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Human Tracking Using Convolutional
Neural Networks
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Abstract— In this paper, we treat tracking as a learning
problem of estimating the location and the scale of an object
given its previous location, scale, as well as current and previous
image frames. Given a set of examples, we train convolutional
neural networks (CNNs) to perform the above estimation task.
Different from other learning methods, the CNNs learn both
spatial and temporal features jointly from image pairs of two
adjacent frames. We introduce multiple path ways in CNN to
better fuse local and global information. A creative shift-variant
CNN architecture is designed so as to alleviate the drift problem
when the distracting objects are similar to the target in cluttered
environment. Furthermore, we employ CNNs to estimate the
scale through the accurate localization of some key points. These
techniques are object-independent so that the proposed method
can be applied to track other types of object. The capability of
the tracker of handling complex situations is demonstrated in
many testing sequences.

Index Terms— Convolutional neural networks, machine learn-
ing, visual tracking.

I. INTRODUCTION

OBJECT tracking is a fundamental problem in computer
vision. Traditional feature-based methods, such as those

based on color [1] or motion blobs [2]–[4], perform tracking
by maintaining a simple model of the target and adapting such
a model over time. However, real situations in practice pose
enormous challenges to these techniques, because: 1) over
time, the object model can deviate from its original one, and
2) they do not have a discriminative model that distinguishes
the object category of interest from others.

In recent years, learning-based approaches [5]–[7] and
object-detection-based tracking methods [8], [9] have been
used to overcome these limitations. In these methods, an online
learning or a pretrained detector provide object candidates, and
then an additional module generates trajectories by associating
the candidate detections across frames. By adaptively updating
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the visual appearance or limiting the focus to detection candi-
dates, these methods tend to adapt the tracker to the changes.

The major challenge of the traditional learning-based and/or
tracking-by-detection methods is the false positive matches
that lead to wrong association of the tracks. The reason is that
those methods are based on applying an appearance model
or object detector at all possible windows around the target,
and the object detection in the current frame does not depend
on knowing the position of the target in the previous frame.
Therefore, in crowded scenarios, when the distracting objects
are similar to the target, the object detector will generate
similar high detection scores for both the target and the
distracters, which would probably cause a drift problem. For
example, if we want to track the head of a person in a crowd,
it is very difficult if we use a head detector because the heads
of other people in the crowd can also be good matches. In
Fig. 1, suppose the target is at O in the previous frame. It
is clear that the position A and A′ will generate similar high
detection scores by the object detector, as the detector does
not know that the target is at O in the previous frame.

To alleviate this drift problem, we consider that the location
and the appearance of an object in the previous frame should
assist us to detect the object in the current frame. By using
these additional pieces of information for detection, we ef-
fectively turn an object detector into a tracker that is capable
of estimating the location and the scale of the target given
its previous location, size, as well as current and previous
image frames. In this paper, we use convolutional neural
networks (CNNs) [10] as our base learner because they have
been demonstrated to be able to extract local visual features
(structures) and they are widely used in various visual recog-
nition applications [11], [12]. Different from fully connected
neural networks, CNNs force the extraction of local features
by restricting the receptive fields of hidden units to be local,
based on the fact that images have strong 2-D local structures.

The hurdle of applying conventional CNNs in tracking is
that they have shift-invariant architectures (see Section III-C
or [13]) which make them suitable for recognition or detection
tasks but inappropriate for tracking tasks. In this paper, we
design a CNN tracker with a shift-variant architecture. Such
an architecture plays a key role so that it turns the CNN model
from a detector into a tracker. The features (structures) are
learned during offline training. We demonstrate the generality
of the learned features by testing the CNN tracker on dif-
ferent scenarios and environments. Different from traditional
learning methods which only extract local spatial structures
[5], we extract both spatial and temporal structures (motion
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Fig. 1. Drift problem probably occurs when the distracting objects are similar
to the target.

information) by considering the image pair of two consecutive
frames rather than a single frame. The temporal structures
provide a crude velocity signal to tracking, since the large
signals in the temporal information (e.g., the frame difference)
tend to occur near objects that are moving [14]. Furthermore,
the CNN tracker not only extracts local features (e.g., from
7 × 7 patches), but also extracts global features from a wide
scope of pixels, as the local features are not always reliable
for matching because of view change or partial occlusion.

The contributions of this paper include the following:
1) a discriminative model extracts discriminant spatial and
temporal features for specific object class tracking, where the
features are learned from a parametric feature pool with rich
degrees of freedom; 2) the shift-variant architecture of CNN
is based on a multipath strategy which widely broadens the
traditional use of CNN; and 3) the novel scale estimation
method is based on the localization of key points which is
object independent. Unlike the existing learning-based meth-
ods, the proposed model can largely alleviate the drift problem,
and thus can perform robust tracking for a longer time.

The rest of this paper is organized as follows. Section
II describes related work. Sections III and IV discuss the
details of the CNN tracking algorithm. Section V shows
promising comparative results and Section VI summarizes the
conclusion.

II. RELATED WORK

In this section, we review recent approaches related to
this paper. Tracking-by-detection has been studied recently in
[15]–[19]. As a matter of fact, tracking-by-detection methods
can be viewed as a special kind of learning-based methods,
since the object detector is learned offline. In [20], an assembly
of body parts is used for detecting and tracking partially
occluded people. In [8], refined limb detectors are taught
to detect people’s limbs in a wide variety of situations.
A novel feedback connection from the object detector to pose
estimation (visual odometry) is used for human tracking [21].
[22] proposes a two-stage approach which first builds an
appearance model of individual people, and then tracks them
by detecting those models in each frame. These methods are
based on the analysis of the body parts or pose estimation.
However, in many video surveillance applications, the subject
may not have enough resolution, and therefore the detailed
motion of the body parts is difficult to discover.

Learning-based methods have been in the focus of recent
works [5]–[7], [23]–[25]. The support vector tracker [23] uses
an offline-learned support vector machine as the classifier

and embeds it into an optical flow-based tracker. In [6], the
current frame is classified using a classifier learned in the
previous frame. A variance ratio is used to measure feature
discriminability and to select the best feature from a feature
pool for tracking. In [5], an ensemble of weak classifiers is
trained online, and pixels are labeled as either the target or the
background. Since only spatial local structures are extracted,
the confidence map degrades in crowded scenes, as there are
many similar spatial patterns. In [26], the target is represented
in a low-dimensional subspace which is updated adaptively
using the images tracked in the previous frames. In [25], a
cascade particle filter with feature pools of different life spans
has been proposed, while the likelihood model is noisy and
has many peaks without a Gaussian diffusion at the sam-
pling stage. In [27], a semi-supervised approach is proposed
where labeled examples come from the first frame only, and
subsequent training examples are left unlabeled. In [28], a
discriminative classifier is trained in an online manner based
on multiple instance learning. All these approaches extract
only the spatial structures but neglect the motion information.
In this paper, we extract both spatial and temporal structures
from two consecutive frames to model the likelihood and
capture the motion information, which efficiently alleviates the
drift problem as mentioned above.

A. CNNs

A popular CNN architecture that shows excellent perfor-
mance for visual recognition is shown in Fig. 2, which is an
instance of multistage Hubel–Wiesel architectures [10], [29].
Because the theory of CNNs is closely related to some deep
knowledge about neural networks, which is beyond the scope
of this paper, we briefly review the basic idea of CNNs here
and refer the readers to [10] for more details. For visual recog-
nition tasks, CNNs first extract and combine local features
from the input image, and these features are then combined
by the subsequent layers in order to obtain higher order
features. Such high-order features are eventually encoded into
a 1-D vector (target label), which is then categorized by a
trainable classifier. It is worth noting that feature extraction is
a nontrivial problem, because there are size, slant, and position
variations for individual images. These cause variations in the
position of distinctive features in the input objects. To elimi-
nate these variations, CNNs combine three architectural ideas
to ensure some degree of shift, scale, and distortion invariance:
local receptive fields, shared weights, and downsampling.

In Fig. 2, the input plane receives the image patches to be
processed. Each unit in a layer receives inputs from a set of
units located in a small neighborhood in the previous layer.
With local receptive fields, neurons can extract primitive visual
features such as oriented edges, endpoints, and corners.

Once a feature has been detected, its exact location becomes
less important. Only its approximate position relative to other
features is relevant. In CNN architecture, downsampling layers
are introduced to reduce the resolution of the feature map as
well as the sensitivity of the output to shifts and distortions.
As shown in Fig. 2, this model includes alternating layers of
convolutional feature detectors (C layers) and downsampling
layers using a max or an average operation (S layers).
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Fig. 2. Architecture of CNN for visual recognition. Each plane is a feature map, i.e., a set of units whose weights are constrained to be identical.
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Fig. 3. Architecture of CNN tracking.

For recognition or detection tasks, the primitive feature
detectors that are useful on one part of the image are likely
to be useful across the entire image. Units in a layer are
organized in planes within which all the units share the
same set of weights. By sharing the same set of weights,
CNNs have the shift-invariant property so that they are able
to achieve excellent performance in various recognition or
detection tasks.

In [14], Nowlan and Platt describe a CNN hand tracker
to track the position of the hand across a sequence of video
frames. Although the temporal features are extracted from the
difference of the consecutive frames, they use a shift-invariant
architecture so that the CNNs operate as an object detector. So
the CNN hand tracker does not include mechanisms to handle
the drift problem in Fig. 1. In this paper, we effectively turn
a CNN object detector into a tracker by constructing a shift-
variant architecture of the CNN.

III. CNN TRACKING

As mentioned above, CNNs can extract local structures
and feature vectors from the input image. This motivates
us to apply the neural networks for tracking problems. The

basic idea is that, given two corresponding image patches
(from the previous and the current frame), where in the first
patch the target is located at the center, we want to find
the target location in the second image patch on the basis
of spatial and temporal structures of these two patches. The
spatial structures indicate the appearances, while the temporal
structures capture the motion information. We do not rely on
background subtraction because it is not reliable and may not
be available for dynamic background. The architecture of CNN
tracking is shown in Fig. 3.

For the tracking problem, assume that the target position
(e.g., the center of the human head) at time t −1 is known (the
initialization can be done manually or by human detection),
the goal is to find the target position at time t . Denote the
target position at time t − 1 by xt−1 = (xt−1, yt−1, st−1),
where (xt−1, yt−1) is the position of the human head, st−1 is
the scale. The associated bounding box (e.g., the blue square in
Fig. 3) is denoted by R(xt−1). We extract an image patch (the
blue rectangle in Fig. 3) which includes the surrounding of the
target at time t − 1. Denote this image patch by Nt−1(xt−1).
The ratio1 of the size of Nt−1(xt−1) to that of R(xt−1) is

1e.g., the area ratio of the blue rectangle to the blue square in Fig. 3.
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fixed (we expect that the whole human body can be included
in Nt−1(xt−1) for most cases, so we empirically set the ratio
to 3 × 8 in our framework). We extract the image patch
Nt (xt−1) at time t which has the same position as Nt−1(xt−1).
Nt−1(xt−1) and Nt (xt−1) are normalized to image patches of
fixed size w×h which are the inputs of CNN. After normaliza-
tion, the target object is always at the same position O in the
w ×h input patch at time t −1 (Fig. 6). Our CNN is expected
to detect an object at time t which corresponds to the target lo-
cated at position O. The output of CNN is the probability map
of size (w/2)×(h/2) which shows the target position at time t .
The peak of the map indicates where the target is. The reason
why the size of the probability map is one-half of the input
image is that the downsampling in the S1 layer decreases the
resolution of the input image. Therefore, the accuracy of the
target position is about 2 pixels. However, as we will explain
in Section V-D, our method can tolerate small measurement
deviations such that the error will not be accumulated.

Regarding the architecture of the network, the inputs of
CNN are the image pair at time t − 1 and t , which means that
we can extract both spatial and temporal structures from the
target neighborhood. The weights of CNN are learned during
the offline training procedure. In contrast to the confidence
map in [5], the probability map we use here has two important
advantages: 1) only around the target center the probability of
the unit is high, so the probability map reflects an accurate
localization property, and 2) we can measure how well the
probability map describes the true situation, i.e., the noisier
the probability map, the more complex is the environment
and, therefore, the less confident we are in using the map
to estimate the target position.

A. Detail Description

The detail description of our CNN is as follows. As CNNs
contain a large number of parameters in the hierarchical archi-
tecture, it would be quite lengthy if we use general constants
to denote the parameters. Hence, we denote parameters by
specific numbers for clarity.

1) Each normalized patch of the image pair is split into five
input feature maps, i.e., R/G/B channels and additional
two channels Dx and Dy , which are the horizontal and
vertical gradients of gray intensities. Throughout the
experiment in this paper, the size of the input image
patch is 48 × 128.

2) Layer C1 is a convolutional layer with 10 feature maps.
Each unit in each feature map is connected to a 5 × 5
neighborhood of the input. The size of the feature maps
is 44 × 124. We denote C1(k, i, j) the value at position
(i, j) in the kth feature map of layer C1.

3) Layer S1 is a downsampling layer with 10 feature maps
using max operation. Such an operation introduces some
local translation invariance to the model. We denote
S1(k, i, j) the value at position (i, j) in the kth feature
map of layer S1. Then we have

S1(k, i, j) = max{C1(k, 2i, 2 j), C1(k, 2i + 1, 2 j),

C1(k, 2i, 2 j + 1), C1(k, 2i + 1, 2 j + 1)}.
(1)
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Fig. 4. Global branch and local branch.

4) We split the following procedure into two branches.
The global branch aims to enlarge the receptive field
[10] so that each unit in the probability map is affected
by a large area, i.e., global structures are obtained, the
local branch aims to discover more details about local
structures.

The global and local branches are shown in Fig. 4. For the
global branch, layer C2 is a convolutional layer with 33 feature
maps. Each unit in each feature map is connected to several
3 × 7 neighborhood at identical locations in a subset of S1
maps. Table I shows the set of S1 feature maps combined
by each C2 feature map. We refer the readers to [10] for the
reason for not using a complete connection.

For the λth column in Table I, we denote the marked row
indices by ηλ,0, ηλ,1, . . . , ηλ,p−1. For instance, if λ = 23, we
have p = 6, η23,0 = 1, η23,1 = 3, η23,2 = 4, η23,3 = 6,
η23,4 = 8, η23,5 = 9. Then the size of the convolution kernel
of the λth feature map of C2 layer is p × 3 × 7. We denote
this kernel by Kλ, which is trainable. Denote C2(k, i0, j0) the
value at position (i0, j0) in the kth feature map of layer C2.
Then we have

C2(λ, i0, j0) =
p−1∑

r=0

2∑

i=0

6∑

j=0

{S1(ηλ,r , i + i0, j + j0)

× Kλ(p − 1 − r, 2 − i, 6 − j)}. (2)

This is a 3-D convolution operation. For example, for the
0th column, p = 3, η0,0 = 0, η0,1 = 1, η0,2 = 2. We have

C2(0, i0, j0) =
2∑

r=0

2∑

i=0

6∑

j=0

{S1(η0,r , i + i0, j + j0)

× K0(2 − r, 2 − i, 6 − j)}. (3)

Finally, the size of the receptive field of the global branch
is 28 × 68, so the features can capture global structures from
a wide range in the image patch. Since the downsampling
impairs the resolution in the global branch, we use the local
branch to compensate the accuracy. The local branch uses only
the convolution operation without downsampling in order to
focus on the details of local structures.

From Fig. 3, the 0th−4th feature maps of layer S1 are from
the previous patch and the 5th−9th feature maps of layer S1
are from the current patch. From Table I, for 0–10 out of C2
feature maps, the connection to C2 are from the previous patch
only, because the entries of 5th−9th rows and 0−10th columns
are zero. For 11–21 out of C2 feature maps, the connection
to C2 are from the current patch only. Therefore, for 0–21
out of C2 feature maps, the connection to C2 are from only
one patch, so it is supposed to capture spatial features. For the
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TABLE I

COLUMNS INDICATING WHICH FEATURE MAP IN S1 ARE COMBINED BY THE UNITS IN A PARTICULAR FEATURE MAP OF C2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0 X X X X X X X X X X X X X X X
1 X X X X X X X X X X X X X X X
2 X X X X X X X X X X X X X X X
3 X X X X X X X X X X X X X X X
4 X X X X X X X X X X X X X X X
5 X X X X X X X X X X X X X X X
6 X X X X X X X X X X X X X X X
7 X X X X X X X X X X X X X X X
8 X X X X X X X X X X X X X X X
9 X X X X X X X X X X X X X X X

remaining C2 feature maps, the connection to C2 are from two
patches, thus it is supposed to capture motion related features.
Similarly, layer S2 is a downsampling layer and layer C3 is a
convolutional layer with 80 feature maps. We follow a similar
notation as in (1), and have

S2(k, i, j) = max{C2(k, 2i, 2 j), C2(k, 2i + 1, 2 j),

C2(k, 2i, 2 j + 1), C2(k, 2i + 1, 2 j + 1)}. (4)

The connection between S2 and C3 is randomly chosen, i.e.,
we randomly choose 10 feature maps from S2 to connect to
C3 in order to reduce the number of the trainable parameters.
Based on this hierarchical structure, as well as the nonlinear
operations, the features are extracted from a parametric feature
pool with rich degrees of freedom.

From layer C3 to the output probability map, there is a four-
times upsampling (from 6 × 16 to 24 × 64). This is different
from the conventional CNN in which two-times upsampling
is adopted. We will show in Section III-C that the use of four-
times upsampling together with the local branch makes the
CNN architecture shift-variant so that such an architecture can
be used for tracking.

For layer C4, it is a convolutional layer with 10 feature
maps. Each unit in each feature map is connected to a 7 × 7
neighborhood of layer S1. There is a translation transform
from layer C4 to the output. For the position (i0, j0) in the
output map, this translation transform ensures that the center
of its local receptive field in the normalized input patch is
at (2i0, 2 j0), thus the local spatial structures are correctly
extracted.

The convolution filter of the probability map is a linear
function followed by a sigmoid transformation (see [10] for
details). We follow the above notations, and denote Op(i0, j0)
the value at position (i0, j0) in the output probability map.
Then we have

Op(i0, j0) = ζ

(
79∑

r=0

C3

(
r, � i0

4
�, � j0

4
�
)

K3(r)

+
9∑

r=0

C4(r, i0 − 4, j0 − 4)K4(r) + Kb

)
(5)

where K3(·), K4(·), and Kb are trainable weights, ζ is the
sigmoid function, and � � is the floor function.2

2For negative arguments, for example, C4(0, −1, 0) = 0.

Previous

Current

Probability map

Fig. 5. Six training samples from the offline training set.

B. Training Procedure

The offline training set includes around 20 000 samples.
The dataset was collected by NEC Laboratories. For the
training samples, we manually annotate the bounding boxes
of human heads in some video sequences (e.g., the blue
square in Fig. 3). Given one bounding box centered at xt−1,
we extract Nt−1(xt−1) and Nt (xt−1) as the CNN input. The
probability map is generated by a Gaussian function and the
peak of the probability map is at xt . Hence, one training
sample consists of the image patch Nt−1(xt−1) in the previous
frame, the patch Nt (xt−1) in the current frame, and the
target detection probability map in the current frame. The
examples of training samples are shown in Fig. 5. We collect
those samples randomly with different human views in some
surveillance videos.

The model is trained offline using standard stochastic gradi-
ent descent by minimizing the difference between the probabil-
ity map outputted by the CNN and the target probability map.
Once the model is trained, it is fixed during tracking. We do
not use adaptive models since they are susceptible to the drift
problem. Unlike adaptive models, our model has less chance to
drift to unrelated types of object. Although fixed, the model is
capable for dramatic view changes, since we have collected
enough training samples including various cases of human
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Fig. 6. Receptive field of the shift-invariant and the shift-variant architectures.
(a) Shift-invariant. (b) Shift-variant.

motion. Extensive experiments on real test video sequences
show the effectiveness of this model.

C. From Shift-Invariant to Shift-Variant

The difference between shift-invariant and shift-variant ar-
chitecture is shown in Fig. 6. In this section, we first point
out that the conventional CNNs with a shift-invariant archi-
tecture are not proper for tracking, and the use of two-times
upsampling from layer C3 to the output makes the CNN model
shift-invariant. Then we illustrate how the use of four-times
upsampling breaks such shift-invariant property, and explain
why it can alleviate the drift problem significantly during
tracking.

Denote the target position at time t −1 and time t by O and
A, respectively. Consider there is another person moving from
O ′ to A′ at the same time. The global and local receptive field
of A is denoted by G A and L A, respectively. Denote the center
of the receptive field G A by CG A . The probability pA in the
probability map is the sigmoid function of the summation of
G A and L A responses, which is monotonically increasing.

The conventional architecture of CNNs for detection is the
so-called space displacement neural network (SDNN) [13],
[14]. In this architecture, a single detector is replicated over the
input, and the output is a detection score map which is shift-
invariant. This means that the position A and A′ will generate
similar high detection scores. The high detection score at A′
is very harmful because it may cause confusion with A (the
readers can refer to Fig. 1 for the intuition).

If we use two-times upsampling from layer C3 to the
output (similar to the architecture in [14]), our network will
be a special instance of SDNN, which operates as an object
detector. As shown in Fig. 6(a), CG A is at A. It means that the
relative locations of the global receptive field (CG A ) and the
object position (A) are the same. Hence the obtained detection
map is shift-invariant.

The use of four-times upsampling has a nice property. The
center of the global receptive field of one output unit is at
the midpoint of the previous location and the current location
of the object (Property 3.1, the proof is shown in Appendix).
Having this property, the four-times upsampling breaks the
shift-invariant property of SDNN. In the shift-variant CNN
architecture, CG A depends on O (it is at the midpoint of O

Previous

Current

CNN 1

CNN 2

Probability maps
of interest points

Fig. 7. Architecture of CNNs to detect key points.

and A, see Fig. 6(b)), so the CNN output depends on the
object’s previous location. This is different from the shift-
invariant architecture where CG A is independent of O (it is at
A). Hence, the proposed model is different from conventional
CNN models which operate as object detectors.

In this shift-variant architecture, we claim that the tracker
has less chance to drift to A′ by showing that pA is larger than
pA′ . As pA is the sigmoid function of the summation of G A

and L A responses, it is large only if both G A and L A respond
large. For A and A′, the response of the local branch L A and
L A′ are similar, as they operate as local object detectors. For
the response of the global branch G A and G A′ , G A responds
large, as it extracts the similar pattern at O (at time t−1) and A
(at time t) (this is learned during training). But G A′ responds
small, because the global patterns at O (at time t − 1) and A′
(at time t) are different.3 Therefore, pA is larger than pA′ , and
the tracker does not drift to A′. From this point of view, the
drift problem is alleviated. It is clear that the tracker does not
drift to other locations, because the responses of the global
and local receptive fields are both small.

Property 3.1: Assume the target is at O at time t − 1. At
time t , if we want to check the hypothesis at A, then the global
receptive field is located at C , which is the midpoint of O
and A

xC = xO + xA

2
. (6)

IV. HANDLING THE SCALE CHANGE

The scale is usually handled by testing different scales to
minimize the matching costs. However, these types of methods
are unstable when view changes or partial occlusion occur. In
[30] a solution to scale integrated in mean-shift framework is
presented. In our method, we calculate the scale by detecting
the key points of the target (see Fig. 7).

In our tracking method, the target position xt is bounded
by a rectangle. Therefore, we choose the centers of four
sides of the rectangle as the key points (red circles in Fig. 7
for illustration). This choice of key points is general, so the
method can be extended to any object class tracking unless the
shape of objects is concave. The input images of the CNN are
the same as our CNN tracking method, and we have a finer

3Recall that the size of global receptive field is 28×68, so global structures
are much more distinctive and informative than local ones. Hence, for O and
A′, although the local features might be similar, the global structures are
usually different.
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Fig. 8. Tracking a human with pose changes: (top) CNN tracker using both temporal and spatial features; (bottom) CNN tracker using only spatial features.

scale version of the input images as the other two inputs. The
reason for using finer versions is that a good scale estimation
requires the accurate localization of key points.

The two image pairs are the inputs of the two CNNs,
respectively. For the output, there are four probability maps
corresponding to the four key points. The architecture of each
CNN is similar to the architecture in Fig. 3, but the main
difference is that the output is four probability maps. Since
the four probability maps share the same architecture in the
first several steps, they are jointly trained, not independently.
This makes sense since the positions of the four key points
are correlated.

After offline training, such a CNN architecture for detecting
key points can be applied for online tracking. Once the key
points are determined, the scale of xt , i.e., st , is determined
since the key points are located at the target boundary.

Denote the locations of the four key points at time t − 1
by xi

t−1(i = 1, . . . , 4). Denote the locations of the four key
points at time t by xi

t (i = 1, . . . , 4), with the probability score
pi (i = 1, . . . , 4), respectively. For 1 ≤ i < j ≤ 4, ‖xi

t −
x j

t ‖/‖xi
t−1 − x j

t−1‖ gives an estimation of st . Each estimation
is weighted by pi p j , meaning that the key point with a high
probability score has a larger weight. Considering all pairs of
i , j , we have the scale estimation in (7)

st = 1∑
1≤i< j≤4

pi p j

∑

1≤i< j≤4

pi p j ‖xi
t − x j

t ‖
‖xi

t−1 − x j
t−1‖

. (7)

As the training samples include all different views, the scale
estimation is robust to view changes. This estimation, together
with the original CNN estimator, provides a robust tracking
result.

V. EXPERIMENTAL RESULTS

A. Setup and Comparison Baseline

We test the proposed CNN tracker for a variety of chal-
lenging video sequences. The experiments are divided into
two parts designed to evaluate the performances of several
components of the algorithm and the robustness under different
circumstances. No testing sequences shown here have been
trained. The test sequences shown in Figs. 8, 9, 13, and 18
are from NEC Laboratories dataset but different from the
training videos. The test sequences shown in Figs. 14–17
are completely different from the training ones. Therefore,
we can show that the features selected by CNN are widely

applicable through the experiments. All the public video
sequences and the comparisons are available on the author’s
website.

Our algorithm is implemented in C++ and tested on an Intel
3.6-GHz desktop. Without code optimization, the program
runs at 10–15 frames/s on average (640 × 480).

The CNN tracker is compared with the ensemble tracker
[5], which is a learning-based method. According to [5], we
implement the ensemble tracker with an 11-D feature vector
per pixel that consists of an 8-bin local histogram of oriented
gradients calculated on a 5 × 5 window as well as the pixel
R, G, and B values.

We also compare the CNN tracker with support vector
tracker [23], where an offline-learned support vector machine
is applied as the classifier for tracking. The classifier is trained
on a set of 20 000 images of human heads and non-heads. The
training images are manually selected and reduced to the size
of 24×24 pixels. A homogeneous quadratic polynomial kernel
is used to perform the learning phase.

As [5] and [23] do not contain the component of estimating
scale, for the video sequences with large scale changes we
implemented two reference methods for comparison. One is
the mean-shift tracker [31] in the enhanced YCbCr space with
1040 bins. The other method is an adaptive model [32] with a
clustering procedure. We refer to this method as the clustering
method.

In many situations, only some parts of the whole human
body are included in the video sequences (e.g., Fig. 17). In
such scenarios, we still use 48 × 128 image patches as our
CNN input, and set the values to zero for those pixels out of
the image boundary. So we do not need to train extra models,
which indicates that our CNN model is very flexible to handle
various complex situations.

B. Impact of Using Temporal Features

In this experiment, we show the impact of using tempo-
ral features. In conventional learning methods, only spatial
features are used. In our method, we also extract temporal
features. To illustrate the benefits of temporal features, we
implemented another CNN with only one image (the current
image) as input. Such CNNs have a similar architecture as the
proposed method, the only difference is the number of feature
maps in each layer.

Fig. 8 shows the results of tracking a human with dramatic
pose changes. In this situation, the subject stoops down to
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Fig. 9. Comparison between different architectures [shopping]: (first row) the proposed CNN tracker; (second row) the CNN tracker using only global
branch; (third row) CNN tracker using only local branch; (fourth row) CNN tracker with shift-invariant architecture; (fifth row) ensemble tracker; (sixth row)
support vector tracker.

see the items on the shelf, and then she stands up. When the
subject moves upward, the CNN tracker using both temporal
and spatial features correctly follows her head, while the CNN
tracker with only spatial features does not. This is because
the background information dominates Nt−1(xt−1) when she
stoops down, i.e., spatial features extract much information
from the background, not from the target. Therefore, when
she moves upward, the CNN tracker with only spatial features
tends to follow the background, and thus loses track. Gener-
ally, any tracker with adaptive appearance models faces the
same problem in such a situation. On the contrary, the CNN
tracker using both temporal and spatial features can capture
the motion information when the subject stands up so that the
drift does not occur.

From the experiment, we show that using both temporal and
spatial features is better than using spatial features only. One
possible explanation is based on the fact that temporal features
can encode the difference between two adjacent images. In
some cases, when the background dominates the input image
patch (like in Fig. 8), the temporal features contain more useful
information than the spatial features.

Note that this comparison is to investigate the feature
selection component of CNN (the useful features are learned
during the training procedure). In this experiment, neither
of the CNN architectures is a detector, since we apply the
shift-variant structure for both CNNs. The comparison of the

CNN tracker and the CNN detector is illustrated in the next
subsection.

C. Impact of Shift-Variant Architecture

The comparison between different CNN architectures is
shown in Fig. 9. The CNN tracker with only global branch or
local branch is shown in the second and third row, respectively.
We implemented another CNN tracker with shift-invariant
property (the result is shown in the fourth row). Note that the
architecture of the CNN with shift-invariant property is very
similar to the method in [14]. We find that only the proposed
CNN can avoid the drift problem in this situation. In fact, the
CNN with only local branch can be treated as a shift-invariant
architecture, as the receptive fields share the same weights.
When several people are very close to the target in Nt−1(xt ),
the shift-invariant architecture cannot differentiate between
those people, because such an architecture only plays a role
like human detectors. The probability map of the proposed
CNN tracker is the combination of the probability maps of the
CNN trackers in the second and third row (Note this is not
a linear combination, because the sigmoid function is used).
From Fig. 9, the peak in the probability maps of the global
branch and that of the local branch are different, but their
combination gives a good performance after all.

We also show the performance of the ensemble tracker and
the support vector tracker in this scenario. As the ensemble
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Fig. 10. Recovery from tracking errors in the previous frame (three pairs).
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Fig. 11. Quantitative comparison of position errors between the CNN tracker, the ensemble tracker, and the support vector tracker. (a) Shopping. (b) Occlusion.

TABLE II

POSITION ERROR OF DIFFERENT METHODS (UNIT: PIXEL)

Sequence [5] [23] Proposed method
shopping 66.74 28.81 3.27
occlusion 39.07 39.67 2.88

tracker trains a classifier to distinguish the target from the
background, the tracker drifts to the people nearby because
the visual appearance of the two heads are nearly the same,
as shown in the fifth row of Fig. 9.

D. Drift Correction

CNNs have the ability of object-class detection by extract-
ing spatial features. For the purpose of drift correction, we
generate some small random shifts in the training procedure
such that the target (i.e., the human head) is not exactly at the
center position in the previous frame. Therefore, during online
tracking, our CNN tracker can recover tracking errors even if
tracking is inaccurate at the previous frame. In Fig. 10, we
introduce some shift in the previous frame so that the target is
not well tracked. As we can see, the CNN tracker can recover
such errors at the current frame by the mechanism of human
detection.

E. Quantitative Experiments

For a quantitative evaluation, we manually labeled the
ground truth of the sequence shopping, occlusion, girl, and
indoor, respectively. The evaluation criteria of tracking error
are based on the relative position errors between the center
of the tracking result and that of the ground truth. We put
the video sequences online to show that our CNN tracker can
perform tracking for a long duration.

As shown in Fig. 11, the position errors of the results in
the CNN tracker are much smaller than those of the ensemble

TABLE III

POSITION ERROR OF DIFFERENT METHODS (UNIT: PIXEL)

Sequence [31] [32] Proposed method
girl 24.79 – 8.85
indoor 29.93 11.28 7.85

tracker and the support vector tracker. It demonstrates the
advantages of the CNN tracker. Note that the ensemble tracker
and the support vector tracker drift when two people move
very close to each other in these examples. The reason is
that the reference trackers behave like object detectors, which
means drift may often occur in crowd scenarios. On the
contrary, the CNN tracker does not lose track, as we effectively
turn the object detector into a tracker by the shift-variant CNN
architecture. In fact, the authors in [23] have mentioned the
limitation that the support vector tracker cannot handle partial
occlusions and may switch from one subject to another in case
of two nearby subjects. The corresponding statistical results
are summarized in Table II.

Since the sequences girl and indoor contain large scale
changes, we compare the CNN tracker with the mean-shift
tracker and the clustering method for these sequences. As
shown in Fig. 12, the position errors of the results in the CNN
tracker are much smaller than that of the reference methods,
which indicate that the proposed method is more accurate and
stable. As the reference methods only contain online learning
mechanisms, they may not be appropriate to handle dramatic
or rapid appearance changes. In contrast, the proposed method
has less chance to drift to unrelated objects because of the
pretrained discriminative model. For the girl sequence, we did
not show the curves of the clustering method, because the
tracker drifts to the background very early at around the 15th
frame. The corresponding statistical results are summarized in
Table III.
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Fig. 12. Quantitative comparison of position errors among the CNN tracker, the mean-shift tracker, and the clustering method. (a) Girl. (b) Indoor.

Fig. 13. Tracking with partial occlusion [occlusion] (first row) the CNN tracker, (second row) the ensemble tracker, (third row) the support vector tracker.

Fig. 14. Tracking with illumination changes [indoor] (first row) the CNN tracker, (second row) the mean-shift tracker, (third row) the clustering method.

F. Tracking with Partial Occlusion

Fig. 13 shows tracking one person with partial occlusion.
Such a task is generally difficult, as the learning-based meth-
ods adapt to other image regions when the target is partially
occluded by the distracters. For the ensemble tracker, only
spatial features are extracted, so the tracker is simply distracted
because the head of the distracter also gives a good matching.
On the contrary, the CNN tracker extracts temporal features
so that the motion information is captured. In addition, we
observe that, although the person is severely occluded, the
two key points (the centers of the top and the left sides of the

head) provide good probability scores. Therefore, the scale of
the person is accurately estimated according to (7). Hence, the
ambiguity is largely reduced, as the scales of the distracter and
the target are inconsistent.

G. Illumination Changes

As shown in Fig. 14, the video sequence is very challenging
due to dramatic illumination changes. The mean-shift tracker
and the clustering method drift to the background and are
unable to recover. However, the CNN tracker is able to track
the object and correct the drift. This further verifies the fact
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Fig. 15. Tracking with scale and view changes [girl]: (first row) the CNN tracker; (second row) the mean-shift tracker; (third row) the clustering method.

Fig. 16. Example of handling view change.

Fig. 17. Another example of handling view change.

Fig. 18. Example of handling pose change.

(Section V-D) that our model has less chance to drift to
unrelated types of object. Note that the maximum of the
probability map is very small in the first few frames, since we
do not have training samples in such dark environments, which
shows that our method is proper for various environments.

H. Scale and View Changes

We show the tracking performance when the target under-
goes large scale and view changes in Fig. 15. For the mean-
shift tracker and the clustering method, the tracker drifts to
the background when the view change occurs. While for the
proposed CNN tracker, it discovers four key points (illustrated
by red circles in figures) which give an accurate boundary of
the human head, as we collect different views and scales of
human in training samples.

I. More Experiments

Figs. 16 and 17 show the results of tracking a head
presenting rotation and view changes. The appearances of

different views of the head are significantly different, which
makes the tracking difficult. Our experiment shows that the
CNN tracker can successfully track the head, since the CNN
model learns the head with different views during offline
training. Therefore, the CNN tracker can handle the case of
dramatic view changes. Fig. 18 illustrates the result of tracking
a person undergoing severe pose changes. Although the CNN
tracker extracts the spatial features from the background,
it successfully captures the motion information so that the
tracker does not drift when the person gets up.

J. Discussion

As demonstrated in a large number of challenging se-
quences, there are two primary scenarios when the CNN
tracker performs much more stable than the reference meth-
ods. 1) The target undergoes drastic view change or pose
change. For traditional learning-based tracking methods, the
appearance models adapt to other image regions rather than
the target of interests since the appearance of the target
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changes dramatically. On the contrary, the CNN tracker is for
a specific object class, so it is unlikely for the tracker to drift
to unrelated types of object. 2) There are some false-positive
matches that lead to wrong association of the tracks. This is a
challenging problem for all learning based methods. However,
we successfully alleviate this problem by in a unified shift-
variant CNN model.

Since the features are learned from a parametric feature pool
in neural networks, they have richer degrees of freedom than
the features used in [5]. This data-driven feature extraction
approach naturally fits the object class tracking problem, as
the best features to track different object classes may be
different.

In our experiment, we treat humans as our subject for
tracking. We did not perform the experiment on other object
classes (e.g., cars), because we have not collected those
training samples (this may be our future work). Now we
explain how the proposed CNN can be extended to general
object class tracking from several perspectives.

1) Note that the features are learned during the training
procedure. This training framework (the CNN model) is
very general and not designed for a certain object class.
So the proper features for other object class tracking can
be learned in a similar CNN model.

2) The relative position of the object and the input image
patch can be chosen arbitrarily. As shown in Figs. 3
and 7, the relative positions are different in these cases.
Therefore, if we wish to use the CNN model to track a
car, the input image patches include the whole car, and
the peak of the probability map can be located at the
center of the input image patch for training. If we wish to
track a pedestrian, one way is to train a new CNN model
(like the situation of cars). An alternative way is to use
the proposed CNN model, and the pedestrian position
can be estimated by the bounding box (blue rectangle
in Fig. 3). In fact, we do not distinguish between head
tracking and pedestrian tracking very much. On one
hand, the objective of pedestrian tracking is to obtain the
position of a moving person. This can be achieved by
accurately locating the human heads. On the other hand,
in complex or crowded scenarios, the whole human
bodies may not be available due to occlusion, therefore
locating the head position becomes the most critical cue
to determine the pedestrian position.

3) In [5], the input image patch is a square equally spaced
around the head, which is different from the proposed
method, as the input here is the whole human body.
We emphasize that the improvement over [5] is mainly
because the proposed method can largely alleviate the
drift problem when the distracting objects are similar to
the target (by using learned temporal and spatial features
in a novel CNN model), while the approach in [5] does
not contain such mechanisms.

In the proposed model, we estimate the location of the
human head on the basis of a large image patch which
includes the whole human body. The motivation is similar
to the basic principle of contextual flow [33]. The target

is rarely isolated and independent of the environment, but
related to its spatial context that is induced by the pixels in
its vicinity. For example, the silhouette of the shoulder and
the torso provides useful information for locating the head
position. To take advantage of such contextual information for
robust tracking, the CNNs learn the object and its surrounding
context. Hence, we may need 20 000 training samples in order
to learn the head and all the possible backgrounds that can be
found.

An interesting problem is whether we can use fewer train-
ing samples in our model to achieve comparable tracking
results. We conducted the experiment with a CNN tracker
trained using 1000 samples (randomly chosen from 20 000
training samples). In general, the tracking performance does
not degrade (if there are no distractions). However, for some
challenging cases, the tracker succeeded (e.g., in occlusion),
but drifted in others (e.g., shopping) due to the cluttered
background. This implies that training samples should be
selected more carefully when we use fewer samples. The
problem of how to select representative training samples is
nontrivial and may be our future work.

VI. CONCLUSION

In this paper, we proposed a novel learning method for
tracking based on CNNs. Considering human tracking as a
special case of object class tracking, spatial and temporal
structures have been learned during offline training. The shift-
variant architecture extended the use of conventional CNNs,
and combined global features and local features in a natural
way. The tracking of key points was used to solve the scale
problem, which was formed in a general way that can be
extended to an arbitrary object class tracking problem.

The main limitation is that the CNN model is not designed
to handle full and long-term occlusions by the distracter of the
same object class. This limitation commonly exists for all the
learning-based methods.

APPENDIX

The proof of Property 3.1 is as follows.
Generally, denote the size of the normalized input patch

of CNNs by w × h, then the size of the probability map is
(w/2) × (h/2). In our CNN architecture, w = 48, h = 128
(Fig. 3). Since there is four-times upsampling from C3 to the
output probability map, every pixel in a 4 × 4 block in the
output probability map shares the same global receptive field.
Since the size of the output probability map is one-half of
the input patch, the w × h normalized input patch can be
divided into several adjacent blocks with the same size 8 ×
8. Every pixel in one certain 8 × 8 block shares the same
global receptive field. We denote the scaling factor m = 8. The
number of the adjacent blocks is equal to the size of the C3
feature map, denoted by (xm +1)×(ym +1) (in Fig. 4, xm = 5,
ym = 15).

Denote the size of the global receptive field by wr ×
hr . For (i, j)th pixel in the output probability map, its
corresponding global receptive field in the normalized in-
put patch is [(1/2)m�i/4�, (1/2)m�i/4� + wr − 1] ×
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[(1/2)m� j/4�, (1/2)m� j/4� + hr − 1]. Let im = (w/2) − 1,
we have (1/2)m�im/4� + wr − 1 = w − 1. As �im/4� = xm ,
it is clear that

1

2
mxm + wr = w. (8)

Similarly, we have

1

2
mym + hr = h. (9)

The width of C3 feature map is (1/8)m(xm +1). From (8),
it can be represented by 1/4(w− (wr − (m/2))). On the other
hand, the width of C3 feature map is (1/8)w due to four-
times upsampling in the last stage. So we have (1/4)(w −
(wr − (m/2))) = (1/8)w

2wr = m + w. (10)

Let us prove xC = (xO + xA)/2 in Property 3.1. Recall
that the w × h normalized input patch can be divided into
(xm +1)×(ym +1) adjacent blocks with the same size m ×m,
and the pixels in each block share the same receptive field.
Suppose A is located in one m × m block with the index
(x, y), x ∈ {0, 1, ..., xm}, y ∈ {0, 1, ..., ym}. And we assume
A is at the center of that m × m block (if A is not at the
center, then the equation approximately holds). Then we have
xA = (mx +((m−1)/2), my+((m−1)/2)). As C is the center
of the (x, y)th receptive field, and the (x, y)th receptive field
is [(1/2)mx, (1/2)mx +wr −1]×[(1/2)my, (1/2)my+hr−1],
we have xC = ((m/2)x+((wr −1)/2), (m/2)y+((wr−1)/2)).
We also have xO = (((w − 1)/2), ((w − 1)/2)).

It is easy to see xC = (xO + xA)/2 from (10). Then we
finish the proof. In our CNN architecture, from (8) and (9),
wr = 28, hr = 68.
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