, we present a number of scheduhng algorithms for handling 
hybrid task sets consisting of a subset of hard periodic tasks and a subset of soft 
aperiodic tasks. All algorithms presented in this chapter rely on the following 
assumptions: 

• Periodic tasks are scheduled based on a fixed-priority assignment; namely, 
the Rate-Monotonic (RM) algorithm; 

• All periodic tasks start simultaneously at time ^ = 0 and their relative 
deadlines are equal to their periods. 

• Arrival times of aperiodic requests are unknown. 

• When not explicitly specified, the minimum interarrival time of a sporadic 
task is assumed to be equal to its deadline. 

Aperiodic scheduling under dynamic priority assignment is discussed in the 
next chapter. 

5.2 BACKGROUND SCHEDULING 

The simplest method to handle a set of soft aperiodic activities in the presence 
of periodic tasks is to schedule them in background; that is, when there are not 
periodic instances ready to execute. The major problem with this technique 
is that, for high periodic loads, the response time of aperiodic requests can 
be too long for certain applications. For this reason, background scheduling 
can be adopted only when the aperiodic activities do not have stringent timing 
constraints and the periodic load is not high. 

Figure 5.1 illustrates an example in which two periodic tasks are scheduled by 
RM, while two aperiodic tasks are executed in background. Since the processor 
utilization factor of the periodic task set {U — 0.73) is less than the least upper 
bound for two tasks {Uiuhi"^) — 0.83), the periodic tasks are schedulable by 
RM. Notice that the guarantee test does not change in the presence of aperi­
odic requests, since background scheduling does not influence the execution of 
periodic tasks. 
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aperiodic | 1 
requests 
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Figure 5.1 Example of background scheduling of aperiodic requests under 
Rate Monotonic. 

Periodic Tasks 

High-Priority Queue 

Aperiodic Tasks 

Low-Priority Queue 

Figure 5.2 Scheduling queues required for background scheduling. 

The major advantage of background scheduling is its simpUcity. As shown in 
Figure 5.2, two queues are needed to implement the scheduhng mechanism: 
one (with a higher priority) dedicated to periodic tasks and the other (with 
a lower priority) reserved for aperiodic requests. The two queueing strategies 
are independent and can be realized by different algorithms, such as RM for 
periodic tasks and First Come First Served (FCFS) for aperiodic requests. 
Tasks are taken from the aperiodic queue only when the periodic queue is 
empty. The activation of a new periodic instance causes any aperiodic tasks to 
be immediately preempted. 

5.3 POLLING SERVER 

The average response time of aperiodic tasks can be improved with respect to 
background scheduling through the use oih server; that is, a periodic task whose 
purpose is to service aperiodic requests as soon as possible. Like any periodic 
task, a server is characterized by a period Ts and a computation time Cg, called 
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Server 
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Figure 5.3 Example of a Polling Server scheduled by RM. 

server capacity. In general, the server is scheduled with the same algorithm used 
for the periodic tasks, and, once active, it serves the aperiodic requests within 
the limit of its server capacity. The ordering of aperiodic requests does not 
depend on the scheduling algorithm used for periodic tasks, and it can be done 
by arrival time, computation time, deadline, or any other parameter. 

The Polling Server (PS) is an algorithm based on such an approach. At regu­
lar intervals equal to the period T^, PS becomes active and serves any pending 
aperiodic requests within the limit of its capacity Cs • If no aperiodic requests 
are pending, PS suspends itself until the beginning of its next period, and the 
time originally allocated for aperiodic service is not preserved for aperiodic ex­
ecution but is used by periodic tasks [LSS87, SSL89]. Note that if an aperiodic 
request arrives just after the server has suspended, it must wait until the be­
ginning of the next polling period, when the server capacity is replenished at 
its full value. 

Figure 5.3 illustrates an example of aperiodic service obtained through a Polling 
Server scheduled by RM. The aperiodic requests are reported on the third 
row, whereas the fourth row shows the server capacity as a function of time. 
Numbers beside the arrows indicate the computation times associated with the 
requests. 
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In the example shown in Figure 5.3, the PoUing Server has a period Tg = 5 
and a capacity C5 = 2, so it runs with an intermediate priority with respect 
to the other periodic tasks. At time ^ — 0, the processor is assigned to task 
Ti, which is the highest-priority task according to RM. At time t = 1, TI 
completes its execution and the processor is assigned to PS. However, since no 
aperiodic requests are pending, the server suspends itself and its capacity is 
used by periodic tasks. As a consequence, the request arriving at time t = 2 
cannot receive immediate service but must wait until the beginning of the 
second server period {t = 5). At this time, the capacity is replenished at its 
full value {Cs = 2) and used to serve the aperiodic task until completion. Note 
that, since the capacity has been totally consumed, no other aperiodic requests 
can be served in this period; thus, the server becomes idle. 

The second aperiodic request receives the same treatment. However, note that 
since the second request only uses half of the server capacity, the remaining 
half is discarded because no other aperiodic tasks are pending. Also note that, 
at time t — 16, the third aperiodic request is preempted by task r i , and the 
server capacity is preserved. 

5.3.1 Schedulability analysis 

We first consider the problem of guaranteeing a set of hard periodic tasks in 
the presence of soft aperiodic tasks handled by a Polling Server. Then we show 
how to derive a schedulability test for firm aperiodic requests. 

The schedulability of periodic tasks can be guaranteed by evaluating the inter­
ference introduced by the Polling Server on periodic execution. In the worst 
case, such an interference is the same as the one introduced by an equivalent 
periodic task having a period equal to Tg and a computation time equal to Cg-
In fact, independently of the number of aperiodic tasks handled by the server, 
a maximum time equal to Cs is dedicated to aperiodic requests at each server 
period. As a consequence, the processor utilization factor of the Polling Server 
is Us = Cs/Ts, and hence the schedulability of a periodic set with n tasks and 
utilization Up can be guaranteed if 

Up-]-Us < Uiub{n-\-l). 

If periodic tasks (including the server) are scheduled by RM, the schedulability 
test becomes 

J2^ + ^ < (n + l)[2iA"+i)-l]. 
1 = 1 * * 
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A more precise schedulability test for aperiodic servers that behave hke a pe­
riodic task will be derived in Section 5.5 for the Priority Exchange algorithm. 
Note that more Polling Servers can be created and execute concurrently on dif­
ferent aperiodic task sets. For example, a high-priority server could be reserved 
for a subset of important aperiodic tasks, whereas a lower-priority server could 
be used to handle less important requests. In general, in the presence of m 
servers, a set of n periodic tasks is guaranteed if 

m 

Up + Y^Usj < Uiub{n + m). 

5.3.2 Aperiodic guarantee 

In order to analyze the schedulability of firm aperiodic activities under a Polling 
Server, consider the case of a single aperiodic request J a, arrived at time Va, 
with computation time Ca and deadline D^. Since an aperiodic request can 
wait for at most one period before receiving service, if Ca < Cs the request is 
certainly completed within two server periods. Thus, it is guaranteed if 

2Ts < Da-

For arbitrary computation times, the aperiodic request is certainly completed 
in \Ca/Cs] server periods; hence, it is guaranteed if 

Ts-h 
C^ 
Cs 

Ts <Da 

This schedulability test is only sufficient because it does not consider when 
the server executes within its period. A sufl[icient and necessary schedulability 
test can be found for the case in which PS has the highest priority among the 
periodic tasks; that is, the shortest period. In this case, in fact, it always exe­
cutes at the beginning of its periods, so that the finishing time of the aperiodic 
request can be estimated precisely. As shown in Figure 5.4, by defining 

Ga 

Cs 

Ta^ 

T 

the initial delay of request J a is given by {GaTg — Va)- Then, since FaCs is the 
total capacity consumed by Ja in Fa server periods, the residual execution to 
be done in the next server period is 

^a — ^a ^ ^a^s-
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Cs L L L L 
GaT.s FaTs 

Figure 5.4 Calculation of the finishing time of an aperiodic request scheduled 
by a Polling Server having the highest priority. 

As a consequence, the aperiodic finishing time can be computed as 

fa = GaTs + FaTs + Ra, 

and its schedulabihty can be guaranteed if and only if fa < da, being da the ab­
solute deadline of the request {da = Ta + Da). Thus, the resulting schedulabihty 
condition is 

{Fa+Ga)Ts-\-Ra < da. 

This result can be extended to a set of firm aperiodic requests ordered in a 
queue by increasing deadline. In this case, at any time t, the total aperiodic 
computation that has to be served in any interval [t,dk] is equal to the sum of 
the remaining processing times Ci{t) of the tasks with deadline di < dk] that is, 

Cape{t,dk) = }^Ci{t), 

i=l 

Note that, if Cs{t) is the residual server capacity at time t and PS has the 
highest priority, a portion of Cape equal to Cs{t) is immediately executed in the 
current period. Hence, the finishing time of request Jk can be computed as 

fk = 
t + Cape{t.dk) if Cape{t.dk) < Cs{t) 

{Fk + Gk)Ts + Rk otherwise. 

where 
Fk = 

Gk = 

Ca,,rXt,dK,)-C,{t) 
C, 

y Rk = Cape{t^dk) — Cs{t) — FkCg. 

Once all finishing times have been calculated, the set of firm aperiodic requests 
is guaranteed at time t if and only if 

fk<dk V/c = l , . . . 
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5.4 DEFERRABLE SERVER 

The Deferrable Server (DS) algorithm is a service technique introduced by 
Lehoczky, Sha, and Strosnider in [LSS87, SLS95] to improve the average re­
sponse time of aperiodic requests with respect to poUing service. As the PolHng 
Server, the DS algorithm creates a periodic task (usually having a high prior­
ity) for servicing aperiodic requests. However, unlike polling, DS preserves its 
capacity if no requests are pending upon the invocation of the server. The 
capacity is maintained until the end of the period, so that aperiodic requests 
can be serviced at the same server's priority at anytime, as long as the capacity 
has not been exhausted. At the beginning of any server period, the capacity is 
replenished at its full value. 

The DS algorithm is illustrated in Figure 5.5 using the same task set and the 
same server parameters {Cs — 2, Ts = 5) considered in Figure 5.3. At time 
^ = 1, when Ti is completed, no aperiodic requests are pending; hence, the 
processor is assigned to task r2. However, the DS capacity is not used for 
periodic tasks, but it is preserved for future aperiodic arrivals. Thus, when 
the first aperiodic request arrives at time ^ = 2, it receives immediate service. 
Since the capacity of the server is exhausted at time ^ = 4, no other requests 
can be serviced before the next period. At time ^ = 5, C^ is replenished at 
its full value and preserved until the next arrival. The second request arrives 
at time ^ = 8, but it is not served immediately because ri is active and has a 
higher priority. 

Thus, DS provides much better aperiodic responsiveness than polling, since it 
preserves the capacity until it is needed. Shorter response times can be achieved 
by creating a Deferrable Server having the highest priority among the periodic 
tasks. An example of high-priority DS is illustrated in Figure 5.6. Notice that 
the second aperiodic request preempts task r i , being C^ > 0 and Ts < Ti, 
and it entirely consumes the capacity at time ^ = 10. When the third request 
arrives at time f = 11, the capacity is zero; hence, its service is delayed until 
the beginning of the next server period. The fourth request receives the same 
treatment because it arrives at time t = 16, when Cs is exhausted. 

5.4.1 Schedulability analysis 

Any schedulability analysis related to the Rate-Monotonic algorithm has been 
done on the implicit assumption that a periodic task must execute whenever 
it is the highest-priority task ready to run. It is easy to see that the De-
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Figure 5.5 Example of a Deferrable Server scheduled by RM. 
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Figure 5.6 Example of high-priority Deferrable Server. 
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Figure 5.7 DS is not equivalent to a periodic task. In fact, the periodic set 
{'Ti, T2} is schedulable by RM (a); however, if we replace r i with DS, T2 misses 
its deadline (b). 

ferrable Server violates this basic assumption. In fact, the schedule i l lustrated 
in Figure 5.6 shows tha t DS does not execute at t ime ^ = 0, al though it is the 
highest-priority task ready to run, but it defers its execution until t ime ^ = 5, 
which is the arrival t ime of the first aperiodic request. 

If a periodic task defers its execution when it could execute immediately, then a 
lower-priority task could miss its deadline even if the task set was schedulable. 
Figure 5.7 illustrates this phenomenon by comparing the execution of a periodic 
task to the one of a Deferrable Server with the same period and execution t ime. 

The periodic task set considered in this example consists of two tasks, r i and 
r2, having the same computat ion t ime (Ci = C2 = 2) and different periods 
(Ti =: 4, T2 = 5). As shown in Figure 5.7a, the two tasks are schedulable by 
RM. However, if r i is replaced with a Deferrable Server having the same period 
and execution t ime, the low-priority task T2 can miss its deadline depending 
on the sequence of aperiodic arrivals. Figure 5.7b shows a part icular sequence 
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of aperiodic requests that cause T2 to miss its deadline at time ^ = 15. This 
happens because, at time ^ = 8, DS does not execute (as a normal periodic 
task would do) but preserves its capacity for future requests. This deferred 
execution, followed by the servicing of two consecutive aperiodic requests in the 
interval [10,14], prevents task r2 from executing during this interval, causing 
its deadline to be missed. 

Such an invasive behavior of the Deferrable Server results in a lower schedula-
bility bound for the periodic task set. The calculation of the least upper bound 
of the processor utilization factor in the presence of Deferrable Server is shown 
in the next section. 

Calculation of Uiuh for RM+DS 

The schedulability bound for a set of periodic tasks with a Deferrable Server 
is derived under the same basic assumptions used in Chapter 4 to compute 
Uiuh for RM. To simplify the computation of the bound for n tasks, we first 
determine the worst-case relations among the tasks, and then we derive the 
lower bound against the worst-case model [LSS87]. 

Consider a set of n periodic tasks, r i , . . . , r n , ordered by increasing periods, 
and a Deferrable Server with a higher priority. The worst-case condition for the 
periodic tasks, as derived for the RM analysis, is such that Ti < T-n < 2Ti. In 
the presence of a DS, however, the derivation of the worst-case is more complex 
and requires the analysis of three different cases, as discussed in [SLS95]. For 
the sake of clarity, here we analyze one case only, the most general, in which 
DS may execute three times within the period of the highest-priority periodic 
task. This happens when DS defers its service at the end of its period and 
also executes at the beginning of the next period. In this situation, depicted 
in Figure 5.8, the full processor utilization is achieved by the following tasks' 
parameters: 

Ci = T2- Ti 
C2 = Ts — T2 

^n — l — J-n -^n — 1 
n - 1 ^ _ 3T.+ 

2 [ C„ = T,-Cs-E7=lCi = ^T„+T,-2T„ 
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Figure 5.8 Worst-ccise task relations for a Deferrable Server. 

Hence, the resulting utilization is 

^ S • /-n I • • • "I ,T_, I 
Ti Tn-l 2Tn 

Defining 

= C/. + — + . . . + ;r; + ( - rp + - ) ; ^ - n. 

r i?s — Ti/Ts 

Ri = Ti+i/Ti 

[ K = \{ZT,ITi + 1) 

and noting that 

R\R2 • • -Rn-l — 

the utilization factor may be written as 

n - l 

U -^^ + E^^ + ^ 
K 

i?2 . . . Rn-l 
n. 

Following the approach used for RM, we minimize U over Ri, i = 1,.. 
Hence, 

dU _ K 

9Rr " R^iir^^-Rj)' 

. , n - 1 . 
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Thus, defining P = R1R2 -.. Rn-i^ U is minimum when 

f RiP = K 
R2P = K 

Rn-lP = K 

that is, when all Ri have the same value: 

R\ — R2 = ... — Rn-i — K /". 

Substituting this value in U we obtain 

Uiuh-Us = {n-l)K'/^ + 
K 

that is. 

Now, noting that 

we have 

A^(l-l/n) 

= n[K^I'' - 1) 

n = 

TT — ^ — ^ 1 ~ ^s Rs~l 

R, = {2Us + l). 

Thus, K can be rewritten as 

K = 
_ 3 _ 1 \ _ Us+ 2 
2Rs ^2) ~ 2Us-¥l' 

and finally 

Uiuh = Us +n 
Us+ 2 

2Us-^l 

l / n 

- 1 

(5.1) 

(5.2) 

Taking the limit as n -> 00, we find the worst-case bound as a function of Us 
to be given by 

hm Uiut = Us + H^^f^)' (5.3) 
n ^ o o ZUs -\- 1 

Thus, given a set of n periodic tasks and a Deferrable Server with utilization 
factors Up and Us, respectively, the schedulability of the periodic task set is 
guaranteed under RM if 

Up + Us < Uiub 
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Figure 5.9 Schedulability bound for periodic tasks and DS as a function of 
the server utilization factor Us. 

that is, if 

Up < ln( 
Us + 2 . 

(5.4) 

A plot of equation (5.3) as a function of Us is shown in Figure 5.9. For compar­
ison, the RM bound is also reported in the plot. Notice that for Ug < OA the 
presence of DS worsens the RM bound, whereas for Ug > 0.4 the RM bound is 
improved. 

Deriving equation (5.3) with respect to Us, we can find the absolute minimum 
value of Uiub'-

dUiuh ^ {2Us -f 1) {2Us + 1) - 2{Us + 2) ^ 2U^ + 5Us - 1 
dUs iUs + 2) (2/7,+ 1)2 (^, + 2)(2^, + l ) ' 

The value of Us that minimizes the above expression is 

SO the minimum value of Uiuh is t/*^̂  — 0.652. 
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5.4.2 Aperiodic guarantee 

The schedulability analysis for firm aperiodic tasks is derived by assuming a 
high-priority Deferrable Server. A guarantee test for a single request is first 
derived and then extended to a set of aperiodic tasks. Since DS preserves its 
execution time, let Cs{t) be the value of its capacity at time t. Then, when 
a firm aperiodic request Ja{Ca,Da) enters the system at time t = Va (and no 
other requests are pending), three cases can occur: 

1. Ca < Cs{t). Hence, Ja completes at time fa = t -{- Ca-

2. Ca > Cs{t) and the capacity is completely discharged within the current 
period. In this case, a portion Aa = Cs{t) of Ja is executed in the current 
server period. 

3. Ca > Cs{t), but the period ends before the capacity is completely dis­
charged. In this case, the portion of Ja executed in the current server 
period is Aa = GaTg - Va, where Ga = \t/Ts]. 

In the last two cases, depicted in Figure 5.10, the portion of Ja executed in the 
current server period can be computed as 

Aa = mm[cs{t),{GaTs - Ta)]. 

Using the same notation introduced during polling analysis, the finishing time 
fa of request Ja can then be derived as follows (see Figure 5.11): 

fa = 
ra+Ca iiCa<Cs{t) 

(Fa + Ga)Ts + Ra Otherwise, 

where 

Thus, the schedulabiUty of a single aperiodic request is guaranteed if and only 
iifa<ra+Da. 
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Figure 5.10 Execution of J a in the first server period when Ca > Cs{t). 
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Figure 5.11 Calculation of the finishing time of Ja under DS. 

To guarantee a set of firm aperiodic requests note that, at any time f, the total 
aperiodic computation that has to be served in any interval [t,dk] is equal to the 
sum of the remaining processing times Ci{t) of the tasks with deadline di < dk\ 
that is, 

k 

Cape{t,dk) = ^Ci{t). 

And using the same approach adopted for the Polling Server, we define: 

Ak = mm[cs{t),{GaTs-ra)] 

Rk — Cape{t^dk) — Ak — FkCs-

Hence, the finishing time of the /cth request is 

fk 
t + c, ape n ^ape S ^sV') 

[ {Fk + Gk)Ts + Rk otherwise. 

Thus, a set of firm aperiodic requests is guaranteed at time t, if and only if 

fk <dk V/c = l , . . . , n . 
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5.5 PRIORITY EXCHANGE 

The Priority Exchange (PE) algorithm is a scheduUng technique introduced by 
Lehoczky, Sha, and Strosnider in [LSS87] for servicing a set of soft aperiodic 
requests along with a set of hard periodic tasks. With respect to DS, PE has 
a slightly worse performance in terms of aperiodic responsiveness but provides 
a better schedulability bound for the periodic task set. 

Like DS, the PE algorithm uses a periodic server (usually at a high priority) 
for servicing aperiodic requests. However, it differs from DS in the manner 
in which the capacity is preserved. Unlike DS, PE preserves its high-priority 
capacity by exchanging it for the execution time of a lower-priority periodic 
task. 

At the beginning of each server period, the capacity is replenished at its full 
value. If aperiodic requests are pending and the server is the ready task with 
the highest priority, then the requests are serviced using the available capacity; 
otherwise Cs is exchanged for the execution time of the active periodic task 
with the highest priority. 

When a priority exchange occurs between a periodic task and a PE server, the 
periodic task executes at the priority level of the server while the server accu­
mulates a capacity at the priority level of the periodic task. Thus, the periodic 
task advances its execution, and the server capacity is not lost but preserved 
at a lower priority. If no aperiodic requests arrive to use the capacity, priority 
exchange continues with other lower-priority tasks until either the capacity is 
used for aperiodic service or it is degraded to the priority level of background 
processing. Since the objective of the PE algorithm is to provide high respon­
siveness to aperiodic requests, all priority ties are broken in favor of aperiodic 
tasks. 

Figure 5.12 illustrates an example of aperiodic scheduling using the PE algo­
rithm. In this example, the PE server is created with a period T^ = 5 and a 
capacity Cg = l- Since the aperiodic time managed by the PE algorithm can 
be exchanged with all periodic tasks, the capacity accumulated at each priority 
level as a function of time is represented in overlapping with the schedule of 
the corresponding periodic task. In particular, the first timeline of Figure 5.12 
shows the aperiodic requests arriving in the system, the second timeline visu­
alizes the capacity available at PE's priority, whereas the third and the fourth 
ones show the capacities accumulated at the corresponding priority levels as a 
consequence of the priority exchange mechanism. 
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Figure 5.12 Example of aperiodic service under a PE server. 

At time ^ = 0, the PE server is brought at its full capacity, but no aperiodic 
requests are pending, so Cg is exchanged with the execution time of task r i . 
As a result, ri advances its execution and the server accumulates one unit of 
time at the priority level of r i . At time t = 4^ TI completes and T2 begins to 
execute. Again, since no aperiodic tasks are pending, another exchange takes 
place between ri and r2. At time ^ = 5, the capacity is replenished at the server 
priority, and it is used to execute the first aperiodic request. At time ^ = 10, 
Cs is replenished at the highest priority, but it is degraded to the priority level 
of Ti for lack of aperiodic tasks. At time t = 12, the capacity accumulated 
at the priority level of ri is used to execute the second aperiodic request. At 
time ^ = 15, a new high-priority replenishment takes place, but the capacity is 
exchanged with the execution time of T2. Finally, at time ^ = 18, the remaining 
capacity accumulated at the priority level of T2 is gradually discarded because 
no tasks are active. 

Note that the capacity overlapped to the schedule of a periodic task indicates, 
at any instant, the amount of time by which the execution of that task is 
advanced with respect to the case of no exchange. 

Another example of aperiodic scheduling under the PE algorithm is depicted 
in Figure 5.13. Here, at time ^ = 5, the capacity of the server immediately 
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Figure 5.13 Example of aperiodic service under a PE server. 

degrades down to the lowest-priority level of T2, since no aperiodic requests are 
pending and ri is idle. At time ^ = 11, when request Ji arrives, it is interesting 
to observe that the first unit of computation time is immediately executed by 
using the capacity accumulated at the priority level of r i . Then, since the 
remaining capacity is available at the lowest-priority level and ri is still active, 
Ji is preempted by TI and is resumed at time ^ = 13, when ri completes. 

5,5.1 Schedulability analysis 

The schedulability bound for a set of periodic tasks running along with a Prior­
ity Exchange server is derived with the same technique used for the Deferrable 
Server. The least upper bound of the processor utilization factor in the pres­
ence of PE is calculated by assuming that PE is the highest-priority task in 
the system. To simplify the computation of the bound, the worst-case relations 
among the tasks is first determined, and then the lower bound is computed 
against the worst-case model [LSS87]. 
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Figure 5.14 Worst-case tasks' relations under Priority Exchange. 

Calculation of Uiub for PE+RM 

Consider a set of n periodic tasks, n , . . . ,rn, ordered by increasing periods, 
and a PE server with a higher priority. The worst-case phasing and period 
relations for the periodic tasks are the same as the ones derived for the RM 
analysis; hence, Tg < Tn < 2T5. The only difference with DS is that a PE 
server can execute at most two times within the period of the highest-priority 
periodic task. Hence, the worst-case situation for a set of periodic tasks that 
fully utilize the processor is the one illustrated in Figure 5.14, where tasks are 
characterized by the following parameters: 

Cs 
Cx 
C2 

= 
= 
= 

Ti 
T2 
Tz 

-Ts 
-Ti 
-T2 

^n—1 — J-n ~ J-n — 1 
rp /^ \—\n—1 ^ OT̂  '~P 

The resulting utilization is then 

— TT j_ 2 ~ -tj In — J-n-1 ^J-s — J-n 

J-l 

t n - 1 T 
-L n 

+ (^=^)—-n. 
-l-n-l -^1 J-n 
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Defining 

and noting that 

f Rs = Ti/Ts 
J Ri = Ti^i/Ti 

[ K = 2r , / r i = 21 Rs 

R1R2 ' ' . Rn-1 — 

the utihzation factor may be written as 

u^Us + J2^'-^ 
i=l 

R1R2 • ' 'Rn-1 — n. 

Since this is the same expression obtained for DS, the least upper bound is 

Uiut = Us + n{K'/''-l). (5.5) 

Equation (5.5) differs from equation (5.1) only for the value of A'. And noting 
that 

Cs T\ — Ts Us 
Ts 

Rs — 1, 

K can be rewritten as 

K^l 
Rs Us + l 

Thus, finally 

Uiuh = Us-\-n 
Us-^l 

l / n 

(5.6) 

Taking the limit as n -> 00, we find the worst-case bound as a function of Us 
to be given by 

lim Uiub = Us + \ n ( - ^ ) . (5.7) 

Thus, given a set of n periodic tasks and a Priority Exchange server with 
utilization factors Up and Us, respectively, the schedulability of the periodic 
task set is guaranteed under RM if 

Up + Us<Us + \n^^ ^ ^ 

that is, if 

Up < ln( 
Us + 1 

(5.8) 
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Figure 5.15 Schedulability bound for periodic tasks and PE as a function of 
the server utilization factor Vs-

A plot of equation (5.7) as a function of Vg is shown in Figure 5.15. For compar­
ison, the RM bound is also reported in the plot. Notice that the schedulability 
test expressed in equation (5.8) is also valid for the Polling Server and, in 
general, for all servers that behave like a periodic task. 

5.5.2 P E versus DS 

The DS and the PE algorithms represent two alternative techniques for en­
hancing aperiodic responsiveness over traditional background and polling ap­
proaches. Here, these techniques are compared in terms of performance, schedu­
lability bound, and implementation complexity, in order to help a system de­
signer in selecting the most appropriate method for a particular real-time ap­
plication. 

The DS algorithm is much simpler to implement than the PE algorithm, be­
cause it always maintains its capacity at the original priority level and never 
exchanges its execution time with lower-priority tasks, as the PE algorithm 
does. The additional work required by PE to manage and track priority ex­
changes increases the overhead of PE with respect to DS, especially when the 
number of periodic tasks is large. On the other hand, DS does pay schedulabil­
ity penalty for its simplicity in terms of a lower utilization bound. This means 
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Periodic Utilization factor Up 

Figure 5.16 Maximum server utilization as a function of the periodic load. 

that, for a given periodic load Up, the maximum size of a DS server that can 
still guarantee the periodic tasks is smaller than the maximum size of a PE 
server. 

The maximum size of a DS and a PE server as a function of Up can easily be 
derived from the corresponding schedulability tests computed above. For exam­
ple, from the DS schedulability test expressed in equation (5.4), the maximum 
utilization for DS turns out to be 

2 - e^-

2e^ 1 

whereas, from equation (5.8), the maximum PE utilization is 

2 - e^^^ 
U pip — 'PE oU,, 

(5.10) 

A plot of these two equations as a function of Up is shown in Figure 5.16. 
Notice that, when Up = 0.6, the maximum utilization for PE is 10%, whereas 
DS utilization cannot be greater than 7%. If instead Up = 0.3, PE can have 
48% utilization, while DS cannot go over 38%. The performance of the two 
algorithms in terms of average aperiodic response times is shown in Section 
5.9. 

As far as firm aperiodic tasks are concerned, the schedulability analysis under 
PE is much more complex than under DS. This is due to the fact that, in 
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general, when an aperiodic request is handled by the PE algorithm, the server 
capacity can be distributed among n + 1 priority levels. Hence, calculating the 
finishing time of the request might require the construction of the schedule for 
all the periodic tasks up to the aperiodic deadline. 

5.6 SPORADIC SERVER 

The Sporadic Server (SS) algorithm is another technique, proposed by Sprunt, 
Sha, and Lehoczky in [SSL89], which allows to enhance the average response 
time of aperiodic tasks without degrading the utilization bound of the periodic 
task set. 

The SS algorithm creates a high-priority task for servicing aperiodic requests 
and, like DS, preserves the server capacity at its high-priority level until an 
aperiodic request occurs. However, SS differs from DS in the way it replenishes 
its capacity. Whereas DS and PE periodically replenish their capacity to its 
full value at the beginning of each server period, SS replenishes its capacity 
only after it has been consumed by aperiodic task execution. 

In order to simplify the description of the replenishment method used by SS, 
the following terms are defined: 

Pexe It denotes the priority level of the task which is currently execut­
ing. 

Ps It denotes the priority level associated with SS. 

Active SS is said to be active when Pexe > Ps-

Idle SS is said to be idle when Pexe < Ps-

RT It denotes the replenishment time at which the SS capacity will 
be replenished. 

R A It denotes the replenishment amount that will be added to the 
capacity at time RT. 

Using this terminology, the capacity Cg consumed by aperiodic requests is 
replenished according to the following rule: 
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• The replenishment time RT is set as soon as SS becomes active and Cs > 0. 
Let IA be such a time. The value of RT is set equal to IA plus the server 
period {RT = IA -\-TS). 

• The replenishment amount RA to be done at time RT is computed when SS 
becomes idle or Cs has been exhausted. Let tj be such a time. The value 
of RA is set equal to the capacity consumed within the interval [tA.tj]. 

An example of medium-priority SS is shown in Figure 5.17. To facilitate the 
understanding of the replenishment rule, the intervals in which SS is active are 
also shown. At time ^ = 0, the highest-priority task ri is scheduled, and SS 
becomes active. Since C^ > 0, a replenishment is set at time RTi = t-\-Ts = 10. 
At time t = 1, TI completes, and, since no aperiodic requests are pending, SS 
becomes idle. Note that no replenishment takes place at time RTi == 10 {RAi = 
0) because no capacity has been consumed in the interval [0,1]. At time t = 4, 
the first aperiodic request Ji arrives, and, since Cg > 0, SS becomes active and 
the request receives immediate service. As a consequence, a replenishment is 
set at RT2 — t -\-Ts — 14. Then, J\ is preempted by ri at ^ = 5, is resumed at 
t — ^ and is completed at ^ =: 7. At this time, the replenishment amount to be 
done at RT2 is set equal to the capacity consumed in [4, 7]; that is, RA2 — 2. 

Notice that during preemption intervals SS stays active. This allows to perform 
a single replenishment, even if SS provides a discontinuous service for aperiodic 
requests. 

At time ^ = 8, SS becomes active again and a new replenishment is set at 
RT2, — t^Ts = \^. A t t = l l , S S becomes idle and the replenishment amount 
to be done at RT-^, is set to RA^ — 2. 

Figure 5.18 illustrates another example of aperiodic service in which SS is the 
highest-priority task. Here, the first aperiodic request arrives at time i — 2 and 
consumes the whole server capacity. Hence, a replenishment amount RA\ — 2 
is set at RT\ = 1 0 . The second request arrives when Cg = 0. In this case, the 
replenishment time RT2 is set as soon as the capacity becomes greater than 
zero. Since this occurs at time i = 10, the next replenishment is set at time 
RT2 = 18. The corresponding replenishment amount is established when J2 
completes and is equal to RA2 = 2. 
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Figure 5.17 Example of a medium-priority Sporadic Server. 
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Figure 5.18 Example of a high-priority Sporadic Server. 

5.6.1 Schedulability analysis 

The Sporadic Server violates one of the basic assumptions governing the execu­
tion of a standard periodic task. This assumption requires that once a periodic 
task is the highest-priority task that is ready to execute, it must execute. Like 
DS, in fact, SS defers its execution and preserves its capacity when no aperiodic 
requests are pending. However, we show that the replenishment rule used in SS 
compensates for any deferred execution and, from a scheduling point of view, 
SS can be treated as a normal periodic task with a period Ts and an execution 
time Cg. In particular, the following theorem holds [SSL89]: 

Theorem 5.1 (Sprunt-Sha-Lehoczky) A periodic task set that is schedula-
hle with a task TI is also schedulable if TI is replaced by a Sporadic Server with 
the same period and execution time. 

Proof. The theorem is proved by showing that for any type of service, SS 
exhibits an execution behavior equivalent to one or more periodic tasks. Let IA 
be the time at which Cs is full and SS becomes active, and let tj be the time at 
which SS becomes idle, such that [^A?^/] is a continuous interval during which 
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SS remains active. The execution behavior of the server in the interval [tA.tj] 
can be described by one of the following three cases (see Figure 5.19): 

1. No capacity is consumed. 

2. The server capacity is totally consumed. 

3. The server capacity is partially consumed. 

Case 1. If no requests arrive in [tA.ti], SS preserves its capacity and 
no replenishments can be performed before time tj -\- Tg. This 
means that at most Cs units of aperiodic time can be executed in 
[tA.ti -\-Ts]. Hence, the SS behavior is identical to a periodic task 
Ts{Cs,Ts) whose release time is delayed from IA to tj. As proved 
in Chapter 4 for RM, delaying the release of a periodic task cannot 
increase the response time of the other periodic tasks; therefore, 
this case does not jeopardize schedulability. 

Case 2. If C^ is totally consumed in [tA,t[], a replenishment of Cs units of 
time will occur at time tA + Tg. Hence, SS behaves like a periodic 
task with period Tg and execution time Cs released at time tA-

Case 3. If Cs is partially consumed in [tA.tj], a replenishment will occur 
at time tA+Ts, and the remaining capacity is preserved for future 
requests. Let CR be the capacity consumed in [̂ ,̂ tj]. In this case, 
the behavior of the server is equivalent to two periodic tasks, r^ 
and Ty, with periods Tx = Ty = Tg, and execution times Cx — CR 
and Cy — CS-CR, such that TX is released at IA and Ty is delayed 
until ti. As in Case 1, the delay of Ty has no schedulability effects. 

Since in any servicing situation SS can be represented by one or more periodic 
tasks with period Tg and total execution time equal to Cg, the contribution 
of SS in terms of processor utilization is equal to Us — Cs/Ts. Hence, from a 
schedulability point of view, SS can be replaced by a periodic task having the 
same utilization factor, Q 

Since SS behaves like a normal periodic task, the periodic task set can be 
guaranteed by the same schedulability test derived for PE. Hence, a set F of n 



Fixed-Priority Servers 137 

SS active 

SS active 

(a) 

(b) 

(c) 

Figure 5.19 Possible SS behavior during active intervals: a. Cs is not con­
sumed; b . Cs is totally consumed; c. Cs is partially consumed. 



138 C H A P T E R 5 

periodic tasks with utilization factor Up scheduled along with a Sporadic Server 
with utilization Us are schedulable under RM if 

Up < n 
Us-^1 

l / n 

(5.11) 

For large n, F is schedulable if 

For a given Up, the maximum server size that guarantees the schedulability of 
the periodic tasks is 

Uss = 2 f ^ + l ) - 1, (5.13) 
n 

and for large n it becomes 

Uss = 4r- 1- (5.14) 

As far as firm aperiodic tasks are concerned, the schedulability analysis under 
SS is not simple because, in general, the server capacity can be fragmented 
in a lot of small pieces of different size, available at different times according 
to the replenishment rule. As a consequence, calculating the finishing time of 
an aperiodic request requires to keep track of all the replenishments that will 
occur until the task deadline. 

5.7 SLACK STEALING 

The Slack Stealing algorithm is another aperiodic service technique, proposed 
by Lehoczky and Ramos-Thuel in [LRT92], which offers substantial improve­
ments in response time over the previous service methods (PE, DS, and SS). 
Unlike these methods, the Slack Stealing algorithm does not create a periodic 
server for aperiodic task service. Rather it creates a passive task, referred to 
as the Slack Stealer, which attempts to make time for servicing aperiodic tasks 
by "stealing" all the processing time it can from the periodic tasks without 
causing their deadlines to be missed. This is equivalent to stealing slack from 
the periodic tasks. We recall that, if Ci{t) is the remaining computation time 
at time t, the slack of a task ri is 

slacki{t) = di — t — Ci{t). 
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Figure 5.20 Example of Slack Stealer behavior: a. when no aperiodic re­
quests are pending; b . when an aperiodic request of three units arrives at time 
t = 8. 

The main idea behind slack steahng is that, typically, there is no benefit in early 
completion of the periodic tasks. Hence, when an aperiodic request arrives, 
the Slack Stealer steals all the available slack from periodic tasks and uses 
it to execute aperiodic requests as soon as possible. If no aperiodic requests 
are pending, periodic tasks are normally scheduled by RM. Similar algorithms 
based on slack stealing have been proposed by other authors [RTL93, DTB93, 
TLS95]. 

Figure 5.20 shows the behavior of the Slack Stealer on a set of two periodic 
tasks, Ti and r2, with periods Ti = 4, T2 = 5 and execution times Ci = 1, 
C2 = 2. In particular, Figure 5.20a shows the schedule produced by RM when 
no aperiodic tasks are processed, whereas Figure 5.20b illustrates the case in 
which an aperiodic request of three units arrives at time t = S and receives 
immediate service. In this case, a slack of three units is obtained by delaying 
the third instance of ri and T2. 

Notice that, in the example of Figure 5.20, no other server algorithms (DS, 
PE, or SS) can schedule the aperiodic requests at the highest priority and still 
guarantee the periodic tasks. For example, since Up = 1/4 -h 2/5 = 0.65, the 
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maximum utilization factor for a sporadic server to guarantee the schedulability 
of the periodic task set is (see equation (5.13)): 

Uss = 2 ( Y + I ) ' - 1 ^ 0.14. 

This means that, even with C^ = 1, the shortest server period that can be set 
with this utiUzation factor is Ts = \Cs/Us] = 8, which is greater than both task 
periods. Thus, the execution of the server would be equivalent to a background 
service, and the aperiodic request would be completed at time 15. 

5.7.1 Schedulability analysis 

In order to schedule an aperiodic request Jai^a^Ca) according to the Slack-
Stealing algorithm, we need to determine the earliest time t such that at least 
Ca units of slack are available in [va, t]. The computation of the slack is carried 
out through the use of a slack function A{s^t), which returns the maximum 
amount of computation time that can be assigned to aperiodic requests in the 
interval [5, t] without compromising the schedulability of periodic tasks. 

Figure 5.21 shows the slack function at time 5 = 0 for the periodic task set 
considered in the previous example. For a given 5, A{s,t) is a non-decreasing 
step function defined over the hyperperiod, with jump points corresponding to 
the beginning of the intervals where the slack is available. As s varies, the slack 
function needs to be recomputed, and this requires a relatively large amount of 
calculation, especially for long hyperperiods. Figure 5.22 shows how the slack 
function A{s,t) changes at time 5 = 6 for the same periodic task set. 

According to the original algorithm proposed by Lehoczky and Ramos-Thuel 
[LRT92], the slack function at time 5 = 0 is precomputed and stored in a ta­
ble. During runtime, the actual function A{s^t) is then computed by updating 
A{0^t) based on the periodic execution time, the aperiodic service time, and 
the idle time. The complexity for computing the current slack from the ta­
ble is 0{n), where n is the number of periodic tasks; however, depending on 
the periods of the tasks, the size of the table can be too large for practical 
implementations. 

A dynamic method of computing slack has been proposed by Davis, Tindell, 
and Burns in [DTB93]. According to this algorithm, the available slack is com­
puted whenever an aperiodic requests enters the system. This method is more 
complex than the previous static approach, but it requires much less memory 
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-̂ -P 4q. 
10 12 14 16 18 20 

+2 

+2 

+2 

- j — ' — I — ' — I — ' — r 
2 4 6 8 

n— '—I—'—I—'—I—'—I— '—I— 
10 12 14 16 18 20 

Figure 5.21 Slack function at time 5 = 0 for the periodic tcisk set considered 
in the previous example. 
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Figure 5.22 Slack function at time 5 = 6 for the periodic task set considered 
in the previous example. 
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and allows handling of periodic tasks with release jitter or synchronization re­
quirements. Finally, a more efficient algorithm for computing the slack function 
has been proposed by Tia, Liu, and Shankar in [TLS95]. 

The Slack-Stealing algorithm has also been extended by Ramos-Thuel and 
Lehoczky [RTL93] to guarantee firm aperiodic tasks. 

5.8 NON-EXISTENCE OF OPTIMAL 
SERVERS 

The Slack Stealer always advances all available slack as much as possible and 
uses it to execute the pending aperiodic tasks. For this reason, it originally was 
considered an optimal algorithm; that is, capable of minimizing the response 
time of every aperiodic request. Unfortunately, the Slack Stealer is not optimal 
because to minimize the response time of an aperiodic request, it is sometimes 
necessary to schedule it at a later time even if slack is available at the current 
time. Indeed, Tia, Liu, and Shankar [TLS95] proved that, if periodic tasks 
are scheduled using a fixed-priority assignment, no algorithm can minimize the 
response time of every aperiodic request and still guarantee the schedulability 
of the periodic tasks. 

Theorem 5.2 (Tia-Liu-Shankar) For any set of periodic tasks ordered on a 
given fixed-priority scheme and aperiodic requests ordered according to a given 
aperiodic queueing discipline, there does not exist any valid algorithm that min­
imizes the response time of every soft aperiodic request. 

Proof. Consider a set of three periodic tasks with Ci = C2 = C3 = 1 and 
Ti — 3, T2 = 4 and Ts = 6, whose priorities are assigned based on the RM 
algorithm. Figure 5.23a shows the schedule of these tasks when no aperiodic 
requests are processed. 

Now consider the case in which an aperiodic request J i , with Ca^ = 1, arrives 
at time t — 2. At this point, any algorithm has two choices: 

1. Do not schedule J\ at time t — 2. In this case, the response time of J\ will 
be greater than 1 and, thus, it will not be the minimum. 
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2. Schedule Ji at time t = 2. In this case, assume that another request J2, 
with Ca2 = 1, arrives at time ^ = 3. Since no slack time is available in the 
interval [3,6], J2 can start only at t = 6 and finish at ^ = 7. This situation 
is shown in Figure 5.23b. 

However, the response time of J2 achieved in case 2 is not the minimum possible. 
In fact, if Ji were scheduled at time ^ = 3, another unit of slack would have 
been available at time t = 4, thus J2 would have been completed at time ^ = 5. 
This situation is illustrated in Figure 5.23c. 

The above example shows that it is not possible for any algorithm to minimize 
the response times of Ji and J2 simultaneously. If Ji is scheduled immediately, 
then J2 will not be minimized. On the other hand, if Ji is delayed to minimize 
J2? then Ji will suffer. Hence, there is no optimal algorithm that can minimize 
the response time of any aperiodic request, Q 

Notice that Theorem 5.2 applies both to clairvoyant and on-line algorithms 
since the example is applicable regardless of whether the algorithm has a priori 
knowledge of the aperiodic requests. The same example can be used to prove 
another important result on the minimization of the average response time. 

Theorem 5.3 (Tia-Liu-Shankar) For any set of periodic tasks ordered on a 
given fixed-priority scheme and aperiodic requests ordered according to a given 
aperiodic queueing discipline, there does not exist any on-line valid algorithm 
that minimizes the average response time of the soft aperiodic requests. 

Proof. From the example illustrated in Figure 5.23 it is easy to see that, 
if there is only request Ji in each hyperperiod, then scheduling Ji as soon as 
possible will yield the minimum average response time. On the other hand, 
if Ji and J2 are present in each hyperperiod, then scheduling each aperiodic 
request as soon as possible will not yield the minimum average response time. 
This means that, without a priori knowledge of the aperiodic requests' arrival, 
an on-line algorithm will not know when to schedule the requests, Q 
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Figure 5.23 No algorithm can minimize the response time of every aperiodic 
request. If Ji is minimized, J2 is not (b). On the other hand, if J2 is minimized, 
J l is not (c). 
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5.9 PERFORMANCE EVALUATION 

The performance of the various algorithms described in this chapter has been 
compared in terms of average response times on soft aperiodic tasks. Simula­
tion experiments have been conducted using a set of ten periodic tasks with 
periods ranging from 54 to 1200 units of time and utilization factor Up = 0.69. 
The aperiodic load was varied across the unused processor bandwidth. The 
interarrival times for the aperiodic tasks were modeled using a Poisson arrival 
pattern with average interarrival time of 18 units of time, whereas the computa­
tion times of aperiodic requests were modeled using an exponential distribution. 
Periods for PS, DS, PE, and SS were set to handle aperiodic requests at the 
highest priority in the system (priority ties were broken in favor of aperiodic 
tasks). Finally, the server capacities were set to the maximum value for which 
the periodic tasks were schedulable. 

In the plots shown in Figure 5.24, the average aperiodic response time of each 
algorithm is presented relative to the response time of background aperiodic 
service. This means that a value of 1.0 in the graph is equivalent to the average 
response time of background service, while an improvement over background 
service corresponds to a value less than 1.0. The lower the response time 
curve lies on the graph, the better the algorithm is for improving aperiodic 
responsiveness. 

As can be seen from the graphs, DS, PE, and SS provide a substantial reduction 
in the average aperiodic response time compared to background and polling 
service. In particular, a better performance is achieved with short and frequent 
requests. This can be explained by considering that, in most of the cases, short 
tasks do not use the whole server capacity and can finish within the current 
server period. On the other hand, long tasks protract their completion because 
they consume the whole server capacity and have to wait for replenishments. 

Notice that average response times achieved by SS are slightly higher than those 
obtained by DS and PE. This is mainly due to the diflPerent replenishment rule 
used by the algorithms. In DS and PE, the capacity is always replenished at its 
full value at the beginning of every server period, while in SS it is replenished 
Ts units of time after consumption. Thus, in the average, when the capacity is 
exhausted, waiting for replenishment in SS is longer than waiting in DS or in 
PE. 

Figure 5.25 shows the performance of the Slack-Stealing algorithm with respect 
to background service, Polling, and SS. The performance of DS and PE is not 
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Figure 5.24 Performance results of PS, DS, PE, and SS. 

shown because it is very similar to the one of SS. Unhke the previous figure, in 
this graph the average response times are not reported relative to background, 
but are directly expressed in time units. As we can see, the Slack-Stealing 
algorithm outperforms all the other scheduling algorithms over the entire range 
of aperiodic load. However, the largest performance gain of the Slack Stealer 
over the other algorithms occurs at high aperiodic loads, when the system 
reaches the upper limit as imposed by the total resource utilization. 

Other simulation results can be found in [LSS87] for Polling, PE, and DS, in 
[SSL89] for SS, and in [LRT92] for the Slack-Steahng algorithm. 

5.10 SUMMARY 

The algorithms presented in this chapter can be compared not only in terms of 
performance but also in terms of computational complexity, memory require­
ment, and implementation complexity. In order to select the most appropriate 
service method for handling soft aperiodic requests in a hard real-time environ­
ment, all these factors should be considered. Figure 5.26 provides a qualitative 
evaluation of the algorithms presented in this chapter. 
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Figure 5.25 Performance of the Slack Stealer with respect to background, 
PS, and SS. 
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Exercises 

5.1 Compute the maximum processor utilization that can be assigned to a 
Sporadic Server to guarantee the following periodic tasks under RM: 

\~c~] 
Ti 

1 n 
1 
5 

T2 

2 
8 

5.2 Compute the maximum processor utilization that can be assigned to a 
Deferrable Server to guarantee the task set illustrated in Exercise 5.1. 

5.3 Together with the periodic tasks illustrated in Exercise 5.1, schedule 
the following aperiodic tasks with a Polling Server having maximum 
utilization and intermediate priority. 
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Solve the same scheduhng problem described in Exercise 5.3, with a 
Sporadic Server having maximum utilization and intermediate priority. 

Solve the same scheduling problem described in Exercise 5.3, with a 
Deferrable Server having maximum utilization and highest priority. 

Solve the same scheduling problem described in Exercise 5.3, with a Pri­
ority Exchange Server having maximum utilization and highest priority. 

Using a Sporadic Server with capacity Cs 
ule the following tasks: 

2 and period T^ = 5, sched-

periodic tasks aperiodic tasks 
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5.8 Given the same tasks described in Exercise 5.7, compute the maximum 
capacity that can be assigned to a Sporadic Server with a period T^ = 4. 
Then, schedule the tasks using such a capacity. 



7 
RESOURCE ACCESS PROTOCOLS 

7.1 INTRODUCTION 

A resource is any software structure that can be used by a process to advance 
its execution. Typically, a resource can be a data structure, a set of variables, a 
main memory area, a file, or a set of registers of a peripheral device. A resource 
dedicated to a particular process is said to be private, whereas a resource that 
can be used by more tasks is called a shared resource. A shared resource 
protected against concurrent accesses is called an exclusive resource. 

To ensure consistency of the data structures in exclusive resources, any con­
current operating system should use appropriate resource access protocols to 
guarantee a mutual exclusion among competing tasks. A piece of code executed 
under mutual exclusion constraints is called a critical section. 

Any task that needs to enter a critical section must wait until no other task 
is holding the resource. A task waiting for an exclusive resource is said to be 
blocked on that resource, otherwise it proceeds by entering the critical section 
and holds the resource. When a task leaves a critical section, the resource 
associated with the critical section becomes free, and it can be allocated to 
another waiting task, if any. 

Operating systems typically provide a general synchronization tool, called a 
semaphore [Dij68, BH73, PS85], that can be used by tasks to build critical 
sections. A semaphore is a kernel data structure that, apart from initialization, 
can be accessed only through two kernel primitives, usually called wait and 
signal When using this tool, each exclusive resource Ri must be protected by 
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a different semaphore Si and each critical section operating on a resource Ri 
must begin with a wait{Si) primitive and end with a signal{Si) primitive. 

All tasks blocked on the same resource are kept in a queue associated with the 
semaphore that protects the resource. When a running task executes a wait 
primitive on a locked semaphore, it enters a waiting state, until another task 
executes a signal primitive that unlocks the semaphore. When a task leaves 
the waiting state, it does not go in the running state, but in the ready state, 
so that the CPU can be assigned to the highest-priority task by the scheduling 
algorithm. The state transition diagram relative to the situation described 
above is shown in Figure 7.1. 

In this chapter, we describe the main problems that may arise in a uniprocessor 
system when concurrent tasks use shared resources in exclusive mode, and we 
present some resource access protocols designed to avoid such problems and 
bound the maximum blocking time of each task. We then show how such 
blocking times can be used in the schedulability analysis to extend the guarantee 
formulae found for periodic task sets. 

7.2 THE PRIORITY INVERSION 
PHENOMENON 

Consider two tasks Ji and J2 that share an exclusive resource Rk (such as 
a list), on which two operations (such as insert and remove) are defined. To 
guarantee the mutual exclusion, both operations must be defined as critical 
sections. If a binary semaphore Sk is used for this purpose, then each critical 
section must begin with a wait(Sk) primitive and must end with a signal(Sk) 
primitive (see Figure 7.2). 
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Figure 7.3 Example of blocking on an exclusive resource. 

If preemption is allowed and Ji has a higher priority than J2, then Ji can 
be blocked in the situation depicted in Figure 7.3. Here, task J2 is activated 
first, and, after a while, it enters the critical section and locks the semaphore. 
While J2 is executing the critical section, task Ji arrives and, since it ha^ a 
higher priority, it preempts J2 and starts executing. However, at time ^1, when 
attempting to enter its critical section, J\ is blocked on the semaphore, so J2 
resumes. Ji has to wait until time ^2, when J2 releases the critical section by 
executing the signal(Sk) primitive, which unlocks the semaphore. 



184 C H A P T E R 7 

normal execution 

critical section 

J 1 blocked 

to ti t2 t3 t4 

Figure 7.4 An example of priority inversion. 

In this simple example, the maximum blocking time that Ji may experience is 
equal to the time needed by J2 to execute its critical section. Such a blocking 
cannot be avoided because it is a direct consequence of the mutual exclusion 
necessary to protect the shared resource against concurrent accesses of com­
peting tasks. 

Unfortunately, in the general case, the blocking time of a task on a busy resource 
cannot be bounded by the duration of the critical section executed by the lower-
priority task. In fact, consider the example illustrated in Figure 7.4. Here, three 
tasks J i , J2, and J3 have decreasing priorities, and Ji and J3 share an exclusive 
resource protected by a binary semaphore 5. 

If J3 starts at time ^o, it may happen that Ji arrives at time 2̂ ctnd preempts 
J3 inside its critical section. At time ^3, Ji attempts to use the resource, but 
it is blocked on the semaphore 5; thus, J3 continues the execution inside its 
critical section. Now, if J2 arrives at time ^4, it preempts J3 (because it has 
a higher priority) and increases the blocking time of Ji by all its duration. 
As a consequence, the maximum blocking time that Ji may experience does 
depend not only on the length of the critical section executed by J3 but also 
on the worst-case execution time of J2! This is a situation that, if it recurs 
with other medium-priority tasks, can lead to uncontrolled blocking and can 
cause critical deadlines to be missed. A priority inversion is said to occur in 
the interval [^3,^6], since the highest-priority task Ji waits for the execution of 
lower-priority tasks (J2 and J3). In general, the duration of priority inversion 
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Figure 7.5 Scheduling with non-preemptive critical sections. 

is unbounded, since any intermediate-priority task that can preempt J3 will 
indirectly block J i . 

Several approaches have been proposed to deal with the problem of scheduling 
tasks accessing shared resources. A simple solution that avoids the unbounded 
priority inversion problem is to disallow preemption during the execution of all 
critical sections. This method, however, is only appropriate for very short crit­
ical sections, because it creates unnecessary blocking. Consider, for example, 
the case depicted in Figure 7.5, where Ji is the highest-priority task that does 
not use any resource, whereas J2 and J3 are low-priority tasks that share an 
exclusive resource. If the low-priority task J3 enters a long critical section, Ji 
may unnecessarily be blocked for a long period of time. 

In other approaches, the priority inversion problem is solved through the use 
of appropriate protocols that control the accesses to any shared resource. The 
Priority Inheritance Protocol and the Priority Ceiling Protocol [SRL90] apply 
to fixed-priority systems,^ whereas the Stack Resource PoUcy [Bak91] is suitable 
both for static and dynamic priority systems. These protocols are described in 
the following sections. 

^The Priority Inheritance Protocol has been extended for EDF by Spuri [Spu95], and the 
Priority Ceiling Protocol has been extended for EDF by Chen and Lin [CL90]. 
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7.3 PRIORITY INHERITANCE 
PROTOCOL 

The Priority Inheritance Protocol (PIP), proposed by Sha, Rajkumar and 
Lehoczky [SRL90], offers a simple solution to the problem of unbounded priority 
inversion caused by resource constraints. The basic idea behind this protocol is 
to modify the priority of those tasks that cause blocking. In particular, when a 
task Ji blocks one or more higher-priority tasks, it temporarily assumes {inher­
its) the highest priority of the blocked tasks. This prevents medium-priority 
tasks from preempting Ji and prolonging the blocking duration experienced 
by the higher-priority tasks. Before describing the protocol in detail, we first 
introduce the terminology and the basic assumptions made on the system. 

7.3.1 Terminology and assumptions 

Consider a set of n periodic tasks, r i , r 2 , . . . ,rn, which cooperate through m 
shared resources, i?i,i?27 • • • .Rm- Each task is characterized by a period Ti 
and a worst-case computation time Cj. The deadline of any periodic instance 
is assumed to be at the end of its period. Each resource Rk is guarded by 
a distinct semaphore Sk- Hence, all critical sections on resource Rk begin 
with a wait{Sk) operation and end with a signal (Sk) operation. The following 
notation is adopted throughout the discussion: 

Ji denotes a job; that is, a generic instance of task r^. 

Since the protocol can modify the priority of the tasks, for each task we 
distinguish a fixed nominal priority Pi (assigned, for example, by the Rate 
Monotonic algorithm) and an active priority pi {pi > Pi), which is dynamic 
and initially set to Pi. 

Zij denotes the jth critical section of job Ji. 

dij denotes the duration of Zij\ that is, the time needed by Ji to execute 
Zij without interruption. 

The semaphore guarding the critical section Zij is denoted by Sij and the 
resource associated with Zij is denoted by Rij. 

We write Zij C Zi^k to indicate that Zij is entirely contained in Zi^k-
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Moreover, the properties of the protocol are vahd under the following assump­
tions: 

Jobs Ji^J^.'.Jn are listed in descending order of nominal priority, with 
Ji having the highest nominal priority. 

Jobs do not suspend themselves (for example, on I/O operations or on 
explicit synchronization primitives). 

The critical sections used by any task are properly nested; that is, given 
any pair Zij and Zi,^, then either Zij C Zi^k, zi^k C ^ i j , or zi^j D zi^k = 0-

Critical sections are guarded by binary semaphores. This means that only 
one job at a time can be within the critical section corresponding to a 
particular semaphore Su-

7.3.2 Protocol definition 

The Priority Inheritance Protocol can be defined as follows: 

• Jobs are scheduled based on their active priorities. Jobs with the same 
priority are executed in a First Come First Served discipline. 

• When job Ji tries to enter a critical section zi^j and resource Ri^j is already 
held by a lower-priority job, Ji will be blocked. Ji is said to be blocked by 
the task that holds the resource. Otherwise, Ji enters the critical section 
Zi^j. 

• When a job Ji is blocked on a semaphore, it transmits its active priority 
to the job, say J^, that holds that semaphore. Hence, Jk resumes and 
executes the rest of its critical section with a priority pk = Pi- Jk is said 
to inherit the priority of Ji. In general, a task inherits the highest priority 
of the jobs blocked by it. 

• When Jk exits a critical section, it unlocks the semaphore, and the highest-
priority job, if any, blocked on that semaphore is awakened. Moreover, the 
active priority of Jk is updated as follows: if no other jobs are blocked by 
Jfc, Pk is set to its nominal priority Pk, otherwise it is set to the highest 
priority of the jobs blocked by J^. 

• Priority inheritance is transitive; that is, if a job J3 blocks a job J2, and 
J2 blocks a job J i , then J3 inherits the priority of Ji via J2. 
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Examples 

We first consider the same situation presented in Figure 7.4 and show how 
the priority inversion phenomenon can be bounded by the Priority Inheritance 
Protocol. The modified schedule is illustrated in Figure 7.6. Until time 3̂ 
there is no variation in the schedule, since no priority inheritance takes place. 
At time ^3, Ji is blocked by J3, thus J3 inherits the priority of Ji and executes 
the remaining part of its critical section (from 3̂ to ^5) at the highest priority. 
In this condition, at time ^4, J2 cannot preempt J3 and cannot create additional 
interference on J i . As J3 exits its critical section, Ji is awakened and J3 resumes 
its original priority. At time ^5, the processor is assigned to J i , which is the 
highest-priority task ready to execute, and task J2 can only start at time te, 
when Ji has completed. The active priority of J3 as a function of time is also 
shown in Figure 7.6 on the lowest timeline. 

From this example, we can notice that a high-priority job can experience two 
kinds of blocking: 

Direct blocking. It occurs when a higher-priority job tries to acquire a 
resource already held by a lower-priority job. Direct blocking is necessary 
to ensure the consistency of the shared resources. 



Resource Access Protocols 189 

normal execution 

critical section 

piiMlil -

3 • 
P, ' 

P 2 -
PT 

^P3 

a 1 b b b a 

t l t2 t3 t4 t5 t6 

Figure 7.7 Priority inheritance with nested critical sections. 

Push-through blocking. It occurs when a medium-priority job is blocked 
by a lower-priority job that has inherited a higher priority from a job it 
directly blocks. Push-through blocking is necessary to avoid unbounded 
priority inversion. 

Notice that, in most situations, when a task exits a critical section, it resumes 
the priority it had when it entered. However, this is not true in general. Con­
sider the example illustrated in Figure 7.7. Here, job Ji uses a resource Ra 
guarded by a semaphore Sa, job J2 uses a resource Rb guarded by a semaphore 
Sb, and job J3 uses both resources in a nested fashion {Sa is locked first). At 
time tl, J2 preempts J3 within its nested critical section; hence, at time ^2, 
when J2 attempts to lock Sb, J3 inherits its priority, P2' Similarly, at time 
ts, J I preempts J3 within the same critical section and, at time ^4, when Ji 
attempts to lock 5a, J3 inherits the priority Pi . At time ^5, when J3 unlocks 
semaphore 5^, job J2 is awakened but Ji is still blocked; hence, J3 continues its 
execution at the priority of J i . At time IQ, J3 unlocks Sa and, since no other 
jobs are blocked, J3 resumes its original priority P3. 
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Figure 7.8 Example of transitive priority inheritance. 

An example of transitive priority inheritance is shown in Figure 7.8. Here, job 
Ji uses a resource Ra guarded by a semaphore Sa, job J3 uses a resource Rb 
guarded by a semaphore Sb, and job J2 uses both resources in a nested fashion 
{Sa protects the external critical section and Sb the internal one). At time 
tl, J3 is preempted within its critical section by J2, which in turn enters its 
first critical section (the one guarded by Sa), and at time 2̂ it is blocked on 
semaphore Sb- As a consequence, J3 resumes and inherits the priority P2. At 
time ^3, Js is preempted by J i , which at time t^ tries to acquire Ra- Since 
Sa is locked by J2, J2 inherits Pi. However, J2 is blocked by J3; hence, for 
transitivity J3 inherits the priority Pi via J2. When J3 exits its critical section, 
no other jobs are blocked by it, thus it resumes its nominal priority P3. Priority 
Pi is now inherited by J2, which still blocks Ji until time ^e-

7.3.3 Properties of the protocol 

In this section, the main properties of the Priority Inheritance Protocol are 
presented. These properties are then used to analyze the schedulability of a 
periodic task set and compute the maximum blocking time that each task may 
experience. 
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Lemma 7.1 A semaphore Sk can cause push-through blocking to job Ji, only 
if Sk is accessed both by a job with priority lower than Pi and by a job that has 
or can inherit a priority equal to or higher than Pi. 

Proof. Suppose that semaphore Sk is accessed by a job J/ with priority lower 
than Pi. If Sk is not accessed by a job that has or can inherit a priority equal 
to or higher than Pi, then J/ cannot inherit a priority equal to or higher than 
Pi. Hence, J/ will be preempted by Ji and the lemma follows, Q 

Lemma 7.2 Transitive priority inheritance can occur only in the presence of 
nested critical sections. 

Proof. A transitive inheritance occurs when a high-priority job JH is blocked 
by a medium-priority job JM^ which in turn is blocked by a low-priority job 
JL (see the example of Figure 7.8). Since JH is blocked by JM, JM must hold 
a semaphore, say Sa- But JM is also blocked by JL on a different semaphore, 
say 5fe. This means that JM attempted to lock Sh inside the critical section 
guarded by Sa- The lemma follows, Q 

Lemma 7.3 / / there are n lower-priority jobs that can block a job Ji, then Ji 
can be blocked for at most the duration of n critical sections (one for each of 
the n lower-priority jobs), regardless of the number of semaphores used by Ji. 

Proof. A job Ji can be blocked by a lower-priority job Jk only if Jk has been 
preempted within a critical section, say Zkj, that can block Ji. Once Jk exits 
Zkj^ it can be preempted by JJ; thus, Ji cannot be blocked by Jk again. The 
same situation may happen for each of the n lower-priority jobs; therefore, Ji 
can be blocked at most n times, Q 

Lemma 7.4 / / there are m distinct semaphores that can block a job Ji, then 
Ji can be blocked for at most the duration of m critical sections, one for each 
of the m semaphores. 
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Proof. Since semaphores are binary, only one of the lower-priority jobs, 
say Jfc, can be within a blocking critical section corresponding to a particular 
semaphore Sj. Once Sj is unlocked, Jk can be preempted and can no longer 
block Ji. If all m semaphores that can block Ji are locked by m lower-priority 
jobs, then Ji can be blocked at most m times, Q 

Theorem 7.1 (Sha-Rajkumar-Lehoczky) Under the Priority Inheritance 
Protocol, a job J can be blocked for at most the duration o/min(n,7n) critical 
sections, where n is the number of lower-priority jobs that could block J and m 
is the number of distinct semaphores that can be used to block J. 

Proof. It immediately follows from Lemma 7.3 and Lemma 7.4. Q 

7.3.4 Schedulability analysis 

The most important property of the Priority Inheritance Protocol for real-time 
systems is that it bounds the maximum blocking time of each task. This allows 
to perform a feasibility analysis and extend the Rate-Monotonic schedulability 
test for sets of tasks with resource constraints. We recall that, in the absence 
of blocking, a set of independent periodic tasks is schedulable by the Rate-
Monotonic algorithm if 

E ^ < n(2V"-l) . (7.1) 
1=1 

In order to perform a worst-case analysis, let Bi be the maximum blocking 
time, due to lower-priority jobs, that a job Ji may experience. 

Theorem 7.2 A set of n periodic tasks using the Priority Inheritance Protocol 
can be scheduled by the Rate-Monotonic algorithm if 

Vi, l<i<n, ^ | * + | i < z ( 2 i / ' - l ) . (7.2) 
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Proof . Suppose tha t for each task TJ equation (7.2) is satisfied. Then equation 
(7.1) is also satisfied with n = i and Ci replaced by C* = (d + Bi). This means 
tha t , in the absence of blocking, any job of task TJ will still meet its deadline 
even if it executes for {Ci -h Bi) units of t ime. It follows tha t task r^, if it 
executes for only Ci units of t ime, can be delayed by Bi and still meet its 
deadline. Hence, the theorem follows, Q 

In other words, the schedulability test expressed in equation (7.2) can be inter­
preted as follows. In order to guarantee a task r^, we have to consider the effect 
of preemptions from all higher-priority tasks (Xll=i ^k/Tk), the execution of r^ 
itself (Ci/Ti), and the effect of blocking due to all lower-priority tasks (Bi/Ti). 

Suppose, for example, tha t we want to guarantee the following task set: 

~ir] 
J2 

Js 1 

1 Ci 
1 
1 
2 

Ti 

2 
4 
8 

Bi 

1 
1 
0 

Since the periods of these tasks are harmonic, the utilization bound for Ra te 
Monotonic becomes 100%. Hence, we have to verify the following relations: 

Ti Ti -

9i + 9l + El < 1 
Ti ^ T2 T2 -

9l + ^ + ^ < 1. 

Since all three equations hold, we can conclude tha t this task set is feasible and 
all tasks will meet their deadlines. Notice tha t , if the fcth equation should not 
be satisfied, we would know tha t task rjt would miss its deadline. In this case, 
we could correct the implementation of this task to achieve a feasible schedule. 

A simpler but less tight schedulability test can be found by observing t ha t 

Bi 

Ti 
< max 

Bj_ 

T,' 

B, 

Tn 
-Z7- and i ( 2 i / " _ l ) <i{2^/i -I). 
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As a consequence, the feasibility of the schedule can be guaranteed if the fol­
lowing single equation holds: 

The schedulability test based on tasks' response times can also be extended to 
take resources into account. In this case, the blocking factor Bi must simply 
be added to the computation time of each task. Thus, the recurrent equation 
(4.12) for calculating the response time Ri becomes 

Ri = Ci -\- Bi -{• y 
Ri 

Cj. (7.4) 

Notice that, when introducing resource constraints, this test becomes only sufR-
cient, since tasks characterized by a long maximum blocking time could actually 
never experience blocking. 

7.3.5 Blocking t ime computation 

The evaluation of the maximum blocking time for each task can be computed 
based on the result of Theorem 7.1. However, a precise evaluation of the block­
ing factor Bi is quite complex because each critical section of the lower-priority 
tasks may interfere with Ji via direct blocking, push-through blocking or tran­
sitive inheritance. In this section, we present a simplified algorithm that can 
be used to compute the blocking factors of tasks that do not use nested crit­
ical sections. In this case, in fact. Lemma 7.2 guarantees that no transitive 
inheritance can occur; thus, the analysis of all possible blocking conditions is 
simplified. The following notation is used to describe the algorithm: 

cTj indicates the set of semaphores requested by Ji. 

Pi J indicates the set of all critical sections of the lower-priority job Jj that 
can block Jj. 

7i,fc indicates the set of all critical sections guarded by semaphore Sk that 
can block Jj. 
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Zi^k denotes the longest critical section of task r̂  among those guarded by 
semaphore 5^. 

Di^k denotes the duration of Zi^k-

Assuming that all durations Di^k are known (they can be estimated through 
code analysis), the algorithm for computing the blocking factor Bi of a job Ji 
can be logically divided into the following steps: 

1. For each job Jj with priority lower than Pi, identify the set fiij of all 
critical sections that can block Jj. 

2. For each semaphore 5^, identify the set 7 ,̂̂  of all critical sections guarded 
by Sk that can block Jj. 

3. Sum the duration of the longest critical sections in each /J^j, for any job 
Jj with priority lower than Pi\ let B\ be this sum. 

4. Sum the duration of the longest critical sections in each 7^,^, for any 
semaphore Sk\ let B^ be this sum. 

5. Compute Bi as the minimum between B[ and jBf. 

The identification of the critical sections that can block a task can be greatly 
simplified if for each semaphore Sk we define a ceiling C(5fc) to be the priority 
of the highest-priority task that may use it: 

C{Sk) =max(P;- :Sk e CTJ). 

Then, the following lemma holds. 

Lemma 7.5 In the absence of nested critical sections, a critical section Zj^k 
of Jj guarded by Sk can block Ji only if Pj < Pi < C{Sk)' 

Proof. If Pi < Pj, then job Ji cannot preempt JJ; hence, it cannot be 
blocked by Jj directly. On the other hand, if C{Sk) < Pi, by definition of 
C{Sk)^ any job that uses Sk cannot have or inherit a priority equal to or higher 
than Pi. Hence, from Lemma 7.1, Zj^k cannot cause push-through blocking on 
Ji. Finally, since there are no nested critical sections. Lemma 7.2 guarantees 
that Zj^k cannot cause transitive blocking. The lemma follows, Q 
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Using the result of Lemma 7.5, the maximum blocking time Bi for each task 
Ti can easily be determined as follows: 

B^=mm(Bi,B',), (7.5) 

where 

n 

B'i = Yl max[£),,fc : C{Sk) > Pi] 
3=i+l 

This computation is performed by the algorithm shown in Figure 7.9. This 
algorithm assumes that the task set consists of n periodic tasks that use m 
distinct binary semaphores. Tasks are ordered with decreasing priority, such 
that Pi > Pj for all i < j . Critical sections are nonnested. Notice that the 
blocking factor Bn is always zero, since there are no tasks with priority lower 
than Pn that can block Tn. The complexity of the algorithm is 0{mn'^). 

This algorithm provides an upper bound for the blocking factors Bi; however, 
such a bound is not tight, since B[ may be computed by considering two or 
more critical sections guarded by the same semaphore. Obviously, if two critical 
sections of different jobs are guarded by the same semaphore, they cannot be 
both blocking (see Lemma 7.4). Similarly, Bf may be computed by considering 
two or more critical sections belonging to the same job. But this cannot happen 
(see Lemma 7.3). In order to exclude these cases, however, the complexity grows 
exponentially because the maximum blocking time has to be computed among 
all possible combinations of blocking critical sections. An algorithm based on 
exhaustive search is presented in [Raj91]. It can find better bounds than those 
found by the algorithm presented in this section, but it has an exponential 
complexity. 

Example 

To illustrate the algorithm presented above, consider the following example, in 
which four tasks share three semaphores. For each job Jj, the duration of the 
longest critical section among those that use the same semaphore Sk is denoted 
by Di^k and it is stored in a table. Di^k = 0 means that job Ji does not use 
semaphore 5^. Suppose to have the following table (semaphore ceilings are 
indicated in parentheses): 
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Blocking_Time(A,fc) { 

for i = l t o n — 1 { 

Bi := 0; 
for j = i-hlton{ 

Djmax := 0; 
for A; = 1 to m { 

i^iC{Sk) >Pi) and(D,-fc 

D.max = Dj^k'i 

} 
} 
Bl := Bl + D.max; 

} 

B? := 0; 
for fc = 1 to m { 

Djmax := 0; 

for j = i + lton{ 

if {C{Sk) > Pi) and 
D.max — Dj^k\ 

} 
} 
B? := S | + D.max; 

} 

Bi := mm(B^, Bf); 

} 
S„ := 0; 

} 

iDj,k 

/* for each task Ji */ 

/* for each Jj : Pj < Pi */ . 

/* for all semaphores */ 

> Djmax) { 

1* for all semaphores */ 

/* for each J, : Pj < P, */ 
> D.m,ax) { 

Figure 7.9 Algorithm for computing the blocking factors. 
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pTj 
J2 

Js 
J A \ 

1 ^l(^l) 
i 
0 
8 
6 

52(Pl) 

2 
9 
7 
5 

53(^2) 
0 
3 
0 
4 

According to the algorithm shown in Figure 7.9, the blocking factors of the 
tasks are computed as follows: 

= = > Bi = 17 
B[ =9 + 8 + 6 = 23 
Bl =8 + 9 = 17 

B^2=S + 6 = U 
B^ =8 + 7 + 4 = 19 ==> B2 = 14 

B^^ = 6 
^ ^ = 6 + 5 + 4 = 15 = = > B3=6 

B\ = BI = 0 ==> B4=0 

Note that B^ is computed by adding the duration of two critical sections both 
guarded by semaphore Si. 

7.3.6 Implementation considerations 

The implementation of the Priority Inheritance Protocol requires a slight mod­
ification of the kernel data structures associated with tasks and semaphores. 
First of all, each task must have a nominal priority and an active priority, 
which need to be stored in the Task Control Block (TCB). Moreover, in order 
to speed up the inheritance mechanism, it is convenient that each semaphore 
keeps track of the task holding the lock on it. This can be done by adding in 
the semaphore data structure a specific field, say holder^ for storing the iden­
tifier of the holder. In this way, a task that is blocked on a semaphore can 
immediately identify the task that holds its lock for transmitting its priority. 
Similarly, transitive inheritance can be simplified if each task keeps track of 
the semaphore on which it is blocked. In this case, this information has to 
be stored in a field, say lock, of the Task Control Block. Assuming that the 
kernel data structures are extended as described above, the primitives pLwait 
and pLsignal for realizing the Priority Inheritance Protocol can be defined as 
follows. 
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pi_wait(s) 

• If semaphore s is free, it becomes locked and the name of the executing 
task is stored in the holder field of the semaphore data structure. 

• If semaphore s is locked, the executing task is blocked on the s semaphore 
queue, the semaphore identifier is stored in the lock field of the TCB, and 
its priority is inherited by the task that holds s. If such a task is blocked 
on another semaphore, the transitivity rule is applied. Then, the ready 
task with the highest priority is assigned to the processor. 

pi_signal(s) 

• If the queue of semaphore s is empty (that is, no tasks are blocked on 5), 
s is unlocked. 

• If the queue of semaphore s is not empty, the highest-priority task in the 
queue is awakened, its identifier is stored in s.holder, the active priority of 
the executing task is updated and the ready task with the highest priority 
is assigned to the processor. 

7.3.7 Unsolved problems 

Although the Priority Inheritance Protocol bounds the priority inversion phe­
nomenon, the blocking duration for a job can still be substantial because a 
chain of blocking can be formed. Another problem is that the protocol does 
not prevent deadlocks. 

Chained blocking 

Consider three jobs J i , J2 and J3 with decreasing priorities that share two 
semaphores Sa and 56. Suppose that Ji needs to sequentially access Sa and 
56, J2 accesses 56, and J3 Sa- Also suppose that J3 locks Sa and it is preempted 
by J2 within its critical section. Similarly, J2 locks 56 and it is preempted by 
Ji within its critical section. The example is shown in Figure 7.10. In this 
situation, when attempting to use its resources, Ji is blocked for the duration 
of two critical sections, once to wait J3 to release Sa and then to wait J2 to 
release 56. This is called a chained blocking. In the worst case, if Ji accesses n 
distinct semaphores that have been locked by n lower-priority jobs, Ji will be 
blocked for the duration of n critical sections. 
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normal execution 

critical section 

-Ja™™!_ 

Figure 7.10 Example of chained blocking. 

normal execution 

critical section 
blocked on S ̂  

y blocked on S . 

t . to t i t . 

wait(Sa) 

waitCSb) 

signal(Sb) 

signal(Sa) 

wait(Sb) 

wait(Sa) 1 

signal(Sa) 

signaKS b) 

Figure 7.11 Example of deadlock. 

Deadlock 

Consider two jobs that use two semaphores in a nested fashion but in reverse 
order, as illustrated in Figure 7.11. Now suppose that, at time t i , J2 locks 
semaphore Sb and enters its critical section. At time ^2, Ji preempts J2 before 
it can lock Sa- At time ^3, Ji locks 5a, which is free, but then is blocked on 56 
at time ^4. At this time, J2 resumes and continues the execution at the priority 
of J i . Priority inheritance does not prevent a deadlock, which occurs at time 
^5, when J2 attempts to lock Sa- Notice, however, that the deadlock does not 
depend on the Priority Inheritance Protocol but is caused by an erroneous use 
of semaphores. In this case, the deadlock problem can be solved by imposing 
a total ordering on the semaphore accesses. 
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7.4 P R I O R I T Y CEILING P R O T O C O L 

The Priority Ceiling Protocol (PCP) has been introduced by Sha, Rajkumar, 
and Lehoczky [SRL90] to bound the priority inversion phenomenon and prevent 
the formation of deadlocks and chained blocking. 

The basic idea of this method is to extend the Priority Inheritance Protocol 
with a rule for granting a lock request on a free semaphore. To avoid multiple 
blocking, this rule does not allow a job to enter a critical section if there are 
locked semaphores that could block it. This means that, once a job enters 
its first critical section, it can never be blocked by lower-priority jobs until its 
completion. 

In order to realize this idea, each semaphore is assigned a priority ceiling equal 
to the priority of the highest-priority job that can lock it. Then, a job J is 
allowed to enter a critical section only if its priority is higher than all priority 
ceilings of the semaphores currently locked by jobs other than J. 

7.4.1 Protocol definition 

The Priority Ceiling Protocol can be defined as follows: 

Each semaphore Sk is assigned a priority ceiling C{Sk) equal to the priority 
of the highest-priority job that can lock it. Note that C{Sk) is a static value 
that can be computed off-line. 

Let Ji be the job with the highest priority among all jobs ready to run; 
thus, Ji is assigned the processor. 

Let 5* be the semaphore with the highest-priority ceiling among all the 
semaphores currently locked by jobs other than Ji and let C{S*) be its 
ceiling. 

To enter a critical section guarded by a semaphore Sk, Ji must have a 
priority higher than C(5*). If Pi < C(5*), the lock on Sk is denied and 
Ji is said to be blocked on semaphore 5* by the job that holds the lock on 
5*. 

When a job Ji is blocked on a semaphore, it transmits its priority to the 
job, say Jk, that holds that semaphore. Hence, Jk resumes and executes 
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the rest of its critical section with the priority of Ji. Jk is said to inherit 
the priority of Ji. In general, a task inherits the highest priority of the 
jobs blocked by it. 

When Jk exits a critical section, it unlocks the semaphore and the highest-
priority job, if any, blocked on that semaphore is awakened. Moreover, the 
active priority of Jk is updated as follows: if no other jobs are blocked by 
Jky Pk is set to the nominal priority Pk] otherwise, it is set to the highest 
priority of the jobs blocked by Jfc. 

Priority inheritance is transitive; that is, if a job J3 blocks a job J2, and 
J2 blocks a job J i , then J3 inherits the priority of Ji via J2. 

Example 

In order to illustrate the Priority Ceiling Protocol, consider three jobs Jo, J i , 
and J2 having decreasing priorities. The highest-priority job Jo sequentially 
accesses two critical sections guarded by semaphores So and Si; job Ji accesses 
only a critical section guarded by semaphore 52; whereas job J2 uses semaphore 
52 and then makes a nested access to Si. From tasks' resource requirements, 
all semaphores are assigned the following priority ceilings: 

r C(5o) = Po 

C{Si)=Po 

[ C ( 5 2 ) - P i . 

Now suppose that events evolve as illustrated in Figure 7.12. 

• At time ^o, J2 is activated and, since it is the only job ready to run, it 
starts executing and later locks semaphore 52. 

• At time i i , Ji becomes ready and preempts J2. 

• At time ^2, Ji attempts to lock 52, but it is blocked by the protocol 
because Pi is not greater than C(52). Then, J2 inherits the priority of Ji 
and resumes its execution. 

• At time ^3, J2 successfully enters its nested critical section by locking 5i . 
Note that J2 is allowed to lock Si because no semaphores are locked by 
other jobs. 
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Figure 7.12 Example of Priority Ceiling Protocol. 

At time t^, while J2 is executing at a priority p2 = -Pi, -̂ 0 becomes ready 
and preempts J2 because PQ > P2-

At time ^5, Jo attempts to lock 5o, which is not locked by any job. However, 
Jo is blocked by the protocol because its priority is not higher than C(5i) , 
which is the highest ceiling among all semaphores currently locked by the 
other jobs. Since Si is locked by J2, J2 inherits the priority of Jo and 
resumes its execution. 

At time te, J2 exits its nested critical section, unlocks 5i , and, since Jo 
is awakened, J2 returns to priority P2 — Pi- At this point, PQ > €{82); 
hence, Jo preempts J2 and executes until completion. 

At time fy, JQ is completed, and J2 resumes its execution at a priority 
P2 = Pi^ 

At time ts, J2 exits its outer critical section, unlocks 52, and, since Ji is 
awakened, J2 returns to its nominal priority P2. At this point, Ji preempts 
J2 and executes until completion. 

At time ^9, Ji is completed; thus, J2 resumes its execution. 
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blocked on S , 

^ 

Figure 7.13 An absurd situation that cannot occur under the Priority Ceiling 
Protocol. 

Notice that the Priority Ceiling Protocol introduces a third form of blocking, 
called ceiling blocking, in addition to direct blocking and push-through blocking 
caused by the Priority Inheritance Protocol. This is necessary for avoiding 
deadlock and chained blocking. In the previous example, a ceiling blocking is 
experienced by job Jo at time ^5. 

7.4.2 Properties of the protocol 

The main properties of the Priority Ceiling Protocol are presented in this sec­
tion. They are used to analyze the schedulability and compute the maximum 
blocking time of each task. 

Lemma 7.6 If a job Jk is preempted within a critical section Za by a job Ji 
that enters a critical section Zb, then, under the Priority Ceiling Protocol, Jk 
cannot inherit a priority higher than or equal to that of job Ji until Ji completes. 

Proof. If Jk inherits a priority higher than or equal to that of job Ji before 
Ji completes, there must exist a job Jo blocked by J^, such that Po ^ Pi-
This situation is shown in Figure 7.13. However, this leads to the contradiction 
that Jo cannot be blocked by J^. In fact, since Ji enters its critical section, 
its priority must be higher than the maximum ceiling C* of the semaphores 
currently locked by all lower-priority jobs. Hence, Po > Pi > C*. But since 
Po > C*, Jo cannot be blocked by Jk, and the lemma follows, Q 
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J . ^ J ^ ^ . • . ^ J 
1 2 n 

F i g u r e 7.14 Deadlock among n jobs. 

Lemma 7.7 T/ie Priority Ceiling Protocol prevents transitive blocking. 

Proof. Suppose that a transitive block occurs; that is, there exist three 
jobs J i , J2, and J3, with decreasing priorities, such that J3 blocks J2 and J2 
blocks J i . By the transitivity of the protocol, J3 will inherit the priority of 
J\. However, this contradicts Lemma 7.6, which shows that J3 cannot inherit 
a priority higher than or equal to P2. Thus, the lemma follows, Q 

Theorem 7.3 The Priority Ceiling Protocol prevents deadlocks. 

Proof. Assuming that a job cannot deadlock by itself, a deadlock can only 
be formed by a cycle of jobs waiting for each other, as shown in Figure 7.14. In 
this situation, however, by the transitivity of the protocol, job Jn would inherit 
the priority of J i , which is assumed to be higher than Pn- This contradicts 
Lemma 7.6, and hence the theorem follows, Q 

Theorem 7.4 (Sha-Rajkumar-Lehoczky) Under the Priority Ceiling Pro­
tocol, a job Ji can be blocked for at most the duration of one critical section. 

Proof. Suppose that Ji is blocked by two lower-priority jobs Ji and J2, 
where P2 < P\ < Pi- Let J2 enter its blocking critical section first, and let 
C | be the highest-priority ceiling among all the semaphores locked by J2- In 
this situation, if job Ji enters its critical section we must have that Pi > C | . 
Moreover, since we assumed that Ji can be blocked by J2, we must have that 
Pi < C^- This means that Pi > C^ > Pi- This contradicts the assumption 
that Pi > P2. Thus, the theorem follows, Q 
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7.4.3 Schedulability analysis 

The feasibility test for a set of periodic tasks using the Priority CeiUng Protocol 
can be performed by the same formulae shown for the Priority Inheritance 
Protocol. The only difference is in the values of each blocking factor Bi, which, 
for the Priority Ceiling Protocol, corresponds to the duration of the longest 
critical section among those that can block TJ. 

7.4.4 Blocking time computation 

The evaluation of the maximum blocking time for each task can be computed 
based on the result of Theorem 7.4. According to this theorem, a job Ji can be 
blocked for at most the duration of the longest critical section among those that 
can block Ji. The set of critical sections that can block a job Ji is identified by 
the following lemma. 

Lemma 7.8 Under the Priority Ceiling Protocol, a critical section Zj^k (be­
longing to job Jj and guarded by semaphore Sk) can block a job Ji only if 
Pj <Pi andC{Sk) >Pi-

Proof. Clearly, if Pj > Pi, Ji cannot preempt Jj and hence cannot be blocked 
on Zj^k' Now assume Pj < Pi and C{Sk) < Pi^ and suppose that Ji is blocked 
on Zj^k' We show that this assumption leads to a contradiction. In fact, if 
Ji is blocked by Jj, its priority must be less than or equal to the maximum 
ceiling C* among all semaphores locked by jobs other than Ji. Thus, we have 
that C{Sk) < Pi < C*. On the other hand, since C* is the maximum ceihng 
among all semaphores currently locked by jobs other than Ji, we have that 
C* > C{Sk), which leads to a contradiction and proves the lemma, Q 

Using the result of Lemma 7.8, the maximum blocking time Bi of job Ji can be 
computed as the duration of the longest critical section among those belonging 
to tasks with priority lower than Pi and guarded by a semaphore with ceiling 
higher than or equal to Pi. If Dj^k denotes the duration of the longest critical 
section of task TJ among those guarded by semaphore Sk, we can write 

Bi - max{D,-fc | Pj < Pi, C{Sk) > Pi}. (7.6) 
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Consider the same example illustrated for the Priority Inheritance Protocol. 
For each job Ji, the duration of the longest critical section among those guarded 
by semaphore Sk is denoted by Di^k and it is stored in a table. Di^k = 0 means 
that job Ji does not use semaphore 5^. Semaphore ceilings are indicated in 
parentheses: 

IT] 
J2 

Js 
J A 

1 S,{P,) 
1 
0 
8 
6 

52 (Pi) 

2 
9 
7 
5 

53 (P2) 

0 
3 
0 
4 

According to equation (7.6), tasks' blocking factors are computed as follows: 

Bi =: max(8,6,9, 7,5) = 9 
B2 =max(8,6,7,5,4) ^ 8 
P3 = max(6,5,4) ^ 6 
B^ = 0. 

7.4.5 Implementation considerations 

The major implication of the Priority Ceiling Protocol in the kernel data struc­
tures is that semaphores queues are no longer needed, since the tasks blocked 
by the protocol can be kept in the ready queue. In particular, whenever a job Ji 
is blocked by the protocol on a semaphore Sk, the job Jh that holds Sk inherits 
the priority of Ji and it is assigned to the processor, whereas Ji returns to the 
ready queue. As soon as Jh unlocks 5^, ph is updated and, \i Ph becomes less 
than the priority of the first ready job, a context switch is performed. 

To implement the Priority Ceiling Protocol, each semaphore Sk has to store the 
identifier of the task that holds the lock on Sk and the ceiling of Sk- Moreover, 
an additional field for storing the task active priority has to be reserved in 
the task control block. It is also convenient to have a field in the task control 
block for storing the identifier of the semaphore on which the task is blocked. 
Finally, the implementation of the protocol can be simplified if the system also 
maintains a list of currently locked semaphores, order by decreasing priority 
ceilings. This list is useful for computing the maximum priority ceiling that 
a job has to overcome to enter a critical section and for updating the active 
priority of tasks at the end of a critical section. 
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If the kernel data structures are extended as described above, the primitives 
pc.wait and pcsignal for reahzing the Priority Ceihng Protocol can be defined 
as follows. 

pc_wait(s) 

Find the semaphore 5* having the maximum ceiling C* among all the 
semaphores currently locked by jobs other than the one in execution (Jexe)-

If Pexe < C**, transfer Pexe to the job that holds 5*, insert Jexe in the 
ready queue, and execute the ready job (other than Jexe) with the highest 
priority. 

If Pexe > C*, or whenever s is unlocked, lock semaphore 5, add s in the 
list of currently locked semaphores and store Jexe in s.holder. 

pc_signal(s) 

Extract s from the list of currently locked semaphores. 

If no other jobs are blocked by Jexe, set pexe = Pexe-, else set pexe to the 
highest priority of the jobs blocked by Jexe-

Let p* be the highest priority among the ready jobs. If Pexe < P*, insert 
Jexe in the ready queue and execute the ready job (other than Jexe) with 
the highest priority. 

7.5 STACK RESOURCE POLICY 

The Stack Resource PoUcy (SRP) is a technique proposed by Baker [Bak91] for 
accessing shared resources. It extends the Priority Ceiling Protocol (PCP) in 
three essential points: 

1. It allows the use of multiunit resources. 

2. It supports dynamic priority scheduling. 

3. It allows the sharing of runtime stack-based resources. 
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From a scheduling point of view, the essential difference between the PCP and 
the SRP is on the time at which a task is blocked. Whereas under the PCP 
a task is blocked at the time it makes its first resource request, under the 
SRP a task is blocked at the time it attempts to preempt. This early blocking 
slightly reduces concurrency but saves unnecessary context switches, simplifies 
the implementation of the protocol, and allows the sharing of runtime stack 
resources. 

7.5.1 Definit ions 

Before presenting the formal description of the SRP we introduce the following 
definitions. 

Priority 

Each task TJ is assigned a priority pi that indicates the importance (that is, 
the urgency) of Tf with respect to the other tasks in the system. Priorities can 
be assigned to tasks either statically or dynamically. At any time t, Pa > Pb 
means that the execution of Ta is more important than that of r^; hence, r̂  
can be delayed in favor of TQ. For example, priorities can be assigned to tasks 
based on Rate Monotonic (RM) or Earliest Deadline First (EDF). 

Preemption level 

Besides a priority pi, a task r̂  is also characterized by a preemption level TT̂ . 
The preemption level is a static parameter, assigned to a task at its creation 
time and associated with all instances of that task. The essential property of 
preemption levels is that a job Ja can preempt another job Jt only if TTa > TTt. 
This is also true for priorities. Hence, the reason for distinguishing preemption 
levels from priorities is that preemption levels are fixed values that can be used 
to predict potential blocking also in the presence of dynamic priority schemes. 
The general definition of preemption level used to prove all properties of the 
SRP requires that 

if Ja arrives after Jb and Ja has higher priority than Jb, then Ja must 
have a higher preemption level than Jb. 
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Figure 7.15 Although 7r2 > TTI, under EDF p2 can be higher than pi (a) or 
lower than pi (b). 

Under EDF scheduling, the previous condition is satisfied if preemption levels 
are ordered inversely with respect to the order of relative deadlines; that is, 

TTi > TTj Di <Dj. 

To better illustrate the difference between priorities and preemption levels, 
consider the example shown in Figure 7.15. Here we have two jobs Ji and J2, 
with relative deadlines Di = 10 and D2 = 5, respectively. Being D2 < Di, we 
define m = 1 and 7r2 = 2. Since TTI < 7r2, Ji can never preempt J2; however, 
Ji may have a priority higher than that of J2. In fact, under EDF, the priority 
of a job is dynamically assigned based on its absolute deadline. For example, 
in the case illustrated in Figure 7.15a, the absolute deadlines are such that 
d2 < di\ hence, J2 will have higher priority than J i . On the other hand, as 
shown in Figure 7.15b, if J2 arrives a time ri + 6, absolute deadlines are such 
that d2> di\ hence, Ji will have higher priority than J2. 

Notice that, in the case of Figure 7.15b, although Ji has priority higher than J2, 
J2 cannot be preempted. This happens because, when di < o?2 and Di > D2, 
Ji always starts before J2; thus, it does not need to preempt J2. 
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Figure 7.16 Task parameters and resource requirements. 

Resource ceiling 

Each resource R is required to have a current ceiling CR, which is a dynamic 
value computed as a function of the units of R that are currently available. If 
riR denotes the number of units of R that are currently available and fiR{J) 
denotes the maximum requirement of job J for R, the current ceiling of R is 
defined to be 

CRiriR) = max[{0}u{7r(J) i n n </x/?(J)}]. 

In other words, if all units of R are available, then CR — 0. However, if the 
units of R that are currently available cannot satisfy the requirement of one or 
more jobs, then CR is equal to the highest preemption level of those jobs that 
could be blocked on R. 

To better clarify this concept, consider the following example, where three tasks 
(J i , J2, J3) share three resources (i^i, R2, R3), consisting of three, one, and 
three units, respectively. All tasks parameters - relative deadlines, preemption 
levels, and resource requirements - are shown in Figure 7.16. 

Based on these requirements, the current ceilings of the resources as a function 
of the number UR of available units are reported in Figure 7.17 (dashes identify 
impossible cases). 

Let us compute, for example, the ceiling of resource Ri when only two units 
(out of three) are available. From Figure 7.16, we see that the only job that 
could be blocked in this condition is J3 because it requires three units of i^i; 
hence, CRI{2) = TTS = 1. If only one unit of Ri is available, the jobs that could 
be blocked are J2 and J3; hence, CRI{1) = max(7r2,7r3) = 2. Finally, if none 
of the units of Ri is available, all three jobs could be blocked on Ri; hence, 
CRI{0) = max(7ri,7r2,7r3) = 3. 
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Figure 7.17 Resource ceilings as a function of the number of available units. 
Dashes identify impossible cases. 

Notice that, in the specific case of resources having a single unit (binary re­
sources), the definition of current ceiHng can be simphfied as follows: 

CR = max({0} U {7r(J) : R could block J}). 

This means that, if R is free, its ceiling is zero, whereas if R is busy, its ceiling 
is equal to the highest preemption level of the jobs that require R. 

System ceiling 

The resource access protocol adopted in the SRP also requires a system ceiling, 
Us, defined as the maximum of the current ceilings of all the resources; that is. 

Us = max(C/?^ : z = 1 , . . . , m). 

Notice that n^ is a dynamic parameter that can change every time a resource 
is accessed or released by a job. 

7.5.2 Protocol definition 

The key idea of the SRP is that, when a job needs a resource that is not 
available, it is blocked at the time it attempts to preempt, rather than later. 
Moreover, to prevent multiple priority inversions, a job is not allowed to start 
until the resources currently available are sufficient to meet the maximum re­
quirement of every job that could preempt it. Using the definitions introduced 
in the previous paragraph, this is achieved by the following preemption test: 

A job is not permitted to preempt until its priority is the highest 
among those of all the jobs ready to run, and its preemption level is 
higher than the system ceiling. 
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If the ready queue is ordered by decreasing priorities, the preemption test can 
be simply performed by comparing the preemption level 7r( J) of the ready job 
with the highest priority (the one at the head of the queue) with the system 
ceiling. If 7r( J) > H^, job J is executed, otherwise it is kept in the ready queue 
until ris becomes less than 7r(J). The condition 7r(J) > lis has to be tested 
every time Us may decrease; that is, every time a resource is released. 

Observations 

The implications that the use of the SRP has on tasks' execution can be better 
understood through the following observations: 

Passing the preemption test for job J ensures that the resources that are 
currently available are sufficient to satisfy the maximum requirement of job 
J and the maximum requirement of every job that could preempt J. This 
means that, once J starts executing, it will never be blocked for resource 
contention. 

Although the preemption test for a job J is performed before J starts to 
execute, resources are not allocated at this time but only when requested. 

A task can be blocked by the preemption test even though it does not 
require any resource. This is needed to avoid unbounded priority inversion. 

Blocking at preemption time, rather than at access time, decreases the 
number of context switches, reduces the run-time overhead, and simplifies 
the implementation of the protocol. 

The preemption test has the effect of imposing priority inheritance; that 
is, an executing job that holds a resource modifies the system ceiling and 
resists preemption as though it inherits the priority of any jobs that might 
need that resource. Note that this effect is accomplished without modifying 
the priority of the job. 

Example 

In order to illustrate how the SRP works, consider the task set already de­
scribed in Figure 7.16. The structure of the tasks is shown in Figure 7.18, 
where wait{Ri^n) denotes the request of n units of resource i^j, and signal{Ri) 
denotes their release. The current ceilings of the resources have already been 
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Figure 7.18 Structure of the tasks in the SRP example. 

Hs 

3 1 3 

t i t^ 

A 

^1 ^ 1 

3 H * 

2-] 1 1 
1 -J : 

3| 2 | 3 H l | i 

1 2| ; : : H 3 H ]/ 

t , t 3 U t 5 t 6 t 7 t 8 t9 

Figure 7.19 Example of a schedule under EDF and SRP. Numbers on tasks 
execution denote the resource indexes. 

shown in Figure 7.17, and a possible EDF schedule for this task set is de­
picted in Figure 7.19. In this figure, the fourth timeline reports the variation 
of the system ceiling, whereas the numbers along the schedule denote resource 
indexes. 
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At time ô̂  -̂ 3 starts executing and the system ceiling is zero because all re­
sources are completely available. When J3 enters its first critical section, it 
takes the only unit of i?2; thus, the system ceiling is set to the highest preemp­
tion level among the tasks that could be blocked on R2 (see Figure 7.17); that 
is, II5 = 7r2 = 2. As a consequence, J2 is blocked by the preemption test and 
J3 continues to execute. Note that when J3 enters its nested critical section 
(taking all units of Ri), the system ceiling is raised to lis — ni = 3 . This 
causes Ji to be blocked by the preemption test. 

As J3 releases i^i (at time ^2), the system ceiling becomes n^ = 2; thus, Ji 
preempts J3 and starts executing. Note that, once Ji is started, it is never 
blocked during its execution because the condition TTI > lis guarantees that 
all the resources needed by Ji are available. As Ji terminates, J3 resumes the 
execution and releases resource R2. As R2 is released, the system ceiling returns 
to zero and J2 can preempt J3. Again, once J2 is started, all the resources it 
needs are available; thus, J2 is never blocked. 

7.5.3 Properties of the protocol 

The main properties of the Stack Resource Policy are presented in this section. 
They will be used to analyze the schedulability and compute the maximum 
blocking time of each task. 

Lemma 7.9 If the preemption level of a job J is greater than the current ceiling 
of a resource R, then there are sufficient units of R available to 

1. Meet the maximum requirement of J and 

2. Meet the maximum requirement of every job that can preempt J. 

Proof. Assume 7r(J) > C^, but suppose that the maximum request of J for 
R cannot be satisfied. Then, by definition of current ceiling of a resource, we 
have CR > 7r(J), which is a contradiction. 

Assume 7r(J) > CR, but suppose that there exists a job JH that can preempt J 
such that the maximum request of JH for R cannot be satisfied. Since JH can 
preempt J, it must be TT{JH) > 7r(J). Moreover, since the maximum request 
of JH for R cannot be satisfied, by definition of current ceiling of a resource, 
we have CR > TT{JH)' Hence, we derive that 7r( J) < CR, which contradicts the 
assumption, Q 
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Theorem 7.5 (Baker) If no job J is permitted to start until 7r(J) > lis, then 
no job can be blocked after it starts. 

Proof. Let Â  be the number of tasks that can preempt a job J and assume 
that no job is permitted to start until its preemption level is greater than rig. 
The thesis will be proved by induction on A .̂ 

If Â  = 0, there are no jobs that can preempt J. If J is started when 7r( J) > Us, 
Lemma 7.9 guarantees that all the resources required by J are available when 
J preempts; hence, J will execute to completion without blocking. 

If A' > 0, suppose that J is preempted by JH- If JH is started when 7T{JH) > 
Us, Lemma 7.9 guarantees that all the resources required by JH are avail­
able when JH preempts. Since any job that preempts JH also preempts J, 
the induction hypothesis guarantees that JH executes to completion without 
blocking, as will any job that preempts J//, transitively. When all the jobs 
that preempted J complete, J can resume its execution without blocking, since 
the higher-priority jobs released all resources and when J started the resources 
available were sufficient to meet the maximum request of J. Q 

Theorem 7.6 (Baker) Under the Stack Resource Policy, a job Ji can be 
blocked for at most the duration of one critical section. 

Proof. Suppose that Ji is blocked for the duration of two critical sections 
shared with two lower-priority jobs, Ji and J2. Without loss of generality, 
assume 1^2 < TTI < TT̂ . This can happen only if Ji and J2 hold two different 
resources (such as R\ and R2) and J2 is preempted by Ji inside its critical 
section. This situation is depicted in Figure 7.20. This immediately yields to a 
contradiction. In fact, since Ji is not blocked by the preemption test, we have 
TTi > Us' On the other hand, since Ji is blocked, we have TT̂  < Ilg. Hence, we 
obtain that TT̂  < TTI , which contradicts the assumption, Q 

Theorem 7.7 (Baker) The Stack Resource Policy prevents deadlocks. 

Proof. By Theorem 7.5, a job cannot be blocked after it starts. Since a job 
cannot be blocked while holding a resource, there can be no deadlock, Q 
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Figure 7.20 An absurd situation that cannot occur under SRP. 

7.5.4 Schedulability analysis 

As far as the schedulability analysis is concerned, the considerations done for 
the Priority Ceiling Protocol are also valid for the Stack Resource Policy, since 
the general result does not depend on the time on which a job is blocked. 
However, if the SRP is used along with the EDF scheduling algorithm, the 
guarantee test has to be modified by considering that under EDF the least 
upper bound of the processor utilization factor is 1. 

As a result, a set of n periodic tasks using the Stack Resource Policy can be 
scheduled by the EDF algorithm if 

Vi, 1 < i < n, E Tk + 
Bi 

< 1. (7.7) 

As for the PCP, Ci denotes the worst-case execution time of task r^, Ti denotes 
its period, and Bi its maximum blocking time. For each task TJ, the sum 
in parentheses represents the utilization factor due to TI itself and to all tasks 
having a preemption level higher than TT̂ , whereas the term Bi/Ti considers the 
blocking time caused by tasks having preemption level lower than TT̂  . Condition 
(7.7) can easily be extended to periodic tasks with deadlines less than periods. 
In this case, the schedulability test is modified as follows: 

Vz, 1 < i < n. (7.8) 

A more precise schedulability condition can be achieved through a processor 
demand approach [BRH90, JS93]. In particular, equation (4.18) has been ex­
tended in [BL97, Lip97], where it is proved that a set of periodic tasks that use 
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shared resources with SRP is schedulable by EDF if for all L > 0 and for all 
l<i<n 

E 
k=i 

L-D. 
+ l]Ck + 

L-Dj 

Ti 
+ \]Bi < L. (7.9) 

7.5.5 Blocking t ime computat ion 

The maximum blocking time that a job can experience with the SRP is the 
same as the one that can be experienced with the Priority Ceiling Protocol. 
Theorem 7.6, in fact, guarantees that under the SRP a job Ji can be blocked 
for at most the duration of one critical section among those that can block 
Ji. Lemma 7.8, proved for the PCP, can be easily extended to the SRP, thus 
a critical section Zj^k belonging to job Jj and guarded by semaphore Sk can 
block a job Ji only if TTJ < TTI and max(C5^) > TTJ. Notice that, under the SRP, 
the ceiling of a semaphore is a dynamic variable, so we have to consider its 
maximum value, that is the one corresponding to a number of units currently 
available equal to zero. 

Hence, the maximum blocking time Bi of job Ji can be computed as the du­
ration of the longest critical section among those belonging to tasks with pre­
emption level lower than TTJ and guarded by a semaphore with maximum ceiling 
higher than or equal to TT̂ . If Dj^k denotes the duration of the longest critical 
section of task TJ among those guarded by semaphore Sk, we can write 

Bi = max{Dj^k TTj < TTi, Cs,X^) > ^i}' (7.10) 

7.5.6 Sharing runt ime stack 

Another interesting implication deriving from the use of the SRP is that it 
supports stack sharing among tasks. This is particularly convenient for those 
applications consisting of a large number of tasks, dedicated to acquisition, 
monitoring, and control activities. In conventional operating systems, each 
process must have a private stack space, sufficient to store its context (that is, 
the content of the CPU registers) and its local variables. A problem with these 
systems is that, if the number of tasks is large, a great amount of memory may 
be required for the stacks of all the tasks. 
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Figure 7.21 Possible evolution with one stack per task. 

For example, consider four jobs J i , J2, J3, and J4, with preemption levels 1, 
2, 2, and 3, respectively (3 being the highest preemption level). Figure 7.21 
illustrates a possible evolution of the stacks, assuming that each job is allocated 
its own stack space, equal to its maximum requirement. At time ^1, Ji starts 
executing; J2 preempts at time 2̂ înd completes at time ^3, allowing Ji to 
resume. At time ^4, Ji is preempted by J3, which in turn is preempted by J4 
at time ^5. At time te, J A completes and J3 resumes. At time t-j, J3 completes 
and Ji resumes. 

Note that the top of each process stack varies during the process execution, 
while the storage region reserved for each stack remains constant and corre­
sponds to the distance between two horizontal lines. In this case, the total 
storage area that must be reserved for the application is equal to the sum of 
the stack regions dedicated to each process. 

However, if all tasks are independent or use the SRP to access shared resources, 
then they can share a single stack space. In this case, when a job J is preempted 
by a job J', J maintains its stack and the stack of J' is allocated immediately 
above that of J . Figure 7.22 shows a possible evolution of the previous task set 
when a single stack is allocated to all tasks. 

Under the SRP, stack overlapping without interpenetration is a direct con­
sequence of Theorem 7.5. In fact, since a job J can never be blocked once 
started, its stack can never be penetrated by the ones belonging to jobs with 
lower preemption levels, which can resume only after J is completed. 
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Figure 7.22 Possible evolution with a single stack for all tasks. 

Note that the stack space between the two upper horizontal Hnes (which is 
equivalent to the minimum stack between J2 and J3) is no longer needed, since 
J2 and J3 have the same preemption level, so they can never occupy stack space 
at the same time. In general, the higher the number of tasks with the same 
preemption level, the larger stack saving. 

For example, consider an application consisting of 100 jobs distributed on 10 
preemption levels, with 10 jobs for each level, and suppose that each job needs 
up to 10 Kbytes of stack space. Using a stack per job, 1000 Kbytes would 
be required. On the contrary, using a single stack, only 100 Kbytes would be 
sufficient, since no more than one job per preemption level could be active at 
one time. Hence, in this example we would save 900 Kbytes; that is, 90%. In 
general, when tasks are distributed on k preemption levels, the space required 
for a single stack is equal to the sum of the largest request on each level. 

7.5.7 Implementation considerations 

The implementation of the SRP is similar to that of the PCP, but the locking 
operations {srp.wait and srp.signal) are simpler, since a job can never be 
blocked when attempting to lock a semaphore. When there are no sufficient 
resources available to satisfy the maximum requirement of a job, the job is not 
permitted to preempt and is kept in the ready queue. 

To simplify the preemption test, all the ceilings of the resources (for any number 
of available units) can be precomputed and stored in a table. Moreover, a stack 
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can be used to keep track of the system ceiling. When a resource R is allocated, 
its current state, UR, is updated and, if CR{nR) > Eg, then Us is set to CR{nR). 
The old values of UR and lis are pushed onto the stack. When resource R is 
released, the values of II^ and UR are restored from the stack. If the restored 
system ceiling is lower than the previous value, the preemption test is executed 
on the ready job with the highest priority to check whether it can preempt. 
If the preemption test is passed, a context switch is performed; otherwise, the 
current task continues its execution. 

7.6 SUMMARY 

The concurrency control protocols presented in this chapter can be compared 
with respect to several characteristics. Figure 7.23 provides a qualitative eval­
uation of the algorithms in terms of priority assignment, number of blockings, 
instant of blocking, programming transparency, deadlock prevention, imple­
mentation, and complexity for computing the blocking factors. Notice that 
the Priority Inheritance Protocol (PIP), although not so effective in terms of 
performance, is the only one that is transparent at the programming level. 
The other protocols, in fact, require the user to specify the list of resources 
used by each task, in order to compute the ceiling values. This feature of PIP 
makes it actractive for commercial operating systems (like VxWorks), where 
predictability can be improved without introducing new kernel primitives. 
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Figure 7.23 Evaluation summary of resource access protocols. 
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Exercises 

7.1 Verify whether the following task set is schedulable by the Rate-Monotonic 
algorithm (try both the processor utilization and the worst-case response 
approach): 

~cr] 
Bi 
Ti 

1 '̂ i 

r^ 
5 
10 

T2 

3 
3 
15 

T3 

2 
0 

20 

7.2 Consider three periodic tasks r i , r2, and rs (having decreasing priority), 
which share four resources, A, B, C, and D, accessed using the Priority 
Inheritance Protocol. Compute the maximum blocking time Bi for each 
task, knowing that the longest duration Dm for a task r̂  on resource R 
is given in the following table (there are no nested critical sections): 

n 
T2 

rs 

1 A 

P~ 
4 

1 ^ 

B 

2 
0 
1 

C 

4 
6 
0 

D 

6 
8 
5 

7.3 Solve the same problem described in Exercise 7.2 when the resources are 
accessed by the Priority Ceiling Protocol. 

7.4 Consider four periodic tasks r i , r2, T3, and T4 (having decreasing prior­
ity), which share five resources. A, B, C, D, and E, accessed using the 
Priority Inheritance Protocol. Compute the maximum blocking time Bi 
for each task, knowing that the longest duration DiR for a task TI on 
resource R is given in the following table (there are no nested critical 
sections): 

n 
T2 

rs 
TA 

1 A 
VW 

10 
0 
10 

B 

~^ 
0 
3 
0 

c 
~ 9 ~ 

7 
0 
8 

D 

"~8~ 
0 
7 
0 

E 

~ 0 ~ 
6 
13 
5 

7.5 Solve the same problem described in Exercise 7.4 when the resources are 
accessed by the Priority Ceiling Protocol. 
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7.6 Consider three tasks J i , J2, and J3, which share three multiunit re­
sources, A, B^ and C, accessed using the Stack Resource Pohcy. Re­
sources A and B have three units, whereas C has two units. Compute 
the ceihng table for all the resources based on the following task charac­
teristics: 

pT] 
h 
Js 1 

1 Pi 
5 
10 
20 

Mfii 

1 
2 
3 

I^R2 

0 
1 
1 

/i/?3 

1 
3 
1 



8 
HANDLING OVERLOAD 

CONDITIONS 

8.1 INTRODUCTION 

This chapter deals with the problem of scheduling real-time tasks in overload 
conditions; that is, in those critical situations in which the computational de­
mand requested by the task set exceeds the time available on the processor, 
and hence not all tasks can complete within their deadlines. 

In real-world applications, even when the system is properly designed and sized, 
a transient overload can occur for different reasons, such as changes in the en­
vironment, simultaneous arrivals of asynchronous events, faults of peripheral 
devices, or system exceptions. The major risk that could occur in these situa­
tions is that some critical task could miss its deadline, jeopardizing the correct 
behavior of the whole system. 

If the operating system is not conceived to handle overloads, the effect of a tran­
sient overload can be catastrophic. Experiments carried out by Locke [Loc86] 
have shown that EDF can rapidly degrade its performance during overload in­
tervals. This is due to the fact that EDF gives the highest priority to those 
processes that are close to missing their deadlines. There are cases in which 
the arrival of a new task can cause all the previous tasks to miss their dead­
lines. Such an undesirable phenomenon, called the Domino effect, is depicted 
in Figure 8.1. 

Figure 8.1a shows a feasible schedule of a task set executed under EDF. How­
ever, if at time ô task Jo is executed, all the previous tasks miss their deadlines 
(see Figure 8.1b). In such a situation, EDF does not provide any type of guar­
antee on which tasks meet their timing constraints. This is a very undesirable 
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behavior in those control apphcations in which a critical subset of tasks has 
to be guaranteed in all anticipated load conditions. In order to avoid domino 
effects, the operating system and the scheduling algorithm must be explicitly 
designed to handle transient overloads in a controlled fashion, so that the dam­
age due to a deadline miss can be minimized. 

J 3 

jzzi 

1_JL 

(a) 

J2 
1 

1 1 
A 

A 

^ 

• i 1 

•li—1 
to (b) 

Figure 8.1 a. Feasible schedule with Earliest Deadline First, in normal load 
condition, b . Overload with domino effect due to the arrival of task JQ. 

In the real-time literature, several scheduling algorithms have been proposed 
to deal with overloads. In 1984, Ramamritham and Stankovic [RS84] used 
EDF to dynamically guarantee incoming work via on-line planning, and, if a 
newly arriving task could not be guaranteed, the task was either dropped or 
distributed scheduling was attempted. The dynamic guarantee performed in 
this approach had the effect of avoiding the catastrophic effects of overload on 
EDF. 
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In 1986, Locke [Loc86] developed an algorithm that makes a best effort at 
scheduHng tasks based on earliest deadline with a rejection policy based on re­
moving tasks with the minimum value density. He also suggested that removed 
tasks remain in the system until their deadline has passed. The algorithm com­
putes the variance of the total slack time in order to find the probability that 
the available slack time is less than zero. The calculated probability is used to 
detect a system overload. If it is less than the user prespecified threshold, the 
algorithm removes the tasks in increasing value density order. 

In Biyabani et. al. [BSR88] the previous work of Ramamritham and Stankovic 
was extended to tasks with different values, and various policies were studied 
to decide which tasks should be dropped when a newly arriving task could not 
be guaranteed. This work used values of tasks such as in Locke's work but used 
an exact characterization of the first overload point rather than a probabilistic 
estimate that overload might occur. 

Haritsa, Livny, and Carey [HLC91] presented the use of a feedback controlled 
EDF algorithm for use in real-time database systems. The purpose of their work 
was to obtain good average performance for transactions even in overload. Since 
they were working in a database environment, they assumed no knowledge of 
transaction characteristics, and they considered tasks with soft deadlines that 
are not guaranteed. 

In real-time Mach [TWW87] tasks were ordered by EDF and overload was 
predicted using a statistical guess. If overload was predicted, tasks with least 
value were dropped. 

Other general work on overload in real-time systems has also been done. For 
example, Sha [SLR88] showed that the Rate-Monotonic algorithm has poor 
properties in overload. Thambidurai and Trivedi [TT89] studied transient over­
loads in fault-tolerant real-time systems, building and analyzing a stochastic 
model for such systems. However, they provided no details on the schedul­
ing algorithm itself. Schwan and Zhou [SZ92] did on-line guarantees based on 
keeping a slot list and searching for free-time intervals between slots. Once 
schedulability is determined in this fashion, tasks are actually dispatched using 
EDF. If a new task cannot be guaranteed, it is discarded. 

Zlokapa, Stankovic, and Ramamritham [Zlo93] proposed an approach called 
well-time scheduling^ which focuses on reducing the guarantee overhead in 
heavily loaded systems by delaying the guarantee. Various properties of the 
approach were developed via queueing theoretic arguments, and the results 
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were a multilevel queue (based on an analytical derivation), similar to that 
found in [HLC91] (based on simulation). 

More recent approaches will be described in the following sections. Before 
presenting specific methods and theoretical results on overload, the concept 
of overload, and, in general, the meaning of computational load for real-time 
systems is defined in the next section. 

8.2 LOAD DEFINITIONS 

In a real-time system, the definition of computational workload depends on 
the temporal characteristics of the computational activities. For non-real-time 
or soft real-time tasks, a commonly accepted definition of workload refers to 
the standard queueing theory, according to which a load p, also called traffic 
intensity, represents the expected number of job arrivals per mean service time. 
If C is the mean service time and A is the average interarrival rate of the jobs, 
the load can be computed as 

p = XC. 

Notice that this definition does not take deadlines into account; hence, it is 
not particularly useful to describe real-time workloads. In a hard real-time 
environment, a system is overloaded when, based on worst-case assumptions, 
there is no feasible schedule for the current task set, so one or more tasks will 
miss their deadline. 

If the task set consists of n independent preemptable periodic tasks, whose 
relative deadlines are equal to their period, then the system load p is equivalent 
to the processor utilization factor: 

Ci ^-E^^ 
1=1 

where Ci and Ti are the computation time and the period of task TI , respectively. 
In this case, a load p > 1 means that the total computation time requested by 
the periodic activities in their hyperperiod exceeds the available time on the 
processor; therefore, the task set cannot be scheduled by any algorithm. 

For a generic set of real-time jobs that can be dynamically activated, the system 
load varies at each job activation and it is a function of the jobs' deadlines. A 
general definition of load has been proposed by Baruah et al. [BKM~^92], who 



Handling Overload Conditions 229 

J i 

J2 

J3 

j f g s a 

2 3 4 5 6 7 

t 

P,(t) = 2/3 

P.(t) = 3/4 

p3(t) = 4/6 

p (t) = 3/4 

Figure 8.2 Load calculation for a set of three real-time tasks. 

say that a hard real-time environment has a loading factor p if and only if it 
is guaranteed that there will be no interval of time [tx^ty] such that the sum 
of the execution times of all jobs making requests and having deadlines within 
this interval is greater than p{ty — tx). Although this definition is quite general 
and of theoretical value, it is of little practical use for load calculation, since 
the number of intervals [tx.ty] can be very large. 

A simpler method for calculating the load in a dynamic real-time environment 
has been proposed by Buttazzo and Stankovic in [BS95], where the load is 
computed at each job activation (r^), and the number of intervals in which the 
computation in done is limited by the number of deadlines (di). The method for 
computing the load is based on the consideration that, for a single job J^, the 
load is given by the ratio of its computation time Ci and its relative deadline 
Di = di - Ti. For example, if Ci = Di (that is, the job does not have slack 
time), the load in the interval [vi.di] is one. When a new job arrives, the load 
can be computed from the last request time, which is also the current time ,̂ 
and the longest deadline, say dn- In this case, the intervals that need to be 
considered for the computation are [^,c?i], [^,(i2], • • •, [t.dn]- In general, the 
processor load in the interval [t, di] is given by 

Pi{t) = 
Erf,<d. f̂c(̂ ) 

{di - t) ' 

where Ck(t) refers to the remaining execution time of job Jk with deadline less 
than or equal to di. Hence, the total load in the interval [t, dn] can be computed 
as the maximum among all Pi{t)\ that is, 

p = max pi{t). 
i 

Figure 8.2 shows an example of load calculation for a set of three real-time 
tasks. 
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8.3 PERFORMANCE METRICS 
When a real-time system is underloaded and dynamic activation of tasks is 
not allowed, there is no need to consider task importance in the scheduling 
policy, since there exist optimal scheduling algorithms that can guarantee a 
feasible schedule under a set of assumptions. For example, Dertouzos [Der74] 
proved that EDF is an optimal algorithm for preemptive, independent tasks 
when there is no overload. 

On the contrary, when tasks can be activated dynamically and an overload 
occurs, there are no algorithms that can guarantee a feasible schedule of the task 
set. Since one or more tasks will miss their deadlines, it is preferable that late 
tasks be the less important ones in order to achieve graceful degradation. Hence, 
in overload conditions, distinguishing between time constraints and importance 
is crucial for the system. In general, the importance of a task is not related 
to its deadline or its period; thus, a task with a long deadline could be much 
more important than another one with an earlier deadline. For example, in 
a chemical process, monitoring the temperature every ten seconds is certainly 
more important than updating the clock picture on the user console every 
second. This means that, during a transient overload, is better to skip one or 
more clock updates rather than miss the deadline of a temperature reading, 
since this could have a major impact on the controlled environment. 

In order to specify importance, an additional parameter is usually associated 
with each task, its value, that can be used by the system to make scheduling 
decisions. 

The value associated with a task reflects its importance with respect to the other 
tasks in the set. The specific assignment depends on the particular application. 
For instance, there are situations in which the value is set equal to the task 
computation time; in other cases, it is an arbitrary integer number in a given 
range; in other applications, it is set equal to the ratio of an arbitrary number 
(which reflects the importance of the task) and the task computation time; this 
ratio is referred to as the value density. 

In a real-time system, however, the actual value of a task also depends on the 
time at which the task is completed; hence, the task importance can be better 
described by an utility function. Figure 8.3 illustrates some utility functions 
that can be associated with tasks in order to describe their importance. Accord­
ing to this view, a non-real-time task, which has no time constraints, has a low 
constant value, since it always contributes to the system value whenever it com-
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pletes its execution. On the contrary, a hard task contributes to a value only 
if it completes within its deadline, and, since a deadline miss would jeopardize 
the behavior of the whole system, the value after its deadline can be considered 
minus infinity in many situations. A task with a soft deadline, instead, can still 
give a value to the system if executed after its deadline, although this value 
may decrease with time. Then, there can be real-time activities, so-called firm, 
that do not jeopardize the system but give zero value if completed after their 
deadline. 

Once the importance of each task has been defined, the performance of a 
scheduling algorithm can be measured by accumulating the values of the task 
utility functions computed at their completion time. Specifically, we define as 
cumulative value of a scheduling algorithm A the following quantity: 

n 

i=l 

Given this metric, a scheduling algorithm is optimal if it maximizes the cumu­
lative value achievable on a task set. 

Notice that if a hard task misses its deadline, the cumulative value achieved by 
the algorithm is minus infinity, even though all other tasks completed before 
their deadlines. For this reason, all activities with hard timing constraints 
should be guaranteed a priori by assigning them dedicated resources (included 
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processors). If all hard tasks are guaranteed a priori, the objective of a real-time 
scheduling algorithm should be to guarantee a feasible schedule in underload 
conditions and maximize the cumulative value of soft and firm tasks during 
transient overloads. 

Given a set of n jobs Ji{Ci,Di,Vi), where Ci is the worst-case computation 
time, Di is the relative deadline, and Vi is the importance value gained by the 
system when the task completes within its deadline, the maximum cumulative 
value achievable on the task set is clearly equal to the sum of all values Vi; 
that is, Tmax = Yl7=i ^i' ^^ overload conditions, this value cannot be achieved, 
since one or more tasks will miss their deadlines. Hence, if F* is the maxi­
mum cumulative value that can be achieved by any algorithm on a task set in 
overload conditions, the performance of a scheduling algorithm A can be mea­
sured by comparing the cumulative value FA obtained by A with the maximum 
achievable value F*. 

8.3.1 On-line versus clairvoyant scheduling 

Since dynamic environments require on-line scheduling, it is important to an­
alyze the properties and the performance of on-line scheduling algorithms in 
overload conditions. 

Although there are optimal on-line algorithms in underload conditions, it is 
easy to show that no optimal on-line algorithms exist in overloads. Consider for 
example the task set shown in Figure 8.4, consisting of three tasks Ji(10,11,10), 
J2(6,7,6), J3(6,7,6). 

Without loss of generality, we assume that the importance values associated to 
the tasks are proportional to their execution times (Vi = d) and that tasks 
are firm, so no value is accumulated if a task completes after its deadline. If Ji 
and J2 simultaneously arrive at time Q̂ = 0, there is no way to maximize the 
cumulative value without knowing the arrival time of J3. In fact, if J3 arrives 
at time t — A ox before, the maximum cumulative value is F* = 10 and can 
be achieved by scheduling task Ji (see Figure 8.4a). However, if J3 arrives 
between time ^ = 5 and time t = 8, the maximum cumulative value is F* = 12, 
achieved by scheduling task J2 and J3, and discarding Ji (see Figure 8.4b). 
Notice that if J3 arrives at time ^ = 9 or later (see Figure 8.4c), then the 
maximum cumulative value is F* = 16 and can be accumulated by scheduling 
tasks Ji and J3. Hence, at time t = 0, without knowing the arrival time of 
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Figure 8.4 No optimal on-line optimal algorithms exist in overload condi­
tions, since the schedule that maximizes F depends on the knowledge of future 
arrivals, a. Tmax = 10. b . Tmax = 12. c. Tmax = 16. 
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J3, no on-line algorithm can decide which task to schedule for maximizing the 
cumulative value. 

What this example shows is that, without an a priori knowledge of the task 
arrival times, no on-line algorithm can guarantee the maximum cumulative 
value r*. This value can only be achieved by an ideal clairvoyant scheduling 
algorithm that knows the future arrival time of any task. Although the optimal 
clairvoyant scheduler is a pure theoretical abstraction, it can be used as a 
reference model to evaluate the performance of on-line scheduling algorithms 
in overload conditions. 

8.3.2 Competit ive factor 

The cumulative value obtained by a scheduling algorithm on a task set repre­
sents a measure of its performance for that particular task set. To characterize 
an algorithm with respect to worst-case conditions, however, the minimum cu­
mulative value that can be achieved by the algorithm on any task set should 
be computed. A parameter that measures the worst-case performance of a 
scheduling algorithm is the competitive factor, introduced by Baruah et al. in 
[BKM+92]. 

Definition 8.1 A scheduling algorithm A has a competitive factor (^A if Q^'^d 
only if it can guarantee a cumulative value 

TA > ^AT^ 

where F* is the cumulative value achieved by the optimal clairvoyant scheduler. 

From this definition, we can notice that the competitive factor is a real number 
(fA ^ [O?!]- If ^^ algorithm A has a competitive factor (^A^ it means that 
A can achieve a cumulative value TA at least (^A times the cumulative value 
achievable by the optimal clairvoyant scheduler on any task set. 

If the overload has an infinite duration, then no on-line algorithm can guarantee 
a competitive factor greater than zero. In real situations, however, overloads 
are intermittent and usually have a short duration; hence, it is desirable to use 
scheduling algorithms with a high competitive factor. 

Unfortunately, without any form of guarantee, the plain EDF algorithm has a 
zero competitive factor. To show this fact it is sufficient to find an overload 
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Figure 8.5 Situation in which EDF has an arbitrarily small competitive fac­
tor. 

situation in which the cumulative value obtained by EDF can be arbitrarily 
reduced with respect to that one achieved by the clairvoyant scheduler. Con­
sider the example shown in Figure 8.5, where tasks have a value proportional 
to their computation time. This is an overload condition because both tasks 
cannot be completed within their deadlines. 

When task J2 arrives, EDF preempts Ji in favor of J2, which has an earlier 
deadline, so it gains a cumulative value of C2. On the other hand, the clair­
voyant scheduler always gains Ci > C2. Since the ratio C2/C1 can be made 
arbitrarily small, it follows that the competitive factor of EDF is zero. 

An important theoretical result found in [BKM"^92] is that there exists an 
upper bound on the competitive factor of any on-line algorithm. This is stated 
by the following theorem. 

Theorem 8.1 (Baruah at al.) In systems where the loading factor is greater 
than 2 (p > 2) and tasks' values are proportional to their computation times, 
no on-line algorithm can guarantee a competitive factor greater than 0.25. 

The proof of this theorem is done by using an adversary argument, in which 
the on-line scheduling algorithm is identified as a player and the clairvoyant 
scheduler as the adversary. In order to propose worst-case conditions, the 
adversary dynamically generates the sequence of tasks depending on the player 
decisions, to minimize the ratio F A / F * . At the end of the game, the adversary 
shows its schedule and the two cumulative values are computed. Since the 
player tries to do his best in worst-case conditions, the ratio of the cumulative 
values gives the upper bound of the competitive factor for any on-line algorithm. 
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Task generation strategy 

To create an overload condition and force the hand of the player, the adversary 
creates two types of tasks: major tasks, of length Cj, and associated tasks, of 
length 6 arbitrarily small. These tasks are generated according to the following 
strategy (see Figure 8.6): 

• All tasks have zero laxity; that is, the relative deadline of each task is 
exactly equal to its computation time. 

• After releasing a major task Jj, the adversary releases the next major task 
Ji^i at time e before the deadline of Ji; that is, r^+i = di — e. 

• For each major task Jj, the adversary may also create a sequence of asso­
ciated tasks, in the interval [n, di], such that each subsequent associated 
task is released at the deadline of the previous one in the sequence (see 
Figure 8.6). Note that the resulting load is p = 2. Moreover, any algorithm 
that schedules any one of the associated tasks cannot schedule Ji within 
its deadline. 

• If the player chooses to abandon Ji in favor of an associated task, the 
adversary stops the sequence of associated tasks. 

• If the player chooses to schedule a major task J^, the sequence of tasks 
terminates with the release of Ji-^i. 

• Since the overload must have a finite duration, the sequence continues until 
the release of Jm, where m is a positive finite integer. 

Notice that the sequence of tasks generated by the adversary is constructed in 
such a way that the player can schedule at most one task within its deadline 
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(either a major task or an associated task). Clearly, since task values are equal 
to their computation times, the player never abandons a major task for an 
associated task, since it would accumulate a negligible value; that is, e. On the 
other hand, the values of the major tasks (that is, their computation times) are 
chosen by the adversary to minimize the resulting competitive factor. To find 
the worst-case sequence of values for the major tasks, let 

^0-) ^1-) ^2f • ' • •) '^ii ' ' • •) 'Jm 

be the longest sequence of major tasks that can be generated by the adversary 
and, without loss of generality, assume that the first task has a computation 
time equal to Co = 1. Now, consider the following three cases. 

Case 0. If the player decides to schedule JQ, the sequence terminates with 
J i . In this case, the cumulative value gained by the player is Co, whereas the 
one obtained by the adversary is (Co -h Ci — e). Notice that this value can be 
accumulated by the adversary either by executing all the associated tasks, or 
by executing JQ and all associated tasks started after the release of J i . Being e 
arbitrarily small, it can be neglected in the cumulative value. Hence, the ratio 
among the two cumulative values is 

"̂ ^ Co + Ci 1 + Ci k' 

If l//c is the value of this ratio (A: > 0), then C\ = k — 1. 

Case 1. If the player decides to schedule J i , the sequence terminates with J2. 
In this case, the cumulative value gained by the player is Ci, whereas the one 
obtained by the adversary is (Co + Ci + C2). Hence, the ratio among the two 
cumulative values is 

- Ci _ A;-1 
"̂ ^ ~ Co -f Ci + C2 ~ /c + C2 * 

In order not to lose with respect to the previous case, the adversary has to 
choose the value of C2 so that ipi < (po', that is, 

k-1 1 
k + C2 - k' 

which means 
C2 > k^ - 2k. 

However, observe that, if (pi < (fo, the execution of JQ would be more convenient 
for the player, thus the adversary decides to make (pi = (po; that is, 

Co - k^-2k. 
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Case i. If the player decides to schedule Ji, the sequence terminates with J^+i. 
In this case, the cumulative value gained by the player is Ci, whereas the one 
obtained by the adversary is (Co + Ci 4- . . . + Ci^\). Hence, the ratio among 
the two cumulative values is 

Ci 

Y.i=:0 ^3 + ^»+l 

As in the previous case, to prevent any advantage to the player, the adversary 
will choose tasks' values so that 

1 

Thus, 

and hence 

ifi = (pi^i = ... = ifo = - . 

C^ 
Yl]=oCj +Ci^i k' 

j=0 

Thus, the worst-case sequence for the player occurs when major tasks are gen­
erated with the following computation times: 

^° : ^ i (8.1) 
Ci-i-i — kCi — z2j=o ^3-

Proof of the hound 

Whenever the player chooses to schedule a task Jj, the sequence stops with 
Jij^i and the ratio of the cumulative values is 

Ci ^ 1 

Ej=0 ^3 + C'i+i ^ 

However, if the player chooses to schedule the last task J^ , the ratio of the 
cumulative values is 

Cm 

ET=oCj-
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Notice that if k and m can be chosen such that i^^rn < 1/^; that is, 

r 1 
< 7, (8.2) Em ^ 7 ' 

then we can conclude that, in the worst case, a player cannot achieve a cumu­
lative value greater than 1/k times the adversary's value. Notice that 

^j=0 ^3 Sjlo ^3 + Cm YJjLo Cj -f- kCm-l " S j l o ^3 ^^m-1 

Hence, if there exists an m which satisfies equation (8.2), it also satisfies the 
following equation: 

^ m ^ ^ m —1 • 

(8.3) 

Thus, (8.3) is satisfied if and only if (8.2) is satisfied. 
From (8.1) we can also write 

Ci-\-2 — kCi-^i — 2_^ Cj 
3=0 

i 

Ci-i-i = kCi — y ^Cj, 

i=o 

and subtracting the second equation from the first one, we obtain 

Ci-\-2 — C'i-f 1 = kyCi^i — Ci) — CiJ^i 

that is, 
Ci-\-2 — kyCij^i — Ci). 

Hence, equation (8.1) is equivalent to 

f Co = 1 
^ Ci ^ k-l (8.4) 
y Ci^2 = k{Ci^i - Ci). 

From this result, we can say that the tightest bound on the competitive factor 
of an on-line algorithm is given by the smallest ratio 1/k (equivalently, the 
largest k) such that (8.4) satisfies (8.3). Equation (8.4) is a recurrence relation 
that can be solved by standard techniques [Sha85]. The characteristic equation 
of (8.4) is 

x"^ - kx + k = 0, 
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which has roots 

k + Vk'^- 4A: , k-Vk'^ - 4k 
xi = and X2 = . 

2 2 

When A; = 4, we have 
d = dii2'-{-d22\ (8.5) 

and when k ^ 4 we have 

Ci - diixiY + d2{x2)\ (8.6) 

where values for di and ^2 can be found from the boundary conditions expressed 
in (8.4). We now show that for {k = 4) and {k > 4) Ci will diverge, so equation 
(8.3) will not be satisfied, whereas for {k < 4) Ci will satisfy (8.3). 

Case (k = 4). In this case, Ci = d\i2'^ 4- G?22* and, from the boundary condi­
tions, we find di — 0.5 and d2 — I. Thus, 

Ci = (^ + 1)2S 

which clearly diverges. Hence, for A; == 4, equation (8.3) cannot be satisfied. 

Case (/c > 4). In this case, Ci = di{xiy -h d2{x2)\ where 

k + Vk'^ - 4k , k-Vk^ - 4k 
xi = and X2 = • 

2 2 
From the boundary conditions we find 

J Co = di -\- d2 = I 
\ Ci = diXi-\-d2X2 = k — 1 

that is. 
fc-2 

^1 ~" 2 "^ 2v/fc2-4fc 
r1 — i _ fc-2 
^2 - 2 2 > A ^ ^ ^ -

Since (xi > 0:2), (a:i > 2), and (di > 0), Cj will diverge, and hence, also for 
A: > 4, equation (8.3) cannot be satisfied. 

Case {k < 4). In this case, since (/ĉ  —4k < 0), both the roots xi , X2 and 
the coefficients di, ^2 are complex conjugates, so they can be represented as 
follows: 

^ Xi = re^ (di = se^' r 
{ d2 = se-^^ \ X2 = re •̂ ,̂ 
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where s and r are real numbers, j = \ / ^ , and 0 and LO are angles such that, 
—7r/2 < ^ < 0 , 0 < u ; < 7r/2. Equation (8.6) may therefore be rewritten as 

= 5r*[cos(^ + icc;) + j sin(^ H-icj) + cos(^ + icj) — jsin(^ + zo;)] = 
= 2sr^ cos{6 -{- iuj). 

Being UJ ^ 0, cos{6 + ioo) is negative for some i G N, which implies that there 
exists a finite m that satisfies (8.3). 

Since (8.3) is satisfied for A: < 4, the largest k that determines the competi­
tive factor of an on-line algorithm is certainly less than 4. Therefore, we can 
conclude that 1/4 is an upper bound on the competitive factor that can be 
achieved by any on-line scheduling algorithm in an overloaded environment. 
Hence, Theorem 8.1 follows. 

Extensions 

Theorem 8.1 establishes an upper bound on the competitive factor of on-line 
scheduling algorithms operating in heavy load conditions (p > 2). In lighter 
overload conditions (1 < p < 2), the bound is a little higher, and it is given by 
the following theorem [BR91]. 

Theorem 8.2 (Baruah et al.) In real-time environments with a loading fac­
tor p, 1 < p <2, and task values equal to computation times, no on-line algo­
rithm can guarantee a competitive factor greater than p, where p satisfies 

4 [ l - ( p - l ) p f = 2 7 / . (8.7) 

Notice that, for p = 1 -h e, equation (8.7) is satisfied for p = y/4:/27 c::̂  0.385, 
whereas, for p = 2, the same equation is satisfied for p = 0.25. 

In summary, whenever the system load does not exceed one, the upper bound 
of the competitive factor is obviously one. As the load exceeds one, the bound 
immediately falls to 0.385, and as the load increases from one to two, it falls 
from 0.385 to 0.25. For loads higher than two, the competitive factor limitation 
remains at 0.25. The bound on the competitive factor as a function of the load 
is shown in Figure 8.7. 
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Figure 8.7 Bound of the competitive factor of an on-line scheduling algo­
rithm as a function of the load. 

Baruah et al. [BR91] also showed that, when using value density metrics (where 
the value density of a task is its value divided by its computation time), the 
best that an on-line algorithm can guarantee in environments with load p > 2 
is 

1 

where k is the important ratio between the highest and the lowest value density 
task in the system. 

In environments with a loading factor p, 1 < p < 2, and an importance ratio 
/c, two cases must be considered. Let q = k{p - 1). U q > 1, then no on-hne 
algorithm can achieve a competitive factor greater than 

1 

27p\ 

whereas, if q < 1, no on-line algorithm can achieve a competitive factor greater 
than p, where p satisfies 

4(1 - qpf = 

Before concluding the discussion on the competitive analysis, it is worth point­
ing out that all the above bounds are derived under very restrictive assump­
tions, such as all tasks have zero laxity, the overload can have an arbitrary (but 
finite) duration, and task's execution time can be arbitrarily small. In most 
real-world applications, however, tasks characteristics are much less restrictive; 
therefore, the l /4th bound has only a theoretical validity, and more work is 
needed to derive other bounds based on more knowledge of the actual envi­
ronmental load conditions. An analysis of on-line scheduling algorithms under 
diff'erent types of adversaries has been presented by Karp in [Kar92]. 
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8.4 SCHEDULING SCHEMES FOR 
OVERLOAD 

With respect to the strategy used to predict and handle overloads, most of the 
scheduling algorithms proposed in the literature can be divided into three main 
classes, illustrated in Figure 8.8: 

• Best Effort. This class includes those algorithms with no prediction for 
overload conditions. At its arrival, a new task is always accepted into the 
ready queue, so the system performance can only be controlled through a 
proper priority assignment. 

• Guarantee. This class includes those algorithms in which the load on the 
processor is controlled by an acceptance test executed at each task arrival. 
Typically, whenever a new task enters the system, a guarantee routine 
verifies the schedulability of the task set based on worst-case assumptions. 
If the task set is found schedulable, the new task is accepted in the ready 
queue; otherwise, it is rejected. 

• Robust. This class includes those algorithms that separate timing con­
straints and importance by considering two different policies: one for task 
acceptance and one for task rejection. Typically, whenever a new task en­
ters the system, an acceptance test verifies the schedulability of the new 
task set based on worst-case assumptions. If the task set is found schedu­
lable, the new task is accepted in the ready queue; otherwise, one or more 
tasks are rejected based on a different policy. 

In addition, an algorithm is said to be competitive if it has a competitive factor 
greater than zero. 

Notice that the simple guarantee scheme is able to avoid domino effects by 
sacrificing the execution of the newly arrived task. Basically, the acceptance 
test acts as a filter that controls the load on the system and always keeps 
it less than one. Once a task is accepted, the algorithm guarantees that it 
will complete by its deadline (assuming that no task will exceed its estimated 
worst-case computation time). Guarantee algorithms, however, do not take 
task importance into account and, during transient overloads, always reject 
the newly arrived task, regardless of its value. In certain conditions (such 
as when tasks have very different importance levels), this scheduling strategy 
may exhibit poor performance in terms of cumulative value, whereas a robust 
algorithm can be much more effective. 
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In guarantee and robust algorithms, a reclaiming mechanism can be used to take 
advantage of those tasks that complete before their worst-case finishing time. 
To reclaim the spare time, rejected tasks will not be removed but temporarily 
parked in a queue, from which they can be possibly recovered whenever a task 
completes before its worst-case finishing time. 

In the following sections we present a few examples of scheduling algorithms for 
handling overload situations and then compare their performance for different 
peak load conditions. 

task 
always accepted 

Ready queue M RUN 

(a) 

task 
Guarantee 

Routine 

accepted 

rejected 
(b) 

Ready queue M RUN 

task — 

reclaiming 
policy 

» Planning 

scheduling 
policy 

reject queue 

Ready queue 

rejection 
policy 

-fc( T?TIM 

(c) 

F i g u r e 8.8 Scheduling schemes for handling overload situations, a. Best 
Effort, b . Guarantee, c. Robust. 
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8.4.1 The RED algorithm 

RED (Robust Earliest Deadline) is a robust scheduling algorithm proposed by 
Buttazzo and Stankovic [BS93, BS95] for dealing with firm aperiodic tasks in 
overloaded environments. The algorithm synergistically combines many fea­
tures including graceful degradation in overloads, deadline tolerance, and re­
source reclaiming. It operates in normal and overload conditions with excellent 
performance, and it is able to predict not only deadline misses but also the size 
of the overload, its duration, and its overall impact on the system. 

In RED, each task Ji{Ci,Di,Mi,Vi) is characterized by four parameters: a 
worst-case execution time (Cj), a relative deadline {Di), a deadline tolerance 
(Mi), and an importance value {Vi). The deadline tolerance is the amount 
of time by which a task is permitted to be late; that is, the amount of time 
that a task may execute after its deadline and still produce a valid result. 
This parameter can be useful in many real applications, such as robotics and 
multimedia systems, where the deadline timing semantics is more flexible than 
scheduling theory generally permits. 

Deadline tolerances also provide a sort of compensation for the pessimistic 
evaluation of the worst-case execution time. For example, without tolerance, 
we could find that a task set is not feasibly schedulable and hence decide to 
reject a task. But, in reality, the system could have been scheduled within 
the tolerance levels. Another positive effect of tolerance is that various tasks 
could actually finish before their worst-case times, so a resource reclaiming 
mechanism could then compensate, and the tasks with tolerance could actually 
finish on time. 

In RED, the primary deadline plus the deadline tolerance provides a sort of 
secondary deadline, used to run the acceptance test in overload conditions. 
Notice that having a tolerance greater than zero is different than having a 
longer deadline. In fact, tasks are scheduled based on their primary deadline 
but accepted based on their secondary deadline. In this framework, a schedule 
is said to be strictly feasible if all tasks complete before their primary deadline, 
whereas is said to be tolerant if there exists some task that executes after its 
primary deadline but completes within its secondary deadline. 

The guarantee test performed in RED is formulated in terms of residual laxity. 
The residual laxity Li of a task is defined as the interval between its estimated 
finishing time (/i) and its primary (absolute) deadline {di). Each residual laxity 
can be efficiently computed using the result of the following lemma. 
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Lemma 8.1 Given a set J = {Ji, J25 • • •, «/n} of active aperiodic tasks ordered 
by increasing primary (absolute) deadline, the residual laxity Li of each task Ji 
at time t can be computed as 

Li = Li_i + {di - di-i) - Ci{t), (8.8) 

where LQ = 0, do =^ t (that is, the current time), and Ci{t) is the remaining 
worst-case computation time of task Ji at time t. 

Proof. By definition, a residual laxity is Li = di — fi. Since tasks in the 
set J are ordered by increasing deadlines, task Ji is executing at time t, and 
its estimated finishing time is given by the current time plus its remaining 
execution time (/i = t -\- ci). As a consequence, Li is given by 

Li = di - fi — di - t - ci. 

Any other task Jj, with z > 1, will start as soon as Ji_i completes and will 
finish Ci units of time after its start {fi = fi-i + Ci). Hence, we have 

Li = di - fi = di - fi-i - Ci = di - {di-i - Li-i) - d — 

= Li-i + {di - di-i) - Ci, 

and the lemma follows. D 

Notice that if the current task set J is schedulable and a new arrives 
at time t, the feasibility test for the new task set J' — J U {Ja} requires to 
compute only the residual laxity of task Ja and that one of those tasks Ji such 
that di > da. This is because the execution of Ja does not influence those tasks 
having deadline less than or equal to da, which are scheduled before Ja- It 
follows that, the acceptance test has 0{n) complexity in the worst case. 

To simplify the description of the RED guarantee test, we define the Exceeding 
time Ei as the time that task Ji executes after its secondary deadline:^ 

Ei = max(0,- (Li-f MO). (8.9) 

We also define the Maximum Exceeding Time Emax t̂s the maximum among 
all Ei's in the tasks set; that is, Emax — ina,Xi{Ei). Clearly, a schedule will be 
strictly feasible if and only if Lj > 0 for all tasks in the set, whereas it will be 
tolerant if and only if there exists some L^ < 0, but Emax = 0. 

^If Mi = 0, the Exceeding Time is also called the Tardiness. 
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By this approach we can identify which tasks will miss their deadlines and 
compute the amount of processing time required above the capacity of the 
system - the maximum exceeding time. This global view allows to plan an 
action to recover from the overload condition. Many recovering strategies can 
be used to solve this problem. The simplest one is to reject the least-value task 
that can remove the overload situation. In general, we assume that, whenever 
an overload is detected, some rejection policy will search for a subset J* of 
least-value tasks that will be rejected to maximize the cumulative value of the 
remaining subset. The RED acceptance test is shown in Figure 8.9. 

RED_acceptance_test (J, Jneiu) { 

E = 0; /* Maximum Exceeding Time */ 

do = current-time 0\ 

J = J U \Jnew)'-) 

k = <position of Jnew in the task set J ' > ; 

for each task J^ such that i > k do { 

/* compute the maximum exceeding time */ 
Li = Li-i -h {di - di-i) - Ci\ 

if {Li-\-Mi < -E) then E =-{Li-\-Mi); 

} 

if {E>0) { 

<select a set J* of least-value tasks to be rejected>; 
<reject all task in J*>; 

} 

F i g u r e 8.9 The RED acceptance test. 

In RED, a resource reclaiming mechanism is used to take advantage of those 
tasks that complete before their worst-case finishing time. To reclaim the spare 
time, rejected tasks are not removed forever but temporarily parked in a queue, 
called Reject Queue^ ordered by decreasing values. Whenever a running task 
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completes its execution before its worst-case finishing time, the algorithm tries 
to reaccept the highest-value tasks in the Reject Queue having positive laxity. 
Tasks with negative laxity are removed from the system. 

8.4.2 Dover* a competitive algorithm 

Koren and Shasha [KS92] found an on-line scheduling algorithm, called i^^^^^, 
which has been proved to be optimal, in the sense that it gives the best com­
petitive factor achievable by any on-line algorithm (that is, 0.25). 

As long as no overload is detected, D^^^'^ behaves like EDF. An overload is 
detected when a ready task reaches its Latest Start Time (LST); that is, the 
time at which the task's remaining computation time is equal to the time 
remaining until its deadline. At this time, some task must be abandoned: 
either the task that reached its LST or some other task. In Doven the set 
of ready tasks is partitioned in two disjoint sets: privileged tasks and waiting 
tasks. Whenever a task is preempted it becomes a privileged task. However, 
whenever some task is scheduled as the result of a LST, all the ready tasks 
(whether preempted or never executed) become waiting tasks. 

When an overload is detected because a task Jz reaches its LST, then the 
value of Jz is compared against the total value Vpriv of all the privileged tasks 
(including the value Vcurr of the currently running task). If 

i;^ > (1 -h \/k){Vcurr + Vpriv) 

(where k is ratio of the highest value density and the lowest value density 
task in the system), then Jz is executed; otherwise, it is abandoned. If Jz is 
executed, all the privileged tasks become waiting tasks. Task Jz can in turn 
be abandoned in favor of another task Jx that reaches its LST, but only if 
Vj, > (1 -\-y/k)vz. 

It worth to observe that having the best competitive factor among all on-line 
algorithms does not mean having the best performance in any load condition. In 
fact, in order to guarantee the best competitive factor, D^^^^ may reject tasks 
with values higher than the current task but not higher than the threshold 
that guarantees optimality. In other words, to cope with worst-case sequences, 
jjover ^Qgg ĵ Q^ |.̂ ĵ g advantage of lucky sequences and may reject more value 
than it is necessary. In Section 8.5, the performance of Dover is tested for 
random task sets and compared with the one of other scheduling algorithms. 
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8.5 PERFORMANCE EVALUATION 

In this section, the performance of the scheduhng algorithms described above is 
tested through simulation using a synthetic workload. Each plot on the graphs 
represents the average of a set of 100 independent simulations, the duration 
of each is chosen to be 300,000 time units long. The algorithms are executed 
on task sets consisting of 100 aperiodic tasks, whose parameters are generated 
as follows. The worst-case execution time Ci is chosen as a random variable 
with uniform distribution between 50 and 350 time units. The interarrival time 
Ti is modeled as a random variable with a Poisson distribution with average 
value equal to Ti = NCi/p^ where Â  is the total number of tasks and p is 
the average load. The laxity of a task is computed as a random value with 
uniform distribution from 150 and 1850 time units, and the relative deadline is 
computed as the sum of its worst-case execution time and its laxity. The task 
value is generated as a random variable with uniform distribution ranging from 
150 to 1850 time units, as for the laxity. 

The first experiment illustrates the effectiveness of the guarantee and robust 
scheduling paradigm with respect to the best-effort scheme, under the EDF 
priority assignment. In particular, it shows how the pessimistic assumptions 
made in the guarantee test affect the performance of the algorithms and how 
much a reclaiming mechanism can compensate for this degradation. In order 
to test these effects, tasks were generated with actual execution times less than 
their worst-case values. The specific parameter varied in the simulations was 
the average Unused Computation Time Ratio, defined as 

_ Actual Computation Time 

Worst-Case Computation Time 

Note that, if pn is the nominal load estimated based on the worst-case compu­
tation times, the actual load p is given by 

P = pn{l-P). 

In the graphs reported in Figure 8.10, the task set was generated with a nominal 
load pn = 3, while /? was varied from 0.125 to 0.875. As a consequence, the 
actual mean load changed from a value of 2.635 to a value of 0.375, thus ranging 
over very different actual load conditions. The performance was measured by 
computing the Hit Value Ratio (HVR)\ that is, the ratio of the cumulative value 
achieved by an algorithm and the total value of the task set. Hence, HVR — 1 
means that all the tasks completed within their deadlines and no tasks were 
rejected. 
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Figure 8.10 Performance of various EDF scheduling schemes: best-effort 
(EDF), guarantee (GED) and robust (RED). 

For small values of ^, that is, when tasks execute for almost their maximum 
computation time, the guarantee (GED) and robust (RED) versions are able to 
obtain a significant improvement compared to the plain EDF scheme. Increas­
ing the unused computation time, however, the actual load falls down and the 
plain EDF performs better and better, reaching the optimality in underload 
conditions. Notice that as the system becomes underloaded (/? :^ 0.7) GED 
becomes less effective than EDF. This is due to the fact that GED performs a 
worst-case analysis, thus rejecting tasks that still have some chance to execute 
within their deadline. This phenomenon does not appear on RED, because the 
reclaiming mechanism implemented in the robust scheme is able to recover the 
rejected tasks whenever possible. 

In the second experiment, Dover is compared against two robust algorithms: 
RED (Robust Earliest Deadline) and RHD (Robust High Density). In RHD, 
the task with the highest value density {vi/Ci) is scheduled first, regardless of 
its deadline. Performance results are shown in Figure 8.11. 
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Figure 8.11 Performance of Dover against RED and RHD. 

Notice that in underload conditions Dover and RED exhibit optimal behavior 
{HVR = 1), whereas RHD is not able to achieve the total cumulative value, 
since it does not take deadlines into account. However, for high load conditions 
(p > 1.5), RHD performs even better than RED and Dover-

In particular, for random task sets, Dover is less effective than RED and RHD 
for two reasons: first, it does not have a reclaiming mechanism for recovering 
rejected tasks in the case of early completions; second, the threshold value used 
in the rejection policy is set to reach the best competitive factor in a worst-case 
scenario. But this means that for random sequences Dover naay reject tasks that 
could increase the cumulative value, if executed. 

In conclusion, we can say that in overload conditions no on-line algorithm can 
achieve optimal performance in terms of cumulative value. Competitive algo­
rithms are designed to guarantee a minimum performance in any load condition, 
but they cannot guarantee the best performance for all possible scenarios. For 
random task sets, robust scheduling schemes appear to be more appropriate. 



9 
KERNEL DESIGN ISSUES 

In this chapter we present some basic issues that should be considered during 
the design and the development of a hard real-time kernel for critical control 
applications. For didactical purposes, we illustrate the structure and the main 
components of a small real-time kernel, called DICK (D/dactic C /l^ernel), 
mostly written in C language, which is able to handle periodic and aperiodic 
tasks with explicit time constraints. The problem of time predictable intertask 
communication is also discussed, and a particular communication mechanism 
for exchanging state messages among periodic tasks is illustrated. Finally, we 
show how the runtime overhead of the kernel can be evaluated and taken into 
account in the schedulability analysis. 

9.1 STRUCTURE OF A REAL-TIME 
KERNEL 

A kernel represents the innermost part of any operating system that is in di­
rect connection with the hardware of the physical machine. A kernel usually 
provides the following basic activities: 

Process management, 

Interrupt handling, and 

Process synchronization. 
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Process management is the primary service that an operating system has to 
provide. It includes various supporting functions, such as process creation and 
termination, job scheduUng, dispatching, context switching, and other related 
activities. 

The objective of the interrupt handling mechanism is to provide service to the 
interrupt requests that may be generated by any peripheral device, such as 
the keyboard, serial ports, analog-to-digital converters, or any specific sensor 
interface. The service provided by the kernel to an interrupt request consists 
in the execution of a dedicated routine (driver) that will transfer data from 
the device to the main memory (or viceversa). In classical operating systems, 
application tasks can always be preempted by drivers, at any time. In real­
time systems, however, this approach may introduce unpredictable delays in 
the execution of critical tasks, causing some hard deadline to be missed. For 
this reason, in a real-time system, the interrupt handling mechanism has to be 
integrated with the scheduling mechanism, so that a driver can be scheduled 
as any other task in the system and a guarantee of feasibility can be achieved 
even in the presence of interrupt requests. 

Another important role of the kernel is to provide a basic mechanism for sup­
porting process synchronization and communication. In classical operating 
systems this is done by semaphores, which represent an efficient solution to the 
problem of synchronization, as well as to the one of mutual exclusion. As dis­
cussed in Chapter 7, however, semaphores are prone to priority inversion, which 
introduces unbounded blocking on tasks' execution and prevents a guarantee 
for hard real-time tasks. As a consequence, in order to achieve predictability, 
a real-time kernel has to provide special types of semaphores that support a 
resource access protocol (such as Priority Inheritance, Priority Ceiling, or Stack 
Resource Policy) for avoiding unbounded priority inversion. Other kernel ac­
tivities involve the initialization of internal data structures (such as queues, 
tables, task control blocks, global variables, semaphores, and so on) and spe­
cific services to higher levels of the operating system. 

In the rest of this chapter, we describe the structure of a small real-time kernel, 
called DICK (D/dactic C /kernel). Rather than showing all implementation 
details, we focus on the main features and mechanisms that are necessary to 
handle tasks with explicit time constraints. 

DICK is designed under the assumption that all tasks are resident in main 
memory when it receives control of the processor. This is not a restrictive 
assumption, as this is the typical solution adopted in kernels for real-time em­
bedded applications. 
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Figure 9.1 Hierarchical structure of DICK. 

The various functions developed in DICK are organized according to the hi­
erarchical structure illustrated in Figure 9.1. Those low-level activities that 
directly interact with the physical machine are realized in assembly language. 
Nevertheless, for the sake of clarity, all kernel activities are described in pseudo 
C. 

The structure of DICK can be logically divided into four layers: 

Machine layer. This layer directly interacts with the hardware of the 
physical machine; hence, it is written in assembly language. The primitives 
realized at this level mainly deal with activities such as context switch, 
interrupt handling, and timer handling. These primitives are not visible 
at the user level. 

List management layer. To keep track of the status of the various tasks, 
the kernel has to manage a number of lists, where tasks having the same 
state are enqueued. This layer provides the basic primitives for inserting 
and removing a task to and from a list. 

Processor management layer. The mechanisms developed in this layer 
only concerns scheduling and dispatching operations. 

Service layer. This layer provides all services visible at the user level as a 
set of system calls. Typical services concern task creation, task abortion, 
suspension of periodic instances, activation and suspension of aperiodic 
instances, and system inquiry operations. 
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9.2 PROCESS STATES 

In this section, we describe the possible states in which a task can be during 
its execution and how a transition from a state to another can be performed. 

In any kernel that supports the execution of concurrent activities on a single 
processor, where semaphores are used for synchronization and mutual exclusion, 
there are at least three states in which a task can enter: 

Running. A task enters this state as it starts executing on the processor. 

Ready. This is the state of those tasks that are ready to execute but 
cannot be executed because the processor is assigned to another task. All 
tasks that are in this condition are maintained in a queue, called the ready 
queue. 

Waiting. A task enters this state when it executes a synchronization 
primitive to wait for an event. When using semaphores, this operation is a 
wait primitive on a locked semaphore. In this case, the task is inserted in a 
queue associated with the semaphore. The task at the head of this queue 
is resumed when the semaphore is unlocked by another task that executed 
a signal on that semaphore. When a task is resumed, it is inserted in the 
ready queue. 

In a real-time kernel that supports the execution of periodic tasks, another state 
must be considered, the IDLE state. A periodic job enters this state when it 
completes its execution and has to wait for the beginning of the next period. 
In order to be awakened by the timer, a periodic job must notify the end of its 
cycle by executing a specific system call, end-cycle, which puts the job in the 
IDLE state and assigns the processor to another ready job. At the right time, 
each periodic job in the IDLE state will be awakened by the kernel and inserted 
in the ready queue. This operation is carried out by a routine activated by a 
timer, which verifies, at each tick, whether some job has to be awakened. The 
state transition diagram relative to the four states described above is shown in 
Figure 9.2. 

Additional states can be introduced by other kernel services. For example, a 
delay primitive, which suspends a job for a given interval of time, puts the job 
in a sleeping state (DELAY), until it will be awakened by the timer after the 
elapsed interval. 
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F i g u r e 9.2 Minimum state transition diagram of a real-time kernel. 

Another state, found in many operating systems, is the RECEIVE state, in­
troduced by the classical message passing mechanism. A job enters this state 
when it executes a receive primitive on an empty channel. The job exits this 
state when a send primitive is executed by another job on the same channel. 

In real-time systems that support dynamic creation and termination of hard 
periodic tasks, a new state needs to be introduced for preserving the bandwidth 
assigned to the guaranteed tasks. This problem arises because, when a periodic 
task Tk is aborted (for example, with a kill operation), its utilization factor Uk 
cannot be immediately subtracted from the total processor load, since the task 
could already have delayed the execution of other tasks. In order to keep the 
guarantee test consistent, the utilization factor Uk can be subtracted only at 
the end of the current period of Tk. 

For example, consider the set of three periodic tasks illustrated in Figure 9.3, 
which are scheduled by the Rate-Monotonic algorithm. Computation times 
are 1, 4, and 4, and periods are 4, 8, and 16, respectively. Since periods are 
harmonic and the total utilization factor is U = 1, the task set is schedulable 
by RM (remember that Uiub = 1 when periods are harmonic). 

Now suppose that task r2 (with utilization factor U2 = 0.5) is aborted at 
time t = 4 and that, at the same time, a new task Tnew, having the same 
characteristics of r2, is created. If the total load of the processor is decremented 
by 0.5 at time t = 4, task Tnew would be guaranteed, having the same utilization 
factor as T2. However, as shown in Figure 9.4, T3 would miss its deadline. This 
happens because the effects of T2 execution on the schedule protract until the 
end of each period. 
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Figure 9.4 The effects of T2 do not cancel at the time it is aborted, but 
protract till the end of its period. 

As a consequence, to keep the guarantee test consistent, the utihzation factor 
of an aborted task can be subtracted from the total load only at the end of the 
current period. In the interval of time between the abort operation and the 
end of its period, T2 is said to be in a ZOMBIE state, since it does not exist in 
the system, but it continues to occupy processor bandwidth. Figure 9.5 shows 
that the task set is schedulable when the activation of Tnew is delayed until the 
end of the current period of T2. 

A more complete state transition diagram including the states described above 
(DELAY, RECEIVE, and ZOMBIE) is illustrated in Figure 9.6. Notice that, 
at the end of its last period, a periodic task (aborted or terminated) leaves the 
system completely and all its data structures are deallocated. 
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Figure 9.6 State transition diagram including RECEIVE, DELAY, and 
ZOMBIE states. 
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F i g u r e 9.7 State transition diagram in DICK. 

In order to simplify the description of DICK, in the rest of this chapter we 
describe only the essential functions of the kernel. In particular, the message 
passing mechanism and the delay primitive are not considered here; as a con­
sequence, the states RECEIVE and DELAY are not present. However, these 
services can easily be developed on top of the kernel, as an additional layer of 
the operating system. 

In DICK, activation and suspension of aperiodic tasks are handled by two 
primitives, activate and sleep^ which introduce another state, called SLEEP. 
An aperiodic task enters the SLEEP state by executing the sleep primitive. A 
task exits the SLEEP state and goes to the READY state only when an explicit 
activation is performed by another task. 

Task creation and activation are separated in DICK. The creation primitive 
{create) allocates and initializes all data structures needed by the kernel to 
handle the task; however, the task is not inserted in the ready queue, but it 
is left in the SLEEP state, until an explicit activation is performed. This is 
mainly done for reducing the runtime overhead of the activation primitive. The 
state transition diagram used in DICK is illustrated in Figure 9.7. 
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9.3 DATA STRUCTURES 

In any operating system, the information about a task are stored in a data 
structure, the Task Control Block (TCB). In particular, a TCB contains all the 
parameters specified by the programmer at creation time, plus other temporary 
information necessary to the kernel for managing the task. In a real-time 
system, the typical fields of a TCB are shown in Figure 9.8 and contain the 
following information: 

An identifier; that is, a character string used by the system to refer the 
task in messages to the user; 

The memory address corresponding to the first instruction of the task; 

The task type (periodic, aperiodic, or sporadic); 

The task criticalness (hard, soft, or non-real-time); 

The priority (or value), which represents the importance of the task with 
respect to the other tasks of the application; 

The current state (ready, running, idle, waiting, and so on); 

The worst-case execution time; 

The task period; 

The relative deadline, specified by the user; 

The absolute deadline, computed by the kernel at the arrival time; 

The task utilization factor (only for periodic tasks); 

A pointer to the process stack, where the context is stored; 

A pointer to a directed acyclic graph, if there are precedence constraints; 

A pointer to a list of shared resources, if a resource access protocol is 
provided by the kernel. 

In addition, other fields can be necessary for specific features of the kernel. For 
example, if aperiodic tasks are handled by one or more server mechanisms, a 
field can be used to store the identifier of the server associated with the task; 
or, if the scheduling mechanism supports tolerant deadlines, a field can store 
the tolerance value for that task. 
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Figure 9.8 Structure of the Task Control Block. 

Finally, since a TCB has to be inserted in the lists handled by the kernel, an 
additional field has to be reserved for the pointer to the next element of the 
list. 

In DICK, a TCB is an element of the vdes [MAXPROC] array, whose size is equal 
to the maximum number of tasks handled by the kernel. Using this approach, 
each TCB can be identified by a unique index, corresponding to its position 
in the vdes array. Hence, any queue of tasks can be accessed by an integer 
variable containing the index of the TCB at the head of the queue. Figure 9.9 
shows a possible configuration of the ready queue within the vdes array. 

Similarly, the information concerning a semaphore is stored in a Semaphore 
Control Block (SCB), which contains at least the following three fields (see 
also Figure 9.10): 
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Figure 9.9 Implementation of the ready queue as a list of Task Control 
Blocks. 
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Figure 9.10 Semaphore Control Block. 

A counter, which represents the value of the semaphore; 

A queue, for enqueueing the tasks blocked on the semaphore; 

A pointer to the next SCB, to form a list of free semaphores. 

Each SCB is an element of the vsem[MAXSEM] array, whose size is equal to 
the maximum number of semaphores handled by the kernel. According to this 
approach, tasks, semaphores, and queues can be accessed by an integer number, 
which represents the index of the corresponding control block. For the sake of 
clarity, however, tasks, semaphores and queues are defined as three different 
types. 
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struct tcb 

char 

proc 

int 

int 

long 

int 

int 

int 

float 

int 

proc 

proc 

}; 

{ 
name[MAXLEN+l]; 

(*addr)(); 

type; 

state; 

dline; 

period; 

prt; 

wcet; 

util; 

•context; 

next; 

prev; 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

task name 

first instruction address 

task type 

task state 

absolute deadline 

task period 

task priority 

worst-case execution time 

task utilization factor 

pointer to the context 

pointer to the next tcb 

pointer to previous tcb 

*/ 

*/ 

*/ 

*/ 

*/ 

•/ 

*/ 

•/ 

*/ 

*/ 

*/ 

*/ 

Struct scb { 

int count; 

queue qsem; 

sem next; 

}; 

/* semaphore counter 

/* semaphore queue 

/* pointer to the next 

*/ 
*/ 
*/ 

struct tcb 

struct scb 

vdes[MAXPROC] ; 

vsem[MAXSEM]; 

/* tcb array */ 

/* scb array */ 
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proc 

queue 

queue 

queue 

queue 

queue 

float 

pexe; 

ready; 

idle; 

zombie; 

freetcb; 

freesem; 

util_fact; 

/* task in execution 

/* ready queue 

/* idle queue 

/* zombie queue 

/* queue of free tcb's 

/* queue of free semaphores 

/* utilization factor 

*/ 

*/ 

*/ 

*/ 

*/ 
*/ 

*/ 

9.4 MISCELLANEOUS 

9.4.1 Time management 

To generate a time reference, a timer circuit is programmed to interrupt the 
processor at a fixed rate, and the internal system time is represented by an 
integer variable, which is reset at system initialization and is incremented at 
each timer interrupt. The interval of time with which the timer is programmed 
to interrupt defines the unit of time in the system; that is, the minimum interval 
of time handled by the kernel (time resolution). The unit of time in the system 
is also called a system tick. 

In DICK, the system time is represented by a long integer variable, called 
sys_clock, whereas the value of the tick is stored in a float variable called 
time_unit. At any time, sys_clock contains the number of interrupts gener­
ated by the timer since system initialization. 

unsigned long 

float 

sys_clock; 

time_unit; 

/* system time */ 

/* unit of time (ms) */ 

If Q denotes the system tick and n is the value stored in sys_clock, the actual 
time elapsed since system initialization is i = nQ. The maximum time that can 
be represented in the kernel (the system lifetime) depends on the value of the 
system tick. Considering that sys_clock is an unsigned long represented on 32 
bits. Table 9.1 shows the values of the system lifetime for some tick values. 
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tick 

1 ms 
5 ms 
10 ms 
50 ms 

lifetime 
50 days 

8 months 
16 months 

7 years 

T a b l e 9.1 System lifetime for some typical tick values. 

The value to be assigned to the tick depends on the specific appHcation. In 
general, small values of the tick improve system responsiveness and allow to 
handle periodic activities with high activation rates. On the other hand, a 
very small tick causes a large runtime overhead due to the timer handling 
routine and reduces the system lifetime. Typical values used for the time 
resolution can vary from 1 to 50 milliseconds. To have a strict control on task 
deadlines and periodic activations, all time parameters specified on the tasks 
should be multiple of the system tick. If the tick can be selected by the user, 
the best possible tick value is equal to the greatest common divisor of all the 
task periods. 

The timer interrupt handling routine has a crucial role in a real-time system. 
Other than updating the value of the internal time, it has to check for possible 
deadline misses on hard tasks, due to some incorrect prediction on the worst-
case execution times. Other activities that can be carried out by the timer 
interrupt handling routine concern lifetime monitoring, activation of periodic 
tasks that are in idle state, awakening tasks suspended by a delay primitive, 
checking for deadlock conditions, and terminating tasks in zombie state. 

In DICK, the timer interrupt handling routine increments the value of the 
sys_clock variable, checks the system lifetime, checks for possible deadline 
misses on hard tasks, awakes idle periodic tasks at the beginning of their next 
period and, at their deadlines, deallocates all data structures of the tasks in 
zombie state. In particular, at each timer interrupt, the corresponding handling 
routine 

Saves the context of the task in execution; 

Increments the system time; 
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If the current time is greater than the system Ufetime, generates a timing 
error; 

If the current time is greater than some hard deadUne, generates a time-
overflow error; 

Awakens those idle tasks, if any, that have to begin a new period; 

If at least a task has been awakened, calls the scheduler; 

Removes all zombie tasks for which their deadline is expired; 

Loads the context of the current task; 

Returns from interrupt. 

The runtime overhead introduced by the execution the timer routine is pro­
portional to its interrupt rate. In Section 9.7 we see how this overhead can be 
evaluated and taken into account in the schedulability analysis. 

9.4.2 Task classes and scheduling algorithm 

Real-world control applications usually consist of computational activities hav­
ing different characteristics. For example, tasks may be periodic, aperiodic, 
time-driven, and event-driven and may have different levels of criticalness. To 
simplify the description of the kernel, only two classes of tasks are considered 
in DICK: 

HARD tasks, having a critical deadline, and 

Non-real-time (NRT) tasks, having a fixed priority. 

HARD tasks can be activated periodically or aperiodically depending on how 
an instance is terminated. If the instance is terminated with the primitive 
end-cycle, the task is put in the idle state and automatically activated by the 
timer at the beginning of its next period; if the instance is terminated with the 
primitive end-aperiodic, the task is put in the sleep state, from where it can 
be resumed only by explicit activation. HARD tasks are scheduled using the 
Earliest Deadline First (EDF) algorithm, whereas NRT tasks are executed in 
background based on their priority. 
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max priority 

0 
min priority 

255 

^ MAXDLINE - 255 MAXDLINE 

Figure 9.11 Mapping NRT priorities into deadlines. 

In order to integrate the scheduling of these classes of tasks and avoid the use of 
two scheduling queues, priorities of NRT tasks are transformed into deadlines 
so that they are always greater than HARD deadlines. The rule for mapping 
NRT priorities into deadlines is shown in Figure 9.11 and is such that 

^NRT ^ MAXDLINE - PRT.LEV -\- Pi, 

where MAXDLINE is the maximum value of the variable sys_clock (2^^ — 1), 
PRT_LEV is the number of priority levels handled by the kernel, and Pi is the 
priority of the task, in the range [0, PRT_LEV-1] (0 being the highest priority). 
Such a priority mapping slightly reduces system lifetime but greatly simplifies 
task management and queue operations. 

9.4.3 Global constants 

In order to clarify the description of the source code, a number of global 
constants are defined here. Typically, they define the maximum size of the 
main kernel data structures, such as the maximum number of processes and 
semaphores, the maximum length of a process name, the number of priority lev­
els, the maximum deadline, and so on. Other global constants encode process 
classes, states, and error messages. They are listed below: 

#define 

#define 

#define 

#define 

#define 

#define 

#define 

#define 

#define 

MAXLEN 

MAXPROC 

MAXSEM 

MAXDLINE 

PRT_LEV 

NIL 

TRUE 

FALSE 

LIFETIME 

12 

32 

32 

OxTFFFFFFF 

255 

-1 

1 

0 

MAXDLINE -

/* 

/* 

/* 

/* 

/* 

/* 

PRT_LEV 

max string length 

max number of tasks 

max No of semaphores 

max deadline 

priority levels 

null pointer 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 
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/* ->- / 
/ ^ 
/* 
/* 

\ / ^ 
#define 

#define 

/* 
/ * 
/ * 
/* ~ -
/ * 
#define 

#define 

#define 

#define 

#define 

#define 

#define 

HARD 

NRT 

FREE 

READY 

EXE 

SLEEP 

IDLE 

WAIT 

ZOMBIE 

1 

2 

0 

1 

2 

3 

4 

5 

6 

Task types 

/* 

/* 

Task states 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

critical task 

non real-time task 

TCB not allocated 

ready state 

running state 

sleep state 

idle state 

wait state 

zombie state 

T / 

* / 
3k / 

*/ 
*/ 

*/ 

3k / 

*/ 
*/ 
3k / 

*/ 
*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

/* - -
/* 

/* 
#define 

#define 

#define 

#define 

#define 

#define 

OK 

TIME_OVERFLOW 

TIME_EXPIRED 

NO-GUARANTEE 

NO_TCB 

NO_SEM 

Error 

0 

1 

2 

3 

4 

5 

messages 

/* 

/* 

/* 

/* 

/* 

/* 

no error 

missed deadline 

lifetime reached 

task not schedulable 

too many tasks 

too many semaphores 

-*/ 

*/ 

-*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

9.4.4 Initialization 

The real-time environment supported by DICK starts when the inLsystem 
primitive is executed within a sequential C program. After this function is 
executed, the main program becomes a NRT task in which new concurrent 
tasks can be created. 
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The most important activities performed by inLsystem concern 

• Initializing all queues in the kernel; 

• Setting all interrupt vectors; 

• Preparing the TCB associated with the main process; 

• Setting the timer period to the system tick. 

void ini_system(float t i ck) 

{ 
proc i ; 

time_unit = tick; 

<enable the timer to interrupt every time_unit> 

<initiali2e the interrupt vector table> 

/* initialize the list of free TCBs and semaphores */ 

for (i=0; KMAXPROC-1; i++) vdes[i].next = i+1; 

vdes[MAXPROC-l].next = NIL; 

for (i=0; i<MAXSEM-l; i++) vsem[i].next = i+1; 

vsem[MAXSEM-l].next = NIL; 

ready = NIL; 

idle = NIL; 

zombie = NIL; 

freetcb = 0; 

freesem = 0; 

util_fact = 0; 

<initialize the TCB of the main process> 

pexe = <main index>; 

} 
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9.5 KERNEL PRIMITIVES 

The structure of DICK is logically divided in a number of hierarchical layers, as 
illustrated in Figure 9.1. The lowest layer includes all interrupt handling drivers 
and the routines for saving and loading a task context. The next layer contains 
the functions for list manipulation (insertion, extraction, and so on) and the 
basic mechanisms for task management (dispatching and scheduling). All kernel 
services visible from the user are implemented at a higher level. They concern 
task creation, activation, suspension, termination, synchronization, and status 
inquiry. 

9.5.1 Low-level primitives 

Basically, the low-level primitives implement the mechanism for saving and 
loading the context of a task; that is, the values of the processor registers. 

/jk «*- / 

/ ^ 
/* save_context — of the task 

/* 
/ ^ 
void save_context(void) 

{ 
int *pc; 

<disable interrupts> 

pc = vdes[pexe].context; 

pc[0] = <register_0> 

pc[l] = <register_l> 

pc[2] = <register_2> 

pc[n] = <registerji> 

^ 

-r/ 

in execution */ 

- * / 
^/ 

/* pointer to context of pexe */ 

/* save register 0 */ 

/* save register 1 */ 

/* save register 2 */ 

/* save register n */ 



272 C H A P T E R 9 

/* - - -»- / 
/* 
/* load_context — of the task 
/* - -^ -
/5K - - ~ -

void load_context(void) 

{ 
int *pc; 

pc = vdes[pexe].context; 

<register_0> = pc[0]; 

<register_l> = pc[l] ; 

<register_ii> = pc[n]; 

<return from interrupt> 

} 

T / 

to be executed */ 
^1 
^1 

/^ pointer to context of pexe */ 

/* load register 0 */ 

/* load register 1 */ 

/* load register n */ 

9.5.2 List management 

Since tasks are scheduled based on EDF, all queues in the kernel are ordered 
by decreasing deadlines. In this way, the task with the earliest deadline can 
be simply extracted from the head of a queue, whereas an insertion operation 
requires to scan at most all elements of the list. All lists are implemented 
with bidirectional pointers (next and prev). The insert function is called with 
two parameters: the index of the task to be inserted and the pointer of the 
queue. It uses two auxiliary pointers, p and g, whose meaning is illustrated in 
Figure 9.12. 
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head index 

1 J 1 p 

^ 
\ 

4 

first 

NIL 

new 

• 

* 

< — 
q 

1 \ 
t 
1 

NIL 

last 

* 

Figure 9.12 Inserting a TCB in a queue. 

/* 
/¥ 

/* insert — a task in a queue based on its deadline 

/jk / 5»C 

void insert (proc i, queue *que) 

{ 
long dl; /* deadline of the task to be inserted 

int p; /* pointer to the previous TCB 

int q; /* pointer to the next TCB 

p = NIL; 

q = *que; 

dl = vdes[i].dline; 

/* find the element before the insertion point */ 

while ((q != NIL) && (dl >= vdes[q].dline)) { 

p = q; 
q = vdes[q].next; 

} 
if (p != NIL) vdes[p].next = i; 

else *que = i; 

if (q != NIL) vdes[q].prev = i; 

vdes[i].next = q; 

vdes[i].prev = p; 

} 

-* / 
*/ 

-* / 

*/ 
*/ 
*/ 
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head 
1 

index 

I '11 
first 

NIL 

? 

* 
to 

remove 

= r 
* 

1 

NIL 

last 

* 

Figure 9.13 Extracting a TCB from a queue. 

The major advantage of using bidirectional pointers is in the implementation 
of the extraction operation, which can be realized in one step without scanning 
the whole queue. Figure 9.13 illustrates the extraction of a generic element, 
whereas Figure 9.14 shows the extraction of the element at the head of the 
queue. 

/* «»- / 
/ * 
/* e x t r a c t — a task from a queue 
/* 
/ * 
proc ex t rac t (proc i , queue *que) 

{ 
i n t P> q; /* a u x i l i a r y p o i n t e r s 

p = v d e s [ i ] . p r e v ; 

q = v d e s [ i ] . n e x t ; 

if (p == NIL) *que = q; / * f i r s t element 
e l s e vdes[p] .nex t = v d e s [ i ] . n e x t ; 

if (q != NIL) vdes[q] .prev = v d e s [ i ] . p r e v ; 

r e t u r n ( i ) ; 

} 

- r / 

* / 
3k / 
5 K / 

* / 

* / 
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head 

1—; 
1 

ndex 

1 
q 1 

* 
first 

NIL * • 

V 

* 
second 

* 

* • 

NIL 

last 

Figure 9.14 Extracting the TCB at the head of a queue. 

/* */ 

/* getfirst — extracts the task at the head of a queue */ 

/* */ 

proc getfirst (queue *que) 

{ 
i n t q; 

q = *que; 

/* po in te r t o the f i r s t element */ 

i f (q == NIL) re turn(NIL) ; 

•que = vdes [q ] .nex t ; 

vdes[*que] .prev = NIL; 

r e t u r n ( q ) ; 

Finally, to simplify the code reading of the next levels, two more functions 
are defined: firstdline and empty. The former returns the deadline of the task 
at the head of the queue, while the latter returns TRUE if a queue is empty, 
FALSE otherwise. 
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/ • * / 

/* firstdline — returns the deadline of the first task */ 
/* */ 

long firstdline (queue *que) 

{ 
return(vdes[que].dline); 

} 

/* */ 

/* empty — returns TRUE if a queue is empty */ 
/* */ 

int empty (queue *que) 

{ 
if (que == NIL) 

return(TRUE); 

else 

return(FALSE); 

} 

9.5.3 Scheduling mechanism 

The scheduling mechanism in DICK is reahzed through the functions schedule 
and dispatch. The schedule primitive verifies whether the running task is the 
one with the earhest deadhne. If so, no action is done, otherwise the running 
task is inserted in the ready queue and the first ready task is dispatched. The 
dispatch primitive just assigns the processor to the first ready task. 
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/* */ 
/* schedule — selects the task with the earliest deadline */ 
/* */ 

void schedule (void) 

{ 
if (firstdline(ready) < vdesCpexe].dline) { 

vdes[pexe].state = READY; 

insert(pexe, feready); 

dispatchO ; 

} 

/* */ 

/* dispatch — assigns the cpu to the first ready task */ 

/* */ 

void dispatch (void) 

{ 
pexe = getfirst(&ready); 

vdes[pexe].state = RUN; 
} 

The timer interrupt handling routine is called wake.up and performs the ac­
tivities described in Section 9.4.1. In summary, it increments the sys.clock 
variable, checks for the system lifetime and possible deadline misses, removes 
those tasks in zombie state whose deadlines are expired, and, finally, resumes 
those periodic tasks in idle state at the beginning of their next period. Note, 
that if at least a task has been resumed, the scheduler is invoked and a pre­
emption takes place. 
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/* */ 

/* wake_up — timer interrupt handling routine */ 
/* */ 

void wake_up(void) 

{ 
proc p; 

int count = 0; 

save_context() ; 

sys_clock++; 

if (sys.clock >= LIFETIME) abort (TIME_EXPIRED) ; 

if (vdes[pexe].type == HARD) 

if (sys_clock > vdes [pexe] .dline) 

abort (TIME_OVERFLOW) ; 

while ( 'empty(zombie) && 

(firstdline(zombie) <= sys_clock)) { 

p = getfirst(fezombie); 

util_fact = util_fact - vdes [p] .util; 

vdes[p].state = FREE; 

insert(p, &freetcb); 

} 
while (!empty(idle) && (firstdline(idle) <= sys_clock)) { 

p = getfirst(feidle); 

vdes[p].dline += (long)vdes[p].period; 

vdes[p].state = READY; 

insert(p, feready); 

count++; 

} 
if (count > 0) s chedu leO; 
load_context 0 ; 

} 
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9.5.4 Task management 

It concerns creation, activation, suspension, and termination of tasks. The 
create primitive allocates and initializes all data structures needed by a task 
and puts the task in SLEEP. A guarantee is performed for HARD tasks. 

/* 
\ / ^ 
/* create — creates a task and puts it in sleep state 

/* 
\ / ^ 
proc create( 

char naine[MAXLEN+l] , /* task name 

proc (*addr)(), /* task address 

int type, /* type (HARD, NRT) 

float period, /* period or priority 

float wcet) /* execution time 

{ 
proc p; 

<disable cpu interrupts> 

p = getfirst(&freetcb); 

if (p == NIL) abort(NO_TCB); 

if (vdesCp].type == HARD) 

if (! guarantee (p)) return(NO_GUARANTEE) ; 

vdesEp].name = name; 

vdesEp].addr = addr; 

vdes[p].type = type; 

vdes[p].state = SLEEP; 

vdes[p].period = (int)(period / time_unit); 

vdesEp].wcet = (int)(wcet / time_unit); 

vdes[p].util = wcet / period; 

vdes[p].prt = (int)period; 

vdesCp] .dline = MAXJLONG + (long) (period - PRT_LEV) ; 

<initialize process stack> 

<enable cpu interrupts> 

return(p); 

J 

- * / 

* / 

- * / 

* / 
* / 

* / 

• / 

* / 
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/* */ 

/* guarantee — guarantees the feasibility of a hard task */ 
/• */ 

int guarantee (proc p) 

{ 
util_fact = util_fact + vdes[p] .ut i l ; 
if (util_fact > 1.0) { 

util_fact = utiljfact - vdesCp] .ut i l ; 
return(FALSE); 

} 
else return(TRUE); 

The system call activate inserts a task in the ready queue, performing the 
transition SLEEP-READY. If the task is HARD, its absolute deadline is set 
equal to the current time plus its period. Then the scheduler is invoked to 
select the task with the earliest deadline. 

/ * - _ - _ - „ « - . s i , / 

/ * 
/* a c t i v a t e — i n s e r t s a t a sk in the ready queue 
/* - - - -
/ * 
i n t act ivate (proc p) 

{ 
save_context 0 ; 
if (vdes[p] . type == HARD) 

v d e s [ p ] . d l i n e = sys_clock + ( long)vdes [p] .per iod ; 

I vdesCp] . s t a te = READY; 
i n s e r t ( p , feready); 
schedule 0 ; 
load_context() ; 

} 

- r / 

*/ 
3k / 
^/ 
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The transition RUN-SLEEP is performed by the sleep system call. The running 
task is suspended in the sleep state, and the first ready task is dispatched for 
execution. Notice that this primitive acts on the calling task, which can be 
periodic or aperiodic. For example, the sleep primitive can be used at the end 
of a cycle to terminate an aperiodic instance. 

/* */ 

/* sleep — suspends itself in a sleep state */ 
/* */ 

void sleep (void) 

{ 
save_context 0 ; 
vdesCp] . s ta te = SLEEP; 
d i s p a t c h O ; 
load_context 0 ; 

The primitive for terminating a periodic instance is a bit more complex than 
its aperiodic counterpart, since the kernel has to be informed on the time at 
which the timer has to resume the job. This operation is performed by the 
primitive end-cycle, which puts the running task into the idle queue. Since it is 
assumed that deadlines are at the end of the periods, the next activation time 
of any idle periodic instance coincides with its current absolute deadline. 

In the particular case in which a periodic job finishes exactly at the end of its 
period, the job is inserted not in the idle queue but directly in the ready queue, 
and its deadline is set to the end of the next period. 
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/* */ 

/* end_cycle — inserts a task in the idle queue */ 
/• */ 

void end_cycle(void) 

{ 
long dl; 

save_context 0 ; 

dl = vdes[pexe].dline; 

if (sys_clock < dl) { 

vdes [pexe ] . s t a t e = IDLE; 
i n s e r t ( p e x e , feidle); 

} 
else { 

dl = dl + (long)vdes[pexe].period,• 

vdes[p].dline = dl; 

vdes[p].state = READY; 

insert(pexe, feready); 

} 
dispatchO ; 

load_context(); 

A typical example of periodic task is shown in the following code: 

proc cycle 0 

{ 
while (TRUE) { 

<periodic code> 
end_cycle() ; 

} 
} 



Kernel Design Issues 283 

There are two primitives for terminating a process: the first, called end-process, 
directly operates on the calling task; the other one, called kill, terminates the 
task passed as a formal parameter. Notice that, if the task is HARD, it is 
not immediately removed from the system but put in ZOMBIE state. In this 
case, the complete removal will be done by the timer routine at the end of the 
current period: 

/* */ 

/* end_process — terminates the running task */ 

/* */ 

void end_process(void) 

{ 
<disable cpu interrupts> 

if (vdesCpexe].type == HARD) 

insert(pexe, fezombie); 

else { 

vdes[pexe].state = FREE; 

insert(pexe, &freetcb); 

} 
dispatchO ; 

load_context() ; 

} 
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/ • * / 

/* k i l l — terminates a task */ 
/* */ 

vo 

{ 

id 

<d: 

if 

} 
if 

if 

if 

kill (pro c p) 

Lsable cpu interrupts> 

(pexe == p) { 
end_process() ; 

return; 

(vdes[p]. 

(vdes[p]. 

(vdes[p]. 

insert(p 

else { 

} 
<er 

vdes[p]. 

insert(p 

lable cpu 

state == 

state == 

type == 

), fezomb: 

state = 

= READY) 

= IDLE) 

HARD) 

Le) ; 

FREE; 

), fefreetcb) ; 

interrupts> 

extract 

extract 
(P» 
(P, 

feready) 

feidle); 

9.5.5 Semaphores 

In DICK, synchronization and mutual exclusion are handled by semaphores. 
Four primitives are provided to the user to allocate a new semaphore (newsem), 
deallocate a semaphore (delsem), wait for an event (wait), and signal an event 
(signal). 

The newsem primitive allocates a free semaphore control block and initial­
izes the counter field to the value passed as a parameter. For example, s i = 
newsem(O) defines a semaphore for synchronization, whereas s2 = newsem(l) 
defines a semaphore for mutual exclusion. The delsem primitive just deallocates 
the semaphore control block, inserting it in the list of free semaphores. 
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1 /*-
/ * 

/*-

sem 

{ 
sem 

} 

newsem --- allocates and initializes a semaphore 

newsem(int n) 

s; 

<disable cpu interrupts> 

s = freesem; 

if (s == 

freesem 

vsem[s] 

vsem[s] 

<enable 

return(s 

= NIL) abort (NO_SEM) 

= vsem[s] .next; 

count = n; 

qsem = NIL; 

cpu interrupts> 

0; 

/* first free semaphore 

) 

/* 

/* 

/* 

update the freesem 

initialize counter 

rie / 

*/ 
*/ 

- Jk / 

*/ 

index */ 

list 

initialize sem. queue 

*/ 

*/ 

*/ 

/ j l C _ _ „ _ U , / 

/* delsem — deallocates a semaphore 

/* - - - - -
/ JK - - - - -

void delsem(sem s) 

{ 
<disable cpu interrupts> 

vsem[s].next = freesem; /* inserts s at the head 

freesem = s; /* of the freesem list 

<enable cpu interrupts> 

} 

*/ 
9k / 

*/ 

*/ 

•/ 

The wait primitive is used by a task to wait for an event associated to a 
semaphore. If the semaphore counter is positive, it is decremented, and the 
task continues its execution; if the counter is less than or equal to zero, the 
task is blocked, and it is inserted in the semaphore queue. In this case, the first 
ready task is assigned to the processor by the dispatch primitive. 
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To ensure the consistency of the kernel data structures, all semaphore system 
calls are executed with cpu interrupts disabled. Notice that semaphore queues 
are ordered by decreasing absolute deadlines, so that, when more tasks are 
blocked, the first task awakened will be the one with the earliest deadline. 

/* */ 

/* wait — waits for an event */ 

/* */ 

void wait(sem s) 

{ 
<disable cpu interrupts> 

if (vsem[s].count > 0) vsem[s].count — ; 

else { 

save.context () ; 

vdes[pexe].state = WAIT; 

insert(pexe, &vsem[s].qsem); 

dispatchO ; 

load-Context 0 ; 

} 
<enable cpu interrupts> 

The signal primitive is used by a task to signal an event associated with a 
semaphore. If no tasks are blocked on that semaphore (that is, if the semaphore 
queue is empty), the counter is incremented, and the task continues its execu­
tion. If there are blocked tasks, the task with the earliest deadline is extracted 
from the semaphore queue and is inserted in the ready queue. Since a task has 
been awakened, a context switch may occur; hence, the context of the running 
task is saved, a task is selected by the scheduler, and a new context is loaded. 
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/* */ 
/* signal — signals an event */ 
/* */ 

void signal(sem s) 

{ 
proc p; 

<disable cpu interrupts> 

if (!empty(vsem[s].qsem)) { 

p = getfirst(&vsem[s].qsem); 

vdes[p].state = READY; 

insert(p, feready); 

save_context() ; 

schedule 0; 

load_context() ; 
} 

else vsem[s].count++; 

<enable cpu interrupts> 
} 

It is worth observing that classical semaphores are prone to the priority inver­
sion phenomenon, which introduces unbounded delays during tasks' execution 
and prevents any form of guarantee on hard tasks (this problem is discussed 
in Chapter 7). As a consequence, this type of semaphores should be used only 
by non-real-time tasks, for which no guarantee is performed. Real-time tasks, 
instead, should rely on more predictable mechanisms, based on time-bounded 
resource access protocols (such as Stack Resource Policy) or on asynchronous 
communication buffers. In DICK, the communication among hard tasks occurs 
through an asynchronous buffering mechanism, which is described in Section 
9.6. 

9.5.6 Status inquiry 
DICK also provides some primitives for inquiring the kernel about internal 
variables and task parameters. For example, the following primitives allow to 
get the system time, the state, the deadline, and the period of a desired task. 
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/ • * / 

/* get-time — returns the system time in milliseconds */ 
/• */ 

float get_time(void) 

{ 
return (time .unit • sys_clock) ; 

} 

/* */ 
/ • get_state — returns the s ta te of a task */ 
/ • ^1 

int get_state(proc p) 

{ 
return(vdes[p] .s ta te) ; 

} 

/* '• */ 
/* get_dline — returns the deadline of a task */ 

/* */ 

long get_dline(proc p) 

{ 
return(vdes[p].dline); 

} 

/* */ 
/* get_period — returns the period of a task */ 
/* */ 

float get_period(proc p) 

{ 
return(vdes[p].period); 

} 
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9.6 INTERTASK COMMUNICATION 
MECHANISMS 

Intertask communication is a critical issue in real-time systems, even in a 
uniprocessor environment. In fact, the use of shared resources for implementing 
message passing schemes may cause priority inversion and unbounded blocking 
on tasks' execution. This would prevent any guarantee on the task set and 
would lead to a highly unpredictable timing behavior. 

In this section, we discuss problems and solutions related to the most typical 
communication semantics used in operating systems: the synchronous and the 
asynchronous model. 

In the pure synchronous communication model, whenever two tasks want to 
communicate they must be synchronized for a message transfer to take place. 
This synchronization is called a rendez-vous. Thus, if the sender starts first, 
it must wait until the recipient receives the message; on the other hand, if the 
recipient starts first, it must wait until the sender produces its message. 

In a dynamic real-time system, synchronous communication schemes easily lead 
to unpredictable behavior, due to the difficulty of estimating the maximum 
blocking time for a process rendez-vous. In a static real-time environment, the 
problem can be solved off-line by transforming all synchronous interactions into 
precedence constraints. According to this approach, each task is decomposed 
into a number of subtasks that contain communication primitives not inside 
their code but only at their boundary. In particular, each subtask can receive 
messages only at the beginning of its execution and can send messages only at 
the end. Then a precedence relation is imposed between all adjacent subtasks 
deriving from the same father task and between all subtasks communicating 
through a send-receive pair. An example of such a task decomposition is illus­
trated in Figure 9.15. 

In a pure asynchronous scheme, communicating tasks do not have to wait for 
each other. The sender just deposits its message into a channel and continues 
its execution, independently of the recipient condition. Similarly, assuming 
that at least a message has been deposited into the channel, the receiver can 
directly access the message without synchronizing with the sender. 

Asynchronous communication schemes are more suitable for dynamic real-time 
systems. In fact, if no unbounded delays are introduced during tasks' commu­
nication, timing constraints can easily be guaranteed without increasing the 
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Figure 9.15 Decomposition of communicating tasks (a) into subtasks with 
precedence constraints (b). 

complexity of the system (for example, overconstraining the task set with addi­
tional precedence relations). Remember that having simple on-line guarantee 
tests (that is, with polynomial time complexity) is crucial for dynamic systems. 

In most commercial real-time operating systems, the asynchronous commu­
nication scheme is implemented through a mailbox mechanism, illustrated in 
Figure 9.16. A mailbox is a shared memory buffer capable of containing a fixed 
number of messages that are typically kept in a FIFO queue. The maximum 
number of messages that at any instant can be held in a mailbox represents its 
capacity. 

Two basic operations are provided on a mailbox - namely, send and receive. 
A send(MX, mes) operation causes the message mes to be inserted in the 
queue of mailbox MX. If at least a message is contained on mailbox M X , a 
receive (MX, mes) operation extracts the first message from its queue. Notice 
that, if the kernel provides the necessary support, more than two tasks can 
share a mailbox, and channels with multiple senders and/or multiple receivers 
can be realized. As long as it is guaranteed that a mailbox is never empty and 
never full, sender(s) and receiver(s) are never blocked. 

Unfortunately, a mailbox provides only a partial solution to the problem of 
asynchronous communication, since it has a bounded capacity. Unless sender 
and receiver have particular arrival patterns, it is not possible to guarantee 
that the mailbox queue is never empty or never full. If the queue is full, the 
sender must be delayed until some message is received. If the queue is empty, 
the receiver must wait until some message is inserted. 
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F i g u r e 9.16 The mailbox scheme. 

For example, consider two periodic tasks, TI and r2, with periods Ti and T2, 
that exchange messages through a mailbox having a capacity of n. Let ri be the 
sender and r2 the receiver. If Ti < T2, the sender inserts in the mailbox more 
messages than the receiver can extract; thus, after a while the queue becomes 
full and the sender must be delayed. From this time on, the sender has to wait 
the receiver, so it synchronizes with its period (T2). Viceversa, if Ti > T2, the 
receiver reads faster than the sender can write; thus, after a while the queue 
becomes empty and the receiver must wait. From this time on, the receiver 
synchronizes with the period of the sender (Ti). In conclusion, if Ti ^ T2, 
sooner or later both tasks will run at the lowest rate, and the task with the 
shortest period will miss its deadline. 

An alternative approach to asynchronous communication is provided by acycli-
cal asynchronous buffers, which are described in the next section. 

9.6.1 Cyclical asynchronous buffers 

Cyclical Asynchronous Buffers, or CABs, represent a particular mechanism 
purposely designed for the cooperation among periodic activities, such as con­
trol loops and sensory acquisition tasks. This approach was first proposed 
by Clark [Cla89] for implementing a robotic application based on hierarchical 
servo-loops, and it is used in the HARTIK system [But93, BD93] as a basic 
communication support among periodic hard tasks. 

A CAB provides a one-to-many communication channel, which at any instant 
contains the latest message or data inserted in it. A message is not consumed 
(that is, extracted) by a receiving process but is maintained into the CAB 
structure until a new message is overwritten. As a consequence, once the first 
message has been put in a CAB, a task can never be blocked during a receive 
operation. Similarly, since a new message overwrites the old one, a sender can 
never be blocked. 
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Notice that, using such a semantics, a message can be read more than once if 
the receiver is faster than the sender, while messages can be lost if the sender 
is faster than the receiver. However, this is not a problem in many control 
applications, where tasks are interested only in fresh sensory data rather than 
in the complete message history produced by a sensory acquisition task. 

CABs can be created and initialized by the operi-cab primitive, which requires 
specifying the CAB name, the dimension of the message, and the number of 
messages that the CAB may contain simultaneously. The delete-cab primitive 
removes a CAB from the system and releases the memory space used by the 
buffers. 

To insert a message in a CAB, a task must first reserve a buffer from the CAB 
memory space, then copy the message into the buffer, and finally put the buffer 
into the CAB structure, where it becomes the most recent message. This is 
done according to the following scheme: 

buf .po in te r = reserve(cab_id) ; 

<copy message in *buf _pointer> 

pu tmes (buf -po in te r , cab_id) ; 

Similarly, to get a message from a CAB, a task has to get the pointer to the most 
recent message, use the data, and release the pointer. This is done according 
to the following scheme: 

mes_pointer = getmes(cab_id) ; 

<use message> 

unget (mes .poin ter , cab_id) ; 

Notice that more tasks can simultaneously access the same buffer in a CAB 
for reading. On the other hand, if a task P reserves a CAB for writing while 
another task Q is using that CAB, a new buffer is created, so that P can write its 
message without interfering with Q. As P finishes writing, its message becomes 
the most recent one in that CAB. The maximum number of buffers that can 
be created in a CAB is specified as a parameter in the operi-cab primitive. To 
avoid blocking, this number must be equal to the number of tasks that use the 
CAB plus one. 
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9.6.2 CAB implementation 

The data structure used to implement a CAB is shown in Figure 9.17. A 
CAB control block must store the maximum number of buffers {max.buf}, their 
dimension {dim.huf)^ a pointer to a list of free buffers {free), and a pointer to 
the most recent buffer (mrb). Each buffer in the CAB can be implemented as 
a data structure with three fields: a pointer (next) to maintain a list of free 
buffers, a counter (use) that stores the current number of tasks accessing that 
buffer, and a memory area (data) for storing the message. 

The code of the four CAB primitives is shown below. Notice that the main 
purpose of the putmes primitive is to update the pointer to the most recent 
buffer (MRB). Before doing that, however, it deallocates the old MRB if no 
tasks are accessing that buffer. Similarly, the unget primitive decrements the 
number of tasks accessing that buffer and deallocates the buffer only if no task 
is accessing it and it is not the MRB. 

reading task 
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dim_buf 

p 

next 

use 

data 

\ ' 
next 

use 

most 
recent 
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] 

4 
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F i g u r e 9.17 CAB data structure. 
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/jk ^ 1 
/ ^ 
/* reserve — reserves a buffer 

/* 
/ '•' 
pointer reserve(cab c) 

{ 
pointer p; 

<disable cpu interrupts> 

p = c.free; 

c.free = p.next; 

return(p); 

<enable cpu interrupts> 

} 

in a CAB 

/* get a free buffer 

/* update the free list 

'^1 

*/ 
•it. / 
*/ 

*/ 
*/ 

/* 
/* putmes — puts a message in a CAB 
/* 

void putmes(cab c, pointer p) 

{ 
<disable cpu interrupts> 

if (c.mrb.use == 0) { 

c.mrb.next = c.free; 

c.free = c.mrb; 

} 
c.mrb = p; 

<enable cpu interrupts> 

/* update the mrb 

-*/ 

*/ 

*> 

/* if not accessed, */ 

/* deallocate the mrb */ 

*/ 
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/ * Jk / 
/ ̂  */ 
/* getmes — gets a pointer to the most recent buffer */ 

/ * - jk / 
/* */ 
pointer getmes (cab c) 

{ 
pointer p; 

<disable cpu interrupts> 

p = c.mrb; /* get the pointer to mrb */ 

p.use = p.use + 1 ; /* increment the counter */ 

return(p); 

<enable cpu interrupts> 

} 

/* 
/* 
/* unget — deallocates a buffer only if it is not accessed 

/* and it is not the most recent buffer 

/* -
/* 
void unget (cab c, pointer p) 

{ 
<disable cpu interrupts> 

p.use = p.use - 1; 

if ((p.use == 0) && (p != c.mrb)) { 

p.next = c.free; 

c.free = p; 

} 
<enable cpu interrupts> 

} 

-* / 
*/ 
*/ 

-* / 
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timer interrupts 

Figure 9.18 Effects of the overhead on tasks' execution. 

9.7 SYSTEM OVERHEAD 

The overhead of an operating system represents the time used by the proces­
sor for handhng all kernel mechanisms, such as enqueueing tasks, performing 
context switches, updating the internal data structures, sending messages to 
communication channels, servicing the interrupt requests, and so on. The time 
required to perform these operations is usually much smaller than the execution 
times of the application tasks; hence, it can be neglected in the schedulability 
analysis and in the resulting guarantee test. In some cases, however, when 
application tasks have small execution times and tight timing constraints, the 
activities performed by the kernel may not be so negligible and may create a 
significant interference on tasks' execution. In these situations, predictability 
can be achieved only by considering the effects of the runtime overhead in the 
schedulability analysis. 

The context switch time is one of the most significant overhead factors in any 
operating system. It is an intrinsic limit of the kernel that does not depend 
on the specific scheduling algorithm, nor on the structure of the application 
tasks. For a real-time system, another important overhead factor is the time 
needed by the processor to execute the timer interrupt handling routine. If Q 
is the system tick (that is, the period of the interrupt requests from the timer) 
and G is the worst-case execution time of the corresponding driver, the timer 
overhead can be computed as the utilization factor Ut of an equivalent periodic 
task: 

Figure 9.18 illustrates the execution intervals (cr) due to the timer routine and 
the execution intervals [5) necessary for a context switch. The eflPects of the 
timer routine on the schedulability of a periodic task set can be taken into 
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Figure 9.19 Net utilization bound as a function of the tick value. 

account by adding the factor Ut to the total utiHzation of the task set. This 
is the same as reducing the least upper bound of the utilization factor Uiub by 
Ut, so that the net bound becomes 

Unet = Ulub — Ut = Uiub — 
Q u. lub 

Q - <ylUiub 

Q 

From this result we can notice that, to have Unet > 0, the system tick Q 
must always be greater than {a/Uiub)- The plot of Unet as a function of Q 
is illustrated in Figure 9.19. To have an idea of the degradation caused by 
the timer overhead, consider a system based on the EDF algorithm {Uiub = 1) 
and suppose that the timer interrupt handling routine has an execution time 
of (J = 100/X5. In this system, a 10 ms tick would cause a net utilization bound 
Unet = 0.99; a 1 ms tick would decrease the net utilization bound to Unet =0 .9 ; 
whereas a 200fis tick would degrade the net bound to Unet = 0.5. This means 
that, if the greatest common divisor among the task periods is 200/is, a task 
set with utilization factor U = 0.6 cannot be guaranteed under this system. 

The overhead due to other kernel mechanisms can be taken into account as 
an additional term on tasks' execution times. In particular, the time needed 
for explicit context switches (that is, the ones triggered by system calls) can 
be considered in the execution time of the kernel primitives; thus, it will be 
charged to the worst-case execution time of the calling task. Similarly, the 
overhead associated with implicit context switches (that is, the ones triggered 
by the kernel) can be charged to the preempted tasks. 
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In this case, the schedulabiUty analysis requires a correct estimation of the total 
number of preemptions that each task may experience. In general, for a given 
scheduling algorithm, this number can be estimated off-line as a function of 
tasks' timing constraints. If Ni is the maximum number of preemptions that 
a periodic task TI may experience in each period, and 6 is the time needed to 
perform a context switch, the total utilization factor (overhead included) of a 
periodic task set can be computed as 

i=l * i=l * \ 1=1 * / 

Hence, we can write 
Utot — Up + Uovi 

where Up is the utilization factor of the periodic task set and Uov is a correction 
factor that considers the effects of the timer handling routine and the preemp­
tion overhead due to intrinsic context switches (explicit context switches are 
already considered in the C '̂s terms): 

"" TV-

1 ^ 

Finally, notice that an upper bound for the number of preemptions Ni on a 
task Ti can be computed as 

A ^ ^ - E Tk 
k=i •-

However, this bound is too pessimistic, and better bounds can be found for 
particular scheduling algorithms. 

9,7.1 Accounting for interrupt 

Two basic approaches can be used to handle interrupts coming from external 
devices. One method consists of associating an aperiodic or sporadic task to 
each source of interrupt. This task is responsible for handling the device and 
is subject to the scheduling algorithm as any other task in the system. With 
this method, the cost for handling the interrupt is automatically taken in to 
account by the guarantee mechanism, but the task may not start immediately, 
due to the presence of higher-priority hard tasks. This method cannot be used 
for those devices that require immediate service for avoiding data loss. 
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Another approach allows interrupt handling routines to preempt the current 
task and execute immediately at the highest priority. This method minimizes 
the interrupt latency, but the interrupt handling cost has to be explicitly con­
sidered in the guarantee of the hard tasks. 

JefFay and Stone [JS93] found a schedulability condition for a set of n hard tasks 
and m interrupt handlers. In their work, the analysis is carried out by assuming 
a discrete time, with a resolution equal to a tick. As a consequence, every event 
in the system occurs at a time that is multiple of the tick. In their model, there 
is a set X of m handlers, characterized by a worst-case execution time C/^ and 
a minimum separation time Tf^, just as sporadic tasks. The difference is that 
interrupt handlers always have a priority higher than the application tasks. 

The upper bound, / ( / ) , for the interrupt handling cost in any time interval of 
length / can be computed by the following recurrent relation [JS93]: 

ifEr=.[T7^1^," > / ( ' - ! ) (9.1) 
otherwise. 

In the particular case in which all the interrupt handlers start at time t = 0, 
function /( /) is exactly equal to the amount of time spent by processor in 
executing interrupt handlers in the interval [0,/]. 

Theorem 9.1 (JefFay-St one) A set T of n periodic or sporadic tasks and a 
set X of m interrupt handlers is schedulahle by EDF if and only if for all L, 
L>0, 

^ ' c , < L-f{L). (9.2) E Ti 

The proof of Theorem 9.1 is very similar to the one presented for Theorem 4.2. 
The only difference is that, in any interval of length L, the amount of time 
that the processor can dedicate to the execution of application tasks is equal 
to L - / ( L ) . 

It is worth to notice that equation (9.2) can be checked only for a set of points 
equal to release times less than the hyperperiod, and the complexity of the 
computation is pseudo-polynomial. 



10 
APPLICATION DESIGN ISSUES 

In this chapter we discuss some important issues related to the design and the 
development of complex real-time applications requiring sensory acquisition, 
control, and actuation of mechanical components. The aim of this part is to 
give a precise characterization of control applications, so that theory developed 
for real-time computing and scheduling algorithms can be practically used in 
this field to make complex control systems more rehable. In fact, a precise 
observation of the timing constraints specified in the control loops and in the 
sensory acquisition processes is a necessary condition for guaranteeing a stable 
behavior of the controlled system, as well as a predictable performance. 

As specific examples of control activities, we consider some typical robotic 
applications, in which a robot manipulator equipped with a set of sensors in­
teracts with the environment to perform a control task according to stringent 
user requirements. In particular, we discuss when control applications really 
need real-time computing (and not just fast computing), and we show how time 
constraints, such as periods and deadlines, can be derived from the application 
requirements, even though they are not explicitly specified by the user. 

Finally, the basic set of kernel primitives presented in Chapter 9 is used to 
illustrate some concrete programming examples of real-time tasks for sensory 
processing and control activities. 
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10.1 INTRODUCTION 

All complex control applications that require the support of a computing system 
can be characterized by the following components: 

1. The sys tem to be controlled. It can be a plant, a car, a robot, 
physical device that has to exhibit a desired behavior. 

or any 

2. The controller. For our purposes, it will be a computing system that 
has to provide proper inputs to the controlled system based on a desired 
control objective. 

3. The environment. It is the external world in which the controlled system 
has to operate. 

The interactions between the controlled system and the environment are, in 
general, bidirectional and occur by means of two peripheral subsystems (con­
sidered part of the controlled system): an actuation subsystem, which modifies 
the environment through a number of actuators (such as motors, pumps, en­
gines, and so on), and a sensory subsystem, which acquires information from 
the environment through a number of sensing devices (such as microphones, 
cameras, transducers, and so on). A block diagram of the typical control sys­
tem components is shown in Figure 10.1. 

Input 
Controller 

t 
System "̂ 1 

Figure 10.1 Block diagram of a generic control system. 

Depending on the interactions between the controlled system and the environ­
ment, three classes of control systems can be distinguished: 

1. Monitoring systems, 

2. Open-loop control systems, and 

3. Feedback control systems. 
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USER 

Figure 10.2 General structure of a monitoring system. 

Monitoring systems do not modify the environment but only use sensors to 
perceive its state, process sensory data, and display the results to the user. A 
block diagram of this type of system is shown in Figure 10.2. Typical applica­
tions of these systems include radar tracking, air traffic control, environmental 
pollution monitoring, surveillance, and alarm systems. Many of these appli­
cations require periodic acquisitions of multiple sensors, and each sensor may 
need a different sampling rate. Moreover, if sensors are used to detect critical 
conditions, the sampling rate of each sensor has to be constant in order to 
perform a correct reconstruction of the external signals. In these cases, using 
a hard real-time kernel is a necessary condition for guaranteeing a predictable 
behavior of the system. If sensory acquisition is carried out by a set of concur­
rent periodic tasks (characterized by proper periods and deadlines), the task 
set can be analyzed off-line to verify the feasibility of the schedule within the 
imposed timing constraints. 

Open-loop control systems are systems that interact with the environment. 
However, the actions performed by the actuators do not strictly depend on 
the current state of the environment. Sensors are used to plan actions, but 
there is no feedback between sensors and actuators. This means that, once an 
action is planned, it can be executed independently of new sensory data (see 
Figure 10.3). 

As a typical example of an open-loop control system, consider a robot work­
station equipped with a vision subsystem, whose task is to take a picture of an 
object, identify its location, and send the coordinates to the robot for triggering 
a pick and place operation. In this task, once the object location is identified 
and the arm trajectory is computed based on visual data, the robot motion 
does not need to be modified on-line; therefore, no real-time processing is re­
quired. Notice that real-time computing is not needed even though the pick 
and place operation has to be completed within a deadline. In fact, the correct 
fulfillment of the robot operation does not depend on the kernel but on other 
factors, such as the action planner, the processing speed of visual data, and the 
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Figure 10.3 General structure of an open-loop control system. 
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Figure 10.4 General structure of a feedback control system. 

robot speed. For this control problem, fast computing and smart programming 
may suffice to meet the goal. 

Feedback control systems (or closed-loop control systems) are systems that 
have frequent interactions with the environment in both directions; that is, 
the actions produced by the actuators strictly depend on the current sensory 
information. In these systems, sensing and control are tied together, and one 
or more feedback paths exist from the sensory subsystem to the controller. 
Sensors are often mounted on actuators and are used to probe the environment 
and continuously correct the actions based on actual data (see Figure 10.4). 

Human beings are perhaps the most sophisticated examples of feedback control 
systems. When we explore an unknown object, we do not just see it, but we 
look at it actively, and, in the course of looking, our pupils adjust to the level 
of illumination, our eyes bring the world into sharp focus, our eyes converge or 
diverge, we move our head or change our position to get a better view of it, 
and we use our hands to perceive and enhance tactile information. 

Modern "fly-by-wire" aircrafts are also good examples of feedback control sys­
tems. In these aircrafts, the basic maneuvering commands given by the pilot 
are converted into a series of inputs to a computer, which calculates how the 
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physical flight controls shall be displaced to achieve a maneuver, in the context 
of the current flight conditions. 

The robot workstation described above as an example of open-loop control 
system can also be a feedback control system if we close a loop with the camera 
and use the current visual data to update the robot trajectory on-line. For 
instance, visual feedback becomes necessary if the robot has to grasp a moving 
object whose trajectory is not known a priori. 

In feedback control systems, the use of real-time computing is essential for guar­
anteeing a predictable behavior; in fact, the stability of these systems depends 
not only on the correctness of the control algorithms but also on the timing 
constraints imposed on the feedback loops. In general, when the actions of a 
system strictly depend on actual sensory data, wrong or late sensor readings 
may cause wrong or late actions on the environment, which may have negative 
effects on the whole system. In some case, the consequences of a late action 
can even be catastrophic. For example, in certain environmental conditions, 
under autopilot control, reading the altimeter too late could cause the aircraft 
to stall in a critical flight configuration that could prevent recovery. In delicate 
robot assembling operations, missing deadlines on force readings could cause 
the manipulator to exert too much force on the environment, generating an 
unstable behavior. 

These examples show that, when developing critical real-time applications, the 
following issues should be considered in detail, in addition to the classical design 
issues: 

1. Structuring the application in a number of concurrent tasks, related to the 
activities to be performed; 

2. Assigning the proper timing constraints to tasks; and 

3. Using a predictable operating environment that allows to guarantee that 
those timing constraints can be satisfied. 

These and other issues are discussed in the following sections. 
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10.2 TIME CONSTRAINTS DEFINITION 

When we say that a system reacts in real time within a particular environ­
ment, we mean that its response to any event in that environment has to be 
effective, according to some control strategy, while the event is occurring. This 
means that, in order to be effective, a control task must produce its results 
within a specific deadline, which is defined based on the characteristics of the 
environment and the system itself. 

If meeting a given deadline is critical for the system operation and may cause 
catastrophic consequences, the task must be treated as a hard task. If meeting 
time constraints is desirable, but missing a deadline does not cause any serious 
damage, the task can be treated as a soft task. In addition, activities that 
require regular activation should be handled as periodic tasks. 

From the operating system point of view, a periodic task is a task whose ac­
tivation is directly controlled by the kernel in a time-driven fashion, so that 
it is intrinsically guaranteed to be regular. Viceversa, an aperiodic task is a 
task that is activated by other application tasks or by external events. Hence, 
activation requests for an aperiodic task may come from the explicit execution 
of specific system calls or from the arrival of an interrupt associated with the 
task. Notice that, even though the external interrupts arrive at regular inter­
vals, the associated task should still be handled as an aperiodic task by the 
kernel, unless precise upper bounds on the activation rate are guaranteed for 
that interrupt source. 

If the interrupt source is well known and interrupts are generated at a constant 
rate, or have a minimum interarrival time, then the aperiodic task associated 
with the corresponding event is said to be sporadic and its timing constraints 
can be guaranteed in worst-case assumptions - that is, assuming the maximum 
activation rate. 

Once all application tasks have been identified and time constraints have been 
specified (including periodicity and criticalness), the real-time operating system 
supporting the application is responsible for guaranteeing that all hard tasks 
complete within their deadlines. Soft and non-real-time tasks should be handled 
by using a best-effort strategy (or optimal, whenever possible) to reduce (or 
minimize) their average response times. 
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In the rest of this section we illustrate a few examples of control systems to 
show how time constraints can be derived from the application requirements 
even in those cases in which they are not explicitly defined by the user. 

10.2.1 Obstacle avoidance 

Consider a wheel-vehicle equipped with range sensors that has to operate in 
a certain environment running within a maximum given speed. The vehicle 
could be a completely autonomous system, such as a robot mobile base, or a 
partially autonomous system driven by a human, such as a car or a train having 
an automatic braking system for stopping motion in emergency situations. 

In order to simplify our discussion and reduce the number of controlled vari­
ables, we will consider a vehicle like a train, which moves along a straight line, 
and suppose that we have to design an automatic braking system able to detect 
obstacles in front of the vehicle and control the brakes to avoid collisions. A 
block diagram of the automatic braking system is illustrated in Figure 10.5. 

Human 

a 
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Controls 
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emergency 
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range 
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Figure 10.5 Scheme of the automatic braking system. 

The Brake Control Unit (BCU) is responsible for acquiring a pair of range 
sensors, computing the distance of the obstacle (if any), reading the state vari­
ables of the vehicle from instruments on the dashboard, and deciding whether 
an emergency stop has to be superimposed. Given the criticalness of the brak­
ing action, this task has to be periodically executed on the BCU. Let T be its 
period. 

In order to determine a safe value for T, several factors have to be considered. 
In particular, the system must ensure that the maximum latency from the 
time at which an obstacle appears and the time at which the vehicle reaches 
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Figure 10.6 Velocity during brake. 

a complete stop is less than the time to impact. Equivalently, the distance 
D of the obstacle from the vehicle must always be greater than the minimum 
space L needed for a complete stop. To compute the length L, consider the 
plot illustrated in Figure 10.6, which shows the velocity v of the vehicle as a 
function of time when an emergency stop is performed. 

Notice that three time intervals have to be taken in to account to compute the 
worst-case latency: 

The detection delay, from the time at which an obstacle appears on the 
vehicle trajectory and the time at which the obstacle is detected by the 
BCU. This interval is at most equal to the period T of the sensor acquisition 
task. 

The transmission delay, A^, from the time at which the stop command is 
activated by the BCU and the time at which the command starts to be 
actuated by the brakes. 

The braking duration, A^, needed for a complete stop. 

If V is the actual velocity of the vehicle and fif is the wheel-road friction coef­
ficient, the braking duration A^ is given by 

A. = 
l^f9 
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where g is the acceleration of gravity {g = 9.Sm/s'^). Thus, the resulting 
braking space Xb is 

Xb 
'^^J'fg 

Hence, the total length L needed for a complete stop is 

L = v{T + At)-\-Xb. 

By imposing D > L, we obtain the relation that must be satisfied among the 
variables to avoid a collision: 

D > J i - + i ; ( r + A,). (10.1) 
^^j^fg 

If we assume that obstacles are fixed and are always detected at a distance D 
from the vehicle, equation (10.1) allows to determine the maximum value that 
can be assigned to period T: 

D V 
T < A,. (10.2) 

V 2^ifg 

For example, if JD = 100 m, /x/ = 0.5, At = 250 ms, and Vmax — 30 m/s (about 
108 km/h), then the resulting sampling period T must be less than 22 ms. 

It is worth observing that this result can also be used to evaluate how long we 
can look away from the road while driving at a certain speed and visibility. For 
example, if D = 50 m (visibility under fog conditions), fif = 0.5, At = 300 ms 
(our typical reaction time), and v = 60 km/h (about 16.67 m/s or 37 mi/h), 
we can look away from the road for no more than one second! 

10.2.2 Robot deburring 

Consider a robot arm that has to polish an object surface with a grinding tool 
mounted on its wrist, as shown in Figure 10.7. This task can be specified as 
follows: 

Slide the grinding tool on the object surface with a constant speed 
V, while exerting a constant normal force F that must not exceed a 
maximum value equal to Fmax-
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Figure 10.7 Example of a robot deburring workstation. 
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Figure 10.8 Force on the robot tool during deburring. 

In order to maintain a constant contact force against the object surface, the 
robot must be equipped with a force sensor, mounted between the wrist flange 
and the grinding tool. Moreover, to keep the normal force within the specified 
maximum value, the force sensor must be acquired periodically at a constant 
rate, which has to be determined based on the characteristics of the environment 
and the task requirements. At each cycle, the robot trajectory is corrected 
based on the current force readings. 

As illustrated in Figure 10.8, if T is the period of the control process and v is the 
robot horizontal speed, the space covered by the robot end-effector within each 
period is Lr = vT. If an impact due to a contour variation occurs just after 
the force sensor has been read, the contact will be detected at the next period; 
thus, the robot keeps moving for a distance LT against the object, exerting 
an increasing force that depends on the elastic coefficient of the robot-object 
interaction. 
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As the contact is detected, we also have to consider the braking space LB 
covered by the tool from the time at which the stop command is delivered to 
the time at which the robot is at complete rest. This delay depends on the 
robot dynamic response and can be computed as follows. If we approximate 
the robot dynamic behavior with a transfer function having a dominant pole 
fd (as typically done in most cases), then the braking space can be computed 
as LB = VTd^ being r^ = 277"* Hence, the longest distance that can be covered 
by the robot after a collision is given by 

L = LT + LB = v{T-\-Td). 

If K is the rigidity coefficient of the contact between the robot end-effector 
and the object, then the worst-case value of the horizontal force exerted on the 
surface is Fh = KL = Kv{T + r^). Since Fh has to be maintained below a 
maximum value Fmax^ we must impose that 

Kv{T 4- Td) < 

which means 

T < i^^-Td). (10.3) 

Notice that, in order to be feasible, the right side of condition (10.3) must 
not only be greater than zero but must also be greater than the system time 
resolution, fixed by the system tick Q; that is, 

-Td > Q. (10.4) 
Kv 

Equation (10.4) imposes an additional restriction on the application. For ex­
ample, we may derive the maximum speed of the robot during the deburring 
operation as 

or, if V cannot be arbitrarily reduced, we may fix the tick resolution such that 

r^ ^ ( max \ 

Kv 

Once the feasibility is achieved - that is, condition (10.4) is satisfied - the 
result expressed in equation (10.3) says that stiff environments and high robot 
velocities requires faster control loops to guarantee that force does not exceed 
the limit given by Fmax-
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10.2.3 Multilevel feedback control 

In complex control applications characterized by nested servo loops, the fre­
quencies of the control tasks are often chosen to separate the dynamics of the 
controllers. This greatly simplifies the analysis of the stability and the design 
of the control law. 

Consider, for instance, the control architecture shown in Figure 10.9. Each 
layer of this control hierarchy effectively decomposes an input task into simpler 
subtasks executed at lower levels. The top-level input command is the goal, 
which is successively decomposed into subgoals, or subtasks, at each hierarchi­
cal level, until at the lowest level, output signals drive the actuators. Sensory 
data enter this hierarchy at the bottom and are filtered through a series of 
sensory-processing and pattern-recognition modules arranged in a hierarchical 
structure. Each module processes the incoming sensory information, applying 
filtering techniques, extracting features, computing parameters, and recogniz­
ing patterns. 
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Figure 10.9 Example of a hierarchical control system. 
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Sensory information that is relevant to control is extracted and sent as feedback 
to the control unit at the same level; the remaining partially processed data 
is then passed to the next higher level for further processing. As a result, 
feedback enters this hierarchy at every level. At the lowest level, the feedback 
is almost unprocessed and hence is fast-acting with very short delays, while at 
higher levels feedback passes through more and more stages and hence is more 
sophisticated but slower. The implementation of such a hierarchical control 
structure has two main implications: 

Since the most recent data have to be used at each level of control, infor­
mation can be sent through asynchronous communication primitives, using 
overwrite semantic and nonconsumable messages. The use of asynchronous 
message passing mechanisms avoids blocking situations and allows the in­
teraction among periodic tasks running at different frequencies. 

When the frequencies of hierarchical nested servo loops differ for about 
an order of magnitude, the analysis of the stability and the design of the 
control laws are significantly simplified. 

For instance, if at the lowest level a joint position servo is carried out with a 
period of 1 ms, a force control loop closed at the middle level can be performed 
with a period of 10 ms, while a vision process running at the higher control 
level can be executed with a period of 100 ms. 

10.3 HIERARCHICAL DESIGN 

In this section, we present a hierarchical design approach that can be used 
to develop sophisticated control applications requiring sensory integration and 
multiple feedback loops. Such a design approach has been actually adopted 
and experimented on several robot control applications built on top of a hard 
real-time kernel [But91, BAF94, But96]. 

The main advantage of a hierarchical design approach is to simplify the imple­
mentation of complex tasks and provide a flexible programming interface, in 
which most of the low- and middle-level real-time control strategies are built in 
the system as part of the controller and hence can be viewed as basic capabilities 
of the system. 
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Figure 10.10 Hierarchical software environment for programming complex 
robotic applications. 

Figure 10.10 shoves an example of a hierarchical programming environment 
for complex robot applications. Each layer provides the robot system with new 
functions and more sophisticated capabilities. The importance of this approach 
is not simply that one can divide the program into parts; rather, it is crucial 
that each procedure accomplishes an identifiable task that can be used as a 
building block in defining other procedures. 

The Device Level includes a set of modules specifically developed to manage all 
peripheral devices used for low-level I/O operations, such as sensor acquisition, 
joint servo, and output display. Each module provides a set of library functions, 
whose purpose is to facilitate device handling and to encapsulate hardware 
details, so that higher-level software can be developed independently from the 
specific knowledge of the peripheral devices. 

The Behavior Level is the level in which several sensor-based control strategies 
can be implemented to give the robot diflPerent kinds of behavior. The functions 
available at this level of the hierarchy allow the user to close real-time control 
loops, by which the robot can modify its trajectories based on sensory informa­
tion, apply desired forces and torques on the environment, operate according 
to hybrid control schemes, or behave as a mechanical impedance. These basic 
control strategies are essential for executing autonomous tasks in unknown con­
ditions, and, in fact, they are used in the next level to implement more skilled 
actions. 
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Based on the control strategies developed in the Behavior Level, the Action 
Level enhances the robot capability by adding more sophisticated sensory-motor 
activities, which can be used at the higher level for carrying out complex tasks 
in unstructured environments. Some representative actions developed at this 
level include (1) the ability of the robot to follow an unknown object contour, 
maintaining the end-effector in contact with the explored surface; (2) the reflex 
to avoid obstacles, making use of visual sensors; (3) the ability to adapt the 
end-effector to the orientation of the object to be grasped, based on the reaction 
forces sensed on the wrist; (4) visual tracking, to follow a moving object and 
keep it at the center of the visual field. Many other different actions can be 
easily implemented at this level by using the modules available at the Behavior 
Level or directly taking the suited sensory information from the functions at 
the Device Level. 

Finally, the Application Level is the level at which the user defines the se­
quence of robot actions for accomplishing application tasks, such as assembling 
mechanical parts, exploring unknown objects, manipulating delicate materials, 
or catching moving targets. Notice that these tasks, although sophisticated in 
terms of control, can be readily implemented thanks to the action primitives 
included in the lower levels of the hierarchical control architecture. 

10.3.1 Examples of real-time robotics 
applications 

In this section we describe a number of robot applications that have been imple­
mented by using the control architecture presented above. In all the examples, 
the arm trajectory cannot be precomputed off-line to accomplish the goal, but 
it must be continuously replanned based on the current sensory information. 
As a consequence, these applications require a predictable real-time support 
to guarantee a stable behavior of the robot and meet the specification require­
ments. 

Assembly: peg-in-hole insertion 

Robot assembly is an active area of research since several years. Assembly 
tasks include inserting electronic components on circuit boards, placing arma­
tures, bushings, and end housings on motors, pressing bearings on shafts, and 
inserting valves in cylinders. 
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Theoretical investigations of assembly have focused on the typical problem of 
inserting a peg into a hole, whose direction is known with some degree of 
uncertainty. This task is common to many assembly operations and requires 
the robot to be actively compliant during the insertion, as well as to be highly 
responsive to force changes, in order to continuously correct its motion and 
adapt to the hole constraints. 

The peg-in-hole insertion task has typically been performed by using a hybrid 
position/force control scheme [Cut85, Whi85, AS88]. According to this method, 
the robot is controlled in position along the direction of the hole, whereas it 
is controlled in force along the other directions to reduce the reaction forces 
caused by the contact. Both position and force servo loops must be executed 
periodically at a proper frequency to ensure stability. If the force loop is closed 
around the position loop, as it usually happens, then the position loop frequency 
must be about an order of magnitude higher to avoid dynamics interference 
between the two controllers. 

Surface cleaning 

Cleaning a flat and delicate surface, such as a window glass, implies large arm 
movements that must be controlled to keep the robot end-effector (such as a 
brush) within a plane parallel to the surface to be cleaned. In particular, to 
efficiently perform this task, the robot end-effector must be pressed against the 
glass with a desired constant force. Because of the high rigidity of the glass, a 
small misalignment of the robot with respect to the surface orientation could 
cause the arm to exert large forces in some points of the glass surface or loose 
the contact in some other parts. 

Since small misalignments are always possible in real working conditions, the 
robot is usually equipped with a force sensing device and is controlled in real 
time to exert a constant force on the glass surface. Moreover, the end-effector 
orientation must be continuously adjusted to be parallel to the glass plane. 

The tasks for controlling the end-effector orientation, exerting a constant force 
on the surface, and controlling the position of the arm on the glass must proceed 
in parallel and must be coordinated by a global planner, according to the 
specified goal. 
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Object tactile exploration 

When working in unknown environments, object exploration and recognition 
are essential capabilities for carrying out autonomous operations. If vision does 
not provide enough information or cannot be used because of insufficient light 
conditions, tactile and force sensors can be effectively employed to extract local 
geometric features from the explored objects, such as shape, contour, holes, 
edges, or protruding regions. 

Like the other tasks described above, tactile exploration requires the robot to 
conform to a give geometry. More explicitly, the robot should be compliant in 
the direction normal to the object surface, so that unexpected variations in the 
contour do not produce large changes in the force that the robot applies against 
the object. In the directions parallel to the surface, however, the robot needs 
to maintain a desired trajectory and should therefore be position-controlled. 

Strict time constraints for this task are necessary to guarantee robot stability 
during exploration. For example, periods of servo loops can be derived as a 
function of the robot speed, maximum applied forces, and rigidity coefficients, 
as we have shown in the example described in Section 10.2.2. Other issues 
involved in robot tactile exploration are discussed in [DB87, Baj88]. 

Catching moving objects 

Catching a moving object with one hand is one of the most difficult tasks for 
humans, as well as for robot systems. In order to perform this task, several 
capabilities are required, such as smart sensing, visual tracking, motion predic­
tion, trajectory planning, and fine sensory-motor coordination. If the moving 
target is an intelligent being, like a fast insect or a little mouse, the problem 
becomes more difficult to solve, since the prey may unexpectedly modify its 
trajectory, velocity, and acceleration. In this situation, sensing, planning, and 
control must be performed in real time - that is, while the target is moving -
so that the trajectory of the arm can be modified in time to catch the prey. 

Strict time constraints for the tasks described above derive from the maximum 
velocity and acceleration assumed for the moving object. An implementation 
of this task, using a six degrees of freedom robot manipulator and a vision 
system, is described in [BAF94]. 
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10.4 A ROBOT CONTROL EXAMPLE 

In order to illustrate a concrete real-time application, we show an implemen­
tation of a robot control system capable of exploring unknown objects by in­
tegrating visual and tactile information. To perform this task the robot has 
to exert desired forces on the object surface and follow its contour by means 
of visual feedback. Such a robot system has been realized using a Puma 560 
robot arm equipped with a wrist force/torque sensor and a CCD camera. The 
software control architecture is organized as two servo loops, as shown in Fig­
ure 10.11, where processes are indicated by circles and CABs by rectangles. 
The inner loop is dedicated to image acquisition, force reading, and robot con­
trol, whereas the outer loop performs scene analysis and surface reconstruction. 
The appHcation software consists of four processes: 

A sensory acquisition process periodically reads the force/torque sensor 
and puts data in a CAB named force. This process must have guaranteed 
execution time, since a missed deadline could cause an unstable behavior 
of the robot system. Hence, it is created as a hard task with a period of 
20 ms. 

A visual process periodically reads the image memory filled by the camera 
frame grabber and computes the next exploring direction based on a user 
defined strategy. Data are put in a CAB named path. This is a hard task 
with a period of 80 ms. A missed deadline for this task could cause the 
robot to follow a wrong direction on the object surface. 

Based on the contact condition given by the force/torque data and on 
the exploring direction suggested by the vision system, a robot control 
process computes the cartesian set points for the Puma controller. A 
hybrid position/force control scheme [Whi85, KB86] is used to move the 
robot end-effector along a direction tangential to the object surface and to 
apply forces normal to the surface. The control process is a periodic hard 
task with a period of 28 ms (this rate is imposed by the communication 
protocol used by the robot controller). Missing a deadline for this task 
could cause the robot to react too late and exert too large forces on the 
explored surface, that could break the object or the robot itself. 

A representation task reconstructs the object surface based on the current 
force/torque data and on the exploring direction. Since this is a graphics 
activity that does not affect robot motion, the representation process is 
created as a soft task with a period of 60 ms. 
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display 

Figure 10.11 Process structure for the surface exploration example. 

To better illustrate the application, we show the source code of the tasks. It 
is written in C language and includes the DICK kernel primitives described in 
the previous chapter. 

/* 
/ * 
/* Global constants 
/* 
/* 
#include "dick 

#define 

#define 
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#define 

#define 

#define 

#define 

TICK 
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/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

DICK header file 

system tick (1 ms) 

period for force 
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period for control 
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(20 
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exec-time for force 
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*/ 
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*/ 
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l-k. 
/ * 
/* Global variables 
/jk 

/ ^ 
cab 

cab 

proc 

proc 

proc 

proc 

fdata; 

angle; 

force; 

vision; 

control; 

display; 

/* 

/* 

/* 

/* 

/* 

/* 

CAB for force data 

CAB for path angles 

force sensor acquisition 

camera acq. aind processing 

robot control process 

robot trajectory display 

-*/ 

*/ 

-*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

/* */ 
/* main — in i t i a l i z e s the system and creates a l l tasks */ 
/* */ 

proc mainO 

{ 
ini_system(TICK); 

fdata = open_cab("force" , 3*sizeof (float) , 3); 

angle = open_cab("path" , sizeof (float) , 3); 

create(force, HARD, PERIODIC, Tl, WCETl): 

create(vision, HARD, PERIODIC, T2, WCET2): 

create(control, HARD, PERIODIC, T3, WCET3): 

create(display, SOFT, PERIODIC, T4, WCET4) 

activate_all(); 

while (sys_clock() < LIFETIME) /* do nothing */; 

end_system() ; 
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/* */ 
/* force — reads the force sensor and puts data in a cab */ 
/* */ 

proc forceO 

{ 
float *fvect; /* pointer to cab data */ 

while (1) { 

fvect = reserve(fdata); 

read_force_sensor(fvect) ; 

putmes(fvect, fdata); 

end_cycle() ; 

} 

/* - -̂  / 
/ * 
/* control — 

/* 
/ * 
proc 

{ 
float 

float 

} 

'T/ 

gets data from cabs and sends robot set points */ 

- - - - - 3k / 

- */ 
control 0 

*f vect, *alfa; /* pointers to cab data */ 

x[6]; 

while 

} 

/* robot set-points */ 

(1) { 
fvect = getmesCfdata); 

alfa = getmes(angle); 

controlJLaw (fvect, alfa, x) ; 

sendjTobot (x) ; 

unget(fvect, fdata); 

unget(alfa, angle); 

end_cycle() ; 
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/* */ 
/* vision — gets the image and computes the path angle */ 
/* */ 

proc visionO 

{ 
char image[256][256]; 

float *alfa; /* pointer to cab data */ 

while (1) { 

get_frame(image) ; 

alfa = reserve(angle); 

*alfa = compute_angle (image) ; 

putmes(alfa, angle); 

end_cycle() ; 

} 
} 

/ * */ 
/* display — represents the robot trajectory on the screen */ 
/* */ 

proc displayO 

{ 
float *fvect, *alfa; /* pointers to cab data */ 
float point [3]; /* 3D point on the surface */ 

while (1) { 

fvect = getmes(fdata); 

alfa = getmes(angle); 

surface(fvect, *alfa, point); 

draw-pixel (point) ; 

unget(fvect, fdata); 

unget(alfa, angle); 

end_cycle() ; 



11 
EXAMPLES OF REAL-TIME 

SYSTEMS 

11.1 INTRODUCTION 

Current operating systems having real-time characteristics can be divided into 
three main categories: 

1. Priority-based kernel for embedded applications, 

2. Real-time extensions of timesharing operating systems, and 

3. Research operating systems. 

The first category includes many commercial kernels (such as VRTX32, pSOS, 
0S9, VxWorks, Chorus, and so on) that, for many aspects, are optimized 
versions of timesharing operating systems. In general, the objective of such 
kernels is to achieve high performance in terms of average response time to 
external events. As a consequence, the main features that distinguish these 
kernels are a fast context switch, a small size, efficient interrupt handling, the 
ability to keep process code and data in main memory, the use of preemptable 
primitives, and the presence of fast communication mechanisms to send signals 
and events. 

In these systems, time management is realized through a real-time clock, which 
is used to start computations, generate alarm signals, and check timeouts on 
system services. Task scheduling is typically based on fixed priorities and does 
not consider explicit time constraints into account, such periods or deadlines. 
As a result, in order to handle real-time activities, the programmer has to map 
a set of timing constraints into a set of fixed priorities. 
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Interprocess communication and synchronization usually occur by means of bi­
nary semaphores, mailboxes, events, and signals. However, mutually exclusive 
resources are seldom controlled by access protocols that prevent priority inver­
sion; hence, blocking times on critical sections are practically unbounded. Only 
a few kernels (such as VxWorks) support a priority inheritance protocol and 
provide a special type of semaphores for this purpose. 

The second category of operating systems includes the real-time extensions 
of commercial timesharing systems. For instance, RT-UNIX and RT-MACH 
represent the real-time extensions of UNIX and MACH, respectively. 

The advantage of this approach mainly consists in the use of standard periph­
eral devices and interfaces that allow to speed up the development of real-time 
applications and simplify portability on different hardware platforms. On the 
other hand, the main disadvantage of such extensions is that their basic ker­
nel mechanisms are not appropriate for handling computations with real-time 
constraints. For example, the use of fixed priorities can be a serious limitation 
in applications that require a dynamic creation of tasks; moreover, a single 
priority can be reductive to represent a task with different attributes, such as 
importance, deadline, period, periodicity, and so on. 

There are other internal characteristics of timesharing operating systems that 
are inappropriate for supporting the real-time extensions. For example, most 
internal queues are handled with a FIFO policy, which is often preserved even 
in the real-time version of the system. In some system, the virtual memory 
management mechanism does not allow to lock pages in main memory; hence, 
page-fault handling may introduce large and unbounded delays on process ex­
ecution. Other delays are introduced by non-preemptable system calls, by 
synchronous communication channels, and by the interrupt handling mecha­
nism. These features degrade the predictability of the system and prevent any 
form of guarantee on the application tasks. 

The observations above are sufficient to conclude that the real-time extensions 
of timesharing operating systems can only be used in noncritical real-time appli­
cations, where missing timing constraints does not cause serious consequences 
on the controlled environment. 

The lack of commercial operating systems capable of efficiently handling task 
sets with hard timing constraints, induced researchers to investigate new com­
putational paradigms and new scheduling strategies aimed at guaranteeing a 
highly predictable timing behavior. The operating systems conceived with such 
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a novel software technology are called hard real-time operating systems and form 
the third category of systems outlined above. 

The main characteristics that distinguish this new generation of operating sys­
tems include 

• The ability to treat tasks with explicit timing constraints, such periods 
and deadlines; 

• The presence of guarantee mechanisms that allow to verify in advance 
whether the application constraints can be met during execution; 

• The possibility to characterize tasks with additional parameters, which are 
used to analyze the dynamic performance of the system; 

• The use of specific resource access protocols that avoid priority inversion 
and limit the blocking time on mutually exclusive resources. 

Expressive examples of operating systems that have been developed according 
to these principles are CHAOS [SGB87], MARS [KDK+89], Spring [SR91], 
ARTS [TM89], RK [LKP88], TIMIX [LK88], MARUTI [LTCA89], HARTOS 
[KKS89], YARTOS [JSP92], and HARTIK [But93]. Most of these kernels do 
not represent a commercial product but are the result of considerable efforts 
carried out in universities and research centers. 

The main differences among the kernels mentioned above concern the support­
ing architecture on which they have been developed, the static or dynamic 
approach adopted for scheduling shared resources, the types of tasks handled 
by the kernel, the scheduling algorithm, the type of analysis performed for veri­
fying the schedulability of tasks, and the presence of fault-tolerance techniques. 

In the rest of this chapter, some of these systems are illustrated to provide a 
more complete view of the techniques and methodologies that can be adopted to 
develop a new generation of real-time operating systems with highly predictable 
behavior. 

11.2 MARS 

MARS (MAintainable Real-time System) is a fault-tolerant distributed real­
time system developed at the University of Vienna [DRSK89, KDK+89] to 
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CI = Cluster Interface 

cluster 

Figure 11.1 The MARS target architecture. 

support complex control applications (such as air traffic control systems, rail­
way switching systems, and so on) where hard deadlines are imposed by the 
controlled environment. 

The MARS target architecture consists of a set of computing nodes {clusters) 
connected through high speed communication channels. Each cluster is com­
posed of a number of acquisition and processing units (components) intercon­
nected by a synchronous real-time bus, the MARS-bus. Each component is a 
self-contained computer on which a set of real-time application tasks and an 
identical copy of the MARS operating system is executed. A typical configura­
tion of the MARS target architecture is outlined in Figure 11.1. 

The main feature that distinguishes MARS from other distributed real-time 
systems is its deterministic behavior even in peak-load conditions; that is, when 
all possible events occur at their maximum specified frequency. Fault-tolerance 
is realized at the cluster level through active redundant components, which 
are grouped in a set of Fault-Tolerant Units (FTUs). A high error-detection 
coverage is achieved by the use of software mechanisms at the kernel level and 
hardware mechanisms at the processor level. 
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Within an FTU, a single redundant component fails silently; that is, it either 
operates correctly or does not produce any results. This feature facilitates 
system maintainability and extensibility, since redundant components may be 
removed from a running cluster, repaired, and reintegrated later, without af­
fecting the operation of the cluster. Moreover, a component can be expanded 
into a new cluster that shows the same I/O behavior. In this way, a new cluster 
can be designed independently from the rest of the system, as long as the I/O 
characteristics of the interface component remain unchanged. 

Predictability under peak-load situations is achieved by using a static schedul­
ing approach combined with a time-driven dispatching pohcy. In MARS, the 
entire schedule is precomputed off-line considering the timing characteristics 
of the tasks, their cooperation by message exchange, as well as the protocol 
used to access the bus. The resulting tables produced by the off-line scheduler 
are then linked to the core image of each component and executed in a time-
driven fashion. Dynamic scheduling is avoided by treating all critical activities 
as periodic tasks. 

Although the static approach limits the flexibility of the system in dynamic 
environments, it is highly predictable and minimizes the runtime overhead for 
task selection. Moreover, since scheduling decisions are taken off-line, a static 
approach allows the use of sophisticated algorithms to solve problems (such 
as jitter control and fault-tolerance requirements) that are more complex than 
those typically handled in dynamic systems. 

All MARS components have access to a common global time base, the system 
time, with known synchronization accuracy. It is used to test the validity of 
real-time information, detect timing errors, control the access to the real-time 
bus, and discard the redundant information. 

Prom the hardware point of view, each MARS component is a slightly modified 
standard single-board computer, consisting of a Motorola 680x0 CPU, a Local 
Area Network Controller for Ethernet (LANCE), a Clock Synchronization Unit 
(CSU), two RS-232 serial interfaces, and one Small Computer System Interface 
(SCSI). 

The software residing in a MARS component can be split into the following 
three classes: 

1. Operating System KerneL Its primary goals are resource management 
(CPU, memory, bus, and so on) and hardware transparency. 
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2. Hard Real-Time Tasks (HRT-tasks). HRT-tasks are periodic activities 
that receive, process, and send messages. Each instance of a task is charac­
terized by a hard deadUne, within which it has to be completed. The set of 
HRT-tasks consists of appHcation tasks and system tasks, which perform 
specific functions of the kernel, such as time synchronization and protocol 
conversions. 

3. Soft Real-Time Tasks (SRT-tasks). SRT-tasks are activities that are 
not subject to strict deadlines. Usually, they are aperiodic tasks scheduled 
in background, during the idle time of the processor. 

All hardware details are hidden within the kernel, and all kernel data structures 
cannot be accessed directly. Both application tasks and system tasks access the 
kernel only by means of defined system calls. To facilitate porting of MARS 
to other hardware platforms, most of the operating system code is written in 
standard C language. 

11.2.1 Communication 

In MARS, communication among tasks, components, clusters, and peripherals 
occurs through a uniform message passing mechanism. All messages are sent 
periodically to exchange information about the state of the environment or 
about an internal state. State-messages are not consumed when read, so they 
can be read more than once by an arbitrary number of tasks. Each time a new 
version of a message is received, the previous version is overwritten, and the 
state described in the message is updated. 

All MARS messages have an identical structure, consisting of a standard header, 
a constant length, and a standard trailer. Besides the LAN dependent standard 
fields, the header contains several other fields that include the observation time 
of the information contained in the message, the validity interval, as well as 
the send and receive time stamped on the message by the SCU. The trailer 
basically contains a checksum. The structure of the message body is defined 
by the application programmer, whereas its size is fixed and predefined in the 
system. 

Since messages describe real-time entities that cannot be altered by tasks, mes­
sages are kept in read-only buffers of the operating system. Message exchange 
between the kernel and the application tasks does not require an explicit copy 
of the message, but it is performed by passing a pointer. In MARS, process 
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Figure 11.2 Timing of the MARS-bus using the TDMA-protocol with re­
dundant message transmission. 

communication is completely asynchronous; hence, there is no need for explicit 
flow control. If the sender has a frequency higher than that of the receiver, the 
state is updated faster than read, but no buffer overflow will occur because the 
latest message replaces the previous one. 

Messages among components travel on the MARS-bus, which is an Ethernet 
link controlled by a TDMA-protocol (Time Division Multiple Access). This 
protocol provides a collision-free access to the Ethernet even under peak-load 
conditions. A disadvantage of the TDMA-protocol is a low efficiency under low-
load conditions because the sending capacity of a component cannot exceed a 
fixed limit (approximately equal to the network capacity divided by the number 
of components in the cluster) even if no other component in the cluster has to 
send messages. Nevertheless, since MARS has mainly been designed to be 
predictable even under peak-load conditions, TDMA is the protocol that best 
satisfies this requirement. As shown in Figure 11.2, each message is sent twice 
on the MARS-bus. 

In order to detect timing errors during communication, each message receives 
two time stamps from the CSU (when sent and when received), with an accu­
racy of about three microseconds. 

11.2.2 Scheduling 

In MARS, the scheduling of hard real-time activities is performed off-line con­
sidering the worst-case execution times of tasks, their interaction by message 
exchange, and the assignment of messages to TDMA slots. The static schedule 
produced by the off-line scheduler is stored in a table and loaded into each 
individual component. At runtime, the scheduling table is executed by a dis­
patcher, which performs task activation and context switches at predefined time 
instants. The disadvantage of this scheduling approach is that no tasks can be 
created dynamically, so the system is inflexible and cannot adapt to changes 
in the environment. On the other hand, if the assumptions on the controlled 
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environment are valid, the static approach is quite predictable and minimizes 
the runtime overhead for making scheduUng decisions. 

Scheduling techniques that increase the flexibility of MARS in dynamic envi­
ronments have been proposed by Fohler for realizing changes of operational 
modes [Foh93] and allowing on-line service of aperiodic tasks [Foh95]. 

The MARS system also allows diflFerent scheduling strategies to be adopted in 
different operating phases. That is, during the design phase, the programmer 
of the application can define several operational phases of the system char­
acterized by diff'erent task sets, each handled by an appropriate scheduling 
algorithm. For example, for an aircraft control application, five phases can be 
distinguished: loading, taking off, flying, landing, and unloading. And each 
phase may require different tasks or a different scheduling policy. The change 
between two schedules {mode change) may be caused either by an explicit sys­
tem call in an application task or by the reception of a message associated with 
a scheduling switch. 

Two types of scheduling switches are supported by the kernel: a consistent 
switch and an immediate switch. When performing a consistent scheduling 
switch, tasks can only be suspended at opportune instants (determined dur­
ing the design stage) so that they are guaranteed to remain in a consistent 
state with the environment. The immediate switch, instead, does not preserve 
consistency, but it guarantees that switching will be performed as soon as pos­
sible; that is, at the next invocation of the major interrupt handler, which has 
a period of eight milliseconds. 

11.2.3 Interrupt handling 

In MARS, all interrupts to the CPU are disabled, except for the clock in­
terrupt from the CSU. Allowing each device to interrupt the CPU, in fact, 
would cause an unpredictable load on the system that could jeopardize the 
guarantee performed on the hard tasks. A priority scheme for interrupts has 
also been discarded because it would give advantage to high-priority devices, 
while low-priority devices might starve for the CPU, causing missed deadlines 
in consequence. Since interrupts are disabled, peripheral devices are polled 
periodically within the clock interrupt handler. 

The clock interrupt handler is split into two sections activated with diflFerent fre­
quencies. The first section {minor handler), written in assembler for efficiency 
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Figure 11.3 The Spring distributed architecture. 

reasons, is carried out every millisecond. The second section {major handler), 
written in C, is activated every 8 milliseconds, immediately after the execution 
of the first part. The minor interrupt handler may suspend any system call, 
whereas the major handler is delayed until the end of the system call. 

11.3 SPRING 

Spring is a real-time distributed operating system developed at the University 
of Massachusetts at Amherst [SR89, SR91] for supporting large complex con­
trol applications characterized by hard timing constraints. The Spring target 
architecture is illustrated in Figure 11.3 and consists of a set of multiproces­
sor nodes connected through a high speed communication network. Each node 
contains three types of processors: one or more application processors, a system 
processor, and an I/O subsystem (front end). 

Application processors are dedicated to the execution of critical application 
tasks that have been guaranteed by the system. 

The system processor is responsible for executing the scheduling algorithm 
(a crucial part of the system) and supporting all kernel activities. Such 
a physical separation between system activities and application activities 
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allows to reduce the system overhead on the application processors and 
remove unpredictable delays on tasks' execution. 

The I/O subsystem is responsible for handling non-critical interrupts, com­
ing from slow peripheral devices or from sensors that do not have a pre­
dictable response time. Time critical I/O is directly performed on the 
system processor. 

An identical copy of the Spring kernel is executed on each application processor 
and on the system processor, whereas the I/O processor can be controlled by 
any commercial priority-based operating system. Within a node, each process­
ing unit consists of a commercial Motorola MVME136A board, plugged in a 
VME bus. On this board, part of the main memory is local to the processor 
and is used for storing programs and private data, while another part is shared 
among the other processors through the VME bus. 

Spring allows dynamic task activation, however the assignment of tasks to pro­
cessors is done statically to improve speed and eliminate unpredictable delays. 
To increase efficiency at runtime, some tasks can be loaded on more processors, 
so that, if an overload occurs when a task is activated, the task can be executed 
on another processor without large overhead. 

The scheduling mechanism is divided in four modules: 

At the lowest level, there is a dispatcher running on each application pro­
cessor. It simply removes the next ready task from a system task table 
that contains all guaranteed tasks arranged in the proper order. The rest 
of the scheduling modules are executed on the system processor. 

The second module consists of a local scheduler (resident on the system 
processor), which is responsible for dynamically guaranteeing the schedu-
lability of a task set on a particular application processor. Such a scheduler 
produces a system task table that is then passed to the application pro­
cessor. 

The third scheduling level is a distributed scheduler that tries to find a 
node available in the case in which a task cannot be locally guaranteed. 

The fourth scheduling module is a metalevel controller that adapts the 
various parameters of the scheduling algorithm to the different load con­
ditions. 
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11.3.1 Task management 

In Spring, tasks are classified based on two main criteria: importance and 
timing requirements. The importance of a task is the value gained by the system 
when the task completes before its deadline. Timing requirements represent the 
real-time specification of a task and may range over a wide spectrum, including 
hard or soft deadlines, periodic or aperiodic execution, or no explicit timing 
constraints. 

Based on importance and timing requirements, three types of tasks are defined 
in Spring: critical tasks, essential tasks, and unessential tasks. 

Critical tasks are those tasks that must absolutely meet their deadlines; 
otherwise, a catastrophic result might occur on the controlled system. Due 
to their criticalness, these tasks must have all resources reserved in advance 
and must be guaranteed off'-line. Usually, in real-world applications, the 
number of critical tasks is relatively small compared to the total number 
of tasks in the system. 

Essential tasks are those tasks that are necessary to the operation of the 
system; however, a missed deadline does not cause catastrophic conse­
quences, but only degrades system's performance. The number of essential 
tasks in typically large in complex control applications; hence, they must 
be handled dynamically or it would be impossible (or highly expensive) to 
reserve enough resources for all of them. 

Unessential tasks are processes with or without deadlines that are executed 
in background; that is, during the idle times of the processor. For this rea­
son, unessential tasks do not affect the execution of critical and essential 
tasks. Long-range planning tasks and maintenance activities usually be­
long to this class. 

Spring tasks are characterized by a large number of parameters. In particular, 
for each task, the user has to specify a worst-case execution time, a deadline, 
an interarrival time, a type (critical, essential, or unessential), a preemptive 
or non-preemptive property, an importance level, a list of resources needed, a 
precedence graph, a list of tasks with which the task communicates, and a list 
of nodes on which the task code has to be loaded. This information is used by 
the scheduling algorithm to find a feasible schedule. 
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11.3.2 Scheduling 

The objective of the Spring scheduUng algorithm is to dynamically guarantee 
the execution of newly arrived tasks in the context of the current load. The 
feasibility of the schedule is determined considering many issues, such as timing 
constraints, precedence relations, mutual exclusion on shared resources, non-
preemption properties, and fault-tolerant requirements. Since this problem 
is NP-hard, the guarantee algorithm uses a heuristic approach to reduce the 
search space and find a solution in polynomial time. It starts at the root of the 
search tree (an empty schedule) and tries to find a leaf (a complete schedule) 
corresponding to a feasible schedule. 

On each level of the search, a heuristic function H is applied to each of the tasks 
that remain to be scheduled. The task with the smallest value determined by 
the heuristic function H is selected to extend the current schedule. The heuristic 
function is a very flexible mechanism that allows to easily define and modify 
the scheduHng policy of the kernel. For example, li H = ai (arrival time), 
the algorithm behaves as First Come First Served; li H — Ci (computation 
time), it works as Shortest Job First; whereas \i H = di (absolute deadline), 
the algorithm is equivalent to Earliest Deadline First. 

To consider resource constraints in the scheduling algorithm, each task TI has 
to declare a binary array of resources Ri — [Ri{i),..., Rr(i)], where Rk{i) — 0 
if Ti does not use resource Rk, and Rk{i) = 1 if r̂  uses Rk in exclusive mode. 
Given a partial schedule, the algorithm determines, for each resource Rk, the 
earliest time the resource is available. This time is denoted as EATk (Earliest 
Available Time). Thus, the earliest start time Test{i) that task TI can begin 
the execution without blocking on shared resources is 

TesS) = max[ai,max{EATk)], 
k 

where ai is the arrival time of r^. Once Test is calculated for all the tasks, 
a possible search strategy is to select the task with the smallest value of Test-
Composed heuristic functions can also be used to integrate relevant information 
on the tasks, such as 

H = d-hW'C 

H = d-^W'Test. 

where VF is a weight that can be adjusted for different application environments. 
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Precedence constraints can be handled by introducing a new factor E, called 
eligibility. A task becomes eligible to execute only when all its ancestors in the 
precedence graph are completed. If a task is not eligible, it cannot be selected 
for extending a partial schedule. 

While extending a partial schedule, the algorithm determines whether the cur­
rent schedule is strongly feasible; that is, it is also feasible by extending it with 
any of the remaining tasks. If a partial schedule is found not to be strongly 
feasible, the algorithm stops the search process and announces that the task 
set is not schedulable; otherwise, the search continues until a complete feasible 
schedule is met. Since a feasible schedule is reached through n nodes and each 
partial schedule requires the evaluation of at most n heuristic functions, the 
complexity of the Spring algorithm is 0{n'^). 

Backtracking can be used to continue the search after a failure. In this case, the 
algorithm returns to the previous partial schedule and extends it by the task 
with the second-smallest heuristic value. To restrict the overhead of backtrack­
ing, however, the maximum number of possible backtracks must be limited. 
Another method to reduce the complexity is to restrict the number of evalu­
ations of the heuristic function. Do to that, if a partial schedule is found to 
be strongly feasible, the heuristic function is applied not to all the remaining 
tasks but only to the k remaining tasks with the earliest deadlines. Given that 
only k tasks are considered at each step, the complexity becomes 0{kn). If 
the value of k is constant (and small, compared to the task set size), then the 
complexity becomes linearly proportional to the number of tasks. 

11.3.3 I /O and interrupt handling 

In Spring, peripheral I/O devices are divided in two classes: slow and fast I/O 
devices. Slow I/O devices are multiplexed through a front-end dedicated pro­
cessor (I/O processor), controlled by a commercial operating system. Device 
drivers running on this processor are not subject to the dynamic guarantee al­
gorithm, although they can activate critical or essential tasks. Fast I/O devices 
are handled by the system processor, so they do not affect the execution of ap­
plication tasks. Interrupts from fast I/O devices are treated as instantiating a 
new task that is subject to the guarantee routine just like any other task in the 
system. 
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11.4 RK 

RK (Real-time Kernel) is a distributed real-time system developed at the Uni­
versity of Pennsylvania [LKP88, LK88] to support multisensor robotic appli­
cations. The presence of hard timing constraints in robotic control activities 
is necessary for two important reasons. First, sensors and actuators require 
regular acquisition and feedback control in order to achieve continuous and 
smooth operations. Second, some high-level tasks (such as trajectory planning, 
obstacle avoidance, and so on) may require timely execution to avoid possible 
catastrophic results. 

The target architecture for which RK has been designed is illustrated in Fig­
ure 11.4. It consists of five processors (MicroVAX) connected through a 10 Mb 
Ethernet, two robot manipulators (PUMA 560) with a joint controller each, a 
tactile sensor, and a camera. One of the processors (P3) works as a supervisor, 
two (PI and P5) are connected to the joint controllers via a parallel interface, 
one (P2) is responsible for image acquisition and processing, and one (P4) is 
dedicated to the tactile sensor. In order to support all sensory and control ac­
tivities needed for this robot system, an identical copy of the kernel is executed 
on each of the five processors. 

To achieve predictable behavior, RK provides a set of services whose worst-case 
execution time is bounded. In addition, the kernel allows the programmer to 
specify timing constraints for process execution and interprocess communica­
tion. 
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11.4.1 Scheduling 

RK supports both real-time and non-real-time tasks. Real-time tasks are di­
vided in three classes with different level of criticalness: imperative, hard, and 
soft. The assignment of the CPU to tasks is done according to a priority order. 
Within the same class, imperative processes are executed on a First-Come-
First-Served (FCFS) basis, whereas hard and soft processes are executed based 
on their timing constraints by the EDF algorithm. The difference between hard 
and soft tasks is that hard tasks are subject to a guarantee algorithm that veri­
fies their schedulability at creation time, whereas soft tasks are not guaranteed. 
Finally, non-real-time tasks are scheduled in background using FCFS. Timing 
constraints on real-time tasks can also be specified as periodic or sporadic and 
can be defined on the whole process, on a part of a process, and on messages. 

To facilitate the programming of timing constraints, RK supports a notion of 
temporal scope^ which identifies explicit timing constraints with a sequence of 
statements. Each temporal scope consists of five attributes: a hard/soft flag, 
a start time, a maximum execution time, a deadline, and a unique identifier. 
Whenever a temporal scope with a hard flag is entered, the scheduler checks 
whether the corresponding timing constraints can be guaranteed in the context 
of the current load. If the request cannot be guaranteed, an error message is 
generated by the kernel. 

A timing constraint is violated if either a process executes longer than the max­
imum declared execution time or its deadline is exceeded. When this happens, 
the kernel sends a signal to the process. If the process is hard, a critical system 
error has occurred (since the timing constraint was guaranteed by the sched­
uler); thus, the task that missed the deadline becomes an imperative process, 
and a controlled shutdown of the system is performed as soon as possible. 

11.4.2 Communication 

RK provides three basic communication methods among real-time tasks: 

• Signals, for notification of critical system errors; 

• Timed events, for notification of events with timing constraints; 

• Ports, for asynchronous message passing with timing constraints. 
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Signals 

Signals are used by the kernel to notify that an error has occurred. The purpose 
of sending such a signal is to give the process a chance to clean up its state 
or to perform a controlled shutdown of the system. There are three types of 
errors: timing errors, process errors, and system errors. Timing errors occur 
when either a process executes longer than its maximum execution time or 
its deadline is exceeded. Process errors occur when a task executes an illegal 
operation - for example, an access to an invalid memory address. System 
errors are due to the kernel; for example, running out of buffers that have been 
guaranteed to a task. When the kernel sends a signal to a process, the process 
executes an appropriate signal handler and then resumes the previous execution 
flow when the handler is finished. 

Timed events 

Events are the most basic mechanism for interprocess communication. Unlike 
a signal, an event can be sent, waited on, delayed, and preempted. In addition, 
each event can have timing constraints and an integer value, which can be used 
to pass a small amount of data. For each event, the kernel remembers only the 
last occurrence of the event. Thus, if an event arrives while another one of the 
same type is pending, only the value of the last one is remembered. 

Like signals, whenever a process receives an event, it executes an associated 
event handler; the previous execution flow resumes once the handler is finished. 
There are two ways to associate timing constraints with events. According to 
the first way, the receiver of an event may specify a timeout for executing the 
event handler. Alternatively, the sender may include a deadline when the event 
is sent. If both the sender and the receiver specify timing constraints for the 
same event, then the earliest deadline is used for the execution of the handler. 

If a non-real-time process receives a timed event, the corresponding event han­
dler is executed immediately, and, during the handling of the event, the process 
is treated as real-time. This feature allows non-real-time server processes to 
handle requests from real-time processes. 

Ports 

The port construct is widely used in operating systems for interprocess com­
munication. In RK, it is extended for real-time communication by allowing 
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the sender to specify timing constraints in messages and the receiver to con­
trol message queueing and reception strategies. Sending a message to a port 
is always nonblocking, and the execution time for a transmission is bounded 
to ensure a predictable delay. For critical message communication, the sender 
can include a set of timing attributes within each message, such as the start 
time, the maximum duration and the deadline. Receiving a message can be 
either explicit or asynchronous. When using an explicit receive primitive, the 
process can specify a timeout to limit the delay in waiting for a message. For 
asynchronous receive, the receiver associates a timed event with a port and 
each message arrival is notified through the timed event. 

Every RK process is created with a default reception port, used during initial­
ization and to request services from system server processes. Additional ports 
can be created using the following system call: 

port-id = port_create(type). 

The argument type specifies whether the port is for receiving messages or for 
multicasting messages. For a reception port, any process can send a message 
to it, but only the creator can receive from it. A multicast port realizes a one-
to-many communication channel. Each multicast port has a list of destination 
ports to which messages are to be forwarded. When a message is sent to a 
multicast port, it is forwarded to all ports connected to it, and this forwarding 
is repeated until the message reaches a reception port. 

When creating a reception port, various attributes can be specified by the 
creator. They allow the following characteristics to be defined: 

• The ordering of messages within the port queue. It can be done 
either by transmission time, arrival time, or deadline. 

• The size of the queue - that is, the maximum number of messages that 
can be stored in the queue. In case of overflow, it is possible to specify 
whether messages are thrown away at the head or at the tail of the queue. 

• Communication semantics. Normally, messages are removed from the 
queue when they are received. However, when the stick attribute is set, a 
message remains in the queue even after it is received, and it is replaced 
only when a new message arrives. 

In RK, the send and receive system calls have the following syntax: 
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send(portid, reply .port id, t_record, msg, size); 

receive(portid, reply_portid, timeuot, t_record, msg, size); 

where portid is the identifier of the port; replyjportid specifies where to send a 
reply; timeout (only in reception) specifies the maximum amount of time that 
the primitive should block waiting for a message; tjrecord is a pointer to a 
record containing the three timing attributes (start time, maximum duration, 
and deadline) specified by the sender; msg is a pointer to the message; and 
size is the size of the message. 

11.4,3 I / O and interrupt handling 

Traditional operating systems provide device drivers that simplify the inter­
actions between application processes and peripheral devices. This approach 
allows the same device to be used by many processes; however, it introduces ad­
ditional delays during processes's execution that may jeopardize the guarantee 
of hard real-time activities. 

In robotics applications, this problem is not so relevant, since sensory devices 
are not shared among processes but are controlled by dedicated tasks that 
collect data and preprocess them. For this reason, RK allows processes to 
directly control devices by sharing memory and accessing device registers. In 
addition, a process may request the kernel to convert device interrupts into 
timed events. 

Although this approach requires the programmer to know low-level details 
about devices, it is faster than the traditional method, since no context switch­
ing is needed to apply feedback to a device. Furthermore, the kernel needs not 
to be changed when removing or adding new devices. 

11.5 ARTS 

ARTS (Advanced Real-time Technology System) is a distributed real-time op­
erating system developed at the Carnegie Mellon University [TK88, TM89] for 
verifying advanced computing technologies for a distributed environment. The 
target architecture for which ARTS has been developed consists of a set of 
SUN workstations connected by a real-time network based on IEEE 802.5 To-
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F i g u r e 11.5 The ARTS target architecture. 

ken Ring. Figure 11.5 shows the typical configuration of the system and the 
relation between the kernel and its real-time tools. 

The programming environment provided by the ARTS system is based on an 
object-oriented paradigm, in which every computational entity is represented 
by an object. Objects can be defined as real-time or non-real-time objects. 
Each operation associated with a real-time object has a worst-case execution 
time, called a time fence, and a time exception handling routine. In addition, 
an ARTS object can be passive or active. Active objects are characterized by 
the presence of one or more internal threads (defined by the user) that accept 
incoming invocation requests. 

All threads are implemented as lightweight processes that share the same ad­
dress space. A thread can be defined as a periodic or aperiodic task depending 
on its timing attributes. The timing attributes of a thread consist of a value 
function, a worst-case execution time, a period, a phase, and a delay value. 

ARTS supports the creation and destruction of objects at a local node, as 
well as at a remote node. Although process migration is a very important 
mechanism in non-real-time distributed operating systems, the ARTS kernel 
does not support object migration during runtime. Instead, it can move an 
object by shutting down the activities and reinitiating the object at the target 
host with appropriate parameters. 
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11.5.1 Scheduling 

In ARTS, the scheduling pohcy is implemented as a self-contained kernel object 
and is separated from the thread handling mechanism, which performs only 
dispatching and blocking. 

For experimental purposes, several scheduling policies have been implemented 
in the ARTS kernel, including static algorithms such as Rate Monotonic (RM) 
and dynamic algorithms such as Earliest Deadline First (EDF) and Least Lax­
ity First (LLF). In conjunction with Rate Monotonic, a number of strategies 
for handling aperiodic threads have been realized, such as Background servic­
ing (BKG), Polling (POL), Deferrable Server (DS), and Sporadic Server (SS). 
More common scheduling algorithms such as First Come First Served (FCFS) 
and Round Robin (RR) have also been realized for comparison with real-time 
scheduling policies. A scheduling policy object can be selected either during 
system initialization or during runtime. Figure 11.6 shows the general structure 
of the ARTS scheduler. 

A schedulability analyzer associated with each scheduling algorithm allows the 
following to be guaranteed: 

• The feasibility of hard tasks within their deadlines, 

• A high cumulative value for soft tasks, and 

• Overload control based on the value functions of aperiodic tasks. 

When selecting a server mechanism for handling aperiodic tasks, the server pa­
rameters (period and capacity) are set to fully utilize the processor. This allows 
to reserve the maximum CPU time for aperiodic service while guaranteeing the 
schedulability of periodic hard tasks. 
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11.5.2 Coramunication 

In traditional real-time operating systems, interprocess communication mech­
anisms are realized to be fast and efficient (that is, characterized by a low 
overhead). In ARTS, however, the main goal has been to realize a commu­
nication mechanism characterized by a predictable and analyzable behavior. 
To achieve this goal, ARTS system calls require detailed information about 
communication patterns among objects, including the specification of periodic 
message traffic and rates for aperiodic traffic. 

In ARTS, every message communication is caused by an invocation of a target 
object's operation, and the actual message communication is performed in a 
Request-Accept-Reply fashion. Unlike traditional message passing paradigms, 
the caller must specify the destination object, the identifier of the requested 
operation, the pointer to the message, and the pointer to a buflFer area for the 
reply message. 

To avoid priority inversion among objects inside each node, message trans­
mission is integrated with a Priority Inheritance mechanism, which allows to 
propagate priority information across object invocations. All network messages 
are handled by a Communication Manager (CM), where different protocols are 
implemented using a state table specification. The CM prevents priority inver­
sion over the network by using priority queues with priority inheritance. Thus, 
if a low-priority message is processed when a higher-priority message arrives, 
the low-priority message will execute at the highest priority. In this way, the 
highest-priority message remains in the queue for at most the time it takes to 
process one message. 

11.5.3 Supporting tools 

ARTS provides a set of supporting tools, the ARTS Tool-Set [TK88], aimed at 
reducing the complexity of application development in a distributed real-time 
environment. This tool-set includes a schedulability analyzer, a support for 
debugging, and a system monitoring tool. 

Schedulability analyzer 

The main objective of this tool is to verify the schedulability of a given set of 
hard real-time tasks under a particular scheduling algorithm. The performance 
of soft aperiodic tasks are computed under specific service mechanisms, such as 
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Background, Polling, Deferrable Server, and Sporadic Server. An interactive 
graphical user interface is provided on a window system to quickly select the 
scheduling algorithm and the task set to be analyzed. To confirm the schedu-
lability of the given task set in a practical environment, this tool also includes 
a synthetic workload generator, which creates a particular sequence of requests 
based on a workload table specified by the user. The synthetic task set can 
then be executed by a scheduling simulator to test the observance of the hard 
timing constraints. 

Debug ging 

The ARTS system provides the programmer with a set of basic primitives that 
can be used for building a debugger and for monitoring process variables. For 
example, the Thread-Freeze primitive halts a specific thread for inspection, 
while the Object-Freeze primitive stops the execution of an ARTS object (that 
is, all its associated threads). Thread-Unfreeze and Object-Unfreeze primitives 
resume a suspended thread and object, respectively. While a thread is in a 
frozen state, the Fetch primitive allows to inspect its status in terms of a set 
of values of data objects. The value of any data object can be replaced using 
the Store primitive. Finally, the Thread-Capture and Object-Capture primitives 
allow to capture on-going communication messages from a specified thread and 
object, respectively. 

System monitoring 

ARTS includes a monitoring tool, called Advance Real-time Monitor (ARM), 
whose objective is to observe and visualize the system's runtime behavior. Typ­
ical events that can be visualized by this tool are context switches among tasks 
caused by scheduling decisions. ARM is divided into three functional units: 
the Event Tap, the Reporter, and the Visualizer. The Event Tap is a probe 
embedded inside the kernel to pick up the row data on interesting events. The 
Reporter is in charge of sending the row data to the Visualizer on a remote 
host, which analyzes the events and visualizes them in an interactive graph­
ical environment. The Visualizer is designed to be easily ported to different 
graphical interfaces. 
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11.6 HARTIK 

HARTIK (HArd Real-Time Kernel) is a hard real-time operating environment 
developed at the Scuola Superiore S. Anna of Pisa [BDN93, But93] to sup­
port advanced robot control applications characterized by stringent timing con­
straints. 

Complex robot systems are usually equipped with different types of sensors 
and actuators and hence require the concurrent execution of computational 
activities characterized by different types of timing constraints. For example, 
processing activities related to sensory acquisition and low-level servoing must 
be periodically executed with regular activation rates to ensure a correct recon­
struction of external signals and guarantee a smooth and stable behavior of the 
robot system. Other activities (such as planning special actions, modifying the 
control parameters, or handling exceptional situations) are intrinsically aperi­
odic and are triggered when some particular condition occurs. To achieve a 
predictable timing behavior and to satisfy system stability requirements, most 
acquisition and control tasks require stringent timing constraints, that have 
to be met in all anticipated workload conditions. In addition, complex robot 
systems are typically built using disparate peripheral devices that may be dis­
tributed on heterogeneous computers. 

For the reasons mentioned above, HARTIK has been designed to support the 
following major characteristics: 

Flexibility. It is possible to schedule hybrid task sets consisting of peri­
odic and aperiodic tasks with different level of criticalness. 

Portability. The kernel has been designed in a modular fashion, and all 
hardware-dependent code is encapsulated in a small layer that provides a 
virtual machine environment. 

Dynamic preemptive scheduling and on-line guarantee. Any hard 
task is subject to a feasibility test. If a task cannot be guaranteed, the 
system raises an exception that allows to take an alternative action. 

Efficient aperiodic service. An integrated scheduling algorithm en­
hances responsiveness of soft aperiodic requests without jeopardizing the 
guarantee of the hard tasks. 

Predictable resource sharing. Special semaphores allow to bound 
the maximum blocking time on critical sections, preventing deadlock and 
chained blocking. 
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Fully asynchronous communication. A particular nonblocking mech­
anism, called CAB, is provided for exchanging messages among periodic 
tasks with different periods, thus allowing the implementation of multilevel 
feedback control loops. 

Efficient and predictable interrupt handling mechanism. Any in­
terrupt request can either be served immediately, or cause the activation 
of an handler task, which is guaranteed and scheduled as any other hard 
task in the system. 

To facilitate the development of real-time control applications on heterogeneous 
architectures, HARTIK has been designed to be easily ported on different hard­
ware platforms. At present, the kernel is available for Motorola MC 680x0 
boards with VME bus, Intel 80x86 and Pentium with ISA/PCI bus, and DEC 
AXP-Alpha stations with PCI bus. 

Figure 11.7 illustrates a possible architecture that can be used to build a con­
trol application. In this solution, control algorithms, trajectory planning, and 
feedback loops are executed on a Pentium-based computer; sensory acquisition 
and data preprocessing are executed on a Motorola 68030 processor; whereas 
the application development is carried out on a DEC Alpha workstation. In 
this node, a set of tools is available for designing the application structure, esti­
mating the maximum execution time of the tasks, analyzing the schedulability 
of the task set, and monitoring the system activity. 

11.6.1 Task management and scheduling 

HARTIK distinguishes three classes of tasks with different criticalness: 

H A R D tasks. They are periodic or aperiodic processes with critical 
deadline that are guaranteed by the kernel at creation time. Moreover, 
the system performs a runtime check on hard deadlines, notifying a time 
overflow when a hard deadhne is missed. 

SOFT tasks. They are periodic or aperiodic processes with non-critical 
deadline that are not guaranteed by the system. Soft tasks are handled by 
the Total Bandwidth Server[SB94, SB96], which enhances their response 
time without jeopardizing the guarantee of hard tasks. 
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NRT tasks. They are Non-Real-Time aperiodic processes with no timing 
constraints. NRT tasks are scheduled in background and are characterized 
by a static priority level assigned by the user. 

When a task is created, several parameters have to be specified, such as its 
name, its class (HARD, SOFT, or NRT), its type (periodic or aperiodic), a 
relative deadline, a period (or a minimum interarrival time for sporadic tasks), 
a worst-case execution time, a pointer to a list of resources handled by the 
Stack Resource Policy, and a maximum blocking time. Hard and soft tasks are 
scheduled according to the Earliest-Deadline-First scheduling policy, which is 
optimal and achieves full processor utilization. 

Real-time tasks can share resources in a predictable fashion through the Stack 
Resource Policy (SRP). The SRP ensures that, once started, a task will never 
block until completion but can be preempted only by higher-priority tasks. 
Furthermore, the SRP avoids priority inversion, chained blocking, deadlock, 
and reduces the number of context switches due to resource acquisition. Using 
SRP, the maximum blocking time that any task can experience is equal to the 
duration of the longest critical section, among those that can block it. 
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11.6.2 Process communication 

HARTIK provides both synchronous and asynchronous communication primi­
tives to adapt to different task requirements. For synchronous communication, 
tasks can use two types of ports: RECEIVE and BROADCAST. 

A RECEIVE port is a channel where many tasks can send messages to, but only 
one, the owner, is allowed to receive them. Sending messages to and receiving 
messages from a receive port is always synchronous with timeout. Hence, these 
ports can be used by soft and NRT tasks and by those hard tasks that must 
absolutely perform synchronous communication. 

BROADCAST ports provide a one-to-many communication channel. They 
have not only some buffering capability for incoming messages but also a list 
of destination ports to which messages are to be forwarded. When a message 
is sent to a broadcast port, it is redirected to all ports specified in the list. 
BROADCAST ports allow asynchronous send, but they are not directly ad­
dressable by a receive. These ports are suited for soft and non-real-time tasks. 

A third type of port available in the kernel is the STICK port, which is a 
one-to-many communication channel with asynchronous semantics. When a 
process receives a message from a STICK port, the port does not consume the 
message but leaves it stuck until it is overwritten by another incoming message. 
As a consequence, a process is never blocked for an empty or full buffer. For 
this property, the use of STICK ports is strongly recommended for exchanging 
state information among HARD tasks. 

Asynchronous communication is supported by the Cyclic Asynchronous Buffer 
(CAB) mechanism, purposely designed for the cooperation among periodic ac­
tivities with different activation rate, such as sensory acquisition and control 
loops. A CAB provides a one-to-many communication channel which contains, 
at any instant, the latest message inserted in its structure. 

A message is not consumed by a receiving task, but it is maintained into the 
CAB until a new message is overwritten. In this way, a receiving task will 
always find data in a CAB, so that unpredictable delays due to synchroniza­
tion can be eliminated. It is important to point out that CABs do not use 
semaphores to protect their internal data structures, so they are not subject to 
priority inversion. 
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CAB messages are always accessed through a pointer, so that the overhead of 
CAB primitives is small and independent of the message size. The kernel also 
allows tasks to perform simultaneous read and write operations to a CAB. This 
is achieved through the use of multiple memory buffers. For example, if a task 
wants to write a new message in a CAB that is being used by another task 
(which is reading the current message), a new buffer is assigned to the writer, 
so that no memory conflict occurs. As the writing operation is completed, the 
written message becomes the most recent information in that CAB, and it will 
be available to any other task. The maximum number of buffers needed for a 
CAB to avoid blocking must be equal to the number of tasks that share the 
CAB plus one. 

11.6.3 Interrupt handling 

In HARTIK, a device driver is split into two parts: a fast handler and a safe 
handler. When an interrupt is triggered by an I/O device, the fast handler is 
executed in the context of the currently running task to avoid the overhead due 
to a context switch. It typically performs some basic input/output operations 
and acknowledges the peripheral. Then, the kernel automatically activates the 
safe handler, which is subject to the scheduling algorithm as any other aperiodic 
task in the system. The safe handler can be declared as a soft or sporadic task 
depending on the characteristics of the device. It is in charge of doing any 
remaining computation on the device - for example, data multiplexing among 
user tasks. This approach is quite flexible, since it allows to nicely combine two 
different service techniques: the event-driven approach (obtained by the fast 
handler) and the time-driven approach (obtained by the safe handler). 

11.6.4 Programming tools 

The HARTIK system includes a set of tools [ABDNB96, ABDNS96] to assist 
the development of time-critical applications from the design stage to the mon­
itoring phase. In particular, the tool set includes a design tool to describe the 
structure of the application, a schedulability analyzer to verify the feasibility 
of critical tasks, a scheduling simulator to test the performance of the system 
under a synthetic workload, a worst-case execution time estimator, and a tracer 
to monitor and visualize the actual evolution of the application. 
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Design tool 

The design tool includes an interactive graphics environment that allows the 
user to describe the application requirements according to three hierarchical 
levels. At the highest level, the application is described as a number of vir­
tual nodes that communicate through channels. Virtual nodes and channels 
are graphically represented by icons linked with arrows. Opening the icon of a 
virtual node we reach the second hierarchical level. At this stage, the developer 
specifies the set of concurrent tasks running in the virtual node and commu­
nicating through shared critical sections or through channels. Tasks, shared 
resources, and channels are graphically represented by icons that the developer 
can move and link with arrows. Any possible object (a task, a resource, a 
channel, or a message) is an instance of a class for that type of object. 

Scheduling analyzer 

The Schedulability Analyzer Tool (SAT) is very useful for designing predictable 
real-time applications because it enables the developer to analyze a set of critical 
tasks and statically verify their schedulability. If the schedulability analysis 
gives a negative result, the user can change the task parameters and rerun the 
guarantee test. For instance, some adjustments are possible by rearranging 
the task deadlines or by producing a more compact and efficient code for some 
critical tasks or even changing the target machine. 

Scheduling simulator 

Many practical real-time applications do not contain critical activities but only 
tasks with soft time constraints, where a deadline miss does not cause any 
serious damage. In these applications, the user may be interested in evaluating 
the performance of the system in the average-case behavior rather than in the 
worst-case behavior. In order to do that, a statistical analysis through a graphic 
simulation is required. For this purpose, the tool kit includes a scheduling 
simulator and a load generator for creating random aperiodic activities. Actual 
computation times, arrival times, durations, and positions of critical sections 
in the tasks are computed by the load generator as random variables, whose 
distribution is provided by the user. 
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Maximum execution time evaluator 

The execution time of tasks it is estimated by a proper tool, which performs a 
static analysis of the application code, supported by a programming style and 
specific language constructs to get analyzable programs. The language used to 
develop time-bounded code is an extension of the C language, where monitors 
are added to isolate and evaluate the duration of critical sections. Optional 
bounds are programmable to limit the number of iterations in loop statements 
or to limit the maximum number of processing conditional branches inside 
loops. The present implementation has models of Intel 1386 and i486 CPUs, 
but the tool can be easily adapted to different kind of processors. 

The model includes the simulation of the processor in a table-driven fashion, 
where assembly instructions are translated into execution times depending on 
their operating code, operands, and addressing mode. The tool works in con­
junction with the C compiler and produces a graph representation of the pro­
gram's control structure in terms of temporal behavior, where a weight is as­
signed to every branch of the graph, corresponding to the number of CPU cycles 
needed for the execution of a segment of sequential code. With this representa­
tion, calculating the worst-case behavior of an algorithm means evaluating the 
maximum cost path in the graph. 

Real-time tracer 

This tool allows the monitoring of the system evolution while an application is 
running. It consists of four main parts: a probe, a data structure in the kernel, 
an event recorder, and a visualizer. The probe is a kernel routine inserted in 
the system calls, capable of keeping track of all events occurring in the system. 
At each context switch, the probe saves in main memory the system time (with 
a microsecond a resolution) at which the event takes place, the name of the 
recorded primitive, the process identifier, its current deadline, and its state 
before the primitive execution. At system termination, the recorder saves the 
application trace in a file, which can be later interpreted and displayed by the 
visualizer. This tool produces a graphics representation of the system evolution 
in a desired time scale, under Windows NT/95. 

The user has the possibility of moving along the trace, changing the scale 
factor (zoom), and displaying information about task properties, such as type, 
periodicity class, deadhne, and period. Statistical information on waiting times 
into the various queues are also calculated and displayed both in graphical and 
textual fashion. On-line help is also provided. 
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Absolute jitter The difference between the maximum and the minimum 
start time (relative to the request time) of all instances of a periodic task. 

Acceptance test A schedulability test performed at the arrival time of a 
new task, whose result determines whether the task can be accepted into 
the system or rejected. 

Access protocol A programming scheme that has to be followed by a set of 
tasks that want to use a shared resource. 

Activation A kernel operation that moves a task from a sleeping state to an 
active state, from where it can be scheduled for execution. 

Aperiodic task A type of task that consists of a sequence of identical jobs 
(instances), activated at irregular intervals. 

Arrival rate The average number of jobs requested per unit of time. 

Arrival t ime The time instant at which a job or a task enters the ready 
queue. It is also called request time. 

Background scheduling Task-management policy used to execute low-priority 
tasks in the presence of high-priority tasks. Lower-priority tasks are executed 
only when no high-priority tasks are active. 

Blocking A job is said to be blocked when it has to wait for a job having a 
lower priority. 

Buffer A memory area shared by two or more tasks for exchanging data. 
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Capacity The maximum amount of time dedicated by a periodic server, in 
each period, to the execution of a service. 

Ceiling Priority level associated with a semaphore or a resource according to 
an access protocol. 

Ceiling blocking A special form of blocking introduced by the Priority Ceil­
ing Protocol. 

Channel A logical link through which two or more tasks exchange informa­
tion by a message-passing mechanism. 

Chained blocking A sequence of blocking experienced by a task while at­
tempting to access a set of shared resources. 

Clairvoyance An ideal property of a scheduling algorithm that implies the 
future knowledge of the arrival times of all the tasks that are to be scheduled. 

Competitive factor A scheduling algorithm A is said to have a competitive 
factor ipA if and only if it can guarantee a cumulative value at least (fA times 
the cumulative value achieved by the optimal clairvoyant scheduler. 

Completion time The time at which a job ends to execute. It is also called 
finishing time. 

Computation time The amount of time required by the processor to execute 
a job without interruption. It is also called service time or processing time. 

Concurrent processes Processes that overlap in time. 

Context A set of data that describes the state of the processor at a particular 
time, during the execution of a task. Typically the context of a task is the 
set of values taken by the processor registers at a particular instant. 

Context switch A kernel operation consisting in the suspension of the cur­
rently executing job for assigning the processor to another ready job (typi­
cally the one with the highest priority). 
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Creation A kernel operation that allocates and initializes all data structures 
necessary for the management of the object being created (such as task, 
resource, communication channel, and so on). 

Critical instant The time at which the release of a job produces the largest 
response time. 

Critical section A code segment subject to a mutual exclusion. 

Critical zone The interval between a critical instant of a job and its corre­
sponding finishing time. 

Cumulative value The sum of the task values gained by a scheduling algo­
rithm after executing a task set. 

Deadline The time within which a real-time task should complete its execu­
tion. 

Deadlock A situation in which two or more processes are waiting indefinitely 
for events that will never occur. 

Direct blocking A form of blocking due to the attempt of accessing an 
exclusive resource, held by another task. 

Dispatching A kernel operation consisting in the assignment of the processor 
to the task having highest priority. 

Domino effect A phenomenon in which the arrival of a new task causes all 
previously guaranteed tasks to miss their deadlines. 

Dynamic scheduling A scheduling method in which all active jobs are re­
ordered every time a new job enters the system or a new event occurs. 

Event An occurrence that requires a system reaction. 

Exceeding t ime The interval of time in which a job stays active after its 
deadline. It is also called tardiness. 
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Exclusive resource A shared resource that cannot be accessed by more than 
one task at a time. 

Feasible schedule A schedule in which all real-time tasks are executed 
within their deadlines and all the other constraints, if any, are met. 

Finishing time The time at which a job ends to execute. It is also called 
completion time. 

Firm task A task in which each instance must be either guaranteed to com­
plete within its deadline or entirely rejected. 

Guarantee A schedulability test that allows to verify whether a task or a set 
of tasks can complete within the specified timing constraints. 

Hard task A task whose instances must be a priori guaranteed to complete 
within their deadlines. 

Hyperperiod The minimum time interval after which the schedule repeats 
itself. For a set of periodic tasks, it is equal to the least common multiple of 
all the periods. 

Idle state The state in which a task is not active and waits to be activated. 

Idle t ime Time in which the processor does not execute any task. 

Instance A particular execution of a task. A single job belonging to the 
sequence of jobs that characterize a periodic or an aperiodic task. 

Interarrival time The time interval between the activation of two consecu­
tive instances of the same task. 

Interrupt A timing signal that causes the processor to suspend the execution 
of its current process and start another process. 

Jitter The difference between the start times (relative to the request times) 
of two or more instances of a periodic task. See also absolute jitter and 
relative jitter. 
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Job A computation in which the operations, in the absence of other activities, 
are sequentially executed by the processor until completion. 

Kernel An operating environment that enables a set of tasks to execute con­
currently on a single processor. 

Lateness The difference between the finishing time of a task and its deadline 
[L — f — d). Notice that a negative lateness means that a task completed 
before its deadline. 

Laxity The maximum delay that a job can experience after its activation and 
still complete within its deadline. At the arrival time, the laxity is equal to 
the relative deadline minus the computation time (D — C). It is also called 
slack time. 

Lifetime The maximum time that can be represented inside the kernel. 

Load Computation time demanded by a task set in an interval, divided by 
the length of the interval. 

Mailbox A communication buffer characterized by a message queue shared 
between two or more jobs. 

Message A set of data, organized in a predetermined format for exchanging 
information among tasks. 

Mutual Exclusion A kernel mechanism that allows to serialize the execution 
of concurrent tasks on critical sections of code. 

Non-preemptive Scheduling A form of scheduling in which jobs, once 
started, can continuously execute on the processor without interruption. 

Optimal algorithm A scheduling algorithm that minimizes some cost func­
tion defined over the task set. 

Overhead The time required by the processor to manage all internal mech­
anisms of the operating system, such as queuing jobs and messages, updat­
ing kernel data structures, performing context switches, activating interrupt 
handlers, and so on. 
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Overload Exceptional load condition on the processor, such that the compu­
tation time demanded by the tasks in a certain interval exceeds the available 
processor time in the same interval. 

Period The interval of time between the activation of two consecutive in­
stances of a periodic task. 

Periodic task A type of task that consists of a sequence of identical jobs 
(instances), activated at regular intervals. 

Phase The time instant at which a periodic task is activated for the first 
time, measured with respect to some reference time. 

Polling A service technique in which the server periodically examines the 
requests of its clients. 

Port A general intertask communication mechanism based on a message pass­
ing scheme. 

Precedence graph A directed acyclic graph that describes the precedence 
relations in a group of tasks. 

Precedence constraint Dependency relation between two or more tasks 
that specifies that a task cannot start executing before the completion of 
one or more tasks (called predecessors). 

Predictability An important property of a real-time system that allows to 
anticipate the consequence of any scheduling decision. 

Preemption An operation of the kernel that interrupts the currently exe­
cuting job and assigns the processor to a more urgent job ready to execute. 

Preemptive Scheduling A form of scheduling in which jobs can be inter­
rupted at any time and the processor assigned to more urgent jobs ready to 
execute. 

Priority A number associated with a task and used by the kernel to establish 
an order of precedence among tasks competing for a common resource. 
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Priority Inversion A phenomenon for which a task is blocked by a lower-
priority task for an unbounded amount of time. 

Process A computation in which the operations are executed by the proces­
sor one at a time. A process may consist of a sequence of identical jobs, also 
called instances. The words process and task are often used as synonyms. 

Processing time The amount of time required by the processor to execute a 
job without interruption. It is also called computation time or service time. 

Program A description of a computation in a formal language, called a Pro­
gramming Language. 

Push-through blocking A form of blocking introduced by the Priority In­
heritance and by the Priority Ceiling protocols. 

Queue A set of jobs waiting for a given type of resource and ordered according 
to some parameter. 

Relative Jitter The maximum difference between the start times (relative 
to the request times) of two consecutive instances of a periodic task. 

Request time The time instant at which a job or a task requests a service 
to the processor. It is also called arrival time. 

Resource Any entity (processor, memory, program, data, and so on) that 
can be used by tasks to carry on their computation. 

Resource constraint Dependency relation among tasks that share a com­
mon resource used in exclusive mode. 

Response time The time interval between the request time and the finishing 
time of a job. 

Schedulable task set A task set for which there exists a feasible schedule. 

Schedule An assignment of tasks to the processor, so that each task is exe­
cuted until completion. 
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Scheduling An activity of the kernel that determines the order in which 
concurrent jobs are executed on a processor. 

Semaphore A kernel data structure used to synchronize the execution of 
concurrent jobs. 

Server A kernel process dedicated to the management of a shared resource. 

Service t ime The amount of time required by the processor to execute a job 
without interruption. It is also called computation time or processing time. 

Shared resource A resource that is accessible by two or more processes. 

Slack t ime The maximum delay that a job can experience after its activation 
and still complete within its deadline. At the arrival time, the slack is equal 
to the relative deadline minus the computation time (D — C). It is also called 
laxity. 

Soft task A task whose instances should be possibly completed within their 
deadlines, but no serious consequences occur if a deadline is missed. 

Sporadic task An aperiodic task characterized by a minimum interarrival 
time between consecutive instances. 

Start t ime The time at which a job starts executing for the first time. 

Starvation A phenomenon for which an active job waits for the processor 
for an unbounded amount of time. 

Static scheduling A method in which all scheduling decisions are precom-
puted off-line, and jobs are executed in a predetermined fashion, according 
to a time-driven approach. 

Synchronization Any constraint that imposes an order to the operations 
carried out by two or more concurrent jobs. A synchronization is typically 
imposed for satisfying precedence or resource constraints. 

Tardiness The interval of time in which a job stays active after its deadline. 
It is also called exceeding time. 
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Task A computation in which the operations are executed by the processor 
one at a time. A task may consist of a sequence of identical jobs, also called 
instances. The words process and task are often used as synonyms. 

Task control block A kernel data structure associated with each task con­
taining all the information necessary for task management. 

Tick The minimum interval of time that is handled by the kernel. It defines 
the time resolution and the time unit of the system. 

Timeout The time limit specified by a programmer for the completion of an 
action. 

Time-overflow Deadline miss. A situation in which the execution of a job 
continues after its deadline. 

Timesharing A kernel mechanism in which the available time of the proces­
sor is divided among all active jobs in time slices of the same length. 

Time slice A continuous interval of time in which a job is executed on the 
processor without interruption. 

Utilization factor The fraction of the processor time utilized by a set of 
periodic tasks. 

Utility function A curve that describes the value of a task as a function of 
its finishing time. 

Value A task parameter that describes the relative importance of a task with 
respect to the other tasks in the system. 

Value Density The ratio between the value of a task and its computation 
time. 
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