

HARD REAL-TIME
COMPUTING SYSTEMS

Predictable Scheduling
Algorithms and Applications

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

REAL-TIME SYSTEMS
Consulting Editor

John A. Stankovic

REAL-TIME SYSTEMS: Design Principles for Distributed Embedded Applications, by
Hermann Kopetz, ISBN: 0-7923-9894-7
REAL-TIME DATABASE SYSTEMS: Issues and Applications, edited by Azer
Bestavros, Kwei-Jay Lin and Sang Hyuk Son, ISBN: 0-7923-9897-1
FAULT-TOLERANT REAL-TIME SYSTEMS: The Problem of Replica Determinism,
by Stefan Poledna, ISBN: 0-7923-9657-X
RESPONSIVE COMPUTER SYSTEMS: Steps Toward Fault-Tolerant Real-Time
Systems, by Donald Fussell and Miroslaw Maiek, ISBN: 0-7923-9563-8
IMPRECISE AND APPROXIMATE COMPUTATION, by Swaminathan Natarajan,
ISBN: 0-7923-9579-4
FOUNDATIONS OF DEPENDABLE COMPUTING: System Implementation, edited
by Gary M. Koob and Clifford G. Lau, ISBN: 0-7923-9486-0
FOUNDATIONS OF DEPENDABLE COMPUTING: Paradigms for Dependable
Applications, edited by Gary M. Koob and Clifford G. Lau, ISBN: 0-7923-9485-2
FOUNDATIONS OF DEPENDABLE COMPUTING: Models and Frameworks for
Dependable Systems, edited by Gary M. Koob and Clifford G. Lau, ISBN: 0-7923-9484-4
THE TESTABILITY OF DISTRIBUTED REAL-TIME SYSTEMS,
Werner SchOtz; ISBN: 0-7923-9386-4
A PRACTITIONER'S HANDBOOK FOR REAL-TIME ANALYSIS: Guide to Rate
Monotonic Analysis for Real-Time Systems, Carnegie Mellon University (Mark Klein,
Thomas Ralya, Bill Pollak, Ray Obenza, Michale Gonzalez Harbour);
ISBN: 0-7923-9361-9
FORMAL TECHNIQUES IN REAL-TIME FAULT-TOLERANT SYSTEMS, J.
Vytopil; ISBN: 0-7923-9332-5
SYNCHRONOUS PROGRAMMING OF REACTIVE SYSTEMS, N. Halbwachs;
ISBN: 0-7923-9311-2
REAL-TIME SYSTEMS ENGINEERING AND APPLICATIONS, M. Schiebe, S
Pferrer; ISBN: 0-7923-9196-9
SYNCHRONIZATION IN REAL-TIME SYSTEMS: A Priority Inheritance Approach,
R. Rajkumar; ISBN: 0-7923-9211-6
CONSTRUCTING PREDICTABLE REAL TIME SYSTEMS, W A. Halang, A. D.
Stoyenko; ISBN: 0-7923-9202-7
FOUNDATIONS OF REAL-TIME COMPUTING: Formal Specifications and Methods,
A. M. van Tilborg, G. M. Koob; ISBN: 0-7923-9167-5
FOUNDATIONS OF REAL-TIME COMPUTING: Scheduling and Resource
Management, A. M. van Tilborg, G. M. Koob; ISBN: 0-7923-9166-7
REAL-TIME UNIX SYSTEMS: Design and Application Guide, B. Furht, D. Grostick,
D. Gluch, G. Rabbat, J. Parker, M. McRoberts, ISBN: 0-7923-9099-7

HARD REAL-TIME
COMPUTING SYSTEMS

Predictable Scheduling
Algorithms and Applications

by

Giorgio C. Buttazzo
Scuola Superiore S. Anna

Pisa, Italy

KLUWER ACADEMIC PUBLISHERS
Boston / Dordrecht / London

Distributors for North America:
Kluwer Academic Publishers
101 Philip Drive
Assinippi Park
Norwell, Massachusetts 02061 USA

Distributors for all other countries:
Kluwer Academic Publishers Group
Distribution Centre
Post Office Box 322
3300 AH Dordrecht, THE NETHERLANDS

Library of Congress Cataloging-in-Publication Data

A CLP. Catalogue record for this book is available
from the Library of Congress.

Copyright © 1997 by Kluwer Academic Publishers

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted in any form or by any means, mechanical, photo­
copying, recording, or otherwise, without the prior written permission of the
publisher, Kluwer Academic Publishers, 101 Philip Drive, Assinippi Park, Norwell,
Massachusetts 02061

Printed on acid-free paper.

Printed in the United States of America

CONTENTS

Preface IX

A G E N E R A L V I E W l
1.1 Introduction 1
1.2 What does real time mean? 4
1.3 Achieving predictabihty 12

BASIC C O N C E P T S 23
2.1 Introduction 23
2.2 Types of task constraints 25
2.3 Definition of scheduHng problems 34
2.4 Scheduling anomalies 44

A P E R I O D I C TASK SCHEDULING 51
3.1 Introduction 51

3.2 Jackson's algorithm 52
3.3 Horn's algorithm 56
3.4 Non-preemptive scheduling 61
3.5 Scheduling with precedence constraints 68
3.6 Summary 74

P E R I O D I C TASK SCHEDULING 77
4.1 Introduction 77
4.2 Rate Monotonic scheduling 82
4.3 Earliest Deadline First 93
4.4 Deadline Monotonic 96
4.5 EDF with deadlines less than periods 102
4.6 Summary 107

vi HARD REAL-TIME COMPUTING SYSTEMS

FIXED-PRIORITY SERVERS
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

Introduction

Background scheduling
Polling Server
Deferrable Server
Priority Exchange
Sporadic Server
Slack stealing
Non-existence of optimal servers
Performance evaluation
Summary

109
109
110
111
116
125
132
138
142
145
146

6 D Y N A M I C P R I O R I T Y SERVERS 149
6.1 Introduction 149
6.2 Dynamic Priority Exchange Server 150
6.3 Dynamic Sporadic Server 155
6.4 Total Bandwidth Server 159
6.5 Earliest Deadline Late Server 163
6.6 Improved Priority Exchange Server 167
6.7 Improving TBS 171
6.S Performance evaluation 175
6.9 Summary 178

7 R E S O U R C E ACCESS P R O T O C O L S 181
7.1 Introduction 181
7.2 The priority inversion phenomenon 182
7.3 Priority Inheritance Protocol 186
7.4 Priority Ceiling Protocol 201
7.5 Stack Resource Policy 208
7.6 Summary 221

8 H A N D L I N G OVERLOAD C O N D I T I O N S 225
8.1 Introduction 225
8.2 Load definitions 228
8.3 Performance metrics 230
8.4 Scheduling schemes for overload 243
8.5 Performance evaluation 249

Contents vii

9 K E R N E L DESIGN ISSUES 253
9.1 Structure of a real-time kernel 253
9.2 Process states 256
9.3 Data structures 261
9.4 Miscellaneous 265
9.5 Kernel primitives 271
9.6 Intertask communication mechanisms 289
9.7 System overhead 296

10 A P P L I C A T I O N DESIGN ISSUES 301
10.1 Introduction 302
10.2 Time constraints definition 306
10.3 Hierarchical design 313

10.4 A robot control example 318

11 E X A M P L E S OF REAL-TIME SYSTEMS 323
11.1 Introduction 323
11.2 MARS 325
11.3 Spring 331
11.4 RK 336

11.5 ARTS 340
11.6 HARTIK 345

Glossary 353

R E F E R E N C E S 363

I N D E X 373

PREFACE

Real-time computing plays a crucial role in our society since an increasing num­
ber of complex systems rely, in part or completely, on processor control. Ex­
amples of applications that require real-time computing include nuclear power
plants, railway switching systems, automotive electronics, air traffic control,
telecommunications, robotics, and military systems.

In spite of this large application domain, most of the current real-time systems
are still designed and implemented using low-level programming and empirical
techniques, without the support of a scientific methodology. This approach
results in a lack of reliability, which in critical applications may cause serious
environmental damage or even loss of life.

This book is a basic treatise on real-time computing, with particular emphasis
on predictable scheduling algorithms. The main objectives of the book are to
introduce the basic concepts of real-time computing, illustrate the most sig­
nificant results in the field, and provide the basic methodologies for designing
predictable computing systems useful in supporting critical control applica­
tions.

The book is written for instructional use and is organized to enable readers
without a strong knowledge of the subject matter to quickly grasp the material.
Technical concepts are clearly defined at the beginning of each chapter, and
algorithm descriptions are reinforced through concrete examples, illustrations,
and tables.

Contents of the chapters
Chapter 1 presents a general introduction to real-time computing and real-time
operating systems. It introduces the basic terminology and concepts used in the
book and clearly illustrates the main characteristics that distinguish real-time
processing from other types of computing.

HARD REAL-TIME COMPUTING SYSTEMS

Chapter 2 treats the general issue of scheduUng tasks on a single processor
system. Objectives, performance metrics, and hypotheses are clearly presented,
and the scheduling problem is precisely formalized. The different algorithms
proposed in the literature are then classified in a taxonomy, which provides
a useful reference framework for understanding the different approaches. At
the end of the chapter, a number of multiprocessor scheduling anomalies are
illustrated to show that real-time computing is not equivalent to fast computing.

The rest of the book is dedicated to specific scheduling algorithms, which are
presented as a function of the task characteristics.

Chapter 3 introduces a number of real-time scheduling algorithms for handling
aperiodic tasks with explicit deadlines. Each algorithm is examined in regard to
the task set assumptions, formal properties, performance, and implementation
complexity.

Chapter 4 treats the problem of scheduling a set of real-time tasks with periodic
activation requirements. In particular, three classical algorithms are presented
in detail: Rate Monotonic, Earliest Deadline First, and Deadline Monotonic.
A schedulability test is derived for each algorithm.

Chapter 5 deals with the problem of scheduling hybrid sets consisting of hard
periodic and soft aperiodic tasks, in the context of fixed-priority assignments.
Several algorithms proposed in the literature are analyzed in detail. Each
algorithm is compared with respect to the assumptions made on the task set,
its formal properties, its performance, and its implementation complexity.

Chapter 6 considers the same problem addressed in Chapter 5, but in the
context of a dynamic priority assignment. Performance results and comparisons
are presented at the end of the chapter.

Chapter 7 introduces the problem of scheduling a set of real-time tasks that
may interact through shared resources and hence have both time and resource
constraints. Three important resource access protocols are described in detail:
the Priority Inheritance Protocol, the Priority Ceiling Protocol, and the Stack
Resource Policy. These protocols are essential for achieving predictable behav­
ior, since they bound the maximum blocking time of a process when accessing
shared resources. The latter two protocols also prevent deadlocks and chained
blocking.

Chapter 8 deals with the problem of real-time scheduling during transient over­
load conditions; that is, those situations in which the total task demand exceeds

Preface xi

the available processing time. These conditions are critical for real-time sys­
tems, since not all tasks can complete within their timing constraints. This
chapter introduces new metrics for evaluating the performance of a system
and presents a new class of scheduling algorithms capable of achieving graceful
degradation in overload conditions.

Chapter 9 describes some basic guidelines that should be considered during
the design and the development of a hard real-time kernel for critical control
applications. An example of a small real-time kernel is presented. The problem
of time predictable intertask communication is also discussed, and a particular
communication mechanism for exchanging asynchronous messages among peri­
odic tasks is illustrated. The final section shows how the runtime overhead of
the kernel can be evaluated and taken into account in the guarantee tests.

Chapter 10 discusses some important issues related to the design of real-time
applications. A robot control system is considered as a specific example for
illustrating why control applications need real-time computing and how time
constraints can be derived from the application requirements, even though they
are not explicitly specified by the user. Finally, the basic set of kernel primitives
presented in Chapter 9 is used to illustrate a concrete programming example
of real-time tasks for sensory processing and control activities.

Chapter 11 concludes the book by presenting a number of hard real-time op­
erating systems proposed in the literature. The systems examined include
MARS, Spring, RK, ARTS, and HARTIK. Each system is considered in terms
of supported architecture, scheduling algorithm, communication mechanism,
and interrupt handling.

Acknowledgments

This work is the result of seven years of research and teaching activity in the
field of real-time control systems. The majority of the material presented in
this book is based on class notes for an operating systems course taught at the
University of Pisa.

Though this book carries the name of a single author, it has been positively
influenced by a number of people to whom I am indebted. Foremost, I would
like to thank my students at the University of Pisa, who have directly and
indirectly contributed to its readability and clarity.

xii HARD REAL-TIME COMPUTING SYSTEMS

A personal note of appreciation goes to Paolo Ancilotti, who gave me the
opportunity to teach these topics. Moreover, I would like to acknowledge the
contributions of Jack Stankovic, Krithi Ramamritham, Herman Kopetz, John
Lehoczky, and Gerard Le Lann. Their input enhanced the overall quality of this
work. I would also like to thank the Kluwer editorial staff, and especially Bob
Holland, for the support I received during the preparation of the manuscript.

Special appreciation goes to Marco Spuri, who gave a substantial contribution
to the development of dynamic scheduling algorithms for aperiodic service,
Benedetto Allotta, who worked with me in approaching some problems related
to control theory and robotics applications, and Gerhard Fohler, for the inter­
esting discussions on leading scheduling issues.

I also wish to thank Antonino Gambuzza, Marco Di Natale, Giacomo Borl-
izzi, Stefano Petrucci, Enrico Rebaudo, Fabrizio Sensini, Gerardo Lamastra,
Giuseppe Lipari, Antonino Casile, Fabio Conticelli, Paolo Delia Capanna, and
Marco Caccamo, who gave a valuable contribution to the development of the
HARTIK system.

Finally, I express my appreciation to my wife, Maria Grazia, and my daughter,
Rossella, for their patience and understanding during the preparation of this
book.

1
A GENERAL VIEW

1.1 INTRODUCTION

Real-time systems are computing systems that must react within precise time
constraints to events in the environment. As a consequence, the correct behav­
ior of these systems depends not only on the value of the computation but also
on the time at which the results are produced [SR88]. A reaction that occurs
too late could be useless or even dangerous. Today, real-time computing plays
a crucial role in our society, since an increasing number of complex systems
rely, in part or completely, on computer control. Examples of applications that
require real-time computing include

Chemical and nuclear plant control.

Control of complex production processes,

Railway switching systems,

Automotive applications.

Flight control systems.

Environmental acquisition and monitoring.

Telecommunication systems.

Industrial automation.

Robotics,

Military systems.

C H A P T E R 1

• Space missions, and

• Virtual reality.

Despite this large application domain, many researchers, developers, and tech­
nical managers have serious misconceptions about real-time computing [Sta88],
and most of today's real-time control systems are still designed using ad hoc
techniques and heuristic approaches. Very often, control applications with
stringent time constraints are implemented by writing large portions of code
in assembly language, programming timers, writing low-level drivers for device
handling, and manipulating task and interrupt priorities. Although the code
produced by these techniques can be optimized to run very efficiently, this
approach has the following disadvantages:

• Tedious programming. The implementation of large and complex ap­
plications in assembly language is much more difficult and time consuming
than high-level programming. Moreover, the efficiency of the code strongly
depends on the programmer's ability.

• Difficult code understanding. Except for the programmers who de­
velop the application, very few people can fully understand the function­
ality of the software produced. Clever hand-coding introduces additional
complexity and makes a program more difficult to comprehend.

• Difficult software maintainability. As the the complexity of the pro­
gram increases, the modification of large assembly programs becomes dif­
ficult even for the original programmer.

• Difficult verification of time constraints. Without the support of
specific tools and methodologies for code and schedulability analysis, the
verification of time constraints becomes practically impossible.

The major consequence of this approach is that the control software produced
by empirical techniques can be highly unpredictable. If all critical time con­
straints cannot be verified a priori and the operating system does not include
specific features for handling real-time tasks, the system could apparently work
well for a period of time, but it could collapse in certain rare, but possible,
situations. The consequences of a failure can sometimes be catastrophic and
may injure people or cause serious damage to the environment.

A high percentage of accidents that occur in nuclear power plants, in space
missions, or in defensive systems are often caused by software bugs in the

A General View

control system. In some cases, these accidents have caused huge economic
losses or even catastrophic consequences including the loss of human lives.

As an example, the first flight of the space shuttle was delayed, at considerable
cost, because of a timing bug that arose from a transient CPU overload during
system initialization on one of the redundant processors dedicated to the control
of the aircraft [Sta88]. Although the shuttle control system was intensively
tested, the timing error was never discovered before. Later, by analyzing the
code of the processes, it has been found that there was only a 1 in 67 probability
(about 1.5 percent) that a transient overload during initialization could push
the redundant processor out of synchronization.

Another software bug was discovered on the real-time control system of the
Patriot missiles, used to protect Saudi Arabia during the Gulf War.^ When
a Patriot radar sights a flying object, the on-board computer calculates its
trajectory and, to ensure that no missiles are launched in vain, it performs a
verification. If the flying object passes through a specific location, computed
based on the predicted trajectory, then the Patriot is launched against the
target, otherwise the phenomenon is classified as a false alarm.

On February 25, 1991, the radar sighted a Scud missile directed at Saudi Arabia,
and the on-board computer predicted its trajectory, performed the verification,
but classified the event as a false alarm. A few minutes later, the Scud fell on
the city of Dhahran, causing victims and enormous economic damage. Later
on, it was discovered that, because of a subtle software bug, the real-time clock
of the on-board computer was accumulating a delay of about 57 microseconds
per minute. The day of the accident, the computer had been working for about
100 hours (an exceptional condition that was never experienced before), thus
accumulating a total delay of 343 milliseconds. This delay caused a prediction
error in the verification phase of 687 meters! The bug was corrected on February
26, the day after the accident.

The examples of failures described above show that software testing, although
important, does not represent a solution for achieving predictability in real-time
systems. This is mainly due to the fact that, in real-time control applications,
the program flow depends on input sensory data and environmental conditions,
which cannot be fully replicated during the testing phase. As a consequence,
the testing phase can provide only a partial verification of the software behavior,
relative to the particular subset of data provided as input.

^L'Espresso, Vol. XXXVIII, No. 14, 5 April 1992, p. 167.

C H A P T E R 1

A more robust guarantee of the performance of a real-time system under all
possible operating conditions can be achieved only by using more sophisticated
design methodologies, combined with a static analysis of the source code and
specific operating systems mechanisms, purposely designed to support compu­
tation under time constraints. Moreover, in critical applications, the control
system must be capable of handling all anticipated scenarios, including peak
load situations, and its design must be driven by pessimistic assumptions on
the events generated by the environment.

In 1949, an aeronautical engineer of the U.S. Air Force, Captain Ed Mur­
phy, observed the evolution of his experiments and said: "If something can go
wrong, it will go wrong." Several years later. Captain Ed Murphy became fa­
mous around the world, not for his work in avionics but for his phrase, simple
but ineluctable, today known as Murphy's Law [Blo77, BI08O, BI088]. Since
that time, many other laws on existential pessimism have been formulated to
describe unfortunate events in a humorous fashion. Due to the relevance that
pessimistic assumptions have on the design of real-time systems. Table 1.1 lists
the most significant laws on the topic, which a software engineer should always
keep in mind.

1.2 W H A T DOES REAL TIME MEAN?

1.2.1 The concept of t ime

The main characteristic that distinguishes real-time computing from other
types of computation is time. Let us consider the meaning of the words time
and real more closely.

The word time means that the correctness of the system depends not only on
the logical result of the computation but also on the time at which the results
are produced.

The word real indicates that the reaction of the systems to external events must
occur during their evolution. As a consequence, the system time (internal time)
must be measured using the same time scale used for measuring the time in
the controlled environment (external time).

Although the term real time is frequently used in many application fields, it is
subject to different interpretations, not always correct. Often, people say that

A General View

Murphy's General Law

/ / something can go wrong, it will go wrong.

Murphy's Constant

Damage to an object is proportional to its value.

Naeser's Law

One can make something bomb-proof, not jinx-proof.

Troutman Postulates

1. Any software bug will tend to maximize the damage.

2. The worst software bug will be discovered six months after the field test.

Green's Law

If a system is designed to be tolerant to a set of faults, there will always
exist an idiot so skilled to cause a nontolerated fault.

Corollary

Dummies are always more skilled than measures taken to keep them
from harm.

Johnson's First Law

/ / a system stops working, it will do it at the worst possible time.

Sodd's Second Law

Sooner or later, the worst possible combination of circumstances will
happen.

Corollary

A system must always be designed to resist the worst possible combi­
nation of circumstances.

Table 1.1 Murphy's laws on real-time systems.

C H A P T E R 1

a control system operates in real time if it is able to quickly react to external
events. According to this interpretation, a system is considered to be real-time
if it is fast. The term fast^ however, has a relative meaning and does not capture
the main properties that characterize these types of systems.

In nature, living beings act in real time in their habitat independently of their
speed. For example, the reactions of a turtle to external stimuli coming from
its natural habitat are as effective as those of a cat with respect to its habitat.
In fact, although the turtle is much slower than a cat, in terms of absolute
speed, the events that it has to deal with are proportional to the actions it can
coordinate, and this is a necessary condition for any animal to survive within
an environment.

On the contrary, if the environment in which a biological system lives is modified
by introducing events that evolve more rapidly than it can handle, its actions
will no longer be as effective, and the survival of the animal is compromised.
Thus, a quick fly can still be caught by a fly-swatter, a mouse can be captured
by a trap, or a cat can be run down by a speeding car. In these examples, the
fly-swatter, the trap, and the car represent unusual and anomalous events for
the animals, out of their range of capabilities, which can seriously jeopardize
their survival. The cartoons in Figure 1.1 schematically illustrate the concept
expressed above.

The previous examples show that the concept of time is not an intrinsic property
of a control system, either natural or artificial, but that it is strictly related to
the environment in which the system operates. It does not make sense to design
a real-time computing system for flight control without considering the timing
characteristics of the aircraft. Hence, the environment is always an essential
component of any real-time system. Figure 1.2 shows a block diagram of a
typical real-time architecture for controlling a physical system.

Some people erroneously believe that it is not worth investing in real-time
research because advances in computer hardware will take care of any real­
time requirements. Although advances in computer hardware technology will
improve system throughput and will increase the computational speed in terms
of millions of instructions per second (MIPS), this does not mean that the
timing constraints of an application will be met automatically. In fact, whereas
the objective of fast computing is to minimize the average response time of a
given set of tasks, the objective of real-time computing is to meet the individual
timing requirement of each task [Sta88].

A General View

Figure 1.1 Both the mouse (a) and the turtle (b) behave in real time with
respect to their natural habitat. Nevertheless, the survival of fast animals such
as a mouse or a fly can be jeopardized by events (c and d) quicker than their
reactive capabilities.

However short the average response time can be, without a scientific method­
ology we will never be able to guarantee the individual timing requirements of
each task in all possible circumstances. When several computational activities
have different timing constraints, average performance has little significance for
the correct behavior of the system. To better understand this issue, it is worth
thinking about this little story^:

There was a man who drowned crossing a stream with an average depth
of six inches.

Hence, rather than being fast, a real-time computing system should be pre­
dictable. And one safe way to achieve predictability is to investigate and em­
ploy new methodologies at every stage of the development of an application,
from design to testing.

•^From John Stankovic's notes.

C H A P T E R 1

Control
System

Sensory

System
Actuation

System

ENVIRONMENT

\ y

Figure 1.2 Block diagram of a generic real-time control system.

At the process level, the main difference between a real-time and a non-real­
time task is that a real-time task is characterized by a deadline^ which is the
maximum time within which it must complete its execution. In critical ap­
plications, a result produced after the deadline is not only late but wrong!
Depending on the consequences that may occur because of a missed deadline,
real-time tasks are usually distinguished in two classes, hard and soft:

• A real-time task is said to be hard if missing its deadline may cause catas­
trophic consequences on the environment under control.

• A real-time task is said to be soft if meeting its deadline is desirable for per­
formance reasons, but missing its deadline does not cause serious damage
to the environment and does not jeopardize correct system behavior.

A real-time operating system that is able to handle hard real-time tasks is called
a hard real-time system. Typically, real-world applications include hard and soft
activities, and therefore a hard real-time system should be designed to handle
both hard and soft tasks using two different strategies. In general, when an
application consists of a hybrid task set, the objective of the operating system
should be to guarantee the individual timing constraints of the hard tasks while
minimizing the average response time of the soft activities.

A General View

Examples of hard activities that may be present in a control application include

Sensory data acquisition,

Detection of critical conditions,

Actuator servoing,

Low-level control of critical system components, and

Planning sensory-motor actions that tightly interact with the environment.

Examples of soft activities include

The command interpreter of the user interface,

Handling input data from the keyboard,

Displaying messages on the screen.

Representation of system state variables,

Graphical activities, and

Saving report data.

1.2.2 Limits of current real-time systems

Most of the real-time computing systems used to support control applications
are based on kernels [AL86, Rea86, HHPD87, SBG86], which are modified
versions of timesharing operating systems. As a consequence, they have the
same basic features found in timesharing systems, which are not suited to
support real-time activities. The main characteristics of such real-time systems
include

Multitasking. A support for concurrent programming is provided through
a set of system calls for process management (such as create, activate, ter­
minate, delay, suspend, and resume). Many of these primitives do not take
time into account and, even worse, introduce unbounded delays on tasks'
execution time that may cause hard tasks to miss their deadlines in an
unpredictable way.

10 C H A P T E R 1

Priority-based scheduling. This scheduling mechanism is quite flexible,
since it allows the implementation of several strategies for process man­
agement just by changing the rule for assigning priorities to tasks. Never­
theless, when application tasks have explicit time requirements, mapping
timing constraints into a set of priorities may not be simple, especially
in dynamic environments. The major problem comes from the fact that
these kernels have a limited number of priority levels (typically 128 or 256),
whereas task deadlines can vary in a much wider range. Moreover, in dy­
namic environments, the arrival of a new task may require the remapping
of the entire set of priorities.

Ability to quickly respond to external interrupts. This feature is
usually obtained by setting interrupt priorities higher than process priori­
ties and by reducing the portions of code executed with interrupts disabled.
Note that, although this approach increases the reactivity of the system to
external events, it introduces unbounded delays on processes' execution.
In fact, an application process will be always interrupted by a driver, even
though it is more important than the device that is going to be served.
Moreover, in the general case, the number of interrupts that a process can
experience during its execution cannot be bounded in advance, since it
depends on the particular environmental conditions.

Basic mechanisms for process communication and synchroniza­
tion. Binary semaphores are typically used to synchronize tasks and
achieve mutual exclusion on shared resources. However, if no access pro­
tocols are used to enter critical sections, classical semaphores can cause
a number of undesirable phenomena, such as priority inversion, chained
blocking, and deadlock, which again introduce unbounded delays on real­
time activities.

Small kernel and fast context switch. This feature reduces system
overhead, thus improving the average response time of the task set. How­
ever, a small average response time on the task set does not provide any
guarantee on the individual deadlines of the tasks. On the other hand, a
small kernel implies limited functionality, which affects the predictability
of the system.

Support of a real-time clock as an internal time reference. This
is an essential feature for any real-time kernel that handles time-critical
activities that interact with the environment. Nevertheless, in most com­
mercial kernels this is the only mechanism for time management. In many
cases, there are no primitives for explicitly specifying timing constraints
(such as deadlines) on tasks, and there is no mechanism for automatic
activation of periodic tasks.

A General View 11

From the above features, it is easy to see that those types of real-time kernels
are developed under the same basic assumptions made in timesharing systems,
where tasks are considered as unknown activities activated at random instants.
Except for the priority, no other parameters are provided to the system. As
a consequence, computation times, timing constraints, shared resources, or
possible precedence relations among tasks are not considered in the scheduling
algorithm, and hence no guarantee can be performed.

The only objectives that can be pursued with these systems is a quick reaction
to external events and a "small" average response time for the other tasks.
Although this may be acceptable for some soft applications, the lack of any
form of guarantee precludes the use of these systems for those control applica­
tions that require stringent timing constraints that must be met to ensure safe
behavior of the system.

1.2.3 Desirable features of real-time systems

Complex control applications that require hard timing constraints on tasks'
execution need to be supported by highly predictable operating systems. Pre­
dictability can be achieved only by introducing radical changes in the basic
design paradigms found in classical timesharing systems.

For example, in any real-time control system, the code of each task is known
a priori and hence can be analyzed to determine its characteristics in terms of
computation time, resources, and precedence relations with other tasks. There­
fore, there is no need to consider a task as an unknown processing entity; rather,
its parameters can be used by the operating system to verify its schedulability
within the specified timing requirements. Moreover, all hard tasks should be
handled by the scheduler to meet their individual deadlines, not to reduce their
average response time.

In addition, in any typical real-time application, the various control activities
can be seen as members of a team acting together to accomplish one common
goal, which can be the control of a nuclear power plant or an aircraft. This
means that tasks are not all independent and it is not strictly necessary to
support independent address spaces.

In summary, there are some very important basic properties that real-time
systems must have to support critical applications. They include

12 C H A P T E R 1

Timeliness. Results have to be correct not only in their value but also
in the time domain. As a consequence, the operating system must provide
specific kernel mechanisms for time management and for handling tasks
with explicit time constraints and different criticalness.

Design for peak load. Real-time systems must not collapse when they
are subject to peak-load conditions, so they must be designed to manage
all anticipated scenarios.

Predictability. To guarantee a minimum level of performance, the system
must be able to predict the consequences of any scheduling decision. If
some task cannot be guaranteed within its time constraints, the system
must notify this fact in advance, so that alternative actions can be planned
in time to cope with the event.

Fault tolerance. Single hardware and software failures should not cause
the system to crash. Therefore, critical components of the real-time system
have to be designed to be fault tolerant.

Maintainability. The architecture of a real-time system should be de­
signed according to a modular structure to ensure that possible system
modifications are easy to perform.

1.3 ACHIEVING PREDICTABILITY

One of the most important properties that a hard real-time system should
have is predictability [SR90]. That is, based on the kernel features and on the
information associated with each task, the system should be able to predict
the evolution of the tasks and guarantee in advance that all critical timing
constraints will be met. The reliability of the guarantee, however, depends on
a range of factors, which involve the architectural features of the hardware and
the mechanisms and policies adopted in the kernel, up to the programming
language used to implement the application.

The first component that affects the predictability of the scheduling is the pro­
cessor itself. The internal characteristics of the processor, such as instruction
prefetch, pipelining, cache memory, and direct memory access (DMA) mecha­
nisms, are the first cause of nondeterminism. In fact, although these features
improve the average performance of the processor, they introduce nondetermin-
istic factors that prevent a precise analysis of the worst-case execution times.
Other important components that influence the execution of the task set are

A General View 13

the internal characteristics of the real-time kernel, such as the scheduling algo­
rithm, the synchronization mechanism, the types of semaphores, the memory
management policy, the communication semantics, and the interrupt handling
mechanism.

In the rest of this chapter, the main sources of nondeterminism are considered
in more detail, from the physical level up to the programming level.

1.3.1 D M A

Direct memory access (DMA) is a technique used by many peripheral devices
to transfer data between the device and the main memory. The purpose of
DMA is to relieve the central processing unit (CPU) of the task of controlling
the input/output (I/O) transfer. Since both the CPU and the I/O device share
the same bus, the CPU has to be blocked when the DMA device is performing
a data transfer. Several different transfer methods exist.

One of the most common methods is called cycle stealing, according to which
the DMA device steals a CPU memory cycle in order to execute a data transfer.
During the DMA operation, the I/O transfer and the CPU program execution
run in parallel. However, if the CPU and the DMA device require a memory
cycle at the same time, the bus is assigned to the DMA device and the CPU
waits until the DMA cycle is completed. Using the cycle stealing method, there
is no way of predicting how many times the CPU will have to wait for DMA
during the execution of a task; hence the response time of a task cannot be
precisely determined.

A possible solution to this problem is to adopt a different technique, which re­
quires the DMA device to use the memory time-slice method [SR88]. According
to this method, each memory cycle is split into two adjacent time slots: one
reserved for the CPU and the other for the DMA device. This solution is more
expensive than cycle stealing but more predictable. In fact, since the CPU and
DMA device do not conflict, the response time of the tasks do not increase due
to DMA operations and hence can be predicted with higher accuracy.

1.3.2 Cache

The cache is a fast memory that is inserted as a buffer between the CPU and the
random access memory (RAM) to speed up processes' execution. It is physically

14 C H A P T E R 1

located after the memory management unit (MMU) and is not visible at the
software programming level. Once the physical address of a memory location is
determined, the hardware checks whether the requested information is stored
in the cache: if it is, data are read from the cache; otherwise the information is
taken from the RAM, and the content of the accessed location is copied in the
cache along with a set of adjacent locations. In this way, if the next memory
access is done to one of these locations, the requested data can be read from
the cache, without having to access the memory.

This buffering technique is motivated by the fact that statistically the most
frequent accesses to the main memory are limited to a small address space, a
phenomenon called program locality. For example, it has been observed that
with a 1 Mb memory and a 8 Kbyte cache, the data requested from a program
are found in the cache 80 percent of the time {hit ratio).

The need for having a fast cache appeared when memory was much slower.
Today, however, since memory has an access time almost comparable to that
of the cache, the main motivation for having a cache is not only to speed up
process execution but also to reduce conflicts with other devices. In any case,
the cache is considered as a processor attribute that speeds up the activities of
a computer.

In real-time systems, the cache introduces some degree of nondeterminism.
In fact, although statistically the requested data are found in the cache 80
percent of the time, it is also true that in the other 20 percent of the cases the
performance degrades. This happens because, when data is not found in the
cache (cache fault or miss), the access time to memory is longer, due to the
additional data transfer from RAM to cache. Furthermore, when performing
write operations in memory, the use of the cache is even more expensive in terms
of access time because any modification made on the cache must be copied to
the memory in order to maintain data consistency. Statistical observations
show that 90 percent of the memory accesses are for read operations, whereas
only 10 percent are for writes.

Statistical observations, however, can provide only an estimation of the average
behavior of an application but cannot be used for deriving worst-case bounds.
To perform worst-case analysis, in fact, we should assume a cache fault for each
memory access. The consequence of this is that, to obtain a higher degree of
predictability at the low level, it would be more efficient to have processors
without cache or with the cache disabled. In other approaches, the influence of
the cache on the task execution time is taken into account by a multiplicative
factor, which depends on an estimated percentage of cache faults. A more

A General View 15

precise estimation of the cache behavior can be achieved by analyzing the code
of the tasks and estimating the execution times by using a mathematical model
of the cache.

1.3.3 Interrupts

Interrupts generated by I/O peripheral devices represent a big problem for the
predictability of a real-time system because, if not properly handled, they can
introduce unbounded delays during process execution. In almost any operating
system, the arrival of an interrupt signal causes the execution of a service
routine (driver)^ dedicated to the management of its associated device. The
advantage of this method is to encapsulate all hardware details of the device
inside the driver, which acts as a server for the application tasks. For example,
in order to get data from an I/O device, each task must enable the hardware to
generate interrupts, wait for the interrupt, and read the data from a memory
buffer shared with the driver, according to the following protocol:

<enable device interrupts>
<wait for interrupt>

<get the result>

In many operating systems, interrupts are served using a fixed priority scheme,
according to which each driver is scheduled based on a static priority, higher
than process priorities. This assignment rule is motivated by the fact that
interrupt handling routines usually deal with I/O devices that have real-time
constraints, whereas most application programs do not. In the context of real­
time systems, however, this assumption is certainly not valid because a control
process could be more urgent than an interrupt handling routine. Since, in
general, it is very difficult to bound a priori the number of interrupts that
a task may experience, the delay introduced by the interrupt mechanism on
tasks' execution becomes unpredictable.

In order to reduce the interference of the drivers on the application tasks and
still perform I/O operations with the external world, the peripheral devices
must be handled in a different way. In the following, three possible techniques
are illustrated.

16 C H A P T E R 1

Approach A

The most radical solution to eliminate interrupt interference is to disable all
external interrupts, except the one from the timer (necessary for basic system
operations). In this case, all peripheral devices must be handled by the appli­
cation tasks, which have direct access to the registers of the interfacing boards.
Since no interrupt is generated, data transfer takes place through polling.

The direct access to I/O devices allows great programming flexibility and elim­
inates the delays caused by the drivers' execution. As a result, the time needed
for transferring data can be precisely evaluated and charged to the task that
performs the operation. Another advantage of this approach is that the kernel
does not need to be modified as the I/O devices are replaced or added.

The main disadvantage of this solution is a low processor efficiency on I/O op­
erations, due to the busy wait of the tasks while accessing the device registers.
Another minor problem is that the application tasks must have the knowledge
of all low-level details of the devices that they want to handle. However, this
can be easily solved by encapsulating all device-dependent routines in a set of
library functions that can be called by the application tasks. This approach is
adopted in RK, a research hard real-time kernel designed to support multisen-
sory robotics applications [LKP88].

Approach B

As in the previous approach, all interrupts from external devices are disabled,
except the one from the timer. Unlike the previous solution, however, the
devices are not directly handled by the application tasks but are managed in
turn by dedicated kernel routines, periodically activated by the timer.

This approach eliminates the unbounded delays due to the execution of inter­
rupt drivers and confines all I/O operations to one or more periodic kernel
tasks, whose computational load can be computed once and for all and taken
into account through a specific utilization factor. In some real-time systems,
I/O devices are subdivided into two classes based on their speed: slow devices
are multiplexed and served by a single cyclical I/O process running at a low
rate, whereas fast devices are served by dedicated periodic system tasks, run­
ning at higher frequencies. The advantage of this approach with respect to the
previous one is that all hardware details of the peripheral devices can be encap­
sulated into kernel procedures and do not need to be known to the application
tasks.

A General View 17

Because the interrupts are disabled, the major problem of this approach is
due to the busy wait of the kernel I/O handling routines, which makes the
system less efficient during the I/O operations. With respect to the previous
approach, this case is characterized by a little higher system overhead, due to
the communication required among the application tasks and the I/O kernel
routines for exchanging I/O data. Finally, since the device handling routines are
part of the kernel, it has to be modified when some device is replaced or added.
This type of solution is adopted in the MARS system [DRSK89, KDK+89].

Approach C

A third approach that can be adopted in real-time systems to deal with the I/O
devices is to leave all external interrupts enabled, while reducing the drivers
to the least possible size. According to this method, the only purpose of each
driver is to activate a proper task that will take care of the device management.
Once activated, the device manager task executes under the direct control of
the operating system, and it is guaranteed and scheduled just like any other
application task. In this way, the priority that can be assigned to the device
handling task is completely independent from other priorities and can be set
according to the application requirements. Thus a control task can have a
higher priority than a device handling task.

The idea behind this approach is schematically illustrated in Figure 1.3. The
occurrence of event E generates an interrupt, which causes the execution of
a driver associated with that interrupt. Unlike the traditional approach, this
driver does not handle the device directly but only activates a dedicated task,
JE, which will be the actual device manager.

event E E
-J:^

Driver associated
with event E

Activation
of task

\ ^

Task J £

Handling

of event

E

Figure 1.3 Activation of a device-handling task.

18 CHAPTER 1

The major advantage of this approach with respect to the previous ones is to
eUminate the busy wait during I/O operations. Moreover, compared to the
traditional technique, the unbounded delays introduced by the drivers dur­
ing tasks' execution are also drastically reduced (although not completely re­
moved), so the task execution times become more predictable. As a matter
of fact, a little unbounded overhead due to the execution of the small drivers
still remains in the system, and it should be taken into account in the guar­
antee mechanism. However, it can be neglected in most practical cases. This
type of solution is adopted in the ARTS system [TK88, TM89], in HARTIK
[BD93, But93], and in SPRING [SR91].

1.3,4 System calls

System predictability also depends on how the kernel primitives are imple­
mented. In order to precisely evaluate the worst-case execution time of each
task, all kernel calls should be characterized by a bounded execution time, used
by the guarantee mechanism while performing the schedulability analysis of the
application. In addition, in order to simplify this analysis, it would be desir­
able that each kernel primitive be preemptable. In fact, any nonpreemptable
section could possibly delay the activation or the execution of critical activities,
causing a timing fault to hard deadlines.

1.3,5 Semaphores

The typical semaphore mechanism used in traditional operating systems is not
suited for implementing real-time applications because it is subject to the prior­
ity inversion phenomenon, which occurs when a high-priority task is blocked by
a low-priority task for an unbounded interval of time. Priority inversion must
absolutely be avoided in real-time systems, since it introduces nondeterministic
delays on the execution of critical tasks.

For the mutual exclusion problem, priority inversion can be avoided by adopt­
ing particular protocols that must be used every time a task wants to enter a
critical section. For instance, efficient solutions are provided by Basic Prior­
ity Inheritance [SRL90], Priority Ceiling [SRL90], and Stack Resource Policy
[Bak91]. These protocols will be described and analyzed in Chapter 7. The
basic idea behind these protocols is to modify the priority of the tasks based
on the current resource usage and control the resource assignment through a

A General View 19

test executed at the entrance of each critical section. The aim of the test is to
bound the maximum blocking time of the tasks that share critical sections.

The implementation of such protocols may requires a substantial modification
of the kernel, which concerns not only the wait and signal calls but also some
data structures and mechanisms for task management.

1.3.6 Memory management

Similarly to other kernel mechanisms, memory management techniques must
not introduce nondeterministic delays during the execution of real-time activi­
ties. For example, demand paging schemes are not suitable to real-time appli­
cations subject to rigid time constraints because of the large and unpredictable
delays caused by page faults and page replacements. Typical solutions adopted
in most real-time systems adhere to a memory segmentation rule with a fixed
memory management scheme. Static partitioning is particularly efficient when
application programs require similar amounts of memory.

In general, static allocation schemes for resources and memory management in­
crease the predictability of the system but reduce its flexibility in dynamic en­
vironments. Therefore, depending on the particular application requirements,
the system designer has to make the most suitable choices for balancing pre­
dictability against flexibility.

1.3.7 Programming language

Besides the hardware characteristics of the physical machine and the internal
mechanisms implemented in the kernel, there are other factors that can deter­
mine the predictability of a real-time system. One of these factors is certainly
the programming language used to develop the application. As the complexity
of real-time systems increases, high demand will be placed on the programming
abstractions provided by languages.

Unfortunately, current programming languages are not expressive enough to
prescribe certain timing behavior and hence are not suited for realizing pre­
dictable real-time applications. For example, the Ada language (demanded by
the Department of Defense of the United States for implementing embedded
real-time concurrent applications) does not allow the definition of explicit time
constraints on tasks' execution. The delay statement puts only a lower bound

20 C H A P T E R 1

on the time the task is suspended, and there is no language support to guar­
antee that a task cannot be delayed longer than a desired upper bound. The
existence of nondeterministic constructs, such as the select statement, prevents
the performing of a reliable worst-case analysis of the concurrent activities.
Moreover, the lack of protocols for accessing shared resources allows a high-
priority task to wait for a low-priority task for an unbounded duration. As a
consequence, if a real-time application is implemented using the Ada language,
the resulting timing behavior of the system is likely to be unpredictable.

Recently, new high-level languages have been proposed to support the develop­
ment of hard real-time applications. For example, Real-Time Euclid [KS86] is a
programming language specifically designed to address reliability and guaran­
teed schedulability issues in real-time systems. To achieve this goal, Real-Time
Euclid forces the programmer to specify time bounds and timeout exceptions in
all loops, waits, and device accessing statements. Moreover, it imposes several
programming restrictions, such as the ones listed below:

• Absence of dynamic data structures. Third-generation languages
normally permit the use of dynamic arrays, pointers, and arbitrarily long
strings. In real-time languages, however, these features must be eliminated
because they would prevent a correct evaluation of the time required to
allocate and deallocate dynamic structures.

• Absence of recursion. If recursive calls were permitted, the schedu­
lability analyzer could not determine the execution time of subprograms
involving recursion or how much storage will be required during execution.

• Time-bounded loops. In order to estimate the duration of the cycles at
compile time, Real-Time Euclid forces the programmer to specify for each
loop construct the maximum number of iterations.

Real-Time Euclid also allows the classification of processes as periodic or ape­
riodic and provides statements for specifying task timing constraints, such as
activation time and period, as well as system timing parameters, such as the
time resolution.

Another high-level language for programming hard real-time applications is
Real-Time Concurrent C [GR91]. It extends Concurrent C by providing fa­
cilities to specify periodicity and deadline constraints, to seek guarantees that
timing constraints will be met, and to perform alternative actions when either
the timing constraints cannot be met or guarantees are not available. With re­
spect to Real-Time Euclid, which has been designed to support static real-time

A General View 21

systems, where guarantees are made at compile time, Real-Time Concurrent
C is oriented to dynamic systems, where tasks can be activated at run time.
Another important feature of Real-Time Concurrent C is that it permits the
association of a deadline with any statement, using the following construct:

within deadline (d) statement-1

[else statement-2]

If the execution of statement-1 starts at time t and is not completed at time
(t-\-d), then its execution is terminated and statement-2^ if specified, is executed.

Clearly, any real-time construct introduced in a language must be supported
by the operating system through dedicated kernel services, which must be de­
signed to be efficient and analyzable. Among all kernel mechanisms that in­
fluence predictability, the scheduling algorithm is certainly the most important
factor, since it is responsible for satisfying timing and resource contention re­
quirements.

In the rest of this book, several scheduling algorithms are illustrated and an­
alyzed under different constraints and assumptions. Each algorithm is car-
acterized in terms of performace and complexity to assist a designer in the
development of reliable real-time applications.

Exercises

1.1 Explain the difference between fast computing and real-time computing.

1.2 What are the main limitations of the current real-time kernels for the
development of critical control applications?

1.3 Discuss the features that a real-time system should have for exhibiting
a predictable timing behavior.

1.4 Describe the approches that can be used in a real-time system to handle
peripheral I/O devices in a predictable fashion.

1.5 Which programming restrictions should be used in a programming lan­
guage to permit the analysis of real-time applications? Suggest some
extensions that could be included in a language for real-time systems.

2
BASIC CONCEPTS

2.1 INTRODUCTION

Over the last few years, several algorithms and methodologies have been pro­
posed in the literature to improve the predictability of real-time systems. In
order to present these results we need to define some basic concepts that will
be used throughout the book. We begin with the most important software en­
tity treated by any operating system, the process, A process is a computation
that is executed by the CPU in a sequential fashion. In this text, the terms
process and task are used as synonyms. However, it is worth saying that some
authors prefer to distinguish them and define a task as a sequential execution
of code that does not suspend itself during execution, whereas a process is a
more complex computational activity, that can be composed by many tasks.

When a single processor has to execute a set of concurrent tasks - that is,
tasks that can overlap in time - the CPU has to be assigned to the various
tasks according to a predefined criterion, called a scheduling policy. The set
of rules that, at any time, determines the order in which tasks are executed is
called a scheduling algorithm. The specific operation of allocating the CPU to
a task selected by the scheduling algorithm is referred as dispatching.

Thus, a task that could potentially execute on the CPU can be either in execu­
tion if it has been selected by the scheduling algorithm or waiting for the CPU
if another task is executing. A task that can potentially execute on the pro­
cessor, independently on its actual availability, is called an active task. A task
waiting for the processor is called a ready task, whereas the task in execution
is called a running task. All ready tasks waiting for the processor are kept in

24 C H A P T E R 2

dispatching /- ^ termination
»-(Execution

scheduling

preemption

Figure 2.1 Queue of ready tcisks waiting for execution.

a queue, called ready queue. Operating systems that handles different types of
tasks, may have more than one ready queue.

In many operating systems that allow dynamic task activation, the running task
can be interrupted at any point, so that a more important task that arrives in
the system can immediately gain the processor and does not need to wait in
the ready queue. In this case, the running task is interrupted and inserted in
the ready queue, while the CPU is assigned to the most important ready task
which just arrived. The operation of suspending the running task and inserting
it into the ready queue is called preemption. Figure 2.1 schematically illustrates
the concepts presented above. In dynamic real-time systems, preemption is
important for three reasons [SZ92]:

• Tasks performing exception handling may need to preempt existing tasks
so that responses to exceptions may be issued in a timely fashion.

• When application tasks have different levels of criticalness expressing task
importance, preemption permits to anticipate the execution of the most
critical activities.

• More efficient schedules can be produced to improve system responsiveness.

Given a set of tasks, J = { J i , . . . , Jn}, a schedule is an assignment of tasks to
the processor, so that each task is executed until completion. More formally, a
schedule can be defined as a function a : R"^ —)• N such that Vi G R~ ,̂ 3^1,^2
such that t e [ti,t2) and V '̂ G [̂ 1,̂ 2) cr(0 = ^(^0- ^^ other words, cr(^) is an
integer step function and a{t) = k, with A: > 0, means that task Jk is executing
at time t, while cr(t) = 0 means that the CPU is idle. Figure 2.2 shows an
example of schedule obtained by executing three tasks: J i , J2, Js-

• At times ^i, 2̂ 5 3̂ 5 ^md ^4, the processor performs a context switch.

Basic Concepts 25

idle idle

a(t) i

3

2

1

k

1 1 1 1 >.
t3

Figure 2.2 Schedule obtained by executing three tcisks J i , J2, ^ind J3.

Each interval [tj, ti^_i) in which a{t) is constant is called time slice. Interval
[x,y) identifies all values of t such that x < t < y.

A preemptive schedule is a schedule in which the running task can be
arbitrarily suspended at any time, to assign the CPU to another task
according to a predefined scheduling policy. In preemptive schedules, tasks
may be executed in disjointed interval of times.

A schedule is said to be feasible if all tasks can be completed according to
a set of specified constraints.

A set of tasks is said to be schedulable if there exists at least one algorithm
that can produce a feasible schedule.

An example of preemptive schedule is shown in Figure 2.3.

2.2 TYPES OF TASK CONSTRAINTS

Typical constraints that can be specified on real-time tasks are of three classes:
timing constraints, precedence relations, and mutual exclusion constraints on
shared resources.

26 C H A P T E R 2

^ t

^ t

^ t

Figure 2.3 Example of a preemptive schedule.

2.2.1 Timing constraints

Real-time systems are characterized by computational activities with stringent
timing constraints that must be met in order to achieve the desired behavior.
A typical timing constraint on a task is the deadline, which represents the
time before which a process should complete its execution without causing any
damage to the system. Depending on the consequences of a missed deadline,
real-time tasks are usually distinguished in two classes:

Hard. A task is said to be hard if a completion after its deadline can
cause catastrophic consequences on the system. In this case, any instance
of the task should a priori be guaranteed in the worst-case scenario.

Soft. A task is said to be soft if missing its deadline decreases the perfor­
mance of the system but does not jeopardize its correct behavior.

In general, a real-time task Ji can be characterized by the following parameters:

Arrival t ime af. is the time at which a task becomes ready for execution;
it is also referred as request time or release time and indicated by r^;

Basic Concepts 27

Ji

Ci

- ^ t

f i

Figure 2.4 Typical parameters of a real-time task.

Computation time C :̂ is the time necessary to the processor for exe­
cuting the task without interruption;

Deadline di: is the time before which a task should be complete to avoid
damage to the system;

Start t ime sf. is the time at which a task starts its execution;

Finishing time ff. is the time at which a task finishes its execution;

Criticalness: is a parameter related to the consequences of missing the
deadline (typically, it can be hard or soft);

Value Vi'. represents the relative importance of the task with respect to
the other tasks in the system;

Lateness L^: Li = fi — di represents the delay of a task completion with
respect to its deadline; note that if a task completes before the deadline,
its lateness is negative;

Tardiness or Exceeding time Ei: Ei = max{0, Li) is the time a task stays
active after its deadline;

Laxity or Slack time Xi'. Xi — di — ai — Ci is the maximum time a task
can be delayed on its activation to complete within its deadline.

Some of the parameters defined above are illustrated in Figure 2.4.

Another timing characteristic that can be specified on a real-time task concerns
the regularity of its activation. In particular, tasks can be defined as periodic or
aperiodic. Periodic tasks consist of an infinite sequence of identical activities,
called instances or jobs, that are regularly activated at a constant rate. For the
sake of clarity, from now on, a periodic task will be denoted by r^, whereas an
aperiodic job by Jj.

28 C H A P T E R 2

Ti

(b)

Figure 2.5 Sequence of instances for a periodic and an aperiodic task.

The activation time of the first periodic instance is called phase. If <pi is the
phase of the periodic task r^, the activation time of the A:th instance is given
by (pi + (k — l)Ti, where Ti is called period of the task. In many practical
cases, a periodic process can be completely characterized by its computation
time Ci and its relative deadline Di, which is often considered coincident to
the end of the period. Moreover, the parameters C ,̂ Ti e Di are considered
to be constant for each instance. Aperiodic tasks also consist of an infinite
sequence of identical activities (instances); however, their activations are not
regular. Figure 2.5 shows an example of task instances for a periodic and for
an aperiodic task.

2.2.2 Precedence constraints

In certain applications, computational activities cannot be executed in arbitrary
order but have to respect some precedence relations defined at the design stage.
Such precedence relations are usually described through a directed acyclic graph
G, where tasks are represented by nodes and precedence relations by arrows.
A precedence graph G induces a partial order on the task set.

The notation Ja -< Jb specifies that task Ja is a predecessor of task J5,
meaning that G contains a directed path from node Ja to node J^.

The notation Ja -^ Jb specifies that task Ja is an immediate predecessor
of Jb, meaning that G contains an arc directed from node Ja to node Jb.

Basic Concepts 29

J 1 ^ J 2

J 1 ^ J 2

J i ^ J 4

J 1 -7^ J 4

Figure 2.6 Precedence relations among five tasks.

Figure 2.6 illustrates a directed acyclic graph that describes the precedence
constraints among five tasks. From the graph structure we observe that task
Ji is the only one that can start executing since it does not have predecessors.
Tasks with no predecessors are called beginning tasks. As Ji is completed,
either J2 or J3 can start. Task J4 can start only when J2 is completed, whereas
J5 must wait the completion of J2 and J3. Tasks with no successors, as J4 and
J5, are called ending tasks.

In order to understand how precedence graphs can be derived from tasks' rela­
tions, let us consider the application illustrated in Figure 2.7. Here, a number
of objects moving on a conveyor belt must be recognized and classified using
a stereo vision system, consisting of two cameras mounted in a suitable loca­
tion. Suppose that the recognition process is carried out by integrating the
two-dimensional features of the top view of the objects with the height infor­
mation extracted by the pixel disparity on the two images. As a consequence,
the computational activities of the application can be organized by defining the
following tasks:

Two tasks (one for each camera) dedicated to image acquisition, whose
objective is to transfer the image from the camera to the processor memory
(they are identified by acql and acq2);

Two tasks (one for each camera) dedicated to low-level image processing
(typical operations performed at this level include digital filtering for noise
reduction and edge detection; we identify these tasks as edgel and edge2);

A task for extracting two-dimensional features from the object contours
(it is referred as shape);

30 C H A P T E R 2

,o
Figure 2.7 Industrial application which requires a visual recognition of ob­
jects on a conveyor belt.

• A task for computing the pixel disparities from the two images (it is re­
ferred as disp);

• A task for determining the object height from the results achieved by the
disp task (it is referred as H);

• A task performing the final recognition (this task integrates the geometrical
features of the object contour with the height information and tries to
match these data with those stored in the data base; it is referred as rec).

From the logic relations existing among the computations, it is easy to see that
tasks acql and acq2 can be executed in parallel before any other activity. Tasks
edgel and edge2 can also be executed in parallel, but each task cannot start
before the associated acquisition task completes. Task shape is based on the
object contour extracted by the low-level image processing, therefore it must
wait the termination of both edgel and edge2. The same is true for task disp,
which however can be executed in parallel with task shape. Then, task H can
only start as disp completes and, finally, task rec must wait the completion of
//"and shape. The resulting precedence graph is shown in Figure 2.8.

Basic Concepts 31

F i g u r e 2.8 Precedence graph associated with the robotic appHcation.

2.2,3 Resource constraints

From a process point of view, a resource is any software structure that can
be used by the process to advance its execution. Typically, a resource can
be a data structure, a set of variables, a main memory area, a file, a piece of
program, or a set of registers of a peripheral device. A resource dedicated to a
particular process is said to be private, whereas a resource that can be used by
more tasks is called a shared resource.

To maintain data consistency, many shared resources do not allow simultaneous
accesses but require mutual exclusion among competing tasks. They are called
exclusive resources. Let R be an exclusive resource shared by tasks Ja and J ,̂.
If A is the operation performed on Ĵ by Ja, and B is the operation performed
on -R by Jh, then A and B must never be executed at the same time. A piece
of code executed under mutual exclusion constraints is called a critical section.

To ensure sequential accesses to exclusive resources, operating systems usually
provide a synchronization mechanism (such as semaphores) that can be used by
tasks to create critical sections of code. Hence, when we say that two or more
tasks have resource constraints, we mean that they have to be synchronized
since they share exclusive resources.

32 C H A P T E R 2

wait(s)

critical
section

signal(s)

—

shared
resource

R

—

wait(s)

critical
section

signal(s)

Figure 2.9 Structure of two tasks that share an exclusive resource.

Consider two tasks Ji and J2 that share an exclusive resource R (for instance, a
hst), on which two operations (such as insert and remove) are defined. The code
implementing such operations is thus a critical section that must be executed
in mutual exclusion. If a binary semaphore s is used for this purpose, then
each critical section must begin with a wait(s) primitive and must end with a
signal(s) primitive (see Figure 2.9).

If preemption is allowed and Ji has a higher priority than J2, then Ji can block
in the situation depicted in Figure 2.10. Here, task J2 is activated first, and,
after a while, it enters the critical section and locks the semaphore. While J2 is
executing the critical section, task Ji arrives, and, since it has a higher priority,
it preempts J2 and starts executing. However, at time ^1, when attempting to
enter its critical section, it is blocked on the semaphore and J2 is resumed. Ji
is blocked until time ^2, when J2 releases the critical section by executing the
signal(s) primitive, which unlocks the semaphore.

A task waiting for an exclusive resource is said to be blocked on that resource.
All tasks blocked on the same resource are kept in a queue associated with the
semaphore, which protects the resource. When a running task executes a wait
primitive on a locked semaphore, it enters a waiting state, until another task
executes a signal primitive that unlocks the semaphore. When a task leaves
the waiting state, it does not go in the running state, but in the ready state,
so that the CPU can be assigned to the highest-priority task by the scheduling
algorithm. The state transition diagram relative to the situation described
above is shown in Figure 2.11.

Basic Concepts 33

wmmM critical section

i ^ S H normal execution

u blocked on s

- ^ t

J 2 _Ud - ^ t
a i t i t 2

F i g u r e 2.10 Example of blocking on an exclusive resource.

scheduling

activation termination

signal
free resource

wait on
busy resource

F i g u r e 2.11 Waiting state caused by resource constraints.

34 C H A P T E R 2

2.3 DEFINITION OF SCHEDULING
PROBLEMS

In general, to define a scheduling problem we need to specify three sets: a set
of n tasks J — {Ji, J2, • • •, «/n}, a set of m processors P = {Pi, P27 • • •, Pm}
and a set of s types of resources R — {Ri,R2,... .Rs}- Moreover, precedence
relations among tasks can be specified through a directed acyclic graph, and
timing constraints can be associated with each task. In this context, scheduling
means to assign processors from P and resources from R to tasks from J in
order to complete all tasks under the imposed constraints [B"^93]. This prob­
lem, in its general form, has been shown to be NP-complete [GJ79] and hence
computationally intractable.

Indeed, the complexity of scheduling algorithms is of high relevance in dynamic
real-time systems, where scheduling decisions must be taken on-line during task
execution. A polynomial algorithm is one whose time complexity grows as a
polynomial function p of the input length n of an instance. The complexity
of such algorithms is denoted by 0{p{n)). Each algorithm whose complexity
function cannot be bounded in that way is called an exponential time algorithm.
In particular, N P is the class of all decision problems that can be solved in
polynomial time by a nondeterministic Turing machine. A problem Q is said
to be NF-complete if Q G N P and, for every Q' G N P , Q' is polynomially
transformable to Q [GJ79]. A decision problem Q is said to be NF-hard if all
problems in N P are polynomially transformable to Q, but we cannot show that
Q e N P .

Let us consider two algorithms with complexity functions n and 5"̂ , respectively,
and let us assume that an elementary step for these algorithms lasts 1 /js. If
the input length of the instance is n = 30, then it is easy to calculate that the
polynomial algorithm can solve the problem in 30 jis, whereas the other needs
about 3 • 10^ centuries. This example illustrates that the difference between
polynomial and exponential time algorithms is large and, hence, it may have
a strong influence on the performance of dynamic real-time systems. As a
consequence, one of the research objectives on real-time scheduling is to restrict
our attention to simpler, but still practical, problems that can be solved in
polynomial time complexity.

In order to reduce the complexity of constructing a feasible schedule, one may
simplify the computer architecture (for example, by restricting to the case of
uniprocessor systems), or one may adopt a preemptive model, use fixed priori­
ties, remove precedence and/or resource constraints, assume simultaneous task

Basic Concepts 35

activation, homogeneous task sets (solely periodic or solely aperiodic activities),
and so on. The assumptions made on the system or on the tasks are typically
used to classify the various scheduling algorithms proposed in the literature.

2.3.1 Classification of scheduling algorithms

Among the great variety of algorithms proposed for scheduling real-time tasks,
we can identify the following main classes.

• Preemptive. With preemptive algorithms, the running task can be inter­
rupted at any time to assign the processor to another active task, according
to a predefined scheduling policy.

• Non-preemptive. With non-preemptive algorithms, a task, once started,
is executed by the processor until completion. In this case, all scheduling
decisions are taken as a task terminates its execution.

• Static. Static algorithms are those in which scheduling decisions are based
on fixed parameters, assigned to tasks before their activation.

• Dynamic. Dynamic algorithms are those in which scheduling decisions are
based on dynamic parameters that may change during system evolution.

• Off-line. We say that a scheduling algorithm is used off-line if it is ex­
ecuted on the entire task set before actual task activation. The schedule
generated in this way is stored in a table and later executed by a dispatcher.

• On-line. We say that a scheduling algorithm is used on-line if scheduling
decisions are taken at runtime every time a new task enters the system or
when a running task terminates.

• Optimal. An algorithm is said to be optimal if it minimizes some given
cost function defined over the task set. When no cost function is defined
and the only concern is to achieve a feasible schedule, then an algorithm
is said to be optimal if it may fail to meet a deadline only if no other
algorithms of the same class can meet it.

• Heuristic. An algorithm is said to be heuristic if it tends toward but does
not guarantee to find the optimal schedule.

Moreover, an algorithm is said to be clairvoyant if it knows the future; that
is, if it knows in advance the arrival times of all the tasks. Although such an

36 CHAPTER 2

algorithm does not exist in reality, it can be used for comparing the performance
of real algorithms against the best possible one.

Guarantee-based algorithms

In hard real-time applications that require highly predictable behavior, the
feasibility of the schedule should be guaranteed in advance; that is, before task
execution. In this way, if a critical task cannot be scheduled within its deadline,
the system is still in time to execute an alternative action, attempting to avoid
catastrophic consequences. In order to check the feasibility of the schedule
before tasks' execution, the system has to plan its actions by looking ahead in
the future and by assuming a worst-case scenario.

In static real-time systems, where the task set is fixed and known a priori,
all task activations can be precalculated off-line, and the entire schedule can
be stored in a table that contains all guaranteed tasks arranged in the proper
order. Then, at runtime, a simple dispatcher simply removes the next task from
the table and puts it in the running state. The main advantage of the static
approach is that the run-time overhead does not depend on the complexity
of the scheduling algorithm. This allows very sophisticated algorithms to be
used to solve complex problems or find optimal scheduling sequences. On the
other hand, however, the resulting system is quite inflexible to environmental
changes; thus, predictability strongly relies on the observance of the hypotheses
made on the environment.

In dynamic real-time systems, since new tasks can be activated at runtime,
the guarantee must be done on-line every time a new task enters the system.
A scheme of the guarantee mechanism typically adopted in dynamic real-time
systems is illustrated in Figure 2.12.

scheduling

activation

NO *

acceptance
test

YES ^ ^ ^

^ READY)

signal \
free resource \ . . ^

preemption

^ (WAITING y ^

^^^ " ^ termination
L R U N) *

/ wait on
^,,^ busy resource

Figure 2.12 Scheme of the guarantee mechanism used in dynamic hard real­
time systems.

Basic Concepts 37

J i IHi. JL

t 0

F i g u r e 2 .13 Example of domino effect.

If J is the current task set that has been previously guaranteed, a newly arrived
task Jnew is accepted into the system if and only if the task set J' = Ju{Jnew}
is found schedulable. If J' is not schedulable, then task Jnew is rejected to
preserve the feasibility of the current task set.

It is worth to notice that, since the guarantee mechanism is based on worst-case
assumptions, a task could unnecessarily be rejected. This means that the guar­
antee of hard tasks is achieved at the cost of reducing the average performance
of the system. On the other hand, the benefit of having a guarantee mechanism
is that potential overload situations can be detected in advance to avoid neg­
ative effects on the system. One of the most dangerous phenomena caused by
a transient overload is called domino effect. It refers to the situation in which
the arrival of a new task causes all previously guaranteed tasks to miss their
deadlines. Let us consider for example the situation depicted in Figure 2.13,
where tasks are scheduled based on their absolute deadlines.

At time ô̂ if task Jnew was accepted, all other tasks (previously schedulable)
would miss their deadlines. In planned-based algorithms, this situation is de­
tected at time ^o, when the guarantee is performed and causes task Jnew to be
rejected.

In summary, the guarantee test ensures that, once a task is accepted, it will
complete within its deadline and, moreover, its execution will not jeopardize
the feasibility of the tasks that have been previously guaranteed.

38 C H A P T E R 2

Best-effort algorithms

In certain real-time applications, computational activities have soft timing con­
straints that should be met whenever possible to satisfy system requirements,
however, no catastrophic events will occur if one or more tasks miss their dead­
lines. The only consequence associated with a timing fault is a performance
degradation of the system.

For example, in typical multimedia applications, the objective of the comput­
ing system is to handle different types of information (such as text, graphics,
images, and sound) in order to achieve a certain quality of service for the users.
In this case, the timing constraints associated with the computational activi­
ties depend on the quality of service requested by the users; hence, missing a
deadline may only affect the performance of the system.

To efficiently support soft real-time applications that do not have hard timing
requirements, a best-effort approach may be adopted for scheduling. A best-
effort scheduling algorithm tries to "do its best" to meet deadlines, but there
is no guarantee of finding a feasible schedule. In a best-effort approach, tasks
may be queued according to policies that take time constraints into account;
however, since feasibility is not checked, a task may be aborted during its
execution. On the other hand, best-effort algorithms perform much better than
guarantee-based schemes in the average case. In fact, whereas the pessimistic
assumptions made in the guarantee mechanism may unnecessarily cause task
rejections, in best-effort algorithms a task is aborted only under real overload
conditions.

Algorithms based on imprecise computation

The concept of imprecise and approximate computation has emerged as a new
approach to increasing fiexibility in dynamic scheduling by trading off com­
putation accuracy with timing requirements [Nat95, LNL87, LLN87, LLS"^91,
L"^94]. In dynamic situations, where the time and resources are not enough for
computations to complete within the deadline, there may still be enough re­
sources to produce approximate results that may at least prevent a catastrophe.
The idea of using partial results when exact results cannot be produced within
the deadline has been used for many years. Recently, however, this concept
has been formalized, and specific techniques have been developed for designing
programs that can produce partial results.

Basic Concepts 39

In a real-time system that supports imprecise computation, every task Ji is
decomposed into a mandatory subtask Mi and an optional subtask Oi. The
mandatory subtask is the portion of the computation that must be done in
order to produce a result of acceptable quality, whereas the optional subtask
refines this result [SLCG89]. Both subtasks have the same arrival time ai and
the same deadline di as the original task J^; however, Oi becomes ready for
execution when Mi is completed. If Ci is the computation time associated
with Ji, subtasks Mi and Oi have computation times rui and Oj, such that
rrii -\- Oi — Ci. In order to guarantee a minimum level of performance, Mi
must be completed within its deadline, whereas Oi can be left incomplete, if
necessary, at the expense of the quality of the result produced by the task.

It is worth to notice that the task model used in traditional real-time systems
is a special case of the one adopted for imprecise computation. In fact, a hard
task corresponds to a task with no optional part {oi = 0), whereas a soft task
is equivalent to a task with no mandatory part (m^ = 0).

In systems that support imprecise computation, the error Ci in the result pro­
duced by Ji (or simply the error of Ji) is defined as the length of the portion
of Oi discarded in the schedule. If CTJ is the total processor time assigned to Oi
by the scheduler, the error of task Ji is equal to

€i = Oi — ai.

The average error I on the task set J is defined as

e = y^WiCj,

where Wi is the relative importance of Ji in the task set. An error ê > 0 means
that a portion of subtask Oi has been discarded in the schedule at the expense
of the quality of the result produced by task Ji but for the benefit of other
mandatory subtasks that can complete within their deadlines.

In this model, a schedule is said to be feasible if every mandatory subtask Mi is
completed in the interval [ai^di]. A schedule is said to be precise if the average
error e on the task set is zero. In a precise schedule, all mandatory and optional
subtasks are completed in the interval [ai.di].

As an illustrative example, let us consider the task set shown in Figure 2.14a.
Notice that this task set cannot be precisely scheduled; however, a feasible
schedule with an average error of e =: 4 can be found, and it is shown in
Figure 2.14b. In fact, all mandatory subtasks finish within their deadlines.

40 C H A P T E R 2

J2

J3

J4

pHEZL

J5 •

J l

J2

J3

J4

J5

ai

0

2

4

12

6

di

6

7

10

15

20

Ci

4

4

5

3

8

m j

2

1

2

1

5

Oi

2

3

3

2

3

(a)

I — ' — I — ' — I — '

0 2 4 6

-n 1 r - ^

10 12 14 16 18 20

(b)

Figure 2.14 An example of an imprecise schedule.

whereas not all optional subtasks are able to complete. In particular, a time
unit of execution is subtracted from Oi, two units from O3, and one unit from
O5. Hence, assuming that all tasks have an importance value equal to one
(wi ==1), the average error on the task set is 6 = 4.

2.3.2 Metrics for performance evaluation

The performance of scheduling algorithms is typically evaluated through a cost
function defined over the task set. For example, classical scheduling algorithms
try to minimize the average response time, the total completion time, the
weighted sum of completion times, or the maximum lateness. When deadlines

Basic Concepts 41

Average response time:

_ I -^
tr = - / ^ (/ i - Cli)

i—\

Total completion time:

tc - max(/i) - min(ai)
i i

Weighted sum of completion times:

n

tw = y^^mfi

Maximum lateness:

Lmax = max(/i - di)

Maximum number of late tasks:

Niate = ^missjfi)
1 = 1

miss(fi) = < ^ A ' •̂̂ ^ \ I otherwise

where
nrf} Qcl T • \ — /

otherwise

Table 2.1 Example of cost functions.

are considered, they are usually added as constraints, imposing that all tasks
must meet their deadlines. If some deadlines cannot be met with an algorithm
A, the schedule is said to be infeasible by A. Table 2.1 shows some common
cost functions used for evaluating the performance of a scheduling algorithm.

The metrics adopted in the scheduling algorithm has strong implications on
the performance of the real-time system [SSDB95], and it must be carefully
chosen according to the specific application to be developed. For example,
the average response time is generally not of interest for real-time applications
because there is not direct assessment of individual timing properties such as

42 C H A P T E R 2

dl d2 d3 d4 d5

l̂ '̂ JL2 = 2 JL3=1 J L 4 = ,

(a) J l J 2 J 3 U J 5

I ' I ' \ ' I ' I ' I ' I ' I ' I ^ 1 ' I ' I ' I ' I

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6

H H

dl

LI = 3

d2 d3 d4 d5

1"^'='' 1̂ ^ = -̂ 1̂^̂ = -^)^
(b) il J3 J4 Js Jl

1
0

1 ' 1
2 4

1*

1

6

1

8

1

10

1

12

1

14

1

16

1

18

1

20

1

22

1

24
' 1

26

1̂
LI = 23

Figure 2.15 The schedule in a minimizes the maximum lateness, but all tasks
miss their deadline. The schedule in b has a greater maximum lateness, but
four tasks out of five complete before their deadline.

periods or deadlines. The same is true for minimizing the total completion time.
The weighted sum of completion times is relevant when tasks have different
importance values that they impart to the system on completion. Minimizing
the maximum lateness can be useful at design time when resources can be added
until the maximum lateness achieved on the task set is less than or equal to
zero. In that case, no task misses its deadline. In general, however, minimizing
the maximum lateness does not minimize the number of tasks that miss their
deadlines and does not necessarily prevent one or more tasks from missing their
deadline.

Let us consider, for example, the case depicted in Figure 2.15. The schedule
shown in Figure 2.15a minimizes the maximum lateness, but all tasks miss their
deadline. On the other hand, the schedule shown in Figure 2.15b has a greater
maximum lateness, but four tasks out of five complete before their deadline.

When tasks have soft deadlines and the application concern is to meet as many
deadlines as possible (without a priori guarantee), then the scheduling algo­
rithm should use a cost function that minimizes the number of late tasks.

Basic Concepts 43

v(fi)

Non real-time

(a)

Figure 2.16 Example of cost functions for different types of tasks.

In other applications, the benefit of executing a task may depend not only on
the task importance but also on the time at which it is completed. This can
be described by means of specific utility functions, which describe the value
associated with the task as a function of its completion time. Figure 2.16
illustrates some typical utility functions that can be defined on the application
tasks. For instance, non-real-time tasks (a) do not have deadlines, thus the
value achieved by the system is proportional to the task importance and does
not depend on the completion time. Soft tasks (b) have noncritical deadlines;
therefore, the value gained by the system is constant if the task finishes before
its deadline but decreases with the exceeding time. In some cases (c), it is
required to execute a task on-time; that is, not too early and not too late with
respect to a given deadline. Hence, the value achieved by the system is high
if the task is completed around the deadline, but it rapidly decreases with the
absolute value of the lateness. In other cases (d), executing a task after its
deadline does not cause catastrophic consequences, but there is no benefit for
the system, thus the utility function is zero after the deadline.

When utility functions are defined on the tasks, the performance of a scheduling
algorithm can be measured by the cumulative value, given by the sum of the
utility functions computed at each completion time:

Cumulative-Value — /^^vifi)-

44 C H A P T E R 2

This type of metrics is very useful for evaluating the performance of a system
during overload conditions, and it is considered in more detail in Chapter 8.

2.4 SCHEDULING ANOMALIES

In this section we describe some singular examples that clearly illustrate that
real-time computing is not equivalent to fast computing, and an increase of
computational power in the supporting hardware does not always cause an
improvement on the performance of a task set. These particular situations,
called Richard's anomalies, have been described by Graham in 1976 and refer
to task sets with precedence relations executed in a multiprocessor environment.
Designers should be aware of such insidious anomalies so that they can avoid
them. The most important anomalies are expressed by the following theorem
[Gra76, SSDB95]:

Theorem 2.1 (Graham) / / a task set is optimally scheduled on a multipro­
cessor with some priority assignment, a fixed number of processors, fixed ex­
ecution times, and precedence constraints, then increasing the number of pro­
cessors, reducing execution times, or weakening the precedence constraints can
increase the schedule length.

This result implies that if tasks have deadlines, then adding resources (for
example, an extra processor) or relaxing constraints (less precedence among
tasks or fewer execution times requirements) can make things worse. A few
examples can best illustrate why this theorem is true.

Let us consider a task set composed by nine tasks J = {Ji, J 2 , . . . , J9}, sorted
by decreasing priorities, so that Ji priority is greater than Jj priority if and
only \{ I < j . Moreover, tasks are subject to precedence constraints that are
described through the graph shown in Figure 2.17. Computation times are
indicated in parentheses.

If the above set is executed on a parallel machine with three processors, we
obtain the optimal schedule cr* illustrated in Figure 2.18, where the global
completion time is ĉ = 12 units of time.

Now we will show that adding an extra processor, reducing tasks' execution
times, or weakening precedence constraints will increase the global completion
time of the task set.

Basic Concepts 45

J I (3) O

O 5̂(4)

priority(J j) > priority(J j) V i < j

Figure 2.17 Precedence graph of the task set J ; numbers in parentheses
indicate computation times.

Pl

P2

P3

U

i2

J3

J ,

U Js

J6

J?

H
I 1 1 1 1 1 1 1 r

0 1 2 3 4 5 6 7 8

~ i I I I I I I

9 10 11 12 13 14 15

Figure 2.18 Optimal schedule of task set J on a three-processor machine.

46 C H A P T E R 2

Pl

P2

P3

P4

J l

J2

J3

J4

Jg

J5

J6

J7

l 1 1 1 1 , ^ p

1 2 3 4 5 b 7 b 10 11 U 13 14 1.

Figure 2.19 Schedule of tcisk set J on a four-processor machine.

Pl

P2

P3

J l

J2

J3

J4

is

H

J?

J8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 '

Figure 2.20 Schedule of task set J on three processors, with computation
times reduced by one unit of time.

Number of processors increased

If we execute the task set J on a more powerful machine consisting of four pro­
cessors, we obtain the schedule illustrated in Figure 2.19, which is characterized
by a global completion time oi tc = l^ units of time.

Computation times reduced

One could think that the global completion time of the task set J could be
improved by reducing tasks' computation times of each task. However, we can
surprisingly see that if we reduce the computation time of each task by one unit
of time, the schedule length will increase with respect to the optimal schedule
cr*, and the global completion time will be tc = 13, as shown in Figure 2.20.

Basic Concepts 47

(3, Q

J 4 (2)

o J 9 (9)

J 8 (4)

J 7 (4)

J 6 (4)

J 5 (4)

Pi

P2

P3

J l

J2

J3

Js

J4 J 5 l l ^
J7 Jb

J9

0 1 J U II 12 1.1 14 I .-̂ 10

(b)

Figure 2.21 a. Precedence graph of task set J obtained by removing the
constraints on tasks J5 and JQ. b . Schedule of task set J on three processors,
with precedence constraints weakened.

Precedence constraints weakened

Scheduling anomalies can also arise if we remove precedence constraints from
the directed acyclic graph depicted in Figure 2.17. For instance, if we remove
the precedence relations between task J4 and tasks J5 and JQ (see Figure 2.21a),
we obtain the schedule shown in Figure 2.21b, which is characterized by a global
completion time of tc — 16 units of time.

48 C H A P T E R 2

Pi

P2

J i H

J 3 J 4 J5

-] ^ 1 1 1 1 1 ^ 1 1 1 1 1 . 1 1 p -

6 8 10 12 14 16 18 20 22

(a) ir= 17

J l fiiiiiiiiii
J 4

—r-
10

J5

— T -

22 12 14 16 20

(b) 22

Figure 2.22 Example of anomaly under resource constraints. If J2 and J4
share the same resource in exclusive mode, the optimal schedule length (a)
increases if the computation time of task J i is reduced (b). Task are statically
allocated on the processors.

Anomalies under resource constraints

As a last example of scheduling anomalies, we will show how the schedule
length of a task set can increase when reducing tasks' computation times in
the presence of shared resources. Consider the case illustrated in Figure 2.22,
where five tasks are statically allocated on two processors: tasks Ji and J2 on
processor PI , and tasks J3, J4 and J5 on processor P2. Moreover, tasks J2 and
J4 share the same resource in exclusive mode, hence their execution cannot
overlap in time. A schedule of this task set is shown in Figure 2.22a, where the
total completion time is tc == 17.

If we now reduce the computation time of task Ji on the first processor, then
J2 can begin earlier and take the resource before task J4. As a consequence,
task J4 must now block over the shared resource and possibly miss its deadline.
This situation is illustrated in Figure 2.22b. As we can see, the blocking time
experienced by J4 causes a delay in the execution of J5 (which may also miss
its deadline), increasing the total completion time of the task set from 17 to
22.

Basic Concepts 49

Notice that the scheduhng anomaly illustrated by the previous example is par­
ticularly insidious for hard real-time systems because tasks are guaranteed
based on their worst-case behavior, but they may complete before their worst-
case computation time. A simple solution that avoids the anomaly is to keep
the processor idle if tasks complete earlier, but this can be very inefficient.
There are algorithms, such as the one proposed by Shen [SRS93], that tries
to reclaim this idle time, while addressing the anomalies so that they will not
occur.

Exercises

2.1 Give the formal definition of a schedule, explaining the difference between
preemptive and non-preemptive scheduling.

2.2 Explain the difference between periodic and aperiodic tasks, and describe
the main timing parameters that can be defined for a real-time activity.

2.3 Describe a real-time application as a number of tasks with precedence
relations, and draw the corresponding precedence graph.

2.4 Discuss the difference between static and dynamic, on-line and off-line,
optimal, and heuristic scheduling algorithms.

2.5 Provide an example of domino effect, caused by the arrival of a task J*,
in a feasible set of three tasks.

3
APERIODIC TASK SCHEDULING

3.1 INTRODUCTION

In this chapter we present a variety of algorithms for scheduhng real-time ape­
riodic tasks on a single machine environment. Each algorithm represents a
solution for a particular scheduling problem, which is expressed through a set
of assumptions on the task set and by an optimality criterion to be used on
the schedule. The restrictions made on the task set are aimed at simplifying
the algorithm in terms of time complexity. When no restrictions are applied
on the application tasks, the complexity can be reduced by employing heuristic
approaches, which do not guarantee to find the optimal solution to a problem
but can still guarantee a feasible schedule in a wide range of situations.

Although the algorithms described in this chapter are presented for scheduling
aperiodic tasks on uniprocessor systems, many of them can be extended to work
on multiprocessor or distributed architectures and deal with more complex task
models.

To facilitate the description of the scheduling problems presented in this chapter
we introduce a systematic notation that could serve as a basis for a classification
scheme. Such a notation, proposed by Graham et al. [GLLK79], classifies all
algorithms using three fields a | /? | 7, having the following meaning:

The first field a describes the machine environment on which the task set
has to be scheduled (uniprocessor, multiprocessor, distributed architecture,
and so on).

52 C H A P T E R 3

The second field /? describes task and resource characteristics (preemptive,
independent versus precedence constrained, synchronous activations, and
so on).

The third field 7 indicates the optimality criterion (performance measure)
to be followed in the schedule.

For example:

1 I prec I Lmax denotes the problem of scheduling a set of tasks with
precedence constraints on a uniprocessor machine in order to minimize the
maximum lateness. If no additional constraints are indicated in the second
field, preemption is allowed at any time, and tasks can have arbitrary
arrivals.

3 I nojpreem \ ^ fi denotes the problem of scheduling a set of tasks on a
three-processor machine. Preemption is not allowed and the objective is
to minimize the sum of the finishing times. Since no other constraints are
indicated in the second field, tasks do not have precedence nor resource
constraints but have arbitrary arrival times.

2 I sync \ ^ Latei denotes the problem of scheduling a set of tasks on a
two-processor machine. Tasks have synchronous arrival times and do not
have other constraints. The objective is to minimize the number of late
tasks.

3.2 JACKSON'S ALGORITHM

The problem considered by this algorithm is 1 | sync \ Lmax- That is, a set
J oi n aperiodic tasks has to be scheduled on a single processor, minimizing
the maximum lateness. All tasks consist of a single job, have synchronous
arrival times, but can have different computation times and deadlines. No other
constraints are considered, hence tasks must be independent; that is, cannot
have precedence relations and cannot share resources in exclusive mode.

Notice that, since all tasks arrive at the same time, preemption is not an issue
in this problem. In fact, preemption is effective only when tasks may arrive
dynamically and newly arriving tasks have higher priority than currently exe­
cuting tasks.

Aperiodic Task Scheduling 53

Without loss of generality, we assume that all tasks are activated at time ^ = 0,
so that each job Ji can be completely characterized by two parameters: a
computation time Ci and a relative deadline Di (which, in this case, is also
equal to the absolute deadline). Thus, the task set J can be denoted as

J = {Ji{CuDi), i - l , . . . , n } .

A simple algorithm that solves this problem was found by Jackson in 1955. It
is called Earliest Due Date (EDD) and can be expressed by the following rule
[Jac55]:

Theorem 3.1 (Jackson's rule) Given a set of n independent tasks, any al­
gorithm that executes the tasks in order of nondecreasing deadlines is optimal
with respect to m^inimizing the maximum lateness.

Proof. Jackson's theorem can be proved by a simple interchange argument.
Let cr be a schedule produced by any algorithm A. If A is different than EDD,
then there exist two tasks Ja and J^, with da < db, such that Jb immediately
precedes Ja in cr. Now, let a' be a schedule obtained from a by exchanging J a
with Jft, so that Ja immediately precedes J^ in a'.

As illustrated in Figure 3.1, interchanging the position of J a and J^ in a cannot
increase the maximum lateness. In fact, the maximum lateness between Ja and
Jb in a is Lmax{ci,h) — fa — da, whereas the maximum lateness between J a
and Jb in a' can be written as L'^^^{a,h) — max{L'^,L'^^). Two cases must be
considered:

1. If L ; > Lj,, then L'^^^{a,h) = fa - da, and, since /^ < /«, we have

2. If L'^ < L[, then L'^^^{a,h) = fl^ - db = fa - db, and, since da < db, we
have L'^^^{a,h) < Lmax{a^b).

Since, in both cases, L'^^^{a, b) < Lmax{ci, b), we can conclude that interchang­
ing Ja and Jb in a cannot increase the maximum lateness of the task set. By a
finite number of such transpositions, a can be transformed in (JEDD and, since
in each transposition the maximum lateness cannot increase, CFEDD is optimal.
D

54 C H A P T E R 3

Jb

Lmax = m a x (L a , L 5)
ab

if (L a > L b) then L^^^
ab

f n - d ^ < f n - d ,

if (L a < L 5) then L^^^ = f 5 - d 5 < f a - d ^
ab

ab ab

F i g u r e 3 . 1 O p t i m a l i t y of J a c k s o n ' s a l g o r i t h m .

The complexity required by Jackson's algorithm to build the optimal schedule
is due to the procedure that sorts the tasks by increasing deadlines. Hence,
if the task set consists of n tasks, the complexity of the EDD algorithm is
0 (n log n).

3.2.1 Examples

Example 1

Consider a set of five tasks, simultaneously activated at time t = 0, whose
parameters (worst-case computation times and deadlines) are indicated in the
table shown in Figure 3.2. The schedule of the tasks produced by the EDD
algorithm is also depicted in Figure 3.2. The maximum lateness is equal to —1
and it is due to task J4, which completes a unit of time before its deadline.
Since the maximum lateness is negative, we can conclude that all tasks have
been executed within their deadlines.

Notice that the optimality of the EDD algorithm cannot guarantee the feasi­
bility of the schedule for any task set. It only guarantees that, if there exists a
feasible schedule for a task set, then EDD will find it.

Aperiodic Task Scheduling 55

Ci

di

J l

1

3

J 2

1

10

J 3

1

7

J 4

3

8

J 5

2

5

J l

\

is

1

J 3

1 j
J 4

[1 n̂
4 4 U 2

^max - ^ 4 — "^

I 1 1 1 1 1 1 1 1 1 1—

0 1 2 3 4 5 6 7 8 9 10

Figure 3.2 A feasible schedule produced by Jackson's algorithm.

Ci

di

J l

1

2

J 2

2

5

J 3

1

4

J 4

4

8

J 5

2

6

J l

d

J3

1 d

1 \

J 2

3 ^2 d

1 i ^

J5

5 ^4

I 1
J 4

I \ I \ I I I I I 1

0 1 2 3 4 5 6 7 8 9

Figure 3.3 An infeasible schedule produced by Jackson's algorithm.

Example 2

Figure 3.3 illustrates an example in which the task set cannot be feasibly sched­
uled. Still, however, EDD produces the optimal schedule that minimizes the
maximum lateness. Notice that, since J4 misses its deadline, the maximum
lateness is greater than zero {Lmax = L4 ==2).

56 CHAPTER 3

3.2.2 Guarantee

To guarantee that a set of tasks can be feasibly scheduled by the EDD algo­
rithm, we need to show that, in the worst case, all tasks can complete before
their deadlines. This means that we have to show that for each task, the
worst-case finishing time fi is less than or equal to its deadline di:

Vz = 1, . . . , n fi < di.

If tasks have hard timing requirements, such a schedulability analysis must be
done before actual tasks' execution. Without loss of generality, we can assume
that tasks J i , J 2 , . . . , Jn are listed by increasing deadlines, so that Ji is the task
with the earliest deadline. In this case, the worst-case finishing time of task Ji
can be easily computed as

i

fi - ^Ck.
k=l

Therefore, if the task set consists of n tasks, the guarantee test can be performed
by verifying the following n conditions:

i

Vz = l , . . . , n ^Ck<di. (3.1)
k=i

3.3 HORN'S ALGORITHM

If tasks are not synchronous but can have arbitrary arrival times (that is, tasks
can be activated dynamically during execution), then preemption becomes an
important factor. In general, a scheduling problem in which preemption is al­
lowed is always easier than its nonpreemptive counterpart. In a nonpreemptive
scheduling algorithm, the scheduler must ensure that a newly arriving task will
never need to interrupt a currently executing task in order to meet its own
deadline. This guarantee requires a considerable amount of searching. If pre­
emption is allowed, however, this searching is unnecessary, since a task can be
interrupted if a more important task arrives [WR91].

In 1974, Horn found an elegant solution to the problem of scheduling a set of
n independent tasks on a uniprocessor system, when tasks may have dynamic
arrivals and preemption is allowed (1 | preem \ Lmax)-

The algorithm, called Earliest Deadline First (EDF), can be expressed by the
following theorem [Hor74]:

Aperiodic Task Scheduling 57

Theorem 3.2 (Horn) Given a set of n independent tasks with arbitrary ar­
rival times, any algorithm that at any instant executes the task with the earliest
absolute deadline among all the ready tasks is optimal with respect to minimiz­
ing the maximum lateness.

This result can be proved by an interchange argument similar to the one used by
Jackson. The formal proof of the EDF optimality has been given by Dertouzos
in 1974 [Der74] and it is illustrated below. The complexity of the algorithm
is 0{n) per task, since inserting the newly arrived task into an ordered queue
(the ready queue) of n elements may require up to n steps. Hence, the overall
complexity of EDF for the whole task set is Oin^).

3.3.1 EDF optimality

The original proof provided by Dertouzos [Der74] shows that EDF is optimal
in the sense of feasibility. This means that if there exists a feasible schedule
for a task set J, then EDF is able to find it. The proof can easily be extended
to show that EDF also minimizes the maximum lateness. This is more general
because an algorithm that minimizes the maximum lateness is also optimal in
the sense of feasibility. The contrary is not true.

Using the same approach proposed by Dertouzos, let a be the schedule produced
by a generic algorithm A and let GEDF be the schedule obtained by the EDF
algorithm. Since preemption is allowed, each task can be executed in disjointed
time intervals. Without loss of generality, the schedule a can be divided into
time slices of one unit of time each. To simplify the formulation of the proof,
let us define the following abbreviations:

G{t) identifies the task executing in the slice [t,t -{- \)}

E{i) identifies the ready task that, at time t, has the earliest deadline.

tE{t) is the time (> t) at which the next slice of task E{t) begins its
execution in the current schedule.

If cr / (JEDF^ then in a there exists a time t such that a{t) 7̂ E{t). As
illustrated in Figure 3.4, the basic idea used in the proof is that interchanging
the position of a{t) and E{t) cannot increase the maximum lateness. If the

^ [a,b) denotes an interval of values x such that a < x < b.

58 CHAPTER 3

J2

J3

J2

J3

u

0(t) = 4
o(tE) = 2 ri

I I 1 1 1 1 1 1 1 1 T
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

t = 4 tE=6

a(t) = 2
CT(tE) = 4

(a)

^

-1 r I \ I I I I I r ~

0 1 2 3 4 5 6 7 8 9 10 II 12 13 14 15

t = 4 tE=6 (b)

Figure 3.4 Proof of the optimality of the EDF algorithm, a. schedule a at
time t = 4. b . new schedule obtained after a transposition.

schedule a starts at time ^ = 0 and D is the latest deadline of the task set
{D = max{ Ji}) then GEDF can be obtained from a by at most D transpositions.

The algorithm used by Dertouzos to transform any schedule a into an EDF
schedule is illustrated in Figure 3.5. For each time slice t, the algorithm verifies
whether the task (T{t) scheduled in the slice t is the one with the earliest dead­
line, E{t). If it is, nothing is done, otherwise a transposition takes place and
the slices at t and IE are exchanged (see Figure 3.4). In particular, the slice of
task E{t) is anticipated at time ,̂ while the slice of task cr(^) is postponed at
time IE' Using the same argument adopted in the proof of Jackson's theorem,
it is easy to show that after each transposition the maximum lateness cannot
increase; therefore, EDF is optimal.

By applying the interchange algorithm to the schedule shown in Figure 3.4a,
the first transposition occurs at time i == 4. At this time, in fact, the CPU is
assigned to J4, but the task with the earliest deadline is J2, which is scheduled
at time IE = 6. As a consequence, the two slices in gray are exchanged and the

Aperiodic Task Scheduling 59

Algorithm: interchange

{
for (t=0 to D-1) {

i{{a{t) ^ Eit)){

a{t) = E{t);

}

}

Figure 3.5 Transformation algorithm used by Dertouzos to prove the opti-
mality of EDF.

resulting schedule is shown in Figure 3.4b. The algorithm examines all slices,
until t — D^ performing a slice exchange when necessary.

To show that a transposition preserves the schedulability note that, at any
instant, each slice in a can be either anticipated or postponed up to IE- If a
slice is anticipated, the feasibility of that task is obviously preserved. If a slice
of Ji is postponed at IE and a is feasible, it must be {IE + 1) < C?£;, being dE
the earliest deadline. Since dE < di for any i, then we have ^£; + 1 < di, which
guarantees the schedulability of the slice postponed at IE-

3.3.2 Example

An example of schedule produced by the EDF algorithm on a set of five tasks is
shown in Figure 3.6. At time ^ = 0, tasks Ji and J2 arrive and, since di < d^,
the processor is assigned to J i , which completes at time i = 1. At time ^ = 2,
when J2 is executing, task J3 arrives and preempts J2, being ds < d2. Note
that, at time ^ = 3, the arrival of J4 does not interrupt the execution of J3,
because ds < d^. As J3 is completed, the processor is assigned to J2, which
resumes and executes until completion. Then J4 starts at ^ = 5, but, at time
^ = 6, it is preempted by J5, which has an earlier deadline. Task J4 resumes
at time t = 8, when J5 is completed. Notice that all tasks meet their deadlines
and the maximum lateness is Lmax = L2 = 0.

60 C H A P T E R 3

ai

Ci

di

J l

0

1

2

J2

0

2

5

J3

2

2

4

J4

3

2

10

J5

6

2

9 '

Izzi L

J5

J2

1=^

~~\ r
2 3

Figure 3.6 Example of EDF schedule.

3.3.3 Guarantee

When tasks have dynamic activations and the arrival times are not known a
priori, the guarantee test has to be done dynamically, whenever a new task
enters the system. Let J be the current set of active tasks, which have been
previously guaranteed, and let Jnew be a newly arrived task. In order to accept
Jnew in the system we have to guarantee that the new task set J' = JU{Jnew}
is also schedulable.

Following the same approach used in EDD, to guarantee that the set J' is
feasibly schedulable by EDF, we need to show that, in the worst case, all tasks
in J' will complete before their deadlines. This means that we have to show
that, for each task, the worst-case finishing time fi is less than or equal to its
deadline di.

Without loss of generality, we can assume that all tasks in J' (including Jnew)
are ordered by increasing deadlines, so that Ji is the task with the earliest
deadline. Moreover, since tasks are preemptable, when Jnew arrives at time t
some tasks could have been partially executed. Thus, let Ci{t) be the remaining

Aperiodic Task Scheduling 61

Algorithm: EDF-guarantee(JT^, Jnew)

{
J' = J \J {Jnew}', /* ordered by deadline */
t = current-time ();
/o = 0;
for (each Ji e J') {

fi = fi-i +Ci{t);
if (fi > di) return(INFEASIBLE);

}
return(FEASIBLE);

}

Figure 3.7 EDF guarantee algorithm.

worst-case execution time of task Ji (notice that Ci{t) has an initial value equal
to Ci and can be updated whenever Ji is preempted). Hence, at time t, the
worst-case finishing time of task Ji can be easily computed as

i

fi = Y^cit).

Thus, the schedulability can be guaranteed by the following conditions:

i

V i - l , . . . , n ^ C f c (0 <di. (3.2)
k=i

Noting that fi = fi-i + Ci{t), the dynamic guarantee test can be performed in
0{n) by executing the algorithm shown in Figure 3.7.

3.4 NON-PREEMPTIVE SCHEDULING

When preemption is not allowed and tasks can have arbitrary arrivals, the
problem of minimizing the maximum lateness and the problem of finding a
feasible schedule become NP-hard [LRKB77, LRK77, KIM78]. Figure 3.8 illus­
trates an example that shows that EDF is no longer optimal if tasks cannot be

62 CH A PT E R 3

optimal

schedule

EDF

schedule

Ji

J2

li

ai

Ci

di

J l

0

4

7

J 2

1

2

5

-* ^ t

k ..v 1 , % . . ,—>
0 1 2 3 4 5 6 7

(a)

- ^ t

- I 1

2 3 4 5 6 7

(b)

Figure 3.8 EDF is not optimal in a non-preemptive model. In fact, although
there exists a feasible schedule (a), the schedule produced by EDF (b) is infea-
sible.

preempted during their execution. In fact, although a feasible schedule exists
for that task set (see Figure 3.8a), EDF does not produce a feasible schedule
(see Figure 3.8b), since J2 executes one unit of time after its deadline. This
happens because EDF immediately assigns the processor to task J i ; thus, when
J2 arrives at time t = 1, Ji cannot be preempted. J2 can start only at time
t = 4, after Ji completion, but it is too late to meet its deadline.

Notice, however, that in the optimal schedule shown in Figure 3.8a the processor
remains idle in the interval [0,1) although Ji is ready to execute. If arrival times
are not known a priori, then no on-line algorithm can decide whether to stay idle
at time 0 or execute task J i . A scheduling algorithm that does not permit the
processor to be idle when there are active jobs is called a non-idle algorithm.
By restricting to the case of non-idle scheduling algorithms, Jeffay, Stanat,
and Martel [JSM91] proved that EDF is still optimal in a non-preemptive task
model.

Aperiodic Task Scheduling 63

empty schedule

partial schedule

Figure 3.9 Search tree for producing a non-preemptive schedule.

When arrival times are known a priori, non-preemptive scheduling problems
are usually treated by branch-and-bound algorithms that perform well in the
average case but degrade to exponential complexity in the worst case. The
structure of the search space is a search tree, represented in Figure 3.9, where
the root is an empty schedule^ an intermediate vertex is a partial schedule^ and
a terminal vertex (leaf) is a complete schedule. Since not all leaves correspond
to feasible schedules, the goal of the scheduling algorithm is to search for a leaf
that corresponds to a feasible schedule.

At each step of the search, the partial schedule associated with a vertex is
extended by inserting a new task. If n is the total number of tasks in the set,
the length of a path from the root to a leaf {tree depth) is also n, whereas the
total number of leaves is n! (n factorial). An optimal algorithm, in the worst
case, may make an exhaustive search to find the optimal schedule in such a
tree, and this may require to analyze n paths of length n!, with a complexity
of 0 (n • n!). Clearly, this approach is computationally intractable and cannot
be used in practical systems when the number of tasks is high.

In this section, two scheduling approaches are presented, whose objective is to
limit the search space and reduce the computational complexity of the algo­
rithm. The first algorithm uses additional information to prune the tree and re­
duce the complexity in the average case. The second algorithm adopts suitable
heuristics to follow promising paths on the tree and build a complete schedule
in polynomial time. Heuristic algorithms may produce a feasible schedule in
polynomial time; however, they do not guarantee to find it, since they do not
explore all possible solutions.

64 C H A P T E R 3

3.4.1 Bratley's algorithm (l | no.preem \ feasible)

The following algorithm was proposed by Bratley et al. in 1971 [BFR71] to
solve the problem of finding a feasible schedule of a set of non-preemptive tasks
with arbitrary arrival times. The algorithm starts with an empty schedule
and, at each step of the search, visits a new vertex and adds a task in the
partial schedule. With respect to the exhaustive search, Bratley's algorithm
uses a pruning technique to determine when a current search can be reasonably
abandoned. In particular, a branch is abandoned when

The addition of any node to the current path causes a missed deadline;

A feasible schedule is found at the current path.

To better understand the pruning technique adopted by the algorithm, consider
the task set shown in Figure 3.10, which also illustrates the paths analyzed in
the tree space.

To follow the evolution of the algorithm, the numbers inside each node of the
tree indicate which task is being scheduled in that path, whereas the numbers
beside the nodes represent the time at which the indicated task completes its
execution. Whenever the addition of any node to the current path causes a
missed deadline, the corresponding branch is abandoned and the task causing
the timing fault is labeled with a (f).

In the example, the first task considered for extending the empty schedule
is J i , whose index is written in the first node of the leftmost branch of the
tree. Since Ji arrives at ^ = 4 and requires two units of processing time, its
worst-case finishing time is / i = 6, indicated beside the correspondent node.
Before expanding the branch, however, the pruning mechanism checks whether
the addition of any node to the current path may cause a timing fault, and it
discovers that task J2 would miss its deadline, if added. As a consequence, the
search on this branch is abandoned and a considerable amount of computation
is avoided.

In the average case, pruning techniques are very effective for reducing the search
space. Nevertheless, the worst-case complexity of the algorithm is still 0{n'n\).
For this reason, Bratley's algorithm can only be used in off-line mode, when all
task parameters (including the arrival times) are known in advance. This can
be the case of a time-triggered system, where tasks are activated at predefined
instants by a timer process.

Aperiodic Task Scheduling 65

a i

Ci

di

J l

4

2

7

J 2

1

1

5

J 3

1

2

6

J 4

0

2

4

Number in the node = scheduled task

Number outside the node = finishing time

J i = task that misses its deadline

= feasible schedule

Figure 3.10 Example of search performed by Bratley's algorithm.

As in most off-line real-time systems, the resulting schedule produced by Brat­
ley's algorithm can be stored in a data structure, called task activation list.
Then, at run time, a dispatcher simply extracts the next task from the activa­
tion list and puts it in execution.

3.4.2 The Spring algorithm

Here we describe the scheduling algorithm adopted in the Spring kernel [SR87,
SR91], a hard real-time kernel designed at the University of Massachusetts at
Amherst by Stankovic and Ramamritham to support critical control applica­
tions in dynamic environments. The objective of the algorithm is to find a feasi-

66 C H A P T E R 3

ble schedule when tasks have different types of constraints, such as precedence
relations, resource constraints, arbitrary arrivals, non-preemptive properties,
and importance levels. The Spring algorithm is used in a distributed computer
architecture and can also be extended to include fault-tolerance requirements.

Clearly, this problem is A^P-hard and finding a feasible schedule would be
too expensive in terms of computation time, especially for dynamic systems.
In order to make the algorithm computationally tractable even in the worst
case, the search is driven by a heuristic function H, which actively directs the
scheduling to a plausible path. On each level of the search, function H is applied
to each of the tasks that remain to be scheduled. The task with the smallest
value determined by the heuristic function H is selected to extend the current
schedule.

The heuristic function is a very flexible mechanism that allows to easily define
and modify the scheduling policy of the kernel. For example, 'd H = ai (arrival
time) the algorithm behaves as First Come First Served, li H — d (compu­
tation time) it works as Shortest Job First, whereas if H = di (deadline) the
algorithm is equivalent to Earliest Deadline First.

To consider resource constraints in the scheduling algorithm, each task Ji has
to declare a binary array of resources Ri = [Ri{i),..., Rr{i)], where Rk{i) = 0
if Ji does not use resource Rk, and Rkii) = 1 if Ji uses Rk in exclusive mode.
Given a partial schedule, the algorithm determines, for each resource Rk, the
earliest time the resource is available. This time is denoted as EATk (Earliest
Available Time). Thus, the earliest start time that a task Ji can begin the
execution without blocking on shared resources is

Test{i) = maix[ai,mdix{EATk)],
k

where ai is the arrival time of Ji. Once Test is calculated for all the tasks,
a possible search strategy is to select the task with the smallest value of Test-
Composed heuristic functions can also be used to integrate relevant information
on the tasks, such as

H = d + W'C

H = d+W'Test.

where VF is a weight that can be adjusted for different application environments.
Figure 3.11 shows some possible heuristic functions that can be used in Spring
to direct the search process.

Aperiodic Task Scheduling 67

H = a

H = C

H = d

H = Test

H = d + w

H = d + w

C

Test

First Come First Served (FCFS)

Shortest Job First (SJF)

Earliest Deadline First (EDF)

Earliest Start Time First (ESTF)

EDF + SJF

EDF + ESTF

Figure 3.11 Example of heuristic functions that can be adopted in the Spring
algorithm.

In order to handle precedence constraints, another factor E, called eligibility,
is added to the heuristic function. A task becomes eligible to execute {Ei = 1)
only when all its ancestors in the precedence graph are completed. If a task is
not eligible, then Ei = oo; hence, it cannot be selected for extending a partial
schedule.

While extending a partial schedule, the algorithm determines whether the cur­
rent schedule is strongly feasible; that is, also feasible by extending it with any
of the remaining tasks. If a partial schedule is found not to be strongly feasible,
the algorithm stops the search process and announces that the task set is not
schedulable, otherwise the search continues until a complete feasible schedule
is met. Since a feasible schedule is reached through n nodes and each partial
schedule requires the evaluation of at most n heuristic functions, the complexity
of the Spring algorithm is 0{n'^).

Backtracking can be used to continue the search after a failure. In this case, the
algorithm returns to the previous partial schedule and extends it by the task
with the second smallest heuristic value. To restrict the overhead of backtrack­
ing, however, the maximum number of possible backtracks must be limited.
Another method to reduce the complexity is to restrict the number of evalu­
ations of the heuristic function. Do to that, if a partial schedule is found to
be strongly feasible, the heuristic function is apphed not to all the remaining
tasks but only to the k remaining tasks with the earliest deadlines. Given that
only k tasks are considered at each step, the complexity becomes 0{kn). If

68 C H A P T E R 3

the value of k is constant (and small, compared to the task set size), then the
complexity becomes linearly proportional to the number of tasks.

A disadvantage of the heuristic scheduling approach is that it is not optimal.
This means that, if there exists a feasible schedule, the Spring algorithm may
not find it.

3.5 SCHEDULING WITH PRECEDENCE
CONSTRAINTS

The problem of finding an optimal schedule for a set of tasks with precedence
relations is in general A^P-hard. However, optimal algorithms that solve the
problem in polynomial time can be found under particular assumptions on the
tasks. In this section we present two algorithms that minimize the maximum
lateness by assuming synchronous activations and preemptive scheduling, re­
spectively.

3,5.1 Latest Deadline First (1 I prec.sync \ Lmax)

In 1973, Lawler [Law73] presented an optimal algorithm that minimizes the
maximum lateness of a set of tasks with precedence relations and simultaneous
arrival times. The algorithm is called Latest Deadline First (LDF) and can be
executed in polynomial time with respect to the number of tasks in the set.

Given a set J oi n tasks and a directed acyclic graph (DAG) describing their
precedence relations, LDF builds the scheduling queue from tail to head: among
the tasks without successors or whose successors have been all selected, LDF
selects the task with the latest deadline to be scheduled last. This procedure is
repeated until all tasks in the set are selected. At run time, tasks are extracted
from the head of the queue, so that the first task inserted in the queue will be
executed last, whereas the last task inserted in the queue will be executed first.

The correctness of this rule is proved as follows. Let J be the complete set of
tasks to be scheduled, let P C JT' be the subset of tasks without successors, and
let Ji be the task in F with the latest deadline di. If cr is any schedule that
does not follow the EDL rule, then the last scheduled task, say Jfc, will not be
the one with the latest deadline; thus dk < di. Since J/ is scheduled before Jfc,
let us partition F into four subsets, so that T = Au {Ji} U B U {Jk}- Clearly,

Aperiodic Task Scheduling 69

in a the maximum lateness for F is greater or equal to L^ = f — dk, where
/ — X]r=i ^i ŝ ^^^ finishing time of task J^.

We show that moving J/ to the end of the schedule cannot increase the maxi­
mum lateness in F, which proves the optimality of LDF. To do that, let a* be
the schedule obtained from a after moving task J/ to the end of the queue and
shifting all other tasks to the left. The two schedules a and cr* are depicted in
Figure 3.12. Clearly, in a* the maximum lateness for F is given by

Each argument of the max function is no greater than Lmaxi"^)- ^^ i^c^t,

L^max{A) = Lmax{A) < Lmax{^) becausc A is uot movcd;

^*max{^) ^ Lmax{B) < Lmax{^) because B starts earlier in cr*;

LI < Lk < I/max(F) because task Jk starts earlier in cr*;

L* = f - di < f - dk < Lmaxi^) because dk <di.

^A^
r

A

A

J 1

^

B Jk

B Jk J l

dk d ,

1 i

dk d ,

1 1

Figure 3.12 Proof of LDF optimality.

Since l^nax^) ^ ^max(F), moviug J I to the end of the schedule does not
increase the maximum lateness in F. This means that scheduling last the
task J{ with the latest deadline minimizes the maximum lateness in F. Then,
removing this task from J and repeating the argument for the remaining n — 1
tasks in the set J — {Ji}^ LDF can find the second-to-last task in the schedule,
and so on. The complexity of the LDF algorithm is 0{n'^)^ since for each of
the n steps it needs to visit the precedence graph to find the subset F with no
successors.

70 C H A P T E R 3

Consider the example depicted in Figure 3.13, which shows the parameters of six
tasks together with their precedence graph. The numbers beside each node of
the graph indicate task deadhnes. Figure 3.13 also shows the schedule produced
by EDF to highlight the differences between the two approaches. The EDF
schedule is constructed by selecting the task with the earliest deadline among
the current eligible tasks. Notice that EDF is not optimal under precedence
constraints, since it achieves a greater Lmax with respect to LDF.

Ci

di

Jl

1

2

J2

1

5

J3

1

4

J4

1

3

J5

1

5

u
1

6

LDF J l

d

J2

1 d

J4

4 d

J3

3 d:

J5

.ds d

1 1

^6

EDF J 1

d

J 3

1 d

1 1

J2

4 d

J4

3 d;;

' 1

J5

.d5 d

r \

u = L . =

- ^ t

Figure 3.13 Comparison between schedules produced by LDF and EDF on
a set of tasks with precedence constraints.

Aperiodic Task Scheduling 71

3.5.2 EDF with precedence constraints
(1 I prec.preem \ Lmax)

The problem of scheduling a set of n tasks with precedence constraints and
dynamic activations can be solved in polynomial time complexity only if tasks
are preemptable. In 1990, Ghetto, Silly, and Bouchentouf [CSB90] presented
an algorithm that solves this problem in elegant fashion. The basic idea of
their approach is to transform a set J of dependent tasks into a set J7* of inde­
pendent tasks by an adequate modification of timing parameters. Then, tasks
are scheduled by the Earliest Deadline First (EDF) algorithm. The transfor­
mation algorithm ensures that J is schedulable and the precedence constraints
are obeyed if and only if J* is schedulable. Basically, all release times and
deadlines are modified so that each task cannot start before its predecessors
and cannot preempt their successors.

Modification of the release times

The rule for modifying tasks' release times is based on the following observation.
Given two tasks J a and Jt, such that J a -^ Jb (that is, Ja is an immediate
predecessor of Jfe), then in any valid schedule that meets precedence constraints
the following conditions must be satisfied (see Figure 3.14):

Sb > ^b (that is, Jb must start the execution not earlier than its
release time);

Sb > ^a -\- Ca (that is, Jb must start the execution not earlier than the
minimum finishing time of Ja).

s K > r

s h > r ^̂ + C,,

r b S b

Figure 3 .14 If Ja —>• Jb, then the release time of J^ can be replaced by
max(r5,ra + Ca).

72 C H A P T E R 3

Therefore, the release time r^ of Jh can be replaced by the maximum between
Vh and {ra -\-Ca) without changing the problem. Let r^ be the new release time
of Jb' Then,

rl - max(rfe,ra + Ca).

The algorithm that modifies the release times can be implemented in 0{n?)
and can be described as follows:

1. For any initial node of the precedence graph, set r* = ri.

2. Select a task Ji such that its release time has not been modified but the
release times of all immediate predecessors Jh have been modified. If no
such task exists, exit.

3. Set r* = max[ri, max(r^ -\- Ch '- Jh -^ Ji)]-

4. Return to step 2.

Modification of the deadlines

The rule for modifying tasks' deadlines is based on the following observation.
Given two tasks J a and J^, such that Ja -^ Jb (that is, J a is an immediate
predecessor of Jb), then in any feasible schedule that meets the precedence
constraints the following conditions must be satisfied (see Figure 3.15):

fa < da (that is, J a must finish the execution within its deadline);

fa^db — Cb (that is, Ja must finish the execution not later than the
maximum start time of J^).

fn < d,

fa ^ d b - Cb

Figure 3.15 If Ja —>• Jh^ then the deadline of J a can be replaced by
rmn(da,db - Cb).

Aperiodic Task Scheduling 73

Therefore, the deadhne da of Ja can be replaced by the minimum between da
and {db — Cb) without changing the problem. Let d* be the new deadline of
Ja. Then,

dl = mm{da,db - Cb).

The algorithm that modifies the deadlines can be implemented in 0{n'^) and
can be described as follows:

1. For any terminal node of the precedence graph, set c/* = di.

2. Select a task Ji such that its deadline has not been modified but the
deadlines of all immediate successors Jk have been modified. If no such
task exists, exit.

3. Set d* = xnin[di, mm{dl — Ck ' Ji -^ Jk)]-

4. Return to step 2.

Proof of optimality

The transformation algorithm ensures that if there exists a feasible schedule
for the modified task set J* under EDF, then the original task set J is also
schedulable, that is, all tasks in J meet both precedence and timing constraints.
In fact, if J* is schedulable, all modified tasks start at or after time r* and are
completed at or before time d*. Since r* > ri and d* < dj, the schedulability
of J"" implies that J is also schedulable.

To show that precedence relations in J are not violated, consider the example
illustrated in Figure 3.16, where Ji must precede J^ (i.e., Ji -^ J2), but J2
arrives before Ji and has an earlier deadline. Clearly, if the two tasks are
executed under EDF, their precedence relation cannot be met. However, if
we apply the transformation algorithm, the time constraints are modified as
follows:

= ri (dl = min((ii,d2 - C2)
= max(r2,ri-h Ci) y d^ = d2

This means that, since r2 > r^, J2 cannot start before J i . Moreover, J2 cannot
preempt Ji because d\ < d^ and, based on EDF, the processor is assigned to
the task with the earliest deadline. Hence, the precedence relation is respected.

74 C H A P T E R 3

Q
J i

O
J2

r*2 = r 1 + C

d 1 = d 2 - C2
*

d 2 = d 2

J l

r 2 r 2 d 9 = d '

Figure 3.16 The transformation algorithm preserves the timing and the
precedence constraints.

In general, for any pair of tasks such that Ji -< Jj, we have r* < TJ and d* < d*.
This means that, if Ji is in execution, then all successors of Ji cannot start
before r̂ because r* < r*. Moreover, they cannot preempt Ji because d* < d*
and, according to EDF, the processor is assigned to the ready task having the
earliest deadline. Therefore, both timing and precedence constraints specified
for task set J are guaranteed by the schedulability of the modified set JT'*.

3.6 SUMMARY

The scheduling algorithms described in this chapter for handling real-time tasks
with aperiodic arrivals can be compared in terms of assumptions on the task
set and computational complexity. Figure 3.17 summarizes the main charac­
teristics of such algorithms and can be used for selecting the most appropriate
scheduling policy for a particular problem.

Aperiodic Task Scheduling 75

independent

precedence
constraints

sync, activation
preemptive

async. activation

non-preemptive
async. activation

EDD (Jackson '55)

0(n logn)

Optimal

LDF (Lawier '73)

0(n2)

Optimal

EDF (Horn '74)

0(n2)

Optimal

EDF*
(Ghetto et al. '90)

0(n2)

Optimal

Tree search
(Bratley '71)

0(n n!)

Optimal

Spring (Stankovic &
Ramamritham '87)

0(n2)

Heuristic

Figure 3 .17 Scheduling algorithms for aperiodic tasks.

Exercises

3.1 Check whether the EarUest Due Date (EDD) algorithm produces a fea­
sible schedule for the following task set (all tasks are synchronous and
start at time ^ = 0):

3.2

3.3

3.4

" ^
Di

[_Ji_

FT"
9

J2

5
16

Js
2
5

JA

3
10

Write an algorithm for finding the maximum lateness of a task set sched­
uled by the EDD algorithm.

Draw the full scheduling tree for the following set of non-preemptive tasks
and mark the branches that are pruned by the Bratley's algorithm.

O'i

Ci

Di !

[Jl

ro~
6

1 ^̂

h
4
2
4

h
2
4
7

J A '

6
2
10

On the scheduling tree developed in the previous exercise find the path
produced by the Spring algorithm using the following heuristic function:
H = a-\- C -\- D. Then find a heuristic function that produces a feasible
schedule.

76 C H A P T E R 3

3.5 Given seven tasks, A, B, C, D, E, F , and G, construct the precedence
graph from the following precedence relations:

A^C
B ->C
C -^ E
D -^ F

B ^ D
C -^ F
D ^G

Then, assuming that all tasks arrive at time ^ = 0, have deadline D =
20, and computation times 2, 3, 3, 5, 1, 2, 5, respectively, modify their
arrival times and deadlines to schedule them by EDF.

4
PERIODIC TASK SCHEDULING

4.1 INTRODUCTION

In many real-time control applications, periodic activities represent the major
computational demand in the system. Periodic tasks typically arise from sen­
sory data acquisition, low-level servoing, control loops, action planning, and
system monitoring. Such activities need to be cyclically executed at specific
rates, which can be derived from the application requirements. Some specific
examples of real-time applications are illustrated in Chapter 10.

When a control application consists of several concurrent periodic tasks with
individual timing constraints, the operating system has to guarantee that each
periodic instance is regularly activated at its proper rate and is completed
within its deadline (which, in general, could be different than its period).

In this chapter three basic algorithms for handling periodic tasks are described
in detail: Rate Monotonic, Earliest Deadline First, and Deadline Monotonic.
Schedulability analysis is performed for each algorithm in order to derive a guar­
antee test for generic task sets. To facilitate the description of the scheduling
results presented in this chapter, the following notation is introduced:

r denotes a set of periodic tasks;

Ti denotes a generic periodic task;

Tij denotes the jth instance of task r^;

rij denotes the release time of the jth instance of task r^;

78 C H A P T E R 4

^i denotes the phase of task r^; that is, the release time of its first
instance {^i = Vi^i);

Di denotes the relative deadline of task r^;

dij denotes the absolute deadline of the j th instance of task r̂ {dij =
^i-\-{j-l)Ti + Di).

Si J denotes the start time of the jth instance of task r^; that is, the
time at which it starts executing.

fij denotes the finishing time of the jth instance of task r^; that is,
the time at which it completes the execution.

Moreover, in order to simplify the schedulability analysis, the following hy­
potheses are assumed on the tasks:

A l . The instances of a periodic task TJ are regularly activated at a
constant rate. The interval Ti between two consecutive activations
is the period of the task.

A2. All instances of a periodic task r̂ have the same worst case exe­
cution time Ci.

A 3 . All instances of a periodic task TJ have the same relative deadline
Di, which is equal to the period Tj.

A4. All tasks in F are independent; that is, there are no precedence
relations and no resource constraints.

In addition, the following assumptions are implicitly made:

A5 . No task can suspend itself, for example on I/O operations.

A6. All tasks are released as soon as they arrive.

A7. All overheads in the kernel are assumed to be zero.

Notice that assumptions Al and A2 are not restrictive because in many control
applications each periodic activity requires the execution of the same routine
at regular intervals; therefore, both Ti and Ci are constant for every instance.
On the other hand, assumptions A3 and A4 could be too tight for practical

Periodic Task Scheduling 79

applications. However, the four assumptions are initially considered to derive
some important results on periodic task scheduling, then such results are ex­
tended to deal with more realistic cases, in which assumptions A3 and A4 are
relaxed. In particular, the problem of scheduUng a set of tasks under resource
constraints is considered in detail in Chapter 7.

In those cases in which the assumptions Al, A2, A3, and A4 hold, a periodic
task Ti can be completely characterized by the following three parameters: its
phase ^i, its period Ti and its worst-case computation time Ci. Thus, a set of
periodic tasks can be denoted by

r = {ni^uTud), i - l , . . . , n } .

The release time ri^k and the absolute deadline di^k of the generic kth instance
can then be computed as

n,fc = ^i-{-{k-l)Ti

di,k = Vi^k+Ti^^i + kTi.

Other parameters that are typically defined on a periodic task are described
below.

Response time of an instance. It is the time (measured from the release
time) at which the instance is terminated:

Ri,k — fi,k — Ti^k-

Critical instant of a task. It is the time at which the release of a task
will produce the largest response time.

Critical time zone of a task. It is the interval between the critical instant
and the response time of the corresponding request of the task.

Relative Release Jitter of a task. It is the maximum deviation of the
start time of two consecutive instances:

RRJi = max|(5i,fc-ri,fc) - (5i,fc-i-ri,fc-i)|.
k

Absolute Release Jitter of a task. It is the maximum deviation of the
start time among all instances:

ARJi - max(5i,fc - ri^k) - min(si,fc - ri,^).
k k

80 C H A P T E R 4

Relative Finishing Jitter of a task. It is the maximum deviation of the
finishing time of two consecutive instances:

RFJi = max\{fi^k - ri^k) - {fi,k-i - ri^k-i)\'
k

Absolute Finishing Jitter of a task. It is the maximum deviation of
the finishing time among all instances:

AFJi = max(/i,fc - n^k) - min(/i,fc - n^k)-
k k

In this context, a periodic task r̂ is said to be feasible if all its instances finish
within their deadlines. A task set F is said to be schedulahle (or feasible) if all
tasks in T are feasible.

4.1.1 Processor utilization factor

Given a set F of n periodic tasks, the processor utilization factor U is the
fraction of processor time spent in the execution of the task set [LL73]. Since
Ci/Ti is the fraction of processor time spent in executing task r^, the utilization
factor for n tasks is given by

The processor utilization factor provides a measure of the computational load
on the CPU due to the periodic task set. Although the CPU utilization can
be improved by increasing tasks' computation times or by decreasing their
periods, there exists a maximum value of U below which F is schedulable and
above which F is not schedulable. Such a limit depends on the task set (that
is, on the particular relations among tasks' periods) and on the algorithm used
to schedule the tasks. Let UubiX-i^) be the upper bound of the processor
utilization factor for a task set F under a given algorithm A.

When U = UuhiX.A)^ the set F is said to fully utilize the processor. In this
situation, F is schedulable by A, but an increase in the computation time in
any of the tasks will make the set infeasible. For a given algorithm A, the least
upper bound Uiub{A) of the processor utilization factor is the minimum of the
utilization factors over all task sets that fully utilize the processor:

Uiub{A) = minUubi^^A).

Periodic Task Scheduling 81

r2

YES ; 9

1
Uub,

; ^^^2

\ • 1 1

i Uub^

•: •:.:.:•.... . . : : . . . : : : : : ; ;..:.:.::..:..:: : . : .]

i^ub4

:::::: ; : i

NO

—̂

Ulub
IJub^

Figure 4.1 Meaning of the least upper bound of the processor utilization
factor.

Figure 4.1 graphically illustrates the meaning of Uiub for a scheduling algorithm
A. The task sets Fj shown in the figure differ for the number of tasks and for
the configuration of their periods. When scheduled by the algorithm A, each
task set F^ fully utilizes the processor when its utilization factor Ui (varied by
changing tasks' computation times) reaches a particular upper bound Uub, • If
Ui < Uubi-, then F^ is schedulable, else F^ is not schedulable. Notice that each
task set may have a different upper bound. Since Uiub{A) is the minimum of all
upper bounds, any task set having a processor utilization factor below Uiub{^)
is certainly schedulable by A.

Uiub defines an important characteristic of a scheduling algorithm because it
allows to easily verify the schedulability of a task set. In fact, any task set
whose processor utilization factor is below this bound is schedulable by the
algorithm. On the other hand, utilization above this bound can be achieved
only if the periods of the tasks are suitably related.

If the utilization factor of a task set is greater than one, the task set cannot be
scheduled by any algorithm,
the periods: T = T1T2 . . . Tn
written as

To show this result, let T be the product of all
If t/ > 1, we also have UT > T, which can be

j:irc.>T.
1 = 1

Ti

82 C H A P T E R 4

The factor {T/Ti) represents the number of times that r̂ is executed in the
interval T, whereas the quantity {T/Ti)Ci is the total computation time re­
quested by Ti in the interval T. Hence, the sum on the left hand side represents
the total demand of computation time requested by all tasks in T. Clearly,
if the total demand exceeds the available processor time, there is no feasible
schedule for the task set.

4.2 RATE MONOTONIC SCHEDULING

The Rate Monotonic (RM) scheduling algorithm is a simple rule that assigns
priorities to tasks according to their request rates. Specifically, tasks with
higher request rates (that is, with shorter periods) will have higher priorities.
Since periods are constant, RM is a fixed-priority assignment: priorities are
assigned to tasks before execution and do not change over time. Moreover,
RM is intrinsically preemptive: the currently executing task is preempted by a
newly arrived task with shorter period.

In 1973, Liu and Layland [LL73] showed that RM is optimal among all fixed-
priority assignments in the sense that no other fixed-priority algorithms can
schedule a task set that cannot be scheduled by RM. Liu and Layland also
derived the least upper bound of the processor utilization factor for a generic
set of n periodic tasks. These issues are discussed in detail in the following
subsections.

4.2.1 Optimality

In order to prove the optimality of the RM algorithm, we first show that a
critical instant for any task occurs whenever the task is released simultaneously
with all higher-priority tasks. Let T = { r i , r2 , . . . ,rn} be the set of periodic
tasks ordered by increasing periods, with r^ being the task with the longest
period. According to RM, Tn will also be the task with the lowest priority.

As shown in Figure 4.2a, the response time of task r^ is delayed by the inter­
ference of Ti with higher priority. Moreover, from Figure 4.2b it is clear that
advancing the release time of TJ may increase the completion time of r^. As
a consequence, the response time of Tn is largest when it is released simulta­
neously with Ti. Repeating the argument for all r^, i = 2 , . . . , n — 1, we prove

Periodic Task Scheduling 83

(a)

(b)

^ t

Figure 4.2 a. The response time of tcisk Tn is delayed by the interference of
Ti with higher priority, b . The interference may increase advancing the release
time of Ti.

that the worst response time of a task occurs when it is released simultaneously
with all higher-priority tasks.

A first consequence of this result is that task schedulability can easily be checked
at their critical instants. Specifically, if all tasks are feasible at their critical
instants, then the task set is schedulable in any other condition. Based on
this result, the optimality of RM is justified by showing that if a task set is
schedulable by an arbitrary priority assignment, then it is also schedulable by
RM.

Consider a set of two periodic tasks ri and T2, with Ti < T2. If priorities are
not assigned according to RM, then task T2 will receive the highest priority.
This situation is depicted in Figure 4.3, from which it is easy to see that, at
critical instants, the schedule is feasible if the following inequality is satisfied:

Ci-f C2 < T i . (4.1)

On the other hand, if priorities are assigned according to RM, task Ti will
receive the highest priority. In this situation, illustrated in Figure 4.4, in order
to guarantee a feasible schedule two cases must be considered. Let F = [T2/T1J
be the number^ of periods of ri entirely contained in T2.

^ [x\ denotes the largest integer smaller than or equal to x, whereas [x] denotes the
smallest integer greater than or equal to x.

84 C H A P T E R 4

T^2

A A A

1 1 •::^- .,• "'.: - 1 i . ^ t

-^ t

Figure 4.3 Tasks scheduled by an algorithm different from RM.

case (a) X]

< T2 - F T i I

case (b) X \

^2

- ^ t

_EZ
FT,

A A A

Ci > T 2 - F T 1

F T , Tn

Figure 4.4 Schedule produced by RM in two different conditions.

Case 1. The computation time C\ is short enough that all requests of ri
within the critical time zone of T2 are completed before the second
request of r2. That is, Ci < T2 - FTi.

In this case, from Figure 4.4a we can see that the task set is schedulable if

(F + l) C i + C 2 <T2. (4.2)

We now show that inequality (4.1) implies (4.2). In fact, by multiplying both
sides of (4.1) by F we obtain

FCiH-FC2 <FTi,

and, since F > 1, we can write

FCi + C2 < FCi + FC2 < FTi.

Periodic Task Scheduling 85

Adding C\ to each member we get

(F-f l) C i + C 2 < F r i H - C i .

Since we assumed that Ci < T2 — FT\, we have

{F + l)Ci + C2 < FTi + Ci < Ts,

which satisfies (4.2).

Case 2. The execution of the last request of ri in the critical time zone of
T2 overlaps the second request of T2. That is, Ci > T2 — FTi.

In this case, from Figure 4.4b we can see that the task set is schedulable if

F C i - f C s <FTi, (4.3)

Again, inequality (4.1) implies (4.3). In fact, by multiplying both sides of (4.1)
by F we obtain

FCi -\-FC2 <FTu

and, since F > 1, we can write

FCi + C2 < FCi + FC2 < FTu

which satisfies (4.3).

Basically, it has been shown that, given two periodic tasks ri and r2, with
Ti < T2, if the schedule is feasible by an arbitrary priority assignment, then
it is also feasible by RM. That is, RM is optimal. This result can easily be
extended to a set of n periodic tasks. We now show how to compute the least
upper bound Uiub of the processor utilization factor for the RM algorithm.
The bound is first determined for two tasks and then extended for an arbitrary
number of tasks.

4.2.2 Calcula t ion of Uiub for two t a sks

Consider a set of two periodic tasks ri and r2, with Ti < T2. In order to
compute Uiub for RM, we have to

• Assign priorities to tasks according to RM, so that ri is the task with the
highest priority;

86 CHAPTER 4

Compute the upper bound Uub for the set by setting tasks ' computat ion
times to fully utilize the processor;

Minimize the upper bound Uub with respect to all other task parameters .

As before, let F = [T2/T1J be the number of periods of r i entirely contained
in T2. Wi thout loss of generality, the computat ion t ime C2 is adjusted to fully
utilize the processor. Again two cases must be considered.

Case 1. The computat ion t ime Ci is short enough tha t all requests of TI
within the critical t ime zone of T2 are completed before the second
request of T2. Tha t is, Ci < T2 — FTi.

In this si tuation, depicted in Figure 4.5, the largest possible value of C2 is

C 2 = T 2 - C i (F + l) ,

and the corresponding upper bound Uub is

, , Ci C2 Ci T 2 - C i (F + l)
Uub — T^ + ^^ = ^^ -r — Ti T2 Ti T,

J-l J-2

2

-I
Since the quanti ty in square brackets is negative, Uub is monotonically decreas­
ing in C i , and, being Ci < T2 — FTi, the minimum of Uub occurs for

Ci =T2-FTi.

Case 2. The execution of the last request of r i in the critical t ime zone of
r2 overlaps the second request of T2. T h a t is, Ci > T2 — F T i .

In this si tuation, depicted in Figure 4.6, the largest possible value of C2 is

C 2 - (r i - C i) F ,

Periodic Task Scheduling 87

Ti ^ M

1:2

Figure 4.5 The second request of r2 is released when r i is idle.

case (b) C, > T2 - F T

X]

X2

t '
1 - 1 1

i 1

L 1
I i

1

i

F T , T2

Figure 4.6 The second request of T2 is released when TI is active.

and the corresponding upper bound Uub is

Uub Ti n Ti n
Ti ^ Ci Ci
— F+ -^ -F =
T2 Ti T2
Ti ^ Ci
— F H
T2 T2

Ti
(4.4)

Since the quantity in square brackets is positive, Uub is monotonically increasing
in Ci and, being Ci > T2 - FTi, the minimum of Uub occurs for

Ci=T2-FTi.

In both cases, the minimum value of Uub occurs for

Ci =T2-TiK

88 C H A P T E R 4

Hence, using the minimum value of Ci, from equation (4.4) we have

- = 1-1(1-) =
T2 T2 \T,

T2
F +

Ti
n,| (4.5)

To simplify the notation, let G = T2/T1 - F. Thus,

U =
Tx

(F + G^) :

(F + G^)

jF + G^) ^

T2ITX

F + G^

{T2/Ti-F) + F F + G

[F + G) - [G - G'^)
F + G

= 1
g (l - G)

F + G •
(4.6)

Since 0 < G < 1, the term G(l — G) is nonnegative. Hence, U is monotoni-
cally increasing with F. As a consequence, the minimum of U occurs for the
minimum value of F; namely, F = 1. Thus,

U =
l+G^
1+G •

(4.7)

Minimizing U over G we have

dU_

dG

2G(1 + G) - (1 + G^)
(1 + G)2

G^ + 2G - 1
(1 + G)2 '

and dU/dG = 0 for G^ + 2G - 1 = 0, which has two solutions:

Gi = - l - \ / 2
G2 = - H - v / 2 .

Since 0 < G < 1, the negative solution G = Gi is discarded. Thus, from
equation (4.7), the least upper bound of U is given for G = G2:

Ulub =
1 + (N / 2 - 1) 2 4 - 2 \ / 2
l + (v /2 - l) 72

= 2 (\ / 2 - l) .

Periodic Task Scheduling 89

1 F
r ^

2
3
4
5

k*

~7^
Ve
VT2
x/20
\/30

t/*
0.828
0.899
0.928
0.944
0.954

Table 4.1 Values of fc* and C/* as a function of F .

That is,
t// .6 = 2(2^/2 - 1) 0.83. (4.8)

Notice that if T2 is a multiple of Ti, G = 0 and the processor utilization factor
becomes 1. In general, the utiUzation factor for two tasks can be computed as
a function of the ratio k = T2/T1. For a given F, from equation (4.5) we can
write

U F+{k-Fy

Minimizing U over k we have

dk
= 1

k-2F +

F{F+l)
fc2 '

F (F + 1)
k

and dU/dk = 0 for k* = ^/F{F + 1). Hence, for a given F , the minimum value
ofUis

(7* = 2{y/F{F-\-l)-F).

Table 4.1 shows some values of fc* and t/* as a function of F , whereas Figure 4.7
shows the upper bound of t/ as a function of A:.

4.2.3 Calcula t ion of Uiub for n t a sks

From the previous computation, the conditions that allow to compute the least
upper bound of the processor utilization factor are

F = 1
Ci = T2- FT^
C2 = (T i - C i) F ,

90 C H A P T E R 4

Figure 4.7 Upper bound of the processor utilization factor as a function of
the ratio k = T2/T1.

which can be rewrit ten as

Ti < T2< 2Ti
Ci = T2- Ti
C2 = 2Ti -T2.

GeneraUzing for an arbi t rary set of n tasks, the worst conditions for the schedu-
labihty of a task set tha t fully utilizes the processor are

f Ti < Tn< 2Ti
Ci = T2- Ti
C2 — T3 — T2

^ n —1 — -Ln ~ J-n — 1

[C„ = Ti - (Ci + C2 + . . . + C „ _ i) = 2 r i - T„.

Thus , the processor utiHzation factor becomes

^ ^ T2-T1 ^ T3-T2 ^ ^ T„ - Tn-i ^ 2Ti - T„
Ti Tn-1 T„

Defining

Periodic Task Scheduling 91

and noting that
Tn

R1R2 . . .Rn-l = TfT^
-LI

the utihzation factor may be written as

n - l n - l

u =
z = l

To minimize U over Ri, i — 1 , . . . , n — 1, we have

at/ _ 2

Thus, defining P = R1R2 .. ^ Rn-i, U is minimum when

f RiP = 2
R2P = 2

Rn-\P = 2.

That is, when all Ri have the same value:

R\ — R2 — ''' — Rn-i —2'^.

Substituting this value in IJ we obtain

= n (2 i / " - l) .

Therefore, for an arbitrary set of periodic tasks, the least upper bound of the
processor utihzation factor under the Rate-Monotonic scheduUng algorithm is

t/(„6 = n(2i/" - 1). (4.9)

This bound decreases with n, and values for some n are shown in Table 4.2.

For high values of n, the least upper bound converges to

Viuh = ln2 ~ 0.69.

In fact, with the substitution y = (2^/" — 1), we obtain n = i„)"^^), and hence

l i m n (2 i / " - l) ^ (ln2) l im-—-^—-

92 C H A P T E R 4

1 n

nr
2
3
4
5

Ulub

1.000
0.828
0.780
0.757
0.743

1 ^
re"

7
8
9
10

Ulub

0.735
0.729
0.724
0.721
0.718

Table 4.2 Values of L /̂̂ b a^ ^ function of n.

and since (by the Hospital's rule)

y lim ——^—— = lim -— — = \\m.{y + 1)
y^O\n{y + \) y-̂ O l/(y-f- 1) y^O^""

we have that
lim Uiub{n) = In 2.

= 1,

4.2.4 Concluding remarks on R M

To summarize the most important results derived in this section, the Rate-
Monotonic algorithm has been proved to be optimal among all fixed-priority
assignments, in the sense that no other fixed-priority algorithms can schedule
a task set that cannot be scheduled by RM. Moreover, RM guarantees that an
arbitrary set of periodic tasks is schedulable if the total processor utilization U
does not exceed a value of 0.69.

Notice that this schedulability condition is sufficient to guarantee the feasibility
of any task set, but it is not necessary. This means that, if a task set has an
utilization factor greater than Uiub and less than one, nothing can be said on
the feasibility of the set. A sufficient and necessary condition for the schedu­
lability under RM has been derived by Audsley et al. [ABRW91] for the more
general case of periodic tasks with relative deadlines less than periods, and it
is presented in Section 4.4.

A simulation study carried out by Lehoczky, Sha, and Ding [LSD89] showed
that for random task sets the processor utilization bound is approximately
0.88. However, since RM is optimal among all static assignments, an improve­
ment of the processor utilization bound can be achieved only by using dynamic
scheduling algorithms.

Periodic Task Scheduling 93

4.3 EARLIEST DEADLINE FIRST

The Earliest Deadline First (EDF) algorithm is a dynamic scheduling rule that
selects tasks according to their absolute deadlines. Specifically, tasks with ear­
lier deadlines will be executed at higher priorities. Since the absolute deadline
of a periodic task depends on the current j th instance as

di^j = ^i-\-{j-l)Ti + Di,

EDF is a dynamic priority assignment. Moreover, it is intrinsically preemptive:
the currently executing task is preempted whenever another periodic instance
with earlier deadline becomes active.

Notice that EDF does not make any specific assumption on the periodicity of
the tasks; hence, it can be used for scheduling periodic as well as aperiodic
tasks. For the same reason, the optimality of EDF, proved in Chapter 3 for
aperiodic tasks, also holds for periodic tasks.

4.3.1 Schedulability analysis

Under the assumptions Al, A2, A3, and A4, the schedulability of a periodic task
set handled by EDF can be verified through the processor utilization factor. In
this case, however, the least upper bound is one; therefore, tasks may utilize
the processor up to 100% and still be schedulable. In particular, the following
theorem holds [LL73, SBS95]:

Theorem 4.1 A set of periodic tasks is schedulable with EDF if and only if

n ^

^ Ti -

Proof. Only if. We show that a task set cannot be scheduled \i U > 1.
In fact, by defining T = T1T2 .. .Tn, the total demand of computation time
requested by all tasks in T can be calculated as

T̂ rp

1 -^i

liU > 1 - that is, if the total demand UT exceeds the available processor time
T - there is clearly no feasible schedule for the task set.

94 C H A P T E R 4

Xk

idle

tjjxjaijjjj^lijijjjjjijiiia

/~ time overflow

Figure 4.8 Interval of continuous utilization in an EDF schedule before a
time-overflow.

//. We show the sufficiency by contradiction. Assume that the condition U <\
is satisfied and yet the task set is not schedulable. Let 2̂ be the instant at which
the time-overflow occurs and let [̂ 1,̂ 2] be the longest interval of continuous
utilization, before the overflow, such that only instances with deadline less
than or equal to 2̂ are executed in [̂ 1,̂ 2] (see Figure 4.8 for explanation).
Note that i\ must be the release time of some periodic instance. Let Cp{ti,t2)
be the total computation time demanded by periodic tasks in [̂ 1, ̂ 2], which can
be computed as

Cp{ti,t2)

Now, observe that

n

Cp{ti,t2) = 2^

rk>ti,dk<t2 «=1
Ti

Ci. (4.10)

Ti Ci <Y.
t2-tl

Ti
Ci = {t2-h)U.

Since a deadline is missed at t2, Cp{ti,t2) must be greater than the available
processor time (̂ 2 — <i); thus, we must have

{t2-ti) < CpihM) < {t2-tl)U.

That is, U > 1, which is a contradiction, Q

Periodic Task Scheduling 95

RM

-^2

. 0

1 p^
0

tta ^ \^-
5 . 10 JJ5

/ time overflow

•'•^i r\ 1 1 \\ I / '
7 14

h
2«

n r" 21

•
25 3

1 1 1 •
28

^n
0

r~
^^ ^

(a)

EDF

Figure 4.9 Schedule produced by RM (a) and EDF (b) on the same set of
periodic ta^ks.

4.3.2 An example

Consider the periodic task set illustrated in Figure 4.9, for which the processor
utilization factor is

This means that 97% of the processor time is used to execute the periodic tasks,
whereas the CPU is idle in the remaining 3%. Being U' > In 2, the schedulability
of the task set cannot be guaranteed under RM, whereas it is guaranteed under
EDF. Indeed, as shown in Figure 4.9a, RM generates a time-overflow at time
t = 7j whereas EDF completes all tasks within their deadlines (see Figure 4.9b).
Another important difference between RM and EDF concerns the number of
preemptions occurring in the schedule. As shown in Figure 4.9, under RM
every instance of task r2 is preempted, for a total number of five preemptions
in the interval T = T1T2. Under EDF, the same task is preempted only once
in T. The small number of preemptions in EDF is a direct consequence of the
dynamic priority assignment, which at any instant privileges the task with the
earliest deadline, independently of tasks' periods.

96 C H A P T E R 4

4.4 DEADLINE MONOTONIC

The algorithms and the schedulabihty bounds illustrated in the previous sec­
tions rely on the assumptions Al, A2, A3, and A4 presented at the beginning
of this chapter. In particular, assumption A3 imposes a relative deadline equal
to the period, allowing an instance to be executed anywhere within its period.
This condition could not always be desired in real-time applications. For ex­
ample, relaxing assumption A3 would provide a more flexible process model,
which could be adopted to handle tasks with jitter constraints or activities with
short response times compared to their periods.

The Deadline Monotonic (DM) priority assignment weakens the "period equals
deadline" constraint within a static priority scheduling scheme. This algorithm
was first proposed in 1982 by Leung and Whitehead [LW82] as an extension of
Rate Monotonic where tasks can have a relative deadline less than their period.
Specifically, each periodic task r̂ is characterized by four parameters:

• A phase ^ i ;

• A worst-case computation time Ci (constant for each instance);

• A relative deadline Di (constant for each instance);

• A period T .̂

These parameters are illustrated in Figure 4.10 and have the following relation­
ships:

Ci<Di<Ti
ri,k = ^i + {k- l)Ti
di,k = Vi^k + Di.

T i

Ci

D i

Figure 4.10 Task parameters in Deadline-Monotonic scheduling.

Periodic Task Scheduling 97

According to the DM algorithm, each task is assigned a priority inversely pro­
portional to its relative deadline. Thus, at any instant, the task with the
shortest relative deadline is executed. Since relative deadlines are constant,
DM is a static priority assignment. As RM, DM is preemptive; that is, the
currently executing task is preempted by a newly arrived task with shorter
relative deadline.

The Deadline-Monotonic priority assignment is optimal,^ meaning that if any
static priority scheduling algorithm can schedule a set of tasks with deadlines
unequal to their periods, then DM will also schedule that task set.

4.4.1 Schedulability analysis

The feasibility of a set of tasks with deadlines unequal to their periods could
be guaranteed using the Rate-Monotonic schedulability test, by reducing tasks'
periods to relative deadlines:

J2§: < n(2i/"-l).
1 = 1

However, such a test would not be optimal as the workload on the processor
would be overestimated. A less pessimistic schedulability test can be derived
by noting that

• The worst-case processor demand occurs when all tasks are released simul­
taneously; that is, at their critical instants;

• For each task r^, the sum of its processing time and the interference (pre­
emption) imposed by higher priority tasks must be less than or equal to

Assuming that tasks are ordered by increasing relative deadlines, so that

i<j <=^ Di<Dj,

such a test is given by

\fi:l<i<n Ci + h < Di, (4.11)

•^The proof of DM optimality is similar to the one done for RM and it can be found in
[LW82].

98 C H A P T E R 4

Xk

Xi -TL

Figure 4.11
priority tasks.

More accurate calculation of the interference on r̂ by higher

where li is a measure of the interference on ri, which can be computed as the
sum of the processing times of all higher-priority tasks released before Di:

Di
Cj.

Notice that this test is sufficient but not necessary for guaranteeing the schedu-
lability of the task set. This is due to the fact that U is calculated by assuming
that each higher-priority task TJ exactly interferes \j&~\ times on r^. However,
as shown in Figure 4.11, the actual interference can be smaller than 7 ,̂ since
Ti may terminate earlier.

To find a sufficient and necessary schedulability test for DM, the exact inter­
leaving of higher-priority tasks must be evaluated for each process. In general,
this procedure is quite costly since, for each task TI, it requires the construc­
tion of the schedule until Di. Audsley et al. [ABRW92, ABR+93] proposed
an efficient method for evaluating the exact interference on periodic tasks and
derived a sufficient and necessary schedulability test for DM.

4.4.2 Sufficient and necessary schedulability
test

According to the method proposed by Audsley at al., the longest response time
Ri of a periodic task r̂ is computed, at the critical instant, as the sum of its
computation time and the interference due to preemption by higher-priority
tasks:

Periodic Task Scheduling 99

where
i-l

3 = 1
T c,.

Ri
Cj. (4.12)

Hence,
2 - 1

Ri = Ci + y
3 = 1

No simple solution exists for this equation since Ri appears on both sides. Thus,
the worst-case response time of task r̂ is given by the smallest value of Ri that
satisfies equation (4.12). Notice, however, that only a subset of points in the
interval [0,Di] need to be examined for feasibility. In fact, the interference on
Ti only increases when there is a release of a higher-priority task.

To simplify the notation, let R^ be the A:th estimate of Ri and let /f be the
interference on task Ti in the interval [0,i?f]:

Rf
C,. (4.13)

Then the calculation of Ri is performed as follows:

1. Iteration starts with R^ = Ci, which is the first point in time that TJ could
possibly complete.

2. The actual interference /f in the interval [0, i?f] is computed by equation
(4.13).

3. If I^ -\-Ci — R^, then R^ is the actual worst-case response time of task r^;
that is, Ri = R^. Otherwise, the next estimate is given by

and the iteration continues from step 2.

Once Ri is calculated, the feasibility of task Ti is guaranteed if and only if
Ri < Di.

To clarify the schedulability test, consider the set of periodic tasks shown in
Table 4.3, simultaneously activated at time ^ = 0. In order to guarantee r4, we
have to calculate R4 and verify that R4 < D4. The schedule produced by DM
is illustrated in Figure 4.12, and the iteration steps are shown below.

100 C H A P T E R 4

n
^2

T3

T4

Ci

1
1
2
1

T,

4
5
6
11

Di

3
4
5
10

Table 4.3 A set of periodic tcisks with deadlines less than periods.

-ci

'^2

^̂ 3

T4
n r
3 4 10 II 12

Figure 4.12 Example of schedule produced by DM.

Periodic Task Scheduling 101

Step 0: R^^ = C4 = 1, but /^ = 4 and I^ + C4 > R^^,
hence r^ does not finish at R^.

Step 1: Rl = l2-\-C4 = 5, but /] = 5 and /] + C4 > Rl
hence T4 does not finish at Rl.

Step 2: Rl = /] + C4 = 6, but / | = 6 and / | + C4 > i? |
hence r4 does not finish at Rl.

Step 3: Rl = 7 | + C4 = 7, but 7 | = 7 and / | + C4 > i^|
hence r4 does not finish at Rl.

Step 4: î ^ = / | -h C4 ^ 9, but / | = 9 and I^ -]-C4 > Rj
hence T4 does not finish at R^.

Step 5: Rl = Ij-\-C4 = 10, but / | = 9 and / | + C4 = i?^
hence T4 finishes at R4 = 10.

Since R4 < D4, T4 is schedulable within its deadhne. If Ri < Di for all tasks,
we conclude that the task set is schedulable by DM. Such a schedulability test
can be performed by the algorithm illustrated in Figure 4.13.

DM_guarantee (F) {

}

for (each TJ € F) {
7 = 0;
d o {

R = I + Ci;

if {R > Di)

^=Er=i [
} while (/ + d

}

return

> R)\

return(SCHEDULABLE);

(UNSCHEDULABLE);

Figure 4 .13 Algorithm for testing the schedulabihty of a periodic task set T
under DeadHne Monotonic.

102 C H A P T E R 4

4.5 EDF WITH DEADLINES LESS THAN
PERIODS

Under EDF, the analysis of periodic tasks with deadUnes less than periods
can be performed using a processor demand criterion. This method has been
described by Baruah, Rosier, and Howell in [BRH90] and later used by Jeffay
and Stone [JS93] to account for interrupt handling costs under EDF. Here, we
first illustrate this approach for the case of deadlines equal to periods and then
extend it to more general task models.

4.5.1 The processor demand approach

In general, the processor demand of a task TJ in any interval [t,t + L] is the
amount of processing time required by r̂ in [t, t + L] that has to complete at
or before t -\- L. In a deadline-based system, it is the processing time required
in [t, t -\- L] that has to be executed with deadlines less than or equal to ^ + L.

For a set of periodic tasks (with deadlines equal to periods) invoked at time
^ = 0 the cumulative processor demand in any interval [0, L] is the total amount
of processing time Cp(0, L) that has to be executed with deadlines less than or
equal to L. That is,

Cp(0,L) = J 2 ^ ^
i=l

Ti
Ci.

Given this definition, the schedulability of a periodic task set is guaranteed if
and only if the cumulative processor demand in any interval [0, L] is less than
the available time; that is, the interval length L. This is stated by the following
theorem:

Theorem 4.2 (JefFay and Stone) A set of periodic tasks is schedulahle by
EDF if and only if for all L, L >0,

^ ^ EI ^ k- (4.14)

Periodic Task Scheduling 103

Proof. The theorem is proved by showing that equation (4.14) is equivalent
to the classical Liu and Layland's condition

Ci
^ = E ^ ^ i - (4.15)

i=l

(4.15) => (4.14). If ^ < 1, then for all L, L > 0,

L>UL = ±(^)c, >± L_
Ci.

To demonstrate (4.15) <^ (4.14) we show that -i(4.15) ^ ->(4.14). That is, we
assume U > 1 and prove that there exist an L > 0 for which (4.14) does not
hold. If ^ > 1, then for L = lcm{Ti,... ,Tn),

^<^^ = E ^ F ' = E
i=\

Tr

L^

^ c..

D

Notice that to apply Theorem 4.2 it suffices to test equation (4.14) only for
values of L equal to release times less than the hyperperiod H. In fact, if
equation (4.14) holds for L = r^, it will also hold for any L G [rk,rk-\-i), since

yie [rfc,rfc+i).
L

7^
rk_

The values of L for which equation (4.14) has to be tested can still be reduced to
the set of release times within the busy period. The busy period is the smallest
interval [0, L] in which the total processing time W{L) requested in [0,L] is
completely executed. The quantity W{L) can be computed as

W{L) - Yl Ci. (4.16)

Thus, the busy period Bp can be defined as

Bp = min{L | W{L) = L}

and computed by the algorithm shown in Figure 4.14.

Notice that, when the system is overloaded, the processor is always busy and
the busy period is equal to infinity. On the other hand, if the system is not

104 C H A P T E R 4

busy .period {

V = W{L)\

H = lcm{Ti,... ,Tn);

while (L' # L) and {V < H) {
L = L';
L' = W(L);

}
if (V <H) Bp = L;

else Bp = INFINITY;

}

Figure 4.14 Algorithm for computing the busy period.

overloaded, the busy period coincides either with the beginning of an idle time
(see Figure 4.15a) or with the release of a periodic instance (see Figure 4.15b).

-Ci

^ 2

X l

^ 2

H H I w ^ L ^
n,i

^2,1

1,1

^2,1

n,2 n,3

(a)

.1,2 1,3

n,4

JiiiiiiiH p^^^^a, l i l i l i iM 1 ^ ^ ^ ^

1,4

iL_-L
(b)

Figure 4.15 Examples of finite busy periods.

Periodic Task Scheduling 105

'̂ 1 fe^»a^3
^-^

time overflow

^2

t 2

li^-1-^yl

i-v>j^>y»^gi-i

I^MW..-ht.ml

6 8 10 12 16

Figure 4.16 Examples of processor demand analysis.

L

6
8
10
12

Cp(0,L)

3
5
10
13

result

OK
OK
OK
N O

Table 4.4 Results of the processor demand criterion.

Based on the previous observations, to apply Theorem 4.2, equation (4.14) can
be tested for all L e 7Z, where

7^ = {nj I Tij < min(j5p, H), I < i < n, j > 1}.

Example

To illustrate the processor demand criterion, consider the example shown in
Figure 4.16, where three periodic tasks with periods 6, 8, 10, and processing
times 3, 2, 5, respectively, are executed under EDF. In this case, the set check­
ing points for equation (4.14) is given by 7^ = {6,8,10,12,16,. . .}. Applying
Theorem 4.2 we have the results shown in Table 4.4.

106 C H A P T E R 4

4.5.2 Deadlines less than periods

The processor demand criterion can easily be extended to deal with tasks with
deadlines different than periods. For example, consider the two tasks shown in
Figure 4.17. In this case, the processor demands for tasks ri and T2 in [0, L]
are clearly given by

Ci(0,L) =

C2(0,L) =

In general, we can write

Ci(0,L) =
L~Di

+ l]Ci (4.17)

1:2 ^ ^ j V ^^B Y ^^B

Figure 4.17 Processor demand when deadlines are less than periods.

In summary, the schedulability of a generic task set can be tested by the fol­
lowing theorem [BRH90], whose proof is very similar to the one shown for
Theorem 4.2.

Theorem 4.3 If V = {di^k \ di^k = kTi + Di, di^k < min{Bp,H), I < i <
n, k > 0}, then a set of periodic tasks with deadlines less than periods is
schedulable by EDF if and only if

(4.18)

Periodic Task Scheduling 107

4.6 SUMMARY

In conclusion, the problem of scheduling a set of independent and preemptable
periodic tasks has been solved both under fixed and dynamic priority assign­
ments. The Rate-Monotonic (RM) algorithm is optimal among all fixed-priority
assignments, whereas the Eearliest Deadline First (EDF) algorithm is optimal
among all dynamic priority assignments. When deadlines are equal to periods,
the guarantee test for both algorithms can be performed in 0{n) (being n the
number of periodic tasks in the set), using the processor utilization approach.
The test for RM, however, provides only a sufficient condition for guaranteeing
the feasibility of the schedule.

In the general case in which deadlines can be less or equal to periods, the
schedulability analysis becomes more complex and can be performed in pseudo-
polynomial time [BRH90]. Under fixed-priority assignments, the feasibility of
the task set can be tested using the response time approach, which uses a
recurrent formula to calculate the worst-case finishing time of any task. Under
dynamic priority assignments, the feasibility can be tested using the processor
demand approach. In both cases the test provides a necessary and sufficient
condition. The various methods are summarized in Figure 4.18.

D ; < T ;

Static

priority

Dynamic

priority

RM

Processor utilization approach

U < n(2 ^^''- J)

EDF

Processor utilization approach

U < J

DM

Response time approach

i- J

Cj <

EDF *

Processor demand approach

L- £>,

-)

Di

Ci

Figure 4.18 Summary of guarantee tests for periodic tasks.

108 C H A P T E R 4

Exercises

4.1 Verify the schedulability and construct the schedule according to the RM
algorithm for the following set of periodic tasks:

4.3

4.4

4.5

4.6

4.7

4.8

~c~]
Ti 1

1 Ti

1
3

T2

1
4

4.2 Given the following set of periodic tasks

~cr]
Ti

1 '̂ i
["T"

4

T2

2
6

T3

3
10 j

verify the schedulability under RM using the processor utilization ap­
proach. Then, perform the worst-case response time analysis and con­
struct the schedule.

Verify the schedulability under RM and construct the schedule of the
following task set:

~c~^
Ti

'̂ 1

1
4

^2

2
6

T3

3
8

Verify the schedulability under EDF of the task set shown in Exercise
4.3, and then construct the corresponding schedule.

Compute the busy period for the task set described in Exercise 4.2.

Compute the busy period for the task set described in Exercise 4.3.

Verify the schedulability under EDF and construct the schedule of the
following task set:

~c~\
Di
Ti

r\

r2~
5
6

r2

2
4
8

T3

4
8
12

Verify the schedulability of the task set described in Exercise 4.7 using
the Deadline-Monotonic algorithm. Then construct the schedule.

5
FIXED-PRIORITY SERVERS

5.1 INTRODUCTION

The scheduling algorithms treated in the previous chapters deal with homo­
geneous sets of tasks, where all computational activities are either aperiodic
or periodic. Many real-time control applications, however, require both types
of processes, which may also differ for their criticalness. Typically, periodic
tasks are time-driven and execute critical control activities with hard timing
constraints aimed at guaranteeing regular activation rates. Aperiodic tasks are
usually event-driven and may have hard, soft, or non-real-time requirements
depending on the specific application.

When dealing with hybrid task sets, the main objective of the kernel is to
guarantee the schedulability of all critical tasks in worst-case conditions and
provide good average response times for soft and non-real-time activities. Off­
line guarantee of event-driven aperiodic tasks with critical timing constraints
can be done only by making proper assumptions on the environment; that is,
by assuming a maximum arrival rate for each critical event. This implies that
aperiodic tasks associated with critical events are characterized by a minimum
interarrival time between consecutive instances, which bounds the aperiodic
load. Aperiodic tasks characterized by a minimum interarrival time are called
sporadic. They are guaranteed under peak-load situations by assuming their
maximum arrival rate.

If the maximum arrival rate of some event cannot be bounded a priori, the
associated aperiodic task cannot be guaranteed off-line, although an on-line
guarantee of individual aperiodic requests can still be done. Aperiodic tasks
requiring on-line guarantee on individual instances are called firm. Whenever

110 C H A P T E R 5

a firm aperiodic request enters the system, an acceptance test can be executed
by the kernel to verify whether the request can be served within its deadhne.
If such a guarantee cannot be done, the request is rejected.

In the next sections, we present a number of scheduhng algorithms for handling
hybrid task sets consisting of a subset of hard periodic tasks and a subset of soft
aperiodic tasks. All algorithms presented in this chapter rely on the following
assumptions:

• Periodic tasks are scheduled based on a fixed-priority assignment; namely,
the Rate-Monotonic (RM) algorithm;

• All periodic tasks start simultaneously at time ^ = 0 and their relative
deadlines are equal to their periods.

• Arrival times of aperiodic requests are unknown.

• When not explicitly specified, the minimum interarrival time of a sporadic
task is assumed to be equal to its deadline.

Aperiodic scheduling under dynamic priority assignment is discussed in the
next chapter.

5.2 BACKGROUND SCHEDULING

The simplest method to handle a set of soft aperiodic activities in the presence
of periodic tasks is to schedule them in background; that is, when there are not
periodic instances ready to execute. The major problem with this technique
is that, for high periodic loads, the response time of aperiodic requests can
be too long for certain applications. For this reason, background scheduling
can be adopted only when the aperiodic activities do not have stringent timing
constraints and the periodic load is not high.

Figure 5.1 illustrates an example in which two periodic tasks are scheduled by
RM, while two aperiodic tasks are executed in background. Since the processor
utilization factor of the periodic task set {U — 0.73) is less than the least upper
bound for two tasks {Uiuhi"^) — 0.83), the periodic tasks are schedulable by
RM. Notice that the guarantee test does not change in the presence of aperi­
odic requests, since background scheduling does not influence the execution of
periodic tasks.

Fixed-Priority Servers 111

^1 i H L

-^2

aperiodic | 1
requests

—I r
2 4 6 10 12 14 16 18 20 22 24

Figure 5.1 Example of background scheduling of aperiodic requests under
Rate Monotonic.

Periodic Tasks

High-Priority Queue

Aperiodic Tasks

Low-Priority Queue

Figure 5.2 Scheduling queues required for background scheduling.

The major advantage of background scheduling is its simpUcity. As shown in
Figure 5.2, two queues are needed to implement the scheduhng mechanism:
one (with a higher priority) dedicated to periodic tasks and the other (with
a lower priority) reserved for aperiodic requests. The two queueing strategies
are independent and can be realized by different algorithms, such as RM for
periodic tasks and First Come First Served (FCFS) for aperiodic requests.
Tasks are taken from the aperiodic queue only when the periodic queue is
empty. The activation of a new periodic instance causes any aperiodic tasks to
be immediately preempted.

5.3 POLLING SERVER

The average response time of aperiodic tasks can be improved with respect to
background scheduling through the use oih server; that is, a periodic task whose
purpose is to service aperiodic requests as soon as possible. Like any periodic
task, a server is characterized by a period Ts and a computation time Cg, called

112 C H A P T E R 5

I C i I T

T 1 1 4

^2 2 6

Server

T . = 5

^1 H H_ H_ M_

^2

aperiodic ^ 2
requests

I 1 A 2 A 1

p I . , n n I, >i
0 2 4 6 8 10 12 14 16 18 20 22 24

0 2 4 6 8 10 12 14 16 18 20 22 24

Figure 5.3 Example of a Polling Server scheduled by RM.

server capacity. In general, the server is scheduled with the same algorithm used
for the periodic tasks, and, once active, it serves the aperiodic requests within
the limit of its server capacity. The ordering of aperiodic requests does not
depend on the scheduling algorithm used for periodic tasks, and it can be done
by arrival time, computation time, deadline, or any other parameter.

The Polling Server (PS) is an algorithm based on such an approach. At regu­
lar intervals equal to the period T^, PS becomes active and serves any pending
aperiodic requests within the limit of its capacity Cs • If no aperiodic requests
are pending, PS suspends itself until the beginning of its next period, and the
time originally allocated for aperiodic service is not preserved for aperiodic ex­
ecution but is used by periodic tasks [LSS87, SSL89]. Note that if an aperiodic
request arrives just after the server has suspended, it must wait until the be­
ginning of the next polling period, when the server capacity is replenished at
its full value.

Figure 5.3 illustrates an example of aperiodic service obtained through a Polling
Server scheduled by RM. The aperiodic requests are reported on the third
row, whereas the fourth row shows the server capacity as a function of time.
Numbers beside the arrows indicate the computation times associated with the
requests.

Fixed-Priority Servers 113

In the example shown in Figure 5.3, the PoUing Server has a period Tg = 5
and a capacity C5 = 2, so it runs with an intermediate priority with respect
to the other periodic tasks. At time ^ — 0, the processor is assigned to task
Ti, which is the highest-priority task according to RM. At time t = 1, TI
completes its execution and the processor is assigned to PS. However, since no
aperiodic requests are pending, the server suspends itself and its capacity is
used by periodic tasks. As a consequence, the request arriving at time t = 2
cannot receive immediate service but must wait until the beginning of the
second server period {t = 5). At this time, the capacity is replenished at its
full value {Cs = 2) and used to serve the aperiodic task until completion. Note
that, since the capacity has been totally consumed, no other aperiodic requests
can be served in this period; thus, the server becomes idle.

The second aperiodic request receives the same treatment. However, note that
since the second request only uses half of the server capacity, the remaining
half is discarded because no other aperiodic tasks are pending. Also note that,
at time t — 16, the third aperiodic request is preempted by task r i , and the
server capacity is preserved.

5.3.1 Schedulability analysis

We first consider the problem of guaranteeing a set of hard periodic tasks in
the presence of soft aperiodic tasks handled by a Polling Server. Then we show
how to derive a schedulability test for firm aperiodic requests.

The schedulability of periodic tasks can be guaranteed by evaluating the inter­
ference introduced by the Polling Server on periodic execution. In the worst
case, such an interference is the same as the one introduced by an equivalent
periodic task having a period equal to Tg and a computation time equal to Cg-
In fact, independently of the number of aperiodic tasks handled by the server,
a maximum time equal to Cs is dedicated to aperiodic requests at each server
period. As a consequence, the processor utilization factor of the Polling Server
is Us = Cs/Ts, and hence the schedulability of a periodic set with n tasks and
utilization Up can be guaranteed if

Up-]-Us < Uiub{n-\-l).

If periodic tasks (including the server) are scheduled by RM, the schedulability
test becomes

J2^ + ^ < (n + l)[2iA"+i)-l].
1 = 1 * *

114 CHAPTER 5

A more precise schedulability test for aperiodic servers that behave hke a pe­
riodic task will be derived in Section 5.5 for the Priority Exchange algorithm.
Note that more Polling Servers can be created and execute concurrently on dif­
ferent aperiodic task sets. For example, a high-priority server could be reserved
for a subset of important aperiodic tasks, whereas a lower-priority server could
be used to handle less important requests. In general, in the presence of m
servers, a set of n periodic tasks is guaranteed if

m

Up + Y^Usj < Uiub{n + m).

5.3.2 Aperiodic guarantee

In order to analyze the schedulability of firm aperiodic activities under a Polling
Server, consider the case of a single aperiodic request J a, arrived at time Va,
with computation time Ca and deadline D^. Since an aperiodic request can
wait for at most one period before receiving service, if Ca < Cs the request is
certainly completed within two server periods. Thus, it is guaranteed if

2Ts < Da-

For arbitrary computation times, the aperiodic request is certainly completed
in \Ca/Cs] server periods; hence, it is guaranteed if

Ts-h
C^
Cs

Ts <Da

This schedulability test is only sufficient because it does not consider when
the server executes within its period. A sufl[icient and necessary schedulability
test can be found for the case in which PS has the highest priority among the
periodic tasks; that is, the shortest period. In this case, in fact, it always exe­
cutes at the beginning of its periods, so that the finishing time of the aperiodic
request can be estimated precisely. As shown in Figure 5.4, by defining

Ga

Cs

Ta^

T

the initial delay of request J a is given by {GaTg — Va)- Then, since FaCs is the
total capacity consumed by Ja in Fa server periods, the residual execution to
be done in the next server period is

^a — ^a ^ ^a^s-

Fixed-Priority Servers 115

Cs L L L L
GaT.s FaTs

Figure 5.4 Calculation of the finishing time of an aperiodic request scheduled
by a Polling Server having the highest priority.

As a consequence, the aperiodic finishing time can be computed as

fa = GaTs + FaTs + Ra,

and its schedulabihty can be guaranteed if and only if fa < da, being da the ab­
solute deadline of the request {da = Ta + Da). Thus, the resulting schedulabihty
condition is

{Fa+Ga)Ts-\-Ra < da.

This result can be extended to a set of firm aperiodic requests ordered in a
queue by increasing deadline. In this case, at any time t, the total aperiodic
computation that has to be served in any interval [t,dk] is equal to the sum of
the remaining processing times Ci{t) of the tasks with deadline di < dk] that is,

Cape{t,dk) = }^Ci{t),

i=l

Note that, if Cs{t) is the residual server capacity at time t and PS has the
highest priority, a portion of Cape equal to Cs{t) is immediately executed in the
current period. Hence, the finishing time of request Jk can be computed as

fk =
t + Cape{t.dk) if Cape{t.dk) < Cs{t)

{Fk + Gk)Ts + Rk otherwise.

where
Fk =

Gk =

Ca,,rXt,dK,)-C,{t)
C,

y Rk = Cape{t^dk) — Cs{t) — FkCg.

Once all finishing times have been calculated, the set of firm aperiodic requests
is guaranteed at time t if and only if

fk<dk V/c = l , . . .

116 C H A P T E R 5

5.4 DEFERRABLE SERVER

The Deferrable Server (DS) algorithm is a service technique introduced by
Lehoczky, Sha, and Strosnider in [LSS87, SLS95] to improve the average re­
sponse time of aperiodic requests with respect to poUing service. As the PolHng
Server, the DS algorithm creates a periodic task (usually having a high prior­
ity) for servicing aperiodic requests. However, unlike polling, DS preserves its
capacity if no requests are pending upon the invocation of the server. The
capacity is maintained until the end of the period, so that aperiodic requests
can be serviced at the same server's priority at anytime, as long as the capacity
has not been exhausted. At the beginning of any server period, the capacity is
replenished at its full value.

The DS algorithm is illustrated in Figure 5.5 using the same task set and the
same server parameters {Cs — 2, Ts = 5) considered in Figure 5.3. At time
^ = 1, when Ti is completed, no aperiodic requests are pending; hence, the
processor is assigned to task r2. However, the DS capacity is not used for
periodic tasks, but it is preserved for future aperiodic arrivals. Thus, when
the first aperiodic request arrives at time ^ = 2, it receives immediate service.
Since the capacity of the server is exhausted at time ^ = 4, no other requests
can be serviced before the next period. At time ^ = 5, C^ is replenished at
its full value and preserved until the next arrival. The second request arrives
at time ^ = 8, but it is not served immediately because ri is active and has a
higher priority.

Thus, DS provides much better aperiodic responsiveness than polling, since it
preserves the capacity until it is needed. Shorter response times can be achieved
by creating a Deferrable Server having the highest priority among the periodic
tasks. An example of high-priority DS is illustrated in Figure 5.6. Notice that
the second aperiodic request preempts task r i , being C^ > 0 and Ts < Ti,
and it entirely consumes the capacity at time ^ = 10. When the third request
arrives at time f = 11, the capacity is zero; hence, its service is delayed until
the beginning of the next server period. The fourth request receives the same
treatment because it arrives at time t = 16, when Cs is exhausted.

5.4.1 Schedulability analysis

Any schedulability analysis related to the Rate-Monotonic algorithm has been
done on the implicit assumption that a periodic task must execute whenever
it is the highest-priority task ready to run. It is easy to see that the De-

Fixed-Priority Servers 117

I C i I T

'C 1 1 4

^2 2 6

Server

Cs = 2

-̂ 1

-̂ 2

b b b b

aperiodic | 2
requests

t 1 I 2

-f—1—^—^—r ^

C s

n — • — I —
0 2 4 6 8 10 12 14 16 18 20 22 24

0 2 4 6 8 10 12 14 16 18 20 22 24

Figure 5.5 Example of a Deferrable Server scheduled by RM.

-f 1

^ 2

1 c
2

3

T i

8

10

Server

'Cl

^2

aperiodic
requests

I — ' — I — ' — r

A2

T^—r W
A 1

'—r^—I— '—I—'—I—
0 2 4 6 8 10 12 14 16 18 20 22 24

0 2 4 6 10 12 14 16 18 20 22 24

Figure 5.6 Example of high-priority Deferrable Server.

118 C H A P T E R 5

X2
' ' 1

liii llij
1 ' 1 1

0 2 4 6

aperiodic requests

10 12 14 16 18 20

(a)

DS

^2

C s

time
^ overflow I

0 2 4 6 10 12 14 16 18 20

I " I ' I ' ' l ' I * I ^ 1 ' I ' p s ^ p m ^
0 2 4 6 8 10 12 14 16 18 20

(b)

Figure 5.7 DS is not equivalent to a periodic task. In fact, the periodic set
{'Ti, T2} is schedulable by RM (a); however, if we replace r i with DS, T2 misses
its deadline (b).

ferrable Server violates this basic assumption. In fact, the schedule i l lustrated
in Figure 5.6 shows tha t DS does not execute at t ime ^ = 0, al though it is the
highest-priority task ready to run, but it defers its execution until t ime ^ = 5,
which is the arrival t ime of the first aperiodic request.

If a periodic task defers its execution when it could execute immediately, then a
lower-priority task could miss its deadline even if the task set was schedulable.
Figure 5.7 illustrates this phenomenon by comparing the execution of a periodic
task to the one of a Deferrable Server with the same period and execution t ime.

The periodic task set considered in this example consists of two tasks, r i and
r2, having the same computat ion t ime (Ci = C2 = 2) and different periods
(Ti =: 4, T2 = 5). As shown in Figure 5.7a, the two tasks are schedulable by
RM. However, if r i is replaced with a Deferrable Server having the same period
and execution t ime, the low-priority task T2 can miss its deadline depending
on the sequence of aperiodic arrivals. Figure 5.7b shows a part icular sequence

Fixed-Priority Servers 119

of aperiodic requests that cause T2 to miss its deadline at time ^ = 15. This
happens because, at time ^ = 8, DS does not execute (as a normal periodic
task would do) but preserves its capacity for future requests. This deferred
execution, followed by the servicing of two consecutive aperiodic requests in the
interval [10,14], prevents task r2 from executing during this interval, causing
its deadline to be missed.

Such an invasive behavior of the Deferrable Server results in a lower schedula-
bility bound for the periodic task set. The calculation of the least upper bound
of the processor utilization factor in the presence of Deferrable Server is shown
in the next section.

Calculation of Uiuh for RM+DS

The schedulability bound for a set of periodic tasks with a Deferrable Server
is derived under the same basic assumptions used in Chapter 4 to compute
Uiuh for RM. To simplify the computation of the bound for n tasks, we first
determine the worst-case relations among the tasks, and then we derive the
lower bound against the worst-case model [LSS87].

Consider a set of n periodic tasks, r i , . . . , r n , ordered by increasing periods,
and a Deferrable Server with a higher priority. The worst-case condition for the
periodic tasks, as derived for the RM analysis, is such that Ti < T-n < 2Ti. In
the presence of a DS, however, the derivation of the worst-case is more complex
and requires the analysis of three different cases, as discussed in [SLS95]. For
the sake of clarity, here we analyze one case only, the most general, in which
DS may execute three times within the period of the highest-priority periodic
task. This happens when DS defers its service at the end of its period and
also executes at the beginning of the next period. In this situation, depicted
in Figure 5.8, the full processor utilization is achieved by the following tasks'
parameters:

Ci = T2- Ti
C2 = Ts — T2

^n — l — J-n -^n — 1
n - 1 ^ _ 3T.+

2 [C„ = T,-Cs-E7=lCi = ^T„+T,-2T„

120 C H A P T E R 5

Ds b^i^.?^

t i

•^2

- J = l
Cs + Ts

Figure 5.8 Worst-ccise task relations for a Deferrable Server.

Hence, the resulting utilization is

^ S • /-n I • • • "I ,T_, I
Ti Tn-l 2Tn

Defining

= C/. + — + . . . + ;r; + (- rp + -) ; ^ - n.

r i?s — Ti/Ts

Ri = Ti+i/Ti

[K = \{ZT,ITi + 1)

and noting that

R\R2 • • -Rn-l —

the utilization factor may be written as

n - l

U -^^ + E^^ + ^
K

i?2 . . . Rn-l
n.

Following the approach used for RM, we minimize U over Ri, i = 1,..
Hence,

dU _ K

9Rr " R^iir^^-Rj)'

. , n - 1 .

Fixed-Priority Servers 121

Thus, defining P = R1R2 -.. Rn-i^ U is minimum when

f RiP = K
R2P = K

Rn-lP = K

that is, when all Ri have the same value:

R\ — R2 = ... — Rn-i — K /".

Substituting this value in U we obtain

Uiuh-Us = {n-l)K'/^ +
K

that is.

Now, noting that

we have

A^(l-l/n)

= n[K^I'' - 1)

n =

TT — ^ — ^ 1 ~ ^s Rs~l

R, = {2Us + l).

Thus, K can be rewritten as

K =
_ 3 _ 1 \ _ Us+ 2
2Rs ^2) ~ 2Us-¥l'

and finally

Uiuh = Us +n
Us+ 2

2Us-^l

l / n

- 1

(5.1)

(5.2)

Taking the limit as n -> 00, we find the worst-case bound as a function of Us
to be given by

hm Uiut = Us + H^^f^)' (5.3)
n ^ o o ZUs -\- 1

Thus, given a set of n periodic tasks and a Deferrable Server with utilization
factors Up and Us, respectively, the schedulability of the periodic task set is
guaranteed under RM if

Up + Us < Uiub

122 C H A P T E R 5

a.

—i

0.95

0.9

0.85

0.8

0.75

0.7

0.65

DS bound
RM bound

- X
y/^ J

y \

1

J

0.4 0.6

Server Utilization factor Us

Figure 5.9 Schedulability bound for periodic tasks and DS as a function of
the server utilization factor Us.

that is, if

Up < ln(
Us + 2 .

(5.4)

A plot of equation (5.3) as a function of Us is shown in Figure 5.9. For compar­
ison, the RM bound is also reported in the plot. Notice that for Ug < OA the
presence of DS worsens the RM bound, whereas for Ug > 0.4 the RM bound is
improved.

Deriving equation (5.3) with respect to Us, we can find the absolute minimum
value of Uiub'-

dUiuh ^ {2Us -f 1) {2Us + 1) - 2{Us + 2) ^ 2U^ + 5Us - 1
dUs iUs + 2) (2/7,+ 1)2 (^, + 2)(2^, + l) '

The value of Us that minimizes the above expression is

SO the minimum value of Uiuh is t/*^̂ — 0.652.

Fixed-Priority Servers 123

5.4.2 Aperiodic guarantee

The schedulability analysis for firm aperiodic tasks is derived by assuming a
high-priority Deferrable Server. A guarantee test for a single request is first
derived and then extended to a set of aperiodic tasks. Since DS preserves its
execution time, let Cs{t) be the value of its capacity at time t. Then, when
a firm aperiodic request Ja{Ca,Da) enters the system at time t = Va (and no
other requests are pending), three cases can occur:

1. Ca < Cs{t). Hence, Ja completes at time fa = t -{- Ca-

2. Ca > Cs{t) and the capacity is completely discharged within the current
period. In this case, a portion Aa = Cs{t) of Ja is executed in the current
server period.

3. Ca > Cs{t), but the period ends before the capacity is completely dis­
charged. In this case, the portion of Ja executed in the current server
period is Aa = GaTg - Va, where Ga = \t/Ts].

In the last two cases, depicted in Figure 5.10, the portion of Ja executed in the
current server period can be computed as

Aa = mm[cs{t),{GaTs - Ta)].

Using the same notation introduced during polling analysis, the finishing time
fa of request Ja can then be derived as follows (see Figure 5.11):

fa =
ra+Ca iiCa<Cs{t)

(Fa + Ga)Ts + Ra Otherwise,

where

Thus, the schedulabiUty of a single aperiodic request is guaranteed if and only
iifa<ra+Da.

124 C H A P T E R 5

C s C s (t)

Figure 5.10 Execution of J a in the first server period when Ca > Cs{t).

A . R n

L ^ t
-H f, d .

Figure 5.11 Calculation of the finishing time of Ja under DS.

To guarantee a set of firm aperiodic requests note that, at any time f, the total
aperiodic computation that has to be served in any interval [t,dk] is equal to the
sum of the remaining processing times Ci{t) of the tasks with deadline di < dk\
that is,

k

Cape{t,dk) = ^Ci{t).

And using the same approach adopted for the Polling Server, we define:

Ak = mm[cs{t),{GaTs-ra)]

Rk — Cape{t^dk) — Ak — FkCs-

Hence, the finishing time of the /cth request is

fk
t + c, ape n ^ape S ^sV')

[{Fk + Gk)Ts + Rk otherwise.

Thus, a set of firm aperiodic requests is guaranteed at time t, if and only if

fk <dk V/c = l , . . . , n .

Fixed-Priority Servers 125

5.5 PRIORITY EXCHANGE

The Priority Exchange (PE) algorithm is a scheduUng technique introduced by
Lehoczky, Sha, and Strosnider in [LSS87] for servicing a set of soft aperiodic
requests along with a set of hard periodic tasks. With respect to DS, PE has
a slightly worse performance in terms of aperiodic responsiveness but provides
a better schedulability bound for the periodic task set.

Like DS, the PE algorithm uses a periodic server (usually at a high priority)
for servicing aperiodic requests. However, it differs from DS in the manner
in which the capacity is preserved. Unlike DS, PE preserves its high-priority
capacity by exchanging it for the execution time of a lower-priority periodic
task.

At the beginning of each server period, the capacity is replenished at its full
value. If aperiodic requests are pending and the server is the ready task with
the highest priority, then the requests are serviced using the available capacity;
otherwise Cs is exchanged for the execution time of the active periodic task
with the highest priority.

When a priority exchange occurs between a periodic task and a PE server, the
periodic task executes at the priority level of the server while the server accu­
mulates a capacity at the priority level of the periodic task. Thus, the periodic
task advances its execution, and the server capacity is not lost but preserved
at a lower priority. If no aperiodic requests arrive to use the capacity, priority
exchange continues with other lower-priority tasks until either the capacity is
used for aperiodic service or it is degraded to the priority level of background
processing. Since the objective of the PE algorithm is to provide high respon­
siveness to aperiodic requests, all priority ties are broken in favor of aperiodic
tasks.

Figure 5.12 illustrates an example of aperiodic scheduling using the PE algo­
rithm. In this example, the PE server is created with a period T^ = 5 and a
capacity Cg = l- Since the aperiodic time managed by the PE algorithm can
be exchanged with all periodic tasks, the capacity accumulated at each priority
level as a function of time is represented in overlapping with the schedule of
the corresponding periodic task. In particular, the first timeline of Figure 5.12
shows the aperiodic requests arriving in the system, the second timeline visu­
alizes the capacity available at PE's priority, whereas the third and the fourth
ones show the capacities accumulated at the corresponding priority levels as a
consequence of the priority exchange mechanism.

126 C H A P T E R 5

aperiodic
requests

W
t i

2

T2 '1

'^l

-^2

1 Ci|
4

8

i T j 1

10

20

k

^

-t 1 r-

Server

C s = 1

T , = 5

P ^

T — ' — I — ' — r

n i i I n -1 1 r-

'I < I

y^
1 • I ' I ^"•••T""^^

8 10 12 14 16 18 2 0 0 2 4 6

Figure 5.12 Example of aperiodic service under a PE server.

At time ^ = 0, the PE server is brought at its full capacity, but no aperiodic
requests are pending, so Cg is exchanged with the execution time of task r i .
As a result, ri advances its execution and the server accumulates one unit of
time at the priority level of r i . At time t = 4^ TI completes and T2 begins to
execute. Again, since no aperiodic tasks are pending, another exchange takes
place between ri and r2. At time ^ = 5, the capacity is replenished at the server
priority, and it is used to execute the first aperiodic request. At time ^ = 10,
Cs is replenished at the highest priority, but it is degraded to the priority level
of Ti for lack of aperiodic tasks. At time t = 12, the capacity accumulated
at the priority level of ri is used to execute the second aperiodic request. At
time ^ = 15, a new high-priority replenishment takes place, but the capacity is
exchanged with the execution time of T2. Finally, at time ^ = 18, the remaining
capacity accumulated at the priority level of T2 is gradually discarded because
no tasks are active.

Note that the capacity overlapped to the schedule of a periodic task indicates,
at any instant, the amount of time by which the execution of that task is
advanced with respect to the case of no exchange.

Another example of aperiodic scheduling under the PE algorithm is depicted
in Figure 5.13. Here, at time ^ = 5, the capacity of the server immediately

Fixed-Priority Servers 127

aperiodic
requests

k
1:1 ^ ^ v

2 i

' 2 '
• F ;

^1

'^2

1 Cjj

2

12

| T i 1

10

20

1—'—\—:—I—'—r

Server

C , = 1

T s = 5

A 2 A 1

"T F««| F™! ^ 1 ^ p « ^

-f^— \—i—I—1^1—'—I—^

jztfl
1—'—r -I \ r-

' I '—r^—1—'—I—'—r—'—r
0 2 4 6 8 10 12 14 16 18 20

Figure 5.13 Example of aperiodic service under a PE server.

degrades down to the lowest-priority level of T2, since no aperiodic requests are
pending and ri is idle. At time ^ = 11, when request Ji arrives, it is interesting
to observe that the first unit of computation time is immediately executed by
using the capacity accumulated at the priority level of r i . Then, since the
remaining capacity is available at the lowest-priority level and ri is still active,
Ji is preempted by TI and is resumed at time ^ = 13, when ri completes.

5,5.1 Schedulability analysis

The schedulability bound for a set of periodic tasks running along with a Prior­
ity Exchange server is derived with the same technique used for the Deferrable
Server. The least upper bound of the processor utilization factor in the pres­
ence of PE is calculated by assuming that PE is the highest-priority task in
the system. To simplify the computation of the bound, the worst-case relations
among the tasks is first determined, and then the lower bound is computed
against the worst-case model [LSS87].

128 C H A P T E R 5

PE

t i

1:2

C i Ci

IZZL

Cs + Ts

Figure 5.14 Worst-case tasks' relations under Priority Exchange.

Calculation of Uiub for PE+RM

Consider a set of n periodic tasks, n , . . . ,rn, ordered by increasing periods,
and a PE server with a higher priority. The worst-case phasing and period
relations for the periodic tasks are the same as the ones derived for the RM
analysis; hence, Tg < Tn < 2T5. The only difference with DS is that a PE
server can execute at most two times within the period of the highest-priority
periodic task. Hence, the worst-case situation for a set of periodic tasks that
fully utilize the processor is the one illustrated in Figure 5.14, where tasks are
characterized by the following parameters:

Cs
Cx
C2

=
=
=

Ti
T2
Tz

-Ts
-Ti
-T2

^n—1 — J-n ~ J-n — 1
rp /^ \—\n—1 ^ OT̂ '~P

The resulting utilization is then

— TT j_ 2 ~ -tj In — J-n-1 ^J-s — J-n

J-l

t n - 1 T
-L n

+ (^=^)—-n.
-l-n-l -^1 J-n

Fixed-Priority Servers 129

Defining

and noting that

f Rs = Ti/Ts
J Ri = Ti^i/Ti

[K = 2r , / r i = 21 Rs

R1R2 ' ' . Rn-1 —

the utihzation factor may be written as

u^Us + J2^'-^
i=l

R1R2 • ' 'Rn-1 — n.

Since this is the same expression obtained for DS, the least upper bound is

Uiut = Us + n{K'/''-l). (5.5)

Equation (5.5) differs from equation (5.1) only for the value of A'. And noting
that

Cs T\ — Ts Us
Ts

Rs — 1,

K can be rewritten as

K^l
Rs Us + l

Thus, finally

Uiuh = Us-\-n
Us-^l

l / n

(5.6)

Taking the limit as n -> 00, we find the worst-case bound as a function of Us
to be given by

lim Uiub = Us + \ n (- ^) . (5.7)

Thus, given a set of n periodic tasks and a Priority Exchange server with
utilization factors Up and Us, respectively, the schedulability of the periodic
task set is guaranteed under RM if

Up + Us<Us + \n^^ ^ ^

that is, if

Up < ln(
Us + 1

(5.8)

130 C H A P T E R 5

3

<s
s. o.
D

<D

-•

0.95

0.9

0.85

0.8

0.75

0.7

0.65

1 1

PE bound
RM bound

-

— 1 1

y
y^ J

J

H

1

—1 1 1

Server Utilization factor Us

Figure 5.15 Schedulability bound for periodic tasks and PE as a function of
the server utilization factor Vs-

A plot of equation (5.7) as a function of Vg is shown in Figure 5.15. For compar­
ison, the RM bound is also reported in the plot. Notice that the schedulability
test expressed in equation (5.8) is also valid for the Polling Server and, in
general, for all servers that behave like a periodic task.

5.5.2 P E versus DS

The DS and the PE algorithms represent two alternative techniques for en­
hancing aperiodic responsiveness over traditional background and polling ap­
proaches. Here, these techniques are compared in terms of performance, schedu­
lability bound, and implementation complexity, in order to help a system de­
signer in selecting the most appropriate method for a particular real-time ap­
plication.

The DS algorithm is much simpler to implement than the PE algorithm, be­
cause it always maintains its capacity at the original priority level and never
exchanges its execution time with lower-priority tasks, as the PE algorithm
does. The additional work required by PE to manage and track priority ex­
changes increases the overhead of PE with respect to DS, especially when the
number of periodic tasks is large. On the other hand, DS does pay schedulabil­
ity penalty for its simplicity in terms of a lower utilization bound. This means

Fixed-Priority Servers 131

Periodic Utilization factor Up

Figure 5.16 Maximum server utilization as a function of the periodic load.

that, for a given periodic load Up, the maximum size of a DS server that can
still guarantee the periodic tasks is smaller than the maximum size of a PE
server.

The maximum size of a DS and a PE server as a function of Up can easily be
derived from the corresponding schedulability tests computed above. For exam­
ple, from the DS schedulability test expressed in equation (5.4), the maximum
utilization for DS turns out to be

2 - e^-

2e^ 1

whereas, from equation (5.8), the maximum PE utilization is

2 - e^^^
U pip — 'PE oU,,

(5.10)

A plot of these two equations as a function of Up is shown in Figure 5.16.
Notice that, when Up = 0.6, the maximum utilization for PE is 10%, whereas
DS utilization cannot be greater than 7%. If instead Up = 0.3, PE can have
48% utilization, while DS cannot go over 38%. The performance of the two
algorithms in terms of average aperiodic response times is shown in Section
5.9.

As far as firm aperiodic tasks are concerned, the schedulability analysis under
PE is much more complex than under DS. This is due to the fact that, in

132 C H A P T E R 5

general, when an aperiodic request is handled by the PE algorithm, the server
capacity can be distributed among n + 1 priority levels. Hence, calculating the
finishing time of the request might require the construction of the schedule for
all the periodic tasks up to the aperiodic deadline.

5.6 SPORADIC SERVER

The Sporadic Server (SS) algorithm is another technique, proposed by Sprunt,
Sha, and Lehoczky in [SSL89], which allows to enhance the average response
time of aperiodic tasks without degrading the utilization bound of the periodic
task set.

The SS algorithm creates a high-priority task for servicing aperiodic requests
and, like DS, preserves the server capacity at its high-priority level until an
aperiodic request occurs. However, SS differs from DS in the way it replenishes
its capacity. Whereas DS and PE periodically replenish their capacity to its
full value at the beginning of each server period, SS replenishes its capacity
only after it has been consumed by aperiodic task execution.

In order to simplify the description of the replenishment method used by SS,
the following terms are defined:

Pexe It denotes the priority level of the task which is currently execut­
ing.

Ps It denotes the priority level associated with SS.

Active SS is said to be active when Pexe > Ps-

Idle SS is said to be idle when Pexe < Ps-

RT It denotes the replenishment time at which the SS capacity will
be replenished.

R A It denotes the replenishment amount that will be added to the
capacity at time RT.

Using this terminology, the capacity Cg consumed by aperiodic requests is
replenished according to the following rule:

Fixed-Priority Servers 133

• The replenishment time RT is set as soon as SS becomes active and Cs > 0.
Let IA be such a time. The value of RT is set equal to IA plus the server
period {RT = IA -\-TS).

• The replenishment amount RA to be done at time RT is computed when SS
becomes idle or Cs has been exhausted. Let tj be such a time. The value
of RA is set equal to the capacity consumed within the interval [tA.tj].

An example of medium-priority SS is shown in Figure 5.17. To facilitate the
understanding of the replenishment rule, the intervals in which SS is active are
also shown. At time ^ = 0, the highest-priority task ri is scheduled, and SS
becomes active. Since C^ > 0, a replenishment is set at time RTi = t-\-Ts = 10.
At time t = 1, TI completes, and, since no aperiodic requests are pending, SS
becomes idle. Note that no replenishment takes place at time RTi == 10 {RAi =
0) because no capacity has been consumed in the interval [0,1]. At time t = 4,
the first aperiodic request Ji arrives, and, since Cg > 0, SS becomes active and
the request receives immediate service. As a consequence, a replenishment is
set at RT2 — t -\-Ts — 14. Then, J\ is preempted by ri at ^ = 5, is resumed at
t — ^ and is completed at ^ =: 7. At this time, the replenishment amount to be
done at RT2 is set equal to the capacity consumed in [4, 7]; that is, RA2 — 2.

Notice that during preemption intervals SS stays active. This allows to perform
a single replenishment, even if SS provides a discontinuous service for aperiodic
requests.

At time ^ = 8, SS becomes active again and a new replenishment is set at
RT2, — t^Ts = \^. A t t = l l , S S becomes idle and the replenishment amount
to be done at RT-^, is set to RA^ — 2.

Figure 5.18 illustrates another example of aperiodic service in which SS is the
highest-priority task. Here, the first aperiodic request arrives at time i — 2 and
consumes the whole server capacity. Hence, a replenishment amount RA\ — 2
is set at RT\ = 1 0 . The second request arrives when Cg = 0. In this case, the
replenishment time RT2 is set as soon as the capacity becomes greater than
zero. Since this occurs at time i = 10, the next replenishment is set at time
RT2 = 18. The corresponding replenishment amount is established when J2
completes and is equal to RA2 = 2.

134 C H A P T E R 5

-CI

^2

1 C j l

1

4

1 Tjl

5

15

Server

5

10

10 12 14 16 18 20 22

Figure 5.17 Example of a medium-priority Sporadic Server.

Fixed-Priority Servers 135

' C 1

^ 2

1 Cj

3

4

1 T i |

10

15

Server

C,= 2

T , = 8

Figure 5.18 Example of a high-priority Sporadic Server.

5.6.1 Schedulability analysis

The Sporadic Server violates one of the basic assumptions governing the execu­
tion of a standard periodic task. This assumption requires that once a periodic
task is the highest-priority task that is ready to execute, it must execute. Like
DS, in fact, SS defers its execution and preserves its capacity when no aperiodic
requests are pending. However, we show that the replenishment rule used in SS
compensates for any deferred execution and, from a scheduling point of view,
SS can be treated as a normal periodic task with a period Ts and an execution
time Cg. In particular, the following theorem holds [SSL89]:

Theorem 5.1 (Sprunt-Sha-Lehoczky) A periodic task set that is schedula-
hle with a task TI is also schedulable if TI is replaced by a Sporadic Server with
the same period and execution time.

Proof. The theorem is proved by showing that for any type of service, SS
exhibits an execution behavior equivalent to one or more periodic tasks. Let IA
be the time at which Cs is full and SS becomes active, and let tj be the time at
which SS becomes idle, such that [^A?^/] is a continuous interval during which

136 C H A P T E R 5

SS remains active. The execution behavior of the server in the interval [tA.tj]
can be described by one of the following three cases (see Figure 5.19):

1. No capacity is consumed.

2. The server capacity is totally consumed.

3. The server capacity is partially consumed.

Case 1. If no requests arrive in [tA.ti], SS preserves its capacity and
no replenishments can be performed before time tj -\- Tg. This
means that at most Cs units of aperiodic time can be executed in
[tA.ti -\-Ts]. Hence, the SS behavior is identical to a periodic task
Ts{Cs,Ts) whose release time is delayed from IA to tj. As proved
in Chapter 4 for RM, delaying the release of a periodic task cannot
increase the response time of the other periodic tasks; therefore,
this case does not jeopardize schedulability.

Case 2. If C^ is totally consumed in [tA,t[], a replenishment of Cs units of
time will occur at time tA + Tg. Hence, SS behaves like a periodic
task with period Tg and execution time Cs released at time tA-

Case 3. If Cs is partially consumed in [tA.tj], a replenishment will occur
at time tA+Ts, and the remaining capacity is preserved for future
requests. Let CR be the capacity consumed in [̂ ,̂ tj]. In this case,
the behavior of the server is equivalent to two periodic tasks, r^
and Ty, with periods Tx = Ty = Tg, and execution times Cx — CR
and Cy — CS-CR, such that TX is released at IA and Ty is delayed
until ti. As in Case 1, the delay of Ty has no schedulability effects.

Since in any servicing situation SS can be represented by one or more periodic
tasks with period Tg and total execution time equal to Cg, the contribution
of SS in terms of processor utilization is equal to Us — Cs/Ts. Hence, from a
schedulability point of view, SS can be replaced by a periodic task having the
same utilization factor, Q

Since SS behaves like a normal periodic task, the periodic task set can be
guaranteed by the same schedulability test derived for PE. Hence, a set F of n

Fixed-Priority Servers 137

SS active

SS active

(a)

(b)

(c)

Figure 5.19 Possible SS behavior during active intervals: a. Cs is not con­
sumed; b . Cs is totally consumed; c. Cs is partially consumed.

138 C H A P T E R 5

periodic tasks with utilization factor Up scheduled along with a Sporadic Server
with utilization Us are schedulable under RM if

Up < n
Us-^1

l / n

(5.11)

For large n, F is schedulable if

For a given Up, the maximum server size that guarantees the schedulability of
the periodic tasks is

Uss = 2 f ^ + l) - 1, (5.13)
n

and for large n it becomes

Uss = 4r- 1- (5.14)

As far as firm aperiodic tasks are concerned, the schedulability analysis under
SS is not simple because, in general, the server capacity can be fragmented
in a lot of small pieces of different size, available at different times according
to the replenishment rule. As a consequence, calculating the finishing time of
an aperiodic request requires to keep track of all the replenishments that will
occur until the task deadline.

5.7 SLACK STEALING

The Slack Stealing algorithm is another aperiodic service technique, proposed
by Lehoczky and Ramos-Thuel in [LRT92], which offers substantial improve­
ments in response time over the previous service methods (PE, DS, and SS).
Unlike these methods, the Slack Stealing algorithm does not create a periodic
server for aperiodic task service. Rather it creates a passive task, referred to
as the Slack Stealer, which attempts to make time for servicing aperiodic tasks
by "stealing" all the processing time it can from the periodic tasks without
causing their deadlines to be missed. This is equivalent to stealing slack from
the periodic tasks. We recall that, if Ci{t) is the remaining computation time
at time t, the slack of a task ri is

slacki{t) = di — t — Ci{t).

Fixed-Priority Servers 139

>̂ h , . h . h , . h
2̂ r ^ T \ 1 1 p

0 2 4 6 8
1 . , n n

X 1 r ^

10 12 14 16 18 20

(a)

aperiodic
requests

I—'—I—'—I— '—r W " I—'—I—'—I—'—I—'—r

, 2
1—f—I—I—p

0 2 4 6 8

^
^—^—^—^

10 12 14 16 18 20

(b)

Figure 5.20 Example of Slack Stealer behavior: a. when no aperiodic re­
quests are pending; b . when an aperiodic request of three units arrives at time
t = 8.

The main idea behind slack steahng is that, typically, there is no benefit in early
completion of the periodic tasks. Hence, when an aperiodic request arrives,
the Slack Stealer steals all the available slack from periodic tasks and uses
it to execute aperiodic requests as soon as possible. If no aperiodic requests
are pending, periodic tasks are normally scheduled by RM. Similar algorithms
based on slack stealing have been proposed by other authors [RTL93, DTB93,
TLS95].

Figure 5.20 shows the behavior of the Slack Stealer on a set of two periodic
tasks, Ti and r2, with periods Ti = 4, T2 = 5 and execution times Ci = 1,
C2 = 2. In particular, Figure 5.20a shows the schedule produced by RM when
no aperiodic tasks are processed, whereas Figure 5.20b illustrates the case in
which an aperiodic request of three units arrives at time t = S and receives
immediate service. In this case, a slack of three units is obtained by delaying
the third instance of ri and T2.

Notice that, in the example of Figure 5.20, no other server algorithms (DS,
PE, or SS) can schedule the aperiodic requests at the highest priority and still
guarantee the periodic tasks. For example, since Up = 1/4 -h 2/5 = 0.65, the

140 C H A P T E R 5

maximum utilization factor for a sporadic server to guarantee the schedulability
of the periodic task set is (see equation (5.13)):

Uss = 2 (Y + I) ' - 1 ^ 0.14.

This means that, even with C^ = 1, the shortest server period that can be set
with this utiUzation factor is Ts = \Cs/Us] = 8, which is greater than both task
periods. Thus, the execution of the server would be equivalent to a background
service, and the aperiodic request would be completed at time 15.

5.7.1 Schedulability analysis

In order to schedule an aperiodic request Jai^a^Ca) according to the Slack-
Stealing algorithm, we need to determine the earliest time t such that at least
Ca units of slack are available in [va, t]. The computation of the slack is carried
out through the use of a slack function A{s^t), which returns the maximum
amount of computation time that can be assigned to aperiodic requests in the
interval [5, t] without compromising the schedulability of periodic tasks.

Figure 5.21 shows the slack function at time 5 = 0 for the periodic task set
considered in the previous example. For a given 5, A{s,t) is a non-decreasing
step function defined over the hyperperiod, with jump points corresponding to
the beginning of the intervals where the slack is available. As s varies, the slack
function needs to be recomputed, and this requires a relatively large amount of
calculation, especially for long hyperperiods. Figure 5.22 shows how the slack
function A{s,t) changes at time 5 = 6 for the same periodic task set.

According to the original algorithm proposed by Lehoczky and Ramos-Thuel
[LRT92], the slack function at time 5 = 0 is precomputed and stored in a ta­
ble. During runtime, the actual function A{s^t) is then computed by updating
A{0^t) based on the periodic execution time, the aperiodic service time, and
the idle time. The complexity for computing the current slack from the ta­
ble is 0{n), where n is the number of periodic tasks; however, depending on
the periods of the tasks, the size of the table can be too large for practical
implementations.

A dynamic method of computing slack has been proposed by Davis, Tindell,
and Burns in [DTB93]. According to this algorithm, the available slack is com­
puted whenever an aperiodic requests enters the system. This method is more
complex than the previous static approach, but it requires much less memory

Fixed-Priority Servers 141

^1

earliest
slack

A(0, t)

7

5

3

I

n n h I. h 4Ẑ

-̂ -P 4q.
10 12 14 16 18 20

+2

+2

+2

- j — ' — I — ' — I — ' — r
2 4 6 8

n— '—I—'—I—'—I—'—I— '—I—
10 12 14 16 18 20

Figure 5.21 Slack function at time 5 = 0 for the periodic tcisk set considered
in the previous example.

X 1 r ^

^2

earliest
slack

h , . h

^ I ' r
0 2 4 6

h . I n
10 12 14 16 18 20

A(6,t) -
7 -

3 -

_ _.! +2
1 1 1 1 1

+2

—^ \ • i

+2

\-^—\—'—\— 1 — \ — 1 — 1 — 1 — 1

10 12 14 16 18 20

Figure 5.22 Slack function at time 5 = 6 for the periodic task set considered
in the previous example.

142 C H A P T E R 5

and allows handling of periodic tasks with release jitter or synchronization re­
quirements. Finally, a more efficient algorithm for computing the slack function
has been proposed by Tia, Liu, and Shankar in [TLS95].

The Slack-Stealing algorithm has also been extended by Ramos-Thuel and
Lehoczky [RTL93] to guarantee firm aperiodic tasks.

5.8 NON-EXISTENCE OF OPTIMAL
SERVERS

The Slack Stealer always advances all available slack as much as possible and
uses it to execute the pending aperiodic tasks. For this reason, it originally was
considered an optimal algorithm; that is, capable of minimizing the response
time of every aperiodic request. Unfortunately, the Slack Stealer is not optimal
because to minimize the response time of an aperiodic request, it is sometimes
necessary to schedule it at a later time even if slack is available at the current
time. Indeed, Tia, Liu, and Shankar [TLS95] proved that, if periodic tasks
are scheduled using a fixed-priority assignment, no algorithm can minimize the
response time of every aperiodic request and still guarantee the schedulability
of the periodic tasks.

Theorem 5.2 (Tia-Liu-Shankar) For any set of periodic tasks ordered on a
given fixed-priority scheme and aperiodic requests ordered according to a given
aperiodic queueing discipline, there does not exist any valid algorithm that min­
imizes the response time of every soft aperiodic request.

Proof. Consider a set of three periodic tasks with Ci = C2 = C3 = 1 and
Ti — 3, T2 = 4 and Ts = 6, whose priorities are assigned based on the RM
algorithm. Figure 5.23a shows the schedule of these tasks when no aperiodic
requests are processed.

Now consider the case in which an aperiodic request J i , with Ca^ = 1, arrives
at time t — 2. At this point, any algorithm has two choices:

1. Do not schedule J\ at time t — 2. In this case, the response time of J\ will
be greater than 1 and, thus, it will not be the minimum.

Fixed-Priority Servers 143

2. Schedule Ji at time t = 2. In this case, assume that another request J2,
with Ca2 = 1, arrives at time ^ = 3. Since no slack time is available in the
interval [3,6], J2 can start only at t = 6 and finish at ^ = 7. This situation
is shown in Figure 5.23b.

However, the response time of J2 achieved in case 2 is not the minimum possible.
In fact, if Ji were scheduled at time ^ = 3, another unit of slack would have
been available at time t = 4, thus J2 would have been completed at time ^ = 5.
This situation is illustrated in Figure 5.23c.

The above example shows that it is not possible for any algorithm to minimize
the response times of Ji and J2 simultaneously. If Ji is scheduled immediately,
then J2 will not be minimized. On the other hand, if Ji is delayed to minimize
J2? then Ji will suffer. Hence, there is no optimal algorithm that can minimize
the response time of any aperiodic request, Q

Notice that Theorem 5.2 applies both to clairvoyant and on-line algorithms
since the example is applicable regardless of whether the algorithm has a priori
knowledge of the aperiodic requests. The same example can be used to prove
another important result on the minimization of the average response time.

Theorem 5.3 (Tia-Liu-Shankar) For any set of periodic tasks ordered on a
given fixed-priority scheme and aperiodic requests ordered according to a given
aperiodic queueing discipline, there does not exist any on-line valid algorithm
that minimizes the average response time of the soft aperiodic requests.

Proof. From the example illustrated in Figure 5.23 it is easy to see that,
if there is only request Ji in each hyperperiod, then scheduling Ji as soon as
possible will yield the minimum average response time. On the other hand,
if Ji and J2 are present in each hyperperiod, then scheduling each aperiodic
request as soon as possible will not yield the minimum average response time.
This means that, without a priori knowledge of the aperiodic requests' arrival,
an on-line algorithm will not know when to schedule the requests, Q

144 C H A P T E R 5

^1

-̂ 3

^2

'̂ 3

^2

T^3

U
(a)

"1—'—r

1 1 1 r n \ r

fc^^^w^^_

"1—'—r ^ q ^ i i |

— I \ 1—
0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

(b)

ps^i'-wa fKX\
1 1 1 1 1 r

0 1 2 3 4 5 6 7 8 9 10 11 12

(C)

Figure 5.23 No algorithm can minimize the response time of every aperiodic
request. If Ji is minimized, J2 is not (b). On the other hand, if J2 is minimized,
J l is not (c).

Fixed-Priority Servers 145

5.9 PERFORMANCE EVALUATION

The performance of the various algorithms described in this chapter has been
compared in terms of average response times on soft aperiodic tasks. Simula­
tion experiments have been conducted using a set of ten periodic tasks with
periods ranging from 54 to 1200 units of time and utilization factor Up = 0.69.
The aperiodic load was varied across the unused processor bandwidth. The
interarrival times for the aperiodic tasks were modeled using a Poisson arrival
pattern with average interarrival time of 18 units of time, whereas the computa­
tion times of aperiodic requests were modeled using an exponential distribution.
Periods for PS, DS, PE, and SS were set to handle aperiodic requests at the
highest priority in the system (priority ties were broken in favor of aperiodic
tasks). Finally, the server capacities were set to the maximum value for which
the periodic tasks were schedulable.

In the plots shown in Figure 5.24, the average aperiodic response time of each
algorithm is presented relative to the response time of background aperiodic
service. This means that a value of 1.0 in the graph is equivalent to the average
response time of background service, while an improvement over background
service corresponds to a value less than 1.0. The lower the response time
curve lies on the graph, the better the algorithm is for improving aperiodic
responsiveness.

As can be seen from the graphs, DS, PE, and SS provide a substantial reduction
in the average aperiodic response time compared to background and polling
service. In particular, a better performance is achieved with short and frequent
requests. This can be explained by considering that, in most of the cases, short
tasks do not use the whole server capacity and can finish within the current
server period. On the other hand, long tasks protract their completion because
they consume the whole server capacity and have to wait for replenishments.

Notice that average response times achieved by SS are slightly higher than those
obtained by DS and PE. This is mainly due to the diflPerent replenishment rule
used by the algorithms. In DS and PE, the capacity is always replenished at its
full value at the beginning of every server period, while in SS it is replenished
Ts units of time after consumption. Thus, in the average, when the capacity is
exhausted, waiting for replenishment in SS is longer than waiting in DS or in
PE.

Figure 5.25 shows the performance of the Slack-Stealing algorithm with respect
to background service, Polling, and SS. The performance of DS and PE is not

146 C H A P T E R 5

0.8

0.6

0.4

0.2

n (

I
1

Polling -0—

DS Q -
PE X

-

,:::::-̂ -r--̂ -""
^-—-' " ,

Jp = 0.69, U(server) = 24.8%. U(DS) = 23.9%
1 1

,'''''°' •••'
- - - • * " ' ' ' . - ' . . ' • ' • • • • "

,--- ' ' f . •»••'"

' ' E l -
' ' . - X

Xf

\

1

5 10 15 20 25 30

Average aperiodic load

Figure 5.24 Performance results of PS, DS, PE, and SS.

shown because it is very similar to the one of SS. Unhke the previous figure, in
this graph the average response times are not reported relative to background,
but are directly expressed in time units. As we can see, the Slack-Stealing
algorithm outperforms all the other scheduling algorithms over the entire range
of aperiodic load. However, the largest performance gain of the Slack Stealer
over the other algorithms occurs at high aperiodic loads, when the system
reaches the upper limit as imposed by the total resource utilization.

Other simulation results can be found in [LSS87] for Polling, PE, and DS, in
[SSL89] for SS, and in [LRT92] for the Slack-Steahng algorithm.

5.10 SUMMARY

The algorithms presented in this chapter can be compared not only in terms of
performance but also in terms of computational complexity, memory require­
ment, and implementation complexity. In order to select the most appropriate
service method for handling soft aperiodic requests in a hard real-time environ­
ment, all these factors should be considered. Figure 5.26 provides a qualitative
evaluation of the algorithms presented in this chapter.

Fixed-Priority Servers 147

Up = 0.69

5 k

5 10 15 20 25

Average aperiodic load

Figure 5.25 Performance of the Slack Stealer with respect to background,
PS, and SS.

© ©
excellent good poor

performance
computational

complexity
memory

requirement

implementation
complexity

Background

Service

Polling
Server

Deferrable
Server ©
Priority

Exchange © © © ©
Sporadic
Server © © © ©
Slack
Stealer

Figure 5.26 Evaluation summary of fixed-priority servers.

148 C H A P T E R 5

Exercises

5.1 Compute the maximum processor utilization that can be assigned to a
Sporadic Server to guarantee the following periodic tasks under RM:

\~c~]
Ti

1 n
1
5

T2

2
8

5.2 Compute the maximum processor utilization that can be assigned to a
Deferrable Server to guarantee the task set illustrated in Exercise 5.1.

5.3 Together with the periodic tasks illustrated in Exercise 5.1, schedule
the following aperiodic tasks with a Polling Server having maximum
utilization and intermediate priority.

«z

C^ \

1 JI
2
3

J2

7
2

h
9
1

5.4

5.5

5.6

5.7

Solve the same scheduhng problem described in Exercise 5.3, with a
Sporadic Server having maximum utilization and intermediate priority.

Solve the same scheduling problem described in Exercise 5.3, with a
Deferrable Server having maximum utilization and highest priority.

Solve the same scheduling problem described in Exercise 5.3, with a Pri­
ority Exchange Server having maximum utilization and highest priority.

Using a Sporadic Server with capacity Cs
ule the following tasks:

2 and period T^ = 5, sched-

periodic tasks aperiodic tasks

pen
Ti \

L D _
1
4

T2

2
6

di

Ci

1 Ji
2

1 2

h
5
1

h
10
2

5.8 Given the same tasks described in Exercise 5.7, compute the maximum
capacity that can be assigned to a Sporadic Server with a period T^ = 4.
Then, schedule the tasks using such a capacity.

7
RESOURCE ACCESS PROTOCOLS

7.1 INTRODUCTION

A resource is any software structure that can be used by a process to advance
its execution. Typically, a resource can be a data structure, a set of variables, a
main memory area, a file, or a set of registers of a peripheral device. A resource
dedicated to a particular process is said to be private, whereas a resource that
can be used by more tasks is called a shared resource. A shared resource
protected against concurrent accesses is called an exclusive resource.

To ensure consistency of the data structures in exclusive resources, any con­
current operating system should use appropriate resource access protocols to
guarantee a mutual exclusion among competing tasks. A piece of code executed
under mutual exclusion constraints is called a critical section.

Any task that needs to enter a critical section must wait until no other task
is holding the resource. A task waiting for an exclusive resource is said to be
blocked on that resource, otherwise it proceeds by entering the critical section
and holds the resource. When a task leaves a critical section, the resource
associated with the critical section becomes free, and it can be allocated to
another waiting task, if any.

Operating systems typically provide a general synchronization tool, called a
semaphore [Dij68, BH73, PS85], that can be used by tasks to build critical
sections. A semaphore is a kernel data structure that, apart from initialization,
can be accessed only through two kernel primitives, usually called wait and
signal When using this tool, each exclusive resource Ri must be protected by

182 C H A P T E R 7

activation /^
K READY

signal V

Figure 7.1

dispatching

preemption

^ ^ { WAIT V

Waiting state caused by

T RUN J-

^^^ wait

termination

resource constraints.

a different semaphore Si and each critical section operating on a resource Ri
must begin with a wait{Si) primitive and end with a signal{Si) primitive.

All tasks blocked on the same resource are kept in a queue associated with the
semaphore that protects the resource. When a running task executes a wait
primitive on a locked semaphore, it enters a waiting state, until another task
executes a signal primitive that unlocks the semaphore. When a task leaves
the waiting state, it does not go in the running state, but in the ready state,
so that the CPU can be assigned to the highest-priority task by the scheduling
algorithm. The state transition diagram relative to the situation described
above is shown in Figure 7.1.

In this chapter, we describe the main problems that may arise in a uniprocessor
system when concurrent tasks use shared resources in exclusive mode, and we
present some resource access protocols designed to avoid such problems and
bound the maximum blocking time of each task. We then show how such
blocking times can be used in the schedulability analysis to extend the guarantee
formulae found for periodic task sets.

7.2 THE PRIORITY INVERSION
PHENOMENON

Consider two tasks Ji and J2 that share an exclusive resource Rk (such as
a list), on which two operations (such as insert and remove) are defined. To
guarantee the mutual exclusion, both operations must be defined as critical
sections. If a binary semaphore Sk is used for this purpose, then each critical
section must begin with a wait(Sk) primitive and must end with a signal(Sk)
primitive (see Figure 7.2).

Resource Access Protocols 183

wait(Sk)

use
resource

R k

signal(Sk)

<f

resource

R k

A
wait(S k) '

use "
resource i

•^k ;

signal(Sk) \

Figure 7.2 Structure of two teisks that share an exclusive resource.

normal execution

1 critical section
J1 blocked

Figure 7.3 Example of blocking on an exclusive resource.

If preemption is allowed and Ji has a higher priority than J2, then Ji can
be blocked in the situation depicted in Figure 7.3. Here, task J2 is activated
first, and, after a while, it enters the critical section and locks the semaphore.
While J2 is executing the critical section, task Ji arrives and, since it ha^ a
higher priority, it preempts J2 and starts executing. However, at time ^1, when
attempting to enter its critical section, J\ is blocked on the semaphore, so J2
resumes. Ji has to wait until time ^2, when J2 releases the critical section by
executing the signal(Sk) primitive, which unlocks the semaphore.

184 C H A P T E R 7

normal execution

critical section

J 1 blocked

to ti t2 t3 t4

Figure 7.4 An example of priority inversion.

In this simple example, the maximum blocking time that Ji may experience is
equal to the time needed by J2 to execute its critical section. Such a blocking
cannot be avoided because it is a direct consequence of the mutual exclusion
necessary to protect the shared resource against concurrent accesses of com­
peting tasks.

Unfortunately, in the general case, the blocking time of a task on a busy resource
cannot be bounded by the duration of the critical section executed by the lower-
priority task. In fact, consider the example illustrated in Figure 7.4. Here, three
tasks J i , J2, and J3 have decreasing priorities, and Ji and J3 share an exclusive
resource protected by a binary semaphore 5.

If J3 starts at time ^o, it may happen that Ji arrives at time 2̂ ctnd preempts
J3 inside its critical section. At time ^3, Ji attempts to use the resource, but
it is blocked on the semaphore 5; thus, J3 continues the execution inside its
critical section. Now, if J2 arrives at time ^4, it preempts J3 (because it has
a higher priority) and increases the blocking time of Ji by all its duration.
As a consequence, the maximum blocking time that Ji may experience does
depend not only on the length of the critical section executed by J3 but also
on the worst-case execution time of J2! This is a situation that, if it recurs
with other medium-priority tasks, can lead to uncontrolled blocking and can
cause critical deadlines to be missed. A priority inversion is said to occur in
the interval [^3,^6], since the highest-priority task Ji waits for the execution of
lower-priority tasks (J2 and J3). In general, the duration of priority inversion

Resource Access Protocols 185

normal execution

critical section

Jj blocked

P l i i i i i

Figure 7.5 Scheduling with non-preemptive critical sections.

is unbounded, since any intermediate-priority task that can preempt J3 will
indirectly block J i .

Several approaches have been proposed to deal with the problem of scheduling
tasks accessing shared resources. A simple solution that avoids the unbounded
priority inversion problem is to disallow preemption during the execution of all
critical sections. This method, however, is only appropriate for very short crit­
ical sections, because it creates unnecessary blocking. Consider, for example,
the case depicted in Figure 7.5, where Ji is the highest-priority task that does
not use any resource, whereas J2 and J3 are low-priority tasks that share an
exclusive resource. If the low-priority task J3 enters a long critical section, Ji
may unnecessarily be blocked for a long period of time.

In other approaches, the priority inversion problem is solved through the use
of appropriate protocols that control the accesses to any shared resource. The
Priority Inheritance Protocol and the Priority Ceiling Protocol [SRL90] apply
to fixed-priority systems,^ whereas the Stack Resource PoUcy [Bak91] is suitable
both for static and dynamic priority systems. These protocols are described in
the following sections.

^The Priority Inheritance Protocol has been extended for EDF by Spuri [Spu95], and the
Priority Ceiling Protocol has been extended for EDF by Chen and Lin [CL90].

186 C H A P T E R 7

7.3 PRIORITY INHERITANCE
PROTOCOL

The Priority Inheritance Protocol (PIP), proposed by Sha, Rajkumar and
Lehoczky [SRL90], offers a simple solution to the problem of unbounded priority
inversion caused by resource constraints. The basic idea behind this protocol is
to modify the priority of those tasks that cause blocking. In particular, when a
task Ji blocks one or more higher-priority tasks, it temporarily assumes {inher­
its) the highest priority of the blocked tasks. This prevents medium-priority
tasks from preempting Ji and prolonging the blocking duration experienced
by the higher-priority tasks. Before describing the protocol in detail, we first
introduce the terminology and the basic assumptions made on the system.

7.3.1 Terminology and assumptions

Consider a set of n periodic tasks, r i , r 2 , . . . ,rn, which cooperate through m
shared resources, i?i,i?27 • • • .Rm- Each task is characterized by a period Ti
and a worst-case computation time Cj. The deadline of any periodic instance
is assumed to be at the end of its period. Each resource Rk is guarded by
a distinct semaphore Sk- Hence, all critical sections on resource Rk begin
with a wait{Sk) operation and end with a signal (Sk) operation. The following
notation is adopted throughout the discussion:

Ji denotes a job; that is, a generic instance of task r^.

Since the protocol can modify the priority of the tasks, for each task we
distinguish a fixed nominal priority Pi (assigned, for example, by the Rate
Monotonic algorithm) and an active priority pi {pi > Pi), which is dynamic
and initially set to Pi.

Zij denotes the jth critical section of job Ji.

dij denotes the duration of Zij\ that is, the time needed by Ji to execute
Zij without interruption.

The semaphore guarding the critical section Zij is denoted by Sij and the
resource associated with Zij is denoted by Rij.

We write Zij C Zi^k to indicate that Zij is entirely contained in Zi^k-

Resource Access Protocols 187

Moreover, the properties of the protocol are vahd under the following assump­
tions:

Jobs Ji^J^.'.Jn are listed in descending order of nominal priority, with
Ji having the highest nominal priority.

Jobs do not suspend themselves (for example, on I/O operations or on
explicit synchronization primitives).

The critical sections used by any task are properly nested; that is, given
any pair Zij and Zi,^, then either Zij C Zi^k, zi^k C ^ i j , or zi^j D zi^k = 0-

Critical sections are guarded by binary semaphores. This means that only
one job at a time can be within the critical section corresponding to a
particular semaphore Su-

7.3.2 Protocol definition

The Priority Inheritance Protocol can be defined as follows:

• Jobs are scheduled based on their active priorities. Jobs with the same
priority are executed in a First Come First Served discipline.

• When job Ji tries to enter a critical section zi^j and resource Ri^j is already
held by a lower-priority job, Ji will be blocked. Ji is said to be blocked by
the task that holds the resource. Otherwise, Ji enters the critical section
Zi^j.

• When a job Ji is blocked on a semaphore, it transmits its active priority
to the job, say J^, that holds that semaphore. Hence, Jk resumes and
executes the rest of its critical section with a priority pk = Pi- Jk is said
to inherit the priority of Ji. In general, a task inherits the highest priority
of the jobs blocked by it.

• When Jk exits a critical section, it unlocks the semaphore, and the highest-
priority job, if any, blocked on that semaphore is awakened. Moreover, the
active priority of Jk is updated as follows: if no other jobs are blocked by
Jfc, Pk is set to its nominal priority Pk, otherwise it is set to the highest
priority of the jobs blocked by J^.

• Priority inheritance is transitive; that is, if a job J3 blocks a job J2, and
J2 blocks a job J i , then J3 inherits the priority of Ji via J2.

188 C H A P T E R 7

normal execution

critical section

direct blocking

push-through blocking

p. JP3

Figure 7.6 Example of Priority Inheritance Protocol.

Examples

We first consider the same situation presented in Figure 7.4 and show how
the priority inversion phenomenon can be bounded by the Priority Inheritance
Protocol. The modified schedule is illustrated in Figure 7.6. Until time 3̂
there is no variation in the schedule, since no priority inheritance takes place.
At time ^3, Ji is blocked by J3, thus J3 inherits the priority of Ji and executes
the remaining part of its critical section (from 3̂ to ^5) at the highest priority.
In this condition, at time ^4, J2 cannot preempt J3 and cannot create additional
interference on J i . As J3 exits its critical section, Ji is awakened and J3 resumes
its original priority. At time ^5, the processor is assigned to J i , which is the
highest-priority task ready to execute, and task J2 can only start at time te,
when Ji has completed. The active priority of J3 as a function of time is also
shown in Figure 7.6 on the lowest timeline.

From this example, we can notice that a high-priority job can experience two
kinds of blocking:

Direct blocking. It occurs when a higher-priority job tries to acquire a
resource already held by a lower-priority job. Direct blocking is necessary
to ensure the consistency of the shared resources.

Resource Access Protocols 189

normal execution

critical section

piiMlil -

3 •
P, '

P 2 -
PT

^P3

a 1 b b b a

t l t2 t3 t4 t5 t6

Figure 7.7 Priority inheritance with nested critical sections.

Push-through blocking. It occurs when a medium-priority job is blocked
by a lower-priority job that has inherited a higher priority from a job it
directly blocks. Push-through blocking is necessary to avoid unbounded
priority inversion.

Notice that, in most situations, when a task exits a critical section, it resumes
the priority it had when it entered. However, this is not true in general. Con­
sider the example illustrated in Figure 7.7. Here, job Ji uses a resource Ra
guarded by a semaphore Sa, job J2 uses a resource Rb guarded by a semaphore
Sb, and job J3 uses both resources in a nested fashion {Sa is locked first). At
time tl, J2 preempts J3 within its nested critical section; hence, at time ^2,
when J2 attempts to lock Sb, J3 inherits its priority, P2' Similarly, at time
ts, J I preempts J3 within the same critical section and, at time ^4, when Ji
attempts to lock 5a, J3 inherits the priority Pi . At time ^5, when J3 unlocks
semaphore 5^, job J2 is awakened but Ji is still blocked; hence, J3 continues its
execution at the priority of J i . At time IQ, J3 unlocks Sa and, since no other
jobs are blocked, J3 resumes its original priority P3.

190 C H A P T E R 7

normal execution

î îiiiiiî i critical section

^ 2

J3

P2
P^

• a 1

• 1 b

i P 3

1 b

^

n ^
1 b 1 a I W{

t l t2 t3 t4 t5 t6

Figure 7.8 Example of transitive priority inheritance.

An example of transitive priority inheritance is shown in Figure 7.8. Here, job
Ji uses a resource Ra guarded by a semaphore Sa, job J3 uses a resource Rb
guarded by a semaphore Sb, and job J2 uses both resources in a nested fashion
{Sa protects the external critical section and Sb the internal one). At time
tl, J3 is preempted within its critical section by J2, which in turn enters its
first critical section (the one guarded by Sa), and at time 2̂ it is blocked on
semaphore Sb- As a consequence, J3 resumes and inherits the priority P2. At
time ^3, Js is preempted by J i , which at time t^ tries to acquire Ra- Since
Sa is locked by J2, J2 inherits Pi. However, J2 is blocked by J3; hence, for
transitivity J3 inherits the priority Pi via J2. When J3 exits its critical section,
no other jobs are blocked by it, thus it resumes its nominal priority P3. Priority
Pi is now inherited by J2, which still blocks Ji until time ^e-

7.3.3 Properties of the protocol

In this section, the main properties of the Priority Inheritance Protocol are
presented. These properties are then used to analyze the schedulability of a
periodic task set and compute the maximum blocking time that each task may
experience.

Resource Access Protocols 191

Lemma 7.1 A semaphore Sk can cause push-through blocking to job Ji, only
if Sk is accessed both by a job with priority lower than Pi and by a job that has
or can inherit a priority equal to or higher than Pi.

Proof. Suppose that semaphore Sk is accessed by a job J/ with priority lower
than Pi. If Sk is not accessed by a job that has or can inherit a priority equal
to or higher than Pi, then J/ cannot inherit a priority equal to or higher than
Pi. Hence, J/ will be preempted by Ji and the lemma follows, Q

Lemma 7.2 Transitive priority inheritance can occur only in the presence of
nested critical sections.

Proof. A transitive inheritance occurs when a high-priority job JH is blocked
by a medium-priority job JM^ which in turn is blocked by a low-priority job
JL (see the example of Figure 7.8). Since JH is blocked by JM, JM must hold
a semaphore, say Sa- But JM is also blocked by JL on a different semaphore,
say 5fe. This means that JM attempted to lock Sh inside the critical section
guarded by Sa- The lemma follows, Q

Lemma 7.3 / / there are n lower-priority jobs that can block a job Ji, then Ji
can be blocked for at most the duration of n critical sections (one for each of
the n lower-priority jobs), regardless of the number of semaphores used by Ji.

Proof. A job Ji can be blocked by a lower-priority job Jk only if Jk has been
preempted within a critical section, say Zkj, that can block Ji. Once Jk exits
Zkj^ it can be preempted by JJ; thus, Ji cannot be blocked by Jk again. The
same situation may happen for each of the n lower-priority jobs; therefore, Ji
can be blocked at most n times, Q

Lemma 7.4 / / there are m distinct semaphores that can block a job Ji, then
Ji can be blocked for at most the duration of m critical sections, one for each
of the m semaphores.

192 C H A P T E R 7

Proof. Since semaphores are binary, only one of the lower-priority jobs,
say Jfc, can be within a blocking critical section corresponding to a particular
semaphore Sj. Once Sj is unlocked, Jk can be preempted and can no longer
block Ji. If all m semaphores that can block Ji are locked by m lower-priority
jobs, then Ji can be blocked at most m times, Q

Theorem 7.1 (Sha-Rajkumar-Lehoczky) Under the Priority Inheritance
Protocol, a job J can be blocked for at most the duration o/min(n,7n) critical
sections, where n is the number of lower-priority jobs that could block J and m
is the number of distinct semaphores that can be used to block J.

Proof. It immediately follows from Lemma 7.3 and Lemma 7.4. Q

7.3.4 Schedulability analysis

The most important property of the Priority Inheritance Protocol for real-time
systems is that it bounds the maximum blocking time of each task. This allows
to perform a feasibility analysis and extend the Rate-Monotonic schedulability
test for sets of tasks with resource constraints. We recall that, in the absence
of blocking, a set of independent periodic tasks is schedulable by the Rate-
Monotonic algorithm if

E ^ < n(2V"-l) . (7.1)
1=1

In order to perform a worst-case analysis, let Bi be the maximum blocking
time, due to lower-priority jobs, that a job Ji may experience.

Theorem 7.2 A set of n periodic tasks using the Priority Inheritance Protocol
can be scheduled by the Rate-Monotonic algorithm if

Vi, l<i<n, ^ | * + | i < z (2 i / ' - l) . (7.2)

Resource Access Protocols 193

Proof . Suppose tha t for each task TJ equation (7.2) is satisfied. Then equation
(7.1) is also satisfied with n = i and Ci replaced by C* = (d + Bi). This means
tha t , in the absence of blocking, any job of task TJ will still meet its deadline
even if it executes for {Ci -h Bi) units of t ime. It follows tha t task r^, if it
executes for only Ci units of t ime, can be delayed by Bi and still meet its
deadline. Hence, the theorem follows, Q

In other words, the schedulability test expressed in equation (7.2) can be inter­
preted as follows. In order to guarantee a task r^, we have to consider the effect
of preemptions from all higher-priority tasks (Xll=i ^k/Tk), the execution of r^
itself (Ci/Ti), and the effect of blocking due to all lower-priority tasks (Bi/Ti).

Suppose, for example, tha t we want to guarantee the following task set:

~ir]
J2

Js 1

1 Ci
1
1
2

Ti

2
4
8

Bi

1
1
0

Since the periods of these tasks are harmonic, the utilization bound for Ra te
Monotonic becomes 100%. Hence, we have to verify the following relations:

Ti Ti -

9i + 9l + El < 1
Ti ^ T2 T2 -

9l + ^ + ^ < 1.

Since all three equations hold, we can conclude tha t this task set is feasible and
all tasks will meet their deadlines. Notice tha t , if the fcth equation should not
be satisfied, we would know tha t task rjt would miss its deadline. In this case,
we could correct the implementation of this task to achieve a feasible schedule.

A simpler but less tight schedulability test can be found by observing t ha t

Bi

Ti
< max

Bj_

T,'

B,

Tn
-Z7- and i (2 i / " _ l) <i{2^/i -I).

194 C H A P T E R 7

As a consequence, the feasibility of the schedule can be guaranteed if the fol­
lowing single equation holds:

The schedulability test based on tasks' response times can also be extended to
take resources into account. In this case, the blocking factor Bi must simply
be added to the computation time of each task. Thus, the recurrent equation
(4.12) for calculating the response time Ri becomes

Ri = Ci -\- Bi -{• y
Ri

Cj. (7.4)

Notice that, when introducing resource constraints, this test becomes only sufR-
cient, since tasks characterized by a long maximum blocking time could actually
never experience blocking.

7.3.5 Blocking t ime computation

The evaluation of the maximum blocking time for each task can be computed
based on the result of Theorem 7.1. However, a precise evaluation of the block­
ing factor Bi is quite complex because each critical section of the lower-priority
tasks may interfere with Ji via direct blocking, push-through blocking or tran­
sitive inheritance. In this section, we present a simplified algorithm that can
be used to compute the blocking factors of tasks that do not use nested crit­
ical sections. In this case, in fact. Lemma 7.2 guarantees that no transitive
inheritance can occur; thus, the analysis of all possible blocking conditions is
simplified. The following notation is used to describe the algorithm:

cTj indicates the set of semaphores requested by Ji.

Pi J indicates the set of all critical sections of the lower-priority job Jj that
can block Jj.

7i,fc indicates the set of all critical sections guarded by semaphore Sk that
can block Jj.

Resource Access Protocols 195

Zi^k denotes the longest critical section of task r̂ among those guarded by
semaphore 5^.

Di^k denotes the duration of Zi^k-

Assuming that all durations Di^k are known (they can be estimated through
code analysis), the algorithm for computing the blocking factor Bi of a job Ji
can be logically divided into the following steps:

1. For each job Jj with priority lower than Pi, identify the set fiij of all
critical sections that can block Jj.

2. For each semaphore 5^, identify the set 7 ,̂̂ of all critical sections guarded
by Sk that can block Jj.

3. Sum the duration of the longest critical sections in each /J^j, for any job
Jj with priority lower than Pi\ let B\ be this sum.

4. Sum the duration of the longest critical sections in each 7^,^, for any
semaphore Sk\ let B^ be this sum.

5. Compute Bi as the minimum between B[and jBf.

The identification of the critical sections that can block a task can be greatly
simplified if for each semaphore Sk we define a ceiling C(5fc) to be the priority
of the highest-priority task that may use it:

C{Sk) =max(P;- :Sk e CTJ).

Then, the following lemma holds.

Lemma 7.5 In the absence of nested critical sections, a critical section Zj^k
of Jj guarded by Sk can block Ji only if Pj < Pi < C{Sk)'

Proof. If Pi < Pj, then job Ji cannot preempt JJ; hence, it cannot be
blocked by Jj directly. On the other hand, if C{Sk) < Pi, by definition of
C{Sk)^ any job that uses Sk cannot have or inherit a priority equal to or higher
than Pi. Hence, from Lemma 7.1, Zj^k cannot cause push-through blocking on
Ji. Finally, since there are no nested critical sections. Lemma 7.2 guarantees
that Zj^k cannot cause transitive blocking. The lemma follows, Q

196 C H A P T E R 7

Using the result of Lemma 7.5, the maximum blocking time Bi for each task
Ti can easily be determined as follows:

B^=mm(Bi,B',), (7.5)

where

n

B'i = Yl max[£),,fc : C{Sk) > Pi]
3=i+l

This computation is performed by the algorithm shown in Figure 7.9. This
algorithm assumes that the task set consists of n periodic tasks that use m
distinct binary semaphores. Tasks are ordered with decreasing priority, such
that Pi > Pj for all i < j . Critical sections are nonnested. Notice that the
blocking factor Bn is always zero, since there are no tasks with priority lower
than Pn that can block Tn. The complexity of the algorithm is 0{mn'^).

This algorithm provides an upper bound for the blocking factors Bi; however,
such a bound is not tight, since B[may be computed by considering two or
more critical sections guarded by the same semaphore. Obviously, if two critical
sections of different jobs are guarded by the same semaphore, they cannot be
both blocking (see Lemma 7.4). Similarly, Bf may be computed by considering
two or more critical sections belonging to the same job. But this cannot happen
(see Lemma 7.3). In order to exclude these cases, however, the complexity grows
exponentially because the maximum blocking time has to be computed among
all possible combinations of blocking critical sections. An algorithm based on
exhaustive search is presented in [Raj91]. It can find better bounds than those
found by the algorithm presented in this section, but it has an exponential
complexity.

Example

To illustrate the algorithm presented above, consider the following example, in
which four tasks share three semaphores. For each job Jj, the duration of the
longest critical section among those that use the same semaphore Sk is denoted
by Di^k and it is stored in a table. Di^k = 0 means that job Ji does not use
semaphore 5^. Suppose to have the following table (semaphore ceilings are
indicated in parentheses):

Resource Access Protocols 197

Blocking_Time(A,fc) {

for i = l t o n — 1 {

Bi := 0;
for j = i-hlton{

Djmax := 0;
for A; = 1 to m {

i^iC{Sk) >Pi) and(D,-fc

D.max = Dj^k'i

}
}
Bl := Bl + D.max;

}

B? := 0;
for fc = 1 to m {

Djmax := 0;

for j = i + lton{

if {C{Sk) > Pi) and
D.max — Dj^k\

}
}
B? := S | + D.max;

}

Bi := mm(B^, Bf);

}
S„ := 0;

}

iDj,k

/* for each task Ji */

/* for each Jj : Pj < Pi */ .

/* for all semaphores */

> Djmax) {

1* for all semaphores */

/* for each J, : Pj < P, */
> D.m,ax) {

Figure 7.9 Algorithm for computing the blocking factors.

198 C H A P T E R 7

pTj
J2

Js
J A \

1 ^l(^l)
i
0
8
6

52(Pl)

2
9
7
5

53(^2)
0
3
0
4

According to the algorithm shown in Figure 7.9, the blocking factors of the
tasks are computed as follows:

= = > Bi = 17
B[=9 + 8 + 6 = 23
Bl =8 + 9 = 17

B^2=S + 6 = U
B^ =8 + 7 + 4 = 19 ==> B2 = 14

B^^ = 6
^ ^ = 6 + 5 + 4 = 15 = = > B3=6

B\ = BI = 0 ==> B4=0

Note that B^ is computed by adding the duration of two critical sections both
guarded by semaphore Si.

7.3.6 Implementation considerations

The implementation of the Priority Inheritance Protocol requires a slight mod­
ification of the kernel data structures associated with tasks and semaphores.
First of all, each task must have a nominal priority and an active priority,
which need to be stored in the Task Control Block (TCB). Moreover, in order
to speed up the inheritance mechanism, it is convenient that each semaphore
keeps track of the task holding the lock on it. This can be done by adding in
the semaphore data structure a specific field, say holder^ for storing the iden­
tifier of the holder. In this way, a task that is blocked on a semaphore can
immediately identify the task that holds its lock for transmitting its priority.
Similarly, transitive inheritance can be simplified if each task keeps track of
the semaphore on which it is blocked. In this case, this information has to
be stored in a field, say lock, of the Task Control Block. Assuming that the
kernel data structures are extended as described above, the primitives pLwait
and pLsignal for realizing the Priority Inheritance Protocol can be defined as
follows.

Resource Access Protocols 199

pi_wait(s)

• If semaphore s is free, it becomes locked and the name of the executing
task is stored in the holder field of the semaphore data structure.

• If semaphore s is locked, the executing task is blocked on the s semaphore
queue, the semaphore identifier is stored in the lock field of the TCB, and
its priority is inherited by the task that holds s. If such a task is blocked
on another semaphore, the transitivity rule is applied. Then, the ready
task with the highest priority is assigned to the processor.

pi_signal(s)

• If the queue of semaphore s is empty (that is, no tasks are blocked on 5),
s is unlocked.

• If the queue of semaphore s is not empty, the highest-priority task in the
queue is awakened, its identifier is stored in s.holder, the active priority of
the executing task is updated and the ready task with the highest priority
is assigned to the processor.

7.3.7 Unsolved problems

Although the Priority Inheritance Protocol bounds the priority inversion phe­
nomenon, the blocking duration for a job can still be substantial because a
chain of blocking can be formed. Another problem is that the protocol does
not prevent deadlocks.

Chained blocking

Consider three jobs J i , J2 and J3 with decreasing priorities that share two
semaphores Sa and 56. Suppose that Ji needs to sequentially access Sa and
56, J2 accesses 56, and J3 Sa- Also suppose that J3 locks Sa and it is preempted
by J2 within its critical section. Similarly, J2 locks 56 and it is preempted by
Ji within its critical section. The example is shown in Figure 7.10. In this
situation, when attempting to use its resources, Ji is blocked for the duration
of two critical sections, once to wait J3 to release Sa and then to wait J2 to
release 56. This is called a chained blocking. In the worst case, if Ji accesses n
distinct semaphores that have been locked by n lower-priority jobs, Ji will be
blocked for the duration of n critical sections.

200 C H A P T E R 7

normal execution

critical section

-Ja™™!_

Figure 7.10 Example of chained blocking.

normal execution

critical section
blocked on S ̂

y blocked on S .

t . to t i t .

wait(Sa)

waitCSb)

signal(Sb)

signal(Sa)

wait(Sb)

wait(Sa) 1

signal(Sa)

signaKS b)

Figure 7.11 Example of deadlock.

Deadlock

Consider two jobs that use two semaphores in a nested fashion but in reverse
order, as illustrated in Figure 7.11. Now suppose that, at time t i , J2 locks
semaphore Sb and enters its critical section. At time ^2, Ji preempts J2 before
it can lock Sa- At time ^3, Ji locks 5a, which is free, but then is blocked on 56
at time ^4. At this time, J2 resumes and continues the execution at the priority
of J i . Priority inheritance does not prevent a deadlock, which occurs at time
^5, when J2 attempts to lock Sa- Notice, however, that the deadlock does not
depend on the Priority Inheritance Protocol but is caused by an erroneous use
of semaphores. In this case, the deadlock problem can be solved by imposing
a total ordering on the semaphore accesses.

Resource Access Protocols 201

7.4 P R I O R I T Y CEILING P R O T O C O L

The Priority Ceiling Protocol (PCP) has been introduced by Sha, Rajkumar,
and Lehoczky [SRL90] to bound the priority inversion phenomenon and prevent
the formation of deadlocks and chained blocking.

The basic idea of this method is to extend the Priority Inheritance Protocol
with a rule for granting a lock request on a free semaphore. To avoid multiple
blocking, this rule does not allow a job to enter a critical section if there are
locked semaphores that could block it. This means that, once a job enters
its first critical section, it can never be blocked by lower-priority jobs until its
completion.

In order to realize this idea, each semaphore is assigned a priority ceiling equal
to the priority of the highest-priority job that can lock it. Then, a job J is
allowed to enter a critical section only if its priority is higher than all priority
ceilings of the semaphores currently locked by jobs other than J.

7.4.1 Protocol definition

The Priority Ceiling Protocol can be defined as follows:

Each semaphore Sk is assigned a priority ceiling C{Sk) equal to the priority
of the highest-priority job that can lock it. Note that C{Sk) is a static value
that can be computed off-line.

Let Ji be the job with the highest priority among all jobs ready to run;
thus, Ji is assigned the processor.

Let 5* be the semaphore with the highest-priority ceiling among all the
semaphores currently locked by jobs other than Ji and let C{S*) be its
ceiling.

To enter a critical section guarded by a semaphore Sk, Ji must have a
priority higher than C(5*). If Pi < C(5*), the lock on Sk is denied and
Ji is said to be blocked on semaphore 5* by the job that holds the lock on
5*.

When a job Ji is blocked on a semaphore, it transmits its priority to the
job, say Jk, that holds that semaphore. Hence, Jk resumes and executes

202 C H A P T E R 7

the rest of its critical section with the priority of Ji. Jk is said to inherit
the priority of Ji. In general, a task inherits the highest priority of the
jobs blocked by it.

When Jk exits a critical section, it unlocks the semaphore and the highest-
priority job, if any, blocked on that semaphore is awakened. Moreover, the
active priority of Jk is updated as follows: if no other jobs are blocked by
Jky Pk is set to the nominal priority Pk] otherwise, it is set to the highest
priority of the jobs blocked by Jfc.

Priority inheritance is transitive; that is, if a job J3 blocks a job J2, and
J2 blocks a job J i , then J3 inherits the priority of Ji via J2.

Example

In order to illustrate the Priority Ceiling Protocol, consider three jobs Jo, J i ,
and J2 having decreasing priorities. The highest-priority job Jo sequentially
accesses two critical sections guarded by semaphores So and Si; job Ji accesses
only a critical section guarded by semaphore 52; whereas job J2 uses semaphore
52 and then makes a nested access to Si. From tasks' resource requirements,
all semaphores are assigned the following priority ceilings:

r C(5o) = Po

C{Si)=Po

[C (5 2) - P i .

Now suppose that events evolve as illustrated in Figure 7.12.

• At time ^o, J2 is activated and, since it is the only job ready to run, it
starts executing and later locks semaphore 52.

• At time i i , Ji becomes ready and preempts J2.

• At time ^2, Ji attempts to lock 52, but it is blocked by the protocol
because Pi is not greater than C(52). Then, J2 inherits the priority of Ji
and resumes its execution.

• At time ^3, J2 successfully enters its nested critical section by locking 5i .
Note that J2 is allowed to lock Si because no semaphores are locked by
other jobs.

Resource Access Protocols 203

normal execution

W^m critical

Jo

J 1

'̂ 1
p,
P o

1
L
• S2 1
i P 2 :

section

_b

[82 SI 1

ce

SI

iling blocking

SO • SI

iiiiil

S2 ^9

^

to ti t2 t3 t4 t5 t6 ty tg tg

Figure 7.12 Example of Priority Ceiling Protocol.

At time t^, while J2 is executing at a priority p2 = -Pi, -̂ 0 becomes ready
and preempts J2 because PQ > P2-

At time ^5, Jo attempts to lock 5o, which is not locked by any job. However,
Jo is blocked by the protocol because its priority is not higher than C(5i) ,
which is the highest ceiling among all semaphores currently locked by the
other jobs. Since Si is locked by J2, J2 inherits the priority of Jo and
resumes its execution.

At time te, J2 exits its nested critical section, unlocks 5i , and, since Jo
is awakened, J2 returns to priority P2 — Pi- At this point, PQ > €{82);
hence, Jo preempts J2 and executes until completion.

At time fy, JQ is completed, and J2 resumes its execution at a priority
P2 = Pi^

At time ts, J2 exits its outer critical section, unlocks 52, and, since Ji is
awakened, J2 returns to its nominal priority P2. At this point, Ji preempts
J2 and executes until completion.

At time ^9, Ji is completed; thus, J2 resumes its execution.

204 C H A P T E R 7

blocked on S ,

^

Figure 7.13 An absurd situation that cannot occur under the Priority Ceiling
Protocol.

Notice that the Priority Ceiling Protocol introduces a third form of blocking,
called ceiling blocking, in addition to direct blocking and push-through blocking
caused by the Priority Inheritance Protocol. This is necessary for avoiding
deadlock and chained blocking. In the previous example, a ceiling blocking is
experienced by job Jo at time ^5.

7.4.2 Properties of the protocol

The main properties of the Priority Ceiling Protocol are presented in this sec­
tion. They are used to analyze the schedulability and compute the maximum
blocking time of each task.

Lemma 7.6 If a job Jk is preempted within a critical section Za by a job Ji
that enters a critical section Zb, then, under the Priority Ceiling Protocol, Jk
cannot inherit a priority higher than or equal to that of job Ji until Ji completes.

Proof. If Jk inherits a priority higher than or equal to that of job Ji before
Ji completes, there must exist a job Jo blocked by J^, such that Po ^ Pi-
This situation is shown in Figure 7.13. However, this leads to the contradiction
that Jo cannot be blocked by J^. In fact, since Ji enters its critical section,
its priority must be higher than the maximum ceiling C* of the semaphores
currently locked by all lower-priority jobs. Hence, Po > Pi > C*. But since
Po > C*, Jo cannot be blocked by Jk, and the lemma follows, Q

Resource Access Protocols 205

J . ^ J ^ ^ . • . ^ J
1 2 n

F i g u r e 7.14 Deadlock among n jobs.

Lemma 7.7 T/ie Priority Ceiling Protocol prevents transitive blocking.

Proof. Suppose that a transitive block occurs; that is, there exist three
jobs J i , J2, and J3, with decreasing priorities, such that J3 blocks J2 and J2
blocks J i . By the transitivity of the protocol, J3 will inherit the priority of
J\. However, this contradicts Lemma 7.6, which shows that J3 cannot inherit
a priority higher than or equal to P2. Thus, the lemma follows, Q

Theorem 7.3 The Priority Ceiling Protocol prevents deadlocks.

Proof. Assuming that a job cannot deadlock by itself, a deadlock can only
be formed by a cycle of jobs waiting for each other, as shown in Figure 7.14. In
this situation, however, by the transitivity of the protocol, job Jn would inherit
the priority of J i , which is assumed to be higher than Pn- This contradicts
Lemma 7.6, and hence the theorem follows, Q

Theorem 7.4 (Sha-Rajkumar-Lehoczky) Under the Priority Ceiling Pro­
tocol, a job Ji can be blocked for at most the duration of one critical section.

Proof. Suppose that Ji is blocked by two lower-priority jobs Ji and J2,
where P2 < P\ < Pi- Let J2 enter its blocking critical section first, and let
C | be the highest-priority ceiling among all the semaphores locked by J2- In
this situation, if job Ji enters its critical section we must have that Pi > C | .
Moreover, since we assumed that Ji can be blocked by J2, we must have that
Pi < C^- This means that Pi > C^ > Pi- This contradicts the assumption
that Pi > P2. Thus, the theorem follows, Q

206 C H A P T E R 7

7.4.3 Schedulability analysis

The feasibility test for a set of periodic tasks using the Priority CeiUng Protocol
can be performed by the same formulae shown for the Priority Inheritance
Protocol. The only difference is in the values of each blocking factor Bi, which,
for the Priority Ceiling Protocol, corresponds to the duration of the longest
critical section among those that can block TJ.

7.4.4 Blocking time computation

The evaluation of the maximum blocking time for each task can be computed
based on the result of Theorem 7.4. According to this theorem, a job Ji can be
blocked for at most the duration of the longest critical section among those that
can block Ji. The set of critical sections that can block a job Ji is identified by
the following lemma.

Lemma 7.8 Under the Priority Ceiling Protocol, a critical section Zj^k (be­
longing to job Jj and guarded by semaphore Sk) can block a job Ji only if
Pj <Pi andC{Sk) >Pi-

Proof. Clearly, if Pj > Pi, Ji cannot preempt Jj and hence cannot be blocked
on Zj^k' Now assume Pj < Pi and C{Sk) < Pi^ and suppose that Ji is blocked
on Zj^k' We show that this assumption leads to a contradiction. In fact, if
Ji is blocked by Jj, its priority must be less than or equal to the maximum
ceiling C* among all semaphores locked by jobs other than Ji. Thus, we have
that C{Sk) < Pi < C*. On the other hand, since C* is the maximum ceihng
among all semaphores currently locked by jobs other than Ji, we have that
C* > C{Sk), which leads to a contradiction and proves the lemma, Q

Using the result of Lemma 7.8, the maximum blocking time Bi of job Ji can be
computed as the duration of the longest critical section among those belonging
to tasks with priority lower than Pi and guarded by a semaphore with ceiling
higher than or equal to Pi. If Dj^k denotes the duration of the longest critical
section of task TJ among those guarded by semaphore Sk, we can write

Bi - max{D,-fc | Pj < Pi, C{Sk) > Pi}. (7.6)

Resource Access Protocols 207

Consider the same example illustrated for the Priority Inheritance Protocol.
For each job Ji, the duration of the longest critical section among those guarded
by semaphore Sk is denoted by Di^k and it is stored in a table. Di^k = 0 means
that job Ji does not use semaphore 5^. Semaphore ceilings are indicated in
parentheses:

IT]
J2

Js
J A

1 S,{P,)
1
0
8
6

52 (Pi)

2
9
7
5

53 (P2)

0
3
0
4

According to equation (7.6), tasks' blocking factors are computed as follows:

Bi =: max(8,6,9, 7,5) = 9
B2 =max(8,6,7,5,4) ^ 8
P3 = max(6,5,4) ^ 6
B^ = 0.

7.4.5 Implementation considerations

The major implication of the Priority Ceiling Protocol in the kernel data struc­
tures is that semaphores queues are no longer needed, since the tasks blocked
by the protocol can be kept in the ready queue. In particular, whenever a job Ji
is blocked by the protocol on a semaphore Sk, the job Jh that holds Sk inherits
the priority of Ji and it is assigned to the processor, whereas Ji returns to the
ready queue. As soon as Jh unlocks 5^, ph is updated and, \i Ph becomes less
than the priority of the first ready job, a context switch is performed.

To implement the Priority Ceiling Protocol, each semaphore Sk has to store the
identifier of the task that holds the lock on Sk and the ceiling of Sk- Moreover,
an additional field for storing the task active priority has to be reserved in
the task control block. It is also convenient to have a field in the task control
block for storing the identifier of the semaphore on which the task is blocked.
Finally, the implementation of the protocol can be simplified if the system also
maintains a list of currently locked semaphores, order by decreasing priority
ceilings. This list is useful for computing the maximum priority ceiling that
a job has to overcome to enter a critical section and for updating the active
priority of tasks at the end of a critical section.

208 CHAPTER 7

If the kernel data structures are extended as described above, the primitives
pc.wait and pcsignal for reahzing the Priority Ceihng Protocol can be defined
as follows.

pc_wait(s)

Find the semaphore 5* having the maximum ceiling C* among all the
semaphores currently locked by jobs other than the one in execution (Jexe)-

If Pexe < C**, transfer Pexe to the job that holds 5*, insert Jexe in the
ready queue, and execute the ready job (other than Jexe) with the highest
priority.

If Pexe > C*, or whenever s is unlocked, lock semaphore 5, add s in the
list of currently locked semaphores and store Jexe in s.holder.

pc_signal(s)

Extract s from the list of currently locked semaphores.

If no other jobs are blocked by Jexe, set pexe = Pexe-, else set pexe to the
highest priority of the jobs blocked by Jexe-

Let p* be the highest priority among the ready jobs. If Pexe < P*, insert
Jexe in the ready queue and execute the ready job (other than Jexe) with
the highest priority.

7.5 STACK RESOURCE POLICY

The Stack Resource PoUcy (SRP) is a technique proposed by Baker [Bak91] for
accessing shared resources. It extends the Priority Ceiling Protocol (PCP) in
three essential points:

1. It allows the use of multiunit resources.

2. It supports dynamic priority scheduling.

3. It allows the sharing of runtime stack-based resources.

Resource Access Protocols 209

From a scheduling point of view, the essential difference between the PCP and
the SRP is on the time at which a task is blocked. Whereas under the PCP
a task is blocked at the time it makes its first resource request, under the
SRP a task is blocked at the time it attempts to preempt. This early blocking
slightly reduces concurrency but saves unnecessary context switches, simplifies
the implementation of the protocol, and allows the sharing of runtime stack
resources.

7.5.1 Definit ions

Before presenting the formal description of the SRP we introduce the following
definitions.

Priority

Each task TJ is assigned a priority pi that indicates the importance (that is,
the urgency) of Tf with respect to the other tasks in the system. Priorities can
be assigned to tasks either statically or dynamically. At any time t, Pa > Pb
means that the execution of Ta is more important than that of r^; hence, r̂
can be delayed in favor of TQ. For example, priorities can be assigned to tasks
based on Rate Monotonic (RM) or Earliest Deadline First (EDF).

Preemption level

Besides a priority pi, a task r̂ is also characterized by a preemption level TT̂ .
The preemption level is a static parameter, assigned to a task at its creation
time and associated with all instances of that task. The essential property of
preemption levels is that a job Ja can preempt another job Jt only if TTa > TTt.
This is also true for priorities. Hence, the reason for distinguishing preemption
levels from priorities is that preemption levels are fixed values that can be used
to predict potential blocking also in the presence of dynamic priority schemes.
The general definition of preemption level used to prove all properties of the
SRP requires that

if Ja arrives after Jb and Ja has higher priority than Jb, then Ja must
have a higher preemption level than Jb.

210 C H A P T E R 7

A D ,

1 D 2

I
d i

V -
(a)

"•2

1 i

n

D l

) i D 2

T
d i

Y
(b)

1*2

Figure 7.15 Although 7r2 > TTI, under EDF p2 can be higher than pi (a) or
lower than pi (b).

Under EDF scheduling, the previous condition is satisfied if preemption levels
are ordered inversely with respect to the order of relative deadlines; that is,

TTi > TTj Di <Dj.

To better illustrate the difference between priorities and preemption levels,
consider the example shown in Figure 7.15. Here we have two jobs Ji and J2,
with relative deadlines Di = 10 and D2 = 5, respectively. Being D2 < Di, we
define m = 1 and 7r2 = 2. Since TTI < 7r2, Ji can never preempt J2; however,
Ji may have a priority higher than that of J2. In fact, under EDF, the priority
of a job is dynamically assigned based on its absolute deadline. For example,
in the case illustrated in Figure 7.15a, the absolute deadlines are such that
d2 < di\ hence, J2 will have higher priority than J i . On the other hand, as
shown in Figure 7.15b, if J2 arrives a time ri + 6, absolute deadlines are such
that d2> di\ hence, Ji will have higher priority than J2.

Notice that, in the case of Figure 7.15b, although Ji has priority higher than J2,
J2 cannot be preempted. This happens because, when di < o?2 and Di > D2,
Ji always starts before J2; thus, it does not need to preempt J2.

Resource Access Protocols 211

pn
J2
Js 1

1 Pi
5
10
20

TTi _

"in
2
1

1 ̂ ^L^
] i

2
3

Mfi2

0
1
1

fJ'RS

1
3
1

Figure 7.16 Task parameters and resource requirements.

Resource ceiling

Each resource R is required to have a current ceiling CR, which is a dynamic
value computed as a function of the units of R that are currently available. If
riR denotes the number of units of R that are currently available and fiR{J)
denotes the maximum requirement of job J for R, the current ceiling of R is
defined to be

CRiriR) = max[{0}u{7r(J) i n n </x/?(J)}].

In other words, if all units of R are available, then CR — 0. However, if the
units of R that are currently available cannot satisfy the requirement of one or
more jobs, then CR is equal to the highest preemption level of those jobs that
could be blocked on R.

To better clarify this concept, consider the following example, where three tasks
(J i , J2, J3) share three resources (i^i, R2, R3), consisting of three, one, and
three units, respectively. All tasks parameters - relative deadlines, preemption
levels, and resource requirements - are shown in Figure 7.16.

Based on these requirements, the current ceilings of the resources as a function
of the number UR of available units are reported in Figure 7.17 (dashes identify
impossible cases).

Let us compute, for example, the ceiling of resource Ri when only two units
(out of three) are available. From Figure 7.16, we see that the only job that
could be blocked in this condition is J3 because it requires three units of i^i;
hence, CRI{2) = TTS = 1. If only one unit of Ri is available, the jobs that could
be blocked are J2 and J3; hence, CRI{1) = max(7r2,7r3) = 2. Finally, if none
of the units of Ri is available, all three jobs could be blocked on Ri; hence,
CRI{0) = max(7ri,7r2,7r3) = 3.

212 C H A P T E R 7

'W]
R2
R3 \

1 CR{3)

0
-
0

CR(2)

1
-
2

CR{1)

2
0
2

CR{0)

3
2
3

Figure 7.17 Resource ceilings as a function of the number of available units.
Dashes identify impossible cases.

Notice that, in the specific case of resources having a single unit (binary re­
sources), the definition of current ceiHng can be simphfied as follows:

CR = max({0} U {7r(J) : R could block J}).

This means that, if R is free, its ceiling is zero, whereas if R is busy, its ceiling
is equal to the highest preemption level of the jobs that require R.

System ceiling

The resource access protocol adopted in the SRP also requires a system ceiling,
Us, defined as the maximum of the current ceilings of all the resources; that is.

Us = max(C/?^ : z = 1 , . . . , m).

Notice that n^ is a dynamic parameter that can change every time a resource
is accessed or released by a job.

7.5.2 Protocol definition

The key idea of the SRP is that, when a job needs a resource that is not
available, it is blocked at the time it attempts to preempt, rather than later.
Moreover, to prevent multiple priority inversions, a job is not allowed to start
until the resources currently available are sufficient to meet the maximum re­
quirement of every job that could preempt it. Using the definitions introduced
in the previous paragraph, this is achieved by the following preemption test:

A job is not permitted to preempt until its priority is the highest
among those of all the jobs ready to run, and its preemption level is
higher than the system ceiling.

Resource Access Protocols 213

If the ready queue is ordered by decreasing priorities, the preemption test can
be simply performed by comparing the preemption level 7r(J) of the ready job
with the highest priority (the one at the head of the queue) with the system
ceiling. If 7r(J) > H^, job J is executed, otherwise it is kept in the ready queue
until ris becomes less than 7r(J). The condition 7r(J) > lis has to be tested
every time Us may decrease; that is, every time a resource is released.

Observations

The implications that the use of the SRP has on tasks' execution can be better
understood through the following observations:

Passing the preemption test for job J ensures that the resources that are
currently available are sufficient to satisfy the maximum requirement of job
J and the maximum requirement of every job that could preempt J. This
means that, once J starts executing, it will never be blocked for resource
contention.

Although the preemption test for a job J is performed before J starts to
execute, resources are not allocated at this time but only when requested.

A task can be blocked by the preemption test even though it does not
require any resource. This is needed to avoid unbounded priority inversion.

Blocking at preemption time, rather than at access time, decreases the
number of context switches, reduces the run-time overhead, and simplifies
the implementation of the protocol.

The preemption test has the effect of imposing priority inheritance; that
is, an executing job that holds a resource modifies the system ceiling and
resists preemption as though it inherits the priority of any jobs that might
need that resource. Note that this effect is accomplished without modifying
the priority of the job.

Example

In order to illustrate how the SRP works, consider the task set already de­
scribed in Figure 7.16. The structure of the tasks is shown in Figure 7.18,
where wait{Ri^n) denotes the request of n units of resource i^j, and signal{Ri)
denotes their release. The current ceilings of the resources have already been

214 C H A P T E R 7

wait(R3, 1)

wait(Ri, 1)

signal(Ri)

signal(R3)

wait(R3, 3)

wait(R2, 1)

1 signal(R2)

signal(R3)

=
wait(Ri, 2)

signal(Ri)

wait(R2, 1)

wait(R,, 3)

signal(Ri)

signal(R2)

Z =

wait(R3, 1)

signal(R3)

Figure 7.18 Structure of the tasks in the SRP example.

Hs

3 1 3

t i t^

A

^1 ^ 1

3 H *

2-] 1 1
1 -J :

3| 2 | 3 H l | i

1 2| ; : : H 3 H]/

t , t 3 U t 5 t 6 t 7 t 8 t9

Figure 7.19 Example of a schedule under EDF and SRP. Numbers on tasks
execution denote the resource indexes.

shown in Figure 7.17, and a possible EDF schedule for this task set is de­
picted in Figure 7.19. In this figure, the fourth timeline reports the variation
of the system ceiling, whereas the numbers along the schedule denote resource
indexes.

Resource Access Protocols 215

At time ô̂ -̂ 3 starts executing and the system ceiling is zero because all re­
sources are completely available. When J3 enters its first critical section, it
takes the only unit of i?2; thus, the system ceiling is set to the highest preemp­
tion level among the tasks that could be blocked on R2 (see Figure 7.17); that
is, II5 = 7r2 = 2. As a consequence, J2 is blocked by the preemption test and
J3 continues to execute. Note that when J3 enters its nested critical section
(taking all units of Ri), the system ceiling is raised to lis — ni = 3 . This
causes Ji to be blocked by the preemption test.

As J3 releases i^i (at time ^2), the system ceiling becomes n^ = 2; thus, Ji
preempts J3 and starts executing. Note that, once Ji is started, it is never
blocked during its execution because the condition TTI > lis guarantees that
all the resources needed by Ji are available. As Ji terminates, J3 resumes the
execution and releases resource R2. As R2 is released, the system ceiling returns
to zero and J2 can preempt J3. Again, once J2 is started, all the resources it
needs are available; thus, J2 is never blocked.

7.5.3 Properties of the protocol

The main properties of the Stack Resource Policy are presented in this section.
They will be used to analyze the schedulability and compute the maximum
blocking time of each task.

Lemma 7.9 If the preemption level of a job J is greater than the current ceiling
of a resource R, then there are sufficient units of R available to

1. Meet the maximum requirement of J and

2. Meet the maximum requirement of every job that can preempt J.

Proof. Assume 7r(J) > C^, but suppose that the maximum request of J for
R cannot be satisfied. Then, by definition of current ceiling of a resource, we
have CR > 7r(J), which is a contradiction.

Assume 7r(J) > CR, but suppose that there exists a job JH that can preempt J
such that the maximum request of JH for R cannot be satisfied. Since JH can
preempt J, it must be TT{JH) > 7r(J). Moreover, since the maximum request
of JH for R cannot be satisfied, by definition of current ceiling of a resource,
we have CR > TT{JH)' Hence, we derive that 7r(J) < CR, which contradicts the
assumption, Q

216 CHAPTER 7

Theorem 7.5 (Baker) If no job J is permitted to start until 7r(J) > lis, then
no job can be blocked after it starts.

Proof. Let Â be the number of tasks that can preempt a job J and assume
that no job is permitted to start until its preemption level is greater than rig.
The thesis will be proved by induction on A .̂

If Â = 0, there are no jobs that can preempt J. If J is started when 7r(J) > Us,
Lemma 7.9 guarantees that all the resources required by J are available when
J preempts; hence, J will execute to completion without blocking.

If A' > 0, suppose that J is preempted by JH- If JH is started when 7T{JH) >
Us, Lemma 7.9 guarantees that all the resources required by JH are avail­
able when JH preempts. Since any job that preempts JH also preempts J,
the induction hypothesis guarantees that JH executes to completion without
blocking, as will any job that preempts J//, transitively. When all the jobs
that preempted J complete, J can resume its execution without blocking, since
the higher-priority jobs released all resources and when J started the resources
available were sufficient to meet the maximum request of J. Q

Theorem 7.6 (Baker) Under the Stack Resource Policy, a job Ji can be
blocked for at most the duration of one critical section.

Proof. Suppose that Ji is blocked for the duration of two critical sections
shared with two lower-priority jobs, Ji and J2. Without loss of generality,
assume 1^2 < TTI < TT̂ . This can happen only if Ji and J2 hold two different
resources (such as R\ and R2) and J2 is preempted by Ji inside its critical
section. This situation is depicted in Figure 7.20. This immediately yields to a
contradiction. In fact, since Ji is not blocked by the preemption test, we have
TTi > Us' On the other hand, since Ji is blocked, we have TT̂ < Ilg. Hence, we
obtain that TT̂ < TTI , which contradicts the assumption, Q

Theorem 7.7 (Baker) The Stack Resource Policy prevents deadlocks.

Proof. By Theorem 7.5, a job cannot be blocked after it starts. Since a job
cannot be blocked while holding a resource, there can be no deadlock, Q

Resource Access Protocols 217

J .

Hi R2 I

Rl

R l I R 2 1]i

Rl

Figure 7.20 An absurd situation that cannot occur under SRP.

7.5.4 Schedulability analysis

As far as the schedulability analysis is concerned, the considerations done for
the Priority Ceiling Protocol are also valid for the Stack Resource Policy, since
the general result does not depend on the time on which a job is blocked.
However, if the SRP is used along with the EDF scheduling algorithm, the
guarantee test has to be modified by considering that under EDF the least
upper bound of the processor utilization factor is 1.

As a result, a set of n periodic tasks using the Stack Resource Policy can be
scheduled by the EDF algorithm if

Vi, 1 < i < n, E Tk +
Bi

< 1. (7.7)

As for the PCP, Ci denotes the worst-case execution time of task r^, Ti denotes
its period, and Bi its maximum blocking time. For each task TJ, the sum
in parentheses represents the utilization factor due to TI itself and to all tasks
having a preemption level higher than TT̂ , whereas the term Bi/Ti considers the
blocking time caused by tasks having preemption level lower than TT̂ . Condition
(7.7) can easily be extended to periodic tasks with deadlines less than periods.
In this case, the schedulability test is modified as follows:

Vz, 1 < i < n. (7.8)

A more precise schedulability condition can be achieved through a processor
demand approach [BRH90, JS93]. In particular, equation (4.18) has been ex­
tended in [BL97, Lip97], where it is proved that a set of periodic tasks that use

218 C H A P T E R 7

shared resources with SRP is schedulable by EDF if for all L > 0 and for all
l<i<n

E
k=i

L-D.
+ l]Ck +

L-Dj

Ti
+ \]Bi < L. (7.9)

7.5.5 Blocking t ime computat ion

The maximum blocking time that a job can experience with the SRP is the
same as the one that can be experienced with the Priority Ceiling Protocol.
Theorem 7.6, in fact, guarantees that under the SRP a job Ji can be blocked
for at most the duration of one critical section among those that can block
Ji. Lemma 7.8, proved for the PCP, can be easily extended to the SRP, thus
a critical section Zj^k belonging to job Jj and guarded by semaphore Sk can
block a job Ji only if TTJ < TTI and max(C5^) > TTJ. Notice that, under the SRP,
the ceiling of a semaphore is a dynamic variable, so we have to consider its
maximum value, that is the one corresponding to a number of units currently
available equal to zero.

Hence, the maximum blocking time Bi of job Ji can be computed as the du­
ration of the longest critical section among those belonging to tasks with pre­
emption level lower than TTJ and guarded by a semaphore with maximum ceiling
higher than or equal to TT̂ . If Dj^k denotes the duration of the longest critical
section of task TJ among those guarded by semaphore Sk, we can write

Bi = max{Dj^k TTj < TTi, Cs,X^) > ^i}' (7.10)

7.5.6 Sharing runt ime stack

Another interesting implication deriving from the use of the SRP is that it
supports stack sharing among tasks. This is particularly convenient for those
applications consisting of a large number of tasks, dedicated to acquisition,
monitoring, and control activities. In conventional operating systems, each
process must have a private stack space, sufficient to store its context (that is,
the content of the CPU registers) and its local variables. A problem with these
systems is that, if the number of tasks is large, a great amount of memory may
be required for the stacks of all the tasks.

Resource Access Protocols 219

Stack 4

stack 3

stack 2

stack 1

t i t2 t3 t6 t7

Figure 7.21 Possible evolution with one stack per task.

For example, consider four jobs J i , J2, J3, and J4, with preemption levels 1,
2, 2, and 3, respectively (3 being the highest preemption level). Figure 7.21
illustrates a possible evolution of the stacks, assuming that each job is allocated
its own stack space, equal to its maximum requirement. At time ^1, Ji starts
executing; J2 preempts at time 2̂ înd completes at time ^3, allowing Ji to
resume. At time ^4, Ji is preempted by J3, which in turn is preempted by J4
at time ^5. At time te, J A completes and J3 resumes. At time t-j, J3 completes
and Ji resumes.

Note that the top of each process stack varies during the process execution,
while the storage region reserved for each stack remains constant and corre­
sponds to the distance between two horizontal lines. In this case, the total
storage area that must be reserved for the application is equal to the sum of
the stack regions dedicated to each process.

However, if all tasks are independent or use the SRP to access shared resources,
then they can share a single stack space. In this case, when a job J is preempted
by a job J', J maintains its stack and the stack of J' is allocated immediately
above that of J . Figure 7.22 shows a possible evolution of the previous task set
when a single stack is allocated to all tasks.

Under the SRP, stack overlapping without interpenetration is a direct con­
sequence of Theorem 7.5. In fact, since a job J can never be blocked once
started, its stack can never be penetrated by the ones belonging to jobs with
lower preemption levels, which can resume only after J is completed.

220 C H A P T E R 7

Stack 3

stack 4

stack 2

stack 1

1

I

~i

1

\

I

r

r

^.J
J 2 n V" 1 1 '

^ i ' .

1 1 r^> L ^
1 '

\ \
tl t2 t3 t4 t5 t6 t7

Figure 7.22 Possible evolution with a single stack for all tasks.

Note that the stack space between the two upper horizontal Hnes (which is
equivalent to the minimum stack between J2 and J3) is no longer needed, since
J2 and J3 have the same preemption level, so they can never occupy stack space
at the same time. In general, the higher the number of tasks with the same
preemption level, the larger stack saving.

For example, consider an application consisting of 100 jobs distributed on 10
preemption levels, with 10 jobs for each level, and suppose that each job needs
up to 10 Kbytes of stack space. Using a stack per job, 1000 Kbytes would
be required. On the contrary, using a single stack, only 100 Kbytes would be
sufficient, since no more than one job per preemption level could be active at
one time. Hence, in this example we would save 900 Kbytes; that is, 90%. In
general, when tasks are distributed on k preemption levels, the space required
for a single stack is equal to the sum of the largest request on each level.

7.5.7 Implementation considerations

The implementation of the SRP is similar to that of the PCP, but the locking
operations {srp.wait and srp.signal) are simpler, since a job can never be
blocked when attempting to lock a semaphore. When there are no sufficient
resources available to satisfy the maximum requirement of a job, the job is not
permitted to preempt and is kept in the ready queue.

To simplify the preemption test, all the ceilings of the resources (for any number
of available units) can be precomputed and stored in a table. Moreover, a stack

Resource Access Protocols 221

can be used to keep track of the system ceiling. When a resource R is allocated,
its current state, UR, is updated and, if CR{nR) > Eg, then Us is set to CR{nR).
The old values of UR and lis are pushed onto the stack. When resource R is
released, the values of II^ and UR are restored from the stack. If the restored
system ceiling is lower than the previous value, the preemption test is executed
on the ready job with the highest priority to check whether it can preempt.
If the preemption test is passed, a context switch is performed; otherwise, the
current task continues its execution.

7.6 SUMMARY

The concurrency control protocols presented in this chapter can be compared
with respect to several characteristics. Figure 7.23 provides a qualitative eval­
uation of the algorithms in terms of priority assignment, number of blockings,
instant of blocking, programming transparency, deadlock prevention, imple­
mentation, and complexity for computing the blocking factors. Notice that
the Priority Inheritance Protocol (PIP), although not so effective in terms of
performance, is the only one that is transparent at the programming level.
The other protocols, in fact, require the user to specify the list of resources
used by each task, in order to compute the ceiling values. This feature of PIP
makes it actractive for commercial operating systems (like VxWorks), where
predictability can be improved without introducing new kernel primitives.

PIP

PCP

SRP

priority
assignment

fixed

fixed

fixed
or

dynamic

number of
blocking

min(n,m)

1

1

blocking
instant

on resource
access

on resource
access

on
preemption

transp­
arency

YES

NO

NO

deadlock
prevention

NO

YES

YES

implem­
entation

hard

medium

easy

Bi 1
computation

hard

easy

easy

Figure 7.23 Evaluation summary of resource access protocols.

222 C H A P T E R 7

Exercises

7.1 Verify whether the following task set is schedulable by the Rate-Monotonic
algorithm (try both the processor utilization and the worst-case response
approach):

~cr]
Bi
Ti

1 '̂ i

r^
5
10

T2

3
3
15

T3

2
0

20

7.2 Consider three periodic tasks r i , r2, and rs (having decreasing priority),
which share four resources, A, B, C, and D, accessed using the Priority
Inheritance Protocol. Compute the maximum blocking time Bi for each
task, knowing that the longest duration Dm for a task r̂ on resource R
is given in the following table (there are no nested critical sections):

n
T2

rs

1 A

P~
4

1 ^

B

2
0
1

C

4
6
0

D

6
8
5

7.3 Solve the same problem described in Exercise 7.2 when the resources are
accessed by the Priority Ceiling Protocol.

7.4 Consider four periodic tasks r i , r2, T3, and T4 (having decreasing prior­
ity), which share five resources. A, B, C, D, and E, accessed using the
Priority Inheritance Protocol. Compute the maximum blocking time Bi
for each task, knowing that the longest duration DiR for a task TI on
resource R is given in the following table (there are no nested critical
sections):

n
T2

rs
TA

1 A
VW

10
0
10

B

~^
0
3
0

c
~ 9 ~

7
0
8

D

"~8~
0
7
0

E

~ 0 ~
6
13
5

7.5 Solve the same problem described in Exercise 7.4 when the resources are
accessed by the Priority Ceiling Protocol.

Resource Access Protocols 223

7.6 Consider three tasks J i , J2, and J3, which share three multiunit re­
sources, A, B^ and C, accessed using the Stack Resource Pohcy. Re­
sources A and B have three units, whereas C has two units. Compute
the ceihng table for all the resources based on the following task charac­
teristics:

pT]
h
Js 1

1 Pi
5
10
20

Mfii

1
2
3

I^R2

0
1
1

/i/?3

1
3
1

8
HANDLING OVERLOAD

CONDITIONS

8.1 INTRODUCTION

This chapter deals with the problem of scheduling real-time tasks in overload
conditions; that is, in those critical situations in which the computational de­
mand requested by the task set exceeds the time available on the processor,
and hence not all tasks can complete within their deadlines.

In real-world applications, even when the system is properly designed and sized,
a transient overload can occur for different reasons, such as changes in the en­
vironment, simultaneous arrivals of asynchronous events, faults of peripheral
devices, or system exceptions. The major risk that could occur in these situa­
tions is that some critical task could miss its deadline, jeopardizing the correct
behavior of the whole system.

If the operating system is not conceived to handle overloads, the effect of a tran­
sient overload can be catastrophic. Experiments carried out by Locke [Loc86]
have shown that EDF can rapidly degrade its performance during overload in­
tervals. This is due to the fact that EDF gives the highest priority to those
processes that are close to missing their deadlines. There are cases in which
the arrival of a new task can cause all the previous tasks to miss their dead­
lines. Such an undesirable phenomenon, called the Domino effect, is depicted
in Figure 8.1.

Figure 8.1a shows a feasible schedule of a task set executed under EDF. How­
ever, if at time ô task Jo is executed, all the previous tasks miss their deadlines
(see Figure 8.1b). In such a situation, EDF does not provide any type of guar­
antee on which tasks meet their timing constraints. This is a very undesirable

226 C H A P T E R 8

behavior in those control apphcations in which a critical subset of tasks has
to be guaranteed in all anticipated load conditions. In order to avoid domino
effects, the operating system and the scheduling algorithm must be explicitly
designed to handle transient overloads in a controlled fashion, so that the dam­
age due to a deadline miss can be minimized.

J 3

jzzi

1_JL

(a)

J2
1

1 1
A

A

^

• i 1

•li—1
to (b)

Figure 8.1 a. Feasible schedule with Earliest Deadline First, in normal load
condition, b . Overload with domino effect due to the arrival of task JQ.

In the real-time literature, several scheduling algorithms have been proposed
to deal with overloads. In 1984, Ramamritham and Stankovic [RS84] used
EDF to dynamically guarantee incoming work via on-line planning, and, if a
newly arriving task could not be guaranteed, the task was either dropped or
distributed scheduling was attempted. The dynamic guarantee performed in
this approach had the effect of avoiding the catastrophic effects of overload on
EDF.

Handling Overload Conditions 227

In 1986, Locke [Loc86] developed an algorithm that makes a best effort at
scheduHng tasks based on earliest deadline with a rejection policy based on re­
moving tasks with the minimum value density. He also suggested that removed
tasks remain in the system until their deadline has passed. The algorithm com­
putes the variance of the total slack time in order to find the probability that
the available slack time is less than zero. The calculated probability is used to
detect a system overload. If it is less than the user prespecified threshold, the
algorithm removes the tasks in increasing value density order.

In Biyabani et. al. [BSR88] the previous work of Ramamritham and Stankovic
was extended to tasks with different values, and various policies were studied
to decide which tasks should be dropped when a newly arriving task could not
be guaranteed. This work used values of tasks such as in Locke's work but used
an exact characterization of the first overload point rather than a probabilistic
estimate that overload might occur.

Haritsa, Livny, and Carey [HLC91] presented the use of a feedback controlled
EDF algorithm for use in real-time database systems. The purpose of their work
was to obtain good average performance for transactions even in overload. Since
they were working in a database environment, they assumed no knowledge of
transaction characteristics, and they considered tasks with soft deadlines that
are not guaranteed.

In real-time Mach [TWW87] tasks were ordered by EDF and overload was
predicted using a statistical guess. If overload was predicted, tasks with least
value were dropped.

Other general work on overload in real-time systems has also been done. For
example, Sha [SLR88] showed that the Rate-Monotonic algorithm has poor
properties in overload. Thambidurai and Trivedi [TT89] studied transient over­
loads in fault-tolerant real-time systems, building and analyzing a stochastic
model for such systems. However, they provided no details on the schedul­
ing algorithm itself. Schwan and Zhou [SZ92] did on-line guarantees based on
keeping a slot list and searching for free-time intervals between slots. Once
schedulability is determined in this fashion, tasks are actually dispatched using
EDF. If a new task cannot be guaranteed, it is discarded.

Zlokapa, Stankovic, and Ramamritham [Zlo93] proposed an approach called
well-time scheduling^ which focuses on reducing the guarantee overhead in
heavily loaded systems by delaying the guarantee. Various properties of the
approach were developed via queueing theoretic arguments, and the results

228 C H A P T E R 8

were a multilevel queue (based on an analytical derivation), similar to that
found in [HLC91] (based on simulation).

More recent approaches will be described in the following sections. Before
presenting specific methods and theoretical results on overload, the concept
of overload, and, in general, the meaning of computational load for real-time
systems is defined in the next section.

8.2 LOAD DEFINITIONS

In a real-time system, the definition of computational workload depends on
the temporal characteristics of the computational activities. For non-real-time
or soft real-time tasks, a commonly accepted definition of workload refers to
the standard queueing theory, according to which a load p, also called traffic
intensity, represents the expected number of job arrivals per mean service time.
If C is the mean service time and A is the average interarrival rate of the jobs,
the load can be computed as

p = XC.

Notice that this definition does not take deadlines into account; hence, it is
not particularly useful to describe real-time workloads. In a hard real-time
environment, a system is overloaded when, based on worst-case assumptions,
there is no feasible schedule for the current task set, so one or more tasks will
miss their deadline.

If the task set consists of n independent preemptable periodic tasks, whose
relative deadlines are equal to their period, then the system load p is equivalent
to the processor utilization factor:

Ci ^-E^^
1=1

where Ci and Ti are the computation time and the period of task TI , respectively.
In this case, a load p > 1 means that the total computation time requested by
the periodic activities in their hyperperiod exceeds the available time on the
processor; therefore, the task set cannot be scheduled by any algorithm.

For a generic set of real-time jobs that can be dynamically activated, the system
load varies at each job activation and it is a function of the jobs' deadlines. A
general definition of load has been proposed by Baruah et al. [BKM~^92], who

Handling Overload Conditions 229

J i

J2

J3

j f g s a

2 3 4 5 6 7

t

P,(t) = 2/3

P.(t) = 3/4

p3(t) = 4/6

p (t) = 3/4

Figure 8.2 Load calculation for a set of three real-time tasks.

say that a hard real-time environment has a loading factor p if and only if it
is guaranteed that there will be no interval of time [tx^ty] such that the sum
of the execution times of all jobs making requests and having deadlines within
this interval is greater than p{ty — tx). Although this definition is quite general
and of theoretical value, it is of little practical use for load calculation, since
the number of intervals [tx.ty] can be very large.

A simpler method for calculating the load in a dynamic real-time environment
has been proposed by Buttazzo and Stankovic in [BS95], where the load is
computed at each job activation (r^), and the number of intervals in which the
computation in done is limited by the number of deadlines (di). The method for
computing the load is based on the consideration that, for a single job J^, the
load is given by the ratio of its computation time Ci and its relative deadline
Di = di - Ti. For example, if Ci = Di (that is, the job does not have slack
time), the load in the interval [vi.di] is one. When a new job arrives, the load
can be computed from the last request time, which is also the current time ,̂
and the longest deadline, say dn- In this case, the intervals that need to be
considered for the computation are [^,c?i], [^,(i2], • • •, [t.dn]- In general, the
processor load in the interval [t, di] is given by

Pi{t) =
Erf,<d. f̂c(̂)

{di - t) '

where Ck(t) refers to the remaining execution time of job Jk with deadline less
than or equal to di. Hence, the total load in the interval [t, dn] can be computed
as the maximum among all Pi{t)\ that is,

p = max pi{t).
i

Figure 8.2 shows an example of load calculation for a set of three real-time
tasks.

230 C H A P T E R 8

8.3 PERFORMANCE METRICS
When a real-time system is underloaded and dynamic activation of tasks is
not allowed, there is no need to consider task importance in the scheduling
policy, since there exist optimal scheduling algorithms that can guarantee a
feasible schedule under a set of assumptions. For example, Dertouzos [Der74]
proved that EDF is an optimal algorithm for preemptive, independent tasks
when there is no overload.

On the contrary, when tasks can be activated dynamically and an overload
occurs, there are no algorithms that can guarantee a feasible schedule of the task
set. Since one or more tasks will miss their deadlines, it is preferable that late
tasks be the less important ones in order to achieve graceful degradation. Hence,
in overload conditions, distinguishing between time constraints and importance
is crucial for the system. In general, the importance of a task is not related
to its deadline or its period; thus, a task with a long deadline could be much
more important than another one with an earlier deadline. For example, in
a chemical process, monitoring the temperature every ten seconds is certainly
more important than updating the clock picture on the user console every
second. This means that, during a transient overload, is better to skip one or
more clock updates rather than miss the deadline of a temperature reading,
since this could have a major impact on the controlled environment.

In order to specify importance, an additional parameter is usually associated
with each task, its value, that can be used by the system to make scheduling
decisions.

The value associated with a task reflects its importance with respect to the other
tasks in the set. The specific assignment depends on the particular application.
For instance, there are situations in which the value is set equal to the task
computation time; in other cases, it is an arbitrary integer number in a given
range; in other applications, it is set equal to the ratio of an arbitrary number
(which reflects the importance of the task) and the task computation time; this
ratio is referred to as the value density.

In a real-time system, however, the actual value of a task also depends on the
time at which the task is completed; hence, the task importance can be better
described by an utility function. Figure 8.3 illustrates some utility functions
that can be associated with tasks in order to describe their importance. Accord­
ing to this view, a non-real-time task, which has no time constraints, has a low
constant value, since it always contributes to the system value whenever it com-

Handling Overload Conditions 231

v(fi)

Non real-time

• ^ f i

Figure 8.3
importance.

Utility functions that can be associated to a task to describe its

pletes its execution. On the contrary, a hard task contributes to a value only
if it completes within its deadline, and, since a deadline miss would jeopardize
the behavior of the whole system, the value after its deadline can be considered
minus infinity in many situations. A task with a soft deadline, instead, can still
give a value to the system if executed after its deadline, although this value
may decrease with time. Then, there can be real-time activities, so-called firm,
that do not jeopardize the system but give zero value if completed after their
deadline.

Once the importance of each task has been defined, the performance of a
scheduling algorithm can be measured by accumulating the values of the task
utility functions computed at their completion time. Specifically, we define as
cumulative value of a scheduling algorithm A the following quantity:

n

i=l

Given this metric, a scheduling algorithm is optimal if it maximizes the cumu­
lative value achievable on a task set.

Notice that if a hard task misses its deadline, the cumulative value achieved by
the algorithm is minus infinity, even though all other tasks completed before
their deadlines. For this reason, all activities with hard timing constraints
should be guaranteed a priori by assigning them dedicated resources (included

232 C H A P T E R 8

processors). If all hard tasks are guaranteed a priori, the objective of a real-time
scheduling algorithm should be to guarantee a feasible schedule in underload
conditions and maximize the cumulative value of soft and firm tasks during
transient overloads.

Given a set of n jobs Ji{Ci,Di,Vi), where Ci is the worst-case computation
time, Di is the relative deadline, and Vi is the importance value gained by the
system when the task completes within its deadline, the maximum cumulative
value achievable on the task set is clearly equal to the sum of all values Vi;
that is, Tmax = Yl7=i ^i' ^^ overload conditions, this value cannot be achieved,
since one or more tasks will miss their deadlines. Hence, if F* is the maxi­
mum cumulative value that can be achieved by any algorithm on a task set in
overload conditions, the performance of a scheduling algorithm A can be mea­
sured by comparing the cumulative value FA obtained by A with the maximum
achievable value F*.

8.3.1 On-line versus clairvoyant scheduling

Since dynamic environments require on-line scheduling, it is important to an­
alyze the properties and the performance of on-line scheduling algorithms in
overload conditions.

Although there are optimal on-line algorithms in underload conditions, it is
easy to show that no optimal on-line algorithms exist in overloads. Consider for
example the task set shown in Figure 8.4, consisting of three tasks Ji(10,11,10),
J2(6,7,6), J3(6,7,6).

Without loss of generality, we assume that the importance values associated to
the tasks are proportional to their execution times (Vi = d) and that tasks
are firm, so no value is accumulated if a task completes after its deadline. If Ji
and J2 simultaneously arrive at time Q̂ = 0, there is no way to maximize the
cumulative value without knowing the arrival time of J3. In fact, if J3 arrives
at time t — A ox before, the maximum cumulative value is F* = 10 and can
be achieved by scheduling task Ji (see Figure 8.4a). However, if J3 arrives
between time ^ = 5 and time t = 8, the maximum cumulative value is F* = 12,
achieved by scheduling task J2 and J3, and discarding Ji (see Figure 8.4b).
Notice that if J3 arrives at time ^ = 9 or later (see Figure 8.4c), then the
maximum cumulative value is F* = 16 and can be accumulated by scheduling
tasks Ji and J3. Hence, at time t = 0, without knowing the arrival time of

Handling Overload Conditions 233

Jl

J3

c , = 10

I C 3 = 6

0 2 4 6

C, = 10

10 12 14 16

(a)

C. =6

J l

J3
C^ =6

•-f •! ' I - T ^'l'"'H

0 2 4 6 10 12 14 16

(b)

I C | = 10

J2

J3

C . =6

C ^ , ^ 6 ^ l

0 2 4 6 10 12 14 16

(C)

Figure 8.4 No optimal on-line optimal algorithms exist in overload condi­
tions, since the schedule that maximizes F depends on the knowledge of future
arrivals, a. Tmax = 10. b . Tmax = 12. c. Tmax = 16.

234 C H A P T E R 8

J3, no on-line algorithm can decide which task to schedule for maximizing the
cumulative value.

What this example shows is that, without an a priori knowledge of the task
arrival times, no on-line algorithm can guarantee the maximum cumulative
value r*. This value can only be achieved by an ideal clairvoyant scheduling
algorithm that knows the future arrival time of any task. Although the optimal
clairvoyant scheduler is a pure theoretical abstraction, it can be used as a
reference model to evaluate the performance of on-line scheduling algorithms
in overload conditions.

8.3.2 Competit ive factor

The cumulative value obtained by a scheduling algorithm on a task set repre­
sents a measure of its performance for that particular task set. To characterize
an algorithm with respect to worst-case conditions, however, the minimum cu­
mulative value that can be achieved by the algorithm on any task set should
be computed. A parameter that measures the worst-case performance of a
scheduling algorithm is the competitive factor, introduced by Baruah et al. in
[BKM+92].

Definition 8.1 A scheduling algorithm A has a competitive factor (^A if Q^'^d
only if it can guarantee a cumulative value

TA > ^AT^

where F* is the cumulative value achieved by the optimal clairvoyant scheduler.

From this definition, we can notice that the competitive factor is a real number
(fA ^ [O?!]- If ^^ algorithm A has a competitive factor (^A^ it means that
A can achieve a cumulative value TA at least (^A times the cumulative value
achievable by the optimal clairvoyant scheduler on any task set.

If the overload has an infinite duration, then no on-line algorithm can guarantee
a competitive factor greater than zero. In real situations, however, overloads
are intermittent and usually have a short duration; hence, it is desirable to use
scheduling algorithms with a high competitive factor.

Unfortunately, without any form of guarantee, the plain EDF algorithm has a
zero competitive factor. To show this fact it is sufficient to find an overload

Handling Overload Conditions 235

J i

J2

V, = K

V2 = e K

Figure 8.5 Situation in which EDF has an arbitrarily small competitive fac­
tor.

situation in which the cumulative value obtained by EDF can be arbitrarily
reduced with respect to that one achieved by the clairvoyant scheduler. Con­
sider the example shown in Figure 8.5, where tasks have a value proportional
to their computation time. This is an overload condition because both tasks
cannot be completed within their deadlines.

When task J2 arrives, EDF preempts Ji in favor of J2, which has an earlier
deadline, so it gains a cumulative value of C2. On the other hand, the clair­
voyant scheduler always gains Ci > C2. Since the ratio C2/C1 can be made
arbitrarily small, it follows that the competitive factor of EDF is zero.

An important theoretical result found in [BKM"^92] is that there exists an
upper bound on the competitive factor of any on-line algorithm. This is stated
by the following theorem.

Theorem 8.1 (Baruah at al.) In systems where the loading factor is greater
than 2 (p > 2) and tasks' values are proportional to their computation times,
no on-line algorithm can guarantee a competitive factor greater than 0.25.

The proof of this theorem is done by using an adversary argument, in which
the on-line scheduling algorithm is identified as a player and the clairvoyant
scheduler as the adversary. In order to propose worst-case conditions, the
adversary dynamically generates the sequence of tasks depending on the player
decisions, to minimize the ratio F A / F * . At the end of the game, the adversary
shows its schedule and the two cumulative values are computed. Since the
player tries to do his best in worst-case conditions, the ratio of the cumulative
values gives the upper bound of the competitive factor for any on-line algorithm.

236 C H A P T E R 8

Major J
Tasks

Associated
Tasks <

Ci

l e i
fz\ Tel Tel . . .

e Te Te

F i g u r e 8 . 6 Tcisk sequence g e n e r a t e d by t h e adve r sa ry .

Task generation strategy

To create an overload condition and force the hand of the player, the adversary
creates two types of tasks: major tasks, of length Cj, and associated tasks, of
length 6 arbitrarily small. These tasks are generated according to the following
strategy (see Figure 8.6):

• All tasks have zero laxity; that is, the relative deadline of each task is
exactly equal to its computation time.

• After releasing a major task Jj, the adversary releases the next major task
Ji^i at time e before the deadline of Ji; that is, r^+i = di — e.

• For each major task Jj, the adversary may also create a sequence of asso­
ciated tasks, in the interval [n, di], such that each subsequent associated
task is released at the deadline of the previous one in the sequence (see
Figure 8.6). Note that the resulting load is p = 2. Moreover, any algorithm
that schedules any one of the associated tasks cannot schedule Ji within
its deadline.

• If the player chooses to abandon Ji in favor of an associated task, the
adversary stops the sequence of associated tasks.

• If the player chooses to schedule a major task J^, the sequence of tasks
terminates with the release of Ji-^i.

• Since the overload must have a finite duration, the sequence continues until
the release of Jm, where m is a positive finite integer.

Notice that the sequence of tasks generated by the adversary is constructed in
such a way that the player can schedule at most one task within its deadline

Handling Overload Conditions 237

(either a major task or an associated task). Clearly, since task values are equal
to their computation times, the player never abandons a major task for an
associated task, since it would accumulate a negligible value; that is, e. On the
other hand, the values of the major tasks (that is, their computation times) are
chosen by the adversary to minimize the resulting competitive factor. To find
the worst-case sequence of values for the major tasks, let

^0-) ^1-) ^2f • ' • •) '^ii ' ' • •) 'Jm

be the longest sequence of major tasks that can be generated by the adversary
and, without loss of generality, assume that the first task has a computation
time equal to Co = 1. Now, consider the following three cases.

Case 0. If the player decides to schedule JQ, the sequence terminates with
J i . In this case, the cumulative value gained by the player is Co, whereas the
one obtained by the adversary is (Co -h Ci — e). Notice that this value can be
accumulated by the adversary either by executing all the associated tasks, or
by executing JQ and all associated tasks started after the release of J i . Being e
arbitrarily small, it can be neglected in the cumulative value. Hence, the ratio
among the two cumulative values is

"̂ ^ Co + Ci 1 + Ci k'

If l//c is the value of this ratio (A: > 0), then C\ = k — 1.

Case 1. If the player decides to schedule J i , the sequence terminates with J2.
In this case, the cumulative value gained by the player is Ci, whereas the one
obtained by the adversary is (Co + Ci + C2). Hence, the ratio among the two
cumulative values is

- Ci _ A;-1
"̂ ^ ~ Co -f Ci + C2 ~ /c + C2 *

In order not to lose with respect to the previous case, the adversary has to
choose the value of C2 so that ipi < (po', that is,

k-1 1
k + C2 - k'

which means
C2 > k^ - 2k.

However, observe that, if (pi < (fo, the execution of JQ would be more convenient
for the player, thus the adversary decides to make (pi = (po; that is,

Co - k^-2k.

238 C H A P T E R 8

Case i. If the player decides to schedule Ji, the sequence terminates with J^+i.
In this case, the cumulative value gained by the player is Ci, whereas the one
obtained by the adversary is (Co + Ci 4- . . . + Ci^\). Hence, the ratio among
the two cumulative values is

Ci

Y.i=:0 ^3 + ^»+l

As in the previous case, to prevent any advantage to the player, the adversary
will choose tasks' values so that

1

Thus,

and hence

ifi = (pi^i = ... = ifo = - .

C^
Yl]=oCj +Ci^i k'

j=0

Thus, the worst-case sequence for the player occurs when major tasks are gen­
erated with the following computation times:

^° : ^ i (8.1)
Ci-i-i — kCi — z2j=o ^3-

Proof of the hound

Whenever the player chooses to schedule a task Jj, the sequence stops with
Jij^i and the ratio of the cumulative values is

Ci ^ 1

Ej=0 ^3 + C'i+i ^

However, if the player chooses to schedule the last task J^ , the ratio of the
cumulative values is

Cm

ET=oCj-

Handling Overload Conditions 239

Notice that if k and m can be chosen such that i^^rn < 1/^; that is,

r 1
< 7, (8.2) Em ^ 7 '

then we can conclude that, in the worst case, a player cannot achieve a cumu­
lative value greater than 1/k times the adversary's value. Notice that

^j=0 ^3 Sjlo ^3 + Cm YJjLo Cj -f- kCm-l " S j l o ^3 ^^m-1

Hence, if there exists an m which satisfies equation (8.2), it also satisfies the
following equation:

^ m ^ ^ m —1 •

(8.3)

Thus, (8.3) is satisfied if and only if (8.2) is satisfied.
From (8.1) we can also write

Ci-\-2 — kCi-^i — 2_^ Cj
3=0

i

Ci-i-i = kCi — y ^Cj,

i=o

and subtracting the second equation from the first one, we obtain

Ci-\-2 — C'i-f 1 = kyCi^i — Ci) — CiJ^i

that is,
Ci-\-2 — kyCij^i — Ci).

Hence, equation (8.1) is equivalent to

f Co = 1
^ Ci ^ k-l (8.4)
y Ci^2 = k{Ci^i - Ci).

From this result, we can say that the tightest bound on the competitive factor
of an on-line algorithm is given by the smallest ratio 1/k (equivalently, the
largest k) such that (8.4) satisfies (8.3). Equation (8.4) is a recurrence relation
that can be solved by standard techniques [Sha85]. The characteristic equation
of (8.4) is

x"^ - kx + k = 0,

240 C H A P T E R 8

which has roots

k + Vk'^- 4A: , k-Vk'^ - 4k
xi = and X2 = .

2 2

When A; = 4, we have
d = dii2'-{-d22\ (8.5)

and when k ^ 4 we have

Ci - diixiY + d2{x2)\ (8.6)

where values for di and ^2 can be found from the boundary conditions expressed
in (8.4). We now show that for {k = 4) and {k > 4) Ci will diverge, so equation
(8.3) will not be satisfied, whereas for {k < 4) Ci will satisfy (8.3).

Case (k = 4). In this case, Ci = d\i2'^ 4- G?22* and, from the boundary condi­
tions, we find di — 0.5 and d2 — I. Thus,

Ci = (^ + 1)2S

which clearly diverges. Hence, for A; == 4, equation (8.3) cannot be satisfied.

Case (/c > 4). In this case, Ci = di{xiy -h d2{x2)\ where

k + Vk'^ - 4k , k-Vk^ - 4k
xi = and X2 = •

2 2
From the boundary conditions we find

J Co = di -\- d2 = I
\ Ci = diXi-\-d2X2 = k — 1

that is.
fc-2

^1 ~" 2 "^ 2v/fc2-4fc
r1 — i _ fc-2
^2 - 2 2 > A ^ ^ ^ -

Since (xi > 0:2), (a:i > 2), and (di > 0), Cj will diverge, and hence, also for
A: > 4, equation (8.3) cannot be satisfied.

Case {k < 4). In this case, since (/ĉ —4k < 0), both the roots xi , X2 and
the coefficients di, ^2 are complex conjugates, so they can be represented as
follows:

^ Xi = re^ (di = se^' r
{ d2 = se-^^ \ X2 = re •̂ ,̂

Handling Overload Conditions 241

where s and r are real numbers, j = \ / ^ , and 0 and LO are angles such that,
—7r/2 < ^ < 0 , 0 < u ; < 7r/2. Equation (8.6) may therefore be rewritten as

= 5r*[cos(^ + icc;) + j sin(^ H-icj) + cos(^ + icj) — jsin(^ + zo;)] =
= 2sr^ cos{6 -{- iuj).

Being UJ ^ 0, cos{6 + ioo) is negative for some i G N, which implies that there
exists a finite m that satisfies (8.3).

Since (8.3) is satisfied for A: < 4, the largest k that determines the competi­
tive factor of an on-line algorithm is certainly less than 4. Therefore, we can
conclude that 1/4 is an upper bound on the competitive factor that can be
achieved by any on-line scheduling algorithm in an overloaded environment.
Hence, Theorem 8.1 follows.

Extensions

Theorem 8.1 establishes an upper bound on the competitive factor of on-line
scheduling algorithms operating in heavy load conditions (p > 2). In lighter
overload conditions (1 < p < 2), the bound is a little higher, and it is given by
the following theorem [BR91].

Theorem 8.2 (Baruah et al.) In real-time environments with a loading fac­
tor p, 1 < p <2, and task values equal to computation times, no on-line algo­
rithm can guarantee a competitive factor greater than p, where p satisfies

4 [l - (p - l) p f = 2 7 / . (8.7)

Notice that, for p = 1 -h e, equation (8.7) is satisfied for p = y/4:/27 c::̂ 0.385,
whereas, for p = 2, the same equation is satisfied for p = 0.25.

In summary, whenever the system load does not exceed one, the upper bound
of the competitive factor is obviously one. As the load exceeds one, the bound
immediately falls to 0.385, and as the load increases from one to two, it falls
from 0.385 to 0.25. For loads higher than two, the competitive factor limitation
remains at 0.25. The bound on the competitive factor as a function of the load
is shown in Figure 8.7.

242 C H A P T E R 8

1

0.75H

0.5-

0.25-

load

Figure 8.7 Bound of the competitive factor of an on-line scheduling algo­
rithm as a function of the load.

Baruah et al. [BR91] also showed that, when using value density metrics (where
the value density of a task is its value divided by its computation time), the
best that an on-line algorithm can guarantee in environments with load p > 2
is

1

where k is the important ratio between the highest and the lowest value density
task in the system.

In environments with a loading factor p, 1 < p < 2, and an importance ratio
/c, two cases must be considered. Let q = k{p - 1). U q > 1, then no on-hne
algorithm can achieve a competitive factor greater than

1

27p\

whereas, if q < 1, no on-line algorithm can achieve a competitive factor greater
than p, where p satisfies

4(1 - qpf =

Before concluding the discussion on the competitive analysis, it is worth point­
ing out that all the above bounds are derived under very restrictive assump­
tions, such as all tasks have zero laxity, the overload can have an arbitrary (but
finite) duration, and task's execution time can be arbitrarily small. In most
real-world applications, however, tasks characteristics are much less restrictive;
therefore, the l /4th bound has only a theoretical validity, and more work is
needed to derive other bounds based on more knowledge of the actual envi­
ronmental load conditions. An analysis of on-line scheduling algorithms under
diff'erent types of adversaries has been presented by Karp in [Kar92].

Handling Overload Conditions 243

8.4 SCHEDULING SCHEMES FOR
OVERLOAD

With respect to the strategy used to predict and handle overloads, most of the
scheduling algorithms proposed in the literature can be divided into three main
classes, illustrated in Figure 8.8:

• Best Effort. This class includes those algorithms with no prediction for
overload conditions. At its arrival, a new task is always accepted into the
ready queue, so the system performance can only be controlled through a
proper priority assignment.

• Guarantee. This class includes those algorithms in which the load on the
processor is controlled by an acceptance test executed at each task arrival.
Typically, whenever a new task enters the system, a guarantee routine
verifies the schedulability of the task set based on worst-case assumptions.
If the task set is found schedulable, the new task is accepted in the ready
queue; otherwise, it is rejected.

• Robust. This class includes those algorithms that separate timing con­
straints and importance by considering two different policies: one for task
acceptance and one for task rejection. Typically, whenever a new task en­
ters the system, an acceptance test verifies the schedulability of the new
task set based on worst-case assumptions. If the task set is found schedu­
lable, the new task is accepted in the ready queue; otherwise, one or more
tasks are rejected based on a different policy.

In addition, an algorithm is said to be competitive if it has a competitive factor
greater than zero.

Notice that the simple guarantee scheme is able to avoid domino effects by
sacrificing the execution of the newly arrived task. Basically, the acceptance
test acts as a filter that controls the load on the system and always keeps
it less than one. Once a task is accepted, the algorithm guarantees that it
will complete by its deadline (assuming that no task will exceed its estimated
worst-case computation time). Guarantee algorithms, however, do not take
task importance into account and, during transient overloads, always reject
the newly arrived task, regardless of its value. In certain conditions (such
as when tasks have very different importance levels), this scheduling strategy
may exhibit poor performance in terms of cumulative value, whereas a robust
algorithm can be much more effective.

244 CHAPTER 8

In guarantee and robust algorithms, a reclaiming mechanism can be used to take
advantage of those tasks that complete before their worst-case finishing time.
To reclaim the spare time, rejected tasks will not be removed but temporarily
parked in a queue, from which they can be possibly recovered whenever a task
completes before its worst-case finishing time.

In the following sections we present a few examples of scheduling algorithms for
handling overload situations and then compare their performance for different
peak load conditions.

task
always accepted

Ready queue M RUN

(a)

task
Guarantee

Routine

accepted

rejected
(b)

Ready queue M RUN

task —

reclaiming
policy

» Planning

scheduling
policy

reject queue

Ready queue

rejection
policy

-fc(T?TIM

(c)

F i g u r e 8.8 Scheduling schemes for handling overload situations, a. Best
Effort, b . Guarantee, c. Robust.

Handling Overload Conditions 245

8.4.1 The RED algorithm

RED (Robust Earliest Deadline) is a robust scheduling algorithm proposed by
Buttazzo and Stankovic [BS93, BS95] for dealing with firm aperiodic tasks in
overloaded environments. The algorithm synergistically combines many fea­
tures including graceful degradation in overloads, deadline tolerance, and re­
source reclaiming. It operates in normal and overload conditions with excellent
performance, and it is able to predict not only deadline misses but also the size
of the overload, its duration, and its overall impact on the system.

In RED, each task Ji{Ci,Di,Mi,Vi) is characterized by four parameters: a
worst-case execution time (Cj), a relative deadline {Di), a deadline tolerance
(Mi), and an importance value {Vi). The deadline tolerance is the amount
of time by which a task is permitted to be late; that is, the amount of time
that a task may execute after its deadline and still produce a valid result.
This parameter can be useful in many real applications, such as robotics and
multimedia systems, where the deadline timing semantics is more flexible than
scheduling theory generally permits.

Deadline tolerances also provide a sort of compensation for the pessimistic
evaluation of the worst-case execution time. For example, without tolerance,
we could find that a task set is not feasibly schedulable and hence decide to
reject a task. But, in reality, the system could have been scheduled within
the tolerance levels. Another positive effect of tolerance is that various tasks
could actually finish before their worst-case times, so a resource reclaiming
mechanism could then compensate, and the tasks with tolerance could actually
finish on time.

In RED, the primary deadline plus the deadline tolerance provides a sort of
secondary deadline, used to run the acceptance test in overload conditions.
Notice that having a tolerance greater than zero is different than having a
longer deadline. In fact, tasks are scheduled based on their primary deadline
but accepted based on their secondary deadline. In this framework, a schedule
is said to be strictly feasible if all tasks complete before their primary deadline,
whereas is said to be tolerant if there exists some task that executes after its
primary deadline but completes within its secondary deadline.

The guarantee test performed in RED is formulated in terms of residual laxity.
The residual laxity Li of a task is defined as the interval between its estimated
finishing time (/i) and its primary (absolute) deadline {di). Each residual laxity
can be efficiently computed using the result of the following lemma.

246 C H A P T E R 8

Lemma 8.1 Given a set J = {Ji, J25 • • •, «/n} of active aperiodic tasks ordered
by increasing primary (absolute) deadline, the residual laxity Li of each task Ji
at time t can be computed as

Li = Li_i + {di - di-i) - Ci{t), (8.8)

where LQ = 0, do =^ t (that is, the current time), and Ci{t) is the remaining
worst-case computation time of task Ji at time t.

Proof. By definition, a residual laxity is Li = di — fi. Since tasks in the
set J are ordered by increasing deadlines, task Ji is executing at time t, and
its estimated finishing time is given by the current time plus its remaining
execution time (/i = t -\- ci). As a consequence, Li is given by

Li = di - fi — di - t - ci.

Any other task Jj, with z > 1, will start as soon as Ji_i completes and will
finish Ci units of time after its start {fi = fi-i + Ci). Hence, we have

Li = di - fi = di - fi-i - Ci = di - {di-i - Li-i) - d —

= Li-i + {di - di-i) - Ci,

and the lemma follows. D

Notice that if the current task set J is schedulable and a new arrives
at time t, the feasibility test for the new task set J' — J U {Ja} requires to
compute only the residual laxity of task Ja and that one of those tasks Ji such
that di > da. This is because the execution of Ja does not influence those tasks
having deadline less than or equal to da, which are scheduled before Ja- It
follows that, the acceptance test has 0{n) complexity in the worst case.

To simplify the description of the RED guarantee test, we define the Exceeding
time Ei as the time that task Ji executes after its secondary deadline:^

Ei = max(0,- (Li-f MO). (8.9)

We also define the Maximum Exceeding Time Emax t̂s the maximum among
all Ei's in the tasks set; that is, Emax — ina,Xi{Ei). Clearly, a schedule will be
strictly feasible if and only if Lj > 0 for all tasks in the set, whereas it will be
tolerant if and only if there exists some L^ < 0, but Emax = 0.

^If Mi = 0, the Exceeding Time is also called the Tardiness.

Handling Overload Conditions 247

By this approach we can identify which tasks will miss their deadlines and
compute the amount of processing time required above the capacity of the
system - the maximum exceeding time. This global view allows to plan an
action to recover from the overload condition. Many recovering strategies can
be used to solve this problem. The simplest one is to reject the least-value task
that can remove the overload situation. In general, we assume that, whenever
an overload is detected, some rejection policy will search for a subset J* of
least-value tasks that will be rejected to maximize the cumulative value of the
remaining subset. The RED acceptance test is shown in Figure 8.9.

RED_acceptance_test (J, Jneiu) {

E = 0; /* Maximum Exceeding Time */

do = current-time 0\

J = J U \Jnew)'-)

k = <position of Jnew in the task set J ' > ;

for each task J^ such that i > k do {

/* compute the maximum exceeding time */
Li = Li-i -h {di - di-i) - Ci\

if {Li-\-Mi < -E) then E =-{Li-\-Mi);

}

if {E>0) {

<select a set J* of least-value tasks to be rejected>;
<reject all task in J*>;

}

F i g u r e 8.9 The RED acceptance test.

In RED, a resource reclaiming mechanism is used to take advantage of those
tasks that complete before their worst-case finishing time. To reclaim the spare
time, rejected tasks are not removed forever but temporarily parked in a queue,
called Reject Queue^ ordered by decreasing values. Whenever a running task

248 C H A P T E R 8

completes its execution before its worst-case finishing time, the algorithm tries
to reaccept the highest-value tasks in the Reject Queue having positive laxity.
Tasks with negative laxity are removed from the system.

8.4.2 Dover* a competitive algorithm

Koren and Shasha [KS92] found an on-line scheduling algorithm, called i^^^^^,
which has been proved to be optimal, in the sense that it gives the best com­
petitive factor achievable by any on-line algorithm (that is, 0.25).

As long as no overload is detected, D^^^'^ behaves like EDF. An overload is
detected when a ready task reaches its Latest Start Time (LST); that is, the
time at which the task's remaining computation time is equal to the time
remaining until its deadline. At this time, some task must be abandoned:
either the task that reached its LST or some other task. In Doven the set
of ready tasks is partitioned in two disjoint sets: privileged tasks and waiting
tasks. Whenever a task is preempted it becomes a privileged task. However,
whenever some task is scheduled as the result of a LST, all the ready tasks
(whether preempted or never executed) become waiting tasks.

When an overload is detected because a task Jz reaches its LST, then the
value of Jz is compared against the total value Vpriv of all the privileged tasks
(including the value Vcurr of the currently running task). If

i;^ > (1 -h \/k){Vcurr + Vpriv)

(where k is ratio of the highest value density and the lowest value density
task in the system), then Jz is executed; otherwise, it is abandoned. If Jz is
executed, all the privileged tasks become waiting tasks. Task Jz can in turn
be abandoned in favor of another task Jx that reaches its LST, but only if
Vj, > (1 -\-y/k)vz.

It worth to observe that having the best competitive factor among all on-line
algorithms does not mean having the best performance in any load condition. In
fact, in order to guarantee the best competitive factor, D^^^^ may reject tasks
with values higher than the current task but not higher than the threshold
that guarantees optimality. In other words, to cope with worst-case sequences,
jjover ^Qgg ĵ Q^ |.̂ ĵ g advantage of lucky sequences and may reject more value
than it is necessary. In Section 8.5, the performance of Dover is tested for
random task sets and compared with the one of other scheduling algorithms.

Handling Overload Conditions 249

8.5 PERFORMANCE EVALUATION

In this section, the performance of the scheduhng algorithms described above is
tested through simulation using a synthetic workload. Each plot on the graphs
represents the average of a set of 100 independent simulations, the duration
of each is chosen to be 300,000 time units long. The algorithms are executed
on task sets consisting of 100 aperiodic tasks, whose parameters are generated
as follows. The worst-case execution time Ci is chosen as a random variable
with uniform distribution between 50 and 350 time units. The interarrival time
Ti is modeled as a random variable with a Poisson distribution with average
value equal to Ti = NCi/p^ where Â is the total number of tasks and p is
the average load. The laxity of a task is computed as a random value with
uniform distribution from 150 and 1850 time units, and the relative deadline is
computed as the sum of its worst-case execution time and its laxity. The task
value is generated as a random variable with uniform distribution ranging from
150 to 1850 time units, as for the laxity.

The first experiment illustrates the effectiveness of the guarantee and robust
scheduling paradigm with respect to the best-effort scheme, under the EDF
priority assignment. In particular, it shows how the pessimistic assumptions
made in the guarantee test affect the performance of the algorithms and how
much a reclaiming mechanism can compensate for this degradation. In order
to test these effects, tasks were generated with actual execution times less than
their worst-case values. The specific parameter varied in the simulations was
the average Unused Computation Time Ratio, defined as

_ Actual Computation Time

Worst-Case Computation Time

Note that, if pn is the nominal load estimated based on the worst-case compu­
tation times, the actual load p is given by

P = pn{l-P).

In the graphs reported in Figure 8.10, the task set was generated with a nominal
load pn = 3, while /? was varied from 0.125 to 0.875. As a consequence, the
actual mean load changed from a value of 2.635 to a value of 0.375, thus ranging
over very different actual load conditions. The performance was measured by
computing the Hit Value Ratio (HVR)\ that is, the ratio of the cumulative value
achieved by an algorithm and the total value of the task set. Hence, HVR — 1
means that all the tasks completed within their deadlines and no tasks were
rejected.

250 C H A P T E R 8

Nominal load = 3

0.7 h

o
« 0.6

0.5

0.4

0.3

0.2

0.1

[•

r ^^

+''

-

- B'''

I - --

RED -^—
GED -+--
EDF -0--

.cr'

.cr''

I

• T

,a''

i _ .

^,^''

_,•'

_ 1

, - K ' '

B

1

, , ! » ' ' '

1

1

^ , 4 ' '

, . ,+- ' ' '

1

,- +

-̂

J

H

0.3 0.4 0.5 0.6 0.7
Average unused computation time ratio (beta)

Figure 8.10 Performance of various EDF scheduling schemes: best-effort
(EDF), guarantee (GED) and robust (RED).

For small values of ^, that is, when tasks execute for almost their maximum
computation time, the guarantee (GED) and robust (RED) versions are able to
obtain a significant improvement compared to the plain EDF scheme. Increas­
ing the unused computation time, however, the actual load falls down and the
plain EDF performs better and better, reaching the optimality in underload
conditions. Notice that as the system becomes underloaded (/? :^ 0.7) GED
becomes less effective than EDF. This is due to the fact that GED performs a
worst-case analysis, thus rejecting tasks that still have some chance to execute
within their deadline. This phenomenon does not appear on RED, because the
reclaiming mechanism implemented in the robust scheme is able to recover the
rejected tasks whenever possible.

In the second experiment, Dover is compared against two robust algorithms:
RED (Robust Earliest Deadline) and RHD (Robust High Density). In RHD,
the task with the highest value density {vi/Ci) is scheduled first, regardless of
its deadline. Performance results are shown in Figure 8.11.

Handling Overload Conditions 251

Figure 8.11 Performance of Dover against RED and RHD.

Notice that in underload conditions Dover and RED exhibit optimal behavior
{HVR = 1), whereas RHD is not able to achieve the total cumulative value,
since it does not take deadlines into account. However, for high load conditions
(p > 1.5), RHD performs even better than RED and Dover-

In particular, for random task sets, Dover is less effective than RED and RHD
for two reasons: first, it does not have a reclaiming mechanism for recovering
rejected tasks in the case of early completions; second, the threshold value used
in the rejection policy is set to reach the best competitive factor in a worst-case
scenario. But this means that for random sequences Dover naay reject tasks that
could increase the cumulative value, if executed.

In conclusion, we can say that in overload conditions no on-line algorithm can
achieve optimal performance in terms of cumulative value. Competitive algo­
rithms are designed to guarantee a minimum performance in any load condition,
but they cannot guarantee the best performance for all possible scenarios. For
random task sets, robust scheduling schemes appear to be more appropriate.

9
KERNEL DESIGN ISSUES

In this chapter we present some basic issues that should be considered during
the design and the development of a hard real-time kernel for critical control
applications. For didactical purposes, we illustrate the structure and the main
components of a small real-time kernel, called DICK (D/dactic C /l^ernel),
mostly written in C language, which is able to handle periodic and aperiodic
tasks with explicit time constraints. The problem of time predictable intertask
communication is also discussed, and a particular communication mechanism
for exchanging state messages among periodic tasks is illustrated. Finally, we
show how the runtime overhead of the kernel can be evaluated and taken into
account in the schedulability analysis.

9.1 STRUCTURE OF A REAL-TIME
KERNEL

A kernel represents the innermost part of any operating system that is in di­
rect connection with the hardware of the physical machine. A kernel usually
provides the following basic activities:

Process management,

Interrupt handling, and

Process synchronization.

254 C H A P T E R 9

Process management is the primary service that an operating system has to
provide. It includes various supporting functions, such as process creation and
termination, job scheduUng, dispatching, context switching, and other related
activities.

The objective of the interrupt handling mechanism is to provide service to the
interrupt requests that may be generated by any peripheral device, such as
the keyboard, serial ports, analog-to-digital converters, or any specific sensor
interface. The service provided by the kernel to an interrupt request consists
in the execution of a dedicated routine (driver) that will transfer data from
the device to the main memory (or viceversa). In classical operating systems,
application tasks can always be preempted by drivers, at any time. In real­
time systems, however, this approach may introduce unpredictable delays in
the execution of critical tasks, causing some hard deadline to be missed. For
this reason, in a real-time system, the interrupt handling mechanism has to be
integrated with the scheduling mechanism, so that a driver can be scheduled
as any other task in the system and a guarantee of feasibility can be achieved
even in the presence of interrupt requests.

Another important role of the kernel is to provide a basic mechanism for sup­
porting process synchronization and communication. In classical operating
systems this is done by semaphores, which represent an efficient solution to the
problem of synchronization, as well as to the one of mutual exclusion. As dis­
cussed in Chapter 7, however, semaphores are prone to priority inversion, which
introduces unbounded blocking on tasks' execution and prevents a guarantee
for hard real-time tasks. As a consequence, in order to achieve predictability,
a real-time kernel has to provide special types of semaphores that support a
resource access protocol (such as Priority Inheritance, Priority Ceiling, or Stack
Resource Policy) for avoiding unbounded priority inversion. Other kernel ac­
tivities involve the initialization of internal data structures (such as queues,
tables, task control blocks, global variables, semaphores, and so on) and spe­
cific services to higher levels of the operating system.

In the rest of this chapter, we describe the structure of a small real-time kernel,
called DICK (D/dactic C /kernel). Rather than showing all implementation
details, we focus on the main features and mechanisms that are necessary to
handle tasks with explicit time constraints.

DICK is designed under the assumption that all tasks are resident in main
memory when it receives control of the processor. This is not a restrictive
assumption, as this is the typical solution adopted in kernels for real-time em­
bedded applications.

Kernel Design Issues 255

Service layer S

Processor J

management 1

List management <

Machine layer J

(assembly code)]

creation
termination

communication
synchronization

utility
services

scheduling ; dispatching

list management

context
switch

interrupt
handling

timer
handling

}

>

system calls

kernel

mechanisms

Figure 9.1 Hierarchical structure of DICK.

The various functions developed in DICK are organized according to the hi­
erarchical structure illustrated in Figure 9.1. Those low-level activities that
directly interact with the physical machine are realized in assembly language.
Nevertheless, for the sake of clarity, all kernel activities are described in pseudo
C.

The structure of DICK can be logically divided into four layers:

Machine layer. This layer directly interacts with the hardware of the
physical machine; hence, it is written in assembly language. The primitives
realized at this level mainly deal with activities such as context switch,
interrupt handling, and timer handling. These primitives are not visible
at the user level.

List management layer. To keep track of the status of the various tasks,
the kernel has to manage a number of lists, where tasks having the same
state are enqueued. This layer provides the basic primitives for inserting
and removing a task to and from a list.

Processor management layer. The mechanisms developed in this layer
only concerns scheduling and dispatching operations.

Service layer. This layer provides all services visible at the user level as a
set of system calls. Typical services concern task creation, task abortion,
suspension of periodic instances, activation and suspension of aperiodic
instances, and system inquiry operations.

256 C H A P T E R 9

9.2 PROCESS STATES

In this section, we describe the possible states in which a task can be during
its execution and how a transition from a state to another can be performed.

In any kernel that supports the execution of concurrent activities on a single
processor, where semaphores are used for synchronization and mutual exclusion,
there are at least three states in which a task can enter:

Running. A task enters this state as it starts executing on the processor.

Ready. This is the state of those tasks that are ready to execute but
cannot be executed because the processor is assigned to another task. All
tasks that are in this condition are maintained in a queue, called the ready
queue.

Waiting. A task enters this state when it executes a synchronization
primitive to wait for an event. When using semaphores, this operation is a
wait primitive on a locked semaphore. In this case, the task is inserted in a
queue associated with the semaphore. The task at the head of this queue
is resumed when the semaphore is unlocked by another task that executed
a signal on that semaphore. When a task is resumed, it is inserted in the
ready queue.

In a real-time kernel that supports the execution of periodic tasks, another state
must be considered, the IDLE state. A periodic job enters this state when it
completes its execution and has to wait for the beginning of the next period.
In order to be awakened by the timer, a periodic job must notify the end of its
cycle by executing a specific system call, end-cycle, which puts the job in the
IDLE state and assigns the processor to another ready job. At the right time,
each periodic job in the IDLE state will be awakened by the kernel and inserted
in the ready queue. This operation is carried out by a routine activated by a
timer, which verifies, at each tick, whether some job has to be awakened. The
state transition diagram relative to the four states described above is shown in
Figure 9.2.

Additional states can be introduced by other kernel services. For example, a
delay primitive, which suspends a job for a given interval of time, puts the job
in a sleeping state (DELAY), until it will be awakened by the timer after the
elapsed interval.

Kernel Design Issues 257

wait

activate / ^ >c ""^r \ terminate
READY) (RUN

end_cycle

TIMER

F i g u r e 9.2 Minimum state transition diagram of a real-time kernel.

Another state, found in many operating systems, is the RECEIVE state, in­
troduced by the classical message passing mechanism. A job enters this state
when it executes a receive primitive on an empty channel. The job exits this
state when a send primitive is executed by another job on the same channel.

In real-time systems that support dynamic creation and termination of hard
periodic tasks, a new state needs to be introduced for preserving the bandwidth
assigned to the guaranteed tasks. This problem arises because, when a periodic
task Tk is aborted (for example, with a kill operation), its utilization factor Uk
cannot be immediately subtracted from the total processor load, since the task
could already have delayed the execution of other tasks. In order to keep the
guarantee test consistent, the utilization factor Uk can be subtracted only at
the end of the current period of Tk.

For example, consider the set of three periodic tasks illustrated in Figure 9.3,
which are scheduled by the Rate-Monotonic algorithm. Computation times
are 1, 4, and 4, and periods are 4, 8, and 16, respectively. Since periods are
harmonic and the total utilization factor is U = 1, the task set is schedulable
by RM (remember that Uiub = 1 when periods are harmonic).

Now suppose that task r2 (with utilization factor U2 = 0.5) is aborted at
time t = 4 and that, at the same time, a new task Tnew, having the same
characteristics of r2, is created. If the total load of the processor is decremented
by 0.5 at time t = 4, task Tnew would be guaranteed, having the same utilization
factor as T2. However, as shown in Figure 9.4, T3 would miss its deadline. This
happens because the effects of T2 execution on the schedule protract until the
end of each period.

258 C H A P T E R 9

-^1

^2

^3

Hi H H • _

-1 1 1 ^ r

0 2 4 6
"1— '—r
10 12

J-
14 16

Figure 9.3 Feasible schedule of three periodic tasks under RM.

^ 2 killed

t l

•-2

1:3

(

L\

1

) 2

L
\ | '̂ new

H 1

1 ' 1
4 6

L
"1 n

L
I

^ B H ^
1 ' f~T™n
8 10 2

1

14

L
••

•

^ / time overflow

' 1 • 1 • 1 • 1

6 18 20 22 24

Figure 9.4 The effects of T2 do not cancel at the time it is aborted, but
protract till the end of its period.

As a consequence, to keep the guarantee test consistent, the utihzation factor
of an aborted task can be subtracted from the total load only at the end of the
current period. In the interval of time between the abort operation and the
end of its period, T2 is said to be in a ZOMBIE state, since it does not exist in
the system, but it continues to occupy processor bandwidth. Figure 9.5 shows
that the task set is schedulable when the activation of Tnew is delayed until the
end of the current period of T2.

A more complete state transition diagram including the states described above
(DELAY, RECEIVE, and ZOMBIE) is illustrated in Figure 9.6. Notice that,
at the end of its last period, a periodic task (aborted or terminated) leaves the
system completely and all its data structures are deallocated.

Kernel Design Issues 259

"̂ 2 killed

-Tl L \ L L L L L
zombie

XI

1 ' r
2 4 6

JH

- , 1 1 . 1 . 1 r 1 i 1 r

10 12 14 16 18 20 22 24

Figure 9.5 The new task set is schedulable when Tnew is activated at the
end of the period of T2.

activate

TIMER

Figure 9.6 State transition diagram including RECEIVE, DELAY, and
ZOMBIE states.

260 C H A P T E R 9

create

activate

(SLEEP)

/ s igna l

READY y _ _

resume ̂ ^-^>^^

^ ^

^(WAIT \

dispatching

preemption

wait ^
\ sleep

RUN

J end_cy(

termmate
' ZOMBIE

FREE

IDLE

TIMER

F i g u r e 9.7 State transition diagram in DICK.

In order to simplify the description of DICK, in the rest of this chapter we
describe only the essential functions of the kernel. In particular, the message
passing mechanism and the delay primitive are not considered here; as a con­
sequence, the states RECEIVE and DELAY are not present. However, these
services can easily be developed on top of the kernel, as an additional layer of
the operating system.

In DICK, activation and suspension of aperiodic tasks are handled by two
primitives, activate and sleep^ which introduce another state, called SLEEP.
An aperiodic task enters the SLEEP state by executing the sleep primitive. A
task exits the SLEEP state and goes to the READY state only when an explicit
activation is performed by another task.

Task creation and activation are separated in DICK. The creation primitive
{create) allocates and initializes all data structures needed by the kernel to
handle the task; however, the task is not inserted in the ready queue, but it
is left in the SLEEP state, until an explicit activation is performed. This is
mainly done for reducing the runtime overhead of the activation primitive. The
state transition diagram used in DICK is illustrated in Figure 9.7.

Kernel Design Issues 261

9.3 DATA STRUCTURES

In any operating system, the information about a task are stored in a data
structure, the Task Control Block (TCB). In particular, a TCB contains all the
parameters specified by the programmer at creation time, plus other temporary
information necessary to the kernel for managing the task. In a real-time
system, the typical fields of a TCB are shown in Figure 9.8 and contain the
following information:

An identifier; that is, a character string used by the system to refer the
task in messages to the user;

The memory address corresponding to the first instruction of the task;

The task type (periodic, aperiodic, or sporadic);

The task criticalness (hard, soft, or non-real-time);

The priority (or value), which represents the importance of the task with
respect to the other tasks of the application;

The current state (ready, running, idle, waiting, and so on);

The worst-case execution time;

The task period;

The relative deadline, specified by the user;

The absolute deadline, computed by the kernel at the arrival time;

The task utilization factor (only for periodic tasks);

A pointer to the process stack, where the context is stored;

A pointer to a directed acyclic graph, if there are precedence constraints;

A pointer to a list of shared resources, if a resource access protocol is
provided by the kernel.

In addition, other fields can be necessary for specific features of the kernel. For
example, if aperiodic tasks are handled by one or more server mechanisms, a
field can be used to store the identifier of the server associated with the task;
or, if the scheduling mechanism supports tolerant deadlines, a field can store
the tolerance value for that task.

262 C H A P T E R 9

Task Control Block

task identifier

task address

task type

criticalness

priority

state

computation time

period

relative deadline

absolute deadline

utilization factor

context pointer

precedence pointer

resource pointer

pointer to the next TCB

Figure 9.8 Structure of the Task Control Block.

Finally, since a TCB has to be inserted in the lists handled by the kernel, an
additional field has to be reserved for the pointer to the next element of the
list.

In DICK, a TCB is an element of the vdes [MAXPROC] array, whose size is equal
to the maximum number of tasks handled by the kernel. Using this approach,
each TCB can be identified by a unique index, corresponding to its position
in the vdes array. Hence, any queue of tasks can be accessed by an integer
variable containing the index of the TCB at the head of the queue. Figure 9.9
shows a possible configuration of the ready queue within the vdes array.

Similarly, the information concerning a semaphore is stored in a Semaphore
Control Block (SCB), which contains at least the following three fields (see
also Figure 9.10):

Kernel Design Issues 263

vdes

ready 0

1

2

3

4

5

6

7

Figure 9.9 Implementation of the ready queue as a list of Task Control
Blocks.

Semaphore Control Block

counter

semaphore queue

pointer to the next SCB

Figure 9.10 Semaphore Control Block.

A counter, which represents the value of the semaphore;

A queue, for enqueueing the tasks blocked on the semaphore;

A pointer to the next SCB, to form a list of free semaphores.

Each SCB is an element of the vsem[MAXSEM] array, whose size is equal to
the maximum number of semaphores handled by the kernel. According to this
approach, tasks, semaphores, and queues can be accessed by an integer number,
which represents the index of the corresponding control block. For the sake of
clarity, however, tasks, semaphores and queues are defined as three different
types.

264 CHAPTER 9

typedef int

typedef int

typedef int

typedef int

typedef char*

queue;

sem;

proc;

cab;

pointer;

/* head index

/* semaphore index

/* process index

/* cab buffer index

/* memory pointer

*/

*/

*/

*/

*/

struct tcb

char

proc

int

int

long

int

int

int

float

int

proc

proc

};

{
name[MAXLEN+l];

(*addr)();

type;

state;

dline;

period;

prt;

wcet;

util;

•context;

next;

prev;

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

task name

first instruction address

task type

task state

absolute deadline

task period

task priority

worst-case execution time

task utilization factor

pointer to the context

pointer to the next tcb

pointer to previous tcb

*/

*/

*/

*/

*/

•/

*/

•/

*/

*/

*/

*/

Struct scb {

int count;

queue qsem;

sem next;

};

/* semaphore counter

/* semaphore queue

/* pointer to the next

*/
*/
*/

struct tcb

struct scb

vdes[MAXPROC] ;

vsem[MAXSEM];

/* tcb array */

/* scb array */

Kernel Design Issues 265

proc

queue

queue

queue

queue

queue

float

pexe;

ready;

idle;

zombie;

freetcb;

freesem;

util_fact;

/* task in execution

/* ready queue

/* idle queue

/* zombie queue

/* queue of free tcb's

/* queue of free semaphores

/* utilization factor

*/

*/

*/

*/

*/
*/

*/

9.4 MISCELLANEOUS

9.4.1 Time management

To generate a time reference, a timer circuit is programmed to interrupt the
processor at a fixed rate, and the internal system time is represented by an
integer variable, which is reset at system initialization and is incremented at
each timer interrupt. The interval of time with which the timer is programmed
to interrupt defines the unit of time in the system; that is, the minimum interval
of time handled by the kernel (time resolution). The unit of time in the system
is also called a system tick.

In DICK, the system time is represented by a long integer variable, called
sys_clock, whereas the value of the tick is stored in a float variable called
time_unit. At any time, sys_clock contains the number of interrupts gener­
ated by the timer since system initialization.

unsigned long

float

sys_clock;

time_unit;

/* system time */

/* unit of time (ms) */

If Q denotes the system tick and n is the value stored in sys_clock, the actual
time elapsed since system initialization is i = nQ. The maximum time that can
be represented in the kernel (the system lifetime) depends on the value of the
system tick. Considering that sys_clock is an unsigned long represented on 32
bits. Table 9.1 shows the values of the system lifetime for some tick values.

266 C H A P T E R 9

tick

1 ms
5 ms
10 ms
50 ms

lifetime
50 days

8 months
16 months

7 years

T a b l e 9.1 System lifetime for some typical tick values.

The value to be assigned to the tick depends on the specific appHcation. In
general, small values of the tick improve system responsiveness and allow to
handle periodic activities with high activation rates. On the other hand, a
very small tick causes a large runtime overhead due to the timer handling
routine and reduces the system lifetime. Typical values used for the time
resolution can vary from 1 to 50 milliseconds. To have a strict control on task
deadlines and periodic activations, all time parameters specified on the tasks
should be multiple of the system tick. If the tick can be selected by the user,
the best possible tick value is equal to the greatest common divisor of all the
task periods.

The timer interrupt handling routine has a crucial role in a real-time system.
Other than updating the value of the internal time, it has to check for possible
deadline misses on hard tasks, due to some incorrect prediction on the worst-
case execution times. Other activities that can be carried out by the timer
interrupt handling routine concern lifetime monitoring, activation of periodic
tasks that are in idle state, awakening tasks suspended by a delay primitive,
checking for deadlock conditions, and terminating tasks in zombie state.

In DICK, the timer interrupt handling routine increments the value of the
sys_clock variable, checks the system lifetime, checks for possible deadline
misses on hard tasks, awakes idle periodic tasks at the beginning of their next
period and, at their deadlines, deallocates all data structures of the tasks in
zombie state. In particular, at each timer interrupt, the corresponding handling
routine

Saves the context of the task in execution;

Increments the system time;

Kernel Design Issues 267

If the current time is greater than the system Ufetime, generates a timing
error;

If the current time is greater than some hard deadUne, generates a time-
overflow error;

Awakens those idle tasks, if any, that have to begin a new period;

If at least a task has been awakened, calls the scheduler;

Removes all zombie tasks for which their deadline is expired;

Loads the context of the current task;

Returns from interrupt.

The runtime overhead introduced by the execution the timer routine is pro­
portional to its interrupt rate. In Section 9.7 we see how this overhead can be
evaluated and taken into account in the schedulability analysis.

9.4.2 Task classes and scheduling algorithm

Real-world control applications usually consist of computational activities hav­
ing different characteristics. For example, tasks may be periodic, aperiodic,
time-driven, and event-driven and may have different levels of criticalness. To
simplify the description of the kernel, only two classes of tasks are considered
in DICK:

HARD tasks, having a critical deadline, and

Non-real-time (NRT) tasks, having a fixed priority.

HARD tasks can be activated periodically or aperiodically depending on how
an instance is terminated. If the instance is terminated with the primitive
end-cycle, the task is put in the idle state and automatically activated by the
timer at the beginning of its next period; if the instance is terminated with the
primitive end-aperiodic, the task is put in the sleep state, from where it can
be resumed only by explicit activation. HARD tasks are scheduled using the
Earliest Deadline First (EDF) algorithm, whereas NRT tasks are executed in
background based on their priority.

268 C H A P T E R 9

max priority

0
min priority

255

^ MAXDLINE - 255 MAXDLINE

Figure 9.11 Mapping NRT priorities into deadlines.

In order to integrate the scheduling of these classes of tasks and avoid the use of
two scheduling queues, priorities of NRT tasks are transformed into deadlines
so that they are always greater than HARD deadlines. The rule for mapping
NRT priorities into deadlines is shown in Figure 9.11 and is such that

^NRT ^ MAXDLINE - PRT.LEV -\- Pi,

where MAXDLINE is the maximum value of the variable sys_clock (2^^ — 1),
PRT_LEV is the number of priority levels handled by the kernel, and Pi is the
priority of the task, in the range [0, PRT_LEV-1] (0 being the highest priority).
Such a priority mapping slightly reduces system lifetime but greatly simplifies
task management and queue operations.

9.4.3 Global constants

In order to clarify the description of the source code, a number of global
constants are defined here. Typically, they define the maximum size of the
main kernel data structures, such as the maximum number of processes and
semaphores, the maximum length of a process name, the number of priority lev­
els, the maximum deadline, and so on. Other global constants encode process
classes, states, and error messages. They are listed below:

#define

#define

#define

#define

#define

#define

#define

#define

#define

MAXLEN

MAXPROC

MAXSEM

MAXDLINE

PRT_LEV

NIL

TRUE

FALSE

LIFETIME

12

32

32

OxTFFFFFFF

255

-1

1

0

MAXDLINE -

/*

/*

/*

/*

/*

/*

PRT_LEV

max string length

max number of tasks

max No of semaphores

max deadline

priority levels

null pointer

*/

*/

*/

*/

*/

*/

Kernel Design Issues 269

/* ->- /
/ ^
/*
/*

\ / ^
#define

#define

/*
/ *
/ *
/* ~ -
/ *
#define

#define

#define

#define

#define

#define

#define

HARD

NRT

FREE

READY

EXE

SLEEP

IDLE

WAIT

ZOMBIE

1

2

0

1

2

3

4

5

6

Task types

/*

/*

Task states

/*

/*

/*

/*

/*

/*

/*

critical task

non real-time task

TCB not allocated

ready state

running state

sleep state

idle state

wait state

zombie state

T /

* /
3k /

*/
*/

*/

3k /

*/
*/
3k /

*/
*/

*/

*/

*/

*/

*/

*/

/* - -
/*

/*
#define

#define

#define

#define

#define

#define

OK

TIME_OVERFLOW

TIME_EXPIRED

NO-GUARANTEE

NO_TCB

NO_SEM

Error

0

1

2

3

4

5

messages

/*

/*

/*

/*

/*

/*

no error

missed deadline

lifetime reached

task not schedulable

too many tasks

too many semaphores

-*/

*/

-*/

*/

*/

*/

*/

*/

*/

9.4.4 Initialization

The real-time environment supported by DICK starts when the inLsystem
primitive is executed within a sequential C program. After this function is
executed, the main program becomes a NRT task in which new concurrent
tasks can be created.

270 C H A P T E R 9

The most important activities performed by inLsystem concern

• Initializing all queues in the kernel;

• Setting all interrupt vectors;

• Preparing the TCB associated with the main process;

• Setting the timer period to the system tick.

void ini_system(float t i ck)

{
proc i ;

time_unit = tick;

<enable the timer to interrupt every time_unit>

<initiali2e the interrupt vector table>

/* initialize the list of free TCBs and semaphores */

for (i=0; KMAXPROC-1; i++) vdes[i].next = i+1;

vdes[MAXPROC-l].next = NIL;

for (i=0; i<MAXSEM-l; i++) vsem[i].next = i+1;

vsem[MAXSEM-l].next = NIL;

ready = NIL;

idle = NIL;

zombie = NIL;

freetcb = 0;

freesem = 0;

util_fact = 0;

<initialize the TCB of the main process>

pexe = <main index>;

}

Kernel Design Issues 271

9.5 KERNEL PRIMITIVES

The structure of DICK is logically divided in a number of hierarchical layers, as
illustrated in Figure 9.1. The lowest layer includes all interrupt handling drivers
and the routines for saving and loading a task context. The next layer contains
the functions for list manipulation (insertion, extraction, and so on) and the
basic mechanisms for task management (dispatching and scheduling). All kernel
services visible from the user are implemented at a higher level. They concern
task creation, activation, suspension, termination, synchronization, and status
inquiry.

9.5.1 Low-level primitives

Basically, the low-level primitives implement the mechanism for saving and
loading the context of a task; that is, the values of the processor registers.

/jk «*- /

/ ^
/* save_context — of the task

/*
/ ^
void save_context(void)

{
int *pc;

<disable interrupts>

pc = vdes[pexe].context;

pc[0] = <register_0>

pc[l] = <register_l>

pc[2] = <register_2>

pc[n] = <registerji>

^

-r/

in execution */

- * /
^/

/* pointer to context of pexe */

/* save register 0 */

/* save register 1 */

/* save register 2 */

/* save register n */

272 C H A P T E R 9

/* - - -»- /
/*
/* load_context — of the task
/* - -^ -
/5K - - ~ -

void load_context(void)

{
int *pc;

pc = vdes[pexe].context;

<register_0> = pc[0];

<register_l> = pc[l] ;

<register_ii> = pc[n];

<return from interrupt>

}

T /

to be executed */
^1
^1

/^ pointer to context of pexe */

/* load register 0 */

/* load register 1 */

/* load register n */

9.5.2 List management

Since tasks are scheduled based on EDF, all queues in the kernel are ordered
by decreasing deadlines. In this way, the task with the earliest deadline can
be simply extracted from the head of a queue, whereas an insertion operation
requires to scan at most all elements of the list. All lists are implemented
with bidirectional pointers (next and prev). The insert function is called with
two parameters: the index of the task to be inserted and the pointer of the
queue. It uses two auxiliary pointers, p and g, whose meaning is illustrated in
Figure 9.12.

Kernel Design Issues 273

head index

1 J 1 p

^
\

4

first

NIL

new

•

*

< —
q

1 \
t
1

NIL

last

*

Figure 9.12 Inserting a TCB in a queue.

/*
/¥

/* insert — a task in a queue based on its deadline

/jk / 5»C

void insert (proc i, queue *que)

{
long dl; /* deadline of the task to be inserted

int p; /* pointer to the previous TCB

int q; /* pointer to the next TCB

p = NIL;

q = *que;

dl = vdes[i].dline;

/* find the element before the insertion point */

while ((q != NIL) && (dl >= vdes[q].dline)) {

p = q;
q = vdes[q].next;

}
if (p != NIL) vdes[p].next = i;

else *que = i;

if (q != NIL) vdes[q].prev = i;

vdes[i].next = q;

vdes[i].prev = p;

}

-* /
*/

-* /

*/
*/
*/

274 C H A P T E R 9

head
1

index

I '11
first

NIL

?

*
to

remove

= r
*

1

NIL

last

*

Figure 9.13 Extracting a TCB from a queue.

The major advantage of using bidirectional pointers is in the implementation
of the extraction operation, which can be realized in one step without scanning
the whole queue. Figure 9.13 illustrates the extraction of a generic element,
whereas Figure 9.14 shows the extraction of the element at the head of the
queue.

/* «»- /
/ *
/* e x t r a c t — a task from a queue
/*
/ *
proc ex t rac t (proc i , queue *que)

{
i n t P> q; /* a u x i l i a r y p o i n t e r s

p = v d e s [i] . p r e v ;

q = v d e s [i] . n e x t ;

if (p == NIL) *que = q; / * f i r s t element
e l s e vdes[p] .nex t = v d e s [i] . n e x t ;

if (q != NIL) vdes[q] .prev = v d e s [i] . p r e v ;

r e t u r n (i) ;

}

- r /

* /
3k /
5 K /

* /

* /

Kernel Design Issues 275

head

1—;
1

ndex

1
q 1

*
first

NIL * •

V

*
second

*

* •

NIL

last

Figure 9.14 Extracting the TCB at the head of a queue.

/* */

/* getfirst — extracts the task at the head of a queue */

/* */

proc getfirst (queue *que)

{
i n t q;

q = *que;

/* po in te r t o the f i r s t element */

i f (q == NIL) re turn(NIL) ;

•que = vdes [q] .nex t ;

vdes[*que] .prev = NIL;

r e t u r n (q) ;

Finally, to simplify the code reading of the next levels, two more functions
are defined: firstdline and empty. The former returns the deadline of the task
at the head of the queue, while the latter returns TRUE if a queue is empty,
FALSE otherwise.

276 C H A P T E R 9

/ • * /

/* firstdline — returns the deadline of the first task */
/* */

long firstdline (queue *que)

{
return(vdes[que].dline);

}

/* */

/* empty — returns TRUE if a queue is empty */
/* */

int empty (queue *que)

{
if (que == NIL)

return(TRUE);

else

return(FALSE);

}

9.5.3 Scheduling mechanism

The scheduling mechanism in DICK is reahzed through the functions schedule
and dispatch. The schedule primitive verifies whether the running task is the
one with the earhest deadhne. If so, no action is done, otherwise the running
task is inserted in the ready queue and the first ready task is dispatched. The
dispatch primitive just assigns the processor to the first ready task.

Kernel Design Issues 277

/* */
/* schedule — selects the task with the earliest deadline */
/* */

void schedule (void)

{
if (firstdline(ready) < vdesCpexe].dline) {

vdes[pexe].state = READY;

insert(pexe, feready);

dispatchO ;

}

/* */

/* dispatch — assigns the cpu to the first ready task */

/* */

void dispatch (void)

{
pexe = getfirst(&ready);

vdes[pexe].state = RUN;
}

The timer interrupt handling routine is called wake.up and performs the ac­
tivities described in Section 9.4.1. In summary, it increments the sys.clock
variable, checks for the system lifetime and possible deadline misses, removes
those tasks in zombie state whose deadlines are expired, and, finally, resumes
those periodic tasks in idle state at the beginning of their next period. Note,
that if at least a task has been resumed, the scheduler is invoked and a pre­
emption takes place.

278 CHAPTER 9

/* */

/* wake_up — timer interrupt handling routine */
/* */

void wake_up(void)

{
proc p;

int count = 0;

save_context() ;

sys_clock++;

if (sys.clock >= LIFETIME) abort (TIME_EXPIRED) ;

if (vdes[pexe].type == HARD)

if (sys_clock > vdes [pexe] .dline)

abort (TIME_OVERFLOW) ;

while ('empty(zombie) &&

(firstdline(zombie) <= sys_clock)) {

p = getfirst(fezombie);

util_fact = util_fact - vdes [p] .util;

vdes[p].state = FREE;

insert(p, &freetcb);

}
while (!empty(idle) && (firstdline(idle) <= sys_clock)) {

p = getfirst(feidle);

vdes[p].dline += (long)vdes[p].period;

vdes[p].state = READY;

insert(p, feready);

count++;

}
if (count > 0) s chedu leO;
load_context 0 ;

}

Kernel Design Issues 279

9.5.4 Task management

It concerns creation, activation, suspension, and termination of tasks. The
create primitive allocates and initializes all data structures needed by a task
and puts the task in SLEEP. A guarantee is performed for HARD tasks.

/*
\ / ^
/* create — creates a task and puts it in sleep state

/*
\ / ^
proc create(

char naine[MAXLEN+l] , /* task name

proc (*addr)(), /* task address

int type, /* type (HARD, NRT)

float period, /* period or priority

float wcet) /* execution time

{
proc p;

<disable cpu interrupts>

p = getfirst(&freetcb);

if (p == NIL) abort(NO_TCB);

if (vdesCp].type == HARD)

if (! guarantee (p)) return(NO_GUARANTEE) ;

vdesEp].name = name;

vdesEp].addr = addr;

vdes[p].type = type;

vdes[p].state = SLEEP;

vdes[p].period = (int)(period / time_unit);

vdesEp].wcet = (int)(wcet / time_unit);

vdes[p].util = wcet / period;

vdes[p].prt = (int)period;

vdesCp] .dline = MAXJLONG + (long) (period - PRT_LEV) ;

<initialize process stack>

<enable cpu interrupts>

return(p);

J

- * /

* /

- * /

* /
* /

* /

• /

* /

280 CHAPTER 9

/* */

/* guarantee — guarantees the feasibility of a hard task */
/• */

int guarantee (proc p)

{
util_fact = util_fact + vdes[p] .ut i l ;
if (util_fact > 1.0) {

util_fact = utiljfact - vdesCp] .ut i l ;
return(FALSE);

}
else return(TRUE);

The system call activate inserts a task in the ready queue, performing the
transition SLEEP-READY. If the task is HARD, its absolute deadline is set
equal to the current time plus its period. Then the scheduler is invoked to
select the task with the earliest deadline.

/ * - _ - _ - „ « - . s i , /

/ *
/* a c t i v a t e — i n s e r t s a t a sk in the ready queue
/* - - - -
/ *
i n t act ivate (proc p)

{
save_context 0 ;
if (vdes[p] . type == HARD)

v d e s [p] . d l i n e = sys_clock + (long)vdes [p] .per iod ;

I vdesCp] . s t a te = READY;
i n s e r t (p , feready);
schedule 0 ;
load_context() ;

}

- r /

*/
3k /
^/

Kernel Design Issues 281

The transition RUN-SLEEP is performed by the sleep system call. The running
task is suspended in the sleep state, and the first ready task is dispatched for
execution. Notice that this primitive acts on the calling task, which can be
periodic or aperiodic. For example, the sleep primitive can be used at the end
of a cycle to terminate an aperiodic instance.

/* */

/* sleep — suspends itself in a sleep state */
/* */

void sleep (void)

{
save_context 0 ;
vdesCp] . s ta te = SLEEP;
d i s p a t c h O ;
load_context 0 ;

The primitive for terminating a periodic instance is a bit more complex than
its aperiodic counterpart, since the kernel has to be informed on the time at
which the timer has to resume the job. This operation is performed by the
primitive end-cycle, which puts the running task into the idle queue. Since it is
assumed that deadlines are at the end of the periods, the next activation time
of any idle periodic instance coincides with its current absolute deadline.

In the particular case in which a periodic job finishes exactly at the end of its
period, the job is inserted not in the idle queue but directly in the ready queue,
and its deadline is set to the end of the next period.

282 CHAPTER 9

/* */

/* end_cycle — inserts a task in the idle queue */
/• */

void end_cycle(void)

{
long dl;

save_context 0 ;

dl = vdes[pexe].dline;

if (sys_clock < dl) {

vdes [pexe] . s t a t e = IDLE;
i n s e r t (p e x e , feidle);

}
else {

dl = dl + (long)vdes[pexe].period,•

vdes[p].dline = dl;

vdes[p].state = READY;

insert(pexe, feready);

}
dispatchO ;

load_context();

A typical example of periodic task is shown in the following code:

proc cycle 0

{
while (TRUE) {

<periodic code>
end_cycle() ;

}
}

Kernel Design Issues 283

There are two primitives for terminating a process: the first, called end-process,
directly operates on the calling task; the other one, called kill, terminates the
task passed as a formal parameter. Notice that, if the task is HARD, it is
not immediately removed from the system but put in ZOMBIE state. In this
case, the complete removal will be done by the timer routine at the end of the
current period:

/* */

/* end_process — terminates the running task */

/* */

void end_process(void)

{
<disable cpu interrupts>

if (vdesCpexe].type == HARD)

insert(pexe, fezombie);

else {

vdes[pexe].state = FREE;

insert(pexe, &freetcb);

}
dispatchO ;

load_context() ;

}

284 C H A P T E R 9

/ • * /

/* k i l l — terminates a task */
/* */

vo

{

id

<d:

if

}
if

if

if

kill (pro c p)

Lsable cpu interrupts>

(pexe == p) {
end_process() ;

return;

(vdes[p].

(vdes[p].

(vdes[p].

insert(p

else {

}
<er

vdes[p].

insert(p

lable cpu

state ==

state ==

type ==

), fezomb:

state =

= READY)

= IDLE)

HARD)

Le) ;

FREE;

), fefreetcb) ;

interrupts>

extract

extract
(P»
(P,

feready)

feidle);

9.5.5 Semaphores

In DICK, synchronization and mutual exclusion are handled by semaphores.
Four primitives are provided to the user to allocate a new semaphore (newsem),
deallocate a semaphore (delsem), wait for an event (wait), and signal an event
(signal).

The newsem primitive allocates a free semaphore control block and initial­
izes the counter field to the value passed as a parameter. For example, s i =
newsem(O) defines a semaphore for synchronization, whereas s2 = newsem(l)
defines a semaphore for mutual exclusion. The delsem primitive just deallocates
the semaphore control block, inserting it in the list of free semaphores.

Kernel Design Issues 285

1 /*-
/ *

/*-

sem

{
sem

}

newsem --- allocates and initializes a semaphore

newsem(int n)

s;

<disable cpu interrupts>

s = freesem;

if (s ==

freesem

vsem[s]

vsem[s]

<enable

return(s

= NIL) abort (NO_SEM)

= vsem[s] .next;

count = n;

qsem = NIL;

cpu interrupts>

0;

/* first free semaphore

)

/*

/*

/*

update the freesem

initialize counter

rie /

*/
*/

- Jk /

*/

index */

list

initialize sem. queue

*/

*/

*/

/ j l C _ _ „ _ U , /

/* delsem — deallocates a semaphore

/* - - - - -
/ JK - - - - -

void delsem(sem s)

{
<disable cpu interrupts>

vsem[s].next = freesem; /* inserts s at the head

freesem = s; /* of the freesem list

<enable cpu interrupts>

}

*/
9k /

*/

*/

•/

The wait primitive is used by a task to wait for an event associated to a
semaphore. If the semaphore counter is positive, it is decremented, and the
task continues its execution; if the counter is less than or equal to zero, the
task is blocked, and it is inserted in the semaphore queue. In this case, the first
ready task is assigned to the processor by the dispatch primitive.

286 C H A P T E R 9

To ensure the consistency of the kernel data structures, all semaphore system
calls are executed with cpu interrupts disabled. Notice that semaphore queues
are ordered by decreasing absolute deadlines, so that, when more tasks are
blocked, the first task awakened will be the one with the earliest deadline.

/* */

/* wait — waits for an event */

/* */

void wait(sem s)

{
<disable cpu interrupts>

if (vsem[s].count > 0) vsem[s].count — ;

else {

save.context () ;

vdes[pexe].state = WAIT;

insert(pexe, &vsem[s].qsem);

dispatchO ;

load-Context 0 ;

}
<enable cpu interrupts>

The signal primitive is used by a task to signal an event associated with a
semaphore. If no tasks are blocked on that semaphore (that is, if the semaphore
queue is empty), the counter is incremented, and the task continues its execu­
tion. If there are blocked tasks, the task with the earliest deadline is extracted
from the semaphore queue and is inserted in the ready queue. Since a task has
been awakened, a context switch may occur; hence, the context of the running
task is saved, a task is selected by the scheduler, and a new context is loaded.

Kernel Design Issues 287

/* */
/* signal — signals an event */
/* */

void signal(sem s)

{
proc p;

<disable cpu interrupts>

if (!empty(vsem[s].qsem)) {

p = getfirst(&vsem[s].qsem);

vdes[p].state = READY;

insert(p, feready);

save_context() ;

schedule 0;

load_context() ;
}

else vsem[s].count++;

<enable cpu interrupts>
}

It is worth observing that classical semaphores are prone to the priority inver­
sion phenomenon, which introduces unbounded delays during tasks' execution
and prevents any form of guarantee on hard tasks (this problem is discussed
in Chapter 7). As a consequence, this type of semaphores should be used only
by non-real-time tasks, for which no guarantee is performed. Real-time tasks,
instead, should rely on more predictable mechanisms, based on time-bounded
resource access protocols (such as Stack Resource Policy) or on asynchronous
communication buffers. In DICK, the communication among hard tasks occurs
through an asynchronous buffering mechanism, which is described in Section
9.6.

9.5.6 Status inquiry
DICK also provides some primitives for inquiring the kernel about internal
variables and task parameters. For example, the following primitives allow to
get the system time, the state, the deadline, and the period of a desired task.

288 C H A P T E R 9

/ • * /

/* get-time — returns the system time in milliseconds */
/• */

float get_time(void)

{
return (time .unit • sys_clock) ;

}

/* */
/ • get_state — returns the s ta te of a task */
/ • ^1

int get_state(proc p)

{
return(vdes[p] .s ta te) ;

}

/* '• */
/* get_dline — returns the deadline of a task */

/* */

long get_dline(proc p)

{
return(vdes[p].dline);

}

/* */
/* get_period — returns the period of a task */
/* */

float get_period(proc p)

{
return(vdes[p].period);

}

Kernel Design Issues 289

9.6 INTERTASK COMMUNICATION
MECHANISMS

Intertask communication is a critical issue in real-time systems, even in a
uniprocessor environment. In fact, the use of shared resources for implementing
message passing schemes may cause priority inversion and unbounded blocking
on tasks' execution. This would prevent any guarantee on the task set and
would lead to a highly unpredictable timing behavior.

In this section, we discuss problems and solutions related to the most typical
communication semantics used in operating systems: the synchronous and the
asynchronous model.

In the pure synchronous communication model, whenever two tasks want to
communicate they must be synchronized for a message transfer to take place.
This synchronization is called a rendez-vous. Thus, if the sender starts first,
it must wait until the recipient receives the message; on the other hand, if the
recipient starts first, it must wait until the sender produces its message.

In a dynamic real-time system, synchronous communication schemes easily lead
to unpredictable behavior, due to the difficulty of estimating the maximum
blocking time for a process rendez-vous. In a static real-time environment, the
problem can be solved off-line by transforming all synchronous interactions into
precedence constraints. According to this approach, each task is decomposed
into a number of subtasks that contain communication primitives not inside
their code but only at their boundary. In particular, each subtask can receive
messages only at the beginning of its execution and can send messages only at
the end. Then a precedence relation is imposed between all adjacent subtasks
deriving from the same father task and between all subtasks communicating
through a send-receive pair. An example of such a task decomposition is illus­
trated in Figure 9.15.

In a pure asynchronous scheme, communicating tasks do not have to wait for
each other. The sender just deposits its message into a channel and continues
its execution, independently of the recipient condition. Similarly, assuming
that at least a message has been deposited into the channel, the receiver can
directly access the message without synchronizing with the sender.

Asynchronous communication schemes are more suitable for dynamic real-time
systems. In fact, if no unbounded delays are introduced during tasks' commu­
nication, timing constraints can easily be guaranteed without increasing the

290 C H A P T E R 9

^\

m

send(mes, A)

=

.0.
-^2

\i
receive(mes. A)

subtask

T 1-a

send

^ 1

subtask

T 1-b

subtask

T2-a

^ V
receive

subtask

T2-b

(a) (b)

Figure 9.15 Decomposition of communicating tasks (a) into subtasks with
precedence constraints (b).

complexity of the system (for example, overconstraining the task set with addi­
tional precedence relations). Remember that having simple on-line guarantee
tests (that is, with polynomial time complexity) is crucial for dynamic systems.

In most commercial real-time operating systems, the asynchronous commu­
nication scheme is implemented through a mailbox mechanism, illustrated in
Figure 9.16. A mailbox is a shared memory buffer capable of containing a fixed
number of messages that are typically kept in a FIFO queue. The maximum
number of messages that at any instant can be held in a mailbox represents its
capacity.

Two basic operations are provided on a mailbox - namely, send and receive.
A send(MX, mes) operation causes the message mes to be inserted in the
queue of mailbox MX. If at least a message is contained on mailbox M X , a
receive (MX, mes) operation extracts the first message from its queue. Notice
that, if the kernel provides the necessary support, more than two tasks can
share a mailbox, and channels with multiple senders and/or multiple receivers
can be realized. As long as it is guaranteed that a mailbox is never empty and
never full, sender(s) and receiver(s) are never blocked.

Unfortunately, a mailbox provides only a partial solution to the problem of
asynchronous communication, since it has a bounded capacity. Unless sender
and receiver have particular arrival patterns, it is not possible to guarantee
that the mailbox queue is never empty or never full. If the queue is full, the
sender must be delayed until some message is received. If the queue is empty,
the receiver must wait until some message is inserted.

Kernel Design Issues 291

Mailbox

cy-^ I I I I n — o
Producer Consumer

F i g u r e 9.16 The mailbox scheme.

For example, consider two periodic tasks, TI and r2, with periods Ti and T2,
that exchange messages through a mailbox having a capacity of n. Let ri be the
sender and r2 the receiver. If Ti < T2, the sender inserts in the mailbox more
messages than the receiver can extract; thus, after a while the queue becomes
full and the sender must be delayed. From this time on, the sender has to wait
the receiver, so it synchronizes with its period (T2). Viceversa, if Ti > T2, the
receiver reads faster than the sender can write; thus, after a while the queue
becomes empty and the receiver must wait. From this time on, the receiver
synchronizes with the period of the sender (Ti). In conclusion, if Ti ^ T2,
sooner or later both tasks will run at the lowest rate, and the task with the
shortest period will miss its deadline.

An alternative approach to asynchronous communication is provided by acycli-
cal asynchronous buffers, which are described in the next section.

9.6.1 Cyclical asynchronous buffers

Cyclical Asynchronous Buffers, or CABs, represent a particular mechanism
purposely designed for the cooperation among periodic activities, such as con­
trol loops and sensory acquisition tasks. This approach was first proposed
by Clark [Cla89] for implementing a robotic application based on hierarchical
servo-loops, and it is used in the HARTIK system [But93, BD93] as a basic
communication support among periodic hard tasks.

A CAB provides a one-to-many communication channel, which at any instant
contains the latest message or data inserted in it. A message is not consumed
(that is, extracted) by a receiving process but is maintained into the CAB
structure until a new message is overwritten. As a consequence, once the first
message has been put in a CAB, a task can never be blocked during a receive
operation. Similarly, since a new message overwrites the old one, a sender can
never be blocked.

292 C H A P T E R 9

Notice that, using such a semantics, a message can be read more than once if
the receiver is faster than the sender, while messages can be lost if the sender
is faster than the receiver. However, this is not a problem in many control
applications, where tasks are interested only in fresh sensory data rather than
in the complete message history produced by a sensory acquisition task.

CABs can be created and initialized by the operi-cab primitive, which requires
specifying the CAB name, the dimension of the message, and the number of
messages that the CAB may contain simultaneously. The delete-cab primitive
removes a CAB from the system and releases the memory space used by the
buffers.

To insert a message in a CAB, a task must first reserve a buffer from the CAB
memory space, then copy the message into the buffer, and finally put the buffer
into the CAB structure, where it becomes the most recent message. This is
done according to the following scheme:

buf .po in te r = reserve(cab_id) ;

<copy message in *buf _pointer>

pu tmes (buf -po in te r , cab_id) ;

Similarly, to get a message from a CAB, a task has to get the pointer to the most
recent message, use the data, and release the pointer. This is done according
to the following scheme:

mes_pointer = getmes(cab_id) ;

<use message>

unget (mes .poin ter , cab_id) ;

Notice that more tasks can simultaneously access the same buffer in a CAB
for reading. On the other hand, if a task P reserves a CAB for writing while
another task Q is using that CAB, a new buffer is created, so that P can write its
message without interfering with Q. As P finishes writing, its message becomes
the most recent one in that CAB. The maximum number of buffers that can
be created in a CAB is specified as a parameter in the operi-cab primitive. To
avoid blocking, this number must be equal to the number of tasks that use the
CAB plus one.

Kernel Design Issues 293

9.6.2 CAB implementation

The data structure used to implement a CAB is shown in Figure 9.17. A
CAB control block must store the maximum number of buffers {max.buf}, their
dimension {dim.huf)^ a pointer to a list of free buffers {free), and a pointer to
the most recent buffer (mrb). Each buffer in the CAB can be implemented as
a data structure with three fields: a pointer (next) to maintain a list of free
buffers, a counter (use) that stores the current number of tasks accessing that
buffer, and a memory area (data) for storing the message.

The code of the four CAB primitives is shown below. Notice that the main
purpose of the putmes primitive is to update the pointer to the most recent
buffer (MRB). Before doing that, however, it deallocates the old MRB if no
tasks are accessing that buffer. Similarly, the unget primitive decrements the
number of tasks accessing that buffer and deallocates the buffer only if no task
is accessing it and it is not the MRB.

reading task

\j

free

mrb

max_buf

dim_buf

p

next

use

data

\ '
next

use

most
recent
buffer

]

4

'

use

empty

^ NIL
use

empty

F i g u r e 9.17 CAB data structure.

294 CHAPTER 9

/jk ^ 1
/ ^
/* reserve — reserves a buffer

/*
/ '•'
pointer reserve(cab c)

{
pointer p;

<disable cpu interrupts>

p = c.free;

c.free = p.next;

return(p);

<enable cpu interrupts>

}

in a CAB

/* get a free buffer

/* update the free list

'^1

*/
•it. /
*/

*/
*/

/*
/* putmes — puts a message in a CAB
/*

void putmes(cab c, pointer p)

{
<disable cpu interrupts>

if (c.mrb.use == 0) {

c.mrb.next = c.free;

c.free = c.mrb;

}
c.mrb = p;

<enable cpu interrupts>

/* update the mrb

-*/

*/

*>

/* if not accessed, */

/* deallocate the mrb */

*/

Kernel Design Issues 295

/ * Jk /
/ ̂ */
/* getmes — gets a pointer to the most recent buffer */

/ * - jk /
/* */
pointer getmes (cab c)

{
pointer p;

<disable cpu interrupts>

p = c.mrb; /* get the pointer to mrb */

p.use = p.use + 1 ; /* increment the counter */

return(p);

<enable cpu interrupts>

}

/*
/*
/* unget — deallocates a buffer only if it is not accessed

/* and it is not the most recent buffer

/* -
/*
void unget (cab c, pointer p)

{
<disable cpu interrupts>

p.use = p.use - 1;

if ((p.use == 0) && (p != c.mrb)) {

p.next = c.free;

c.free = p;

}
<enable cpu interrupts>

}

-* /
*/
*/

-* /

296 C H A P T E R 9

timer interrupts

Figure 9.18 Effects of the overhead on tasks' execution.

9.7 SYSTEM OVERHEAD

The overhead of an operating system represents the time used by the proces­
sor for handhng all kernel mechanisms, such as enqueueing tasks, performing
context switches, updating the internal data structures, sending messages to
communication channels, servicing the interrupt requests, and so on. The time
required to perform these operations is usually much smaller than the execution
times of the application tasks; hence, it can be neglected in the schedulability
analysis and in the resulting guarantee test. In some cases, however, when
application tasks have small execution times and tight timing constraints, the
activities performed by the kernel may not be so negligible and may create a
significant interference on tasks' execution. In these situations, predictability
can be achieved only by considering the effects of the runtime overhead in the
schedulability analysis.

The context switch time is one of the most significant overhead factors in any
operating system. It is an intrinsic limit of the kernel that does not depend
on the specific scheduling algorithm, nor on the structure of the application
tasks. For a real-time system, another important overhead factor is the time
needed by the processor to execute the timer interrupt handling routine. If Q
is the system tick (that is, the period of the interrupt requests from the timer)
and G is the worst-case execution time of the corresponding driver, the timer
overhead can be computed as the utilization factor Ut of an equivalent periodic
task:

Figure 9.18 illustrates the execution intervals (cr) due to the timer routine and
the execution intervals [5) necessary for a context switch. The eflPects of the
timer routine on the schedulability of a periodic task set can be taken into

Kernel Design Issues 297

Figure 9.19 Net utilization bound as a function of the tick value.

account by adding the factor Ut to the total utiHzation of the task set. This
is the same as reducing the least upper bound of the utilization factor Uiub by
Ut, so that the net bound becomes

Unet = Ulub — Ut = Uiub —
Q u. lub

Q - <ylUiub

Q

From this result we can notice that, to have Unet > 0, the system tick Q
must always be greater than {a/Uiub)- The plot of Unet as a function of Q
is illustrated in Figure 9.19. To have an idea of the degradation caused by
the timer overhead, consider a system based on the EDF algorithm {Uiub = 1)
and suppose that the timer interrupt handling routine has an execution time
of (J = 100/X5. In this system, a 10 ms tick would cause a net utilization bound
Unet = 0.99; a 1 ms tick would decrease the net utilization bound to Unet =0 .9 ;
whereas a 200fis tick would degrade the net bound to Unet = 0.5. This means
that, if the greatest common divisor among the task periods is 200/is, a task
set with utilization factor U = 0.6 cannot be guaranteed under this system.

The overhead due to other kernel mechanisms can be taken into account as
an additional term on tasks' execution times. In particular, the time needed
for explicit context switches (that is, the ones triggered by system calls) can
be considered in the execution time of the kernel primitives; thus, it will be
charged to the worst-case execution time of the calling task. Similarly, the
overhead associated with implicit context switches (that is, the ones triggered
by the kernel) can be charged to the preempted tasks.

298 CHAPTER 9

In this case, the schedulabiUty analysis requires a correct estimation of the total
number of preemptions that each task may experience. In general, for a given
scheduling algorithm, this number can be estimated off-line as a function of
tasks' timing constraints. If Ni is the maximum number of preemptions that
a periodic task TI may experience in each period, and 6 is the time needed to
perform a context switch, the total utilization factor (overhead included) of a
periodic task set can be computed as

i=l * i=l * \ 1=1 * /

Hence, we can write
Utot — Up + Uovi

where Up is the utilization factor of the periodic task set and Uov is a correction
factor that considers the effects of the timer handling routine and the preemp­
tion overhead due to intrinsic context switches (explicit context switches are
already considered in the C '̂s terms):

"" TV-

1 ^

Finally, notice that an upper bound for the number of preemptions Ni on a
task Ti can be computed as

A ^ ^ - E Tk
k=i •-

However, this bound is too pessimistic, and better bounds can be found for
particular scheduling algorithms.

9,7.1 Accounting for interrupt

Two basic approaches can be used to handle interrupts coming from external
devices. One method consists of associating an aperiodic or sporadic task to
each source of interrupt. This task is responsible for handling the device and
is subject to the scheduling algorithm as any other task in the system. With
this method, the cost for handling the interrupt is automatically taken in to
account by the guarantee mechanism, but the task may not start immediately,
due to the presence of higher-priority hard tasks. This method cannot be used
for those devices that require immediate service for avoiding data loss.

Kernel Design Issues 299

Another approach allows interrupt handling routines to preempt the current
task and execute immediately at the highest priority. This method minimizes
the interrupt latency, but the interrupt handling cost has to be explicitly con­
sidered in the guarantee of the hard tasks.

JefFay and Stone [JS93] found a schedulability condition for a set of n hard tasks
and m interrupt handlers. In their work, the analysis is carried out by assuming
a discrete time, with a resolution equal to a tick. As a consequence, every event
in the system occurs at a time that is multiple of the tick. In their model, there
is a set X of m handlers, characterized by a worst-case execution time C/^ and
a minimum separation time Tf^, just as sporadic tasks. The difference is that
interrupt handlers always have a priority higher than the application tasks.

The upper bound, / (/) , for the interrupt handling cost in any time interval of
length / can be computed by the following recurrent relation [JS93]:

ifEr=.[T7^1^," > / (' - !) (9.1)
otherwise.

In the particular case in which all the interrupt handlers start at time t = 0,
function /(/) is exactly equal to the amount of time spent by processor in
executing interrupt handlers in the interval [0,/].

Theorem 9.1 (JefFay-St one) A set T of n periodic or sporadic tasks and a
set X of m interrupt handlers is schedulahle by EDF if and only if for all L,
L>0,

^ ' c , < L-f{L). (9.2) E Ti

The proof of Theorem 9.1 is very similar to the one presented for Theorem 4.2.
The only difference is that, in any interval of length L, the amount of time
that the processor can dedicate to the execution of application tasks is equal
to L - / (L) .

It is worth to notice that equation (9.2) can be checked only for a set of points
equal to release times less than the hyperperiod, and the complexity of the
computation is pseudo-polynomial.

10
APPLICATION DESIGN ISSUES

In this chapter we discuss some important issues related to the design and the
development of complex real-time applications requiring sensory acquisition,
control, and actuation of mechanical components. The aim of this part is to
give a precise characterization of control applications, so that theory developed
for real-time computing and scheduling algorithms can be practically used in
this field to make complex control systems more rehable. In fact, a precise
observation of the timing constraints specified in the control loops and in the
sensory acquisition processes is a necessary condition for guaranteeing a stable
behavior of the controlled system, as well as a predictable performance.

As specific examples of control activities, we consider some typical robotic
applications, in which a robot manipulator equipped with a set of sensors in­
teracts with the environment to perform a control task according to stringent
user requirements. In particular, we discuss when control applications really
need real-time computing (and not just fast computing), and we show how time
constraints, such as periods and deadlines, can be derived from the application
requirements, even though they are not explicitly specified by the user.

Finally, the basic set of kernel primitives presented in Chapter 9 is used to
illustrate some concrete programming examples of real-time tasks for sensory
processing and control activities.

302 C H A P T E R 10

10.1 INTRODUCTION

All complex control applications that require the support of a computing system
can be characterized by the following components:

1. The sys tem to be controlled. It can be a plant, a car, a robot,
physical device that has to exhibit a desired behavior.

or any

2. The controller. For our purposes, it will be a computing system that
has to provide proper inputs to the controlled system based on a desired
control objective.

3. The environment. It is the external world in which the controlled system
has to operate.

The interactions between the controlled system and the environment are, in
general, bidirectional and occur by means of two peripheral subsystems (con­
sidered part of the controlled system): an actuation subsystem, which modifies
the environment through a number of actuators (such as motors, pumps, en­
gines, and so on), and a sensory subsystem, which acquires information from
the environment through a number of sensing devices (such as microphones,
cameras, transducers, and so on). A block diagram of the typical control sys­
tem components is shown in Figure 10.1.

Input
Controller

t
System "̂ 1

Figure 10.1 Block diagram of a generic control system.

Depending on the interactions between the controlled system and the environ­
ment, three classes of control systems can be distinguished:

1. Monitoring systems,

2. Open-loop control systems, and

3. Feedback control systems.

Application Design Issues 303

USER

Figure 10.2 General structure of a monitoring system.

Monitoring systems do not modify the environment but only use sensors to
perceive its state, process sensory data, and display the results to the user. A
block diagram of this type of system is shown in Figure 10.2. Typical applica­
tions of these systems include radar tracking, air traffic control, environmental
pollution monitoring, surveillance, and alarm systems. Many of these appli­
cations require periodic acquisitions of multiple sensors, and each sensor may
need a different sampling rate. Moreover, if sensors are used to detect critical
conditions, the sampling rate of each sensor has to be constant in order to
perform a correct reconstruction of the external signals. In these cases, using
a hard real-time kernel is a necessary condition for guaranteeing a predictable
behavior of the system. If sensory acquisition is carried out by a set of concur­
rent periodic tasks (characterized by proper periods and deadlines), the task
set can be analyzed off-line to verify the feasibility of the schedule within the
imposed timing constraints.

Open-loop control systems are systems that interact with the environment.
However, the actions performed by the actuators do not strictly depend on
the current state of the environment. Sensors are used to plan actions, but
there is no feedback between sensors and actuators. This means that, once an
action is planned, it can be executed independently of new sensory data (see
Figure 10.3).

As a typical example of an open-loop control system, consider a robot work­
station equipped with a vision subsystem, whose task is to take a picture of an
object, identify its location, and send the coordinates to the robot for triggering
a pick and place operation. In this task, once the object location is identified
and the arm trajectory is computed based on visual data, the robot motion
does not need to be modified on-line; therefore, no real-time processing is re­
quired. Notice that real-time computing is not needed even though the pick
and place operation has to be completed within a deadline. In fact, the correct
fulfillment of the robot operation does not depend on the kernel but on other
factors, such as the action planner, the processing speed of visual data, and the

304 C H A P T E R 10

Sensory input ^

User input

Real-Time
System

Actuator

Actuator

•

Actuator

y^ "̂~ ~—\

7 \ / \ -A \
ENVIRONMENT

\ /
^ ^ x ^

Figure 10.3 General structure of an open-loop control system.

Input
Controller Plant Actuators

feedback
System

Sensors

Figure 10.4 General structure of a feedback control system.

robot speed. For this control problem, fast computing and smart programming
may suffice to meet the goal.

Feedback control systems (or closed-loop control systems) are systems that
have frequent interactions with the environment in both directions; that is,
the actions produced by the actuators strictly depend on the current sensory
information. In these systems, sensing and control are tied together, and one
or more feedback paths exist from the sensory subsystem to the controller.
Sensors are often mounted on actuators and are used to probe the environment
and continuously correct the actions based on actual data (see Figure 10.4).

Human beings are perhaps the most sophisticated examples of feedback control
systems. When we explore an unknown object, we do not just see it, but we
look at it actively, and, in the course of looking, our pupils adjust to the level
of illumination, our eyes bring the world into sharp focus, our eyes converge or
diverge, we move our head or change our position to get a better view of it,
and we use our hands to perceive and enhance tactile information.

Modern "fly-by-wire" aircrafts are also good examples of feedback control sys­
tems. In these aircrafts, the basic maneuvering commands given by the pilot
are converted into a series of inputs to a computer, which calculates how the

Application Design Issues 305

physical flight controls shall be displaced to achieve a maneuver, in the context
of the current flight conditions.

The robot workstation described above as an example of open-loop control
system can also be a feedback control system if we close a loop with the camera
and use the current visual data to update the robot trajectory on-line. For
instance, visual feedback becomes necessary if the robot has to grasp a moving
object whose trajectory is not known a priori.

In feedback control systems, the use of real-time computing is essential for guar­
anteeing a predictable behavior; in fact, the stability of these systems depends
not only on the correctness of the control algorithms but also on the timing
constraints imposed on the feedback loops. In general, when the actions of a
system strictly depend on actual sensory data, wrong or late sensor readings
may cause wrong or late actions on the environment, which may have negative
effects on the whole system. In some case, the consequences of a late action
can even be catastrophic. For example, in certain environmental conditions,
under autopilot control, reading the altimeter too late could cause the aircraft
to stall in a critical flight configuration that could prevent recovery. In delicate
robot assembling operations, missing deadlines on force readings could cause
the manipulator to exert too much force on the environment, generating an
unstable behavior.

These examples show that, when developing critical real-time applications, the
following issues should be considered in detail, in addition to the classical design
issues:

1. Structuring the application in a number of concurrent tasks, related to the
activities to be performed;

2. Assigning the proper timing constraints to tasks; and

3. Using a predictable operating environment that allows to guarantee that
those timing constraints can be satisfied.

These and other issues are discussed in the following sections.

306 C H A P T E R 10

10.2 TIME CONSTRAINTS DEFINITION

When we say that a system reacts in real time within a particular environ­
ment, we mean that its response to any event in that environment has to be
effective, according to some control strategy, while the event is occurring. This
means that, in order to be effective, a control task must produce its results
within a specific deadline, which is defined based on the characteristics of the
environment and the system itself.

If meeting a given deadline is critical for the system operation and may cause
catastrophic consequences, the task must be treated as a hard task. If meeting
time constraints is desirable, but missing a deadline does not cause any serious
damage, the task can be treated as a soft task. In addition, activities that
require regular activation should be handled as periodic tasks.

From the operating system point of view, a periodic task is a task whose ac­
tivation is directly controlled by the kernel in a time-driven fashion, so that
it is intrinsically guaranteed to be regular. Viceversa, an aperiodic task is a
task that is activated by other application tasks or by external events. Hence,
activation requests for an aperiodic task may come from the explicit execution
of specific system calls or from the arrival of an interrupt associated with the
task. Notice that, even though the external interrupts arrive at regular inter­
vals, the associated task should still be handled as an aperiodic task by the
kernel, unless precise upper bounds on the activation rate are guaranteed for
that interrupt source.

If the interrupt source is well known and interrupts are generated at a constant
rate, or have a minimum interarrival time, then the aperiodic task associated
with the corresponding event is said to be sporadic and its timing constraints
can be guaranteed in worst-case assumptions - that is, assuming the maximum
activation rate.

Once all application tasks have been identified and time constraints have been
specified (including periodicity and criticalness), the real-time operating system
supporting the application is responsible for guaranteeing that all hard tasks
complete within their deadlines. Soft and non-real-time tasks should be handled
by using a best-effort strategy (or optimal, whenever possible) to reduce (or
minimize) their average response times.

Application Design Issues 307

In the rest of this section we illustrate a few examples of control systems to
show how time constraints can be derived from the application requirements
even in those cases in which they are not explicitly defined by the user.

10.2.1 Obstacle avoidance

Consider a wheel-vehicle equipped with range sensors that has to operate in
a certain environment running within a maximum given speed. The vehicle
could be a completely autonomous system, such as a robot mobile base, or a
partially autonomous system driven by a human, such as a car or a train having
an automatic braking system for stopping motion in emergency situations.

In order to simplify our discussion and reduce the number of controlled vari­
ables, we will consider a vehicle like a train, which moves along a straight line,
and suppose that we have to design an automatic braking system able to detect
obstacles in front of the vehicle and control the brakes to avoid collisions. A
block diagram of the automatic braking system is illustrated in Figure 10.5.

Human

a

Dashboard
Controls

a

Distribution
Unit

Brake
Control

Unit

emergency
stop

BRAKES

range
sensors

Figure 10.5 Scheme of the automatic braking system.

The Brake Control Unit (BCU) is responsible for acquiring a pair of range
sensors, computing the distance of the obstacle (if any), reading the state vari­
ables of the vehicle from instruments on the dashboard, and deciding whether
an emergency stop has to be superimposed. Given the criticalness of the brak­
ing action, this task has to be periodically executed on the BCU. Let T be its
period.

In order to determine a safe value for T, several factors have to be considered.
In particular, the system must ensure that the maximum latency from the
time at which an obstacle appears and the time at which the vehicle reaches

308 C H A P T E R 10

obstacle obstacle brake
appears detected pushed

^ t

vehicle
at rest

Figure 10.6 Velocity during brake.

a complete stop is less than the time to impact. Equivalently, the distance
D of the obstacle from the vehicle must always be greater than the minimum
space L needed for a complete stop. To compute the length L, consider the
plot illustrated in Figure 10.6, which shows the velocity v of the vehicle as a
function of time when an emergency stop is performed.

Notice that three time intervals have to be taken in to account to compute the
worst-case latency:

The detection delay, from the time at which an obstacle appears on the
vehicle trajectory and the time at which the obstacle is detected by the
BCU. This interval is at most equal to the period T of the sensor acquisition
task.

The transmission delay, A^, from the time at which the stop command is
activated by the BCU and the time at which the command starts to be
actuated by the brakes.

The braking duration, A^, needed for a complete stop.

If V is the actual velocity of the vehicle and fif is the wheel-road friction coef­
ficient, the braking duration A^ is given by

A. =
l^f9

Application Design Issues 309

where g is the acceleration of gravity {g = 9.Sm/s'^). Thus, the resulting
braking space Xb is

Xb
'^^J'fg

Hence, the total length L needed for a complete stop is

L = v{T + At)-\-Xb.

By imposing D > L, we obtain the relation that must be satisfied among the
variables to avoid a collision:

D > J i - + i ; (r + A,). (10.1)
^^j^fg

If we assume that obstacles are fixed and are always detected at a distance D
from the vehicle, equation (10.1) allows to determine the maximum value that
can be assigned to period T:

D V
T < A,. (10.2)

V 2^ifg

For example, if JD = 100 m, /x/ = 0.5, At = 250 ms, and Vmax — 30 m/s (about
108 km/h), then the resulting sampling period T must be less than 22 ms.

It is worth observing that this result can also be used to evaluate how long we
can look away from the road while driving at a certain speed and visibility. For
example, if D = 50 m (visibility under fog conditions), fif = 0.5, At = 300 ms
(our typical reaction time), and v = 60 km/h (about 16.67 m/s or 37 mi/h),
we can look away from the road for no more than one second!

10.2.2 Robot deburring

Consider a robot arm that has to polish an object surface with a grinding tool
mounted on its wrist, as shown in Figure 10.7. This task can be specified as
follows:

Slide the grinding tool on the object surface with a constant speed
V, while exerting a constant normal force F that must not exceed a
maximum value equal to Fmax-

310 C H A P T E R 10

camera
robot

Figure 10.7 Example of a robot deburring workstation.

robot end-effector

object surface

F(t-l) F(t) F(t+1)

Figure 10.8 Force on the robot tool during deburring.

In order to maintain a constant contact force against the object surface, the
robot must be equipped with a force sensor, mounted between the wrist flange
and the grinding tool. Moreover, to keep the normal force within the specified
maximum value, the force sensor must be acquired periodically at a constant
rate, which has to be determined based on the characteristics of the environment
and the task requirements. At each cycle, the robot trajectory is corrected
based on the current force readings.

As illustrated in Figure 10.8, if T is the period of the control process and v is the
robot horizontal speed, the space covered by the robot end-effector within each
period is Lr = vT. If an impact due to a contour variation occurs just after
the force sensor has been read, the contact will be detected at the next period;
thus, the robot keeps moving for a distance LT against the object, exerting
an increasing force that depends on the elastic coefficient of the robot-object
interaction.

Application Design Issues 311

As the contact is detected, we also have to consider the braking space LB
covered by the tool from the time at which the stop command is delivered to
the time at which the robot is at complete rest. This delay depends on the
robot dynamic response and can be computed as follows. If we approximate
the robot dynamic behavior with a transfer function having a dominant pole
fd (as typically done in most cases), then the braking space can be computed
as LB = VTd^ being r^ = 277"* Hence, the longest distance that can be covered
by the robot after a collision is given by

L = LT + LB = v{T-\-Td).

If K is the rigidity coefficient of the contact between the robot end-effector
and the object, then the worst-case value of the horizontal force exerted on the
surface is Fh = KL = Kv{T + r^). Since Fh has to be maintained below a
maximum value Fmax^ we must impose that

Kv{T 4- Td) <

which means

T < i^^-Td). (10.3)

Notice that, in order to be feasible, the right side of condition (10.3) must
not only be greater than zero but must also be greater than the system time
resolution, fixed by the system tick Q; that is,

-Td > Q. (10.4)
Kv

Equation (10.4) imposes an additional restriction on the application. For ex­
ample, we may derive the maximum speed of the robot during the deburring
operation as

or, if V cannot be arbitrarily reduced, we may fix the tick resolution such that

r^ ^ (max \

Kv

Once the feasibility is achieved - that is, condition (10.4) is satisfied - the
result expressed in equation (10.3) says that stiff environments and high robot
velocities requires faster control loops to guarantee that force does not exceed
the limit given by Fmax-

312 C H A P T E R 10

10.2.3 Multilevel feedback control

In complex control applications characterized by nested servo loops, the fre­
quencies of the control tasks are often chosen to separate the dynamics of the
controllers. This greatly simplifies the analysis of the stability and the design
of the control law.

Consider, for instance, the control architecture shown in Figure 10.9. Each
layer of this control hierarchy effectively decomposes an input task into simpler
subtasks executed at lower levels. The top-level input command is the goal,
which is successively decomposed into subgoals, or subtasks, at each hierarchi­
cal level, until at the lowest level, output signals drive the actuators. Sensory
data enter this hierarchy at the bottom and are filtered through a series of
sensory-processing and pattern-recognition modules arranged in a hierarchical
structure. Each module processes the incoming sensory information, applying
filtering techniques, extracting features, computing parameters, and recogniz­
ing patterns.

output to
the user

t
SU3

1
S3

SU2

/
S2

SU]

Is,

Ĉ

F3

F2

Fl

ROBOT

high level goal

I
CU3

\
C3

1

CU2

\
C2

1

C U j

Jc,
^ SU =

^ CU :

- Sensing Unit

= Control Unit

Figure 10.9 Example of a hierarchical control system.

Application Design Issues 313

Sensory information that is relevant to control is extracted and sent as feedback
to the control unit at the same level; the remaining partially processed data
is then passed to the next higher level for further processing. As a result,
feedback enters this hierarchy at every level. At the lowest level, the feedback
is almost unprocessed and hence is fast-acting with very short delays, while at
higher levels feedback passes through more and more stages and hence is more
sophisticated but slower. The implementation of such a hierarchical control
structure has two main implications:

Since the most recent data have to be used at each level of control, infor­
mation can be sent through asynchronous communication primitives, using
overwrite semantic and nonconsumable messages. The use of asynchronous
message passing mechanisms avoids blocking situations and allows the in­
teraction among periodic tasks running at different frequencies.

When the frequencies of hierarchical nested servo loops differ for about
an order of magnitude, the analysis of the stability and the design of the
control laws are significantly simplified.

For instance, if at the lowest level a joint position servo is carried out with a
period of 1 ms, a force control loop closed at the middle level can be performed
with a period of 10 ms, while a vision process running at the higher control
level can be executed with a period of 100 ms.

10.3 HIERARCHICAL DESIGN

In this section, we present a hierarchical design approach that can be used
to develop sophisticated control applications requiring sensory integration and
multiple feedback loops. Such a design approach has been actually adopted
and experimented on several robot control applications built on top of a hard
real-time kernel [But91, BAF94, But96].

The main advantage of a hierarchical design approach is to simplify the imple­
mentation of complex tasks and provide a flexible programming interface, in
which most of the low- and middle-level real-time control strategies are built in
the system as part of the controller and hence can be viewed as basic capabilities
of the system.

314 C H A P T E R 10

Application
Level 1

peg-in-hole
insertion

Action
Level

Behavior
Level

Device
Level

object
exploration

contour
following

position
control

joint angle
reading

surface
cleaning

obstacle
avoidance

force
control

joint
servo

assembly

adaptive
grasp

hybrid
control

force/torque
reading

catching

visual
tracking

impedance
control

output
display

image
acquisition

REAL-TIME SUPPORT

Figure 10.10 Hierarchical software environment for programming complex
robotic applications.

Figure 10.10 shoves an example of a hierarchical programming environment
for complex robot applications. Each layer provides the robot system with new
functions and more sophisticated capabilities. The importance of this approach
is not simply that one can divide the program into parts; rather, it is crucial
that each procedure accomplishes an identifiable task that can be used as a
building block in defining other procedures.

The Device Level includes a set of modules specifically developed to manage all
peripheral devices used for low-level I/O operations, such as sensor acquisition,
joint servo, and output display. Each module provides a set of library functions,
whose purpose is to facilitate device handling and to encapsulate hardware
details, so that higher-level software can be developed independently from the
specific knowledge of the peripheral devices.

The Behavior Level is the level in which several sensor-based control strategies
can be implemented to give the robot diflPerent kinds of behavior. The functions
available at this level of the hierarchy allow the user to close real-time control
loops, by which the robot can modify its trajectories based on sensory informa­
tion, apply desired forces and torques on the environment, operate according
to hybrid control schemes, or behave as a mechanical impedance. These basic
control strategies are essential for executing autonomous tasks in unknown con­
ditions, and, in fact, they are used in the next level to implement more skilled
actions.

Application Design Issues 315

Based on the control strategies developed in the Behavior Level, the Action
Level enhances the robot capability by adding more sophisticated sensory-motor
activities, which can be used at the higher level for carrying out complex tasks
in unstructured environments. Some representative actions developed at this
level include (1) the ability of the robot to follow an unknown object contour,
maintaining the end-effector in contact with the explored surface; (2) the reflex
to avoid obstacles, making use of visual sensors; (3) the ability to adapt the
end-effector to the orientation of the object to be grasped, based on the reaction
forces sensed on the wrist; (4) visual tracking, to follow a moving object and
keep it at the center of the visual field. Many other different actions can be
easily implemented at this level by using the modules available at the Behavior
Level or directly taking the suited sensory information from the functions at
the Device Level.

Finally, the Application Level is the level at which the user defines the se­
quence of robot actions for accomplishing application tasks, such as assembling
mechanical parts, exploring unknown objects, manipulating delicate materials,
or catching moving targets. Notice that these tasks, although sophisticated in
terms of control, can be readily implemented thanks to the action primitives
included in the lower levels of the hierarchical control architecture.

10.3.1 Examples of real-time robotics
applications

In this section we describe a number of robot applications that have been imple­
mented by using the control architecture presented above. In all the examples,
the arm trajectory cannot be precomputed off-line to accomplish the goal, but
it must be continuously replanned based on the current sensory information.
As a consequence, these applications require a predictable real-time support
to guarantee a stable behavior of the robot and meet the specification require­
ments.

Assembly: peg-in-hole insertion

Robot assembly is an active area of research since several years. Assembly
tasks include inserting electronic components on circuit boards, placing arma­
tures, bushings, and end housings on motors, pressing bearings on shafts, and
inserting valves in cylinders.

316 C H A P T E R 10

Theoretical investigations of assembly have focused on the typical problem of
inserting a peg into a hole, whose direction is known with some degree of
uncertainty. This task is common to many assembly operations and requires
the robot to be actively compliant during the insertion, as well as to be highly
responsive to force changes, in order to continuously correct its motion and
adapt to the hole constraints.

The peg-in-hole insertion task has typically been performed by using a hybrid
position/force control scheme [Cut85, Whi85, AS88]. According to this method,
the robot is controlled in position along the direction of the hole, whereas it
is controlled in force along the other directions to reduce the reaction forces
caused by the contact. Both position and force servo loops must be executed
periodically at a proper frequency to ensure stability. If the force loop is closed
around the position loop, as it usually happens, then the position loop frequency
must be about an order of magnitude higher to avoid dynamics interference
between the two controllers.

Surface cleaning

Cleaning a flat and delicate surface, such as a window glass, implies large arm
movements that must be controlled to keep the robot end-effector (such as a
brush) within a plane parallel to the surface to be cleaned. In particular, to
efficiently perform this task, the robot end-effector must be pressed against the
glass with a desired constant force. Because of the high rigidity of the glass, a
small misalignment of the robot with respect to the surface orientation could
cause the arm to exert large forces in some points of the glass surface or loose
the contact in some other parts.

Since small misalignments are always possible in real working conditions, the
robot is usually equipped with a force sensing device and is controlled in real
time to exert a constant force on the glass surface. Moreover, the end-effector
orientation must be continuously adjusted to be parallel to the glass plane.

The tasks for controlling the end-effector orientation, exerting a constant force
on the surface, and controlling the position of the arm on the glass must proceed
in parallel and must be coordinated by a global planner, according to the
specified goal.

Application Design Issues 317

Object tactile exploration

When working in unknown environments, object exploration and recognition
are essential capabilities for carrying out autonomous operations. If vision does
not provide enough information or cannot be used because of insufficient light
conditions, tactile and force sensors can be effectively employed to extract local
geometric features from the explored objects, such as shape, contour, holes,
edges, or protruding regions.

Like the other tasks described above, tactile exploration requires the robot to
conform to a give geometry. More explicitly, the robot should be compliant in
the direction normal to the object surface, so that unexpected variations in the
contour do not produce large changes in the force that the robot applies against
the object. In the directions parallel to the surface, however, the robot needs
to maintain a desired trajectory and should therefore be position-controlled.

Strict time constraints for this task are necessary to guarantee robot stability
during exploration. For example, periods of servo loops can be derived as a
function of the robot speed, maximum applied forces, and rigidity coefficients,
as we have shown in the example described in Section 10.2.2. Other issues
involved in robot tactile exploration are discussed in [DB87, Baj88].

Catching moving objects

Catching a moving object with one hand is one of the most difficult tasks for
humans, as well as for robot systems. In order to perform this task, several
capabilities are required, such as smart sensing, visual tracking, motion predic­
tion, trajectory planning, and fine sensory-motor coordination. If the moving
target is an intelligent being, like a fast insect or a little mouse, the problem
becomes more difficult to solve, since the prey may unexpectedly modify its
trajectory, velocity, and acceleration. In this situation, sensing, planning, and
control must be performed in real time - that is, while the target is moving -
so that the trajectory of the arm can be modified in time to catch the prey.

Strict time constraints for the tasks described above derive from the maximum
velocity and acceleration assumed for the moving object. An implementation
of this task, using a six degrees of freedom robot manipulator and a vision
system, is described in [BAF94].

318 C H A P T E R 10

10.4 A ROBOT CONTROL EXAMPLE

In order to illustrate a concrete real-time application, we show an implemen­
tation of a robot control system capable of exploring unknown objects by in­
tegrating visual and tactile information. To perform this task the robot has
to exert desired forces on the object surface and follow its contour by means
of visual feedback. Such a robot system has been realized using a Puma 560
robot arm equipped with a wrist force/torque sensor and a CCD camera. The
software control architecture is organized as two servo loops, as shown in Fig­
ure 10.11, where processes are indicated by circles and CABs by rectangles.
The inner loop is dedicated to image acquisition, force reading, and robot con­
trol, whereas the outer loop performs scene analysis and surface reconstruction.
The appHcation software consists of four processes:

A sensory acquisition process periodically reads the force/torque sensor
and puts data in a CAB named force. This process must have guaranteed
execution time, since a missed deadline could cause an unstable behavior
of the robot system. Hence, it is created as a hard task with a period of
20 ms.

A visual process periodically reads the image memory filled by the camera
frame grabber and computes the next exploring direction based on a user
defined strategy. Data are put in a CAB named path. This is a hard task
with a period of 80 ms. A missed deadline for this task could cause the
robot to follow a wrong direction on the object surface.

Based on the contact condition given by the force/torque data and on
the exploring direction suggested by the vision system, a robot control
process computes the cartesian set points for the Puma controller. A
hybrid position/force control scheme [Whi85, KB86] is used to move the
robot end-effector along a direction tangential to the object surface and to
apply forces normal to the surface. The control process is a periodic hard
task with a period of 28 ms (this rate is imposed by the communication
protocol used by the robot controller). Missing a deadline for this task
could cause the robot to react too late and exert too large forces on the
explored surface, that could break the object or the robot itself.

A representation task reconstructs the object surface based on the current
force/torque data and on the exploring direction. Since this is a graphics
activity that does not affect robot motion, the representation process is
created as a soft task with a period of 60 ms.

Application Design Issues 319

display

Figure 10.11 Process structure for the surface exploration example.

To better illustrate the application, we show the source code of the tasks. It
is written in C language and includes the DICK kernel primitives described in
the previous chapter.

/*
/ *
/* Global constants
/*
/*
#include "dick

#define

#define

#define

#define

#define

#define

#define

#define

#define

TICK

Tl

T2

T3

T4

WCETl

WCET2

WCET3

WCET4

.h"

1.0

20.0

80.0

28.0

60.0

0.300

4.780

1.183

2.230

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

DICK header file

system tick (1 ms)

period for force

period for vision

period for control

period for display

(20

(80

(28

(60

exec-time for force

exec-time for vision

exec-time for control

exec-time for display

ms)

ms)

ms)

ms)

(ms)

(ms)

(ms)

(ms)

-*/

*/

-*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

320 C H A P T E R 10

l-k.
/ *
/* Global variables
/jk

/ ^
cab

cab

proc

proc

proc

proc

fdata;

angle;

force;

vision;

control;

display;

/*

/*

/*

/*

/*

/*

CAB for force data

CAB for path angles

force sensor acquisition

camera acq. aind processing

robot control process

robot trajectory display

-*/

*/

-*/

*/

*/

*/

*/

*/

*/

/* */
/* main — in i t i a l i z e s the system and creates a l l tasks */
/* */

proc mainO

{
ini_system(TICK);

fdata = open_cab("force" , 3*sizeof (float) , 3);

angle = open_cab("path" , sizeof (float) , 3);

create(force, HARD, PERIODIC, Tl, WCETl):

create(vision, HARD, PERIODIC, T2, WCET2):

create(control, HARD, PERIODIC, T3, WCET3):

create(display, SOFT, PERIODIC, T4, WCET4)

activate_all();

while (sys_clock() < LIFETIME) /* do nothing */;

end_system() ;

Application Design Issues 321

/* */
/* force — reads the force sensor and puts data in a cab */
/* */

proc forceO

{
float *fvect; /* pointer to cab data */

while (1) {

fvect = reserve(fdata);

read_force_sensor(fvect) ;

putmes(fvect, fdata);

end_cycle() ;

}

/* - -̂ /
/ *
/* control —

/*
/ *
proc

{
float

float

}

'T/

gets data from cabs and sends robot set points */

- - - - - 3k /

- */
control 0

*f vect, *alfa; /* pointers to cab data */

x[6];

while

}

/* robot set-points */

(1) {
fvect = getmesCfdata);

alfa = getmes(angle);

controlJLaw (fvect, alfa, x) ;

sendjTobot (x) ;

unget(fvect, fdata);

unget(alfa, angle);

end_cycle() ;

322 C H A P T E R 10

/* */
/* vision — gets the image and computes the path angle */
/* */

proc visionO

{
char image[256][256];

float *alfa; /* pointer to cab data */

while (1) {

get_frame(image) ;

alfa = reserve(angle);

*alfa = compute_angle (image) ;

putmes(alfa, angle);

end_cycle() ;

}
}

/ * */
/* display — represents the robot trajectory on the screen */
/* */

proc displayO

{
float *fvect, *alfa; /* pointers to cab data */
float point [3]; /* 3D point on the surface */

while (1) {

fvect = getmes(fdata);

alfa = getmes(angle);

surface(fvect, *alfa, point);

draw-pixel (point) ;

unget(fvect, fdata);

unget(alfa, angle);

end_cycle() ;

11
EXAMPLES OF REAL-TIME

SYSTEMS

11.1 INTRODUCTION

Current operating systems having real-time characteristics can be divided into
three main categories:

1. Priority-based kernel for embedded applications,

2. Real-time extensions of timesharing operating systems, and

3. Research operating systems.

The first category includes many commercial kernels (such as VRTX32, pSOS,
0S9, VxWorks, Chorus, and so on) that, for many aspects, are optimized
versions of timesharing operating systems. In general, the objective of such
kernels is to achieve high performance in terms of average response time to
external events. As a consequence, the main features that distinguish these
kernels are a fast context switch, a small size, efficient interrupt handling, the
ability to keep process code and data in main memory, the use of preemptable
primitives, and the presence of fast communication mechanisms to send signals
and events.

In these systems, time management is realized through a real-time clock, which
is used to start computations, generate alarm signals, and check timeouts on
system services. Task scheduling is typically based on fixed priorities and does
not consider explicit time constraints into account, such periods or deadlines.
As a result, in order to handle real-time activities, the programmer has to map
a set of timing constraints into a set of fixed priorities.

324 C H A P T E R 11

Interprocess communication and synchronization usually occur by means of bi­
nary semaphores, mailboxes, events, and signals. However, mutually exclusive
resources are seldom controlled by access protocols that prevent priority inver­
sion; hence, blocking times on critical sections are practically unbounded. Only
a few kernels (such as VxWorks) support a priority inheritance protocol and
provide a special type of semaphores for this purpose.

The second category of operating systems includes the real-time extensions
of commercial timesharing systems. For instance, RT-UNIX and RT-MACH
represent the real-time extensions of UNIX and MACH, respectively.

The advantage of this approach mainly consists in the use of standard periph­
eral devices and interfaces that allow to speed up the development of real-time
applications and simplify portability on different hardware platforms. On the
other hand, the main disadvantage of such extensions is that their basic ker­
nel mechanisms are not appropriate for handling computations with real-time
constraints. For example, the use of fixed priorities can be a serious limitation
in applications that require a dynamic creation of tasks; moreover, a single
priority can be reductive to represent a task with different attributes, such as
importance, deadline, period, periodicity, and so on.

There are other internal characteristics of timesharing operating systems that
are inappropriate for supporting the real-time extensions. For example, most
internal queues are handled with a FIFO policy, which is often preserved even
in the real-time version of the system. In some system, the virtual memory
management mechanism does not allow to lock pages in main memory; hence,
page-fault handling may introduce large and unbounded delays on process ex­
ecution. Other delays are introduced by non-preemptable system calls, by
synchronous communication channels, and by the interrupt handling mecha­
nism. These features degrade the predictability of the system and prevent any
form of guarantee on the application tasks.

The observations above are sufficient to conclude that the real-time extensions
of timesharing operating systems can only be used in noncritical real-time appli­
cations, where missing timing constraints does not cause serious consequences
on the controlled environment.

The lack of commercial operating systems capable of efficiently handling task
sets with hard timing constraints, induced researchers to investigate new com­
putational paradigms and new scheduling strategies aimed at guaranteeing a
highly predictable timing behavior. The operating systems conceived with such

Examples of Real-Time Systems 325

a novel software technology are called hard real-time operating systems and form
the third category of systems outlined above.

The main characteristics that distinguish this new generation of operating sys­
tems include

• The ability to treat tasks with explicit timing constraints, such periods
and deadlines;

• The presence of guarantee mechanisms that allow to verify in advance
whether the application constraints can be met during execution;

• The possibility to characterize tasks with additional parameters, which are
used to analyze the dynamic performance of the system;

• The use of specific resource access protocols that avoid priority inversion
and limit the blocking time on mutually exclusive resources.

Expressive examples of operating systems that have been developed according
to these principles are CHAOS [SGB87], MARS [KDK+89], Spring [SR91],
ARTS [TM89], RK [LKP88], TIMIX [LK88], MARUTI [LTCA89], HARTOS
[KKS89], YARTOS [JSP92], and HARTIK [But93]. Most of these kernels do
not represent a commercial product but are the result of considerable efforts
carried out in universities and research centers.

The main differences among the kernels mentioned above concern the support­
ing architecture on which they have been developed, the static or dynamic
approach adopted for scheduling shared resources, the types of tasks handled
by the kernel, the scheduling algorithm, the type of analysis performed for veri­
fying the schedulability of tasks, and the presence of fault-tolerance techniques.

In the rest of this chapter, some of these systems are illustrated to provide a
more complete view of the techniques and methodologies that can be adopted to
develop a new generation of real-time operating systems with highly predictable
behavior.

11.2 MARS

MARS (MAintainable Real-time System) is a fault-tolerant distributed real­
time system developed at the University of Vienna [DRSK89, KDK+89] to

326 C H A P T E R 11

CI = Cluster Interface

cluster

Figure 11.1 The MARS target architecture.

support complex control applications (such as air traffic control systems, rail­
way switching systems, and so on) where hard deadlines are imposed by the
controlled environment.

The MARS target architecture consists of a set of computing nodes {clusters)
connected through high speed communication channels. Each cluster is com­
posed of a number of acquisition and processing units (components) intercon­
nected by a synchronous real-time bus, the MARS-bus. Each component is a
self-contained computer on which a set of real-time application tasks and an
identical copy of the MARS operating system is executed. A typical configura­
tion of the MARS target architecture is outlined in Figure 11.1.

The main feature that distinguishes MARS from other distributed real-time
systems is its deterministic behavior even in peak-load conditions; that is, when
all possible events occur at their maximum specified frequency. Fault-tolerance
is realized at the cluster level through active redundant components, which
are grouped in a set of Fault-Tolerant Units (FTUs). A high error-detection
coverage is achieved by the use of software mechanisms at the kernel level and
hardware mechanisms at the processor level.

Examples of Real- Time Systems 327

Within an FTU, a single redundant component fails silently; that is, it either
operates correctly or does not produce any results. This feature facilitates
system maintainability and extensibility, since redundant components may be
removed from a running cluster, repaired, and reintegrated later, without af­
fecting the operation of the cluster. Moreover, a component can be expanded
into a new cluster that shows the same I/O behavior. In this way, a new cluster
can be designed independently from the rest of the system, as long as the I/O
characteristics of the interface component remain unchanged.

Predictability under peak-load situations is achieved by using a static schedul­
ing approach combined with a time-driven dispatching pohcy. In MARS, the
entire schedule is precomputed off-line considering the timing characteristics
of the tasks, their cooperation by message exchange, as well as the protocol
used to access the bus. The resulting tables produced by the off-line scheduler
are then linked to the core image of each component and executed in a time-
driven fashion. Dynamic scheduling is avoided by treating all critical activities
as periodic tasks.

Although the static approach limits the flexibility of the system in dynamic
environments, it is highly predictable and minimizes the runtime overhead for
task selection. Moreover, since scheduling decisions are taken off-line, a static
approach allows the use of sophisticated algorithms to solve problems (such
as jitter control and fault-tolerance requirements) that are more complex than
those typically handled in dynamic systems.

All MARS components have access to a common global time base, the system
time, with known synchronization accuracy. It is used to test the validity of
real-time information, detect timing errors, control the access to the real-time
bus, and discard the redundant information.

Prom the hardware point of view, each MARS component is a slightly modified
standard single-board computer, consisting of a Motorola 680x0 CPU, a Local
Area Network Controller for Ethernet (LANCE), a Clock Synchronization Unit
(CSU), two RS-232 serial interfaces, and one Small Computer System Interface
(SCSI).

The software residing in a MARS component can be split into the following
three classes:

1. Operating System KerneL Its primary goals are resource management
(CPU, memory, bus, and so on) and hardware transparency.

328 CHAPTER 11

2. Hard Real-Time Tasks (HRT-tasks). HRT-tasks are periodic activities
that receive, process, and send messages. Each instance of a task is charac­
terized by a hard deadUne, within which it has to be completed. The set of
HRT-tasks consists of appHcation tasks and system tasks, which perform
specific functions of the kernel, such as time synchronization and protocol
conversions.

3. Soft Real-Time Tasks (SRT-tasks). SRT-tasks are activities that are
not subject to strict deadlines. Usually, they are aperiodic tasks scheduled
in background, during the idle time of the processor.

All hardware details are hidden within the kernel, and all kernel data structures
cannot be accessed directly. Both application tasks and system tasks access the
kernel only by means of defined system calls. To facilitate porting of MARS
to other hardware platforms, most of the operating system code is written in
standard C language.

11.2.1 Communication

In MARS, communication among tasks, components, clusters, and peripherals
occurs through a uniform message passing mechanism. All messages are sent
periodically to exchange information about the state of the environment or
about an internal state. State-messages are not consumed when read, so they
can be read more than once by an arbitrary number of tasks. Each time a new
version of a message is received, the previous version is overwritten, and the
state described in the message is updated.

All MARS messages have an identical structure, consisting of a standard header,
a constant length, and a standard trailer. Besides the LAN dependent standard
fields, the header contains several other fields that include the observation time
of the information contained in the message, the validity interval, as well as
the send and receive time stamped on the message by the SCU. The trailer
basically contains a checksum. The structure of the message body is defined
by the application programmer, whereas its size is fixed and predefined in the
system.

Since messages describe real-time entities that cannot be altered by tasks, mes­
sages are kept in read-only buffers of the operating system. Message exchange
between the kernel and the application tasks does not require an explicit copy
of the message, but it is performed by passing a pointer. In MARS, process

Examples of Real- Time Systems 329

slot Ci = slot dedicated to the i-th Component

slot CI slotC2 slotC3 slot C4 slot CI

time (ms)

Figure 11.2 Timing of the MARS-bus using the TDMA-protocol with re­
dundant message transmission.

communication is completely asynchronous; hence, there is no need for explicit
flow control. If the sender has a frequency higher than that of the receiver, the
state is updated faster than read, but no buffer overflow will occur because the
latest message replaces the previous one.

Messages among components travel on the MARS-bus, which is an Ethernet
link controlled by a TDMA-protocol (Time Division Multiple Access). This
protocol provides a collision-free access to the Ethernet even under peak-load
conditions. A disadvantage of the TDMA-protocol is a low efficiency under low-
load conditions because the sending capacity of a component cannot exceed a
fixed limit (approximately equal to the network capacity divided by the number
of components in the cluster) even if no other component in the cluster has to
send messages. Nevertheless, since MARS has mainly been designed to be
predictable even under peak-load conditions, TDMA is the protocol that best
satisfies this requirement. As shown in Figure 11.2, each message is sent twice
on the MARS-bus.

In order to detect timing errors during communication, each message receives
two time stamps from the CSU (when sent and when received), with an accu­
racy of about three microseconds.

11.2.2 Scheduling

In MARS, the scheduling of hard real-time activities is performed off-line con­
sidering the worst-case execution times of tasks, their interaction by message
exchange, and the assignment of messages to TDMA slots. The static schedule
produced by the off-line scheduler is stored in a table and loaded into each
individual component. At runtime, the scheduling table is executed by a dis­
patcher, which performs task activation and context switches at predefined time
instants. The disadvantage of this scheduling approach is that no tasks can be
created dynamically, so the system is inflexible and cannot adapt to changes
in the environment. On the other hand, if the assumptions on the controlled

330 CHAPTER 11

environment are valid, the static approach is quite predictable and minimizes
the runtime overhead for making scheduUng decisions.

Scheduling techniques that increase the flexibility of MARS in dynamic envi­
ronments have been proposed by Fohler for realizing changes of operational
modes [Foh93] and allowing on-line service of aperiodic tasks [Foh95].

The MARS system also allows diflFerent scheduling strategies to be adopted in
different operating phases. That is, during the design phase, the programmer
of the application can define several operational phases of the system char­
acterized by diff'erent task sets, each handled by an appropriate scheduling
algorithm. For example, for an aircraft control application, five phases can be
distinguished: loading, taking off, flying, landing, and unloading. And each
phase may require different tasks or a different scheduling policy. The change
between two schedules {mode change) may be caused either by an explicit sys­
tem call in an application task or by the reception of a message associated with
a scheduling switch.

Two types of scheduling switches are supported by the kernel: a consistent
switch and an immediate switch. When performing a consistent scheduling
switch, tasks can only be suspended at opportune instants (determined dur­
ing the design stage) so that they are guaranteed to remain in a consistent
state with the environment. The immediate switch, instead, does not preserve
consistency, but it guarantees that switching will be performed as soon as pos­
sible; that is, at the next invocation of the major interrupt handler, which has
a period of eight milliseconds.

11.2.3 Interrupt handling

In MARS, all interrupts to the CPU are disabled, except for the clock in­
terrupt from the CSU. Allowing each device to interrupt the CPU, in fact,
would cause an unpredictable load on the system that could jeopardize the
guarantee performed on the hard tasks. A priority scheme for interrupts has
also been discarded because it would give advantage to high-priority devices,
while low-priority devices might starve for the CPU, causing missed deadlines
in consequence. Since interrupts are disabled, peripheral devices are polled
periodically within the clock interrupt handler.

The clock interrupt handler is split into two sections activated with diflFerent fre­
quencies. The first section {minor handler), written in assembler for efficiency

Examples of Real- Time Systems 331

Node
1

Node

2

Network

Node

3

Application

Processor

Application

Processor

I/O

Processor

System

Processor

Non-Critical

~ I/O

Time-Critical I/O

- I/O

- I/O

- Network

Figure 11.3 The Spring distributed architecture.

reasons, is carried out every millisecond. The second section {major handler),
written in C, is activated every 8 milliseconds, immediately after the execution
of the first part. The minor interrupt handler may suspend any system call,
whereas the major handler is delayed until the end of the system call.

11.3 SPRING

Spring is a real-time distributed operating system developed at the University
of Massachusetts at Amherst [SR89, SR91] for supporting large complex con­
trol applications characterized by hard timing constraints. The Spring target
architecture is illustrated in Figure 11.3 and consists of a set of multiproces­
sor nodes connected through a high speed communication network. Each node
contains three types of processors: one or more application processors, a system
processor, and an I/O subsystem (front end).

Application processors are dedicated to the execution of critical application
tasks that have been guaranteed by the system.

The system processor is responsible for executing the scheduling algorithm
(a crucial part of the system) and supporting all kernel activities. Such
a physical separation between system activities and application activities

332 C H A P T E R 11

allows to reduce the system overhead on the application processors and
remove unpredictable delays on tasks' execution.

The I/O subsystem is responsible for handling non-critical interrupts, com­
ing from slow peripheral devices or from sensors that do not have a pre­
dictable response time. Time critical I/O is directly performed on the
system processor.

An identical copy of the Spring kernel is executed on each application processor
and on the system processor, whereas the I/O processor can be controlled by
any commercial priority-based operating system. Within a node, each process­
ing unit consists of a commercial Motorola MVME136A board, plugged in a
VME bus. On this board, part of the main memory is local to the processor
and is used for storing programs and private data, while another part is shared
among the other processors through the VME bus.

Spring allows dynamic task activation, however the assignment of tasks to pro­
cessors is done statically to improve speed and eliminate unpredictable delays.
To increase efficiency at runtime, some tasks can be loaded on more processors,
so that, if an overload occurs when a task is activated, the task can be executed
on another processor without large overhead.

The scheduling mechanism is divided in four modules:

At the lowest level, there is a dispatcher running on each application pro­
cessor. It simply removes the next ready task from a system task table
that contains all guaranteed tasks arranged in the proper order. The rest
of the scheduling modules are executed on the system processor.

The second module consists of a local scheduler (resident on the system
processor), which is responsible for dynamically guaranteeing the schedu-
lability of a task set on a particular application processor. Such a scheduler
produces a system task table that is then passed to the application pro­
cessor.

The third scheduling level is a distributed scheduler that tries to find a
node available in the case in which a task cannot be locally guaranteed.

The fourth scheduling module is a metalevel controller that adapts the
various parameters of the scheduling algorithm to the different load con­
ditions.

Examples of Real- Time Systems 333

11.3.1 Task management

In Spring, tasks are classified based on two main criteria: importance and
timing requirements. The importance of a task is the value gained by the system
when the task completes before its deadline. Timing requirements represent the
real-time specification of a task and may range over a wide spectrum, including
hard or soft deadlines, periodic or aperiodic execution, or no explicit timing
constraints.

Based on importance and timing requirements, three types of tasks are defined
in Spring: critical tasks, essential tasks, and unessential tasks.

Critical tasks are those tasks that must absolutely meet their deadlines;
otherwise, a catastrophic result might occur on the controlled system. Due
to their criticalness, these tasks must have all resources reserved in advance
and must be guaranteed off'-line. Usually, in real-world applications, the
number of critical tasks is relatively small compared to the total number
of tasks in the system.

Essential tasks are those tasks that are necessary to the operation of the
system; however, a missed deadline does not cause catastrophic conse­
quences, but only degrades system's performance. The number of essential
tasks in typically large in complex control applications; hence, they must
be handled dynamically or it would be impossible (or highly expensive) to
reserve enough resources for all of them.

Unessential tasks are processes with or without deadlines that are executed
in background; that is, during the idle times of the processor. For this rea­
son, unessential tasks do not affect the execution of critical and essential
tasks. Long-range planning tasks and maintenance activities usually be­
long to this class.

Spring tasks are characterized by a large number of parameters. In particular,
for each task, the user has to specify a worst-case execution time, a deadline,
an interarrival time, a type (critical, essential, or unessential), a preemptive
or non-preemptive property, an importance level, a list of resources needed, a
precedence graph, a list of tasks with which the task communicates, and a list
of nodes on which the task code has to be loaded. This information is used by
the scheduling algorithm to find a feasible schedule.

334 C H A P T E R 11

11.3.2 Scheduling

The objective of the Spring scheduUng algorithm is to dynamically guarantee
the execution of newly arrived tasks in the context of the current load. The
feasibility of the schedule is determined considering many issues, such as timing
constraints, precedence relations, mutual exclusion on shared resources, non-
preemption properties, and fault-tolerant requirements. Since this problem
is NP-hard, the guarantee algorithm uses a heuristic approach to reduce the
search space and find a solution in polynomial time. It starts at the root of the
search tree (an empty schedule) and tries to find a leaf (a complete schedule)
corresponding to a feasible schedule.

On each level of the search, a heuristic function H is applied to each of the tasks
that remain to be scheduled. The task with the smallest value determined by
the heuristic function H is selected to extend the current schedule. The heuristic
function is a very flexible mechanism that allows to easily define and modify
the scheduHng policy of the kernel. For example, li H = ai (arrival time),
the algorithm behaves as First Come First Served; li H — Ci (computation
time), it works as Shortest Job First; whereas \i H = di (absolute deadline),
the algorithm is equivalent to Earliest Deadline First.

To consider resource constraints in the scheduling algorithm, each task TI has
to declare a binary array of resources Ri — [Ri{i),..., Rr(i)], where Rk{i) — 0
if Ti does not use resource Rk, and Rk{i) = 1 if r̂ uses Rk in exclusive mode.
Given a partial schedule, the algorithm determines, for each resource Rk, the
earliest time the resource is available. This time is denoted as EATk (Earliest
Available Time). Thus, the earliest start time Test{i) that task TI can begin
the execution without blocking on shared resources is

TesS) = max[ai,max{EATk)],
k

where ai is the arrival time of r^. Once Test is calculated for all the tasks,
a possible search strategy is to select the task with the smallest value of Test-
Composed heuristic functions can also be used to integrate relevant information
on the tasks, such as

H = d-hW'C

H = d-^W'Test.

where VF is a weight that can be adjusted for different application environments.

Examples of Real- Time Systems 335

Precedence constraints can be handled by introducing a new factor E, called
eligibility. A task becomes eligible to execute only when all its ancestors in the
precedence graph are completed. If a task is not eligible, it cannot be selected
for extending a partial schedule.

While extending a partial schedule, the algorithm determines whether the cur­
rent schedule is strongly feasible; that is, it is also feasible by extending it with
any of the remaining tasks. If a partial schedule is found not to be strongly
feasible, the algorithm stops the search process and announces that the task
set is not schedulable; otherwise, the search continues until a complete feasible
schedule is met. Since a feasible schedule is reached through n nodes and each
partial schedule requires the evaluation of at most n heuristic functions, the
complexity of the Spring algorithm is 0{n'^).

Backtracking can be used to continue the search after a failure. In this case, the
algorithm returns to the previous partial schedule and extends it by the task
with the second-smallest heuristic value. To restrict the overhead of backtrack­
ing, however, the maximum number of possible backtracks must be limited.
Another method to reduce the complexity is to restrict the number of evalu­
ations of the heuristic function. Do to that, if a partial schedule is found to
be strongly feasible, the heuristic function is applied not to all the remaining
tasks but only to the k remaining tasks with the earliest deadlines. Given that
only k tasks are considered at each step, the complexity becomes 0{kn). If
the value of k is constant (and small, compared to the task set size), then the
complexity becomes linearly proportional to the number of tasks.

11.3.3 I /O and interrupt handling

In Spring, peripheral I/O devices are divided in two classes: slow and fast I/O
devices. Slow I/O devices are multiplexed through a front-end dedicated pro­
cessor (I/O processor), controlled by a commercial operating system. Device
drivers running on this processor are not subject to the dynamic guarantee al­
gorithm, although they can activate critical or essential tasks. Fast I/O devices
are handled by the system processor, so they do not affect the execution of ap­
plication tasks. Interrupts from fast I/O devices are treated as instantiating a
new task that is subject to the guarantee routine just like any other task in the
system.

336 C H A P T E R 11

Network

\lVKX 1 | IVAX2

Joint
Controller

Robot

1

^ V A X 3 11 VAX 4 ^ V A X 5

Joint
Controller

Robot

2

F i g u r e 11.4 Target architecture for RK.

11.4 RK

RK (Real-time Kernel) is a distributed real-time system developed at the Uni­
versity of Pennsylvania [LKP88, LK88] to support multisensor robotic appli­
cations. The presence of hard timing constraints in robotic control activities
is necessary for two important reasons. First, sensors and actuators require
regular acquisition and feedback control in order to achieve continuous and
smooth operations. Second, some high-level tasks (such as trajectory planning,
obstacle avoidance, and so on) may require timely execution to avoid possible
catastrophic results.

The target architecture for which RK has been designed is illustrated in Fig­
ure 11.4. It consists of five processors (MicroVAX) connected through a 10 Mb
Ethernet, two robot manipulators (PUMA 560) with a joint controller each, a
tactile sensor, and a camera. One of the processors (P3) works as a supervisor,
two (PI and P5) are connected to the joint controllers via a parallel interface,
one (P2) is responsible for image acquisition and processing, and one (P4) is
dedicated to the tactile sensor. In order to support all sensory and control ac­
tivities needed for this robot system, an identical copy of the kernel is executed
on each of the five processors.

To achieve predictable behavior, RK provides a set of services whose worst-case
execution time is bounded. In addition, the kernel allows the programmer to
specify timing constraints for process execution and interprocess communica­
tion.

Examples of Real-Time Systems 337

11.4.1 Scheduling

RK supports both real-time and non-real-time tasks. Real-time tasks are di­
vided in three classes with different level of criticalness: imperative, hard, and
soft. The assignment of the CPU to tasks is done according to a priority order.
Within the same class, imperative processes are executed on a First-Come-
First-Served (FCFS) basis, whereas hard and soft processes are executed based
on their timing constraints by the EDF algorithm. The difference between hard
and soft tasks is that hard tasks are subject to a guarantee algorithm that veri­
fies their schedulability at creation time, whereas soft tasks are not guaranteed.
Finally, non-real-time tasks are scheduled in background using FCFS. Timing
constraints on real-time tasks can also be specified as periodic or sporadic and
can be defined on the whole process, on a part of a process, and on messages.

To facilitate the programming of timing constraints, RK supports a notion of
temporal scope^ which identifies explicit timing constraints with a sequence of
statements. Each temporal scope consists of five attributes: a hard/soft flag,
a start time, a maximum execution time, a deadline, and a unique identifier.
Whenever a temporal scope with a hard flag is entered, the scheduler checks
whether the corresponding timing constraints can be guaranteed in the context
of the current load. If the request cannot be guaranteed, an error message is
generated by the kernel.

A timing constraint is violated if either a process executes longer than the max­
imum declared execution time or its deadline is exceeded. When this happens,
the kernel sends a signal to the process. If the process is hard, a critical system
error has occurred (since the timing constraint was guaranteed by the sched­
uler); thus, the task that missed the deadline becomes an imperative process,
and a controlled shutdown of the system is performed as soon as possible.

11.4.2 Communication

RK provides three basic communication methods among real-time tasks:

• Signals, for notification of critical system errors;

• Timed events, for notification of events with timing constraints;

• Ports, for asynchronous message passing with timing constraints.

338 C H A P T E R 11

Signals

Signals are used by the kernel to notify that an error has occurred. The purpose
of sending such a signal is to give the process a chance to clean up its state
or to perform a controlled shutdown of the system. There are three types of
errors: timing errors, process errors, and system errors. Timing errors occur
when either a process executes longer than its maximum execution time or
its deadline is exceeded. Process errors occur when a task executes an illegal
operation - for example, an access to an invalid memory address. System
errors are due to the kernel; for example, running out of buffers that have been
guaranteed to a task. When the kernel sends a signal to a process, the process
executes an appropriate signal handler and then resumes the previous execution
flow when the handler is finished.

Timed events

Events are the most basic mechanism for interprocess communication. Unlike
a signal, an event can be sent, waited on, delayed, and preempted. In addition,
each event can have timing constraints and an integer value, which can be used
to pass a small amount of data. For each event, the kernel remembers only the
last occurrence of the event. Thus, if an event arrives while another one of the
same type is pending, only the value of the last one is remembered.

Like signals, whenever a process receives an event, it executes an associated
event handler; the previous execution flow resumes once the handler is finished.
There are two ways to associate timing constraints with events. According to
the first way, the receiver of an event may specify a timeout for executing the
event handler. Alternatively, the sender may include a deadline when the event
is sent. If both the sender and the receiver specify timing constraints for the
same event, then the earliest deadline is used for the execution of the handler.

If a non-real-time process receives a timed event, the corresponding event han­
dler is executed immediately, and, during the handling of the event, the process
is treated as real-time. This feature allows non-real-time server processes to
handle requests from real-time processes.

Ports

The port construct is widely used in operating systems for interprocess com­
munication. In RK, it is extended for real-time communication by allowing

Examples of Real-Time Systems 339

the sender to specify timing constraints in messages and the receiver to con­
trol message queueing and reception strategies. Sending a message to a port
is always nonblocking, and the execution time for a transmission is bounded
to ensure a predictable delay. For critical message communication, the sender
can include a set of timing attributes within each message, such as the start
time, the maximum duration and the deadline. Receiving a message can be
either explicit or asynchronous. When using an explicit receive primitive, the
process can specify a timeout to limit the delay in waiting for a message. For
asynchronous receive, the receiver associates a timed event with a port and
each message arrival is notified through the timed event.

Every RK process is created with a default reception port, used during initial­
ization and to request services from system server processes. Additional ports
can be created using the following system call:

port-id = port_create(type).

The argument type specifies whether the port is for receiving messages or for
multicasting messages. For a reception port, any process can send a message
to it, but only the creator can receive from it. A multicast port realizes a one-
to-many communication channel. Each multicast port has a list of destination
ports to which messages are to be forwarded. When a message is sent to a
multicast port, it is forwarded to all ports connected to it, and this forwarding
is repeated until the message reaches a reception port.

When creating a reception port, various attributes can be specified by the
creator. They allow the following characteristics to be defined:

• The ordering of messages within the port queue. It can be done
either by transmission time, arrival time, or deadline.

• The size of the queue - that is, the maximum number of messages that
can be stored in the queue. In case of overflow, it is possible to specify
whether messages are thrown away at the head or at the tail of the queue.

• Communication semantics. Normally, messages are removed from the
queue when they are received. However, when the stick attribute is set, a
message remains in the queue even after it is received, and it is replaced
only when a new message arrives.

In RK, the send and receive system calls have the following syntax:

340 C H A P T E R 11

send(portid, reply .port id, t_record, msg, size);

receive(portid, reply_portid, timeuot, t_record, msg, size);

where portid is the identifier of the port; replyjportid specifies where to send a
reply; timeout (only in reception) specifies the maximum amount of time that
the primitive should block waiting for a message; tjrecord is a pointer to a
record containing the three timing attributes (start time, maximum duration,
and deadline) specified by the sender; msg is a pointer to the message; and
size is the size of the message.

11.4,3 I / O and interrupt handling

Traditional operating systems provide device drivers that simplify the inter­
actions between application processes and peripheral devices. This approach
allows the same device to be used by many processes; however, it introduces ad­
ditional delays during processes's execution that may jeopardize the guarantee
of hard real-time activities.

In robotics applications, this problem is not so relevant, since sensory devices
are not shared among processes but are controlled by dedicated tasks that
collect data and preprocess them. For this reason, RK allows processes to
directly control devices by sharing memory and accessing device registers. In
addition, a process may request the kernel to convert device interrupts into
timed events.

Although this approach requires the programmer to know low-level details
about devices, it is faster than the traditional method, since no context switch­
ing is needed to apply feedback to a device. Furthermore, the kernel needs not
to be changed when removing or adding new devices.

11.5 ARTS

ARTS (Advanced Real-time Technology System) is a distributed real-time op­
erating system developed at the Carnegie Mellon University [TK88, TM89] for
verifying advanced computing technologies for a distributed environment. The
target architecture for which ARTS has been developed consists of a set of
SUN workstations connected by a real-time network based on IEEE 802.5 To-

Examples of Real-Time Systems 341

UNIX

File
Server

Workload
Generator

UNIX

Real-Time
Monitor

Display

Ethernet

SUN
(ARTS)

SUN
(ARTS)

SUN
(ARTS)

Network
Monitor

PC

Real-Time Network (IEEE 802.5)

F i g u r e 11.5 The ARTS target architecture.

ken Ring. Figure 11.5 shows the typical configuration of the system and the
relation between the kernel and its real-time tools.

The programming environment provided by the ARTS system is based on an
object-oriented paradigm, in which every computational entity is represented
by an object. Objects can be defined as real-time or non-real-time objects.
Each operation associated with a real-time object has a worst-case execution
time, called a time fence, and a time exception handling routine. In addition,
an ARTS object can be passive or active. Active objects are characterized by
the presence of one or more internal threads (defined by the user) that accept
incoming invocation requests.

All threads are implemented as lightweight processes that share the same ad­
dress space. A thread can be defined as a periodic or aperiodic task depending
on its timing attributes. The timing attributes of a thread consist of a value
function, a worst-case execution time, a period, a phase, and a delay value.

ARTS supports the creation and destruction of objects at a local node, as
well as at a remote node. Although process migration is a very important
mechanism in non-real-time distributed operating systems, the ARTS kernel
does not support object migration during runtime. Instead, it can move an
object by shutting down the activities and reinitiating the object at the target
host with appropriate parameters.

342 C H A P T E R 11

EDF LLF RM RM
BKG

RM
POL

RM
DS

RM
SS

FCFS RR

Scheduler Object

Low-Level Scheduling Mechanism

Figure 11.6 Structure of the ARTS scheduler.

11.5.1 Scheduling

In ARTS, the scheduling pohcy is implemented as a self-contained kernel object
and is separated from the thread handling mechanism, which performs only
dispatching and blocking.

For experimental purposes, several scheduling policies have been implemented
in the ARTS kernel, including static algorithms such as Rate Monotonic (RM)
and dynamic algorithms such as Earliest Deadline First (EDF) and Least Lax­
ity First (LLF). In conjunction with Rate Monotonic, a number of strategies
for handling aperiodic threads have been realized, such as Background servic­
ing (BKG), Polling (POL), Deferrable Server (DS), and Sporadic Server (SS).
More common scheduling algorithms such as First Come First Served (FCFS)
and Round Robin (RR) have also been realized for comparison with real-time
scheduling policies. A scheduling policy object can be selected either during
system initialization or during runtime. Figure 11.6 shows the general structure
of the ARTS scheduler.

A schedulability analyzer associated with each scheduling algorithm allows the
following to be guaranteed:

• The feasibility of hard tasks within their deadlines,

• A high cumulative value for soft tasks, and

• Overload control based on the value functions of aperiodic tasks.

When selecting a server mechanism for handling aperiodic tasks, the server pa­
rameters (period and capacity) are set to fully utilize the processor. This allows
to reserve the maximum CPU time for aperiodic service while guaranteeing the
schedulability of periodic hard tasks.

Examples of Real-Time Systems 343

11.5.2 Coramunication

In traditional real-time operating systems, interprocess communication mech­
anisms are realized to be fast and efficient (that is, characterized by a low
overhead). In ARTS, however, the main goal has been to realize a commu­
nication mechanism characterized by a predictable and analyzable behavior.
To achieve this goal, ARTS system calls require detailed information about
communication patterns among objects, including the specification of periodic
message traffic and rates for aperiodic traffic.

In ARTS, every message communication is caused by an invocation of a target
object's operation, and the actual message communication is performed in a
Request-Accept-Reply fashion. Unlike traditional message passing paradigms,
the caller must specify the destination object, the identifier of the requested
operation, the pointer to the message, and the pointer to a buflFer area for the
reply message.

To avoid priority inversion among objects inside each node, message trans­
mission is integrated with a Priority Inheritance mechanism, which allows to
propagate priority information across object invocations. All network messages
are handled by a Communication Manager (CM), where different protocols are
implemented using a state table specification. The CM prevents priority inver­
sion over the network by using priority queues with priority inheritance. Thus,
if a low-priority message is processed when a higher-priority message arrives,
the low-priority message will execute at the highest priority. In this way, the
highest-priority message remains in the queue for at most the time it takes to
process one message.

11.5.3 Supporting tools

ARTS provides a set of supporting tools, the ARTS Tool-Set [TK88], aimed at
reducing the complexity of application development in a distributed real-time
environment. This tool-set includes a schedulability analyzer, a support for
debugging, and a system monitoring tool.

Schedulability analyzer

The main objective of this tool is to verify the schedulability of a given set of
hard real-time tasks under a particular scheduling algorithm. The performance
of soft aperiodic tasks are computed under specific service mechanisms, such as

344 C H A P T E R 11

Background, Polling, Deferrable Server, and Sporadic Server. An interactive
graphical user interface is provided on a window system to quickly select the
scheduling algorithm and the task set to be analyzed. To confirm the schedu-
lability of the given task set in a practical environment, this tool also includes
a synthetic workload generator, which creates a particular sequence of requests
based on a workload table specified by the user. The synthetic task set can
then be executed by a scheduling simulator to test the observance of the hard
timing constraints.

Debug ging

The ARTS system provides the programmer with a set of basic primitives that
can be used for building a debugger and for monitoring process variables. For
example, the Thread-Freeze primitive halts a specific thread for inspection,
while the Object-Freeze primitive stops the execution of an ARTS object (that
is, all its associated threads). Thread-Unfreeze and Object-Unfreeze primitives
resume a suspended thread and object, respectively. While a thread is in a
frozen state, the Fetch primitive allows to inspect its status in terms of a set
of values of data objects. The value of any data object can be replaced using
the Store primitive. Finally, the Thread-Capture and Object-Capture primitives
allow to capture on-going communication messages from a specified thread and
object, respectively.

System monitoring

ARTS includes a monitoring tool, called Advance Real-time Monitor (ARM),
whose objective is to observe and visualize the system's runtime behavior. Typ­
ical events that can be visualized by this tool are context switches among tasks
caused by scheduling decisions. ARM is divided into three functional units:
the Event Tap, the Reporter, and the Visualizer. The Event Tap is a probe
embedded inside the kernel to pick up the row data on interesting events. The
Reporter is in charge of sending the row data to the Visualizer on a remote
host, which analyzes the events and visualizes them in an interactive graph­
ical environment. The Visualizer is designed to be easily ported to different
graphical interfaces.

Examples of Real-Time Systems 345

11.6 HARTIK

HARTIK (HArd Real-Time Kernel) is a hard real-time operating environment
developed at the Scuola Superiore S. Anna of Pisa [BDN93, But93] to sup­
port advanced robot control applications characterized by stringent timing con­
straints.

Complex robot systems are usually equipped with different types of sensors
and actuators and hence require the concurrent execution of computational
activities characterized by different types of timing constraints. For example,
processing activities related to sensory acquisition and low-level servoing must
be periodically executed with regular activation rates to ensure a correct recon­
struction of external signals and guarantee a smooth and stable behavior of the
robot system. Other activities (such as planning special actions, modifying the
control parameters, or handling exceptional situations) are intrinsically aperi­
odic and are triggered when some particular condition occurs. To achieve a
predictable timing behavior and to satisfy system stability requirements, most
acquisition and control tasks require stringent timing constraints, that have
to be met in all anticipated workload conditions. In addition, complex robot
systems are typically built using disparate peripheral devices that may be dis­
tributed on heterogeneous computers.

For the reasons mentioned above, HARTIK has been designed to support the
following major characteristics:

Flexibility. It is possible to schedule hybrid task sets consisting of peri­
odic and aperiodic tasks with different level of criticalness.

Portability. The kernel has been designed in a modular fashion, and all
hardware-dependent code is encapsulated in a small layer that provides a
virtual machine environment.

Dynamic preemptive scheduling and on-line guarantee. Any hard
task is subject to a feasibility test. If a task cannot be guaranteed, the
system raises an exception that allows to take an alternative action.

Efficient aperiodic service. An integrated scheduling algorithm en­
hances responsiveness of soft aperiodic requests without jeopardizing the
guarantee of the hard tasks.

Predictable resource sharing. Special semaphores allow to bound
the maximum blocking time on critical sections, preventing deadlock and
chained blocking.

346 C H A P T E R 11

Fully asynchronous communication. A particular nonblocking mech­
anism, called CAB, is provided for exchanging messages among periodic
tasks with different periods, thus allowing the implementation of multilevel
feedback control loops.

Efficient and predictable interrupt handling mechanism. Any in­
terrupt request can either be served immediately, or cause the activation
of an handler task, which is guaranteed and scheduled as any other hard
task in the system.

To facilitate the development of real-time control applications on heterogeneous
architectures, HARTIK has been designed to be easily ported on different hard­
ware platforms. At present, the kernel is available for Motorola MC 680x0
boards with VME bus, Intel 80x86 and Pentium with ISA/PCI bus, and DEC
AXP-Alpha stations with PCI bus.

Figure 11.7 illustrates a possible architecture that can be used to build a con­
trol application. In this solution, control algorithms, trajectory planning, and
feedback loops are executed on a Pentium-based computer; sensory acquisition
and data preprocessing are executed on a Motorola 68030 processor; whereas
the application development is carried out on a DEC Alpha workstation. In
this node, a set of tools is available for designing the application structure, esti­
mating the maximum execution time of the tasks, analyzing the schedulability
of the task set, and monitoring the system activity.

11.6.1 Task management and scheduling

HARTIK distinguishes three classes of tasks with different criticalness:

H A R D tasks. They are periodic or aperiodic processes with critical
deadline that are guaranteed by the kernel at creation time. Moreover,
the system performs a runtime check on hard deadlines, notifying a time
overflow when a hard deadhne is missed.

SOFT tasks. They are periodic or aperiodic processes with non-critical
deadline that are not guaranteed by the system. Soft tasks are handled by
the Total Bandwidth Server[SB94, SB96], which enhances their response
time without jeopardizing the guarantee of hard tasks.

Examples of Real- Time Systems 347

Sensory

Acquisition

Design

Analysis

Monitoring

Simulation

Real-Time

Control

Figure 11.7
HARTIK.

Example of heterogeneous architecture that can be used with

NRT tasks. They are Non-Real-Time aperiodic processes with no timing
constraints. NRT tasks are scheduled in background and are characterized
by a static priority level assigned by the user.

When a task is created, several parameters have to be specified, such as its
name, its class (HARD, SOFT, or NRT), its type (periodic or aperiodic), a
relative deadline, a period (or a minimum interarrival time for sporadic tasks),
a worst-case execution time, a pointer to a list of resources handled by the
Stack Resource Policy, and a maximum blocking time. Hard and soft tasks are
scheduled according to the Earliest-Deadline-First scheduling policy, which is
optimal and achieves full processor utilization.

Real-time tasks can share resources in a predictable fashion through the Stack
Resource Policy (SRP). The SRP ensures that, once started, a task will never
block until completion but can be preempted only by higher-priority tasks.
Furthermore, the SRP avoids priority inversion, chained blocking, deadlock,
and reduces the number of context switches due to resource acquisition. Using
SRP, the maximum blocking time that any task can experience is equal to the
duration of the longest critical section, among those that can block it.

348 C H A P T E R 11

11.6.2 Process communication

HARTIK provides both synchronous and asynchronous communication primi­
tives to adapt to different task requirements. For synchronous communication,
tasks can use two types of ports: RECEIVE and BROADCAST.

A RECEIVE port is a channel where many tasks can send messages to, but only
one, the owner, is allowed to receive them. Sending messages to and receiving
messages from a receive port is always synchronous with timeout. Hence, these
ports can be used by soft and NRT tasks and by those hard tasks that must
absolutely perform synchronous communication.

BROADCAST ports provide a one-to-many communication channel. They
have not only some buffering capability for incoming messages but also a list
of destination ports to which messages are to be forwarded. When a message
is sent to a broadcast port, it is redirected to all ports specified in the list.
BROADCAST ports allow asynchronous send, but they are not directly ad­
dressable by a receive. These ports are suited for soft and non-real-time tasks.

A third type of port available in the kernel is the STICK port, which is a
one-to-many communication channel with asynchronous semantics. When a
process receives a message from a STICK port, the port does not consume the
message but leaves it stuck until it is overwritten by another incoming message.
As a consequence, a process is never blocked for an empty or full buffer. For
this property, the use of STICK ports is strongly recommended for exchanging
state information among HARD tasks.

Asynchronous communication is supported by the Cyclic Asynchronous Buffer
(CAB) mechanism, purposely designed for the cooperation among periodic ac­
tivities with different activation rate, such as sensory acquisition and control
loops. A CAB provides a one-to-many communication channel which contains,
at any instant, the latest message inserted in its structure.

A message is not consumed by a receiving task, but it is maintained into the
CAB until a new message is overwritten. In this way, a receiving task will
always find data in a CAB, so that unpredictable delays due to synchroniza­
tion can be eliminated. It is important to point out that CABs do not use
semaphores to protect their internal data structures, so they are not subject to
priority inversion.

Examples of Real- Time Systems 349

CAB messages are always accessed through a pointer, so that the overhead of
CAB primitives is small and independent of the message size. The kernel also
allows tasks to perform simultaneous read and write operations to a CAB. This
is achieved through the use of multiple memory buffers. For example, if a task
wants to write a new message in a CAB that is being used by another task
(which is reading the current message), a new buffer is assigned to the writer,
so that no memory conflict occurs. As the writing operation is completed, the
written message becomes the most recent information in that CAB, and it will
be available to any other task. The maximum number of buffers needed for a
CAB to avoid blocking must be equal to the number of tasks that share the
CAB plus one.

11.6.3 Interrupt handling

In HARTIK, a device driver is split into two parts: a fast handler and a safe
handler. When an interrupt is triggered by an I/O device, the fast handler is
executed in the context of the currently running task to avoid the overhead due
to a context switch. It typically performs some basic input/output operations
and acknowledges the peripheral. Then, the kernel automatically activates the
safe handler, which is subject to the scheduling algorithm as any other aperiodic
task in the system. The safe handler can be declared as a soft or sporadic task
depending on the characteristics of the device. It is in charge of doing any
remaining computation on the device - for example, data multiplexing among
user tasks. This approach is quite flexible, since it allows to nicely combine two
different service techniques: the event-driven approach (obtained by the fast
handler) and the time-driven approach (obtained by the safe handler).

11.6.4 Programming tools

The HARTIK system includes a set of tools [ABDNB96, ABDNS96] to assist
the development of time-critical applications from the design stage to the mon­
itoring phase. In particular, the tool set includes a design tool to describe the
structure of the application, a schedulability analyzer to verify the feasibility
of critical tasks, a scheduling simulator to test the performance of the system
under a synthetic workload, a worst-case execution time estimator, and a tracer
to monitor and visualize the actual evolution of the application.

350 CHAPTER 11

Design tool

The design tool includes an interactive graphics environment that allows the
user to describe the application requirements according to three hierarchical
levels. At the highest level, the application is described as a number of vir­
tual nodes that communicate through channels. Virtual nodes and channels
are graphically represented by icons linked with arrows. Opening the icon of a
virtual node we reach the second hierarchical level. At this stage, the developer
specifies the set of concurrent tasks running in the virtual node and commu­
nicating through shared critical sections or through channels. Tasks, shared
resources, and channels are graphically represented by icons that the developer
can move and link with arrows. Any possible object (a task, a resource, a
channel, or a message) is an instance of a class for that type of object.

Scheduling analyzer

The Schedulability Analyzer Tool (SAT) is very useful for designing predictable
real-time applications because it enables the developer to analyze a set of critical
tasks and statically verify their schedulability. If the schedulability analysis
gives a negative result, the user can change the task parameters and rerun the
guarantee test. For instance, some adjustments are possible by rearranging
the task deadlines or by producing a more compact and efficient code for some
critical tasks or even changing the target machine.

Scheduling simulator

Many practical real-time applications do not contain critical activities but only
tasks with soft time constraints, where a deadline miss does not cause any
serious damage. In these applications, the user may be interested in evaluating
the performance of the system in the average-case behavior rather than in the
worst-case behavior. In order to do that, a statistical analysis through a graphic
simulation is required. For this purpose, the tool kit includes a scheduling
simulator and a load generator for creating random aperiodic activities. Actual
computation times, arrival times, durations, and positions of critical sections
in the tasks are computed by the load generator as random variables, whose
distribution is provided by the user.

Examples of Real-Time Systems 351

Maximum execution time evaluator

The execution time of tasks it is estimated by a proper tool, which performs a
static analysis of the application code, supported by a programming style and
specific language constructs to get analyzable programs. The language used to
develop time-bounded code is an extension of the C language, where monitors
are added to isolate and evaluate the duration of critical sections. Optional
bounds are programmable to limit the number of iterations in loop statements
or to limit the maximum number of processing conditional branches inside
loops. The present implementation has models of Intel 1386 and i486 CPUs,
but the tool can be easily adapted to different kind of processors.

The model includes the simulation of the processor in a table-driven fashion,
where assembly instructions are translated into execution times depending on
their operating code, operands, and addressing mode. The tool works in con­
junction with the C compiler and produces a graph representation of the pro­
gram's control structure in terms of temporal behavior, where a weight is as­
signed to every branch of the graph, corresponding to the number of CPU cycles
needed for the execution of a segment of sequential code. With this representa­
tion, calculating the worst-case behavior of an algorithm means evaluating the
maximum cost path in the graph.

Real-time tracer

This tool allows the monitoring of the system evolution while an application is
running. It consists of four main parts: a probe, a data structure in the kernel,
an event recorder, and a visualizer. The probe is a kernel routine inserted in
the system calls, capable of keeping track of all events occurring in the system.
At each context switch, the probe saves in main memory the system time (with
a microsecond a resolution) at which the event takes place, the name of the
recorded primitive, the process identifier, its current deadline, and its state
before the primitive execution. At system termination, the recorder saves the
application trace in a file, which can be later interpreted and displayed by the
visualizer. This tool produces a graphics representation of the system evolution
in a desired time scale, under Windows NT/95.

The user has the possibility of moving along the trace, changing the scale
factor (zoom), and displaying information about task properties, such as type,
periodicity class, deadhne, and period. Statistical information on waiting times
into the various queues are also calculated and displayed both in graphical and
textual fashion. On-line help is also provided.

GLOSSARY

Absolute jitter The difference between the maximum and the minimum
start time (relative to the request time) of all instances of a periodic task.

Acceptance test A schedulability test performed at the arrival time of a
new task, whose result determines whether the task can be accepted into
the system or rejected.

Access protocol A programming scheme that has to be followed by a set of
tasks that want to use a shared resource.

Activation A kernel operation that moves a task from a sleeping state to an
active state, from where it can be scheduled for execution.

Aperiodic task A type of task that consists of a sequence of identical jobs
(instances), activated at irregular intervals.

Arrival rate The average number of jobs requested per unit of time.

Arrival t ime The time instant at which a job or a task enters the ready
queue. It is also called request time.

Background scheduling Task-management policy used to execute low-priority
tasks in the presence of high-priority tasks. Lower-priority tasks are executed
only when no high-priority tasks are active.

Blocking A job is said to be blocked when it has to wait for a job having a
lower priority.

Buffer A memory area shared by two or more tasks for exchanging data.

354 GLOSSARY

Capacity The maximum amount of time dedicated by a periodic server, in
each period, to the execution of a service.

Ceiling Priority level associated with a semaphore or a resource according to
an access protocol.

Ceiling blocking A special form of blocking introduced by the Priority Ceil­
ing Protocol.

Channel A logical link through which two or more tasks exchange informa­
tion by a message-passing mechanism.

Chained blocking A sequence of blocking experienced by a task while at­
tempting to access a set of shared resources.

Clairvoyance An ideal property of a scheduling algorithm that implies the
future knowledge of the arrival times of all the tasks that are to be scheduled.

Competitive factor A scheduling algorithm A is said to have a competitive
factor ipA if and only if it can guarantee a cumulative value at least (fA times
the cumulative value achieved by the optimal clairvoyant scheduler.

Completion time The time at which a job ends to execute. It is also called
finishing time.

Computation time The amount of time required by the processor to execute
a job without interruption. It is also called service time or processing time.

Concurrent processes Processes that overlap in time.

Context A set of data that describes the state of the processor at a particular
time, during the execution of a task. Typically the context of a task is the
set of values taken by the processor registers at a particular instant.

Context switch A kernel operation consisting in the suspension of the cur­
rently executing job for assigning the processor to another ready job (typi­
cally the one with the highest priority).

Glossary 355

Creation A kernel operation that allocates and initializes all data structures
necessary for the management of the object being created (such as task,
resource, communication channel, and so on).

Critical instant The time at which the release of a job produces the largest
response time.

Critical section A code segment subject to a mutual exclusion.

Critical zone The interval between a critical instant of a job and its corre­
sponding finishing time.

Cumulative value The sum of the task values gained by a scheduling algo­
rithm after executing a task set.

Deadline The time within which a real-time task should complete its execu­
tion.

Deadlock A situation in which two or more processes are waiting indefinitely
for events that will never occur.

Direct blocking A form of blocking due to the attempt of accessing an
exclusive resource, held by another task.

Dispatching A kernel operation consisting in the assignment of the processor
to the task having highest priority.

Domino effect A phenomenon in which the arrival of a new task causes all
previously guaranteed tasks to miss their deadlines.

Dynamic scheduling A scheduling method in which all active jobs are re­
ordered every time a new job enters the system or a new event occurs.

Event An occurrence that requires a system reaction.

Exceeding t ime The interval of time in which a job stays active after its
deadline. It is also called tardiness.

356 GLOSSARY

Exclusive resource A shared resource that cannot be accessed by more than
one task at a time.

Feasible schedule A schedule in which all real-time tasks are executed
within their deadlines and all the other constraints, if any, are met.

Finishing time The time at which a job ends to execute. It is also called
completion time.

Firm task A task in which each instance must be either guaranteed to com­
plete within its deadline or entirely rejected.

Guarantee A schedulability test that allows to verify whether a task or a set
of tasks can complete within the specified timing constraints.

Hard task A task whose instances must be a priori guaranteed to complete
within their deadlines.

Hyperperiod The minimum time interval after which the schedule repeats
itself. For a set of periodic tasks, it is equal to the least common multiple of
all the periods.

Idle state The state in which a task is not active and waits to be activated.

Idle t ime Time in which the processor does not execute any task.

Instance A particular execution of a task. A single job belonging to the
sequence of jobs that characterize a periodic or an aperiodic task.

Interarrival time The time interval between the activation of two consecu­
tive instances of the same task.

Interrupt A timing signal that causes the processor to suspend the execution
of its current process and start another process.

Jitter The difference between the start times (relative to the request times)
of two or more instances of a periodic task. See also absolute jitter and
relative jitter.

Glossary 357

Job A computation in which the operations, in the absence of other activities,
are sequentially executed by the processor until completion.

Kernel An operating environment that enables a set of tasks to execute con­
currently on a single processor.

Lateness The difference between the finishing time of a task and its deadline
[L — f — d). Notice that a negative lateness means that a task completed
before its deadline.

Laxity The maximum delay that a job can experience after its activation and
still complete within its deadline. At the arrival time, the laxity is equal to
the relative deadline minus the computation time (D — C). It is also called
slack time.

Lifetime The maximum time that can be represented inside the kernel.

Load Computation time demanded by a task set in an interval, divided by
the length of the interval.

Mailbox A communication buffer characterized by a message queue shared
between two or more jobs.

Message A set of data, organized in a predetermined format for exchanging
information among tasks.

Mutual Exclusion A kernel mechanism that allows to serialize the execution
of concurrent tasks on critical sections of code.

Non-preemptive Scheduling A form of scheduling in which jobs, once
started, can continuously execute on the processor without interruption.

Optimal algorithm A scheduling algorithm that minimizes some cost func­
tion defined over the task set.

Overhead The time required by the processor to manage all internal mech­
anisms of the operating system, such as queuing jobs and messages, updat­
ing kernel data structures, performing context switches, activating interrupt
handlers, and so on.

358 GLOSSARY

Overload Exceptional load condition on the processor, such that the compu­
tation time demanded by the tasks in a certain interval exceeds the available
processor time in the same interval.

Period The interval of time between the activation of two consecutive in­
stances of a periodic task.

Periodic task A type of task that consists of a sequence of identical jobs
(instances), activated at regular intervals.

Phase The time instant at which a periodic task is activated for the first
time, measured with respect to some reference time.

Polling A service technique in which the server periodically examines the
requests of its clients.

Port A general intertask communication mechanism based on a message pass­
ing scheme.

Precedence graph A directed acyclic graph that describes the precedence
relations in a group of tasks.

Precedence constraint Dependency relation between two or more tasks
that specifies that a task cannot start executing before the completion of
one or more tasks (called predecessors).

Predictability An important property of a real-time system that allows to
anticipate the consequence of any scheduling decision.

Preemption An operation of the kernel that interrupts the currently exe­
cuting job and assigns the processor to a more urgent job ready to execute.

Preemptive Scheduling A form of scheduling in which jobs can be inter­
rupted at any time and the processor assigned to more urgent jobs ready to
execute.

Priority A number associated with a task and used by the kernel to establish
an order of precedence among tasks competing for a common resource.

Glossary 359

Priority Inversion A phenomenon for which a task is blocked by a lower-
priority task for an unbounded amount of time.

Process A computation in which the operations are executed by the proces­
sor one at a time. A process may consist of a sequence of identical jobs, also
called instances. The words process and task are often used as synonyms.

Processing time The amount of time required by the processor to execute a
job without interruption. It is also called computation time or service time.

Program A description of a computation in a formal language, called a Pro­
gramming Language.

Push-through blocking A form of blocking introduced by the Priority In­
heritance and by the Priority Ceiling protocols.

Queue A set of jobs waiting for a given type of resource and ordered according
to some parameter.

Relative Jitter The maximum difference between the start times (relative
to the request times) of two consecutive instances of a periodic task.

Request time The time instant at which a job or a task requests a service
to the processor. It is also called arrival time.

Resource Any entity (processor, memory, program, data, and so on) that
can be used by tasks to carry on their computation.

Resource constraint Dependency relation among tasks that share a com­
mon resource used in exclusive mode.

Response time The time interval between the request time and the finishing
time of a job.

Schedulable task set A task set for which there exists a feasible schedule.

Schedule An assignment of tasks to the processor, so that each task is exe­
cuted until completion.

360 GLOSSARY

Scheduling An activity of the kernel that determines the order in which
concurrent jobs are executed on a processor.

Semaphore A kernel data structure used to synchronize the execution of
concurrent jobs.

Server A kernel process dedicated to the management of a shared resource.

Service t ime The amount of time required by the processor to execute a job
without interruption. It is also called computation time or processing time.

Shared resource A resource that is accessible by two or more processes.

Slack t ime The maximum delay that a job can experience after its activation
and still complete within its deadline. At the arrival time, the slack is equal
to the relative deadline minus the computation time (D — C). It is also called
laxity.

Soft task A task whose instances should be possibly completed within their
deadlines, but no serious consequences occur if a deadline is missed.

Sporadic task An aperiodic task characterized by a minimum interarrival
time between consecutive instances.

Start t ime The time at which a job starts executing for the first time.

Starvation A phenomenon for which an active job waits for the processor
for an unbounded amount of time.

Static scheduling A method in which all scheduling decisions are precom-
puted off-line, and jobs are executed in a predetermined fashion, according
to a time-driven approach.

Synchronization Any constraint that imposes an order to the operations
carried out by two or more concurrent jobs. A synchronization is typically
imposed for satisfying precedence or resource constraints.

Tardiness The interval of time in which a job stays active after its deadline.
It is also called exceeding time.

Glossary 361

Task A computation in which the operations are executed by the processor
one at a time. A task may consist of a sequence of identical jobs, also called
instances. The words process and task are often used as synonyms.

Task control block A kernel data structure associated with each task con­
taining all the information necessary for task management.

Tick The minimum interval of time that is handled by the kernel. It defines
the time resolution and the time unit of the system.

Timeout The time limit specified by a programmer for the completion of an
action.

Time-overflow Deadline miss. A situation in which the execution of a job
continues after its deadline.

Timesharing A kernel mechanism in which the available time of the proces­
sor is divided among all active jobs in time slices of the same length.

Time slice A continuous interval of time in which a job is executed on the
processor without interruption.

Utilization factor The fraction of the processor time utilized by a set of
periodic tasks.

Utility function A curve that describes the value of a task as a function of
its finishing time.

Value A task parameter that describes the relative importance of a task with
respect to the other tasks in the system.

Value Density The ratio between the value of a task and its computation
time.

REFERENCES

[ABDNB96] P. Ancilotti, G. C. Buttazzo, M. Di Natale, and M. Bizzarri. A
flexible tool kit for the development of real-time applications. In
Proceedings of the IEEE Real-time Technology and Application
Symposium, pages 260-262, June 1996.

[ABDNS96] P. Ancilotti, G. C. Buttazzo, M. Di Natale, and M. Spuri. A
development environment for real-time applications. Journal of
Software Engineering and Knowledge Engineering, 6(3):91-99,
September 1996.

[ABR+93] N.C. Audsley, A. Burns, M.F. Richardson, K. Tindell, and A.J.
Wellings. Applying new scheduling theory to static priority pre­
emptive scheduling. Software Engineering Journal, 8(5):284-292,
September 1993.

[ABRW91] N.C. Audsley, A. Burns, M.F. Richardson, and A.J. Wellings.
Hard real-time scheduling: the deadline-monotonic approach. In
Proceedings of Eighth IEEE Workshop on Real-Time Operating
Systems and Software, May 1991.

[ABRW92] N.C. Audsley, A. Burns, M.F. Richardson, and A.J. Wellings.
Hard real-time scheduling: The deadline monotonic approach. In
IEEE Workshop on Real-Time Operating Systems, 1992.

[AL86] L. Alger and J. Lala. Real-time operating system for a nuclear
power plant computer. In Proceedings of the IEEE Real-Time
Systems Symposium, December 1986.

[AS88] R. J. Anderson and M. W. Spong. Hybrid impedance control of
robotic manipulators. IEEE Journal of Robotics and Automation,
4(5), October 1988.

[B"*"93] J. Blazewicz et al. Scheduling in Computer and Manifacturing
Systems. Springer-Verlag, 1993.

364 HARD REAL-TIME COMPUTING SYSTEMS

[BAF94] G. C. Buttazzo, B. Allotta, and F. Fanizza. Mousebuster: a
robot for catching fast objects. IEEE Control Systems Magazine,
14(l):49-56, February 1994.

[Baj88] R. Bajcsy. Active perception. Proceedings of the IEEE, 76(8):996-
1005, August 1988.

[Bak91] T.P. Baker. Stack-based scheduling of real-time processes. Journal
of Real-Time Systems, 3, 1991.

[BDN93] G.C. Buttazzo and M. Di Natale. Hartik: a hard real-time ker­
nel for programming robot tasks with explicit time constraints
and guaranteed execution. In Proceedings of IEEE International
Conference on Robotics and Automation, May 1993.

[BFR71] P. Bratley, M. Florian, and P. Robillard. Scheduling with earliest
start and due date constraints. Naval Research Quarterly, 18(4),
1971.

[BH73] Per Brinch Hansen. Operating System Principles. Prentice-Hall,
1973.

[BKM+92] S. Baruah, G. Koren, D. Mao, A. Raghunathan B. Mishra,
L. Rosier, D. Shasha, and F. Wang. On the competitiveness of
on-line real-time task scheduling. Journal of Real- Time Systems,
4, 1992.

[BL97] G. Buttazzo and G. Lipari. Scheduling analysis of hybrid real­
time task sets. In Proceedings of the IEEE Euromicro Workshop
on Real-Time Systems, 1997.

[Blo77] Arthur Bloch. Murphy's Law. Price/Stern/Sloan Publishers, Los
Angeles, California, 1977.

[BI08O] Arthur Bloch. Murphy's Law Book Two. Price/Stern/Sloan Pub-
Hshers, Los Angeles, California, 1980.

[BI088] Arthur Bloch. Murphy's Law Book Three. Price/Stern/Sloan Pub­
lishers, Los Angeles, California, 1988.

[BR91] S. Baruah and L.E. Rosier. Limitations concerning on-line
scheduling algorithms for overloaded real-time systems. In Eighth
IEEE Workshop on Real-Time Operating Systems and Software,
1991.

References 365

[BRH90] S.K. Baruah, L.E. Rosier, and R.R. Howell. Algorithms and com­
plexity concerning the preemptive scheduling of periodic, real-time
tasks on one processor. Journal of Real-Time Systems, 2, 1990.

[BS93] G.C. Buttazzo and J. Stankovic. Red: A robust earliest dead­
line scheduling algorithm. In Proceedings of Third International
Workshop on Responsive Computing Systems, 1993.

[BS95] G.C. Buttazzo and J. Stankovic. Adding robustness in dynamic
preemptive scheduling. In D.S. Fussel and M. Malek, editors,
Responsive Computer Systems: Steps Toward Fault-Tolerant Real-
Time Systems. Kluwer Academic Publishers, 1995.

[BS97] G. Buttazzo and F. Sensini. Deadline assignment methods for soft
aperiodic scheduling in hard real-time systems. In Submitted to
IEEE Euromicro Workshop on Real-Time Systems, 1997.

[BSR88] S. Biyabani, J. Stankovic, and K. Ramamritham. The integra­
tion of deadline and criticalness in hard real-time scheduling. In
Proceedings of the IEEE Real-Time Systems Symposium, 1988.

[But91] G.C. Buttazzo. Harems: Hierarchical architecture for robotics
experiments with multiple sensors. In IEEE Proceedings of the
Fifth International Conference on Advanced Robotics ('91 ICAR),
June 1991.

[But93] G.C. Buttazzo. Hartik: A real-time kernel for robotics applica­
tions. In Proceedings of the IEEE Real-Time Systems Symposium,
December 1993.

[But96] G. C. Buttazzo. Real-time issues in advanced robotics applica­
tions. In Proceedings of the 8th IEEE Euromicro Workshop on
Real-Time Systems, pages 77-82, June 1996.

[CC89] H. Ghetto and M. Ghetto. Some results of the earliest deadline
scheduling algorithm. IEEE Transactions on Software Engineer­
ing, 15(10), 1989.

[CL90] M. Chen and K. Lin. Dynamic priority ceilings: A concurrency
control protocol for real-time systems. Journal of Real-Time Sys­
tems, 2, 1990.

[Cla89] D. Clark. Hie: An operating system for hierarchies of servo loops.
In Proceedings of IEEE International Conference on Robotics and
Automation, 1989.

366 HARD REAL-TIME COMPUTING SYSTEMS

[CSB90] H. Ghetto, M. Silly, and T. Bouchentouf. Dynamic scheduling
of real-time tasks under precedence constraints. Journal of Real-
Time Systems, 2, 1990.

[Cut85] M. R. Cutkosky. Robot Grasping and Fine Manipulation. Kluwer
Academic Publishers, 1985.

[DB87] P. Dario and G. C. Buttazzo. An anthropomorphic robot finger for
investigating artificial tactile perception. International Journal of
Robotics Research, 6(3):25-48, Fall 1987.

[Der74] M.L. Dertouzos. Gontrol robotics: the procedural control of phys­
ical processes. Information Processing, 74, 1974.

[Dij68] E. W. Dijkstra. Gooperating sequential processes. In F. Genuys,
editor, Programming Languages. Academic Press, New York, 1968.

[DRSK89] A. Damm, J. Reisinger, W. Schwabl, and H. Kopetz. The real-time
operating system of mars. Operating System Review, 23(3): 141-
157, July 1989.

[DTB93] R.I. Davis, K.W. Tindell, and A. Burns. Scheduling slack time
in fixed priority pre-emptive systems. In Proceedings of the IEEE
Real-Time Systems Symposium, December 1993.

[Foh93] G. Fohler. Realizing changes of operational modes with pre
run-time scheduled hard real-time systems. In H. Kopetz and
Y. Kakuda, editors. Responsive Computer Systems, pages 287-
300. Springer-Verlag, 1993.

[Foh95] G. Fohler. Joint scheduling of distributed complex periodic and
hard aperiodic tasks in statically scheduled systems. In Proceed­
ings of the IEEE Real-Time Systems Symposium, pages 152-161,
December 1995.

[GB95] T.M. Ghazalie and T.P. Baker. Aperiodic servers in a deadline
scheduling environment. Journal of Real-Time Systems, 9, 1995.

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W.H. Freeman and
Gompany, 1979.

[GLLK79] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy
Kan. Optimization and approximation in deterministic sequencing
and scheduling theory: a survey. Annals of Discrete Mathematics,
5, 1979.

References 367

[GR91]

[Gra76]

[HHPD87]

[HLC91]

[Hor74]

[Jac55]

[JS93]

[JSM91]

[JSP92]

[Kar92]

[KB86]

N. Gehani and K. Ramamritham. Real-time concurrent c: A
language for programming dynamic real-time systems. Journal of
Real-Time Systems^ 3, 1991.

R.L. Graham. Bounds on the performance of scheduling algo­
rithms. In Computer and Job Scheduling Theory, pages 165-227.
John Wiley and Sons, 1976.

V.P. Holmes, D. Harris, K. Piorkowski, and G. Davidson. Hawk:
An operating system kernel for a real-time embedded multipro­
cessor. Technical report, Sandia National Laboratories, 1987.

J.R. Haritsa, M. Livny, and M.J. Carey. Earliest deadline schedul­
ing for real-time database systems. In Proceedings of the IEEE
Real-Time Systems Symposium, December 1991.

W. Horn. Some simple scheduling algorithms.
Logistics Quarterly, 21, 1974.

Naval Research

J.R. Jackson. Scheduling a production line to minimize maximum
tardiness. Management Science Research Project 43, University
of California, Los Angeles, 1955.

K. Jeffay and D.L. Stone. Accounting for interrupt handling costs
in dynamic priority task systems. In Proceedings of the IEEE
Real-Time Systems Symposium, pages 212-221, December 1993.

K. Jeffay, D. F. Stanat, and C. U. Martel. On non-preemptive
scheduling of periodic and sporadic tasks with varying execution
priority. In Proceedings of the IEEE Real-Time Systems Sympo­
sium, pages 129-139, December 1991.

K. Jeffay, D.L. Stone, and D. Poirier. Yartos: Kernel support
for efficient, predictable real-time systems. In W. Halang and
K. Ramamritham, editors, Real-Time Programming, pages 7-12.
Pergamon Press, 1992.

R. Karp. On-line algorithms versus off-line algorithms: How much
is it worth to know the future? Information Processing, 92(1),
1992.

O. Khatib and J. Burdick. Motion and force control of robot
manipulators. In Proceedings of IEEE Conference on Robotics
and Automation, 1986.

368 HARD REAL-TIME COMPUTING SYSTEMS

[KDK+89] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabla,
C. Senft, and R. Zainlinger. Distributed fault-tolerant real-time
systems: The mars approach. IEEE Micro, 9(1), February 1989.

[KIM78] H. Kise, T. Ibaraki, and H. Mine. A solvable case of the one
machine scheduling problem with ready and due times. Operations
Research, 26(1):121-126, 1978.

[KKS89] D.D. Kandlur, D.L. Kiskis, and K.G. Shin. Hartos: A distributed
real-time operating system. Operating System Review, 23(3), July
1989.

[KS86] E. Kligerman and A. Stoyenko. Real-time euclid: A language
for reliable real-time systems. IEEE Transactions on Software
Engineering, 12(9), September 1986.

[KS92] G. Koren and D. Shasha. D-over: An optimal on-Une scheduHng
algorithm for overloaded real-time systems. In Proceedings of the
IEEE Real-Time Systems Symposium, 1992.

[L"^94] J.W.S. Liu et al. Imprecise computations. In Proceedings of the
IEEE, January 1994.

[Law73] E.L. Lawler. Optimal sequencing of a single machine subject to
precedence constraints. Managements Science, 19, 1973.

[Lip97] G. Lipari. Resource constraints among periodic and aperiodic
tasks. RETIS LAB, TR-97 01, Scuola Superiore S. Anna, Pisa,
Italy, February 1997.

[LK88] I. Lee and R. King. Timix: A distributed real-time kernel for
multi-sensor robots. In Proceedings of IEEE International Con­
ference on Robotics and Automation, 1988.

[LKP88] I. Lee, R. King, and R. Paul. Rk: A real-time kernel for a
distributed system with predictable response. MS-CIS-88-78,
GRASP LAB 155 78, Department of Computer Science, Univer­
sity of Pennsylvania, Philadelphia, PA, October 1988.

[LL73] C.L. Liu and J.W. Layland. Scheduling algorithms for multipro­
gramming in a hard-real-time environment. Journal of the Asso­
ciation for Computing Machinery, 20(1), 1973.

[LLN87] J.W.S. Liu, K.J. Lin, and S. Natarajan. Scheduling real-time,
periodic jobs using imprecise results. In Proceedings of the IEEE
Real-Time System Symposium, December 1987.

References 369

[LLS+91] J.W.S. Liu, K. Lin, W. Shih, A. Yu, J. Chung, and W. Zhao. Al­
gorithms for scheduUng imprecise calculations. IEEE Computer,
24(5), May 1991.

[LNL87] K.J. Lin, S. Natarajan, and J.W.S. Liu. Concord: a system of im­
precise computation. In Proceedings of the 1987 IEEE Compsac,
October 1987.

[Loc86] C D . Locke. Best-effort Decision Making for Real-Time Schedul­
ing. PhD thesis, Carnegie-Mellon University, Computer Science
Department, Pittsburgh, PA, 1986.

[LRK77] J.K. Lenstra and A.H.G. Rinnooy Kan. Optimization and ap­
proximation in deterministic sequencing and scheduling: A survey.
Annals of Discrete Mathematics, (5):287-326, 1977.

[LRKB77] J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker. Complexity
of machine scheduling problems. Annals of Discrete Mathematics,
(l):343-362, 1977.

[LRT92] J.P. Lehoczky and S. Ramos-Thuel. An optimal algorithm for
scheduling soft-aperiodic tasks in fixed-priority preemptive sys­
tems. In Proceedings of the IEEE Real-Time Systems Symposium,
December 1992.

[LSD89] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduUng
algorithm: Exact characterization and average case behavior. In
Proceedings of the IEEE Real- Time Systems Symposium, Decem­
ber 1989.

[LSS87] J.P. Lehoczky, L. Sha, and J.K. Strosnider. Enhanced aperiodic
responsiveness in hard real-time environments. In Proceedings of
the IEEE Real-Time Systems Symposium, December 1987.

[LTCA89] S.-T. Levi, S.K. Tripathi, S.D. Carson, and A.K. Agrawala. The
maruti hard real-time operating system. Operating System Re­
view, 23(3), July 1989.

[LW82] J. Leung and J.W. Whitehead. On the complexity of fixed priority
scheduling of periodic real-time tasks. Performance Evaluation,
2(4), 1982.

[Nat95] Swaminathan Natarajan, editor. Imprecise and Approximate
Computation. Kluwer Academic Publishers, 1995.

370 HARD REAL-TIME COMPUTING SYSTEMS

[PS85] J. Peterson and A. Silberschatz.
Addison-Wesley, 1985.

Operating Systems Concepts.

[Raj91] R. Rajkumar. Synchronization in Real-Time Systems: A Priority
Inheritance Approach. Kluwer Academic Publishers, 1991.

[ReaSG] J. Ready. Vrtx: A real-time operating system for embedded mi­
croprocessor applications. IEEE Micro, August 1986.

[RS84] K. Ramamritham and J.A. Stankovic. Dynamic task scheduling
in distributed hard real-time systems. IEEE Software, 1(3), July
1984.

[RTL93] S. Ramos-Thuel and J.P. Lehoczky. On-line scheduling of hard
deadline aperiodic tasks in fixed-priority systems. In Proceedings
of the IEEE Real-Time Systems Symposium, December 1993.

[SB94] M. Spuri and G. Buttazzo. Efficient aperiodic service under ear­
liest deadline scheduling. In Proceedings of the IEEE Real- Time
Systems Symposium, December 1994.

[SB96] M. Spuri and G.C. Buttazzo. Scheduling aperiodic tasks in dy­
namic priority systems. Journal of Real-Time Systems, 10(2),
1996.

[SBG86] K. Schwan, W. Bo, and P. Gopinath. A high performance, object-
based operating system for real-time robotics application. In Pro­
ceedings of the IEEE Real-Time Systems Symposium, December
1986.

[SBS95] M. Spuri, G.C. Buttazzo, and F. Sensini. Robust aperiodic
scheduling under dynamic priority systems. In Proceedings of the
IEEE Real-Time Systems Symposium, December 1995.

[SGB87] K. Schwan, P. Gopinath, and W. Bo. Chaos-kernel support for
objects in the real-time domain. IEEE Transactions on Comput­
ers, 36(8), August 1987.

[Sha85] S. Shani. Concepts in Discrete Mathematics. Camelot Publishing
Company, 1985.

[SLCG89] W. Shih, W.S. Liu, J. Chung, and D.W. Gillies. Scheduling tasks
with ready times and deadlines to minimize average error. Oper­
ating System Review, 23(3), July 1989.

References 371

[SLR88] L. Sha, J.P. Lehoczky, and R. Rajkumar. Solutions for some prac­
tical problems in prioritized preemptive scheduling. In Proceedings
of the IEEE Real-Time Systems Symposium, December 1988.

[SLS95] J. K. Strosnider, J. P. Lehoczky, and L. Sha. The deferrable
server algorithm for enhancing aperiodic responsiveness in hard-
real-time environments. IEEE Transactions on Computers, 4(1),
January 1995.

[Spu95] M. Spuri. Earliest Deadline Scheduling in Real-Time Systems.
PhD thesis, Scuola Superiore S. Anna, Pisa, Italy, 1995.

[SR87] J. Stankovic and K. Ramamritham. The design of the spring ker­
nel. In Proceedings of the IEEE Real-Time Systems Symposium,
December 1987.

[SR88] J. Stankovic and K. Ramamritham, editors. Tutorial on Hard
Real-Time Systems. IEEE Computer Society Press, 1988.

[SR89] J. Stankovic and K. Ramamritham. The spring kernel: A new
paradigm for real-time operating systems. Operating System Re­
view, 23(3), July 1989.

[SR90] J.A. Stankovic and K. Ramamritham. What is predictability for
real-time systems? Journal of Real-Time Systems, 2, 1990.

[SR91] J.A. Stankovic and K. Ramamritham. The spring kernel: a new
paradigm for real-time systems. IEEE Software, May 1991.

[SRL90] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority inheritance pro­
tocols: An approach to real-time synchronization. IEEE Trans­
actions on Computers, 39(9), September 1990.

[SRS93] C. Shen, K. Ramamritham, and J. Stankovic. Resource reclaim­
ing in multiprocessor real-time systems. IEEE Transactions on
Parallel and Distributed Computing, 4(4):382-397, April 1993.

[SSDNB95] J.A. Stankovic, M. Spuri, M. Di Natale, and G. Buttazzo. Impli­
cations of classical scheduling results for real-time systems. IEEE
Computer, 28(6), June 1995.

[SSL89] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for
hard-real-time systems. Journal of Real-Time Systems, 1, July
1989.

372 HARD REAL-TIME COMPUTING SYSTEMS

[Sta88] J.A. Stankovic. Misconceptions about real-time computing. IEEE
Computer, 21(10), October 1988.

[SZ92] K. Schwan and H. Zhou. Dynamic scheduling of hard real-time
tasks and real-time threads. IEEE Transactions on Software En­
gineering, 18(8):736-748, August 1992.

[TK88] H. Tokuda and M. Kotera. A real-time tool set for the arts ker­
nel. In Proceedings of the IEEE Real-Time Systems Symposium,
December 1988.

[TLS95] T.S. Tia, J.W.S. Liu, and M. Shankar. Algorithms and optimal-
ity of scheduling aperiodic requests in fixed-priority preemptive
systems. Journal of Real-Time Systems, 1995.

[TM89] H. Tokuda and C.W. Mercer. Arts: A distributed real-time kernel.
Operating System Review, 23(3), July 1989.

[TT89] P. Thambidurai and K.S. Trivedi. Transient overloads in fault-
tolerant real-time systems. In Proceedings of the IEEE Real-Time
Systems Symposium, December 1989.

[TWW87] H. Tokuda, J. Wendorf, and H. Wang. Implementation of a time-
driven scheduler for real-time operating systems. In Proceedings
of the IEEE Real-Time Systems Symposium, December 1987.

[Whi85] D. E. Whitney. Historical perspective and state of the art in robot
force control. In Proceedings of IEEE Conference on Robotics and
Automation, 1985.

[WR91] E. Walden and C.V. Ravishankar. Algorithms for real-time
scheduling problems. Technical report, University of Michigan,
Department of Electrical Engineering and Computer Science,
Michigan (USA), April 1991.

[Zlo93] G. Zlokapa. Real-time systems: Well-timed scheduling and
scheduling with precedence constraints. Ph.D. thesis, CS-TR
93 51, Department of Computer Science, University of Mas­
sachusetts, Amherst, MA, February 1993.

INDEX

Absolute Finishing Jitter, 80
Absolute Release Jitter, 79
Accidents, 2
Actuators, 304
Ada language, 19
Adversary argument, 235
Aperiodic service

Background scheduling, 110
Deferrable Server, 116
Dynamic Priority Exchange, 150
Dynamic Sporadic Server, 155
EDL server, 163
IPE server, 168
Polling Server, 112
Priority Exchange, 125
Slack Stealer, 138
Sporadic Server, 132
TB* server, 171
Total Bandwidth Server, 160

Aperiodic task, 27, 51
Applications, 1, 301
Arrival time, 26
ARTS, 325, 340
Assembly language, 2
Asynchronous communication, 290
Audsley, 92, 98
Autonomous system, 307
Average response time, 7-8, 11

B

Background scheduling, 110

Baker, 208
Baruah, 102, 228, 234, 241
Best-effort, 38
Biyabani, 227
Blocking factor, 194
Blocking, 181
Bouchentouf, 71
Braking control system, 307
Bratley, 64
Burns, 140
Busy period, 103
Busy wait, 16-18
Buttazzo, 150, 160, 229, 245

CAB, 291
Cache, 13
Carey, 227
Ceiling blocking, 204
Ceiling, 201
Chained blocking, 199
CHAOS, 325
Chen, 185
Chetto, 71, 163
Chorus, 323
Clairvoyant scheduler, 35
Clairvoyant scheduling, 234
Clark, 291
Communication channel, 291
Competitive factor, 234
Complete schedule, 63
Completion time, 27
Computation time, 27

374 INDEX

Concurrency control protocols, 221
Context switch, 24, 255
Control applications, 301
Control loops, 301
Cost function, 40
Critical instant, 79
Critical section, 31, 181
Critical time zone, 79
Criticalness, 27
Cumulative value, 43, 231
Cyclical Asynchronous Buffers, 291

D

D-over algorithm, 248
D-over, 248
Dashboard, 307
Davis, 140
Deadline Monotonic, 96
Deadline tolerance, 245
Deadline, 8, 27

firm, 231
hard, 8
soft, 8

Deadlock prevention, 201, 205, 216
Deadlock, 200
Deferrable Server, 116
Dertouzos, 57
DICK, 253, 260
Ding, 92
Direct blocking, 188
Directed acychc graph, 28
Dispatching, 23, 271
DMA, 13

cycle stealing, 13
timeslice, 13

Domino effect, 37, 225
Driver, 15
Dynamic Priority Exchange, 150
Dynamic priority servers, 149

Dynamic Priority Exchange, 150

Dynamic Sporadic Server, 155
EDL server, 163
IPE server, 168
TB* server, 171
Total Bandwidth Server, 160

Dynamic scheduling, 35
Dynamic Sporadic Server, 155

E

Earliest Deadline First, 56, 93
Earliest Due Date, 53
EDL server, 163
Eligibility, 335
Empty schedule, 63
Environment, 302
Ethernet, 329, 336
Event, 6, 17
Event-driven scheduling, 109
Exceeding time, 27, 246
Exclusive resource, 31, 181
Execution time, 27
Exhaustive search, 63
Exponential time algorithm, 34

Fault tolerance, 12, 326-327
Feasible schedule, 25
Feedback, 304
Finishing time, 27
Firm task, 109, 231
First Come First Served, 111
Fixed-priority servers, 110

Deferrable Server, 116
Polling Server, 112
Priority Exchange, 125
Slack Stealer, 138

Fohler, 330
Friction, 308

Index 375

Graceful degradation, 230, 245
Graham, 44
Graham's notation, 51
Guarantee mechanism, 36
Guarantee, 243
Gulf War, 3

H

Hard real-time system, 8
Hard task, 8, 26
Haritsa, 227
HARTIK, 291, 325, 345
HARTOS, 325
Heuristic function, 66, 334
Heuristic scheduling, 35
Hierarchical design, 313
Hit Value Ratio, 249
Horn's algorithm, 56
Howell, 102
Hybrid task sets, 109
Hyperperiod, 103

I

Idle state, 256
Idle time, 24
Imprecise computation, 38
Instance, 27
Interarrival time, 109
Interference, 98-99, 172
Interrupt handling, 15
Intertask communication, 289
IPE server, 168

Jackson's rule, 53
Jeffay, 62, 102, 299

Jitter, 79
Job, 27

K

Karp, 242
Kernel primitive

activate, 280
create, 260
end-cycle, 281
end-process, 283
kill, 283
sleep, 260

Kernel, 253
Koren, 248

Language, 12, 19
Lateness, 27
Latest Deadline First, 68
Lawler, 68
Laxity, 27
Layland, 82
Lehoczky, 92, 116, 125, 138, 186,

201
Leung, 96
Lifetime, 265
Lin, 185
List management, 272
Liu, 82, 142
Livny, 227
Load, 228
Locke, 227

M

Mach, 227
MACH, 324
Mailbox, 290
Maintainability, 12

376 INDEX

MARS, 325
Martel, 62
MARUTI, 325
Maximum lateness, 40
Memory management, 19
Message passing, 289
Message, 290
Metrics, 41, 230
Mode change, 330
Motorola, 327
Multimedia, 38
Murphy's Laws, 4
Mutual exclusion, 18, 31, 181, 284

N

Nested critical section, 187
Non-idle scheduling, 62
Non-preemptive scheduling, 62
Non-real-time task, 109
NP-complete, 34
NP-hard, 34

Phase, 28, 78
Polling Server, 112
Polynomial algorithm, 34
Precedence constraints, 28, 68
Precedence graph, 28
Predecessor, 28
Predictability, 12
Preemption level, 209
Preemption, 24
Preemptive scheduling, 35
Priority Ceiling Protocol, 201
Priority Exchange Server, 125
Priority Inheritance Protocol, 186
Priority inversion, 184
Process, 23
Processor demand, 102
Processor utilization factor, 80
Programming language, 12, 19
Pruning, 64
PSOS, 323
PUMA, 336
Push-through blocking, 189

O
Off-line scheduling, 35
On-line guarantee, 36
On-line scheduling, 35
Optimal scheduling, 35
0S9, 323
Overhead, 296
Overload, 225

Q

Quality of service, 38
Queue operations

extract, 274
insert, 272

Queue, 24
idle, 256
ready, 24, 256
wait, 32, 182, 256

Partial schedule, 63
Patriot missiles, 3
Peak load, 12
Performance, 40, 43, 230
Period, 28, 78
Periodic task, 27, 77

R

Rajkumar, 186, 201
Ramamritham, 65, 226
Ramos-Thuel, 138
Rate Monotonic, 82
Ready queue, 24, 256

Index 377

Real Time, 4
Receive operation, 290
Reclaiming mechanism, 154, 244
Recovery strategy, 247
Recursion, 20
RED algorithm, 245
Relative Finishing Jitter, 80
Relative Release Jitter, 79
Release time, 77
Residual laxity, 245
Resource access protocol, 181
Resource constraints, 31, 181, 186
Resource reclaiming, 154, 245, 247
Resource, 31, 181
Response time, 79
Richard's anomalies, 44
RK, 325, 336
Robot assembly, 315
Robotic applications, 301
Robust scheduling, 243
Rosier, 102
RT-MACH, 324
RT-UNIX, 324
Running state, 23

Schedulable task set, 25
Schedule, 24

feasible, 25
preemptive, 25

Scheduling algorithm, 23
D-over, 248
Deadline Monotonic, 96
Earliest Deadline First, 56, 93
Earliest Due Date, 53
Horn's algorithm, 56
Jackson's rule, 53
Latest Deadline First, 68
Rate Monotonic, 82
Robust Earliest Deadline, 245

Scheduling anomalies, 44
Scheduling policy, 23
Scheduling problem, 34
Scheduling, 271

best effort, 243
dynamic, 35
guarantee, 243
heuristic, 35
non-preemptive, 35
off-line, 35
on-line, 35
optimal, 35
preemptive, 35
robust, 243
static, 35

Schwan, 227
Search tree, 63
Semaphore Control Block, 262
Semaphore queue, 256
Semaphore, 18, 32, 181, 284
Send operation, 290
Sensory acquisition, 301
Server capacity, 112
Sha, 92, 116, 125, 186, 201
Shankar, 142
Shared resource, 31, 181
Shasha, 248
Signal, 32, 182, 286
Silly, 71
Slack Stealer, 138
Slack time, 27
Sleep state, 260
Soft task, 8, 26
Sporadic Server, 132
Sporadic tasks, 109
Spring algorithm, 66
Spring, 325, 331
Sprunt, 132
Spuri, 150, 160, 185
Stack Resource Policy, 208
Stack sharing, 218
Stanat, 62

378 INDEX

Stankovic, 65, 226, 229, 245
Start time, 27
Static scheduling, 35
Stone, 102, 299
Strosnider, 116, 125
Synchronization, 284
Synchronous communication, 289
System call

activate, 280
create, 260
end_cycle, 281
end-process, 283
kill, 283
sleep, 260

System ceiling, 212
System tick, 265

Tactile exploration, 317
Tardiness, 27, 246
Task Control Block, 261
Task instance, 27
Task states, 256

delay, 256
idle, 256
ready, 256
receive, 257
running, 256
sleep, 260
waiting, 256
zombie, 258

Task, 23
active, 23
firm, 231
ready, 23
running, 23

TDMA, 329
Thambidurai, 227
Tia, 142
Tick, 265

Time resolution, 265
Time slice, 25
Time, 4
Time-driven scheduling, 109
Time-overflow, 94-95, 267
Timeliness, 12
Timer interrupt, 266
Timing constraints, 26
TIMIX, 325
Tindell, 140
Total Bandwidth Server, 160
Transitive inheritance, 190
Trivedi, 227
Turing machine, 34

U

UNIX, 324
Utility function, 43, 230
Utilization factor, 80

Value density, 230, 242
Value, 27, 230
Vehicle, 307
VRTX32, 323
VxWorks, 221, 323-324

W

Wait, 32, 182, 285
Waiting state, 32, 182
Whitehead, 96
Workload, 228
Worst-case scenario, 36

Y

YARTOS, 325

379

Z

Zhou, 227
Zlokapa, 227
Zombie state, 258

Giorgio C. Buttazzo graduated in 1985 in Electronic Engineering at the
University of Pisa (Italy) and in 1987 received a M.S. degree where he also
worked on active perception and real-time control at the G.R.A.S.P.
(General Robotics and Active Sensory Processing) Laboratory of the
University of Pennsylvania. In 1991, he received a Ph.D. degree in
robotics at the Scuola Superiore S. Anna of Pisa. He is currently Assistant
Professor of Computer Engineering at the Scuola Superiore S. Anna of Pisa.
His main research areas include real-time computing, dynamic scheduling
algorithms, sensor-based control, advanced robotics, and neural networks.

	0792399943
	front-matter
	Chapter1
	Chapter2
	Chapter3
	Chapter4
	Chapter5
	Chapter7
	Chapter8
	Chapter9
	Chapter10
	Chapter11
	back-matter

