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Phase Local Approximation (PhaseLa) Technique
for Phase Unwrap From Noisy Data
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Abstract—The local polynomial approximation �LPA� is a
nonparametric regression technique with pointwise estimation in
a sliding window. We apply the LPA of the argument of ��� and
��� in order to estimate the absolute phase from noisy wrapped
phase data. Using the intersection of confidence interval �ICI� al-
gorithm, the window size is selected as adaptive pointwise varying.
This adaptation gives the phase estimate with the accuracy close
to optimal in the mean squared sense. For calculations, we use
a Gauss–Newton recursive procedure initiated by the phase es-
timates obtained for the neighboring points. It enables tracking
properties of the algorithm and its ability to go beyond the prin-
cipal interval � � and to reconstruct the absolute phase from
wrapped phase observations even when the magnitude of the
phase difference takes quite large values. The algorithm demon-
strates a very good accuracy of the phase reconstruction which
on many occasion overcomes the accuracy of the state-of-the-art
algorithms developed for noisy phase unwrap. The theoretical
analysis produced for the accuracy of the pointwise estimates is
used for justification of the ICI adaptation algorithm.

Index Terms—Adaptive window size, interferometric imaging,
local polynomial approximation (LPA), phase image reconstruc-
tion, phase unwrapping.

I. INTRODUCTION

AVARIETY OF imaging systems deal with phase measure-
ments using coherent radiation in order to illuminate ob-

jects. The reflected scattered return carries information on the
physical and geometrical properties of objects such as shape,
deformation, structure of surface, and movement. Two-dimen-
sional phase estimation has many important applications in dif-
ferent areas. For instance, in synthetic aperture radar interferom-
etry, the phase value is proportional to a terrain elevation height;
in magnetic resonance imaging, the phase is used to measure a
magnetic field inhomogeneity. Other examples are in adaptive
optics, diffraction tomography, nondestructive testing, deforma-
tion, and vibration measurements (e.g., [1]–[3]).

Common to these applications is that the observations are
periodical functions of the phase which can be interpreted as
the principal phase value, or wrapped phase, defined on the in-
terval . Accordingly, it is impossible to unambiguously
reconstruct the original, nonrestricted values, hereafter referred
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to as the absolute phase, unless additional assumptions are in-
troduced. If an absolute phase value is outside the principal in-
terval , the observed value is wrapped into this interval,
corresponding to an addition or subtraction of an integer number
of . The wrapped and absolute phase are linked by the
equation , , where is integer.
The wrapping operator is equivalent to division by module ,

, which separate on two parts: the
fractional part and the integer part defined as .

Many applications start from estimation of the phase for the
principal interval and further extend these estimates to non-
restricted values. This last procedure is known as phase un-
wrapping. What makes this problem more difficult is that the
measured values are usually corrupted by noise. The standard
formulation of the noisy phase unwrapping starts from the ob-
servation model in the form

(1)

where is the absolute phase, is a random error additive
to , and is the observed noisy wrapped phase. Here,
denotes a wrapping operator transforming the noisy absolute
phase to the interval .

Assume that the observations are given on the regular 2-D
grid, . The
unwrapping problem is to reconstruct the absolute phase
from the wrapped noisy provided .

There is no one-to-one relation between the wrapped and
unwrapped phase. Surprisingly, differentiation of the observa-
tions can resolve this ambiguity or at least to reduce it. As-
sume for a moment that there is no noise in observations, i.e.,

.
Let and be difference operators on arguments and ,

respectively: ,
.

Proposition 1 [4]: Assume that the absolute phase satisfy
to the conditions

(2)

then

(3)

According to Proposition 1, the phase can be restored
by a two stage algorithm. First, the differences (derivatives)

and are calculated according to the for-
mula (3). Second, the phase is reconstructed by sum-
mation (integration) of these differences. It gives the phase es-
timate up to an additive constant. The result (3) applied to the
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noise data (1) says that by differentiation of the noisy data and
wrapping these derivatives, we obtain the derivatives of the un-
observed noisy absolute phase

(4)

Equation (2) can be treated as the Nyquist condition stating
that the harmonic signal should be sampled at least twice for the
period. In this case, there are no aliasing effects and the absolute
phase can be reconstructed from the samples.

The techniques developed for phase unwrapping can be
roughly separated in two large classes. The algorithms of the
first class use the mentioned above two-stage approach with
estimation of the gradient at the first stage and the following
integration of this gradient at the second stage.

There are two main difficulties in this approach. First, the
sampling conditions (2) often are not fulfilled for noisy data.
Then the procedure cannot guarantee a correct phase reconstruc-
tion. Smoothness assumptions imposed on the absolute phase
are used for regularization of the problem in order to improve
the situation. Second, numerical differentiation as well as nu-
merical integration are not trivial operation for noisy data. The
differentiation results in increasing the noise level and the in-
tegration is an inverse ill-conditined operation also sensitive to
noise. Thus, this two stage procedure should include filtering at-
tenuating noise effects.

The algorithms of the second class are based on direct re-
construction of the absolute phase. Some of these algorithms
are simple and unwrap the phase information by adding or sub-
tracting along the line and row whenever the phase differ-
ence between adjacent pixels is larger than . However, abrupt
phase changes in the absolute phase and experimental errors re-
sult in phase-unwrapping errors. Modified and more complex
versions of the algorithm are based on modeling the absolute
phase surface and include special tests on congruence of the
phase estimate. A lot of methods are developed based on local
and global phase modeling and test criteria.

A comprehensive review of the phase unwrap field is given in
[1]. A recent advance in the area is reviewed in [5]–[9]. Further,
we highlight briefly some of the basic methods and recent results
in connection to the approach proposed in this paper.

A. Differentiation-Integration Methods

If the hypothesis (2) is not fulfilled, the integration of the gra-
dient results are path dependent, i.e., the phase deviation be-
tween two points depends on the integration path linking these
two points. Path following algorithms [10], [11] are developed
for integrations over lines in the wrapped phase image where
the Itoh condition (2) holds and the integration gives self-con-
sistent results. In branch-cut methods [12], the integration paths
are restricted by cuts, which cannot be crossed. These cuts are
defined as the local inconsistencies calculated from the discrete
derivatives.

An efficient solution to the unwrap problem is the minimum
cost flow algorithm [13]. This algorithm is based on the con-
sideration that when the condition (2) is violated the difference
between the derivative of the absolute and wrapped phase is
equal to multiples of which should be added to the measured

wrapped phase derivatives to achieve the absolute phase deriva-
tives. The algorithm chooses these multiples by minimizing a
global least-square norm criterion.

B. Direct Phase Fit

Another approach to 2-D phase unwrapping is based on math-
ematical formulation of the problem with reconstruction ob-
tained by a constrained or nonconstrained global optimization.
These methods are based on a least square estimate of the phase
by minimizing the squared norm between the derivative esti-
mate and unknown derivatives of the unwrapped phase [14],
[15]. Nonquadratic norms with also used for this sort
of fitting [1], [16], [17] formulated as follows:

(5)

where are given data and is the estimated absolute
phase. Minimizing (5) yields a smooth phase reconstruction but
may have large phase random error in the presence of noise
and phase discontinuities [18]. This unwrapped phase usually
fails the congruence test, which requires that rewrapping the un-
wrapped result reproduce the measured phase. In order to reduce
these noise effects, a pixel-by-pixel weighting in (5) has been
proposed [19].

The criterion

(6)

is minimized on in the algorithm recently proposed in
[5]. Here, the first summand is a fidelity term measuring a data-
estimate divergence and the second summand is a penalty term
imposing the smoothness conditions for the estimated absolute
phase . The algorithm is recursive with the unwrapping
step minimizing the penalty term with respect to the integer in

provided that the wrapped values of the phase are
fixed. This step requires a discrete optimization implemented
by the network programming technique. The smoothing step
is minimization of (6) with respect to the wrapped values of
the phase provided a given . The level of the smoothing is
controlled by the regularization parameter and the weights
and , in particular, indicating the ares where the absolute phase
may be discontinuous.

C. Energy Minimization

A general nonquadratic version of the penalty term from (6)

(7)

is proposed in [9] as a novel energy criterion for phase unwrap-
ping. Here is a nonquadratic loss function. Inserting in (7)

with given by observations the unwrapping is
reduced to minimization of on integer . This complex combi-
natorial minimization is solved by the algorithm which is justi-
fied for both convex and nonconvex . The criterion (7) is argu-
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mented in [9] as a prior distribution for the first-order Markovian
random field model for the absolute phase. For the quadratic
the criterion (7) is a typical choice appealing to the gaussian dis-
tribution. A motivation behind selection of the nonquadratic
is to make the solution minimizing to be sensitive to discon-
tinuities and irregularities in the absolute phase .

II. PROPOSED APPROACH

We start from calculation of functions of the
observed wrapped phase values and replace the original
wrapped phase observations by and . Because

and , a difference between wrapped
and unwrapped phases disappears and we use a fit of these
transformed observations for the absolute phase reconstruction.
The wrapped phase is discontinuous even for a continuous
absolute phase. It is one of the reasons to work in the phase
domain (using and ) instead of the original wrapped
phase observations.

It is assumed in our approach that the absolute phase is a
continuous function of the arguments , and allows a good
polynomial approximation in a neighborhood of the estimation
point. It is important that the size and possibly the shape of
this neighborhood can be unknown and also is a subject of
estimation.

In general, this approach is from the class of the nonpara-
metric regression techniques. The algorithm developed in this
paper is based on two independent ideas: local approximation
for design of nonlinear filters (estimators) and adaptation of
these filters to unknown smoothness of the spatially varying ab-
solute phase. We use local polynomial approximation (LPA) for
approximation and intersection of confidence interval (ICI) for
adaptation.

In this paper, the LPA is applied for direct approximation of
the absolute phase using a polynomial fit in a sliding window.
The window size as well as the order of the polynomial define
the accuracy of this approximation. The window size is consid-
ered as a varying adaptation variable of the algorithm.

The ICI is an adaptation algorithm. It searches for a largest
local window size where the variance and the bias of the phase
estimates are balanced. It is shown that the ICI adaptive LPA is
efficient and allows to get a nearly optimal quality of estimation
in particular for many image processing problems [20].

The polynomial modeling for the phase unwrap is a popular
idea starting from the work [21], where it has been used for the
global phase fitting. The efficiency of the local phase fitting is
demonstrated in particular in [22], where the phase unwrapping
appeared in connection with 2-D magnetic resonance imaging
data. In the paper [23], the linear local polynomial approxima-
tion is developed for height profile reconstruction from multi-
frequency InSAR data. In the method called “local planes pa-
rameters estimation,” the coefficients of the LPA are estimated
by optimization of the likelihood criterion. Note that, in this
paper, the efficient unwrap is achieved due to the multifrequency
measurements.

Using the LPA fit for the phase unwrap based on the phase
tracking is a main subject of papers [24] and [25].

The LPA and phase tracking developed in this paper are orig-
inal mainly by the adaptive window size selection making the

noise suppression more efficient and the risk of unwrapping
error much lower.

There is a variety of phase observation models depending on
measurement principals where the developed technique is ap-
plicable. Here, we wish to mention two basic ones.

1) observations

(8)

where is the amplitude of the harmonic phase func-
tion, and and are noises. Then the wrapped phase

is calculated according to the formulas

(9)

2) Phase-shifting observations

(10)

where are fixed shifted phases, is a background in-
tensity, is an amplitude of the harmonic phase func-
tion, and are noises.

One of the most popular choices is , 1, 2,
3, 4. Then, the intensities , and the phase can be found
with the phase defined according to the formulas

(11)

A number of phase-shifting observations with different phase
shifts and different number of observations are used in interfer-
ometric measurements [2, pp. 245–251].

All observation models similar to (9) and (11) can be repre-
sented in the form (1), where is a noisy wrapped phase and

is an error of the absolute phase . With random in (8)
and (10), and possibly random amplitudes , the error is
random and in general phase dependent.

We assume that the observed data are already in the phase
form (9). As the first step, we calculate

(12)

and call these variables transformed noisy observations. These
noisy input data for the phase unwrap always can be represented
as

(13)

where denotes the error in the absolute phase caused by
the observation errors in .

We apply LPA in order to approximate as an argument of
the harmonic functions in (13). In principal, this idea can be
exploited directly in the argument of the wrap operator in
(1). However, the wrap operator is discontinuous with respect
to and use of the transform allows to replace it by
the smooth differentiable one.

We call the proposed algorithm PhaseLa from “phase local
approximation.” The contribution of this paper is a develop-
ment of this algorithm. Experiments show that this novel al-
gorithm demonstrates a very good performance in comparison
with some of the state-of-the-art techniques.
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The rest of the paper is organized as follows. Section III in-
troduces the idea and computational aspects of the LPA for the
pointwise estimation and tracking the varying phase. The adap-
tive version of the LPA is introduced in Section IV, where the
ICI rule is presented as the algorithm for the pointwise opti-
mization of the window size. Overall, the PhaseLa algorithm
organization is discussed in Section V. Simulation experiments
analyzing the accuracy of the proposed algorithm are given in
Section VI. The results are discussed in Section VII.

III. PHASE LPA

Let us recall the basic ideas of LPA (e.g., [20]) and introduce
LPA estimates of the phase. Assume that in some neighborhood
of the point ( , ) the phase can be represented in the
form

(14)

where is a vector of the first order polyno-
mials , , , and is a vector
of unknown parameters. The loss function of the local fit is de-
fined as (15), shown at the bottom of the page.

The straightforward manipulations show that this expression
is equivalent to

(16)

and the fit parameter is defined as a solution of the optimiza-
tion problem

(17)

The LPA estimates of the phase and the first derivatives
, are as follows [20]:

(18)

The window in (16) defines a set of neighborhood ob-
servations and their weights in estimation for . The window
size (scale) parameter in gives the size of the window and
usually used in the form , .

In particular, for the square uniform window for
, and ; otherwise, it means that for

, and , otherwise. A smaller or larger
narrows or widens the window , respectively.

The window function can be symmetric or nonsymmetric
with respect to the origin point , . It is assumed that

the size of the support of is larger then three (number of the
parameters in to be found).

The formula (18) shows that we obtain simultaneously the es-
timates of the phase and the instantaneous spatial frequencies

and . These estimates depend of the coordinate ( , ) and
the window size .

We wish to emphasize the nonparametric nature of the intro-
duced estimates as the polynomial approximation (14) is used
only for a single “central” point . For the phase,
it gives , and for the derivatives

,
. The result of this point-

wise use of LPA is that the parametric estimate (14) becomes
nonparametric ones, i.e., is a nonlinear with respect to

and sometimes more depending on the data than on the order
of the used approximation. All ideas of the standard LPA con-
cerning the window (shape, anisotropy, directionality, etc.),
the scaling (scalar, multivariate), and estimation of the signal
and derivatives [20] are valid in the considered nonparametric
pointwise estimation of the phase.

Here, we discuss the linear first order LPA as it is used in the
forthcoming simulation experiments. A generalization to higher
or lower degrees of polynomials in the model (14) or to the basis
functions different from polynomials is straightforward.

A. Pointwise Estimate Calculation

Minimization of nonquadratic with respect to
cannot be expressed in an analytical form and requires

numerical recursive calculations using the vector-gra-
dient: , and the
second derivative (Hessian) matrix:

. Here we use to denote the dimen-
sion of the vector with for the considered particular
case.

A gradient descent recursive procedure for (17) has the stan-
dard form (e.g., [26]–[28])

(19)

where are successive iterations of , and the gradient
is calculated for .

The possible procedures are different by an weight
matrix and a step size parameter .

1) Simple gradient descent. The identity matrix is used for
, . The convergence rate is linear,

, characterized by the pa-
rameter , . Here, is a vector of the optimal
values of minimizing . The step size param-
eter is selected in order to enable the convergence
of the iterations, . A main drawback of the algorithm

(15)
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is a low convergence rate as is close to 1 if the Hessian
matrices are ill conditioned.

2) Newton method. The inverse Hessian matrix is used for

(20)

Here, we assume that is inverse or pseudo-inverse of
the matrix .The convergence is
quadratic, , . This
convergence rate is very good but the algorithm is sensitive
with respect to initialization. For the quadratic convergence
a good initial guess is required.

3) Gauss–Newton method. The in (19) is a special
approximation of the inverse Hessian matrix. The conver-
gence rate is linear but with small . The convergence
rate is comparatively insensitive with respect to the
initialization.

In our experiments, we use the Gauss–Newton algorithm for
calculation of the estimates as the most practically efficient one.

The straightforward manipulations give the vector-gradient
and the Hessian matrix in the form

(21)

(22)

For the Gauss–Newton method, the matrix in (19) is
calculated as follows [28]. First, we produce linearization of

and in (15) assuming
that , where

is a small variation of

Further, substitute these series in given in the
form (15), then the matrix corresponding to the Gauss–Newton
method is calculated as

(23)

and in (19) . The formula (23) can be obtained from
(22) assuming that the error approximation of

by is small.
The Hessian matrix (22) is useful to analyze the convexity of

the criterion . For the noiseless case we have
. Substituting these expressions

in (22), we find that

(24)

Let the polynomials be linear independent
in the area where . It follows that the matrix

is positive definite. Then we may
conclude for (24) that provided

(25)

and the matrix
is also positive definite. It proves that the criterion

is locally strongly convex and the convergence of
the gradient style algorithm (19) can be guaranteed at least lo-
cally provided a proper selection of the matrix and the step
size parameter .

B. LPA Phase Unwrapping

The recursive algorithm (19) gives the estimate for any
provided that in the neighborhood of this point there is suffi-
cient number of observations . With initialization inde-
pendent for each point this is only a denoising algorithm which
does not assume the phase unwrap. Let us use this pointwise
estimator as an element of a more complex procedure with a
special sequence of the estimation points arranged with
underlying intention to reconstruct, say, a continuous surface

.
A straightforward idea is to use for initialization the esti-

mates already obtained for neighboring points. In particular, it
can be a line-by-line sequence starting from the pixel (1,1) and
going along the first line as , further
the pixels of the second line , and in a
similar way up to the last line . In
this way, we order all pixels of the phase image as the sequence

.
Let be the estimate for the point

provided that the recursive algorithm (19) is
initiated by the vector . The proposed tracking phase unwrap-
ping algorithm can be given in the following sequential form:

(26)

(27)

Note that this recursive procedure includes the recursive
pointwise estimator (19) as an imbedded one.

The procedure (26) is initiated by for the first point
, i.e., we need to define the phase and the first two

derivatives of the phase for this point. These values can be
taken from original observations, from boundary conditions or
as a priori information. It may be surprising, but this simple
idea works and works very well combining two complemen-
tary important goals: noise suppression and reconstruction of
continuous (or piece-wise continuous) absolute phase surface.

Our experiments show that the algorithm is successful pro-
vided that the absolute phase differences in the neighboring
pixels are not large, mainly not larger than radians. If
the absolute phase differences are smaller the accuracy is very
good, even for a high level of the random noise. Once more, note
that the unwrapping property of the algorithm is appeared as a
result of tracking the phase evolution from pixel to pixel.
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IV. SPATIALLY ADAPTIVE LPA

A. Estimate Accuracy

Using a linearization of (13) for small , we can rewrite
this model in the standard additive-error form

(28)

Let us derive the formula for the random phase-error .
According to (9), we have for (13) ,

, where and are defined by (8). Using the
Taylor series with respect to small and , we find that

Comparing these formulas with (28), we conclude that in
(13) is calculated as

(29)

With and ,
we find for that

(30)

Thus, for a small level of the noise, we can assume that the
random in (13) and (28) is zero-mean with signal indepen-
dent variance as defined in (30).

The estimation accuracy is characterized by the error between
the absolute phase and the corresponding estimate:

. This error is composed from the systematic
(bias) and random components corresponding to the determin-
istic and the random noise , respectively.

The window size is a crucial parameter for the accuracy of
estimation. When the window size is small, the LPA gives a
good smooth fit of signals, but then fewer number of observa-
tions are used and the estimates are more variable and sensi-
tive with respect to the noise. The best choice of involves a
trade-off between the bias and variance, which depends on the
degree of the LPA, a sample period, the noise variance, and the
derivatives of of the orders beyond the degree used in the LPA.

We present the accuracy analysis of the LPA estimates in
order to illustrate these statements. We derive the formulas for
the bias and the variance valid for small estimation errors. Fur-
ther, we use these results in the algorithm for data-driven adap-
tive window size selection.

The bias of the estimate is a difference between the true signal
and the expectation of the estimate:

. Properties of should be specified in order to eval-
uate this error.

Let us assume that the phase is a continuous twice differen-
tiable function. The finite Taylor series with the residual term in
the Lagrange form gives

(31)

We restrict our analysis to the class of smooth differentiable
functions with bounded second derivatives

(32)

where is finite and is a support of the window
in (16).

Then it follows from (31) and (32) that, for any and

(33)

Proposition 2 (Pointwise Accuracy): Let the hypothesis (32)
hold and the observation model be in the form (28)–(30). As-
sume also that the window function is symmetric (even with
respect to both arguments and ) then the accuracy of the es-
timates (18) of the phase is defined as follows. For the bias

(34)

For the variance

(35)

The proof of this proposition is given in Appendix.
Discussion of Proposition 2.

1) The bias of signal estimates is defined by the absolute
values of the second derivatives (through ). It is inter-
esting that the bias of the estimates does not depend on sin
and functions. These formulas for the bias errors coin-
cide with the ones derived for the linear LPA estimates in
[20, Ch. 5]. Following the technique used in this book, the
orders of the bias errors can be specified with respect to .
It can be shown that

Smaller results in a smaller bias error. It cor-
responds to the intuitively clear idea that, with a smaller
window size, the LPA is able to give a better approxima-
tion to a smooth signal with a smaller error.
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2) It can be shown that and
. Then we obtain for the variance of the estimates that

. Naturally, larger window means
smaller variance.

3) This dependence of the bias and variance with respect
to says that the mean squares error

has a minimum on ,
which gives the optimal bias-to-variance balance with the
best mean squared accuracy of estimation. The analysis of
the optimization and varying optimal selection of is one
of the subjects discussed in detail in [20, Ch. 5].

B. Adaptive Window Size Selection

The theoretical analysis and experiments show that the effi-
ciency of the local approximation estimates can essentially be
improved provided a correct selection of the window size . It
can be varying or invariant but properly selected. In signal pro-
cessing and statistics, window size selection is a subject of many
publications exploiting different ideas and techniques.

Recently, a novel class of algorithms known under a generic
name Lepski’s approach has been introduced in statistics and
shown to be efficient. These algorithms are proposed for the
pointwise varying window size adaptive nonparametric estima-
tion. One of the modification of this general approach named
the intersection of confidence interval ICI algorithm is simple
in implementation and found a number of efficient applications
in image processing. Here, we explain the idea of this algorithm
with reference for details to the book [20, Ch.6].

Let be a set of the ordered window sizes
. The estimates (27) are

calculated for all and compared. The subscript in
the estimate emphasizes its dependence on . A special statistic
is exploited in order to identify the window size close to the
optimal one. This statistic needs only the estimates and the
variances of these estimates both calculated for . Then
the confidence intervals of these estimates are defined as

(36)

where is a parameter of the algorithm and is calculated
according to (35), .

The ICI rule defines the adaptive window size denoted
as the largest of those in , with the estimate which does
not differ significantly from the estimates corresponding to the
smaller window sizes. In order to identify this adaptive , the
successive intersection of the confidence intervals is con-
sidered starting from and . Specifically, the pairwise
intersection of the intervals , , is considered
with increasing . Let be the largest of those for which
the intervals , , have a point in common. This

defines the desired adaptive window size and the adaptive
estimate as .

For the varying pointwise adaptive estimation, these calcula-
tions are produced for all points (pixels). In the implementation,
the ICI algorithm is used when the estimates for all points

Fig. 1. Pyramid test function.

are already calculated for all . Then the algorithm works as a
selector of the proper window size estimate for each point.

It is emphasized that the ICI adaptive window size enables
values close to the optimal ones minimizing the mean squared
error. However, is an important parameter of the algorithm
controlling the bias-variance balance in the estimate. Smaller

means a shift of this balance in favor of the bias, as smaller
results in smaller bias of the estimate. Contrary to it, larger
means a shift in favor of the variance, as larger results in

smaller variance of the estimate but possibly larger bias.

V. PhaseLa ALGORITHM

The variables , defined by (12) are input signals of the
PhaseLa algorithm.

Initialization of the vector

(37)

where is the observed wrapped phase.

For every pixel of the sequence ,
:

1) calculate the vectors and the point-wise estimates
according to (19), (23), and (26)–(27);

2) repeat these calculations for all ;

3) apply the ICI rule for selection of the best window size
and the adaptive window size estimate .

The initialization (37) by the observed wrapped phase values
is used only for the first pixel . For further pixels, the
initiation is produced using the adaptive window size estimates
obtained for the neighboring pixels where these estimates are al-
ready calculated according to the recursive procedure (27). The
estimates for different are calculated with the same initializa-
tion common for every particular pixel.

VI. SIMULATION EXPERIMENTS

We are focused on simulated data in order to be able to
evaluate the algorithm performance accurately. The observa-
tion models used in the experiments are described in detail.
As the accuracy criterion we use the root-mean-squared-error,
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Fig. 2. Wrapped Pyramid phase: (a) true absolute, (b) noisy, (c) PhaseLa rewrapped, and (d) absolute errors between the true absolute and PhaseLa unwrapped
phases.

Fig. 3. ICI adaptive window sizes for Pyramid phase.

RMSE . The LPA
is exploited with the uniform square windows defined on
the integer grid

.
Mainly, the ICI algorithm parameter and the set of

the window sizes .
As a benchmark for comparison, we use the results obtained

by the algorithm [5], which is considered as one of the
best algorithms developed for noisy data. We produce our ex-
periments using the first order polynomial model. The derivative
estimates play important role in unwrapping as the initialization
of the recursive pointwise estimates includes also the initializa-
tion for derivative estimates. In this way, the phase tracking es-
sentially exploits the continuity of the phase.

For all experiments, we use the Matlab codes of the PhaseLa
algorithm available at http://www.cs.tut.fi.

A. Pyramidal Phase

The pyramidal absolute phase test function (Fig. 1) is defined
by the formulas

on the integer grid , . The maximum
of is equal to 63.5 radians and the maximum of the pixel-wise
difference is .5 radians.

In Fig. 2, one can see the wrapped true absolute phase ,
the noisy wrapped phase calculated according to the formulas
(8)–(9), and the rewrapped phase reconstruction . Com-
paring the wrapped true absolute phase and , one may
conclude that the filtering and unwrapping are quite accurate.

The adaptive window sizes shown in Fig. 3 give insight how
the adaptation works. Mainly, the largest window size is se-
lected excluding the areas near pyramid edges, where the adap-
tive window size takes the minimum value. In this way, the algo-

TABLE I
RMSE FOR THE PHASELA AND ��� ALGORITHMS,

PYRAMID TEST FUNCTION

rithm enables the maximum smoothing of the noise for the flat
surfaces where the used linear model perfectly fits to the sur-
face and the maximum window size can be used. For the edges,
small window size allows to avoid the surface oversmoothing,
however, at the price of a higher level of random errors. The ef-
fects of the varying window selection is illustrated also by the
last image in Fig. 2 showing the absolute errors of the phase
reconstruction. These errors are minimal on flat surfaces of the
pyramid where the window sizes take maximal values and these
errors are maximal along the pyramid edges where the adaptive
window sizes are minimal.

Numerical evaluation of the algorithm performance is illus-
trated in Table I. It shows the results for PhaseLa with invariant
values of 1, 2, 3, 4 and with ICI varying adaptive ones. The
results are given for different values of the additive zero mean
gaussian noise in (8). We can see in this table a difference be-
tween the estimates with invariant and varying adaptive one in
the row corresponding the ICI adaptive algorithm. In all cases,
the adaptive algorithm enables minimization of RMSE values
and even slightly better results that the best one achieved for the
invariant window size.

We also show the results given by the algorithm (ten
iterations). Comparing these results versus PhaseLa with the
adaptive window size selection we may conclude that this adap-
tive algorithm gives a valuable improvement of the accuracy.
RMSE values are about 1.5 times better for the PhaseLa algo-
rithm than those for the algorithm.

B. Ramp Phase

For the linear (ramp) absolute phase, the PhaseLa algorithm
demonstrates the perfect performance as the ICI adaptation au-
tomatically selects the largest window size and in this way en-
ables the best noise attenuation giving the unbiased estimate
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Fig. 4. Wrapped ���� phase: (a) noisy, (b) PhaseLa rewrapped, and (c)���
rewrapped.

TABLE II
RMSE FOR THE PHASELA AND ��� ALGORITHMS, RAMP TEST FUNCTION

of the phase. In these experiments, we use larger values of the
window sizes, and .

The function is defined as for
, . Thus, the maximum value of is

63.5 with the maximum difference between pixels equal to .5.
The numerical results are shown in Table II for different noise
standard deviation in the observation model (8). Comparing
PhaseLa versus the algorithm is definitely in favor of
PhaseLa. Fig. 4 illustrates what this difference in RMSE values
means visually. These images are given for . The adap-
tive PhaseLa nearly perfectly suppresses the noise in this heavy
noisy data with only a few erroneous pixels clear seen in the
image.

C. Parabolic Phase

In these experiments, we use the model studied in [18]1 The
phase is a parabola defined by the formula

where is a normalized phase to be estimated.
The level of the additive gaussian noise is characterized by the

signal-to-noise ratio SNR . The observation
model has a form (8) with . The maximum values of
and the phase difference are 18.85 and 2.28, respectively.

It is shown in [18] that the algorithm developed by the au-
thors of this paper and the algorithm by Chen and Zebker [29]
demonstrate nearly identical results which are much better than
those obtained by the least square method sensitive with respect
to noise.

1The model and conditions of this experiment important for comparison with
the results in [18] are due to personal communication with L. Ying.

TABLE III
RMSE VALUES OBTAINED BY THE ALGORITHMS:

PROPOSED IN [18], ��� AND PHASELA

TABLE IV
RMSE VALUES OBTAINED BY THE ALGORITHMS

��� AND PHASELA FOR COHERENCE �

Fig. 5. Noisy data, wrapped true phase, and rewrapped phase reconstruction
obtained by the PhaseLa algorithm �� � ���	.

In Table III, we show RMSE values for: the best results from
[18], and the results obtained by the PhaseLa and al-
gorithms. In this competition the algorithm shows much
better accuracy than that in [18] and the PhaseLa algorithm en-
ables even better accuracy. Comparing with the algorithm
we can see that the accuracy of the PhaseLa algorithm is about
1.5 times better for all SNR.

D. InSAR Model

Here, we use the interferometric synthetic aperture radar
(InSAR) model as it is introduced in [5] and follow assumptions
and parameters discussed in details in this paper. The observed
InSAR data are given by complex variables

(38)

where , are complex valued amplitudes of the harmonic
phase signals and , are complex-valued observation errors.

All these variables are random independent zero-mean
gaussian. The phase shift is a parameter of
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Fig. 6. True absolute phase, hypothetical noisy absolute phase, PhaseLa and ��� reconstructions �� � ����.

interest. It is assumed that and
is real.

The input for the signal processing is calculated as the product
. If there is no noise, , we have

where the random error in the phase is a phase difference
of the random phases of and .

Being rewritten in the form (8), it gives
, and further for the wrapped

phase

(39)

In this way, we arrive to the model (13) used as a starting point
of our algorithm. It follows from Proposition 2 that the variance
of the estimates depending on becomes random.
If the noises and are nonzero the situation becomes even
more complex with the amplitude random and depending on
the unknown absolute phase .

The algorithm is compared in [5] versus a number of
prominent algorithms proposed for phase unwrapping. Those of
these algorithms which are developed for noiseless data are con-
sidered with a special prefiltering of the observed noisy wrapped
phase. It is shown (see Table I in [5]) that the algorithm
with simultaneous smoothing and unwrapping demonstrates a
great deal of advantage over all compared algorithms when the
phase unwrapping is produced from noisy data. This fact gives
a reason to compare in this paper the PhaseLa algorithm versus
the algorithm only as it is the best algorithm at least in
the group studied in [5].

According to [5], the following is assumed. The absolute
phase is gaussian ,

, , , with integer arguments , ,
, . The amplitudes and are random with

the variance and in (38). The coherence
is a varying parameter of simulation experiments.

The maximum values of the absolute phase is equal to
with the maximum value of the differences about 2.5 radians.
For the considered noisy data, the phase difference is often takes
values close to .

Smaller and larger values of correspond respectively to
larger and smaller noise level in observations starting from

means a very high intensity of the noise and going up to
corresponding to nearly ideal noiseless data. The RMSE

values are shown in Table IV for different values of the coher-
ence .

The PhaseLa algorithm compared versus the algorithm
mainly demonstrates a better performance. This advantage is
very impressive for the high noise level with 0.7, 0.75,
where the algorithm fails what follows from very large
values of RMSE while the PhaseLa algorithm gives a reason-
able accuracy of phase unwrapping. For a lower level of the
noise , the accuracy of the compared algorithms be-
comes close with the negligible difference for . The
quality of the PhaseLa method for noisy data is illus-
trated in Fig. 5, where one can observe the noisy observations
and the rewrapped phase estimate . It is seen that visu-
ally the estimate is quite good. The 3-D imaging in Fig. 6 gives
further illustrations. One can see here the true phase and what
we call “hypothetical noisy true phase.” The last signal is ob-
tained by unwrapping the noisy wrapped observations and
used only to give an idea what kind of a noisy signal, ,
corresponds to . We also show the reconstructions obtained
by the PhaseLa and algorithms. The PhaseLa estimate is
smoother and as followed from the smaller value of RMSE is
more accurate than that for the algorithm.

A distribution of the ICI adaptive window for is
illustrated in Fig. 7.

It is important to emphasize a crucial role of adaptive window
size selection in this experiments. Table IV shows that the un-
wrap using the LPA with a fixed window size fails with 4,
5 for all , and with for , 0.75. Nevertheless,
we can see that the unwrap with the ICI adaptive window size is
successful with a good accuracy. It says, that the ICI treats the
fails in unwrapping as large bias errors. In this way, the ICI rule
filters out the estimate with errors in unwrapping. However, it
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Fig. 7. Adaptive window sizes for the PhaseLa phase unwrap �� � ����.

works correctly, if the estimates with different starts from the
properly unwrapped estimates.

VII. CONCLUDING REMARKS

This paper presents an efficient approach for absolute phase
reconstruction from noisy wrapped phase measurements. The
local approximation technique is exploited for the phase es-
timation and attenuation of noise effects. The unwrapping is
achieved by successive phase reconstruction for neighboring
pixels. The window size adaptation enables a reasonable com-
promise between the noise smoothing and preservation of de-
tails in phase image.

In what follows in this section, we discuss some principal and
technical issues concerning our approach.

1) Overall, the developed LPA technique is the nonlinear least
square method with a pointwise estimation in a sliding
window. It can be treated also as a nonlinear recursive filter
tracking (from pixel-to-pixel) phase values. To the best of
our knowledge, this novel recursive filter is essentially dif-
ferent from recursive and nonrecursive procedures which
have been used before now for noisy phase unwrap.
In [1], the filtering is considered as a preprocessing pre-
ceding the main unwrapping algorithm. It is recommended
in [1, Ch. 3] to filter independently two signals and

with following recalculation of the wrapped phase
values through these filtered and . Our filtering
is different because the local approximation is used directly
for the reconstructed absolute phase as the argument of

functions. In this way, the observation model is
thoroughly exploited in the developed estimator with nat-
urally a much more efficient filtering.
If we compare our algorithm versus the Kalman-Busy style
filter proposed in [30], we may note, first, that the filter in
[30] is applied to observations given in the form (8), where
the noise is additive. Our algorithm starts from the wrapped
phase data and then there is no additive noise in the obser-
vations (13). Recall, that the observation noise is essential
for the Kalman–Busy technique where no noise is a sin-
gular situation. Thus, different observation models and, as
a result, a different setting of the problem are considered.
The accuracy control imbedded in the recursive pointwise
estimation in (19) and the window size adaptation makes a

difference between our algorithm and the algorithm from
[30] even deeper.

2) In this paper, we treat the algorithm as a bench mark
and use it for comparison. We show that on many occasion
our algorithm demonstrates a better accuracy. It is inter-
esting to discuss a difference between the algorithms.

2.1) The algorithm is a procedure with a solu-
tion obtained by minimization of the global (defined
over whole image) criterion (6). The smoothness of the
reconstructed phase is defined by the parameter .
With there is no smoothness constraints at all
and any gives the minimum
value . For large , the corresponding
solution approaches a constant value as the phase dif-
ferences should go to zero in order will be bounded.
Note that, in the PhaseLa algorithm, the estimate with
an increasing window size gives the estimate which is
linear with respect to the argument . Thus, the
zero-order polynomial approximation is used in the

algorithm and the first order in the PhaseLa
algorithm.
Using the parameter and weight in (6), we
can vary the smoothness of the solution and generate
a variety of versions of the unwrapped absolute phase.
In our simulation experiments, we assume that the pa-
rameters of the algorithm are fixed as they are
given in the author’s code and show that in this case
the PhaseLa algorithm demonstrates more accurate re-
sults. It is quite possible that there exists such tuning of

and that the algorithm performs better
than the PhaseLa algorithm.
However, variations of the weight can result in
global changes of the phase , and it is a nontrivial
task to enable the desirable pointwise smoothness cor-
rection through the solution of the global optimization.
Contrary to , the PhaseLa procedure is local
minimizing the local criterion (17) in the pointwise
manner. In this way, the size of the estimation window
is an efficient instrument for precise and straight-
forward control of the smoothness for every pixel
individually. The ICI algorithm gives a rule to select
a reasonable distribution of the window sizes over the
phase image. Thus, locality and globality is the first
issue differs the discussed two algorithms.
2.2) The unwrapping is a key point of the
algorithm while the PhaseLa algorithm is focused
on approximation and noise suppression. The mini-
mization of over integer in (6) produces a global
unwrapping.
In the PhaseLa algorithm, the unwrapping is a result
of the accurate approximation and careful fusing of
the estimates for neighboring pixels. It means that for
unwrapping we use the local analysis of the estimates
only. The experiments confirms that this idea works
well.
2.3) Concerning the complexity of the and
PhaseLa algorithm we wish to note that the compu-
tation time of these algorithm is more less the same
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Fig. 8. Discontinuous absolute phase: noisy data and PhaseLa reconstruction.

provided that four iterations are used in the
algorithm. Larger number of iterations naturally mean
longer computation time.

3) Using the adaptive window size for the phase unwrap is
originated in our conference paper [31]. In this paper, the
tracking of the phase is produced with a fixed window size.
Thus, we obtain the estimates calculated with invariant
window sizes and the ICI is used in order to select the best
estimate for each pixel.
In the PhaseLa algorithm presented in this paper, the phase
tracking is performed on the estimates with already adap-
tive window sizes. Comparison of the algorithms is defi-
nitely in favor the PhaseLa algorithm which demonstrates
much better performance.

4) The line-by-line phase restoration implemented in the
PhaseLa algorithm is a not universally best strategy. In
particular, the tracking mimicking path-dependent integra-
tion methods with local phase congruence tests can give a
further improvement of the algorithm.

5) The LPA and the ICI procedures as they are presented in
this paper are proposed for continuous and differentiable
phase functions.

However, the LPA with the adaptive window size selection
allows a number of modifications for more complex problems
with nondifferentiable and discontinuous functions.

Let be a piece-wise continuous differentiable phase
function. It means that the area where this function is defined
can be segmented on nonoverlapping subareas , ,

if , such that for any exist where
is continuous and differentiable. Introduce the indicator

(mask) function for subarea, for
and otherwise. Assume that this segmentation is
given. The PhaseLa is applicable for the phase unwrap in pro-
vide that the weight in (16) are replaced by and
the algorithm is initiated by the data from this area. Fig. 8 illus-
trates the work of the algorithm in this situation. There are two
subareas where the considered absolute phase is continuous. In
one of these areas, it the gaussian density while in the second
subarea (quadrant sector) the phase function is equal to zero.
Fig. 8 shows the noisy absolute phase, the observed wrapped
phase and the PhaseLa reconstructed unwrap phase. The algo-
rithm demonstrates a very good performance.

To deal with nonsmooth functions when the piece-wise seg-
mentation is unknown the adaptive anisotropic LPA can be ap-
plied. In this concept, the symmetric square window function

is replaced by four/eight sectorial windows with the ICI

window size selection independent for each sector. The final
estimate is obtained by aggregation of the sectorial ones. These
anisotropic estimates are highly sensitive with respect to discon-
tinuity and anisotropic behavior of the reconstructed functions.
This sort of methods in applications for image processing are
discussed in [20, Ch. 7–8].

APPENDIX

Proof of Proposition 2: The minimum condition for uncon-
strained optimization (17) has a form , where

is a vector-estimate. Using the first two term of the Taylor se-
ries this equation gives

(40)
where is a vector of true
values of the phase and the derivatives, .

The vector gradient and the Hessian matrix
are defined in (21) and (22). Let us calculate the expectation of
the Hessian matrix. Using (28), we have and

and then

(41)

According to (33)

(42)

For a small we have
and then

(43)

For an increasing number of samples in , there is a conver-
gence in probability
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(46)

Inserting the last formula instead of in
(40), we can solve this equation with respect to :

(44)

According to (28), the random estimation errors is

where ,

Using these expressions for and

If the estimates are accurate and and
the covariance matrix of the random estimation errors is
calculated as

(45)

where is the variance of . For a symmetric window
function, , with , the polynomials ,

, are orthogonal on and the matrices
and are diagonal. Then the matrix

is also diagonal. The first element of this
matrix gives the formulas (35) for the estimate variance. Others
give the variances of the derivative estimates.

For the bias evaluation, we consider the systematic part of
(44) [see (46), shown at the top of the page].

Using (42), we have

Then,
. It proves (34) for the bias error of the esti-

mates. Other items of the vector in (46) can be used in
order to derive the bias of the derivative estimates.
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