ا- در يیى كلاس حداقل چند دانش آموز بايد موجود باشد تا دست كم اسامى چجهار نفر از آن
 ($=~ r r \times r+1=9 V$

خواهيم داشت:
نكتهى درسى: اصل لانه كبوترى به صورت زير است: اگر m كبوتر بخواهند در n لانه قرار كيرند با فرض m

n - - عدد طبيعى متمايز موجود است. حداقل مقدار n چقدر باشد تا اطمينان يابيم كه حداقل (1)
 است از طرفى باقىماندههاى تقسيم بر

 -r•×r+1=91 \times •عدد طبيعى داشته باشيم.

ץ- كدام گزينه يك قضيه كلى است؟
 (Y) مجموع مكعبههاى n عدد متوالى با شروع از يك ، ، برابر است با مربع مجموع آنها. r ناحيه تقسيم مى شود. (Y) اگر X, X
 مثال نقض براى گزينهى
$\left.\begin{array}{l}x=r \sqrt{r} \varepsilon^{\prime} \\ y=\sqrt{r} \varepsilon^{r}\end{array}\right\} \Rightarrow x^{y}=(r \sqrt{r})^{\sqrt{r}}=r$
$r^{r}+r^{r}+r^{r}+\ldots+n^{r}=\left(\frac{n(n+1)}{r}\right)^{r}$
 بتوان ادعا كرد (اححداقل n رقم صغر بهطور متوالى در كنار يكديگر قرار دارند)، كدام است؟
9 (4
$\wedge(\Gamma$
$v(r$
9 (1

 بهطور قطع ادعا كرد حداقل V رقم صغر بهطور متوالى در كنار يكدديگر قرار دارند.

ه- ه 9 كبوتر در حدّاكثر چند لانه كبوتر قرار بگيرند تا حداقل در يیى لانه بيش از دو كبوتر قرار داشته باشد؟

$$
\mu Y(Y \quad \mu r(r \quad \mu r(Y
$$

$r(r \quad) \quad r \sqrt{r}(r) \sqrt{r}()$

ابتدا مربع را به 9 مربع كوچچی و

 فاصلهى دو نقطه، اندازهى قطر است: $A B=r \Rightarrow A C=1 \Rightarrow A M=\sqrt{r}$
 نفر دانش آموز لازم داريم؟
$91(4$
$49(1$
M (
9. (1

$$
011
$$

0. (${ }^{~}$

49 (Y
$4 \wedge$ (1
گزينهى بايد تعداد كبوترها از ّ برابر تعداد لانهها اكيداً بزرگتر باش باشد $10 r>r \mathrm{n} \Rightarrow \mathrm{n}<\frac{10 \mathrm{r}}{\mathrm{r}} \Rightarrow \mathrm{n}<0.199 \Rightarrow \mathrm{n} \leqslant 0 . \Rightarrow \mathrm{n}$ ح حداكثر=0 $=0$.

نكتهى درسى: إم

داشته باشند.

 كبوتر در آن قرار داشته باشند.

$$
\text { 9- در اثبات نامساوى } 9
$$

$$
\mathrm{k}^{r}+\mathrm{k}+1>\mathrm{k}^{r}+\mathrm{k} \quad\left(\mathrm{r} \quad \mathrm{k}^{r}+\mathrm{k}>\mathrm{k}^{r}+1 \quad(\mathrm{r} \quad \quad \mathrm{k}-1>\mathrm{k}+)^{\prime}(\mathrm{r} \quad \mathrm{k}+\mathrm{r}>\mathrm{k}+1)\right.
$$ گزينهى ا پاسخ صحيح است.

$$
\text { : } \mathrm{P}(\mathrm{k}): 1+\frac{1}{4}+\frac{1}{q}+\ldots+\frac{1}{k^{r}}<r-\frac{1}{k}
$$

$$
\kappa_{\sim} \Rightarrow P(k+1): 1+\frac{1}{4}+\frac{1}{q}+\ldots+\frac{1}{(k+1)^{r}}<r-\frac{1}{k+1}
$$

به طرفين فرض عبارت
$1+\frac{1}{4}+\frac{1}{9}+\ldots+\frac{1}{k^{r}}+\frac{1}{(k+1)^{r}}<r-\frac{1}{k}+\frac{1}{(k+1)}$
چس كافى است ثابت شود كه
$r-\frac{1}{\mathrm{k}}+\frac{1}{(\mathrm{k}+1)^{r}}<r-\frac{1}{\mathrm{k}+1} \Rightarrow \frac{1}{(\mathrm{k}+1)^{r}}<\frac{1}{\mathrm{k}}-\frac{1}{\mathrm{k}+1} \Rightarrow \frac{1}{(\mathrm{k}+1)^{r}}<\frac{1}{\mathrm{k}(\mathrm{k}+1)} \Rightarrow \mathrm{k}^{r}+r \mathrm{k}+1>\mathrm{k}^{r}+\mathrm{k}$
$\Rightarrow \mathrm{k}+1>\mathrm{k}$
با توجه به اين كه نامساوى بديهى فوق به صو صورت مستقيم در گزينهها وجود ندارد تنها گزينهى (1) است كه مىتواند هم آرزى با اين نامساوى باشد، يعنى
-ا- در يك مربع با طول ضلع X X 9 نقطه را به هر صورت كه قرار دهيم، حداقل ب نقطه فاصلهشان كمتر از ب مىشود. X X كدام مىتواند باشد؟
$0 / 9(4$
$\Delta / \wedge(\Gamma$
0/4 (Y
o/v (1

 طبق اصل لانه كبوترى با قرار گرفتن 9 نتطه درون مربع بزرگ لا لاقل در يكى از ناحيهـها بيش از دو نقطه قرار می گیرد. لذا قطر مربع كوپک

$$
\sqrt{a^{r}+1}\left(r \quad a^{r}-a\left(r \quad a-\frac{1}{a}\left(r \quad \frac{a+1}{a-1}()\right.\right.\right.
$$

$\frac{a+1}{a-1}=\frac{p}{q}$ گزينهى ا پاسخ صححی است. از برهان خلف استغاده مى كنيم. فرض كنيد $\frac{a+1}{a-1}=\frac{p}{q} \Rightarrow a q+q=a p-p \Rightarrow a(p-q)=q+p \Rightarrow a=\frac{p+q}{p-q}$

بنابراين:

$$
\begin{aligned}
& \text { Y Y ا- درون يک مربع به ضلع واحد، • ا نقطه به تصادف انتخاب مى كنيم. كدام گزينه درست است؟ } \\
& \text { () حداقل r } \\
& \text { r } \\
& \text { (r } \\
& \text { (}
\end{aligned}
$$

 نقطه وجود است و قطر مربع ماكز يمم فاصله است.

$$
\left(\frac{1}{r}\right)^{r}+\left(\frac{1}{r}\right)^{r}=a^{r} \longrightarrow a=\frac{\sqrt{r}}{r} \Rightarrow \text { فاصله دو نeطه }<\frac{\sqrt{r}}{r}
$$

ץا- حداقل چند عدد طبيعى در نظر بگيريم تا دست كم، Y عدد يافت شود كه رقم يكان آنها برابر باشد؟

[^0]Γ - (Γ
Y) (Y
r. (1

 كدام است؟
$9(r \quad 0(\mu$
${ }^{4}(r$
$r(1$
 ممكن براى n برابر با
Y) هر لوزى يك مستطيل است.
(Y) هر مثلث متساوى الاضلاع، متساوى الساقين است.

10- كدام حكم زير يك قضيه كلى است؟

1) هر عدر او اول فرد است.

「

 متساوىالساقين را دارد پس يکى قضيه كلى است.
 طبيعى n برقرار باشد، آن كاه X كدام است؟
$r n-1(r$
rn-r (r
1 (r
n (1

 روش دوم:
$\frac{1}{r \times \Delta}+\frac{1}{\Delta \times \lambda}+\ldots \ldots+\frac{1}{(r n-1)(r n+r)}=$
$\frac{1}{r}\left(\frac{1}{r}-\frac{1}{\partial}\right)+\frac{1}{r}\left(\frac{1}{\partial}-\frac{1}{\Lambda}\right)+\ldots \ldots+\frac{1}{r}\left(\frac{1}{(r n-1)(r n+r)}\right)=$
$\frac{1}{r}\left[\frac{1}{r}-\frac{f}{\beta}+\frac{f}{f}-f+\frac{f}{\gamma}-\frac{y}{\gamma}+\ldots \ldots+\frac{1}{r n-1}-\frac{1}{r n+r}\right]$
$=\frac{1}{r}\left[\frac{1}{r}-\frac{1}{r n+r}\right]=\frac{n}{r(r n+r)} \Rightarrow x=n$
(lV Y

گ́ گ́ $\{(1, r r),(r, r r),(r, r \mid), \ldots,(11,1 r), \mid r\}$
اگر آنها برابر
^ا- اصل استقراء رياضى در مورد حكم

$$
V(r \quad q(r
$$ است. كوچكترين مقدار m كدام است؟

$\Delta(r \quad \mu()$
گزينهى r پـاسخ صحيح است.
$1+\frac{1}{r}+\frac{1}{r}+\frac{1}{r}<\frac{(\Delta \times r)}{1 r}<\frac{r \cdot}{1 r}$
$\frac{r \Delta}{1 Y}+\frac{1}{\Delta}<\frac{(\Delta \times \Delta)}{1 r}$
$\frac{r \Delta}{1 r}+\frac{1}{\Delta}+\frac{1}{9}<\frac{(\Delta \times 9)}{1 r} \Rightarrow \frac{(1 r \Delta+1 r+1 \cdot)}{9 \cdot}<\frac{1 \Delta \cdot}{9 \cdot} \Rightarrow 2 \Rightarrow m=9$

19- در مثلث متساوىالاضلاع به ضلع ا حداقل پچند نقطه در نظر بگيريم كه فاصلهى آنها از $\frac{1}{\text { آ كمتر گردد؟ }}$

گزينه r پاسخ صحيح است. در مثلث متساوى الاضلاعى به ضلع ا اگر هر ضلع مثلث به n قسمت تقسيم شود و آنها را به هم وصل مى كنيم، nr مثلث ايجاد میشود. پ

n $=\uparrow \Rightarrow n^{r}+1=1 V \Rightarrow$ بايد حداقل V $1 V$ نقطه در نظر بغيريم
 وجود دارند به طورى كه هم حرف اول اسم و هم حرف اول نام خانو اد ادگى آن دو يكسان باشد؟ l.ra (4 rav (r 90 (r
 KYXYY + 1

اY- از حرارت دادن ميلههاى فلزى مختلف در آزمايشگاه نتيجه گرفته شده است كه ميلههاى فلزى در اثر حرارت طولشان زياد مىشود نوع استدلال براى اين نتيجه گيرى كدام است؟

روش استدلال استقرايى است. در اين روش، نتيجه گيرى كلى براساس مجموعه محدودى از مشار مشاهدات صورت

ry ry rr
IV (4
19 (\uparrow
10 (Y
if (1
گزينهى Y پاسخ صحيح است. اگر اگر ما حداكثر ها لانه داشته باشيم، آنگاه حداقل يكى لانه بيش از دو كبوتر خواهد داشت.
tan x = tany آن گاه x x=y اكر،

$$
\frac{x^{r}}{y^{r}}+\frac{y^{r}}{x^{r}}=r \text { آنگاه } x=y \neq \cdot \text { اكر }
$$

گزينهى ا پاسخ صحيح است. بررسى گزينهها:
 f(x$)=\tan ^{-1} \mathrm{x}$
 ولى • $\pi \neq$

$$
\text { و } y=-1
$$

$$
\begin{aligned}
& \text { شץ- عكس كداميک از حكمهاى زير، درست است؟ }
\end{aligned}
$$

$$
\begin{aligned}
& x^{r}-y^{r}=\cdot \text { آنگاه } x=y \text { اگر }
\end{aligned}
$$

 اندازه را به عنوان لانه در نظر بغيريد.
$r \times r=q$ لانه \rightarrow لان $v \times q+1=94$
 افراد حاضر در مهمانى حداكثر چچند نغر است
Mf (4
Y (
r. (r
1 (1

Y (μ r r r (r) (

YV قضيه زير را در نظر بگيريد: (ااگر n نقطه بر روى محيط يك دايره واقع باشند كليه وترهايى كه توسط اين نقاط

$$
\begin{aligned}
& \text { مشخص مىشوند دايره را به } 1 \text { (ناحيه تقسيم مى كنند.) } \\
& \text { اين قضيه را با كداميى از روشهاى زير مى توان اثبات كرد؟ }
\end{aligned}
$$

 نمىتوان اثباتى براى يك مسئله ارائه كرد. اثبات باز گشتى هم با توجه به نوع مسئله در اينجا كارساز نيست.

$$
\begin{aligned}
& \text { A }
\end{aligned}
$$

: $\mathrm{n}=1 \Rightarrow \frac{1}{1 \times r}=\frac{\mathrm{A}+\mathrm{B}}{r} \Rightarrow \mathrm{~A}+\mathrm{B}=1$
位 $\frac{1}{(r n-1)(r n+1)}=\frac{1}{r}\left[\frac{1}{r n-1}-\frac{1}{r n+1}\right]$
$\Rightarrow \frac{1}{r}\left(1-\frac{1}{r}\right)+\frac{1}{r}\left(\frac{1}{r}-\frac{1}{\partial}\right)+\ldots+\frac{1}{r}\left(\frac{1}{r n-1}-\frac{1}{r n+1}\right)=\frac{1}{r}\left(1-\frac{1}{r n+1}\right)=\frac{n}{r n+1}$
$\left\{\begin{array}{l}A=1 \\ B=.\end{array}\right.$
 $r(r$
${ }_{\mu}(r$
0 (r بخش پذير است؟ 4 (1
$\{r, \uparrow, \wedge\},\{r, \uparrow, \mid r\},\{\Delta, \mid \cdot\}\} \quad$ گز ينهى

 حداقل \uparrow كبوتر بايد داشته باشيم، يعنى، حداقل
 حداكثر مقدار n كدام است؟
$1 \cdot(4$
$11(\mu$
ir (r
ir (1

 صغر باشد. پس داريم:

اس- اصل استقراء رياضى در مورد حكم "
است، كوچڭكترين مقدار m كدام است؟
$\Delta(r \quad \psi()$

$$
v(r \quad q(r
$$

$1+\frac{1}{r}+\frac{1}{r}+\ldots+\frac{1}{n}=\frac{n!+\frac{n!}{r}+\frac{n!}{r}+\ldots+\frac{n!}{n}}{n!} \Rightarrow$

$$
\text { ra. (} 4
$$

Vr (r
Ir. (r
YY (1
 از طرفى حاصل ضرب چهار عدد متوالى بعلاومى ا مربع كامل است. $n \times(n+1) \times(n+r) \times(n+r)+1=\left(n^{r}+r n\right)\left(n^{r}+r n+r\right)+1=$ $\mathrm{k}^{r}+\Upsilon \mathrm{k}+1=(\mathrm{k}+1)^{r}$

شس- در يک ميهمانى حداقل چجند نفر حضور داشته باشند تا دست كم چههار نفر از آنها در يك روز هفته و يكى فصل از سال متولد شده باشند؟
نer نer (

 دست كـم يی لانه داراى Y
 1. ($4 \quad \vee$ (r q(r o () اگر n تعداد اضلاع يك n ضلعى كوز باشد، تعداد اقطار آن برابر با $n+\frac{n(n-r)}{r}=r \prime \Rightarrow n^{r}-r n+r n=r r \Rightarrow n^{r}-n-r r=\cdot \Rightarrow(n+4)(n-v)=\cdot \Rightarrow$ $\left\{\begin{array}{l}n=-9 \quad \text { غيرقابل قبول است } \\ n=v\end{array}\right.$

ه هr- در اثبات حكم $x^{r}+y^{r}+1 \geq x y+x+y$ برای اعداد حقيقى x و y، همواره به كدام عبارت بديهى میرسيم؟

$$
\begin{aligned}
(x+y)^{r}+(x-1)^{r}+(y-1)^{r} \geq \cdot(r & (x-y)^{r}+(x-1)^{r}+(y-1)^{r} \geq \cdot(1) \\
(x+y)^{r}+(x+1)^{r}+(y+1)^{r} \geq \cdot(r & (x-y)^{r}+(x+1)^{r}+(y+1)^{r} \geq \cdot(r
\end{aligned}
$$

$x^{r}+y^{r}+1 \geq x y+x+y \xrightarrow{x r} r x^{r}+r y^{r}+r \geq r x y+r x+r y$
$\Leftrightarrow r x^{r}+r y^{r}+r-r x y-r x-r y \geq$.
$\Leftrightarrow x^{r}+x^{r}+y^{r}+y^{r}+1+1-r x y-r x-r y \geq$.
$\Leftrightarrow\left(x^{r}-r x y+y^{r}\right)+\left(x^{r}-r x+1\right)+\left(y^{r}-r y+1\right) \geq$.
$\Leftrightarrow(\mathrm{x}-\mathrm{y})^{r}+(\mathrm{x}-1)^{r}+(\mathrm{y}-1)^{r} \geq$.

$$
\text { rA (r rq(r} \quad \text { rr (r re }
$$

 تقسيم كنيم (m>n) لانهاى وجود دارد كه در آن لاقل 1 (m-1$]+1$ كبوتر وجود دارد. (اصل لانهى كبوتر) اگر بخواهيم m كبوتر را درون n به كونهاى توزيع كنيم كه لانهاى وجود داشته باشد كه در آن بيش از k كبوتر وجود داشته

$$
\text { باشد، حداكثر n برابر است با: } \left.] \frac{\mathrm{m}-1}{\mathrm{k}}\right]
$$

 Y) هيج جعبه با دو مهره همرنگی نداريمr

$M_{4}(4$			

$1^{r}+r^{r}+r^{r}+\ldots+n^{r}=\left[\frac{n(n+1)}{r}\right]^{r}=q \ldots . \Rightarrow \frac{n(n+1)}{r}=r .$.
$n(n+1)=q \cdots=r \varphi \times r \Delta \Rightarrow n=r \mu$

هم در ميان آنها موجود باشد؟

$$
\text { ri } \quad \text { IV } \quad \text { ir (r q (}
$$

كزينهى بّ پֶاسخ صحيح است. مجموعهى اعداد طبيعى فرد يک رقمى عبارت است از A دارای زيرمجموعه بوده كه اشترای آنها تهى است، مانند
 دسته وجود خواهد داشت كه اشتر اك آنها تهى باشد.
-Y .

$$
\wedge(r \quad 1 r(r \quad r(r \quad r()
$$

گگ گينهى

 نتيجه گرفت، آنگاه كدام حكم زير حتماً درست است؟
$P_{\psi} \rightarrow P_{\psi+\sigma}=P_{q} \Rightarrow P_{q+\sigma}=P_{1 \psi} \Rightarrow P_{1 \psi+\sigma}=P_{1 q}$
گزينهى 「 پاسخ صحیح است.
($1+a)^{n} \geqslant 1+n a$
گزينهى ا پاسخ صحيح است.

$$
\Rightarrow\left(\frac{n+r}{n}\right)^{r n}=\left(1+\frac{r}{n}\right)^{r n} \geqslant 1+\left(\frac{r}{n}\right) \times \frac{r}{n}=v
$$

يعنى عبارت بزرگتر مساوى V باشد، پس حداقل عبارت به V نزديی است.

「 (4

$$
r \cdot(r
$$

$$
r \cdot(Y
$$

$$
\text { IV (} 1
$$

گز ينهى ٪ پاسخ صحيح است.

$$
\frac{v}{r}(r \quad v(r \quad q(r
$$

$0(1$

گزينهى ا پاسخ صحيح است.

$$
\begin{aligned}
& \text { مى }(1+a)^{n} \geqslant n \cdot a+1 \\
& \Rightarrow\left(\frac{n+r}{n}\right)^{r n}=\left(1+\frac{r}{n}\right)^{r n} \geqslant 1+r n \times \frac{r}{n}=0 \Rightarrow K=0
\end{aligned}
$$

 m
 ه مى ماشد.

$$
\begin{align*}
& \text { (} \left.\frac{n+r}{n}\right)^{\text {rn }} \quad \text { n } n \in I N \text { به كدام عدد نزديى است؟ } \\
& 10(4 \\
& 9 \text { (r } \\
& v(1
\end{align*}
$$

Y Y4 (Y
Ir (r

$$
\wedge(Y
$$

$$
\begin{aligned}
& n^{r}=r \& q=r^{r} \times r^{\prime} \times \mathrm{q} \xrightarrow{\text { مربع كامل } \mathrm{n}^{r}} \mathrm{q}=r^{\prime} \times r^{\prime} \times \mathrm{k}^{r} \Rightarrow \mathrm{n}^{r}=r^{\mu}=r^{\mu} \times r^{r} \times \mathrm{k}^{r}: \mathrm{n}=1 r \mathrm{q}
\end{aligned}
$$

$$
\begin{align*}
& \text { ب } \\
& \text { r } \\
& \text { r (r }
\end{align*}
$$

گزينهى ץ پاسخ صحیح است. زيرا،

جمع دو عدد فرد، زوج است.

گز ينهى r پاسخ صحيح است.
: $\mathrm{n}=1 \Rightarrow \frac{1}{1 \times r}=\frac{\mathrm{A}+\mathrm{B}}{r} \Rightarrow \mathrm{~A}+\mathrm{B}=1$
位 $\frac{1}{(r n-1)(r n+1)}=\frac{1}{r}\left[\frac{1}{r n-1}-\frac{1}{r n+1}\right]$

$$
\begin{aligned}
& \Rightarrow \frac{1}{r}\left(1-\frac{1}{r}\right)+\frac{1}{r}\left(\frac{1}{r}-\frac{1}{\partial}\right)+\ldots+\frac{1}{r}\left(\frac{1}{r n-1}-\frac{1}{r n+1}\right)=\frac{1}{r}\left(1-\frac{1}{r n+1}\right)=\frac{n}{r n+1} \\
& \left\{\begin{array}{l}
A=1 \\
B=.
\end{array}\right.
\end{aligned}
$$

YQ- كدام عدد كليّت حكم (هر عدد طبيیى را مىتوان بهصورت مجموع چند عدد متو الى نوشت) را نقض مى كند؟

$$
\text { V4 (4 Vr (r } \quad \text { gr (r } \quad 09(1)
$$

گزينهى r پاسخ صحیح است. اعداد rn را نمى توان بهصورت مجموع اعداد متوالى طبيعى نوشت، زيرا مجموع اعداد

 r r

$\mathrm{n}=\mathrm{k}: \mathrm{k}^{\mathrm{k}}+\Leftrightarrow \mathrm{k}-\mathrm{l}=4 \mathrm{~m}$
$n=k+1: 4^{k+1}+\varphi(k+1)-1=4 \times 4^{k}+\varphi k+4-1$
$=\left(r^{k}+\varphi k-1\right)+r \times r^{k}+\varphi$
$=9 m+r\left(r^{k}+r\right)=9 m+9 n=q(m+n)$
از درستى (اعبارت +

[^0]: μ

