

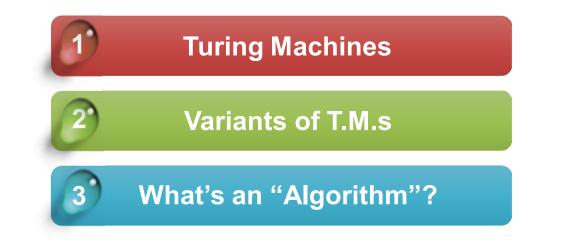
# The Church-Turing Thesis



Ali Shakiba – Vali-e-Asr University of Rafsanjan – ali.shakiba@vru.ac.ir

### We are going to discuss ...







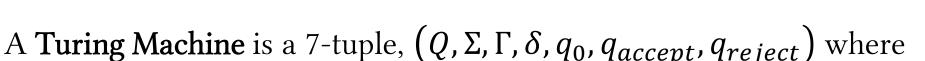
# **Turing Machine**



- A Turing Machine is a 7-tuple,  $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$  where
- 1. Q is the set of states
- **2.**  $\Sigma$  is the **input alphabet** such that **blank symbol**  $\sqcup \notin \Sigma$
- **3.**  $\Gamma$  is the **tape alphabet** such that  $\sqcup \in \Gamma$  and  $\Sigma \subseteq \Gamma$
- 4.  $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$
- 5.  $q_0 \in Q$  is the start state
- 6.  $q_{accept}, q_{reject} \in Q$  are accept and reject states where  $q_{accept} \neq q_{reject}$



# **Turing Machine**

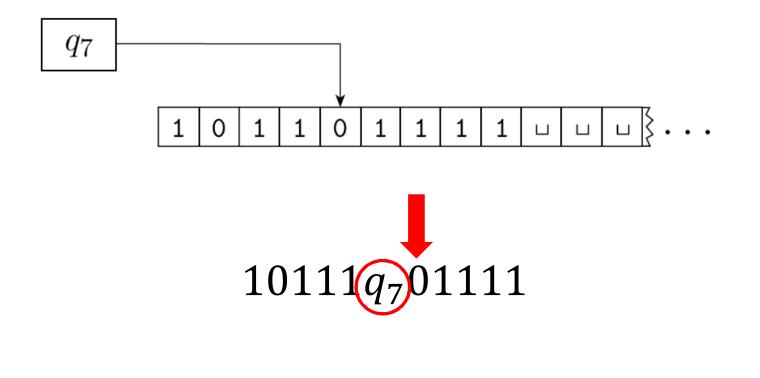


- 1. Q is the set of states
- **2.**  $\Sigma$  is the **input alphabet** such that **blank symbol**  $\sqcup \notin \Sigma$
- **3.**  $\Gamma$  is the **tape alphabet** such that  $\sqcup \in \Gamma$  and  $\Sigma \subseteq \Gamma$
- 4.  $\delta: Q' \times \Gamma \to Q \times \Gamma \times \{L, R\}$  where  $Q' = Q \setminus \{q_{accept}, q_{reject}\}$
- 5.  $q_0 \in Q$  is the start state
- 6.  $q_{accept}, q_{reject} \in Q$  are accept and reject states where  $q_{accept} \neq q_{reject}$



## Configuration









#### Yields

- Assume
  - $-a, b, c \in \Gamma, u, v \in \Gamma^*, q_i, q_j \in Q$
  - $uaq_ibv$  and  $uq_jacv$  are two configurations

$$ua \mathbf{q}_i bv$$
 yields  $u \mathbf{q}_j a cv$   
if  
 $\delta(q_i, b) = (q_j, c, L)$ 

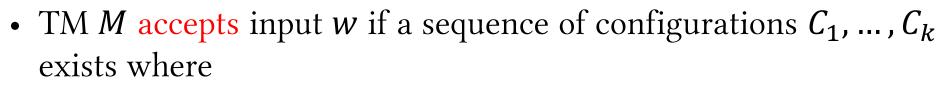
 $ua \mathbf{q}_i bv$  yields  $uac \mathbf{q}_j v$ if  $\delta(q_i, b) = (q_j, c, R)$ 

## Some designated configurations

- Start configuration
  - $-q_0w$
- Accepting configuration
  - The configuration is in state  $q_{accept}$
- Rejecting configuration
  - The configuration is in state  $q_{reject}$



## TM M Accepts w



- 1.  $C_1$  is the start configuration of M on input w
- 2. each  $C_i$  yields  $C_{i+1}$ , and
- *3.*  $C_k$  is an accepting configuration



Turing-recognizable and -decidable languages

A language *L* is Turing-recognizable (recursively-enumerable) if some TM

- 1. accept strings in L, and
- 2. rejects strings not in *L* by entering  $q_{reject}$  or looping

A language *L* is Turing-decidable (recursive) if some TM

- 1. accept strings in L, and
- 2. rejects strings not in L by entering  $q_{reject}$

Turing-recognizable languages Decidable languages

#### Some Examples



Describe a TM  $M_2$  to decide  $A = \{0^{2^n} | n \ge 0\}$ 

 $M_2 =$  "On input string w:

- 1. Sweep left to right across the tape, crossing off every other 0.
- 2. If in stage 1 the tape contained a single 0, accept.
- 3. If in stage 1 the tape contained more than a single 0 and the number of 0s was odd, *reject*.
- 4. Return the head to the left-hand end of the tape.
- 5. Go to stage 1."



#### Some Examples (cont'd)

Describe a TM  $M_3$  to decide  $C = \{a^i b^j c^k \mid i \times j = k \text{ and } i, j, k \ge 1\}$ 

 $M_3 =$  "On input string w:

- 1. Scan the input from left to right to determine whether it is a member of a<sup>+</sup>b<sup>+</sup>c<sup>+</sup> and *reject* if it isn't.
- 2. Return the head to the left-hand end of the tape.
- 3. Cross off an a and scan to the right until a b occurs. Shuttle between the b's and the c's, crossing off one of each until all b's are gone. If all c's have been crossed off and some b's remain, *reject*.
- 4. Restore the crossed off b's and repeat stage 3 if there is another a to cross off. If all a's have been crossed off, determine whether all c's also have been crossed off. If yes, *accept*; otherwise, *reject*."







#### Some Examples (cont'd)



#### Describe a TM $M_4$ to decide $E = \{ \#x_1 \#x_2 \# \cdots \#x_\ell \mid \text{each } x_i \in \{0,1\}^* \text{ and } x_i \neq x_j \text{ for each } i \neq j \}$

 $M_4 =$  "On input w:

- 1. Place a mark on top of the leftmost tape symbol. If that symbol was a blank, *accept*. If that symbol was a #, continue with the next stage. Otherwise, *reject*.
- 2. Scan right to the next # and place a second mark on top of it. If no # is encountered before a blank symbol, only  $x_1$  was present, so *accept*.
- **3.** By zig-zagging, compare the two strings to the right of the marked #s. If they are equal, *reject*.
- 4. Move the rightmost of the two marks to the next # symbol to the right. If no # symbol is encountered before a blank symbol, move the leftmost mark to the next # to its right and the rightmost mark to the # after that. This time, if no # is available for the rightmost mark, all the strings have been compared, so *accept*.
- 5. Go to stage 3."

