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J Preface

This book tells about lives in science, specifically the lives of thirty from the
pantheon of physics. Some of the names are familiar (Newton, Einstein, Curie,
Heisenberg, Bohr), while others may not be (Clausius, Gibbs, Meitner, Dirac,
Chandrasekhar). All were, or are, extraordinary human beings, at least as fasci-
nating as their subjects. The short biographies in the book tell the stories of both
the people and their physics.

The chapters are varied in format and length, depending on the (sometimes
skimpy) biographical material available. Some chapters are equipped with short
sections (entitled “Lessons”) containing background information on topics in
mathematics, physics, and chemistry for the uninformed reader.

Conventional wisdom holds that general readers are frightened of mathemat-
ical equations. I have not taken that advice, and have included equations in some
of the chapters. Mathematical equations express the language of physics: you
can’t get the message without learning something about the language. That
should be possible if you have a rudimentary (high school) knowledge of algebra,
and, if required, you pay attention to the “Lessons” sections. The glossary and
chronology may also prove helpful. For more biographical material, consult the
works cited in the “Invitation to More Reading” section.

No claim is made that this is a comprehensive or scholarly study; it is intended
as recreational reading for scientists and students of science (formal or informal).
My modest hope is that you will read these chapters casually and for entertain-
ment, and learn the lesson that science is, after all, a human endeavor.

William H. Cropper
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MECHANICS

Historical Synopsis

Physics builds from observations. No physical theory can succeed if
it is not confirmed by observations, and a theory strongly supported
by observations cannot be denied. For us, these are almost truisms.
But early in the seventeenth century these lessons had not yet been
learned. The man who first taught that observations are essential and
supreme in science was Galileo Galilei.

Galileo first studied the motion of terrestrial objects, pendulums,
free-falling balls, and projectiles. He summarized what he observed
in the mathematical language of proportions. And he extrapolated
from his experimental data to a great idealization now called the
“inertia principle,” which tells us, among other things, that an object
projected along an infinite, frictionless plane will continue forever at
a constant velocity. His observations were the beginnings of the
science of motion we now call “mechanics.”

Galileo also observed the day and night sky with the newly
invented telescope. He saw the phases of Venus, mountains on the
Moon, sunspots, and the moons of Jupiter. These celestial
observations dictated a celestial mechanics that placed the Sun at
the center of the universe. Church doctrine had it otherwise: Earth
was at the center. The conflict between Galileo’s telescope and
Church dogma brought disaster to Galileo, but in the end the
telescope prevailed, and the dramatic story of the confrontation
taught Galileo’s most important lesson.

Galileo died in 1642. In that same year, his greatest successor,
Isaac Newton, was born. Newton built from Galileo’s foundations a
system of mechanics based on the concepts of mass, momentum,
and force, and on three laws of motion. Newton also invented a
mathematical language (the “fluxion” method, closely related to our
present-day calculus) to express his mechanics, but in an odd
historical twist, rarely applied that language himself.

Newton’s mechanics had—and still has—cosmic importance. It
applies to the motion of terrestrial objects, and beyond that to
planets, stars, and galaxies. The grand unifying concept is Newton’s
theory of universal gravitation, based on the concept that all objects,
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small, large, and astronomical (with some exotic exceptions), attract
one another with a force that follows a simple inverse-square law.

Galileo and Newton were the founders of modern physics. They
gave us the rules of the game and the durable conviction that the
physical world is comprehensible.



How the Heavens Go
Galileo Galilei

The Tale of the Tower

Legend has it that a young, ambitious, and at that moment frustrated mathematics
professor climbed to the top of the bell tower in Pisa one day, perhaps in 1591,
with a bag of ebony and lead balls. He had advertised to the university com-
munity at Pisa that he intended to disprove by experiment a doctrine originated
by Aristotle almost two thousand years earlier: that objects fall at a rate propor-
tional to their weight; a ten-pound ball would fall ten times faster than a one-
pound ball. With a flourish the young professor signaled to the crowd of amused
students and disapproving philosophy professors below, selected balls of the
same material but with much different weights, and dropped them. Without air
resistance (that is, in a vacuum), two balls of different weights (and made of any
material) would have reached the ground at the same time. That did not happen
in Pisa on that day in 1591, but Aristotle’s ancient principle was clearly violated
anyway, and that, the young professor told his audience, was the lesson. The
students cheered, and the philosophy professors were skeptical.

The hero of this tale was Galileo Galilei. He did not actually conduct that
“experiment” from the Tower of Pisa, but had he done so it would have been
entirely in character. Throughout his life, Galileo had little regard for authority,
and one of his perennial targets was Aristotle, the ultimate authority for univer-
sity philosophy faculties at the time. Galileo’s personal style was confronta-
tional, witty, ironic, and often sarcastic. His intellectual style, as the Tower
story instructs, was to build his theories with an ultimate appeal to obser-
vations.

The philosophers of Pisa were not impressed with either Galileo or his meth-
ods, and would not have been any more sympathetic even if they had witnessed
the Tower experiment. To no one’s surprise, Galileo’s contract at the University
of Pisa was not renewed.
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But Galileo knew how to get what he wanted. He had obtained the Pisa post with
the help of the Marquis Guidobaldo del Monte, an influential nobleman and
competent mathematician. Galileo now aimed for the recently vacated chair of
mathematics at the University of Padua, and his chief backer in Padua was Gian-
vincenzio Pinelli, a powerful influence in the cultural and intellectual life of
Padua. Galileo followed Pinelli’s advice, charmed the examiners, and won the
approval of the Venetian senate (Padua was located in the Republic of Venice,
about twenty miles west of the city of Venice). His inaugural lecture was a
sensation.

Padua offered a far more congenial atmosphere for Galileo’s talents and life-
style than the intellectual backwater he had found in Pisa. In the nearby city of
Venice, he found recreation and more—aristocratic friends. Galileo’s favorite de-
bating partner among these was Gianfrancesco Sagredo, a wealthy nobleman with
an eccentric manner Galileo could appreciate. With his wit and flair for polemics,
Galileo was soon at home in the city’s salons. He took a mistress, Marina Gamba,
described by one of Galileo’s biographers, James Reston, Jr., as “hot-tempered,
strapping, lusty and probably illiterate.” Galileo and Marina had three children:
two daughters, Virginia and Livia, and a son, Vincenzo. In later life, when tragedy
loomed, Galileo found great comfort in the company of his elder daughter,
Virginia.

During his eighteen years in Padua (1592-1610), Galileo made some of his
most important discoveries in mechanics and astronomy. From careful observa-
tions, he formulated the “times-squared” law, which states that the vertical dis-
tance covered by an object in free fall or along an inclined plane is proportional
to the square of the time of the fall. (In modern notation, the equation for free
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fall is expressed s = %, with s and ¢ the vertical distance and time of the fall,
and g the acceleration of gravity.) He defined the laws of projected motion with
a controlled version of the Tower experiment in which a ball rolled down an
inclined plane on a table, then left the table horizontally or obliquely and
dropped to the floor. Galileo found that he could make calculations that agreed
approximately with his experiments by resolving projected motion into two com-
ponents, one horizontal and the other vertical. The horizontal component was
determined by the speed of the ball when it left the table, and was “conserved”—
that is, it did not subsequently change. The vertical component, due to the ball’s
weight, followed the times-squared rule.

For many years, Galileo had been fascinated by the simplicity and regularity
of pendulum motion. He was most impressed by the constancy of the pendulum’s
“period,” that is, the time the pendulum takes to complete its back-and-forth
cycle. If the pendulum’s swing is less than about 30° its period is, to a good
approximation, dependent only on its length. (Another Galileo legend pictures
him as a nineteen-year-old boy in church, paying little attention to the service,
and timing with his pulse the swings of an oil lamp suspended on a wire from
a high ceiling.) In Padua, Galileo confirmed the constant-period rule with exper-
iments, and then uncovered some of the pendulum’s more subtle secrets.

In 1609, word came to Venice that spectacle makers in Holland had invented
an optical device—soon to be called a telescope—that brought distant objects
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much closer. Galileo immediately saw a shining opportunity. If he could build a
prototype and demonstrate it to the Venetian authorities before Dutch entrepre-
neurs arrived on the scene, unprecedented rewards would follow. He knew
enough about optics to guess that the Dutch design was a combination of a con-
vex and a concave lens, and he and his instrument maker had the exceptional
skill needed to grind the lenses. In twenty-four hours, according to Galileo’s own
account, he had a telescope of better quality than any produced by the Dutch
artisans. Galileo could have demanded, and no doubt received, a large sum for
his invention. But fame and influence meant more to him than money. In an
elaborate ceremony, he gave an eight-power telescope to Niccold Contarini, the
doge of Venice. Reston, in Galileo, paints this picture of the presentation of the
telescope: “a celebration of Venetian genius, complete with brocaded advance
men, distinguished heralds and secret operatives. Suddenly, the tube represented
the flowering of Paduan learning.” Galileo was granted a large bonus, his salary
was doubled, and he was reappointed to his faculty position for life.

Then Galileo turned his telescope to the sky, and made some momentous, and
as it turned out fateful, discoveries. During the next several years, he observed
the mountainous surface of the Moon, four of the moons of Jupiter, the phases
of Venus, the rings of Saturn (not quite resolved by his telescope), and sunspots.
In 1610, he published his observations in The Starry Messenger, which was an
immediate sensation, not only in Italy but throughout Europe.

But Galileo wanted more. He now contrived to return to Tuscany and Florence,
where he had spent most of his early life. The grand duke of Tuscany was the
young Cosimo de Medici, recently one of Galileo’s pupils. To further his cause,
Galileo dedicated The Starry Messenger to the grand duke and named the four
moons of Jupiter the Medicean satellites. The flattery had its intended effect.
Galileo soon accepted an astonishing offer from Florence: a salary equivalent to
that of the highest-paid court official, no lecturing duties—in fact, no duties of
any kind—and the title of chief mathematician and philosopher for the grand
duke of Tuscany. In Venice and Padua, Galileo left behind envy and bitterness.

Florence and Rome

Again the gregarious and witty Galileo found intellectual companions among the
nobility. Most valued now was his friendship with the young, talented, and skep-
tical Filippo Salviati. Galileo and his students were regular visitors at Salviati’s
beautiful villa fifteen miles from Florence. But even in this idyll Galileo was
restless. He had one more world to conquer: Rome—that is, the Church. In 1611,
Galileo proposed to the grand duke’s secretary of state an official visit to Rome
in which he would demonstrate his telescopes and impress the Vatican with the
importance of his astronomical discoveries.

This campaign had its perils. Among Galileo’s discoveries was disturbing ev-
idence against the Church’s doctrine that Earth was the center of the universe.
The Greek astronomer and mathematician Ptolemy had advocated this cosmology
in the second century, and it had long been Church dogma. Galileo could see in
his observations evidence that the motion of Jupiter’s moons centered on Jupiter,
and, more troubling, in the phases of Venus that the motion of that planet cen-
tered on the Sun. In the sixteenth century, the Polish astronomer Nicolaus Co-
pernicus had proposed a cosmology that placed the Sun at the center of the
universe. By 1611, when he journeyed to Rome, Galileo had become largely con-
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verted to Copernicanism. Holy Scripture also regarded the Moon and the Sun as
quintessentially perfect bodies; Galileo’s telescope had revealed mountains and
valleys on the Moon and spots on the Sun.

But in 1611 the conflict between telescope and Church was temporarily sub-
merged, and Galileo’s stay was largely a success. He met with the autocratic Pope
Paul V and received his blessing and support. At that time and later, the intel-
lectual power behind the papal throne was Cardinal Robert Bellarmine. It was
his task to evaluate Galileo’s claims and promulgate an official position. He, in
turn, requested an opinion from the astronomers and mathematicians at the Jesuit
Collegio Romano, who reported doubts that the telescope really revealed moun-
tains on the Moon, but more importantly, trusted the telescope’s evidence for the
phases of Venus and the motion of Jupiter’s moons.

Galileo found a new aristocratic benefactor in Rome. He was Prince Frederico
Cesi, the founder and leader of the “Academy of Lynxes,” a secret society whose
members were “philosophers who are eager for real knowledge, and who will
give themselves to the study of nature, and especially to mathematics.” The mem-
bers were young, radical, and, true to the lynx metaphor, sharp-eyed and ruthless
in their treatment of enemies. Galileo was guest of honor at an extravagant ban-
quet put on by Cesi, and shortly thereafter was elected as one of the Lynxes.

Galileo gained many influential friends in Rome and Florence—and, inevita-
bly, a few dedicated enemies. Chief among those in Florence was Ludovico della
Colombe, who became the self-appointed leader of Galileo’s critics. Colombe
means “dove” in Italian. Galileo expressed his contempt by calling Colombe and
company the “Pigeon League.”

Late in 1611, Colombe, whose credentials were unimpressive, went on the
attack and challenged Galileo to an intellectual duel: a public debate on the
theory of floating bodies, especially ice. A formal challenge was delivered to
Galileo by a Pisan professor, and Galileo cheerfully responded, “Ever ready to
learn from anyone, I should take it as a favor to converse with this friend of yours
and reason about the subject.” The site of the debate was the Pitti Palace. In the
audience were two cardinals, Grand Duke Cosimo, and Grand Duchess Christine,
Cosimo’s mother. One of the cardinals was Maffeo Barberini, who would later
become Pope Urban VIII and play a major role in the final act of the Galileo
drama.

In the debate, Galileo took the view that ice and other solid bodies float be-
cause they are lighter than the liquid in which they are immersed. Colombe held
to the Aristotelian position that a thin, flat piece of ice floats in liquid water
because of its peculiar shape. As usual, Galileo built his argument with demon-
strations. He won the audience, including Cardinal Barberini, when he showed
that pieces of ebony, even in very thin shapes, always sank in water, while a
block of ice remained on the surface.

The Gathering Storm

The day after his victory in the debate, Galileo became seriously ill, and he
retreated to Salviati’s villa to recuperate. When he had the strength, Galileo sum-
marized in a treatise his views on floating bodies, and, with Salviati, returned to
the study of sunspots. They mapped the motion of large spots as the spots trav-
eled across the sun’s surface near the equator from west to east.

Then, in the spring of 1612, word came that Galileo and Salviati had a com-
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petitor. He called himself Apelles. (He was later identified as Father Christopher
Scheiner, a Jesuit professor of mathematics in Bavaria.) To Galileo’s dismay, Apel-
les claimed that his observations of sunspots were the first, and explained the
spots as images of stars passing in front of the sun. Not only was the interloper
encroaching on Galileo’s priority claim, but he was also broadcasting a false in-
terpretation of the spots. Galileo always had an inclination to paranoia, and it
now had the upper hand. He sent a series of bold letters to Apelles through an
intermediary, and agreed with Cesi that the letters should be published in Rome
by the Academy of Lynxes. In these letters Galileo asserted for the first time his
adherence to the Copernican cosmology. As evidence he recalled his observations
of the planets: “I tell you that [Saturn] also, no less than the horned Venus agrees
admirably with the great Copernican system. Favorable winds are now blowing
on that system. Little reason remains to fear crosswinds and shadows on so bright
a guide.”

Galileo soon had another occasion to proclaim his belief in Copernicanism.
One of his disciples, Benedetto Castelli, occupied Galileo’s former post, the chair
of mathematics at Pisa. In a letter to Galileo, Castelli wrote that recently he had
had a disturbing interview with the pious Grand Duchess Christine. “Her Lady-
ship began to argue against me by means of the Holy Scripture,” Castelli wrote.
Her particular concern was a passage from the Book of Joshua that tells of God
commanding the Sun to stand still so Joshua’s retreating enemies could not es-
cape into the night. Did this not support the doctrine that the Sun moved around
Earth and deny the Copernican claim that Earth moved and the Sun was
stationary?

Galileo sensed danger. The grand duchess was powerful, and he feared that
he was losing her support. For the first time he openly brought his Copernican
views to bear on theological issues. First he wrote a letter to Castelli. It was
sometimes a mistake, he wrote, to take the words of the Bible literally. The Bible
had to be interpreted in such a way that there was no contradiction with direct
observations: “The task of wise interpreters is to find true meanings of scriptural
passages that will agree with the evidence of sensory experience.” He argued that
God could have helped Joshua just as easily under the Copernican cosmology as
under the Ptolemaic.

The letter to Castelli, which was circulated and eventually published, brought
no critical response for more than a year. In the meantime, Galileo took more
drastic measures. He expanded the letter, emphasizing the primacy of observa-
tions over doctrine when the two were in conflict, and addressed it directly to
Grand Duchess Christine. “The primary purpose of the Holy Writ is to worship
God and save souls,” he wrote. But “in disputes about natural phenomena, one
must not begin with the authority of scriptural passages, but with sensory ex-
perience and necessary demonstrations.” He recalled that Cardinal Cesare Bar-
onius had once said, “The Bible tells us how to go to Heaven, not how the
heavens go.”

The first attack on Galileo from the pulpit came from a young Dominican priest
named Tommaso Caccini, who delivered a furious sermon centering on the mir-
acle of Joshua, and the futility of understanding such grand events without faith
in established doctrine. This was a turning point in the Galileo story. As Reston
puts it: “Italy’s most famous scientist, philosopher to the Grand Duke of Tuscany,
intimate of powerful cardinals in Rome, stood accused publicly of heresy from
an important pulpit, by a vigilante of the faith.” Caccini and Father Niccolo
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Lorini, another Dominican priest, now took the Galileo matter to the Roman
Inquisition, presenting as evidence for heresy the letter to Castelli.

Galileo could not ignore these events. He would have to travel to Rome and
face the inquisitors, probably influenced by Cardinal Bellarmine, who had, four
years earlier, reported favorably on Galileo’s astronomical observations. But once
again Galileo was incapacitated for months by illness. Finally, in late 1615 he
set out for Rome.

As preparation for the inquisitors, a Vatican commission had examined the
Copernican doctrine and found that its propositions, such as placing the Sun at
the center of the universe, were “foolish and absurd and formally heretical.” On
February 25, 1616, the Inquisition met and received instructions from Pope Paul
to direct Galileo not to teach or defend or discuss Copernican doctrine. Disobe-
dience would bring imprisonment.

In the morning of the next day, Bellarmine and an inquisitor presented this
injunction to Galileo orally. Galileo accepted the decision without protest and
waited for the formal edict from the Vatican. That edict, when it came a few
weeks later, was strangely at odds with the judgment delivered earlier by Bellar-
mine. It did not mention Galileo or his publications at all, but instead issued a
general restriction on Copernicanism: “It has come to the knowledge of the Sa-
cred Congregation that the false Pythagorean doctrine, namely, concerning the
movement of the Earth and immobility of the Sun, taught by Nicolaus Coperni-
cus, and altogether contrary to the Holy Scripture, is already spread about and
received by many persons. Therefore, lest any opinion of this kind insinuate itself
to the detriment of Catholic truth, the Congregation has decreed that the works
of Nicolaus Copernicus be suspended until they are corrected.”

Galileo, always an optimist, was encouraged by this turn of events. Despite
Bellarmine’s strict injunction, Galileo had escaped personal censure, and when
the “corrections” to Copernicus were spelled out they were minor. Galileo re-
mained in Rome for three months, and found occasions to be as outspoken as
ever. Finally, the Tuscan secretary of state advised him not to “tease the sleeping
dog further,” adding that there were “rumors we do not like.”

Comets, a Manifesto, and a Dialogue

In Florence again, Galileo was ill and depressed during much of 1617 and 1618.
He did not have the strength to comment when three comets appeared in the
night sky during the last four months of 1618. He was stirred to action, however,
when Father Horatio Grassi, a mathematics professor at the Collegio Romano and
a gifted scholar, published a book in which he argued that the comets provided
fresh evidence against the Copernican cosmology. At first Galileo was too weak
to respond himself, so he assigned the task to one of his disciples, Mario Gui-
ducci, a lawyer and graduate of the Collegio Romano. A pamphlet, Discourse on
Comets, was published under Guiducci’s name, although the arguments were
clearly those of Galileo.

This brought a worthy response from Grassi, and in 1621 and 1622 Galileo
was sufficiently provoked and healthy to publish his eloquent manifesto, The
Assayer. Here Galileo proclaimed, “Philosophy is written in this grand book the
universe, which stands continually open to our gaze. But the book cannot be
understood unless one first learns to comprehend the language and to read the
alphabet in which it is composed. It is written in the language of mathematics,
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and its characters are triangles, circles and other geometric figures, without
which it is humanly impossible to understand a single word of it; without these,
one wanders about in a dark labyrinth.”

The Assayer received Vatican approval, and Cardinal Barberini, who had sup-
ported Galileo in his debate with della Colombe, wrote in a friendly and reas-
suring letter, “We are ready to serve you always.” As it turned out, Barberini’s
good wishes could hardly have been more opportune. In 1623, he was elected
pope and took the name Urban VIII.

After recovering from a winter of poor health, Galileo again traveled to Rome
in the spring of 1624. He now went bearing microscopes. The original microscope
design, like that of the telescope, had come from Holland, but Galileo had greatly
improved the instrument for scientific uses. Particularly astonishing to the Ro-
man cognoscenti were magnified images of insects.

Shortly after his arrival in Rome, Galileo had an audience with the recently
elected Urban VIII. Expecting the former Cardinal Barberini again to promise
support, Galileo found to his dismay a different persona. The new pope was
autocratic, given to nepotism, long-winded, and obsessed with military cam-
paigns. Nevertheless, Galileo left Rome convinced that he still had a clear path.
In a letter to Cesi he wrote, “On the question of Copernicus His Holiness said
that the Holy Church had not condemned, nor would condemn his opinions as
heretical, but only rash. So long as it is not demonstrated as true, it need not be
feared.”

Galileo’s strategy now was to present his arguments hypothetically, without
claiming absolute truth. His literary device was the dialogue. He created three
characters who would debate the merits of the Copernican and Aristotelian sys-
tems, but ostensibly the debate would have no resolution. Two of the characters
were named in affectionate memory of his Florentine and Venetian friends, Gian-
francesco Sagredo and Filippo Salviati, who had both died. In the dialogue Sal-
viati speaks for Galileo, and Sagredo as an intelligent layman. The third character
is an Aristotelian, and in Galileo’s hands earns his name, Simplicio.

The dialogue, with the full title Dialogue Concerning the Two Chief World
Systems, occupied Galileo intermittently for five years, between 1624 and 1629.
Finally, in 1629, it was ready for publication and Galileo traveled to Rome to
expedite approval by the Church. He met with Urban and came away convinced
that there were no serious obstacles.

Then came some alarming developments. First, Cesi died. Galileo had hoped
to have his Dialogue published by Cesi’s Academy of Lynxes, and had counted
on Cesi as his surrogate in Rome. Now with the death of Cesi, Galileo did not
know where to turn. Even more alarming was an urgent letter from Castelli ad-
vising him to publish the Dialogue as soon as possible in Florence. Galileo
agreed, partly because at the time Rome and Florence were isolated by an epi-
demic of bubonic plague. In the midst of the plague, Galileo found a printer in
Florence, and the printing was accomplished. But approval by the Church was
not granted for two years, and when the Dialogue was finally published it con-
tained a preface and conclusion written by the Roman Inquisitor. At first, the
book found a sympathetic audience. Readers were impressed by Galileo’s accom-
plished use of the dialogue form, and they found the dramatis personae, even
the satirical Simplicio, entertaining.

In August 1632, Galileo’s publisher received an order from the Inquisition to
cease printing and selling the book. Behind this sudden move was the wrath of
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Urban, who was not amused by the clever arguments of Salviati and Sagredo,
and the feeble responses of Simplicio. He even detected in the words of Simplicio
some of his own views. Urban appointed a committee headed by his nephew,
Cardinal Francesco Barberini, to review the book. In September, the committee
reported to Urban and the matter was handed over to the Inquisition.

After many delays—Galileo was once again seriously ill, and the plague had
returned—Galileo arrived in Rome in February 1633 to defend himself before the
Inquisition. The trial began on April 12. The inquisitors focused their attention
on the injunction Bellarmine had issued to Galileo in 1616. Francesco Niccolini,
the Tuscan ambassador to Rome, explained it this way to his office in Florence:
“The main difficulty consists in this: these gentlemen [the inquisitors] maintain
that in 1616 he [Galileo] was commanded neither to discuss the question of the
earth’s motion nor to converse about it. He says, to the contrary, that these were
not the terms of the injunction, which were that that doctrine was not to be held
or defended. He considers that he has the means of justifying himself since it
does not appear at all from his book that he holds or defends the doctrine . . . or
that he regards it as a settled question.” Galileo offered in evidence a letter from
Bellarmine, which bolstered his claim that the inquisitors’ strict interpretation
of the injunction was not valid.

Historians have argued about the weight of evidence on both sides, and on a
strictly legal basis, concluded that Galileo had the stronger case. (Among other
things, the 1616 injunction had never been signed or witnessed.) But for the
inquisitors, acquittal was not an option. They offered what appeared to be a
reasonable settlement: Galileo would admit wrongdoing, submit a defense, and
receive a light sentence. Galileo agreed and complied. But when the sentence
came on June 22 it was far harsher than anything he had expected: his book was
to be placed on the Index of Prohibited Books, and he was condemned to life
imprisonment.

Last Act

Galileo’s friends always vastly outnumbered his enemies. Now that he had been
defeated by his enemies, his friends came forward to repair the damage. Ambas-
sador Niccolini managed to have the sentence commuted to custody under the
Archbishop Ascanio Piccolomini of Siena. Galileo’s “prison” was the arch-
bishop’s palace in Siena, frequented by poets, scientists, and musicians, all of
whom arrived to honor Galileo. Gradually his mind returned to the problems of
science, to topics that were safe from theological entanglements. He planned a
dialogue on “two new sciences,” which would summarize his work on natural
motion (one science) and also address problems related to the strengths of ma-
terials (the other science). His three interlocutors would again be named Salviati,
Sagredo, and Simplicio, but now they would represent three ages of the author:
Salviati, the wise Galileo in old age; Sagredo, the Galileo of the middle years in
Padua; and Simplicio, a youthful Galileo.

But Galileo could not remain in Siena. Letters from his daughter Virginia, now
Sister Maria Celeste in the convent of St. Matthew in the town of Arcetri, near
Florence, stirred deep memories. Earlier he had taken a villa in Arcetri to be near
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Virginia and his other daughter, Livia, also a sister at the convent. He now ap-
pealed to the pope for permission to return to Arcetri. Eventually the request was
granted, but only after word had come that Maria Celeste was seriously ill, and
more important, after the pope’s agents had reported that the heretic’s comfort-
able “punishment” in Siena did not fit the crime. The pope’s edict directed that
Galileo return to his villa and remain guarded there under house arrest.

Galileo took up residence in Arcetri in late 1633, and for several months at-
tended Virginia in her illness. She did not recover, and in the spring of 1634,
she died. For Galileo this was almost the final blow. But once again work was
his restorative. For three years he concentrated on his Discourses on Two New
Sciences. That work, his final masterpiece, was completed in 1637, and in 1638
it was published (in Holland, after the manuscript was smuggled out of Italy).
By this time Galileo had gone blind. Only grudgingly did Urban permit Galileo
to travel the short distance to Florence for medical treatment.

But after all he had endured, Galileo never lost his faith. “Galileo’s own con-
science was clear, both as Catholic and as scientist,” Stillman Drake, a contem-
porary science historian, writes. “On one occasion he wrote, almost in despair,
that he felt like burning all his work in science; but he never so much as thought
of turning his back on his faith. The Church turned its back on Galileo, and has
suffered not a little for having done so; Galileo blamed only some wrong-headed
individuals in the Church for that.”

Methods

Galileo’s mathematical equipment was primitive. Most of the mathematical meth-
ods we take for granted today either had not been discovered or had not come
into reliable use in Galileo’s time. He did not employ algebraic symbols or equa-
tions, or, except for tangents, the concepts of trigonometry. His numbers were
always expressed as positive integers, never as decimals. Calculus, discovered
later by Newton and Gottfried Leibniz, was not available. To make calculations
he relied on ratios and proportionalities, as defined in Euclid’s Elements. His
reasoning was mostly geometric, also learned from Euclid.

Galileo’s mathematical style is evident in his many theorems on uniform and
accelerated motion; here a few are presented and then “modernized” through
translation into the language of algebra. The first theorem concerns uniform mo-
tion:

If a moving particle, carried uniformly at constant speed, traverses two dis-
tances, the time intervals required are to each other in the ratio of these
distances.

For us (but not for Galileo) this theorem is based on the algebraic equation s =
vt, in which s represents distance, v speed, and ¢ time. This is a familiar calcu-
lation. For example, if you travel for three hours (¢ = 3 hours) at sixty miles per
hour (v = 60 miles per hour), the distance you have covered is 180 miles (s = 3
X 60 = 180 miles). In Galileo’s theorem, we calculate two distances, call them
s; and s,, for two times, t; and t,, at the same speed, v. The two calculations are

S = th and Sy = Vtz
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Dividing the two sides of these equations into each other, we get the ratio of
Galileo’s theorem,

L 5

t, 52.

Here is a more complicated theorem, which does not require that the two
speeds be equal:

If two particles are moved at a uniform rate, but with unequal speeds, through
unequal distances, then the ratio of time intervals occupied will be the product
of the ratio of the distances by the inverse ratio of the speeds.

In this theorem, there are two different speeds, v; and v,, involved, and the two
equations are

sy = vty and s, = Vyl,.
Dividing both sides of the equations into each other again, we have
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To finish the proof of the theorem, we multiply both sides of this equation by

V2 .
—= and obtain
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On the right side now is a product of the direct ratio of the distances S—l and the
2

V.
inverse ratio of the speeds —2, as required by the theorem.
V1

These theorems assume that any speed v is constant; that is, the motion is not
accelerated. One of Galileo’s most important contributions was his treatment of
uniformly accelerated motion, both in free fall and down inclined planes. “Uni-
formly” here means that the speed changes by equal amounts in equal time in-
tervals. If the uniform acceleration is represented by a, the change in the speed
vin time t is calculated with the equation v = at. For example, if you accelerate
your car at the uniform rate @ = 5 miles per hour per second for t = 10 seconds,

your final speed will be v = 5 X 10 = 50 miles per hour. A second equation,
at?
s = PR calculates s, the distance covered in time t under the uniform accelera-

tion a. This equation is not so familiar as the others mentioned. It is most easily
justified with the methods of calculus, as will be demonstrated in the next
chapter.

The motion of a ball of any weight dropping in free fall is accelerated in the
vertical direction, that is, perpendicular to Earth’s surface, at a rate that is con-
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ventionally represented by the symbol g, and is nearly the same anywhere on
Earth. For the case of free fall, with a = g, the last two equations mentioned are

tZ
v = gt, for the speed attained in free fall in the time ¢, and s = g? for the cor-

responding distance covered.
12
Galileo did not use the equation s = g?, but he did discover through experi-

mental observations the times-squared (#2) part of it. His conclusion is expressed
in the theorem,

The spaces described by a body falling from rest with a uniformly accelerated
motion are to each other as the squares of the time intervals employed in tra-
versing these distances.

Our modernized proof of the theorem begins by writing the free-fall equation
twice,

3 13
Sq =%and52 =72,

and combining these two equations to obtain

Sl_t%
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In addition to his separate studies of uniform and accelerated motion, Galileo
also treated a composite of the two in projectile motion. He proved that the
trajectory followed by a projectile is parabolic. Using a complicated geometric
method, he developed a formula for calculating the dimensions of the parabola
followed by a projectile (for example, a cannonball) launched upward at any
angle of elevation. The formula is cumbersome compared to the trigonometric
method we use today for such calculations, but no less accurate. Galileo dem-
onstrated the use of his method by calculating with remarkable precision a de-
tailed table of parabola dimensions for angles of elevation from 1° to 89°.

In contrast to his mathematical methods, derived mainly from Euclid, Galileo’s
experimental methods seem to us more modern. He devised a system of units
that parallels our own and that served him well in his experiments on pendulum
motion. His measure of distance, which he called a punto, was equivalent to
0.094 centimeter. This was the distance between the finest divisions on a brass
rule. For measurements of time he collected and weighed water flowing from a
container at a constant rate of about three fluid ounces per second. He recorded
weights of water in grains (1 ounce = 480 grains), and defined his time unit,
called a tempo, to be the time for 16 grains of water to flow, which was equivalent
to 1/92 second. These units were small enough so Galileo’s measurements of
distance and time always resulted in large numbers. That was a necessity because
decimal numbers were not part of his mathematical equipment; the only way he
could add significant digits in his calculations was to make the numbers larger.
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Galileo took the metaphysics out of physics, and so begins the story that will
unfold in the remaining chapters of this book. As Stephen Hawking writes, “Ga-
lileo, perhaps more than any single person, was responsible for the birth of mod-
ern science. . .. Galileo was one of the first to argue that man could hope to
understand how the world works, and, moreover, that he could do this by ob-
serving the real world.” No practicing physicist, or any other scientist for that
matter, can do his or her work without following this Galilean advice.

I have already mentioned many of Galileo’s specific achievements. His work
in mechanics is worth sketching again, however, because it paved the way for
his greatest successor. (Galileo died in January 1642. On Christmas Day of that
same year, [saac Newton was born.) Galileo’s mechanics is largely concerned with
bodies moving at constant velocity or under constant acceleration, usually that
of gravity. In our view, the theorems that define his mechanics are based on the

tz
equations v = gt and s = g?, but Galileo did not write these, or any other, al-

gebraic equations; for his numerical calculations he invoked ratios and propor-
tionality. He saw that projectile motion was a resultant of a vertical component
governed by the acceleration of gravity and a constant horizontal component
given to the projectile when it was launched. This was an early recognition that
physical quantities with direction, now called “vectors,” could be resolved into
rectangular components.

I have mentioned, but not emphasized, another building block of Galileo’s
mechanics, what is now called the “inertia principle.” In one version, Galileo
put it this way: “Imagine any particle projected along a horizontal plane without
friction; then we know ... that this particle will move along this plane with a
motion which is uniform and perpetual, provided the plane has no limits.” This
statement reflects Galileo’s genius for abstracting a fundamental idealization from
real behavior. If you give a real ball a push on a real horizontal plane, it will not
continue its motion perpetually, because neither the ball nor the plane is per-
fectly smooth, and sooner or later the ball will stop because of frictional effects.
Galileo neglected all the complexities of friction and obtained a useful postulate
for his mechanics. He then applied the postulate in his treatment of projectile
motion. When a projectile is launched, its horizontal component of motion is
constant in the absence of air resistance, and remains that way, while the vertical
component is influenced by gravity.

Galileo’s mechanics did not include definitions of the concepts of force or
energy, both of which became important in the mechanics of his successors. He
had no way to measure these quantities, so he included them only in a qualitative
way. Galileo’s science of motion contains most of the ingredients of what we now
call “kinematics.” It shows us how motion occurs without defining the forces
that control the motion. With the forces included, as in Newton’s mechanics,
kinematics becomes “dynamics.”

All of these specific Galilean contributions to the science of mechanics were
essential to Newton and his successors. But transcending all his other contribu-
tions was Galileo’s unrelenting insistence that the success or failure of a scientific
theory depends on observations and measurements. Stillman Drake leaves us
with this trenchant synopsis of Galileo’s scientific contributions: “When Galileo
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was born, two thousand years of physics had not resulted in even rough mea-
surements of actual motions. It is a striking fact that the history of each science
shows continuity back to its first use of measurement, before which it exhibits
no ancestry but metaphysics. That explains why Galileo’s science was stoutly
opposed by nearly every philosopher of his time, he having made it as nearly
free from metaphysics as he could. That was achieved by measurements, made
as precisely as possible with means available to Galileo or that he managed to
devise.”



A Man Obsessed

Isaac Newton

Continual Thought

In his later years, Isaac Newton was asked how he had arrived at his theory of
universal gravitation. “By thinking on it continually,” was his matter-of-fact re-
sponse. “Continual thinking” for Newton was almost beyond mortal capacity. He
could abandon himself to his studies with a passion and ecstasy that others
experience in love affairs. The object of his study could become an obsession,
possessing him nonstop, and leaving him without food or sleep, beyond fatigue,
and on the edge of breakdown.

The world Newton inhabited in his ecstasy was vast. Richard Westfall, New-
ton’s principal biographer in this century, describes this “world of thought”:
“Seen from afar, Newton’s intellectual life appears unimaginably rich. He em-
braced nothing less than the whole of natural philosophy [science], which he
explored from several vantage points, ranging all the way from mathematical
physics to alchemy. Within natural philosophy, he gave new direction to optics,
mechanics, and celestial dynamics, and he invented the mathematical tool [cal-
culus] that has enabled modern science further to explore the paths he first
blazed. He sought as well to plumb the mind of God and His eternal plan for the
world and humankind as it was presented in the biblical prophecies.”

But, after all, Newton was human. His passion for an investigation would fade,
and without synthesizing and publishing the work, he would move on to another
grand theme. “What he thought on, he thought on continually, which is to say
exclusively, or nearly exclusively,” Westfall continues, but “[his] career was ep-
isodic.” To build a coherent whole, Newton sometimes revisited a topic several
times over a period of decades.

Woolsthorpe

Newton was born on Christmas Day, 1642, at Woolsthorpe Manor, near the Lin-
colnshire village of Colsterworth, sixty miles northwest of Cambridge and one
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hundred miles from London. Newton’s father, also named Isaac, died three
months before his son’s birth. The fatherless boy lived with his mother, Hannah,
for three years. In 1646, Hannah married Barnabas Smith, the elderly rector of
North Witham, and moved to the nearby rectory, leaving young Isaac behind at
Woolsthorpe to live with his maternal grandparents, James and Mary Ayscough.
Smith was prosperous by seventeenth-century standards, and he compensated
the Ayscoughs by paying for extensive repairs at Woolsthorpe.

Newton appears to have had little affection for his stepfather, his grandparents,
his half-sisters and half-brother, or even his mother. In a self-imposed confession
of sins, made after he left Woolsthorpe for Cambridge, he mentions “Peevishness
with my mother,” “with my sister,” “Punching my sister,” “Striking many,”
“Threatning my father and mother Smith to burne them and the house over
them,” “wishing death and hoping it to some.”

In 1653, Barnabas Smith died, Hannah returned to Woolsthorpe with the three
Smith children, and two years later Isaac entered grammar school in Grantham,
about seven miles from Woolsthorpe. In Grantham, Newton’s genius began to
emerge, but not at first in the classroom. In modern schools, scientific talent is
often first glimpsed as an outstanding aptitude in mathematics. Newton did not
have that opportunity; the standard English grammar school curriculum of the
time offered practically no mathematics. Instead, he displayed astonishing me-
chanical ingenuity. William Stukely, Newton’s first biographer, tells us that he
quickly grasped the construction of a windmill and built a working model,
equipped with an alternate power source, a mouse on a treadmill. He constructed
a cart that he could drive by turning a crank. He made lanterns from “crimpled
paper” and attached them to the tails of kites. According to Stukely, this stunt
“Wonderfully affrighted all the neighboring inhabitants for some time, and caus’d
not a little discourse on market days, among the country people, when over their
mugs of ale.”

Another important extracurricular interest was the shop of the local apothe-
cary, remembered only as “Mr. Clark.” Newton boarded with the Clark family,
and the shop became familiar territory. The wonder of the bottles of chemicals
on the shelves and the accompanying medicinal formulations would help direct
him to later interests in chemistry, and beyond that to alchemy.

With the completion of the ordinary grammar school course of studies, New-
ton reached a crossroads. Hannah felt that he should follow in his father’s foot-
steps and manage the Woolsthorpe estate. For that he needed no further educa-
tion, she insisted, and called him home. Newton’s intellectual promise had been
noticed, however. Hannah'’s brother, William Ayscough, who had attended Cam-
bridge, and the Grantham schoolmaster, John Stokes, both spoke persuasively on
Newton’s behalf, and Hannah relented. After nine months at home with her rest-
less son, Hannah no doubt recognized his ineptitude for farm management. It
probably helped also that Stokes was willing to waive further payment of the
forty-shilling fee usually charged for nonresidents of Grantham. Having passed
this crisis, Newton returned in 1660 to Grantham and prepared for Cambridge.

Cambridge

Newton entered Trinity College, Cambridge, in June 1661, as a “subsizar,” mean-
ing that he received free board and tuition in exchange for menial service. In the
Cambridge social hierarchy, sizars and subsizars were on the lowest level. Evi-
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dently Hannah Smith could have afforded better for her son, but for some reason
(possibly parsimony) chose not to make the expenditure.

With his lowly status as a subsizar, and an already well developed tendency
to introversion, Newton avoided his fellow students, his tutor, and most of the
Cambridge curriculum (centered largely on Aristotle). Probably with few regrets,
he went his own way. He began to chart his intellectual course in a “Philosoph-
ical Notebook,” which contained a section with the Latin title Quaestiones quae-
dam philosophicam (Certain Philosophical Questions) in which he listed and
discussed the many topics that appealed to his unbounded curiosity. Some of
the entries were trivial, but others, notably those under the headings “Motion”
and “Colors,” were lengthy and the genesis of later major studies.

After about a year at Cambridge, Newton entered, almost for the first time, the
field of mathematics, as usual following his own course of study. He soon trav-
eled far enough into the world of seventeenth-century mathematical analysis to
initiate his own explorations. These early studies would soon lead him to a geo-
metrical demonstration of the fundamental theorem of calculus.

Beginning in the summer of 1665, life in Cambridge and in many other parts
of England was shattered by the arrival of a ghastly visitor, the bubonic plague.
For about two years the colleges were closed. Newton returned to Woolsthorpe,
and took with him the many insights in mathematics and natural philosophy that
had been rapidly unfolding in his mind.

Newton must have been the only person in England to recall the plague years
1665—66 with any degree of fondness. About fifty years later he wrote that “in
those days I was in the prime of my age for invention & minded Mathematicks
& Philosophy more then than at any time since.” During these “miracle years,”
as they were later called, he began to think about the method of fluxions (his
version of calculus), the theory of colors, and gravitation. Several times in his
later years Newton told visitors that the idea of universal gravitation came to him
when he saw an apple fall in the garden at Woolsthorpe; if gravity brought the
apple down, he thought, why couldn’t it reach higher, as high as the Moon?

These ideas were still fragmentary, but profound nevertheless. Later they
would be built into the foundations of Newton’s most important work. “The mir-
acle,” says Westfall, “lay in the incredible program of study undertaken in private
and prosecuted alone by a young man who thereby assimilated the achievement
of a century and placed himself at the forefront of European mathematics and
science.”

Genius of this magnitude demands, but does not always receive, recognition.
Newton was providentially lucky. After graduation with a bachelor’s degree, the
only way he could remain at Cambridge and continue his studies was to be
elected a fellow of Trinity College. Prospects were dim. Trinity had not elected
fellows for three years, only nine places were to be filled, and there were many
candidates. Newton was not helped by his previous subsizar status and unortho-
dox program of studies. But against all odds, he was included among the elected.
Evidently he had a patron, probably Humphrey Babington, who was related to
Clark, the apothecary in Grantham, and a senior fellow of Trinity.

The next year after election as a “minor” fellow, Newton was awarded the
Master of Arts degree and elected a “major” fellow. Then in 1668, at age twenty-
seven and still insignificant in the college, university, and scientific hierarchy,
he was appointed Lucasian Professor of Mathematics. His patron for this sur-
prising promotion was Isaac Barrow, who was retiring from the Lucasian chair
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and expecting a more influential appointment outside the university. Barrow had
seen enough of Newton’s work to recognize his brilliance.

Newton’s Trinity fellowship had a requirement that brought him to another
serious crisis. To keep his fellowship he regularly had to affirm his belief in the
articles of the Anglican Church, and ultimately be ordained a clergyman. Newton
met the requirement several times, but by 1675, when he could no longer escape
the ordination rule, his theological views had taken a turn toward heterodoxy,
even heresy. In the 1670s Newton immersed himself in theological studies that
eventually led him to reject the doctrine of the Trinity. This was heresy, and if
admitted, meant the ruination of his career. Although Newton kept his heretical
views secret, ordination was no longer a possibility, and for a time, his Trinity
fellowship and future at Cambridge appeared doomed.

But providence intervened, once again in the form of Isaac Barrow. Since leav-
ing Cambridge, Barrow had served as royal chaplain. He had the connections at
Court to arrange a royal dispensation exempting the Lucasian Professor from the
ordination requirement, and another chapter in Newton’s life had a happy
ending.

Newton could not stand criticism, and he had many critics. The most prominent
and influential of these were Robert Hooke in England, and Christiaan Huygens
and Gottfried Leibniz on the Continent.

Hooke has never been popular with Newton partisans. One of his contempo-
raries described him as “the most ill-natured, conceited man in the world, hated
and despised by most of the Royal Society, pretending to have all other inven-
tions when once discovered by their authors.” There is a grain of truth in this
concerning Hooke’s character, but he deserves better. In science he made contri-
butions to optics, mechanics, and even geology. His skill as an inventor was
renowned, and he was a surveyor and an architect. In personality, Hooke and
Newton were polar opposites. Hooke was a gregarious extrovert, while Newton,
at least during his most creative years, was a secretive introvert. Hooke did not
hesitate to rush into print any ideas that seemed plausible. Newton shaped his
concepts by thinking about them for years, or even decades. Neither man could
bear to acknowledge any influence from the other. When their interests over-
lapped, bitter confrontations were inevitable.

Among seventeenth-century physicists, Huygens was most nearly Newton’s
equal. He made important contributions in mathematics. He invented the pen-
dulum clock and developed the use of springs as clock regulators. He studied
telescopes and microscopes and introduced improvements in their design. His
studies in mechanics touched on statics, hydrostatics, elastic collisions, projectile
motion, pendulum theory, gravity theory, and an implicit force concept, includ-
ing the concept of centrifugal force. He pictured light as a train of wave fronts
transmitted through a medium consisting of elastic particles. In matters relating
to physics, this intellectual menu is strikingly similar to that of Newton. Yet
Huygens’s influence beyond his own century was slight, while Newton’s was
enormous. One of Huygens’s limitations was that he worked alone and had few
disciples. Also, like Newton, he often hesitated to publish, and when the work
finally saw print others had covered the same ground. Most important, however,
was his philosophical bias. He followed René Descartes in the belief that natural
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phenomena must have mechanistic explanations. He rejected Newton’s theory of
universal gravitation, calling it “absurd,” because it was no more than mathe-
matics and proposed no mechanisms.

Leibniz, the second of Newton’s principal critics on the Continent, is re-
membered more as a mathematician than as a physicist. Like that of Huygens,
his physics was limited by a mechanistic philosophy. In mathematics he made
two major contributions, an independent (after Newton’s) invention of calculus,
and an early development of the principles of symbolic logic. One manifestation
of Leibniz’s calculus can be seen today in countless mathematics and physics
textbooks: his notation. The basic operations of calculus are differentiation and
integration, accomplished with derivatives and integrals. The Leibniz symbols

for derivatives (e.g., Z—i{/) and integrals (e.g., [ydx) have been in constant use for
more than three hundred years. Unlike many of his scientific colleagues, Leibniz
never held an academic post. He was everything but an academic, a lawyer,
statesman, diplomat, and professional genealogist, with assignments such as ar-
ranging peace negotiations, tracing royal pedigrees, and mapping legal reforms.
Leibniz and Newton later engaged in a sordid clash over who invented calculus

first.

Calculus Lessons

The natural world is in continuous, never-ending flux. The aim of calculus is to
describe this continuous change mathematically. As modern physicists see it, the
methods of calculus solve two related problems. Given an equation that expresses
a continuous change, what is the equation for the rate of the change? And, con-
versely, given the equation for the rate of change, what is the equation for the
change? Newton approached calculus this way, but often with geometrical ar-
guments that are frustratingly difficult for those with little geometry. I will avoid
Newton’s complicated constructions and present here for future reference a few
rudimentary calculus lessons more in the modern style.

Suppose you want to describe the motion of a ball falling freely from the Tower
in Pisa. Here the continuous change of interest is the trajectory of the ball, ex-
pressed in the equation

— gt (1)

in which t represents time, s the ball’s distance from the top of the tower, and g
a constant we will interpret later as the gravitational acceleration. One of the
problems of calculus is to begin with equation (1) and calculate the ball’s rate of
fall at every instant.

This calculation is easily expressed in Leibniz symbols. Imagine that the ball
is located a distance s from the top of the tower at time ¢, and that an instant
later, at time t + dt, it is located at s + ds; the two intervals dt and ds, called
“differentials” in the terminology of calculus, are comparatively very small. We
have equation (1) for time ¢ at the beginning of the instant. Now write the equa-
tion for time t + dt at the end of the instant, with the ball at s + ds,
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gt + dt)?
- 2

- g[t2 + 2tdt + (dB?] (2)

s+ ds

gt
2

+gm+§w%

tZ
Notice the term s on the left side of the last equation and the term g7 the right.
According to equation (1), these terms are equal, so they can be canceled from
the last equation, leaving

m=gm+§w% (3)

In the realm where calculus operates, the time interval dt is very small, and
(dt)? is much smaller than that. (Squares of small numbers are much smaller
numbers; for example, compare 0.001 with (0.001)? = 0.000001.) Thus the term
containing (dt)? in equation (3) is much smaller than the term containing dt, in
fact, so small it can be neglected, and equation (3) finally reduces to

ds = gtdt. (4)
Dividing by the dt factor on both sides of this equation, we have finally

ds
E = gt. (5]

(As any mathematician will volunteer, this is far from a rigorous account of the
workings of calculus.)

This result has a simple physical meaning. It calculates the instantaneous
speed of the ball at time t. Recall that speed is always calculated by dividing a
distance interval by a time interval. (If, for example, the ball falls 10 meters at

10
constant speed for 2 seconds, its speed is o = 5 meters per second.) In equation
(5), the instantaneous distance and time intervals ds and dt are divided to cal-

s
culate the instantaneous speed I

The ratio % in equation (5) is called a “derivative,” and the equation, like any
other containing a derivative, is called a “differential equation.” In mathematical
physics, differential equations are ubiquitous. Most of the theories mentioned in
this book rely on fundamental differential equations. One of the rules of theo-
retical physics is that (with a few exceptions) its laws are most concisely stated
in the common language of differential equations.

The example has taken us from equation (1) for a continuous change to equa-
tion (5) for the rate of the change at any instant. Calculus also supplies the means
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to reverse this argument and derive equation (1) from equation (5). The first step
is to return to equation (4) and note that the equation calculates only one differ-
ential step, ds, in the trajectory of the ball. To derive equation (1) we must add
all of these steps to obtain the full trajectory. This summation is an “integration”
operation and in the Leibniz notation it is represented by the elongated-S symbol

f . For integration of equation (4) we write

st = fgtdt. (6)

We know that this must be equivalent to equation (1), so we infer that the rules
for evaluating the two “integrals” in equation (6) are

jds =g, (7)
and
f gtdt = %tz_ 8)

Integrals and integration are just as fundamental in theoretical physics as dif-
ferential equations. Theoreticians usually compose their theories by first writing
differential equations, but those equations are likely to be inadequate for the
essential further task of comparing the predictions of the theory with experimen-
tal and other observations. For that, integrated equations are often a necessity.
The great misfortune is that some otherwise innocent-looking differential equa-
tions are extremely difficult to integrate. In some important cases (including one
Newton struggled with for many years, the integration of the equations of motion
for the combined system comprising Earth, the Moon, and the Sun), the equations
cannot be handled at all without approximations.

A glance at a calculus textbook will reveal the differentiation rule used to
arrive at equation (5), the integration rules (7) and (8), and dozens of others. As
its name implies, calculus is a scheme for calculating, in particular for calcula-
tions involving derivatives and differential equations. The scheme is organized
around the differentiation and integration rules.

Calculus provides a perfect mathematical context for the concepts of mechan-

d
ics. In the example, the derivative Fi calculates a speed. Any speed v is calcu-
lated the same way,
ds
=—. 9
MT ©)

If the speed changes with time—if there is an acceleration—that can be expressed

dv
as the rate of change in v, as the derivative a So the acceleration differential

equation is
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dv

a = E’ (10)

in which a represents acceleration. The freely falling ball accelerates, that is, its
speed increases with time, as equation (5) combined with equation (9), which is
written

v = gt, (11)

shows. The constant factor g is the acceleration of free fall, that is, the gravita-
tional acceleration.

This discussion has used the Leibniz notation throughout. Newton’s calculus
notation was similar but less convenient. He emphasized rates of change with
time, called them “fluxions,” and represented them with an overhead dot nota-
tion. For example, in Newton’s notation, equation (5) becomes

s = gt,

) ds . . . . .
in which s, Newton’s symbol for —, is the distance fluxion, and equation (10) is

dt

a=v,

. dv
with v representing a the speed fluxion.

Optics

The work that first brought Newton to the attention of the scientific community
was not a theoretical or even a mathematical effort; it was a prodigious technical
achievement. In 1668, shortly before his appointment as Lucasian Professor,
Newton designed and constructed a “reflecting” telescope. In previous tele-
scopes, beginning with the Dutch invention and Galileo’s improvement, light was
refracted and focused by lenses. Newton’s telescope reflected and focused light
with a concave mirror. Refracting telescopes had limited resolution and to
achieve high magnification had to be inconveniently long. (Some refracting tele-
scopes at the time were a hundred feet long, and a thousand-footer was planned.)
Newton’s design was a considerable improvement on both counts.

Newton’s telescope project was even more impressive than that of Galileo.
With no assistance (Galileo employed a talented instrument maker), Newton cast
and ground the mirror, using a copper alloy he had prepared, polished the mirror,
and built the tube, the mount, and the fittings. The finished product was just six
inches in length and had a magnification of forty, equivalent to a refracting tele-
scope six feet long.

Newton was not the first to describe a reflecting telescope. James Gregory,
professor of mathematics at St. Andrews University in Scotland, had earlier pub-
lished a design similar to Newton’s, but could not find craftsmen skilled enough
to construct it.

No less than Galileo’s, Newton'’s telescope was vastly admired. In 1671, Barrow
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demonstrated it to the London gathering of prominent natural philosophers
known as the Royal Society. The secretary of the society, Henry Oldenburg, wrote
to Newton that his telescope had been “examined here by some of the most
eminent in optical science and practice, and applauded by them.” Newton was
promptly elected a fellow of the Royal Society.

Before the reflecting telescope, Newton had made other major contributions in
the field of optics. In the mid-1660s he had conceived a theory that held that
ordinary white light was a mixture of pure colors ranging from red, through orange,
yellow, green, and blue, to violet, the rainbow of colors displayed by a prism
when it receives a beam of white light. In Newton’s view, the prism separated
the pure components by refracting each to a different extent. This was a contra-
diction of the prevailing theory, advocated by Hooke, among others, that light in
the purest form is white, and colors are modifications of the pristine white light.

Newton demonstrated the premises of his theory in an experiment employing
two prisms. The first prism separated sunlight into the usual red-through-violet
components, and all of these colors but one were blocked in the beam received
by the second prism. The crucial observation was that the second prism caused
no further modification of the light. “The purely red rays refracted by the second
prism made no other colours but red,” Newton observed in 1666, “& the purely
blue no other colours but blue ones.” Red and blue, and other colors produced
by the prism, were the pure colors, not the white.

Soon after his sensational success with the reflecting telescope in 1671, New-
ton sent a paper to Oldenburg expounding this theory. The paper was read at a
meeting of the Royal Society, to an enthusiastically favorable response. Newton
was then still unknown as a scientist, so Oldenburg innocently took the addi-
tional step of asking Robert Hooke, whose manifold interests included optics, to
comment on Newton’s theory. Hooke gave the innovative and complicated paper
about three hours of his time, and told Oldenburg that Newton’s arguments were
not convincing.

This response touched off the first of Newton’s polemical battles with his critics.
His first reply was restrained; it prompted Hooke to give the paper in question
more scrutiny, and to focus on Newton’s hypothesis that light is particle-like.
(Hooke had found an inconsistency here; Newton claimed that he did not rely on
hypotheses.) Newton was silent for awhile, and Hooke, never silent, claimed that
he had built a reflecting telescope before Newton. Next, Huygens and a Jesuit
priest, Gaston Pardies, entered the controversy. Apparently in support of Newton,
Huygens wrote, “The theory of Mr. Newton concerning light and colors appears
highly ingenious to me.” In a communication to the Philosophical Transactions of
the Royal Society, Pardies questioned Newton’s prism experiment, and Newton’s
reply, which also appeared in the Transactions, was condescending. Hooke com-
plained to Oldenburg that Newton was demeaning the debate, and Oldenburg
wrote a cautionary letter to Newton. By this time, Newton was aroused enough to
refute all of Hooke’s objections in a lengthy letter to the Royal Society, later pub-
lished in the Transactions. This did not quite close the dispute; in a final episode,
Huygens reentered the debate with criticisms similar to those offered by Hooke.

In too many ways, this stalemate between Newton and his critics was petty,
but it turned finally on an important point. Newton’s argument relied crucially
on experimental evidence; Hooke and Huygens would not grant the weight of
that evidence. This was just the lesson Galileo had hoped to teach earlier in the
century. Now it was Newton’s turn.
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Alchemy and Heresy

In his nineteenth-century biography of Newton, David Brewster surprised his
readers with an astonishing discovery. He revealed for the first time that Newton’s
papers included a vast collection of books, manuscripts, laboratory notebooks,
recipes, and copied material on alchemy. How could “a mind of such power. ..
stoop to be even the copyist of the most contemptible alchemical poetry,” Brew-
ster asked. Beyond that he had little more to say about Newton the alchemist.

By the time Brewster wrote his biography, alchemy was a dead and unla-
mented endeavor, and the modern discipline of chemistry was moving forward
at a rapid pace. In Newton’s century the rift between alchemy and chemistry was
just beginning to open, and in the previous century alchemy was chemistry.

Alchemists, like today’s chemists, studied conversions of substances into other
substances, and prescribed the rules and recipes that governed the changes. The
ultimate conversion for the alchemists was the transmutation of metals, including
the infamous transmutation of lead into gold. The theory of transmutation had
many variations and refinements, but a fundamental part of the doctrine was the
belief that metals are compounded of mercury and sulfur—not ordinary mercury
and sulfur but principles extracted from them, a “spirit of sulfur” and a “philo-
sophic mercury.” The alchemist’s goal was to extract these principles from im-
pure natural mercury and sulfur; once in hand, the pure forms could be com-
bined to achieve the desired transmutations. In the seventeenth century, this
program was still plausible enough to attract practitioners, and the practitioners
patrons, including kings.

The alchemical literature was formidable. There were hundreds of books
(Newton had 138 of them in his library), and they were full of the bizarre ter-
minology and cryptic instructions alchemists devised to protect their work from
competitors. But Newton was convinced that with thorough and discriminating
study, coupled with experimentation, he could mine a vein of reliable observa-
tions beneath all the pretense and subterfuge. So, in about 1669, he plunged into
the world of alchemy, immediately enjoying the challenges of systematizing the
chaotic alchemical literature and mastering the laboratory skills demanded by
the alchemist’s fussy recipes.

Newton’s passion for alchemy lasted for almost thiry years. He accumulated
more than a million words of manuscript material. An assistant, Humphrey New-
ton (no relation), reported that in the laboratory the alchemical experiments gave
Newton “a great deal of satisfaction & Delight. ... The Fire [in the laboratory
furnaces] scarcely going out either Night or Day. . . . His Pains, his Dilligence at
those sett times, made me think, he aim’d at something beyond y® Reach of
humane Art & Industry.”

What did Newton learn during his years in company with the alchemists? His
transmutation experiments did not succeed, but he did come to appreciate a
fundamental lesson still taught by modern chemistry and physical chemistry:
that the particles of chemical substances are affected by the forces of attraction
and repulsion. He saw in some chemical phenomena a “principle of sociability”
and in others “an endeavor to recede.” This was, as Westfall writes, “arguably
the most advanced product of seventeenth-century chemistry.” It presaged the
modern theory of “chemical affinities,” which will be addressed in chapter 10.

For Newton, the attraction forces he saw in his crucibles were of a piece with
the gravitational force. There is no evidence that he equated the two kinds of
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forces, but some commentators have speculated that his concept of universal
gravitation was inspired, not by a Lincolnshire apple, but by the much more
complicated lessons of alchemy.

During the 1670s, Newton had another subject for continual study and
thought; he was concerned with biblical texts instead of scientific texts. He be-
came convinced that the early Scriptures expressed the Unitarian belief that al-
though Christ was to be worshipped, he was subordinate to God. Newton cited
historical evidence that this text was corrupted in the fourth century by the in-
troduction of the doctrine of the Trinity. Any form of anti-Trinitarianism was
considered heresy in the seventeenth century. To save his fellowship at Cam-
bridge, Newton kept his unorthodox beliefs secret, and, as noted, he was rescued
by a special dispensation when he could no longer avoid the ordination require-
ment of the fellowship.

Halley’s Question

In the fall of 1684, Edmond Halley, an accomplished astronomer, traveled to
Cambridge with a question for Newton. Halley had concluded that the gravita-
tional force between the Sun and the planets followed an inverse-square law—
that is, the connection between this “centripetal force” (as Newton later called
it) and the distance r between the centers of the planet and the Sun is

. 15 1
centripetal force =2

(Read “proportional to” for the symbol «.) The force decreases by 22 = Vs if r
doubles, by 42 = Vs if r triples, and so forth. Halley’s visit and his question were
later described by a Newton disciple, Abraham DeMoivre:

In 1684 Dr Halley came to visit [Newton] at Cambridge, after they had some
time together, the D* asked him what he thought the curve would be that would
be described by the Planets supposing the force of attraction towards the Sun
to be reciprocal to the square of their distance from it. S* Isaac replied imme-
diately that it would be an [ellipse], the Doctor struck with joy & amazement
asked him how he knew it, why saith he I have calculated it, whereupon D~
Halley asked him for his calculation without farther delay, S* Isaac looked
among his papers but could not find it, but he promised him to renew it, & then
send it to him.

A few months later Halley received the promised paper, a short, but remark-
able, treatise, with the title De motu corporum in gyrum (On the Motion of Bodies
in Orbit). It not only answered Halley’s question, but also sketched a new system
of celestial mechanics, a theoretical basis for Kepler’s three laws of planetary
motion.

Kepler's Laws

Johannes Kepler belonged to Galileo’s generation, although the two never met.
In 1600, Kepler became an assistant to the great Danish astronomer Tycho Brahe,
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Planet

Figure 2.1. An elliptical planetary orbit. The orbit shown is
exaggerated. Most planetary orbits are nearly circular.

and on Tycho’s death, inherited both his job and his vast store of astronomical
observations. From Tycho’s data Kepler distilled three great empirical laws:

1. The Law of Orbits: The planets move in elliptical orbits, with the Sun situ-
ated at one focus.

Figure 2.1 displays the geometry of a planetary ellipse. Note the dimensions a
and b of the semimajor and semiminor axes, and the Sun located at one focus.

2. The Law of Equal Areas: A line joining any planet to the Sun sweeps out
equal areas in equal times.

Figure 2.2 illustrates this law, showing the radial lines joining a planet with the
Sun, and areas swept out by the lines in equal times with the planet traveling
different parts of its elliptical orbit. The two areas are equal, and the planet
travels faster when it is closer to the Sun.

3. The Law of Periods: The square of the period of any planet about the Sun is
proportional to the cube of the length of the semimajor axis.

A planet’s period is the time it requires to travel its entire orbit—365 days for
Earth. Stated as a proportionality, with P representing the period and a the length
of the semimajor axis, this law asserts that

P2 o« g3,

Figure 2.2. Kepler’s law of equal areas. The area A, equals
the area A,.
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Halley’s Reward

“T keep [a] subject constantly before me,” Newton once remarked, “and wait *till
the first dawnings open slowly, by little and little, into a full and clear light.”
Kepler’s laws had been on Newton’s mind since his student days. In “first dawn-
ings” he had found connections between the inverse-square force law and Ke-
pler’s first and third laws, and now in De motu he was glimpsing in “a full and
clear light” the entire theoretical edifice that supported Kepler’s laws and other
astronomical observations. Once more, Newton’s work was “the passionate study
of a man obsessed.” His principal theme was the mathematical theory of univer-
sal gravitation.

First, he revised and expanded De motu, still focusing on celestial mechanics,
and then aimed for a grander goal, a general dynamics, including terrestrial as
well as celestial phenomena. This went well beyond De motu, even in title. For
the final work, Newton chose the Latin title Philosophiae naturalis principia
mathematica (Mathematical Principles of Natural Philosophy), usually shortened
to the Principia.

When it finally emerged, the Principia comprised an introduction and three
books. The introduction contains definitions and Newton’s candidates for the
fundamental laws of motion. From these foundations, book 1 constructs exten-
sive and sophisticated mathematical equipment, and applies it to objects moving
without resistance—for example, in a vacuum. Book 2 treats motion in resisting
mediums—for example, in a liquid. And book 3 presents Newton’s cosmology,
his “system of the world.”

In a sense, Halley deserves as much credit for bringing the Principia into the
world as Newton does. His initial Cambridge visit reminded Newton of unfin-
ished business in celestial mechanics and prompted the writing of De motu.
When Halley saw De motu in November 1684, he recognized it for what it was,
the beginning of a revolution in the science of mechanics. Without wasting any
time, he returned to Cambridge with more encouragement. None was needed.
Newton was now in full pursuit of the new dynamics. “From August 1684 until
the spring of 1686,” Westfall writes, “[Newton’s] life [was] a virtual blank except
for the Principia.”

By April 1686, books 1 and 2 were completed, and Halley began a campaign
for their publication by the Royal Society. Somehow (possibly with Halley ex-
ceeding his limited authority as clerk of the society), the members were per-
suaded at a general meeting and a resolution was passed, ordering “that Mr.
Newton’s Philosophiae naturalis principia mathematica be printed forthwith.”
Halley was placed in charge of the publication.

Halley now had the Principia on the road to publication, but it was to be a
bumpy ride. First, Hooke made trouble. He believed that he had discovered the
inverse-square law of gravitation and wanted recognition from Newton. The ac-
knowledgment, if any, would appear in book 3, now nearing completion. Newton
refused to recognize Hooke’s priority, and threatened to suppress book 3. Halley
had not yet seen book 3, but he sensed that without it the Principia would be a
body without a head. “S* I must now again beg you, not to let your resentment
run so high, as to deprive us of your third book,” he wrote to Newton. The
beheading was averted, and Halley’s diplomatic appeals may have been the de-
cisive factor.

In addition to his editorial duties, Halley was also called upon to subsidize



Isaac Newton 3]

the publication of the Principia. The Royal Society was close to bankruptcy and
unable even to pay Halley his clerk’s salary of fifty pounds. In his youth, Halley
had been wealthy, but by the 1680s he was supporting a family and his means
were reduced. The Principia was a gamble, and it carried some heavy financial
risks.

But finally, on July 5, 1687, Halley could write to Newton and announce that
“I have at length brought your Book to an end.” The first edition sold out quickly.
Halley at least recovered his costs, and more important, he received the acknow-
ledgment from Newton that he deserved: “In the publication of this work the
most acute and universally learned Mr Edmund Halley not only assisted me in
correcting the errors of the press and preparing the geometrical figures, but it
was through his solicitations that it came to be published.”

The Principia

What Halley coaxed from Newton is one of the greatest masterpieces in scientific
literature. It is also one of the most inaccessible books ever written. Arguments
in the Principia are presented formally as propositions with (sometimes sketchy)
demonstrations. Some propositions are theorems and others are developed as
illustrative calculations called “problems.” The reader must meet the challenge
of each proposition in sequence to grasp the full argument.

Modern readers of the Principia are also burdened by Newton’s singular math-
ematical style. Propositions are stated and demonstrated in the language of geo-
metry, usually with reference to a figure. (In about five hundred pages, the Prin-
cipia has 340 figures, some of them extremely complicated.) To us this seems an
anachronism. By the 1680s, when the Principia was under way, Newton had
already developed his fluxional method of calculus. Why did he not use calculus
to express his dynamics, as we do today?

Partly it was an aesthetic choice. Newton preferred the geometry of the “an-
cients,” particularly Euclid and Appolonius, to the recently introduced algebra
of Descartes, which played an essential role in fluxional equations. He found the
geometrical method “much more elegant than that of Descartes . . . [who] attains
the result by means of an algebraic calculus which, if one transcribed it in words
(in accordance with the practice of the Ancients in their writings) is revealed
to be boring and complicated to the point of provoking nausea, and not be
understood.”

There was another problem. Newton could not use the fluxion language he
had invented twenty years earlier for the practical reason that he had never pub-
lished the work (and would not publish it for still another twenty years). As the
science historian Frangois De Gandt explains, “[The] innovative character [of the
Principia] was sure to excite controversy. To combine with this innovative char-
acter another novelty, this time mathematical, and to make unpublished proce-
dures in mathematics the foundation for astonishing physical assertions, was to
risk gaining nothing.”

So Newton wrote the Principia in the ancient geometrical style, modified when
necessary to represent continuous change. But he did not reach his audience.
Only a few of Newton’s contemporaries read the Principia with comprehension,
and following generations chose to translate it into a more transparent, if less
elegant, combination of algebra and the Newton-Leibniz calculus. The fate of the
Principia, like that of some of the other masterpieces of scientific literature



Great Physicists

(Clausius on thermodynamics, Maxwell on the electromagnetic field, Boltzmann
on gas theory, Gibbs on thermodynamics, and Einstein on general relativity), was
to be more admired than read.

The fearsome challenge of the Principia lies in its detailed arguments. In out-
line, free of the complicated geometry and the maddening figures, the work is
much more accessible. It begins with definitions of two of the most basic concepts
of mechanics:

Definition 1: The quantity of matter is the measure of the same arising from its
density and bulk conjointly.

Definition 2: The quantity of motion is the measure of the same, arising from
the velocity and quantity of matter conjointly.

”

By “quantity of matter” Newton means what we call “mass,” “quantity of motion”
in our terms is “momentum,” “bulk” can be measured as a volume, and “density”
is the mass per unit volume (lead is more dense than water, and water more
dense than air). Translated into algebraic language, the two definitions read

m = pV, (12)
and
p = mv, (13)

in which mass is represented by m, density by p, volume by V, momentum by
p, and velocity by v.

Following the definitions are Newton’s axioms, his famous three laws of mo-
tion. The first is Galileo’s law of inertia:

Law 1: Every body continues in its state of rest, or of uniform motion in a right
[straight] line, unless it is compelled to change that state by forces impressed
upon it.

The second law of motion has more to say about the force concept:

Law 2: The change of motion is proportional to the motive force impressed; and
is made in the direction of the right line in which the force is impressed.

By “change of motion” Newton means the instantaneous rate of change in the

N .
momentum, equivalent to the time derivative _p_ In the modern convention, force

dt

is defined as this derivative, and the equation for calculating a force fis simply

o

S dt’ (14)

or, with the momentum p evaluated by equation (13),
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_ d(mv)
/= dt

(15)

The first two laws convey simple physical messages. Imagine that your car is
coasting on a flat road with the engine turned off. If the car meets no resistance
(for example, in the form of frictional effects), Newton’s first law tells us that the
car will continue coasting with its original momentum and direction forever.
With the engine turned on, and your foot on the accelerator, the car is driven by
the engine’s force, and Newton’s second law asserts that the momentum increases

d
at arate (= F}Z) equal to the force. In other words: increase the force by depressing

the accelerator and the car’s momentum increases.
Newton’s third law asserts a necessary constraint on forces operating mutually
between two bodies:

Law 3: To every action there is always opposed an equal reaction: or, the mutual
actions of two bodies upon each other are always equal, and directed to con-
trary parts.

Newton’s homely example reminds us, “If you press on a stone with your finger,
the finger is also pressed by the stone.” If this were not the case, the stone would
be soft and not stonelike.

Building from this simple, comprehensible beginning, Newton takes us on a
grand tour of terrestrial and celestial dynamics. In book 1 he assumes an inverse-
square centripetal force and derives Kepler’s three laws. Along the way (in prop-
osition 41), a broad concept that we now recognize as conservation of mechanical
energy emerges, although Newton does not use the term “energy,” and does not
emphasize the conservation theme.

Book 1 describes the motion of bodies (for example, planets) moving without
resistance. In book 2, Newton approaches the more complicated problem of mo-
tion in a resisting medium. This book was something of an afterthought, origi-
nally intended as part of book 1. It is more specialized than the other two books,
and less important in Newton’s grand scheme.

Book 3 brings the Principia to its climax. Here Newton builds his “system of
the world,” based on the three laws of motion, the mathematical methods de-
veloped earlier, mostly in book 1, and empirical raw material available in astro-
nomical observations of the planets and their moons.

The first three propositions put the planets and their moons in elliptical orbits
controlled by inverse-square centripetal forces, with the planets orbiting the Sun,
and the moons their respective planets. These propositions define the centripetal
forces mathematically but have nothing to say about their physical nature.

Proposition 4 takes that crucial step. It asserts “that the Moon gravitates to-
wards the earth, and is always drawn from rectilinear [straight] motion, and held
back in its orbit, by the force of gravity.” By the “force of gravity” Newton means
the force that causes a rock (or apple) to fall on Earth. The proposition tells us
that the Moon is a rock and that it, too, responds to the force of gravity.

Newton’s demonstration of proposition 4 is a marvel of simplicity. First, from
the observed dimensions of the Moon’s orbit he concludes that to stay in its orbit
the Moon falls toward Earth 15.009 “Paris feet” (= 16.000 of our feet) every
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second. Then, drawing on accurate pendulum data observed by Huygens, he
calculates that the number of feet the Moon (or anything else) would fall in one
second on the surface of Earth is 15.10 Paris feet. The two results are close
enough to each other to demonstrate the proposition.

Proposition 5 simply assumes that what is true for Earth and the Moon is true
for Jupiter and Saturn and their moons, and for the Sun and its planets.

Finally, in the next two propositions Newton enunciates his universal law of
gravitation. I will omit some subtleties and details here and go straight to the
algebraic equation that is equivalent to Newton’s inverse-square calculation of
the gravitational attraction force F between two objects whose masses are m; and
m,,

F= Gz (16)
r

where r is the distance separating the centers of the two objects, and G, called
the “gravitational constant,” is a universal constant. With a few exceptions, in-
volving such bizarre objects as neutron stars and black holes, this equation ap-
plies to any two objects in the universe: planets, moons, comets, stars, and gal-
axies. The gravitational constant G is always given the same value; it is the
hallmark of gravity theory. Later in our story, it will be joined by a few other
universal constants, each with its own unique place in a major theory.

In the remaining propositions of book 3, Newton turns to more-detailed prob-
lems. He calculates the shape of Earth (the diameter at the equator is slightly
larger than that at the poles), develops a theory of the tides, and shows how to
use pendulum data to demonstrate variations in weight at different points on
Earth. He also attempts to calculate the complexities of the Moon’s orbit, but is
not completely successful because his dynamics has an inescapable limitation:
it easily treats the mutual interaction (gravitational or otherwise) of two bodies,
but offers no exact solution to the problem of three or more bodies. The Moon’s
orbit is largely, but not entirely, determined by the Earth-Moon gravitational at-
traction. The full calculation is a “three-body” problem, including the slight ef-
fect of the Sun. In book 3, Newton develops an approximate method of calcula-
tion in which the Earth-Moon problem is first solved exactly and is then modified
by including the “perturbing” effect of the Sun. The strategy is one of successive
approximations. The calculations dictated by this “perturbation theory” are te-
dious, and Newton failed to carry them far enough to obtain good accuracy. He
complained that the prospect of carrying the calculations to higher accuracy
“made his head ache.”

Publication of the Principia brought more attention to Newton than to his
book. There were only a few reviews, mostly anonymous and superficial. As De
Gandt writes, “Philosophers and humanists of this era and later generations had
the feeling that great marvels were contained in these pages; they were told that
Newton revealed truth, and they believed it. . . . But the Principia still remained
a sealed book.”

The Opticks

Newton as a young man skirmished with Hooke and others on the theory of
colors and other aspects of optics. These polemics finally drove him into a silence
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of almost thirty years on the subject of optics, with the excuse that he did not
want to be “engaged in Disputes about these Matters.” What persuaded him to
break the silence and publish more of his earlier work on optics, as well as some
remarkable speculations, may have been the death of his chief adversary, Hooke,
in 1703. In any case, Newton published his other masterpiece, the Opticks, in
1704.

The Opticks and the Principia are contrasting companion pieces. The two
books have different personalities, and may indeed reflect Newton’s changing
persona. The Principia was written in the academic seclusion of Cambridge, and
the Opticks in the social and political environment Newton entered after moving
to London. The Opticks is a more accessible book than the Principia. It is written
in English, rather than in Latin, and does not burden the reader with difficult
mathematical arguments. Not surprisingly, Newton’s successors frequently men-
tioned the Opticks, but rarely the Principia.

In the Opticks, Newton presents both the experimental foundations, and an
attempt to lay the theoretical foundations, of the science of optics. He describes
experiments that demonstrate the main physical properties of light rays: their
reflection, “degree of refrangibility” (the extent to which they are refracted), “in-
flexion” (diffraction), and interference.

The term “interference” was not in Newton’s vocabulary, but he describes
interference effects in what are now called “Newton’s rings.” In the demonstra-
tion experiment, two slightly convex prisms are pressed together, with a thin
layer of air between them; a striking pattern of colored concentric rings appears,
surrounding points where the prisms touch.

Diffraction effects are demonstrated by admitting into a room a narrow beam
of sunlight through a pinhole and observing that shadows cast by this light source
on a screen have “Parallel Fringes or Bands of colour’d Light” at their edges.

To explain this catalogue of optical effects, Newton presents in the Opticks a
theory based on the concept that light rays are the trajectories of small particles.
As he puts it in one of the “queries” that conclude the Opticks: “Are not the
Rays of Light very small Bodies emitted from shining Substances? For such Bod-
ies will pass through Mediums in right Lines without bending into the Shadow,
which is the Nature of the Rays of Light.”

In another query, Newton speculates that particles of light are affected by op-
tical forces of some kind: “Do not Bodies act upon Light at a distance, and by
their action bend its Rays; and is not this action strongest at the least distance?”

With particles and forces as the basic ingredients, Newton constructs in the
Opticks an optical mechanics, which he had already sketched at the end of book
1 of the Principia. He explains reflection and refraction by assuming that optical
forces are different in different media, and diffraction by assuming that light rays
passing near an object are more strongly affected by the forces than those more
remote.

To explain the rings, Newton introduces his theory of “fits,” based on the idea
that light rays alternate between “Fits of easy Reflexion, and. .. Fits of easy
Transmission.” In this way, he gives the rays periodicity, that is, wavelike char-
acter. However, he does not abandon the particle point of view, and thus arrives
at a complicated duality.

We now understand Newton’s rings as an interference phenomenon, arising
when two trains of waves meet each other. This theory was proposed by Thomas
Young, one of the first to see the advantages of a simple wave theory of light,
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almost a century after the Opticks was published. By the 1830s, Young in England
and Augustin Fresnel in France had demonstrated that all of the physical prop-
erties of light known at the time could be explained easily by a wave theory.

Newton’s particle theory of light did not survive this blow. For seventy-five
years the particles were forgotten, until 1905, when, to everyone’s astonishment,
Albert Einstein brought them back. (But we are getting about two centuries be-
yond Newton’s story. I will postpone until later [chapter 19] an extended excur-
sion into the strange world of light waves and particles.)

The queries that close the Opticks show us where Newton finally stood on
two great physical concepts. In queries 17 through 24, he leaves us with a picture
of the universal medium called the “ether,” which transmits optical and gravi-
tational forces, carries light rays, and transports heat. Query 18 asks, “Is not this
medium exceedingly more rare and subtile than the Air, and exceedingly more
elastick and active? And doth not it readily pervade all Bodies? And is it not (by
its elastick force) expanded through all the Heavens?” The ether concept in one
form or another appealed to theoreticians through the eighteenth and nineteenth
centuries. It met its demise in 1905, that fateful year when Einstein not only
resurrected particles of light but also showed that the ether concept was simply
unnecessary.

In query 31, Newton closes the Opticks with speculations on atomism, which
he sees (and so do we) as one of the grandest of the unifying concepts in physics.
He places atoms in the realm of another grand concept, that of forces: “Have not
the small particles of Bodies certain Powers, Virtues or Forces, by which they
act at a distance, not only upon the Rays of Light for reflecting, refracting, and
inflecting them [as particles], but also upon one another for producing a great
Part of the Phaenomena of Nature?”

He extracts, from his intimate knowledge of chemistry, evidence for attraction
and repulsion forces among particles of all kinds of chemical substances, metals,
salts, acids, solvents, oils, and vapors. He argues that the particles are kinetic
and indestructible: “All these things being considered, it seems probable to me,
that God in the Beginning form’d Matter in solid, massy, hard, impenetrable,
moveable Particles, of such Sizes and Figures, and in such Proportion to Space,
as most conduced to the End for which he form’d them; even so very hard, as
never to wear or break in pieces; no ordinary Power being able to divide what
God himself made one in the First Creation.”

London

There were two great divides in Newton’s adult life: in the middle 1660s from
the rural surroundings of Lincolnshire to the academic world of Cambridge, and
thirty years later, when he was fifty-four, from the seclusion of Cambridge to the
social and political existence of a well-placed civil servant in London. The move
to London was probably inspired by a feeling that his rapidly growing fame
deserved a more material reward than anything offered by the Lucasian Profes-
sorship. We can also surmise that he was guided by an awareness that his for-
midable talent for creative work in science was fading.

In March 1696, Newton left Cambridge, took up residence in London, and
started a new career as warden of the Mint. The post was offered by Charles
Montague, a former student and intimate friend who had recently become chan-
cellor of the exchequer. Montague described the warden’s office to Newton as a
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sinecure, noting that “it has not too much bus’nesse to require more attendance
than you may spare.” But that was not what Newton had in mind; it was not in
his character to perform any task, large or small, superficially.

Newton did what he always did when confronted with a complicated problem:
he studied it. He bought books on economics, commerce, and finance, asked
searching questions, and wrote volumes of notes. It was fortunate for England
that he did. The master of the Mint, under whom the warden served, was Thomas
Neale, a speculator with more interest in improving his own fortune than in
coping with a monumental assignment then facing the Mint. The English cur-
rency, and with it the Treasury, were in crisis. Two kinds of coins were in cir-
culation, those produced by hammering a metal blank against a die, and those
made by special machinery that gave each coin a milled edge. The hammered
coins were easily counterfeited and clipped, and thus worth less than milled
coins of the same denomination. Naturally, the hammered coins were used and
the milled coins hoarded.

An escape from this threatening problem, general recoinage, had already been
mandated before Newton’s arrival at the Mint. He quickly took up the challenge
of the recoinage, although it was not one of his direct responsibilities as warden.
As Westfall comments, “[Newton] was a born administrator, and the Mint felt the
benefit of his presence.” By the end of 1696, less than a year after Newton went
to the Mint, the crisis was under control. Montague did not hesitate to say later
that, without Newton, the recoinage would have been impossible. In 1699 Neale
died, and Newton, who was by then master in fact if not in name, succeeded
him.

Newton'’s personality held many puzzles. One of the deepest was his attitude
toward women. Apparently he never had a cordial relationship with his mother.
Aside from a woman with whom he had a youthful infatuation and to whom he
may have made a proposal of marriage, there was one other woman in Newton’s
life. She was Catherine Barton, the daughter of Newton’s half-sister Hannah
Smith. Her father, the Reverend Robert Barton, died in 1693, and sometime in
the late 1690s she went to live with Newton in London. She was charming and
beautiful and had many admirers, including Newton’s patron, Charles Montague.
She became Montague’s mistress, no doubt with Newton’s approval. The affair
endured; when he died, Montague left her a generous income. She was also a
friend of Jonathan Swift’s, and he mentioned her frequently in his collection of
letters, called Journal to Stella. Voltaire gossiped: “I thought . ..that Newton
made his fortune by his merit. . . . No such thing. Isaac Newton had a very charm-
ing niece . . . who made a conquest of Minister Halifax [Montague]. Fluxions and
gravitation would have been of no use without a pretty niece.” After Montague’s
death, Barton married John Conduitt, a wealthy man who had made his fortune
in service to the British army. The marriage placed him conveniently (and he
was aptly named) for another career: he became an early Newton biographer.

Newton the administrator was a vital influence in the rescue of two institu-
tions from the brink of disaster. In 1703, long after the recoinage crisis at the
Mint, he was elected to the presidency of the Royal Society. Like the Mint when
Newton arrived, the society was desperately in need of energetic leadership.
Since the early 1690s its presidents had been aristocrats who were little more
than figureheads. Newton quickly changed that image. He introduced the practice
of demonstrations at the meetings in the major fields of science (mathematics,
mechanics, astronomy and optics, biology, botany, and chemistry), found the
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society a new home, and installed Halley as secretary, followed by other disci-
ples. He restored the authority of the society, but he also used that authority to
get his way in two infamous disputes.

On April 16, 1705, Queen Anne knighted Newton at Trinity College, Cam-
bridge. The ceremony appears to have been politically inspired by Montague
(Newton was then standing for Parliament), rather than being a recognition of
Newton’s scientific achievements. Political or not, the honor was the climactic
point for Newton during his London years.

More Disputes

Newton was contentious, and his most persistent opponent was the equally con-
tentious Robert Hooke. The Newton story is not complete without two more ac-
counts of Newton in rancorous dispute. The first of these was a battle over as-
tronomical data. John Flamsteed, the first Astronomer Royal, had a series of
observations of the Moon, which Newton believed he needed to verify and refine
his lunar perturbation theory. Flamsteed reluctantly supplied the requested ob-
servations, but Newton found the data inaccurate, and Flamsteed took offense at
his critical remarks.

About ten years later, Newton was still not satisfied with his lunar theory and
still in need of Flamsteed’s Moon data. He was now president of the Royal So-
ciety, and with his usual impatience, took advantage of his position and at-
tempted to force Flamsteed to publish a catalogue of the astronomical data. Flam-
steed resisted. Newton obtained the backing of Prince George, Queen Anne’s
husband, and Flamsteed grudgingly went ahead with the catalogue.

The scope of the project was not defined. Flamsteed wanted to include with
his own catalogue those of previous astronomers from Ptolemy to Hevelius, but
Newton wanted just the data needed for his own calculations. Flamsteed stalled
for several years, Prince George died, and as president of the Royal Society, New-
ton assumed dictatorial control over the Astronomer Royal’s observations. Some
of the data were published as Historia coelestis (History of the Heavens) in 1712,
with Halley as the editor. Neither the publication nor its editor was acceptable
to Flamsteed.

Newton had won a battle but not the war. Flamsteed’s political fortunes rose,
and Newton’s declined, with the deaths of Queen Anne in 1714 and Montague
in 1715. Flamsteed acquired the remaining copies of Historia coelestis, separated
Halley’s contributions, and “made a sacrifice of them to Heavenly Truth” (mean-
ing that he burned them). He then returned to the project he had planned before
Newton'’s interference, and had nearly finished it when he died in 1719. The task
was completed by two former assistants and published as Historia coelestis bri-
tannica in 1725. As for Newton, he never did get all the data he wanted, and
was finally defeated by the sheer difficulty of precise lunar calculations.

Another man who crossed Newton’s path and found himself in an epic dispute
was Gottfried Leibniz. This time the controversy concerned one of the most pre-
cious of a scientist’s intellectual possessions: priority. Newton and Leibniz both
claimed to be the inventors of calculus.

There would have been no dispute if Newton had published a treatise com-
posed in 1666 on his fluxion method. He did not publish that, or indeed any
other mathematical work, for another forty years. After 1676, however, Leibniz
was at least partially aware of Newton’s work in mathematics. In that year, New-
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ton wrote two letters to Leibniz, outlining his recent research in algebra and on
fluxions. Leibniz developed the basic concepts of his calculus in 1675, and pub-
lished a sketchy account restricted to differentiation in 1684 without mentioning
Newton. For Newton, that publication and that omission were, as Westfall puts
it, Leibniz’s “original sin, which not even divine grace could justify.”

During the 1680s and 1690s, Leibniz developed his calculus further to include
integration, Newton composed (but did not publish) his De quadratura (quad-
rature was an early term for integration), and John Wallis published a brief ac-
count of fluxions in volume 2 of his Algebra. In 1699, a former Newton protégé,
Nicholas Fatio de Duillier, published a technical treatise, Lineae brevissimi (Line
of Quickest Descent), in which he claimed that Newton was the first inventor,
and Leibniz the second inventor, of calculus. A year later, in a review of Fatio’s
Lineae, Leibniz countered that his 1684 book was evidence of priority.

The dispute was now ignited. It was fueled by another Newton disciple, John
Keill, who, in effect, accused Leibniz of plagiarism. Leibniz complained to the
secretary of the Royal Society, Hans Sloane, about Keill’s “impertinent accusa-
tions.” This gave Newton the opportunity as president of the society to appoint
a committee to review the Keill and Leibniz claims. Not surprisingly, the com-
mittee found in Newton’s favor, and the dispute escalated. Several attempts to
bring Newton and Leibniz together did not succeed. Leibniz died in 1716; that
cooled the debate, but did not extinguish it. Newtonians and Leibnizians con-
fronted each other for at least five more years.

Nearer the Gods

Biographers and other commentators have never given us a consensus view of
Newton’s character. His contemporaries either saw him as all but divine or all
but monstrous, and opinions depended a lot on whether the author was friend
or foe. By the nineteenth century, hagiography had set in, and Newton as paragon
emerged. In our time, the monster model seems to be returning.

On one assessment there should be no doubt: Newton was the greatest creative
genius physics has ever seen. None of the other candidates for the superlative
(Einstein, Maxwell, Boltzmann, Gibbs, and Feynman) has matched Newton’s
combined achievements as theoretician, experimentalist, and mathematician.

Newton was no exception to the rule that creative geniuses lead self-centered,
eccentric lives. He was secretive, introverted, lacking a sense of humor, and prud-
ish. He could not tolerate criticism, and could be mean and devious in the treat-
ment of his critics. Throughout his life he was neurotic, and at least once
succumbed to breakdown.

But he was no monster. He could be generous to colleagues, both junior and
senior, and to destitute relatives. In disputes, he usually gave no worse than he
received. He never married, but he was not a misogynist, as his fondness for
Catherine Barton attests. He was reclusive in Cambridge, where he had little
admiration for his fellow academics, but entertained well in the more stimulating
intellectual environment of London.

If you were to become a time traveler and meet Newton on a trip back to the
seventeenth century, you might find him something like the performer who first
exasperates everyone in sight and then goes on stage and sings like an angel. The
singing is extravagantly admired and the obnoxious behavior forgiven. Halley,
who was as familiar as anyone with Newton’s behavior, wrote in an ode to New-
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ton prefacing the Principia that “nearer the gods no mortal can approach.” Albert
Einstein, no doubt equal in stature to Newton as a theoretician (and no paragon),
left this appreciation of Newton in a foreword to an edition of the Opticks:

Fortunate Newton, happy childhood of science! He who has time and tran-
quility can by reading this book live again the wonderful events which the great
Newton experienced in his young days. Nature to him was an open book, whose
letters he could read without effort. The conceptions which he used to reduce
the material of experience to order seemed to flow spontaneously from expe-
rience itself, from the beautiful experiments which he ranged in order like play-
things and describes with an affectionate wealth of details. In one person he
combined the experimenter, the theorist, the mechanic and, not least, the artist
in exposition. He stands before us strong, certain, and alone: his joy in creation
and his minute precision are evident in every word and in every figure.
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Thermodynamics

Historical Synopsis

Our history now turns from mechanics, the science of motion, to
thermodynamics, the science of heat. The theory of heat did not
emerge as a quantitative science until late in the eighteenth century,
when heat was seen as a weightless fluid called “caloric.” The fluid
analogy was suggested by the apparent “flow” of heat from a high
temperature to a low temperature. Eighteenth-century engineers
knew that with cleverly designed machinery, this heat flow could be
used in a “heat engine” to produce useful work output.

The basic premise of the caloric theory was that heat was
“conserved,” meaning that it was indestructible and uncreatable;
that assumption served well the pioneers in heat theory, including
Sadi Carnot, whose heat engine studies begin our story of
thermodynamics. But the doctrine of heat conservation was attacked
in the 1840s by Robert Mayer, James Joule, Hermann Helmholtz, and
others. Their criticism doomed the caloric theory, but offered little
guidance for construction of a new theory.

The task of building the rudiments of the new heat science,
eventually called thermodynamics, fell to William Thomson and
Rudolf Clausius in the 1850s. One of the basic ingredients of their
theory was the concept that any system has an intrinsic property
Thomson called “energy,” which he believed was somehow
connected with the random motion of the system’s molecules. He
could not refine this molecular interpretation because in the mid-
nineteenth century the structure and behavior—and even the
existence—of molecules were controversial. But he could see that
the energy of a system—not the heat—was conserved, and he
expressed this conclusion in a simple differential equation.

In modern thermodynamics, energy has an equal partner called
“entropy.” Clausius introduced the entropy concept, and supplied
the name, but he was ambivalent about recognizing its fundamental
importance. He showed in a second simple differential equation
how entropy is connected with heat and temperature, and stated
formally the law now known as the second law of thermodynamics:
that in an isolated system, entropy increases to a maximum value.
But he hesitated to go further. The dubious status of the molecular
hypothesis was again a concern.
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Thermodynamics had its Newton: Willard Gibbs. Where Clausius
hesitated, Gibbs did not. Gibbs recognized the energy-entropy
partnership, and added to it a concept of great utility in the study of
chemical change, the “chemical potential.” Without much guidance
from experimental results—few were available—Gibbs applied his
scheme to a long list of disparate phenomena. Gibbs’s masterpiece
was a lengthy, but compactly written, treatise on thermodynamics,
published in the 1870s.

Gibbs’s treatise opened theoretical vistas far beyond the theory of
heat sought by Clausius and Thomson. Once Gibbs’s manifold
messages were understood (or rediscovered), the new territory was
explored. One of the explorers was Walther Nernst, who was in
search of a theory of chemical affinity, the force that drives chemical
reactions. He found his theory by taking a detour into the realm of
low-temperature physics and chemistry.



A Tale of Two Revolutions
Sadi Carnot

Reflections

The story of thermodynamics begins in 1824 in Paris. France had been rocked to
its foundations by thirty-five years of war, revolution, and dictatorship. A king
had been executed, constitutions had been written, Napoleon had come and gone
twice, and the monarchy had been restored twice. Napoleon had successfully
marched his armies through the countries of Europe and then disastrously in-
to Russia. France had been invaded and occupied and had paid a large war
indemnity.

In 1824, a technical memoir was published by a young military engineer who
had been born into this world of social, military, and political turmoil. The en-
gineer’s name was Sadi Carnot, and his book had the title Reflections on the
Motive Power of Fire. By “motive power” he meant work, or the rate of doing
work, and “fire” was his term for heat. His goal was to solve a problem that had
hardly even been imagined by his predecessors. He hoped to discover the general
operating principles of steam engines and other heat engine devices that supply
work output from heat input. He did not quite realize his purpose, and his work
was largely ignored at the time it was published, but after Carnot’s work was
rediscovered more than twenty years later it became the main inspiration for
subsequent work in thermodynamics.

Lazare Carnot

Although he always worked on the fringes of the scientific world of his time,
Sadi Carnot did not otherwise live in obscurity. His father, Lazare, was one of
the most powerful men in France during the late eighteenth and early nineteenth
centuries. Sadi was born in 1796 in the Paris Luxembourg Palace when Lazare
was a member of the five-man executive Directory. Lazare Carnot served in high-
level positions for only about four years, but his political accomplishments and
longevity were extraordinary for those turbulent times. Before joining the gov-
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ernment of the Directory, he was an influential member of the all-powerful Com-
mittee of Public Safety led by Maximilien de Robespierre. In that capacity, Lazare
was responsible for the revolutionary war efforts. His brilliant handling of logis-
tics and strategy salvaged what might otherwise have been a military disaster; in
French history textbooks he is known as “the great Carnot” and “the organizer
of victory.” He was the only member of the Committee of Public Safety to survive
the fall of Robespierre in 1794 and to join the Directory. A leftist coup in 1797
forced him into exile, but he returned as Napoleon’s war minister. (He had given
Napoleon command of the Italian army in 1797.) Napoleon’s dictatorial ways
soon became evident, however, and Lazare, unshakable in his republican beliefs,
resigned after a few months. But he returned once more in 1814, near the end of
the Napoleonic regime, first as the governor of Antwerp and then as Napoleon’s
last minister of the interior.

Lazare Carnot’s status in history may be unique. Not only was he renowned
for his practice of politics and warfare; he also made important discoveries in
science and engineering. A memoir published in 1783 was, according to Lazare’s
biographer, Charles Gillispie, the first attempt to deal in a theoretical way with
the subject of engineering mechanics. Lazare’s goal in this and in later work in
engineering science was to abstract general operating principles from the me-
chanical workings of complicated machinery. His aim, writes Gillispie, “was to
specify in a completely general way the optimal conditions for the operation of
machines of every sort.” Instead of probing the many detailed elements of ma-
chinery design, as was customary at the time, he searched for theoretical methods
whose principles had no need for the details.

Lazare Carnot’s main conclusion, which Gillispie calls the “principle of con-
tinuity of power,” asserts that accelerations and shocks in the moving parts of
machinery are to be avoided because they lead to losses of the “moment of ac-
tivity” or work output. The ideal machine is one in which power is transmitted
continuously, in very small steps. Applied to water machines (for instance, wa-
terwheels), Lazare’s theorem prescribes that for maximum efficiency there must
be no turbulent or percussive impact between the water and the machine, and
the water leaving the machine should not have appreciable velocity.

Lazare’s several memoirs are not recognized today as major contributions to
engineering science, but in an important sense his work survives. His approach
gave his son Sadi a clear indication of where to begin his own attack on the
theory of heat engines. Lazare’s views on the design of water engines seem to
have been particularly influential. Waterwheels and other kinds of hydraulic ma-
chinery are driven by falling water, and the greater the fall, the greater the ma-
chine’s work output per unit of water input. Sadi Carnot’s thinking was guided
by an analogy between falling water in water engines and falling heat in heat
engines: he reasoned that a heat engine could not operate unless its design in-
cluded a high-temperature body and a low-temperature body between which heat
dropped while it drove the working parts of the machine.

Heat Engines, Then and Now

The heat engines of interest to Sadi Carnot were steam engines applied to such
tasks as driving machinery, ships, and conveyors. The steam engine invented by
a Cornishman, Arthur Woolf, was particularly admired in France in the 1810s
and 1820s. Operation of the Woolf engine is diagrammed in figure 3.1. Heat Q,
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was supplied at a high temperature t, by burning a fuel, and this heat generated
steam at a high pressure in a boiler. The steam drove two pistons and they pro-
vided the work output W;. (In this chapter and elsewhere in this part of the book,
keep in mind that the symbol ¢ represents temperature and not time, as in chap-
ters 1 and 2.) The steam leaves the pistons at a decreased pressure and temper-
ature. Heat Q, was then extracted in a condenser where the steam was further
cooled to a still lower temperature #; and condensed to liquid water. Finally, the
liquid water passed through a pump, which restored the high pressure by ex-
pending work W,, and low-temperature, pressurized water was returned to the
boiler. This is a cycle of operations, and its net effect is the dropping of heat
from the high temperature ¢, to the low temperature t;, with work output W,
from the pistons and a much smaller work input W, to the pump.

The Woolf steam engine and its variations have evolved into a vast modern
technology. Most contemporary power plants operate similarly. The scale is
much larger in the modern plants, the operating steam pressures and tempera-
tures are higher, and the working device is a turbine rather than pistons. But the
concept of heat falling between a high and a low temperature with net work
output again applies.

Carnot’s Cycle

Sadi Carnot had the same ambitions as his father. He hoped to abstract, from
the detailed complexities of real machinery, general principles that dictated the
best possible performance. Lazare’s analysis had centered on ideal mechanical
operation; Sadi aimed for the mechanical ideal, and also for ideal thermal
operation.

He could see, first of all, that when heat was dropped from a high temperature
to a low temperature in a heat engine it could accomplish something. His con-
ceptual model was based on an analogy between heat engines and water engines.
He concluded that for maximum efficiency a steam engine had to be designed so
it operated with no direct fall of heat from hot to cold, just as the ideal water
engine could not have part of the water stream spilling over and falling directly
rather than driving the waterwheel. This meant that in the perfect heat engine,
hot and cold parts in contact could differ only slightly in temperature. One can
say, to elaborate somewhat, that the thermal driving forces (that is, temperature
differences) in Carnot’s ideal heat engine have to be made very small. This design
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had more than an accidental resemblance to Lazare Carnot’s principle of conti-
nuity in the transmission of mechanical power.

To make it more specific, Carnot imagined that his ideal heat engine used a
gaseous working substance put through cyclic changes—something like the
steam in the pistons of the Woolf steam engine. Carnot’s cycles consisted of four
stages:

1. An isothermal (constant-temperature) expansion in which the gas absorbed
heat from a heat “reservoir” kept at a high temperature t,.

2. An adiabatic (insulated) expansion that lowered the temperature of the gas
from t, to t;.

3. An isothermal compression in which the gas discarded heat to a reservoir
kept at the low temperature t;.

4. An adiabatic compression that brought the gas back to the original high tem-
perature t,.

Stages 1 and 3 accomplish the heat fall by absorbing heat at a high temperature
and discarding it at a low temperature. More work is done by the gas in the
expansion of stage 1 than on the gas in the compression of stage 3; and amounts
of work done on and by the gas in stages 2 and 4 nearly cancel each other. Thus,
for each turn of the cycle, heat is dropped from a high temperature to a low
temperature, and there is net work output.

Carnot’s Principle

To summarize, Carnot constructed his ideal heat engine, as Lazare had made his
ideal machinery, so that all its parts and stages functioned continuously in very
small steps under very small thermal and mechanical driving forces. This and
the necessity for operating in cycles between two fixed temperatures were, Carnot
realized, the main features required for all ideal heat engine operation. The spe-
cial features of the four-stage gas cycle were convenient but unnecessary; other
ways could be found to drop the heat between the two heat reservoirs and pro-
duce work output.

Carnot’s point of view insists that the forces driving an ideal heat engine be
so small they can be reversed with no additional external effect and the engine
made to operate in the opposite direction. Run forward, in its normal mode of
operation as a heat engine, the ideal machine drops heat, let’s say between the
temperatures t, and t,, and provides work output. Run backward, with all its
driving forces reversed, the ideal machine requires work input and it raises heat
from t, to t,. This is a heat pump, analogous to a mechanical device capable of
pumping water from a low level to a high level. Carnot reached the fundamental
conclusion that any ideal heat engine, operated as it had to be by very small
driving forces, was literally “reversible.” All of its stages could be turned around
and, with no significant effect in the surroundings, the heat engine made into a
heat pump, or vice versa.

This reversibility aspect of ideal heat engine operation led Carnot to his main
result, a proof that any ideal heat engine operating between heat reservoirs main-
tained at t, and t,, had to supply the same work output W for a given heat input
Q.. If two ideal heat engines had different work outputs Wand W’ with W’ larger
than W, say, the engine with higher work output W’ could be used to drive the
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Figure 3.2. Illustration of impossible perpetual work out-

Heat Reservoir at ¢, put obtained by linking two ideal heat engines with dif-

ferent work outputs, W and W'

engine with lower work output W in reverse to pump the heat Q, back to its
original thermal level in the upper heat reservoir, and with net work output W’
- W (fig. 3.2).

If this composite device had been possible, it would have served as a
perpetual-motion machine because it supplied work output with no need to re-
plenish the heat supply in the upper heat reservoir; every unit of heat dropped
through the heat engine was restored to the upper reservoir by the heat pump.
In other words, this composite heat engine could have worked endlessly without
having to burn fuel. Lazare Carnot had relied heavily on the axiom that perpetual
motion of any kind was physically impossible, and this was another one of the
father’s lessons learned by the son. Sadi Carnot also categorically rejected the
possibility of perpetual motion and therefore concluded that the two ideal heat
engines in the composite machine had to have the same work output, that is, W
=w.

Put more formally, Carnot’s conclusion was that all ideal heat engines operat-
ing in cycles between the two temperatures ¢, and t, with the heat input Q, have
the same work output W. Design details make no difference. The working ma-
terial can be steam, air, or even a liquid or solid; the working part of the cycle
can be a gas expansion, as in Carnot’s cycle, or it can be something else. The
work output W of the ideal heat engine is precisely determined by just three
things, the heat input Q, and the temperatures t; and t, of the two reservoirs
between which the heat engine operates. This statement expresses “Carnot’s prin-
ciple.” It was an indispensable source of inspiration for all of Carnot’s successors.

Carnot’s Function

To continue with his analysis, Carnot had to deduce what he could concerning
the physical and mathematical nature of ideal engine operation. Here he seems
to have exploited further his idea that heat engines do work by dropping heat
from a higher to a lower temperature. It seemed that the ability of heat to do
work in a heat engine depended on its thermal level expressed by the tempera-
ture t, just as the ability of water to do work in a water engine depends on its
gravitational level.

Carnot emphasized a function F(t) that expressed the ideal heat engine’s op-
erating efficiency at the temperature . He made three remarkable calculations of
numerical values for his function F(t). These calculations were based on three
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different heat engine designs that used air, boiling water, and boiling alcohol as
the working materials. Carnot’s theory required that ideal heat engine behavior
be entirely independent of the nature of the working material and other special
design features: values obtained for F(t) in the three cases had to be dependent
only on the temperature t. Although the primitive data available to Carnot for
the calculation limited the accuracy, his results for F(f) seemed to satisfy this
requirement. No doubt this success helped convince Carnot that his heat engine
theory was fundamentally correct.

To complete his theory, Carnot had to find not just numbers but a mathematical
expression for his function F(#). In this effort, he was unsuccessful; he could see
only that F(t) decreased with increasing temperature. Many of Carnot’s succes-
sors also became fascinated with this problem. Although in the end Carnot’s
function was found to be nothing more complicated than the reciprocal of the
temperature expressed on an absolute scale, it took no fewer than eight thermo-
dynamicists, spanning two generations, to establish this conclusion unequivo-
cally; five of them (Carnot, Clausius, Joule, Helmholtz, and Thomson) were major
figures in nineteenth-century physics.

Publication and Neglect

Sadi Carnot’s work was presented as a privately published memoir in 1824, one
year after Lazare Carnot’s death, and it met a strange fate. The memoir was pub-
lished by a leading scientific publisher, favorably reviewed, mentioned in an
important journal—and then for more than twenty years all but forgotten. With
one fortunate exception, none of France’s esteemed company of engineers and
physicists paid any further attention to Carnot’s memoir.

One can only speculate concerning the reasons for this neglect. Perhaps Car-
not’s immediate audience did not appreciate his scientific writing style. Like his
father, whose scientific work was also ignored at first, Carnot wrote in a semi-
popular style. He rarely used mathematical equations, and these were usually
relegated to footnotes; most of his arguments were stated verbally. Evidently Car-
not, like his father, was writing for engineers, but his book was still too theoretical
for the steam-engine engineers who should have read it. Others of the scientific
establishment, looking for the analytical mathematical language commonly used
at the time in treatises on mechanics, probably could not take seriously this
unknown youth who insisted on using verbal science to formulate his arguments.
It didn’t help either that Carnot was personally reserved and wary of publicity
of any kind. One of his rules of conduct was, “Say little about what you know
and nothing at all about what you don’t know.” In the end, like Newton with the
Principia, Carnot missed his audience.

In time, Carnot probably would have seen his work recognized, if not in
France, perhaps elsewhere where theoretical research on heat and heat engines
was more active. But Carnot never had the opportunity to wait for the scientific
world to catch up. In 1831, he contracted scarlet fever, which developed into
“brain fever.” He partially recovered and went to the country for convalescence.
But later, in 1832, while studying the effects of a cholera epidemic, he became a
cholera victim himself. The disease killed him in hours; he was thirty-six years
old. Most of his papers and other effects were destroyed at the time of his death,
the customary precaution following a cholera casualty.
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After Carnot

The man who rescued Carnot’s work from what certainly would otherwise have
been oblivion was Emile Clapeyron, a former classmate of Carnot’s at the Ecole
Polytechnique. It was Clapeyron who, in a paper published in the Journal de
I'’Ecole Polytechnique in 1834, put Carnot’s message in the acceptable language
of mathematical analysis. Most important, Clapeyron translated into differential
equations Carnot’s several verbal accounts of how to calculate his efficiency func-
tion F(?).

Clapeyron’s paper was translated into German and English, and for ten years
or so it was the only link between Carnot and his followers. Carnot’s theory, in
the mathematical translation provided by Clapeyron, was to become the point of
departure in the 1840s and early 1850s for two second-generation thermody-
namicists, a young German student at the University of Halle, Rudolf Clausius,
and a recent graduate of Cambridge University, William Thomson (who became
Lord Kelvin). Thomson spent several months in 1845 in the Paris laboratory of
Victor Regnault. He scoured the Paris bookshops for a copy of Carnot’s memoir
with no success. No one remembered either the book or its author.

In different ways, Clausius and Thomson were to extend Carnot’s work into
the science of heat that Thomson eventually called thermodynamics. One of Cla-
peyron’s differential equations became a fixture in Thomson’s approach to ther-
modynamics; Thomson found a way to use the equation to define an absolute
temperature scale. Later, he introduced the concept of energy, and with it re-
solved a basic flaw in Carnot’s theory: its apparent reliance on the caloric theory.
Among Clausius’s contributions was an elaboration of Carnot’s heat engine anal-
ysis, which recognized that heat is not only dropped in the heat engine from a
high temperature to a low temperature but is also partially converted to work.
This was a departure from Carnot’s water engine analogy, and in later research
it led to the concept of entropy.

Recognition

So, in the end, Sadi Carnot’s theory was resurrected, understood, and used. And
it finally became clear that Carnot, no less than his father Lazare, should be
celebrated as a great revolutionary. Born into a political revolution, Carnot started
a scientific revolution. His theory was radically new and completely original.
None of Carnot’s predecessors had exploited, or even hinted at, the idea that heat
fall was the universal driving force of heat engines.

If Carnot’s contemporaries lacked the vision to appreciate his work, his nu-
merous successors have, at least for posterity, repaired the damage of neglect.
Science historians now regard Carnot as one of the most inventive of scientists.
In his history of thermodynamics, From Watt to Clausius, Donald Cardwell as-
sesses for us Sadi Carnot’s astonishing success in achieving Lazare Carnot’s grand
goal, the abstraction of general physical principles from the complexities of ma-
chinery: “Perhaps one of the truest indicators of Carnot’s greatness is the unerring
skill with which he abstracted, from the highly complicated mechanical contri-
vance that was the steam engine . .. the essentials, and the essentials alone, of
his argument. Nothing unnecessary is included, and nothing essential is missed
out. It is, in fact, very difficult to think of a more efficient piece of abstraction in
the history of science since Galileo taught . . . the basis of the procedure.”
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Scant records of Carnot’s life and personality remain. In the two published
portraits, we see a sensitive, intelligent face, with large eyes regarding us with a
steady, slightly melancholy gaze. Most of the biographical material on Carnot
comes from a brief article written by Sadi’s brother Hippolyte. (Lazare Carnot
was partial to exotic names for his sons.) Hippolyte’s anecdotes tell of Carnot’s
independence and courage, even in childhood. As a youngster, he sometimes
accompanied his father on visits to Napoleon’s residence; while Lazare and Bon-
aparte conducted business, Sadi was put in the care of Madame Bonaparte. On
one occasion, she and other ladies were amusing themselves in a rowboat on a
pond when Bonaparte appeared and splashed water on the rowers by throwing
stones near the boat. Sadi, about four years old at the time, watched for a while,
then indignantly confronted Bonaparte, called him “beast of a First Consul,” and
demanded that he desist. Bonaparte stared in astonishment at his tiny attacker,
and then roared with laughter.

The child who challenged Napoleon later entered the Ecole Polytechnique at
about the same time the French military fortunes began to collapse. Two years
later Napoleon was in full retreat, and France was invaded. Hippolyte relates that
Sadi could not remain idle. He petitioned Napoleon for permission to form a
brigade to fight in defense of Paris. The students fought bravely at Vincennes,
but Paris fell to the Allied armies, and Napoleon was forced to abdicate.

Hippolyte records one more instance of his brother’s courage. Sadi was walk-
ing in Paris one day when a mounted drunken soldier galloped down the street,
“brandishing his saber and striking down passers-by.” Sadi ran forward, dodged
the sword and the horse, grabbed the soldier, and “laid him in the gutter.” Sadi
then “continued on his way to escape from the cheers of the crowd, amazed at
this daring deed.”

Sadi Carnot lived in a time of unsurpassed scientific activity, most of it cen-
tered in Paris. The list of renowned physicists, mathematicians, chemists, and
engineers who worked in Paris during Carnot’s lifetime includes Pierre-Simon
Laplace, André-Marie Ampeére, Augustin Fresnel, Siméon-Denis Poisson, Adrien-
Marie Legendre, Pierre Dulong, Alexis Petit, Evariste Galois, and Gaspard de
Coriolis. Many of these names appeared on the roll of the faculty and students
at the Ecole Polytechnique, where Carnot received his scientific training. Except
as a student, Carnot was never part of this distinguished company. Like some
other incomparable geniuses in the history of science (notably, Gibbs, Joule, and
Mayer in our story), Carnot did his important work as a scientific outsider. But
there is no doubt that Carnot’s name belongs on anyone’s list of great French
physicists. He may have been the greatest of them all.



On the Dark Side
Robert Mayer

Something Is Conserved

To the modern student, the term energy has a meaning that is almost self-evident.
This meaning was far from clear, however, to scientists of the early nineteenth
century. The many effects that would finally be unified by the concept of energy
were still seen mostly as diverse phenomena. It was suspected that mechanical,
thermal, chemical, electrical, and magnetic effects had something in common,
but the connections were incomplete and confused.

What was most obvious by the 1820s and 1830s was that strikingly diverse
effects were interconvertible. Alessandro Volta’s electric cell, invented in 1800,
produced electrical effects from chemical effects. In 1820, Hans Christian Oersted
observed magnetic effects produced by electrical effects. Magnetism produces
motion (mechanical effects), and for many years it had been known that motion
can produce electrical effects through friction. This sequence is a chain of “con-
versions”:

Chemical effect — electrical effect — magnetic effect — mechanical effect —
electrical effect.

In 1822, Thomas Seebeck demonstrated that a bimetallic junction produces an
electrical effect when heated, and twelve years later Jean Peltier reported the
reverse conversion: cooling produced by an electrical effect. Heat engines per-
form as conversion devices, converting a thermal effect (heat) into a mechanical
effect (work).

Most of the major theories of science have been discovered by one scientist,
or at most by a few. The search for broad theoretical unities tends to be difficult,
solitary work, and important scientific discoveries are usually subtle enough that
special kinds of genius are needed to recognize and develop them. But, as Tho-
mas Kuhn points out, there is at least one prominent exception to this rule. The
theoretical studies inspired by the discoveries of conversion processes, which
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finally gave us the energy concept, were far from a singular effort. Kuhn lists
twelve scientists who contributed importantly during the early stages of this “si-
multaneous discovery.”

The idea that occurred to all twelve—not quite simultaneously, but indepen-
dently—was that conversion was somehow linked with conservation. When one
effect was converted to another, some measure of the first effect was quantita-
tively replaced by the same kind of measure of the second. This measure, appli-
cable to all the various interconvertible effects, was conserved: throughout a con-
version process its total amount, whether it assessed one effect, the other effect,
or both, was precisely constant.

The twelve simultaneous discoverers were not the first to make important use
of a conservation principle. In one form or another, conservation principles had
been popular, almost intuitive it seems, with scientists for many years. Theorists
had counted among their most impressive achievements discoveries of quantities
that were both indestructible and uncreatable. Adherents of the caloric theory of
heat had postulated conservation of heat. In the late eighteenth century, Antoine-
Laurent Lavoisier and others had established that mass is conserved in chemical
reactions; when a chemical reaction proceeds in a closed container, there is no
change in total mass.

So it was natural for theorists who studied conversion processes to attempt to
build their theories from a conservation law. But, as always in the formulation
of a conservation principle, a difficult question had to be asked at the outset:
what is the quantity conserved? As it turned out, a workable answer to this
question was practically impossible without some knowledge of the conservation
law itself, because the most obvious property of the conserved quantity, ulti-
mately identified as energy, was that it was conserved. No direct measurement
like that of mass could be made for verification of the conservation property. This
was a search for something that could not be fully defined until it was actually
found.

Voyage of Discovery

One of the first to penetrate this conceptual tangle was Robert Mayer, a German
physician and physicist who spent most of his life in Heilbronn, Germany. Mayer
was a contemporary of James Joule (chapter 5), and like Joule, he was an amateur
in the scientific fields that most absorbed his interest. His university training was
in medicine, and what is known of his student record at the University of Tii-
bingen shows little sign of intellectual genius. He was good at billiards and cards,
devoted to his fraternity, and inclined to be rebellious and unpopular with the
university authorities; eventually he was suspended for a year. With hindsight,
we can see in Mayer’s reaction to the suspension—a six-day hunger strike—
evidence for his stubbornness and sensitivity to criticism, and even some fore-
warning of his later mental problems.

Mayer’s youthful behavior was not that of an unmitigated rebel, however;
when the Tiibingen authorities permitted, he returned, finished his dissertation,
and passed the doctoral examination. But he was still too restless to plan his
future according to conventional (and family) expectations. Instead of settling
into a routine medical practice, he decided to travel by taking a position as ship’s
surgeon on a Dutch vessel sailing for the East Indies. He found little inspiration
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on this trip, either in the company of his fellow officers or in the quality and
quantity of the ship’s food. But to Mayer the voyage was worth any amount of
hunger and boredom.

Mayer tells us, in an exotic tale of scientific imagination, of an event in Java
that set him on the intellectual path he followed for the rest of his life. On several
occasions in 1840, when he let blood from sailors in an East Java port, Mayer
noticed that venous blood had a surprisingly bright red color. He surmised that
this unusual redness of blood in the tropics indicated a slower rate of metabolic
oxidation. He became convinced that oxidation of food materials produced heat
internally and maintained a constant body temperature. In a warm climate, he
reasoned, the oxidation rate was reduced.

For those of us who are inclined toward the romantic view that theoreticians
make their most inspired advances in intuitive leaps, this story and the sequel
are fascinating. Mayer’s assumed connection between blood color and metabolic
oxidation rate was certainly oversimplified and partly wrong, but this germ of a
theory brought an intellectual excitement and stimulation Mayer had never be-
fore experienced. It did not take him long to see his discovery as much more
than a new medical fact: metabolic oxidation was a physiological conversion
process in which heat was produced from food materials, a chemical effect pro-
ducing a thermal effect. Mayer was convinced that the chemical effect and the
thermal effect were somehow related; to use the terminology he adopted to ex-
press his theory, the chemical reaction was a “force” that changed its form but
not its magnitude in the metabolic process. And most important in Mayer’s view,
this interpretation of metabolic oxidation was just one instance of a general
principle.

Conservation of Force (Energy)

In 1841 Mayer, now back in Heilbronn, began a paper that summarized his point
of view in the broadest terms. He wrote that “all bodies are subject to change . . .
[which] cannot happen without a cause . .. [that] we call force,” that “we can
derive all phenomena from a basic force,” and that “forces, like matter, are in-
variable.” His intention, he said, was to write physics as a science concerned
with “the nature of the existence of force.” The program of this physics paralleled
that of chemistry. Chemists dealt with the properties of matter, and relied on the
principle that mass is conserved. Physicists should similarly study forces and
adopt a principle of conservation of force. Both chemistry and physics were
based on the principle that the “quantity of [their] entities is invariable and only
the quality of these entities is variable.”

Mayer’s use of the term force requires some explanation. It was common for
nineteenth-century physicists to give the force concept a dual meaning. They
used it at times in the Newtonian sense, to denote a push or pull, but just as
often the usage implied that force was synonymous with the modern term energy.
The modern definition of the word “energy”—the capacity to do work—was not
introduced until the 1850s, by William Thomson. In the above quotations, and
throughout most of Mayer’s writings, it is appropriate to assume the second us-
age, and to read “energy” for “force.” With that simple but significant change,
Mayer’s thesis becomes an assertion of the principle of the conservation of
energy.
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Rejection

Mayer submitted his 1841 paper to Johann Poggendorff’s Annalen der Physik und
Chemie. It was not accepted for publication, or even returned with an acknow-
ledgment. But, according to one of Mayer’s biographers, R. Bruce Lindsay, the
careless treatment was a blessing in disguise. Mayer’s detailed arguments in the
paper were “based on a profound misunderstanding of mechanics.” Although the
rejection was a blow to Mayer’s pride, “it was a good thing for [his] subsequent
reputation that [the paper] did not see the light of day.”

If Mayer had great pride, he had even more perseverance. With help from his
friend Carl Baur (later a professor of mathematics in Stuttgart), he improved the
paper, expanded it in several ways, and at last saw it published in Justus von
Liebig’s Annalen der Chemie und Pharmacie in 1842. Mayer’s most important
addition to the paper was a calculation of the mechanical effect, work done in
the expansion of a gas, produced by a thermal effect, the heating of the gas. This
was an evaluation of the “mechanical equivalent of heat,” a concern indepen-
dently occupying Joule at about the same time. Whether or not Mayer made the
first such calculation became the subject of a celebrated controversy. One thing
that weakened Mayer’s priority claim was that he omitted all details but the result
in his calculation in the 1842 paper. Not until 1845, in a more extended paper,
did he make his method clear. By 1845, Joule was reporting impressive experi-
mental measurements of the mechanical equivalent of heat.

In the 1842 paper, Mayer based his ultimately famous calculation on the ex-
perimental fact that it takes more heat to raise the temperature of a gas held at
constant pressure than at constant volume. Mayer could see in the difference
between the constant-pressure and constant-volume results a measure of the heat
converted to an equivalent amount of work done by the gas when it expands
against constant pressure. He could also calculate that work, and the work-to-
heat ratio, was a numerical evaluation of the mechanical equivalent of heat. His
calculation showed that 1 kilocalorie of heat converted to work could lift 1 kil-
ogram 366 meters. In other words, the mechanical equivalent of heat found by
Mayer was 366 kilogram-meters per kilocalorie.

This was the quantity Joule had measured, or was about to measure, in a
monumental series of experiments started in 1843. Joule’s best result (labeled as
it was later with a J) was

J = 425 kilogram-meters per kilocalorie.

Mayer’s calculation was incorrect principally because of errors in heat measure-
ments. More-accurate measurements by Victor Regnault in the 1850s brought
Mayer’s calculation much closer to Joule’s result,

J = 426 kilogram-meters per kilocalorie.

In addition to clarifying his determination of the mechanical equivalent of
heat, Mayer’s 1845 paper also broadened his speculations concerning the con-
servation of energy, or force, as Mayer’s terminology had it. Two quotations will
show how committed Mayer had become to the conservation concept: “What
chemistry performs with respect to matter, physics has to perform in the case of
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force. The only mission of physics is to become acquainted with force in its
various forms and to investigate the conditions governing its change. The crea-
tion or destruction of force, if [either has] any meaning, lies outside the domain
of human thought and action.” And: “In truth there exists only a single force. In
never-ending exchange this circles through all dead as well as living nature. In
the latter as well as the former nothing happens without form variation of force!”

Mayer submitted his 1845 paper to Liebig’s Annalen; it was rejected by an
assistant editor, apparently after a cursory reading. The assistant’s advice was to
try Poggendorff’s Annalen, but Mayer did not care to follow that publication
route again. In the end, he published the paper privately, and hoped to gain
recognition by distributing it widely. But beyond a few brief journal listings, the
paper, Mayer’s magnum opus, went unnoticed.

Over the Edge and Back

Although by this time Mayer was losing ground in his battle against discourage-
ment, perseverance still prevailed. In 1846, he wrote another paper (this one, on
celestial mechanics, anticipated work done much later by William Thomson),
and again had to accept private publication.

Professional problems were now compounded by family and health problems.
During the years 1846 to 1848, three of Mayer’s children died, and his marriage
began to deteriorate. Finally, in 1850, he suffered a nearly fatal breakdown. An
attack of insomnia drove him to a suicide attempt; the attempt was unsuccessful,
but from the depths of his despair Mayer might have seen this as still another
failure.

In an effort to improve his condition, Mayer voluntarily entered a sanatorium.
Treatment there made the situation worse, and finally he was committed to an
asylum, where his handling was at best careless and at times brutal. The diag-
nosis of his mental and physical condition became so bleak that the medical
authorities could offer no hope, and he was released from the institution in 1853.

It may have been Mayer’s greatest achievement that he survived, and even
partially recovered from, this appalling experience. After his release, he returned
to Heilbronn, resumed his medical practice in a limited way, and for about ten
years deliberately avoided all scientific activity. In slow stages, and with occa-
sional relapses, his health began to return. That Mayer could, by an act of will
it seems, restore himself to comparatively normal health, demonstrated, if noth-
ing else did, that his mental condition was far from hopelessly unbalanced. To
abandon entirely for ten years an effort that had become an obsession was plainly
an act of sanity.

The period of Mayer’s enforced retirement, the 1850s, was a time of great
activity in the development of thermodynamics. Energy was established as a
concept, and the energy conservation principle was accepted by most theorists.
This work was done mostly by James Joule in England, by Rudolf Clausius in
Germany, and by William Thomson and Macquorn Rankine in Scotland, with
little appreciation of Mayer’s efforts. Not only was Mayer’s theory ignored during
this time, but in 1858 Mayer himself was reported by Liebig to have died in an
asylum. Protests from Mayer did not prevent the appearance of his official death
notice in Poggendorff’s Handwdrterbuch.
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Strange Success

The final episode in this life full of ironies will seem like the ultimate irony.
Recognition of Mayer’s achievements finally came, but hardly in a way deserved
by a man who had endured indifference, rejection, breakdown, cruel medical
treatment, and reports of his own death. In the early 1860s Mayer, now peacefully
tending his vineyards in Heilbronn, suddenly became the center of a famous
scientific controversy.

It all started when John Tyndall, a popular lecturer, professor, and colleague
of Michael Faraday at the Royal Institution in London, prepared himself for a
series of lectures on heat. He wrote to Hermann Helmholtz and Rudolf Clausius
in Germany for information. Included in Clausius’s response was the comment
that Mayer’s writings were not important. Clausius promised to send copies of
Mayer’s papers nevertheless, and before mailing the papers he read them, ap-
parently for the first time with care. Clausius wrote a second letter with an en-
tirely different assessment: “I must retract the statements in my last letter that
you would not find much of importance in Mayer’s writings; I am astonished at
the multitude of beautiful and correct thoughts which they contain.” Clausius
was now convinced that Mayer had been one of the first to understand the energy
concept and its conservation doctrine. Helmholtz also sent favorable comments
on Mayer, pointing especially to the early evaluation of the mechanical equiva-
lent of heat.

Tyndall was a man who loved controversy and hated injustice. Because his
ideas concerning the latter were frequently not shared by others who were
equally adept in the practice of public controversy, he was often engaged in
arguments that were lively, but not always friendly. When Tyndall decided to be
Mayer’s champion, he embarked on what may have been the greatest of all his
controversies. As usual, he chose as his forum the popular lectures at the Royal
Institution. He had hastily decided to broaden his topic from heat to the general
subject of energy, which was by then, in the 1860s, mostly understood; the title
of his lecture was “On Force.” (Faraday and his colleagues at the Royal Institu-
tion still preferred to use the term “force” when they meant “energy.”)

Tyndall began by listing many examples of energy conversion and conserva-
tion, and then summarized Mayer’s role with the pronouncement, “All that I have
brought before you has been taken from the labors of a German physician, named
Mayer.” Mayer should, he said, be recognized as one of the first thermodynam-
icists, “a man of genius arriving at the most important results some time in ad-
vance of those whose lives were entirely devoted to Natural Philosophy.” Tyndall
left no doubt that he felt Mayer had priority claims over Joule: “Mr. Joule pub-
lished his first paper ‘On the Mechanical Value of Heat’ in 1843, but in 1842
Mayer had actually calculated the mechanical equivalent of heat.” In the gentle-
manly world of nineteenth-century scientific discourse, this was an invitation to
verbal combat. It brought quick responses from Joule and Thomson, and also
from Thomson’s close friend Peter Guthrie Tait, professor of natural philosophy
at the University of Edinburgh, and Tyndall’s match in the art of polemical
debate.

Joule was the first to reply, in a letter published in the Philosophical Magazine.
He could not, he said, accept the view that the “dynamical theory of heat” (that
is, the theory of heat that, among other things, was based on the heat-work con-
nection) was established by Mayer, or any of the other authors who speculated
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on the meaning of the conversion processes. Reliable conclusions “require ex-
periments,” he wrote, “and I therefore fearlessly assert my right to the position
which has been generally accorded to me by my fellow physicists as having been
the first to give decisive proof of the correctness of this theory.”

Tyndall responded to Joule in another letter to the Philosophical Magazine,
protesting that he did not wish to slight Joule’s achievements: “I trust you will
find nothing [in my remarks] which indicates a desire on my part to question
your claim to the honour of being the experimental demonstrator of the equiva-
lence of heat and work.” Tyndall was willing to let Mayer speak for himself; at
Tyndall’s suggestion, Mayer’s papers on the energy theme were translated and
published in the Philosophical Magazine.

But this did not settle the matter. An article with both Thomson and Tait listed
as authors (although the style appears to be that of Tait) next appeared in a
popular magazine called Good Words, then edited by Charles Dickens. In it,
Mayer’s 1842 paper was summarized as mainly a recounting of previous work
with a few suggestions for new experiments; “a method for finding the mechan-
ical equivalent of heat [was] propounded.” This was, the authors declared, a
minor achievement, and they could find no reason to surrender British claims:

On the strength of this publication an attempt has been made to claim for Mayer
the credit of being the first to establish in all its generality the principle of the
Conservation of Energy. It is true that la science n’a pas de patrie and it is
highly creditable to British philosophers that they have so liberally acted ac-
cording to this maxim. But it is not to be imagined that on this account there
should be no scientific patriotism, or that, in our desire to do justice to a for-
eigner, we should depreciate or suppress the claims of our countrymen.

Tyndall replied, again in the Philosophical Magazine, pointedly directing his
remarks to Thomson alone, and questioning the wisdom of discussing weighty
matters of scientific priority in the pages of a popular magazine. He now relaxed
his original position and saw Joule and Mayer more in a shared role:

Mayer’s labors have in some measure the stamp of profound intuition, which
rose, however, to the energy of undoubting conviction in the author’s mind.
Joule’s labours, on the contrary, are in an experimental demonstration. True to
the speculative instinct of his country, Mayer drew large and weighty conclu-
sions from slender premises, while the Englishman aimed, above all things, at
the firm establishment of facts. And he did establish them. The future historian
of science will not, I think, place these men in antagonism.

Tait was next heard from. He wrote to one of the editors of the Philosophical
Magazine, first offering the observation that if Good Words was not a suitable
medium for the debate of scientific matters, neither were certain popular lecture
series at the Royal Institution. He went on: “Prof. Tyndall is most unfortunate in
the possession of a mental bias which often prevents him . . . from recognizing
the fact that claims of individuals whom he supposes to have been wronged have,
before his intervention, been fully ventilated, discussed, and settled by the gen-
eral award of scientific men. Does Prof. Tyndall know that Mayer’s paper has no
claim to novelty or correctness at all, saving this, that by a lucky analogy he got
an approximation to a true result from an utterly false analogy?”
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Even if the polemics had been avoided, any attempt to resolve Joule’s and
Mayer’s conflicting claims would have been inconclusive. If the aim of the debate
was to identify once and for all the discoverer of the energy concept, neither
Joule nor Mayer should have won the contest. The story of the energy concept
does not end, nor does it even begin, with Mayer’s speculations and Joule’s ex-
perimental facts. Several of Kuhn’s simultaneous discoverers were earlier, al-
though more tentative, than Joule and Mayer. In the late 1840s, after both men
had made their most important contributions, the energy concept was still only
about half understood; the modern distinction between the terms force and en-
ergy had not even been made clear. Helmholtz, Clausius, and Thomson still had
fundamentally important contributions to make.

Those who spend their time fighting priority wars should forget their individ-
ual claims and learn to appreciate a more important aspect of the sociology of
science: that the scientific community, with all its diversity cutting across race,
class, and nationality, can, as often as it does, arrive at a consensus acceptable
to all. The final judgment in the Joule-Mayer controversy teaches this lesson. In
1870, almost a decade after the last Tyndall or Tait outburst, the Royal Society
awarded its prestigious Copley medal to Joule—and a year later to Mayer.



A Holy Undertaking

James Joule

The Scientist as Amateur

James Joule’s story may seem a little hard to believe. He lived near Manchester,
England—in the scientific hinterland during much of Joule’s career—where his
family operated a brewery, making ale and porter. He did some of his most im-
portant work in the early morning and evening, before and after a day at the
brewery. He had no university education, and hardly any formal training at all
in science. As a scientist he was, in every way, an amateur. Like Mayer, who was
also an amateur as a physicist, Joule was ignored at first by the scientific estab-
lishment. Yet, despite his amateur status, isolation, and neglect, he managed to
probe more deeply than anyone else at the time (the early and middle 1840s) the
tantalizing mysteries of conversion processes. And (unlike Mayer) he did not
suffer prolonged neglect. The story of Joule’s rapid progress, from dilettante to a
position of eminence in British science, can hardly be imagined in today’s world
of research factories and prolonged scientific apprenticeships.

Equivalences

The theme that dominated Joule’s research from beginning to end, and served as
his guiding theoretical inspiration, was the belief that quantitative equivalences
could be found among thermal, chemical, electrical, and mechanical effects. He
was convinced that the extent of any one of these effects could be assessed with
the units of any one of the other effects. He studied such quantitative connections
in no less than eight different ways: in investigations of chemical effects con-
verted to thermal, electrical, and mechanical effects; of electrical effects con-
verted to thermal, chemical, and mechanical effects; and of mechanical effects
converted to thermal and electrical effects.

At first, Joule did not fully appreciate the importance of mechanical effects in
this scheme of equivalences. His earliest work centered on chemical, electrical,
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and thermal effects. In 1840, when he was twenty-two, he started a series of five
investigations that was prompted by his interest in electrochemistry. (Joule was
an electrochemist before he was a physicist.) First, he demonstrated accurately
that the heating produced by an electrical current in a wire is proportional to the
square of the current I and to the electrical resistance R—the “I?R-heating law.”
His experimental proof required temperature measurements in a “calorimeter” (a
well-insulated, well-stirred vessel containing water or some other liquid), elec-
trical current measurements with an instrument of his own design, and the in-
vention of a system of absolute electrical units.

Joule then invested considerable effort in various studies of the role played
by his heating law in the chemical processes produced in electric cells. He
worked with “voltaic cells,” which supply an electrical output (the modern flash-
light battery is an example), and “electrolysis cells,” which consume an electrical
input (for example, a cell that decomposes water into hydrogen gas and oxygen
gas). In these experiments, Joule operated an electrolysis cell with a battery of
voltaic cells. He eventually arrived at the idea that the electrical currents gen-
erated by the chemical reaction in the voltaic cell carried the reaction’s “calorific
effect” or “chemical heat” away from the primary reaction site either to an ex-
ternal resistance where it could be converted to “free heat,” according to the I?R-
heating law, or to an electrolysis cell where it could be invested, all or partly, as
“latent heat” in the electrolysis reaction.

To determine the total chemical heat delivered to the electrolysis cell from the
voltaic cells, call it Q,, Joule found the resistance R, of a wire that could replace
the electrolysis cell without causing other electrical changes, measured the cur-
rent I in the wire, and calculated Q, with the heating law as I?R,. He also mea-
sured the temperature rise in the electrolysis cell doubling as a calorimeter, and
from it calculated the free heat @, generated in the cell. He always found that
Q. substantially exceeded (; in extreme cases, there was no heating in the cell
and Q; was equal to zero. The difference Q. — Q, represented what Joule wanted
to calculate: chemical heat converted to the latent heat of the electrolysis reac-
tion. Representing the electrolysis reaction’s latent heat with Q,, Joule’s calcula-
tion was

Qr = Qe - Qt-

This is the statement Joule used in 1846 to determine several latent heats of
electrolysis reactions with impressive accuracy. It is a complicated and exact
application of the first law of thermodynamics, which Joule seems to have un-
derstood in terms of inputs and outputs to the electrolysis cell. That is evident
in the last equation rearranged to

Qt = Qe - Qr’

with Q, an input to the cell, . an output because it is lost to the reaction, and
Q, the difference between the input and output (see fig. 5.1). This was a balancing
or bookkeeping kind of calculation, and it implied a conservation assumption:
the balanced entity could not be created or destroyed within the cell. Joule did
not have a name for the conserved entity. It would be identified six years later
by Rudolf Clausius and William Thomson, and called “energy” by Thomson.
Although he had not arrived at the energy concept, Joule clearly did have, well
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Electrolysis Reaction
(e.g., 2H,0—->2H,+0,)

Yo

Electrolysis Cell
Qt= Qe - Qr

A 0.

Figure 5.1. Input to and output from an electrolysis cell, according to Joule. The
measured free heat Q, in the cell depends only on the input Q, from the vol-

Voltaic Cells taic cell and the output Q, to the electrolysis reaction. It is equal to the input

Q. minus the output Q,, that is, Q. = Q, — Q..

ahead of his contemporaries, a working knowledge of the first law of
thermodynamics.

Joule’s electrochemistry papers aroused little interest when they were first
published, neither rejection nor acceptance, just silence. One reason for the in-
difference must have been the extraordinary nature of Joule’s approach. The
input-output calculation was difficult enough to comprehend at the time, but in
addition to that, Joule used his measured heats of electrolysis reactions to cal-
culate heats of combustion reactions (that is, reactions with oxygen gas). For
example, he obtained an accurate heat for the hydrogen combustion reaction,

2 H, + 0, — 2 H,0,
which is just the reverse of the water electrolysis reaction,
ZHZO—)ZHZ + 02,

and therefore, Joule assumed, its heat had the same magnitude as that of the
electrolysis reaction.

This was an exotic way to study a combustion reaction. Joule’s first biographer,
Osborne Reynolds, remarks that “the views they [the electrochemistry papers and
others of Joule’s early papers] contained were so much in advance of anything
accepted at the time that no one had sufficient confidence in his own opinion or
was sufficiently sure of apprehending the full significance of the discoveries on
which these views were based, to venture an expression of acceptance or rejec-
tion.” We can imagine a contemporary reader puzzling over the papers and fi-
nally deciding that the author was either a genius or a crank.

But for Joule—apparently unconcerned about the accessibility or inaccessibil-
ity of his papers for readers—the complicated method was natural. His primary
interest at the time was the accurate determination of equivalences among ther-
mal, electrical, and chemical effects. He could imagine no better way to tackle
this problem than to use electrical and calorimetric measurements to calculate
the thermal effect of a chemical effect.

Mechanical Equivalents

Joule made the crucial addition of mechanical effects to his system of equiva-
lences by following a time-honored route to scientific discovery: he made a
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fortunate mistake. In the fourth of his electrochemistry papers he reported elec-
tric potential data (voltages, in modern units) measured on voltaic cells whose
electrode reactions produced oxidation of zinc and other metals. He believed,
mistakenly, that these reaction potentials could be used in much the same way
as reaction heats: that for a given reaction the potential had the same value no
matter how the reaction was carried out. This interpretation is not sanctioned by
modern thermodynamics unless cell potentials are measured carefully (reversi-
bly). Joule and his contemporaries were unaware of this limitation, however, and
the mistake led Joule to calculate electrical and thermal equivalents for the pro-
cess in which dissolved oxygen is given “its elastic condition,” the reaction

0O, (solution) — O, (gas).

Joule’s result was an order of magnitude too large. But mistaken as it was quan-
titatively, the calculation advanced Joule’s conceptual understanding immensely,
because he believed he had obtained electrical and thermal equivalents for a
mechanical effect, the evolution of oxygen gas from solution. In Joule’s fertile
imagination, this was suggestive. In the fourth electrochemistry paper, he re-
marked that he had already thought of ways to measure mechanical equivalents.
He hoped to confirm the conclusion that “the mechanical and heating powers of
a current are proportional to each other.”

In this serendipitous way, Joule began the determinations of the mechanical
equivalent of heat for which he is best known today. The first experiments in
this grand series were performed in 1843, when Joule was twenty-four. In these
initial experiments, he induced an electrical current in a coil of wire by rotating
it mechanically in a strong magnetic field. The coil was contained in a glass tube
filled with water and surrounded by insulation, so any heating in the coil could
be measured by inserting a thermometer in the tube before and after rotating it
in the magnetic field. The induced current in the coil was measured by con-
necting the coil to an external circuit containing a galvanometer. Although its
origin was entirely different, the induced current behaved the same way as the
voltaic current Joule had studied earlier: in both cases the current caused heating
that followed the I2R-law.

In the final experiments of this design, the wheel of the induction device was
driven by falling weights for which the mechanical effect, measured as a me-
chanical work calculation, could be made directly in foot-pounds (abbreviated
ft-1b): one unit was equivalent to the work required to raise one pound one foot.
Heat was measured by a unit that fit the temperature measurements: one unit
raised the temperature of one pound of water 1° Fahrenheit (F). We will use the
term later attached to this unit, “British thermal unit,” or Btu.

In one experiment, Joule dropped weights amounting to 4 1b 12 oz (= 4.75 lb)
517 feet (the weights were raised and dropped many times), causing a tempera-
ture rise of 2.46° F. He converted the weight of the glass tube, wire coil, and water
in which the temperature rise occurred all into a thermally equivalent weight of
water, 1.114 lb. Thus the heating effect was 2.46° F in 1.114 1b of water. If this
same amount of heat had been generated in 1 b of water, the heating effect would
have been 7(2'46)(11'114) = 2.74° F. Joule concluded that in this case (517)(4.75)

ft-lb was equivalent to 2.74 Btu. He usually determined the mechanical work
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equivalent to 1 Btu. That number, which Thomson later labeled ] to honor Joule,
was

_ (4.75)(517) _
J= 2 896 ft-1b per Btu

for this experiment. This was one determination of the mechanical equivalent of
heat. Joule did thirteen experiments of this kind and obtained results ranging
from J = 587 to 1040 ft-1b per Btu, for which he reported an average value of 838
ft-1b per Btu. The modern “correct” value, it should be noted, is ] = 778 ft-lb per
Btu.

If the =27% precision achieved by Joule in these experiments does not seem
impressive, one can sympathize with Joule’s critics, who could not believe his
claims concerning the mechanical equivalent of heat. But the measurements Joule
was attempting set new standards for experimental difficulty. According to Reyn-
olds, the 1843 paper reported experiments that were more demanding than any
previously attempted by a physicist.

In any case, Joule was soon able to do much better. In 1845, he reported an-
other, much different determination of the mechanical equivalent of heat, which
agreed surprisingly well with his earlier measurement. In this second series of
experiments, he measured temperature changes, and calculated the heat pro-
duced, when air was compressed. From the known physical behavior of gases
he could calculate the corresponding mechanical effect as work done on the air
during the compression.

In one experiment involving compression of air, Joule calculated the work at
11230 ft-1b and a heating effect of 13.628 Btu from a measured temperature rise
of 0.344°F. The corresponding mechanical equivalent of heat was

J= 11230 _ 824 ft-1b per Btu.
13.628
Another experiment done the same way, in which Joule measured the tempera-
ture change 0.128°F, gave the result /] = 796 ft-1b per Btu. Joule’s average for the
two experiments was 810 ft-1b per Btu. This was in impressive, if somewhat
fortuitous, agreement with the result J = 838 ft-lb per Btu reported in 1843.
Joule also allowed compressed air to expand and do work against atmospheric
pressure. Temperature measurements were again made, this time with a temper-
ature decrease being measured. In one of these expansion experiments, Joule
measured the temperature change —0.1738°F and reduced this to 4.085 Btu. The
corresponding work calculation gave 3357 ft-1b, so

3357
J = ——— = 822 ft-1b per Btu.
4.085

Joule did two more experiments of this kind and measured the temperature
changes —0.081°F and —0.0855°F, giving ] = 814 and J = 760 ft-1b per Btu.
When Joule’s colleagues looked at these results, the first thing they noticed
was the accuracy claimed for measurements of very small temperature changes.
In Joule’s time, accurate measurement of one-degree temperature changes was



_64]

Great Physicists

difficult enough. Joule reported temperature changes of tenths of a degree with
three or four significant digits, and based his conclusions on such tiny changes.
As William Thomson remarked, “Joule had nothing but hundredths of a degree
to prove his case by.” Yet, most of Joule’s claims were justified. He made tem-
perature measurements with mercury thermometers of unprecedented sensitivity
and accuracy. He told the story of the thermometers in an autobiographical note:
“It was needful in these experiments to use thermometers of greater exactness
and delicacy than any that could be purchased at that time. I therefore deter-
mined to get some calibrated on purpose after the manner they had been by
Regnault. In this I was ably seconded by Mr. Dancer [J. B. Dancer, a well-known
Manchester instrument maker], at whose workshop I attended every morning for
some time until we completed the first accurate thermometers which were ever
made in England.”

Joule demonstrated the heat-mechanical-work equivalence with a third gas
expansion experiment that incorporated one of his most ingenious experimental
designs. In this experiment, two constant-volume copper vessels, one evacuated
and the other pressurized with air, were connected with a valve. The connected
vessels were placed in a calorimeter, the valve opened, and the usual temperature
measurements made. In this case, Joule could detect no net temperature change.
Air expanding from the pressurized vessel was cooled slightly, and air flowing
into the evacuated vessel was slightly heated, but no net temperature change was
observed.

This was what Joule expected. Because the combined system consisting of the
two connected vessels was closed and had a fixed volume, all of the work was
done internally, in tandem between the two vessels. Work done by the gas in one
vessel was balanced by work done on the gas in the other; no net work was done.
Heat equivalent to zero work was also zero, so Joule’s concept of heat-
mechanical-work equivalence demanded that the experiment produce no net
thermal effect, as he observed.

The next stage in Joule’s relentless pursuit of an accurate value for the me-
chanical equivalent of heat, which he had begun in 1847, was several series of
experiments in which he measured heat generated by various frictional pro-
cesses. The frictional effects were produced in a water-, mercury-, or oil-filled
calorimeter by stirring with a paddle-wheel device, the latter being driven by
falling weights, as in the 1843 experiments. The work done by the weights was
converted directly by the paddle-wheel stirrer into heat, which could be mea-
sured on a thermometer in the calorimeter.

Of all Joule’s inventions, this experimental design, which has become the best-
known monument to his genius, made the simplest and most direct demonstra-
tion of the heat-mechanical-work equivalence. This was the Joule technique re-
duced to its essentials. No complicated induction apparatus was needed, no
calculational approximations, just falling weights and one of Joule’s amazingly
accurate thermometers.

With the paddle-wheel device and water as the calorimeter liquid, Joule ob-
tained J = 773.64 ft-1b per Btu from a temperature rise of 0.563°F. Using mercury
in the calorimeter, he obtained J = 773.762 and 776.303 ft-1b per Btu. In two
further series of experiments, Joule arranged his apparatus so the falling weights
caused two cast-iron rings to rub against each other in a mercury-filled calori-
meter; the results ] = 776.997 and 774.880 ft-1b per Btu were obtained.

Joule described his paddle-wheel experiments in 1847 at an Oxford meeting
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of the British Association for the Advancement of Science. Because his previous
papers had aroused little interest, he was asked to make his presentation as brief
as possible. “This I endeavored to do,” Joule recalled later, “and a discussion not
being invited the communication would have passed without comment if a
young man had not risen in the section, and by his intelligent observations cre-
ated a lively interest in the new theory.”

The silence was finally broken. The young man was William Thomson, re-
cently installed as professor of natural philosophy at Glasgow University. Thom-
son had reservations about Joule’s work, but he also recognized that it could not
be ignored. “Joule is, I am sure, wrong in many of his ideas,” Thomson wrote to
his father, “but he seems to have discovered some facts of extreme importance,
as for instance, that heat is developed by the friction of fluids.” Thomson recalled
in 1882 that “Joule’s paper at the Oxford meeting made a great sensation. Faraday
was there, and was much struck by it, but did not enter fully into the new views.
... It was not long after when Stokes told me he was inclined to be a Joulite.”
George Stokes was another rising young physicist and mathematician, in 1847 a
fellow at Pembroke College, Cambridge, and in two years to be appointed Luca-
sian Professor of Mathematics, the chair once occupied by Newton.

During the three years following the Oxford meeting, Joule rose from obscurity
to a prominent position in the British scientific establishment. Recognition came
first from Europe: a major French journal, Comptes Rendu, published a short
account of the paddle-wheel experiments in 1847, and in 1848 Joule was elected
a corresponding member of the Royal Academy of Sciences at Turin. Only two
other British scientists, Faraday and William Herschel, had been honored by the
Turin Academy. In 1850, when he was thirty-one, Joule received the badge of
British scientific acceptance: election as a fellow of the Royal Society.

After these eventful years, Joule’s main research effort was a lengthy collabo-
ration with Thomson, focusing on the behavior of expanding gases. This was one
of the first collaborative efforts in history in which the talents of a theorist and
those of an experimentalist were successfully and happily united.

Living Force and Heat

Joule believed that water at the bottom of a waterfall should be slightly warmer
than water at the top, and he made attempts to detect such effects (even on his
honeymoon in Switzerland, according to an apocryphal, or at any rate embel-
lished, story told by Thomson). For Joule this was an example of the conservation
principle that “heat, living force, and attraction through space . . . are mutually
convertible into one another. In these conversions nothing is ever lost.” This
statement is almost an expression of the conservation of mechanical and thermal
energy, but it requires some translation and elaboration.

Newtonian mechanics implies that mechanical energy has a “potential” and a
“kinetic” aspect, which are linked in a fundamental way. “Potential energy” is
evident in a weight held above the ground. The weight has energy because work
was required to raise it, and the work can be completely recovered by letting the
weight fall very slowly and drive machinery that has no frictional losses. As one
might expect, the weight’s potential energy is proportional to its mass and to its
height above the ground: if it starts at a height of 100 feet it can do twice as
much work as it can if it starts at 50 feet.

If one lets the weight fall freely, so that it is no longer tied to machinery, it
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does no work, but it accelerates and acquires “kinetic energy” from its increasing
speed. Kinetic energy, like potential energy, can be converted to work with the
right kind of machinery, and it is also proportional to the mass of the weight. Its
relationship to speed, however, as dictated by Newton’s second law of motion,
is to the square of the speed.

In free fall, the weight has a mechanical energy equal to the sum of the kinetic
and potential energies,

mechanical energy = kinetic energy + potential energy. (1)

As it approaches the ground the freely falling weight loses potential energy, and
at the same time, as it accelerates, it gains kinetic energy. Newton’s second law
informs us that the two changes are exactly compensating, and that the total
mechanical energy is conserved, if we define

mv?

(2)

kinetic energy =

potential energy = mgz. (3)

In equations (2) and (3), m is the mass of the weight, v its speed, z its distance
above the ground, and g the constant identified above as the gravitational accel-
eration. If we represent the total mechanical energy as E, equation (1) becomes

2
E = mzv + mgz, (4)

and the conservation law justified by Newton’s second law guarantees that E is
always constant. This is a conversion process, of potential energy to kinetic en-
ergy, as illustrated in figure 5.2. In the figure, before the weight starts falling it
has 10 units of potential energy and no kinetic energy. When it has fallen halfway
to the ground, it has 5 units of both potential and kinetic energy, and in the
instant before it hits the ground it has no potential energy and 10 units of kinetic
energy. At all times its total mechanical energy is 10 units.

Joule’s term “living force” (or vis viva in Latin) denotes mv?, almost the same

]

‘ [ 1 Ground
0 5 10 Figure 5.2. Illustration of the conversion of potential energy
10 5 0 to kinetic energy by a freely falling weight, and the conser-

10 10 10 vation of total mechanical energy.
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. - mv? . .
thing as the kinetic energy — and his phrase “attraction through space” means

the same thing as potential energy. So Joule’s assertions that living force and
attraction through space are interconvertible and that nothing is lost in the con-
version are comparable to the Newtonian conservation of mechanical energy.
Water at the top of the falls has potential energy only, and just before it lands in
a pool at the bottom of the falls, it has kinetic energy only. An instant later the
water is sitting quietly in the pool, and according to Joule’s principle, with the
third conserved quantity, heat, included, the water is warmer because its me-
chanical energy has been converted to heat. Joule never succeeded in confirming
this waterfall effect. The largest waterfall is not expected to produce a tempera-
ture change of more than a tenth of a degree. Not even Joule could detect that
on the side of a mountain.

Joule’s mechanical view of heat led him to believe further that in the conver-
sion of the motion of an object to heat, the motion is not really lost because heat
is itself the result of motion. He saw heat as the internal, random motion of the
constituent particles of matter. This general idea had a long history, going back
at least to Robert Boyle and Daniel Bernoulli in the seventeenth century.

Joule pictured the particles of matter as atoms surrounded by rapidly rotating
“atmospheres of electricity.” The centrifugal force of the atmospheres caused a
gas to expand when its pressure was decreased or its temperature increased.
Mechanical energy converted to heat became rotational motion of the atomic
atmospheres. These speculations of Joule’s mark the beginning of the develop-
ment of what would later be called the “molecular (or kinetic) theory of gases.”
Following Joule, definitive work in this field was done by Clausius, Maxwell,
and Boltzmann.

A Joule Sketch

Osborne Reynolds, who met Joule in 1869, gives us this impression of his manner
and appearance in middle age: “That Joule, who was 51 years of age, was rather
under medium height; that he was somewhat stout and rounded in figure; that
his dress, though neat, was commonplace in the extreme, and that his attitude
and movements were possessed of no natural grace, while his manner was some-
what nervous, and he possessed no great facility of speech, altogether conveyed
an impression of simplicity, and utter absence of all affectation which had char-
acterized his life.”

Joule married Amelia Grimes in 1847, when he was twenty-nine and she
thirty-three; they had two children, a son and a daughter. Amelia died in 1854,
and “the shock took a long time to wear off,” writes Joule’s most recent biogra-
pher, Donald Cardwell. “His friends and contemporaries agreed that this never
very assertive man became more withdrawn.” About fourteen years later, Joule
fell in love again, this time with his cousin Frances Tappenden, known as
“Fanny.” In a letter to Thomson he writes “an affection has sprung up between
me and my cousin you saw when last here. There are hindrances in the way so
that nothing may come of it.” The “hindrances” prevented marriage, and even-
tually Fanny married another man.

Joule’s political leanings were conservative. He had a passionate, sometimes
irrational, dislike of reform-minded Liberal politicians such as William Gladstone
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and John Bright. In a letter to John Tyndall, he wrote, “The fact is that Mr. Glad-
stone was fashioning a neat machine of ‘representation’ with the object of keeping
himself in power. . .. Posterity will judge him as the worst ‘statesman’ that En-
gland ever had and the verdict with regard to that Parliament will be ditto, ditto.”

Joule had a personality that was “finely poised,” as another biographer, J. G.
Crowther, puts it. On the one hand he was conducting experiments with unlim-
ited care and patience, and on the other hand fulminating against Liberal poli-
ticians. He feared that too much mental effort would threaten his health. In 1860,
a new professorship of physics was created at Owens College in Manchester, and
Joule could have had it, but he decided not to apply, as he explained in a letter
to Thomson: “I have not the courage to apply for the Owens professorship. The
fact is that I do not feel it would do for me to overtask my brain. A few years
ago, I felt a very small mental effort too much for me, and in consequence spared
myself from thought as much as possible. I have felt a gradual improvement, but
I do not think it would be well for me to build too much on it. I shall do a great
deal more in the long run by taking things easily.”

Joule’s life was hectic and burdensome at this time, and he may have felt that
he was near breakdown. Amelia died in 1854, the brewery was sold in the same
year, and the experiments with Thomson were in progress. During the next six
years, he moved his household and laboratory twice. After the second move, he
was upset by an acrimonious dispute with a neighbor who objected to the noise
and smoke made by a three-horsepower steam engine Joule included in his ap-
paratus. The neighbor was “a Mr Bowker, an Alderman of Manchester and chair-
man of the nuisances committee, a very important man in his own estimation
like most people who have risen from the dregs of society.”

During this same period, Joule narrowly escaped serious injury in a train
wreck, and after that he had an almost uncontrollable fear of railway travel. At
the same time, he loved to travel by sea, even when it was dangerous. In a letter
to Fanny, he described a ten-mile trip to Tory Island, in the Atlantic off the coast
of Ireland, where his brother owned property: “Waves of 4 to 600 feet from crest
to crest and 20 feet high. Dr Brady who was with us and had yachted in the
ocean for 25 years said he was never in a more dangerous sea. However the
magnificence of it took away the disagreeable sense of danger which might have
prevailed.”

In some measures of scientific ability, Joule was unimpressive. As a theorist,
he was competent but not outstanding. He was not an eloquent speaker, and he
was not particularly important in the scientific establishment of his time. But
Joule had three things in extraordinary measure—experimental skill, indepen-
dence, and inspiration.

He was the first to understand that unambiguous equivalence principles could
be obtained only with the most inspired attention to experimental accuracy. He
accomplished his aim by carefully selecting the measurements that would make
his case. Crowther marvels at the directness and simplicity of Joule’s experimen-
tal strategies: “He did not separate a quantity of truth from a large number of
groping unsuccessful experiments. Nearly all of his experiments seem to have
been perfectly conceived and executed, and the first draft of them could be sent
almost without revision to the journals for publication.”

For most of his life, Joule had an ample independent income. That made it
possible for him to pursue a scientific career privately, and to build the kind of



James Joule 69

intellectual independence he needed. Crowther tells us about this facet of Joule’s
background:

As a rich young man he needed no conventional training to qualify him for a
career, or introduce him to powerful future friends. His early researches were
pursued partly in the spirit of a young gentleman’s entertainment, which hap-
pened to be science instead of fighting or politics or gambling. It is difficult to
believe that any student who had received a lengthy academic training could
have described researches in Joule’s tone of intellectual equality. The gifted
student who has studied under a great teacher would almost certainly adopt a
less independent tone in his first papers, because he would have the attitude
of a pupil to his senior, besides a deference due to appreciation of his senior’s
achievements. A student without deference after distinguished tuition is almost
always mediocre.

Joule was not entirely without distinguished tuition. Beginning in 1834, and
continuing for three years, Joule and his brother Benjamin studied with John
Dalton, then sixty-eight and, as always, earning money teaching children the
rudiments of science and mathematics. The Joules’ studies with Dalton were not
particularly successful pedagogically. Dalton took them through arithmetic and
geometry (Euclid) and then proceeded to higher mathematics, with little attention
to physics and chemistry. Dalton’s syllabus did not suit Joule, but he benefited
in more-informal ways. Joule wrote later in his autobiographical note, “Dalton
possessed a rare power of engaging the affection of his pupils for scientific truth;
and it was from his instruction that I first formed a desire to increase my knowl-
edge by original researches.” In his writings, if not in his tutoring, Dalton em-
phasized the ultimate importance of accurate measurements in building the
foundations of physical science, a lesson that Joule learned and used above all
others. The example of Dalton, internationally famous for his theories of chemical
action, yet self-taught, and living and practicing in Manchester, must have con-
vinced Joule that he, too, had prospects.

Joule’s independence and confidence in his background and talents, natural
or learned from Dalton, were tested many times in later years, but never shaken.
His first determination, in 1843, of the mechanical equivalent of heat was ig-
nored, and subsequent determinations were given little attention until Thomson
and Stokes took notice at the British Association meeting in 1847.

When Joule submitted a summary of his friction experiments for publication,
he closed the paper with three conclusions that asserted the heat-mechanical-
work equivalence in the friction experiments, quoted his measured value of J,
and stated that “the friction consisted in the conversion of mechanical power to
heat.” The referee who reported on the paper (believed to have been Faraday)
requested that the third conclusion be suppressed.

Joule’s first electrochemistry paper was rejected for publication by the Royal
Society, except as an abstract. Arthur Schuster reported that, when he asked Joule
what his reaction was when this important paper was rejected, Joule’s reply was
characteristic: “I was not surprised. I could imagine those gentlemen sitting
around a table in London and saying to each other: ‘What good can come out of
a town [Manchester] where they dine in the middle of the day?’ ”

But with all his talents, material advantages, and intellectual independence,
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Joule could never have accomplished what he did if he had not been guided in
his scientific work by inspiration of an unusual kind. For Joule “the study of
nature and her laws” was “essentially a holy undertaking.” He could summon
the monumental patience required to assess minute errors in a prolonged series
of measurements, and at the same time transcend the details and see his work
as a quest “for acquaintance with natural laws . .. no less than an acquaintance
with the mind of God therein expressed.” Great theorists have sometimes had
thoughts of this kind—one might get the same meaning from Albert Einstein’s
remark that “the eternal mystery of the world is its comprehensibility”—but ex-
perimentalists, whose lives are taken up with the apparently mundane tasks of
reading instruments and designing apparatuses, have rarely felt that they were
communicating with the “mind of God.”

It would be difficult to find a scientific legacy as simple as Joule’s, and at the
same time as profoundly important in the history of science. One can summarize
Joule’s major achievement with the single statement

J = 778 ft-1b per Btu,

and add that this result was obtained with extraordinary accuracy and precision.
This is Joule’s monument in the scientific literature, now quoted as 4.1840
kilogram-meters per calorie, used routinely and unappreciatively by modern stu-
dents to make the quantitative passage from one energy unit to another.

In the 1840s, Joule’s measurements were far more fascinating, or disturbing,
depending on the point of view. The energy concept had not yet been developed
(and would not be for another five or ten years), and Joule’s number had not
found its niche as the hallmark of energy conversion and conservation. Yet Joule’s
research made it clear that something was converted and conserved, and pro-
vided vital clues about what the something was.



Unities and a Unifier
Hermann Helmholtz

Unifiers and Diversifiers

Science is largely a bipartisan endeavor. Most scientists have no difficulty iden-
tifying with one of two camps, which can be called, with about as much accuracy
as names attached to political parties, theorists and experimentalists. An astute
observer of scientists and their ways, Freeman Dyson, has offered a roughly
equivalent, but more inspired, division of scientific allegiances and attitudes. In
Dyson’s view, science has been made throughout its history in almost equal mea-
sure by “unifiers” and “diversifiers.” The unifiers, mostly theorists, search for
the principles that reveal the unifying structure of science. Diversifiers, likely to
be experimentalists, work to discover the unsorted facts of science. Efforts of the
scientific unifiers and diversifiers are vitally complementary. From the great bod-
ies of facts accumulated by the diversifiers come the unifier’s theories; the the-
ories guide the diversifiers to new observations, sometimes with disastrous re-
sults for the unifiers.

The thermodynamicists celebrated here were among the greatest scientific uni-
fiers of the nineteenth and early twentieth centuries. Three of their stories have
been told above: of Sadi Carnot and his search for unities in the bewildering
complexities of machinery; of Robert Mayer and his grand speculations about
the energy concept; of James Joule’s precise determination of equivalences among
thermal, electrical, chemical, and mechanical effects. Continuing now with the
chronology, we focus on the further development of the energy concept. The
thermodynamicist who takes the stage is Hermann Helmholtz, the most con-
firmed of unifiers.

Medicine and Physics

Helmholtz, like Mayer, was educated for a medical career. He would have pre-
ferred to study physics and mathematics, but the only hope for scientific training,
given his father’s meager salary as a gymnasium teacher, was a government schol-
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arship in medicine. With the scholarship, Helmholtz studied at the Friedrich-
Wilhelm Institute in Berlin and wrote his doctoral dissertation under Johannes
Miiller. At that time, Miiller and his circle of gifted students were laying the
groundwork for a physical and chemical approach to the study of physiology,
which was the beginning of the disciplines known today as biophysics and bio-
chemistry. Miiller’s goal was to rid medical science of all the metaphysical ex-
cesses it had accumulated, and retain only those principles with sound empirical
foundations. Helmholtz joined forces with three of Miiller’s students, Emil du
Bois-Reymond, Ernst Briicke, and Carl Ludwig; the four, known later as the “1847
group,” pledged their talents and careers to the task of reshaping physiology into
a physicochemical science.

Die Erhaltung der Kraft

If medicine was not Helmholtz’s first choice, it nevertheless served him (and he
served medicine) well, even when circumstances were trying. His medical schol-
arship stipulated eight years of service as an army surgeon. He took up this
service without much enthusiasm. Life as surgeon to the regiment at Potsdam
offered little of the intellectual excitement he had found in Berlin. But to an
extraordinary degree, Helmholtz had the ability to supply his own intellectual
stimulation. Although severely limited in resources, and unable to sleep after
five o’clock in the morning when the bugler sounded reveille at his door, he
quickly started a full research program concerned with such topics as the role of
metabolism in muscle activity, the conduction of heat in muscle, and the rate of
transmission of the nervous impulse.

During this time, while he was mostly in scientific isolation, Helmholtz wrote
the paper on energy conservation that brings him to our attention as one of the
major thermodynamicists. (Once again, as in the stories of Carnot, Mayer, and
Joule, history was being made by a scientific outsider.) Helmholtz’s paper had
the title Uber die Erhaltung der Kraft (On the Conservation of Force), and it was
presented to the Berlin Physical Society, recently organized by du Bois-Reymond,
and other students of Miiller’s, and Gustav Magnus, in July 1847.

As the title indicates, Helmholtz’s 1847 paper was concerned with the concept
of “force”—in German, “Kraft”—which he defined as “the capacity [of matter] to
produce effects.” He was concerned, as Mayer before him had been, with a com-
posite of the modern energy concept (not clearly defined in the thermodynamic
context until the 1850s) and the Newtonian force concept. Some of Helmholtz’s
uses of the word “Kraft” can be translated as “energy” with no confusion. Others
cannot be interpreted this way, especially when directional properties are as-
sumed, and in those instances “Kraft” means “force,” with the Newtonian
connotation.

Helmholtz later wrote that the original inspiration for his 1847 paper was his
reaction as a student to the concept of “vital force,” current at the time among
physiologists, including Miiller. The central idea, which Helmholtz found he
could not accept, was that life processes were controlled not only by physical
and chemical events, but also by an “indwelling life source, or vital force, which
controls the activities of [chemical and physical] forces. After death the free ac-
tion of [the] chemical and physical forces produces decomposition, but during
life their action is continually being regulated by the life soul.” To Helmholtz
this was metaphysics. It seemed to him that the vital force was a kind of biolog-
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ical perpetual motion. He knew that physical and chemical processes did not
permit perpetual motion, and he felt that the same prohibition must be extended
to all life processes.

Helmholtz also discussed in his paper what he had learned about mechanics
from seventeenth- and eighteenth-century authors, particularly Daniel Bernoulli
and Jean d’Alembert. It is evident from this part of the paper that a priori beliefs
are involved, but the most fundamental of these assumptions are not explicitly
stated. The science historian Yehuda Elkana fills in for us what was omitted:
“Helmholtz was very much committed—a priori—to two fundamental beliefs: (a)
that all phenomena in physics are reducible to mechanical processes (no one
who reads Helmholtz can doubt this), and (b) that there be some basic entity in
Nature which is being conserved ([although] this does not appear in so many
words in Helmholtz’s work).” To bring physiology into his view, a third belief
was needed, that “all organic processes are reducible to physics.” These general
ideas were remarkably like those Mayer had put forward, but in 1847 Helmholtz
had not read Mayer’s papers.

Helmholtz’s central problem, as he saw it, was to identify the conserved entity.
Like Mayer, but independently of him, Helmholtz selected the quantity “Kraft”
for the central role in his conservation principle. Mayer had not been able to
avoid the confused dual meaning of “Kraft” adopted by most of his contempo-
raries. Helmholtz, on the other hand, was one of the first to recognize the am-
biguity. With his knowledge of mechanics, he could see that when “Kraft” was
cast in the role of a conserved quantity, the term could no longer be used in the
sense of Newtonian force. The theory of mechanics made it clear that Newtonian
forces were not in any general way conserved quantities.

This reasoning brought Helmholtz closer to a workable identification of the
elusive conserved quantity, but he (and two other eminent thermodynamicists,
Clausius and Thomson) still had some difficult conceptual ground to cover. He
could follow the lead of mechanics, note that mechanical energy had the con-
servation property, and assume that the conserved quantity he needed for his
principle had some of the attributes (at least the units) of mechanical energy.
Helmholtz seems to have reasoned this way, but there is no evidence that he got
any closer than this to a full understanding of the energy concept. In any case,
his message, as far as it went, was important and eventually accepted. “After [the
1847 paper],” writes Elkana, “the concept of energy underwent the fixing stage;
the German ‘Kraft’ came to mean simply ‘energy’ (in the conservation context)
and later gave place slowly to the expression ‘Energie.” The Newtonian ‘Kraft’
with its dimensions of mass times acceleration became simply our ‘force.” ”

I have focused on the central issue taken up by Helmholtz in his 1847 paper.
The paper was actually a long one, with many illustrations of the conservation
principle in the physics of heat, mechanics, electricity, magnetism, and (briefly,
in a single paragraph) physiology.

Pros and Cons

Helmholtz’s youthful effort in his paper (he was twenty-six in 1847), read to the
youthful members of the Berlin Physical Society, was received with enthusiasm.
Elsewhere in the scientific world the reception was less favorable. Helmholtz
submitted the paper for publication to Poggendorff’s Annalen, and, like Mayer
five years earlier, received a rejection. Once again an author with important
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things to say about the energy concept had to resort to private publication. With
du Bois-Reymond vouching for the paper’s significance, the publisher G. A. Rei-
mer agreed to bring it out later in 1847.

Helmholtz commented several times in later years on the peculiar way his
memoir was received by the authorities. “When I began the memoir,” he wrote
in 1881, “I thought of it only as a piece of critical work, certainly not as an
original discovery. . ..I was afterwards somewhat surprised over the opposition
which I met with among the experts . . . among the members of the Berlin acad-
emy only C. G. J. Jacobi, the mathematician, accepted it. Fame and material re-
ward were not to be gained at that time with the new principle; quite the op-
posite.” What surprised him most, he wrote in 1891 in an autobiographical
sketch, was the reaction of the physicists. He had expected indifference (“We all
know that. What is the young doctor thinking about who considers himself called
upon to explain it all so fully?”). What he got was a sharp attack on his conclu-
sions: “They [the physicists] were inclined to deny the correctness of the law . . .
to treat my essay as a fantastic piece of speculation.”

Later, after the critical fog had lifted, priority questions intruded. Mayer’s pa-
pers were recalled, and obvious similarities between Helmholtz and Mayer were
pointed out. Possibly because resources in Potsdam were limited, Helmholtz had
not read Mayer’s papers in 1847. Later, on a number of occasions, he made it
clear that he recognized Mayer’s, and also Joule’s, priority.

The modern assessment of Helmholtz’s 1847 paper seems to be that it was, in
some ways, limited. It certainly did cover familiar ground (as Helmholtz had
intended), but it did not succeed in building mathematical and physical foun-
dations for the energy conservation principle. Nevertheless, there is no doubt
that the paper had an extraordinary influence. James Clerk Maxwell, prominent
among British physicists in the 1860s and 1870s, viewed Helmholtz’s general
program as a conscience for future developments in physical science. In an ap-
preciation of Helmholtz, written in 1877, Maxwell wrote: “To appreciate the full
scientific value of Helmholtz’s little essay ... we should have to ask those to
whom we owe the greatest discoveries in thermodynamics and other branches
of modern physics, how many times they have read it over, and how often during
their researches they felt the weighty statements of Helmholtz acting on their
minds like an irresistible driving-power.”

What Maxwell and other physicists were paying attention to was passages
such as this: “The task [of theoretical science] will be completed when the re-
duction of phenomena to simple forces has been completed and when, at the
same time, it can be proved that the reduction is the only one which the phe-
nomena will allow. This will then be established as the conceptual form neces-
sary for understanding nature, and we shall be able to ascribe objective truth to
it.” To a large extent, this is still the program of theoretical physics.

Physiology

After 1847, Helmholtz was only intermittently concerned with matters relating
to thermodynamics. His work now centered on medical science, specifically the
physical foundations of physiology. He wanted to build an edifice of biophysics
on the groundwork laid by Miiller, his Berlin professor, and by his colleagues du
Bois-Reymond, Ludwig, and Briicke, of the 1847 school. Helmholtz’s rise in the
scientific and academic worlds was spectacular. For six years, he was professor
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of physiology at Konigsberg, and then for three years professor of physiology and
anatomy at Bonn. From Bonn he went to Heidelberg, one of the leading scientific
centers in Europe. During his thirteen years as professor of physiology at Hei-
delberg, he did his most finished work in biophysics. His principal concerns were
theories of vision and hearing, and the general problem of perception. Between
1856 and 1867, he published a comprehensive work on vision, the three-volume
Treatise on Physiological Optics, and in 1863, his famous Sensations of Tone, an
equally vast memoir on hearing and music.

Helmholtz’s work on perception was greatly admired during his lifetime, but
more remarkable, for the efforts of a scientist working in a research field hardly
out of its infancy, is the respect for Helmholtz still found among those who try
to understand perception. Edward Boring, author of a modern text on sensation
and perception, dedicated his book to Helmholtz and then explained: “If it be
objected that books should not be dedicated to the dead, the answer is that Helm-
holtz is not dead. The organism can predecease its intellect, and conversely. My
dedication asserts Helmholtz’s immortality—the kind of immortality that remains
the unachievable aspiration of so many of us.”

Physics

By 1871, the year he reached the age of fifty, Helmholtz had accomplished more
than any other physiologist in the world, and he had become one of the most
famous scientists in Germany. He had worked extremely hard, often to the det-
riment of his mental and physical health. He might have decided to relax his
furious pace and become an academic ornament, as others with his accomplish-
ments and honors would have done. Instead, he embarked on a new career, and
an intellectual migration that was, and is, unique in the annals of science. In
1871, he went to Berlin as professor of physics at the University of Berlin.

The conversion of the physiologist to the physicist was not a miraculous re-
birth, however. Physics had been Helmholtz’s first scientific love, but circum-
stances had dictated a career in medicine and physiology. Always a pragmatist,
he had explored the frontier between physics and physiology, earned a fine rep-
utation, and more than anyone else, established the new science of biophysics.
But his fascination with mathematical physics, and his ambition, had not faded.
With the death of Gustav Magnus, the Berlin professorship was open. Helmholtz
and Gustav Kirchhoff, professor of physics at Heidelberg, were the only candi-
dates; Kirchhoff preferred to remain in Heidelberg. “And thus,” wrote du Bois-
Reymond, “occurred the unparalleled event that a doctor and professor of phys-
iology was appointed to the most important physical post in Germany, and
Helmholtz, who called himself a born physicist, at length obtained a position
suited to his specific talents and inclinations, since he had, as he wrote to me,
become indifferent to physiology, and was really only interested in mathematical
physics.”

So in Berlin Helmholtz was a physicist. He focused his attention largely on
the topic of electrodynamics, a field he felt had become a “pathless wilderness”
of contending theories. He attacked the work of Wilhelm Weber, whose influence
then dominated the theory of electrodynamics in Germany. Before most of his
colleagues on the Continent, Helmholtz appreciated the studies of Faraday and
Maxwell in Britain on electromagnetic theory. Heinrich Hertz, a student of Helm-
holtz’s and later his assistant, performed experiments that proved the existence
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of electromagnetc waves and confirmed Maxwell’s theory. Also included among
Helmholtz’s remarkable group of students and assistants were Ludwig Boltz-
mann, Wilhelm Wien, and Albert Michelson. Boltzmann was later to lay the
foundations for the statistical interpretation of thermodynamics (see chapter 13).
Wien’s later work on heat radiation gave Max Planck, professor of theoretical
physics at Berlin and a Helmholtz protégé, one of the clues he needed to write
a revolutionary paper on quantum theory. Michelson’s later experiments on the
velocity of light provided a basis for Einstein’s theory of relativity. Helmholtz,
the “last great classical physicist,” had gathered in Berlin some of the theorists
and experimentalists who would discover a new physics.

Portrait

This has been a portrait of Helmholtz the scientist and famous intellect. What
was he like as a human being? In spite of his extraordinary prominence, that
question is difficult to answer. The authorized biography, by Leo Kénigsberger,
is faithful to the facts of Helmholtz’s life and work, but too admiring to be reli-
ably whole in its account of his personal traits. Helmholtz’s writings are not
much help either, even though many of his essays were intended for lay audi-
ences. His style is too severely objective to give more than an occasional
glimpse of the feeling and inspiration he brought to his work. We are left with
fragments of the human Helmholtz, and, like archaeologists, we must try to
piece them together.

We know that Helmholtz had a marvelous scientific talent, and an immense
capacity for hard work. Sessions of intense mental effort were likely to leave
him exhausted and sometimes disabled with a migraine attack, but he always
recovered, and throughout his life had the working habits of a workaholic.

He was blessed with two happy marriages. The death of his first wife, Olga,
after she spent many years as a semiinvalid, left him incapacitated for months
with headaches, fever, and fainting fits. As always, though, work was his tonic,
and in less than two years he had married again. His second wife, Anna, was
young and charming, “one of the beauties of Heidelberg,” Helmholtz wrote to
Thomson. She was a wife, wrote Konigsberger, “who responded to all [of Helm-
holtz’s] needs . . . a person of great force of character, talented, with wide views
and high aspirations, clever in society, and brought up in a circle in which in-
telligence and character were equally well developed.” Anna’s handling of the
household and her husband’s rapidly expanding social commitments contributed
substantially to the Helmholtz success story in Heidelberg and Berlin.

To achieve what he did, Helmholtz must have been intensely ambitious. Yet
he seems to have traveled the road to success without pretension and with no
question about his integrity, scientific or otherwise. Max Planck, a man whose
opinion can be trusted on the subjects of integrity and intellectual leadership
without pretension, wrote about his friendship with Helmholtz in the 1890s in
Berlin:

I learned to know Helmholtz . .. as a human being, and to respect him as a
scientist. For with his entire personality, integrity of convictions and modesty
of character, he was the very incarnation of the dignity and probity of science.
These traits of character were supplemented by a true human kindness, which
touched my heart deeply. When during a conversation he would look at me
with those calm, searching, penetrating, and yet so benign eyes, I would be
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overwhelmed by a feeling of boundless filial trust and devotion, and I would
feel that I could confide in him, without reservation, everything I had on my
mind.

Others, who saw Helmholtz from more of a distance, had different impres-
sions. Englebert Broda comments that Boltzmann “had the greatest respect for
Helmholtz the universal scientist, [but] Helmholtz the man . .. left him cold.”
Among his students and lesser colleagues, Helmholtz was called the “Reich
Chancellor of German Physics.”

There can hardly be any doubt that Helmholtz had a passionate interest in
scientific investigation and an encyclopedic grasp of the facts and principles of
science. Yet something contrary in his character made it difficult for him to com-
municate his feelings and knowledge to a class of students. We are again indebted
to Planck’s frankness for this picture of Helmholtz in the lecture hall (in Berlin):
“It was obvious that Helmholtz never prepared his lectures properly. He spoke
haltingly, and would interrupt his discourse to look for the necessary data in his
small notebook; moreover, he repeatedly made mistakes in his calculations at the
blackboard, and we had the unmistakable impression that the class bored him at
least as much as it did us. Eventually, his classes became more and more de-
serted, and finally they were attended by only three students; I was one of the
three.”

Helmholtz viewed scientific study in a special, personal way. The conven-
tional generalities required by students in a course of lectures may not have been
for him the substance of science. At any rate, Helmholtz was not the first famous
scientist to fail to articulate in the classroom the fascination of science, and (as
those who have served university scientific apprenticeships can attest) not the
last.

The intellectual driving force of Helmholtz’s life was his never-ending search
for fundamental unifying principles. He was one of the first to appreciate that
most impressive of all the unifying principles of physics, the conservation of
energy. In 1882, he initiated one of the first studies in the interdisciplinary field
that was soon to be called physical chemistry. His work on perception revealed
the unity of physics and physiology. Beyond that, his theories of vision and
hearing probed the aesthetic meaning of color and music, and built a bridge
between art and science. He expressed, as few had before or have since, a unity
of the subjective and the objective, of the aesthetic and the intellectual.

He had hoped to find a great principle from which all of physics could be
derived, a unity of unities. He devoted many years to this effort; he thought that
the “least-action principle,” discovered by the Irish mathematician and physicist
William Rowan Hamilton, would serve his grand purpose, but Helmholtz died
before the work could be completed. At about the same time, Thomson was failing
in an attempt to make his dynamical theory all-encompassing. In the twentieth
century, Albert Einstein was unsuccessful in a lengthy attempt to formulate a uni-
fied theory of electromagnetism and gravity. In the 1960s, the particle physicists
Sheldon Glashow, Abdus Salam, and Steven Weinberg developed a unified theory
of electromagnetism and the nuclear weak force. The search goes on for still-
broader theories, uniting atomic, nuclear, and particle physics with the physics
of gravity. We can hope that these quests for a “theory of everything” will even-
tually succeed. But we may have to recognize that there are limits. Scientists may
never see the day when the unifiers are satisfied and the diversifiers are not busy.
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William Thomson

A Problem Solver

William Thomson was many things—physicist, mathematician, engineer, inven-
tor, teacher, political activist, and famous personality—but before all else he was
a problem solver. He thrived on scientific and technological problems of all
kinds. Whatever the problem, abstract or applied, Thomson usually had an orig-
inal insight and a valuable solution. As a scientist and technologist, he was a
virtuoso.

Even Helmholtz, another famous problem solver, was amazed by Thomson’s
virtuosic performances. After meeting Thomson for the first time, Helmholtz
wrote to his wife, “He far exceeds all the great men of science with whom I have
made personal acquaintance, in intelligence and lucidity, and mobility of
thought, so that I felt quite wooden beside him sometimes.” Helmholtz later
wrote to his father, “He is certainly one of the first mathematical physicists of
his day, with powers of rapid invention such as I have seen in no other man.”

Thomson and Helmholtz became good friends, and in later years Thomson
made their discussions on subjects of mutual interest into an extended compe-
tition, which we can assume Thomson usually won. On one occasion, when
Helmholtz was visiting on board Thomson'’s sailing yacht in Scotland, the subject
for marathon discussion was the theory of waves, which, as Helmholtz wrote
(again in a letter to his wife), “he loved to treat as a kind of race between us.”
When Thomson had to go ashore for a few hours, he told his guest, “Now mind,
Helmholtz, you’re not to work at waves while I'm away.”

Much of Thomson’s problem-solving talent was based on his extraordinary
mathematical aptitude. He must have been a mathematical prodigy. While in his
teens, he matriculated at the University of Glasgow (where his father was a pro-
fessor of mathematics) and won prizes in natural philosophy and astronomy.
When he was sixteen he read Joseph Fourier’s Analytical Theory of Heat, and
correctly defended Fourier’s mathematical methods against the criticism of Philip
Kelland, professor of mathematics at the University of Edinburgh. This work was
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published in the Cambridge Mathematical Journal in 1841, the year Thomson
entered Cambridge as an undergraduate. By the time he graduated, Thomson had
published twelve research papers, all on topics in pure and applied mathematics.
Most of the papers were written under the pseudonym “P.Q.R.,” since it was
considered unsuitable for an undergraduate to spend his time writing original
papers.

Another element of Thomson'’s talent that certainly contributed to his success
was his huge, single-minded capacity for hard work. He wrote 661 papers and
held patents on 69 inventions. Every year between 1841 and 1908 he published
at least two papers, and sometimes as many as twenty-five. He carried proofs and
research notebooks wherever he traveled and worked on them whenever the
spirit moved him, which evidently was often. Helmholtz wrote (in another of his
lively letters to his wife) of life on board the Thomson yacht when the host had
“calculations” on his mind:

W. Thomson presumed so far on the freedom of his surroundings that he carried
his mathematical note-books about with him, and as soon as anything occurred
to him, in the midst of company, he would begin to calculate, which was treated
with a certain awe by the party. How would it be if I accustomed the Berliners
to the same proceedings? But the greatest naivete of all was when on Friday he
had invited all the party to the yacht, and then as soon as the ship was on her
way, and every one was settled on deck as securely as might be in view of the
rolling, he vanished into the cabin to make calculations there, while the com-
pany were left to entertain each other so long as they were in the vein; naturally
they were not exactly very lively.

Thomson may not have been a considerate host, but he was able to work with
great effectiveness within the scientific, industrial, and academic establishments
of his time. He became a professor of natural philosophy at the University of
Glasgow when he was twenty-one. One of his first scientific accomplishments
was the founding of the first British physical laboratory. His researches quickly
became famous, not only in Britain but also in Europe. At the age of twenty-
seven, he was elected to fellowship in the Royal Society. By the time he was
thirty-one, he had published 96 papers, and his most important achievements in
physics and mathematics were behind him.

In 1855, he embarked on a new career, one for which his talents were, if
anything, more spectacularly suited than for scientific research; he became a
director of the Atlantic Telegraph Company, formed to accomplish the Herculean
task of laying and operating a telegraph cable spanning two thousand miles
across the Atlantic Ocean from Ireland to Newfoundland. The cable became one
of the world’s technological marvels, but without Thomson’s advice on instru-
ment design, and on cable theory and manufacture, it might well have been a
spectacular failure.

After the Atlantic cable saga, which went on for ten years before its final
success, Thomson’s fame spread far beyond academic and scientific circles. He
was the most famous British scientist, as Helmholtz was later to become the most
famous German scientist. Income from the cable company and from his inven-
tions made him wealthy, and he managed his investments wisely. In 1866, the
year the cable project was completed, Thomson was knighted. In 1892, partly for
political reasons—he was active in the Liberal Unionist Party, which opposed
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home rule for Ireland—he was elevated to the peerage, as Baron Kelvin of Largs.
(Largs, a small town on the Firth of Clyde, was the location of Thomson’s estate,
Netherall; the River Kelvin flows past the University of Glasgow.)

As one of his biographers, Silvanus Thompson, tells us, Thomson was “a man
lost in his work.” But he was a devoted husband and family member. He was
always close to his father, his sister Elizabeth, and his brother James, an engi-
neering professor who shared his interest in thermodynamics. He was married
twice. His first wife, Margaret Crum, was an invalid throughout the marriage, in
need of frequent attention, which Thomson gave generously. Her death in 1870
was a severe blow. A few years later he married Frances Blandy, always called
“Fanny,” the daughter of a wealthy Madeira landowner. The second marriage
was as blessed as the first was tragic. Fanny was gregarious and gifted; she be-
came an efficient manager of the Thomson household and found a rich social
life in Glasgow as the second Lady Thomson and then as Lady Kelvin.

The Carnot-Joule Problem

The aspect of Thomson’s many-faceted career that concerns us here is his work
on the principles of thermodynamics. This chapter in Thomson’s life began in
1846. He had just graduated from Cambridge and had gone to Paris for a stay of
about six months to meet French mathematicians and experimentalists. As al-
ways, he needed little more than his talent to open important doors. He met
J. B. Biot and A. L. Cauchy, had long conversations with Joseph Liouville and
C. F. Sturm, and during the summer months worked in the laboratory of
Victor Regnault. But the two Frenchmen who impressed him most were no
longer living.

In Paris, Thomson began to think seriously about the work of Sadi Carnot.
Clapeyron’s paper on Carnot’s method first caught his attention, and he searched
Paris in vain for a copy of Carnot’s original memoir. As we saw in chapter 3, Car-
not’s theory concerned heat engine devices such as steam engines that work in
cycles and produce work output from heat input. Carnot had concluded that heat
engines were driven by the “falling” of heat from high temperatures to low tem-
peratures, in much the same way waterwheels are driven by water falling from
high to low gravitational levels. Carnot had also deduced that the ideal heat en-
gine—one that provided maximum work output per unit of heat input—had to be
operated throughout by very small driving forces. Such an ideal device could be
reversed with no net change in either the heat engine or its surroundings.

Before becoming acquainted with Carnot via Clapeyron in Paris in 1845,
Thomson had been strongly influenced by another great French theoretician who
was no longer living, Joseph Fourier. Even before entering Cambridge, Thomson
had read Fourier’s masterpiece on heat theory. Thomson particularly admired
Fourier’s agnostic theoretical method, based on mathematical models that were
useful but at the same time noncommittal on the difficult question of the nature
of heat.

The prevailing theory in Carnot’s time held that heat was an indestructible,
uncreatable, fluid material called “caloric.” Carnot adopted the caloric theory and
pictured caloric falling, waterlike, from high to low temperatures, driving heat
engine machinery as it dropped. By the 1840s, the caloric theory had a small but
growing number of opponents, among them James Joule, who insisted that heat
was associated not with caloric but somehow with the motion of the constituent
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molecules of matter. According to this point of view—which Thomson would
later call the “dynamical theory of heat”—the mechanical effect of a heat engine
was produced not by falling caloric but directly from molecular motion.

Fourier’s theory did not take sides in this controversy, but it managed never-
theless to describe accurately a wide variety of thermal phenomena. Thomson
was particularly impressed by Fourier’s treatment of the free “conduction” of
heat from a high temperature to a low temperature without producing any me-
chanical effect. This case was the opposite extreme from Carnot’s ideal heat en-
gine device. Although in both cases heat passed from hot to cold, Carnot pictured
maximum work output produced by the falling heat, while Fourier pictured no
work output at all. To Thomson the difference between Carnot and Fourier was
striking. He was sure that something of theoretical and practical importance was
lost when a Carnot system, with its best possible performance, was converted
into a Fourier system, with its worst possible performance.

The Carnot and Fourier influences were both crucial in the development of
Thomson’s views on the theory of heat. Both Frenchmen had important things
to say about thermal processes, and Thomson could find no inconsistencies in
their conclusions. In 1847, Thomson was suddenly confronted with a third in-
fluence. At the 1847 Oxford meeting of the British Association for the Advance-
ment of Science, Thomson met James Joule and learned of some theoretical views
and experimental results that Thomson might have preferred to ignore, because
they were at odds with his interpretation of Carnot.

At the Oxford meeting, Joule reported the results obtained in his famous
paddle-wheel experiments. By the time Thomson heard him in 1847, Joule was
able to prove convincingly that the mechanical equivalent of heat was accurately
constant in his various experiments. Joule interpreted his experiments by assum-
ing that heat and work were directly and precisely interconvertible. Work done
by the paddle wheel, and other working contrivances in his experimental de-
signs, was not lost: it was simply converted to an equivalent amount of heat.
Joule was also convinced that the opposite conversion, heat to work, was pos-
sible. In his view, this conversion was accomplished by any heat engine device.
The net heat input to the heat engine was not lost; it was converted to an equiv-
alent amount of work.

It was Joule’s second claim, the conversion of heat to work in a heat engine,
that disturbed Thomson. In 1847, Thomson no longer had faith in the caloric
doctrine that heat was a fluid, but he saw no reason to discard another axiom of
the caloric theory, that heat was conserved. For Thomson and his predecessors,
including Carnot, this meant that a system in a certain state had a fixed amount
of heat. If the state was determined by a certain volume V and temperature ¢, the
heat Q contained in the system was dependent only on V and t. Mathematically
speaking, heat was a state function, which could be written Q(V, ), showing the
strict dependence on the two state-determining variables V and t. For Thomson
in 1847, this principle was an essential part of Carnot’s theory, and “to deny it
would be to overturn the whole theory of heat, in which it is the fundamental
principle.”

Useful heat engines always operate in cycles. In one full cycle, the system
begins in a certain state and returns to that state. Thus, according to the heat
conservation axiom, a heat engine contained the same amount of heat at the end
of its cycle as at the beginning, so there could be no net loss of heat, converted
to work or otherwise, in one cycle of operation. Figure 7.1 illustrates this restric-
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Heat at ¢, Heat at £,
yQ Y Q Figure 7.1. Heat engine operation between a high tempera-
Heat Engine w Heat Engine W turet, and a low temperature t;, as viewed by Thomson in
& g the conflicting theories of Carnot and Joule. Q represents
Y Q v o-wiJ heat, W work, J Joule’s mechanical equivalent of heat, and
w
Heat at ¢, Heat at 7, N the heat equivalent to W. In the Carnot scheme, no heat
w
is lost. | le’s picture, t of heat — is lost.
Carnot? or Joule? is lost. In Joule’s picture, an amount of hea ; is los

tion, and to display Thomson’s dilemma, also shows heat engine operation ac-
cording to Joule’s claim.

It was even more difficult to reconcile Joule’s theory with what apparently
happened in the free-heat-conduction processes of the kind Fourier had ana-
lyzed. Heat conducted freely could always be put through a heat engine instead
and made to produce work. What happened to this unused work when conduc-
tion processes were allowed to occur? In Joule’s interpretation, nothing was lost
in heat engine operation. But Thomson was sure that in a nonworking, purely
conducting, system (or in any device allowing free heat conduction to some de-
gree), something was lost. In one of his first papers on the theory of heat, pub-
lished in 1849, Thomson expressed his quandary: “When ‘thermal agency’ is thus
spent in conducting heat through a solid, what becomes of the mechanical effect
which it might produce? Nothing can be lost in the operations of nature—no
energy can be destroyed. What effect then is produced in place of the mechanical
effect which is lost? A perfect theory of heat imperatively demands an answer to
this question; yet no answer can be given in the present state of science.” This
was Thomson’s first use of the term “energy,” and a first step toward its modern
meaning. At this point in the development of his ideas, Thomson could give the
term only a mechanical interpretation. He was not yet willing to include heat in
his energy concept.

The Thermometry Problem

At the same time he was struggling with these problems, Thomson was investi-
gating another aspect of the Carnot legacy, the temperature-dependent function
that Carnot labeled F. Thomson represented the function with u and called it
“Carnot’s function.” He suggested that the two fundamental properties of the
function—that it was dependent only on temperature, and that in all determi-
nations it had the same mathematical form—be used to define a new absolute
temperature scale.

Previously, absolute temperatures had been expressed on a scale based on an
idealization of gas behavior. If the temperature is held constant, the volume V of
an ideal gas decreases as the pressure increases,

1
Voo P (constant temperature).

If the pressure is held constant, the ideal gas volume increases as the temperature
increases,
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V o« T (constant pressure),

with T representing temperature measured on an absolute scale that begins at
zero and does not allow negative values. Combining the two proportionalities
into one, we have in general

T

Voo —
p
or

PV
T = constant. (1)

The constant in this equation, since it is a constant, can be determined by mea-
suring P and V at any temperature T. Customarily, the temperature of an ice-
water mixture (0°C) is chosen. If Py, V;; and T, are measured at that temperature,
equation (1) evaluates the constant as

constant = PoVy
Ty
so
PV = PoVo (2)
T T *

How is the absolute temperature T related to the ordinary temperature ¢ mea-
sured, say, on the Celsius scale? Assume that the two scales differ by a constant
a, that

T=t+a, (3)
and substitute this in equation (2) to obtain

PV =
Ty

(t + a). (4)

The expansion of a gas with increasing temperature, expressed mathematically
dv
by the derivative ar is measurable. This derivative divided by the volume V
itself defines the “expansion coefficient” «, also measurable,

According to this, and equation (4) applied with P = P,
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(5)

Thus a measured value of the expansion coefficient o at a known temperature
evaluates the constant a in equation (3) and completes the definition of absolute
temperature. Around the turn of the nineteenth century, Joseph Gay-Lussac and
John Dalton independently measured o for several gases and found a value of
about 267 for the constant a expressed on the Celsius scale; the corresponding
modern value is 273. At zero absolute temperature T = 0, and according to equa-
tion (3), the Celsius temperature is t = —a = —273°C.

Thomson was not satisfied with this treatment of the absolute-temperature
scale. He objected that it was not a satisfactory basis for a general theory of
temperature. Real gases were never actually ideal, he argued, and that meant
special elaborations of the gas law, a different one for each gas, had to be deter-
mined for accurate temperature measurements: there was no universal gas law
for real gases. Carnot’s function, on the other hand, had just the universality real
gas laws lacked; it was always the same no matter what material was used for
its determination.

Thomson proposed that Carnot’s function be used as a basis for a new tem-
perature scale. He stated this concept as a principle of absolute thermometry in
1848. His basic idea, as he put it later, was that “Carnot’s function (derivable
from the properties of any substance whatever, but the same for all bodies at the
same temperature), or any arbitrary function of Carnot’s function, may be defined
as temperature and is therefore the foundation of an absolute system of thermom-
etry.” Thomson made two suggestions concerning the appropriate function, one
in 1848 later abandoned, and another in 1854.

Thomson did not find it easy to make up his mind on this thermometry prob-
lem. His final decision was not made until other aspects of his theory of heat
had been settled. The main obstacle to progress was still another aspect of the
Carnot-Joule dilemma. Thomson found ways to derive equations from Carnot’s
theory that could be used to calculate Carnot’s function u, and in 1849 he pre-
pared an extensive table of u values. At first, this calculation had Thomson’s full
confidence, based as it was on the authority of Carnot’s theory, but there was one
loose end that he could not ignore. Joule had suggested, in a letter to Thomson
in 1848, that Carnot’s function was proportional to the reciprocal of the temper-
ature according to

~ I~

p= (6)

in which the temperature T is determined on the ideal-gas absolute scale, and |
is Joule’s mechanical equivalent of heat. At about the same time, Helmholtz
reached the same conclusion, but his work was not yet known in Britain.

When Thomson made comparisons between his calculations and those based
on Joule’s equation (6), he could get no better than approximate agreement. Again
he was confronted by a problem brought on by Joule’s challenge to Carnot’s the-
ory. Joule was inclined to think, correctly, that there were errors in the data used
by Thomson in calculating his table of u values.
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Macquorn Rankine

Until late in the nineteenth century, most thermodynamicists developed their
subject in a phenomenological vein: they concerned themselves strictly with de-
scriptions of macroscopic events. Their thermodynamic laws were based on rea-
soning that did not at any point rely on the theoretical modeling of the micro-
scopic—that is, molecular, patterns of nature that might “explain” the laws. With
one noteworthy exception, all the early thermodynamicists resisted the tempta-
tion to invent speculative molecular models before the phenomenological foun-
dations of their theories were secure.

The exceptional thermodynamicist was W. ]J. Macquorn Rankine, after 1855 a
professor of civil engineering at the University of Glasgow, and a colleague of
Thomson’s. Like Clausius and Thomson, Rankine had a good grasp of the phe-
nomenology of thermodynamics, but he preferred to derive his version of it from
a complicated hypothetical model of molecular behavior. His contemporaries and
successors found this approach hard to understand, and even to believe. One
can, for example, read polite doubt in Willard Gibbs’s assessment of Rankine’s
attack on the problems of thermodynamics, “in his own way, with one of those
marvelous creations of the imagination of which it is so difficult to estimate the
precise value.”

Rankine pictured the molecules of a gas in close contact with one another.
Each molecule consisted of a nucleus of high density and a spherical surrounding
“elastic atmosphere” of comparatively low density. The atmospheres were held
in place by attraction forces to the nuclei, and their constituent elements had
several kinds of motion. Prominent in Rankine’s thermodynamic calculations
was the rotational motion developed by a large number of tiny, tornado-like vor-
tices that formed around the molecule’s radial directions. Rankine showed that
a centrifugal force originated in these vortices, which gave individual molecules
their elasticity and systems of molecules their pressure.

Rankine’s contribution to thermodynamics “was ephemeral,” as the science
historian Keith Hutchison remarks. “It is in fact doubtful if any of Rankine’s
contemporaries other than Thomson had the patience to study the details of
Rankine’s work attentively.” But for the attentive audience of one, if for no one
else, Rankine’s vortex theory was a revelation. “Even though Thomson did not
accept Rankine’s specific mechanical hypothesis of the nature of heat,” write
Thomson’s most recent biographers, Crosbie Smith and M. Norton Wise, “he was
soon prepared to accept a general dynamical theory of heat, namely that heat
was vis viva [or kinetic energy] of some kind.” Among the attractions of a dy-
namical theory of heat—Rankine’s or any other—was that it made reasonable
Joule’s claim, the conversion of heat to work.

“[Rankine’s] appearance was striking and prepossessing in the extreme, and
his courtesy resembled almost that of a gentleman of the old school,” writes Peter
Guthrie Tait, another Scottish physicist. His creative output was enormous, in-
cluding, in addition to many papers on thermodynamics, papers on elasticity,
compressibility, energy transformations, and the oscillatory theory of light. He
also published a series of engineering textbooks, four large engineering treatises,
and several popular manuals. He was the Helmholtz of nineteenth-century en-
gineering science.

A “Scot of Scots,” Rankine could trace his ancestry from Robert the Bruce. He
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joined the company of great Scottish scientists and engineers, including Joseph
Black and James Watt in the eighteenth century, and Thomson and Maxwell
among his contemporaries. Like Carnot, he was trained as an engineer, and
adopted the methods of physics to advance engineering science.

Rankine was, with Clausius and Thomson, one of the founders of the classical
version of thermodynamics, yet his influence is all but invisible in the modern
literature of thermodynamics. This failure was partly because of the impenetrable
complexity of his vortex theory. But even without the vortices, his formulation
of thermodynamics was obscure, and on some key points, in error. That was not
good enough for his theory to survive in the competition with Clausius and
Thomson.

The Carnot-Joule Problem Solved

Until about 1850, Thomson saw his theoretical problem as a Joule-or-Carnot
choice; for several years the weight of Carnot’s impressive successes seemed to
tip the balance toward Carnot. But Thomson’s theoretician’s conscience kept re-
minding him that Joule’s message could not be ignored. Sometime in 1850 or
1851, Thomson began to realize to his relief that in a dynamical theory of heat,
Joule’s principle of heat and work interconvertibility could be saved without
discarding what was essential in Carnot’s theory. He discovered that Carnot’s
important results were compatible with Joule’s theory.

This meant proceeding without Carnot’s axiom of heat conservation, but
Thomson found that the conservation axiom could be excised from Carnot’s the-
ory with less damage than he had supposed. Most important, the fundamental
mathematical equations he had derived from Carnot’s theory—one of which he
had used to calculate values of Carnot’s function g—could be derived just as well
without the assumption as with it. Having taken this crucial step, Thomson could
quickly, in 1851, put together and publish most of his long paper, On the Dy-
namical Theory of Heat, based on the principles of both Joule and Carnot.

As the centerpiece of his theory, Thomson introduced for the first time the
idea that energy is an intrinsic property of any system of interest. As such, it
depends on the system’s volume and temperature. Increasing the temperature
causes the system’s energy to increase in the sense that its molecules have in-
creased kinetic energy. Increasing the volume might cause an energy increase if
the expansion were done against attraction forces among the molecules. The
mathematical message is that energy is a state function. For states determined by
the volume V and temperature t, Thomson’s theory replaced the earlier heat state
function Q(V, t) with the new energy state function e(V, ).

Thomson assumed that a system’s energy can change only by means of inter-
actions between the system and its surroundings: nature provides no internal
mechanism for creating or destroying energy within the boundaries of a system.
In this sense, energy is conserved. If a system is “closed,” meaning that no ma-
terial flows in or out, interactions with the surroundings are of just two kinds,
heating and working. Heating is any thermal interaction and working any non-
thermal (usually mechanical) interaction. These statements are easily com-
pressed into an equation: if dQ and dW are small heat and work inputs to a
system, the corresponding small change in the system’s energy is

de = JdQ + dW. (7)
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The J factor multiplying dQ is necessary to convert the heat units required for
dQ to mechanical units, so it can be added to dW, also expressed in mechanical
units.

Thomson’s crucial contribution was to move away from his predecessor’s ex-
clusive emphasis on heat and work—this was the tradition originated by Carnot
and carried on by Joule and Clausius—and to recognize that the conserved quan-
tity, energy, is an intrinsic property of a system that changes under the influence
of heating and working. This is not to say that heat and work are different forms
of energy; the concept is more subtle than that. Heating and working are two
different ways a system can interact with its surroundings and have its energy
change.

Energy is energy, regardless of the heating or working route it takes to enter
or leave a system. Maxwell made this point in a letter to Tait, criticizing Clausius
and Rankine, who pictured the energy possessed by a system in more detail than
Maxwell thought permissible: “With respect to our knowledge of the condition
of energy within a body, both Rankine and Clausius pretend to know something
about it. We certainly know how much goes in and comes out and we know
whether at entrance or exit it is in the form of heat or work, but what disguise
it assumes in the privacy of bodies . . . is known only to R., C. and Co.”

Clausius also recognized the existence of a state function U(V,t), which is
equivalent to Thomson’s e(V, f). Clausius’s work, published in 1850, had priority
over Thomson’s Dynamical Theory of Heat by about one year. But Clausius was
less complete in his physical interpretation of the energy concept. In 1850, he
only half understood the physical meaning of his state function U(V.t).

At first, Thomson used the term “mechanical energy” for the energy of his
theory. To emphasize energy as an entity possessed by a system, he introduced
in 1856 the term “intrinsic energy.” Later, Helmholtz used the term “internal
energy” for Thomson’s kind of energy.

The Fourier Problem

Thomson’s Dynamical Theory of Heat was his magnum opus on thermodynam-
ics. It was a complete and satisfying resolution of the Joule-Carnot conceptual
conflict that had been so disturbing two years earlier. At that time, Thomson had
also been worried about conflicts between the theories of Joule and Fourier. Joule
had argued that nothing was really lost in heat engine operation. Any heat con-
sumed by a heat engine—that is, not included as part of the heat output—was
not lost: it was converted to an equivalent amount of work. Thomson could now
accept this analysis of a heat engine performing in Carnot’s ideal, reversible mode
of operation. Nothing was lost in that case; the heat engine’s efficiency and work
output had maximum values, so nothing more could be obtained.

At the other extreme, however, were systems of the kind analyzed by Fourier,
which conducted all their heat input to heat output and converted none of it to
work. Thomson was convinced that there were important losses in this case; the
same heat input could have been supplied to a reversible heat engine and con-
verted to work to the maximum extent. What happened to all this work in the
Fourier system? A similar question could be asked about any heat engine whose
work output fell short of the maximum value. In any such case, work was lost
that could have been used in a reversible mode of operation.

In 1852, Thomson published a short paper that answered these questions. His
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central idea was that, although energy can never be destroyed in a system, it can
be wasted or “dissipated” when it might have been used as work output in a
reversible operation. The extent of energy dissipation can be assessed for a sys-
tem by comparing its actual work output with the calculated reversible value.
The science historian Crosbie Smith, who has studied the development of Thom-
son’s thermodynamics, describes the unusual character of Thomson’s energy dis-
sipation principle with its dependence on “arrangement” and “man’s creativity.”
He includes quotes from Thomson’s draft of his Dynamical Theory of Heat:

Where conduction occurs, Thomson believes that the work which might have
been done as a result of a temperature difference is “lost to man irrevocably”
and is not available to man even if it is not lost to the material world. Such
transformations therefore remove from man’s control sources of power “which
if the opportunity to turning them to his own account had been made use of
might have been rendered available.” Here the use of work or mechanical effect
depends on man’s creativity—on his efficient deployment of machines to trans-
form concentrations of energy [e.g., high-temperature heat] into mechanical ef-
fect—and it is therefore a problem of arrangement, not of creation ex nihilo.

A simple example here will help clarify Thomson’s meaning. A weight held
above the ground can do useful work if it drops very slowly and at the same time
drives machinery. If the machinery is ideal, that work can be supplied as input
to another ideal machine that lifts the weight back to its original position. Thus
the slow falling of the weight coupled to ideal machinery is exactly reversible—
that is, the weight and its surroundings can be restored to their initial condition,
and there is no dissipation of energy in the sense Thomson described.

Now suppose the weight drops to the ground in free fall, with no machinery.
As the weight falls, its potential energy is converted to kinetic energy, and the
kinetic energy to heat when the weight hits the ground (as in Joule’s waterfall
effect). Here we have an “irreversible” process. With no machinery and no work
output, we cannot restore the weight to its original position above the ground
without some uncompensated demands on the surroundings, and weights cer-
tainly do not rise spontaneously. This is an extreme case of irreversibility and
energy dissipation: all of the weight’s initial potential energy has been reduced
to heat and rendered permanently unavailable for useful purposes.

Falling heat imitates falling weights. It, too, has potential energy (proportional
to the absolute temperature), which can be completely used in a reversible heat
engine operation, with no dissipation, or completely dissipated in the irreversible
Fourier process of free conduction, or something in between in a real heat engine.
We have a technological choice: we can design a heat engine efficiently or inef-
ficiently, so it is wasteful or not wasteful.

The Thermometry Problem Solved

With the publication of his paper on the energy dissipation principle, Thomson
could feel that he had finally brought together in harmony the concepts of Joule,
Carnot, and Fourier. But the fundamentals of his thermodynamics were still not
quite complete. He had not yet made a decision about the nagging thermometry
problem that had been bothering him for almost five years. The specific problem
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was how to relate the temperature-dependent Carnot’s function p to absolute
temperature.

I lack the space here to give a complete account of Thomson’s work on this
stubborn and frustrating problem. Thomson had hoped to be able to use equa-
tions he had derived from Carnot’s theory to calculate values of Carnot’s function
u. Eventually he had to admit defeat in this effort when he found that some
assumptions used in the calculation were not valid. Thomson enlisted Joule’s
help in another, more elaborate attempt to calculate p values. The principal aim
of the Joule-Thomson work was to study real (nonideal) gas behavior, and in this
it succeeded. But Thomson also tried to use Joule’s data to calculate u values,
and once again he failed to muster the calculational wherewithal to complete the
task.

Finally, in 1854, Thomson decided to take a different tack in his pursuit of
the still-elusive Carnot function. He returned to his 1848 thermometry principle,
which asserted that Carnot’s function, or any function of Carnot’s function, could
be used as a basis for defining an absolute-temperature scale. No doubt influenced
by the Joule evaluation of Carnot’s function in equation (6), he defined a new
absolute-temperature scale that had this same form. Representing temperatures
on this scale T, his assumption was

=1 8)
u

He also assumed that the degree on the new scale is equivalent to the degree on
the Celsius scale. Even if Carnot’s function g could not be calculated accurately
with the data then available, Thomson was sure that it would eventually be
calculated, and that his thermometry principle was secure. The principle per-
mitted any assumed mathematical relation between the absolute temperature and
u. Thomson could see that equation (6), one of the simplest possible choices, and
in agreement with the ideal-gas absolute-temperature scale, was acceptable and
the best choice. Thomson was rewarded for his labors on the absolute-
temperature scale: the modern unit of absolute temperature is called the “kelvin”
(lowercase), abbreviated “K” (uppercase).

Hazards of Virtuosity

As it comes down to us in the consensus version found in modern textbooks, the
edifice of thermodynamics is based on three fundamental concepts, energy, en-
tropy, and absolute temperature; and on three great physical laws, the first an
energy law, and the second and third entropy laws. Only part of this picture is
visible in Thomson’s published work. He was certainly aware of the importance
of the energy and absolute-temperature concepts; those parts of the story he un-
derstood better than any of his competitors. But he failed to recognize the pow-
erful significance of entropy theory.

Actually, Thomson did touch on a calculation in 1854 that was based on the
concept Clausius later explored further and eventually called entropy. As was
often the case in his work, however, Thomson was inspired mainly by a special
problem, in this case, thermoelectricity, or the production of electrical effects
from thermal effects. He made statements of fundamental significance, and
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showed that he appreciated the rudiments of entropy theory; but he applied his
analysis only to the special problem, and never reached the important new the-
oretical ground Clausius would soon explore.

Clausius did not immediately believe in the entropy concept either. It took
him about ten years to have the confidence to supply a name and a symbol for
his new function. At the time Thomson glimpsed the idea of entropy, he appar-
ently did not have the patience or inspiration for such a prolonged—and possibly
risky—effort.

One of Thomson’s biographers, J. G. Crowther, remarks that more than once
Thomson failed to “divine” the deepest significance of his discoveries. “He did
not possess the highest power of scientific divination,” Crowther writes. “Unlike
the greatest scientists he was unable to divine what lay beyond the immediate
facts. In the highest regions of scientific research he was indisciplined. That was
perhaps due to his natural and habitual lack of contact with the collective stream
of scientific thought. That indiscipline penetrated down into his working habits.
He used to write papers in pencil, often on odd pieces of paper, and send them
in this condition to the printers.”

Another Thomson biographer, Joseph Larmor, gives us a picture of the scien-
tific virtuoso, so full of brilliant solutions to technical problems of every kind he
hardly had the time to write them all down, and never found the time to organize
into a unified whole his greatest accomplishments. Most of his papers were “mere
fragments,” Larmor writes, “which overflowed from his mind . . . into the nearest
channel of publication. . . . In the first half of his life, fundamental results arrived
in such volume as often to leave behind all chance of effective development. In
the midst of such accumulation he became a bad expositor; it is only by tracing
his activity up and down through its fragmentary published records, and thus
obtaining a consecutive view of his occupation, that a just idea of the vistas
continually opening upon him may be reached.”

Difficult as it certainly is to follow the threads of Thomson’s thought “up and
down through its fragmentary published records,” his work certainly had vision.
As Smith has emphasized, the scope of Thomson’s work was as broad as that of
any of his fellow physicists. At a time when other thermodynamicists were con-
centrating on reversible processes, Thomson was concerned with the thermo-
dynamics of irreversible processes in flow and thermoelectric systems. Some of
his methods of analysis did not come into general use until much later. Thomson
overlooked the importance of the entropy concept, but he was well aware of the
need for a second law of thermodynamics. His principle of energy dissipation is
a consequence of the modern statement of the second law.

In his discursive way, Thomson touched on every one of the major problems
of thermodynamics. But except for his temperature scale and interpretation of
the energy concept, his work is not found in today’s textbook version of ther-
modynamics. Although he ranks with Clausius and Gibbs among thermodyn-
amicists, his scientific legacy is more limited than theirs.

The comparison with Clausius is striking. These two, of about the same age,
and both in possession of the Carnot legacy, had the same thermodynamic con-
cerns. Yet it was the Clausius thermodynamic scheme, based on the two concepts
of energy and entropy and their laws, that impressed Gibbs, the principal third-
generation thermodynamicist. Clausius could also be obscure, but he left no
doubt about the conceptual foundations of his theories, and he gave Gibbs the
requisite clues to put together the scheme we see today in thermodynamics texts.
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Thomson Himself

For Thomson, however, we have a different kind of monument: we know what
this man of virtuosic talent was like as a human being. Unlike Clausius, who for
reasons apparently related to his contentious personality and lack of fame outside
the scientific world has never attracted a skilled biographer, Thomson has been,
and still is, a popular subject for biographical commentary. The first Thomson
biography was The Life of William Thomson, written by a namesake (spelled
with a p), Silvanus P. Thompson. Thompson is occasionally too admiring to be
accurate, and one may not share his fascination with Cambridge lore, but it would
be difficult to find a more enjoyable way to enter Thomson’s world than to spend
a few days with Silvanus Thompson’s two volumes.

Even if Silvanus Thompson was overly impressed with his subject’s virtues,
he had the good sense to quote at length others, Thomson’s friends, students,
and relatives, who saw him more completely. We can hardly do better than to
close this profile with comments by two young people who were impressed,
amused, and a little saddened by their contact with Thomson.

We hear first from Thomson’s grandniece, Margaret Gladstone, who was a fa-
vorite of Thomson’s, and as a young girl often visited Netherall, the Thomson
estate. (Two remarkable further aspects of Margaret Gladstone’s life: she was the
daughter of J. H. Gladstone, who succeeded Faraday at the Royal Institution, and
she became the wife of Ramsay Macdonald, one of the founders of the British
Labor Party and prime minister in the 1920s.) Her charming description of “Uncle
William” and “Aunt Fanny” is naive but at the same time perceptive:

Aunt Fanny likes company very much: and as for Uncle William it doesn’t seem
to make much difference to him what happens; he works away at mathematics
just the same, and in the intervals holds animated conversations with whom-
ever is near. They were both very good to me; and the time I liked best was one
day when there were no visitors at all, and we were quite by ourselves for about
thirty hours.

The mathematics went on vigorously in the “green book.” That “green book”
is a great institution. There is a series of “green books”—really notebooks made
especially for Uncle William—which he uses up at the rate of 5 or 6 a year, and
which are his inseparable companions. They generally go upstairs, downstairs,
out of doors, and indoors, wherever he goes; and he writes in his “green book”
under any circumstances. Looking through them is quite amusing; one entry
will be on the train, another in the garden, a third in bed before he gets up;
and so they go on, at all hours of the day and night. He always puts the place
and the exact minute of beginning an entry.

In 1896, an immense celebration attended by more than two thousand guests
was held in Thomson’s honor in recognition of his long service at the University
of Glasgow. The huge gathering hardly got what it expected in Thomson’s re-
sponding remarks. At that moment, he had to tell them, his deepest feeling was
a sense of failure: “One word characterizes the most strenuous efforts for the
advancement of science I have made perseveringly during fifty-five years; that
word is Failure. I know no more of electric and magnetic force, or of the relation
between ether, electricity and ponderable matter, or of chemical affinity, than I
knew and tried to teach to my students of natural philosophy fifty years ago in
my first session as professor.”
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Margaret Gladstone was there and recorded some sober thoughts:

In the evening the word “Failure” in which he characterized the results of his
best efforts seemed to ring through the hall with half-sad, half-yearning em-
phasis. Some of the people tried to laugh incredulously, but he was too much
in earnest for that. Yet at the same time he was not pessimistic, for it was
evident what keen joy he had in his work, and still has, and how warmly he
feels the help and affection of his fellow-workers.

As for the students, I am afraid they laughed, with good cause, when he
spoke of the ideal lecture as a conference, because I always hear that he goes
up in the heights when he is lecturing to them, and pours forth speculations
with great enthusiasm far above their heads.

In thinking over Uncle William’s speeches, the tone in which he gave them,
and in his quiet, serious, deferential look when praise was heaped upon him,
dwell in my memory. There was something pathetic about it all—a sort of won-
der that people should be so kind, and a wish that he had done more to deserve
it all.

Thomson rarely found the time to prepare his lectures, and as Margaret Glad-
stone informs us, he could not resist the temptation to tell uncomprehending
student audiences about his latest discoveries. Helmholtz, who was not success-
ful in the lecture hall either, wondered how Thomson ever made contact with
his students: “He thinks so rapidly . . . that one has to get at the necessary infor-
mation . . . by a long string of questions, which he shies at. How his students
understand him, without keeping him as strictly to the subject as I ventured to
do, is a puzzle to me.”

Yet there was an affectionate bond between Thomson and his “corps” of stu-
dents, able to forgive his digressions in the lecture hall and appreciate his great-
ness as a scientist and as an unpretentious human being. Here is a recollection
by Andrew Gray, who was one of the “merry students” who attended Thomson’s
lectures in the 1870s, and was eventually Thomson’s successor. It is an account
of the last lecture of the course:

The closing lecture of the ordinary course was usually on light, and the subject
was generally the last to be taken up—for as the days lengthened in spring it
was possible sometimes to obtain sunlight for the experiments—and was often
relegated to the last day or two of the session. So after an hour’s lecture Thom-
son would say, “As this is the last day of the session I will go on a little longer
after those who have to leave have gone to their classes.” Then he would resume
after ten o’clock, and go on to eleven, when another opportunity would be given
for students to leave, and the lecture would be resumed. Messengers would be
sent from his house where he was wanted on business of other sorts to find
what had become of him, and the answer brought would be, hour after hour,
“He is still lecturing.” At last he would conclude about one o’clock, and gently
thank the small and devoted band who had remained to the end for their kind
and prolonged attention.



The Road to Entropy
Rudolf Clausius

Scientific Siblings

The history of thermodynamics is a story of people and concepts. The cast of
characters is large. At least ten scientists played major roles in creating thermo-
dynamics, and their work spanned more than a century. The list of concepts, on
the other hand, is surprisingly small; there are just three leading concepts in
thermodynamics: energy, entropy, and absolute temperature.

The three concepts were invented and first put to use during a forty-year pe-
riod beginning in 1824, when Sadi Carnot published his memoir on the theory
of heat engines. Carnot was the pioneer, and the conceptual tools he had available
to refine his arguments were primitive. But he managed, nonetheless, to invent
highly original concepts and methods that were indispensable to his successors.

Carnot died in 1832, and his scientific work almost died with him. His memoir
was first ignored and then resurrected, initially by his colleague Emile Clapeyron
and later by two second-generation thermodynamicists, Rudolf Clausius and Wil-
liam Thomson. These two men were born almost at the same time as Carnot’s
revolutionary memoir: they were, so to speak, Carnot’s scientific progeny. Just as
the generation that had ignored Carnot was passing, Clausius and Thomson came
of age, ventured into the world of scientific ideas, and took full advantage of
Carnot’s powerful, but neglected, message. Now it is Clausius’s turn, but first I
must digress on some mathematical matters.

Formulas and Conventions

To describe a system in the style of thermodynamics, one must first define the
system’s state with suitable state-determining variables such as the volume V and
temperature t (t now stands for Celsius temperature). Small changes in V and t,
brought on as the system is put through some process, are represented by dV and
dt. These symbols can denote either increases or decreases, and that means dV
and dt are implicitly either positive or negative. In an expansion, for example,
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the volume of the system increases, so the change dV is positive; in compression,
the volume decreases and dV is negative. Similarly, positive dt describes a tem-
perature increase, and negative dt a temperature decrease.

Heating and working are the fundamental processes of thermodynamics. As
both Clausius and Thomson understood, they involve interactions between a
system and its surroundings. For example, adding a small amount of heat dQ to
a system from the surroundings is a small step in a heating process. Heat added
to a system is counted as positive, and dQ is implicitly positive. The reverse
process removes the heat dQ from the system, and dQ is negative. These con-
ventions are illustrated in figure 8.1.

A working process might be the compression of a gas in a piston-cylinder
device, as in a car engine. A small step in the compression process is represented
by the small amount of work dW done on the system (the gas), and it is counted
positive. In the reverse process, expansion, the system does work on its surround-
ings; this is work output and dW is negative. See figure 8.2.

If we slowly add a small amount of heat dQ to a system, the response is likely
to be a small temperature increase dt, accompanied by a small expansion ex-
pressed by the volume increase dV. The heat and its two effects are related by
an equation that was an indispensable mathematical tool for Clausius,

dQ = MdV + Cdt. (1)

The coefficient C in this equation is called a “heat capacity.” We can isolate
it by assuming that the volume is held constant, so there is no change in volume,
dV = 0, and from equation (1),

dQ = Cdt (constant V). (2)

Suppose we add dQ = 0.1 heat units and measure the temperature change dt =
0.001°C. Then the heat capacity calculated with equation (2) is

d 0.1
C= —Q = ——— = 100 heat units per °C,
dt 0.001

demonstrating that the heat capacity is the number of heat units required to raise
the temperature of the system one degree.

If we compress a gaseous system and change its volume by dV, the small
amount of work done dW is proportional to the volume change,

dW o —dV. (3)

(Read “proportional to” for the symbol =«.) The minus sign preceding dV is dic-
tated by the sign conventions we have adopted for dW and dV. The compression

System

Y

System

EY

/

dQ positive dQ negative  Figure 8.1. lllustration of the sign convention for dQ.
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dW positive dW negative  Figure 8.2. Illustration of the sign convention for dW.

provides work input, so dW is positive, but dV is negative because the compres-
sion decreases the volume. The mismatch of signs is repaired by replacing dV
with —dV, which is positive. The same recipe applies to an expansion, with dV
positive and —dV negative, matched by a negative dW for work output.

The work done in compression is also proportional to a pressure factor, as one
might expect, because it certainly requires less work to compress a gas at low
pressure than at high pressure. If the compression is done slowly, that pressure
factor is simply the pressure P of the gas. With that factor included, the propor-
tionality (3) becomes the equation

dW = —PdV. (4)

This equation is also valid for expansion of a gas, and even for expansion or
compression of a liquid or solid.

Heat Transmitted and Converted

Clausius published a memoir in 1850 that reconciled Carnot’s work with the
discoveries of the intervening twenty-five years and formulated the first law of
thermodynamics almost in its modern form. Clausius began his 1850 paper with
a reference to the paper by Emile Clapeyron written two years after Carnot’s death
in the mathematical language understood then (and now) by theoreticians. For
reasons he never had occasion to explain, Carnot had written his memoir in a
mostly nonmathematical style that obscured his more subtle points.

Both Carnot and Clapeyron had been misled by the well-entrenched caloric
theory of heat, which insisted that heat was indestructible, and could not
therefore be converted to work in a heat engine or any other device. For them,
the heat engine dropped the heat from a higher to a lower temperature without
changing its amount. The time had come for Clausius, as about a year later it
came for Thomson, to free the Carnot-Clapeyron work from the misconceptions
of the caloric theory. Clausius did so by first making the fundamental assumption
in his 1850 paper that part of the heat input to any heat engine is converted to
work. The rest of the heat input is simply transmitted from a higher to a lower
temperature, as in the Carnot-Clapeyron model, and it becomes the heat engine’s
output. In other words, heat can be affected by two kinds of transformations,
transmission and conversion. Summarizing in an equation for one turn of a heat
engine’s cycle,

heat input = heat converted + heat transmitted, (5)
or

heat input — heat transmitted = heat converted. (6)
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Clausius invoked a lengthy argument that put the last statement in the form of a
complicated differential equation containing the two coefficients C and M.

The First Law

If Clausius had gone no further in his analysis, his 1850 paper would not have
an important place in this history. The differential equation he had derived was
mathematically valid, and its physical validity could be checked, but otherwise
it had little significance beyond the immediate circumstances for which it was
derived. Clausius was aware of these deficiencies, and his next effort was to
reshape his argument into something more meaningful.

With some inspired mathematical manipulations, Clausius derived a second
equation (equation [7] below) that proved a much more significant theoretical
tool than his original equation. It can be found in any modern thermodynamics
text as the standard mathematical version of the first law of thermodynamics.
That two equations so closely related mathematically can differ so much in phys-
ical importance—one equation little more than a historical curiosity, the other
now known to any physicist, engineer, or chemist—is vivid testimony that for
the theoretical scientist, mathematics is a language whose message can be elo-
quent or dull, depending on how it is written and interpreted.

Clausius had only to integrate his original differential equation to reveal its
physical message. He invoked a function of V and ¢, simply as a by-product of
the integration, that was reminiscent of the false heat state function Q(V,t), except
that this function really was a state function. The new function, which Clausius
labeled U(V,t), was the first of a collection of valuable state functions that now
dominate the practice of thermodynamics.

The quantity U was a proper state function, but what did it mean physically?
Clausius answered by again making use of equation (1). With a few more math-
ematical strokes, he derived the equation

dQ = dU + %PdV, 7)

1
where P represents pressure, and the factor 7 converts the mechanical units at-

tached to the PdV term into the thermal units required for dQ.

Clausius had arrived here at the equation that modern students of thermody-
namics have no difficulty recognizing as a mathematical statement of the first
law of thermodynamics. In modern usage, no distinction is made between ther-
mal and mechanical units, so the factor J is unnecessary, U is recognized as
internal energy, and the equation is written so it evaluates changes in U,

dU = dQ — PdV. (8)

But in 1850, the energy concept was still unclear, and could not be part of
Clausius’s interpretation. Instead, he viewed equation (7) primarily as a contri-
bution to the theory of heat. He understood dQQ to measure the amount of heat
added during a small step in a heating process. Once the heat entered the system,
it could be “free” or “sensible” heat—its effect could be measured on a thermom-
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eter—or it could be converted to work. He recognized two kinds of work, that
performed internally (against forces among molecules, in the modern interpre-
tation) and that done externally, against an applied pressure in the surroundings.

1
The term 7 PdV in equation (7) evaluates the latter, so Clausius concluded that

dU calculates two things: changes in the sensible heat (always an increase if heat
is added) and the amount of internal work done, if any.

Clausius succinctly summarized his position in an appendix added to the 1850
paper in 1864, when he collected his papers in a book: “The function U, here
introduced, is of great importance in the theory of heat; it will frequently come
under discussion in the following memoirs. As stated, it involves two of the three
quantities of heat, which enter into consideration when a body changes its con-
dition; these are the augmentation of the so-called sensible or actually present
heat, and heat expended in interior work.”

At about the same time Clausius was developing this interpretation of his state
function U(V,t), Thomson was inventing a theory based on an identical function,
which he labeled e(V,t). Thomson had a name for his function—“mechanical
energy”—and he understood it to be a measure of the mechanical effect (molec-
ular kinetic and potential energy) stored in a system after it has exchanged heat
and work with its surroundings. Thomson later called his function “intrinsic
energy,” and still later Helmholtz supplied the name that has stuck, “internal
energy.”

It is an impressive measure of the subtlety of the energy concept—and of
Thomson’s insight—that Clausius was not willing to accept Thomson’s energy
theory for fifteen years. Not until 1865 did he adopt Thomson’s interpretation
and begin calling his U function “energy.” He did not use Thomson’s or Helm-
holtz’s terms.

In spite of his uncertainty about the physical meaning of the U function, Clau-
sius had in his 1850 paper come close to a complete formulation of the first law
of thermodynamics. Even the mathematical notation he used is that found in
modern textbooks. Clifford Truesdell summarizes Clausius’s achievements in the
1850 work: “There is no doubt that Clausius with his [1850] paper created clas-
sical thermodynamics. . . . Clausius exhibits here the quality of a great discoverer;
to retain from his predecessors major and minor . . . what is sound while frankly
discarding the rest, to unite previously disparate theories and by one simple if
drastic change to construct a complete theory that is new yet firmly based upon
previous successes.”

The “one simple if drastic change” made by Clausius was to assume that, in
heat engines and elsewhere, heat could not only be dropped or transmitted from
a higher to a lower temperature (as Carnot had assumed), but that it could also
be converted into work. Others, particularly Joule, had recognized the possibility
of heat-to-work conversions—much of Joule’s research was based on observations
of the inverse conversion, work to heat—but Clausius was the first to build the
concept of such conversions into a general theory of heat.

Heat Transformations

Clausius had much more to add to his theoretical edifice based on the “simple
if drastic change.” In 1854, he published a second paper on heat theory, which
went well beyond the realm of the first law of thermodynamics and the concept
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of energy, and well into the new realm of the second law of thermodynamics and
the concept of entropy. His initial assumption was again that heat could undergo
two kinds of transformations. I will elaborate Clausius’s terminology for the two
transformations and call the dropping of heat from a high to a low temperature
an instance of a “transmission transformation,” and the conversion of heat to
work an example of a “conversion transformation.” Clausius was impressed that
both kinds of transformations have two possible directions, one “natural” and
the other “unnatural” (again, this is not Clausius’s terminology). In the natural
direction, the transformation can proceed by itself, spontaneously and unaided,
while the unnatural direction is not possible at all unless forced.

The natural direction for the conversion transformation can be seen in Joule’s
observations of heat production from work. Clausius saw the unnatural direction
for the conversion transformation as the production of work from heat, a con-
version that never takes place by itself, but always must be forced somehow in
heat engine operation. The natural direction for the transmission transformation
is the free conduction of heat from a high temperature to a low temperature. The
unnatural direction is the opposite transport from a low temperature to a high
temperature, which is impossible as a spontaneous process; such heat transport
must be forced in a “heat pump,” like those used in air conditioners.

Clausius took this reasoning one significant step further. He saw that in heat
engines the two kinds of heat transformations occur at the same time. In each
cycle of heat engine operation, the transmission transformation takes place in its
natural direction (heat dropped from a high to a low temperature), while the
conversion transformation proceeds in its unnatural direction (heat converted to
work). It is as if the transmission transformation were driving the conversion
transformation in its unnatural direction.

Moreover, Clausius concluded, the two transformations are so nearly balanced
that in reversible operations either can dominate the other. They are in some
sense equivalent. Clausius set out to construct a quantitative “heat transformation
theory” that could follow this lead. His goal was to assess “equivalence values”
for both transformations in reversible, cyclic processes. He hoped that the equiv-
alence values could then be used to express in a new natural law the condition
of balance, or “compensation,” as he called it.

Although he could hardly have been aware of it at the time, Clausius had, in
this simple theoretical expectation, started a line of reasoning as promising as
any in the history of science. It would not be easy for him to appreciate fully the
importance of what he was doing, but he now had all the theoretical clues he
needed to reach the concept of entropy and its great principle, the second law
of thermodynamics.

Clausius began his heat transformation theory with the axiom that heat is not
transmitted spontaneously from a low temperature to a high temperature. (If you
touch an icicle, heat passes from your warm hand to the cold icicle, and the
icicle feels cold; icicles never feel warm.) In his 1854 paper, he stated the as-
sumption: “Heat can never pass from a colder to a warmer body without some
other change connected therewith occurring at the same time.” Later he simpli-
fied his axiom to: “Heat cannot of itself pass from a colder to a warmer body.”

The arguments Clausius used to develop his theory from this simple beginning
are too lengthy to address here. Note that his equivalence values and condition
of compensation revealed a fundamental pattern of heats and temperatures in-
volved in any reversible, cyclic process. If ¢; is the temperature at which one step
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in such a process takes place, and if (Q; is the heat input or output in that step,
Clausius’s corresponding equivalence value for the step is f(t)Q;, where f(t;) is
some universal function of the temperature t;,, Summation of such terms for all
the steps of a process, which we write with the notation ,f(£)Q; (the symbol ¥
denotes a summation), then evaluates the net equivalence value for the complete
process. In Clausius’s condition of compensation for reversible operation, the
terms in the summation exactly cancel each other, and the result is

Ef(ti)Qi = 0 (reversible, cyclic operation).

For a process consisting of many small steps, each one involving a small heat
transfer dQ at the temperature t, Clausius’s compensation criterion is expressed
as a summation over many small steps—that is, as an integral

J.f(t)dQ = 0 (reversible, cyclic process). (9)

For Clausius, this was a crucial result: it told him that he had found a new
state function. To follow Clausius’s reasoning here, we represent the new func-
tion temporarily with the generic symbol F (not the same as the F used earlier
for Carnot’s function), and define a small change dF with

dF = f(t)dQ (reversible process), (10)

so equation (9) becomes
de = 0 (reversible, cyclic process). (11)

Clausius could now turn to a mathematical theorem that guarantees from this
condition that F is a state function. Paralleling Clausius’s other state function
U(V,1), it could be identified as the function F(V,t).

At this point, Clausius had the underlying mathematical ingredients of his
theory, but the physical interpretation of the mathematics was anything but clear.
The physical meaning of the function U was still obscure, and the new function
was even more of a mystery. As a skilled theorist, Clausius was aware of the
dangers of attaching too much physical meaning to quantities that might be found
later to be figments of the mathematical argument. He did not offer a name for
the new state function in 1854, nor did he give it a symbol.

However, Clausius felt he could trust his conclusion that his compensation
condition (11) did define a new state function, and from that mathematical fact
he could determine the universal function f(t). A further mathematical argument
led him to the conclusion that

flt) = (12)

t+d

in which t + a defines absolute temperature on the ideal gas scale. Using T again
to denote absolute temperature, Clausius’s conclusion was that
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and this substituted in equation (10) completes the definition of Clausius’s still
nameless new thermodynamic state function,

dF = dTQ (reversible process). (13)

The Second Law

When he arrived at the mathematical equivalent of equation (13), Clausius must
have been aware that he had made a promising beginning toward a broader the-
ory. But the theory was still severely limited: for one thing, equation (13) applied
only to reversible processes. The condition of reversibility had originally been
invented by Carnot to define an ideal mode of heat engine operation, ideal in the
sense that it gives maximum efficiency. Reversibility was essential in Clausius’s
argument leading to equation (13) because it enabled him to assert that the two
kinds of heat transformations compensate each other.

Clausius had done great things with Carnot’s theoretical style. One can imag-
ine that if Carnot had lived longer—he would have been fifty-four in 1850—and
if he had recognized that heat can be transformed by conversion as well as by
transmission, he would have reasoned much as Clausius did in 1850 and 1854.
In the two papers, Clausius had done what Carnot demanded; and then in the
1854 paper, and later in 1865, he ventured beyond Carnot, into the realistic realm
of irreversible processes, which were not of the ideal, reversible kind. Clausius’s
conclusion, as it is expressed by modern authors, is that for irreversible processes
equation (13) is not valid, and instead it is replaced by an inequality,

dF > d—;z (irreversible process). (14)

(Read “greater than” for the symbol >, and “less than” for <.)
Clausius had now brought forth two state functions, the function U and the

d—TQ-related function we are temporarily labeling F. And he had generalized his

theory so it was released from its earlier restrictions to reversible and cyclic
processes. The paper in which he completed the generalization was published
in 1865. By the time he wrote that paper, the last of his nine memoirs on ther-
modynamics, he was willing to accept the term “energy” for U, and he wrote
equation (7) assuming no distinction between heat and mechanical units, so

J=1,
dQ = dU + PdV. (15)
Or, with dW = —PdV according to equation (4),

dQ = dU — dW. (16)
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At long last (as it seems to us, with the benefit of hindsight), Clausius had enough
confidence in his second state function to give it a name and a symbol. For no
specified reason, he chose the letter S and wrote equation (13)

ds = d_7(12 (reversible process), (17)
and the inequality (14)
ds > d—TQ (irreversible process). (18)

(Clausius seems to have preferred letters from the last half of the alphabet; he
used all the letters from M to Z, except for O, X, and Y, in his equations.) Because
the function S calculated heat transformation equivalence values, he derived his
word for it from the Greek word “trope,” meaning “transformation.” The word
he proposed was “entropy,” with an “en-” prefix and a “-y” suffix to make the
word a fitting partner for “energy.”

All this is familiar to the present-day student of thermodynamics, who con-
tinues the argument by deriving dQ = TdS from equation (17), substituting for
dQ in equation (15) and rearranging to obtain

dU = TdS — PdV. (19)

We recognize this today as the master differential equation for the thermody-
namic description of any system that is not changing chemically. Dozens of more
specific equations can be derived from it.

Although Clausius was certainly aware of equation (19) and its mathematical
power, he did not use it. He still had a curious ambivalence concerning his two
state functions U and S. In a lengthy mathematical argument, he excised U and
S from his equations (15) and (17), and in their place put functions of the heat
Q and work W.

It appears that Clausius hesitated because he hoped to give the energy U and
entropy S molecular interpretations, but had not completed that program. The
fundamental ingredients of this molecular picture were the kinetic and potential
energy possessed by molecules, and in the determination of entropy, a macro-
scopic property he called “disgregation,” which measured “the degree in which
the molecules of the [system] are dispersed.” For example, the disgregation for a
gas (with the molecules widely separated) was larger than for a liquid or solid
(with the molecules much closer to each other).

In the 1860s, molecular science was in its infancy, and these molecular inter-
pretations could be no better than speculations. Clausius was well aware of this,
and did not want to jeopardize the rest of his theory by building from molecular
hypotheses. Rankine had done that and lost most of his audience. Nevertheless,
Clausius did not want to discard the energy and entropy concepts completely.
He found a safe middle ground where energy and entropy were “summarizing
concepts,” as the science historian Martin Klein puts it, and the working equa-
tions of the theory were based strictly on the completely nonspeculative concepts
of heat and work. Clausius never finished his molecular interpretations, but his



102 Great Physicists

speculations, as far as they went, were sound. Even his disgregation theory was
confirmed in the later work of Maxwell, Boltzmann, and Gibbs.

Clausius’s last words on thermodynamics, the last two lines of his 1865 paper,
made readers aware of the grand importance of the two summarizing concepts,
energy and entropy. He saw no reason why these concepts and their principles
should be restricted to the earthbound problems of physics and engineering: they
should have meaning for the entire universe of macroscopic phenomena. Stretch-
ing his scientific imagination to the limit, he pictured the universe with no ther-
mal, mechanical, or other connections, so dQ = 0 and dW = 0, and then applied
his statements (16) and (18) of the first and second laws of thermodynamics to
this isolated system. According to equation (16), dU = 0 if dQ = 0 and dW = 0,
so the energy of an isolated universe does not change: it is constant. With dQ =
0, the inequality (18) tells us that dS > 0, that is, all entropy changes are positive
and therefore increasing. Presumably, no system, not even the universe, can
change forever. When all change ceases, the increasing entropy reaches a maxi-
mum value. Clausius asked his readers to accept as “fundamental laws of the
universe” his final verbal statements of the two laws of thermodynamics:

The energy of the universe is constant.

The entropy of the universe tends to a maximum.

Clausius vs. Tait et al.

Theorists need to do their work in two stages. First, they have to be sure that
they themselves understand what their theories say. Then they have to make
others understand. Clausius succeeded in the first stage of development of his
thermodynamic theory. Rarely, if ever, did he make mistakes in the interpreta-
tions and applications that supported his theory. But for reasons that were partly
his own fault, he had extraordinary difficulty when it came time to educate the
rest of the scientific world about the concepts of his theory.

d
Clausius’s critics most frequently misunderstood his quantity —,1(?, especially

its sign. Here the confusion is understandable, because Clausius himself was
inconsistent in the sign he gave dQQ from one paper to another. He usually con-
sidered heat input as positive, but occasionally used the opposite convention.
Failure to get the dQ) sign right was just one of the mistakes that misled Clausius’s
most persistent and outspoken critic, P. G. Tait (who had jousted verbally with
Tyndall in the Joule-Mayer controversy). Tait’s contributions to thermodynamics
were limited, but he was active in putting forward Thomson’s ideas. Tait wrote
a book called Sketch of Thermodynamics, which was a collection of conceptual
bits and pieces borrowed from Thomson, Clausius, and Rankine, some of them
misunderstood.

The most outstanding of Tait’s misconceptions was his insistence that entropy
was a measure of “available energy.” It is difficult to see how he arrived at this
interpretation, because entropy does not even have energy units. Perhaps the
mistake originated in Clausius’s association of the transformation concept with
entropy. To the British, transformation meant conversion of heat to work. Tait,
who never read Clausius with care, may have simply substituted this understand-
ing of the transformation concept for Clausius’s entropy definition.
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Shortly after Tait’s book appeared, James Clerk Maxwell published a textbook
with the title Theory of Heat, which repeated Tait’s mistaken interpretation of
entropy as available energy. With some prodding from Clausius in a letter to the
Philosophical Magazine, Maxwell recognized his error, and demonstrated, in a
second edition of his book, that there actually was a connection among entropy
and absolute temperature and unavailable energy.

In his example, Maxwell pictured a system whose initial absolute temperature
was T interacting both mechanically and thermally with its surroundings main-
tained at a constant lower temperature T,. He visualized a two-stage cyclic pro-
cess in which the system exchanged an amount of heat Q with the surroundings,
decreased its energy, entropy, and temperature from U, S, and T to U, Sy, and
T, of the surroundings, and at the same time performed the amount of work W
on the surroundings.

Maxwell’s conclusion was that the total energy change U — U, in his process
could never be entirely converted to work output. The maximum work obtain-
able, in reversible operation, was (U — Uy) — T(S — Sp). Maxwell called the
entropy-related quantity T(S — Sy) “unavailable energy”: it could not be con-
verted to work in any case. If Maxwell’s process was irreversible, the work output
was diminished still more, to something less than (U — Uy) — T(S — Sy). This
further loss, equal to what Thomson called “dissipated energy,” was avoidable
with better design of the work-producing machinery.

Clausius succeeded in straightening out Maxwell’s misconceptions, but he was
not so fortunate with Tait and, later, Thomson. Tait had attempted in his book to
carry out an analysis similar to Maxwell’s just outlined. In his derivation, he
managed not only to ignore the distinction between unavailable and dissipated
energy, but, in one famous passage, to contradict both the first and second laws
of thermodynamics. These blunders brought sharp criticism from Clausius in
letters to the Philosophical Magazine. Finally, in retreat, Tait drew Thomson into
the controversy; but Thomson’s remarks were no better informed on Clausius’s
version of the second law than those of Tait.

A Lost Portrait

Scientists are not always objective, but the controversies—or the contestants—
die eventually, and then a workable consensus is reached. When this happens
(and it is a rule of science history that it always does) what is left is a textbook
or “standard” version of the subject. A few names may remain, attached to the-
ories, equations, or units, but the human story, that of the people, their claims,
and their quarrels, fades. There are advantages to this practice. It would not be
easy for students to appreciate the formal structure of science if they had to cope
with historical misunderstandings at every turn. No doubt some of the historical
developments, when they are misguided enough—Tait’s efforts may qualify
here—are dispensable. But the other side of the human story, which tells of cre-
ativity gone right, not wrong, should be remembered.

These comments are prompted by thoughts of Clausius and his place—or lack
of it—in the general impression of science history. Clausius’s work on the first
and second laws of thermodynamics had an enormous influence on the consen-
sus view of thermodynamics established in the late nineteenth and early twen-
tieth centuries. Clausius’s equations, some of them written almost exactly as he
expressed them a century or so earlier, are on display in all modern thermody-
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namics textbooks, and in an astonishing variety of other texts where the methods
of thermodynamics are applied. Yet Clausius himself, even his name, has all but
disappeared. In a typical modern thermodynamics text we find his name asso-
ciated with a single, comparatively minor, equation. His name should at least be
mentioned in connection with the first-law equation (8),

dU = dQ — PdV,

and the entropy equation (17)

ds = d—;? (reversible process).

But far worse than that kind of neglect, which can, after all, be repaired, is
the vanishing of Clausius as a human being. Perhaps more than any other major
nineteenth-century scientist, Clausius has been neglected in biographical studies.
We know that he was born in K&slin, the youngest in a family of eighteen chil-
dren. His father was the principal of a small private school, where Clausius re-
ceived his early education. He continued his studies at the Stettin Gymnasium,
and then at the University of Berlin. He received his doctorate at the University
of Halle in 1847, and did his first teaching at the Royal Artillery and Engineering
School in Berlin, soon after publishing his first paper on thermodynamics. In
1855, he moved to the Polytechnicum in Ziirich, where he remained for fourteen
years and did some of his most important work. In 1869, he returned to Germany,
first to the University of Wiirzburg for two years, and finally to the University of
Bonn, where he remained for the rest of his life. He served as a noncombatant
in the Franco-Prussian War and was severely wounded in the knee. He was mar-
ried and had six children. His wife died tragically in childbirth. Late in his life,
when he was in his sixties, he married again. That brief sketch reports most of
what can be gathered about Clausius’s personal life from the available biograph-
ical material.

The only aspect of Clausius’s personality that can be inferred from comments
of his contemporaries is his contentiousness. We read in letters of “old Clausius”
or “that grouch Clausius.” He was a lifelong rival of Helmholtz. Max Planck
relates that he tried to correspond with Clausius on matters relating to the second
law, but Clausius did not answer his letters. In Clausius’s portraits, we see a
strong, unforgiving face. It is not difficult to picture this man exchanging polemic
salvos with Tait.

What we do have from Clausius is his collected papers. We can read Clausius
and fully appreciate his place in the beautifully clear line of development of
thermodynamics through the middle fifty years of the nineteenth century—from
Carnot to Clausius and finally to Clausius’s greatest successor, Willard Gibbs.
Clausius’s role was pivotal. He knew how to interpret and rebuild Carnot’s mes-
sage, and then to express his own conclusions so they could be used by another
genius, Gibbs. Clausius’s papers on entropy were also a major influence on
Planck, who used the entropy concept as a bridge into the realm of quantum
theory. The grandest theories make their own contributions, and then inspire the
creation of other great theories. Clausius’s achievement was of this rare kind.

This is an impressive story, but as a story it is disappointing, simply because
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we still do not know the main character. Most of us would consider it a great
misfortune if we knew no more about Cézanne, Flaubert, and Wagner, say, than
what they put on canvas or paper or in a musical score. Clausius, their contem-
porary and equal as a creative genius, has been taken from us as a human being
in this way. We should mourn the loss.



The Greatest Simplicity
Willard Gibbs

A Natural Theorist

He held few positions of academic or scientific eminence. During his thirty-two
years of teaching, no more than a hundred students in total attended his courses.
For the first ten years of his tenure at Yale University, he received no salary. He
rarely attended professional meetings or traveled. Except for an obligatory Eu-
ropean trip to the scientific outside world, and annual excursions to the New
England and Adirondack mountains, his life was confined to New Haven, Con-
necticut, and hardly spanned more than the two blocks separating his home on
High Street and his office in the Sloane Laboratory.

Willard Gibbs made his life in other ways. His world was theoretical physics.
He saw more and traveled further in that world than most of his contemporaries,
including Clausius and Boltzmann. Just as others are natural writers or natural
musicians, Gibbs was a natural theorist. His judgment was perfectly attuned to
the theoretical matters he studied. He had no need—indeed, in nineteenth-
century America, hardly any opportunity—for close contact with informed col-
leagues. He knew, and did not have to be told, when he was right simply by
exercising his own intuitive response and general knowledge. Few theoretical
scientists have had the talent and the assurance to do their work in such isolated
fashion. Only Einstein—who wrote some of his most important papers before he
had even laid eyes on another theoretical physicist—may have outdone Gibbs in
this respect.

Gibbs and Clausius

Gibbs’s first published work was on thermodynamics. Throughout his thermo-
dynamic studies he was strongly influenced by Clausius, and he left no doubt
concerning that debt. Gibbs’s first two papers were based on Clausius’s equations
for heat,

dQ = dU + PdV, (1)
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and entropy,
ds = d—TQ (reversible process). (2)

Gibbs simply eliminated dQ from the two equations by solving for dQ from the
second, dQQ = TdS, substituting this in the first, and solving for dU,

dU = TdS — PdV. (3)

(It can be proved that this equation does not require the reversibility restriction,
but that point is not important because the equation is nearly always applied to
reversible processes.) Although Gibbs was the first to appreciate the fundamental
importance of equation (3), Clausius certainly thought about the equation, so it
seems fair to call it the “Clausius equation.” (Gibbs has his own more compre-
hensive equation.) Clausius appears to have made no comment on Gibbs’s work.
Had he done so, an expression of his debt to Gibbs might have been appropriate.
For it was mainly Gibbs who cleared away the doubt and confusion and focused
attention on Clausius’s implied equation (3).

Gibbs made his case for the Clausius equation in two papers published in
1873. His style in the 1873 papers makes difficult reading for a modern student
because he relies on a geometrical kind of reasoning that is no longer in fashion.
But for Gibbs, and some of his contemporaries, notably Maxwell, geometrical
constructions were closer to the physical truth than the analytical arguments
used by Clausius, Thomson, and others. The analytical approach had brought
many advances, but its lengthy, abstract arguments had also contributed a certain
amount of confusion.

The entropy concept was a good example of what analytical thought could
and could not accomplish in physics. Clausius had defined the entropy concept
in the mathematical sense, and had not missed or misunderstood any of its for-
mal features. Even so, he could not demonstrate to his contemporaries, or even
to himself, the prime importance of entropy in thermodynamics. Others could
hardly get the formalities straight. The famous Tait-Clausius entropy controversy,
even when it reached the stage of open warfare, concerned matters that were,
from the physical viewpoint, no more than rudimentary.

From equation (3), Gibbs could read the mathematical message that changes
dU in the internal energy U are determined by changes dS and dV in the entropy
S and volume V, or in other words, that internal energy is a function U(S,V) of
entropy and volume. He expressed this dependence of U on S and V in three-
dimensional energy surfaces. Part of such a surface is sketched in figure 9.1. One
point on the surface is emphasized, and arrows tangential to the surface are
drawn to show how the surface is shaped at that point. The arrow on the left is
constructed for a fixed value of the entropy and parallel to the V direction. In
this case of constant entropy, dS = 0, and equation (3) becomes

dU = —PdV (constant S),

or
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UG,

Energy Surface

Figure 9.1. An energy surface containing points
located by the entropy S, the volume V, and the
internal energy regarded in the Gibbs manner, as a
function U(S,V) of S and V.

dU

v —P (constant S). 4

. L. du, L
The derivative Ty 0 the last equation is a measure of the steepness or “slope”

of the energy surface where the arrow is constructed (see fig. 9.2). According to
equation (4), the same derivative is equal to —P, the negative of the pressure.
Thus, anywhere on the energy surface the slope parallel to the V direction for
some constant value of the entropy S calculates the pressure. These slopes are
usually downbhill, that is, negative, because pressures are usually positive, and
dU

slopes calculated as v — P are negative.

By a similar argument, the arrow on the right in figure 9.1 measures the slope
of the energy surface parallel to the S direction for a fixed value of V. In this
case, Clausius’s equation (3) reduces to

dU = TdS (constant V),
or

dU
5= T (constant V). (5)

dU
ds
also equals the absolute temperature T, according to equation (5). The physical
message here is that slopes of the energy surface measured parallel to the S
direction calculate absolute temperatures, and those slopes are always uphill—
that is, positive—because absolute temperatures are always positive.

Here the slope is calculated with the derivative (fig. 9.3), and that derivative

Figure 9.2. Side view of the left arrow extracted and enlarged
from fig. 9.1. Like the ratio of rise to run for a staircase, the

- du
Slope =dU/dV  ratio of dU (rise) to dV (run), that is, the derivative —, calcu-
(constant S) av

lates the slope of the arrow, and of the energy surface, at the

point where the arrow is drawn.
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Slope = dU/dS ~ Figure 93. Side view of the right arrow extracted and enlarged

du
(constant V) from fig. 9.1. The derivative s calculates the slope of the arrow

and of the energy surface where the arrow is constructed.

In his first two 1873 papers, Gibbs elaborated this geometrical model in vir-
tuosic detail. He imagined a plane containing the two tangential vectors, and
pictured the plane rolling over the energy surface; at each point of contact be-
tween the plane and the surface the complete thermodynamic story is deter-
mined: a volume, an entropy, an internal energy, and from equations (4) and (5),
the pressure and temperature. He showed how to project the surface into two
dimensions (entropy and volume) and draw contours of constant pressure and
temperature (like the constant altitude contours on a topographical map). He
demonstrated that for certain conditions of pressure and temperature the rolling
tangent plane has not just one but two, or even three, simultaneous points of
contact. These multiple points of contact represent the coexistence of different
phases (for example, solid, liquid, and vapor).

The Principia of Thermodynamics

These were the simple but broad conclusions reached by Gibbs in his first two
papers on thermodynamics. Thus far, Gibbs had strengthened what had already
been done formally, if tentatively, by Clausius. In his next work, published in
several installments between 1875 and 1878, Gibbs again advertised that Clausius
was his inspiration. He started with Clausius’s couplet of laws: “The energy of
the universe is constant. The entropy of the universe tends to a maximum.” He
took as his foundation the entropy rule and a simple adaptation of the Clausius
equation (3). Here, however, he went far beyond the hints provided by Clausius.

Gibbs’s 1875-78 “paper”—it is really a book covering about three hundred
pages of compressed prose and exactly seven hundred numbered mathematical
equations—has been called, without exaggeration, “the Principia of thermody-
namics.” Like Newton’s masterpiece, Gibbs’s Equilibrium of Heterogeneous Sub-
stances has practically unlimited scope. It builds from the most elementary be-
ginnings to fundamental differential equations, and then from the fundamental
equations to applications far and wide. Gibbs spells out the fundamental ther-
modynamic theory of gases, mixtures, surfaces, solids, phase changes (for ex-
ample, boiling and freezing), chemical reactions, electrochemical cells, sedimen-
tation, and osmosis. Each of these topics is now recognized, largely by physical
chemists, as a major area of research. In the 1870s, with the discipline of physical
chemistry not yet born, Gibbs’s topics were unfamiliar and disparate. Gibbs’s
Equilibrium brought them together under the great umbrella of a unified theory.

But it was decades before Gibbs’s book found more then a few interested read-
ers. In another resemblance to Newton’s Principia, Gibbs’s Equilibrium had—and
still has—a limited audience. One reason for the neglect was Gibbs’s isolation,
and another his decision to publish in an obscure journal, Transactions of the
Connecticut Academy of Arts and Sciences. More important, however, was (and
still is) Gibbs’s writing style. Reading Gibbs is something like reading Pierre
Simon Laplace (a famous mathematician and Newton’s successor in the field of
celestial mechanics), as E. T. Bell describes it. Laplace hated clutter in his math-
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ematical writing, so to condense his arguments, “he frequently omits but the
conclusion, with the optimistic remark, ‘Il est aisé a voir’ (It is easy to see). He
himself would often be unable to restore the reasoning by which he had ‘seen’
these easy things without hours—sometimes days—of hard labor. Even gifted
readers soon acquired the habit of groaning whenever the famous phrase ap-
peared, knowing that as likely as not they were in for a week’s blind work.”

Gibbs did not frequently use the “famous phrase,” and one doubts that he ever
had trouble recalling his proofs, but he certainly left out a lot. The intrepid reader
who takes on Gibbs’s Equilibrium can expect many months of “blind work.” The
science historian Martin Klein quotes a letter from Lord Rayleigh, an accom-
plished theoretical physicist himself, suggesting to Gibbs that his Equilibrium
was “too condensed and too difficult for most, I might say all, readers.” Gibbs’s
response, no doubt sincere, was that the book was instead “too long” because he
had no “sense of the value of time, of my own or others, when I wrote it.”

Gibbs’s writing can be faulted for its difficulty, but at the same time appreci-
ated for its generality and unadorned directness. Gibbs expressed his ideal when
he was awarded the Rumford Medal by the American Academy of Arts and
Sciences: “One of the principal objects of theoretical research is to find the point
of view from which the subject appears in its greatest simplicity.” He always
aimed for a “simpler view,” which often meant perfecting the mathematical lan-
guage. He said to a student, Charles Hastings, “If I have had any success in
mathematical physics, it is, I think, because I have been able to dodge mathe-
matical difficulties.”

The Entropy Maximum

Clausius’s entropy rule, Gibbs’s principal inspiration in addition to the Clausius
equation (3), asserts that any changes in an isolated system (completely discon-
nected from its surroundings) lead to entropy increases. These changes can be
driven by any kind of nonuniformity, mechanical, thermal, chemical, or electri-
cal. If, for example, a system has a cold part and a hot part, heat transfer from
hot to cold takes place, if it can; the overall entropy increases, and continues to
do so until the system is thermally uniform with a single temperature between
the original high and low temperatures. The system is then in thermal equilib-
rium, all change ceases, and the entropy has a maximum value. A similar drive
to uniformity, accompanied by an entropy increase to a maximum value at equi-
librium, is found in isolated systems with nonuniformities in pressure, chemical
composition, and electrical potential. Nature abhors nonuniformities, and flattens
them if it can.

For a taste of Gibbs’s method, here is a simple example that shows how he
analyzed some of these entropy changes. Picture a gaseous system with two com-
partments separated by a sliding, thermally conducting partition (fig. 9.4). A
rigid, insulating wall surrounds the system and keeps it isolated from its sur-
roundings. In one compartment, the pressure and temperature are P, and T,, and
in the other P, and T,. P, is greater than P,, and T, greater than T, so the sliding
partition is pushed from left to right by the pressure difference, and heat is also
transported in that direction.

To find the equilibrium conditions in this situation, Gibbs noted that because
the system is isolated by rigid, insulating walls its energy and volume are con-
stant. He applied the Clausius equation (3) to both compartments, and ultimately
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Sliding, conducting partition

P.,T, P, T,
Gas = Gas
N
Rigid, insulating wall ) )
Figure 9.4. An isolated system on its way to
P>p, equilibrium, driven by mechanical and
T, >T, thermal nonuniformities.

found, not surprisingly, that in equilibrium the pressure and temperature are
equalized,

P, = P, and T, = T, (equilibrium).

For a second example, we elaborate the system so the partition is not only
movable and conducting, but also permeable: the gas in the system can diffuse
through it. The system is now considerably more complicated. We will soon look
at Gibbs’s general solution to the problem, but first a digression on chemical
matters is in order.

Chemistry Lessons

Chemical reactions are written in a familiar language. For example,
2 H, + 0, — 2 H,0

denotes the reaction of hydrogen (H,) with oxygen (O,) to form water (H,0), a
well-known reaction widely used in rocket engines and fuel cells. The substance
formed in the reaction, H,O, is the “product” of the reaction, and the substances
consumed, H, and O,, are “reactants.” In modern usage, this chemical statement
can be interpreted on any scale, from the microscopic to the macroscopic. At the
finest microscopic level it describes two molecules of hydrogen reacting with
one molecule of oxygen to form two molecules of water. These same proportions
apply to any number of reactions, even a number large enough to make the H,,
0,, and H,0 amounts macroscopic in size. For any number N,

2N molecules H, + N molecules O, — 2N molecules H,0.

To do their quantitative work, chemists need a standard value of N. An arbi-
trary, but convenient, choice is the number of molecules in about 2 grams of H,
(actually, 2.016 grams). Called “Avogadro’s number” (for Amedeo Avogadro, who
proposed in 1811—an early date in the history of molecular physics—that equal
volumes of gases at the same pressure and temperature contain the same numbers
of molecules), it is represented by N,, and has the value

Nj = 6.022 X 1023,
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an extremely large number (about equal to the number of cups of water in the

Pacific Ocean). This many molecules of H, is one “gram-molecule,” or one

“mole,” of hydrogen. A mole of O, molecules, also containing N, molecules,

weighs about 32 grams, and one mole of H,O molecules about 18 grams.
Summarizing all of this for the water reaction, we have

2H, + 0, - 2 H,0
2N, molecules N, molecules 2N, molecules
or 2 moles 1 mole 2 moles
or 4 grams 32 grams 36 grams.

Note that in this chemical reaction—and in most others—there is no gain or loss
of atoms: at the molecular level, six atoms enter into the reaction (four Hs in 2H,
plus two Os in O,) and six atoms leave the reaction (four Hs and two Os in
2H,0). In consequence, there is no gain or loss of mass in the reaction: 36 grams
of H, and O, form 36 grams of H,0.

Potentials

Clausius’s equation (3) tells us that the internal energy U changes when the vol-
ume V and entropy S change. But this is not the whole energy story. All chemical
substances, or “chemical components,” as Gibbs called them, have a character-
istic internal energy, and if any component is added to a system, let’s say through
a pipe from the surrounding area, the total internal energy U changes in propor-
tion to the amount of the component added.

Suppose a uniform system containing only one chemical component (for ex-
ample, water) is isolated from its surroundings except for the pipe, and a small
amount of the component measured as dn mole is added. The internal energy of
the system changes in proportion to dn,

dU « dn (system isolated except for pipe).
Gibbs wrote this as an equation with a proportionality factor u included,
dU = udn (system isolated except for pipe). (6)

The u factor is a state function that Gibbs called a “potential.” Maxwell gave it
a better name: “chemical potential.” It is to chemical changes what pressure and
temperature are to mechanical and thermal changes. If a system has chemical
nonuniformities for a component, that component will migrate from regions of
high chemical potential to low until, in equilibrium, all the chemical nonuni-
formities are smoothed out.

Gibbs elaborated and generalized equation (6) by assuming that if the isolation
is further broken, and the system with a pipe is allowed to communicate with
its surroundings in heating and working processes, only two additional terms are
required, those already familiar in the Clausius equation (3),

dU = Tds — PdV + udn. (7)
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This is a simple version of what we will call the “Gibbs equation.”

We can return now to the example of the isolated two-compartment system
with a sliding, conducting, permeable partition (fig. 9.5). Gibbs analyzed this case
by again recognizing that the system’s total energy and volume are constant. He
also assumed that the total amount of the gas is constant because the isolating
walls prevent any gain or loss to the surroundings; the gas is constrained to pass
between the two compartments. Two statements of equation (7), one for each
compartment, then dictate that, as before, the sliding partition moves from left
to right under the pressure difference, and heat is transported in the same direc-
tion under the temperature difference. At the same time, gas is transported
through the permeable partition under the chemical potential difference. Finally,
at equilibrium,

P, =P,, T, = T,, and yu; = u, (equilibrium).

Here we can see the parallel roles of pressure, temperature, and chemical poten-
tial in defining mechanical, thermal, and chemical equilibrium.

For a differential equation, Gibbs’s equation (7) is uncharacteristically user-
friendly. Unlike most other major differential equations in physics, it is solved
(integrated) with the utmost simplicity. The special mathematical structure of the
equation allows one to replace dU with U, dS with S, dV with v, and dn with n,
to put the equation in integrated form,

U= TS — PV + npu. (8)

Equations (7) and (8) are still restricted to a system containing only one chem-
ical component. Another pleasant feature of the Gibbs equation is that it can be
adapted to any number of chemical components with a few more simple modi-
fications. If there are two components in the system, call them A and B, equations
(7) and (8) have two added chemical potential terms, one for each component,

and

Sliding, conducting, permeable partition

P1,T1,/11 Py T,
Gas » Gas
Rigid, insulating wall
P\>p, Figure 9.5. An isolated system on its way to equilib-
I >T, rium, driven by mechanical, thermal, and chemical
H > nonuniformities.
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Avoiding Molecules

Although he might have preferred to do so, Gibbs did not use molar quantities
(the ns and dns in equations [7]-[10]), as we have, nor did he write chemical
reactions with a molecular interpretation implied. Instead, he used mass units
(for example, grams) to measure quantities of chemical components. His way of
writing the water reaction, which seems quaint to us, was

1 gram hydrogen + 8 grams oxygen = 9 grams water,

and he defined chemical potentials with respect to mass m rather than moles n,
so his version of equation (8) was

U= TS — PV + mp.

In the 1870s, no direct experimental evidence suggested the existence of mol-
ecules, and many (but not all) physicists preferred to write their physics without
molecular hypotheses. For the most part, Gibbs followed this preference in his
Equilibrium. (As noted, so did Clausius in the 1860s.)

But when there was a fundamental point to be made, Gibbs did not hesitate
to invoke molecules. He made a detailed equilibrium calculation for a chemical
reaction in which two NO, molecules combine to form a single N,0O, molecule.
And in the midst of a discussion of entropy changes for mixing processes, he
made a prophetic remark that initiated a major discipline he would later call
“statistical mechanics.”

He had in mind the spontaneous mixing of two pure gases, say A and B, to
form a uniform mixture,

pure A + pure B — A and B mixed,

always resulting in an entropy increase. (This is another example of an entropy
increase accompanying the natural tendency for nonuniformities to evolve into
uniformity.) Gibbs pictured such mixing on a molecular scale, with the random
motion of A and B molecules causing them to diffuse into each other, and sooner
or later, to become uniformly mixed. He also imagined the entropy-decreasing,
unmixing process,

A and B mixed — pure A + pure B,

in which A molecules move in one direction, B molecules in another, and the
mixture spontaneously sorts itself into phases of pure A and pure B. This is never
observed, however, because once A and B molecules have mixed, their astronom-
ical numbers and their random motion make it highly unlikely that they will
ever part company.

Even so, Gibbs realized, unmixing and its associated entropy decrease are not
quite absolute impossibilities, just fantastically improbable. “In other words,” he
wrote, “the impossibility of an uncompensated decrease of entropy seems to be
reduced to improbability.” Put more abstractly, his conclusion was that the en-
tropy of a thermodynamic state is connected with the probability for that state;
the mixed state is enormously more probable than the unmixed state.
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Gibbs did not follow this reasoning further in his Equilibrium, but at about
the same time Boltzmann was independently developing the probabilistic inter-
pretation of entropy in quantitative terms. And much later, in 1902, Gibbs made
the entropy-probability connection a centerpiece of his molecular interpretation
of thermodynamics.

Gibbs Energy

When chemical potentials are added for all the chemical components in a system,
a special kind of energy, now called “Gibbs energy,” results. Suppose there are
two components, A and B, in a system, and their molar amounts are n, and ng;
the chemical potential sum in question is naps + npug, which we evaluate with
equation (10) rearranged to

U+ PV —-TS = nala + ngUg. (11)

The quantity on the left side of this equation defines the state function now called
Gibbs energy, and represented with the symbol G (Gibbs called it the { function),

G=U+ PV~ TS, (12)
which simplifies equation (11),
G = naua + nplip. (13)

We can see from this equation that nau, is the Gibbs energy contributed by the
na moles of A in the system, and therefore that u, is the Gibbs energy for one
mole of A. Similarly, ngug and ug are Gibbs energies for ng and one mole of B.

One reason for defining the Gibbs energy is a simple matter of economy: it
compresses into a single state function all the other state functions of importance
in thermodynamics (U, S, and V) as well as the principal state-determining var-
iables (P and T). It satisfies physicists’ primitive instinct to make their mathe-
matics as compact as possible. But the Gibbs energy, and its precursor chemical
potentials, do much more than that.

The Second Law Transformed

As Clausius saw it, the second law of thermodynamics is a principle that shows
how to calculate entropies. For a reversible process, the calculation is

_dQ
dS = T
and for an irreversible process,
dQ
> =,
dsS T

Here we combine these two statements in an equality-inequality,
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(read “greater than or equal to” for the symbol =), substitute for dQ from equation

(1),

+
s = AU+ Pdv
T
and rearrange this to
dU + PdV — TdS = 0. (14)

If the pressure P and temperature T are constants,
PdV = d(PV) and TdS = d(T8S).

For the product ax, adx = d(ax) if a is a constant. Thus for constants P and T
the equality-inequality (14) becomes

dU + d(PV) — d(TS) = 0,
or
d(U + PV - TS) = 0,
or, with definition (12) recognized,
dG = 0.
The equality part of this statement applies to a reversible process or equilibrium,
dG = 0 (constant P and T; reversible process or equilibrium), (15)
and the inequality to an irreversible process,
dG < 0 (constant P and T; irreversible process). (16)
Although entropy (in an isolated system) increases to a maximum at equilibrium,

the Gibbs energy (in a system at constant pressure and temperature) changes in
the opposite direction; it decreases to a minimum.

Chemical Thermodynamics

We have pictured chemical components entering and leaving a system through
pipes. (Membranes would be more elegant.) Components can also appear and
disappear via chemical reactions. For instance, H, and O, are removed and H,O
is added by the water-forming reaction mentioned before,
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2 H, + 0, — 2 H,0.

Gibbs’s equation (9), and its extensions for more than two components, apply
to this and any other reacting system. Suppose a small amount, 2dx mole, of H,0
is produced (to keep the signs straight, we will make dx positive), so molar
changes in the reactants H, and O,, which are removed in the reaction, are the
negative amounts —2dx and —dx, that is,

dnHzO = ZdX
dnHz = —2dx
dng, = —dx,

and Gibbs’s equation for the three components H,O, H, and O, is

dU = TdS — PdV + 2up,0dx — 2uy,dx — lo,dx

TdS - PdV + (ZquO - Z.LLHZ - luoz)dX,

or
dU + PdV — TdS = (21,0 — 20, — Ho,)dx.

As before, if the pressure P and temperature T are constant, the left side of this
equation becomes d(U + PV — TS) = dG, so

dG = (2up,0 — 2Uyg, — Ho,)dx (constant P and T).

The second law tells us that dG = 0 for constant pressure and temperature. Thus,
according to the last equation,

2Ug,0 — 2, — Mo, = O (constant P and T). (17)

(Remember that we have made dx positive.)

Here we see chemical potentials combined to characterize an entire chemical
reaction by calculating the reaction’s “Gibbs energy change,” the difference be-
tween the Gibbs energy for the reaction’s product (2uy,0) and that for the two
reactants (2uy, + Uo,), in modern usage represented

AG = 2Up,0 — Ho, — 2HH,

(The symbol A denotes finite changes; it is a finite counterpart of d, which stands
for small or infinitesimal changes.) The same recipe, chemical potentials for
products minus those for reactants, calculates the Gibbs energy change A.G for
any reaction. The general conclusion illustrated by the equality-inequality (17)
is

A,G = 0 (constant P and T).

The equality describes reversible operation or equilibrium,
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A,G = 0 (reversible operation or equilibrium; constant P and T), (18)
and the inequality irreversible operation,
A,G < 0 (irreversible operation; constant P and T). (19)

The physical picture here is easy to remember. Any chemical reaction moves
downhill (A,G < 0 means downhill) on a Gibbs energy surface if it can, driven
by the chemical potential difference between the products and the reactants.
Chemical change continues until reactant and product chemical potentials are
balanced, the Gibbs energy change equals zero, and chemical equilibrium is
reached.

A chemical reaction descending spontaneously in Gibbs energy is something
like a falling weight, and also like heat falling from a high to a low temperature
in a heat engine. Like the falling weight and heat, the descending chemical re-
action can be a useful source of work. That work is often used by building the
reaction into an electrochemical cell, which supplies electrical work output.
Flashlight batteries and fuel cells are examples.

Remember that the amount of work gotten from a falling weight or from falling
heat in a heat engine depends on how well the machinery is designed; you get
the most efficient performance if the device operates reversibly. The Gibbs
energy concept is designed so that the Gibbs energy change A.G calculates the
best possible electrical work obtainable from an electrochemical cell based on
the reaction running reversibly. For the water reaction, we can calculate from
tabulated Gibbs energy data that a reversible hydrogen-oxygen electrochemical
cell generates 1.23 volts of electrical output (if H,O is produced as a liquid rather
than as a gas). Practical electrochemical cells are always to some extent irrevers-
ible. A fuel cell using the water reaction is likely to have an output of about 0.8
volt.

The Gibbs energy change for a chemical reaction calculates the maximum
energy that is available or “free” for the performance of work. For this reason,
Gibbs energy is also frequently called “free energy.”

Gibbs and Maxwell

Gibbs had a long mailing list for reprints of his papers, including, it seems, every
established scientist in the world who could possibly have had an interest in his
work. Most of these mailings, even those to Clausius, went unnoticed at first.
They did, however, quickly capture the attention of Maxwell, who was more
generous and alert than his colleagues, and particularly appreciated Gibbs’s ex-
tensive use of geometrical reasoning. Gibbs’ two 1873 papers on the geometrical
interpretation of Clausius’s equation prompted Maxwell to make a plaster model
displaying a full energy surface for water. He located on this water “statue” areas
where the liquid, vapor, and solid phases coexist, areas where two phases can
coexist, and a triangle representing coexistence of all three phases. On the surface
of the model, he carved contours of constant pressure and temperature, as dic-
tated by Clausius’s equation. Maxwell sent a copy of his water statue to Gibbs,
who was flattered and pleased, but with typical modesty told students who asked
about it that the model came from a “friend in England.”

One of Gibbs’s biographers, J. G. Crowther, remarks that Maxwell became, in
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effect, Gibbs’s “intellectual publicity agent.” But not for long; Maxwell died pre-
maturely in 1879, only a year after Gibbs published the final installment of his
Equilibrium. If Maxwell had lived, Crowther continues, “the greatness of Gibbs’
discoveries might have been understood ten years sooner, and physical chemistry
and chemical industry today [the 1930s] might have been twenty years in ad-
vance of its present development.”

At about this same time, in 1879, Gibbs gave a series of lectures in Baltimore
at a new and aspiring institution, the Johns Hopkins University. Before he re-
turned to New Haven, Gibbs was offered a position in the Johns Hopkins physics
department by the university president, D. C. Gilman (formerly the librarian at
Yale). This was an attractive offer. Gilman and his department heads were re-
cruiting a first-rate research faculty in physics and mathematics. Gibbs was still
unpaid at Yale, nine years after his appointment as professor of mathematical
physics; Gilman offered a respectable salary.

Gibbs planned to accept the offer. He hoped to keep his transactions with
Gilman secret, but the news leaked to some of his colleagues, who promptly
carried it to Yale president James Dana. A letter to Gibbs from Dana pleaded with
him to “stand by us,” and expressed the hope that “something will speedily be
done by way of endowment to show that your services are really valued.” The
appeal was frank: “Johns Hopkins can get on vastly better without you than we
can. We can not.”

Gibbs was surprised, touched, and finally persuaded. He sent his regrets to
Gilman: “Within the last few days a very unexpected opposition to my departure
has been manifested among my colleagues—an opposition so strong as to render
it impossible for me to entertain longer the proposition which you made. .. .I
remember your saying that . .. you thought it would be hard for me to break the
ties that connect me with this place. Well—I have found it harder than I ex-
pected.” Yale was, after all, where he belonged.

Beyond Thermodynamics

During the 1880s and 1890s, Gibbs (now receiving an annual salary of two thou-
sand dollars) was thinking about another great theoretical problem: the molecular
interpretation of thermodynamics. Gibbs had avoided molecular hypotheses as
much as possible in his Equilibrium, focusing on the macroscopic energy and
entropy concepts and on derived quantities such as the chemical potential and
on the function we call Gibbs energy. Having created this macroscopic view in
the 1870s, Gibbs decided that it was time to continue his search for the “rational
foundations” of thermodynamics at the microscopic or molecular level. This was
a description of molecular mechanics, necessarily made statistical because of the
stupendous numbers of molecules involved in thermodynamic systems; Gibbs
called it “statistical mechanics.” The energy and entropy concepts were again of
central importance, but now they were calculated as average values, and entropy
was interpreted with the probability connection Gibbs had hinted at much earlier,
in his Equilibrium. He unified the work of his predecessors, Maxwell and Boltz-
mann, and helped pave the way for the conceptual upheaval called quantum
theory just arriving (mostly unnoticed) when Gibbs published his Elementary
Principles in Statistical Mechanics in 1902.

Gibbs was not a mathematician, but like other great theorists mentioned in
this book (for example, Maxwell, Einstein, and Feynman), he knew how to make
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mathematical methods serve his purposes in the simplest, most direct way.
Whenever he approached a physical problem he thought as much about the
mathematical language as about the physics.

Among Gibbs’s teaching responsibilities was a course in the theory of elec-
tricity and magnetism, based on Maxwell’s Treatise on Electricity and Magnet-
ism. In this subject and others, notably mechanics, the mathematical description
treats physical quantities that have direction in space as well as magnitude. Both
attributes are built into a mathematical entity called a “vector,” which can have
three components, corresponding to the three spatial dimensions. Gibbs devised
a new method that provided a convenient mathematical setting for the manipu-
lation of vectors.

Gibbs’s method of handling vectors was a departure from that of Maxwell and
his British colleagues, who relied on the method of “quaternions,” formulated
by the Irish mathematician and physicist Rowan Hamilton. (William Rowan
Hamilton was Ireland’s greatest gift to mathematics and physics. While in his
twenties, he invented a unified theory of ray optics and particle dynamics that
influenced Erwin Schrédinger in his development of wave mechanics, almost a
full century later. After the work on optics and dynamics, which was completed
when he was twenty-seven, Hamilton’s creative genius failed him, or rather
strangely misled him. For many years he struggled to rewrite physics with his
new quaternion method of mathematics. Hamilton believed he would write a
new Principia; quaternions were to be as important as Newton’s fluxions. But
this work was never successful. Hamilton died a recluse, living in a chaotic
dreamworld.) Gibbs found quaternions an unnecessary mathematical appendage
in physical applications, and demonstrated the advantages of his own method in
five papers on electromagnetic theory. For his students, he had a pamphlet
printed with the title Vector Analysis.

Hamilton had his disciples and partisans. Prominent among them was P. G.
Tait, playing his favorite role as polemicist. When news of Gibbs’s vector analysis
reached Tait, he promptly drew (a reluctant) Gibbs into a prolonged debate in
the pages of the British journal Nature. Tait labeled Gibbs “one of the retarders
of the quaternionic progress,” and his vector analysis as “a sort of hermaphrodite
monster compounded of the notation of Hamilton and Grassmann.” (Hermann
Grassmann was a nineteenth-century mathematician and linguist who was one
of the first to propose a geometry embracing more than three dimensions.) Gibbs
was no match for Tait in polemics, but he knew how to respond without the
epithets:

It seems to be assumed that a departure from quaternionic usage in the treat-
ment of vectors is an enormity. If this assumption is true, it is an important
truth; if not, it would be unfortunate if it should remain unchallenged, espe-
cially when supported by so high an authority. The criticism relates particularly
to notations, but I believe that there is a deeper question of notions underlying
that of notations. Indeed, if my offence had been solely in the matter of notation,
it would have been less accurate to describe my production as a monstrosity,
than to characterize its dress as uncouth.

Gibbs was confident that his method, uncouth or not, served “the first duty of
the vector analyst . . . to present the subject in such a form as to be most easily
acquired, and most useful when acquired.” In practice, Gibbs was the clear win-
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ner in the debate. Gibbs’s biographer Lynde Phelps Wheeler writes that “there
has been a steady increase in the use of the vectorial methods of Gibbs through
the years until now [the 1950s] they may be said to be practically universal.”

A Gibbs Sketch

Josiah Willard Gibbs was born in 1839. His father, also Josiah Willard Gibbs, was
a prominent philologist and professor of sacred literature at Yale University. (To
the family and contemporaries, the father was “Josiah” and the son “Willard.”)
Son and father followed different intellectual paths, but they had much in com-
mon. One of Willard Gibbs’s biographers, Muriel Rukeyser, describes Josiah Gibbs
as “the most thoroughly equipped scholar of his college generation,” and notes
that “the two weapons on which he relied were accurate knowledge and precise
statement. He loved [the work of the philologist], this sorting, and tagging, and
comparing, this detective work among the clues left by the words of man.”

Rukeyser pictures Willard: “A mild, frail child growing up in the Gibbs home
with its simple manners, and its little Latin books—its primers and his father’s
Bible stories, and his mother’s soft insistence on mildness.” With four sisters,
“he was a child, he was a little boy in a house of women. The family was presided
over by the long, sympathetic face of the mother and the teaching schedule of
the father.”

He learned the lessons of death and responsibility as an adolescent. His youn-
gest sister died when he was ten, and shortly after he entered Yale College at age
fifteen his mother’s health began slowly to decline. Willard’s oldest sister, Anna,
“more and more took her place as she grew weaker,” Rukeyser relates, “and the
boy grew up rapidly as the relations of the family shifted. His long face looks
out from the early daguerreotypes, with its strong eyes, hostile one moment, and
then suddenly soft and perceptive. He takes stillness with him.”

After graduating from Yale in 1858 with prizes in Latin and mathematics,
Gibbs entered the new Yale graduate school and earned the first Ph.D. in engi-
neering in the United States, and then served Yale for three years as a tutor. By
that time (the middle 1860s), his interest in the broader world of science was
aroused and he traveled to Europe for three years of study at the scientific centers
of Paris, Berlin, and Heidelberg. (But these travels did not take him to Bonn,
where his scientific benefactor, Clausius, lived.) He returned to New Haven in
1869 and was appointed professor of mathematical physics at Yale (without sal-
ary) in 1871.

Gibbs was unpretentious, friendly, often humorous, and accommodating. Ac-
cording to Crowther, “he instantly laid aside without question any profound work
when called upon to perform minor tasks. He never evaded the most trivial col-
lege duties, or withheld any of his valuable time from students who sought his
instruction.” His powers of concentration were so extraordinary that he could
probably do the chore, even talk with a student, and hardly interrupt his train
of thought.

Gibbs never married, in Wheeler’s view because of “his inherited family re-
sponsibilities early in life, coupled with uncertainty of his health throughout the
period when most young men have thoughts of founding a family of their own.”
In addition, a close relationship with his oldest sister Anna, who also remained
unmarried, may have been important. Anna had “an especially retiring person-
ality, accentuated by poor health,” writes Wheeler. “It was said that she and
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Willard could be silent together better than anyone else,” Rukeyser tells us.
“There seems to have been complete understanding between them. Most people
deserved her silence, but living persons still remember long days spent in won-
derful conversation with Gibbs and his sister—on trains, or in the country.”

Gibbs was kind to children. A cousin, Margaret Whitney, remembered special
treats when Gibbs took the Whitney children for a sleigh ride:

He would turn to tuck us in and see that we were all right with a smile so
friendly and re-assuring to the little girl beside him that she felt at once at ease
with him. My best memory is driving with him in the winter in a cutter, a rare
treat for me. The impression of standing beside the sleigh in the snow, waiting
to be lifted in, snow all around, crisp air, sleighbells jingling by, all the world
in swift motion, and I to be one of them, this sensation stayed with me and can
always be evoked. It is well worth a tribute to the kind man who gave it to me.

His health was damaged by scarlet fever when he was a child, and minor
illnesses were a problem throughout his life. He had a slight build, but was well
coordinated and had athletic ability. Margaret Whitney recalled an encounter
between Gibbs and a nervous horse: “He was on horseback, returning to the hotel
[on vacation in Keene Valley, New York,] and the horse was misbehaving badly.
But so firm was his hand on the rein and so good his seat that although they
thought the horse might throw him any minute, he was able to control him and
bring him quietly to a halt.”

Gibbs accomplished so much in thermodynamics, and at a time when others
seemed to be contributing more confusion than progress, that one wonders about
his sources of inspiration. Why could Gibbs, so much more clearly than his con-
temporaries, see the fundamental importance of the Clausius equation? How
could he be so certain that adding chemical potential terms to the Clausius equa-
tion would make it the master equation it is in modern thermodynamics? Ad-
dition of these terms is easily done mathematically, but mathematical ease does
not guarantee physical meaning.

We can look at his working habits, which were extraordinarily internal. He
lectured and wrote his papers without notes (in contrast to Newton, who could
not think without a pen in his hand). He never discussed his researches infor-
mally with students or colleagues. Even without such prompting and checking
devices, his papers contain few, if any, significant errors.

To an extent perhaps unexcelled in the annals of science, Gibbs was a natural
theorist. It may also have been important that he was isolated in his new-world
setting from contemporary scientific activity. It is not always true that isolation
is an important creative influence in scientific effort, but in cases where estab-
lished scientific workers are divided into warring camps it may have been an
advantage to be as uncommitted and unprejudiced as Gibbs was.

“He expected nothing; nothing from outside,” writes Rukeyser. “He was sure
of himself, and trusted himself.” Maxwell’s support must have helped bolster
that assurance. But even with Maxwell actively promoting his interests, Gibbs
was hardly known outside the world of theoretical physics. J. J. Thomson, the
discoverer of the electron and one of Maxwell’s successors at Cambridge, tells of
a conversation with a president on a faculty-recruiting mission from a newly
formed American university. “He came to Cambridge,” Thomson writes, “and
asked me if I could tell him of anyone who could make a good Professor of
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Molecular Physics.” Thomson told him that one of the greatest molecular phys-
icists in the world was Willard Gibbs, and he lived in America. The president
responded that Thomson probably meant Wolcott Gibbs, a Harvard chemist.
Thomson was emphatic that he did mean Willard Gibbs, and he tried to convince
his visitor that Gibbs was indeed a great scientist. “He sat thinking for a minute
or two,” Thomson continues, “and then said, ‘I'd like you to give me another
name. Willard Gibbs can’t be a man of much personal magnetism or I should
have heard of him.” ”

Another essential clue concerning Gibbs’s inspiration is revealed in a com-
ment made by Wheeler, who had considered writing his biography of Gibbs in
two volumes, one concerned with Gibbs’s scientific work and the other with the
nonscientific events of his life, but it soon became clear that the two volumes
had to be one: “I came to realize that to an unusual degree Gibbs’ scientific work
was Gibbs, and that really to understand him one must to a certain extent at least
understand his work; as his life and work were so largely one, so must his story
be.”

To many people, including academic dignitaries trading on “personal mag-
netism,” Gibbs seemed inhibited. Yet his friends were impressed by his calm
equanimity. Wheeler quotes the daughter of Gibbs’s close friend Hubert Newton.
Josephine Newton found Gibbs “the happiest man” she ever knew. “This cheer-
fulness was, I think, due partly to an excellent sense of proportion which enabled
him to estimate things at their true value, and partly to the uniformly good di-
gestion which he enjoyed.” Why shouldn’t this man have been happy (and
blessed with good digestion)? He was doing profoundly important creative
work—and he knew it.
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The Last Law
Walther Nernst

The Devil and Walther Nernst

According to a story current in Berlin in the early 1900s, God decided one day
to create a superman. He worked first on the brain, fashioning a “most perfect
and subtle mind.” But he had other business, and the job had to be put aside.
The Archangel Gabriel saw this marvelous brain and could not resist the temp-
tation to try to create the complete man. He overestimated his abilities, however,
and succeeded only in creating a “rather unimpressive looking little man.” Dis-
couraged by his failure, he left his creation inanimate. The devil came along,
looked with satisfaction upon this unique, but lifeless, being and breathed life
into it. “That was Walther Nernst.”

This tale is told by Kurt Mendelssohn in a fine biography of Nernst. Mendels-
sohn also supplies us with a more authentic picture of Nernst: “There is no
record of hereditary genius [in Nernst’s family] or even of outstanding enterprise.
It seemed that Walther owed his brilliance to a lucky throw of the genetic dice.”
At one time, Nernst considered becoming an actor and “he realized this ambition
to some extent by wearing throughout his life the mask of a trusting and credu-
lous little man. His favorite expression of innocent astonishment could be un-
derlined by a twitch of the nose, which removed [his] pince-nez. There was
always a note of astonishment in his voice and the outrageous and sarcastic
comment of which he was the master was never accompanied by a change in his
voice or a smile. He remained genuinely serious and mildly surprised.”

Leipzig, Gottingen, and Berlin

As a student, Nernst traveled, according to the nineteenth-century custom, among
the universities where the great men of science lived and taught. His educational
journey took him to Zurich, Berlin (where Helmholtz lectured on thermodynam-
ics), back to Zurich, then to Graz (to study under Ludwig Boltzmann), and finally
to Wiirzburg (where work with Friedrich Kohlrausch inspired a lifelong interest
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in electrochemistry). He paused long enough in Graz to write a doctoral disser-
tation and learn lessons in “irritation physics” from Albert von Ettinghausen, a
former student of Boltzmann’s and Nernst’s collaborator in his dissertation re-
search. Nernst, who could never conquer his impatience, had endless admiration
for Ettinghausen’s easy acceptance of experimental frustrations. After a dismal
failure of an experiment, Ettinghausen might say calmly, “Well, the experiment
was not successful, at least not entirely.”

Nernst’s professional career was a story of almost unmitigated success. In the
late 1880s, while at Wiirzburg, he met Wilhelm Ostwald and became his assistant
when Ostwald accepted a professorship at Leipzig. Nernst lost no time in finding
occupation for his talents in Ostwald’s endeavors, all concerned with building
foundations for the new discipline of physical chemistry. Nernst’s first publica-
tion from Leipzig became one of the classics of the literature of electrochemistry;
it presented to the world an equation that came to be known to generations of
physical chemistry students as the “Nernst equation.”

In 1891, Nernst was appointed assistant professor of physical chemistry at the
University of Gottingen. Two years later he published one of the first physical
chemistry textbooks—the second text in the field after Ostwald’s Lehrbuch der
allgemeinen Chemie (Textbook of General Chemistry). Nernst’s text had the title
Theoretische Chemie (Theoretical Chemistry), and it was dedicated to Ettinghau-
sen. Nernst constructed his view of physical chemistry on thermodynamic foun-
dations laid by Helmholtz, and on the molecular hypothesis (“Avogadro’s hy-
pothesis”) advocated by Boltzmann (and strenuously opposed at the time by
Ostwald). Still in use thirty years later, in its fifteenth edition, the Nernst text
was the most influential in the field.

In three more years, Nernst had so impressed the Ministries of Education, not
only in Prussia (where Gottingen is located), but also in Bavaria, that he was
offered the professorship of theoretical physics at the University of Munich as
Boltzmann’s successor. The Prussian minister, Friedrich Althoff, was not to be
outdone, however. Mendelssohn tells of the further bureaucratic bargaining, mas-
terfully manipulated by Nernst:

If Althoff wanted to keep Nernst in Prussia, he now had to make an effort that
would go a bit beyond his own departmental responsibility. Nernst’s price was
the creation of a new chair of physical chemistry at Gottingen, and to go with
it an electrochemical laboratory. Althoff could produce the new chair from the
funds at his disposal, but for the laboratory he had to get money from the Min-
ister of Finance—and that would take time. Nernst, who was certain he held
the whip hand and always knew how to drive a hard bargain, forced Althoff
into an unheard of act. It was the promise, to be given in writing, that should
the laboratory in Géttingen not materialize, Nernst would get a chair in physics
at Berlin. Althoff yielded, possibly because he had every reason to believe the
Minister of Finance would play, as indeed he did. That was 1894 and Berlin
would have to wait another eleven years.

Nernst’s scientific talent extended to applied problems, especially those that
had economic possibilities. While at Géttingen, he invented an electric lamp,
which he hoped would compete with the Edison lamp, then not fully developed.
Nernst’s design was an application of his studies of ionic conduction. He first
tried to persuade Siemens, an established German electric firm, to buy the patent
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on the invention. Siemens was not interested, either in the technical possibilities
of the lamp or in Nernst’s financial demands.

Nernst next offered the patent to Allgemeine Elektrizitits Gesellschaft (A.E.G.),
a newer and more adventurous company. After extended bargaining, in which
Nernst demanded a lump sum and refused royalties, he got what he wanted: a
million marks, enough to make him a wealthy man. Although it was ingeniously
developed by A.E.G., with much of the technical work done by two of Nernst’s
students, the Nernst lamp finally lost in the competition with other designs. This
financial failure for A.E.G. seems not to have discouraged its confidence in
Nernst’s technical abilities. Emil Rathenau, the A.E.G. chairman, remained
friendly with Nernst for the rest of his life.

Although he had acquired wealth, become influential with those highly placed
in the political and business worlds, and reached a position of eminence in the
new science of physical chemistry, Nernst had not quite reached the pinnacle of
success. There was one more academic world to conquer. His next move took
him, in Mendelssohn’s words, from his Géttingen “place in the sun” to an aca-
demic and scientific “summit” at the University of Berlin. In the spring of 1905,
Nernst drove his family from Gottingen to Berlin in an open motorcar, accom-
panied by his favorite mechanic in case of breakdowns. That same year Nernst
found the clue he needed to formulate his statement of what is now called the
third law of thermodynamics.

Chemical Equilibrium

We might pause here, with Nernst about to make his great discovery, and look
more closely at one of Nernst’s major research interests, high-temperature chem-
ical reactions involving gaseous components. In the early 1900s, such reactions
were of great industrial importance. Franz Simon, a colleague of Nernst’s in the
1920s, tells of the prevailing concern with gaseous reactions that inspired
Nernst’s work: “Fifty years ago [Simon’s remarks were written in 1956] there was
an intense interest in chemical gas reactions, partly because of the relative sim-
plicity of the problem involved, which seemed to lend itself to treatment by
physical methods, and partly because of the economic possibilities. Gas reactions
had already played an important role in the growth of chemical heavy industry,
and it was realized that ammonia synthesis in particular had become very im-
portant indeed for the German economy in peace and war.”

The ammonia synthesis reaction is like the water reaction mentioned in the
previous chapter, except that it replaces oxygen with nitrogen (N,) and forms
ammonia (NH;),

N, + 3 H, — 2 NH,.

Ammonia can be used as a fertilizer or converted to nitrates for the manufacture
of explosives. In the industrial process, nitrogen is obtained from air, and hydro-
gen from a reaction between coal and steam; a high temperature, a high pressure,
and a catalyst are required. A chemical engineer might design the process so it
begins with nitrogen and hydrogen, and if the temperature is high enough and
the catalyst is active, the reaction rapidly forms ammonia. But complete conver-
sion of the reactants nitrogen and hydrogen to ammonia is not possible because
the reacting system proceeds ultimately to an equilibrium condition with only
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partial conversion of the reactants; the reaction goes no further because at equi-
librium all change ceases. The yield of ammonia at equilibrium is the maximum
attainable.

An engineer would want to know what equilibrium yield of ammonia to ex-
pect at various pressures and temperatures in order to design the process for
optimal performance. Thermodynamics supplies an efficient parameter for that
engineering purpose. It is called an “equilibrium constant,” always represented
by the symbol K, and for the ammonia synthesis reaction is defined

_ PNH; X PNH;
PN, X PH, X PH, X PH,

in which the ps are pressures of the chemical components indicated. The engi-
neer designs for the largest feasible ammonia pressure pyps, and therefore ben-
efits from large values of the equilibrium constant K. Compare this recipe for the
equilibrium constant with the statement of the reaction: corresponding to the two
molecules of the product NH; are two multiplied factors (pyus X pnms) in the
numerator, and in the denominator are one py, factor corresponding to one mol-
ecule of the reactant N, and three py, factors for the three molecules of the
reactant H,. Equilibrium constants are defined similarly for other gaseous reac-
tions—a multiplied p factor for each component in the reaction, with chemical
product terms in the numerator and reactant terms in the denominator.

Nernst’s pragmatic goal was to develop methods for calculating equilibrium
constants of gaseous reactions at any temperature and total pressure chosen by
engineers. At the turn of the century, the principal experimental tool for studies
in thermodynamics was the calorimeter. A calorimeter is a well-insulated con-
tainer like a thermos bottle that keeps coffee hot in the winter and lemonade
cold in the summer. (Some wag has wondered how the thermos knows it should
keep the lemonade cold and the coffee hot, and not the lemonade hot and the
coffee cold.) In the laboratory, the calorimeter is supplied with an efficient stirrer
to eliminate nonuniformities and a sensitive thermometer to detect temperature
changes (recall Joule’s calorimeters and his remarkable thermometers).

By the time Nernst began his investigations, it was clear from calorimetric
studies of chemical reactions—done by practitioners of “thermochemistry”—that
most reactions are “exothermic.” Any such reaction releases thermal energy as
it proceeds, causing a temperature rise in the calorimeter, and making it possible
to measure the “heat of reaction.” Nernst soon found, however, that heats of
reaction and the ordinary theory and practice of thermochemistry did not provide
all the tools he needed in his studies of gaseous reactions. To solve those prob-
lems, he first had to tackle a much broader problem.

Chemical Affinity

This was a matter of long standing, as Nernst noted in his textbook:

The question of the nature of the forces which come into play in the chemical
union or decomposition of substances was discussed long before a scientific
chemistry existed. The Greek philosophers themselves spoke of the “love and
hate” of atoms of matter. ... We retain anthropomorphic views like the an-
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cients, changing the names only when we seek the cause of chemical changes
in the changing affinity of the atoms.

To be sure, attempts to form more definite ideas have never been wanting.
All gradations of opinions are found, from the crude notions of Borelli and
Lemery, who regarded the tendency of the atoms to unite firmly with each other
as being due to their hook-shaped structure . . . to the well-conceived ideas of
Newton, Bergman and Berthollet, who saw in the chemical process phenomena
of attraction comparable with the fall of a stone to Earth.

It is not too much to say that there is no discovery of any physical action
between substances that has not been used by some speculative brain in the
explanation of the chemical process; but up to the present the results are not
at all commensurate with the ingenuity displayed.

Two of Nernst’s more recent predecessors in the study of chemical affinity
were the pioneering thermochemists Julius Thomsen and Marcellin Berthelot,
who believed that chemical affinities were measured by heats of reactions. The
affinity principle asserted by Thomsen, for example, was that “every simple or
complex action of a purely chemical nature is accompanied by an evolution of
heat.” In other words, all spontaneous chemical reactions had to be of the exo-
thermic kind. The Thomsen-Berthelot principle was criticized by Gibbs, Helm-
holtz, and Boltzmann, who cited instances of spontaneous “endothermic” reac-
tions, which displayed cooling effects, rather than heating effects, in a
calorimeter.

The Thomsen-Berthelot principle was not entirely worthless, however. It did
agree with experimental observations in a large number of cases. Nernst appre-
ciated these successes and thought they might be as important as the failures: “It
would be as absurd to give [the Thomsen-Bertholet principle] complete neglect,
as to give it absolute recognition. . . . It is never to be doubted in the investigation
of nature, that a rule that holds good in many cases, but which fails in a few
cases, contains a genuine kernel of truth—a kernel which has not yet been
‘shelled’ from its enclosing hull.” Nernst was particularly cognizant that the
Thomsen-Berthelot principle was most likely to be successful when it was ap-
plied to reactions involving solid components.

Nernst’s solution to the chemical affinity problem, as it is now practiced, turns
to the Gibbs energy, defined

G=U+ PV —-TS. (1)

This is often shortened by introducing an internal-external energy called “en-
thalpy,” represented with the symbol H, and defined

H=U+ PV. (2)
This is a composite of the internal energy U with the potential energy PV a
system of volume V has by virtue of its existence at the pressure P. Substituting

H for U + PV in equation (1), the Gibbs energy equation becomes

G=H-— TS. (3)
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Chemical reactions are characterized by Gibbs energy changes A.G. Taking the
ammonia synthesis reaction,

N, + 3 H, — 2 NH,

as an example again, the Gibbs energy change tells us that the synthesis reaction
proceeds if A,G < 0. On the other hand, if A,G > O, the synthesis reaction is
impossible, but ammonia decomposition, the reverse reaction,

2 NH; — N, + 3 H,

is possible. Thus, depending on whether A,G is positive or negative, the reaction
can go either way. No matter which direction the reaction chooses, synthesis or
decomposition, its ultimate destiny is the equilibrium condition defined by
A,G = 0, in which all chemical change ceases. The Gibbs energy change is, in
other words, a faithful measure of chemical affinity, the force driving the reaction
toward ammonia synthesis or decomposition, or not at all after equilibrium has
been reached. Gibbs energy changes give similar accounts of chemical affinities
for other reactions.

Chemical reactions are also characterized by enthalpy changes A, H and en-
tropy changes A.S, which are related to the reaction Gibbs energy change A,G as
dictated by equation (3),

AG = A,H — TA,S. (4)

Here we have a calorimetric route to chemical affinity, as measured by A.G, if
A.H and A,S can be measured calorimetrically. That is a simple matter for the
reaction enthalpy A.H. If the reaction proceeds at a fixed pressure, the entire
enthalpy change A, H is converted to thermal energy and is detected as a heat of
reaction in the calorimeter.

Unfortunately—and this was the crux of Nernst’s problem—reaction entropy
changes A.S, unlike the enthalpy changes, are not directly measurable by calo-
rimetry. We can, however, use calorimetric data to calculate A.S at any temper-
ature we choose, if we know A.S at any particular temperature. Nernst had the
insight to realize what that particular temperature had to be. According to Simon,
“Nernst had a hunch that [nature] could reveal her intentions only at absolute
zero, the one point of special significance in the whole range of temperature.”
Nernst surmised from low-temperature data for reactions involving solids that,
in effect, for all such reactions the entropy change is equal to zero at absolute
Zero:

A.S = 0 when T = absolute zero. (5)

We say “in effect” because Nernst did not believe in the entropy concept (Gibbs’s
lessons had not yet been learned). His working equations did not include the
entropy S, but instead the mathematical equivalent involving the Gibbs energy
G (Nernst used Helmholtz’s term, “free energy”). At first, Nernst called equation
(5) his “heat theorem.” It solved Nernst’s chemical affinity problem for reactions
involving solids by making it possible to calculate A.S with calorimetric data, to



130 Great Physicists

combine these reaction entropies with reaction enthalpies, and finally to deter-
mine chemical affinities, measured as A,G.

Chemical Constants

Nernst’s heat theorem, published in 1906, was a major accomplishment. Together
with subsequent work in thermochemistry, it earned him a Nobel Prize in chem-
istry in 1920. But the theorem had little to say about Nernst’s original problem,
the calculation of equilibrium constants for gaseous reactions. He now had to
find his way back to the equilibrium constants.

He had an equation that partly satisfied his needs. It was a differential equation
that had been introduced by J. H. van’t Hoff in the 1880s. (Jacobus Henricus van’t
Hoff was a modest, silent, hardworking Dutchman who was one of the founders
of physical chemistry. He became the first Nobel laureate in chemistry in 1901.
By the time Nernst published his heat theorem, he and van’t Hoff were colleagues
at the University of Berlin.) The mathematical form of van’t Hoff’s equation is:

with K an equilibrium constant and f(7) some function of temperature obtainable
in calorimetric experiments. Nernst needed an equation for K. He could get it by
integrating van’t Hoff’s differential equation, but that introduced an unknown
constant. Passage from a differential equation to an integrated equation always
requires an “integration constant.” In the differential equation, the constant dis-
appears because the derivative of a constant equals zero, but it cannot be ignored
in the integrated equation.

The matter of the integration constant, simple enough mathematically, proved
a stubborn problem in the physical context. Nernst discovered that he could
dissect the integration constant he needed, call it I, into separate constants for
the components involved in the reaction. Consider the “water gas reaction,”
which forms carbon monoxide (CO) and steam (H,O) from carbon dioxide (CO,)
and hydrogen (Hj,),

COZ + Hz d CO + Hzo.

By Nernst’s formula, the integration constant I for this reaction is divided into
four separate terms, one for each component, with reactant terms subtracted from
product terms,

I= Ico + 1,0 — Ico, — IH,-

Nernst called the i terms “chemical constants.” Each one depends only on the
physical properties of the component indicated, and is valid not only for the
one reaction but for all others in which the component participates. For each
component, a separate constant could be calculated and tabulated once and for
all.

Nernst’s study of gaseous chemical equilibria is a demonstration, if any is
needed, that the paths of theoretical research can be devious. At the outset,
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Nernst had been diverted to the general problem of chemical affinity, and found
the advantages of turning to the little-known thermodynamics of reactions in-
volving solids at low temperatures. While on this tangent, he had uncovered the
experimental basis for his heat theorem, with implications reaching beyond the
realm of gas equilibria. Returning to the gaseous reactions, and formulating the
problem in terms of integration of van’t Hoff’s differential equation, he had found
that he could express the necessary integration constants as summations of sep-
arate chemical constants, one for each reaction component.

But Nernst’s task was still not complete. The data required for accurate cal-
culation of the chemical constants were not available when Nernst formulated
his theory in 1906. He soon embarked on one of the first experimental programs
aimed at obtaining the necessary low-temperature data. As an interim measure,
he developed formulas for estimating the chemical constants.

Nernst prepared a table of values for his estimated chemical constants and
used it to calculate approximate equilibrium constants. “Surveying the whole
material available at the time,” Simon writes, “he showed that results of his
calculations agreed with experimental facts within a rather generous limit of
error.” In a typical application, his empirical method calculated K = 1.82 for the
water gas reaction at the high temperature 800°C; the observed value for the
equilibrium constant at this temperature was K = 0.93.

To some of Nernst’s critics, this kind of agreement was not impressive. Gilbert
Lewis, a former student of Nernst’s, and one of his most important successors in
the development of the methods of chemical thermodynamics, credited Nernst’s
efforts to obtain the low-temperature data for accurate calculations, but deplored
“the rapidly growing use of [estimated] chemical constants.” Lewis found dis-
maying “the various efforts which have been made to square the calculations
based on these constants with the results of measurements. . . . [They] constitute
a regrettable episode in the history of chemistry.”

Lewis would note with approval that chemical constants are nowhere to be
found in the modern literature of chemical thermodynamics. But Simon reminds
us that the “generous limit of error” with which Nernst measured his success
“was inifintely preferable to the complete ignorance that existed before. . ..
[Nernst’s] approximations were very useful to chemical industry, making it pos-
sible to get very quickly a rough idea which reactions were thermodynamically
feasible in complex reaction patterns.”

The Theorem Is a Law

Nernst made it clear that his heat theorem was fundamentally a “law” and not
just another formula or mathematical recipe. He insisted not only that his theo-
rem belonged with the two established laws of thermodynamics—as the “third
law”—but that there could never be another. This conclusion followed from an
extrapolation: the discoverers were three (Mayer, Clausius, and Helmholtz) for
the first law, two (Carnot and Clausius) for the second, and just one (W. Nernst)
for the third. With no one to discover it, a fourth law of thermodynamics could
not exist. The third law was the last law.

With all his immodesty, self-glorification, and sarcastic wit, Nernst continued
to expand his influence, not only among the high and mighty, but also within
the intimate circle of his graduate students. James Partington, an Englishman who
worked in Nernst’s Berlin laboratory, writes of Nernst’s kind attention to a “very
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young man, with little experience.” Unlike scientific potentates then (and now),
Nernst did not ignore the daily labors of his research students, leaving them to
sink or swim. Partington found his research difficult, but Nernst’s presence was
an incentive: “one felt that he could do the work easily himself, and that per-
severance would remove lack of skill, a fault which could be cured by applica-
tion. . . . His true kindness is something I remember with gratitude.”

At least one visitor to Berlin in the 1930s had initial reservations about Nernst
and his unusual manner. Hendrik Casimir (known for his studies of low-
temperature superconductivity phenomena) gives his impressions of Nernst and
his research colloquium:

Mendelssohn has described this institution [the colloquium] in enthusiastic
terms as the place where the most prominent physicists of the day pronounced
on the most recent developments. It did not strike me that way at all. . . . Dis-
cussions were both formal and perfunctory. In a fairly soft, yet penetrating,
rather high-pitched voice [Nernst] could proclaim that he already said some of
the things presented at the colloquium in his book, and complain that people
did not recognize that as a publication. He struck me at the time as a ridiculous
figure. . . . Later, I realized that some of the remarks had contained a rather sub-
tle point. In 1964, the centenary of his birth was celebrated at Géttingen and I
was invited to give the main talk. On that occasion, I studied his published
work more closely and was impressed. True, there were some irritating man-
nerisms and his mathematics was shaky, but his work shows throughout a re-
markably clear and often prophetic vision. And so I had an opportunity to atone
in public for an error of judgment I had never voiced.

Joy and Sorrow

Nernst’s private life was almost as extraordinarily fortunate as his professional
career. His wife Emma was, among many other things, a paragon of domestic
efficiency and hard work. She customarily arose at 6 aA.M. and kept the Nernst
household, which was never simple or quiet, in order. Not long after their arrival
in Berlin, the Nernsts were known as the most hospitable family in Berlin. There
were five children, three daughters and two sons, and family life was an impor-
tant part of Nernst’s existence.

But not even Nernst could escape the tragedies of two world wars. In the first
war, both Nernst sons were killed. Long before the armistice, Nernst could see
that Germany was beaten and nearly ruined. In vain, he tried to use his connec-
tions—with the kaiser, among others—to prevent further devastation. In 1917, he
found escape in the peaceful realm of science by gathering in a monograph his
work on the heat theorem. The opening sentences of this book tell of the solace
he found in science: “In times of trouble and distress, many of the old Greeks
and Romans sought consolation in philosophy, and found it. Today we may as
well say there is hardly any science so well adapted as theoretical physics to
divert the mind from the mournful present.”

Peace finally came, and miraculously Germany began to recover. For a time,
there was political and economic chaos, but German science emerged as strong
and active as ever; Nernst and his Berlin colleagues could reconstruct scientifi-
cally. Now there were conceptual revolutions to be fought. Both the quantum
theory and relativity had come over the scientific horizon. Nernst did not con-
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tribute to these endeavors, although he understood and appreciated what was
happening. More recognition came his way; he was offered (but declined) an
ambassadorship to the United States. He was elected rector of the University of
Berlin, became a Helmholtz successor as professor of physics, and won a Nobel
Prize in 1920.

But Germany had not completely recovered from the political ruin brought on
by the first war. In the 1930s, the Nazi influence began to spread; then suddenly
and irrevocably the Nazis were in power. Nernst was opposed to the Nazi poli-
cies, but lacked the energy and influence to act. Mercifully, he retired to his
country home and found a measure of peace in the last seven years of his life.
During his final days, Emma sat with him and recorded his last words. “True to
his whole character,” Mendelssohn writes, Nernst told Emma just before he died,
“I have already been to Heaven. It was quite nice there, but I told them they
could have it even better.”






ii
ELECTROMAGNETISM

Historical Synopsis

Our story must now follow a more zigzag chronology. (Those more
comfortable with linear timelines may want to consult the
chronology at the end of the book.) Part 2 followed the development
of thermodynamics from Carnot in the 1820s to Nernst in the 1930s.
The history now returns to the 1820s and 1830s, with the same
scientific scenery that inspired the thermodynamicists, the topic of
the day being the mysterious and intriguing matter of conversion
processes. It was plain to the scientists of the early nineteenth
century that the many interconvertible effects—thermal, mechanical,
chemical, electrical, and magnetic—demanded unifying principles.
Thermodynamicists concentrated at first on thermal and mechanical
effects, and from them refined the concepts of energy and entropy
and three great physical laws. Eventually, by the end of the
nineteenth century, thermodynamicists had discovered that the
language of their science encompassed all macroscopic effects—
indeed, the entire universe.

There were other unities to be discovered at the same time. In
1820, Oersted observed that a wire carrying an electric current
slightly disturbed the magnetic needle of a nearby compass: an
electric effect produced a magnetic effect. Oersted’s colleagues were
not impressed, but an ambitious young laboratory assistant at the
Royal Institute in London was; his name was Michael Faraday. In a
string of brilliantly designed experiments, Faraday discovered many
more “electromagnetic” effects, including those that make possible
modern electric motors and generators. In one of the last and most
difficult of these experiments, Faraday made the stunning discovery
that polarized light is affected by a magnetic field. With that
observation he brought light into the domain of electromagnetic
phenomena.

Faraday was guided by his superb skill in the laboratory—he was
the greatest experimentalist of the nineteenth century—and also by a
revolutionary theory. He believed that magnetic, electric, and
electromagnetic effects were transmitted through space along “lines
of force,” which collectively defined a “field.” Once it was
generated, the field could exist anywhere, even in otherwise empty
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space. Faraday’s associates believed his experiments but not his
theory, which was radically at odds with the version of
Newtonianism then popular.

But Faraday was joined by two young dissenters who also
believed fervently in the field concept. One was William Thomson,
and the other a Scotsman who would become the greatest theorist of
the nineteenth century, James Clerk Maxwell. Thomson fashioned a
limited mathematical theory of Faraday’s electric lines of force.
Maxwell went much further. Over a period of almost two decades,
he constructed a great theoretical edifice beginning with Faraday’s
field concept. The theory comprised a set of differential equations
for the electric and magnetic components of the field and their
sources, which condensed into a few lines the theory of all electric,
magnetic, and electromagnetic phenomena, including Faraday’s
experimental demonstration of the electromagnetic nature of light.

The scope and utility of Maxwell’s equations are vast. Their
physical interpretation has changed over the years. We now consider
that the electric field originates in electric charges and the magnetic
field in electric currents. Maxwell regarded the electric charge as a
product of the field, and could see only an indirect connection
between the magnetic field and electric currents. But the equations
themselves are valid on a cosmic scale. Like Newton’s laws of
dynamics and universal gravitation, and the laws of
thermodynamics, Maxwell’s equations have a reach that extends to
the corners of the universe.



1

A Force of Nature
Michael Faraday

Doing Without

The scientists in these chapters are a diverse group. One would look in vain to
find particular aspects of their backgrounds or characters that guaranteed their
success in science. Some were introverted and solitary, others extroverted and
gregarious. Some were neurotic, while others were well adjusted. They could be
friendly and agreeable, or unfriendly and contentious. Their marriages were usu-
ally happy, but some were disastrous. Their educations were both formal and
informal. Some had mentors, others did not. Some founded schools to carry on
their work, and others worked alone.

But these outstanding scientists had at least two things in common: they all
worked hard, sometimes obsessively, and with only a few exceptions, they came
from middle-class backgrounds. The tendency to workaholism is a trait found in
most people who achieve outstanding success. More interesting is the rule of
middle-class origins. Our physicists led lives in social worlds that covered the
full middle-class range, from lower to upper, but rarely found themselves above
or below these stations. By far the most prominent exception is the subject of
this chapter, Michael Faraday, born in a London slum.

Faraday’s father, James, was a blacksmith with a debilitating illness, who could
barely support his family. Late in his life, Faraday recalled that in 1801, when
economic times were bad, his weekly food allotment was a loaf of bread. His
education, he told his friend and biographer, Henry Bence Jones, “was of the
most ordinary description, consisting of little more than the rudiments of reading,
writing, and arithmetic at a common day-school. My hours out of school were
passed at home and in the streets.”

But the misfortunes of poverty were balanced by a secure family life. Michael’s
mother, Margaret, “was the mainstay of the family,” writes Faraday’s most recent
biographer, Pearce Williams. “She made do with what she had for material needs,
but offered her younger son that emotional security which gave him the strength
in later life to reject all social and political distinctions as irrelevant to his own
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sense of dignity.” No doubt she also deserves credit for the close friendship of
the three siblings, Michael, his younger sister, Margaret, and his older brother,
Robert.

Faraday had a long climb from the streets of London to his ultimate position
of eminence as one of the greatest scientists of his time. Family support helped
him take the first steps in that climb, and so did his religious faith in the San-
demanian church. The Sandemanians are a fundamentalist Protestant Christian
sect, who teach the essential importance of love, discipline, and community
without proselytizing or fiery preaching. Faraday drew daily strength from his
religion throughout his life. One of his colleagues, John Tyndall, noted in his
diary: “I think that a good deal of Faraday’s week-day strength and persistency
might be referred to his Sunday Exercises. He drinks from a fount on Sunday
which refreshes.”

But for all the tenacity and purpose built into Faraday’s character by adversity,
family support, and religious faith, he would not have a place in our history
without two more advantages: extraordinary good luck at several key points in
his life, and a personality of enormous intensity. In his first piece of good luck,
he was apprenticed to George Riebau, a bookbinder and bookseller. Riebau, a
French refugee, liked his lively apprentice, and encouraged him to take advan-
tage of the many books that passed through the shop. “Whilst an apprentice,”
Faraday told Bence Jones, “I loved to read the scientific books which were under
my hands, and, amongst them, delighted in [Jane] Marcet’s Conversations in
Chemistry and the electrical treatises in the Encyclopaedia Britannica.” Such was
the haphazard beginning of Faraday’s education in science.

The books were crucial, but not enough. Faraday began to attend evening lec-
tures, including four given by Humphry Davy at the Royal Institution in London.
Davy was one of the most famous scientists of the day and an immensely popular
lecturer. As Faraday related to one of Davy’s biographers, he was finding the book
trade “vicious and selfish,” and thought of entering “the service of Science,
which I imagined made its pursuers amiable and liberal.” He naively wrote to
Davy asking for a position, and in Faraday’s greatest piece of good luck, Davy
hired him, first as an amanuensis, and later as assistant in the laboratory at the
Royal Institution. Faraday remained at the institution for his entire career and
eventually succeeded Davy as the main attraction in the institution’s laboratory
and lecture theater.

Church, family, friendships made during his bookbinding apprenticeship, and
the patronage of Humphry Davy were the external strengths that gave Faraday
his opportunities. No less important was his extraordinary internal strength. Tyn-
dall wrote, “Underneath his sweetness and gentleness was the heat of a volcano.
He was a man of excitable and fiery nature; but through his high-discipline he
converted the fire into a central glow and motive force of life, instead of permit-
ting it to waste itself in useless passion.” It took no less than a controlled volcano
of energy for Faraday to make his long, strenuous, and hazardous ascent. He
chose to study the forces of nature in his research. He was a force of nature
himself.

Faraday and Davy

Among major scientists there has probably never been one so handsome, charm-
ing, and publicly popular as Humphry Davy. At the time he employed Faraday,
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he was at the peak of his celebrity. He made his headquarters at the Royal Insti-
tution, which had recently been founded by Count Rumford (Benjamin Thomp-
son) for the “teaching, by regular courses and philosophical lectures and exper-
iments, the applications of the new discoveries in science to the improvement
of arts and manufactures, and in facilitating the means of procuring the comforts
and conveniences of life.” During Davy’s tenure as professor of chemistry at the
institution, this social purpose became secondary to the professor’s chemical re-
search and famous scientific lectures.

Davy’s lower-middle-class background was not far removed from Faraday’s
lower-class origins. His father was a wood carver, with a small farm in Penzance,
Cornwall. He attended a good grammar school, but his formal education went no
further. He found his interest in chemistry as an apprentice to a Penzance apoth-
ecary. Thomas Beddoes, a doctor in Clifton, Bristol, gave Davy his first scientific
opportunity. Beddoes appointed Davy as the superintendent of experiments at
his Medical Pneumatic Institution in Clifton. Davy’s experiments with gases, par-
ticularly his descriptions of the effects of breathing “laughing gas” (nitrous ox-
ide)—“a sensation analogous to gentle pressure on all the muscles, attended by
a highly pleasurable thrilling, particularly in the chest and extremities”—quickly
became famous.

Davy’s daring experiments and speculations caught Rumford’s attention, and
in 1799 Rumford appointed Davy to his first position at the Royal Institution,
which became a platform for his aspirations in both science and society. In 1812,
he married a wealthy and attractive widow, Jane Apreece. “Her passion for rank
was as intense as Davy’s,” writes one of Davy’s biographers, J. G. Crowther. “The
two social hunters allied in the attack on the aristocratic stockade.” For Davy,
“the pursuit of science was rapidly subordinated to the pursuit of snobbery.”

Soon after Faraday started his scientific apprenticeship with Davy in 1813, he
had another fortunate opportunity. The Davys, now Sir Humphry and Lady Davy,
embarked on a tour of Europe, accompanied by Faraday as Davy’s “assistant in
experiments and writing.” The European tour was another essential part of Far-
aday’s education, scientific and otherwise. Davy’s fame opened doors everywhere
in France and Italy, and Faraday met many of the leading scientists of the time.
Davy himself was part of the education. He and his eager assistant freely dis-
coursed on topics covering the scientific map and beyond. Lady Davy was a
different matter. She talked too much and insisted on treating Faraday as a ser-
vant. “She is haughty and proud to an excessive degree and delights in making
inferiors feel her power,” Faraday wrote to his friend Benjamin Abbott.

Faraday’s European experience was as important as any other in his life. Wil-
liams tells us that “the young man who landed on English soil in the spring of
1815 was quite different from the youth who had left it in 1813. He had seen a
good part of the world, realized its complexity and diversity, and gained a good
deal of insight into the ways of men. He had met some of the foremost scientists
of the day and had both impressed and been impressed by them.”

Discoverer

Most of Faraday’s many biographers have portrayed him as a peerless discoverer
of experimental facts. This image is certainly accurate as far as it goes, but it
neglects another, equally important, side of his genius: his remarkable achieve-
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ments as a theorist, or “philosopher,” as he preferred to be called. We first see
him playing the familiar role of the experimentalist.

Faraday’s early work at the Royal Institution, while Davy was still active in
the institution’s affairs, was mainly as a chemist. His first scientific paper, “Anal-
ysis of Native Caustic Lime of Tuscany,” was published in 1816 when he was
twenty-five. By 1820, he had become a journeyman chemist, in demand for his
services as an analytical chemist. During the 1820s, he helped keep the institu-
tion afloat financially by doing hundreds of chemical analyses. Also in the 1820s,
Faraday turned to the topics of his major research, electricity and electromag-
netism. Here we find him becoming the outstanding experimentalist of the nine-
teenth century.

The event that inspired Faraday’s interest in electricity and magnetism was a
discovery in 1820 by the Danish scientist, Hans Christian Oersted. The experi-
ment was first performed as a demonstration before an audience of scientists. As
Oersted described it later (using the third person to refer to himself),

The plan of the first experiment was, to make the [electrical] current of a little
galvanic trough apparatus [a battery], commonly used in his lectures, pass
through a very thin platina wire, which was placed over a compass covered
with glass. The preparations for the experiment were made, but some accident
having hindered him from trying it before the lecture, he intended to defer it
to another opportunity; yet during the lecture, the probability of its success
appeared stronger, so that he made the first experiment in the presence of the
audience. The magnetical needle [the compass], though included in a box, was
disturbed; but as the effect was very feeble . . . the experiment made no strong
impression on the audience.

Faraday and others were more impressed. Oersted’s experiment was a major
event in the inauguration of the science of electromagnetism, which would ul-
timately lead to some of the technologies that are most familiar in our own lives.
Faraday paid particular attention to Oersted’s demonstration, later in 1820, that
a current-carrying wire is surrounded by a circular magnetic effect, which forces
the compass needle to point in a direction perpendicular to the wire.

Faraday guessed that a current-carrying wire could keep a magnet revolving
in continuous circular motion around the wire’s axis, and he designed the ex-
periment illustrated in figure 11.1 to demonstrate this “electromagnetic rotation.”
The left side of the figure shows a mercury-filled cup with a stationary electric
current carrying wire dipping into it. A small, powerful magnet was placed next
to the wire and tethered to the bottom of the cup by a thread. When an electric
current was passed through the wire (and the mercury in the cup), the upper
pole of the magnet rotated around the wire. The right side of the figure shows a
similar experiment in which the magnet was fixed and the current-carrying wire
rotated.

These experiments were reported in October 1821 and the paper “thrust Far-
aday into the first rank of European scientists,” writes Williams. “In every labo-
ratory throughout Europe copies of Faraday’s rotation apparatus were made and
the strange nature of motive force contemplated.” Faraday’s device had obvious
practical possibilities: he had invented the electric motor. He did not pursue
these applications, or any others made possible by his inventions. But others did.
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Figure 11.1. Faraday’s experiments demonstrating electromagnetic
rotation. From plate IV of Michael Faraday, Experimental Researches
in Electricity (London: Taylor and Francis, 1839), vol. 2.

By the 1830s, the performance of practical “electromagnetic engines” was being
studied by James Joule, among others.

The 1821 paper and its immediate reception were an occasion for celebra-
tion—and as it turned out, for a plagiarism charge against Faraday. The contro-
versy concerned earlier unsuccessful and unpublished attempts by William Wol-
laston and Davy, to make a current-carrying wire rotate around its own axis when
influenced by a magnet. This was not the same as Faraday’s experiment, but it
was similar enough that Faraday, who was familiar with the Wollaston-Davy
effort, should have acknowledged it. In his haste to publish, he did not, and
suspicions were aroused. Wollaston eventually allowed the storm to blow over,
but Davy was not so magnanimous. When Faraday was proposed for election as
a fellow of the Royal Society three years later, he had Wollaston’s support but
not that of Davy. Faraday was elected with one vote in opposition, no doubt
Davy’s vote. The master had broken with the pupil, evidently motivated to some
degree by jealously and vanity.

Oersted’s experiment was not the first to display an electromagnetic phenom-
enon. Earlier, Frangois Arago and André Marie Ampeére had demonstrated that a
helical coil of wire carrying an electric current becomes a magnet, an “electro-
magnet.” In a series of experiments reported in 1831, Faraday investigated this
connection between electricity and magnetism mediated by a coil of wire. He
discovered the effect he eventually called “electromagnetic (or magneto-electric)
induction.” The induction took place between two coils of wire wound around
an iron ring, one coil carrying an electric current and serving as an electromagnet
and the other connected to a copper wire that passed over a compass needle.
Here is Faraday’s typically meticulous description of the experiment, as recorded
in his laboratory notebook:

I have had an iron ring made (soft iron), iron round and 7sths of an inch thick,
and ring six inches in external diameter. Wound many coils round, one half of
the coils being separated by twine and calico; there were three lengths of wire,
each about twenty-four feet long, and they could be connected as one length,
or used as separate lengths. By trials with a trough [a voltaic battery,] each was
insulated from the other. Will call this side of the ring A [see fig. 11.2]. On the
other side, but separated by an interval, was wound wire in two pieces, together
amounting to about sixty feet in length, the direction being as with the former
coils. This side call B.

Charged a battery of ten pairs of plates four inches square. Made the coil on
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Figure 11.2. Faraday’s first electromagnetic induction experiment. From
Henry Bence Jones, The Life and Letters of Faraday (London: Longmans,
Green, 1870), 2:2.

B side one coil, and connected its extremities by a copper wire passing to a
distance, and just over a magnetic needle (three feet from wire ring), then con-
nected the ends of one of the pieces on A side with battery: immediately a
sensible effect on needle. It oscillated and settled at last in original position.
On breaking connection of A side with battery, again a disturbance of the
needle.

When it was connected to the battery, coil A became an electromagnet whose
magnetic effect induced an electric current in coil B, as indicated by the magnetic
needle (a compass). Faraday’s key discovery, which had been missed for years
by Faraday himself and many others, was that the induced electric current was
transient: it lasted only for a short time after coil A was connected. In other
words, the induction was in effect only while the magnetic effect was changing.
Another transient current was induced in coil B when coil A was disconnected
from the battery.

Oersted’s experiment displayed a magnetic effect caused by an electric effect.
Faraday’s first induction experiment demonstrated the inverse, an electric effect
caused by a magnetic effect, with the latter originating in an electromagnet. In
another induction experiment, Faraday got a similar result by replacing the elec-
tromagnet with a permanent magnet. He wound a helical coil of wire around a
hollow pasteboard cylinder, connected the coil to a galvanometer (for measuring
electrical currents), and rapidly thrust a cylindrical permanent magnet into the
cylinder. While the magnet was in motion—but only while it was in motion—
the galvanometer indicated that an electric current was induced in the coil.

Like the electromagnetic rotation experiments of 1821, Faraday’s 1831 electro-
magnetic induction experiments had some obvious practical implications, and
as usual, Faraday did not exploit them. The induction experiments showed that
all one needed to produce electricity was a magnet and a coil of wire. The ma-
chines we now call dynamos or electric generators are based on this principle.

The 1830s were prolific years for Faraday. Soon after completing the electro-
magnetic induction experiments, he embarked on another profoundly important
series of experiments, this one focusing on electrochemical decomposition, an
interest he had inherited from Davy. In the prototype experiment of this kind, an
electric current from a voltaic battery is passed through water, and the gases
hydrogen and oxygen are evolved at the two wires making the electrical connec-
tion to the water. The chemical reaction promoted by the current is the decom-
position of water (H,0) into hydrogen (H,) and oxygen (Oy),

2H20—>2H2+02.
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This effect was first observed in 1800, and by the time Faraday turned to elec-
trochemistry in the 1830s, many more electrochemical decompositions had been
observed.

Faraday first concluded that in all cases the amount of chemical decomposi-
tion produced was proportional to the amount of electricity producing the effect.
He also observed that the masses of elements liberated by a definite quantity of
electricity were proportional to their chemical equivalent weights. (The equiva-
lent weight of an element is about equal to the mass that combines with one gram
of hydrogen. For example, the equivalent weight of oxygen in H,O is eight grams.)

From the second observation, Faraday concluded that “the equivalent weights
of bodies are simply those quantities of them which contain the same quantity
of electricity, or have naturally equal electrical powers; it being the electricity
which determines the equivalent [weight], because it determines the combining
force.” These statements, written in 1834, were astonishingly prophetic. They
anticipated by more than fifty years the theories developed by physical chemists
at the end of the nineteenth century based on the notion that in solution many
chemical substances can dissociate into electrically charged components, each
with its own equivalent weight.

With even greater prescience, Faraday continued: “Or, if we adopt the atomic
theory or phraseology, then the atoms of bodies which are equivalents to each
other in their ordinary chemical action, have equal quantities of electricity nat-
urally associated with them.” Here he formulated the concept of charged particles
in aqueous solutions, the “ions” of modern solution theory. But, like many of his
contemporaries, he had reservations about atomism: “I must confess I am jealous
of the term atom; for though it is very easy to talk of atoms, it is very difficult to
form a clear idea of their nature, especially when compound bodies are under
consideration.” With the gift of hindsight, we wonder why Faraday was not bold
enough to believe in charged atoms, and even in an atom of electricity (the elec-
tron). This was a step he could not take because it violated his dictum that a
postulate is not a truth unless it has the support of (many) experimental facts.
Nothing was more important to Faraday than that.

We can credit Faraday with the founding of the science of electrochemistry.
He not only proposed the two fundamental laws of electrochemistry mentioned
above, but also introduced the language of electrochemistry, such terms as “elec-
trolyte,” “electrode,” “cathode,” “anode,” “cation,” “anion,” and “ion.” Faraday
had help in the invention of these terms from William Whewell of Trinity Col-
lege, Cambridge. As Crowther remarks, “The famous terminology of [electro-
chemistry] was chiefly due to Whewell’s excellent etymological taste.”

From electrochemistry, Faraday turned in 1837 to electrostatics. He had the
idea, which he could see confirmed in the evidence of electrochemistry, that
when two electrically charged bodies influence each other the effect depends not
only on the charge itself but also on the medium between the two bodies. He
designed a device called a “capacitor” in modern terminology. It consisted of two
concentric brass spheres separated electrically by shellac insulation. The device
could be opened, and the space between the two spheres filled with different
insulating materials, gases, liquids, or solids.

Faraday had two precisely identical capacitors of this design made. In a typical
experiment, he filled one capacitor with air and the other with another substance,
such as glass, sulfur, or turpentine. He then charged one capacitor electrically
and connected it with the other, thus dividing the charge between the two ca-
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pacitors. Finally, with an electrometer he measured the charges on the capacitors.
He found that the capacitor filled with a solid material always held a higher
charge than the one with air. This was clear evidence that the electrical inter-
action between two charged bodies involved not only the charge and the distance
between the two bodies, but also the medium—the “dielectric,” as Faraday called
it—occupying the space between the bodies. If the dielectric was solid, some of
the charge was induced in the dielectric itself. For Faraday, these “electrostatic
induction” experiments illustrated an intimate reciprocal connection between
electric forces and the medium in which they were effective: the forces altered
the medium, and the medium propagated the forces.

Faraday was always strong physically. In the mountains, he could easily walk
thirty miles in a day, and he was incessantly busy at the Royal Institution. His
tragic weakness was recurring “ill health connected with my head,” as he put it.
Even as a young man, he had memory problems, and as he grew older he suffered
from bouts of depression and headaches. “When dull and dispirited, as some-
times he was to an extreme degree,” his niece Constance Reid recalled, “my aunt
used to carry him off to Brighton, or somewhere, for a few days, and they gen-
erally came back refreshed and invigorated.”

These symptoms increased in severity and frequency until, in 1840, at age
forty-nine, Faraday had a major nervous breakdown. Brighton vacations were no
longer curative, and for four years he avoided most of his research activities. One
can glimpse his desperate condition in a letter to his friend Christian Schénbein,
in 1843: “I must begin to write you a letter, though feeling, as I do, in the midst
of one of my low nervous attacks, with memory so treacherous, that I cannot
remember the beginning of a sentence to the end—hand disobedient to the will,
that I cannot form the letters, bent with a certain crampness, so I hardly know
whether I shall bring to a close with consistency.”

Nevertheless, he came back. In 1845, he was again in his laboratory and clos-
ing in on what was to be one of his crowning achievements. This work was
initiated by a suggestion in a letter from William Thomson, then a Cambridge
undergraduate. Thomson mentioned the effects of electricity on dielectrics, al-
ready familiar to Faraday, and then offered the speculation that the electrical
constraint of a transparent dielectric might have an effect on polarized light pass-
ing through the dielectric.

The phenomenon of light polarization had been known for many years. It was
observed particularly in reflected light, and understood as a process that confined
the vibrations constituting light waves to a certain plane. About a decade before
Thomson’s letter, Faraday had tried to detect a change in the plane of polarization
of a light beam passing through a dielectric strained by electric charge. He got
only negative results then. Faraday replied to Thomson, “Still I firmly believe
that the dielectric is in a peculiar state whilst induction is taking place across
it.” He was again inspired to search for the elusive effect, but modifications of
the earlier search for electrical effects on polarized light were no more successful.
It then occurred to him that a strong magnet might strain a solid dielectric suf-
ficiently to affect the passage of a beam of polarized light.

In 1845, Faraday began a series of experiments based on this surmise. For the
solids passing the polarized light, he tried flint glass, rock crystal, and calcareous
spar; he varied the current supplied to his electromagnet, and the placements of
the poles: still no success. He then tried a piece of lead glass he had prepared
fifteen years earlier—and at last the eureka moment arrived:
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A piece of heavy glass . . . which was 2 inches by 1.8 inches, and 0.5 of an inch
thick, being a silico borate of lead, and polished on the two shortest edges, was
experimented with. It gave no effects when the same magnetic poles or the
contrary poles were on opposite sides (as respects the course of the polarized
ray)—nor when the same poles were on the same side, either with the constant
or intermitting current—BUT, when contrary magnetic poles were on the same
side, there was an effect produced on the polarized ray, and thus magnetic force
and light were proved to have a relation to each other. This fact will most likely
prove exceedingly fertile and of great value in the investigations of both con-
ditions of natural forces.

Indeed. He had demonstrated a link between light and magnetism, the first step
along the path that would lead to one of the greatest theoretical accomplishments
of the nineteenth century, an electromagnetic theory of light, finally achieved by
Maxwell building on Faraday’s foundations.

Faraday never tired of telling his readers, correspondents, and audiences about
the irreducible importance of tangible experimental facts. “I was never able to
make a fact my own without seeing it,” he wrote to a friend toward the end of
his career. In a letter to his colleague Auguste de la Rive, he recalled, “In early
life T was a very lively imaginative person, who could believe in the ‘Arabian
Nights’ as easily as in the ‘Encyclopaedia,’” but facts were important to me, and
saved me. I could trust a fact.” The facts were the gifts of the experiments. “With-
out experiment I am nothing,” he said. And there was no end to the experiments:
“But still try, for who knows what is possible?” To a lecture audience he said, “I
am no poet, but if you think for yourselves, as I proceed, the facts will form a
poem in your minds.” In the poetry, we find the other side of Faraday’s genius.

Philosopher

The twentieth-century philosopher and historian Isaiah Berlin wrote a famous
essay, “The Hedgehog and the Fox,” in which he classified thinkers as foxes or
hedgehogs: foxes know many things, while hedgehogs know one big thing. Far-
aday was both. As an experimentalist, he learned all the things mentioned and
a lot more (Bence Jones lists twenty-two topics pursued by Faraday in his elec-
trical researches alone). But as a theorist, he learned and taught one great thing:
that the forces of nature are all interconnected. “We cannot say that any one is
the cause of the others, but only that they all are connected and due to a common
cause,” he said in a lecture at the Royal Institution in 1834. In the 1845 paper
reporting his discovery of the effect of magnetism on light, he wrote, “I have long
held an opinion almost amounting to conviction . . . that the various forms under
which the forces of matter are made manifest have one common origin; or, in
other words, are so directly related and mutually dependent, that they are con-
vertible, as it were, one into another, and possess equivalents of power in their
action.” And in 1849 he said, “The exertions in physical science of late years
have been directed to ascertain not merely the natural powers, but the manner
in which they are linked together, the universality of each in its action, and their
probable unity in one.”

These were not vague generalities. Faraday’s experiments had given him a
clear picture of natural forces. Magnetic forces could actually be mapped in the
space surrounding a magnet by sprinkling iron filings on a piece of paper placed
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over the magnet. The filings aligned themselves along the magnetic “lines of
force” (see fig. 11.3). Faraday assumed that the force between the magnetic poles
was propagated along these lines. In 1849, Thomson introduced the now indis-
pensable term “field of force,” or just “field,” for an entire network of Faraday’s
lines of force.

The iron filings showed that magnetic lines of force could be curved. In Oer-
sted’s experiment, they followed circles with the current-carrying wire at the
center. The lines of force also determined the laws of electromagnetic induction.
The rule was that if a wire cut through magnetic lines of force, an electric current
was induced in the wire, and the magnitude of the current depended on the rate
of cutting of the lines of force. Induction by this mode was particularly evident
in Faraday’s experiment with the helical coil of wire and the inserted magnet: as
the magnet moved, the wire in the coil cut the lines of force carried by the
magnet, and a current was induced.

Faraday generalized what he saw in the iron filings responding to a magnetic
field to electric and gravitational fields. He had no device like the iron filings for
developing an image of these lines of force, but he assumed that they were there,
occupying the space—even an otherwise empty space—between interacting
bodies.

All of this was a drastic departure from theoretical physics as Faraday found
it in the early nineteenth century, which was based largely on a version of New-
tonian physics. At the turn of the century, Newtonianism was unchallenged. The
world was seen as a system of particles acting under forces that were manifested
in the phenomena of electricity, magnetism, and gravitation. Each such force was
transmitted instantaneously from one body to another without any mediating
influence, and was determined mathematically by Newton’s three laws. Theories
of light were in a different category, but also reliant on particle models.

The first blow to the prevailing Newtonian view was struck by Thomas Young
and Augustin Fresnel, who had by the 1830s demolished the particle theory of
light and replaced it with a wave theory. The waves brought another problem.
They were conceived as vibrations, but vibrations of what? To answer this ques-
tion, theorists invented a strange kind of weightless matter called “ether” with
some surprising properties: it could pass through ordinary matter completely
without friction, and yet when called upon, it could support the extremely high
frequencies of the vibrations of light waves.

The ether hypothesis was not the only theoretical device of the time to rely
on weightless matter. A weightless fluid called “caloric” was popular in theories
of heat, and electricity and magnetism were also treated as weightless fluids.

Faraday had little sympathy for any of these theoretical contrivances. He re-

Figure 11.3. Magnetic lines of force traced by fine
iron filings. From plate IV of Michael Faraday,
Experimental Researches in Electricity (London:
Taylor and Francis, 1855), vol. 3.
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jected the ether concept and all weightless fluids, and refused to accept the New-
tonian “action-at-distance” principle, which stated that the effect of a force, elec-
tric, magnetic, or gravitational, could reach from one body to another through
empty space. In Faraday’s worldview, space was occupied by fields comprising
lines of force—an electric field was generated by an electric charge, a magnetic
field by the poles of a magnet, and a gravitational field by a massive object.
Another body could respond to one of these fields, but not at a distance. The
response was local, to the condition of the field where the second body was
located. John Wheeler, a contemporary theoretical physicist, gives us a picture
of a gravitational field that would meet with Faraday’s approval:

The Sun, for instance, can be said to create a gravitational field, which spreads
outward through space, its intensity diminishing as the inverse square of the
distance from the Sun. Earth “feels” this gravitational field locally—right where
Earth is—and reacts to it by accelerating toward the Sun. The Sun, according
to this description, sends its attractive message to Earth via a field rather than
reaching out to influence Earth at a distance through empty space. Earth doesn’t
have to “know” that there is a sun out there, 93 million miles distant. It only
“knows” that there is a gravitational field at its own location. The field, though
nearly as ethereal as the ether itself, can be said to have physical reality. It
occupies space. It contains energy. Its presence eliminates a true vacuum. We
must then be content to define the vacuum of everyday discourse as a region
free of matter, but not free of field.

Faraday’s theories were heretical and not popular with his contemporaries.
“The reaction to the concept of the line of force was not merely one of indiffer-
ence,” writes Williams, “it was downright hostile, especially when Faraday tried
to extend it to gravitation. ... The Athenaeum suggested that he go back to the
Royal Institution and work up his sixth form mathematics before he ventured
again into the deep seas of Laplacian physics.” In 1855, when he was sixty-four,
Faraday said to his niece, Constance Reid, “How few understand the physical
line of force! They will not see them, yet all the researches on the subject tend
to confirm the views I put forth many years since. Thomson of Glasgow seems
almost the only one who understands them. He is perhaps the nearest to under-
standing what I meant. I am content to wait, convinced as I am of the truth of
my views.”

Faraday’s theories were opposed because they were revolutionary, always suf-
ficient reason to stir opposition, and also because Faraday did not speak the
sophisticated mathematical language his fellow theorists expected to hear. Be-
yond rudimentary arithmetic, Faraday had no mathematics; his mathematical
methods were about the same as those of Galileo. In Faraday’s time, that may
actually have been an advantage for creativity. The field concept was the product
of “a highly original mind, a mind which never got stuck on formulas,” wrote a
great twentieth-century field theorist, Albert Einstein. But for Faraday’s audience
theoretical physics had to be mathematical physics.

Faraday’s great fortune was that he had two young followers who—apparently
alone—believed in the concepts of lines of force and field, and possessed all the
equipment needed to build field theories in the requisite mathematical language.
One of these mathematical physicists was William Thomson, as Faraday told his
niece. To Faraday’s great delight, Thomson formulated a mathematical theory of
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electric lines of force in 1845, when he was just twenty-one. The other mathe-
matical physicist with his eyes on field theory was James Clerk Maxwell, who
later, shortly before Faraday’s death, created his great electromagnetic theory of
light. Maxwell explained the genesis of his theory, and acknowledged his debt
to Faraday and Thomson, in the preface to his Treatise on Electricity and Mag-
netism:

I was aware that there was supposed to be a difference between Faraday’s way
of conceiving phenomena and that of the mathematicians, so that neither he
nor they were satisfied with each other’s language. I had also the conviction
that this discrepancy did not arise from either party being wrong. I was first
convinced of this by Sir William Thomson, to whose advice and assistance, as
well as to his published papers, I owe most of what I have learned on the
subject.

As 1 proceeded with the study of Faraday, I perceived that his method of
conceiving the phenomena was also a mathematical one, though not exhibited
in the conventional form of mathematical symbols. I also found that these meth-
ods were capable of being expressed in the ordinary mathematical forms, and
thus compared with those of the professed mathematicians.

Maxwell added that he deliberately read Faraday’s Experimental Researches in
Electricity before reading “any mathematics on the subject.”

Our account may give the impression that Faraday was first an experimentalist
and then a theorist, in separate scientific lives, so to speak. But there was only
one scientific life, a highly creative interplay between the experiments and the
theoretical speculations. The experiments suggested the theories, and the theo-
ries guided the experiments. Neither endeavor would have succeeded without
the other. This ability to work in the theoretical and experimental realms simul-
taneously and creatively is a rare gift. Only a few of the physicists in this book,
perhaps only Newton and Fermi in addition to Faraday, had it. Einstein, Gibbs,
Maxwell, Boltzmann, and Feynman were in the first rank of theorists, but not
creative experimentalists.

At Home

Faraday’s wife, Sarah, was in some ways as remarkable as her husband. More
than anyone else, she was the steadying influence that kept the Faraday volcano
of energy under control. Williams gives us this picture of her indispensable role
in Faraday’s life: “Sarah Barnard was a perfect mate for Faraday. From his ac-
counts and from accounts of others, she emerges as a warm and charming person.
She was filled with maternal feelings which, in the absence of children of her
own, she lavished upon her nieces and upon Faraday himself. This was precisely
what Faraday needed. Oftentimes he would become so absorbed in his work in
the laboratory that he would forget his meals. Quietly Mrs. Faraday would serve
him and see that his health did not suffer.”

Wisely, she did not attempt to follow her husband’s work. She told her niece
that science was already “so absorbing and exciting to him that it often deprives
him of his sleep and I am quite content to be the pillow of his mind.” In 1838,
when he was forty-seven, Faraday wrote to Sarah from Liverpool, “Nothing rests
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me so much as communion with you. I feel it even now as I write, and I catch
myself saying the words aloud as I write them, as if you were here within hear-
ing.” Much later, in 1863, when his health was failing, he wrote to Sarah, “My
head is full, and my heart also, but my recollection rapidly fails, even as regards
the friends that are in the room with me. You will have to resume your old
function of being a pillow to my mind, and a rest, a happy-making wife.”

The Faradays were childless but immensely fond of children. Two nieces,
Constance Reid and Jane Barnard, often filled the void. They enjoyed Faraday’s
company as much as he did theirs. “A visit to the laboratory used to be a treat
when the busy time of the day was over,” Constance Reid wrote in her diary.
“We often found him hard at work on experiments with his researches, his apron
full of holes. If very busy he would merely give a nod, and aunt would sit down
quietly with me in the distance, till presently he would make a note on his slate
and turn round to us for a talk; or perhaps he would agree to come upstairs to
finish the evening with a game of bagatelle, stipulating for half an hour’s quiet
work first to finish the experiment. He was fond of all ingenious games, and he
always excelled in them.” With some young visitors, he romped through the
institution’s lecture theater in a game of hide-and-seek, and then entertained
them with tuning forks and resounding glasses. “He was,” as one biographer
observed, “still a child himself.”

Discourses

“Faraday was admirably suited to the Royal Institution, and the Royal Institution
admirably suited Faraday; indeed there was probably no other place in British
science where Faraday could have flourished. In the same building he could play
out both his private and public roles,” writes a recent biographer, Geoffrey Can-
tor. Faraday occupied three spaces at the institution: upstairs, downstairs, and
basement. Upstairs was the Faradays’ apartment, which they occupied until Far-
aday retired in 1862. Downstairs were the public rooms, the library, and the
lecture theater; and in the basement was the laboratory. We have seen Faraday
in his laboratory and at home upstairs in the apartment. Now we find him down-
stairs, performing as a lecturer and a teacher.

From 1826 until his retirement, Faraday gave a series of lectures for lay au-
diences that he called Friday Evening Discourses. He took these lectures seri-
ously: he rehearsed them, worried about them, and prepared cards to improve
his timing. They were popular, and the income they provided helped alleviate
the institution’s perennial financial problems. In these lectures and others, Far-
aday broke his own rule that “lectures which really teach will never be popular;
lectures which are popular will never really teach.”

An even greater boon for the institution was the Christmas Lectures given by
Faraday for children. They quickly attracted an audience from the upper social
strata of London, including Albert Edward, Prince of Wales. The most famous of
the Christmas lecture series, called “The Chemical History of a Candle,” was
published and has gone through innumerable editions in many languages. It
shows Faraday in a charming dialogue with his young audience and also with
nature. “There is no better, there is no more open door by which you can enter
into the study of natural philosophy than by considering the physical phenomena
of a candle,” he begins. With many enthusiastic asides, he shows how candles
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are made, how they burn, demonstrates the thermal and chemical structure of
the flame, identifies the chemical reactions of combustion, and finally leads his
audience into the mysteries of electrochemistry, respiration, and the chemistry
of the atmosphere. From the humble candle, he evokes a world of science, for
himself as much as for his youthful audience.

Sandemanian

In response to a correspondent who asked about the influence of his religion on
his natural philosophy, Faraday wrote, “There is no philosophy in my religion.
I am of a very small and despised sect of Christians, known, if at all, as Sande-
manians, and our hope is founded in the faith that is in Christ.”

The Sandemanians originated in Scotland, where they were called Glasites,
and later spread to Yorkshire and other parts of England. In Faraday’s time, the
membership was about one hundred in London and around six hundred in total.
“Sandemanianism makes great demands on its members,” writes Cantor. “It is
not for the half-hearted or for those who wish to practice Christianity only on
Sundays. Indeed it is a way of life. In making his confession of faith in 1821 at
the age of 29, Faraday solemnly vowed to live according to the precepts laid
down in the Bible and in imitation of Christ’s perfect example. Sandemanians
live strictly by the laws laid down in the Bible, and the sect’s stern disciplinary
code ensures that any backslider is either brought back into the fold or is ex-
cluded—‘put away’ to use the conventional euphemism.”

The beliefs and practices of the Sandemanians are far from the British religious
mainstream, and predictably that has brought hostility from followers of other
religions. Sandemanians see themselves as a despised sect, as Faraday told his
correspondent, and accept that fate because Christ himself was isolated and de-
spised by his contemporaries.

Faraday was elected an elder of the church in 1840, an event of great impor-
tance in his life. About four years later, for reasons that are still obscure, he was
excluded from the church for a short time. According to one of his biographers,
J. H. Gladstone (father of Margaret Gladstone, who gave us some charming
glimpses of William Thomson in chapter 7), Faraday accepted an invitation from
the queen for a visit on a Sunday early in 1844, and consequently did not appear
at the church meetinghouse that day. When he was asked to justify his absence,
he did so by insisting that in his mind the queen’s command took precedence.
That was not the expected repentance.

Cantor disputes this account, pointing out that at the same time Faraday was
excluded, so were others, around 20 percent of the membership, including his
brother, sister-in-law, and father-in-law. Moreover, Cantor reports that he could
find no evidence that Faraday actually visited the queen on the day in question.
In any case, Faraday suffered the exclusion, and wrote to Schénbein that it left
him “low in health and spirit.” He was soon reinstated, but was not reelected an
elder for sixteen years.

Faraday’s faith was certainly deeply rooted, and despite his protestation that
there was no religion in his philosophy, it must have guided his metaphysics,
and the metaphysics his physics. He believed that the universe was a divinely
inspired edifice. It was less than that if it did not manifest patterns of unity and
symmetry. He searched for those patterns in natural forces, sometimes spending
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years on a single quest. When he succeeded, as he did many times, his religious
faith was confirmed and deepened.

Later Life

Faraday crossed a divide in his life during the years from 1841 to 1845, while
he was recovering from his breakdown. This was a period of rest—“head-rest,”
really, for otherwise he was active as ever. In 1841, he and Sarah traveled to
Switzerland, where Faraday hiked the mountain trails and roads, sometimes at
a phenomenal pace. On one occasion, he walked forty-five miles over rough ter-
rain in ten-and-a-half hours. “I felt a little stiff,” he recorded in his journal at the
end of this excursion, “and only felt conscious of one small blister,” but added:
“I would gladly give half this strength for as much memory, but what have I to
do with that? Be thankful.”

He was out of the laboratory, but continued his dialogue with nature. Here he
records in his journal delight in one of his favorite natural events, a thunder-
storm: “the morning was sunny and beautiful and the afternoon was stormy, and
equally beautiful; so beautiful I never saw the like. A storm came on, and the
deep darkness of one part of the mountains, the bright sunshine of another part,
the emerald lights of the distant forests and glades under the edge of the cloud
were magnificent. Then came lightning, and the Alp thunder rolling beautifully;
and to finish all, a flash struck the church, which is a little way from us, and set
it on fire, but no serious harm resulted, as it was soon put out.” Here he marvels
at the sound and fury of an avalanche on the Jungfrau:

Every now and then thundering avalanches. The sound of these avalanches is
exceedingly fine and solemn. . . . To the sight the avalanche is at this distance
not terrible but beautiful. Rarely is it seen at the commencement, but the ear
tells first of something strange happening, and then looking, the eye sees a
falling cloud of snow, or else what was a moment before a cataract of water
changed into a tumultuous and heavily waving rush of snow, ice, and fluid,
which as it descends through the air, looks like water thickened, but as it runs
over the inclined surfaces of the heaps below, moves like paste, stopping and
going as the mass behind accumulates or is dispersed.

And here he enjoys an alpine display of another of his favorite natural delights,
sky effects: “a succession of exceedingly fine cloud effects came on, the blue sky
appearing in places most strangely mixed with snow-peaks and the clouds. To
my mind no scenery equals in grandeur the fine sky-effects of such an evening
as this. We even had the rose-tint on the snow tops in the highest perfection for
a short time.”

By 1845, he was partially recovered and back in his laboratory, pursuing mag-
netic effects on light. At about this same time, he started a series of researches
that ended in failure, but this failure was as interesting as other people’s suc-
cesses. Inspired by the connections he had found among other natural forces, he
hoped to include gravity in these correlations. In his laboratory notebook, he
wrote: “Gravity. Surely this force must be capable of an experimental relation to
electricity, magnetism, and the other forces, so as to bind up with them in recip-
rocal action and equivalent effect.” He proposed a sequence of experiments and
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began to have doubts, but they were dispelled: “ALL THIS IS A DREAM l[he
wrote in his laboratory notebook]. Still examine it by a few experiments. Nothing
is too wonderful to be true, if it be consistent with the laws of nature; and in
such things as these, experiment is the best test of consistency.”

But the gravitational force refused to “bind up” with the other forces. “The
results are negative,” he wrote at the end of the paper reporting the work, but
added, “they do not shake my strong feeling of the existence of a relation between
gravity and electricity.” Ten years later he tried again, and closed his last paper
with almost the same words.

Faraday was the first in a long line of preeminent physicists who have
searched for a theory that unifies gravity with other forces. For many years, Ein-
stein attempted, and ultimately failed, to build a unified field theory that in-
cluded both gravity and electromagnetism. More recently, the goal has been to
find a quantum theory of gravity. That effort, too, has so far failed, but Faraday
would note with approval that theorists are still dreaming.

Faraday in later life was not much different from the young man hired by
Davy decades earlier. He was now Professor Faraday, D.C.L. (Oxford), fellow of
the Royal Society, with medals and dozens of other honors from academies and
scientific societies; but he was still unpretentious, sincere, and satisfied with a
humble lifestyle. Except for help from his assistant, Charles Anderson—whose
contribution was “blind obedience,” according to Bence Jones—he worked alone.
“I do not think I could work in company, or think aloud, or explain my thoughts,”
he said late in his life. “I never could work, as some professors do most exten-
sively, by students or pupils. All the work had to be my own.”

As he grew older, he suppressed his natural tendency to be gregarious, and
became increasingly asocial. “He became more and more selective about the in-
vitations he would accept,” writes Williams. “By the mid-1830s the rejection of
invitations had become almost complete. He would attend the anniversary din-
ners of the Royal Society and a very few other events. The apartment in the Royal
Institution and the laboratory in the basement provided everything he needed for
his personal happiness.” He called himself “an anchorite.” Yet his lectures at the
Royal Institution were famous, and he was a celebrity. Driven by his religion,
obsessive work habits, and recurring ill health, he resisted the charms of social
activities. The public met him in the lecture hall, in correspondence, or not at
all.

Faraday never fully recovered from his breakdown in the 1840s. Although he
returned to his research in 1845, he was still plagued by periods of memory loss,
headaches, giddiness, and depression. He tells about his struggle against increas-
ing mental frailty in letters written to his colleague and close friend Christian
Schonbein. In these letters, as nowhere else, Faraday reveals his affliction. Here
are some extracts, written between 1845 and 1862, in chronological order:

My head has been so giddy that my doctors have absolutely forbidden me the
privilege and pleasure of working or thinking for a while, and so I am con-
strained to go out of town, be a hermit, and take absolute rest.

My dear friend, do you remember that I forget, and that I can no more help
it than a sieve can help water running out of it.

I have been trying to think a little philosophy (magnetical) for a week or
two, and it has made my head ache, turned me sleepy in the day-time as
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well at nights, and, instead of being a pleasure, has for the present nauseated

me.
Even if I go away for a little general health, I am glad to return home for rest
in the company of my dear wife and niece . . . my time is to be quiet and look

on, which I am able to do with great content and satisfaction.

In his last letter to Schonbein, in 1862, he said good-bye: “Again and again I tear
up my letters, for I write nonsense. I cannot spell or write a line continuously.
Whether I shall recover—this confusion—do not know. I will not write any more.
My love to you.”
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The Scientist as Magician
James Clerk Maxwell

Heart, Head, and Fingers

“There are three ways of learning props [propositions]—the heart, the head, and
the fingers; of these the fingers is the thing for examinations, but it requires
constant thought. Nevertheless the fingers have fully better retention of methods
than the heart has. The head method requires about a mustard seed of thought,
which, of course, is expensive, but then it takes away all anxiety. The heart
method is full of anxiety, but dispenses with the thought, and the finger method
requires great labor and constant practice, but dispenses with thought and anx-
iety together.” This is James Clerk Maxwell offering advice, characteristically
concise, cryptic, and profound, to his young cousin Charles Cay. We can translate
by identifying the fingers as memory and technique, the head as reason, and the
heart as intuition.

Maxwell himself was skilled in all three methods. He demonstrated the com-
petence of his fingers as an outstanding student at Cambridge University; and he
built his theories by complex reasoning from physical and mathematical models.
But the principal source of his genius was his mastery of the heart method. The
brilliance of his scientific intuition and insight puts him in a class with Newton
and Einstein.

In the construction of his theory of electromagnetism, the main concern in this
chapter, Maxwell’s intellectual tool was analogy. “In order to obtain physical
ideas without adopting a physical theory,” he wrote in the introduction to his
first paper on electromagnetism, “we must make ourselves familiar with the ex-
istence of physical analogies. By a physical analogy I mean that partial similarity
between the laws of one science and those of another which makes each of them
illustrate the other.” On the road to his theory of electromagnetism, Maxwell
invented two successive mechanical analogies. Neither was a theory: about the
first he wrote, “I do not think it contains even a shadow of a true theory.” But in
each he intuitively recognized elements of the truth, which he built into his
evolving theory. In the end, he took away the mechanical models, like the re-
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moval of a scaffolding, and what was left were mathematical statements, the now-
celebrated “Maxwell’s equations.”

To Maxwell’s associates, this reliance on a series of provisional arguments,
and their ultimate abandonment to the abstractions of differential equations,
seemed like the conjuring trick of a magician. One colleague remarked that Max-
well’s world of electromagnetic theory seemed like an enchanted fairyland; he
never knew what was coming next. And it didn’t help that during Maxwell’s
lifetime his theory had little experimental support. To be a Maxwellian, you had
to subscribe to Maxwell’s insights, which could seem decidedly quirky, with few
verifying experiments.

One of Maxwell’s biographers, C. W. F. Everitt, points to another vital aspect
of his genius by comparing him with his two mentors, Michael Faraday and
William Thomson. Everitt characterizes Faraday as an “accumulative thinker,”
Thomson as an “inspirational thinker,” and Maxwell as an “architectural
thinker.” Faraday accumulated the facts of electricity and magnetism by design-
ing and executing experiments. His rule was to “work, finish, publish,” and move
on. Thomson was the virtuoso; he had inspired answers to all kinds of problems,
but rarely wove them into a finished theory. Maxwell had the patience and te-
nacity that Thomson lacked. “Maxwell’s great papers,” Everitt writes, “are in total
contrast to Thomson’s. Seventy or eighty pages long (and tersely written at that),
each is evidently the result of prolonged thinking, and each in its own way
presents a complete view of its subject.” Like Newton, another great architectural
thinker, Maxwell developed his major ideas gradually; he started his theory of
electromagnetism in 1855 and finished it almost twenty years later, in 1873, with
long pauses between papers. He felt that part of the slow evolution of his theories
was subconscious. In a letter to a friend, he wrote: “I believe there is a department
of mind conducted independent of consciousness, where things are fermented
and decocted, so that when they are run off they come clear.”

What the architect erected was one of the great intellectual edifices of the
nineteenth century. It unified all electric and magnetic phenomena, revealed
the electromagnetic wave nature of light, and opened the door to the style and
substance of twentieth-century physics. Maxwell did it with head and heart,
thought and anxiety, and with an ingredient of the mind that can well be called
magical.

James Clerk Maxwell was born in Edinburgh, Scotland, in 1831. His father, John
Clerk, added the name Maxwell to satisfy some legal conditions that allowed him
to inherit a small country estate in Middlebie, Galloway (southwestern Scotland).
John Clerk Maxwell was sensitive, cautious, and unconventional. He married
Frances Cay, who was practical like her husband, but more decisive and blunt.
Their personalities were complementary, and their only son had the good fortune
to inherit some of the finer features of both parents.

When the Clerk Maxwells took possession of their Middlebie property, it was
mostly undeveloped, not even including a house. With skill and enthusiasm,
John Clerk Maxwell supervised every detail of the construction of a house, which
he called “Glenlair.” The son became as devoted to Glenlair as the father; through
childhood, adolescence, and maturity Glenlair was his refuge.

When he was eight, James’s idyllic family life at Glenlair was tragically dis-
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rupted by the painful death of his mother at age forty-eight from abdominal can-
cer—apparently the same cancer that killed Maxwell himself at the same early
age. The boy’s reaction to the tragedy was remarkably detached from his private
loss: “Oh, I'm so glad! Now she’ll have no more pain.” John Clerk Maxwell was
a doting father, and more so after his wife’s death, but he could be blind to some
of his son’s most urgent needs. He entrusted James’s formal education to a tutor
whose pedagogy was, to say the least, uninspired. When his pupil obstinately
objected to drills in Latin grammar, the tutor beat him. Lewis Campbell, Max-
well’s principal biographer, felt that this harsh treatment had lasting psycholog-
ical effects, “not in any bitterness,” he writes, “though to be smitten on the head
with a ruler and have one’s ears pulled till they bled might naturally have op-
erated in that direction—but in a certain hesitance of manner and obliquity of
reply, which Maxwell was long in getting over, if, indeed, he ever quite got over
them.” The boy was stoic, the father inattentive, and the tutor remained until a
visit by another important figure in Maxwell’s early life, his maternal aunt, Jane
Cay. She sized up the tutor situation and persuaded the father to send the boy
to Edinburgh, where he could join the household of Isabella Wedderburn, his
paternal aunt, and attend the Edinburgh Academy.

James’s initial experiences at the academy were no happier than those inflicted
by the tutor. He appeared the first day dressed in the sensible clothes he wore at
Glenlair, designed by his father with little thought of appearance or fashion. The
country clothes, and an accompanying Gallovidian accent, made him an easy
target for a tormenting gang of schoolmates. But he gave as good as he got, and
returned that day to the Wedderburns with his once neat customized clothes in
tatters. He seemed “excessively amused by his experiences, and showing not the
smallest sign of irritation,” reports Campbell. “It may be questioned, however,
whether something had not passed within him, of which neither those at home
nor his schoolfellows ever knew.” His attackers gave him the nickname “Dafty,”
meaning “strange rather than silly; ‘weirdo’ might be closest to the modern id-
iom,” Everitt tells us.

The academy did little to subdue the boy’s spirit or discourage his unconven-
tional behavior. He made lasting friendships—with, among others, Lewis Camp-
bell, who was to become his biographer, and Peter Guthrie Tait, later professor
of natural philosophy at the University of Edinburgh and polemicist par excel-
lence. Cheerful letters to “his papaship” back at Glenlair brought the news from
Edinburgh, elaborated with puns, mirror writing, misspellings, riddles, and
hoaxes. Here is a sample:

MY DEAR MR. MAXWELL—I saw your son today, when he told me that you
could not make out his riddles. Now, if you mean the Greek jokes, I have an-
other for you. A simpleton wishing to swim was nearly drowned. As soon as
he got out he swore that he would never touch water till he learned to swim;
but if you mean the curious letters on the last page, they are at Glenlair.

Your aff. Nephew JAMES CLERK MAXWELL

He often signed his letters “Jas. Alex. M’'Merkwell” (an anagram), and included
in the address “Postyknowswhere.”

Maxwell was not a prodigy; unlike Thomson, he did not show early signs of
mathematical genius. No doubt the sensitive father, an enthusiastic amateur in
all matters of science and technology, deserves major credit for developing his
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son’s talents. Father and son often attended meetings of the Edinburgh Society
of Arts and the Edinburgh Royal Society. At age fourteen, displaying a geomet-
rical imagination that would serve him well throughout his career, Maxwell
wrote a paper describing a novel method for constructing ovals. John Clerk Max-
well saw to it that James Forbes, a professor of natural philosophy at Edinburgh,
read the work. Forbes found it “very remarkable for [the author’s] years,” and
communicated the paper to the Edinburgh Royal Society.

With the ovals, Maxwell’s scientific career was launched. After the Edinburgh
Academy, he studied with Forbes and William Hamilton (not to be confused with
William Rowan Hamilton, the great Irish mathematician and physicist) at the
University of Edinburgh. Forbes and Hamilton were at opposite poles in all uni-
versity matters, and sworn enemies. Forbes was a skilled experimentalist and
gave Maxwell free access to his laboratory. Hamilton was a philosopher who
forcefully taught that knowledge is not absolute but relative to, and shaped by,
the limitations of human senses; to get at the truth, imperfect logical devices
such as models and analogies are necessary. The two adversaries agreed on one
thing: that young Clerk Maxwell deserved special attention. They gave it—Forbes
in the laboratory and Hamilton in the lessons of metaphysics—and their influ-
ence was lasting.

But for a student with Maxwell’s mathematical talents, Edinburgh was not
enough. The next step was Cambridge, the acknowledged center for training
“head and fingers” in the methods of mathematics and physics. The centerpiece
at Cambridge was the Tripos Syllabus, which prepared students for a punishing
series of examinations. Training of the examinees was in the hands of private
tutors. The most illustrious of these was William Hopkins, who had coached
many Tripos winners, known for some reason as “wranglers.” Maxwell joined
Hopkins’s team and triumphed as a wrangler, but with less than the normal
amount of drudgery, as Tait, another wrangler, tells us in this reminiscence:

[He] brought to Cambridge, in the autumn in 1850, a mass of knowledge which
was really immense for so young a man, but in a state of disorder appalling to
his methodical tutor. Though that tutor was William Hopkins, the pupil to a
great extent took his own way, and it may safely be said that no high wrangler
of recent years ever entered the Senate-House [where the Tripos examinations
were given] more imperfectly trained to produce “paying” work than did Clerk
Maxwell. But by sheer strength of intellect, though with the very minimum of
knowledge how to use it to advantage under the conditions of the examination,
he obtained the position of Second Wrangler and was bracketed equal with the
Senior Wrangler in the higher ordeal of the Smith’s Prizes [another
competition].

“Second Wrangler” was second place in the competition, but it was an impres-
sive performance for one unprepared for “paying” work. Hopkins said of Max-
well that he was “unquestionably the most extraordinary man he [had] met with
in the whole range of [my] experience.” It appeared “impossible for Maxwell to
think incorrectly on physical subjects.”

He was still confirmed in his unconventional ways, but at Cambridge eccen-
tricities, if they were entertaining, were an advantage. “He tried some odd ex-
periments in the arrangement of his hours of work and sleep,” writes Campbell.
“From 2 to 2:30 A.M. he took exercise by running along the upper corridor, down
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the stairs, along the lower corridor, then up the stairs and so on, until the inhab-
itants of the rooms along his track got up and lay perdus behind their sporting-
doors to have shots at him with boots, hair-brushes, etc., as he passed.” Tait gives
this account of further Maxwellian antics: “He used to go up on the pollard at
the bathing-shed, throw himself flat on his face in the water, dive and cross, then
ascend the pollard on the other side, project himself flat on his back in the water.
He said it stimulated the circulation!”

Maxwell’s Tripos performance earned him a scholarship and then a fellowship
at Trinity College. During this peaceful time, he started his research on electro-
magnetism and fell in love with his teenaged cousin, Elizabeth Cay, “a girl of
great beauty and intelligence,” according to Everitt. The romance did not last,
however, because of family concern with “the perils of consanguinity in a family
already inbred.”

Two years as a Cambridge don left Maxwell restless for a less cloistered ex-
istence. “The sooner I get into regular work the better,” he wrote to his father.
Forbes reported that a professorship of natural philosophy was available at Mar-
ischal College, Aberdeen, Scotland. Maxwell applied for the position, complain-
ing about the process of testimonials. One reason for considering Aberdeen was
to be nearer to his father, whose health was declining. In the spring of 1856, John
Clerk Maxwell died, and a few weeks later Maxwell learned from Forbes that he
had the Aberdeen appointment.

Aberdeen, London, Glenlair

Maxwell, like many creative scientists, was not successful as a teacher. While
lecturing, his thoughts were so complex and rapid that he could not slow to the
mental pace of his students. He was sometimes thrown into a kind of panic by
student audiences, as Campbell relates:

[A] hindrance lay in the very richness of his imagination and the swiftness of
his wit. The ideas with which his mind was teeming were perpetually inter-
secting, and their interferences, like those of waves of light, made “dark bands”.
... lllustrations of ignotum per ignotius [the unknown through the more un-
known], or of the abstruse by some unobserved property of the familiar, were
multiplied with dazzling rapidity. Then the spirit of indirectness and paradox,
though he was aware of its dangers, would often take possession of him against
his will, and either from shyness, or momentary excitement, or the despair of
making himself understood, would land him in “chaotic statements,” breaking
off with some quirk of ironical humor.

Yet his written style—his papers, formal lectures, and books—were models of
clarity. This strange conflict between Maxwell’s verbal and written expression
impressed one of his Aberdeen students, David Gill, who became an accom-
plished astronomer:

Maxwell’s lectures were, as a rule, most carefully arranged and written out—
practically in a form fit for printing—and we were allowed to copy them. In
lecturing he would begin reading his manuscript, but at the end of five minutes
or so he would stop, remarking, “Perhaps I might explain this,” and then he
would run off after some idea which had just flashed upon his mind, thinking
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aloud as he covered the blackboard with figures and symbols, and generally
outrunning the comprehension of the best of us. Then he would return to his
manuscript, but by this time the lecture hour was nearly over and the remainder
of the subject was dropped or carried over to another day. Perhaps there were
a few experimental illustrations—and they very often failed—and to many it
seemed that Clerk Maxwell was not a very good professor. But to those who
could catch a few of the sparks that flashed as he thought aloud at the black-
board in lecture, or when he twinkled with wit and suggestion in after lecture
conversation, Maxwell was supreme as an inspiration.

Maxwell completed his first paper on electromagnetism during his four years
in Aberdeen. He was also occupied at the time with courting Katherine Dewar,
daughter of the principal of Marischal College, and they were married in 1858.
Campbell is mostly silent about the marriage, and he seems to say something by
his omission. Katherine was seven years older than Maxwell, in constant ill
health, and at least in later life, neurotic. If the gossip of Maxwell’s friends is to
be believed, she resented her husband’s scientific activities. Perhaps so, but she
skillfully assisted him in several series of experiments. Neither husband nor wife
brought passion to the marriage, but it is clear from their correspondence that
they were deeply devoted to each other.

Maxwell was left redundant and without a job in 1860 when Aberdeen merged
its two colleges, Marischal and King’s. He probably had few regrets; Aberdeen
was not his social element. He had written earlier to Campbell: “Society is pretty
steady in this latitude—plenty of diversity, but little of great merit or demerit—

honest on the whole, and not vulgar. . . . No jokes of any kind are understood
here. I have not made one for two months, and if I feel one coming I shall bite
my tongue.”

His next move was to King’s College in London, where he was appointed to
the professorship of natural philosophy. Maxwell’s five years in London were the
most creative in his life. He brought his dynamical theory of the electromagnetic
field to maturity during that time. In addition, he advanced his theories of gas
behavior and color vision, and produced the world’s first color photograph. These
accomplishments, particularly the electromagnetic theory, were fundamentally
important, and he knew it. Although he rarely said so in his letters, this work
must have given him great satisfaction. His heavy burden of teaching was less
congenial, as he broadly hinted in a letter to Campbell: “I hope you enjoy the
absence of pupils. I find that the division of them into smaller classes is a great
help to me and to them: but the total oblivion of them for definite intervals is a
necessary condition of doing them justice at the proper time.”

Finally he concluded that he did not need an academic appointment, with all
its accompanying duties for which he was not well suited, to continue his re-
searches. He had comfortable independent means and all the professional con-
tacts he needed to communicate his findings to the scientific world. What he
really wanted was more time at Glenlair, “to stroll in the fields and fraternize
with the young frogs and old water-rats,” as he had done earlier. So in 1865 he
resigned from King’s College and took up permanent residence at Glenlair.

Campbell sketches Maxwell’s Glenlair activities and recreations:

Both now and afterwards, his favorite exercise—as that in which his wife could
most readily share—was riding, in which he showed great skill. [A neighbor]
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remembers him in 1874, on his new black horse, “Dizzy,” which had been the
despair of previous owners, “riding the ring,” for the amusement of the children
of Kilquhanity, throwing up his whip and catching it, leaping over bars, etc.

A considerable portion of the evening would often be devoted to Chaucer,
Spenser, Milton, or a play by Shakespeare, which he would read aloud to Mrs.
Maxwell.

On Sundays, after returning from the kirk, he would bury himself in the
works of the old divines. For in theology, as in literature, his sympathies went
largely with the past.

[He had] kindly relations with his neighbors and with their children. . . . [He]
used occasionally to visit any sick person in the village, and read and pray with
them in cases where such ministrations were welcome.

One who visited at Glenlair between 1865 and 1869 was particularly struck
with the manner in which the daily prayers were conducted by the master of
the household. The prayer, which seemed extempore, was most impressive and
full of meaning.

Maxwell as laird: a role he clearly enjoyed.
We now turn from personal to scientific biography, and that means first some
easy lessons on the mathematical language of electromagnetism.

Vector Lessons

Maxwell’s electromagnetic theory is a story of electric and magnetic fields of
forces. These forces, like all others, not only have a certain magnitude but also
a direction. In addition to force, velocity, momentum, and acceleration are also
directional. Nondirectional quantities, called “scalars,” are equally important in
physics; energy, temperature, and volume are examples. All directional physical
quantities are represented mathematically as “vectors,” and are distinguished
from scalar quantities by their boldface symbols. A force vector might be repre-
sented by F, a velocity vector by v, and a momentum vector by p.

Directions of vectors are conveniently specified by resolving their components
in three mutually perpendicular directions, which one can picture as east-west,
north-south, and up-down axes. The abstract symbols x, y, and z conventionally
label these axes, and the vector components measured along the axes are given
corresponding labels. The velocity vector v, for example, has components des-
ignated vy, v, and v, along the x, y, and z axes. An airplane climbing with a
speed of 500 miles per hour at an angle of 30° and in a southeast direction has
the velocity components v, = v, = 306 miles per hour (southeast) and v, = 250
miles per hour (up). See figure 12.1 for a visualization of this vector. Entire equa-
tions can be expressed in this vectorial language. Newton’s second law of motion,
for example, connects the force vector F with the rate of change in the momentum

vector p,

_dp
F_dt

Maxwell eventually put all of his electromagnetic field equations in vectorial
format, and they are still seen that way. The electric and magnetic fields are
represented by the vectors E and B, and Maxwell’s equations relate these vectors
to the electric charges and currents always associated with an electromagnetic
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v, = 306 miles per hour
z (or up) vy = 306 miles per hour
v, =250 miles per hour

" y(oreast)

Figure 12.1. Picture of a velocity vector v (represented by
the arrow) for an airplane headed southeast at 500 miles
x (or south) per hour and climbing at an angle of 30°.

field. Maxwell relied on two key mathematical operations for analyzing a field
to reveal its charge and current structure. Both lead to differential equations and
were borrowed from the dynamics of fluid motion. One operation, applied at a
point in the field, measured what Maxwell called the “convergence,” that is, the
extent to which the field was aimed at the point. The second operation measured
the rotational character of the field at the point. For this, Maxwell eventually
settled on the term “curl,” after discarding “rotation,” “whirl,” “twist,” and
“twirl.” See figure 12.2 for Maxwell’s illustrations of the convergence and curl
operations. In later usage, it was found more convenient to switch the sign and
direction of Maxwell’s convergence operation and make it into “divergence.”

Great Guns

Maxwell’s first paper on electromagnetism, published while he was at Aberdeen
and twenty-four years old, had the title On Faraday’s Lines of Force. It was aimed
at giving mathematical form to Faraday’s field concept. Maxwell was following
Thomson, who had earlier composed a mathematical theory of Faraday’s concept
of electric lines of force. When he started his work, Maxwell wrote to Thomson
warning him to expect some “poaching”: “I do not know the Game-laws & Patent-
laws of science. Perhaps the [British] Association may do something to fix them
but I certainly intend to poach among your images, and as for the hints you have
dropped about the ‘higher’ electricity, I intend to take them.” Thomson cheerfully
opened the gates to his “electrical preserves,” wishing Maxwell good hunting.
And Maxwell found it. His theory delved deeper than Thomson’s; it concerned

— e
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Figure 12.2. Maxwell’s representations of convergence and curl operations at a
point in a field. From The Scientific Papers of James Clerk Maxwell, ed. W. D.
Niven (New York: Dover, 1952), 2:265.
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magnetic fields as well as electric fields, and showed mathematically how they
were interconnected. He found his mathematical ideas in an analogy between
Faraday’s lines of force and the lines of flow in a fictitious, weightless, incom-
pressible fluid. Like all of the analogies evoked by Maxwell, this one did not
constitute a complete physical theory. The gift of the analogy was a short list of
equations that accounted for many of the observed phenomena of electricity,
magnetism, and electromagnetism. The ingredients of the equations were five
vectors, which we now write A, B, E, H, and J. (The vector notation was not fully
developed until later by Oliver Heaviside and Willard Gibbs, but the anachro-
nism violates only the letter, not the spirit, of Maxwell’s equations.) The electric
field was represented by the E vector, and J described electric current. For the
magnetic field two vectors were required, B and H. H was generated by the cur-
rents J, as observed in Oersted’s experiment. The second magnetic vector, B, was
equal to H in a vacuum but differed from it in a material medium.

The four vectors B, E, H, and J and their equations unified in concise mathe-
matical form the phenomena observed by Faraday, Ampére, and Oersted. The
fifth vector, A, was pure Maxwellian speculation. It stood for what Faraday had
originally called the “electrotonic state,” the special condition created in a wire
by a magnet, such that when the wire was moved an electric current was induced.
Faraday had changed his mind, however, and eventually abandoned the idea of
the electrotonic condition. Maxwell resurrected the concept by introducing his
vector A, which he called the “electrotonic intensity,” and showing in one of his
equations that the electric field vector E was equal to the rate of change of A;
that equation was a direct statement of Faraday’s law of magnetic induction.

The further history of Maxwell’s seemingly innocent vector A is interesting.
Maxwell changed its name twice, from the original “electrotonic intensity” to
“electromagnetic momentum,” and then to “vector potential.” Maxwell’s imme-
diate successors found A offensive and wrote it out of the equations. The next
generation brought it back, and in 1959 David Bohm and Yakir Aharanov gave
the elusive A a secure place in electromagnetic theory by showing that without
it the field is not fully specified.

After reading an offprint of Maxwell’s paper sent courtesy of the author, Far-
aday responded in a letter that deserves a place in any collection of great sci-
entific correspondence. Faraday expressed his gratitude, apologized for his math-
ematical innocence, and then made an astonishing suggestion:

MY DEAR SIR—I received your paper, and thank you for it. I do not venture to
thank you for what you have said about “Lines of Force,” because I know you
have done it for the interests of philosophical truth, but you must suppose it is
a work grateful to me, and gives me much encouragement to think on. I was at
first almost frightened when I saw such mathematical force made to bear on the
subject, and then wondered to see the subject stood it so well. I send by this
post another paper to you; I wonder what you will say of it. I hope however,
that bold as the thoughts may be, you may perhaps find reason to bear with
them. I hope this summer to make some experiments on the time [speed] of
magnetic action, or rather on the time required for the assumption of the state
round a wire carrying a current, that may help the subject on. The time must
probably be short as the time of light; but the greatness of the result, if affir-
mative, makes me not despair. Perhaps I had better have said nothing about it,
for I am often long in realizing my intentions, and a failing memory is against
me.—Ever yours most truly, M. Faraday.
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This was Faraday, nearing the end of his career, communicating with Maxwell,
age twenty-six and in his second year at Aberdeen. Maxwell’s paper was lengthy
and full of equations, and Faraday understood little of the mathematical lan-
guage. Yet he divined Maxwell’s message, and was reminded of his own conjec-
ture, that magnetic (and presumably electric) effects were transmitted in a finite
time, not instantaneously. That time was indeed very short, and Faraday’s ex-
periments were not successful. But for Maxwell, the theorist, here was a grand
revelation. “The idea of the time of magnetic action . ..seems to have struck
Maxwell like a bolt out of the blue,” writes Martin Goldman, a Maxwell biogra-
pher. “If electromagnetic effects were not instantaneous that would of course be
marvelous ammunition for lines of force, for what could a force be in transit,
having left its source but not yet arrived at its target, if not some sort of traveling
fluctuation along the lines of force?”

Maxwell’s next paper on electromagnetism matched Faraday’s conjecture with
another. This paper came from London in 1861 and 1862 with the title On Phys-
ical Lines of Force. It worked the Maxwellian wizardry with a new analogy, this
one between the medium through which electric and magnetic forces were trans-
mitted—called the “ether” by Victorian scientists—and the complicated
honeycomb-like system of vortex motion shown in figure 12.3. Each cell in the
honeycomb represented a vortex, with its axis parallel to the magnetic lines of
force. The circles between the cells depicted small particles of electricity that
rolled between the vortices like ball bearings and carried electric currents. Max-
well cautioned that this mechanical ether model, like the analogy he used in his
previous paper, was to be used with care: “I do not bring it forward as a mode
of connection existing in nature, or even as that which I would willingly assent
to as an electrical hypothesis. It is, however, a mode of connection which is
mechanically conceivable, and easily investigated, and it serves to bring out the
actual mechanical connections between the known electromagnetic phenomena;
so that I venture to say that anyone who understands the provisional and tem-
porary character of this hypothesis, will find himself helped rather than hindered
by it in his search after the true interpretation of the phenomena.”

Maxwell endowed his vortices—and the real ether—with a physical property
that was crucial in the further evolution of his theory: they were elastic. He knew

Figure 12.3. Maxwell’s vortex model of the ether.
From The Scientific Papers of James Clerk Max-
well, ed. W. D. Niven (New York: Dover, 1952),
vol. 1, plate VIII, fig. 2.
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that elastic media of all kinds support transverse wave motion (“transverse” here
means perpendicular to the direction of wave propagation), and that the speed
of the wave depends on a certain elasticity parameter of the medium. It happened
that Maxwell could calculate a value for that parameter from his ether model,
and from that the speed of the electromagnetic waves he imagined were propa-
gated through the elastic medium. He did the calculation, and found to his
amazement that the result was almost identical to the speed of light that had
been measured in Germany by Wilhelm Weber and Rudolph Kohlrausch. In un-
characteristic italics, Maxwell announced his conclusion: “We can scarcely avoid
the conclusion that light consists of the transverse undulations of the same me-
dium which is the cause of electric and magnetic phenomena.”

Light as traveling electromagnetic waves: it was a simple idea, yet its impli-
cations for science and technology were still being realized a hundred years later.
Maxwell had brought together under the great umbrella of his equations two great
sciences, electromagnetism and optics, previously thought to be unrelated; now
Maxwell claimed they were close relatives.

Like most revolutionary developments in science, Maxwell’s concept of elec-
tromagnetic waves was slow to catch on. Eventually, two decades after Maxwell’s
Physical Lines of Force paper, experimentalists began to think about how to gen-
erate, detect, and use electromagnetic waves. At first, they tried to make “elec-
tromagnetic light,” and that effort failed. Then they looked for electromagnetic
waves of a greatly different kind and succeeded spectacularly. The hero in that
work was Heinrich Hertz, the Mozart of physics, a man who had immense talent
and a short life. We will come to his story later.

Hertz’s waves were what we now call radio waves and microwaves. In a prim-
itive form, radio communication, and its offspring, television, were born in
Hertz’s laboratory. As we now recognize, radio waves, microwaves, and light
waves are “colors” in a vast continuous electromagnetic rainbow. Distinguished
by their wavelengths, radio waves and microwaves are long, and light waves
short. Between are the electromagnetic “colors” we call infrared radiation. On
the short-wavelength side of visible light are ultraviolet radiation, x rays, and
gamma rays. Wavelengths of radio waves and gamma rays differ by an astronom-
ical ten orders of magnitude. These discoveries came to light during the last
decade of the nineteenth century and the first two of the twentieth, sadly too late
for Maxwell and Hertz to witness.

Maxwell extracted another, more subtle, conclusion from the elasticity prop-
erty of his ether model. When the vortices were stretched or compressed in a
changing electric field, the particles of electricity between the vortices were dis-
placed, and their movement constituted what Maxwell called a “displacement
current.” Like any other current, it could generate a magnetic field a la Oersted,
and Maxwell incorporated this possibility into his equations. With that addition,
Maxwell’s list of equations, although different in form, told the same mathemat-
ical story as the “Maxwell equations” found in modern textbooks.

In early 1865, Maxwell wrote to his cousin Charles Cay (later in the same year
the recipient of Maxwell’s “heart, head, and fingers” advice): “I have also a paper
afloat, with an electromagnetic theory of light, which till I am convinced to the
contrary, I hold to be great guns.” This was his third offering on electromagnet-
ism, A Dynamical Theory of the Electromagnetic Field, considered by most com-
mentators to be his crowning achievement. He explained the title this way: “The
theory I propose may . . . be called a theory of the Electromagnetic Field, because
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it has to do with the space in the neighborhood of the electric or magnetic bodies,
and it may be called a Dynamical theory, because it assumes that in that space
there is matter in motion, by which the observed electromagnetic phenomena are
produced.”

The “matter in motion” was, as before in his Lines of Force papers, the ether,
but he now treated it without the mechanistic trappings. Gone were the fluids,
vortices, and particles of electricity. In their place was an abstract analytical
method introduced in the eighteenth century by Joseph Lagrange as a generali-
zation of Newton’s system of mechanics. The great advantage of Lagrange’s ap-
proach was that it did its work above and beyond the world of hidden mecha-
nisms. The mechanisms might actually be there (for example, in the ether), but
the Lagrangian theorist had no obligation to worry about them.

Thomson and P. G. Tait, in their comprehensive Treatise on Natural Philoso-
phy, had made abundant use of Lagrange’s analytical mechanics, and in a review
of the Treatise Maxwell explained that Lagrange’s method was a “mathematical
illustration of the scientific principle that in the study of any complex object, we
must fix our attention on those elements of it which we are able to observe and
to cause to vary, and ignore those which we can neither observe nor cause to
vary.” And for the mystified he offered a metaphor: “In an ordinary belfry, each
bell has one rope which comes down through a hole in the floor to the bellringer’s
room. But suppose that each rope, instead of acting on one bell, contributes to
the motion of many pieces of machinery, and that the motion of each piece is
determined not by the motion of one rope alone, but that of several, and suppose,
further, that all this machinery is silent and utterly unknown to the men at the
ropes, who can only see as far as the holes in the floor.” Each of the bellringer’s
ropes supplies its own information, and the ropes can be manipulated to obtain
the potential energy and kinetic energy of the complex system of bells. Applying
Lagrange’s methods, “these data are sufficient to determine the motion of every
one of the ropes when it and all the others are acted on by any given forces. This
is all that the men at the ropes can ever know. If the machinery above has more
degrees of freedom than there are in the ropes, the coordinates which express
these degrees of freedom must be ignored. There is no help for it.”

We will explore a different version of this subtle philosophy in chapter 19,
where it provides escape from some otherwise weird predictions of quantum
theory. Quantum theorists do not practice Lagrangian mechanics, but for different
reasons they see themselves as Maxwellian bellringers. If there is a hidden world
beneath their essentially statistical description, they are obliged to omit it from
their deliberations, and “there is no help for it.”

Maxwell used the Lagrangian method to derive all of the mathematical equip-
ment he had obtained earlier in his Lines of Force papers, and then went further
to identify his vector A as a measure of “electromagnetic momentum,” and to
calculate the energy of the electromagnetic field. With these additional elements,
his theory of electromagnetism was complete. About a decade later, in 1873,
Maxwell summarized his theory, and many other aspects of electromagnetism,
in a difficult two-volume work called A Treatise on Electromagnetism, which has
been called (not entirely as a compliment) the Principia of electromagnetism. In
the Treatise, Maxwell’s equations are found almost in the modern vectorial
format.

Maxwell pursued numerous topics besides electromagnetism in his re-
searches, including gas theory, thermodynamics, Saturn’s rings, and color vision.
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His molecular theory of gases, another “dynamical” theory, ranks a close second
in importance to his theory of the electromagnetic field. It brought another rev-
olutionary development to physics, the first use of statistical methods to describe
macroscopic systems of molecules. In the hands of first Boltzmann and then
Gibbs, Maxwell’s statistical approach became the fine theoretical tool now called
“statistical mechanics.”

Symbols to Objects

The last chapter in Maxwell’s story began late in the year 1870, when he heard
from Glenlair of a new professorship in physics to be established at Cambridge.
The university had belatedly realized that it was lagging behind Scottish and
German universities, and even Oxford, in science education. Particularly urgent
was a need for student and research laboratory facilities. The customary com-
mission was appointed, which recommended a considerable expenditure, and
that brought opposition from the nonscience faculty. The matter would have
ended there but for the munificence of the chancellor of the university, the sev-
enth duke of Devonshire, who offered to foot the bill for a new laboratory. De-
vonshire’s family name was Cavendish, and he was related to Henry Cavendish,
a reclusive, aristocratic, eighteenth-century physicist and chemist, who had con-
ducted pioneering experiments in electricity. It also happened that Devonshire,
like Maxwell, had been a Second Wrangler and Smith’s Prizeman at Cambridge.

The duke’s offer was accepted, and a chair of experimental physics was cre-
ated for the director of the new facility, to be called the Cavendish Laboratory.
The post was first offered to Thomson, but he was well planted in Glasgow and
could not imagine leaving. Thomson was then asked to sound out Helmholtz,
and that effort also failed; Helmholtz had just been appointed professor of phys-
ics in Berlin and director of a new physics institute. The third choice was Max-
well, who was happy and still creative at Glenlair, and not enticed. He could not
deny a sense of duty, however, and he offered to stand for the post with the
proviso that he might change his mind at the end of the first year. There was no
opposition, he was elected, and without realizing it, Cambridge got the greatest
of the three candidates.

Maxwell remained, and construction of the new laboratory went forward un-
der his conscientious and expert supervision. His genius was for theoretical
work, but he was also a competent experimentalist. The design of the Cavendish
was practical and clever, and it served the needs of physics at Cambridge for
more than a century. But for two years, as the planning, conferring, and building
slowly progressed, Maxwell was left without a professional home: “I have no
place to erect my chair [he wrote to Campbell], but move about like a cuckoo,
depositing my notions in the chemical lecture-room 15! term; in the Botanical in
Lent, and Comparative Anatomy in Easter.”

As a newly installed professor, Maxwell was expected to deliver an inaugural
lecture, and he obliged without fanfare. In fact, the affair was so casual that most
of the Cambridge faculty missed it. Then, in a move that was evidently not en-
tirely innocent, Maxwell issued a formal announcement of his first academic
lecture. The esteemed scientists and mathematicians, now in attendance, were
treated to a detailed explanation of the Celsius and Fahrenheit temperature
scales.

The inaugural lecture survived, however. Maxwell had it printed, and it is a
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first-rate source of Maxwellian wisdom. It teaches lessons about the interplay
between experimental and theoretical science that are still being learned. “In
every experiment,” he told his (presumably sparse) audience, “we have first to
make our senses familiar with the phenomenon, but we must not stop here, we
must find out which of its features are capable of measurement, and what mea-
surements are required in order to make a complete specification of the phenom-
enon. We must make these measurements, and deduce from them the result
which we require to find.”

He emphasized that the processes of measurement and refinement are subtle
and complex. Regrettably, he said, “the opinion seems to have got abroad, that
in a few years all the great physical constants will have been approximately
estimated, and that the only occupation which will then be left to men of science
will be to carry on these measurements to another place of decimal.”

But great scientific discoverers do not meet dreary dead ends like this: “We
have no right to think thus of the unsearchable riches of creation, or of the untried
fertility of those fresh minds into which these riches will be poured.” On the
contrary:

The history of science shows that even during that phase of her progress in
which she devotes herself to improving the accuracy of the numerical mea-
surement of quantities with which she has long been familiar, she is preparing
the materials for the subjugation of new regions, which would have remained
unknown if she had been contented with the rough methods of her early pio-
neers. I might bring forward instances gathered from every branch of science,
showing how the labor of careful measurement has been rewarded by the dis-
covery of new fields of research, and by the development of new scientific ideas.

(See the discussion in chapter 25 of quantum electrodynamics; its great success
hinged on some very refined measurements.)

Maxwell’s projected program of experimental physics seemed worlds apart
from the Cambridge Tripos tradition, based on intensive training of theoretical
reasoning. But there must not be antagonism, Maxwell said: “There is no more
powerful method for introducing knowledge into the mind than of presenting it
in as many different ways as we can. When the ideas, after entering through
different gateways, effect a junction in the citadel of the mind, the position they
occupy becomes impregnable.”

The problem for both teacher and student is to “bring the theoretical part of
our training into contact with the practical,” and to conquer “the full effect of
what Faraday has called ‘mental inertia,” not only the difficulty of recognizing,
among concrete objects before us, the abstract relation which we have learned
from books, but the distracting pain of wrenching the mind away from the sym-
bols to the objects, and from the objects back to the symbols. This . . . is the price
we have to pay. But when we have overcome the difficulties, and successfully
bridged the gulf between the abstract and the concrete, it is not a mere piece of
knowledge that we have obtained: we have acquired the rudiment of a permanent
mental endowment.”

Maxwell as Cavendish Professor in the 1870s was remarkably like Maxwell
the student in the 1850s. One of his Cambridge friends who knew him at both
stages gave Campbell this sketch:
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My intercourse with Maxwell dropped when we left Cambridge. When I re-
turned in 1872, after an absence of fifteen years, he had lately been installed at
the new Cavendish Laboratory, and I had the happiness of looking forward to
a renewal of friendship with him. I found him, as was natural, a graver man
than of old; but as warm of heart and fresh of mind as ever. . . . The old pecu-
liarities of his manner of speaking remained virtually unchanged. It was still
no easy matter to read the course of his thoughts through the humorous veil
which they wove for themselves; and still the obscurity would now and then
be lit up by some radiant explosion.

Maxwell had research students, but it was not his style to mold them into a
team with a common purpose. Arthur Schuster, among the first Cavendish
students, recalled that in Maxwell’s view it was “best both for the advance
of science, and for the training of the student’s mind, that everyone should fol-
low his own path. [Maxwell’s] sympathy with all scientific inquiries, whether
they touched points of fundamental importance or minor details, seemed inex-
haustible; he was always encouraging, even when he thought the student was on
the wrong path. ‘I never try to dissuade a man from trying an experiment,” he
once told me; ‘if he does not find what he wants, he may find out something
else.” ”

Maxwell’s lecture audiences were minuscule. Ambitious students trained
with private tutors for the Tripos examinations; Maxwell’s courses, as well as
those of other university professors, were of little “paying” value for aspiring
wranglers. John Fleming, another one of the early Cavendish students, reported
that “Maxwell’s lectures were rarely attended by more than a half-dozen stu-
dents, but for those who could follow his original and often paradoxical mode of
presenting truths, his teaching was a rare intellectual treat.” It is said that dur-
ing his tenure as Lucasian Professor at Cambridge, Newton often “lectured to the
walls.”

Reluctantly at first, the Cavendish Professor took on the huge task of editing
the papers of Henry Cavendish, who had performed some remarkable electrical
researches in the eighteenth century. Maxwell soon found more enthusiasm for
the project, as much with Cavendish the man as with his work. “Cavendish cared
more for investigation than for publication,” Maxwell wrote in the introduction
to The Electrical Researches of the Honorable Henry Cavendish. “He would un-
dertake the most laborious researches in order to clear up a difficulty which no
one but himself could appreciate, or was even aware of.” Here was a purity of
purpose and indifference to recognition that Maxwell could appreciate.

Maxwell, as editor of the Cavendish papers, was indulging his deep fascina-
tion with science history. He had said in his inaugural lecture:

It is true that the history of science is very different from the science of history.
We are not studying or attempting to study the working of those blind forces
which, we are told, are operating on crowds of obscure people, shaking prin-
cipalities and powers, and compelling reasonable men to bring events to pass
in an order laid down by philosophers.

The men whose names are found in the history of science are not mere
hypothetical constituents of a crowd, to be reasoned upon only in masses. We
recognize them as men like ourselves, and their thoughts, being more free from
influence of passion, and recorded more accurately than those of other men, are
all the better materials for the study of the calmer parts of human nature.
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But the history of science is not restricted to the enumeration of successful
investigations. It has to tell of unsuccessful inquiries, and to explain why some
of the ablest men have failed to find the key of knowledge, and how the repu-
tation of others has only given a firmer footing to the errors into which they

fell.

Heinrich Hertz

When Maxwell died in 1879, his theory of the electromagnetic field and its amaz-
ing progeny, electromagnetic waves, had little experimental support, just the in-
direct evidence that Maxwell’s calculated speed of the electromagnetic waves
matched the speed of light.

Maxwell’s immediate successors thought about electromagnetic waves, but at
first could find no feasible way to study them in the laboratory. The turning point,
in both the study of electromagnetic waves and the fortunes of Maxwell’s theory,
came with the force of an intellectual earthquake in a series of experiments bril-
liantly carried out by Heinrich Hertz.

The year was 1887, and Hertz had recently arrived at the Karlsruhe Technische
Hochschule, Baden, Germany. He was only thirty years old, but already well
known, and rising rapidly in the academic world. He had been Helmholtz’s star
research student in Berlin, then briefly Privatdozent (instructor) at the University
of Kiel, and was now a full professor at Karlsruhe.

When he took up his work in Karlsruhe, Hertz was familiar with Maxwell’s
theory but not committed to it. Earlier, Helmholtz had tried to interest him in
the problem of creating experiments to test Maxwell’s assumptions (with a pres-
tigious prize attached), but Hertz had tactfully declined. His aim now was to
assemble an apparatus for studying electrical discharges in gases. One item of
equipment in the Karlsruhe laboratory was a spark generator called a Rithmkorff
coil (distantly related to the ignition coil that generates sparks in a gasoline en-
gine). He tinkered with the coil and was intrigued by its performance in the
configuration depicted in figure 12.4. The coil A was connected to two small
brass spheres B separated by % centimeter, and also to two straight lengths of
thick copper wires 3 meters in length terminating in two metallic spheres, 30
centimeters in diameter. When the coil was activated, sparks were repeatedly
generated in the gap at B.

Hertz found that he could connect the coil circuit electrically to a wire loop,
as shown in figure 12.5, and with careful adjustment of the size of the loop, obtain
observable sparks across the gap M. He then discovered that he could obtain
sparks in the wire loop with the connecting wire removed (fig. 12.6).

If there was no wire linking the two circuits electrically, how were they com-
municating with each other? At this point, Hertz began to realize that his device
was generating and detecting electromagnetic waves. The origin of the waves

Figure 12.4. Hertz's coil circuit. This figure and the two following
are adapted from Heinrich Hertz, “On Very Fast Electric Oscilla-
O O -{O tions,” in Wiedemann’s Annalen der Physik und Chemie 31 (1887):

B 431,
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e
P b Figure 12.5. Hertz's coil circuit connected to a wire loop with a
12 spark gap.

was a sequence of electrical oscillations initiated by each spark in the coil circuit.
The waves were propagated along a wire—or even through free space—to the
wire loop, and their presence revealed by the observed sparks at the gap in the
loop.

Waves of all kinds have three fundamental characteristics: a wavelength, the
distance from one wave crest to the next; a frequency, a count of the number of
wave cycles passing a certain point in a unit of time; and a speed of propagation,
the distance traveled by a wave crest in a unit of time. Hertz was, above all,
interested in the speed of his waves. Was that speed finite? If so, Maxwell’s theory
was strongly supported against its competitors, based on the concept of action at
a distance and an infinite speed of propagation. Hertz soon found a route to that
crucial determination. He relied on a simple equation, valid for all kinds of
waves, that connects the speed s, frequency v, and wavelength 4,

s = Av. (1)

The frequency v in this equation could be calculated from the length of the
wire and the diameters of the metallic spheres in the coil circuit, using a formula
derived earlier by Thomson. Hertz found the calculated frequencies to be excep-
tionally high, around one hundred million cycles per second. To measure the
wavelength A, Hertz ingeniously reconfigured his apparatus so it generated
“standing waves” (as in a violin string), either along a straight wire or in free
space, and using one of the wire-loop detectors, he located crests and troughs of
the waves; the distance from one measured crest to the next was the wavelength.
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[
M . Figure 12.6. Hertz’s coil circuit and wire loop disconnected. Sparks are still pro-
L2 o duced at the gap in the loop.

There were stubborn problems: he made an embarrassing calculational mistake,
and the waves were distorted by an iron stove and other objects in the laboratory.
But eventually equation (1) told the story Hertz was expecting: his electromag-
netic waves had a finite speed, in fact, the speed of light, known to be three
hundred million meters per second.

Although he had already made a strong case for Maxwell’s theory, Hertz went
much further, displaying a thoroughness and ingenuity that would have im-
pressed Faraday. He demonstrated that his electromagnetic waves could be re-
flected, focused, refracted, diffracted, and polarized—that they were, in every
sense but frequency and wavelength, the same as light waves.

In about one “miraculous year” of experiments, Hertz had closed the great
debate between the Maxwellians and the proponents of action at a distance. Not
surprisingly, Hertz’s work was quickly recognized in Britain, and more slowly in
Germany, where action-at-a-distance sentiment was strongest. The joke was that
Germans learned about Hertz by way of the British. But by the summer of 1889,
Hertz’s triumph was complete; at a meeting in Heidelberg, he was celebrated by
Germany’s great men of science. In the same year, he was appointed Clausius’s
successor in Bonn.

Tragically, Hertz was as unfortunate with his health as he was fortunate with
his talent. The first sign of trouble was a series of toothaches in 1888, which led
to removal of all his teeth in 1889. By 1892, he was suffering from pains in his
nose and throat, and was often depressed. His doctors could give him no satis-
factory diagnosis. Several operations failed to provide permanent relief. By De-
cember 1893, he knew he would not recover, and in a letter he asked his parents
“not to mourn . . . rather you must be a little proud and consider that I am among
the especially elect destined to live for only a short while and yet to live enough.
I did not choose this fate, but since it has overtaken me, I must be content; and
if the choice had been left to me, perhaps I should have chosen it myself.”

Hertz died of blood poisoning on New Year’s Day, 1894; he was thirty-six years
old.

“Maxwell’s Equations”

Once a scientific theory has been created, it becomes public property. Friends
and enemies of the theory (and the theorist) are licensed to argue for changes in
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both content and form as they see fit. If the theory has been successful, its content
is likely to be more or less permanent. But the form—the mathematical form of
a physical theory—may not be so durable. Newton’s geometrical mathematical
language in the Principia did not last, nor did Clausius’s mathematically elabo-
rate version of entropy theory. The physical content of Newton’s laws of motion
and the entropy concept are, however, still with us.

Maxwell’s theory met a similar fate. Most of the physical assertions Maxwell
made in his Treatise on Electricity and Magnetism are permanent fixtures. His
equations, on the other hand, have been reshaped by other hands. As we find
them in the Treatise, the equations are a dozen in number. Maxwell’s successors,
particularly Hertz and the most gifted of the British Maxwellians, Oliver Heavi-
side, wanted more “purity” in the equations. They suppressed auxiliary equa-
tions, eliminated the vector potential A and a companion scalar potential ¥, and
boiled the original dozen down to just four differential equations.

These “Maxwell’s equations” have as their mathematical ingredients the elec-
tric field vector E, the magnetic field vector B, the electric current vector J, and
the density of electric charge p. There are two divergence equations and two curl
equations, one each for E and B:

divE = p (2)

curl E = — 18 (3)
c ot

divB =0 (4)

curl B = J + ﬂ (5)
c c dt

The abbreviation “div” stands for divergence, c¢ is the speed of light, and the
derivatives written with the “¢” notation are calculated just for changes in the
time t, holding all other variables constant. (Mathematicians call these “partial”
derivatives and the equations “partial differential equations.”) To put the equa-
tions in their most symmetrical—and mathematically least excruciating—form, I
have assumed that the electromagnetic field is propagated in a vacuum.

In its modern interpretation, the divergence equation (2) simply states that an
electric field E is produced by electric charges (included in the density of electric
charge p). The companion curl equation (3) for E tells us what Faraday observed:
that a rotational electric field is generated in a changing magnetic field B.

The divergence equation (4) for the magnetic field parallels equation (2) for
the electric field, except that there is no magnetic counterpart of the electric
charge density p. Here we see a fundamental difference between electricity and
magnetism. One of the two kinds of electricity, positive or negative, can domi-
nate, making the net charge density p positive or negative. But a magnetic field
cannot be divided this way: every north pole in the field is exactly balanced by
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a south pole, there is no observable “magnetic charge density,” and a zero is
required on the right side of the divergence equation (4).

The second curl equation (5) asserts in its first two terms (curl B = l) what
c
Oersted observed: that a rotational magnetic field B is generated by an electric
10E
current J. The third term in equation (5), (ﬁ)’ has special significance. Maxwell

proved that without it the equation disobeys the fundamental law of electricity
that electric charge, like energy, is conserved: it cannot be created or destroyed.
The third term in equation (5) saves charge conservation and it represents a
ubiquitous kind of electric current (Maxwell’s “displacement current”), found
even in free space.

Maxwell’s field theory, embodied in his equations, closed the book on the
nineteenth-century, or “classical,” theory of electromagnetism. It also had a long
reach into the twentieth century. Einstein first found in Maxwell’s equations the
clue he needed drastically to revamp the concepts of space and time in his spe-
cial theory of relativity (chapter 14), and then he followed Maxwell’s electro-
magnetic field theory with his own gravitation field theory. More recently, quan-
tum field theory has become the mainstay of particle physics.

In an appreciation of Maxwell, Einstein wrote: “Before Maxwell people
thought of physical reality—in so far as it represented events in nature—as ma-
terial points, whose changes consist only in motions which are subject to total
differential equations [that is, no partial derivatives]. After Maxwell they thought
of physical reality as represented by continuous fields, not mechanically expli-
cable, which are subject to partial differential equations [partial derivatives in-
cluded]. This change in the conception of reality is the most profound and the
most fruitful that physics has experienced since Newton.”

Partaker of Infinity

Maxwell’s contemporaries may have found him difficult to understand, but be-
neath his eccentricities they always saw generosity, a complete lack of selfish-
ness, and a deep sense of duty. Of all the scientists who populate these chapters,
Maxwell and Gibbs were probably the least selfish and self-centered.

Maxwell’s selfless devotion to his wife Katherine was particularly strong. Her
health was always frail, and Maxwell guarded it with great care, even when his
own health was failing. Campbell reports that at one point Maxwell sat by Kath-
erine’s bed through the night for three weeks, and tended to the affairs of the
Cavendish Laboratory during the day. He was always considerate of colleagues,
especially those who had not received much attention. He was the first to rec-
ognize (and promote) the importance of Gibbs’s work on thermodynamics. His
generous comments on the doctoral thesis of a young Dutch physicist, Johannes
van der Waals, are typical: “The molecular theory of the continuity of the liquid
and gaseous states forms the subject of an exceedingly ingenious thesis by Mr.
Johannes Diderick van der Waals, a graduate of Leyden. . .. His attack on this
difficult question is so able and so brave, that it cannot fail to give a notable
impulse to molecular science. It has certainly directed the attention of more than
one inquirer to the study of the Low-Dutch language in which it is written.”

Maxwell’s referee’s reports on papers of young colleagues sometimes offered
more insights than the papers themselves. His report to William Crookes con-
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cerning research on electrical discharges in gases dropped some hints that could
have been (but were not) followed to the discovery of the electron. As Bruce
Hunt remarks, Maxwell’s referee’s report in 1879 to George Fitzgerald “stands as
perhaps the clearest marker of the point at which Maxwell’s theory passed from
his own hands into those of a new generation.” Fitzgerald, who became a leading
Maxwellian, was then a newcomer to electromagnetism, and he gratefully ac-
cepted Maxwell’s pointers.

In the 1850s, while he was at Aberdeen, Maxwell wrote in a letter, “I wish to
say that it is in personal union with my friends that I hope to escape the despair
which belongs to the contemplation of the outward aspect of things with human
eyes. Either be a machine and see nothing but the ‘phenomena,’ or else try to be
a man, feeling your life interwoven, as it is, with many others, and strengthened
by them whether in life or death.”

Much later he expressed to a friend “a favorite thought,” the mystical belief,
“that the relation of parts to wholes pervades the invisible no less than the visible
world, and that beneath the individuality which accompanies our personal life
there lies hidden a deeper community of being as well as of feeling and action.”
Campbell marveled that while Maxwell “was continually striving to reduce to
greater definiteness men’s conceptions of leading physical laws, he seemed ha-
bitually to live in a sort of mystical communion with the infinite.”

In the 1850s and 1860s, Maxwell taught evening classes for working-class peo-
ple, first in Cambridge, and then in Aberdeen and London. Several biographers
have remarked that Maxwell was, in a paternal way, “feudal” in his treatment of
artisans and the servants and tenants at Glenlair. J. G. Crowther remarks that
those biographers “cannot be satisfied with his role of gentleman-farmer or laird
in the middle of the nineteenth century. The modernity of Maxwell’s science,
and the antiquity of his sociology and religion appear incongruous. But it may
be noted that though his views on sociology were antique, they were superior to
those of nearly all his scientific contemporaries. He at least thought about these
problems.”

Maxwell’s religious views were conventional, at least up to a point. His mother
was a Presbyterian and his father an Episcopalian. As a child in Edinburgh, he
attended services in both churches. He could recall long passages from the Bible,
and his letters to Katherine were full of pious biblical references and quotations.
His private faith probably went deeper than that, but he chose not to advertise
it. He responded to an invitation to join an organization dedicated to reconciling
science with religion with a refusal and this explanation: “I think that the results
which each man arrives at in his attempts to harmonize his science with his
Christianity ought not to be regarded as having any significance except to the
man himself, and to him only for a time, and should not receive the stamp of
society.”

Yet occasionally in his writings Maxwell did reveal something about the re-
ligious and other metaphysical underpinnings of his science. In his inaugural
lecture at Aberdeen, he said:

But as physical science advances we see more and more that the laws of nature
are not mere arbitrary and unconnected decisions of Omnipotence, but that they
are essential parts of one universal system in which infinite Power serves only
to reveal unsearchable Wisdom and eternal Truth. When we examine the truths
of science and find that we can not only say “This is so” but “This must be so,
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for otherwise it would not be consistent with the first principles of truth”—or
even when we can only say “This ought to be so according to the analogy of
nature” we should think what a great thing we are saying, when we pronounce
a sentence on the laws of creation, and say they are true, or right, when judged
by the principles of reason. Is it not wonderful that man’s reason should be a
judge over God’s works, and should measure, and weigh, and calculate, and say
at last “I understand and I have discovered—It is right and true.”

While he was still a student at Cambridge, he wrote in an essay: “Happy is the
man who can recognize in the work of Today a connected portion of the work of
life, and an embodiment of the work of Eternity. The foundations of his confi-
dence are unchangeable, for he has been made a partaker of Infinity.” Much later,
when he was dying, he said to a friend: “My interest is always in things rather
than in persons. I cannot help thinking about the immediate circumstances
which have brought a thing to pass, rather than about any will setting them in
motion. What is done by what is called myself is, I feel, done by something
greater than myself in me. My interest in things has always made me care much
more for theology than for anthropology; states of the will only puzzle me.”






STATISTICAL
MECHANICS

Historical Synopsis

In the first three parts of the book, the themes have been mechanics,
thermodynamics, and electromagnetism, which can be grouped
under the broader heading of “macrophysics”—that is, the physics
of objects of ordinary size and larger. This fourth part of the book
addresses for the first time the vastly different realm of
“microphysics.” As used here, the term means the physics of
molecules, atoms, and subatomic particles. Microphysics will be a
major theme in the book from now on, particularly here in part 4,
and then in parts 6 (quantum mechanics), 7 (nuclear physics), and 8
(particle physics).

Molecules (and the atoms they contain) are very small, incredibly
large in number, chaotic in their motion, and difficult to isolate and
study as individuals. But populations of molecules, like human
populations, can be described by statistical methods. The strategy is
to focus on average, rather than individual, behavior. Insurance
companies do their business this way, and so do molecular
physicists. The insurance company statistician might calculate the
average life span for an urban population of males in a certain
income bracket. The physicist might seek an average energy for a
population of gas molecules occupying a certain volume at a certain
temperature. The method works well enough for the insurance
company to make a profit, and even better for the physicist because
molecules are far more numerous and predictable than human
beings. By determining energy, or an average value for some other
mechanical property of molecules, the physicist practices what
Gibbs called “statistical mechanics.”

The single chapter in this part of the book introduces the man
who did the most to define, develop, and defend statistical
mechanics. He was Ludwig Boltzmann, who wrote his most
important papers on statistical mechanics in the 1870s. For
Boltzmann, statistical mechanics was most profitable in discussions
of the entropy concept. He found a molecular basis for the second
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law of thermodynamics, and made the entropy concept accessible by
linking entropy with disorder.

Boltzmann built on foundations laid by Maxwell, who had in turn
been inspired by Clausius. In the late 1850s, Clausius showed how
to calculate average values for molecular speeds and distances
traveled by molecules between collisions with other molecules. He
recognized that the molecules of a population have different speeds
distributed above and below the average, but his statistical
mechanics supplied no way to determine the distribution. In two
papers, written in 1858 and 1866, Maxwell defined the missing
molecular distribution law and applied it in many different ways to
the theory of gas behavior. The line of development of statistical
mechanics from Clausius to Maxwell to Boltzmann continued to
Gibbs. A masterful treatise published by Gibbs in 1901 gave
statistical mechanics the formal structure it still has today, even after
the intervening upheaval brought by quantum theory.

To believe in statistical mechanics, one must believe in
molecules. At the beginning of the twenty-first century, we don’t
have to be persuaded, but late in the nineteenth century Boltzmann
had influential and obstinate opponents who could not accept the
reality of molecules. Boltzmann enthusiastically engaged his
adversaries in friendly and unfriendly debates, but they outlasted
him. Albert Einstein then took up the debate and showed how to
make molecules real and visible.



13
Molecules and Entropy

Ludwig Boltzmann

Peregrinations

Restlessness was the story of his life and work. Ludwig Boltzmann saw the phys-
ical world as a perpetually agitated molecular chaos; and, like the molecules, he
never found rest himself. He moved from one academic post to another seven
times during his career of almost forty years. The chronology goes like this: two
years (1867-69) at the University of Vienna as an assistant professor; four years
(1869-73) as an assistant professor of mathematical physics at the University of
Graz; back to Vienna for three years (1873-76) as a professor of mathematics; to
Graz again for fourteen years (1876—90) as a professor of experimental physics;
four years (1890-94) as a professor of theoretical physics at the University of
Munich; a second return to Vienna for four years (1894-1900), this time as a
professor of theoretical physics; two years in Leipzig (1900—1902) as a professor
of theoretical physics; and a third and final return to Vienna to succeed himself
in the chair still unoccupied since his departure two years earlier.

These were not forced departures. From the early 1870s on, Boltzmann was
famous in the scientific world and much in demand. To entice him to return from
Munich to Vienna, the Austrian minister of culture had to offer him the highest
salary then paid to any Austrian university professor. Competing faculties de-
scribed him as the “uncontested first representative” of theoretical physics “rec-
ognized as such by all nations,” and “the most important physicist in Germany
and beyond.” In this job market, Boltzmann was not above some hard bargaining
with the appropriate ministries. Late in his life he was negotiating for his next
move soon after he had completed the last one. The Vienna authorities finally
decided enough was enough: they would take him back (for the third time) only
if he would give his word that he would never take another job outside Austria.

But Boltzmann'’s restlessness was driven by more than salaries and the other
things he complained about in his correspondence, such as the quality of the
students and German cooking. He moved incessantly because the polar opposites
of his personality would give him no peace. He joked that these polarities were
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determined on the night of his birth between Shrove Tuesday and Ash Wednes-
day—Carnival and Lent. The modern diagnosis would be bipolar disorder or
manic depression. His health was troubled in other ways—he had asthma, mi-
graine headaches, poor eyesight, and angina pains—but the periods of depression
were far worse, and finally intolerable. Traveling and relocating would lift him
from one depression but not prevent the next. The move to Leipzig, for example,
brought relief, but not for long. Within a year he was suffering again and driven
to an unsuccessful attempt at suicide.

When he was not gripped by the deep melancholy of his depressions, Boltz-
mann was, in a word, brilliant. “I am a theoretician from head to toe,” he said.
“The idea that fills my thoughts and deeds [is] the development of theory. To
glorify it no sacrifice is too great for me: since theory is the content of my entire
life.” Among nineteenth-century theorists, he was in a class with Gibbs; only
Maxwell ranked higher.

Boltzmann was famous not only for his theories but also, and perhaps more
so, for his superb ability as a teacher and lecturer. Lise Meitner, who attended
Boltzmann'’s cycle of lectures on theoretical physics in Vienna just after the turn
of the century (and later was a codiscoverer of uranium fission), left this appre-
ciation:

He gave a course that lasted four years. It included mechanics, hydrodynamics,
elasticity theory, electrodynamics, and the [molecular] theory of gases. He used
to write the main equations on a very large blackboard. By the side he had two
smaller blackboards, where he wrote the intermediate steps. Everything was
written in a clear and well-organized form. I frequently had the impression that
one might reconstruct the entire lecture from what was on the blackboard. After
each lecture it seemed to us as if we had been introduced to a new and won-
derful world, such was the enthusiasm that he put into what he taught.

In spite of his many psychological tensions, Boltzmann was open and informal
with his students and sensitive to their needs. “He never exhibited his superi-
ority,” writes Fritz Hasentrhl, who succeeded Boltzmann at the University of
Vienna. “Anybody was free to put him questions and even criticize him. The
conversation took place quietly and the student was treated as a peer. Only later
one realized how much he had learned from him. He did not measure others
with the yardstick of his own greatness. He also judged more modest achieve-
ments with goodwill, so long as they gave evidence of serious and honest effort.”

Ernst Mach, Boltzmann’s perennial opponent in debates on atomism, seemed
to be offended by all this informality: “Boltzmann is not malicious,” Mach wrote
in a letter, “but incredibly naive and casual . . . he simply does not know where
to draw the line.” During his second tenure in Graz, Boltzmann accepted and
then quickly rejected an appointment as Gustav Kirchhoff’s successor at the Uni-
versity of Berlin. It is said that a factor in his decision was a haughty remark
from Frau Helmholtz: “Professor Boltzmann I am afraid you will not feel at ease
here in Berlin.”

Boltzmann married Henriette von Aigentler, a handsome young woman with
luxuriant blond hair and blue eyes. Although it was considered quite inappro-
priate at the time, she took a strong interest in her husband’s work and had his
encouragement. “It seems to me,” he wrote in his letter proposing marriage, “that
a constant love cannot endure if the wife has no understanding, no enthusiasm
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for the endeavors of the husband, but is merely his housekeeper rather than a
companion in his struggles.” The couple had five children, three daughters and
two sons, whom they adored. It is recorded that Boltzmann bought two pet rab-
bits for the youngest daughter, Elsa, over the objections of Henriette. The animals
lived in Boltzmann'’s study, outside Henriette’s domain. Boltzmann’s biographers
do not say much about Henriette, but we can be sure that she was a strong and
resourceful woman, if for no other reason than that she lived with, and survived,
her husband’s neuroses.

If Boltzmann had not succeeded as a physicist, he might have been a humorist.
He was Mark Twain in reverse, a European who traveled to America. During the
summer of 1905, he gave a series of lectures at the “University of Berkeley,” and
back in Vienna, reported on the incredible ways of Californians in a piece called
“A German Professor’s Journey into Eldorado.” “The University of Berkeley,” he
writes, “is the most beautiful place imaginable. A park a kilometer square, with
trees which must be centuries old, or is it millennia? Who can tell at a moment’s
notice? In the park there are splendid modern buildings, obviously too small
already; new ones are under construction, since both space and money are
available.”

But it was a spoiled paradise: “Berkeley is teetotal: to drink or retail beer and
wine is strictly forbidden.” Berkeley water was not a good alternative: “My stom-
ach rebelled,” and more drastic measures were called for:

I ventured to ask a colleague about the location of a wine merchant. The effect
my question produced reminded me of a scene in the smoking-car of a train
between Sacramento and Oakland. An Indian had joined us, who asked quite
naively for the address of a ... well, as he was an Indian, let’s say the address
of a house with bayaderes [Hindu dancing girls] in San Francisco. Most of the
people in the smoker were from San Francisco and there are certainly girls there
with the motto: “Give me money, I give you honey,” but everyone was startled
and embarrassed. My colleague reacted in exactly the same way when I asked
about the wine merchant. He looked about anxiously in case someone was lis-
tening, sized me up to see if he could really trust me and eventually came out
with the name of an excellent shop selling California wine in Oakland. I man-
aged to smuggle in a whole battery of wine bottles and from then on the road
to Oakland became very familiar.

Among the bizarre culinary habits of the Californians was oatmeal. Boltzmann
was offered some by his hostess, Mrs. Hearst, the mother of the newspaper tycoon
William Randolph Hearst. It was “an indescribable paste on which people might
fatten geese in Vienna—then again, perhaps not, since I doubt whether Viennese
geese would be willing to eat it.” The after-dinner entertainment compensated
for such lapses, however. The Hearst music room was comparable to “any of the
smaller Viennese concert halls.” Boltzmann, an accomplished pianist, played a
Schubert sonata, and was enchanted by the piano, “a Steinway from the most
expensive price-range.” He had heard such pianos but never touched one. “[At]
first I found the mechanics strange, but how quickly one becomes accustomed to
good things. The second part of the first movement went well and in the second
movement, an Andante, I forgot myself completely: I was not playing the melody,
it was guiding my fingers. I had to hold myself back forcibly from playing the
Allegro as well, which was fortunate because there my technique would have
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faltered.” In Mrs. Hearst’s grand music room, Boltzmann found his Eldorado: “If
the hardships which beset my Californian visit had ever made me regret, from
then on they ceased to do so.”

Log Lessons

Before we turn to the work of Boltzmann and his great contemporaries, Clausius,
Maxwell, and Gibbs, on statistical mechanics, we need to take a brief detour into
mathematical territory on the subjects of logarithms and exponential functions.

The 2 in 102 (= 100) is an exponent or power. This notation is invaluable for
expressing very large numbers: it is much easier to write 1023 than 1 followed
by 23 zeros. The exponent need not be a fixed number; it can be a variable with
any value, such as x in 10%.

Exponents are convenient in that they are added in multiplication and sub-
tracted in division. For example,

103 X 102 = 10372 = 100000,
and

3
100 e — 1
102 ’

With variables as exponents, the corresponding statements are
10% X 10¥ = 10%*7,

and

These algebraic properties make it possible to convert a multiplication into an
addition and a division into a subtraction. To multiply two numbers this way,
we first convert them into powers of ten—that is, find values of the exponents x
and y in the above equations; then add x and y to obtain x + y, and the product
as 10¥*Y, or x — y, and the quotient as 10x.

The powers of ten (the x and y) in these recipes are called “logarithms (logs)
to the base 10.” They are tabulated to make it convenient to convert any number
into a power of ten, and vice versa. Until the advent of hand calculators, “log
tables” were an indispensable computational tool. Logarithmic functions are still
standard equipment in algebra. The notation “log” denotes a power of ten, as in

log 10¥ = x, log 10 = y, and log 10¥*Y = x + y.

The general concept of logarithms was invented early in the seventeenth cen-
tury by John Napier, a Scotsman, and independently by Joost Biirgi, a Swiss.
Napier and Henry Briggs devised the computational scheme I have described
involving powers of ten.
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The number ten is convenient as a “base” in logarithmic calculations, but any
other number can serve the same purpose. When he was still an undergraduate
at Cambridge, Newton discovered that “natural” logarithms to a special base, now
denoted with the symbol e, could be calculated by accumulating added terms in
a series. Newton’s formula for In(1 + x), with “In” representing a natural loga-
rithm to the base e, is

x>  x3 x*
Inl+x)=x——+—=——-—+...,
2 3 4

in which “...” means that the series continues forever (the next two terms are
x5 x6
+ 5 and — E). If x is less than one, however, only the first few terms may be

needed, because later terms are small enough to be negligible.

Regardless of the base—10, e, or any other number—logarithms can be posi-
tive, negative, or equal to zero. The rules are worth noting (and proving). For a
logarithmic function In x,

Inx>0ifx>1
=0ifx=1
<0ifx<1.

The Story of e

Functions containing e are ubiquitous in the equations of physics. Prototypes are
the “exponential functions” eX and e *. Both are plotted in figure 13.1, showing
that e* increases rapidly as x increases (“exponential increase” is a popular
phrase), and e * decreases rapidly. The constant e may seem mystifying. Where
does it come from? Why is it important?

Mathematicians include e in their pantheon of fundamental numbers, along
with 0, 1, w, and i. The use of e as a base for natural logarithms dates back to the
seventeenth century. Eli Maor speculates that the definition of e evolved some-
what earlier from the formulas used for millennia by moneylenders. One of these
calculates the balance B from the principal P at the interest rate r for a period of
t years compounded n times a year,

nt
B=P<1+—r> (1)
100n

For example, if we invest P = $1000 at the interest rate r = 5% with interest
compounded quarterly (n = 4), our balance after t = 20 years is

5 (4)(20)
B ==($1000)<1 +EI66ﬂZj> = $2701.48.

Equation (1) has some surprising features that could well have been noticed
by an early-seventeenth-century mathematician. Suppose we simplify the for-
mula by considering a principal of P = $1, a period of t = 1 year, and an interest
rate of r = 100% (here we part with reality), so the right side of the formula is
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ex e—X
Figure 13.1. Typical exponential functions: the
x x increasing e* and the decreasing e *.

n
1
simply (1 + ;) . Our seventeenth-century mathematician might have amused

himself by laboriously calculating according to this recipe with n given larger
and larger values (easily done with a calculator by using the y* key to calculate
the powers). Table 13.1 lists some results. The trend is clear: the egfect of increas-

. . 1
ing n becomes more minuscule as n gets larger, and as | 1 — —| approaches a
n

definite value, which is 2.71828 if six digits are sufficient. (For more accuracy,
make n larger.) The “limit” approached when n is given an infinite value is the
mathematical definition of the number e. Mathematicians write the definition

e=nhm<1+1>. 2)

— 530 n

Physicists, chemists, engineers, and economists find many uses for exponen-
tial functions of the forms eX and e *. Here are a few of them:

1. When a radioactive material decays, its mass decreases exponentially ac-
cording to

m = mye %,

in which m is the mass at time f, mg is the initial mass at time t = 0, and a is a
constant that depends on the rate of decay of the radioactive material. The ex-
ponential factor e % is rapidly decreasing (a is large) for short-lived radioactive
materials, and slowly decreasing (a is small) for long-lived materials.

2. A hot object initially at the temperature T in an environment kept at the
lower, constant temperature T; cools at a rate given by

T=T, + (T, — Ty) e .

3. When a light beam passes through a material medium, its intensity de-
creases exponentially according to

I= Ioe_ax,
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Table 13.1

N (1 + 1/n)n
1 2

2 2.25

5 2.48832
10 2.59374
100 2.70481
10000 2.71815
1000000 2.71828
10000000 2.71828

in which I is the intensity of the beam after passing through the thickness x of
the medium, I, is the intensity of the incident beam, and a is a constant depend-
ing on the transparency of the medium.

4. Explosions usually take place at exponentially increasing rates expressed
by a factor of the form e?, with a a positive constant depending on the physical
and chemical mechanism of the explosion.

5. If a bank could be persuaded to compound interest not annually, semian-
nually, or quarterly, but instantaneously, one’s balance B would increase expo-
nentially according to

B = Pert/loo’

where P is the principle, r is the annual interest rate, and ¢ is the time in years.

Brickbats and Molecules

The story of statistical mechanics has an unlikely beginning with a topic that has
fascinated scientists since Galileo’s time: Saturn’s rings. In the eighteenth cen-
tury, Pierre-Simon Laplace developed a mechanical theory of the rings and sur-
mised that they owed their stability to irregularities in mass distribution. The
biennial Adams mathematical prize at Cambridge had as its subject in 1855 “The
Motions of Saturn’s Rings.” The prize examiners asked contestants to evaluate
Laplace’s work and to determine the dynamical stability of the rings modeled as
solid, fluid, or “masses of matter not mutually coherent.” Maxwell entered the
competition, and while he was at Aberdeen, devoted much of his time to it.

He first disposed of the solid and fluid models, showing that they were not
stable or not flat as observed. He then turned to the remaining model, picturing
it as a “flight of brickbats” in orbit around the planet. In a letter to Thomson, he
said he saw it as “a great stratum of rubbish jostling and jumbling around Saturn
without hope of rest or agreement in itself, till it falls piecemeal and grinds a
fiery ring round Saturn’s equator, leaving a wide tract of lava and dust and blocks
on each side and the western side of every hill buttered with hot rocks. . .. As
for the men of Saturn I should recommend them to go by tunnel when they cross
the ‘line.” ” In this chaos of “rubbish jostling and jumbling” Maxwell found a
solution to the problem that earned the prize.

This success with Saturn’s chaos of orbiting and colliding rocks inspired Max-
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well to think about the chaos of speeding and colliding molecules in gases. At
first, this problem seemed too complex for theoretical analysis. But in 1859, just
as he was completing his paper on the rings, he read two papers by Clausius that
gave him hope. Clausius had brought order to the molecular chaos by making
his calculations with an average dynamical property, specifically the average
value of v2, the square of the molecular velocity. Clausius wrote this average
quantity vZ and used it in the equation

1.
PV = gNmV2 (3)

to calculate the pressure P produced by N molecules of mass m randomly bom-
barding the walls of a container whose volume is V.

In Clausius’s treatment, the molecules move at high speeds but follow ex-
tremely tortuous paths because of incessant collisions with other molecules. With
all the diversions, it takes the molecules of a gas a long time to travel even a few
meters. As Maxwell put it: “If you go 17 miles per minute and take a totally new
course [after each collision] 1,700,000,000 times in a second where will you be
in an hour?”

Maxwell’s first paper on the dynamics of molecules in gases in 1860 took a
major step beyond Clausius’s method. Maxwell showed what Clausius recog-
nized but did not include in his theory: that the molecules in a gas at a certain
temperature have many different speeds covering a broad range above and below
the average value. His reasoning was severely abstract and puzzling to his con-
temporaries, who were looking for more-mechanical details. As Maxwell said
later in a different context, he did not make “personal enquiries [concerning the
molecules], which would only get me in trouble.”

Maxwell asked his readers to consider the number of molecules dN with ve-
locity components that lie in the specific narrow ranges between v, and v, + dv;,
vy and vy, + dvy, v, and v, + dv,. That count depends on N, the total number of
molecules; on dv,, dVy, and dv,; and on three functions of v,, vy, and v,, call
them f(v,), f(vy), and f(v,), expressing which velocity components are important
and which unimportant. If, for example, v, = 10 meters per second is unlikely
while v, = 500 meters per second is likely, then f(v,) for the second value of v,
is larger than it is for the first value. Maxwell’s equation for dN was

dN = Nf(v,)f (v)f (v,)dv,dv,dv,. (4)

Maxwell argued that on the average in an ideal gas the three directions x, y,
and z, used to construct the velocity components v, v,, and v,, should all have
the same weight; there is no reason to prefer one direction over the others. Thus
the three functions f(v,), f(v,), and f(v,) should all have the same mathematical
form. From this conclusion, and the further condition that the total number of

molecules N is finite, he derived

N 2 /002
flvd = me_”/a (5)
y

with o a parameter depending on the temperature and the mass of the molecules.
This is one version of Maxwell’s “distribution function.”
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A more useful result, expressing the distribution of speeds v, regardless of
direction, follows from this one,

VZ

glv) = ;N vie 4. (6)

3 [
JT

The function, g(v), another distribution function, assesses the relative importance
of the speed v. Its physical meaning is conveyed in figure 13.2, where g(v) is
plotted for speeds of carbon dioxide molecules ranging from 0 to 1,400 meters
per second; the temperature is assumed to be 500 on the absolute scale (227°C).
We can see from the plot that very high and very low speeds are unlikely, and
that the most probable speed at the maximum point on the curve is about 430
meters per second (= 16 miles per minute).

Maxwell needed only one page in his 1860 paper to derive the fundamental
equations (5) and (6) as solutions to the proposition “To find the average number
of particles [molecules] whose velocities lie between given limits, after a great
number of collisions among a great number of equal particles.” The language—
calculation of an “average” for a “great number” of molecules and collisions—
prescribes a purely statistical description, and that is what Maxwell supplied in
his distribution functions.

Thus, without “personal enquiries” into the individual histories of molecules,
Maxwell defined their statistical behavior instead, and this, he demonstrated in
his 1860 paper, had many uses. Statistically speaking, he could calculate for a
gas its viscosity, ability to conduct heat, molecular collision rate, and rate of
diffusion. This was the beginning “of a new epoch in physics,” C. W. F. Everitt
writes. “Statistical methods had long been used for analyzing observations, both
in physics and in the social sciences, but Maxwell’s ideas of describing actual
physical processes by a statistical function [e.g., g(v) in equation (6)] was an
extraordinary novelty.”

Maxwell’s theory predicted, surprisingly, that the viscosity parameter for gases
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Figure 13.2. Maxwell’s distribution function g(v). The plot is “normalized” by dividing
each value of g(v) by the value obtained with v given its most probable value.
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should be independent of the pressure of the gas. “Such a consequence of a
mathematical theory is very startling,” Maxwell wrote, “and the only experiment
I have met with on the subject does not seem to confirm it.” His convictions were
with the theory, however, and several years later, ably assisted by his wife Kath-
erine, Maxell demonstrated the pressure independence experimentally. Once
more, the scientific community was impressed by Maxwellian wizardry.

But the theory could not explain some equally puzzling data on specific heats.
A specific heat measures the heat input required to raise the temperature of one
unit, say, one kilogram, of a material one degree. Measurements of specific heats
can be done for constant-pressure and constant-volume conditions, with the for-
mer always larger than the latter.

Maxwell, like many of his contemporaries, believed that heat resides in mo-
lecular motion, and therefore that a specific heat reflects the number of modes
of molecular motion activated when a material is heated. Maxwell’s theory sup-
ported a principle called the “equipartition theorem,” which asserts that the ther-
mal energy of a material is equally divided among all the modes of motion be-
longing to the molecules. Given the number of modes per molecule, the theory
could calculate the constant-pressure and constant-volume specific heats and the
ratio between the two. If the molecules were spherical, they could move in
straight lines and also rotate. Assuming three (x, y, and z) components for both
rotation and straight-line motion, the tally for the equipartition theorem was six,
and the prediction for the specific-heat ratio was 1.333. The observed average for
several gases was 1.408.

Maxwell never resolved this problem, and it bothered him throughout the
1870s. In the end, his advice was to regard the problem as “thoroughly conscious
ignorance,” and expect that it would be a “prelude to [a] real advance in knowl-
edge.” It was indeed. Specific-heat theory remained a puzzle for another twenty
years, until quantum theory finally explained the mysterious failings of the equi-
partition theorem.

Maxwell's Demon(s)

The statistical method opened another door for Maxwell, into the realm of the
second law of thermodynamics. In his idiomatic way, he amused himself by
imagining a bizarre scheme for violating the second-law axiom that heat always
passes from hot to cold. “Let A & B be two vessels divided by a diaphragm,” he
wrote in a letter to P. G. Tait, “and let them contain elastic molecules in a state
of agitation which strike each other and the sides. Let the number of particles be
equal in A and B but those in A have the greatest energy of motion [that is, A is
at a higher temperature than B].” If the diaphragm has a small hole in it, mole-
cules will go through it and transfer their energy from one vessel to the other.
“Now conceive a finite being who knows the paths and velocities of all the
molecules by simple inspection, but who can do no work except open and close
[the] hole in the diaphragm by means of a slide without mass.” The task of this
“being” is to open the hole and allow molecules to pass from B to A if they have
greater than the average speed in A, and from A to B if they have less than the
average speed in B. The “being” keeps the two-way molecular traffic balanced,
so the number of molecules in A and B does not change. The result of these
maneuvers is that the molecules in A become more energetic than they were
originally, and those in B less energetic. This amounts to wrong-way heat flow,
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an infringement of the second law: “[The] hot system has got hotter and the cold
colder and yet no work has been done, only the intelligence of a very observant
and neat-fingered being has been employed.” When Tait told Thomson about
Maxwell’s talented “being,” Thomson promoted it to the status of a “sorting
demon.”

Had Maxwell actually defeated the second law? He did not claim victory: his
“neat-fingered” demon was an imposter. If we could design a demon that controls
molecular traffic without doing any work, Maxwell argued, then we could actu-
ally violate the second law. “Only we can’t,” he concluded, “not being clever
enough.” The demon fails in its assignment, and on the average—statistically
speaking—more hot molecules pass through the hole from A (where the temper-
ature is higher) to B, than from B to A. This is the normal direction of heat flow
permitted by the second law. Maxwell’s message is that the basis for the second
law is the statistical behavior of vast numbers of molecules, and no amount of
technical ingenuity can reverse these statistical patterns. As he put it to John
Strutt (later Lord Rayleigh) in 1870: “The 22d law of thermodynamics has the
same degree of truth as the statement that if you throw a tumblerful of water into
the sea, you cannot get the same tumblerful out again.”

Commentary on Maxwell’s demon has become a minor industry among phys-
icists. The demon has been the subject of countless papers and even a few books.
Some of these authors have apparently not trusted Maxwell’s sagacity, and tried
to invent a better demon. They have been clever, but not clever enough: Maxwell
and the second law have been upheld.

Entropy and Disorder

We come now to Boltzmann’s role in the development of statistical mechanics,
supporting and greatly extending the work already done by Clausius and Max-
well. Boltzmann’s first major contribution, in the late 1860s, was to broaden Max-
well’s concept of a molecular distribution function. He established that the factor
for determining the probability that a system of molecules has a certain total
(kinetic + potential) energy E is proportional to e ?E, with h a parameter that
depends only on temperature. This “Boltzmann factor” has become a fixture in
all kinds of calculations that depend on molecular distributions, not only for
physicists but also for chemists, biologists, geologists, and meteorologists.

Boltzmann assumed that his statistical factor operates in a vast “phase space”
spanning all the coordinates and all the velocity components in the system. Each
point in the phase space represents a possible state of the system in terms of the
locations of the molecules and their velocities. As the system evolves, it follows
a path from one of these points to another.

Boltzmann constructed his statistical theory by imagining a small element, call
it dw, centered on a point in phase space, and then assuming that the probability
dP for the system to be in a state represented by points within an element is
proportional to the statistical factor e 2£ multiplied by the element dw:

dP x e hEdy,
or

dP = Ae hEdw, (7)
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where A is a proportionality constant. Probabilities are always defined so that
when they are added for all possible events they total one. Doing the addition of
the above dPs with an integration, we have

[ap—1

so integration of both sides of equation (7),
fdP = fAe’hEdw = AJe’hEdw,
leads to
1= AJ.e’hEdw,

and this evaluates the proportionality constant A,

1
A= —— (8)
f e hEdw
Substituting in equation (7), we have
~hE
J e hEdw

This is an abstract description, but it is also useful. If we can express any
physical quantity, say the entropy S, as a function of the molecular coordinates
and velocities, then we can calculate the average entropy S statistically by simply
multiplying each possible value of S by its corresponding probability dP, and
adding by means of an integration,

5= [sar (10)

So far, Boltzmann’s statistical treatment was limited in that it concerned re-
versible processes only. In a lengthy and difficult paper published in 1872, Boltz-
mann went further by building a molecular theory of irreversible processes. He
began by introducing a molecular velocity distribution function f that resembled
Maxwell’s function of the same name and symbol, but that was different in the
important respect that Boltzmann’s version of f could evolve: it could change
with time.
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Boltzmann firmly believed that chaotic collisions among molecules are re-
sponsible for irreversible changes in gaseous systems. Taking advantage of a
mathematical technique developed earlier by Maxwell, he derived a complicated
equation that expresses the rate of change in fresulting from molecular collisions.
The equation, now known as the Boltzmann equation, justifies two great propo-
sitions. First, it shows that when f has the Maxwellian form seen in equation (5)
its rate of change equals zero. In this sense, Maxwell’s function expresses a static
or equilibrium distribution.

Second, Boltzmann’s equation justifies the conclusion that Maxwell’s distri-
bution function is the only one allowed at equilibrium. To make this point, he
introduced a time-dependent function, which he later labeled H,

H= f(fln f)do, (11)

in which do = dv,dv,dv,. The H-function, teamed with the Boltzmann equation,
leads to Boltzmann’s “H-theorem,” according to which H can never evolve in an
. . . . . . . . dH .

increasing direction: the rate of change in H, that is, the derivative a is either

negative (H decreasing) or zero (at equilibrium),
— =o. (12)

Thus the H-function follows the irreversible evolution of a gaseous system, al-
ways decreasing until the system stops changing at equilibrium, and there Boltz-
mann could prove that f necessarily has the Maxwellian form.

As Boltzmann’s H-function goes, so goes the entropy of an isolated system
according to the second law, except that H always decreases, while the entropy
S always increases. We allow for that difference with a minus sign attached to
H and conclude that

S « —H. (13)

In this way, Boltzmann’s elaborate argument provided a molecular analogue of
both the entropy concept and the second law.

There was, however, an apparent problem. Boltzmann’s argument seemed to
be entirely mechanical in nature, and in the end to be strictly reliant on the
Newtonian equations of mechanics or their equivalent. One of Boltzmann'’s
Vienna colleagues, Joseph Loschmidt, pointed out (in a friendly criticism) that
the equations of mechanics have the peculiarity that they do not change when
time is reversed: replace the time variable t with —f, and the equations are un-
changed. In Loschmidt’s view, this meant that physical processes could go back-
ward or forward with equal probability in any mechanical system, including
Boltzmann’s assemblage of colliding molecules. One could, for example, allow
the molecules of a perfume to escape from a bottle into a room, and then expect
to see all of the molecules turn around and spontaneously crowd back into the
bottle. This was completely contrary to experience and the second law. Losch-
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midt concluded that Boltzmann’s molecular interpretation of the second law,
with its mechanical foundations, was in doubt.

Boltzmann replied in 1877 that his argument was not based entirely on me-
chanics: of equal importance were the laws of probability. The perfume mole-
cules could return to the bottle, but only against stupendously unfavorable odds.
He made this point with an argument that turned out to be cleverer than he ever
had an opportunity to realize. He proposed that the probability for a certain
physical state of a system is proportional to a count of “the number of ways the
inside [of the system] can be arranged so that from the outside it looks the same,”
as Richard Feynman put it. To illustrate what this means, imagine two vessels
like those guarded by Maxwell’s demon. The entire system, including both ves-
sels, contains two kinds of gaseous molecules, A and B. We obtain Boltzmann’s
count by systematically enumerating the number of possible arrangements of
molecules between the vessels, within the restrictions that the total number of
molecules does not change, and the numbers of molecules in the two vessels are
always the same.

The pattern of the calculation is easy to see by doing it first for a ridiculously
small number of molecules, and then extrapolating with the rules of “combina-
torial” mathematics to systems of realistic size. Suppose, then, we have just eight
noninteracting molecules, four As and four Bs, with four molecules (either A or
B) in each vessel. One possibility is to have all the As in vessel 1 and all the Bs
in vessel 2. This allocation can also be reversed: four As in vessel 2 and four Bs
in vessel 1. Two more possibilities are to have three As and one B in vessel 1,
together with one A and three Bs in vessel 2, and then the reverse of this allo-
cation. The fifth, and last, allocation is two As and two Bs in both vessels; re-
versing this allocation produces nothing new. These five allocations are listed in
Table 13.2 in the first two columns.

Boltzmann asks us to calculate the number of molecular arrangements allowed
by each of these allocations. If we ignore rearrangements within the vessels, the
first two allocations are each counted as one arrangement. The third allocation
has more arrangements because the single B molecule in vessel 1 can be any one
of the four Bs, and the single A molecule in vessel 2 can be any of the four As.
The total number of arrangements for this allocation is 4 X 4 = 16. Arrangements
for the fourth allocation are counted similarly. The tally for the fifth allocation
(omitting the details) is 36. Thus for our small system the total “number of ways
the inside can be arranged so that from the outside it looks the same,” a quantity
we will call W, is

W=1+1+ 16 + 16 + 36 = 70.

Table 13.2

Vessel 1 Vessel 2 Number of arrangements
4A 4B 1
4B 4A 1

3A + B A + 3B 16

A + 3B 3A+B 16

2A + 2B 2A + 2B 36

70
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This result can be obtained more abstractly, but with much less trouble, by
taking advantage of a formula from combinatorial mathematics,

N!

W=——"
Ny ! Ng!

(14)

where N = N, + Np and the “factorial” notation ! denotes a sequence of products
such as 4! = 1-2-3-4. For the example, Ny = 4, Ng = 4, N = N, + N = 8, and

8! (1-2:3:4:56:7'8) _
414! (1-2-3-4)(1-2-3-4)

In Boltzmann’s statistical picture, our very small system wanders from one of
the seventy arrangements to another, with each arrangement equally probable.
About half the time, the system chooses the fifth allocation, in which the As and
Bs are completely mixed, but there are two chances in seventy that the system
will completely unmix by choosing the first or the second allocation.

An astonishing thing happens if we increase the size of our system. Suppose
we double the size, so Ny = 8, Ng = 8, N = Ny + Ny = 16, and

= m = 12870.
There are now many more arrangements possible. We can say that the system
has become much more “disordered.” As is now customary, we will use the term
“disorder” for Boltzmann’s W.

The beauty of the combinatorial formula (14) is that it applies to a system of
any size, from microscopic to macroscopic. We can make the stupendous leap
from an N absurdly small to an N realistically large and still trust the simple
combinatorial calculation. Suppose a molar amount of a gas is involved, so N =
6 X 1023, Ny = 3 X 1023, N3 = 3 X 1023, and

(6 X 1023)!
(3 X 1023)!(3 X 1023)!

The factorials are now enormous numbers, and impossible to calculate directly.
But an extraordinarily useful approximation invented by James Stirling in the
eighteenth century comes to the rescue: if N is very large (as it certainly is in our
application) then
In Nl = NIn N — N.
Applying this shortcut to the above calculation of the disorder W, we arrive at
InW = 4 X 1023

or

W = g4 x 102
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This is a fantastically large number; its exponent is 4 X 1023. We cannot even
do it justice by calling it astronomical. This is the disorder—that is, the total
number of arrangements—in a system consisting of %z mole of one gas thoroughly
mixed with %2 mole of another gas. In one arrangement out of this incomprehensi-
bly large number, the gases are completely unmixed. In other words, we have one
chance in e* * 19 to observe the unmixing. There is no point in expecting that
to happen. Now it is clear why, according to Boltzmann, the perfume molecules
do not voluntarily unmix from the air in the room and go back into the bottle.

Boltzmann found a way to apply his statistical counting method to the distri-
bution of energy to gas molecules. Here he was faced with a special problem: he
could enumerate the molecules themselves easily enough, but there seemed to
be no natural way to count the “molecules” of energy. His solution was to assume
as a handy fiction that energy was parceled out in discrete bundles, later called
energy “quanta,” all carrying the same very small amount of energy. Then, again
following the combinatorial route, he analyzed the statistics of a certain number
of molecules competing for a certain number of energy quanta. He found that a
particular energy distribution, the one dictated by his exponential factor e 1,
overwhelmingly dominates all the others. This is, by an immense margin, the
most probable energy distribution, although others are possible.

Boltzmann also made the profound discovery that when he allowed his energy
quanta to diminish to zero size, the logarithm of his disorder count W was pro-
portional to his H-function inverted with a minus sign, that is,

InW o« — H (15)

Then, in view of the connection between the H-function and entropy (the pro-
portionality (13)), he arrived at a simple connection between entropy and
disorder,

S o« lnW. (16)

Boltzmann’s theoretical argument may seem abstract and difficult to follow,
but his major conclusion, the entropy-disorder connection, is easy to compre-
hend, at least in a qualitative sense. Order and disorder are familiar parts of our
lives, and consequently so is entropy. Water molecules in steam are more dis-
ordered than those in liquid water (at the same temperature), and water mole-
cules in the liquid are in turn more disordered than those in ice. As a result,
steam has a larger entropy than liquid water, which has a larger entropy than ice
(if all are at the same temperature). When gasoline burns, the order and low
entropy of large molecules such as octane are converted to the disorder and
higher entropy of smaller molecules, such as carbon dioxide and water, at high
temperatures. A pack of cards has order and low entropy if the cards are sorted,
and disorder and higher entropy if they are shuffled. Our homes, our desks, even
our thoughts have order or disorder. And entropy is there too, rising with dis-
order, and falling with order.

Entropy and Probability

We can surmise that Gibbs developed his ideas on statistical mechanics more or
less in parallel with Boltzmann, although in his deliberate way Gibbs had little
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to say about the subject until he published his masterpiece, Elementary Princi-
ples in Statistical Mechanics, in 1901. That he was thinking about the statistical
interpretation of entropy much earlier is clear from his incidental remark that
“an uncompensated decrease of entropy seems to be reduced to improbability.”
As mentioned, Gibbs wrote this in 1875 in connection with a discussion of the
mixing and unmixing of gases. Gibbs’s speculation may have helped put Boltz-
mann on the road to his statistical view of entropy; at any rate, Boltzmann in-
cluded the Gibbs quotation as an epigraph to part 2 of his Lectures on Gas Theory,
written in the late 1890s.

Gibbs’s Elementary Principles brought unity to the “gas theory” that had been
developed by Boltzmann, Maxwell, and Clausius, supplied it with the more el-
egant name “statistical mechanics,” and gave it a mathematical style that is pre-
ferred by today’s theorists. His starting point was the “ensemble” concept, which
Maxwell had touched on in 1879 in one of his last papers. The general idea is
that averaging among the many states of a molecular system can be done con-
veniently by imagining a large collection—an ensemble—of replicas of the sys-
tem, with the replicas all exactly the same except for some key physical prop-
erties. Gibbs proposed ensembles of several different kinds; the one I will
emphasize he called “canonical.” All of the replicas in a canonical ensemble
have the same volume and temperature and contain the same number of mole-
cules, but may have different energies.

Averaging over a canonical ensemble is similar to Boltzmann’s averaging pro-
cedure. Gibbs introduced a probability P for finding a replica in a certain state,
and then, as in Boltzmann’s equation (7), he calculated the probability dP that
the system is located in an element of phase space,

dP = Pdw. (17)

These probabilities must total one when they are added by integration,
J dP = 1. (18)

Gibbs, like Boltzmann, was motivated by a desire to compose a statistical mo-
lecular analogy with thermodynamics. Most importantly, he sought a statistical
entropy analogue. He found that the simplest way to get what he wanted from a
canonical ensemble was to focus on the logarithm of the probability, and he
introduced

S=—klInP (19)

for the entropy of one of the replicas belonging to a canonical ensemble. The
constant k (Gibbs wrote it 1/K) is a very small number with the magnitude 1.3807
X 10723 if the energy unit named after Joule is used. It is now known as “Boltz-
mann’s constant” (although Boltzmann did not use it, and Max Planck was the
first to recognize its importance).

In Gibbs’s scheme, as in Boltzmann'’s, the probability P is a mathematical tool
for averaging. To calculate an average energy E we simply multiply each energy
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E found in a replica by the corresponding probability dP = Pdw and add by
integrating

E= jPEdw. (20)

The corresponding entropy calculation averages the entropies for the replicas
given by equation (19),

%]
Il

JP(—]( In P)dw (21)
—k fp In Pdow.

The constant k is pervasive in statistical mechanics. It not only serves in
Gibbs’s fundamental entropy equations, but it is also the constant that makes
Boltzmann’s entropy proportionality (16) into one of the most famous equations
in physics,

S =kInW. (22)

The equation is carved on Boltzmann’s grave in Vienna’s Central Cemetery (in
spite of the anachronistic k).

We now have two statistical entropy analogues, Gibbs’s and Boltzmann’s, ex-
pressed in equations (21) and (22). The two equations are obviously not mathe-
matically the same. Yet they apparently calculate the same thing, entropy. One
difference is that Gibbs used probabilities P, quantities that are always less than
one, while Boltzmann based his calculation on the disorder W, which is larger
than one (usually much larger). It can be proved (in more space than we have
here) that the two equations are equivalent if the system of interest has a single
energy.

Gibbs proved that a system represented by his canonical ensemble does have
a fixed energy to an extremely good approximation. He calculated the extent to
which the energy fluctuates from its average value. For the average of the square
of this energy fluctuation he found kT2C,, where k is again Boltzmann’s constant,
T is the absolute temperature, and C, is the heat capacity (the energy required
to increase one mole of the material in the system by one degree) measured at
constant volume. Neither T nor C, is very large, but k is very small, so the energy
fluctuation is also very small. A similar calculation of the entropy fluctuation
gave kC,, also very small.

Thus the statistical analysis, either Gibbs’s or Boltzmann'’s, arrives at an energy
and entropy that are, in effect, constant. They are, as Gibbs put it, “rational foun-
dations” for the energy and entropy concepts of the first and second laws of
thermodynamics.

Note one more important use of the ever-present Boltzmann constant k. Gibbs
proved that the h factor appearing in Boltzmann’s statistical factor e ¥ is related
to the absolute temperature T by h = é,, so the Boltzmann factor, including the
temperature, is eﬁTET.
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Boltzmann and Gibbs Updated

Boltzmann and Gibbs gave us what is now called the “classical” version of sta-
tistical mechanics. With the advent of quantum theory in the early 1900s, some
changes had to be made. The main problem was that in the view of nineteenth-
century physics, molecules exist in a continuum of mechanical states, while
quantum theory was founded on the principle that molecules are allowed only
certain discrete states and no others. This means that the energy variable E,
which can have continuous values in Boltzmann’s and Gibbs’s equations, must
be replaced by the particular values E;, E,, etc., one for each quantum state
allowed to the molecular system.

The necessary repairs to the clasEsical equatiorllgs are remarkably easy to make.

The classical Boltzmann factor e i becomes e ir in quantum theory, with i =

E
1,2, etc. The integral of Boltzmann factors, je’?r dw in equation (9) (remember

1 E,
that h = H,], becomes a sum of Boltzmann factors ».e @ covering all of the sys-

tem’s accessible quantum states. This summation plays a leading role in modern
statistical mechanics. It is called a “partition function,” and is represented with
the symbol Z,

Z= Ee*%. (23)

Thus Boltzmann’s classical probability equation (9) adapted for quantum theory
so it calculates the probability P; for the ith quantum state is

Ej

€ kT

The entropy S; of the ith quantum state, adapted from the classical equation (19),
is

Si = —kln Pi (25)

and the average entropy for a canonical ensemble is calculated with an adapta-
tion of equation (21),

S=-k>.P;In P, (26)
The average-energy calculation, an adaptation of equation (20), is
E = ZPI'EI" (2 7)

The keys to this version of statistical thermodynamics are equations (24) and
(25), and they in turn require the energies E; Each system has its own hierar-
chical set of energies specified by the energy equations of quantum theory and
the precise numerical data of molecular spectroscopy.
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Combatants

When Boltzmann published the second volume of his Lectures on Gas Theory
in 1898, he was not optimistic about its reception. The molecular basis for his
theory was being attacked by eminent and not-so-eminent critics. “I am con-
vinced that these attacks are merely based on a misunderstanding,” he wrote in
his forward to the Lectures, “and that the role of [molecular] gas theory has not
yet been played out. . .. In my opinion it would be a great tragedy for science if
the theory of gases were temporarily thrown into oblivion because of a momen-
tary hostile attitude toward it, as was for example the wave theory [of light]
because of Newton’s authority.”

Boltzmann’s most prominent adversaries were Ernst Mach, Wilhelm Ostwald,
and Georg Helm. Ostwald believed that a grand scheme could be formulated that
encompassed all of the fields of science, beginning with the energy concept as a
unifying principle. He became convinced that energy fluxes and transformations
determined the laws of physics and chemistry. Molecules and atoms were fig-
ments of the mathematics; energy in all its forms was the universal reality. Helm
also adhered to Ostwald’s school of “energetics.”

Mach, the most able and obstinate of Boltzmann’s opponents, did not sub-
scribe to energetics, but he was an ardent antiatomist. He could not accept atoms
and molecules because he could find no direct evidence for their existence. If
atoms could not be seen, Mach argued, “we have as little right to expect from
them, as from the symbols of algebra, more than we put into them, and certainly
not more enlightenment than from experience itself.” Boltzmann’s explanation
of the second law as a consequence of the molecular chaos was superficial. “In
my opinion,” Mach wrote, “the roots of this (entropy) law lie much deeper, and
if success were achieved in bringing about agreement between the molecular
hypothesis and the entropy law this would be fortunate for the hypothesis, but
not for the entropy law.”

At about the same time Mach made these remarks, Boltzmann published his
Principles of Mechanics, which began with the epigraph,

Bring forward what is true
Write it so that it’s clear
Defend it to your last breath!

This could have been Boltzmann’s battle cry in the war against the antiatomists.
Arnold Sommerfeld, a student at the time, and later a prominent quantum phys-
icist, witnessed a skirmish in the war at an 1895 conference of natural scientists
in Libeck, and recorded this picture of Boltzmann in combat: “The paper on
Energetik [energetics] was given by Georg Helm from Dresden: behind him stood
Wilhelm Ostwald, behind both the philosophy of Ernst Mach, who was not pres-
ent. The opponent was Boltzmann, seconded by Felix Klein. Both externally and
internally, the battle between Boltzmann and Ostwald resembled the bull with
the supple fighter. However, this time the bull was victorious over the torero in
spite of the latter’s artful combat. The arguments of Boltzmann carried the day.
We, the young mathematicians of that time, were all on Boltzmann’s side.”
Boltzmann had the sympathies of the “young mathematicians,” but the Mach-
Ostwald forces prevailed through the turn of the century. Then, in 1905, while
Boltzmann was dining with Mrs. Hearst in California and being seduced by her
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piano, a twenty-six-year-old Albert Einstein wrote a theoretical paper that
brought the beginning of the end to the war against molecules. Einstein argued
that molecules of a certain kind could actually be seen, counted, and tracked. He
had in mind “colloidal” particles, which can be dispersed in an aqueous or other
liquid medium and remain suspended there permanently, like oxygen and nitro-
gen molecules in Earth’s atmosphere. In size they can be some five orders of
magnitude larger than ordinary molecules, but Einstein proved with Boltzmann’s
method that all molecules, large and small, display the same kind of statistical
behavior. He derived an equation for the average straight-line distance A a col-
loidal particle travels in its random motion during a period of time t. Assuming
that the particles are all spherical and prepared with the same radius r, Einstein
obtained

,_ BT
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where R is a constant that appears in the equation relating the pressure, volume,
and temperature of an ideal gas, the “gas constant,” T is the absolute temperature,
N, is Avogadro’s number, and 7 is a coefficient that measures the viscosity of the
liquid medium in which the particles move.

Einstein appreciated that colloidal particles are large enough to be seen with
a microscope (at least by scattered light in an “ultramicroscope”), and he sur-
mised that his equation could be subjected to a direct experimental test, which
would decide the contentious issue of the reality of atoms and molecules. The
man who had the patience and skill to make the crucial experimental test, Jean
Perrin, was at first unaware of Einstein’s theory. But, like Einstein, he believed
that colloidal particles behave like mega-molecules. In a series of experiments
started in 1906 he carefully demonstrated an analogy between the equilibrium
distribution of colloidal particles in resin suspensions and the distribution of gas
molecules in the atmosphere. Einstein’s equation finally came to Perrin’s atten-
tion in 1909, and he proved its validity by calculating Avogadro’s number N,
beginning with measured values of the other parameters in the equation. His
result, N, = 7 X 1023, was in reasonable agreement with other determinations
of Ny, including one (N, = 6 X 102%) obtained by Max Planck in 1900 with a
completely different theoretical and experimental basis.

Einstein’s theory, Perrin’s meticulous experiments, and other experiments,
such as J. J. Thomson’s discovery of the electron and Ernest Rutherford’s inves-
tigations of radioactivity, finally left no doubt about the reality of molecules. In
1909, Ostwald surrendered: “I am now convinced [he wrote in the preface to his
Outlines of General Chemistry] that we have recently become possessed of ex-
perimental evidence of the discrete or grained nature of matter, which the atomic
hypothesis sought in vain for hundreds and thousands of years.” Mach was ap-
parently never persuaded.

When Boltzmann returned to Vienna from California in 1905, he was unaware
of Einstein’s paper, and Perrin’s experiments were a few years in the future. No
doubt he thought about engaging the enemy once again, but he did not have the
chance. Sometime in early 1906 he met his final, inescapable depression. During
the spring and summer of 1906, his mental state grew steadily worse. “Boltzmann
had announced lectures for the summer semester,” Mach wrote later, “but he had
to cancel them because of his nervous condition. In informed circles one knew
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that Boltzmann would most probably never be able to exercise his professorship
again. One spoke of how necessary it was to keep him under surveillance, for he
had already made attempts at suicide.”

Boltzmann, Henriette, and Elsa went to the resort town of Duino near Trieste
for a summer holiday. A few days before they were to return to Vienna Boltzmann
committed suicide by hanging himself.
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RELATIVITY

Historical Synopsis

Relativity begins with a modest question: How does your physics
relate to my physics if we are moving relative to each other? Galileo
gave one answer: We find exactly the same laws of mechanics if our
relative speed is constant. Newton said the same thing but more
elaborately by referring all motion—yours, mine, and everyone else’s—
to an absolute frame of reference in space and time. Nineteenth-
century theorists found Newton’s absolute frame a convenient place
to locate the hypothetical medium they called the ether, which
propagated light and other electromagnetic waves.

Ether physics was a prominent endeavor among Victorian
scientists, but it had fatal flaws. For one thing, ether physicists
could never agree on a standard model for the mechanical structure
of the ether. Also questionable was the concept of motion through
an ether anchored in Newton’s absolute frame of reference. A series
of experiments performed by Albert Michelson and Edward Morley
in the 1880s that aimed at detecting Earth’s motion relative to an
“ether sea” was an impressive failure. The stubborn fact, always
observed, is that the speed of light in empty space is the same
regardless of the speed and direction of the light source.

A young patent examiner in Bern, Switzerland, named Albert
Einstein published a paper in 1905 that resolved the ether problem
by simply ignoring it. Einstein postulated two empirical principles
that could not be denied: constancy of the speed of light, and a
generalization of Galileo’s relativity principle to include
electromagnetic and optical phenomena. Beginning with these two
principles, and without recourse to the ether concept, he proved
that, for observers moving relative to each other at constant speeds,
length and time measurements are different, perhaps drastically
different if the speed is close to the speed of light. For example, if a
stationary observer watches a clock moving at high speed he or she
sees it ticking more slowly than an observer traveling with the clock.
In addition to this “time dilation,” Einstein’s 1905 paper insisted
that the length dimension of the clock, or of anything else, is
contracted in the direction of motion for the stationary observer.

Einstein designed his 1905 “special” theory of relativity with two
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limitations: it focused on “inertial” systems, those moving at
constant relative speeds; and although the theory was compatible
with Maxwell’s equations for the electromagnetic field, its scope did
not include another great theory from the past, Newton’s gravitation
theory. Einstein soon realized that a “general” theory of relativity
must recognize both gravitational effects and noninertial systems—
that is, those accelerating relative to each other. His first step in that
direction, later called the “equivalence principle,” asserted
Einstein’s “happiest thought,” that acceleration and gravitation are
intimately related to each other: where there is acceleration there are
artificial gravitational effects that are indistinguishable from the real
thing.

As he proceeded with the equivalence principle as his guide,
Einstein became aware that space and time are peculiarly warped in
accelerating systems; Euclidean formulas such as the calculation of
the circumference-to-diameter ratio for a circle as w are slightly in
error. This gave him the vital clue that a general theory of relativity
had to be based on non-Euclidean geometry. As it happened, a
complete theory of non-Euclidean spaces, developed in the 1850s by
Bernhard Riemann, provided just the right mathematical tools for
Einstein to construct a theoretical edifice that linked geometry and
gravitation. At the same time, he found a generalized equation of
motion that was also determined in the Riemann manner by the
geometry. His motto, physics as geometry, was taken up by many of
his successors.
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Adventure in Thought
Albert Einstein

Like Columbus

Modern theoretical physicists like to think of themselves as intellectual explor-
ers, and the greatest of them have indeed discovered new and exotic physical
worlds, both microscopic and macroscopic. Travel in these intellectually distant
realms has proved hazardous because it takes the explorer far from the world of
ordinary experience. Werner Heisenberg, one of the generation of theorists who
found the way to the quantum realm, the strangest of all the physical worlds,
likened the intellectual expeditions of modern physics to the voyage of Colum-
bus. Heisenberg found Columbus’s feat remarkable not because Columbus tried
to reach the East by sailing west, nor because he handled his ships masterfully,
but because he decided to “leave the known regions of the world and sail west-
ward, far beyond the point from which his provisions could have got him back
home again.” The man who ranks above all others as an intellectual Columbus
is Albert Einstein. He took such expeditions far beyond “the safe anchorage of
established doctrine” into treacherous, uncharted seas. Not only was he a pioneer
in the quantum realm; he discovered and explored much of the territory of mod-
ern physics.

These great explorations were started, and to a large extent completed, when
Einstein was in his twenties and working in a quiet corner of the scientific world,
the Swiss Patent Office in Bern. Life in the patent office, as Einstein found it,
was a “kind of salvation.” The work was interesting, and not demanding; without
the pressures of an academic job, he was free to exploit his marvelous ability “to
scent out that which was able to lead to fundamentals and to turn aside from
everything else, from the multitude of things which clutter up the mind and
divert it from the essential.”

Einstein had tried to place himself higher professionally, but his prospects
after graduating from the Ziirich Polytechnic Institute (since 1911 known as the
Swiss Technical University or ETH) were not brilliant. He had disliked and op-
posed most of his formal education. The teachers in his Munich gymnasium said
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he would never amount to anything, and deplored his disrespectful attitude. The
gymnasium experience aroused in Einstein a profound distrust of authority, par-
ticularly the kind wielded by Prussian educators. Ronald Clark, one of Einstein’s
biographers, describes the Luitpold Gymnasium Einstein attended in Munich as
probably “no better and no worse than most establishments of its kind: It is true
that it put as great a premium on a thick skin as any British public school but
there is no reason to suppose that it was particularly ogreish. Behind what might
be regarded as not more than normal discipline it held, in reserve, the ultimate
weapon of appeal to the unquestionable Prussian god of authority. Yet boys, and
even sensitive boys, have survived as much.”

Einstein’s father, Hermann, was a cheerful optimist—“exceedingly friendly,
mild and wise,” as Einstein recalled him—but prone to business failures. One of
these drove the family from Munich to Milan, with Einstein left behind to com-
plete his gymnasium courses. He had few friends among his classmates, and now
with his family gone, he could no longer bear life in Munich, or anywhere else
in Germany. He abruptly joined his family members in Italy and informed them
that he planned to surrender his German citizenship. That meant no gymnasium
diploma, but Einstein planned to do the necessary studying himself to prepare
for the Ziirich Poly entrance examination. Life in Italy, and later in Switzerland,
was free and promising again, and it “transformed the quiet boy into a commu-
nicative young man,” writes Abraham Pais, a recent Einstein biographer. For a
few happy months, Einstein celebrated his release from a dismal future by roam-
ing northern Italy.

A temporary setback, failing marks in the Poly admission examination, proved
to be a blessing. To prepare for a second try, Einstein attended a Swiss cantonal
school in Aarau, where the educational process was, for a change, a joy. In Aarau,
Einstein lived with the Winteler family. Jost Winteler was the head of the school,
and “a somewhat casual teacher,” writes Clark, “as ready to discuss work or
politics with his pupils as his fellow teachers. [He] was friendly and liberal-
minded, an ornithologist never happier than when he was taking his students
and his own children for walks in the nearby mountains.” Even in old age, Ein-
stein recalled vividly his year in Aarau: “This school left an indelible impression
on me because of its liberal spirit and the unaffected thoughtfulness of the teach-
ers, who in no way relied on external authority.”

In early 1896, Einstein paid a fee of three marks and was issued a document
declaring that he was no longer a German citizen; he would be a stateless person
for the next five years. Later in the year he passed the Ziirich Poly examination
with good marks and began the four-year preparation of a fachlehrer, a special-
ized high-school teacher. Hermann had suffered another business disaster, so
Einstein’s means were now limited—a monthly allowance of one hundred Swiss
francs, from which he saved twenty francs to pay for his Swiss naturalization
papers. But there was nothing meager about his vision of the future. In a letter
to Frau Winteler, he wrote, “Strenuous labor and the contemplation of God’s
nature are the angels which, reconciling, fortifying and yet ceaselessly severe,
will guide me through the tumult of life.”

On the whole, Einstein did not respond with much enthusiasm to his course
work at the Ziirich Poly. He recognized that some of the mathematics courses
were excellent—one of his mathematics professors, Hermann Minkowski, later
made vital contributions to the mathematical foundations of the theory of rela-
tivity—but the courses in experimental and theoretical physics were uninspiring.
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At first he was fascinated by laboratory work, but his experimental projects rarely
met with the approval of his professor, Heinrich Weber. In exasperation, Weber
finally told his pupil, “You are a smart boy, Einstein, a very smart boy. But you
have one great fault: you do not let yourself be told anything.”

Einstein responded by simply staying away from classes and reading in his
rooms the great nineteenth-century theorists, Kirchhoff, Helmholtz, Hertz, Max-
well, Hendrik Lorentz, and Boltzmann. Fortunately, the liberal Ziirich program
allowed such independence. “In all there were only two examinations,” Einstein
writes in his autobiographical notes, “aside from these, one could just about do
as one pleased. . . . This gave one freedom in the choice of pursuits until a few
months before the examination, a freedom which I enjoyed and have gladly taken
into the bargain the bad conscience connected with it as by far the lesser evil.”

The punishment appears to have been more than a bad conscience, however.
Preparation for the final examination was a nightmare, and the outcome suc-
cessful largely due to the help of a friend, Marcel Grossmann, who had a talent
for taking impeccable lecture notes. Einstein tells us, again in his autobiograph-
ical notes, that the pressure of that examination “had such a deterring effect [on
me] that, after I had passed . .. found consideration of any scientific problems
distasteful for an entire year.” And he adds this thought concerning the heavy
hand the educational system lays on a student’s developing intellectual interests:
“It is, in fact, nothing short of a miracle that the modern methods of instruction
have not yet entirely strangled the holy curiosity of inquiry; for this delicate little
plant, aside from stimulation, stands mainly in need of freedom.”

Einstein graduated from the Poly in the fall of 1900, and a few months later
passed two important milestones in his life: he published his first paper—in
volume 4 of the Annalen der Physik, which contained, just forty pages later, Max
Planck’s inaugural paper on quantum theory—and he received his long-awaited
Swiss citizenship. Although he was to leave Switzerland nine years later, and
did not return to settle, Einstein never lost his affection for the humane, demo-
cratic Swiss and their splendid country, “the most beautiful corner on Earth I
know.”

He was now job hunting. An expected assistantship at the Ziirich Poly under
Weber never materialized. (“Weber . . . played a dishonest game with me,” Ein-
stein wrote to a friend.) Two temporary teaching positions followed, and then
with the help of Marcel Grossmann’s father, Einstein was appointed technical
expert third class at the Bern Patent Office in 1902.

Now that he had steady employment, Einstein thought of marriage, and a year
later he and Mileva Maric, a classmate at the Ziirich Poly, were married. Mileva
came from a Slavic-Serbian background. She was pretty, tiny in stature, and
slightly crippled from tuberculosis in childhood. She had hoped to follow a ca-
reer in science, and went to Ziirich because Switzerland was the only German-
speaking country at the time admitting women to university studies. The couple
became lovers soon after both entered the program at the Ziirich Poly. By 1901,
the affair had deepened: Mileva was pregnant. In 1902, a daughter, Liserl, was
born at Mileva’s parents’ home in Novi Sad. When she returned to Ziirich, Mileva
did not bring the baby, and in 1903, shortly after Einstein and Mileva were mar-
ried, the girl was apparently given up for adoption.

The marriage was never a success. After the trials of her pregnancy, a difficult
birth, and the loss of the child, Mileva’s career plans collapsed. She was jealous
of Einstein’s freewheeling friends, and prone to periods of depression. On his



206 Great Physicists

side, Einstein was not a sensitive husband; too much of his intellectual and
emotional strength was spent on his work to make a difficult marriage succeed.
In old age, Einstein recalled that he had entered the marriage with a “sense of
duty.” He had, he said, “with an inner resistance, embarked on something that
simply exceeded my strength.”

Precursors

In 1905, when he was twenty-six, happily employed in the Bern Patent Office,
and yet to make the acquaintance of (another) theoretical physicist, Einstein pub-
lished three papers in the Annalen der Physik. This was volume 17 of that jour-
nal, and it was, as Max Born remarks, “one of the most remarkable volumes in
the whole scientific literature. It contains three papers by Einstein, each dealing
with a different subject and each today acknowledged to be a masterpiece.”

The first of the 1905 papers was a contribution to quantum theory, which
developed a theory of the photoelectric effect by picturing light beams as showers
of particles, or “quanta.” I will have more to say about that revolutionary paper
in chapter 15. The second paper, on the reality of molecules observed as colloidal
particles, was mentioned in chapter 13 above. Our concern now is with the third
paper, which presented Einstein’s version of the theory of relativity.

By the time Einstein entered the field, relativity theory had a long and distin-
guished history. Einstein counted among his precursors some of the giants: Ga-
lileo, Newton, Maxwell, and Lorentz. Galileo stated the relativity principle ap-
plied to mechanics in his usual vividly observed style:

Shut yourself up with some friend below decks on some large ship, and have
with you some flies, butterflies, and other flying animals. Have a large bowl of
water with some fish in it; hang up a bottle that empties drop by drop into a
wide vessel beneath it. With the ship standing still, observe carefully how the
little animals fly with equal speeds to all sides of the cabin. The fish swim
indifferently in all directions; the drop falls into the vessel beneath; and in
throwing something to your friend, you need to throw it no more strongly in
one direction than another, the distances being equal; jumping with your feet
together, you pass equal spaces in every direction. When you have observed all
these things carefully (though there is no doubt that when the ship is standing
still everything must happen this way), have the ship proceed with any speed
you like, so long as the motion is uniform and not fluctuating this way and that
[not accelerating]. You will discover not the least change in all the effects
named, nor could you tell from any of them whether the ship was moving or
standing still.

Galileo’s ship, or any other system moving at constant speed, is called in mod-
ern terminology an “inertial frame of reference,” or just an “inertial frame,” be-
cause in it Galileo’s law of inertia is preserved. Galileo’s relativity principle,
generalized, tells us that the laws of mechanics are exactly the same in any in-
ertial frame (“nor could you tell from any of the [observed effects] whether the
ship was moving or standing still”).

Newton'’s statement of the relativity principle, which he derived from his three
laws of motion, was similar, except that it raised the later contentious issue of
“space at rest”: “The motions of bodies included in a given space are the same
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among themselves, whether that space is at rest, or moves uniformly forwards in
a right [straight] line without any circular motion.” At rest with respect to what?
Newton believed in the concept of absolute space relative to which all motion,
or lack of motion, could be referred. In the same vein, he adopted an absolute
time frame in which all motion could be measured; one time frame served all
observers.

Maxwell and his contemporaries accepted Newton’s concept of absolute space,
and they filled it with the all-pervading medium they called ether. The principal
role of the ether for nineteenth-century theorists was to provide a mechanism for
the propagation of light and other electromagnetic fields through otherwise
empty space. The ether proved to be a versatile theoretical tool—too versatile.
British and Continental theoreticians could never reach a consensus concerning
which of the many ether models was the standard one.

The man who saw ether physics and its connections with field theory most
clearly, and at the same time helped Einstein find his way, was Hendrik Lorentz,
professor of theoretical physics at the University of Leiden from 1877 to 1912.
Lorentz was revered by generations of young physicists for his remarkable ability
to play the dual roles of creative theorist and sympathetic critic. Like Maxwell
and Gibbs, it was not his style to gather a school of research students, yet phys-
icists from all over the world attended his lectures on electrodynamics. After the
turn of the century, he was recognized by one and all as the leader of the inter-
national physics community. Beginning in 1911, he acted as president of the
Solvay Conferences in Brussels, named after Ernest Solvay, an industrial chemist
with formidable wealth and an amateur’s interest in physics, who paid the bill
for the participants’ elegant accommodations at the conferences. No one but Lor-
entz could bring harmony to these international gatherings, which Einstein liked
to call “Witches’ Sabbaths.” “Everyone remarked on [Lorentz’s] unsurpassed
knowledge, his great tact, his ability to summarize lucidly the most tangled ar-
guments, and above all his matchless linguistic skill,” writes one of Lorentz’s
biographers, Russell McCormmach. After attending the first Solvay Conference,
Einstein wrote to a friend, “Lorentz is a marvel of intelligence and exquisite tact.
A living work of art! In my opinion he was the most intelligent of the theoreti-
cians present.”

As a theorist, Lorentz’s principal goal was to unify at the molecular level the
physics of matter with Maxwell’s physics of electromagnetic fields. One of the
foundations of Lorentz’s theory was the concept that the seat of electric and
magnetic fields was an absolutely stationary ether, which permeated all matter
with no measurable resistance. Another cornerstone provided the assumption
that (to some degree) matter consisted of very small charged particles, which
Lorentz eventually identified with the particles called “electrons” discovered in
1897 by J. J. Thomson in cathode rays. The electrons generated the electric and
magnetic fields, and the fields, in turn, guided the electrons through the immobile
ether. Lorentz used Maxwell’s equations, written for the ether’s stationary frame
of reference, to describe the fields, and he accepted the message of the equations
that in that frame the speed of light was the same regardless of the speed and
the direction of the light source.

To summarize, and bring the story around to Einstein’s point of view, imagine
two observers, the first at rest in the ether, and the second at rest in a room
moving at constant speed with respect to the ether. The room carries a fixed light
source, and the two observers compare notes concerning the light signals gen-
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erated by the source. According to Lorentz’s theory, the first observer finds that
the speed of a light beam is independent of its direction. But the second observer
sees things differently: suppose one of the walls of his or her room moves away
from a light beam after it is generated, while the opposite wall moves toward it.
If the light source is fixed in the center of the room, a light beam directed toward
a wall retreating from the beam will seem to be slower than a beam directed to
a wall approaching the beam. Thus for the second observer the speed of light is
not the same in all directions.

To take this argument beyond a thought experiment, we can picture Earth as
a “room” moving through the ether and conclude that for us, the occupants of
the room, the speed of light should be different when it is propagated in different
directions. We anticipate that if we can observe this directional effect it will
define Earth’s motion with respect to the ether. Several experiments, designed
and executed in the late nineteenth century, had this motivation. The most re-
fined of these was performed by Albert Michelson and Edward Morley in 1887.
Their conclusion, probably the most famous negative result in the history of
physics, was that the speed of light (in empty space) has no dependence whatever
on the motion, direction, or location of the light source.

This was a damaging, but not quite fatal, blow to Lorentz’s electron theory. He
found that he could explain the Michelson-Morley result by assuming that mov-
ing material objects contract slightly in their direction of motion, just enough to
frustrate the Michelson-Morley experiment and other attempts to define Earth’s
motion through the ether by measuring changes in the speed of light. The cause
of this contraction, as Lorentz saw it, was a very slight alteration of molecular
forces in the direction of the motion.

Now it is time to bring Technical Expert Third Class Einstein on stage and
follow his creation of what came to be called the special theory of relativity. He
is acquainted with Galileo’s relativity principle. He is aware of Newton’s concept
of absolute space and time. He has read Lorentz carefully, and he is impressed
that experimentalists can find no way to detect Earth’s motion relative to the
ether by measuring changes in the speed of light.

Doctrine of Space and Time

For Einstein, there were two important kinds of theories. “Most of them are con-
structive,” he wrote. “They attempt to build up a picture of the more complex
phenomena out of the materials of a relatively simple formal scheme from which
they start out.” As an example, he cited the molecular theory of gases. It begins
with the hypothesis of molecular motion, and builds from that to account for a
wide variety of mechanical, thermal, and diffusional properties of gases. “When
we say that we have succeeded in understanding a group of natural processes,”
Einstein continued, “we invariably mean that a constructive theory has been
found which covers the processes in question.”

Theorists since Galileo and Newton have also created what Einstein called
“principle theories.” These are theories that “employ the analytic, not the syn-
thetic, method. The elements which form their basis and starting point are not
hypothetically constructed but empirically discovered ones, general character-
istics of natural processes, principles that give rise to mathematically formulated
criteria which the separate processes or the theoretical representations of them
have to satisfy.” The supreme example of a principle theory, Einstein pointed
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out, is thermodynamics, based on the energy and entropy principles called the
first and second laws of thermodynamics.

Einstein saw relativity as a principle theory. He began his 1905 paper on rel-
ativity by postulating two empirical principles on which his theory, with all its
startling conclusions, would rest. The first principle generalized Galileo’s rela-
tivity principle by asserting that (as Einstein put it several years later),

The laws of nature are independent of the state of motion of the frame of ref-
erence, as long as the latter is acceleration free [that is, inertial].

The phrase “laws of nature” is all-inclusive; it encompasses the laws of elec-
tromagnetic and optical, as well as mechanical, origin. This is a grandly demo-
cratic principle: all inertial frames of reference are equal; none is different or
preferred.

The second of Einstein’s principles gives formal recognition to the constancy
of the speed of light:

Light in empty space always propagates with a definite [speed], independent of
the state of motion of the emitting body.

Whereas Lorentz had struggled to explain the invariance of the speed of light
with a constructive theory that hypothesized motion-dependent molecular forces,
Einstein bypassed all the complications by simply promoting the constancy to a
postulate. For Lorentz and his contemporaries, it was a problem, for Einstein a
principle.

Einstein’s two principles led him to conclude that the speed of light in free
space is the only measure of space and time that is reliably constant from one
observer to another. All else is relative. Different observers cannot express their
physical laws in a shared, absolute frame of reference, as Newton taught. Ob-
servers in different inertial frames find that their physical worlds are different
according to a new “doctrine of space and time,” as Einstein put it.

We can follow the rudiments of Einstein’s argument by first considering the
elementary question of time measurements. Imagine a timing device recom-
mended by Einstein, called a “light clock”; figure 14.1 displays the light clock
as it is seen by an observer who travels along with it. Light flashes are generated
by the source S; they travel to the mirror M, and are reflected back to the detector
D. The short time for one flash to make the round trip from S to M to D represents
one “tick” of the clock. If ¢ is the speed of light, and L, is the distance from S

L
and D to M, this time, call it At,, is equal to =9 for the trip from S to M, and also
c

for the return trip from M to D, so

2L
Ato = —0. (1]
C

Now, keeping in mind Einstein’s principle of the constancy of the speed of
light, we look at the light clock from the point of view of a second observer, who
sees the clock in an inertial frame moving at the constant speed v. Figure 14.2
shows the path of a light flash as seen by this observer. The clock is shown in
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! H Figure 14.1. Einstein’s light clock, as seen by an observer traveling with the clock. The
s| D distance between the source and the detector is exaggerated. This figure, the one
that follows, and fig. 14.4 are adapted with permission from Robert Resnick, David
Halliday, and Kenneth Krane, Physics, 4th ed. (New York: Wiley, 1992), 470.

three positions: at A when the light flash leaves the source, at B when it is
reflected by the mirror, and at C when it reaches the detector. (The inertial frame
containing the light clock is moving extremely fast: Galileo’s ship has become a
spaceship.) The time representing one tick of the clock is now At, and the clock
moves the distance vAt in that time. The corresponding distance traveled by the
light flash is 2L, and that is clearly greater than the distance 2L, the light flash
travels for the first observer during one tick of the clock. The speed of light is
exactly the same for both observers, Einstein’s principle insists, so the time At
for one tick according the second observer is greater than the time Aty for one
tick according to the first observer. In other words, the two observers perceive
the clock ticking at different rates; it goes slower for the observer who sees the
clock moving.

The mathematical connection between At and At, follows from the geometry
of figure 14.2. The time interval for the light to travel the distance is 2L is

2L
At = —, (2)
c

and as shown in the diagram in figure 14.3, abstracted from figure 14.2,

Figure 14.2. Einstein’s light clock as seen by
an observer who observes the clock mov-
VAt ing at constant speed v.

Vo
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oL = 2/LZ + (VAL ] 2)2.

v

Therefore,

 2JLF + (vAt] 2
. ,

At

Substituting for L, from equation (1) and solving for At, we arrive at

Aty

At = —————. 3
q-vZ/c )

If the speed v has any ordinary value, that is, much less than the speed of
light ¢, the ratio v/c is very small, the denominator in equation (3) is nearly equal
to one, At = Aty, and time measurements are not appreciably affected. As v ap-
proaches ¢, however, the denominator becomes less than one, At is greater than
Aty and time measurements are different for the two observers.

Equation (3) places limitations on the speed v: with v = ¢ the equation gen-
erates a physically questionable infinite value for At, and with v > ¢ the square
root becomes an “imaginary” number in mathematical parlance, and even more
unacceptable physically. We will find this prohibition on any speed equal to or
larger than the speed of light to be a general feature of Einstein’s theory.

The relativistic calculation of time intervals expressed by equation (3) speaks
of real physical effects, not just artifacts of the mathematics. Light clocks,
and all other physical aspects of time, including aging, are really seen differently
by different observers moving (at high speed) relative to each other. In fact, if
we can boost ourselves to a speed comparable to ¢ relative to Earth—which is
possible and not dangerous if we accelerate to the high speed slowly, as in a
spaceship accelerating at the rate of Earth’s gravitational acceleration g—we can
enter a time machine and age decades while Earth and its inhabitants age
millennia.

In company with this slowing or dilation of time in a moving inertial frame,
Einstein’s principles also demand a contraction of length measurements. This,
too, can be demonstrated with the handy light clock. As in figure 14.2, we see
the clock moving at a constant speed v, but this time parallel to its length, as
shown in figure 14.4.

We again imagine that a light flash is produced by the source S, and that the
flash is reflected by the mirror M back to the detector D. Let At; be the time
interval for the light to travel from the source to the mirror. During this time, the
mirror moves through the distance vAt,, so the light flash must travel L + vAt, to

Figure 14.3. A right triangle constructed from the distances shown in fig.

14.2, demonstrating that according to the Pythagorean theorem L? = L2 +
VA2 (vAt / 2 or L = JLE + (vAt / 2)%



212

Great Physicists
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Figure 14.4. Einstein’s light clock again, as perceived
by an observer who sees the clock moving parallel

to the clock’s length at constant speed v.

reach the mirror. Noting that the speed of light is ¢, as always, we can calculate
this same distance as cAt;, and write the equation

cAty = L + vAt,
or

L

c—v

At = (4)

Now follow the light flash on its return from the mirror to the detector, sup-
posing that this trip requires the time interval At,. The light begins at the mirror,
located at L + vAt;, and finishes at the detector, which has traveled the distance
VAt, in the first interval and vAtf, in the second. Thus the distance traveled by
the light on its backward return trip is

(L + vAt)) — (vAt; + VvAL) = L — VAL,

T T
Light begins ... and finishes

here at the here at the
mirror detector.

The light still has the speed ¢, so we can also calculate this distance as cAt, and
obtain

CAtz =L - VAtz
or

L

At, = .
z c+v

(5)

The total time interval At, the time for one click of the clock, is the sum of Af,
and At,, calculated in equations (4) and (5),

L
+ .
c—V ct+v

At = Aty + At, =

Two algebraic maneuvers (forming a common denominator and then dividing
numerator and denominator by ¢?) convert this to

2L 1

At _
c1—v2/c?

(6)
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This equation reveals the length contraction when it is compared with equa-
tion (3) combined with equation (1),

c 1-v¥/c%

If the two calculations of At are compatible, we must have
L=Ly,1-v%/c? (7)

which tells us that the length L, found by an observer traveling with the clock
is contracted to L, J1 — v2 / c¢? for an observer watching the clock move at the
constant speed v. This is the same equation that Lorentz had concluded earlier
was necessary to account for Michelson and Morley’s frustrated attempts to de-
tect Earth’s motion through the ether.

Equations (3) and (7), expressing the relativity of time and length, embody
Einstein’s new doctrine of space and time. They cover what physicists call “kin-
ematics”—that is, physics without the energy concept. Einstein’s next step was
to broaden his theory into a “dynamics,” with energy included. He began to
construct the dynamics in another brilliant 1905 paper, where he reached “a very
interesting conclusion”: “The mass of a body is a measure of its energy content.”
He thought about this proposition for several years. In 1906, it occurred to him
that “the conservation of mass is a special case of the law of conservation of
energy.” A year later he concluded that, “With respect to inertia, mass m is equiv-
alent to energy content of magnitude mc2.” This is a verbal statement of the
equation that is now the world’s most famous: E = mc?.

Underlying this energy equation is the concept that mass, like time and length,
is relative. Both time and length depend on the relative speed of the object ob-
served, and so does mass. The relevant equation, which calculates the mass m
of an object moving at the constant speed v, is (with no proof this time)

g

m= = 8
J1—v2/c? (6)

resembling equation (3) for time intervals. At rest (v = 0), the object has its lowest
mass my; in motion, the mass of the object increases, but only slightly at ordinary
speeds much less than c.

Equation (8) equips us with some clues concerning Einstein’s celebrated mc?.
Multiplied by c? the equation calculates mc?,

(9)

In the physics of the familiar world, v/c in this equation is very small, v2 / ¢? is
even smaller, and we can take advantage of the mathematical fact that

=1+

N
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if x is very small. We apply this approximation to equation (9) with x = v2 / ¢2,
and arrive at

mgyv?

mc? = myc? +
Recognizing with Einstein that E = mc?, we have

2
E = myc? + MoV

(10)

mgyv?

This divides the total energy E into two parts. One term, , is the familiar

kinetic energy carried by an object of mass my. The second term, myc?, unlocks
the secret. Einstein understood this quantity, as we do today, to be a kind of
potential energy possibly obtainable from the “rest mass” m,. Because ¢? has an
immense magnitude, this mass-equivalent energy is also immense. From a mass
of one kilogram (2.2 pounds), complete conversion of mass to energy would gen-
erate energy equivalent to the daily oil consumption per day in the entire United
States (fifteen million barrels).

Ordinary chemical reactions convert mass to energy, but on a minuscule scale;
formation of one kilogram of H,O in the reaction

2 H, + 0, » 2 H,0

converts about 1.5 X 10719 kilogram of mass to energy. Nuclear reactions are
more efficient; they convert a few tenths of a percent of the mass entering the
reaction to energy. When matter meets antimatter, the conversion is complete. In
his 1905 paper, Einstein suggested that radioactive materials such as radium
might lose measurable amounts of mass as they decay, but for many years he
could see no practical consequences of the mass-energy equivalence. (In 1934,
the Pittsburgh Gazette headlined a story reporting an Einstein lecture with “Atom
Energy Hope Is Spiked by Einstein. Efforts at Loosing Vast Force [Are] Called
Fruitless.”) The full lesson of E = mc? was learned in the 1940s and 1950s with
the advent of nuclear physics, nuclear weapons, nuclear reactors, and nuclear
anxiety.

A further accomplishment of Einstein’s relativity theory was that it brought a
permanent end to the ether concept by simply depriving the ether of any good
reason to exist. If there were an ether, it would provide an absolute and preferred
frame of reference, contrary to Einstein’s first principle, and motion through the
ether would be manifested by variations in the speed of light, contradicting the
second principle. An ether obituary was written by Einstein and Leopold Infeld
in their estimable book for the lay reader, The Evolution of Physics: “It [the ether]
revealed neither its mechanical construction nor absolute motion. Nothing re-
mained of all its properties except that for which it was invented, i.e., its ability
to transmit electromagnetic waves.”

Our narrative returns to Einstein’s life now, and follows his odyssey into the
scientific world and beyond. Einstein’s accomplishments during his seven years
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in the Bern Patent Office were unique in their creative brilliance. Inevitably,
recognition came, and suddenly, in just five years, he reached the pinnacle of
the scientific and academic world.

In 1909, when he was thirty, and still unacquainted with a “real physicist,”
Einstein left the patent office and took a position as associate professor at the
University of Ziirich. He was Clausius’s successor: “There had been no professor
of theoretical physics or mathematical physics,” Abraham Pais, Einstein’s biog-
rapher, notes, “since Clausius had left the university, in 1867.” Pais also paints
this picture of Einstein as a sometimes unenthusiastic teacher: “He appeared in
class in somewhat shabby attire, wearing pants that were too short and carrying
with him a slip of paper the size of a visiting card on which he had sketched his
lecture notes.” “He enjoyed explaining his ideas,” Ernst Straus, one of Einstein’s
assistants, remarks, “and was exceptionally good at it because of his own way of
thinking in intuitive and informal terms. What he presumably found irksome
was the need to prepare and present material that was not at the moment at the
center of his interest. Thus the preparation of lectures would interfere with his
own thoughts.”

In Ziirich, Einstein was already beginning to show signs of the restlessness
that was hard to understand in a man who always said he wanted to do nothing
but think about theoretical physics. In five years, he would live in three countries
and hold academic positions in four universities. In another five years, he would
be immersed in various political matters, including pacifism, Zionism, and in-
ternational government. “In his sixties,” Pais explains, “[Einstein] once com-
mented that he had sold himself body and soul to science, being in flight from
the ‘T’ and ‘we’ to the ‘it.” Yet he did not seek distance between himself and other
people. The detachment lay within and enabled him to walk through life im-
mersed in thought. What was so uncommon about this man is that at the same
time he was neither out of touch with the world nor aloof.”

His next move, in 1911, was from Ziirich to Prague, where he was appointed
full professor at the Karl-Ferdinand (or German) University. In Prague, he felt
isolated intellectually and culturally. There were few scientific colleagues with
whom he could discuss his work, and he had little in common with either the
Czech or the German community. Sixteen months later he was on the move again,
back to Ziirich, this time to the Swiss Technical University (ETH, previously the
Ziirich Poly).

A little more than a year later, in the spring of 1913, Max Planck and Walther
Nernst arrived in Ziirich with their wives for the some sightseeing—and to entice
Einstein to go to Berlin. Their offer included membership in the Prussian Acad-
emy of Sciences with a handsome salary, a chair at the University of Berlin (with
no obligation to teach), and the directorship of a physics institute to be estab-
lished. This was a great opportunity, but Einstein was ambivalent. He had turned
his back on Germany seventeen years earlier, and he was no less distrustful of
the Prussian character now than he was then. But for Einstein there was always
one consideration above all others. “He had had enough of teaching. All he
wanted to do was think,” as Pais puts it. His decision probably came quickly,
but to Planck and Nernst, symbols of the Prussian scientific establishment, he
said he needed to consider the offer. He told them that when they saw him again
they would know his decision: he would carry a rose, red if his answer was yes,
and white if no.

The letter Planck and Nernst wrote to the Prussian Ministry of Education in
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support of Einstein’s appointment tells a lot about where Einstein’s reputation
stood in 1913, alleged failures included:

[Einstein’s] interpretation of the time concept has had sweeping repercussions
on the whole of physics, especially mechanics and even epistemology. . . . Al-
though this idea of Einstein’s has proved itself so fundamental for the devel-
opment of physical principles, its application still lies for the moment on the
frontier of the measurable. . . . Far more important for practical physics is his
penetration of other questions on which, for the moment, interest is focused.
Thus he was the first man to show the importance of the quantum theory for
the energy of atomic and molecular movements, and from this he produced the
formula for specific heats of solids. . . . He also linked the quantum hypothesis
with the photoelectric and photochemical effects. ... All in all, one can say
that among the great problems, so abundant in modern physics, there is hardly
one to which Einstein has not brought some outstanding contribution. That he
may sometimes have missed the target in his speculations, as, for example, in
his theory of light quanta [now called “photons” and indispensable as a member
of the family of elementary particles], cannot be held against him. For in the
most exact of natural sciences every innovation entails risk. At the moment he
is working on a new theory of gravitation, with what success only the future
will tell.

The rose was red, and Einstein moved to Berlin, delighted that he would be
free of lecturing, but with misgivings concerning his end of the bargain. “The
gentlemen in Berlin are gambling on me as if I were a prize hen,” he told a friend
before leaving Ziirich. “As for myself I don’t even know whether I'm going to lay
another egg.”

An imposing measure of the dominion of science is that it brought together
on amicable terms two men as totally dissimilar as Einstein and Planck. Einstein
avoided all formality and ceremony, detested the Prussian traditions of disci-
pline, militarism, and nationalism, and for most of his life was a pacifist. Yet,
this casual, untidy, anti-Prussian pacifist had a deep respect for Max Planck, the
formal, impeccably dressed servant of the Prussian state. What Einstein saw and
appreciated in Planck was the strength of his integrity and the depth of his com-
mitment to science. Einstein always had admiration—and sometimes friend-
ship—for anyone who could match the intensity of his own devotion to physics.

The move to Berlin was the final blow to an already slipping marriage. Soon
after her arrival in Berlin, Mileva returned to Ziirich with her two sons and
remained there. Her subsequent life was not happy. She could not accept the
separation, or the divorce that came in 1919. Her means were modest, even after
Einstein transmitted to her his Nobel Prize money, received in 1921. The younger
son, Eduard, was mentally unstable for much of his life and died a schizophrenic
in a Ziirich psychiatric hospital.

Einstein was now a bachelor, and under the “loving care” of a “cousine,” who
he claimed “drew me to Berlin.” This was Elsa Einstein Lowenthal, both a first
and second cousin to Einstein (their mothers were sisters, and their grandfathers
brothers), and a friend since childhood. She had married young, was now di-
vorced, and was living with her two daughters, Margot and Ilse, in Berlin when
Einstein arrived. In 1917, Einstein suffered a serious breakdown of his health,
and Elsa was on hand to supervise his care and feeding. The patient recovered



Albert Einstein 217

and two years later married the nurse. Although Einstein rarely expressed his
appreciation, he must have realized that Elsa was indispensable. Like some of
the other wives mentioned in these profiles, she became an efficient manager of
her husband’s nonscientific affairs, and allowed him to get on with his main
business, thinking about theoretical physics.

Pais gives us this sketch of Elsa: “gentle, warm, motherly, and prototypically
bourgeoisie, [she] loved to take care of her Albertle. She gloried in his fame.”
Charlie Chaplin, who entertained the Einsteins in California, described Elsa this
way: “She was a square-framed woman with abundant vitality; she frankly en-
joyed being the wife of a great man and made no attempt to hide the fact; her
enthusiasm was endearing.”

Hardly any chapter from the Einstein story is conventional or predictable, but
the most bizarre episode by far was the public reaction to Einstein’s elaboration
of his 1905 “special” theory of relativity to a “general” theory of relativity in
1915. It was not the theory itself, which few people understood, but the an-
nouncement that one of the theory’s predictions had been confirmed, that brought
the avalanche of attention.

Einstein had used his general theory to show that a gravitational field has a
bending effect on light rays, and he had calculated the expected effect of the
Sun’s gravity on light originating from stars and passing near the Sun before
reaching telescopes on Earth. The effect was small, but measurable if the obser-
vations could be made during a solar eclipse. After failures, delays, and much
political interference—the First World War was in progress at the time—two Brit-
ish expeditions, one under Arthur Eddington to the island of Principe off the
coast of West Africa, and another led by Andrew Crommelin to Sobral in northern
Brazil, observed the eclipse of 1919, and succeeded in confirming Einstein’s
predictions.

Overnight, Einstein became the most famous scientist in the world. He was
besieged by distinguished and not-so-distinguished colleagues, learned societies,
reporters, and plain people. “Since the flood of newspaper articles,” he wrote to
a friend, “I have been so swamped with questions, invitations, challenges, that I
dream I am burning in Hell and the postman is the Devil eternally roaring at me,
throwing new bundles of letters at my head because I have not answered the old
ones.” It is all but impossible to understand what prompted this reaction to what
was after all an esoteric and theoretical effort. The mathematician and philoso-
pher Alfred Whitehead expressed public sentiment on the more rational side: “a
great adventure in thought [has] at length come to safe shore.”

Spacetime

The new doctrine of space and time brought by Einstein’s 1905 special theory
demanded relativity of time as well as relativity of length and space. If an ob-
server in an inertial frame describes some event with the coordinates x, y, z, and
the time ¢, another observer in a different inertial frame uses different coordi-
nates, call them x', y, z', and a different time #, to express the physics of the
event. The time variable is not separate from the spatial variables, as it is in
Newtonian physics. It enters the Einstein picture seemingly on the same footing
as the spatial variables. This point of view was taken by one of Einstein’s former
mathematics professors, Hermann Minkowski, and developed into a mathemat-
ical structure that would eventually be indispensable to Einstein as he ventured
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beyond special relativity to general relativity. Minkowski put forward his pro-
gram at the beginning of an address delivered in 1908: “The views of space and
time which I wish to lay before you have sprung from the soil of experimental
physics, and therein lies their strength. They are radical. Henceforth space by
itself, and time by itself, are doomed to fade away into mere shadows, and only
a kind of union of the two will preserve an independent reality.”

Physics is about events in space and time. We locate each event in space in a
reference frame equipped with a coordinate system. For example, two events are
located in two spatial dimensions with the coordinate pairs x;, y; and x,, y, (fig.
14.5), and the spatial interval I between them is calculated by constructing a
right triangle (fig. 14.6) and applying the Pythagorean theorem:

P = Ax%2 + Ay? or | = |Ax? + Ay?.

In three spatial dimensions, these equations add a term Az? for the third dimen-
sion:

P =Ax? + Ay?> + Az% or | = |Ax® + Ay? + Az (11)

In the spirit of field theory, we treat space as a continuum and make the calcu-
lations for two neighboring events separated by the very small interval dI. That
calculation follows the same recipe as equation (11), with I replaced by the much
smaller di, and Ax, Ay, Az replaced by the smaller dx, dy, dz,

dP = dx®> + dy? + dz? or dl = /dx? + dy? + dz2. (12)

Minkowski asks us to replace this three-dimensional picture with a four-
dimensional one, each physical event being located by a “world point” with four
coordinates, the three spatial coordinates x, y, z and the time coordinate ¢. How
do we calculate an interval in this four-dimensional picture of space and time—
or better, “spacetime”—comparable to dl in three dimensions? The rules of math-
ematical physics do not allow a simple addition of spatial and time terms, as in
dt? + dx? + dy? + dz?, because dx, dy, dz measure one thing (length) and dt
another (time). If two terms are added in a physical equation, they must measure
the same thing and have the same units.

R §

X, Xy

Figure 14.5. Location of two events in two spatial
dimensions at the two points x,,y; and x,,y,.
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Ay=y, -y,

X1 X2

Figure 14.6. Calculation of the spatial interval [ be-
tween the two events of fig. 14.5.

The simplest way to approach connections and intervals in spacetime is to
imagine two events joined by that most reliable of measuring devices, a light ray.
Suppose a flash of light is generated at one world point x,, yy, z4, t;, and then
later detected at the world point x,, y,, z,, t,. The distance traveled by the light
flash is JAx% + Ay? + Az? with Ax = x, — x4, Ay = ¥, — y4, and Az = z, — zy, as
before. The same distance is calculated by multiplying the speed of light c by At,
the time elapsed between the two events, that is,

JAX? + Ay? + Az? = cAL

This equation is better suited to later discussions if it is rearranged slightly.
Square both sides of the equation and move all terms to one side,

C2At2 — Ax? — Ay? — Az2 = 0.

For neighboring events in the spacetime continuum, Ax, Ay, Az, At become dx,
dy, dz, dt, and the equation is

c2dt? — dx? — dy? — dz? = 0. (13)

The quantity calculated is the square of a spacetime interval, and in relativity
theory it is represented with ds?,

ds? = c2df? — dx? — dy? — dz2. (14)

Physicists call ds a “world line element.” It is a fundamental entity in relativity
theory.

However it is calculated—equation (14) is only one of many possibilities—the
world line element ds shows how, in the four-dimensional world of spacetime,
physical events are connected. For the light flash we have been discussing, ds?
= 0, according to equations (13) and (14), and the events joined by ds are said
to be “lightlike.” The square ds? can also be positive or negative: if positive, the
events connected are “timelike,” and if negative the events are “spacelike.”

Minkowski emphasized that Einstein’s world of spacetime events has a fun-
damental symmetry that makes the line element ds invariant in all inertial
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frames. If you measure ds in one frame, where the coordinates are x, y, z, t, and
then ds’' in another frame whose coordinates are x', y’, z’, t', the two measure-
ments must be equal, ds = ds’, no matter what kinds of events are connected by
the line element—Ilightlike, timelike, or spacelike. From the simple condition ds
= ds’, Minkowski extracted the four equations that express the relativity of the
two sets of coordinates x, y, z, t and x’, y’, z’, t'. These equations, which Lorentz
had previously derived in the different context of his own theory, are now called
the “Lorentz transformation.”

Einstein was not at first impressed by Minkowski’s mathematical recasting of
special relativity theory. He found it “banal” and called it “superfluous erudi-
tion.” But later, as he explored the mathematically more complicated world of
general relativity, he found Minkowski’s concepts indispensable. He had to admit
that, without Minkowski, relativity theory “might have remained stuck in its
diapers.”

Physics as Geometry

Einstein’s 1905 theory “in diapers” had made a powerful statement about the
physical world, but Einstein knew immediately that there was room for improve-
ment. For one thing, the theory seemed to be restricted to inertial systems. For
another, it was compatible with Maxwell’s electromagnetic theory, but not with
another great theory inherited by Einstein, Newton’s gravitation theory. To realize
its potential, the theory had to recognize noninertial systems, those accelerating
relative to each other, and at the same time extend its scope to gravitation.

The first step Einstein took in this direction killed both of these birds with
one stone. As he explained later, “I was sitting in a chair in the patent office at
Bern when all of a sudden a thought occurred to me: ‘If a person falls freely he
will not feel his own weight.” I was startled. This simple thought made a deep
impression on me. It impelled me toward a theory of gravitation.” This was Ein-
stein’s first mental image of what he would later call “the equivalence principle.”
The central idea is that gravitation is relative. The person in free fall, locked
inside a falling elevator, let’s say, finds no evidence of gravity: everything in the
elevator seems to be at rest and without weight. An outside observer, on the other
hand, sees the elevator accelerating in the grip of a gravitational field.

The elevator inhabitants have the opposite experience if the elev