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Abstract

We consider a portfolio optimization problem of Black-Litterman type, us-
ing the conditional value-at-risk (CVaR) as the risk measure. Further, we use
the multi-variate elliptical distributions, instead of the multi-variate normal
distribution, to model the financial asset returns. We propose an approxima-
tion algorithm and establish the convergence results. Based on the approxima-
tion algorithm, we derive the closed-form solution of the portfolio optimization
problem with CVaR.

Keywords: Black-Litterman Model, Portfolio Optimization, Robust Optimiza-
tion, CVaR, Elliptical Distribution

1 Introduction

In the classical Markowitz portfolio optimization model, the historical mean vector
and covariance matrix of the risky assets are used to obtain the optimal portfolio
allocation while normal distributions are assumed (Markowitz [17]). Mean variance
optimization considers only the first two moments of the return distribution. This
restriction was consistent with reality if asset returns followed a normal distribution
(Fabozzi [6] and Meucci [18]). But we know that asset return’s coskewness and
cokurtosis values differ from normality(See more at Harvey et. al. [10] and Jondeau
and Rockinger [16]). Moreover, historical data tells us that the covariance matrix is

∗Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205, USA.
Email: tpang@ncsu.edu. Corresponding author.
†Operations Research, North Carolina State University, Raleigh, NC 27695-7913, USA. Email:

ckaran@ncsu.edu

1



 Electronic copy available at: https://ssrn.com/abstract=2862165 

a random variable by itself(Hull [12]). Additionally, historical returns are not good
estimates of the future returns and they are very difficult to estimate. Furthermore,
the mapping between expected returns and portfolio weights are complicated. In
addition to that optimal portfolio weights are highly sensitive to the parameters of
the optimization problem(see Meucci [18] and Fabozzi et. al. [6]). Hence, Markowitz’s
optimal allocation vectors are lack of diversification and/or has corner solutions.

Black and Litterman [5] proposes a portfolio optimization technique in which
the investor’s view can be integrated with the historical performance to obtain the
optimal portfolio. The Black-Litterman Model (BLM) combines the intuitions of the
investors about the selected assets with their historical information to update their
mean vector and covariance matrix using Bayesian framework. The BLM assumes
that the expected returns are random variables themselves which normally distributed
and centered at the CAPM equilibrium returns with historical covariance matrix.
There are two different types of BLMs in the literature: the original model(canonical
model) and the alternate model, which is proposed later (see Walters [26] and Meucci
[18]).

Most of the current literatures on the BLM are still using normal distributions
with variance as the risk measure. In this paper, we consider elliptical distributions
with conditional value-at-risk as the risk measure. Note that CAPM holds as long
as return distributions are elliptical(see Meucci [18] and references therein). Deriva-
tion of the posterior distribution for this case is given at Xiao and Valdez [27](see
Proposition 3). On the other hand, CVaR has become more and more popular as a
coherent risk measure in the financial industry. Derivation of the optimal solution
analytically is extremely difficult. Hence, we propose an efficient approximation al-
gorithm for optimization problems under CVaR risk measure. Then, based on the
approximation algorithm, we derive the closed-form solutions for the BLM with el-
liptical distributions and CVaR. To our best knowledge, no closed-form solutions for
BLM with CVaR have been derived before.

The rest of the paper is organized as follows. Definitions of the portfolio allocation
problems (PAP) are given in Section 2. The BLM with CVaR as the risk measure
is reviewed in Section 3. We propose an efficient approximation algorithm for opti-
mization problems under CVaR risk measure in Section 4. The closed-form solution
of the optimization is given in Section 5. Finally, we conclude the paper in Section 6.

2 Portfolio Allocation Problem (PAP)

We consider a market with n risk assets. Risky asset returns are denoted by the
random vector r ∈ Rn which is defined on the probability space (Ω,F , P ). Vectors
are defined as column vectors unless otherwise stated. The mean vector and the
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covariance matrix of risky asset returns are denoted by µ = E[r] and Σ ∈ Rn×n

respectively. The risk free rate of return is denoted as rf ∈ R+∪0. Moreover, x ∈ Rn

is the portfolio weight vector of risky assets and (1 − e′x) is the allocation on the
risk-free asset, where e = (1, 1, · · · , 1)′ is a vector of ones in Rn.

First we define the space of portfolio returns for a given number of available risky
assets and a risk-free asset.

Definition 1 (Space of Portfolio Returns).

V = {ṽ ∈ R : ∃(rf ,x) s.t. ṽ = (1− e′x)rf + r′x}. (1)

Proposition 1. Each portfolio return can be represented as a combination of return
with certainty and return with uncertainity.

Proof. Consider ṽ ∈ V such that ṽ = v0 + r′x where v0 = (1 − e′x)rf then we can
represent ṽ as follows

ṽ = v0 + r′x = v0 + (r− µ)′x + µ′x

= µ′x + (1− e′x)rf + (r− µ)′x.

Note that µ′x + (1− e′x)rf is the return with certainty. On the other hand, we have
uncertainty on (r− µ)′x.

Let us continue with the definition of the constrained Markowitz’s portfolio allo-
cation problem (PAP) (Markowitz [17]):

Definition 2 (Markowitz’s PAP).

max
x
{µ′x + (1− e′x)rf :

√
x′Σx ≤ L}, (2)

where L ∈ R+ is a predefined risk tolerance level of the investor.

In Markowitz’s PAP, the variance is used as the risk measure. There are other
risk measures that are widely used, such as value at risk (VaR) and conditional value
at risk (CVaR).

Definition 3 (VaR). Given α ∈ (0, 1) and a random variable Y, the VaR of the r.v.
Y with α quantile is,

V aRα(Y) = inf{y ∈ R : P(y + Y ≤ 0) ≤ 1− α}.

Definition 4 (CVaR). Given α ∈ (0, 1) and a random variable (i.e. Y) the condi-
tional value at risk of the random variable with confidence level α is,

CV aRα(Y) = −E[Y|Y ≤ −V aRα(Y)].
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V aRα is not a coherent risk measure (see Artzner et. al. [1]). In particular,
diversification benefit may not present under VaR. On the other hand, CVaR is
coherent (The properties of CVaR can be found in Rockafellar and Uryasev [21] and
[22].). It is the main reason that CVaR is now a very popular risk measure.

Here we consider the PAP with CVaR:

Definition 5 (PAP using CVaR).

max
x
{µ′x + (1− e′x)rf : CV aRα((r− rfe)′x + rf ) ≤ L}. (3)

More generally, we can also use a generic coherent risk measure by ρ(ṽ) instead of
CVaR. We give the general portfolio allocation problem(GPAP) using generic coherent
risk measure next.

Definition 6 (GPAP with coherent risk measure ρ).

max
x
{µ′x + (1− e

′
x)rf : ρ((r− rfe)

′
x + rf ) ≤ L} (4)

On the other hand, we can use robust programming(with elliptical uncertainty sets
to be specified below) to model the GPAP. In addition, if we use a generic coherent
risk measure, we can convert it to robust optimization under some certain conditions
and vice versa(see Natarajan et. al. [20]).

We use uncertainty sets in order to manage the uncertainty part of the portfolio
return (i.e. (r− µ)). In particular, we use elliptical uncertainty sets:

Uβ = {r : ‖Σ−1/2(r− µ)‖2 ≤ β}

where β is the scaling parameter which models the risk averseness of the investor
from the deviation of the realized returns from their forecasted values.

The reasons of using elliptical uncertainty sets is twofold: First, when uncertainty
set is elliptical then the robust programming can be converted into conic programming
(Ben Tal and Nemirovski [2]); Second, elliptical uncertainty sets can be used for
leptokurtic behavior of asset returns.

Once we define the uncertainty set then we can find the robust counterpart of
the problem on hand. The robust counterpart is just a deterministic problem, but it
keeps the random structure of the optimization problem. Now, we are ready to state
the GPAP in the sense of robust optimization.

Definition 7 (GPAP with robust optimization).

max
x
{µ′x + (1− e

′
x)rf : (r− rfe)

′
x ≥ −L ∀r ∈ Uβ }
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The process of finding the robust counterpart is straight forward. We first start
with defining the robust counterpart risk measure, ηUβ (ṽ), given by Natarajan et.

al. [20]. Then we find the dual of the robust optimization problem via second order
conic programming. Luckily, ((1−e′x)rf +r′x) is an affine function. The closed-form
solution of minimizing an affine function over a single ellipsoidal constraint is given
by Ben Tal and Nemirovski[3].

We give the connection between PAP with generic risk measure and PAP in the
sense of robust optimization in the following proposition (Note that we use CVaR as
our coherent risk measure).

Proposition 2 (CVaR and Uncertanity Sets). Consider the following uncertainty
set:

Uβ = {r : (r− µ)′Σ−1(r− µ) ≤ β2}. (5)

Then for a portfolio return ṽ in a space given by (1), the closed-form solution of
CVaR is:

CV aRα(ṽ) = −(µ′x + (1− e′x)rf ) + β
√

x′Σx. (6)

Proof.

ρ(v0 + r′x) = ηUβ (v0 + r′x)

(by Theorem 4 of [20])

= ηUβ (µ′x + (1− e′x)rf + (r− µ)′x)

(by Proposition 1)

= −min
r∈Uβ

(µ′x + (1− e′x)rf + (r− µ)′x)

(by Natarajan et. al. [20])

= − (µ′x + (1− e′x)rf ) + β
√

x′Σx

(by Ben Tal and Nemirovski [3]

= CV aRα((r− rfe)′x + rf ).

(by Lemma 4.1 in Xiao and Valdez [27])

Next, let us look at some examples of Proposition 2.

Example 1. Consider the uncertainty set below:

U = {r : (r− µ)′Σ−1(r− µ) ≤ β2}. (7)

We consider three cases.
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(i) If r ∼ N(µ,Σ) and β = f(zα)/(1 − α), where f(·) is the standard normal
density function and zα is the z-score, we get the PAP with CVaR for normal
distributions.

(ii) If r follows a multivariate Student-t distribution i.e. r ∼ t(µ,Σ,m) where m

stands for the degree of freedom, and β = c2m
(1−α)(m−1)

(
1 + y2α

m

) 1−m
2
, where c2 =

(πm)−1/2Γ((m+1)/2)
Γ(m/2)

, then we get the PAP with CVaR for Student-t distributions.

(iii) If r follows a multivariate Logistics distribution i.e. r ∼ ML(µ,Σ), and β =
c3

2(1−α)

(
1− 1

1+e−y
2
α

)
where c3 = Γ(n/2)

π1/2

(∫∞
0
un/2−1 e−u

(1+e−u)2
du
)−1

, then we get the

PAP with CVaR for multivariate Logistics distributions.

We can use the definition of the elliptical uncertainty set and Theorem 4 of Natar-
jan et. al. [20] together with Lemma 4.1 of Xiao and Valdez [27] to derive the results
above. Note that one can also use multivariate elliptical distributions directly and
come up with the corresponding β values(see Landsman and Valdez [14]).

3 BLM with CVaR

We continue with the BLM under elliptical distributions (EDn(·)) given in Xiao
and Valdez [27]. Let r ∼ EDn(µ,D, gn) be an n dimensional vector, denotes the
market factors, where µ, D and gn are the location parameter, dispersion matrix
and the density generator function respectively(For more on elliptical distributions
please see Fang et. al. [7]). Furthermore, conditional random view vector is: v|r ∼
EDk(Pµ,Ω, gk(·; p(r))) where p(r) = (r−Π)′Σ′(r−Π). The posterior distribution
is given by the following proposition.

Proposition 3. The posterior distribution is

r|v ∼ EDk(µBL,ΣBL, gn(·; q(v))), where

µBL = Π + DP′(Ω + PΣP′)−1(v−PΠ)

DBL = Σ−DP′(Ω + PDP′)−1PD, and

q(v) = (v−PΠ)′(Ω + PΣP′)−1(v−PΠ)

ΣBL = DBLCk(q(v)/2)

where Ck is a distribution specific function from R to R.

The key assumption of BLM is that every player in the market solves the Markowitz’s
problem. In other words, BLM takes CAPM equilibrium as prior for the excess re-
turn distribution. However, in our case, investors have views under the CVaR risk
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measure. There are other generalization fo the BLM with CAPM equilibrium. For
example, Silva et. al. [24] gives the BLM under active management, Giacometti et.
al. [9] proposes a model where asset returns follow stable distributions with different
types of risk measures. Unlike models in those papers, here we consider elliptical
distributions for asset returns and solve the constrained model.

Consider the constrained portfolio optimization problem with CVaR(i.e. Defini-
tion 5) with uncertainty set given by (5). Then by using Proposition 2 we get it’s
Lagrangian function:

L(x, λ) =µ′x + (1− e′x)rf − λCV aRα(ṽ)

=µ′x + (1− e′x)rf−(
−x′(µ− erf )− rf + β

√
x′Σx

)
λ

=(1 + λ)[µ′x + (1− e′x)rf ]− λβ
√

x′Σx.

Now, take the partial derivative with respect to x to get the first order necessary
condition and use inverse optimization to find an estimate of expected excess return
vector:

Π =
λβ

1 + λ

(
(x′mktΣxmkt)

−1/2Σxmkt
)
, (8)

where we take x = xmkt as the market weights.
He and Litterman [11] considers the unconstrained mean variance optimization

problem. Therefore, CAPM equilibrium is centered at Π = 2δΣxmkt where they
fixed the value of δ as 1.25. Note that in (8), if we take

λβ

1 + λ
(x′mktΣxmkt)

−1/2 = 2.5

then we will get the same Π value. Hence, our model is a generalization of He and
Litterman [11]. We get the return distribution for the updated excess return vector by
using Proposition 3. We also need to determine the investor risk aversion parameter.
In our problem, investor risk aversion is reflected in two parameters. The first one is
the choice of the parameter β when the investor picks an elliptical distribution (see
Example 1) for the asset returns. The second parameter is λ, which is related with
the risk reward trade off. Now, we can solve the portfolio optimization problem under
CVaR (i.e. definition (5)) with the new(updated) excess return vector and dispersion
matrix.

4 CVaR Approximation

Consider the constrained portfolio optimization problem with CVaR(i.e. Definition 5)
with uncertainty set given by (5). Then by using Proposition 2 we get it’s Lagrangian
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function:

L(x, λ) =µ′x + (1− e′x)rf−(
CV aRα

(
(r− rfe)′ x− rf

)
− L

)
δ

=µ′x + (1− e′x)rf−(
−(µ′x + (1− e′x)rf ) + β

√
x′Σx− L

)
δ

Now, take the partial derivative with respect to x to get the first order necessary
condition.

(1 + δ) (µ− erf )− δ
(
β(x′Σx)−1/2Σx

)
= 0

Ladnsman [13] derives the closed-form solution of the problem of minimizing the root
of a quadratic functional subject to some affine constraints. In addition to that, we
can find the numerical solution using convex (or semidefinite) programming. But
there is no explicit solution solution for constrained PAP with CVaR yet. Hence, we
propose an algorithm to find the closed-form of the optimal solution for that problem.

The asset return distribution is assumed to be elliptical with the parameters de-
fined in Proposition 3. Furthermore, historical mean vector and covariance matrix
are taken as the mean of the asset returns and covariance matrix, respectively. We
can rewrite the constraint as (using Proposition 2)

CV aRα((r− rfe)′x + rf ) ≤ L (9)

⇔− (µ′x + (1− e′x)rf ) + β
√

x′Σx ≤ L (10)

⇔
√

x′Σx ≤ (L+ µ′x + (1− e′x)rf )

β
≡ L̃(x). (11)

For a give xn, we define xn+1 as the solution of the following PAP

max
x
{µ′x + (1− e′x)rf} s.t

√
x′Σx ≤ L̃(xn). (12)

As we can see, the above PAP is of Markowitz mean-variance type, and it is very
easy to solve.

If we start with an initial x0 such that (9) holds(For example, we can take x0 = 0),
then we can show that the sequence L̃(xn) converges. Using the limit of L̃(xn), we
can derive the optimal solution of the PAP with CVaR.

We have the following results.

Lemma 1. For any given xn ∈ Rn, L̃(xn) is bounded above and below.

Proof. Since µ is a given vector, by the definition of L̃(·), it is easy to show that
L̃(xn) is bounded.
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Lemma 2. If the initial vector x0 satisfies (9), then {L̃(xn)} is a non-decreasing
sequence.

Proof. We prove the result by induction. Since x0 satisfies (9) , we have that√
x′0Σx0 ≤ L̃(x0). By virtue of the definition of x1, we can get that

µ′x1 + (1− e′x1)rf ≥ µ′x0 + (1− e′x0)rf .

Then, by the definition of L̃(x) (11), we have

L̃(x1) ≥ L̃(x0).

Further, we have that √
x′1Σx1 ≤ L̃(x0) ≤ L̃(x1).

Now we can assume that

L̃(xn) ≥ L̃(xn−1),
√

x′nΣxn ≤ L̃(xn).

Then using the same arguments as we used for x0 and x1, we can show that

L̃(xn+1) ≥ L̃(xn),
√

x′n+1Σxn+1 ≤ L̃(xn+1).

Therefore, {L̃(xn)} is a non-decreasing sequence.

Theorem 1 (Conv. of L̃(xn) ). L̃(xn)
n→∞−−−→ L̃(x∗) where x∗ is the optimal solution

to the PAP with CVaR (i.e. problem given by Definition 5).

Proof. From Lemma 1 and 2, we can see that L̃(xn) is a bounded and non-decreasing
sequence in R. Thus, the sequence {L̃(xn)} must converge to a real number. We
denote the limit as L̃∗. We will show that L̃∗ = L̃(x∗).

Define x̂ as the solution of

max
x
{µ′x + (1− e′x)rf} s.t

√
x′Σx ≤ L̃∗. (13)

We now claim that
L̃(x̂) = L̃∗. (14)

First let us assume that L̃(x̂) > L̃∗. Now we have√
x̂′Σx̂ = L̃∗ < L̃(x̂).

By the definition of L̃, the above inequality implies that

CV aRα((r− rfe)′x + rf ) < L.
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Taking x0 = x̂ in Lemma 2, we can get that L̃(x̂) ≤ L̃∗, which is a contradiction with
the assumption L̃(x̂) > L̃∗.

Now let us assume that L̃(x̂) < L̃∗. Since L̃∗ is the limit of the non-decreasing
sequence {L̃(xn)}, there must be an integer n such that L̃(xk) > L̃(x̂), ∀k ≥ n. Let
xn+1 be the solution of

max
x
{µ′x + (1− e′x)rf} s.t

√
x′Σx ≤ L̃(xn). (15)

Then we must have L̃(xn+1) ≤ L̃∗. However, as x̂ and xn+1 are the optimal solutions
of (13) and (15), respectively and L̃(xn) ≤ L̃∗, we must have

µ′xn+1 + (1− e′xn+1)rf ≤ µ′x̂ + (1− e′x̂)rf .

By the definition of L̃(·) (see (11)), we can get L̃(xn+1) ≤ L̃(x̂), which is a contradic-
tion, too. So (14) must hold.

On the other hand, by definition, we have

x∗ ∈ argmax{(µ− e)′x + rf : CV aRα((r− rfe)′x + rf ) ≤ L}.

Further, the constraint should be binding for the optimal solution, so we can get
CV aRα((r− rfe)′x∗ + rf ) = L. By the definition of L̃ (see (11)), we can get

CV aRα((r− rfe)′x∗ + rf ) = L⇔
√

(x∗)′Σx∗ = L̃(x∗)

From (14) and (11), we can get

CV aRα((r− rfe)′x̂ + rf ) ≤ L.

Therefore, x̂ is a feasible solution to the PAP with CVaR. Because x∗ is the optimal
solution, we can get that

(µ− e)′x̂ + rf ≤ (µ− e)′x∗ + rf

⇒((µ− e)′x̂ + rf + L)

β
≤ ((µ− e)′x∗ + rf + L)

β

⇒L̃(x̂) ≤ L̃(x∗). (16)

Now, taking x0 as x∗ and using Lemma 2, we can get that

L̃(x∗) ≤ L̃∗ = L̃(x̂).

Therefore, we must have L̃(x∗) = L̃(x̂) = L̃∗. This completes the proof.
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5 Closed-From Solutions of BLM with CVaR

Now, we are ready to give the closed-form solution for PAP with elliptical distributions
under CVaR for the BLM. Under the BLM with CVaR, we have an updated mean
vector µBL and covariance matrix ΣBL which are given by Proposition 3 using the
new Π vector (i.e. equation (8)).

Theorem 2. Let x∗ be the optimal solution for PAP under CVaR then the closed-form
solution is as follows:

x∗ = (L+ rf ) (dβI−V)−1 Σ−1
BL (µBL − erf ) (17)

where

d =
√

(µBL − erf )′Σ
−1
BL(µBL − erf ), (18)

V = Σ−1
BL(µBL − erf )(µBL − erf )

′. (19)

Proof. From Theorem 1 we know that the sequence L̃(xn) converges. We now consider
the sequence of {xn} and will find the explicit optimal solution of the PAP with CVaR.

Let xn+1 be the optimal solution of the optimization problem defined by the
problem parameters (i.e. µBL, rf and ΣBL) and L̃(xn). The closed-form solution of
this problem is well-known:

xn+1 =
Σ−1
BL(µBL − erf )

2δ
, (20)

where δ is the Lagrange multiplier. Since xn+1 is the optimal solution, the value of δ
is given by:

δ =
d

2L̃(xn)
,

where d is defined by (18). If we plug in the value of δ to (20) and use the definition
of L̃(·), we can get

xn+1 =
Σ−1
BL(µBL − erf )L̃(xn)

βd
.

So we have

L̃(xn+1) = L̃

(
Σ−1
BL(µBL − erf )L̃(xn)

βd

)
.

By virtue of Theorem 1, as n→∞, we can get

L̃(x∗) = L̃

(
Σ−1
BL(µBL − erf )L̃(x∗)

βd

)
.
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By the definition of L̃, the above equation is equivalent to

(µBL − erf )
′
[
(βdI−V)x∗

− (L+ rf )Σ
−1
BL(µBL − erf )

]
= 0.

Since it is true for any µBL, we must have

(βdI−V)x∗ = (L+ rf )Σ
−1
BL(µBL − erf ).

Solve it and we can get

x∗ = (L+ rf )(dβI−V)−1Σ−1
BL(µBL − erf ).

This completes the proof.

We continue with the relationship between the constrained models and uncon-
strained model of PAP. First, let us start with the unconstrained model of PAP:

max
x

{
µ′x + (1− e′x)rf −

λx′Σx

2

}
, (21)

where λ denotes the investor’s risk(variance in this case) reward trade-off. The opti-
mal solution of this problem is:

x∗ = λ−1Σ−1(µ− erf ).

We continue with the optimal allocation vector for the constrained model PAP as
given by Definition 2. Using the same arguments given above, we can get the optimal
solution

x∗ =

(√
(µ− erf )′Σ−1(µ− erf )

L

)−1

Σ−1(µ− erf ).

We can see that when the investor has an upper limit for her portfolio then she is
doing nothing but changing her risk-reward coefficient as if she is solving an uncon-
strained model with an updated risk-reward trade-off coefficient (see also Steinbach
[25]). Lastly, we give the solution of the BLM with CVaR (see Theorem 2):

x∗ =

(
dβI−V

(L+ rf )

)−1

Σ−1
BL (µBL − erf ) .

Here, we can see that when the investor uses CVaR in an constrained setting then her
risk-reward coefficient turns into a matrix. This is interesting and one can perturb the
new risk-reward trade-off matrix in order to understand the behavior of the optimal
portfolio vector under different problem settings.
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6 Conclusion

Black and Litterman [5] proposed the BLM in order to overcome the Markowitz
Model’s drawbacks. Their model uses the Bayesian framework to combine the intu-
itions and/or inside information about the selected assets or market parameters with
the historical information of the market to update the mean vector and covariance
matrix. In our work, we use CVaR as a risk measure, instead of the variance risk mea-
sure proposed in the original model. In addition, elliptical uncertainty sets are used
to model the uncertainty of asset returns in order to capture the non-normal behavior
of the asset returns. For constrained problem, deriving the closed-form optimal solu-
tions analytically is extremely difficult. Hence, we propose an efficient approximation
algorithm for the BLM type optimization problems under CVaR and establish the
convergence results. Based on the approximation, we derived the closed-form solution
of the BLM with CVaR.
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