Buckling of Columns

CHAPTER OBJECTIVES

In this chapter, we will discuss the behavior of columns and indicate
some of the methods used for their design, The chapter begins with a
general discussion of buckling, followed by 3 determination of the
axial load needed to buckle a so-called ideal column. Afterwards, a
more realistic analysis is considered, which accounts for any bending
of the column. Also, inelastic buckling of a column is presented as a
special topic. At the end of the chapter we will discuss some of the
methods used to design both concentrically and eccentrically loaded
columns made of common engineering materals

13.1 Critical Load

Whenever o member 15 designed, it 15 necessary that it satisly specilic
sirength. deflection. and soability  reguirements. In the preceding
chapters we have discussed some of the methods used o determine a
member’s strength and deflection, while assuming that the member was
always in stable equilibrium. Some members, however, may be subjected
to compressive loadings, and if these members are long and slender the
loading may be large enough 1o cause the member to deflect laterally or
sidesway. To be specific, long slender members subjected 1o an axial
compressivie force are called cofumas, and the lateral deflection thart
oceurs is called buckling. Quite often the buckling of a column can lead
to a sudden and dramatic failure of a structure of mechanism. and as a
result, special attention must be given to the design of columns so thar
they can safely support their intended loadings withow buckling
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Fig. 13-1

The maximum axial load that a column can support when it is on the
verge of buckling is called the eritical lead. P, Fig. 13-la. Any
additional loading will canse the column (o buckle and therefore deflect
laterally as shown in Fig. 13-1h. In order to better understand the nature
of this instability, consider a two-bar mechanism consisting of weightless
bars that are rigid and pin connected as shiwn in Fig. 13-20 When the
bars are in the wertical position, the spring, having a stiffness &, is
unstretched. and a small vertcal foree P is applied at the top of one of
the bars, We can upset this eguilibrium position by displacing the pin at
A by a small amount A, Fig. 13-2h, As shown on the free-body diagram
of the pin when the bars are displaced. Fig. 13-2¢, the spring will produce
a restonng foree F = &4, while the applied load P develops two
horontal components, P, = P tan &, which tend to push the pin (and
the bars) further out of equilibrivm. Since & is small, & = #(L/2) and
tan # = #. Thus the restoring spring force becomes F = A9L/2. and the
dizmmirhing foree is 2P, = 2P,

If the restoring force is greater than the disturbing force. that is,
kAL == 28 then noticing that # cancels out, we can solve tor P, which
PIvies

kL
P= stable equilibrium

This is a condition for stable equilibrivn since the force developed by the
sprng would be adequate to restore the bars back (o their vertical
position. However, it kLA/2 < 2Pd, or

kL
P> ] unstable equilibrinm

then the mechanism would be in wistable sguilibrinn, In other words, if this
load P is applied, and a slight displacement oceurs at A, the mechanism will
tend to move out of equilibrium and not be restored to its original position.
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The imtermediate value of F. which requires &L#/2 = 2Pd, is the
crittcel fevad. Here

kL
i meutral equilibrium

This loading represents a case of the mechanism being i wenral
equilihrinm, Since P is independent of the (small) displacement # of the
hirs, any slight disturbance given 1o the mechanism will not cause it to
move further out of equilibrium, nor will it be restored o its orignmal
position, Instead. the bars will resngin in the deflected position.

These three different states of equilibrium are represented graphically
in Fig. 13-3. The transition point where the load is equal to the critical
value P = P, iscalled the hifrcarfon poinr, At this point the mechanism
will be m equilibrum for any small valiue of #, measured either o the
right ot to the left of the vertical. Phyvsically, P, vrepresents the load for
which the mechanism 15 on the verge of buckling. It s quite reasonable 1o
determine this value by assuming seuall displacements as done here.
however, it should be understood that P, may mar be the largest value of
P that the mechanism can support, Indeed, if a larger load is placed on
the bars, then the mechanism may have to underzo a further deflection
before the spring is compressed or elongated enough to hold the
mechanism m equilibrinm.

Like the two-bar mechanism just discussed, the critical buckling loads
on columns supported in various ways can be obtained. and the method
wsed to do this will be explaimed in the next section, Although in
engineering design the critical load may be considered Lo be the largest
load the column can support, realize that, like the two-har mechanism
in the deflected or buckled position, a column may actuallv support an

131 Crmcal Loab

U nsable
capailitvraam

cruilibrium

Sinhle
nqu:ilihr'rum

.I'h

59

I/- Bl ution pxsinl
Meuiral T

Fig. 11-3

[




G&H0 CHarTER 13 BUCKLING OF COLUMNS

)~

=
=
f -
K
——

' ‘-
=t &'

Some slender pin-connectod members wsed
tn maoving mischinery, such af this short fink,
are subjected to compressave lidds and thes
el s colmmns

even greater load than P, Unfortunately, however, this loading may
require the columm 1o undergo a forge deflection, which is generally not
toleraled in engineering structures or machines For example, it may take
only a few newtons of force to buckle a meterstick. but the additional
load it may support can be applied only after the stick undergoes a
relatively large lateral deflection.

13.2 Ideal Column with Pin Supports

In thas section we will determine the entical buckbng Ioad for a column
that is pin supported as shown in Fig. 13—a The column (o be considersd
is an fdeal column, meaning one that is perfectly straight before Inading,
is made of homogeneous material, and upon which the load is applied
through the centroid of the cross section. It s further assumed that the
material behaves in a linear-elastic mamner and that the column buckles
or bends i a smgle plane. In reality, the conditions of column straighiness
and load application ate never accomplished: however, the analvsis 1o be
performed on an “ideal column™ is similar to that used to analyze mitially
crooked colomns or those having an eccentric load application. These
more realistic cases will be discussed later in this chapter.

Since an ideal column is straight. theoretically the axial load P could
he increased until Tailure occurs by either fracture or vielding of the
matenal, However, when the critical load P, 15 reached, the column will
be on the verge of becoming unstable, 5o that a small lateral force F,
Fig 13-4h, will cause the column to remain in the deflected position
when F is removed. Fig. 13-4c. Any slight reduction in the axial load P
from P will allow the colomn to straighten out, and any slight increase
in P, beyvond P, will cavse further increases in lateral deflection.
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Whether or not a column will remain stable or become unstable when
subjected to an axial load will depend on its ability 1o restore itsell, which
is based om its resistance o bending. Hence, m order (o determine the
critival load and the buckled shape of the column, we will apply Eq. 12-10,
which relates the internal moment in the column to its deflected shape, Le.,

LY (13-1)
il

Recall that this equation assumes that the slope of the elastic curve is
small and that deflections occur only by bendmg. When the column is in
s deflected position, Fig. 13-5a, the mternal bending moment can be
determined by using the method of sections. The free-body diagram of a
segment in the deflected position is shown in Fig, 13-54 Here both the
deflection v and the internal moment M are shown in the pasitive
direction aecording to the sign convention used to establish Eq. 13-1.
Moment equilibriem requires M = — Fv. Thus Eq. 13-1 becomes
El E ==y
ax

d:t'_ i).— o
o (E.i’ =1 (13-2)

This is a homogeneous, second -order. linear differential equation with
constant coefficients, It can be shown by using the methods of
differential equations, or by direct substitution into Eg, 13-2, that the
genecal solution is

= 'n( £ + 5( 'IT }I 13-3)
= L8 11'IE.FI) e "u'E.FI. { 13-
The two constanis of integration are determined from the boundary
conditions at the ends of the column. Since v = Oatx = (0, then C: = 1),
And since v = (lat x = L, then

C, sjn(.“l'll—if_ J il

This eguation is satished il O = {k however, then ¢ = (1, which 15 a
trivial sofutton that reguires the column o alwavs remain siraight, even
though the load may cause the column o become unstable. The other
possibility is for

which is satisfied if

P
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Fig. 13-5
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The serallest vafue of Pis obtained when = 1, so the eriticel load for
the column is therefore®

This load is sometimes referred to as the Euler load, named after the
Swiss mathematician Leonhard Euler, who originally solved this problem
in 1757, The corresponding buckled shape is defined by the equation

E el o
=L sn——
L

Here the constant €, represents the maximum deflection. vy,,. which
oceurs at the midpoint of the column, Fig. 13-5¢, Specific values for C
cannot be obtained. since the exact deflected form for the column is
unknown once it has buckled. Tt has been assumed, however, that this
deflection is small.

Wote that the critical load is independent of the strength of the
material; rather it only depends on the column’s dimensions (J and L)
and the matenal’s stiffness or modulus of elasticity E. For this reason. as
far as elastic buckling is concerned, columns made, for example, of high-
strength steel offer no advantage over those made of lower-strength
steel, since the modulus of elasticity for bath = approsimately the same,
Also note that the load-carrving capacity of a column will increase as the
moment of inertia of the cross section increases Thus, efficient columns
are designed so that most of the column’s cross-sectional area is located
as far away as possible from the principal centroidal axes for the section,
Thas 15 why hollow sections such as tubes are more economical than solid
sections. Furthermore, wide-flange sections, and columns that are “built
up" from channels, angles. plates, etc., are better than sections that are
solid and rectangular,

"o represenis the pumber of woves in e defleeted shape of the colwmn., Por example.
i n= 2, then o wives will nppear, l"lg_ 1 %25+, Here the critical lond is 4 Py Just prioT i
buckling. which practically speaking will oot exast.
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It 5 also important to realize that a column will buckle about the
principal axis of the cross section having the feast moment of inerifa (the
wealiest axis ). For example, a column having a rectangular cross section,
like a meter stick. as shown in Fg, [3-6, will buckle about the a-i axis.
not the b-h axis As a result, engineers usually try to achieve a balance,
keeping the moments of inertia the same in all directions. Geometricallv,
then, circular tubes would make excellent columns Also, square tubes or
those shapes having 7, = [, are ofien selected for columms

Summarizing the above discussion, the buckling eyuation for a
pin-supported long slender column can be rewritten. and the terms
defined as follows:

—_—
med
Lad
i

Ll

where
Po o= eritical or maximum axial load on the column just before it

begins to buckle. This load must mar cause the stress in the
column to exceed the proportional limit

£ = modulus of elasticity for the material
I' = least moment of imerta for the column’s cross-sectumal area
I = unsupported length of the column, whose ends are pinned
For purposes of design, the above equation can also be writlen i a

more useful form by expressing [ = Ar, where A is the cross-sectional
arca and ris the radius of gyeafion of the cross-sectional area. Thus,

" T ElAr)
= L:
(ﬂj .
Ala [LIFY
il
s s L (13-6)
(Lir)
Here

ir = eritical stress, which is an average normal stress in the column
jusl before the column buckles This stress is an efiocnc stress
and therefore o, = oy

I~
I

madulus of elasticity for the matérial
L= unsupported length of the column, whose ends are pinned

...|
Il

srvatflest rading of gyration of the column, determined from
roe A, where [ s the fease moment of inertia of the
column’s crosss-sectional area A

The geometric ratio L/r in Eq. 13-6is known as the slenderness ratio. It
is @ measure of the column’s flexibihity, and as will be discussed later. it
servies o classifv columns as long, mtermediate, or short

s

Fig. 13-4

Typical interior steel pipe columns used 1o
support the rool of a single story building
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Itis possible to graph Eq. 13-6 using axes that represent the critical
stress versus the slenderness ratio. Examples of this graph lor
columns made of a tvpical structural steel and aleminum alloy are
shown i Fig: 13-7. Note that the curves are hvperbolic and are vahd
only for critical stresses below the matenal’s vield point (proportional

m limit), since the material must behave elastically. For the steel the vield
stress is {ory )y = 3 ksi [E, = 29{10%) ksi]. and for the aluminum it is

{oyta = 27 ksi [Ey = 10010%) ksi]. Substituting o, = oy into Eg. 13-6,

the smurllest allowahble slendemness ratios [or the steel and aluminum

colimng are therefore (Lfr), = 89 and {Lfr), = 65, respectively.

Thus, for a steel column. if (£/r), = B9 Euler’s formutla can be used to

determine the critical load since the stress in the column remains elastic,

e, €107} deai On the other hand, if (L/r},; < 89, the column’s stress will exceed the

vield point before buckling can oceur. and theretore the Euler formula is
noit valud 1 thas case,
s \
L7
]
Wi [ A
s Structural
wleel
Ll o (ery = 34 Ksil
Aluminiim
alloy
fh - {iry = 27 ksid)
m i i i L
Sl (TEN] 156} 1] F
i ]
Fig. 13-7

Important Points

* Columns are long slender members that are subjected to axial
compressive loads

® The crifical foad is the maximum axial load that a colomn can
support when it is on the verge of bucklmg This loading
represents a case of meutral equilibrivem.

* An fdeal colwmn is initially perfectly straight, made of
homogeneous material. and the load 15 applied through the
centroid of the cross section.

* A pin-connected column will buckle about the principal axis of
the cross section having the leaxt moment of mertia.

® The sfenderness mtio is Lir, where r is the smallest radius of
gvration of the cross section. Bucklimg will necur about the axs
where this ratio gives the preatest value
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EXAMPLE |13

The A-36 steel W8 ¥ 3] member shown i Fig. 1.3-8 s to be used as a
pin-connected column. Determine the largest axial load it can support
before it either begins to buckle or the steel yields.

Fig. 13-4

SOLUTION

From the table in Appendix B, the column’s cross-sectional area and
moments of inertia are A = 9.13in", 7, = 110in", and 7, = 37.1 in*.
By inspection, buckling will oceur about the y-y axis Why? Applying
Eq. |3-5, we have

wEl  w[29(10%) kip/in”]{ 37.1 in*)
1 [12 fe{ 12 in. /)|

P, = 512 kip

L.
When fully loaded, the average com pressive stress in the colummn s

LSl S T e
A 913ind '

Since this stress exceeds the vield stress (36 ksi), the load P is
determined from simple compression!

¥

36 ksl = =
i3 m=

P = 3 kip Anis

In actual practice, a factor of safety would be placed on this loading,
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The tubmlar colwmng used wo sapport this
waler ionk hsve been braced af [hree
tneatining .ulu-nl: Thier lis ng'lh Ty prevent them
froom buckling.
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13.3 Columns Having Various Types
of Supports

The Euler load was decived for a column that s pin connected or free o
rotate at its ends Oftentimes, however, columns may be supported in some
other way. For example, consider the case of a column fixed &t s base and
free at the top, Fig 13-9. As the column buckles the load displaces 6
and at x the displacement 15 ©. From the free-body diagram in Fig, 13-,
the intermal moment at the arbitrary section s M = P(§ — w).
Consequently. the differential equation for the deflection curve is
d*v

Ef—

P{5 — 1)
dx”

(13-7)

Unlike Eq. 13-2, this equation is nonhomogeneous because of the
nonzers term on the right side. The solution consists of both a
complementary and a particular solution. namely,

P P
=y "'i“("ullﬁr} + l':'nctls.(_,lllll—ftj + 4
The constants are determined from the boundary conditioms. At x = {l,
r =, sothat C- = —& Also,
dv [F P

= = Iﬂu'IIE.FL“s[‘JIEf ) “:"\f_F““(‘I.‘I'EI:I

At x o= ), dofdx = 050 that ©; = 1. The deflection curve is therefore

I|| P
p=4a&1- |::1.~:{ —x}]
[ X-Er
Since the deflection at the top of the column is &, that is at x = L,

= E- W r\'..."..]l.[ll't'
ﬁn:d:.li[:‘llf%f. ) = {)

(! indicates that no buckling oceurs. regardless of

(13-8)

The trivial solution &
the load F. Instead.

P
n:-:rﬁ[; I:_:;.F)=1I or 1'l|'llﬁ =%. = 1.5
The smallest eritical load occurs when n = 1, sothat
w ET
= 13-4
o TE I |

By comparison with Eqg. 1354t is seen that a column fxed-supported at
its base and free at its top will support only one-fourth the critical load
that can be applied to a column pin-supported ar both ends
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Other types of supported columns are analyzed in much the same way
and will not be covered in detail here* Instedd, we will whulate the
restlts for the most common tpes of column support and show how o
ipply these results by writing Euler’s formula in a general form.

Effective Length. As stated previously, the Euler formula, Eq. 13-5,
wits developed Tor the case of a column having ends that are pinned or
free o motate. In other words, L m the equation represents the
unsupporied distance berween the points of #Fero moment. This formula
can be used to determine the eritical load on columns having other types
of support provided “L” represents the distance between the zero-
moment points. This distance is called the column’s effective lengih, [,
Cbviously, for a pin-ended column L. = L, Fig 13-10a, For the fixed- and
free-ended column, the deflection curve, Eog. 138, was Tound o be one-
half that of a colinm that is pin connected and has a length of 2L,
Fig 13-108 Thus the effective length between the poings of 2ero moment
is L. = 2L, Examples for two other columns with different end suppaorts
are alzo shownin Fig 13-10, The column fixed at its ends, Fig, 13-10c. has
inflection paints or points of zero moment L/4 from each support. The
effective length is therefore represented by the middle half of its length,
that is, L, = 05L. Lastly. the pin- and fixed-ended columm, Fig, 1310,
has an inflection point at approximately (L7L from its pinned end, so that
L, =072,

Rather than specifving the column’s effective length, many design
codes provide column formulas that employ a dimensionless coetficient

K called the effective-length factor, This factor is defined from
L,=KL (13-101)

Specific values of K are also given in Fig 13-10. Based on this generaliiv,
we can therefore write Euler’s formula as

T El
i 13-11
(KLY Hae
ar
=T 0] (13-12)
(KLfr]

Here (K L/r) is the column’s gffective-slenderness ratio. For example. if
the column is fixed ac its base and free at its end, we have K = 2, and
therefore Eq. 13-11 gives the same result as Eq. 13-4,

“Ree Problems 13-43. 1344, and 1345,

4,
, W
|

Pinned ends

[E=1]

LETS

|

"

|

]

Fixed ends

-4,

(e}

o

&7

L=

o~

e
i

Fixed and free ends
b

L, =1.T7L
T

Fioned and fixed cods

(e}

Fig. 13-10
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EXAMPLE [13.2

A W6 x 15 steel column (s 24 fi lomg and is fixed at its ends as shown
in Fig. 13-11a. Its load-carrying capacity is increased by bracing it
about the y—y (weak) axis using struts that are assumed to be pin
comnected to its midheight. Determine the load it can support 5o that
the colunim does not buckle nor the material exceed the vield stress.
Take £, = 29(10") ksi and oy = 60 ksi.

SOLUTION
The buckling behavior of the column will be different aboul the x—x and
v axes due to the bracing. The buckled shape for each of these cases is
shiown in Figs 13116 and 13-11c From Fig. 13-11b. the effective fength
fur bucklmg abour the x—ravisis { KL}, = 0.5(24 1) = 12t = 144an.,
and from Fig. 13-1le¢, for buckling about the y-y axis, (KL},
(,7(24 ft/2} = B.40 ft = 100.8 in. The moments of inertia for a W6 < 15
are found from the table in Appendix B. We have [, = 29.1in’,
I, = 9.32in".

Applying Eq. 13-11,

mEl,  w29(10°) ksi]29.1 in?

Po)s = L e = 40L7kip (I
Fah =iy (144in.y P
e TEL w9107 ksi]9.32 in! e &
Ve (KLY (100.8 in. | S

By comparison, bucklimg will occur about the y—v axis
The area of the cross section is 4.43 in’, s0 the average compressive
L] siress in the column is

T=T a%is hlu.-.klmg

1 443 -

Since this stress is less than the vield stress. buckling will oecur before
2400 the matenal vields. Thus,
P = 263 kip Anx
NOTE: From Eq. 13-12 it can be seen that buckling will always occur
about the column axis having the largest slenderness ratio, since a large

slenderness ratio will give a small critical stress, Thus, using the data for
the radius of gyration from the table in Appendix B, we have

v—y uxis buckling ( HL) _ 144 in ——
il e A T e

Fig. 13-11 (-‘“’-) _ J08m. _ o
r J,  1dbin, '

Hence, y—y axis buckling will oecur, which s the same conclusion
reached by comparing Egs 1 and 2.
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669
EXAMPLE |13.3

The aluminum column is fixed at its bottom and is braced at its top by
cables 50 as to prevent movement at the top along the x axis, Fig, 13124,
I it is assumed to be fixed at its base, determine the lareest allowable
load P that can be applied, Use a lfactor of salety for buckling of
FS. = 10. Take E,; = T GPa, ap = 215MPa, A = 75(10 %) m’,

I, = 6L3(10 % m*, I, = 23.2{10%) m*.
SOLUTIOMN

Buckling about the x and v axes is shown in Fig, 13-1286 and 13-12¢,
respectively. Lising Fig 13-10a, for —x axis buckling, K = 2, s0

(KL}, = 2{5m} = 10m. Alsn, for y—» axis buckling, K = (1.7, sa
(KL}, = 075 m) = 3.5m.

Applving Eq. 1311, the critical loads for each case are

wEI,  w[T0010") N/ 6130 107" m?)
Weards = Tepy © (1m)
= 424 kN
_ wEL 70010%) NfmT(232010°%) m*)
ety (KLE (35m)
= |31 MN

By companson, as P is increased the column will buckle about the x—x

Ly
Fig. 13-12
axis The allowahle load s therelore
' 424 kM i W E
f [ E 30 141 EN Anx
Since
P 424 kN
Ty =—

=—————= 55 MPa < 215 MP
A 7510 m ; :
Euler’s equartion can be applied.

L= jlhm
L.o=35%m

vy msis ekl

t—i war buckling
fch

(ki
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. FUNDAMENTAL PROBLEMS

Fi2-1. A Sl-in-long rod is made from & l-in-diameter
steel rod. Determine the critical bockling load if the ends
are fixed supported, E = 290107 ksl, oy = 36 ksi

F1x:2 A 120 woosden réctangular column has  the
dimensions shown. Dietermine the critical loed il the ends are
gasumed 1o be pin-connected. £ = LA{ 107 kst Yielding
dowes ol oocar,

ae | F132

F13-3, The A-36 steel column can be considered pinned
al 13 top and bottom and braced against i1s weak axis o the
mid-height. Determine the masimum allowable foree P that
the column can support withoot buckling. Apply o F.5. = 2
against buckling, Take A = T.4(10 ") no*, I, = 8730107 ") m*,
and [, = 18.8{10 ")y m".

F13-3

Fl3-4. A steel pipe is fixed supported & {is ends 170U is Fm
fong and has an outer diasameter of 3 mm and & thickness of
1 v, determing the maximum axiol losd P that i can
carry without buckling. E; = 2000 GPa, oy = 250 MPa.

F13:-5 Determine the maximum foree P that can be
supporicd by the assembly without causing member AC
to ockle, The member is made of A-36 steel and has a
diaméter of 2 in. Take 5. = I ageinst buckling.

Fl3-5§

Filisti. The A-36 steel rod BC hes o diameter of 50 mm
and is used as a swrut to suppont the beam, Determine the
maximom intensity W of the uniform distribmed load that
cin be applicd (v the beam without causing the strut o
buckbe, Take FS = 2 agaimst buckling,

Fl13-i
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Srrosiews

s13-1. Determine the eriticet buckling load for the colomn. 13-3. The leg in (a) ects &5 a column and can be modeled

The material can be mssumed rigid. (b} by the two pin-connected members thist wre attached toa
torsiomal spring having a stiffness & (torgquerad). Determine ﬂ
the critical buckling loed. Assume the bone material is rigid.

|

Prob. 131 {n} ih

r gos e Prob. 13-3
13-2.  Determine the eritical load P, for the rigid bar and ”

spring sysiem. Each spring has & stiffness &

*134, Rigid bars AR end HC are pin connected at B 10
the spring al £¥ has & stiffness & determine the critical load
P for the sysiem,

Proh. 13-2 Proh, 13-
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«13-5,  An A-36 stee] celumn has 4 length of 4 m and s
pinned at both ends 16 the cross sectional area has the
dimensions shown, determine the critical load.

13-6. Solve Proh. 15-5f the column s fixed a1 its bottom
and pinned at its top.

I =L

23 meim

5 mm —|—|— 25 mm

It} mm

Probs. 13-5/6

137, A column s made of A-36stee] has o length of 2000
end is pinned at both ends If the cross-sectional area has
the dimensions shown, determine the critical [oad.

“13-8. A colunn 18 mude of 2004-T6 aluminum, has a
lemgth of M i, and is fixed at it bottom and pinned at is
top. I the cross-sectional area has the dimensions shown,
determine the eritical load

=
=

s a

L35

— — —

125 in. 11,25 m

Frobs, 13-T8

#13-0, The Wid = 38 column & made of A-36 steel and is
fised supported at s base, Tt s subjected to an axial load
of * = 15 kip. determine the factor ol salety wath respect 1o
hiickling,

1310, The Wid % 38 dolumn s made of A-3 sizel,
Determing the critical load i its botiom end is fixed
supporicd and 15 top @5 (ree o move about the strong axis
and is pinned about the weak axis

P

200N

Probs. 13910

I3-1L  The A-36 steel angle has o cross-sectional area of
A= 248in" and a radius of gyration about the 1 axis of
o= 12600 and about the v axis of r, = 0879 . The
smillest radius of gyration oceurs about the - axis &nd s
r. = i in. 1T the angle is o be used as a pin-connected
10f=bimg column, determine the lergest axial load that can
be applicd throough itscentroid Cwithoul capsing it toheckle,

Prob. 12-11
*13-1%. An A-3fsteel column has @ lenpth of 15 [ end is

pianed at both ends, IT the crosssectional area has the
dimensions shown. determime the eritical load.

Prob. 13-12
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o13-18 A A2 stee] dolumn has o length of 5 moand 14 o1 3-17, The Wit wooden rectangalior column has the
fixes] at bath ends. I the cross-sectional grea has the dimensions shown. Determine the critical Toad if the ends
dimensions shown, determuine the entical load gre assumed to be pin coonccted. £, = LA{1Y) ksi,
oy =5 ksl
1318, The M-t column has the dimensions shown,
13 mm Determine the critical load if the bottom is fxed and the
= * top 1§ pinned. £, = L6107 kst oy = 5 ksi,
L1 ]|'||.||1 I — — mim

|

f— L1k i —|

Proh. 13-13

13-14. The two steel channels are 1o be laced together
to form @ 30-fi-long bridge column assumed o0 be pin
connected at its ends Each channel has s eross-sectionsl
grea of A = 31000 and moments of inertis 7, = 554in',
I, = 0,382 m*. The centrodd © of its arcs @8 focated in
the figure. Determine the proper distance  between the
centroids of the channels so that huckling oecurs about the
r—-x and y'— " axes due 1o the same load. What is the valoe
ol this critical load? MNepleot the effect of the lacing.
Fo = 29{10" ksi, iry = 50 ksi

Mrobs 1317718

131 Dererminge the maxmmum foree P oohat con be
gpplicd to the handle so that the A-36 steel control rod 8C
dies niol buckle. The rod has a diameter of 25 mm.

Prob. 13-14

13-15., An A-36-steel WH x 24 column is fixed 2t one end
gnd free at its other end. I it s subjected to an exial load
of 200 Kip, determine the maximum- allowable length of the
column if F.5. = T apainst buckling is desired.

*13-16. An A-W-stecel WR = 24 column is fixed al one
eni and pioned al the other endl T i subjected o axial
lvad of 60 Kip, determine the maxinum allowahle length of
the column il F.5. = 2 apamst buckling is desired. Prob. 13-1%
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S13-20. The W10 = 45 15 made of A-36 steel and i vsed
as a column that has a length of 15 0t 10 0s ends are dssamed
pin supported, and 1t s subjecied 1o an axial load of [ Kip,
determing the factor of safety with respect to buckling

1 3=21  The Wi % 45 5 made of A-36 steel and 5 usad
as a column that has a lepgth of 15 @1, T the ends of the
column are fixed supported, can the column support the
critical Joad without vielding?

r Proba 1320721

1322 The W12 < HT stroctura]l A-36 steél column has a
length of 12 (L I its bottom eod is fixed supported while
its top is free, and it is subjected o oan axial load of
M = 380 kip, determine the factor of satety with respect to
buckling

1323 The W12 = R7 structural A-36 seel column has a
leapgth of L2 i, 17 its bottom e is lixed supported while its
top is free. delermine the largest axial load it can support.
Use a factor of salety with respect 1o buckling of 1.75

| |

Frobs 13-22/21

“13-24. An L-2 wol stcel bok in a lorgme machine s pin
conmected to the forks at its ends @8 shoown, Determine the
maximum load P it can carry without buckling. Use a factar
ol safety with respect to buckling of F.5. = 175 Note from
the fgure o the lelt that the ends are pinned for buckling,
whereas from the fgure on the night the ends are [ixed,

#13-25, The W14 % 30 is used ar & structural A-36 steel
column that can be assumed pinned at both of its ends
Determine the largest axial forec P that can be applied
wilhoui causing it to buckle,

Proh. 13-25
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13-26, The A-36 stecl bar AN has a square cross sectinn
IF it is pin connected at its emds determine the maximum
ullowehle load P that can be applicd io the frame. Lse &
factor of safcty with respeet to buckling of 2,

| HURT]
' v

Mrob. 13-26

13=-27,  Determng the masmmum allowable miensity w ol
the distribuied load that can he applied to member B
without causing member AB 1o buckle. Assume (hat AR 15
made of steel and s pined at its ends for v=t axis buckling
and fixed at its ends for v—v axis buckling. Use & Tactor
of zafety with respect to buckhng of 3. £, = 2060 CrPa;
iy = 360 MPa

*13-2R. Determine if the frame can support 8 load of
w =i kN/m if the facior of salety with respect 1o buckling
ol member AH 15 3 Assume that A8 s made of sieel @nd is
pimmed at its ends for r=x axis buckhng and Gxed ol 18 ends
for y— axis buckling. £, = 200 GPa, oy = 3600 MPa,

uﬁmmu__
| e I i |

—+im 4' |
ﬁu.ﬁ i
1
e —im
Al i —| |—
i
i

AN

Probs. 13-27/28

T

575

o1 3-29,  The beam supports the load of P = Akip, As a
result, the A-36 steel member BO is suhjected 1o a
compressive load. Due 1o the [orked ends on the member,
constder the supports wt B oand O to et as ping for o-1 axis
buckling and as fxed supports for y—v axis backling
Delermine the [actor of safety with respect to buckling
aboul cach of these nxes,

13-3, Determine the greatest foad P the frame will
support withoul causing the A-36 steel member BO o
buck le. Doe to the forked ends on the member, consider the
supports al Boand C 1o act as pins for y-v axis buckimg and
a5 fixed supports for v-v axis buckling.

|
Tk

A0 | an

Profs. 13-29{30

1331, Detormine the masimom distributed load that can
be applied to the bar 5o thel the A-36 steel strut AB does
not buckle. The strut has a dismeler of 2 00 I s pin
connected at its ends

i | 2 |

4 1
N o
Proh. 13-31

=
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A13-22.  The members of the truss are assamed o be pin
conpecied, IF member AC is an A-36 steel rod of 2 in,
diameter, determing the maximum loed P othet can be
suippeerted iy the truss withour causing the member tobackle,

*1

|—3r:;|

sl 3-3%,  The steel bar AR of the frame is assumed 1o s pin
connected at its ends for v-r axis buckling. 11 w= 3 kN/m,
determine the leetor of salety with respect 1o buckling abaut
the vy axis due to the apphed |loading E. = 200 OGP,
ity = 36 MPa

Mroh, 1312

i B n

R
T 3
A1) 1

R 5 Imﬁ&#? i
| e
A

4 m I

Prob. 13-33

1334, The members of the tnss are assumed (o be pin
connecied: [f member AR is an A-36 steel rod of -4 mm
dimmeter, determine the miximom [oree P othar con by
supported by the truss without causing the member o backle.

13-35. The members of the truss are assumed (o be pin
connecied, [f member ©F is an A-36 steel rod of 4 mm
dinmeter, determine the maximum logd P that can be
supported by the truss without cauging the member (o backle,

o Prohs 1334035

1336, I losd C has o mass of 500 kg, determine the
reouired minimuom diameter of the solid L2=stee] od AR
to the nearcst mm sa that it will oot buckle. Use F5. = 2
against buckling,

«13-37. If the diameter of the sold L2-steel mod AR s
b mm, determine the maximuam mass © that the rod can
support withool bucklmg. Use F 5, = 2 ppainst buckling,

Probs 13-36/37

13-38. The members of the truss are assumed W be pin
connected. IF member GF 5 an A<36 steel| rod having a
diameter of 2 in., determing the greatest magnitude of load
I* that can be supported by the truss without causing this
member o buckle

13-39. The members of the truss are assumed o be pin
connected. IF member AG 15 an A-36 steel Tod |mvi.|1y a
digmeter of 2 in., determing the greatest mugnitude of load
P that can be supported by the truss without causing this
member w buckle

Froks. 13-3573%
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SR, The column is supported o1 B by b support that
does not permit rotation but allows vertical delection,
Determing the oritical load P . £F 15 constant.

Proh. 13—

s13-41, The ideal column has a weight w {Toree Jongih)
and resisin the horzontal position when it is subjected Lo the
axial load I Determine the masimom moment in the column
at midspan. ET is constant. Hire Establish the differential
equation for deflection, Eq. [3-1, with the origin at the mid
span. The general solution s ¢ = O sinbr + - cos kx +
{w/(2P1)a" = (wi/(2P))x = (wET/P*) where & = P/EL

Proh. 1341

1342, The ideal column is subjected to the force F ot ils
midpoint and the axial load P. Determine the meximom
moment in the column at midspan. £ s constant, Hing
Estahlish the differentisl equation for deflection, Eq. 13-1.
The general solution is & = ©) sin kx + Cyco8 kx — ex/ k7,
where ¢ = F/2EL &* = P/EI

F
—r
! ! |
I ) I el |

Frob. 1342

1343, The column with constant £ has the end
consiraints shown. Determine the eoiteal foad for the
column.

#1344, Consider an ideal colwmmn as in Fig. 13-10¢, having
bovth endds fixed. Show that the eriticsl load on the columm
is piven by P, = 4 El/I2 Hine Due to the verical
deflection of the top of the column, @ constan momend
M* will e developed at the suppons Show  thal
dufdx® + (P/Elw = M*/EL The solution is of the form
p = sin{ VP/Elx) + Cscos{ VP/EIx) + M/ P,

#1345, Consider an ideal éolumn as in Fig. 13-10k], having
e end fxed and the other pinned. Show that the eritical Inad
on the column is given by P = 2009E T/ L2 Hine Due to the
vertical deflection at the topofthe ¢olumn, a constant moment
M’ will be developed at the fixed support and horbsontal
reactive forces R will be developed at both supporis. Show
that d*nfdx® + (P{EDe = (R/EN(L = x). The solution
is ol the form ¢ = ) sin [ WVPTEIv) + Coeos{ W PIETx) +
(R — xb After application of the boundary conditions
show that tan (VFTETL) = v FTET L. Solve by trial and

error lor the smallest noneeno root.
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The eolumn supporting this crane s
unusually long. 1t will be subpected
nitl only to aniaxsl loond, bul also o
bending mosmenl To ensere it will noi
huoeckle, it showld he braced at the ool
FESH pln eanmeetaog,

*13.4 The Secant Formula

The Euler formula was derived assuming the load F is always applied
through the centroid of the column’s cross-sectional area and that the
column 5 perfectly straight. This is actually quite unrealistio, since
manufactured columns are never perfectly straight, noe s the application
of the load known with great accuracy. In reality, then. columns never
suddenly buckle; instead they begin to bend, although ever so slightly,
immediately upon application of the load. As a result, the actual criterion
for load application should be limited either to a specified deflection of
the column or by not allowing the maximum stress in the column o
exceed an allowable siress,

To study this effect, we will apply the load P to the column ata short
eccentric distanee ¢ from its centroid, Fig. 13-134. This loading on the
eolumn is statically equivalent to the axial load P and bending moment
M* = Peshown in Fig. 13-13h. As shown, in both cases, the ends A and
B are supported so that they are free to rotate (pn supporied). As
before, we will only consider small slopes and deflections and linear-
elastic material behavior. Furthermore, the o—p plane s a plane of
symmetry for the cross-sectional area.

From the free-body diagram of the arbitrary section, Fig. 13-13¢, the
internal mament in the column is

M= —-Ple + v) (13-13)
The differential equation for the deflection curve is theretore
d'v
EI== = —Ple + )
dx

u

\‘1__/ M=
il

T

) (b

Fig. 13-13
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e e
dx- El El

This equation is similar to Eq. 13-7 and has a general solution consisting

of the complementary and particular solutions, namely,

F P
o= C sin \lllﬁx F Ca I:l.m\‘lllﬁ.'ﬁ e (13-14)

Tu evaluate the constants we must apply the boundary conditions. Al
k=0 pv=0saC:=c¢ Andat x = L ¢ = 0, which gives

efl = eos(VP/ETL)]

sin( WV P/ET L)

Smoe 1 — cos(N PYEIL) =12 51'n"{‘\.-“Plr'EI L{2) and sin{V P/EIL) =
25N PYET Li2) cos| v PrEIL f2), we have

FPL
Cy= rm“("‘.'lﬁij

Hence, the deflection curve. Eq. 13-14. can be written as

I = T N T P
B = |_-|:[H.n( Iﬁ?}iiﬂ( ﬁt) 2 L'u&( E.t;l =1 (13-15)
Maximum Deflection. Due to symmetry of loading. both

the maximum deflection and maximum stress oceur at the column’s
midpoint, Therefore, when x = LJ2, v = 1., 50

[ £
Wi = u:_sm(.ll'ﬁ 3) |] (13-16)

Motice that if ¢ approaches zevo, then vy, approaches zero. However, if
the terms in the brackets approach infinity as ¢ approaches zero, then
theae Will have & nonzero value. Mathematically, this would represent the
behavior of an axially loaded column at taillure when subjected to the
critical load P, Therefore, to find P, we require

:u:c( fﬁf—} = x

VEI?2
[Pal =
NErz 2
P, = ’T;I (13-17)

which is the same result found from the Euler formula, Eqg. 13-5.

If Eq. 1316 is plotted as load P versus deflection vg,, for various
values of eccentricity ¢, the family of colored curves shown in Fig. 13-14
restlts. Here the entical load becomes an asymptote to the curves, and of

13.4 THE SECANT FormMULA
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Fig. 1314

course represents the unrealistic case of an ideal column (e = (). As
stated earier. ¢ 15 mever zero doe to mperfections minitial columm
straightness and load application; however, as ¢ —= [0, the curves lend 1o
approach the ideal case. Furthermore. these curves are appropriate only
for small deflections. since the curvature was approximated by d o/dx”
when Eg. 13-16 was developed. Had a more exact analysis been
performed, all these curves would tend to tum upward, intersecting and
then nsing above the lime P = P, This, of course, indicates that a larger
[oad P s needed 1o create larger column deflections. We have not
considered this analysis here, however, since most often engineering
desipn restricts the deflection of columns to small values.

It should also be noted that the colored curves in Fig 13-14 apply only
for linear-clastic material behavior. Such is the case if the column is long
and slender. However, if a short or intermediate-length stocky eolumn is
comsidered, then the applied load, as it is increased, may eventually cause
the material to vield, and the column will begin to behave in an fnelasiic
mrgiimer. This ocours at pioant A for the black curve in Fig. 13-14. As the
load is further increased. the corve never reaches the critical load, and
instead the load reaches a maximum value at 8. Afterwards, a sudden
decrease i load-carrving capacity ocours as the column continues to
vield and deflect by larger amounts.

Lastiy. the colored curves in Fig 13-14 also illustrate that a senlinear
relationship ocours between the load Fand the deflection @ As a result
the principle of superposition canmor be wsed o determine the total
deflection of a column cansed by applving successive loads to the
column. Instead. the loads mwust tirst be added. and then the
corresponding  deflection due 1o their resultant can be determingd,
Physically, the reason that soocessive loads and deflections cannot be
superimposed is that the column’s internal moment depencds on bt the
load P and the deflection . that is. M P{e + ), BEq. 13-13.




The Secant Formula. The maximum stress in the column can
be determined by realizing that it is caused by both the axial load and
the moment, Fig 13150 Maximum moment occurs at the column’s
midpoint, and using Eqs. 13-13 and 13-16, it has a magnitude of

FP-r
M= |Ple+ vyl M= Pus.e-:( ) (13-18)

ft okt
N EI2

As shown in Fig 13-15h, the maximum stress in the column is
compressive, and it has a value of

P Mc P, Pe { [ B L }
ir 2 S T e =N o
il ! il ! ! EI2
Since the radius of gyration is defined as P IiaA, the above equation
can be written in a form called the secans formale

P £C i o T
Timar = :[1 ¥ ?“‘(ﬂﬁﬂ Ll

Here

Fopae ™ MaXimum elastic siress in the column, which occurs at the
inner concave side at the column’s midpome, This stress is
COMPressive

P = vertical load applied to the column. P < P, unless ¢ = (I;
then P = P_ (Eqg. 13-5)

¢ = eccentricity of the load P measured from the centroidal axis
of the column’s cross-sectional area to the line of action of P

¢ = distance from the centrondal axis (o the outer fiber of the
column where the maXimum Compressive sLess oy, SCcurs

A = eross-sectional area of the column

L = unsupported length of the column in the pline of bending,
For supports other than pins, the effective length L. = KL
should be used. See Fig 1510

£ = modulus of elasticity for the material

r = radius of gyration, r = WV I/A. where [ is calculated about
the centroidal or bending axis

Like Eq. 13-16. Eq. 13-19 indicates that there is a nonlinear
relationship between the load and the stress. Hence, the principle of
superposition does not apply, and therefore the loads have to be added
hefare the stress 15 determined. Furthermore, due to this nonlinear
relationship, any factor of safety wsed Tor design purposes apphies (o the
load and et to the siress.

For a given value of o, praphs of Eq. 13-1% can be ploted as
the slenderness ratio KL/r versus the average stress P/ A for various
values of the eccentricity ratio ec/r, A specific set of graphs for a
structural-grade A-36 steel having a vield point of oy, = 7y = 36 ksi

13.4 THE SECANT FormMULA
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and a modulus of elasticity of E;, = 29( 1Y} ksi is shown In Fig. 13-16.
Note that when e— (), or when ec/r" — (), Eq. 1319 gives o, = FfA.
where P is the crtical load on the column, defined by Euler's formmla,
This results in Eg, 13-6. which has been plotted m Fig. 13-7 and
repeated m Fig. 13-16. Since both Eqs 136 and 13-19 are vilid only for
glastic |loadings, the stresses shown n Fig 13-16 cannot exceed
ity = 36 ks, represented here by the horzontal line.

The curves in Fig. 13-16 indicate that differences in the eccentricity
ratio have a marked effect on the load-carryving capacity of columns that
have small slenderness rtatios. However, columns that have large
slendemess ratios tend to fail at or pear the Euler crmitical load
regardless of the eccentricity ratio. When wsing Eq. 13-1% for design
purposes. it is therefore important to have a semewhat accurate value
for the eccentricity ratio for shorer-length columns

Design. Once the eccentricity ratio has been determined, the
column data can be substituted into Eq. 13-19. If a value of o, = oy
is chosen, then the corresponding load Py can be determined from a
trigl-and-error procedure, since the equation is transcendental and
cannol be solved explicitly for Py As a design aid, compiter soffware.
or graphs such as those in Fg. 13-16, can also be wsed to determing Py
directly.

Realize that Py is the load thar will cause the column to develop a
maximum compressive stress of ey at its mner concave fibers. Due to the
ecceniric apphication of Py, this load will always be smaller than the
critical load P, which s determined from the Euler formula thai
assumes (Unrealistically) that the column s axaally loaded. Onee Py is
obtained. an appropriate factor of safety can then be applied in order to
specify the column’s safe load

Important Points

* Drue o imperfections in manufacturing or specific application of
the load, a column will never suddenly bockle; instead, it begins
1o bend.

® The load applied tooa column is related o s deflection m a
nimlinear manner, and so the principle of superposition does not
apply.

# As the slenderness raiio increases, eceentrically loaded columns
tend to fail at ur near the Euler buckling load.
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EXAMPLE [13.4

The WH X 40 A-30 steel column shown in Fig. 13- Ta s fixed at s
base and braced at the top so that it is fixed from displacement, vet
free to rotate about the y- axis Adso, it can sway to the side in the y-2
plane. Determime the maximum eccentric load the column can
support before it either begims ta buckle or the steel vields.

SOLUTION

From the support conditions it is seen that abour the y-y axis the
eolumn behaves as if it were pinned at its top and fixed at the bottom
and sabjected to an axial |oad P Fig. 13-17h. About the x—v axis the
column is free at the top and fixed a1 the bottom. and it 15 subjected to
bath an axial load P and moment M = P{9in.), Fg 13-17c

y-y Axis Buckling. From Fig. 13-10d the effective length factor is
Ky = 0750 (KL), = 0.7(12) ft = 840 ft = 1008 in. Using the table
in Appendix B to determine [, for the W8 X 40 section and applying
Eqg. 13-11, we have

TEL,  [29010°) ksi](49.1 in')
(KLY (100.8 in. )"

(Pady = = 1383 kip

x-x Axis Yielding. From Fig 13-106, K, = 2 50 (KL}, = 2{12]ft =
24 ft = 2BBin. Again using the table in Appendix B to determine
A=117in", ¢=825in/2=4.125in., and r, = 3.53in., and applying
the secant formula, we have

(b1 v axim buckling

i ec | (KL), |P, P
ry = 1Rl — =
A it 2r, EA ,1\ A= Pin)

q el T

Substituting the data and simplifving vields

4212 = PJ1 + 2979500700V £,))

[ 1|

Solving for P, by trial and error. noting that the argument for the
secant is in radians, we get

PI = HE."l kip .."1”_‘. () T=T A% ||r|.ﬂ|n#

Since this value is less than ([P, ), = 1383 kap. faalore will occor abaur Fig. 13-17
the x-x axis.
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This crame boom  Taled Dy buckling
cased by an overload WNole the region
it hncalized eollapse.

*13.5 Inelastic Buci:lir;g

In engineering practice, columns are generally classified according to the
tvpe of siresses developed within the column al the time of Tailure, Long
slender colwnmny will become unstable when the compressive siress
remains elastic, The failure that occurs 15 referred to as elastic instorbility.
futermediate columns fail due to inelastic instability, meaning that the
compressive stress at failure is greater than the material’s proportional
hmit. And sharr colimns, sometimes called posrs, do not become
unstable; rather the materal simply vields or fractures

Application of the BEuler eguation reguires that the stress in the
colmn  fermaim  Gefow  the matecdal’s yield point (actoally  the
proportional limit) when the column buckles. and so this equation
applies only to long columns In practice. however, most columns are
selected to have intermediate lengths The behavior of these colummns can
be studied by modifving the Euler equation so that it applies for inelastic
buckling. To show how this can be done, consider the materal to have a
siress—4irain diagram as shown in Fig 13182 Here the proportional
fimut 18 o, and the modulus of elasticaty, of slope of the line AB.1s E.

If the column has a slenderness ratio that is fesy than (K'L/r},, then
the critical stress in the column must be greater than o . For example,
suppose a column has a slenderness ratio of (KL/r) < (KL/r),, with
corresponding critical stress arp = oy needed to cause instability, When
the column s about o buckle, the change in stress and strain that occurs
in the column is within & small range Ao and Ae. so that the modulus
of elasticity or stiffness for the material can be taken as the fengens
modulus E;, = Ae/Ae defined as the slope of the o —e diagram at point £,
Fig. 13-18a. In other words, at the time of failure, the column behaves as
if it were made from a material that has a lower siiffness than when it
behaves elastically, £ < E.

Fig. 13-18




In general, therefore, as the slendemess ratio (KL/r) decreases. the
eritee! stresy for o column contimues o nse; and from the o—e diagram,
the fimgens modilax Tor the matenal decreases. Using this idea, we can
muodify Euler’s equation o mclude these cases of inelastc buckling by
substituting the material’s tangent modulus E, for £ so that

— (13-20)
(KL/rY

This is the so-called rangent modadey or Engesser equittan, proposed
by [ Engesser in 1889, A plol of this equation for imlermediate and
short-length columns of a material defined by the o—e diagram in
Fig 13-18q is shown in Fig 13-185.

Neov actierd colipnn can be considered to be either perfectly straight
or loaded along its centroidal axis. as assomed here, and therefore i
i indesd very difficult to develop an expression that will provide a
complele analvsis of this phenomenon, As a result, other methods of
describing the inelastic buckling of colummns have been considered. One
of these methods was developed by the aeronautical engimeer E R
Shanley and is called the Shantey theory of inelastic buckling. Although it
provides a better description of the phenomenon than the tangent
midulus theory, as explained here, experimental testing of a large
number of columns, each of which approximates the ideal column, has
shown that Eq. 13-20 is reasonably accwrete m predicting the column’s
critical stress Furthermore, the tangent modulus approach to modelmg
inelastic column behavior is relatively easy to apply.

T :I'I'r.ll'.r
T 5
L
CRLAE N
LY P o)
.\ 5 £y ™ "_‘r-_'
G " A
LU "
"
L -
KL
l KL ] { o ] F
r sl oA
I luestie Eluatic
Short and mtermediate | Long columngs
length colummns

]

Fig. 13-15 {coni.}
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EXAMPLE |13.5

i (MPa) A solid rod has a diameter of Mbmm and is 600 mm long, [t is made of
a material that can be modeled by the stress—strain diagram shown in
Fig 13-1% If it is used as a pin-supported column, determine the
_...-F"""Frﬂ-; critical load.
Sall
SOLUTION
= 150 The radius of gyration is
i [ A —
r= \!I—= I\J—., = T.5 num
A w15 mm )
Ll e ®  and therefore the slenderness ratio is
KL 1040 mm )
Fiﬁ- | d=1u = = =
r 7.5 mm
Applying Eq. 13-2{) we have,
wE T E,
¥y — = == |542{10 \E, (1}

KL/ (80P
First we will assurne that the critical stress is elastic. From Fig. 13-19,

_ 150 MPa

= 150 GP:
0000 HhY

Thus, Eqg. 1 becomes

e = 15420107 )[150(1¢° )] MPa = 2313 MPa

Since oy, = ay = 150 MPa. inelastic buckling oceurs.
From the second ling segment of the o—e diagram, Fig. 13-19, we
have

A 270UMPa - 150 MPa

e 0002 - 0K e

Applving Eqg. | vields
e = 1542(107120(10")] MPa = 185.1 MPa

Since this value falls within the limits of 150 MPa and 270 MPa, it is
indeed the eritical stress.
The eritical load on the rod is therefore

Poo= aoA = 185.1{10% Pa[=(0.015m)*] = 131 kN Ans
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Sropiews

1346, Determine the load P reguired o canse the A-36
stee] WE X 15 column o fall ether by bockling or by
vielding. The column 13 Dxed at s base and free at 12 op

~d Proh. 1346

13-47. The hollow red brass CE3400 copper blloy shifl is
fixcd at one end bui {ree st the other end. Delermine the
maximum ecoentric [oree ™ the shifl can support without
causing 1 o buckle or vield, Also, lind the corresponding
maximum deflection of the shal

1348, The hollow red brass ORI copper alloy shalt is
fixed al one end bul free at the other end. If the eceentric
foroe ™ = 5 kN is applicd (o the shaft as shown, determine
the maximum normal stress and the maximum delection.

20 mm

Seclivm a -

Prohs. 13-47/48

#1349, The tube is made of copper and has en outer
diameter of 35 mm and a wall thickness of 7 mm. Using &
factor of safery with respect 1o buckling and yielding of
F.5 = 2.5 deiermine the allowahle eccentric load P The
tube i pin supported at its ends, £, = 120 GPa, oy =
750 MPa

13-50. The tube is made of copper amd has an ouler
digmeter of 35 mm and a wall thickness of 7 mm. Lsing a
factor of salety with respect Lo buckling and yilding of
F.5 = 2.5 determing the allowable eccentrie load P that it
can support without failure The tobe is fixed supported at
its ends. £, = 120 GPa my = T50 MPa,

|
r | i | P

14 mim

Prohs, 13-4%50

13-581. The wood column is [xed at s base and can be
assumed pin connected ab 118 top. Determine the maximum
eceentrie load P that cen be applicd without causing the
column 1o buckle or yield. £, = LA{10M) ks oy = B ksi.

#13-52, The wood column s fixed al its base and can
be assumed Oxed conpected ar is top, Determine the
maximum cccentrie load ™ thiat can be applied withom
causing the column to buckle or vield E, = L8{1) ksi,
oy = 8 ksi.

P i
= 4in
-I_J
i
1 im
Prohs, 13-51/52
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o353, The W2kl = 22 A-36estee] column s fived a0 ns
base. Tis 1op is constrained to rotate abom the y—v axis and
free to move along the v—y axis Also. the eolumm is braced
along the a-x axis al s mid-height, Determine the
allowahle eccentric force P that can be applied witlout
causing the column either to buckle or vield. Use F.5. = 1
against bucklmg and F.5, = 1.5 apainst vielding.

13-54, The W2 * 27 A-3h-steel eolumn s Nxed a1 is
bare. lis top is constrained to rotste about the y—v axis and
free to mowve elonp the vy axis Alse. the column is braced
dlopg the - oxig at i3 mid-height. 1T P= 25KN,
determine the maximum normal stress developed in the
column.

Probs. 131-53/54

13-55, The word column is ixed st its base, and its (op
cun be considered pinned. If the ecceninc foree P = [T EN
5 applied o the column, investigate whether the column
is adequate to suppon this loading without buckling or
viclding, Take E = 101GP2 and oy = 15 MPa

*13-56. The wood column s fxed at 15 base, and it=
top can he considered pinned, Tretermine the maximum
cocentric [oroe [ the column can suppor withowt
ciusing 11 1o elther buckle or vield. Take £ = 10 GPa
aml oy = 15 MPa.

150 mm .

Prohs. 13-55/56

#1357, The W25 x 28 A-Sb-sive]| column s fixed af s
base. T tog is constrained 1o rotaie about the y—v axis and
free to move glong the v—y axis If ¢ = 350 mm, determine
the alloweble eccentne force P that can be applicd sathowt
cesing the column either o buckle or yield Use F.5. = 2
against buckling and F.5. = 1.5 against vielding.

13-588. The W25 = 28 A-36-stee] column s fixed al its
bhase, Tts top is constrained io rotaie about the v—v axis and
free to move along the v—y axis. Determine the force P oand
its eccentricity @ so that the column will vield and buckle
simultaneously,

s Probs. 1357158




13-50 The steel column supporis the wor cesentris
Ierachings, 100t i assumed o be pinned at its top, fixed at the
bottom, and fully braced azainst buckling aboul the y—p
wxis, determine the maximum defection of the eolumn
and the maximum stress in the column, E, = 2 CGPa
ry = 360 MPa.

#1360, The steel column supports the wo cocentric
Inadings, TF it s assumed 10 be fixed ao its fop and botiom,
gnd braced against buckling about the y— axis, determine
the maximum deflection of the column gnd the maximum
stress an the column, B, = 200 GPa, oy = 360 8MPa

130 kM 5 kN

LU mm
T' I— 1 mm
[T

1y mmy —— ¥

8

[l mm

Probs. 13-59G0

13-61. The W250 = 45 A-36-steel column is pinned at i1s
toop and Nixed at its base, Also, the column is braced along
its- wenk axis st mid-height. I P = Z5(00 KN, investigale
whether the column is adequate o suppon this loading.
Use F5. = 2 apamst buckling and F.5. = 1.5 againsl
yielding.

#1362, The W25l » 45 A-36-stcel column is pinned ut its
top and fixed at its base. Also, the column is braced along
its weak axis at mid-height, Determine the allowable foree
f that the coluomn can support without causing it either
o buckle or vield. Use F.5 = I sgainst buckling and
F.5, = 1.5 apamnst viclding

i<

INELASTIC BUCKLING

Probs. 1361462

1363 The W14 = 26 swructoral A58 steel member 15
used as a 20-li-long column that iz assumed o be xed o
its tospr and [ixed at it bottom. 10 the 15-kip lowd is applicd
al an eccenlrie distance of 10 in.. determine the maximum
stress in the column

=13-6d. The Wid = 26 siructural A-36 steel member 8
used as a column thal is assumed to be [ixed at ils top and
pinned at its bottom. If the 15-kip foad s applicd &t an
gocentric distance of 10 in_, determing the maximum siress
in the column.

Probs. 1363464

879
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o13-45. Determine the muximum eccentric load P oohe
20 A=Th-aluminuwm=lhey strot can suppor withou! causing
it cither to buckle or wicld. The ends of the strof are
P nmected

o 1B mm Fu
154b mm

SH mim

+ i
ECERTIT]
i

Secliona—u

Proh. 13-65

13=66. The WE x 48 structural A-36 steel column s fixed
al its bottom and free ab s top, I i is subjected to the
eecentric load of 75 kip, determine the foctor of safety wath
respect to cither the minetion of buckling or vielding

1367, The WE % 48 structural A-36 steel column 15 fixed
at its bottom amd pinned at its top 00 it s subjected 1o the
cceentric load of 75 kip determine if the column fails by
vielding, The column s braced so that it does not hockle
abuout the y-r axis,

73 kp Hin
o y
."..d :
121t
|

Prohs. 13-66/67

*13-68. Determine the load P required o cause the steel
W12 = 50 structursl A-36 steel column to fail cither by
Buekling or by vielding The column is fixed &t s bottom
and the cables at il Lop act as & pin to hold it

sl3-6,  Solve Prob, 13-68 of the column i an A-36 steel
Wi = 16 =ection

Probs 136869

13-70. A column of intermediate length buckles when the
compressave sfress 15 40 ks I the slenderness ratio is &,
determine the tangent modulus

13=-71. The A=lt-long column has the cross section shown
and 15 made of material which has a stress-strain diagram
that can be spproximated as shown, If the column is
pinned at both eads, determime the crtical load P for the
corlimam

F13=-T2 The G-fi-long column has the cross section shown
and iz made of material which has a stress-strain disggram
that can be approsimated as shown, I the column is lxed
at both ends, determing the eritical load P, Ffor the
colummn

arf ki)

EFLE

KRR = ]
5in—
S
L II'.I..‘:- 1.
3in
: : & firdim b

T 1
LA RIS

Mrobs. 13=T1/72




oJ3-73,  The stress-strain diagram of the matedal of a
column can be approximated as shown, Plor PAA ve KL/
lor the eolumn.

i [ Pn
35T
ZIK =
\ } } e finin. b
Rl 111 i
Proh. 13-73

13-T4. Construct the buckling curve, P/A versus L/r,
for a column that hes o bilincar stress-sirain curve i
compression as shown, The colump is pinned ar its epds,

Ll T
Jhl
40 g
/1
& | Erim e |
ELLia] [ANYRE

Prob. 13-T4

135  InELasTic BuckLikg &91

1375, The stress-strain diagram for a matedal can be
approsimated Iy the two line segments shown, 17 & bar
having & diemeter of 8 mm and a length of 1.5 m is made
from thes rmaterial, determine the entical load provided the
ehdds are pinned. Assume that the load acts through the axis
of the bar. Use Engesser's cquation,

*“13-Th. The stress-stram disgram for o moterial cen be
approgimated by the two line segments shown, IF a bar
having a diamcter of 3l mm and a length of 1.5 m is made
from this malenal, determine the entical loed provided the
ends are ixed, Asume that the load acts through the axis of
the bar. L'sc Engesser’s equation.

#1377, The stress-strain diagrem for a metenisl cen be
approcimated by the two lne scgmemis shown, 1§ & bar
having & diameter of B mm and length of 1.5 m s made
from this matérial, determine the critical load provided one
cnd s proned und the other 5 bxed. A=zsome thet the load
st through the axiz of the bar, Ulse Enpesser’s cyuation,

ar (M Pa)

20kh

£ | cain Ao b

LEEYINY | LLERTT

Probs 13-75TWTT
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These lomg unbraced tmber colymns are
used to support the rool of this building.

i B2 55 Design_of Columns for
Concentric Loading

The theory presented thus far applies o columns that are pecfectly
straight. made of homogeneous material, and originally siress free.
Practically speaking, though. as stated previously, columns are not
pertectly straight, and most have residual stresses in them, primarily due
tn monunilorm cooling during manulacture. Also, the supporis for
columns are less than exact, and the pomis of application and directions
of lpads are not known with absolute certainiy. In order 1o compensaie
for these effects. which actually vary from one column to the next. many
design codes specify the use of column formulas that are empirical By
performing experimental tests on a large number of axially loaded
eolumns, the results may be plotted and a design formula developed by
curve-filting the mean of the dala.

An example of such tests for wide-flange steel colomns is shown
Fig 13-20. Wotice the similarity between these results and those of the
family of curves determined from the secant formula, Fig. 13-16, The
reason for this similaniy has to do with the influence of an “accidental”™
cccentricity ratio om the column’s streneth. As stated in Sec. 13.4, this ratio
has more of an effect on the strength of short and imtermediate-length
columns than on those that are long. Tests have indicated that ec/r can
range from (0.1 to (L6 for maost axially loaded columns

In order to account for the behavior of ditferent-length columns, design
eodes usually specify several formnlas that will best fit the data within the
short, mtermediate, and long eolumn range. Hence, each formula will apply
only for a specific range of slendemess ratios, and so s important that the
engineer carefully observe the KL /r limits for which a particular formula is
valid. Examples of desipn formulas for sieel. aluminunt, and wood columns
that are currently in use will now be discussed. The purpose is to give some
idea as to hivw columns are designed in practice, These formulas should not,
however, be used for the design of actual colomns, unless the code from
which they are referenced is consulted.

iy

iy : — Buber lvrmaula

Eq. 13-

K
F

!".hu.1r|-|,'u-l:||.r|.'|n. |il|.-|.'l'|'l.'l-|;l.‘.|'ﬁl-l|.' uhlhr'-n-ﬁ -I ||r1|'!._r.1ﬂ'u:i1.:|n

Fig. 1120
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Steel Columns. Columns made of structural steel can be designed
on the basis of formulas proposed by the Structural Stability Research
Coumncil (SSRC), Factors of safety have been applied to these formulas and
adopted as specifications {or building construction by the Amencan
Imstitute of Steel Construction (AISC) Basically these speafications
provide two formulas for column design. each of which gves the maximm
allowable stress in the column for a specific range of slenderness ratios™

For long columns the Buler formula s proposed, e, ope=
wEf(KL/rY. :

Application of this formula reguires that a ctorof safety F.&, = —1' = |42
be applied Thus. for design,

e FYLY ¥

2t {M} P L T
23K Lfry v r

As stated. this equation is applicable for a slenderness ratio bounded by
200 and (KL/r).. A specific value of (KL/r). is obtained by requiring
the BEuler formula to be used only for elastic material behavior, Through
experiments it has been determined that compressive residual stresses
can exist in rolled-formed steel sections that may be as much as one-half
the vield stress. Comseguently, if the stress in the Euler formula is greater
tham £ery, the equation will not apply. Therefore the value of (KL/r), is
determined as follows:

H.IIII“
I

I T E KL (2w E o
I 6 el

Columns having slendemrmess ratios less than (K L/ r), are designed on
the basis of an empirical formula that s parabolic and has the form

(KLfry i
iy |:l m}'v !!lr\-—-..\qw 13-23
Since there is more uncertainty in the use of this formula for longer £
columns. it is divided by a factor of safety defined as follows: AR
5 & (KLir (KL/r) Eqg. 132
OSBRI, T BEL/N? " i

: KL
Here it is scen that FS =3 = 1.67 at KL/r = and increases to ) }
F&. = % = 192 at (K L{r).. Hence. lor desipn purposes.

(KL/ry
| e | O
2(KLir)"

(53} + [(3/BUKL/e)(KLIFY] - [(KLfr)B(KL/r)]

Fig, 13-21

T alliw (13-23)

Equations 13-21 and 13-23 are plotted in Fig. 13-21. When applyvimg any of
these eguations, either FPS or 81 units can be used for the calculations

*The curienl ALSC code cnables cngineces o use one of wo methods for dessgn . iamely.
Load ami Resastance Factor Desipn. and Allowabde Stress Desipn. The laoer is cxplnined bere
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Aluminum Celumns. Column design for structural aluminum is
specified by the Aluminum Association wsing three equations, each
applicable for a specific range of slenderness ratios. Since several tvpes of

o mand K aluminum alloy exist, there 5 a unigque set of formulas for each tvpe. For a
o 1534 common alloy {2004-Ta) used in bullding construction. the formulas are
E S e T
Eq. 13-25 |
KL
" \ T = 28 ksi l=—=12 {13-24)
r
Eg. 13-4
KL} KL
- Follew = []ﬂl.? = [J-I'i( ,:I] ksi 12 == — =< 3% (13-25)
1 r
Kl i -
I S S 000 ke KL
12 55 G o R, N (13-26)
(KLfry E

Fig, 13-22

These equations arve plotied in Fip 13220 As shown, the first mwa
represent straight lines and are used o model the effects of columns in
the short and intermediate range. The third formula has the same form as
the Evler formula and is used for long columns,

Timber Columns. Columns used in timber construction are
designed on the basis of formulas published by the National Forest
Products Association (NFPA) or the American [nstitute of Timber
Construction (AITC). For example, the NFPA formulas for the
allowable stress in short, intermediate, and ling columns having a
Toityrad k51 rectangular cross section of dimensions b and d, where o 5 the soalless

dimension of the cross section, are
Eq. 13-27
pal £
- Eq. 153-1% KL
““C\” ow = 120ksi 0 =——=11 (13-27)
ik :
i FELMANT Kl 3
Eq. 1329 | LEH[I - ?( e 0 ) Jkﬁl 11 =< v e 26 (13-28)
176 .
Sl ksi KL
[ P = h <= — = Al 1 3-29)
" |] :n :-\,|| r.r y "h iz [l‘h Lll'lﬂl}- -d |:
Fig. 13-23

Here wood has a modulns of elasticty of E, = ].Hl;lua}k!'-i and an
allowable compressive stress of 1.2 ksi parallel to the grain. In particular.
Eq. 13-29 is simply Euler's equation having a factor of satety of 3. These
three equations are plotted in Fig. 13-23
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Procedure for Analysis

Column Analysis

& When vsimg any formula to analvze a column, that 15, to find jts
allowable load, it is first necessary to calenlate the slenderness
ratio in order (0 determine which column formula applies.

* UOnce the average allowable siress has been calculated. the
alloweable load on the column {5 determined from P o= o 0wl

Column Design.

& 1 a formula s used to desien o column, that 15 (o determine the
column’s cross-sectional area for a given loading and effective
length, then a trial-and-check procedure generally most be
followed when the column has a composite shape, such as a
wide-flange section.

& (e possible way to apply a trial-and-check procedure would be
to st the column’s cross-sectional area, A", and calculate the
corresponding stress o' = P/A". Also, use an appropriate design
formula to determine the allowable stress oryjae. From this,
calculate the required column area At = (o [ %

® A = Ay, the design is safe. When making the comparison,
it is practical to require A" to be close to but greater than A ..
usually within 2-3% A redesign is necessary if A" < A,y

* Whenever a trial-and-check procedure is repeated, the choice of
an area is determaned by the previouslv calcolated required area.
In engineering practice this method for design is usoally
shortened through the use of computer software or published
tables and graphs.

(-

Ihese limher columns can be considered
maned o tholy  bodtom amd  Gxed
connected (o the beams il their lops
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EXAMPLE | 13.6

o An A-36steel W10 ¥ 10D member is used as a pin-supported column,
1 ¥ Fig. 1324, Using the AISC column design formulas, determine the
n largest load that it can safely support,
|.-"'".‘1 i
SOLUTION
The following data for a WIG % 100 is taken from the table in
16 fi Appendix B

A=294in" r,=460in, r,=2.65in

Since K = 1 for both x and v axis buckling. the slenderness ratio s

4 T largest if r, is used. Thus,
5 : 16 fE)(12 in. /1t
ik, = ‘,||'..m|.-' !I=T1.45
Fig. 13-24 r 263 in.
From Eq. 13-22, we have
(£L) - |27 E
r J. N oy

B I:nﬂ]zu{ur‘&ksﬂ

"N 36ksi

= 1241

Here ) = KLfr < (KL/r)., s0 Eq. 13-23 applies

[l - [HurF:I
2AKLir ]

(5/3) + [(3/B)KLr)/(KLfr)] — [iﬁljr}lfﬂfﬁ'L,-‘r,jq:

Faliw =

[1 = (7245 /2(126.1 ]36 ksi
(5/3) + [(3/B)(72.45/126.1)] — [(T2.45)%/B{126.1)"]
1617 ksi

The allowwable load P on the column s therefore

16.17 kip/in® =

Tallirm =

B |

29.4 in’
P =474 Irip Ay
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EXAMPLE |13.7

The steel rod in Fig, 13-25 is to be used to support an axial load of
18 kip. If £ = 29{10r*) ksi and oy = 3 ksi, determine the smallest
diameter of the rod as allowed by the AISC specification. The rod is
fixed at bath ends

il

|
14 kip —H i
; I
150

- .

Fig. 13-23
SOLUTION
For a circular cross section the radius of gyvration becomes
Je— TR T il
7 _ [(M4)mdf2)  a

TTNAT N (el 4
Applying Eq. 13-22 we have

(ELJ - II.':_H,:E 3 Ill:h_-'[gg{]ﬂ"’] kesi] — 1070

’ NVoay V' Sksi
Since the rod's radius of gyration is unknown, KL /r is unknown, and

therefore a choice musit be made as to whether Eg. 13-21 or Eq. 13-23
applies. We will consider Eq, 13-21, For a fixed-end column K = 0.5.50

__lix'E

ril'."m,_ == m

18kip 127729( 107} kip/in°]
(U 4)mwd®  23[0.5(15 ()12 in,/ft )/ (d/4)]
11.:2 = 115247
d=211in
LTge

d = 2250, = 21in. Abx

For thiz design, we must check the slendemmess-ratio limis; i.e.,

Kf DACIA Mo 12 am. ML)
r (225 in./4)

Simee | 0T0 =< 160 = 200, use of Eq. 13-21 is appropriate,
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EXAMPLE | 13.8

A bar having a length of 30 in. is used to support an axial compressive
load of 12 kip, Fig. 13-26. It is pin supported at its ends and made of
a 2014-Ta alominum allovw. Determine the dimensions of its cross-
sectional area if ils width 5 1o be twice its thickness,

SOLUTION

Since KL = 3in. is the same for both x and v axis buckling, the
lareer slendemess ratio i determined wsing the smaller radivs of
gyralion, e, using ., = -

XL B 1{30) 103y
fy  NIJA  N(1712)28(57/[26(B)] h

(L

Here we must apply Eq. 13-24, 13-25, or 13-26. Since we do not as yet
know the slenderness ratio, we will begin by using Eq. 13-24.

% = 28 ksi
12 ki
Fig. 13-26 p_ ey
L 2B5) 28 kip/in
b= (463 in,

Checking the slendemess ratio, we have

KL 1039
Bl MAE g
R T

Try Eq- 13-26, which is valid for KL/r = 55,

£ 54K ksi
A (KLjr)
12 54000
26ib)  (103.9/b)
h= 105 n, Anx
From Eqg. 1,

KL 1039

B3 =55 0OK
F L5

NOTE: [ would be satisfactory ta choose the cross section wath
dimensions | in. by 2 in.
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EXAMPLE |13.9

A board having cross-sectional dimensions of 5.5 in. by 1.5 in is used
to support an axial load of 5 kip. Fig. 13-27. If the board is assumed
b be pin supported ar its top and bottom. detérmine its preofess
allowable length L as specified by the NFPA,

Akp

5 kip

Fig 1327

SOLUTION
By mspection, the board will buckle about the y axis In the NFPA
equations, d = 1.5 m. Assuming that Eg. | 3-29 applies, we hive

P S0ksi
A (KLY
Skip 540 ksi
(S5m){15m) (1L/1L5in)°
L= 44.8in. Anx

Here

KL | {445 m. )

d 15 xH

Since 26 < KL/fd = 50, the solution is valid
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Slprosews

13-TR.  Dietermine the largest length of 4 strsctural A-36
fteel nod if il is fxed supported and subjected to an axial
bovadd of 100 kM The rod has o diameter of 50 mm, Dse the
ATSLC eruatinns,

1379, Determine the largest length of &8 Wil = 45
structural steel eolumn if it is pin supported and sibjected
to wn axial Toad of 290 kip, £, = 29(10°) ksi, my = 50 ksi,
L'se the AISC equations.

“13-B0. Dcterming the larpest length of o Wik = 12
strwctural A-36 steel section 0 is pin supported and is
subjocted to an axial load of 28 kip. Use the AISC equations.

] 3-81. Usngthe ATSC equations, select from Appendis B
the lightest-weight structural A-36 stecl eolumn (hat is 14 [t
Ipng and supports an sxial load of 40 kip. The eods are pinned,
Toke oy = 50 ks,

13-82, Using the ATSC equations, select from Appendix B
the lightest-weight structural A-36 sieel column that s 12 0
long ol supports an axial load of 40 kip The ends are lxed,
Take oy = 5 k=i,

1343, Using the AISC equations, select [rom Appendix B
ihe hpghtesi-weight stroctural A-36 steel column that s 24 {i
long and supporis an axial load of W00 kip The ends are
fived

“13-84.  Using the AISC eyuations select from Appendix B
the lightesi-weight structural A-36 siecl column that is 30 Qi
long and supports an exial load of 2 kip. The ends are
fixed.

-85 A WE = M A-Yqee] colimn of M-t length is
pinned at both cnds and braced against its weak axis at mid-
height. Determine the allowable axial foree P thet can be
safely suppored by the eolumn. Use the ATSC column
design formnlas,

13-86. Check if a W10 = 39 column cen safely support an
axial foree of P = 250 kip. The column s 20 0 long and is
pinned a1 both ends and braced against its weak axis 5t
mid-height. It is made of steel having £ = 29{10°) ksi and
oy = Alh k=i, Use the ABSC column design formulas.

1387, A 3-f-long rivd is used in & machineg to transmit
gn axial compressive load of 3 kip. Determine its smallest
dimmeter 1011 is pin connected at 15 cods and 15 made of a
201 4=T aluminen alloy.

“13-88. Check il g W10 % 45 column can safely support
an axial foree of P = 30 kip. The column is 15 {1 long and
6 prinmed at both of its ends To s made of steel baving
E =191 ksi and oy = S0 ksi. Use the AISC column
destan formulas,

o] 3-89, Using the AISC equations, check of a column
Piaving the eross seetion shown can support &n axial force of
15681 k™ The column has a length of 4 m, 1= mede from A-36
steel, and 118 ends are proned

35 mm
2imm _-|-_-_1 | o W)y

I
S mm
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Mrol. 13-80

13-90. The A-36-stecl tube is pinned at both ends. I it
i5 subjecied to an axial force of 150 kN, determine the
meakim i lemgth that the tibse can safely support using the
ATRC column design formulas

Froh. 13-4
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1391, The bar s made of a 2004-ThH alommum alloy.
Determing 18 smiklest thickness & il i1s width s 55 Assume
that il is pin connected at its ends.

“13-92. The bar is made of & 2004-T6 aluminum alloy.
Determine 115 smallest thackness boifns width s b Assume
that it is ixed connected at its ends,

(L L[]

BN T

Probs. 139112

#13-93, The XH4-TH aluminum columm of 3-m lengih has
the cross section shown. I the column is pinmed al hoth
ends and braced agadnst the weak axis at its mid-heighn,
determine the allowable axial foree ™ that can b salely
supported by the column.

13-4, The 2004-T6 pluminum column hes the cross
section shown, I the colummn iz ploaned ar both ends and
subjocted 1o an axial force P = 1001 kN, determine the
maximum length the column can have w safely support the
foading

IThmm —| =15

Probs. 1 39354

1345, The 2004-T8& gluminum bollow scclion has the
cross section shown, I the columm iz 10 @ long and i5 fxed
al both ends, determing the allowable axial force P ihal can
b silely supported by the colomn.

#13-96. The HN4TH aluminum hollow section has the
cross section shown, IF the column is fixed at iis hase and
pinned gl its top and is subjected (o the sxial force
Po= 100 Kip, determine the mesmmum length of the column
foor it tey safely supparnt the load,

| 4 in.

Prohs 1395004

#1397, The tube is (.23 in. thick, is made of a 2014-Th
aluminum alloy, and is fixed at its bollom and pinned at its
top Determing the largest axial load that |1 can support

13-98, The tube is 0.2% in thick, & made of a 20014-Th
aglummmom  allov, and 15 fAxed connected at s ends
Dretermne the largest axial boad that it can support

1399, The tohe s (.25 in. thick, is made of 2004-Th
gluminum alley &nd is pin connected at its ends. Determine
the largest axial load it can suppor

P

Probes. | 3-97/984%9
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“13-100. A rectanzgular wonden column has the eross
section shown, I the coliumm s 6 0 long and subjected tooan
axial force of I* = 15 kip. determine the required minimuam
dimension a of its cross-sectional area (o the nearest +—in,
s that the column can sefely support the loading The
column is pinned at hoth cads

s]3-101. A rectanpular wooden column has the cross
section shown, If o = 3m. and the column s 12 0 long,
determine the allowable axial force P that can be safely
supporicd by the colummn il'it is pinned at its top and fixed at
ils base

I3-102. A rectangubar wooden column has the cross
section shown If @ = 3 in. snd the column is subjected o
an axial Toree of P = |5 khp, determne the maximiam
length the column can bave 1o safely support the foad, The
column is pinned at its top and [xed ot its base.

e

P'rohs, 1310100102

13108, The timber column has a sguare cross section and
is assumied 1o be pin connected ab its top and Botiom, T7 it
supports an axial load of 30 kip, determine its smallest side
dimension a to the nearest + in. Use the NFPA formulas,

Prob, 13-103

13104,  The wooden column shown s formed by gloing
together the fin, = 0.5 in. boards 17 the column is pinned
at both ends and is subjected to an axial loed P = 20 kip.
determine the required number of boerds needed 1o form
the column in order to safely support the loading

Prob. 13-104

«13-105. The column is made of wood It i fixed a1 its
bottom and free at its iop. Use the NFPA formules 1o
dotermine its greatest allowshle Tength iF it supporis an
axial load of P = 2 kip.

3-10a, The column s made of wood, 1 s xed at s
bottom ancd lree w15 top. Use the NFPA formulies 1o
determine the largest allowable axial load P that it can
support if it has a length L = 4100

Mrobs. 13165114




13.7 Desigh oF CoLumns FoR BECCENTRIC LoaDinG

*13.7 Design of Columns for
Eccentric Loading

Clccasionally a column may be reguired to support 4 load acting either
at its edge or on an angle bracket attached to its side. such as shown in
Fig. 13-284. The bending moment M = Pe, which is caused by the
eccentric loading, must be accounted for when the column is designed,
There are several acceplable wavs m which this is dine in engineenmg
praciice. We will discuss twio of the most common methods,

Use of Available Column Formulas. The stress distribution
acting over the cross-sectional area of the colwmn shown in Fig. 13-28aq 15
deermined from a superposition of both the axial force Fand the bending
moment M = Pe_In particular, the maximum compressive stress is

P M

T —_—
Ty Fl i

{13310

A tvpical stress profile is shown in Fig. 13285 Il we conservanvely
axsiome that the entire cross section 15 subjected o the uniform siress
e % defermined from Eg. [3-30, then we can compare o, with
Mg Which is determined wsing the formilas given in Sec. 13.6.
Calculation of o, 15 usually done using the largest slenderness ratio
for the colummn, regardless of the axis about which the column
experiences bending. This requirement is normally specified in design
codes and will in maost cases lead to a conservative desipn, [T

Tiar = T yliaw

then the column can carry the specified loading. If this inequality does
nat hold, then the column's area A must be increased, and & new Mo,
and gy, must be calcolated. This method of design is rather simple (o
apply and works well for columns that are short or of intermediate
tength

Interaction Formula. When designing an eccentrically loaded
column it is desirable to see how the bending and axial loads interact. so
that a balance between these two effects can be achieved. To do this, we
will consider the separate contributions made to the total column area
by the axial force and moment. I the allowable stress for the axial [oad is
[T, Lo . then the requited area for the column needed 1o support the
load P s

F
A, =

2 [ iy :I.i‘"uu

Similarly, if the allowable bending stress i5 [@plipew. then since
I = Ar, the required area of the column needed w support the
eccenlrie moment 15 determuined from the flexure formula, thart s

F—

UFiai

Il

{uh

(]

Fig. 13-28
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[yprcal example o o eclumn used o
suprpoal an eccentrie roof loadmg.

Me

r ]
L7 T

The total area A for the column needed to resist bhath the axial load
and moment regquires that

ﬂ,l.=

M
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&1 (13-31)

I.r:rul :'||||||U¢ Ilr'I-Ilr:lllllcl'ula

Here

T axial stress caused by the foroe P and determined from
ir, = A where A is the cross-sectional area of the

column

iy, = bending stress caused by an eccentric load or applied
moment Moy, is found from ey = Mo/d, where fis the
moment of inertia of the eross-sectional area calculated
about the bending or centroidal axis

allowable axial stress as defined by formulas given in
See. 13.6 or by other design code specifications. For this
purpose, always use the fargest slendemess ratio for the
column, regardiess of the axis about which the column
experiences bending

L7 o b

[Thtamow = allowable bending stress as defined by code specifications

Wotice that, if the column is subjected only to an axial [oad, then the
bending-stress ratio in Eg. 13-31 would be egual to fero and the
design will be based onlv on the allowable axial stress Likewise, when
mo axial load s present, the axial-stress ratio 15 zero and the stress
requirement will be based on the allowable bending stress, Hence, each
siress ratio mdicates the comtnbution of axial [oad or bending moment,
Since Eig. 1331 shows how these loadings interact, this equation
is sometimes teferred to as the fnteraction formula. This design
approach requires a rial-and-check procedure, where it is reguired that
the designer pick an available column and then check to see if the
mequality is satisfied. If it 1s not, a larger section is then picked and the
process repeated, An economical choice is made when the left side is
close 1o but less than |

The mteraction method s often specified in codes for the design of
columns made of steel, aluminum. or timber. In particular. for allowable
stress desipn. the American Institute of Steel Construction specifies the
use of this equation only when the axial-stress ratio o/ (o, s = (115,
For ather values of this ratio, a modified form of Eg, 13-31 15 used
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EXAMPLE |13.10

The column in Fig. 13-29 is made of aluminum alloy 2004-T6 and is
used to sepport an eccentric load P. Determine the maximum
magnitude of P that can be supported if the column is fixed at its base
and free at its top, Use B, 13-3L

Fig. 1329

SOLUTION
From Fig. 13-10h, K = L The largest slendemess ratio for the column
is therelore
g 280 in,
L2 Sl SO
r WVI](1A2){d in )2 in Y F{2in.) 4 in.}
Bv inspection, Eq, 13-26 must be used {277.1 = 33), Thus,
S4 0 ksz 54 006D ks
rr (L. 3 5 " = 3
WY ARLIY (2T

The maximum compressive siress in the column i determined from
the combination of axial load and bending We have

= (1, 7031 ks

F { Pee
e e
A I
p P1in (2 im,)
= +
Zin4in) (17122 in )4 in. Y
= (1.3125P
Assuming that this stress is uniform over the cross section. we require
Fdiow. = Faingi (1,7031 = 0.3125P

P=225kp Anx
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EXAMPLE |13.11

r The A-36 steel Wé x 20 column in Fig 13-30 is pin connected at
its ends and is subjected to the eccentric load P Determine the
maximum allowable value of P using the interaction method if the
allowable bending siress 15 (@ hw = 22 ksi.

SOLUTION
Here K = 1. The necessary geometric properties for the Wa x 20 are
taken from the table in Appendix B

A = 587 in’ 1. =#.4in reo= 150N, o = 620 in.

We will consider r, because this will lead 1o the fergess value of the
slenderness ratio. Also. £, 15 needed since bending ocours about the x
axis (c=6.20in./2 = 3.10 in. ). To determine the allowable compressive
stress, we have

A M= Pl in KL _ Insf(i2in/f)] _
r 1.50 in, :

F
Since
Fig. 1230

; (i e (2 [29( 107} ksi
(E) - ﬁ\l.f Y il | _ 1281

F my N 36ksi
then KL/r < (KL/r), and s0 Eq. 13-23 must be used.

[1 = (KL/eY 2 KLfr) oy

|'llln ] = i 1 - 1
: (5/3) + [(3/BYKL/r)(KLfr)] - [i.Fi'.E...-'r}-,IRH-.E.I.-'r], ]
[1 — (120)/2(126.1)°]36 ks
(3/3) + [(3/8)(120)/(126.1)] — [(120)"/8(126.1)%)]
= 10.28 ksi
Applyving the intecaction BEg. 13-31 yields

o, o
(o dain (0t
P/5ETin P30 in (310 in)/{41.4in") :
10128 ksi 22 ksi
P =843kp Anx
Checking the application of the mteraction method for the steel
Section, we require
iy, 843 kip/(387 in.)
(w1028 kip/in®

= ]

= 0,140 < (.15 OK
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EXAMPLE |13.12

The timber column in Fig 13-31 is made from two boards nailed
together so that the cross section has the dimensions shown. If the
column is fixed at its base and free at its top, sse Eg. 13-30 to determine
the eccentric load P that can be supported.

Fig. 13-31

SOLUTION

From Fig. 13-105, K = 2. Here we must calculate K L/d to determine
which equation from Egs. 13-27 through 13-29 should be used.
Since orp. 15 determined using the larpest slendemess ratio, we
choose = 3in, This 15 done o make this ratio as large as possible,
and thereby vields the lowest possible allowable axial stress, We have

Ki  2{&0in) ;

= AR
Since 26 < KL/d = 50 the allowable axial stress is determined using
Fq. 13-20 Thus,

Sl ki S ks
Fallow = = = (LA3TH ksi

(KLidyY (40
Applying Eq. 13-20 with oy, = @y, we have
£, Mc
A !
P Pldin){3in.)
(Bin)6m)  (1/12)3in)(6in )
P = 122 kip A

Mallww: =

.3375 ksi
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Slprosews

13-107. The W4 ® 33 structural A-36 steel column
supports gn axial load of B kip in addition 1o a0 cocentric
b P D0 terminee the masimum allowable valoe of P haged
on the AISC equations of Sec. 136 and Eq. 13-31L Azsume
thi eolumn is fixed ol its base. and at 15 wop i1 s [Tee o sway
in the =z plane while it is pinned in the =z pline

“13-108. The WI2 x 45 structural A-36 steel column
supports a0 exial load of 80 kip in eddition to @n cocentric
load of P = & kip. Determne of the colunmmn fails besed on
the ATSC equations of See |36 and Eqg, 1330, Assume that
the eolummn is Gxed st its base. and al its o it s free Lo sway
in the r—z plane while it is pinned in the -z plane.

Libin.

Probs. 13-107/104

e300, The W14 < 22 structural A-36 sleel column is
fixed at 115 top and bettom. I a horizontal load (ool shown )
caises - it to support end moments of A = 0 kip -
determine the maximum allowable axiel [oree P ihat can be
applicd. Bending is about the x—v axiz Use the AISC
cguations of Sec, 13,6 and Eg, 13-3)

13110, The Wid = 32 column is fixed @1 s wop and
bottom. If a horeontal load (not shown | caoses it 1o support
end moments of M = 15 kip- 1, determine the maximuam
allowahle axial foree P that can he applied. Bending is
ahout the r-r axis. Lise the interaction formule with
[rurI.}."".- - :".-I' k'h

B

Protes, 13=-108110

13-111. The Wid4 = 43 sirociural A-36 sieel column
is fixed at its bottom aind free at fis top, Determing the
preatest eceendric load Pothat can be applied using
Eqg. 13-301 and the AISC cquations of Sec. 13.6.

*13112. The Wil ® 45 structural A-3 steel column 15
fixed at its bottom aod fred at its top, IF i1 is sabjected to a
Ipad of ' = 2 kip, determine il it is safe based on the AISC
equittions of Sec. 136 and Eq. 13-30,

Probs. 13-1110/112
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«13-113, The A-36-steel WIN = 45 column s fixed al its
base. Jts top I8 constrained to move along the r—x axis but
fres toorotite about and move along the s— - axis Dietermine
the maximuwm cocentric [oree P that can be safely supported
by the column wing the sllowable stress method.

13=114. The A-36-s1ecl WIO = 45 column & lxed an its
hase, Ttz top is constrained to move along the 1-x axis but
free o rotele aboot and move glong the y—1 axis Determine
the maximum eceentiie foree P that can be safely supported
by the column using an interaction formula, The allowahle
bending stress i (o). = 15 ksl

13-115. The A-36-stecl W12 = 50 column s fxed st s
base, Tts top 5 constrained te move along the 1-x axis but
free to rotate about and move along the vy axis If the
cocentric force = 15kip 8 applicd to the colomn,
ivestizate i the eolumn is adeguate 1o support the loading
Use the allowable stress method.

“13-116. The A-3-steel W12 = 50 column is fxed sl its
base, [1% top 1% comsirained to move along the v-x axs but
free 10 otate about and move along the y— axis: TF the
cocentric force = 15kip is epplied to the column,
mvestizaie if the colummn s adequate o support the loading,
Ulse the interaction formula. The allowable ending siress is
"I.Il}l:l.ﬂ = 15 ks,

241

Probs, 13-115 114115 16

f13-117. A I6-lt-long column is made of aluminum alloy
2004-Th. If it is fixed at s top eod bottom, and a
compressive load P is applied at point A, determing the
maximum gllowable magnitude of P using the cquationg of

Sec 156 and Eqy. 13-30,

13=118. A I6=ft-long column 18 made of alumisum alloy
2NE-TH, TF it is Ffixed at its top oand boattom, and a
compressive load I is applied 81 point A, determine the
maximum llowable magnitude of P using the equations of
Sec 3.6 and the interaction formula with (e ),e = 20 ksi,

PMrobs 1117118

13-119. The 2004-T6 hollow column is fixed at its basc
und free at its top Determing the maximum cocentric
force P thiat can be safely supported by the column, Use the
allowable sircss method. The thickness of the wall for the
section is 1 = L5 1n,

#3120, The 2014-T6 hollow colimn s fixed a1 s base
and Tree at its top, Determine the maximum eccontric force
P that can be salely supporied by the column. Use the
interaction  formula, The allowable bBending  stress 08
Cirp b = 300 Esi, The thickness of the wall for the section is
= 05in.

“~L  Probs 13-119/120
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oJ3-120,  The W0-ft-long bar s made of aluminom alloy
2004-Th. T it is fixed at its bottom and pinped at the top,
determine the maximum allowablc cccentric load PP that can
be applicd using the formalas in See 136 and Eq. 13-30,

13122, The 10-A-long bar is made of aluminum allay
200L4-T I it is fiwed at its bottom and pinned gt the top.
determine the maximum allowable cocentric load P that
can he applied using the cguations of Sec, |3.6 and the
interaction formula with [ ) = 18 ksi

Probs. 12-121/122

13123, The rectangular  wooden  eolumn ean  he
considered fixed gl its base and pinned &t its top Also, the
colummn is breced at its mid-height apemst the wesk axis
Dretermine the maximum eccentiic force P that can be safely
supported by the column using the allowable stress method,

“13-124. The reclangular wooden columm  can be
considered fixed an {15 base and pinned a1 i1 1op Adso, the
column i braced at jts mid-height against he weak axis
Determine the maximmm eccentric forée P that can be
safely supported by the column using the nlétaction
formeula, The allowable bending siress is (o by m = 1.3 ksi.

: r
hm"‘ll

Probs. 13123124

o1 3-125, The M-in-diameter utility pole supporis the
transformer that has & weight of 800 b and center of gravity
al £r. If the pole is fxed to the ground and frec at s
top, determine il it s adeguate secording 10 1the NFPA
equations of Sec, | 3.6 and Eq, 13-30,

Prots. 13-125

13126, Using the NFPA equations of Sec 13.6 and
Eq. 13-31h, determine the maximum allowable eccentric
loved P ohvat can be applicd wehe wood column. Assume that
the column is pinocd at both its lop and boitom.

13-127. Using the NFPA eqguations of Sec 136 and
Eq. 1331, determme the maximum allowable eccentrie
lpad P that can be applizd to the wood column. Assume that
the column is pinned al the top end fixed al the bottom

Probs. 13-126/127
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11

. CHAPTER REVIEW

Bucklng is the sudden instabdility thit occurs
im eoliming or mambers that suppeon an axial
compressive load. The maximom sxial load
thist a member can support just before
buckling s called the eritical load Py

The eritical load [or an idesl column §s
determmed from Eulers [ormula, where
K = 1 for pin suppons, K =05 for fixed
supports, & = 0.7 fiw a pin and a8 fxed
suppori.and & = 2 for a [ixed support and &
free end

T El
Py = :
" (EEY

=

<

If the axial lpading is applied cocentrically
1o the column, then the sccant formula can
bBe used o determine the maximum siress
in the column,

R ] 5 II]'
[ =:|jl+%s:c:(;_,‘—

EA

When the axial load canses vielding of the
material, then the tmogent modulus should
he used with Euler's formule o delerminge
the critical |oad for the ¢olumn. This s
referred wr as Engesser's equation,

= F,
T KL

Empirica! formulas based on experimental
data huvie been developed for use in the
desipn of steel, aluminum, and tmber
CalEmns,
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#P3=128. The waood column is 4 m long and is feguired o
sikprport the axial foad of 25 KN, I the cross section is square,
determine the dimension a of cach of ils sides using a factor
of safety apainst buckling of FS. = 25 The column s
assumed 1o be pinned at its top and botiom. Use the Euler
equation. £, = 11 (GPa, and oy = 10 MPa

REVIEW PROBLEMS

Prob., 13-128

o1 3=129,  IF the torsional sprngs atteched w eonds A and
£ of the rigid members AR and BC have a stiffness &,
determine the critical boad P,

Prob. 13-129

13-130. Determme the maximum intensity w ol the
unilorim distributed load that can be applied on ihe beam
without causing the compressive members of the supporting
truss o buckle, The members of the truss are made [rom
A-36-sice| rods having g Sl-mm diameter, Use F& = 2
against buckling,

Prohi. 13-130

13131, The Witk = 45 steel column supports en exiel boad
of 6l kip in addition 1o an cocentric load P, Determine the
maximurm allowable value of P based on the ATSC eguitions
of Sec, 136 and Eq. 13-3), Assume that in the y-z i‘u!anr_-
K, = 10 and in the y—z plane K, = 20 E,; = 29{10") k=i,
my = S0 ksi, '

Lik

Prob. 13-131




SA-132,  Tlhe A-36-stcel column can be considered pinned
at its top and fixed at its base, Also, it is braced at its
mid-hziaht elong the weak axis. Investipale whother a
WS = 45 seetion cun safely support the loading shown
Llse the allowahle siress methaod

«13-133. The A-3f-steel column can be considered pinned
al its top and [ixed al its base, Also, 1 15 braced at
its mid-height along the weak axis Investipale wheiber g
W25 = 45 section can safely support the loading shown.
Use the mteraction formula. The allowable bending siress s
() hasne = 1000 MPa,

45m

Proba 13-132133

13-134, The member his a symmetric coss sccieon, [t 15
prim eommected a1 015 ends determine the largest foree i1 can
support, Tt is made of 2004-TH aluminum alloy.

115 i

I|I

Proh. 13-134

Beviewy PROBLEMS 713

13135, The W2 = 46 A-3hsteel column can  be
eonsidered pinned at its top and Oxed at s hase Also, the
column 15 braced ai s mid-height aguinst the weak axis
Determine the maximum axial boad the eolumn dan suppor
without causing it Lo buckle

Prob. 13-135

=13-136. The stroctural A-36 el column has the cross
sectfon shown. 11 i is [ixed at the bottom and free at the top,
determne the maximum foree P thal can be applied at A
without causing it to huckle or yvield. Use a factor of safely
ol 3 with regpect 1o buckling and vielding

#13-137. The structural A-36 steel eofumn has the cross
section shown, I8 fxed an the bottom and ree an the top,
determing if the column will buckle or vield when the load
= 10EN, Use a lactor of safety of 3 with respect o
buckling and vielding

184 mum —| Ijllﬂ”—llﬂl 1

LEH) mom | A ]

1T il :nuI

] 1 EH1 pmam

|
148

Mrobs. 13136137




