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PREFACE 

This book is aimed at a wide spectrum of researchers and students who are concerned 
with current statistical methodology applied in the social sciences. In short, all social 
scientists working in fields including (but not limited to) psychology, sociology, test 
theory, market research, and many more would benefit from being kept abreast of the 
cutting-edge research contained herein. 

The impetus for the book was The Sixth Annual Winemiller Conference: Method-
ological Developments of Statistics in the Social Sciences held at the University of 
Missouri in Columbia, Missouri from October 11 to 14 in 2006. The aim of the 
conference was to foster collaboration among mathematical statisticians and quanti-
tatively oriented social science researchers. This interdisciplinary conference brought 
top researchers from major social sciences disciplines, highlighting the interface be-
tween recent developments in each area. The idea was to gather experts in the field 
and to assemble and edit a text that encompassed many of the current methodologies 
applied by researchers in different social sciences disciplines. 

Chapter 1 's devoted to structural equation modeling is by Peter Bentler and Vic-
toria Savalei. Their focus is, however, on correlation structures. They describe the 
typical problems that arise in analysis of correlations and correlation matrices. From 
the field of structural equation and covariance structure modeling, they borrow the 
estimation methods and test statistics commonly used in SEM, as well as corrections 
commonly used to improve the finite sample behavior of those methods, and draw 

xiii 
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parallels in correlation structure analysis. Bentler and Savelei begin by providing 
different parameterizations of correlation matrices from sturctural equation models 
in Jöreskog's LISREL formulation and in the Bentler-Weeks formulation. Then they 
highlight the differences between covariance (or mean-and-covariance) structure and 
correlation structure analyses, show where each is best applied, and demonstrate why 
treating correlation matrices as covariance matrices may lead to erroneous inference. 
Asymptotic theory under correct specificaiton is derived for estimation of structural 
correlation models based on the general concept of discrepancy functions. Quadratic 
forms in parameter estimates are shown to be the generic asymptotic form of such 
discrepancy functions, and further analysis proceeds in terms of those forms leading 
to (asymptotically distribution free, ADF) M-estimates of the structural parameters. 
Asymptotic normality of those estimates is demonstrated through the standard ar-
guments, and considerations of asymptotic efficiency via the optimal choice of the 
weighting matrix are given. To obtain asymptotic efficiency, the weight matrix in the 
quadratic form minimization problem should be chosen to be the asymptotic variance 
of the sample correlations, the general form of which is given. Misspecification of the 
model structure and weight matrix is then considered, leading to more complicated 
distributions of the goodness-of-fit statistics (noncentral χ2 and mixtures of xf 's). 
Other limitations of the ADF estimation methods, such as indomitable sample-size 
requirements, are discussed and some remedies proposed that might improve the fi-
nite sample performance of the goodness-of-fit tests, similar to the way that those 
corrections operate in classical covariance structure SEMs. 

When the weight matrix is misspecified, or computation of the optimal matrix 
is not feasible (e.g., in large models with dozens of variables), the distribution of 
the goodness-of-fit test statistics becomes a mixture of χ( 's with potentially unequal 
weights. Bentler and Savalei provide several ways of approaching that distribution. 
The weights can be estimated from the existing parameter estimates, leading to a com-
plicated problem of finding the quantiles of the resulting distribution. Satterthwaite-
type corrections (known as Satorra-Bentler scaled and adjusted statistics in SEM) 
can be applied. Or, alternatively, an entirely different statistic with asymptotic χ2 

distribution can be constructed from correlation residuals rather that from the dis-
crepancy functions. Some additional simplification of the analysis is feasible when 
specific distributions of the data can be assumed. Under normality, more stucture can 
be found in the variance of the sample correlations, and hence the weight matrix of 
the ADF, leading to an analytically feasible inverse of the weight matrix. The normal-
ity assumption can be relaxed somewhat to the assumption of elliptically contoured 
distributions, and the only modification that needs to be made to the normal theory 
methods is scaling by the common kurtosis. A further step down from distributional 
assumptions might be heterogeneous kurtosis theory, which has not yet received much 
attention in the literature. Bentler and Savalei exemplify their ideas with a classic 
anthropometric example with eight physical measurement variables and a small sim-
ulation. A two-factor model with five variables per factor was used in simulations, 
and Vale-Maurelly transformation was used to make data nonnormal. It was found 
that while the ADF method that was applied to either covariance or correlation matrix 
was overrejecting for most sample sizes, the ADF with structured correlation matrix 
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mildly underrejected at moderate sample sizes, attaining its asymptotic test size with 
samples of size 400 and above. It was also found that the residual-based test statistic 
and residual-based F-statistic behaved rather poorly in unstructured ADF correla-
tion analysis, while the Satorra-Bentler scaled statistic yielded rejection rates closer 
to the nominal. All statistics improved considerably, however, when a structured 
weight matrix was used in ADF. Thus, Bentler and Savalei have proposed a number 
of approaches to the analysis of correlation structures. Some of those proposals are 
completely new, and most of the others have received very limited attention in the 
social science statistics literature. It might then be expected that this chapter will 
provide a fertile field for research that can provide further analytical, simulation and 
empirical support to Bentler and Savalei's ideas. 

Chapter 2 is by Kenneth Bollen, Daneil Bauer, Sharon Christ, and Michael Ed-
wards, who review the area of structural equation modeling. They give a brief review 
of the history of the field, introduce the basic ideas and notation, and demonstrate 
how general SEMs specialize to such special cases as simultaneous equation models 
in econometrics, multiple regression and ANOVA, and confirmatory factor analysis. 
In general, structural equation modeling would proceed by specifying the model, 
computing the implied moment matrices, establishing identification, estimating pa-
rameters and assessing the fit of the model, with additional respecification if the 
model fits poorly. Bollen et al. consider those steps one by one, briefly discussing 
the procedures commonly used. They present the maximum likelihood estimator, 
the two-stage instrumental variable estimator, and the least-squares/asymptotically 
distribution-free estimator commonly used by applied researchers. Having outlined 
the general modeling steps, Bollen et al. proceed to discuss several recent extensions. 
One of them is the hybrid structural equation and multilevel modeling. A common 
way to analyze multilevel SEM is to specify a parametric model for both within- and 
between-group covariance matrices, which makes it possible to model the contextual 
and individual effects, just as in traditional linear multilevel models. Moreover, not 
only the parameter values, but even the factor structure, can be specified differently 
for the within- and between-group parts of the model. Another view of multilevel 
SEM is to explicitly specify the higher-level random effects as latent factors. Similar 
ideas have long been used in growth curve modeling, and the synthesis with SEM has 
been proposed recently, as reviewed in Section 2.2. 

Another hybrid type of modeling arises when the structural equation models are 
crossed with latent class models, giving rise to structural equation mixture models. 
Those models are also related to the item response theory models operating on discrete 
outcomes, to growth mixture models, and to nonparametric maximum likelihood es-
timators of SEM that do not specify distribution of the latent variables but, rather, 
estimate it. Bollen et al. further discuss the issues of identification and sensitiv-
ity to assumptions, which become more acute in those more complicated models. A 
number of interesting applications are considered, from direct class modeling to semi-
parametric nonlinearity modeling and semiparametric modeling of the latent variable 
distributions. In the next section of the chapter they review the relation of SEM to 
item response models, some forms of which can be cast as confirmatory factor anal-
ysis with categorical variables. Complications arising from the discrete nature of the 



XVI PREFACE 

data are discussed, and estimation methods reviewed. The last extension of the SEM 
discussed by Bollen et al. is to complex samples. An overview of the basic complex 
sample design features, such as clustering, stratification, and unequal probabilities 
of selection, is given. It is shown how those features violate the model-based SEM 
assumption, and how estimation procedures are then affected. Sample weights are 
motivated through a Horvitz-Thompson estimator of a total. An applied researcher 
can then proceed by attempting to model the sample design with, say, random effects 
for clusters and categorical variables for strata; or one can use estimation procedures 
that correct for the complex survey design, such as weighted estimation and pseudo-
maximum likelihood. Special care should be taken to estimate the variances of the 
parameter estimates properly, through either a sandwich-type estimator or through 
appropriate survey design resampling schemes. 

In Chapter 3, Lawrence Hubert, Hans-Friedrich Köhn, and Douglas Steinley dis-
cuss strategies for the hierarchical clustering of an object set to produce a sequence 
of nested partitions in which object classes within each successive partition are con-
structed from the union of classes present at the previous level. In turn, any such 
sequence of nested partitions can be characterized by what is referred to as an ul-
trametric, and conversely, any ultrametric generates a nested collection of partitions. 
There are three major areas of concern in this paper: (1) the imposition of a given 
fixed order, or the initial identification of such a constraining order, in constructing 
and displaying an ultrametric; (2) extensions of the notion of an ultrametric to use al-
ternative collections of partitions that are not necessarily nested but which do contain 
objects within classes consecutive with respect to some particular object ordering. A 
method for fitting such structures to a given proximity matrix is discussed along with 
an alternative strategy for graphical representation; (3) for the enhanced visualization 
of additive trees, the development of a rational method of selecting a root by impos-
ing some type of order-constrained representation on the ultrametric component in 
a decomposition of an additive tree (nonuniquely into an ultrametric and a centroid 
metric). A simple numerical example will be used throughout the paper based on 
a data set characterizing the agreement among the Supreme Court Justices for the 
decade of the Rehnquist Court. All the various MATLAB M-files used to illustrate 
the extensions are available as open-source code from a web site given in the text. 

In Chapter 4, Michael Brusco, Stephanie Stahl, and Dennis Cradit discuss using 
multidimensional scaling (MDS) in the city-block metric, an important tool for rep-
resenting the psychological space associated with separable stimuli. When two or 
more proximity matrices are available for the same set of stimuli, the development 
of a city-block MDS structure that fits each of the matrices reasonably well presents 
a challenging problem that might not be solved by pooling the data (e.g., averaging) 
across matrices. These authors present a multiobjective programming approach for 
multidimensional city-block scaling of multiple proximity matrices. The multiobjec-
tive function of the model is composed of either weighted least-squares loss functions 
or, in cases where nonmetric relaxations of the proximities are desired, weighted stress 
functions. The multiobjective function is optimized subject to constraints on the per-
mutation of the objects on each dimension. Because there are well-noted problems 
with gradient-based approaches for city-block MDS, a combinatorial heuristic proce-
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dure is proposed for solving the multiobjective programming city-block model. The 
model is demonstrated using empirical data from the psychological literature. 

In Chapter 5, Jeff Gill compares Bayesian and frequentist approaches to esti-
mation and testing of social science theories. He first argues why fixing the data 
and conditioning on them, as is done in Bayesian statistics, is a reasonable start-
ing point in social sciences: indeed, the repeated sampling necessary to justify the 
frequentist paradigm is hardly feasible with constantly changing social and human 
environments. Upon providing the mechanics of Bayes theorem and Bayesian infer-
ence, he considers a small example with count data, and demonstrates graphically 
the process of prior updating. The choice of the prior is further provided. Differ-
ences in how the models are set up, and how analysis then proceeds and inference 
is conducted, are highlighted between the Bayesian and the frequentist paradigms, 
with somewhat provocative comparisons between the two paradigms and dominant 
data analysis standards. Then Gill reviews the existing approaches to hypothesis 
testing and shows step-by-step procedures in the Fisher paradigm, Neyman-Pearson 
paradigm, Bayesian paradigm, and the null hypothesis significance testing paradigm. 
Gill's argument against the latter is supported by several dozen references in statistics 
and social and behavioral sciences. He then comes back to the counts example and 
shows an extension of his analysis to a (rather difficult, in any paradigm) problem of 
change-point estimation. He shows how a Gibbs sampler can be set up for this prob-
lem by explicitly specifying the full conditional distributions, and how convergence 
of the resulting Markov chain can be established. He then reviews the substantial re-
sults and notes that the Bayesian estimates of the change point are the probable cause 
of the change. He concludes by highlighting again the critical differences between 
Bayesian and frequentist paradigms, and provides philosophical considerations for 
the former. 

In Chapter 6, Jeff Rouder, Paul Speckman, Douglas Steinley, Michael Pratte, and 
Richard Morey show how the shape of a response-time distribution provides valuable 
clues about the underlying mental processing. If a manipulation affects the shape of 
an RT distribution, it is reasonable to suspect that the manipulation has done more than 
simply speed or slow the rate of processing. They develop a nonparametric bootstrap 
test of shape invariance. Simulations reveal that the test is sufficiently powered 
to detect small shape changes in reasonably sized experiments while maintaining 
appropriate type I error control. The test is simple and can be applied broadly in 
cognitive psychology. An application to a number priming experiment provides a 
demonstration of how shape changes may be detected. 

In Chapter 7 Joseph Hübe outlines the standard computer programs used for 
statistical analysis and emphasizes those that should get more use. The packages 
include R, SAS, SPSS, STATISTICA, Stata, StatXact/LogXAct, Stat/Transfer, ePrint 
Professional, and nQueary Advisor. 

The 2006 Winemiller Conference and this book would not have been possible 
without the generous support of Albert Winemiller, whom we would like to thank for 
his interest in cultivating the integration of mathematical statistics and social science 
at both the theoretical and applied levels. We would also like to thank the Department 
of Statistics (and its Chair, Dr. Nancy Flournoy) for sponsoring the conference and 
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providing support for Dr. Thombs and Dr. Kolenikov in the editing of this book. 
We also thank the Department of Psychological Sciences (and its Chair, Dr. Ann 
Bettencourt) for providing support for Dr. Steinley throughout the editorial process. 

We express our deep gratitude to all of the authors for their contributions and their 
patience in the process of bringing this book together. We also extend our thanks to 
the other two members of the organizing committee: Dr. Nancy Flournoy and Dr. 
Steve Osterlind. Additionally, for their work on the 2006 Winemiller Conference, 
we acknowledge the assistance of Ray Bacon, Margie Gurwitt, Gretchen Hendrick-
son, Wang Ze, and Peggy Bryan. This conference was supported by the National 
Science Foundation under Grant 0605679. Finally, we thank John Wiley & Sons, ex-
ecutive editor Steve Quigley, and project manager Jacqueline Palmieri for supporting 
publication of the book. 

Stanislav Kolenikov 
Douglas Steinley 
Lori Thombs 
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CHAPTER 1 

ANALYSIS OF CORRELATION 
STRUCTURES: CURRENT STATUS AND 
OPEN PROBLEMS 

1.1 INTRODUCTION 

The analysis of correlations among variables played an important part in the growth 
of psychometrics and statistics in the early twentieth century. This is especially true 
in the development of factor analysis, where the generally positive intercorrelations 
among tests and measures of school performance led Spearman (1904) to develop 
his idea that a latent general factor could explain these correlations. The requirement 
that a one-factor model could explain all manner of correlations was, of course, too 
restricted, and a wider range of models for the structure of correlations was introduced 
by many people, including Hotelling (1933), Thurstone (1935, 1947), and Guttman 
(1953,1954). What today we would call exploratory factor analysis is, of course, just 
one type of hypothesis that can be evaluated by an analysis of correlation coefficients. 
In a very different but equally brilliant way, Wright (1921,1934) developed his theory 
of path analysis to explain correlations based on hypothesized causal influences of 
variables on each other. See, for examples, Bentler (1986), Bartholomew (2007), and 
Shipley (2000, Chap. 3) for an exposition of some of the early history, and Cudeck 
and MacCallum (2007) on some consequences of these early developments. 

Statistics in the Social Sciences. By S. Kolenikov, D. Steinley, L. Thombs 1 
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The range of hypotheses on correlations extends beyond these classical meth-
ods and includes such simple illustrative hypotheses that some correlations are zero, 
or equal; that correlations in repeated measures trail off in a prescribed way; that 
functions of correlations such as standardized beta coefficients in regression are 
zero in the population; and so on. Hypotheses on correlation structures are well 
known (e.g., Brien, James, & Venables, 1988; Brien, Venables, James, & Mayo, 
1984; Browne, 1977, 1992; Cheung & Chan, 2004; Fouladi & Steiger, 1999; Jen-
nrich, 1970; Jöreskog, 1978; McDonald, 1975; Olkin & Finn, 1990, 1995; Steiger, 
1980a,b), and remain popular today (Preacher, 2006). Such a general class of prob-
lems can be approached by hypothesizing that the p x p population correlation matrix 
P from a set of variables can be expressed in terms of more basic parameters, that is, 
P = P(0) , where 0 is the vector of parameters. In this chapter, we review a variety 
of approaches for obtaining an estimator 0 of 0 and the associated standard errors as 
well as for testing the null hypothesis P = P(0) based on a sample correlation matrix 
R. The degree of simplicity and practicality of the resulting methods depends on the 
assumptions that are tenable for the data generation process. Several new methods 
are proposed that have not yet been studied in depth. 

1.2 CORRELATION VERSUS COVARIANCE STRUCTURES 

With the excitement generated by Jöreskog's (1967) development of a method to com-
pute the elusive maximum likelihood estimator (MLE) in exploratory factor analysis, 
focus in the field shifted substantially to the analysis of covanance structures rather 
than correlations (e.g., Bock & Bargmann, 1966; Browne, 1974; Jöreskog, 1969, 
1970; Wiley, Schmidt, & Bramble, 1973). In covariance structure analysis, we hy-
pothesize that the population covariance matrix Σ has the form Σ = Σ(0) , where 
0 is the vector of basic parameters. Jöreskog (1967, 1969) worked with the factor 
analytic structure Σ — ΛΦΛ' + Φ, where Λ is a p x k matrix of factor loadings, Φ 
is a diagonal matrix of unique variances, and Φ is the covariance matrix of the factors 
taken as Φ — I in exploratory factor analysis. In this setup, the basic parameter 
vector 0 consists of the unknown elements in {Λ, Φ, Φ}. The class of interesting 
models was quickly extended to a wider variety of models for the covariance matrix, 
especially those derived from linear latent variable models such as the Jöreskog-
Keesling-Wiley model (Jöreskog, 1977; Wiley, 1973), known as LISREL (Jöreskog 
& Van Thillo, 1973), the Bentler-Weeks model (Bentler & Weeks, 1980), or the 
reticular action model (McArdle & McDonald, 1984). For an overview of various 
meanings of latent variable, see Bollen (2002). We discuss briefly two of these more 
general types of models and their application to correlation structure analysis. 

A LISREL-type model is basically a factor analytic simultaneous equation model. 
The relationships among the variables in the model can be expressed by two equations, 
one relating the observed variables to some hypothesized latent variables, and a second 
describing the relations among latent variables. The measurement model is just the 
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standard factor analysis equation given by 

x = A£ + e (1.1) 

where x are observed variables, assumed to have means of zero; ξ the latent factors; 
e unique variates or errors of measurement; and Λ the factor loadings matrix. The 
simultaneous equation or structural model relating latent variables to each other is 
given as 

ξ = Βξ + ζ (1.2) 

where B is the matrix of regression coefficients for predicting latent variables from 
latent variables, and ζ are the residuals associated with those regressions. This allows 
any factor £¿ to be regressed on any other factor ξ^. 

Assuming no correlations between ξ,ζ, and e, it can be shown that the covariance 
structure implied by this model is given by 

Σ = Λ ( Ι - Β ) - 1 Φ ( Ι - Β ) - 1 ' Λ ' + Φ (1.3) 

where now Φ = cov(£) and Φ = cov(e). To apply this model to correlation 
structures, we note that we can write Σ = D P ( 0 ) D , where D is a diagonal matrix 
containing standard deviations. Using this form for the covariance matrix allows us to 
model correlation structures (Jöreskog, 1978), provided that it is possible to enforce 
the constraint d iag(P) = I. One way to obtain a model for correlation structures is 
with 

P = Λ * ( Ι - Β ) - 1 Φ ( Ι - Β ) - 1 ' Λ * ' + Φ* (1.4) 

where Λ* = D _ 1 A is a matrix of standardized factor loadings and Φ* = {I — 
diag(A*(I — Β ) _ 1 Φ ( Ι — B _ 1 )A* )} . In other words, unique or error variances 
associated with observed variables are no longer parameters in this correlation struc-
ture model. Although technically error covariances can still be parameters, they also 
can be parameterized in the measurement model by adding a factor. Note that while 
(1.4) can always be fit as a correlation structure, there are conditions on A that would 
make it impossible to scale to A* = D _ 1 A . For example, if A contained fixed 
nonzero parameters beyond those needed for identification, A* would not maintain 
those restrictions for an arbitrary D. This is not to say that one cannot estimate A* 
with many fixed nonzero parameters, but then a covariance structure (1.3) based on 
A = DA* would not maintain those restrictions. The issue of the scale invariance 
of parameters is discussed further below. 

The Bentler-Weeks model makes no special distinction between observed and 
latent variables. The relations among its variates are given by just one equation, 

η = βη + Ίξ (1.5) 

Here ζ is a vector of independent variables and η is a vector of dependent vari-
ables. Independent variables can include observed variables, residuals from latent 
regressions, measurement errors, latent factors, and so on. The dependent variables 
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can be observed or latent as well. Among the advantages of this approach is that 
specifications that are not allowed directly in the LISREL model can be handled au-
tomatically. For example, an independent observed variable can influence a factor. 
Let 1/ — (η', ξ') represent all the variables, and with G a known 0-1 matrix, let 
x = Gv select from all the variables the observed ones. Then with 

ß 0 
0 0 and Γ 7 

I 

we have that v = Bis + Τζ and the covariance matrix of the observed variables can 
be expressed as 

Σ = G ( I - B ) " 1 r # r ' ( I - B ) - 1 ' G ' (1.6) 

where Φ = cov(£) is the covariance matrix of independent variables. There are 
several ways to make this a correlation structure model. The most obvious is to 
impose the nonlinear constraint d iag(S) = I. If the model contains independent 
error variables that have variances as parameters, then as in (1.4), those elements of 
Φ, say Φ€ ε , are a nonlinear function of the other parameters. 

As noted, over the past quarter century, most of the statistical theory for these types 
of general models has been developed for covariance structures. It is based on the 
asymptotic distribution of the sample covariance matrix S. For example, the standard 
approach to (1.3) or to (1.6) is to consider them as covariance structures. Of course, 
a covariance structure solution is frequently presented in standardized form, where 
all the parameters have been rescaled such that d iag(S) = I, because of ease of 
interpretation. In fact, applied researchers often prefer to work with the correlation 
matrix R because of the simple interpretation of correlations and derived quantities 
such as standardized regression coefficients, as well as the typical arbitrariness of 
scale of most social science variables. Because appropriate statistical theory is not 
easily available, a frequent practice is to work with correlation matrices as if they 
were covariance matrices, that is, to apply covariance structure statistical theory to 
R. There has been some study of this practice and its consequences (e.g., Cudeck, 
1989; Krane & McDonald, 1978; Lee, 1985; Shapiro & Browne, 1990). It turns out 
that there are situations when this procedure yields at least partially valid statistical 
inference. If the model is fully scale-invariant (i.e., the model structure is maintained 
when rescaling S to yield R), this procedure may yield correct test statistics as well 
as parameter estimates for the scale-invariant parameters, but it may lead to incorrect 
standard errors for some parameters. When the model is not fully scale-invariant (e.g., 
it has some fixed nonzero factor loadings beyond those needed for identification), 
incorrect parameter estimates, standard errors, and tests will be obtained. The most 
important source of the problem is that sample-dependent scaling is used to transform 
S to R. Sample rather than known population standard deviations are used 

in this transformation, and this sample dependency is not taken into account when 
fitting Σ(0) to R using covariance structure statistical methods. As summarized by 
Cudeck (1989, p. 326), "By analyzing a correlation matrix, one may (a) implicitly 
alter the model being studied, (b) produce a value of the omnibus test statistic that 
is incorrect, or (c) report standard errors that are quite discrepant from the correct 
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values". None of these problems occur when correlation structures are studied directly 
using appropriate statistical theory. In this chapter, we review and extend this theory. 

Before we get to correlation structure theory, we do not want to leave the impres-
sion that every problem of interest is best studied as a correlation structure problem. 
Indeed, some problems are handled more appropriately with covariance structure the-
ory and its extensions. Mean structure models provide the most obvious illustration. 
In such models the variable means μ also have a structure (Sörbom, 1974), so that 
μ = μ(θ) and Σ = Σ ( 0 ) , see, e.g., Yuan and Bentler (2006a, b). Perhaps the most 
popular mean structure models are growth curve models, in which mean trajectories 
and individual differences in trajectories of scores over time are of primary interest 
(e.g., Bollen & Curran, 2006; Duncan, Duncan, & Strycker, 2006; Meredith & Ti-
sak, 1990). In such models, in addition to means, variances change systematically. 
Another example involves the study of possible invariance of covariance structure 
parameters across populations, as can be found in work on factorial invariance (e.g., 
Jöreskog, 1971; Millsap & Kwok, 2004). 

1.3 ESTIMATION AND MODEL TESTING 

1.3.1 Basic Asymptotic Theory 

We assume that the observed N X p data matrix X is a random sample of size N 
from a population with the p X p correlation matrix P , which we hypothesize to 
be generated according to P = Ρ(θ), where 0 is a q X 1 vector of parameters. 
In all that follows, we assume that this hypothesis is true unless explicitly stated 
otherwise. Let n — N — 1. With continuous data, the sample matrix R of Pearson 
correlations is a standard estimator of P , and under normality it is the optimal 
estimator. In most general terms, estimation of Θ is done by minimizing a discrepancy 
function F, which depends on both the sample correlation matrix R and on the 
structured population correlation matrix P(0) proposed. To stress this dependence, 
we may write F ( r , ρ(θ)), where r is the p(p — l ) / 2 x 1 vector of nonredundant 
sample correlations arranged in a specific way and ρ(θ) is the corresponding vector 
of population correlations under the model. For simplicity, let p — p(p — l ) / 2 . 
The following conditions must be true of F: F(r, ρ(θ)) > 0 for all r , ρ(θ); 
F(r,p(6)) = 0 if and only if r = ρ(θ); and F is twice continuously differentiable 
in r and p (Browne, 1982, 1984). Under these very general conditions, the resulting 
estimator Θ =arg min^ F(r, ρ(θ)) is consistent. 

A well-known type of minimum discrepancy function (e.g., Steiger, 1980a,b) is a 
quadratic form in the residuals: 

Q„ = (r - p ( 0 ) ) ' W n ( r - ρ(θ)) (1.7) 

Here, W „ i s a p X p symmetric weight matrix. We use the subscript n to indicate 
that the weight matrix may not necessarily be a fixed quantity but can instead be 
estimated from the data. Shapiro (1985) showed that any minimum discrepancy 
function F is asymptotically a quadratic form with the weight matrix given by W = 
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| (d2F/dr dr')r—p. This result justifies working with the discrepancy function of 
the form in (1.7) to derive all necessary asymptotic results. 

The optimal choice of W „ depends on the asymptotic distribution of the vector 
y/ñ(r — p). From the central limit theorem, we have that 

V ^ ( r - p ) - ^ i V ( 0 , V ) (1.8) 

Here, «— indicates convergence in law, and the p X p matrix V is the asymptotic 
covariance matrix of the vector of sample correlations. If for the discrepancy function 
(1.7) chosen it holds that Wn ► V - 1 , where ► indicates convergence in 
probability, the estimator obtained by minimizing (1.7) is asymptotically efficient 
within the class of all quadratic estimators. In this case we say that the weight matrix 
is "specified correctly," and the resulting estimator is optimal in the sense that it 
will have the smallest asymptotic variance. In particular, defining p x q matrix of 
model derivatives p = θρ(θ)/θθ', it can be shown that when the weight matrix is 
specified correctly, 

y/ϊφ -θ)-±+ Ν(0, (p'V-1/,)-1) (1.9) 

Furthermore, the quantity 
T = nQn = nQn{e) (1.10) 

is asymptotically chi-square distributed with d = p — q degrees of freedom. Thus, 
T can be used as a test statistic to evaluate the null hypothesis H0 = P = P(0) . 
Provided that one has an appropriate W n , this minimum χ2 theory (Ferguson, 1958, 
1996) is all the theory needed to estimate the parameters of the model, obtain standard 
errors, and evaluate the model's adequacy. Appropriate adjustments can be made to 
(1.9) and the degrees of freedom associated with (1.10) when estimating the model 
under constraints such as h(0) = 0 (see, e.g., Bentler & Dijkstra, 1985; Lee & 
Bentler, 1980; Mels, 2000). We do not discuss such constraints further. 

1.3.2 Distribution of T Under Model Misspecification 

Of course, models may be incorrect; that is, the null hypothesis H0: P = P(0) 
may not be true. The distribution of T under the alternative hypothesis H\ is worth 
noting. In this case, as N increases, T tends to infinity. To obtain an asymptotic 
distribution, we make the typical assumption of a sequence of local alternatives (also 
known as parameter drift). That is, we assume that the true population covariance 
matrix PJV depends on N and converges to P(0) at the rate of Ι/Λ/Ñ. An in-
formal way of stating this is that model misspecification is "not too large" and is 
within the sampling error for any given N. Then the asymptotic distribution of 
T is noncentral chi-square with d degrees of freedom and noncentrality parameter 
δ = limjv—K30 N(pN — ρ(θ))Ύ~1(ρΝ — ρ(θ)). This equation makes clear 
that without the parameter drift assumption, noncentrality will increase with N, re-
sulting in no asymptotic distribution for T. A sample estimator can be obtained as 
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δ = T — d; see Raykov (2005) for an alternative estimator. Although this noncentral 
chi-square approximation is typically used in studies of power in covariance structure 
analysis (Curran et al., 2002; MacCallum, Browne, & Sugawara, 1996; Satorra, 2003; 
Satorra & Saris, 1985) and to define "goodness-of-fit" indices such as the compar-
ative fit index, root mean square error of approximation, and others (e.g., Bentler, 
1990; Browne & Cudeck, 1993; Curran et al., 2003; Kim, 2005; McDonald & Marsh, 
1990; Steiger & Lind, 1980), its use has been criticized by several authors (e.g., Li 
& Bentler, 2006; Yuan, 2005; Yuan, Hayashi, & Bentler, 2007; Yuan & Marshall, 
2004). The approximation can be expected to be particularly bad when p — p{9) 
is large and also when W „ depends on the model (as will be the case with normal 
theory ML estimation), because in that case W „ is no longer consistent for V - 1 

without the parameter drift assumption. Since one never knows a priori how serious 
a misspecification actually may be, it seems prudent to remember that the noncentral 
chi-square approximation may be seriously compromised if W n is way off as an 
estimate of V - 1 . We do not discuss model misspecification further. 

1.3.3 Distribution of T Under Weight Matrix Misspecification 

The asymptotic covariance matrix of sample correlations V depends on the distribu-
tion of the data, which may be well behaved and known (e.g., multivariate normal), 
or difficult or impossible to specify. Our choice of W „ for use in (1.7) may therefore 
be wrong in the sense that W „ ► V - 1 may not hold. The resulting estimator is 
still consistent, but it will no longer be optimal. Assuming that W n ► W , it can 
be shown that under P = P ( 0 ) , 

Λ/η(β -θ)-1+ JV(0, ( p ' W p ) - 1 p , W V W p ( p / W p ) - 1 ) (1.11) 

(e.g., Bentler & Dijkstra, 1985; Browne, 1984). The covariance matrix in (1.11) 
yields larger standard errors than those obtained from (1.9), although (1.11) reduces 
to (1.9) when W = V - 1 (i.e., when the weight matrix is specified correctly). 
Furthermore, the quantity T = nQn in (1.10) is generally no longer asymptotically 
chi-square distributed (for exceptions, see the literature on asymptotic robustness; 
e.g., Amemiya & Anderson, 1990; Browne, 1987; Browne & Shapiro, 1988; Satorra, 
2002). As noted by Bentler and Dijkstra (1985), Satorra and Bentler (1986,1994), and 
others, the asymptotic distribution of T can instead be characterized as a weighted 
mixture of d independent chi-square variares with one degree of freedom. The 
weights u¡x,..., Wd are the nonzero eigenvalues of the matrix product U V , where 
U = W - W p ( p ' W p ) _ 1 p ' W . That is, asymptotically, 

d 

T^Y^WÍXI (1.12) 
i = l 

When W „ is specified correctly, all wi's are 1 and the distribution in (1.12) sim-
plifies to xd, as noted for (1.10). As we will see later, the distribution of Γ under 
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distributional misspecification is useful for deriving additional tests of model fit when 
the weight matrix is misspecified. 

1.3.4 Estimation and Testing with Arbitrary Distributions 

We now discuss specific estimation and testing methods. The most versatile approach, 
at least in theory, is to make no assumptions about the distribution of the p continuous 
variables. A completely unstructured estimate of the matrix V in (1.9) is obtained 
from the data, and estimation is done by setting W „ = V - 1 and minimizing (1.7). 
This approach is known as the generalized least squares (Dijkstra, 1981), minimum 
distance (Chamberlain, 1982; Satorra, 2001), asymptotically distribution free (ADF; 
Browne, 1982,1984), or minimum χ2 method (Ferguson, 1958). To implement this 
approach we need the general form of the asymptotic covariance matrix of sample 
correlation coefficients. This matrix has been known for a long time, and rediscovered 
several times (e.g., Browne & Shapiro, 1986; de Leeuw, 1983; Hsu, 1949; Neudecker 
&Wesselman, 1990; Steiger &Hakstian, 1982). We first define a general fourth-order 
moment as 

o-ijki — E(XÍ - ßi)(xj - Pj)(xk - Pk)(xi - μι) (1-13) 

where 1 < i,j,k,l < p, x¿ indicates the zth variable, and μ^ = E(XÍ). For 
reference we note that (1.13) is used along with population covariances <7¿¿ = 
E(XÍ — Pi)(xj — μ^) to describe the asymptotic covariance of sample covari-
ances Sij as 

acov(-s/ñs¿j, Vñskl) = aijki - σίόσ^ (1.14) 

The asymptotic covariance of sample correlations r¿j is a bit more complex. Using 
(1.13), we define a standardized fourth-order moment as 

Pijkl — &ijkl/'((TiiCjjCrkkO'll)1 (115) 

whereas = E(xi-ßi)2. Let pij be a typical element of the population correlation 
matrix P . Then a typical element of V , Vijtki = acov(v/ñr¿j, ^/nr^i), is given 
by 

Vij,kl(ADF) —Pijkl + -25pijPkl(Piikk + Pjjkk + Piill + Pjjll) 

— -5pij(puki + Pjjki) ~ -5pki(Pijkk + Pijii) · (1-16) 

One approach to computing the ADF estimate of V is by substituting sample quantities 
into (1.16). That is, 

Vij,ki(ADF) =rijki + •25rijrfei(ri i fcfc + rjjkk + run + rjju) 

- .hvi^raki + rjjki) - .5rki(rijkk + riiU (1.17) 

Here, the r¿j 's are sample correlations and the r ^ j 's are standardized sample fourth 
order moments. An efficient way of computing this estimate \AOF is given by 
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Mooijaart (1985). Because the ADF methodology makes no assumptions about the 
distribution of the data other than that V is finite, the weight matrix W n = V ^ F 

based on (1.17) is always specified correctly, the resulting estimator is asymptotically 
efficient, and the resulting test statistic TADF is asymptotically chi-square distributed. 

Although the ADF approach to correlation structures has attractive asymptotic 
properties, there is reason to be cautious, since the method requires estimating p(p + 
l ) / 2 distinct parameters (elements of V) from the data available. If the model has 
p = 10 variables, there are p = 45 distinct elements in the correlation matrix, 
and hence 1035 unique elements in V. If the model has 30 variables, the number 
of unique elements in V increases to 94,830. A very large sample size would be 
required to estimate such a big matrix accurately when no structure is imposed on it. 
Furthermore, to perform ADF estimation, we require not VADF itself but its inverse, 
and inverting such a large matrix can further distort the results or lead to numerical 
problems. In the context of covariance structure analysis, the test statistic TAOF 

tends to exhibit inflated rejection rates unless the sample size is in the thousands 
or the number of variables is small (e.g., Chou, Bentler, & Satorra, 1991; Curran, 
West, & Finch, 1996; Hu, Bentler, & Kano, 1992). Thus, there are good reasons 
to believe that the ADF approach with correlation structures will also not be very 
stable under similar conditions. To our knowledge, only one study evaluated the 
performance of the ADF approach with correlation structures, and found that in fact 
this method performed even worse than the ADF approach with covariance structures 
(Mels, 2000). This may be because equation (1.16) is much more complicated than 
equation (1.14) and relies on accurate estimation of multiple fourth-order moments. 
We present the results of a small simulation in Section 1.5. 

One solution to this problem is to employ two-stage ADF estimation, which we 
refer to as structured ADF (Mels, 2000; Steiger, 2005; Steiger & Hakstian, 1982). 
In the first stage, model-based estimates of sample correlations are obtained using 
a simpler method, such as least squares (LS), generalized least squares (GLS), or 
normal theory reweighted least squares (RLS), which are defined later in this chapter. 
In the second stage, these estimates are used instead of sample correlations in equation 
(1.17) to compute a "structured" or "two-stage" distribution-free estimate of V , say 
VTADF- ADF estimation is then conducted with a structured weight matrix. To our 
knowledge, only two studies evaluated the performance of this methodology (Fouladi, 
2000; Mels, 2000), and both studied the structured ADF approach with LS estimation 
as the first stage. That is, model-based estimates pij were obtained by minimizing 
equation (1.7) with W „ = I. The structured ADF estimate of V was computed as 

Vij,ki(TAUF) = rijki + .25pijPki(rukk + rjjkk + fail + TJJU) 

—-SPijiruki+ rjjki) —-5pki(rijkk + rijii) . (1.18) 

The weight matrix was then set to be the inverse of VTADF- Mels (2000) found that 
the structured ADF estimator was less biased than the original ADF estimator based on 
(1.17). The structured ADF test statistic had a distribution that resembled chi-square 
much more closely than the original ADF test statistic. However, both approaches 
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underestimated the standard errors and the "structured" approach to a greater extent. 
Fouladi (2000) further found that the structured ADF test statistic performed well 
but tended to be conservative under some conditions, leading to rejection rates that 
are too low. We do a small simulation study of the reweighted least squares (RLS) 
version of the structured ADF approach in Section 1.5, and we propose other uses for 
the structured estimate of V in the next section. Finally, we note that it is possible 
to compute a structured distribution-free estimate of V in the context of covariance 
structures as well, by using model-reproduced covariances in the second term of 
(1.14). Surprisingly, however, we have found that this modification makes almost no 
difference (see also Tanaka & Bentler, 1985), and hence we do not consider it when 
comparing correlation and covariance structure methods. 

A different approach is to accept the original unstructured ADF parameter estimates 
but to modify the ADF test statistic so that it is better behaved. Several improvements 
to the ADF statistic have been proposed in the context of covariance structures. Yuan 
and Bentler (1997a) proposed computing a new test statistic as follows. Once the 
model has been estimated and the ADF model-reproduced correlations have been 
obtained, use them in place of sample covariances σ^ in (1.14) to compute the 
test statistic. This approach may appear similar to the structured two-stage ADF 
approach; however, there are two major differences. The structured matrix \ ADF 
uses ADF estimates of correlations and not LS or some other initial estimates, and 
the structured matrix is used only to compute the test statistic, not to obtain the 
estimates themselves. The main appeal of the Yuan-Bentler statistic is that it is easily 
computed; it actually turns out to be a simple rescaling of the original ADF statistic: 
TYB(ADF) = TADF/(l + TADF/n). As the sample size gets large, TYB(ADF) 

becomes equal to TADF , but at smaller sample sizes it can help to eliminate the typical 
inflation of the ADF statistic. Unfortunately, the same does not hold for correlation 
structures: while the Yuan-Bentler statistic can be proposed in theory as the statistic 
that uses the structured estimator of (1.16), it no longer is a simple rescaling of the 
ADF statistic for correlation structures.1 It still may be worthwhile to compute and 
study this statistic, however. We expect its empirical performance to be similar to its 
covariance structure counterpart. 

A second improvement of the covariance structure ADF test statistic was developed 
by Yuan and Bentler (1999) and is given by 

N -(p-q) 
TF(ADF) = jz :—TADF (1-19) 

n(p - q) 

'Another justification for the Yuan-Bentler correction in covariance structures is that the ADF matrix in 
(1.14) can also be written as a covariance matrix of j/t = vech(a3t — x)(xt — i ) ' , where y = s, 
the vector of sample covariances. The Yuan-Bentler statistic then simply computes the covariance matrix 
using σ in place of y. A parallel extension exists for correlation structures. The matrix in (1.16) can be 
defined as a covariance matrix of mt = vec(ztz't) — .5vec{f t 0 ( l z f + zfl')} where ©is the 
element-wise (Hadamard) product. In this case, however, m is identically zero and cannot be structured. 
Under this justification, an extension of the Yuan-Bentler statistic to correlation structures simply does not 
exist. 
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The distribution of this statistic is approximated by an F distribution with d = (p—q) 
and N — d degrees of freedom. The rationale here is the analogy with Hotelling's T 2 

statistic in multivariate analysis (e.g., Seber, 2004), which is used to test hypotheses 
about the mean vector when the data come from a multivariate normal distribution 
with unknown covariance matrix. The analogy is not complete: the vector ^/n(r—p) 
is not normal for all n but only approaches normality asymptotically, and ρ(θ) is 
not a linear function. The F distribution is only an approximation to the small-
sample behavior of TF(ADF)\ however, it is asymptotically correct. The asymptotic 
distribution of (1.19) is an F distribution with d and oo degrees of freedom, which 
is a scaled chi-square varíate, Ι/άχ^. Thus, even though the statistic in (1.19) is 
not asymptotically equivalent to TAUF , they result in equivalent tests, in the sense 
that they will tend to produce identical p-values as N gets large. In the context of 
covariance structure analysis, TF(ADF) has been found to perform extremely well; 
however, the simulations have been limited. This statistic has never been applied to 
correlation structure analysis, but the extension is straightforward in this case, and 
may result in similar improvement in performance. 

The unstructured asymptotic covariance matrix estimator V A D F given by (1.16) 
can be used in (1.9) to obtain estimates of the standard errors of the parameter es-
timates. However, in the context of covariance structure analysis, Yuan and Bentler 
(1997b) found that these estimates did not behave as well as desired. They proposed 
to correct the covariance matrix in (1.9) with a scalar multiplier that in our context is 

^ — r i ^ V ^ A ) - 1 (1.20) 
n — p — 1 

With covariance structures, Yuan and Bentler (1997b) found that this estimator worked 
better in practice. The justification for this correction again comes from standard 
multivariate analysis. With multivariate normal data, the inverse of the multiplier in 
(1.20) is the adjustment necessary to obtain an unbiased estimate of the inverse of 
the sample covariance matrix. Since YADF can be viewed as a covariance matrix of 
some transformation of the data (see footnote 1) for both covariances and correlations, 
we propose that the modified standard errors in (1.20) may also be useful in correlation 
structure analysis. 

In summary, ADF estimation is a method with very attractive theoretical properties, 
but it may be computationally and statistically problematic in small samples or with 
large models. In later sections we review some alternatives. All of them make 
restrictive assumptions about V and define W n accordingly. When the assumptions 
are met and W „ is specified correctly, estimation is greatly stabilized. However, it is 
possible that W „ may be specified incorrectly. Before we address specific choices for 
W n , we first discuss some model tests of fit that still yield accurate conclusions under 
weight matrix misspecification. We discuss the following three types of tests: tests 
that are based on the mixture distribution, residual-based tests and their modifications, 
and scaled tests. All these tests require a consistent estimate of V. This estimate can 
be obtained by using either the original ADF estimator given by (1.17) or a structured 
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version given by (1.18). Thus, the ADF methodology has applications that extend 
beyond the classical distribution-free estimation approach presented in this section. 

1.3.5 Tests of Model Fit Under Distributional Misspecif¡cation 

1.3.5.1 Tests Based on a Mixture Of χ\. Suppose first that the weight ma-
trix is possibly (or surely) misspecified. Then an obvious thing to do is to refer the 
statistic T to its true distribution as given in (1.12): namely, T ~ Σ ί = ι W%X*> 
where wi,..., Wd are the nonzero eigenvalues of the matrix product U V , where 
U = W — W p ( p ' W p ) _ 1 p ' W . These weights are not known and will need to 
be estimated from the data. We can easily obtain the estimator U by using sample 
quantities in the definition of U. However, the weights also depend on the correct 
asymptotic covariance matrix V. One approach is to use the distribution-free estima-
tor \ADF of V in (1.17). Then the estimated weights Wi can be obtained from the 
nonzero eigenvalues of the matrix product U V , and we may compute the probability 

p r ( f > i X ? < i ] (1.21) 

to evaluate the null hypothesis using some cutoff value t, which is the critical value 
past which, say, 5% of the mixture distribution is contained. Finding t for a given set 
of estimated weights is also not an easy matter and may require special programming 
in a package such as Matlab or R. Despite these difficulties, this test is appealing 
because it makes use of the actual distribution of T under model misspecification, 
instead of making approximations. 

Very little empirical work has been done on the mixture test, however. Bentler 
(1994) proposed and studied this test with covariance structure analysis, using an 
algorithm of Gabler and Wolff (1987) to compute the given probability. He found the 
method to work quite well, except under conditions of dependence of observations 
and at small sample sizes. We expect that problems with the method are due to poor 
estimation of the eigenvalues tí>¿. Nothing is known about the behavior of these eigen-
values in correlation structures. On the one hand, they may be expected to be better 
behaved because correlations have a restricted range. On the other hand, they may 
share the fate of the correlation structure ADF methodology, which does even worse 
than the corresponding covariance structure ADF methodology. Modifications, are, 
however, possible. The mixture test can be implemented using shrunken or trimmed 
estimators of the eigenvalues u>¿, and possibly using alternative computational meth-
ods for obtaining the required probabilities (Davies, 1980; Farebrother, 1984; Wood, 
1989). Additionally, using the structured ADF estimator VTADF given by (1.18) 
may improve performance. In sum, using (1.21) directly to evaluate the model test 
of fit in correlation structures remains an open research problem. 

1.3.5.2 Tests Based on Residuals. Actually, there are some simpler tests than 
the mixture test given by (1.21). In fact, there is a statistic that behaves asymptotically 
as a chi-square varíate under the null hypothesis regardless of whether the weight 
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matrix used in estimation is misspecified. This is advantageous, as using a chi-square 
distribution is simpler than evaluating a mixture such as (1.21). This statistic was 
first proposed by Browne (1984) for covariance structure analysis and is referred to 
as a residual-based statistic. For correlation structures, the residual-based statistic is 
given by 

TRES = n ( r - p ) ' Ü v ( r - p) (1.22) 

where p = ρ(θ), Θ is obtained by minimizing (1.7) for some W n , and U y is a 
consistent estimator of U v = V - 1 — V _ 1 p ( p / V _ 1 p ) - 1 p ' V _ 1 . This statistic 
has an asymptotic chi-square distribution with d = p — q degrees of freedom even 
if W „ ► W φ V - 1 . In practice, to obtain a consistent estimate of U v , we 
need a consistent estimate of V (or its inverse). The ADF estimator \ ADF given 
by (1.17) can be used. The structured two-stage ADF estimator WTADF given in 
(1.18) using the same p from the residuals in the first stage can also be used. In later 
sections we introduce other forms of residual-based statistics which use estimators of 
V that require additional assumptions about the distribution of the data. When these 
assumptions hold, the resulting test statistic will be better behaved. Thus, (1.22) 
actually refers to a class of test statistics. 

In covariance structure analysis, the residual-based statistic in (1.22) exhibits small 
sample properties similar to those of the original ADF statistic, for similar reasons. 
The ADF estimator *V ADF requires estimating a lot of parameters and hence may be 
unstable in small sample sizes. Inverting the resulting matrix may be difficult to do 
accurately in small samples or with a large number of variables. Worse yet, the matrix 
V ADF may turn out to be singular or near singular, leading the residual-based test to 
break down. One way around this problem is to use a generalized inverse of V instead 
of the regular inverse V - 1 ; however, little is known about the effectiveness of this 
modification. As far as we know, the class of residual-based statistics for correlation 
structures has not been studied. We can expect, however, that the correlation structure 
version of this statistic based on VADF will perform poorly, because its performance 
should be similar to the performance of the ADF statistic itself. The residual-based 
statistic based on the structured ADF estimator \TADF may do better. We report on 
a small simulation study in Section 1.5. 

For covariance structures, Yuan and Bentler (1998) proposed corrections to the 
residual-based statistic designed to improve its small-sample performance. These 
modified statistics are very similar to the modified ADF statistics given above, and 
their rationale is exactly the same. We suggest using, parallel to (1.19), 

N - (p - q) 
TF(RES) = Tz s—TRES . (1-23) 

n(p- q) 
As before, Tp(REs) is referred to an F distribution with d and N — d degrees of 
freedom and is distributed asymptotically as 1/d %¿. The performance of this new 
test in the context of correlation structure analysis remains to be established. 
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1.3.6 Scaled and Adjusted Statistics 

An entirely different approach to evaluating model fit in the case of distributional 
misspecification was proposed by Satorra and Bentler (1988, 1994) in the context 
of covariance structure analysis, although the idea of scaling a statistic to improve 
its performance goes back to Bartlett (1950). They proposed to scale the statistic 
in (1.12), generally distributed as a mixture, so that its expectation is equal to that 
of a chi-squared variate with d degrees of freedom. For reference we note that if 
x ~ Xd> m e n E(aj) = d and var(a;) = 2d. We can compute the expected value 
of (1.12) as E(T) — X^i = 1 Wi — t r ( U V ) , since the components of the mixture 
are independent. The scaled statistic is defined as 

d 
Τχ = ^r-T (1.24) 

t r ( U V ) 

It is clear that 2 \ < T if t r ( Ü V ) > d, thus reducing an inflated T. This is 
a standard situation in covariance structure analysis, where a weight matrix that is 
misspecified due to distributional violations tends to result in inflated tests T. The 
new statistic Τχ is generally not χ2 distributed, but its asymptotic expectation is d. 
Thus, referring it to a χ2 distribution can be a good approximation, especially when 
the coefficient of variation of the weights wi is small (Yuan & Bentler, 1998). When 
the weight matrix is specified correctly, all the weights Wi are 1 in the population, 
and the correction has no effect asymptotically. Furthermore, the correction yields an 
asymptotic χ2 variate in some special cases: for example, when the distribution of the 
data is elliptical (as defined below). As before, this statistic requires that an estimate of 
V be provided, but unlike with the residual-based statistic, here it does not need to be 
inverted, which may aid in stability. The tradition is to again use the ADF estimator 
V , although in principle, assumptions can be made that would lead to alternative 
corrections. Γχ is most commonly known as the Satorra-Bentler scaled chi-square 
and is well studied in covariance structure analysis. The version of the Satorra-Bentler 
chi-square where T is the normal theory maximum likelihood statistic has been found 
to perform well under a wide variety of nonnormal conditions (e.g., Chou & Bentler, 
1995; Chou, Bentler, & Satorra, 1991; Curran, West, & Finch, 1996; Fouladi, 2000; 
Hoogland, 1999; Hu, Bentler, & Kano, 1992; Nevitt, 2000). With an additional 
Bartlett-type multiplicative correction factor of {1 — [(2p + 4fe + 5 ) / 6 n } , where 
k is the number of factors as proposed by Fouladi (2000), it was found to be the best 
performing of various statistics studied by Nevitt and Hancock (2004). The original 
(1.24) or its Bartlett modification has not been evaluated in the context of correlation 
structures. With correlation structures, another version of the Satorra-Bentler chi-
square that utilizes the structured two-stage estimator YTADF > where the first-stage 
estimates are those used in the computation of T , is also possible. 

Satorra and Bentler (1988, 1994) also proposed a mean- and variance-adjusted 
statistic, which rescales (1.12) in a way as to make its mean and variance equal 
to those of a chi-square variate with fc degrees of freedom, for some k. That is, 
we want to find a scaling constant c such that 2E(cT) = var(cT). Again using 
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independence of the mixture components, we have that E(cT) — c Σ ί = 1 Wi = 
c t r (UV) and var(cT) = 2c2 £ ? = 1 w? = 2c 2 t r (UVUV) . This yields c = 
t r ( U V ) / t r ( U V U V ) . The mean- and variance-adjusted test statistic is then 

T2 = cT (1.25) 

where c is a consistent estimate of c, with approximate degrees of freedom given 
by fc, a consistent estimate of fc = E(cT) = [ t r ( U V ) ] 2 / t r ( U V U V ) , possibly 
rounded to its nearest integer. This statistic, referred to as the Satorra-Bentler mean-
and variance-adjusted statistic, has been found to perform well in the context of 
covariance structure analysis. Some authors report it outperforming the scaled statistic 
Τχ (Fouladi, 2000), but it has been faulted for low power (Nevitt & Hancock, 2004). 
It has not been studied in the context of correlation structures for continuous data. 

In summary, many options exist for evaluating model fit under distributional mis-
specification. We have not covered all the possible options, such as the bootstrap-
based tests (Bollen & Stine, 1993; Enders, 2002; Yuan & Hayashi, 2003). We also 
note that even though we do not discuss standard errors in detail, whenever misspec-
ification is suspected, robust standard errors obtained from the covariance matrix in 
(1.11) should be used, regardless of how the model fit is evaluated. In the next few 
sections, we return to the assumption that the model is specified correctly, and de-
scribe several specific estimation and testing approaches. These approaches all first 
make some assumptions about V , and then choose W „ accordingly. 

1.3.7 Normal Theory Estimation and Testing 

The multivariate normal distribution has a density proportional to 

Ι Σ Ι - 1 / 2 
exp - ^ ( χ - μ / Σ - ^ χ - μ ) (1-26) 

It can be shown that when the data follow this distribution, the general fourth-order 
moment given in (1.14) can be expressed as a function of only second-order moments 
(variances and covariances) as follows 

Cijkl = &ijCkl + (Tik&jl + <Til(7jk (1-27) 

where σ^ = E(XÍ — ßi)(xj — /x¿)»as before. Then the standardized fourth-order 
moment in (1.15) simplifies to 

Pijki = PijPki + PikPji + PuPjk (1-28) 

Substituting (1.28) into the general expression for an element Vijtki of V in (1.16), 
we obtain that under normal theory, the asymptotic covariance matrix of sample 
correlations has the following structure (Olkin & Siotani, 1976; Steiger & Hakstian, 
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1982): 

Vij,ki(NT) = '5pijPki(p?k + Pa + P% + Pji) + PikPji + PuPjk 

— PijiPjkPji + PikPu) — PkiiPjkPik + PjiPu) (1.29) 

It should be clear from this equation that the advantage of assuming a parametric 
distribution for the data is that it structures the asymptotic covariance matrix V , 
making its estimation a much easier task. The expression in (1.29), say V J V T , 

depends only on the population correlations, that is, on a total of p parameters. With 
30 variables, we only need to estimate 30(29) /2 = 435 parameters to obtain an 
estimate of V under the assumption of normality, compared to 94,830 needed for the 
ADF estimator. 

To minimize (1.7) we would have to invert the p x p estimate of (1.29), which 
requires a lot of computational effort. Although this can certainly be done, Jennrich 
(1970) proposed a much more efficient way of proceeding. He derived the symbolic 
form of the inverse of V under normal theory. The typical element of V - 1 when V 
has the structure given in (1.29) is 

V«,«(JVT) = P V + P V * - Pijpkl(*ik + *jk + πί1 + *jl) (1.30) 

where ( P - 1 ) ^ · = p*J'; that is, pij is the typical element of P _ 1 , (H. - 1 ) i j = π*·7', 
(Tl)ij = TTÍJ = Sij + PijP1-*, and <5¿j is Kronecker's delta. To compute (1.30), 
we only need to invert p X p matrices, which greatly simplifies the computations. 
In fact, we do not need to compute the function (1.7) directly either. Jennrich (1970) 
gave a simplified expression for the quadratic discrepancy function in (1.7) based on 
the inverse in (1.30): 

Qn(NT) = t r [ ( R - Ρ (θ ) )Ρ 0 - 1 ] 2 / 2 - di'ag[(R - P ( 0 ) ) P ^ ] 

X (I + P 0 0 Po 1 ) " 1 d iag[(R - P (0) )Po *] (1.31) 

where © refers to Hadamard (elementwise) product and Po is the true population 
correlation matrix. This expression is also given by Browne (1977). In practice, 
minimizing (1.31) directly is not possible because Po is not known. We now have 
several possibilities. As noted by Shapiro and Browne (1990), any consistent esti-
mator of P 0 can be used in (1.31) and hence n Q „ ( ^ ) will be an asymptotic χ^ 
varíate and the estimator will be asymptotically efficient. In particular, they proposed 
to use P = Ρ(θ), which uses ö P o / ö ö = 8Ρ(Θ)/8Θ in defining the gradient and 
approximate Hessian for the optimization and yields an asymptotically efficient esti-
mator related to Swain's (1975) "F1" covariance structure estimator. Let us call this 
a weighted least squares estimator (WLS). Bentler (2002-2007, the EQS 6 program) 
proposed to consider Po as a fixed weight matrix such that dP^/dO. The choices 
for such weight matrices are (1) Po = R, the sample correlation matrix, yielding a 

* (fc) 
generalized least squares (GLS) method; (2) Po = Ρ(θ ) , the current iteration's 
model-based estimate, yielding an iteratively reweighted least squares (RLS) method 
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(see Lee & Jennrich, 1979 on how RLS yields MLE in covariance structures); or (3) 
P 0 = I , which yields a least squares (LS) method, discussed later. For completeness, 
we may also propose some new diagonally weighted methods related to the WLS, 
GLS, and RLS estimators such as Po"1 = d i a g ( P ( 0 ) _ 1 ) , P Q * = d i a g ( R _ 1 ) , 

- _ 1 -( fc) 

or P 0 = diag(P(Ö ) _ 1 ) , which, in really huge problems, may be a useful 
compromise between optimally weighted and LS estimates. 

The WLS, GLS, and RLS methods all yield asymptotically efficient estimates 
and their associated test statistics nQn^T) are distributed asymptotically as χ^. 
Associated with the normal theory function (1.31) are WLS, GLS, and RLS estimates 
of V in (1.29), which we may call VWLS , VGLS , and VRLS , respectively. Then 
standard errors for these estimates can be obtained by using V ^ " i S , V ¿ ¿ s , or 
VRXS > based on (1.30), in place of V in (1.9). If the multivariate normal distribution 
is only a rough approximation to the distribution of the data, robust standard errors 
can be computed instead, as given by (1.11). For example, robust standard errors 
for the GLS estimator can be computed by evaluating (1.11) at W = V ¿ i S and 
V = VADF, the unstructured estimator obtained from (1.17). Model fit under 
possible distributional misspecification can be evaluated by referring the model test 
statistic to (1.12) or by using any of the statistics in (1.21)—(1.25), with W and V 
defined similarly. That is, all residual-based statistics, mixture tests, and Satorra-
Bentler statistics can be specialized to the normal theory case by defining W and V 
appropriately. 

As far as we know, in the context of correlation structure analysis there is no 
comparative information on the relative performance of the WLS, RLS, and GLS 
estimators, their estimated standard errors, or the associated test statistics under var-
ious conditions, such as small sample size or misspecifications in the model or data 
distributions. If the distribution of the data is specified correctly, these estimators 
are asymptotically equivalent, and so are the associated test statistics. Hence, any 
differences in performance will occur in small samples. In the covariance structure 
context, we know that GLS (Browne, 1974) tends to overaccept models somewhat at 
the smallest sample sizes compared to RLS, but we do not know whether this finding 
will generalize to correlation structures. 

1.3.8 Elliptical Theory Estimation and Testing 

This approach assumes that the data came from an elliptical distribution, which has 
its density proportional to 

ΐ Σ Γ ^ Μ θ ί - Μ / Σ ^ χ - μ ) } (1.32) 

The parameters μ and Σ can be interpreted as the location vector and the scale 
matrix of the vector of variables x, and g is a nonnegative function. As is evident by 
comparing to (1.26), the elliptical distribution includes multivariate normal as a spe-
cial case, with g(t) = e5t. Elliptical distributions have heavier or lighter tails than 
the normal distribution, but remain symmetrically distributed. They are thus a very 
general class of distributions that can be used to model data with insignificant amount 
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of skewness, but nonzero amount of kurtosis, although they make the assumption that 
univariate kurtosis is the same for all the variables. Relaxing this assumption results 
in another estimation method, heterogeneous kurtosis (HK) theory, discussed in the 
next section. 

It can be shown that for elliptical distributions, the general fourth-order moment 
given in (1.14) can be expressed as (Bentler, 1983) 

Cijkl = (κ + l)((Tij&kl + (TikCjl + &il&jk) (1.33) 

where κ is the common kurtosis parameter. When κ = 0, the distribution has no 
excess kurtosis, and we obtain (1.27). In heavier tailed distributions (as compared to 
the multivariate normal), κ is positive, and in lighter tailed distributions, κ is negative. 
The following relationship also holds: 

« = σ««/3σ? 4 - 1 (1.34) 

for alH = 1 , . . . , p, where, as before, σαα — E(XÍ — μ»)4 and an = E(XÍ — 
ßi)2. Substituting (1.33) into (1.15), we obtain the standardized fourth-order moment 
under elliptical theory: 

Pijki = (κ + í)(PijPki + PikPji + PuPjk) ■ (1.35) 

Using (1.35) in (1.16), we obtain an expression for a typical element of V under 
elliptical theory as follows: 

Vij,kl(E) = ( Κ + l)Vij,kl(NT) (1.36) 

Writing this compactly, the normal theory and elliptical theory asymptotic covariance 
matrices of sample correlations are related by V ^ = ( κ + 1 ) V jy, and only one more 
parameter is needed to describe possible increase or decrease in variance. Similarly, 
it follows that V - 1 = (κ + 1 ) _ 1 V ^ 1 . This implies that the elliptical version of 
the fit function Qn in (1.7) can be written as 

Qn(B) = (K + l ) - 1 Q n ( J V T ) 0-37) 

which is just a multiple of the normal theory fit function in (1.31). Since «isa constant, 
the minimum of (1.37) with respect to Θ is identical to the minimum of (1.31), and 
this will also hold when we replace κ by any consistent estimator k. This means that 
any of the weighting methods that we have discussed for normal theory apply directly 
to elliptical theory, and we may obtain WLS, GLS, RLS, LS, or diagonally weighted 
functions, estimators, tests, and standard errors. In particular, for any particular choice 
of estimator, we have (1) the parameter estimator obtained under a particular normal 
theory method, say ÖJVT based on RLS, will be identical to the estimators obtained 
under its counterpart method in elliptical theory, say ΘΕ under ERLS; (2) the test 
statistic associated with a particular normal theory method, say RLS, will be related 
to its elliptical counterpart, say ERLS, by the relation TERLS = (κ + 1 ) - 1 T R I , S ; 
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and (3) the asymptotic covariance matrix of ΘΝΤ obtained by any particular normal 
theory method will be related to the asymptotic covariance matrix of the corresponding 
elliptical estimator ΘΕ by ( p ' V ^ 1 / ) ) - 1 = (κ. + 1 ) ( ρ ' ν ^ ρ ) _ 1 in the case of 
asymptotically efficient estimators and by a similar relation based on specialized 
versions of (1.11) with inefficient estimators. These relationships are implicit in 
Mels (2000), and consistent with Shapiro and Browne's (1987) discussion of scale-
invariant correlation structures Σ = DP(Ö)D. 

As a result, we can use normal theory correlation methods with elliptical data as 
long as we have an estimate of the common kurtosis parameter κ. An estimator with 
optimal properties (Bentler & Berkane, 1986; Berkane & Bentler, 1990) is based on 
Mardia's (1970,1974) multivariate kurtosis. Mardia's multivariate kurtosis estimator 
is given by: 

1 N 
m = Jj Σ L(X* - * ) ' S - 1 ( X Í - x)]2 - p(p + 2) (1.38) 

Then a Mardia-based estimate of κ is given by: 

k = m/p(p + 2) (1.39) 

This estimator was recommended by Bentler and Berkane (1986), Browne (1982, 
1984), and Shapiro and Browne (1987). When the data are symmetric but not ellip-
tical, the scaling provided by (1.39) may perform badly (Satorra & Bentler, 1988). 
Estimators outside the elliptical class (Kano, 1992), such as the multiplier of the 
Satorra-Bentler scaled test in (1.24), are more robust to violation of ellipticity. That 
is, using the estimator k = t r (U V) /d in the computation of the elliptical test statis-
tic TERLS = (K + 1)~1TRLS amounts to applying the Satorra-Bentler robust test 
statistic (1.24) to the normal theory statistic TRLS- Using this same k to compute 
elliptical theory standard errors by correcting the normal theory asymptotic covari-
ance matrix as (κ + l ) ( p ' V ^ p ) _ 1 may yield improved standard errors, even if 
these are not the fully general robust standard errors obtained by using (1.11) with 
V = VAOF- Of course, the latter requires much heavier computations. These 
suggestions remain to be studied. 

With covariance structure analysis, a disadvantage of the elliptical methods is that 
they may not be as robust to small violations of distributional assumptions as are 
normal theory methods. Initially optimistic performance found in simulations (e.g., 
Harlow, 1985) has become less so (e.g., Boomsma & Hoogland, 2001; Hoogland, 
1999). This may be true here also. 

1.3.9 Heterogeneous Kurtosis Theory Estimation and Testing 

Heterogeneous kurtosis (HK) theory (Kano, Berkane, & Bentler, 1990) generalizes 
elliptical distribution theory to allow individual variables to have different kurtosis 
parameters. Normal and elliptical theories can be viewed as special cases of HK, in 
the sense that if the HK method is used on elliptical or normal data, there is no penalty, 
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and the method specializes as needed. However, HK theory is not a generalization of 
the elliptical theory in the sense that it does not generalize (1.32) to a wider class of 
densities. Instead, it generalizes the structure of the fourth-order moments implied 
by elliptical distributions and given in (1.33) while still requiring significantly fewer 
parameters than (1.16). The class of densities that would generate such a structure, 
however, is not yet known. 

Kano et al. (1990) proposed the following structure for the fourth-order moment: 

&ijki = (aij(iki)<7ij<7ki + {α.χϊια,3ΐ)σίΐισιι + (auajk)auajk (1-40) 

where a,ij, elements of a symmetric matrix A, are arbitrary parameters except for 
the restriction that V in (1.16) remain positive definite. Substituting (1.40) into the 
general expression for the standardized fourth-order moment in (1.15), we obtain 

Pijki = (ciijaki)PijPki + (aika.ji)pikpji + (auajk)puPjk (1-41) 

Using (1.41) in (1.16) will give an expression for the typical element of V structured 
under HK theory. We omit this expression because it does not yield any additional 
insights. 

This method is called heterogeneous kurtosis because variables' marginal kurtoses, 
which are allowed to differ, are used to define the a¿¿ 's in (1.41). Define the measure 
of kurtosis for variable i as TJ? = σαα/3σ^ί. There are two main possibilities 
for defining the elements of A. Kano et al. (1990) proposed the arithmetic average 
method, where 

aij = .5(ηί +Tfo) (1.42) 

Bentler, Berkane and Kano (1991) proposed the geometric mean method, where 

aH = VWVj (1-43) 

Both (1.42) and (1.43) try to approximate the fourth-order moments of the variables 
with (1.41). The geometric approach holds for a wider variety of nonnormal distribu-
tions, and should perform better, although the empirical evidence on this is limited. 
Hu et al. (1992) found that there was a tendency for HK methodology implemented 
using (1.42) to produce a chi-square statistic that somewhat overaccepts models. Be-
cause the arithmetic mean is always greater than the geometric mean, there should be 
less overcorrection using (1.43). 

As is the case with normal and elliptical theory methods, estimation can be done 
using weighted, generalized, or iteratively reweighted least squares. In the HKGLS 
approach, estimation is conducted by minimizing (1.7) with the weight matrix set to 

VHKGLS> where WHKGLS is obtained by using sample correlations r^· 
in its HK version. In the HKRLS and HKWLS approaches, model-based estimates 
are used instead, and W „ is iteratively updated either as a constant matrix or as 
one differentiated during optimization. Standard errors can be obtained by using the 
relevant V ^ K G i S , ^HKRLS-· o r ^HKWLS m (1·9)> a nd the model fit can be 
evaluated referring (1.10) to a chi-square distribution with d = p — q degrees of 
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freedom. Robust standard errors and test statistics can also be used. For completeness, 
we note that we can also define diagonally weighted least squares methods and least 
squares methods in parallel to those given above. By now it should be clear that 
the logic of both the correctly specified and the robust methodologies stays the same 
across methods, and what distinguishes different methods is our belief about the form 
of in the population, which drives the choice of the weight matrix. 

Although the HK methodology was developed over a decade ago and found to be 
promising in one study beyond that of its developers (Hu, Bentier & Kano, 1992), 
it seems not to have been studied further. Hence, the limitations of the method are 
really not well known, even with covariance structures. One abstract problem is 
that the classes of variable distributions that are covered by HK theory are not really 
understood. That is, when using HK theory, we cannot start our research reports 
with, "Assume the data were generated from . . . " However, to the extent that the 
method provides a reasonable approximation to the fourth-order moment structure 
of the data, it will be preferred to any approach that uses a well-defined multivariate 
distribution that does not account for the data equally well. The HK methodology 
has not previously been extended to or tested with correlation structures. 

1.3.10 Least Squares Estimation and Testing 

The robust methodology developed earlier allows for normal, elliptical, and HK the-
ories to be used even when initial estimation of parameters proceeds differently. In 
this section we discuss the simplest estimator possible: the one that is obtained by 
minimizing (1.7) by setting W n = I , the identity matrix. This is the least-squares 
(LS) estimator, familiar from regression, but never optimal in correlation structure 
analysis. This procedure will simply minimize the sum of squared residuals. The 
estimator remains consistent, but obviously, using V - 1 = I in (1.9) and referring 
(1.10) to a chi-square varíate will produce incorrect results. 

However, we can, instead, compute robust standard errors with (1.11) and all 
robust test statistics of (1.21)—(1.25). In all these equations it is clear that W = I. To 
estimate V we could use the completely unstructured ADF estimator VADF given 
in (1.17), but the resulting statistic is likely not to behave well unless the sample 
size is very large and the model is simple. But suppose we do believe that our data 
roughly follow some parametric distribution; for simplicity, let us assume that it is the 
multivariate normal distribution. Then we can estimate V as VGLS > for instance. 
This allows us to specialize the residual-based statistic given by (1.22) to normally 
distributed data as follows: 

TREs(,NT) = n(r - p(eLS))'Í]v(NT)(r - p0LS)) (1.44) 

where 9LS is the least-squares estimator obtained by minimizing (1.7) with W n = I , 
and UV(JVT) is a consistent estimator of the normal theory residual weight matrix 
UV(JVT) = ( V - 1 - V-1'p(p'V-'íp)-1'p'V-'í, where V " 1 is estimated by 
(1.30) with V ¿ L S . This statistic has an asymptotic χ^ distribution, as long as the 
fourth order moments of the data are structured according to (1.29). Some algebra 
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can verify that (1.44) can be computed using only quantities such as functions and 
gradients available for a given estimation method, say, normal (Bentler 1989, p. 217). 
Other easy to compute versions of (1.44) are possible, such as those based on elliptical 
or HK distributions. Standard errors for the least squares estimator are obtained from 
the relevant specialization of (1.11), that is, 

^ ( 0 - Θ) - * * ΛΓ(0, (p'p^p'Vpip'p)-1) (1.45) 

estimating V with any asymptotically efficient estimator under the distribution cho-
sen, such as V V ^ L S . VGLS , or VRLS in the case of normal theory. 

This example demonstrates the versatility of the proposed robust corrections. In 
principle, any estimator can be used as long as it is consistent and appropriate standard 
error and test statistics formulas exist. This would include the diagonally weighted 
estimators that we have introduced above. Of course, the advantage of minimizing 
(1.7) with ~Wn —► V - 1 is that the resulting estimator is asymptotically efficient 
(i.e., it has the smallest possible variance of all estimators in its class). That is, if we 
believe that our data are multivariate normal (or some other distribution), we should 
use the WLS, GLS, or RLS estimators directly instead of the least-squares robust 
methodology described here. However, estimators obtained from correctly specified 
discrepancy functions are only asymptotically efficient. Their behavior in small to 
medium sample sizes relative to the LS estimator is unknown. The LS estimator, 
and similarly the diagonally weighted estimators, have the advantage that they are 
extremely easy to compute. Evaluating the asymptotic loss of efficiency of these 
estimators—which may be quite small—and the relative performance of the various 
methods in small samples is still an open problem. 

1.4 EXAMPLE 

In developing multiple factor analysis, Thurstone (1947) proposed that the method 
should reproduce correlations from latent factors consistent with acceptably small 
residual errors. Although Thurstone (1954) has described the idea, Comrey (1962; 
Comrey & Ahumada, 1965) was the first to implement it and make the method 
generally available. Comrey's method was sequential: find the minimum residual 
(minres) factor that best accounts for correlations, residualize, then repeat on the 
residual matrix for a second factor, and so on. That is, given the correlation matrix 
R, he found the p X 1 factor loading vector λ by minimizing the sum of squared 
residuals of {R — λ λ ' — (I — diag(AA'))}, then obtained the residual matrix 
R r e s = (R — λ λ ) and repeated the procedure until fc factors were extracted. He 
later proposed to iterate the fc-factor solution (e.g., Comrey & Lee, 1992). In a discus-
sion of the Thurstone (1954) paper, Tukey suggested that it might be better to do the 
minimization with respect to all the hypothesized factors, but it was not until Boldt 
(1965) and Harman and Jones (1966) that this was accomplished. In this fc-factor 
minres method, the function (1.7) with W„, = I is minimized for an exploratory 
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factor model P = ΛΛ' + {I — diag(AA')} with p x k factor loading matrix Λ 
[See also Zegers and ten Berge (1983) and Levin (1988)]. 

The general idea of minimum residual estimation was a break with decades of prior 
tradition in which the diagonal elements diag(AA') called communalities needed 
to be estimated or known prior to use of some optimization procedure to obtain a 
factor solution. However, these authors provided no statistical theory for evaluating 
the adequacy of the solution and, as noted in the introduction, when Jöreskog (1967) 
showed how to obtain the covariance structure MLE, the minimum residual approach 
became neglected theoretically, although it had provided quite nice solutions. Even 
Harman (1967) was enthused about the fact that the MLE methodology could yield 
statistical information that was not available with his own minres method. Paradox-
ically, quite soon, Tucker and Lewis (1973) were proposing that their "reliability" 
index might provide a rationale for ignoring the statistical conclusions and lead to 
acceptance of a non-fitting statistical model if it accounted for the correlations well 
enough. Recently, Jöreskog (2003) showed that a least squares covariance structure 
factor analysis applied to the correlation matrix obtains the same estimators as the 
minres method. However, he did not address the correctness of the resulting test 
statistic and standard errors. 

In this chapter we have provided the theory that makes minres acceptable statisti-
cally. We illustrate the method with the correlation matrix of eight physical variables 
shown in Table 1.1. This table is identical to Table 1 of Harman and Jones (1966) 
except that decimals have been included. Above the diagonal is the correlation matrix 
to be analyzed. Below the diagonal are the residuals (r¿j = ßij) based on a two-
factor minres solution. The minres solution minimizes the sum of squares of these 
residuals. Harman and Jones reported that their function value at the minimum was 
.01205. Using EQS 6, we analyzed this matrix with two exploratory factors using 
the normal theory LS method, that is, minimizing Qn(NT) of (1.31) with P 0 = I, 
and obtained the identical solution as in Table 1.1. The minimum function value 
was the same as reported by Harman and Jones, and the sum of squares of the fac-
tor loadings, also the same, was 5.959. The normal theory test statistic TRES(NT) 

from (1.44) yielded a value of 77.5, which when referred to χ\Ά shows that the null 
hypothesis that two factors can explain the correlations is not tenable statistically. 
This agrees with Harman's (1967, p. 229) conclusions based on the ML solution: 
"For twenty years, two factors had been considered adequate, but statistically two 
factors do not adequately account for the observed correlations based on a random 
sample of 305 girls." Our RLS statistic, TRLs = nQn(NT)> based on (1.31) with 
Po = d i a g ( P ( 0 ) - 1 ) iteratively updated, agrees, yielding TRLS = 76.5, the 
same conclusion as the least squares analysis. Table 1.1 shows that the residuals from 
the two factor LS solution are really quite small, and hence even if additional factors 
are needed statistically, they will not explain very much. Additional discussion of the 
implications of incompatibility between tests and residuals can be found in Browne 
et al. (2002). The spirit of minimum residual methodology is, of course, maintained 
in all correlation structure methods. That is, the diagonal elements of R and P play 
no essential role in the estimation and evaluation of the models. 
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Table 1.1 Correlations and Residuals for Eight Physical Variables" 

Variable 

1. Height 
2. Arm span 
3. Length of forearm 
4. Length of lower leg 
5. Weight 
6. Bitrochanteric diameter 
7. Chest girth 
8. Chest width 

α Correlations in upper tria 

1 

- . 0 1 
- . 0 2 

.04 -

.02 -

.02 -
- . 0 2 
- . 0 2 

ngle, residuals 

2 

.85 

.03 
.02 
.03 
.01 
.00 
.04 

3 

.81 

.88 

- . 0 1 
.01 
.01 -

- . 0 1 
- . 0 0 -

i in lower triangle. 

4 

.86 

.83 

.80 

.01 
.03 
.03 
.02 

5 

.47 

.38 

.38 

.44 

.01 

.01 
- . 0 3 

6 

.40 

.33 

.32 

.33 

.76 

- . 0 3 
.02 

7 

.30 

.28 

.24 

.33 

.73 

.58 

.02 

8 

.38 

.42 

.35 

.37 

.63 

.58 

.54 

1.5 SIMULATIONS 

To get some idea of how the asymptotic theory for correlation structures described in 
this chapter actually works in practice, we conducted two small simulations. The first 
involves a study of the original and structured ADF test statistics; the second involves 
several of the statistics based on the RLS estimator. We note that these are not com-
prehensive simulation studies but, rather, illustrations designed to demonstrate some 
of the methods described. Both simulation studies use only severely nonnormal data, 
and we focus on the performance of the selected statistics. More extensive simulation 
work including normal as well as nonnormal data and investigating the performance 
of parameter estimates and their standard errors will be reported elsewhere. 

1.5.1 Data 

The same simulated data sets were used for both studies. They were created as 
follows. First, multivariate normal data were generated from a two-factor model 
with five indicators per factor, yielding a total of 10 observed variables. Factor 
loadings were set to .7, correlation between the two factors was set to .4, factors 
were set to have variances of 1, and all observed variables had population means of 
0 and variances of 1. Sample sizes were set to be 250, 400, 1000, and 3000. Five 
hundred data sets of each size were created. Each data set was then transformed using 
the nonnormal transformation due to Vale and Maurelli (1983), which transforms 
variables to specified values of univariate skewness and kurtosis while preserving 
their covariance structure. We set skewness to 2 and kurtosis to 7 for each variable. 
Finally, we note that when applied to observed variables as we have done here, the Vale 
and Maurelli (1983) procedure creates nonnormal data that violate the conditions of 
asymptotic robustness (e.g., Satorra & Bentler, 1986). This means that normal theory 
methods will break down and robust statistics are necessary. 
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1.5.2 Correlation Structure with ADF Estimation and Testing 

In the first study, all data sets were analyzed using three versions of the ADF method: 
(1) using covariance structure analysis [i.e., model was fit to sample covariances, 
weight matrix was estimated using sample counterparts to (1.14)], (2) using correla-
tion structure analysis with the traditional unstructured ADF estimator [i.e., weight 
matrix was estimated using (1.17)], and (3) using correlation structure analysis with 
the structured ADF estimator [i.e., weight matrix was estimating using (1.18), using 
least squares (LS) estimates in the first stage]. Let us call the three ADF statis-
tics TADF,COV, TADF,COR, and TTADF,COR, respectively. We are interested 
in comparing the performance of the traditional ADF methods with covariances and 
with correlations, that is, in the relative performance of TADF,COV and TADF,COR-

Based on the work of Mels (2000), the expectation here is that both methods will per-
form poorly until the sample size is huge, with TADF,COR being the worst. We are 
also interested in comparing the two correlation structure methods. Again from the 
work of Mels (2000), the expectation here is that TTADF,COR will do better than 
TADF,COR-

Table 1.2 gives acceptance rates of the test statistics when the true model was fit to 
data, using the nominal .05 cutoff value as a criterion. Under this criterion, the correct 
model should be accepted about 95% of the time, or in 475 replications. As expected, 
both TAOF,COV and TADFÍCOR performed poorly, with TADF,COR performing 
worse. Even at the sample size of 1000, TADF,COV still has not quite converged 
to its asymptotic distribution, despite the small number of observed variables, and 
rejected the correct model about 8% of the time. At a sample size of 3000, its rejection 
rate finally reached its nominal level. TADF,COR, on the other hand, rejected the 
correct model 25% of the time at a sample size of 1000, and about 11% of the time 
at a sample size of 3000. Thus, this statistic in particular may require unrealistically 
large sample sizes to work well. Its structured counterpart, however, did quite well. 
TTADF,COR began by overaccepting models at the smallest sample size of 250, only 
rejecting the correct model 2.6% of the time. At greater sample sizes, however, it 
rejected at about the right level. 

We conclude by not recommending the ADF methodology that uses a completely 
unstructured estimate of the weight matrix, with either covariance or correlation 
structures. The structured or two-stage ADF methodology shows promise. However, 
much more work is needed to verify that our preliminary findings extend to other 
models, in particular to larger models and to other types of nonnormality. Based on 
our limited data, we conclude that TTADF,COR performs fairly well but tends to 
be overly conservative in smaller samples. Following Fouladi's (2000) classification 
of research situations into accept-support and reject-support, TTAOF,COR may be 
particularly useful when a researcher is trying to reject a model, because then its 
tendency to overaccept will work against the researcher's working hypothesis. 
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Table 1.2 Acceptance Rates of Three ADF Test Statistics 

N = 250 

N = 400 

N = 1000 

N = 3000 

TA DF,COV 

356 
71.2% 

441 
88.2% 

461 
92.2% 

471 
94.2% 

TA DF,COR 

88 
17.6% 

212 
42.4% 

375 
75% 

444 
88.8% 

TT ADF,COR 

487 
97.4% 

483 
96.6% 

481 
96.2% 

473 
94.6% 

1.5.3 Correlation Structure with Robust Least Squares Methods 

In the second study, each data set was analyzed with correlation structure analysis us-
ing RLS estimation (which is equivalent to ML estimation in covariance structure anal-
ysis), followed by computation of the following three robust statistics: the residual-
based statistic, TRES , given in (1.22); the residual-based F statistic, TF(RES) , given 
in (1.23); and the Satorra-Bentler scaled chi-square, ΐ \ , given in (1.24). We consid-
ered both the unstructured and structured versions of all three statistics, a total of six 
statistics. To our knowledge, these statistics have never before been studied in the 
context of correlation structure analysis. We expect that the unstructured version of 
TRES will perform similar to the unstructured ADF test statistic, that is, very poorly. 
We do not have expectations about the remaining five statistics, except to say that 
they all attempt to improve on the poor anticipated performance of the unstructured 

TRES-
Table 1.3 gives the number and proportion of acceptance of the correct model out 

of 500 replications, or out of the number of converged solutions, using the nominal .05 
cutoff value as criterion. As expected, the performance of TRES with the traditional 
ADF estimator is very poor, even at the largest sample size, and it is only a little 
better than the performance of the unstructured ADF test statistic (column 2 in Table 
1.2). Although smaller, the F-statistic is not much of an improvement and does not 
lead to nominal level acceptance rates at any sample size. This finding differs from 
the corresponding finding in covariance structure analysis, where the residual-based 
F-statistic has been shown to perform very well in smaller sample sizes. The scaled 
chi-square does well for N = 1000 and 3000, but not at smaller sample sizes. The 
second half of Table 1.3 gives the corresponding results for the structured versions of 
these statistics. As can be seen, the structured TRES n o w rejects at a nearly optimal 
rate, so that correcting it further to yield the F-statistic leads to slight overacceptance 
for intermediate sample sizes. The scaled chi-square also does reasonably well, 
except at the smallest sample size. Thus, we conclude that using structured estimates 
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of the ADF matrix has the potential to produce better test statistics. When these 
statistics do deviate from expected nominal levels, it seems to be in the direction of 
overacceptance. As with the previous study, all these conclusions should be qualified 
until a more extensive simulation study is conducted, including, in particular, larger 
models and varying degrees of nonnormality. 

Table 1.3 Acceptance Rates of the Robust Test Statistics Based on RLS Estimation 

N = 

N = 

N = 

N = 

= 250 

= 400 

= 1000 

= 3000 

TRES 

83/474 
17.5% 

211/494 
42.7% 

375 
75% 

444 
88.8% 

V A D F 

TF(RES) 

161/474 
34.0% 

285/474 
57.7% 

309 
61.8% 

449 
89.8% 

Ti 

417/474 
88.0% 

446/474 
90.3% 

478 
95.6% 

472 
94.4% 

TRES 

461 
92.2% 

476 
95.2% 

483 
96.6% 

473 
94.6% 

V i 
Tf 

'ADF 

'(RES) 

474 
94.8% 

489 
97.8% 

491 
98.2% 

All 
95.4% 

Ti 

443 
88.6% 

472 
94.4% 

485 
97% 

473 
94.6% 

1.6 DISCUSSION 

Although we have covered a range of methods for estimating and testing correla-
tion structure models, our review does not cover the entire range of methods that 
have been proposed. For example, in all of the methods we discuss above, Fisher 
z-transformations of sample correlations r¿j can also be used with appropriate trans-
formations of the weight matrix (e.g., Brien, Venables, James, & Mayo, 1984; Neill 
& Dunn, 1975; Steiger, 1980a,b). The resulting estimators and test statistics can be 
based on transformed χ2 theory (Ferguson, 1996). These methods have been eval-
uated in limited simulation studies (e.g., Fouladi, 2000; Steiger, 1980a,b), and they 
also appear to be quite promising. However, even z-transformations of correlations 
imply generally well-behaved sample correlations, but when distributions are far from 
normal, or contain outliers, it may be preferable to analyze robust estimates of stan-
dard Pearson correlations (e.g., Wilcox & Musca, 2001). As in covariance structure 
analysis, when data are badly distributed, robust estimators of means and covari-
ances (Yuan & Bentler, 2007), and hence correlations, may well provide improved 
estimation and testing of correlation structure hypotheses. The details of correla-
tion structures based on robust estimates remains to be developed. Finally, there are 
related problems that we also have not specifically addressed, such as models for 
the inverse matrix P _ 1 = P _ 1 (θ), which are relevant to the study of conditional 
independence models. 
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In providing our overview of the variety of methods, we have pointed out several 
places where additional research could be fruitfully directed. We also showed how 
correlation structure methods could resurrect an old method of factor analysis which 
seems to have been ignored due to the absence of a statistical theory to accompany 
it. Finally, we did some simulations of correlation structures under nonnormal distri-
butions. We found that the ADF methodology in correlation structures requires very 
large sample sizes to work, even larger than those required for covariance structures. 
We also found that the residual-based statistics and the scaled chi-square that are 
based on the structured or two-stage estimator perform much better in small sample 
sizes, although they may have a tendency to be too conservative. Much more work 
is needed to evaluate other test statistics that were proposed but not studied (e.g., the 
adjusted chi-square) and to extend the current study to other conditions, such as larger 
models. 

In conclusion, we remind the reader that correlation structure methodology is 
not necessarily always the most natural methodology for the analysis of multivariate 
data. For instance, when means and variances are of primary interest, as they might 
be in growth curve models, mean and covariance structure methods provide a more 
informative alternative. Nonetheless, in many situations correlation structure models 
do provide a natural way to specify a variety of hypotheses regarding the structure and 
interrelations among observed and latent variables. As this chapter has demonstrated, 
an appropriate statistical theory for this methodology has been developed, continues 
to grow, and offers new challenges for further research. 

Peter M. Bentler 
University of California, Los Angeles 

Victoria Savalei 
University of British Columbia, Vancouver 
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CHAPTER 2 

OVERVIEW OF STRUCTURAL 
EQUATION MODELS AND RECENT 
EXTENSIONS 

Contemporary structural equation models (SEMs) have their origins in several dis-
ciplines. Sewall Wright's (1918, 1921) work on path analysis is perhaps the first 
work that originated many of the key characteristics that still appear in contemporary 
SEMs. But current SEMs have evolved, becoming more inclusive and general than 
even Wright probably ever imagined. SEMs represent a synthesis of knowledge about 
multivariate analysis from econometrics, psychometrics, sociometrics ("quantitative 
sociology"), biostatistics, and statistics, although its development over the last 30 
years has occurred mostly in the social and behavioral sciences. Indeed, it is only 
relatively recently that biostatistics and statistics have become interested in SEMs. 
Blalock (1964) and Duncan (1966) were early influential works that stimulated re-
search in path analysis and SEM-related procedures in sociology and the other social 
sciences. Two edited books that represent the early-takeoff period of SEMs in the 
social sciences are Blalock (1971) and Goldberger and Duncan (1973). The LISREL 
software program (Jöreskog & Sörbom, 1978) was another major turning point that 
made sophisticated maximum likelihood estimation of SEMs with or without latent 
variables possible. Since this early period, SEMs have spread through the social 
and behavioral sciences to marketing, education, public health, and they continue to 
diffuse into behavioral genetics, epidemiology, biostatistics, social work, and other 
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disciplines. Many more SEM software packages and books have come into being. 
There is a separate journal (Structural Equation Modeling) and a separate listserv 
(SEMNET) devoted to these models. SEMs represent well-established modeling 
techniques that continue to evolve and to incorporate a wide variety of multivariate 
procedures. 

SEMs are nearly always multiequation models. The variables in the model are ei-
ther latent or observed variables where the former are variables for which there are no 
direct measures (Bollen, 2002). The latent variables are often measured by multiple 
indicators, and the analysis takes account of measurement error in observed variables 
so that the relationships of latent variables are estimated while controlling for mea-
surement errors. This ability to consider measurement error and the relation between 
latent variables simultaneously gives SEMs considerable power and enables more 
realistic models that do not assume perfect measurement. Considerable confusion 
surrounds SEMs, what they are, and their capabilities. Part of the confusion is due to 
the diverse terms used to refer to this model. Covariance structure models, LISREL 
models, causal models, path analysis, and latent variable models are just a few of 
the terms. However, SEM has become the most common name for these models. 
There also are a number of misunderstandings about SEMs that have emerged and 
contributed to the confusion. For instance, some argue that interactions of variables 
cannot be included in SEMs; others suggest that the estimators of SEMs are heavily 
dependent on having all variables from multivariate normal distributions; and still 
others believe that a model with "latent variables" cannot be taken seriously or that 
SEMs are a specialized type of model. All of these claims are false even though these 
ideas are still in circulation among some with little grounding in this area. 

To investigate the sources of these misunderstandings would sidetrack us from 
our primary goals. Here we would like to give an overview of SEMs and to describe 
some of the recent work that has shown how to incorporate multilevel models, mixture 
models, item response theory, and sample design into the SEM framework. The latter 
topics are examples of the expansion of SEMs to areas that until relatively recently 
were thought to be distinct from or were inadequately considered in SEMs. Our 
intended audience is quantitative researchers who are not experts in SEMs but who 
would like to learn something about these models. The chapter also may be of 
interest to those with some SEM experience, but who are less familiar with these 
recent extensions. 

In the next section we present the general model and notation. This is followed 
by a brief discussion of the steps involved in structural equation modeling. After 
this general background, we move to recent extensions of this model in sections on 
multilevel models, mixture models, item response theory, and sample design. The 
conclusion follows. 
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2.1 MODEL SPECIFICATION AND ASSUMPTIONS 

We use a modified version of Jöreskog and Sörbom's (1978) LISREL notation for 
SEMs, 2the most common notation in the field. In this notation, SEMs are separated 
into the latent variable and the measurement models. The latent variable model is 

»fc = a „ + Btfc + Γ& + & (2.1) 

where 77̂  is a vector of the latent endogenous variables, an a vector of the intercept 
terms for the equations, B the matrix of coefficients giving the impact of the latent 
endogenous variables on each other, £¿ the vector of latent exogenous variables, Γ 
the coefficient matrix giving the effects of the latent exogenous variables on the latent 
endogenous variables, and ζί the vector of disturbances. The i subscript indexes the 
case in the sample. We assume that Ε{ζί) = 0,COV(^,C¿) = 0, and that ( I - B ) 
is invertible. Exogenous variables are variables that are not explained within the 
model and that are uncorrelated with all disturbances in the system. Endogenous 
variables are those that are influenced directly by other variables in the system besides 
their disturbances. Two covariance matrices are part of the latent variable model: Φ, 
the covariance matrix of the exogenous latent variables (£), and Φ the covariance 
matrix of the equation disturbances (ζ). The mean of ξ is μ^. 

The latent variable model sometimes is referred to as the structural model. This 
can give rise to confusion since the parameters from both the latent variable and 
measurement model are structural parameters, and referring only to the latent variable 
model as structural can lead to the wrong impression (Bollen, 1989, p. 11). To avoid 
this problem we refer to the equations that explain the latent endogenous variables 
as the latent variable model. The measurement model links the latent to the observed 
responses (indicators). It has two matrix equations: 

y i = oty + Αυηί + ei (2.2) 

x¿ = otx+ Ax£i + Si (2.3) 

where y¿ and x¿ are vectors of the observed indicators of r\i and £¿, respectively; ay 

and a x are intercept vectors; Ay and Ax are matrices of factor loadings or regression 
coefficients giving the impact of the latent r/i and ξί on y¿ and Xi, respectively; and e¿ 
and <5¿ are the unique factors of y¿ and x¿. We assume that the unique factors (e¿ and 
Si) have expected values of zero, covariance matrices of &e and Θ5, respectively, 
and are uncorrelated with each other and with ζί and £¿. 

2.1.1 Illustration of Special Cases 

As we mentioned in the introduction, part of the appeal of SEMs is their generality 
and their ability to incorporate many common statistical models as special cases. In 
this subsection we illustrate this aspect of SEMs with a few common cases. 

2The intercept notation is a slight modification of the LISREL notation to keep them all a s a ' s . 
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2.1.1.1 Simultaneous Equation Models. Suppose that we assume that there 
is no measurement error in any of our variables and that there is a single indicator for 
each latent variable. In this situation, the measurement model becomes 

y* = I»/* (2.4) 

Xi = Ui (2.5) 

In other words, the measured and latent variables are one and the same and we can 
replace each latent variable with its observed variable counterpart. Doing so leads 
the latent variable model to become 

y¿ = αν + B y i + rx¿ + Ci (2.6) 

Comparing this to the simultaneous equation model developed in econometrics (e.g., 
Johnston, 1984), we find that except for some slight differences in notation, the model 
is identical. Simultaneous equation models are multiequation models that include a 
system of relationships between the endogenous and exogenous observed variables. 
Recursive and nonrecursive models are two special cases of simultaneous equation 
models. From the perspective of the general SEM, simultaneous equation models are 
a special case which assumes that the observed and latent variables are the same and 
hence that there is no measurement error. 

2.1.1.2 Multiple Regression, ANOVA, and ANCOVA. We can further spe-
cialize the simultaneous equation model in equation (2.6) by assuming that there 
is a single endogenous variable (i.e., yj is a scalar) and hence no endogenous-to-
endogenous variable influences (B = 0) and £¿ is a scalar. This leads to 

Vi = a.y + TXÍ + C¿ (2.7) 

a further specialization of the SEM. This equation is equivalent to a multiple regression 
model. If all the covariates (explanatory variables) in x¿ are dummy variables, we have 
a model equivalent to ANOVA. If the covariates include dummy variables, continuous 
variables and their interactions, we have a model equivalent to analysis of covariance 
(ANCOVA). 

2.1.1.3 Confirmatory Factor Analysis. The measurement model equations 
are 

Yi = OLy + Ay77i + e¿ (2.8) 

Xi = OLX + Αχξί + Si (2.9) 

Either of these equations is sufficient to represent any confirmatory factor analysis 
model. If all variables are deviated from their means such that observed and latent 
variables have means of zero, the intercept term is not needed and we have, using the 
x¿ equation, 

Xi = Λ ^ + <5; (2.10) 
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This is the most common form in which researchers represent the factor analysis 
model. Given that we need only one of the equations of the SEM, it is easy to see 
that factor analysis is a special case of the general SEM. What is less obvious, but 
what will be illustrated in Section 2.2 on multilevel models, is that the CFA model 
also permits fitting an unconditional growth curve model. 

2.1.1.4 Exogenous x Form Of Model. Another special form of the general 
model has utility when all of the covariates from the latent variable model are observed. 
In other words, we have exogenous observed covariates that are measured without 
error (or with negligible error). A frequent situation where this occurs is when we 
have demographic variables such as age, race, and gender, and the researcher assumes 
that these contain no measurement error. The measurement model equation for x then 
becomes x¿ = I£¿ and the latent variable model becomes 

ϊ7 = αί7 + Βτ/ + Γχ + ζ (2.11) 

An interesting aspect of this model is that x can consist of dummy or continuous 
variables. Estimation occurs conditionally on the values of x. This is less restrictive 
than assumptions that require x and y to have specific distributions, but it does require 
that there be no measurement error in x. We return to this topic briefly when we discuss 
estimation. 

2.1.1.5 Other Special Cases. The preceding subsections illustrate some com-
mon statistical models that are specializations of the general SEM. Other work has 
shown that time-series models (e.g., Browne & Zhang, 2007), behavioral genetic ACE 
models (e.g., Neale & Cardón, 1992), and pooled time-series cross-section random 
and fixed effect models (Allison & Bollen, 1997) are special cases. Later we illustrate 
recent work that demonstrates additional models that have been incorporated into the 
SEM framework. Before doing that, we turn to the steps followed for any model that 
falls under SEM. 

2.1.2 Modeling Steps 

There are six steps in modeling in SEMs: 

1. Model specification 

2. Implied moment matrices 

3. Identification 

4. Estimation 

5. Assessing fit 

6. Respecification 

The following subsections summarize each step. 
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2.1.2.1 Model Specification. The first step in structural equation modeling is to 
formulate the model. A SEM is heavily dependent on the substantive expertise of the 
modeler in that the modeler must choose the latent and observed variables that belong 
in the analysis and must specify the relationships of each variable to the others. This 
step makes it difficult for a statistician, biostatistician, or anyone without training in 
the substantive area to use SEMs without the guidance of substantive experts. The 
researcher uses the latent variable model (2.1) and the measurement model, (2.2) and 
(2.3), to put these substantive ideas into a statistical model suitable for testing. The 
SEM equations are general. Analysts need to describe the exact composition of the 
matrices and all parameters that correspond to a particular model. Illustrations of 
model specifications are provided in the sections that introduce new extensions of the 
SEM. 

2.1.2.2 Implied Moment Matrices. The covariance matrix and mean vector of 
the observed variables are the moments of most concern to SEMs. Once a researcher 
specifies a model structure, this model structure implies that the population means, 
variances, and covariances of the observed variables are a function of the model pa-
rameters. In SEMs, the population mean vector (μ) and the population covariance 
matrix (Σ) of the observed variables have implied mean vector, μ(θ), and an implied 
covariance matrix, Σ ( 0 ) , counterparts where Θ is the vector that contains the coef-
ficients, variances, and covariance parameters that are part of the model. The exact 
nature of μ(θ) and Σ(0) is determined by the model specified by the researcher. 
There are general definitions of these implied moments that apply to any SEM. The 
population implied mean vector is 

M(*) = 
α 0 + Λ ν ( Ι - Β ) - 1 ( α η + Γμ ξ ) 

OLX + Λ χ μξ 
(2.12) 

The top part of the right-hand-side vector is the implied mean vector for y , and the 
lower part is the implied mean vector of x. The other symbols were defined in Section 
2.1. 

Similarly, Σ(ο) is the implied covariance structure, which is a function of the 
parameters. The implied covariance matrix is fairly complex for the general model, 
so we partition the matrix to correspond to the implied covariance matrix of y , of x, 
and of y and x: 

S y y ( 0 ) Σ γ χ ( 0 ) 
Σ χ γ ( # ) Σ χ χ ( 0 ) 

These parts of the implied covariance matrix are 

Σ(0) = (2.13) 

Σχχ(6») = Λ Χ ΦΛ; + &s (2.14) 

Σ χ γ ( 0 ) = Λ , Φ Γ ' ί Ι - Β ) " 1 ' Λ ; (2.15) 

Έγγ(θ) = A y ( I - Β ) - 1 ( Γ Φ Γ ' + Φ)(Ι - Β ) - 1 Ά ' + Θ ε (2.16) 

These equations show the function of the model parameters that each variance and 
covariance of the observed variables equals according to the model specification. The 
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equations are sufficiently general that we can find the implied covariance matrix for 
any SEM. We just substitute the specific matrices for a particular model into these 
expressions. 

These implied moment matrices imply two hypotheses that should be true if the 
model is valid: 

μ = μ(θ) (2.17) 

Σ = Σ(0) (2.18) 

This means that if the model holds, we should be able to exactly reproduce the means, 
variances, and covariances using the population parameter values of the model. This 
means that there should be an exact match between the population means, variances, 
and covariances and those implied by the parameters in the model. An alternative 
interpretation represents these hypotheses as (Bollen, 1989, p. 263) 

μ-μ(θ) = 0 (2.19) 

Σ - Σ(0) = 0 (2.20) 

In other words, the observed variables' mean vector and covariance matrix are pre-
dicted exactly by the implied means and implied covariance matrix, leaving zero 
residuals in the population when the model is valid. The implied moments are help-
ful in several aspects of SEMs. For one thing, they underlie the estimation process. 
For another, they help in assessing the fit of a model and possible respecifications. 
They are also important in aiding the researcher in assessing the identification of a 
model, the next step in modeling. 

2.1.2.3 Identification. For most distributions of observed variables, the means 
(μ) and covariance matrix (Σ) of the observed variables exist and are at least theoret-
ically available had we the population of cases. In the population, μ and Σ typically 
have unique values. The existence of these unique values means that μ and Σ are 
identified. A key question in SEMs is whether the parameters in 0 are uniquely de-
terminable using only information from μ and Σ. If so, the model is identified. If 
not, the model is underidentified. More specifically, if we can solve uniquely for all 
parameters in 0, writing each element in the vector as a unique function of the ele-
ments of μ and Σ , then 0 is identified. If it is not possible for one or more parameters 
to have a unique solution, those parameters and the model in which they appear are 
underidentified. In small models or when focusing only on parts of a model, it is 
sometimes possible to use algebraic derivations to solve the equations of μ = μ(θ) 
and Σ = Σ(0) for elements of 0 so that these elements are unique functions of the 
means, variances, or covariances of the observed variables. However, in large, com-
plex models these algebraic manipulations become unwieldy. Fortunately, there are 
rules of identification which easier to apply that enable us to detect when parameters 
of 0 have no unique solution. These rules exist for simultaneous equation models 
(e.g., Wooldridge, 2002), confirmatory factor analysis (e.g., Davis, 1993), and the 
general SEM model (e.g., Bollen, 1989, pp. 328-333). Although these rules are use-
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ful, no one of them covers all possible SEMs. As a result, researchers often turn to 
empirical tests of identification. These are tests of local (not global) identification 
and are available in most SEM statistical software packages. Their main drawback is 
that they assess local identification so that it is possible for a model to be identified 
locally, but not globally. In practice, the empirical tests work most of the time, but not 
all of the time in detecting underidentified models. The parameters in an identified 
model are ready to estimate. 

2.1.2.4 Model Estimation. Using sample information, we can estimate the val-
ues of Θ. The two main classes of estimators are the full-information and the limited-
information estimators. Full-information estimators are by far the most typically 
employed, so we look at these first. 

The full-information maximum likelihood (ML) estimator is the default estimator 
in most SEM software. The fitting function that implements it is 

FML = l n |E (6>) | - l n |S |+ t r [E - 1 (Ö)S ' ] -P z + (z-M(6>))'E-1(e>)(z-/x(Ö)) 
(2.21) 

where S is the sample covariance matrix, z is the vector of the sample means of 
the observed variables (y and x stacked in a vector), Pz is the number of observed 
variables, "In" is the natural log, | · | is the determinant, and "tr" is the trace 
of a matrix. The ML estimator, Θ, is chosen so as to minimize FML- This is 
a full-information estimator in that all parameters from all equations are estimated 
simultaneously. Furthermore, the value of each parameter has an impact on the fitting 
function, so that information from the system as a whole enters the estimation. 

As a ML estimator, Θ has several desirable properties. It is consistent, asymp-
totic unbiased, asymptotic efficient, has asymptotically normal distribution, and its 
asymptotic covariance matrix is the inverse of the expected information matrix. The 
oldest justification for the ML estimator was that all observed variables come from a 
multinormal distribution. However, Browne (1984) showed that if the variables have 
no excess multivariate kurtosis, the ML properties continued to hold even if there 
were multivariate skewness. Other studies have revealed conditions under which the 
ML estimator remains robust even when there is excess multivariate kurtosis (see, 
e.g., Satorra, 1990). In addition, if a model has exogenous x variables as in equation 
(2.11), the distributional assumption for proper asymptotic significance tests is that 
the disturbance (ζ) comes from a multivariate normal distribution (Jöreskog, 1973). 
In the event that none of the preceding conditions holds, a researcher has the option of 
using asymptotic significance tests that take account of excess kurtosis (e.g., Arminger 
& Shoenberg, 1989; Satorra & Bentler, 1994) or making use of bootstrapping tech-
niques (e.g., Bollen & Stine, 1990, 1993). The implication is that the distribution 
of the observed variables does not affect the consistency of the estimator (Browne, 
1984) and there are alternatives for calculating significance tests. 

On the other hand, structural misspecification of a model is a problem, particu-
larly with full-information estimators, in that an error in one part of the system can 
propagate its effects through the correctly specified parts of the model. Given the 
pervasiveness of structural misspecifications of at least some part of a model, this 
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tendency is a disadvantage of full-information estimators. Limited-information 
estimators are not immune to this problem, but are less susceptible to it. These 
estimators have an equation-by-equation orientation. Madansky (1964), Hägglund 
(1982), and Jöreskog (1983) did work on developing limited-information estimators 
in factor analysis with uncorrelated uniqueness components. Bollen (1996,2001) has 
developed an estimator from the two-stage least squares (2SLS) family that applies 
to factor analysis and to the full latent variable SEMs, including those with correlated 
unique factors or errors. Bollen's approach depends on using a scaling indicator for 
each ηί, such that yi¿ = ÍJ¿ + 6i where yi i is the vector of scaling indicators and 
Vi = y i i — e¿· Similarly, x x i = ^ -f ¿¿ leads to ^ — xi¿ — <S¿. When ηί is 
replaced by (yi¿ — e^) and £¿ is replaced by (xj¿ — á¿) in the latent variable model 
and the measurement model, the SEM becomes 

yi i = Οίη + By1 ¿ + Γ χ ϋ + ei¿ - Bei» - Γδα + C¿ (2.22) 

Y2i = a>y2 + A y 2 y i i - Ay2ei¿ + e2¿ (2.23) 

X2i = "x 2 + A X 2 X I Í - Λχ2<5Η + <52¿ (2.24) 

where y2j and x2¿ are the nonscaling observed variables. Through substitution the 
latent variables are removed and replaced by observed variables and composite distur-
bances. Individual equations in this model appear as regression equations. However, 
using ordinary least squares (OLS) regression is in general not an option since parts 
of the composite disturbances are correlated with one or more explanatory variables. 
This correlation renders OLS an inconsistent estimator. To circumvent this prob-
lem, the 2SLS estimator (Bollen, 1996) makes use of instrumental variables (IVs) 
that are selected for each equation. IVs are observed variables from the model that 
are uncorrelated with the composite disturbance of an equation and that correlate 
with the problematic variables on the right-hand side of a given equation. The IVs 
in this approach are model-implied instrumental variables in that according to the 
model structure these variables should satisfy the conditions of an IV for the equa-
tion. Bollen & Bauer (2004) describe an algorithm that researchers can use to find 
the model-implied IVs among the observed variables for a given model structure. 
Formulas for the 2SLS estimator are in Bollen (1996, 2001), and common statistical 
packages such as SAS, Stata, or SPSS have procedures that can be adapted for this 
estimator for latent variable models. The resulting estimator of the coefficients is con-
sistent, asymptotically unbiased, asymptotically normally distributed, asymptotically 
efficient among limited-information estimators, and has an asymptotic covariance 
matrix from which standard errors are available for significance testing. 

The ML and the 2SLS described above are for continuous variables. There are 
other estimators for noncontinuous variables that we describe in Section 2.4. 

2.1.2.5 Model Fit. After estimation of the model, our attention turns toward as-
sessing its adequacy in describing the data. In SEM, researchers draw a distinction 
between overall fit and component fit. Considering overall fit first, a key measure 
is a chi-square test statistic that is based on a likelihood ratio test that compares the 
hypothesized model to a hypothetical saturated model that has as many parameters to 
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estimate as there are variances, covariances, and means of the observed variables. The 
null hypothesis of this likelihood ratio test is Ho : μ = μ(θ) & Σ = Σ(ο) . This 
corresponds to the implied moment hypotheses described earlier. The test statistic is 
TML = (N - 1)FML and it has degrees of freedom df = \PZ{PZ + 3) - t , 
where Pz is the number of observed variables and t is the number of free parameters 
estimated in the model. A statistically significant chi-square test statistic rejects the 
null hypothesis, which suggests that the model is not correct. However, high statisti-
cal power, typical in large samples, often leads to rejection of the null hypothesis even 
for trivial departures from the null hypothesis. Because of this a wide variety of alter-
native overall fit measures are available ranging from Bayesian information criterion 
(BIC) to a root mean squared error of approximation (RMSEA). [See Bollen and Long 
(1993) and Hu and Bentler (1999) for more details.] Controversy surrounds the best 
measures to use. However, good practice suggests reporting the chi-square test statis-
tic along with its degrees of freedom, p-value, and several other overall fit measures 
to help in the assessment of model fit. The 2SLS estimator has equation-by-equations 
tests on the suitability of IVs for an equation (Bollen, 1996). 

Good overall model fit is a necessary but not sufficient condition for model ade-
quacy. Some models exhibit very good overall fit but lack fit for pieces of the model. 
For instance, coefficients might have signs different than expected, parameter esti-
mates might not be statistically significant as predicted, or improper solutions such as 
negative variances or correlations greater than 1 might be present. Not infrequently, 
a researcher finds either the overall or component fit to be inadequate. In this case, 
the researcher often moves toward a change in specification of the model. 

2.1.2.6 RespecH'¡cation. When the original model is judged to be inadequate, 
researchers often attempt to change the model structure to improve model fit. The 
source of the revisions range from carefully considered revisions based on substan-
tive expertise on the plausibility of alternative structures to purely empirical search 
procedures that seek to make changes that will result in the greatest drop of the chi-
square test statistic. Empirically based modifications of the model structure include 
the examination of covariance residuals, setting nonsignificant parameter estimates to 
zero (or null hypothesis value), and Lagrangian multiplier tests. The latter, also called 
modification indices, give the expected decrease in the chi square test statistic when 
a restriction on a constrained parameter is lifted. Each of these empirical approaches 
to modification is subject to abuse and to generating misleading results. Hence, the 
models derived in this fashion must be regarded with caution and, ideally, should be 
applied to new data to determine whether they replicate. 

2.1.2.7 Summary Of Steps. In the preceding subsections, we sketched out the 
steps involved in modeling with SEMs. Although the SEMs cover a large variety 
and types of models, these steps are applicable in all cases. An intriguing part of the 
incorporation of additional models into SEMs is that we can follow these steps and gain 
new insight into the data that is not available in the usual way that researchers approach 
these models. For instance, the model fit procedures in SEM can reveal problems or 
desirable aspects of model fit that are not regularly shown in other implementations. 
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In the next few sections we present some of the more recent models to be incorporated 
into SEMs. 

2.2 MULTILEVEL SEM 

Recent decades have seen an increase in the development and application of multi-
level models in the social and behavioral sciences (also known as hierarchical linear 
models, mixed-effects models, variance components models, and random coefficients 
models). Indeed, in the social and behavioral sciences, these models have become 
the standard method for analyzing data collected from two or more levels of sampling 
(e.g., clustered data or longitudinal data). A drawback of these models, however, is 
that they are (typically) designed only for observed variables, and hence the results 
can be biased by errors of measurement. To overcome this limitation, much work has 
been done to integrate multilevel modeling with SEM. In this section we discuss two 
general approaches to multilevel SEM. We refer to the first approach as the between-
and-within specification and the second approach as the random-effects-as-factors 
specification. We first present each specification approach and then close this section 
with a summary and comparison of the two approaches. 

2.2.1 The Between-and-Within Specification 

The between-and-within approach to multilevel SEM can be traced to Goldstein and 
McDonald (1988) and McDonald and Goldstein (1989), with important contributions 
from Muthén (1989, 1994), Lee (1990), Muthén and Satorra (1995), Lee and Poon 
(1998), Bentler and Liang (2003), and Liang and Bender (2004), among others. Here 
we provide a brief summary of this approach to multilevel SEM. 

With two-level data, such as individuals nested within groups, the observed score 
for an individual-level variable y can be decomposed into two parts as follows: 

y9i = ug + rgi (2.25) 

where i and g index individual and group, respectively, ug corresponds to the group 
mean, and rg¿ corresponds to the individual's deviation from the group mean. Here 
we shall assume that the observed sample of groups has been randomly selected 
from a population of groups, and that individuals have been randomly selected within 
groups. As is typical for these models, we will assume that ug ~ Ν(μ,σ^), 
Tgi ~ ΛΓ(0, σ ^ ) , and COV(zxg,rg¿) = 0. Here, σ ^ represents the between-
groups variance and σ^ represents the within-groups variance. 

Extending to a multivariate model, we may now consider sets of individual-level 
observations ygi and xg¿. Generalizing equation (2.25), we will then have the fol-
lowing: 

= u g + r g i (2.26) 
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where u s ~ iV(/x, Σ Β ) , and rs¿ ~ Ν(0,Έγν). Further, group-level character-
istics may also have been measured, designated as zg. These measures contain no 
within-groups variability, but they do contain between-groups variability and may thus 
be correlated with the between-groups component of yg¿ and xg¿. To capture these 
relations, we augment the between-groups covariance matrix following the notation 
of Liang and Bentler (2004): 

V 
. U 9 . 

= 
Σ ζ ζ Σ ζ ϊ / 

Σ ^ ζ Σ β 

Like the single-level SEM, the μ, Σντ , and Σ β matrices can be parameterized 
similarly to equations (2.12) and (2.13), with the exception that there is a unique 
equation for each matrix. Hence, the parameter matrices must be subscripted by B 
or W to indicate whether Σ Β or Έ\γ is the referent. This implies that the parameter 
values, and even the model structure, may differ at the two levels of the model. The 
same modeling steps outlined for single-level SEMs are thus relevant for these models 
as well with the caveat that one must specify both a within-groups and a between-
groups model. Additionally, it is sometimes of interest to evaluate whether the model 
structure at the two levels is similar by constraining the values of some parameters 
in the between-groups model to equal the corresponding values in the within-groups 
model. 

The value of separating within- and between-group effects, long recognized in 
multilevel modeling, is that one can simultaneously evaluate contextual and individual 
effects. These effects would otherwise be confounded, leading to the well-known 
errors of inference known as Simpson's paradox and the ecological fallacy. These 
errors are avoided in multilevel models by partitioning the effects of predictors into 
their between- and within-group components. In multilevel SEM this is reflected 
in different estimates for ΓΒ and T\y (or other parameter matrices). Relative to 
conventional multilevel models, however, the key advantage of multilevel SEM is 
that biases due to measurement error are avoided by estimating these effects for latent 
predictors and latent outcomes. 

Similarly, the factor loadings and even the factor structure can be specified dif-
ferently for the within- and between-groups levels of the model. The multilevel 
confirmatory factor analysis model provides a useful example. We can write this 
model as 

x9¿ = u 9 + Tgi (2.28) 

where both the between-groups and within-groups variability in the observed mea-
sures are assumed to follow a common factor structure: 

ug = ax + AB£Bg + SBg (2.29) 

Tgi = A W £ W g i + 6Wgi (2.30) 

Equation (2.29) indicates that the group means are related to the group-level factors 
£Bg through the factor loading matrix AB. In contrast, equation (2.30) indicates that 
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within-group differences in the values of the indicators are due largely to the influence 
of the individual-level factors £wgi> transmitted through the loading matrix Λ ^ . 
Note that these equations imply that 

Σ Β ( 0 Β ) = Λ Β Φ Β Λ ' Β + Θ Β (2.31) 

T¡w(ew) = ΛΜΛΦΗΛΛ'^ + &w (2.32) 

By substituting equations (2.29) and (2.30) into equation (2.28), we can also write 
the model as 

Xgi = OLx + A B £ B g + SBg + ^wiwgi + $Wgi (2.33) 

which corresponds to the expression given by Muthén (1994) and Muthén and Satorra 
(1989). If we assume that the factor loading matrices are invariant across the two 
levels of the model (i.e., Λ Β = Α ψ = Λ) and that there are no between-group 
residuals (i.e., <5Bg = 0), we can simplify this model to be 

Xgi = otx + Λ (£ B g + £Wgi) + 6Wgi (2.34) 

This simplified model, referred to by Skrondal and Rabe-Hesketh (2004) as a variance 
components factor model, has an appealing interpretation. For this model, £ B g and 
£.Wgi represent between-groups and within-groups variability in the same factors. 
The total variances (and covariances) of the latent factors are then partitioned into 
between- and within-groups components through the estimation of Φ Β and Φγν-
This decomposition permits one to determine how much variability in a latent factor 
is due to group differences versus individual differences within groups: for instance, 
by calculating an intraclass correlation for the factor. Finally, the assumption that 
öBg — 0 is motivated by viewing variability other than that due to ξ to be purely 
measurement error. Such random measurement errors should not produce systematic 
differences among groups. Alternatively, if one takes a more traditional psychometric 
stance that variability not explained by £ includes not just measurement error but also 
true score variability due to factors specific to each indicator, the assumption that 
öBg = 0 is rather strong. Specifically, it requires that only the means of the common 
factors ζ differ across groups, not the means of the specific factors. 

2.2.2 Random Effects as Factors Specification 

The second approach to multilevel modeling in SEM explicitly specifies the random 
effects in the model to be latent factors. Using factor analysis to fit growth curves to 
longitudinal data has a long history (see Bollen, 2007). However, Meredith and Tisak 
(1984, 1990) were the first to show how confirmatory factor analysis might fulfill this 
purpose. This approach was developed initially by Meredith and Tisak (1984, 1990) 
to fit growth curves to longitudinal data. Later, Rovine and Molenaar (2000, 2001) 
recognized that this approach to fitting random coefficient growth models could also 
be used to fit other kinds of multilevel models. Bauer (2003), Curran (2003), and 
Mehta and Neale (2005) completed this generalization by drawing on new methods of 
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estimation for SEM. In what follows, we present this approach by first discussing the 
general form of the linear mixed model (of which multilevel models are a subclass) 
and then showing its relation to SEM. 

Fundamental to this approach to multilevel modeling in SEM is the recognition 
that the moment structure implied by the linear mixed model is remarkably similar 
to the moment structure implied by a CFA. Specifically, the linear mixed model can 
be written as 

y s = X9/3 + ZgUg + r-g (2.35) 

where yg is a vector of observations on a single variable y for the ng individuals 
within group g, β a vector of fixed effects corresponding to predictors in the design 
matrix X g , ug a vector of random effects corresponding to predictors in the design 
matrix Zg, and rg the residuals for the individual observations in group g. Under the 
usual assumptions that ug ~ iV(0, Σ „ ) , rg ~ Ν(0, Σ Γ 9 ) , and that u 3 and rg are 
uncorrelated, the mean vector and covariance matrix for yg are implied to be 

μ9 = X9/3 (2.36) 

Σ 9 = Z g E u Z ; + Er f l (2.37) 

In comparison, let us consider a simple confirmatory factor model for the indicators 
y¿. The model equation is 

Yi — a.y + AyTji + ei (2.38) 

and the implied moment structure for y¿ is then 

μ(θ) = ay + ΑυμΌ (2.39) 

Σ(0) = Λ^ΦΛ; + Θ£ (2.40) 

where μη is the vector of means of η. The mixed-effects model can then be parame-
terized via a CFA by the following. First, treat the observed values within groups as 
distinct indicator variables, so that the vector y¿ is composed of these observations. 
For example, if the maximum number of observations per group is five then five in-
dicator variables would be defined in the vector y¿ (where i now indexes group) and 
any groups with fewer than five observations would have the extra indicators coded 
as missing. Second, impose the constraint ay = 0, as no corresponding term is 
found in the mixed model equation. Third, define latent variables ηί to correspond to 
the random effects u 9 and fix the values of the factor loading matrix Ay to equal the 
values of the observed values of the predictors in the design matrix Zg. Given this 
substitution, Φ becomes the covariance matrix of the random effects, taking the place 
of Σ,ι in the mixed model. The covariance matrix Θ€ also replaces Σ Γ 9 from the 
mixed model and can be structured in a variety of ways. Finally, the factor means μν 

replace the fixed effects β for any predictors included in X g that are also included in 
Zg (i.e., that have both fixed and random effects). Any other fixed effects can be in-
cluded either by specifying additional latent factors with zero variances but estimated 
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means (where the additional factor loadings are defined by the values from Xg) or by 
incorporating the predictors as exogenous x variables, as discussed by Rovine and 
Molenaar (2000, 2001) and Bauer (2003). 

Originally, only a few specific types of multilevel models could be fit as SEMs 
using this formulation. The limitations were, first, that each vector y¿ should be 
of the same length so that a single mean vector and covariance matrix could serve 
as sufficient statistics for the ML estimator in equation (2.21) and, second, that the 
design matrix for the random effects, Zg, should be identical over groups so that it 
could be specified via the factor loading matrix Ay. It is unsurprising, then, that the 
earliest applications of multilevel models as SEMs were growth models (or latent 
curve models) in which each individual had been observed on the same assessment 
schedule. As an example, let us consider a simple linear growth model for four 
observations on variable y taken at equal intervals. The measurement model for this 
example would be 
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Here the factor loading matrix consists of a column of ones and a column of time 
scores, mimicking the design matrix that might be used in a multilevel growth model. 
Similarly, the latent factors, r\\i and r}-¿i, correspond to the intercepts and slopes of 
the individual trajectories. In comparison to a mixed-model formulation, the factor 
means for T/I¿ and η2ί will equal the fixed effects for the intercept and time, and 
their covariance matrix will equal the covariance matrix of the random intercept 
and time effects. Finally, the covariance matrix of the residuals can be structured 
similar to a multilevel growth model (e.g., 0 e = σ 2 Ι to impose independence and 
homoscedasticity). Specified correctly, there is thus a one-to-one mapping of the 
parameters of this linear latent curve model and a multilevel linear growth model 
(Willett & Sayer, 1994). 

More recently, two advances in the estimation of SEMs have allowed for the incor-
poration of a much wider array of multilevel models. First, the maximum likelihood 
fitting function (2.21), which had previously been specified in terms of the means 
and covariance matrix, was rewritten in terms of the individual data vectors (Wothke, 
2001): 

N 

FDML = ] r [ P i l o g ( 2 7 r ) + log |Σ«(0)| 

+ (y¿ - M i ( Ö ) ) ' S i ( ö ) - 1 ( y i - M i (0))] (2.42) 

The subscripting of S¿ (Θ) and μί (Θ) by i was critical to allow for partially missing 
data in the conventional SEM. Specifically, S¿(0) and μ^θ) could be composed of 
the rows and columns of Σ(#) and μ(θ) that corresponded to the present observations 
in y i, and thus could differ across units. For the multilevel SEM, this move to a direct 
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maximum likelihood fitting function allows for vectors of observations that differ in 
length across groups (i.e., unbalanced data). 

By reformulating the likelihood in terms of S¿(0) and μ^θ), it also became 
possible to allow the factor loading matrices to differ across units. For multilevel 
SEM, this meant that the core CFA model could be generalized to 

y i = Oíy + Aj/i?7i + e¿ 

with implied moment structure 
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Σί(0) = Α ^ Φ Α ^ + &e y% 

(2.43) 
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The fixed values in Ay¿ could then differ across groups to accommodate heteroge-
neous design matrices, as first noted by Neale, Boker, Xie, and Maes (1999). This 
second advance opened the way for almost all multilevel models to be estimated as 
SEMs. 

As an example, suppose that students are sampled from multiple schools and their 
language proficiency and verbal IQ are measured (as in Snijders & Bosker, 1999). 
The model holds that verbal IQ predicts language proficiency. Additionally, both 
overall levels of language proficiency and the relation of IQ to language proficiency 
are hypothesized to vary across schools (i.e., there is both a random intercept and 
slope). This model can be formulated as 
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where rjn and T/2¿ are the random effects. Notice that this model accommodates both 
different numbers of students sampled per school (reflected in the different length of 
the vectors and matrices) as well as the fact that different IQ scores are observed for 
students in different schools. The variable IQ is referred to by Neale et al. (1999) as 
a definition variable, as it is used to define the values of the factor loadings. 

Given these computational advances, there are few multilevel models that cannot 
also be estimated as SEMs (cross-classified models a rare example). More important, 
by embedding mulilevel models within SEMs, many more modeling possibilities 
are available. For instance, a measurement model can be specified for the outcome 
variable (giving the model a form similar to a higher-order factor model) or for 
predictors without random slopes, eliminating sources of measurement error. Models 
including both direct and indirect effects of predictors can also be estimated with 
relative ease. Model specification, identification, estimation, and fit are identical to 
the single-level SEM when a homogeneous factor loading matrix can be specified. 
If the factor loading matrix differs by group according to definition variables, the 
usual test of overall model fit is often no longer applicable. Bauer (2003) and Curran 
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(2003) provide additional details on these issues and also discuss other extensions of 
the model. 

2.2.3 Summary and Comparison 

The two approaches to estimating multilevel SEMs continue to coexist because each 
offers distinct advantages in certain circumstances. The between-and-within specifi-
cation assumes that there are two levels of data and that there are no random slopes 
in the model. Given those restrictions, it is most useful for applications involving 
cross-sectional data. It allows for a wide variety of model structures and it facilitates 
the evaluation of within- versus between-group effects. The random effects as factors 
specification is the standard method for modeling longitudinal data (i.e., latent curve 
models) and it is useful for any multilevel model that includes a random slope for 
an observed predictor. Like the between-and-within specification, it allows for the 
incorporation of measurement models for the outcomes and certain predictors, but it 
does not easily allow for different within- and between-group factor structures. Both 
approaches, however, are superior to incorporating no measurement model at all, the 
standard practice in multilevel modeling. In some situations, the two multilevel SEM 
specification approaches can be combined. For instance, given longitudinal measures 
on individuals within groups, the random effects as factors specification can be used 
to parameterize a growth model and then this can be combined with the between-
and-within specification to account for the clustering of individuals within groups 
(e.g., Muthén, 1997). In sum, there are few remaining limitations to using structural 
equation models with multilevel data. 

2.3 STRUCTURAL EQUATION MIXTURE MODELS 

Latent variable models have traditionally been distinguished by two basic charac-
teristics: whether the observed variables are continuous or discrete and whether the 
latent variables are continuous or discrete (Bartholomew, 1987; Lazarsfeld & Henry, 
1968). Crossing these two characteristics results in four types of models. Tradition-
ally, factor analysis and structural equation modeling required continuous measures 
and assumed that the latent variables (factors) were continuous. Rasch and item 
response theory models maintained the assumption of continuous latent variables 
(traits) but were designed for discrete outcomes. In contrast, latent profile and latent 
class analysis each assume that the latent variables (profiles or classes) are discrete. 
Latent profile analysis was developed as the continuous observed variable analog to 
latent class analysis, which required categorical observed variables. Over the years, 
these distinctions have blurred considerably. As we discuss in a subsequent section, 
methods for conducting factor analysis and structural equation modeling with dis-
crete outcomes have existed for many years and are closely related to item response 
theory models. In this section we discuss an extension for structural equation models 
(and factor analysis) that permits the estimation of both continuous latent factors and 
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discrete latent classes in the same model. We refer to this extension as a structural 
equation mixture model (SEMM). 

2.3.1 The Model 

Before indicating the model form, we must make a few preliminary distinctions. First, 
to simplify the notation, we reserve the vector x for exogenous observed predictors 
that are assumed to be measured without error (as in the exogenous x form of SEM 
discussed earlier). All other observed variables will be placed into the vector y (and 
hence all factors specified as endogenous). Second, although it is not necessary to 
assume that y is normally distributed in a standard SEM, we will do so here because 
this assumption will be crucial for the development of the SEMM. For simplicity, we 
first consider a model without exogenous predictors and then transition to a model 
with exogenous predictors. 

If y is normally distributed, the probability density function (pdf) for y implied 
by a standard SEM is 

Φ{Υί',θ) = ( 2 π ) ^ 2 ί ( 0 ) | ΐ / 2 Θ Χ Ρ Η [y¿ " μ{θ)]'Έ{θ)~Χ [y¿ - μ{θ)]] 
(2.47) 

where p is the number of variables in y and μ(θ) and Σ(0) are the model-implied 
mean vector and covariance matrix of the SEM specified. But suppose that the 
population is actually composed of a finite number of latent classes. Each latent class 
is characterized by its own multivariate normal distribution, with moments structured 
according to a SEM. Across classes, the parameters characterizing the SEM may 
differ, or entirely different model structures may be present. The overall distribution 
of y is then a mixture of the component distributions of these latent classes. The pdf 
for the mixture is 

/ ( y i 5 π , Θ) = ¿ π™φ™ (y tí ö(fc)) (2.48) 
fc=l 

where fc = 1,2,... ,K indexes the latent class and 7r̂ fe^ represents the mixing 
probability, or proportion of the population that belongs to class k (not to be confused 
with the mathematical constant π = 3.1416 . . . in equation (2.47), 5Zfe=1 ^

k^ — 
l , W = [ ir<1>,7r<a>,...7r<K-1>]'and0 = [ 0 ( 1 ) , 0 ( 2 ) , . . . , 0 ( K ) ] ' . The mean 
and covariance structure of the normal density function φ^ are given by the SEM 
equations 

μ(*)(0<«Ο) = α(*) + Α ^ ) ( Ι - Β^)-χμ^ (2.49) 

S ( fe)(0 ( fc)) = A(
y
k)(I - B ( f e ) ) - 1 * ( f e ) ( I - B ^ ' J - ^ A ^ ' + 0<fc) (2.50) 

Here the (fe) superscript is used to indicate that the model parameters and structure 
may differ over classes. This model was first considered by Bláfield (1980), with 
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important subsequent developments due to Yung (1997), Jedidi, Jagpal, and Desarbo 
(1997a,b), and Dolan and van der Maas (1998). The primary focus of these papers was 
on identifying unobserved population heterogeneity in the parameters of a common 
structural model (i.e., a model with similar form across classes). In practice, it is 
common to assume that both the model structure and many of the parameter values 
are identical across classes. 

Because the SEMM formulated above stipulates that the distribution of y is mixture 
of normal distributions, this implies that all of the observed y variables are contin-
uous. Dummy-coded exogenous predictors such as race, religion, or gender, then 
present some difficulty for the model. Realizing this, Arminger and Stein (1997) 
and Arminger, Stein, and Wittenberg (1999) formulated a conditional version of the 
model that would allow for the inclusion of exogenous observed covariates of any 
type. This conditional SEMM may be written 

K 

/ ( y i 5 π , Θ, X i ) = ] Γ π<*></><*> ( y i ; 0(fc), x¿) (2.51) 
fc=l 

where the mean vector and covariance matrix of the normal density function φ^ are 
given by the equations 

μ < * V f e \ x i ) = < > + A W ( I - B W ) " 1 ( « W + r W X i ) (2.52) 

E(fc)(0(fc)jX.) = A<*'(I - Β ^ ) - 1 * ' " ' ? - Β ^ ) - 1 ' ^ ) ' + 0 f » 
'(2.53) 

This model has the dual advantages that no specific distribution is assumed for 
the x variables, permitting the incorporation of dummy-coded categorical predictors, 
and that the assumption of within-class normality for y is relaxed to within-class 
conditional normality. 

A final contribution to the SEMM was made by Muthén and Shedden (1999) and 
Muthén (2001), who incorporated a multinomial regression model for the latent class 
probabilities to permit the prediction of class membership. This extension of the 
model replaces the term π ^ ^ in equation (2.51) with 

-(fe) (*) = rp{aik)yi(k)'^, ^ 
EfcLi e xP [ach) + 7Ífe)'x¿) 

where the coefficients for the last class (the reference category) are fixed to zero for 
identification purposes (i.e., a^,K^ = 0 and ■y(,K^ = 0). This then allows for the 
inclusion of predictors of class membership. 
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2.3.2 Estimation 

Maximum likelihood estimation via the EM algorithm is the most common method 
for fitting SEMMs. This method has an intuitive appeal: in the E step, posterior 
probabilities of class membership are estimated for each case; in the M step, these 
probabilities serve as case weights for the class-specific likelihoods. Despite this, 
several limitations of maximum likelihood bear mentioning. The first limitation is 
that the number of latent classes K cannot be estimated although it is rarely known in 
advance. As such, common practice is to estimate SEMMs with different values for K 
and then compare model fit statistics to determine the model with the optimal number 
of latent classes. This then leads to a second limitation: the likelihood ratio statistic 
for two models differing by one latent class is not distributed as a chi-square (setting 
a mixing proportion to zero represents a constraint to a boundary value, violating 
one of the regularity conditions of the usual likelihood ratio test). An alternative test 
distribution derived by Lo, Mendell, and Rubin (2001) for simpler normal mixtures 
has been applied to SEMMs by Muthén (2003), as has the bootstrapping approach of 
McLachlan (1987). Despite these developments, however, many practitioners rely on 
comparisons of information criteria such as the BIC. Finally, a third limitation of ML 
estimation is that the likelihood surface for finite normal mixture models is known to 
be irregular, riddled with singularities and local solutions. Although the estimation 
of SEMMs may benefit from the structure imposed on the component distributions, 
Hipp and Bauer (2006) found that local solutions remain a significant problem. 

Relative to ML estimation, Bayesian methods, such as those explored by Zhu and 
Lee (2001), may offer some advantages. For instance, using a Bayesian approach, 
it is possible to estimate the number of latent classes directly. Bayesian estimation 
of SEMMs is, however, nontrivial, and involves a number of other difficulties that 
must be addressed (such as label switching, when two classes switch identity during 
estimation). 

2.3.3 Sensitivity to Assumptions 

By incorporating both discrete and continuous latent variables into the same model, 
SEMMs provide an incredibly flexible means to fit multivariate data. This flexibility 
is what makes it possible to examine population heterogeneity in mean and covariance 
structures. For instance, Jedidi et al. (1997a,b) provides an example evaluating how 
latent variables representing product features (i.e., cost, quality, promotion, etc.) 
differentially affected product satisfaction over latent classes representing response-
based (rather than predefined) market segments. Similarly, Muthén (2001) provides 
two examples of mixtures of latent curve models, which he calls growth mixture 
models. In one example, the latent classes define groups of individuals following 
different trajectories of change in math achievement. In the other, they represent 
distinct trajectories of heavy alcohol use through time. In each of these examples, 
the latent classes are interpreted to represent qualitatively distinct subgroups of the 
population. 



STRUCTURAL EQUATION MIXTURE MODELS 57 

The increased flexibility of the SEMM, however, also brings new sensitivities to 
model assumptions. First, in contrast to the robustness of the conventional SEM, 
Bauer and Curran (2003, 2004) demonstrated that distributional assumptions are 
critical for estimating SEMMs. The SEMM requires that the observed indicators 
in y be distributed as a mixture of (conditional) normal distributions. In addition 
to implying that each indicator is continuous, this also implies that their aggregate 
distribution is non-normal. Simply put, if y was normally distributed, there would be 
no need for more than one normal component distribution to describe the data and the 
latent classes would be unnecessary. Indeed, if one fits a properly specified model to 
data generated from a normal distribution, the extension of the model to include two 
latent classes often results in a degenerate solution in which one class is estimated 
to have zero members. Thus, for properly specified SEMMs, nonnormality of the 
y |x distribution is critical for the identification of the latent classes. Unfortunately, 
however, nonnormality may arise from sources other than the mixture of subgroups. 
It may reflect ceilings or floors in the measures, the use of ordinal or count data, 
or simply a skewed distribution in a homogeneous population. The SEMM cannot 
readily distinguish between these possibilities and will estimate latent classes any time 
the y |x distribution is nonnormal. Moreover, because the addition of latent classes 
will allow the model to better approximate the nonnormal distribution of the observed 
data, model fit comparisons will typically point to the presence of two or more latent 
classes. Thus, in any given application, the latent classes may represent distinct 
population subgroups, as desired, or they may instead reflect simple nonnormality in 
a homogeneous population. 

Other than approximating nonnormality, Bauer ad Curran (2004) noted that an-
other possible function of the latent classes in an SEMM could be to accommodate 
misspecifications in the covariance structure specified. Considering the case of an 
SEMM without exogenous predictors, Bauer and Curran (2004) noted that the co-
variance matrix of the observed data, aggregated over classes, could be computed by 
the equation 

fC FC 

Σ(π,β) = E Σ 7r(fe>7r(0 [M(fe)(0(fc)) - Μ( 0(β( ί ) ) ] 
k=ll=k+l 

X [μ^(θ^) - μ Ο ^ Ο ) ) ] ' + Σ 7T(fc)S(fc>(0(fc>) (2.55) 
fc=l 

Of particular importance is the fact that the observed covari anees are partially ex-
plained by the mean differences between classes, the first term in this equation. As 
such, if an SEM is misspecified and fails to adequately reproduce the observed co-
variances, the addition of latent classes that differ in their model-implied means may 
result in better fit to the data. This is true even if the observed data are normally 
distributed and the population is homogeneous. 

Bauer and Curran (2004) also investigated the impact of nonlinear relationships 
on the estimation of SEMMs. Although there are now several methods for modeling 
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nonlinear effects among latent variables, most SEMs continue to include only linear 
effects. If nonlinear effects exist but are not modeled in the SEM, then extending the 
model to include latent classes will once again improve the fit of the model to the data 
even in the absence of a true mixture. In this case, the effect estimated within each 
class serves as a local linear approximation of the true nonlinear function. 

In summary, there are at least three instances in which latent classes can serve 
functions other than that for which they were intended. They may be estimated in the 
service of approximating nonnormal but homogeneous distributions, to accommodate 
misspecifications in the covariance structure of the model, or to recover, in piecewise 
fashion, unmodeled nonlinear effects. Given the great flexibility of the SEMM, it 
seems probable that the incorportation of latent classes could accommodate other 
types of misspecifications as well. Thus, although SEMMs offer many new and 
interesting modeling possibilities, one must take great care in fitting and interpreting 
these models. 

2.3.4 Direct and Indirect Applications 

In a monograph on finite mixture modeling, Titterington, Smith, and Makov (1985) 
make a useful distinction between direct and indirect applications of mixtures which 
is equally relevant for SEMMs. In direct applications, the motivation is to resolve 
a true mixture distribution into its component distributions. Goals of direct applica-
tions include identifying the correct number of component distributions, estimation 
and interpretation of the parameters of the component distributions, and assignment 
of observations to the correct component. Examples of direct applications include in-
stances in which the observations are known or assumed to come from several groups, 
but group membership (and perhaps even the number of groups) is unknown. In con-
trast, indirect applications of finite mixture models use the components distributions 
to capture otherwise intractable features of the data. In this kind of application, the 
component distributions are a statistical expedience, and are not thought to have any 
particular meaning or interpretation. Examples of indirect applications include the 
use of mixture distributions to approximate irregularly shaped distributions. 

We have already discussed some of the potential problems with direct applications. 
Although a direct interpretation of the latent classes of an SEMM may be desired, it 
is entirely possible that the classes are actually serving one of several indirect func-
tions, such as the approximation of nonnormality, compensation for misspecification 
of the covariance structure, or the local approximation of nonlinear effects. Thus the 
assumption that the latent classes reflect true population subgroups is a strong one. 
Nevertheless, direct applications have been the primary interest of SEMM develop-
ers (see, e.g., Dolan & van der Maas, 1998). By contrast, in indirect applications, 
no inferences are made about population subgroups, and thus concerns about the 
interpretation of "spurious" latent classes do not apply. 

In a recent paper, Bauer (2005) explored two possible indirect applications of 
SEMMs. Noting that the latent classes of SEMMs may reflect nonlinearity, Bauer 
(2005) devised a method whereby the locally linear relationships estimated within 
classes could be aggregated across classes to produce a semiparametric estimate 
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of the true nonlinear function. Relative to other methods for estimating nonlinear 
effects in SEMs, the indirect application of the SEMM has two advantages. First, the 
functional form of the relationship need not be known in advance, and second, the 
distributions of the latent variables need not be normal. The latter advantage relates to 
the second indirect application explored by Bauer (2005): namely, the construction of 
semiparametric density estimates for latent variables. Because normal mixtures can 
approximate a wide variety of continuous distributions, the component distributions 
of the SEMM can be aggregated to construct plots of the latent variable distributions. 

2.3.5 Summary 

Structural equation mixture models represent the blending of traditional SEM with 
latent class analysis. This integration of continuous and discrete latent variable mod-
els has made possible many new types of applications. To date, the developers and 
users of SEMMs have been interested primarily in direct applications, wherein the 
estimated classes are thought to represent meaningful population subgroups. In draw-
ing this inference, however, one must be aware that the latent classes of the model 
can also serve several other roles. These other possible functions of the latent classes 
are exploited in indirect applications, which use the mixture distribution to accom-
modate otherwise intractable features of the data but do not involve inferences about 
population subgroups. In either case, there are a number of issues that arise in the 
fitting of these models that do not arise in the estimation of standard SEMs. These 
include selection of the appropriate number of classes and the preponderance of local 
solutions, topics of continuing methodological research. 

2.4 ITEM RESPONSE MODELS 

To this point we have considered only SEMs for continuous observed variables and 
have assumed that the relationships between these variables are linear. However, 
variables are often measured coarsely, on binary or ordinal scales, requiring some 
additional elaboration of the SEM model. In this section we describe SEM models 
for categorical variables and their close relationship to item response theory models. 

The CFA model presented in equation (2.10) assumes that a linear relationship 
exists between the measured variables and the latent factors. In order to estimate 
the parameters of this model using maximum likelihood (ML), it is also necessary to 
assume that the measured variables jointly follow a multivariate normal distribution, 
or at least that there is no excessive multivariate kurtosis (see Section 2.1.2.4 for a 
discussion of distributional assumptions). There are many occasions in the social 
sciences where one wishes to perform a CFA with measured variables that are cate-
gorical in nature. One such example is the factor analysis of items on questionnaires 
or scales. This kind of categorical CFA (CCFA), called item factor analysis in some 
fields, is perhaps one of the most popular uses for CFA. In order to use the CFA model 
appropriately when the observed data are categorical, two changes must be made to 
the typical ML-based CFA paradigm. 
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2.4.1 Categorical CFA 

The first change to the basic CFA model presented in equation (2.10) addresses the fact 
that the relationship between categorical measured variables and latent factors is not 
likely to be linear. The basic idea is captured when considering the reasons for moving 
from an OLS regression to something like logistic, or probit, regression. One way 
to overcome this difficulty in CFA, labeled the latent response variable approach by 
Muthén (1984), is to suppose that underlying the observed categorical response (x) is 
a latent response variable (x*) that is continuous and normally distributed. Although 
the CFA model in equation (2.10) does not hold for the observed categorical data, 
that is, 

Xi φ Λχξί + Si (2.56) 

it is possible that the model could hold for the latent response variable: 

x*i = A . Í Í + Si (2.57) 

The final necessary piece is some mechanism to describe how the x* 's were catego-
rized into the observed x 's. This is accomplished via a threshold model which posits 
that a given x* assumes the lowest possible category if it is less than some threshold, 
τ ϊ . If x* is greater than τ\, but less than r 2 , it assumes the second lowest category, 
and so on. If there are c categories, then c — 1 thresholds are necessary to accomplish 
the categorization. 

Another consequence of having categorical measured variables, as detailed in 
Bollen (1989, p. 434), is that the population covariance matrix of the observed data, 
Σ , will not be equal to the population covariance matrix of the latent response vari-
ables, Σ*. As the model outlined in equation (2.57) is focused on the latent response 
variables, it is this covariance matrix that we wish to estimate. Just as Pearson product 
moment correlations can be used as a measure of association when both variables in 
question are continuous, polychoric correlations can be used as a measure of associa-
tion when both variables are categorical. A special case of the polychoric correlation, 
when the two variables in question are dichotomous, is known as a tetrachoric cor-
relation. 

Building on earlier work by Chistoffersson (1975) and Muthén (1978), Olsson 
(1979) presented a ML method for computing polychoric correlations. Olsson notes 
that while it would be optimal to estimate all correlations and thresholds in one step, 
this proves to be computationally difficult. Rather than obtaining all estimates si-
multaneously, Olsson describes a two-step method that is still widely used today. 
In this two-step method, thresholds are obtained based on the univariate marginal 
distributions. By noting the proportions of respondents choosing each category, it is 
possible to use the inverse normal cumulative density function (cdf) to determine the 
appropriate threshold parameters (r 's) . As this is all done relative to the standard 
normal distribution, r parameters assume that metric. Once the thresholds have been 
estimated, Olsson's two-stage method computes each bivariate polychoric correlation 
separately, treating the thresholds as known values. This greatly reduces the compu-
tational burden to estimate polychoric correlations, but comes at some cost. Since 
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the correlation matrix is not estimated at a single step but, rather, is composed piece 
by piece, there is no guarantee that the resulting matrix will be positive definite. A 
matrix that is non-positive definite (NPD) cannot be a proper correlation matrix. 
Beyond this, NPD matrices can cause serious problems at later stages in the analysis 
(Wothke 1993). 

Once a researcher has obtained polychoric correlations, the hurdle of the linearity 
assumption in the original CFA model has been largely overcome. Unfortunately, 
we still must find some way to obtain estimates of the parameters of the model of 
interest. As mentioned above, the estimator of choice (ML) makes assumptions that 
are not likely to be satisfied when the data in question are categorical. 

2.4.2 CCFA Estimation 

While the introduction of Olsson's two-step method for the estimation of polychoric 
correlations allows one to reestablish the plausibility of a linear relationship (between 
the latent factors and the latent response variables), it does not have any effect on the 
joint distribution of the observed data. One way to overcome this difficulty is to move 
from ML to a different method of estimation that does not make as strict assump-
tions about the distribution of the measured variables. One popular choice has been 
weighted least squares (WLS), which has also been called asymptotic distribution free 
estimation (ADF; Browne, 1974). WLS makes much less demanding assumptions 
about the measured variables, requiring only that the "eighth order moments of the 
observed variables' distribution are finite" (Bollen, 1989, p. 426). The WLS fitting 
function can be written as 

FWLS = [s - a W l ' W - 1 [s - σ(θ)} (2.58) 

where s is a vectored version of S, <τ{θ) is a vectored version of Σ ( # ) , and W 
is a positive-definite weight matrix of appropriate rank. Most of the discussion in 
the literature involving WLS deals with nonnormal continuous measured variables or 
categorical variables. In fact, as described by Browne (1974), WLS is a very general 
estimator that has as special cases many of the estimators most often used in SEM. If 
W is based on the observed covariance matrix, the resulting estimator is generalized 
least squares (GLS). If the model-implied covariance matrix is used to construct the 
weight matrix, the ML estimator is obtained. To obtain unweighted least squares 
(ULS), one simply uses an identity matrix as the weight matrix. 

When the measured variables in question are categorical, the appropriate WLS fit 
function is 

FWLSO = [r - P W I ' W " 1 [r - ρ(θ)] (2.59) 

where the observed (s) and implied [σ(θ)] vectors of covariances have been re-
placed by observed (r) and implied [ρ(θ)] vectors of correlations. In this instance 
the observed correlations will be polychoric correlations. When using polychoric 
correlations, the appropriate weight matrix is the asymptotic covariance matrix of 
the polychoric correlations. This matrix contains the variances and covariances of 
the correlation estimates. The size of the asymptotic covariance matrix can cause 
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problems, even with relatively small numbers of items. It can be difficult to obtain 
reasonable estimates of the asymptotic covariance matrix in such cases and even 
more difficult to invert, as is required in equation (2.59). Building on the suggestion 
of Christoffersson (1975), a number of researchers have suggested using only the 
diagonal of the asymptotic covariance matrix as the weight matrix in equation (2.59). 
This strategy, called diagonally weighted least squares (DWLS) or robust weighted 
least squares, has proven very effective in practice (Flora & Curran, 2004). As dis-
cussed in Muthén, du Toit, and Spisic (in press) using the diagonal of the asymptotic 
covariance matrix as the weight matrix does create problems for computing standard 
errors and test statistics, as it is no longer the optimal weight matrix. Corrections, 
such as the one discussed by Satorra and Bentler (1994), can be applied that also have 
been shown to perform well (Flora & Curran, 2004). 

Although other methods exist for estimating the parameters of a CCFA model in 
the SEM context, the procedure outlined above is still the most widely used. For 
an overview of more recent advances in estimation for CCFA model parameters in 
an SEM framework see Jöreskog and Moustaki (2001), Skrondal and Rabe-Hesketh 
(2004) and Wirth and Edwards (2007). 

2.4.3 Item Response Theory 

Item response theory (IRT) is a collection of models that attempt to describe the 
process by which individuals respond to items. Unlike the development of CCFA 
described above, IRT was developed specifically to deal with categorical data. Two 
widely used IRT models, especially in fields outside education, are the two-parameter 
logistic model (2PL) and the graded response model (GRM; Samejima, 1969). The 
2PL model, which is used with dichotomous item responses, is typically written as 

P(xi = 1|0 = γ~ , n u , „ (2.60) 

where a,j is a slope parameter, bj a severity parameter, D a scaling constant, and £ 
represents the latent construct being measured. 3 As presented here, this is a unidi-
mensional model, meaning that one and only one latent construct is being measured. 
The scaling constant puts the parameters of this logistic model into the scale of the 
normal ogive model. This scaling parameter is something of a historical artifact but 
is still present in some of the more widely used IRT software packages. Many of 
the original developments in IRT used the normal ogive model, which is similar to 
probit regression. The logistic model, originally proposed by Birnbaum (1968), was 
adopted for its computational convenience and because the results matched those 
obtained from the more complex normal ogive model when the scaling constant (typ-
ically, 1.7) was used. The logistic form has been the dominant form in the IRT realm 

3 In the IRT literature Θ typically represents the latent variable instead of the ζ that we have shown here. 
Earlier in this chapter we used Θ to represent a model parameter in conformity with the notation typical in 
SEM. To avoid confusion we use ξ as the latent variable instead of the Θ. 
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since that time. The GRM, which is appropriate for ordered categories, is defined as 

1 1 
3 1 + exp[-a¿(£ - bjc)} 1 + exp[-a.,(£ - bjc+1)] 

(2.61) 
where all parameters are as defined previously. Unlike the 2PL model, which has 
only one severity parameter, the GRM has c — 1 severity parameters, where c is the 
number of response categories. 

The current standard estimation method for IRT model parameters is maximum 
marginal likelihood with an EM algorithm (MML/EM), which was developed by 
Bock and Aitkin (1981) building on earlier work by Bock and Lieberman (1970). 
This method of estimation is often referred to as a full-information estimator as it 
analyzes raw data rather than summary measures such as covariance or correlation 
matrices. Although this estimation method has its advantages, there are associated 
costs which will be discussed in a subsequent section. 

The astute reader will no doubt have noticed some similarities to the description 
of IRT just given and the discussion of SEM-based CCFA that preceded it. We now 
turn our attention to a more detailed discussion of the relationship between IRT and 
SEM-based CCFA. 

2.4.4 CCFA and IRT 

Relationships between IRT and one-factor CCFA models were noted early on (Lord 
& Novick, 1968) and proven formally for several cases (Takane & de Leeuw, 1987) 
almost two decades ago. The work by Takane and de Leeuw (1987) demonstrated the 
analytic links between the historical normal ogive version of the 2-parameter model 
and GRM with a one-factor SEM-based CFA using polychoric correlations. The fact 
that the polychoric correlations assume that the underlying response variables are 
normally distributed is one of the reasons that Takane and de Leeuw focused on the 
normal ogive, rather than logistic, forms of the two-parameter and graded response 
models. As noted by the authors ofthat work, the empirical results of the SEM-based 
CCFA should match those of the logistic IRT approach, to the extent that the scaling 
constant is successful at putting the IRT parameters back onto the normal metric. 

To convert factor loadings (A's) and thresholds (T 'S ) to slopes (a's) and severity 
parameters (b 's), one can use 

λ ■ τ · 
ο„· = 3 D and 6,- = — (2.62) 

-X] A, 

and to convert IRT-based parameters to SEM-based parameters use 

aj/D (0 j /J>)b3· 
λ7· = . and T,· = . (2.63) 3 y/1 + (aj/D)* 3 VI + (aj/Dy 



6 4 OVERVIEW OF STRUCTURAL EQUATION MODELS AND RECENT EXTENSIONS 

If the IRT parameters in question come from software that uses the scaling factor, it 
can be omitted from the equations above. Also, note that if there are more than two 
categories, each appearance of bj and T¿ should receive an additional subscripted c. 

The work of Takane and de Leeuw, along with the conversion equations they 
provided, make a strong case for the deeply routed methodological similarity of the 
SEM- and IRT-based approaches to CCFA. For the 2PL and GRM, as noted by Takane 
and de Leeuw, any differences in parameter estimates comes from the estimation 
method (and to a very small extent the scaling constant). However, as we will soon 
see, the impact of the method of estimation can be nontrivial. 

2.4.5 Advantages and Disadvantages 

Despite the overlap between the SEM and IRT approaches to CCFA, there are still 
advantages and disadvantages to each that may make one preferable to the other, de-
pending on the context. At the time of this writing, the SEM-based approach is clearly 
advantageous when dealing with multiple latent factors. Although in some instances, 
as when there is independent clustering, an IRT-based approach can still be used by 
treating each factor separately. However, this ignores the inter-factor correlations, 
which deprives the user of information and omits information that could be used in 
the estimation process. Although software exists to perform multidimensional IRT 
analyses using MML/EM (TESTFACT; Bock et al., 2002), it is focused primarily on 
exploratory analyses and has no provisions for items with more than two categories. 
In addition to difficulties dealing with multiple factors, IRT models have historically 
not had usable measures of fit. Although recent work by Cai, Maydeu-Olivares, Coff-
man, and Thissen (2006) is extremely promising in this regard, SEM-based CCFA 
has a wide array of fit indices to chose from. 

Despite these two significant advantages to using an SEM-based item response 
model, there are some drawbacks as well. The 2PL and GRM are just two of the 
many IRT models that exist, yet these two, along with the simpler 1PL model, are the 
only item response models available using the SEM approach. Although these are 
very popular IRT models, there are many others that are widely used (e.g., the 3PL 
model) or that are becoming more popular (e.g., unfolding models). Additionally, 
the reliance on polychoric correlations necessary to implement the SEM-based item 
response models can cause serious difficulties in practice. Methods to deal with 
missing data in this case are not well developed. Many users are still forced to 
use listwise deletion to obtain polychoric correlations and the asymptotic covariance 
matrix (or its diagonal). Also, there is no guarantee that the resulting polychoric 
correlation matrix will be a proper correlation matrix, which renders it of dubious 
utility for further analyses. 

With few exceptions, many of the advantages or disadvantages for each approach 
to CCFA are matters of implementation, not definitive features of the modeling frame-
work. Although it is always difficult to predict the future of any methodology, the 
current trends in psychometric research and software development suggest that the 
already porous boundaries between SEM-based CCFA and IRT-based CCFA will be 
further eroded (Wirth & Edwards, 2007). For the SEM-based models, advances in 
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estimation continue to span the gap between the current polychoric/WLS strategy and 
full-information ML procedures. From the side of the traditional IRT framework, re-
cent experiments with Markov chain Monte Carlo (MCMC) estimation have improved 
that framework's ability to address previous weaknesses, such as multiple factors (Ed-
wards, 2005) and model fit (Sinharay, 2005). It seems possible that a decade from 
now the distinction currently made between SEM the and IRT approaches to CCFA 
will have vanished completely. 

2.5 COMPLEX SAMPLES AND SAMPLING WEIGHTS 

Many samples in the social and behavioral sciences and almost all large-scale survey 
data contain such features as nesting and unequal probabilities of selection. These 
types of samples pose problems for standard statistical analysis, including SEMs, 
because these methods assume that observations are selected independently and with 
equal probability. In this section we discuss the specific estimation problems for 
SEMs and some of the modeling techniques and estimation corrections that can be 
employed for proper inference when analyzing samples with nesting and unequal 
probabilities of selection. 

2.5.1 Complex Samples and Their Features 

Simple random sampling (SRS) designs whereby observations are selected indepen-
dently with equal probability are assumed implicitly when analyzing SEMs. However, 
in practice, data sets that are selected for inference to national populations and other 
large groups are generally not selected using SRS. Samples that are not SRS termed 
complex samples typically involve clustering and/or stratification of observations. 
Complex samples may also contain observations selected with unequal probability. 
The development of alternative probability-based random sampling methodologies 
was motivated by the lack of extant population sampling frames as well as other prac-
tical constraints to sampling, such as financial and time limitations. The probability 
sampling methodologies that have developed typically include one or more of the fol-
lowing components: stratification, multiple stages of selection, cluster sampling, and 
unequal probabilities of selection. Each of these features is described subsequently. 
Although some sampling designs are more common than others, there are myriad 
variations of design. Cochran (1977), Kish (1965), Levy and Lemeshow (1999), and 
Lohr (1999) provide descriptions of the most commonly used sampling designs and 
their components. 

2.5.1.1 Stratification. Stratification involves separate random selections from 
partitions, or strata, of the population. For example, the population of adults living 
in the United States is separated or stratified into those living in each region of the 
country, and a separate sample of individuals from each of the regions is selected and 
subsequently pooled into one large sample representing the entire nation. Stratifica-
tion is typically used to ensure coverage of the entire population, to control sample 
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sizes for subclasses, and to optimize efficiency of estimation. Improved efficiency 
may occur when observations within strata are more homogeneous than the overall 
population or when larger samples are drawn from strata with more heterogeneous 
elements and smaller samples are drawn from strata with more homogeneous el-
ements. Stratification does not affect SEM parameter estimates but may affect the 
standard errors of the parameter estimates when utilized in variance estimation. How-
ever, stratification may be associated with unequal selection across strata, which does 
affect parameter estimates. 

2.5.1.2 Multiple Stages Of Selection. Multiple-stage selection involves se-
lecting sampling elements in stages where at the final stage the observations of inter-
est are selected. For example, selection of a sample that represents the population of 
adults living in the United States might involve selection of census block groups first, 
households within block groups second, and selection of adults within households 
last. The first-stage sampling elements are referred to as the primary sampling units 
or PSUs, the second-stage elements are referred to as the secondary sampling units 
(SSUs), and so on. Multiple-stage selection does not affect SEM estimation directly 
except when it results in clustering or unequal selection probabilities at one or more 
stages. 

2.5.1.3 Clustering. Clustering occurs when multiple sample elements are se-
lected from the sample elements of a previous stage, where the higher-stage sample 
elements are the clusters. Continuing with the example from above, census block 
groups are clusters if they include more than one household sample element, and 
households are clusters if they include more than one adult observation in the sample. 
Clustering results in the correlation or nonindependence of sample elements within 
cluster. The degree of correlation (or clustering) differs by the characteristics of the 
observations of analysis. Correlations of observations within a cluster do not affect 
SEM parameter estimates, but tend to increase the standard errors of the parameter 
estimates and test statistics. 

2.5.1.4 Unequal Probabilities of Selection. A sample feature that may result 
from a complex sampling process is the unequal probability of inclusion of obser-
vations into the sample. Specifically, the probability that observations appear in the 
sample is not equal to the probability that they appear in the population. Unequal 
selection probabilities may occur purposely: for example, if households are selected 
at a higher rate from within poorer census block group strata. Or, unequal probability 
of selection may be a result of other design elements, such as multiple stages of selec-
tion: for example, choosing a single adult from households with various numbers of 
adults. Unequal inclusion in an achieved sample may also be caused by nonresponse 
and attrition. Unequal selection probabilities may be the most influential sample fea-
ture for SEMs because it potentially results in bias for parameter estimates, standard 
errors, and test statistics. These biases may be prevented with the use of probability 
weights in SEM estimation. 
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2.5.2 Probability (Sampling) Weights. 

Probability weights are most simply the inverse of the probability of selection of obser-
vations into the sample. However, probability weights may include more than just the 
inverse of the known selection probability resulting from the selection process. They 
also often contain poststratification and nonresponse weighting corrections. These 
adjustments improve weights and, consequently, the quality of estimates because they 
correct for other deficiencies in the sample, such as unit nonresponse. 

A sampling weight is inversely proportional to the selection probability of a sample 
observation. Thus, the unadjusted or "raw" weight for observation i is 

ω* = — (2.64) 
Pi 

where p¿ is the selection probability for observation i. The goal is to weight sample 
elements so that the sample distribution accurately represents the population distribu-
tion. Weights estimate the number of population elements, ΛΓ, that are represented 
by each sample observation. So the weight for observation i estimates the number 
of population elements represented by observation i and the sum of the weights is an 
estimate of the total population size, Σ " = 1 u>¿ = N. 

Probabilities of selection and weights are typically specific to strata in a stratified 
sample and clusters in a cluster sample, or both. Stratification weights are calculated 
for sample strata where sampling units have stratum-specific probabilities of selection. 
In cluster sampling the probability of selection for a sample element is equal to the 
probability of selection for the cluster. In multistage cluster selection the probability 
of selection is a multiplicative factor of the probability of selection at each stage of 
selection when each stage is selected independently. 

One example is a two-stage cluster sample with SRS at each stage. For this design, 
the probability of selection for a sample element within a cluster is 

P (ith element in the jth cluster is selected) 

= P (j'th cluster selected) P (¿th element selected |jth cluster selected) 
m η,ή mn-i 

= - = - (2.65) 
M Nj MNj 

where m is the number of clusters in the sample, M the number of clusters in the 
population, rij the number of sample elements in cluster j , and Nj the number of 
population elements in cluster j . In this case the weight is 

MNi 1 
u y = = (2.66) 

mrij PjPij 

where p¿¿ is the conditional probability of individual i selected in cluster j and pj 
is the probability that cluster j is selected. Often, stratification is combined with 
cluster sampling and multiple stages of selection in a sampling procedure, further 
complicating the composition of the weights. 
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2.5.3 Violations of SEM Assumptions 

2.5.3.1 Clustering and Stratification. Clustering violates assumptions of in-
dependently selected observations because observations within clusters are corre-
lated with one another. Therefore COV(C9¿,Cgj) Φ 0, COV(egi, eaj) φ 0, 
COV(ág¿, Sgj) φ 0, where g represents clusters and i and j represent observa-
tions, with i φ j . The result of this violation on estimation is that the standard errors 
of parameter estimates are underestimated due to the underestimated population vari-
ances, VAR((^i), VAR(e¿), and VAR(ái). The degree to which this violation biases 
standard error estimates is directly related to the degree of clustering, which is a func-
tion of the ratio of the between-cluster variation, σ\, to the within-cluster variation, 
σ^γ, of an endogenous variable. We can get an idea about the degree of cluster-
ing by considering the intraclass correlation coefficient (lCC):Intraclass correlation 
coefficient 

ICC = B (2.67) 
*Β + σνν 

For both clustering and stratification, it is typically although not necessarily true, that 
disturbances in both the measurement and the latent variable models violate assump-
tions of constant error variance; that is, for each disturbance E (ζ?) φ VAR (£¿), 
E (e?) φ VAR (e¿), and E (<$?) φ VAR (Si). This happens when the variation 
of observations within clusters or strata differs across clusters or strata: for example, 
E (&) = V A R (CflO ' b u t V A R (O ^ V A R K M ) w h e r e 9 and k are clus-
ters and g φ k. This violation will bias standard error estimates and test statistics. 
The direction of bias depends on the pattern of heteroscedasticity. 

2.5.3.2 Unequal Probabilities of Selection. The usual results from SEM as-
sumes that observations are randomly selected with equal probabilities. It is well 
known that selection of observations from a population with unequal probabilities 
of selection may result in sampling distributions that do not represent the popula-
tion distribution. This would produce sample estimates such as means, covariances, 
and variances that are biased and inconsistent. SEM relies on S and z as unbiased, 
consistent estimators of the population covariance matrix Σ and mean vector μ, re-
spectively. The quality of estimation, Σ(ο) and μ(θ), of the population model, 
Σ(θ) and μ(θ), relies on the quality of S and z as estimators. If S is biased, SEM 
model parameters are also biased. Parameter estimates will be affected by unequal 
probabilities of selection if the distribution of endogenous variables are biased after 
conditioning on the other variables in the model. 

In addition, the assumption that .E(C¿) = E(ei) = E(Si) = 0 is potentially 
violated if observations from certain groups are oversampled and then a marginal 
model that pools over the groups is fit to the data. This results in too many or too 
few error terms for one segment of the population. For example, if females are 
oversampled and height is a model outcome, Σ ™ ^ d + Σ£Ξ\ & Φ 0» w i t n nw 
representing the sample of women and nm the sample of men. This result will occur 
if gender is not conditioned upon or treated as a moderator in the model. The remedy 
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for this violation seems simple enough; however, the complexity of unequal selection 
and the model may make it very difficult to condition properly upon all necessary 
variables. Also, conditioning on sample design variables is not a solution for certain 
types of models, such as unconditional factor analysis where all observed variables 
are endogenous. 

Unequal probabilities of selection may also bias variance estimates due to sample 
distributions that have more or less dispersion than the population distribution. The 
degree of bias in observed variable variances, the diagonal of S, determines the degree 
of bias in standard error estimates. For intercept and mean standard error estimates, 
bias in z may also come into play. Bias in standard errors due to unequal selection 
can be upward or downward. 

2.5.4 SEM Analysis Using Complex Samples with Unequal 
Probabilities of Selection 

All of the SEM models and notation remain the same, as we have described above, 
for analysis of complex samples and samples with unequal probabilities of selection. 
However, depending on how we choose to accommodate the sampling design into 
the analysis, changes must to be made to the modeling steps, including model speci-
fication, estimation, and fit assessment. There are two approaches to accommodating 
complex samples and unequal probability of selection samples. One approach is to in-
corporate the sample design features explicitly in models (a model-based approach) 
and the other approach is to use estimation methods that are robust to the sample 
design (a design-based approach). Or, it may be desirable to use a combination of 
these two approaches. The model-based approach requires that the analyst take care 
at the model specification and respecification steps to incorporate variables related 
to sample selection. In the design-based approach, the analyst must utilize estima-
tion methods that account for the sample design, including the appropriate model fit 
statistics at the fit assessment step. 

2.5.4.1 Modeling the Sample Design. Many of the features of complex sam-
ple design can be accommodated explicitly in SEM models. Clustering is accounted 
for in the multilevel models that we present in an earlier section. In these models, the 
variance components associated with the clusters are disaggregated from the variance 
associated with observations within clusters. These models also have standard errors 
for fixed-effects parameters that are robust to clustering. Stratification can also be 
approximately modeled by including strata variables as fixed, main effects. 

As mentioned already, unequal selection probabilities can be adjusted for by con-
ditioning upon the grouping variables used in over- and underselection. For some 
SEM models, such as regression, tests of whether unequal selection is informative for 
the model have been developed (DuMouchel & Duncan, 1983; Pfeffermann, 1993). 
However, these tests have not been extended to the general SEM model. 

Modeling the sample design is an ideal approach when it can be done. Modelers 
generally want to specify the correct model, and the correct model should be robust 
to sample features such as unequal inclusion of observations. Using a modeling 
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approach also results in more efficient estimation and does not require sample sizes 
as large as those required for the survey sampling estimation methods described next. 

2.5.4.2 Survey Sampling Estimation. There are many reasons why modeling 
a complex sample design with unequal probabilities of selection may not be possible. 
First, we may not be interested in variance components or contextual hypotheses. Or, 
our clusters of interest may not coincide with the clusters in the sampling process. It 
is also true that many of the variables required to account for unequal probabilities 
of selection are unavailable or unknown, this is particularly true for weights that 
are adjusted for nonresponse where the complete process of unequal inclusion is 
unknown. Models also become atheoretical and possibly unwieldy when all sample 
design variables are conditioned upon. There are often simply too many variables 
to accommodate in a model. It may be necessary to allow many sample design 
variables to act as moderators, and this is limited by sample and model size. Also, 
as mentioned previously, even though parameter estimates are consistent, standard 
errors may still be biased, as a result of complex sample selection procedures. Other 
issues with regard to modeling with complex samples are addressed in Skinner (1989) 
and Chambers and Skinner (2003). 

Another way to account for complex sample design features is to adjust estimation 
methods rather than models. This approach is well established in the survey sampling 
tradition, and the methods are adaptable to SEMs. 

Weighted Estimation. Parameter estimates can be corrected from bias due to un-
equal probabilities of selection using weighted estimation where the weights are as 
defined in equation (2.64). For example, weighted estimators for the elements of z 
and S (denoted ζω and Sw) can be obtained using the following equations: 

χω = ^ 1 (2.68) 
E w ¿ 

, = ^ - . ν - , - „ „ . . „„, (Ζ69) 

These estimators are not strictly unbiased, but they are consistent and will be unbiased 
when ^ tt)¿ is a fixed value. Using ζω and 8 ω in the FML estimator (2.21) would 
result in consistent parameter estimates. However, subsequent variance estimation of 
model parameters also requires taking the probability weights into account. Weights 
can be incorporated into a SEM analysis using standard weighted least squares esti-
mation with weight matrix 

W = In (Wi) (2.70) 

where I n i s a n x n square identity matrix. However, the asymptotic covariances 
matrix will not be correct for probability weights as is described in the next sec-
tion. Weights may also be incorporated into a pseudo-maximum likelihood, PML , 
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estimator (Skinner, 1989) with likelihood function for the parameter estimates 

n 

Σ(θ) = Σωί\οΕ(Ιί) (2.71) 
i 

where L (Θ) involves individual likelihoods such as theose used in the direct ML 
estimator (2.42). The parameter estimates are obtained by maximizing the L (θ), or 
equivalently by solving the set of score equations 

, x 9L{9) 
U (Θ) = — = 0 (2.72) v ' ΘΘ 

Typically, these are solved using an iterative procedure. The point estimates produced 
from all three of these methods are consistent under unequal probabilities of selection 
when the u>i are the inverse of the probability of inclusion in the sample. Stratification 
and clustering do not have an effect on parameter estimates whether FML or PML 
is used. These features must be considered, along with the weights, when estimating 
parameter variance. 

Variance Estimation for Stratification, Clustering, and Weighting. Weighted es-
timators are generally less efficient than unweighted estimators because the variance 
of the weights themselves adds to the instability of the parameter estimates. Weights 
also induce heteroscedasticity. It is important to recognize that standard error esti-
mates for probability weighted parameters is different than standard error estimates 
for variance weighted estimators typically used in WLS analysis for heteroscedastic-
ity. Consider the simple example of the standard error for a weighted mean estimated 
with normalized frequency or variance weights, 

IT"'/""?0' (2-73) 
y n (n — 1) 

as opposed to the standard error of a weighted mean estimated with normalized 
probability weights, 

V n ( n - l ) 
The subtle difference is that in equation (2.73) the sum of the weighted squared 
deviations is computed whereas in equation (2.74), the sum of the weighted deviations 
squared is computed where the latter typically has more variation. Therefore, simply 
applying weights in the same manner as variance weights will not produce a correct 
asymptotic covariance matrix. 

Clustering is handled for WLS or PML with a between-cluster variance estimator, 
which has been in the survey statistics literature for linear parameters since the 1950's 
(Hansen, Hurwitz, & Madow, 1953). The between-cluster estimator is unbiased for 
linear parameters and it allows any nesting structure below nesting within PSU for 
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with-replacement (WR) designs (Williams, 2000). This estimator has been extended 
for use with nonlinear parameters by using first-order Taylor series linearization to lin-
earize parameters followed by application of the between-cluster variance estimator, 
also known as the sandwich estimator (Binder, 1983). The approximate covariance 
matrix of estimators for PML 

VAR (θ\ = ( J ) _ 1 [VÁR (u (§\\\ [ ( J ) - 1 ] ' (2-75) 

where J = dU (θ\/θθ is the weighted sample information matrix, which is the 

model-based variance estimate, and VAR (Ü (Θ)) is the design-specific variance 

of the score equations estimated by linearizing the weighted score equation estimates 

U (Θ) into the linearized varíate vector Zij and using the between-cluster variance 

estimator 

VAR (U (θ\\ = m Σ (»j - z) (¿j - *)' / (m - 1) (2.76) 
j 

where z¿ is the mean within cluster j and ra is the total number of clusters. 
Stratification can be easily incorporated into (2.76) or any variance estimation 

simply by calculating variance within the stratum, and then pooling over the strata. 
Strata are independent by design and therefore simply summing the stratum variances 
results in total variance. 

2.5.5 Future Research 

All of the methods established for analyzing complex samples with unequal proba-
bilities of selection in the survey sampling tradition have not been incorporated into 
SEM software. The estimation techniques described here are primarily for the most 
common design, which is with-replacement (WR) or approximately WR. Samples 
that are drawn without-replacement (WOR) require other corrections, including a 
finite population correction factor. Variance estimation for these samples are also 
affected by nesting structures that fall within the nesting at the PSU. Other variance 
estimation methods, such as the jackknife and balanced repeated replication (BRR) 
methods, could be used to accommodate WOR designs (Wolter, 2007). 

The chi-square and other measures of model fit in SEM have not been analyzed 
thoroughly under conditions of clustered data or weighted estimation. The exact ana-
lytical effect on the chi-square, RMSEA, and other fit measures needs to be explicated 
with further research before conclusions can be made about the model fit statistics 
including the adjusted Chi-square statistics that are often used with complex samples 
(Rao & Scott, 1981; Satorra & Bentler, 1994; Yuan & Bentler, 2000). Currently the 
best methods for performing multiple-degree-of-freedom tests (nested tests) is the 
Wald test. Another good option is the Bollen-Stine bootstrap (Bollen & Stine, 1992) 
of the chi-square statistic. 
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Finally, handling unequal probabilities of selection in multilevel models is a fairly 
unchartered area. Unequal selection can and often does occur at the level of the cluster 
as well as the observations within a cluster. Therefore, it is likely that unequal selection 
will affect estimates at one or more levels of the multilevel model (Pfeffermann et. 
al. 1998). The correct method for applying probability weights in such a model is 
relatively unknown, although some work has begun on this (Korn & Graubard, 2003; 
Kovacevic & Rai, 2003; Pfeffermann et al., 1998; Rabe-Hesketh & Skrondal, 2006). 
The general suggestion is to apply weights at all levels of the model. 

2.6 CONCLUSION 

The SEM began as a general model that incorporated multiple regression, simulta-
neous equation models, and factor analysis as special cases. Since its origins, it has 
continued to grow in its generality and to provide a common framework from which 
to see typical and less typical techniques in a new light and to extend these models in 
novel ways. In this chapter, we provided an overview of SEMs and the major steps 
in implementing them. We also used this framework to show more recent extensions 
of SEMs to multilevel, mixture, and IRT models and to explain methods by which 
complex sample designs are taken account of in SEMs. The literature, software, 
and applications of SEMs are vast, and we provided a selective overview. We high-
lighted established findings and pointed to areas that require further development. 
The references cited provide an entry point for those researchers who wish to learn 
more. 
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CHAPTER 3 

ORDER-CONSTRAINED PROXIMITY 
MATRIX REPRESENTATIONS: 
ULTRAMETRIC GENERALIZATIONS 
AND CONSTRUCTIONS WITH MATLAB 

3.1 INTRODUCTION 

A fundamental concept encountered in the field of classification is that of an ultra-
metric which serves as a mechanism for characterizing collections of hierarchically 
organized partitions for some given object set, say S = {0\,..., On } (see, e.g., the 
comprehensive discussion in Barthélemy and Guénoche, 1991, Chapter 3). Formally, 
if D = {dij} is an n X n matrix, where <¿¿¿ refers to a measure of dissimilarity 
for objects Oi and Oj (so implicitly, larger dissimilarities reflect objects that are 
more dissimilar), D is called an ultrametric (matrix) if the following conditions are 
satisfied: 

(A) dij — dji > 0 for 1 < i, j < n (symmetry and nonnegativity). 
(B) dij = 0 if and only if i = j (definiteness). 
(C) d^ < max{dik,djk} for 1 < i,j,k < n (the ultrametric inequality). 

Or, equivalently, for any object triple, 0 ¿ , Oj, and Ok, the largest two values among 
dij, dik, and djk are equal. 

The key property that provides the means for identifying the collection of partitions 
induced by D is the ultrametric inequality in (C), and with some notational care, the 

Statistics in the Social Sciences. By S. Kolenikov, D. Steinley, L. Thombs 81 
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nonnegativity condition in (A) and/or the definiteness condition in (B) could easily 
be relaxed without any real loss of generality. Because D satisfies (C), there are 
at most T distinct (positive) values in D (where T < n — 1), and each distinct 
value corresponds to a particular partition of the object set S. Specifically, and 
denoting these distinct values as d(i) < d(2) < · · · < (ί(τ) (and for completeness, 
defining d(0) = 0), a sequence of partitions, Vo, V\,..., VT , is produced having, 
respectively, C 0 = n > C\ > · · · > CT = 1 class(es) that satisfies the following 
four properties listed: 

(i) Vo is the (disjoint) partition of S into CQ = n classes, where each object 
forms its own separate class (and all within-class dissimilarities are therefore zero, 
and trivially less than or equal to d(o))· 

(ii) VT is the (conjoint) partition of S into a single class (CT = 1) containing all 
n objects, where all within-class dissimilarities are less than or equal to d(T) ■ 

(iii) Vt is the partition of S into Ct classes where all within-class dissimilarities 
are less than or equal to d(t), and all between-class dissimilarities are strictly greater 
than d(t). 

(iv) For 1 < t < T, the classes in Vt are either present in Vt-i or are formed 
by uniting two or more classes in Vt-i-

The ultrametrics we consider are usually obtained through a process of opti-
mization and by fitting (through least squares) an ultrametric matrix to some orig-
inally given n X n symmetric and nonnegative proximity matrix P = {pij} 
(Pij = pjt > 0 and pa — 0 for 1 < i,j < n). Typically, these fitted ul-
trametrics will have the maximal number of distinct values, so T = n — 1, and the 
one new class in Vt is formed by uniting a single pair of classes in Vt-x- With some 
abuse of the statistical notion of a parameter (because we commonly search for the 
partitions in a hierarchy using some type of optimization strategy, along with merely 
fitting the corresponding ultrametric, we might prefer the use of the less overloaded 
term weight), one might say for purposes of later comparison that at most n — 1 
parameters need to be estimated in the construction of a best-fitting ultrametric to a 
given proximity matrix P . 

As should be apparent from the introduction above, strategies for the hierarchical 
clustering of an object set produce a sequence of nested partitions in which object 
classes within each successive partition are constructed from the union of classes 
present at the previous level. In turn, any such sequence of nested partitions can be 
characterized by an ultrametric, and conversely, any ultrametric generates a nested 
collection of partitions. There are three major areas of concern in this chapter: (1) 
In Section 3.2 we discuss the imposition of a given fixed order, or the initial identi-
fication of such a constraining order, in constructing and displaying an ultrametric; 
(2) extensions of the notion of an ultrametric are presented in Section 3.3 to use 
alternative collections of partitions that are not necessarily nested but which do con-
tain objects within classes consecutive with respect to a particular object ordering. 
A method for fitting such structures to a given proximity matrix is discussed along 
with an alternative strategy for graphical representation; (3) for the enhanced visu-
alization of additive trees, in Section 3.4 we develop a rational method of selecting 
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a root by imposing some type of order-constrained representation on the ultramet-
ric component in a decomposition of an additive tree (nonuniquely into an ultra-
metric and a centroid metric). A simple numerical example is used throughout the 
chapter based on a data set characterizing the agreement among the Supreme Court 
justices for the decade of the Rehnquist Court. All the various MATLAB M-files 
used to illustrate the extensions are available as open-source code from the web site 
h t tp : / /cda .psych.uiuc .edu/ordered_reps_mfi les . 

3.1.1 Proximity Matrix for Illustration: Agreement Among Supreme 
Court Justices 

On Saturday, July 2, 2005, the lead headline in The New York Times read as follows: 
"O'Connor to Retire, Touching Off Battle Over Court." Opening the story attached 
to the headline, Richard W. Stevenson wrote, "Justice Sandra Day O'Connor, the first 
woman to serve on the U.S. Supreme Court and a critical swing vote on abortion and a 
host of other divisive social issues, announced Friday that she is retiring, setting up a 
tumultuous fight over her successor." Our interests are in the data set also provided by 
the Times that day, quantifying the (dis)agreement among the Supreme Court justices 
during the decade they had been together. We give this in Table 3.1 in the form of the 
percentage of nonunanimous cases in which the justices ¿/«agree, from the 1994-95 
term through 2003-04 (known as the Rehnquist Court). The dissimilarity matrix (in 
which larger entries reflect less similar justices) is given in the same row and column 
order as the Times data set, with the justices ordered from "liberal" to "conservative": 

1: John Paul Stevens (St) 
2: Stephen G. Breyer (Br) 
3: Ruth Bader Ginsberg (Gi) 
4: David Souter (So) 
5: Sandra Day O'Connor (Oc) 
6: Anthony M. Kennedy (Ke) 
7: William H. Rehnquist (Re) 
8: Antonin Scalia (Sc) 
9: Clarence Thomas (Th) 

For the various illustrations that will come in the sections to follow, we use the 
Supreme Court data matrix of Table 3.1. It will be loaded into a MATLAB environ-
ment with the command ' load supreme_agree. da t ' . The supreme_agree. dat 
file is in simple ASCII form with verbatim contents as follows: 

.00 

.38 

.34 

.37 

.67 

.64 

.75 

.86 

.38 

.00 

.28 

.29 

.45 

.53 

.57 

.75 

.34 

.28 

.00 

.22 

.53 

.51 

.57 

.72 

.37 

.29 

.22 

.00 

.45 

.50 

.56 

.69 

.67 

.45 

.53 

.45 

.00 

.33 

.29 

.46 

.64 

.53 

.51 

.50 

.33 

.00 

.23 

.42 

.75 

.57 

.57 

.56 

.29 

.23 

.00 

.34 

.86 

.75 

.72 

.69 

.46 

.42 

.34 

.00 

.85 

.76 

.74 

.71 

.46 

.41 

.32 

.21 
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Table 3.1 Dissimilarities Among the Nine Supreme Court Justices 

ISt 
2Br 
3Gi 
4 So 
5 0c 
6Ke 
7 Re 
8Sc 
9Th 

St 

.00 

.38 

.34 

.37 

.67 

.64 

.75 

.86 

.85 

Br 

.38 

.00 

.28 

.29 

.45 

.53 

.57 

.75 

.76 

Gi 

.34 

.28 

.00 

.22 

.53 

.51 

.57 

.72 

.74 

So 

.37 

.29 

.22 

.00 

.45 

.50 

.56 

.69 

.71 

Oc 

.67 

.45 

.53 

.45 

.00 

.33 

.29 

.46 

.46 

Ke 

.64 

.53 

.51 

.50 

.33 

.00 

.23 

.42 

.41 

Re 

.75 

.57 

.57 

.56 

.29 

.23 

.00 

.34 

.32 

Sc 

.86 

.75 

.72 

.69 

.46 

.42 

.34 

.00 

.21 

Th 

.85 

.76 

.74 

.71 

.46 

.41 

.32 

.21 

.00 

.85 .76 .74 .71 .46 .41 .32 .21 .00 

As noted earlier, all of the M-files and data sets we mention are collected at the 
site h t t p : / / c d a . psych. u iuc . edu/ordered_reps_mf i l e s and are freely down-
loadable from there. So, the various examples we present are easily replicated by the 
reader (assuming, of course, access to a MATLAB computing environment). 

3.2 ORDER-CONSTRAINED ULTRAMETRICS 

As one additional fifth characterization of the partition hierarchy induced by a given 
ultrametric, we have the property: There exists a (nonunique) one-to-one function or 
permutation, p(·), of the n object indices such that each class in the partition Vt, 
1 < t < T , defines a set of consecutive (or contiguous) objects with respect to the 
object order Op(i) -^ Op(2) - < · · · - < Op(ny Thus, in forming the new class(es) 
in Vt from those in "Pt - i , only adjacent classes in the ordering may be united. 
[Some sense of the high degree of nonuniqueness for object orderings that would 
show the contiguity property for object classes can be developed from the following 
observation: Suppose that p(·) is some permutation providing the contiguity property 
and consider, for any t, the adjacent classes in Vt-i that are united to form one of 
the new classes in Vt- A new permutation defined by interchanging the to-be-united 
adjacent classes but which maintains the same object order within each class would 
still have the contiguity property for all the object classes in the partition hierarchy.] 
For any permutation that provides the consecutive order property for the classes of 
the partitions Vo, ..., VT , if the rows and columns of the ultrametric matrix D are 
reordered by p(·) and we define D p = {cip(i)p(j)}, the latter matrix displays what 
is called an anti-Robinson (AR) form: The patterning of entries in D p is such that 
moving away from the main diagonal within any row or any column, the entries never 
decrease. Formally, the following two order conditions hold: 

within rows: dp(i)p(fe) < <¿p(i)p(¿) for 1 < i < k < j < n. 
within columns: dp(k)p{j) < ^P(Í)P(J) for 1 < ¿ < fc < J < n. 
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Even more restrictedly, the reordered matrix D p also shows what is called the strongly 
anti-Robinson (SAR) form, which is important for the type of consistent graphical 
representation we generally hope to provide for a fitted matrix. Specifically, D p shows 
the SAR form (see Hubert, Arabie, & Meulman, 1998) because whenever two above-
diagonal entries in D p that are in adjacent columns within the same row are equal, 
all entries in rows placed earlier for the same two adjacent columns are also equal; 
similarly, whenever two above-diagonal entries in D p in adjacent rows within the 
same column are equal, all entries in columns placed later for the same two adjacent 
rows are also equal. The importance of an SAR form for constructing consistent 
graphical representations is discussed in detail in Hubert et al. (1998) along with many 
historical precedents. For us, we merely note that all of the generalizations pursued 
in the sections to follow are based on collections of partitions leading invariably to 
fitted matrices that are SAR. So, all of our representations are automatically SAR by 
default and provide consistent graphical displays. 

Two M-files are discussed below. The first one finds a good least-squares ultra-
metric that can be displayed consistently with respect to a given constraining input 
order for the objects that is supplied explicitly by the user (u l t raf nd_conf i t .m); 
the second (ul t raf nd_confnd.m) actually locates a good constraining order to im-
pose in the first place. These two M-files and others discussed later will require 
several additional M-files associated with the recent text by Hubert, Arabie, and 
Meulman (2006) (these files are open-source and downloadable separately from 
ht tp: / /cda.psych.uiuc.edu/srpm_mfi les ; for convenience, the needed M-
files are also placed at the earlier ordered_reps_mf i l e s site as well). We will 
not spend much time reviewing the Hubert et al. (2006) work but will use it directly 
in the extensions pursued here. Reference will be made to the demonstrations and 
discussion in the latter source whenever appropriate. 

3.2.1 The M-file ultrafnd confit.m 

The M-file u l t r a f nd_conf i t .m serves to identify a good-fitting (in a least-squares 
sense) ultrametric that could be displayed consistently with respect to a given fixed 
order. Along with this file, we also provide both its help header comments below and 
an application to the supreme_agree data. What should be noted is the following: 
The input proximity matrix (prox) is given as supreme_agree; the permutation that 
determines the order in which the heuristic optimization strategy seeks the inequality 
constraints to define the obtained ultrametric is random [the built-in MATLAB func-
tion random (9) ]; thus, the routine could be rerun to see if local optima are obtained in 
identifying the ultrametric (but still constrained by exactly the same object order); the 
constraining permutation (conperm) is given here as the identity (1 : 9). For output, 
we provide the ultrametric identified in find with variance-accounted-for (VAF) of 
73.69%. Generally, a VAF measure is defined as 

VAF = 1 - £ i < j f o i - P i i ) 2 
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where p¿j represents a fitted proximity (to p¿¿) and p is the mean off-diagonal prox-
imity in P . 

For completeness, the best anti-Robinson matrix (least-squares) to the input prox-
imity matrix is given by arobprox with VAF of 99.55%. The found ultrametric would 
display a VAF of 74.02% compared against this best-fitting anti-Robinson matrix. The 
reason these later anti-Robinson elements are given is that the order-constrained ultra-
metric is actually found by imposing an ultrametric on the best-fitting anti-Robinson 
approximation for the original proximity matrix. Thus, as our computational mecha-
nism for imposing the given ordering on the ultrametric obtained, we simply use the 
best-fitting anti-Robinson matrix as a point of departure. 

» load supreme_agree.dat 
» supreme_agree 

supreme_agree = 

0 
0.3800 
0.3400 
0.3700 
0.6700 
0.6400 
0.7500 
0.8600 
0.8500 

0.3800 
0 

0.2800 
0.2900 
0.4500 
0.5300 
0.5700 
0.7500 
0.7600 

0.3400 
0.2800 

0 
0.2200 
0.5300 
0.5100 
0.5700 
0.7200 
0.7400 

0.3700 
0.2900 
0.2200 

0 
0.4500 
0.5000 
0.5600 
0.6900 
0.7100 

0.6700 
0.4500 
0.5300 
0.4500 

0 
0.3300 
0.2900 
0.4600 
0.4600 

0.6400 
0.5300 
0.5100 
0.5000 
0.3300 

0 
0.2300 
0.4200 
0.4100 

0.7500 
0.5700 
0.5700 
0.5600 
0.2900 
0.2300 

0 
0.3400 
0.3200 

0.8600 
0.7500 
0.7200 
0.6900 
0.4600 
0.4200 
0.3400 

0 
0.2100 

0.8500 
0.7600 
0.7400 
0.7100 
0.4600 
0.4100 
0.3200 
0.2100 

0 

» [ f ind,vaf .vafarob,arobprox,vaful t ra] = . . . 
ultrafnd_confit(supreme_agree,randpemi(9),1:9) 

find = 

0 
3633 
3633 
3633 
6405 
6405 
6405 
6405 
6405 

0.3633 
0 

0.2850 
0.2850 
0.6405 
0.6405 
0.6405 
0.6405 
0.6405 

0.3633 
0.2850 

0 
0.2200 
0.6405 
0.6405 
0.6405 
0.6405 
0.6405 

0.3633 
0.2850 
0.2200 

0 
0.6405 
0.6405 
0.6405 
0.6405 
0.6405 

0.6405 
0.6405 
0.6405 
0.6405 

0 
0.3100 
0.3100 
0.4017 
0.4017 

0.6405 
0.6405 
0.6405 
0.6405 
0.3100 

0 
0.2300 
0.4017 
0.4017 

0.6405 
0.6405 
0.6405 
0.6405 
0.3100 
0.2300 

0 
0.4017 
0.4017 

0.6405 
0.6405 
0.6405 
0.6405 
0.4017 
0.4017 
0.4017 

0 
0.2100 

0.6405 
0.6405 
0.6405 
0.6405 
0.4017 
0.4017 
0.4017 
0.2100 

0 

vaf = 

0.7369 

vafarob = 

0.9955 

arobprox = 

0 
0.3600 
0.3600 
0.3700 
0.6550 
0.6550 
0.7500 
0.8550 

0.3600 
0 

0.2800 
0.2900 
0.4900 
0.5300 
0.5700 
0.7500 

0.3600 
0.2800 

0 
0.2200 
0.4900 
0.5100 
0.5700 
0.7200 

0.3700 
0.2900 
0.2200 

0 
0.4500 
0.5000 
0.5600 
0.6900 

0.6550 
0.4900 
0.4900 
0.4500 

0 
0.3100 
0.3100 
0.4600 

0.6550 
0.5300 
0.5100 
0.5000 
0.3100 

0 
0.2300 
0.4150 

0.7500 
0.5700 
0.5700 
0.5600 
0.3100 
0.2300 

0 
0.3300 

0.8550 
0.7500 
0.7200 
0.6900 
0.4600 
0.4150 
0.3300 

0 

0.8550 
0.7600 
0.7400 
0.7100 
0.4600 
0.4150 
0.3300 
0.2100 
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0.8550 0.7600 0.7400 0.7100 0.4600 0.4150 0.3300 0.2100 0 

vafultra = 

0.7402 

» help ultrafnd_confit.m 

ULTRAFND.CQNFIT finds and fits an ultrametric using iterative projection 

heuristically on a symmetric proximity matrix in the $L_{2}$-norm, 

constrained by a given object order. 

syntax: [f ind, vaf, vafarob, arobprox, vafultra] = ... 

ultrafnd_conf it(prox,inperm,conperm) 

PROX is the input proximity matrix (with a zero main diagonal 

and a dissimilarity interpretation); 

INPERM is a permutation that determines the order in which the 

inequality constraints are considered in obtaining the ultrametric; 

CONPERM is the given constraining object order; 

VAFAR0B is the VAF of the anti-Robinson matrix fit, AR0BPR0X, to PROX; 

VAFULTRA is the VAF of the ultrametric fit to AR0BPR0X; 

FIND is the found least-squares matrix (with variance-accounted-for 

of VAF) to PROX satisfying the ultrametric constraints, and given 

in CONPERM order. 

3.2.2 The M-file ultrafnd confnd.m 

The M-file u l t r a f nd_confnd.m carries out a preliminary identification of a good 
initial constraining order, and therefore does not require one to be given a priori. The 
constraining order (conperm) is now provided as an output vector, and is constructed 
by finding a best anti-Robinson matrix fit to the original proximity input matrix (using 
methods discussed in Hubertetal. 2006, Chap. 9). We give the help header comments 
verbatim below, but because we would be lead to the identity permutation (1:9) as 
the constraining order, we do not repeat the same analyses just given. 

» help ultrafnd_confnd.m 

ULTRAFND_C0NFND finds and fits an ultrametric using iterative projection 

heuristically on a symmetric proximity matrix in the $L_-(2>$-norm, and 

also locates a initial constraining object order. 

syntax: [find,vaf,conperm,vafarob,arobprox,vafultra] = ... 

ultrafnd_confnd(prox,inperm) 

PROX is the input proximity matrix (with a zero main diagonal 

and a dissimilarity interpretation); 

INPERM is a permutation that determines the order in which the 

inequality constraints are considered in obtaining the ultrametric; 

CONPERM is the identified constraining object order; 

VAFAR0B is the VAF of the anti-Robinson matrix fit, AROBPROX, to PROX; 

VAFULTRA is the VAF of the ultrametric fit to AROBPROX; 

FIND is the found least-squares matrix (with variance-accounted-for 

of VAF) to PROX satisfying the ultrametric constraints, and given 

in CONPERM order. 
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3.2.3 Representing an (Order-Constrained) Ultrametric 

There are generally three major ways in which an ultrametric might conveniently be 
displayed. One would be to impose the subdivision structure directly on the fitted 
matrix with the row and column objects constrained by the given order. The reordered 
matrix using the row and column order of (St -< Br -< Gi -< So -< Oc -< Ke -< Re 
-< Sc -< Th) is given below; here the blocks of equal-valued entries are highlighted, 
indicating the partition hierarchy induced by the ultrametric. 

St 
Br 
Gi 
So 
Oc 
Ke 
Re 
Sc 
Th 

St 
X 

.36 

.36 

.36 

.64 

.64 

.64 

.64 

.64 

Br 
.36 
X 

.29 

.29 

.64 

.64 

.64 

.64 

.64 

Gi 
.36 
.29 
X 

.22 

.64 

.64 

.64 

.64 

.64 

So 
.36 
.29 
.22 
X 

.64 

.64 

.64 

.64 

.64 

Oc 
.64 
.64 
.64 
.64 
X 

.31 

.31 

.40 

.40 

Ke 
.64 
.64 
.64 
.64 

.31 
X 

.23 

.40 

.40 

Re 
.64 
.64 
.64 
.64 

.31 

.23 
X 

.40 

.40 

Sc 
.64 
.64 
.64 
.64 
.40 
.40 
.40 
X 

.21 

Th 
.64 
.64 
.64 
.64 
.40 
.40 
.40 
.21 
X 

Second, the sequence of partitions could be provided along with the levels at which 
they form (i.e., the n — 1 distinct values usually making up the ultrametric): 

Partition Level Formed 

{{St,Br,Gi,So,Oc,Ke,Re,Sc,Th}} .64 
{{St,Br,Gi,So},{Oc,Ke,Re,Sc,Th}} .40 

{{St,Br,Gi,So},{Oc,Ke,Re},{Sc,Th}} .36 
{{St},{Br,Gi,So},{Oc,Ke,Re},{Sc,Th}} .31 

{{St} ,{Br,Gi,So} ,{Oc} ,{Ke,Re} ,{Sc,Th}} .29 
{{St} ,{Br} ,{Gi,So} ,{Oc} ,{Ke,Re} ,{Sc,Th}} .23 

{{St} ,{Br} ,{Gi,So} ,{Oc} ,{Ke} ,{Re} ,{Sc,Th}} .22 
{{St},{Br},{Gi},{So},{Oc},{Ke},{Re},{Sc,Th}} .21 

{{St},{Br},{Gi},{So},{Oc},{Ke},{Re},{Sc},{Th}} -

Or third, we could use the graphical method called a dendrogram, shown in Figure 
3.1. The objects are arrayed according to the constraining order along a horizontal 
axis; a vertical axis gives the calibration of when the partitions emerge. 

Irrespective of the method of representation, substantively the interpretation re-
mains much the same. There are three very "tight" dyads in {Sc,Th}, {Gi,So}, and 
{Ke,Re}; {Oc} joins with {Ke,Re}, and {Br} with {Gi,So}, to form, respectively, 
the "moderate" conservative and liberal clusters. {St} then joins with {Br,Gi,So} to 
form the liberal left four-object cluster; {Oc,Ke,Re} unites with the dyad of {Sc,Th} 
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Figure 3.1 Dendrogram (tree) representation for the ordered-constrained ultrametric 
described in the text (having a VAF of 73.69%). 

1 

O O Ó Ó O Ó Ó Ó Ó 

St Br Gi So Oc Ke Re Sc Th 
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to form the five-object conservative right. In any case, the ordering from left to right 
used in all three of these representations is from the "far left" to the (in gradual 
increments) "far right." The dendrogram in Figure 3.1 illustrates well the arbitrari-
ness present in representing such an ultrametric structure graphically. If this object 
is viewed as a mobile with rotational freedom of movement around the universal 
joints represented by the solid internal nodes of the diagram, there are 2 8 (and 2 n _ 1 

in general) equivalent orderings of the nine terminal nodes representing the justices 
defined by "flipping" the classes around the universal joints. For each terminal node 
reordering, the pattern of (tied) entries in the fitted ultrametric matrix would remain 
invariant. So, the particular justice reordering we chose to use (and identified with 
u l t r a f nd_conf nd.m), has a great deal of extra meaning over and above the struc-
ture implicit in the ultrametric imposed. It represents the object order for the best 
anti-Robinson matrix fit to the original proximity matrix, and is identified before we 
further impose an ultrametric. Generally, the object order chosen for the dendrogram 
should place similar objects (according to the original proximities) as close as pos-
sible. This is very apparent here, where the particular (identity) constraining order 
imposed is clearly of the meaningful "liberal" to (gradually) "conservative" variety. 
There has been quite some interest over the years in how best to arrange the terminal 
nodes of a dendrogram to produce a more meaningful representation for the encom-
passed hierarchical clustering. One of the first is from Gruvaeus and Wainer (1972) 
and implemented in the commercial SYSTAT software package. This method tries to 
place objects so that those at the edges of a cluster are adjacent to objects outside the 
cluster to which they are most similar. Degerman (1982) suggests ordering the ter-
minal nodes to maximize a rank correlation measure between node order and a given 
externally given criterion. Several newer suggestions that are in a similar spirit to 
these older suggestions include Caraux and Pinloche (2005) and Bar-Joseph, Gifford, 
and Jaakkola (2001). We note that much of this more recent work deals with very 
large bioinformatics (e.g., gene expression) data sets where graphical (and color) rep-
resentations become crucial, and a nonarbitrary terminal object ordering is expected. 
In this spirit and to again reemphasize why our methods of order-constrained ultra-
metric representation are important, we end this section with a very nice quote from 
Parmigiani, Garrett, Irizarry, and Zeger (2003): 

An important caveat about the use of dendrograms concerns the interpretation of 
the order of objects at the bottom. At each split, it is arbitrary which branch 
is drawn on the left versus the right. As a result, a multitude of dendrograms 
and orderings are consistent with a given hierarchical classification. Closeness 
of objects should be judged based on the length of the path that connects them 
and not on their distance in the ordering, (p. 25) 

In short, what order-constrained ultrametric representation does is to remove the 
high degree of arbitrariness in how the classification structure is displayed. The order 
of terminal nodes is commonly meaningful and if found by u l t r a f nd_conf nd.m, 
represents the order producing a best-fitting anti-Robinson form to the original prox-
imity matrix. Presumably, if some order is imposed through u l t r a f nd_conf i t .m, 



ORDER-CONSTRAINED ULTRAMETRICS 91 

it will have some substantively defensible interpretation or it should not have been 
used to begin with. 

3.2.4 Alternative (and Generaiizable) Graphical Representation for an 
Ultrametric 

Two rather distinct graphical ways for displaying an ultrametric are given in Figures 
3.1 and 3.2. Figure 3.1 is in the form of a traditional dendrogram (or a graph-theoretic 
tree) where the distinct ultrametric values are used to calibrate the vertical axis and 
indicate the level at which two classes are united to form a new class in a partition 
within the hierarchy. Each new class formed is represented by a closed circle and 
is referred to as an internal node of the tree. Considering the nine justices to be the 
terminal nodes (represented by open circles and listed left to right in the constraining 
order), the ultrametric value between any two objects can also be constructed by 
taking one-half of the minimum path length between the two corresponding terminal 
nodes (proceeding upward from one terminal node through the internal node that 
defines the first class in the partition hierarchy containing them both, and then back 
down to the other terminal node, with all horizontal lengths in the tree used for 
graphical purposes only and assumed to be of length zero). Or if the vertical axis 
calibrations were themselves halved, the minimum path lengths would provide the 
fitted ultrametric values directly. There is one distinguished node in the tree of Figure 
3.1 (indicated by the biggest solid circle), referred to as the wot, with the property 
of being equidistant from all terminal nodes. In contrast to various additive tree 
representations that we give later, the defining characteristic for an ultrametric is that 
there does exist a position on the tree equidistant from all terminal nodes. 

Figure 3.2 provides an alternative representation for an ultrametric (that will prove 
useful later for ultrametric extensions). Here, a partition is characterized by a set of 
horizontal lines that each encompass the objects in a particular class. This presentation 
is possible because the justices are listed from left to right in the same order as that 
used to constrain the construction of the ultrametric, and thus, each class of a partition 
contains objects contiguous with respect to this ordering. The calibration on the 
vertical axis next to each set of horizontal lines representing a specific partition is 
the increment to the fitted dissimilarity between two particular justices if that pair is 
not encompassed by a continuous horizontal line for a class in this partition. For an 
ultrametric, a nonnegative increment value for the partition Tt is just d(t+\) — d(t) > 
O f o r O < i < T — 1 (letting d(0) = 0, and noting that an increment for the trivial 
partition containing a single class, VT , is not defined nor given in the representation 
of Figure 3.2). As an example and considering the pair (Oc,Sc), horizontal lines 
do not encompass this pair except for the last (nontrivial) partition ψ-j; thus, the 
fitted ultrametric value of .40 is the sum of the increments attached to the partitions 
TO, · · · , V%: -21 + .01 -(- .01 -(- .06 + .02 + .05 + .04 = .40. 
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Figure 3.2 Alternative representation for the fitted values of the order-constrained ultrametric 
(having a VAF of 73.69%). 
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3.2.5 Alternative View of Ultrametric Matrix Decomposition 

A general mechanism exists for decomposing any ultrametric matrix D into a (nonneg-
atively) weighted sum of dichotomous (0/1) matrices, each representing one of the par-
titions of the hierarchy, Vo,. ·., VT , induced by D. Specifically, if P¿ = {pL }, 
for 0 < t < T — 1, is an n X n symmetric 0/1 dissimilarity matrix corresponding 
to Vt in which an entry p¿· is 0 if Oi and Oj belong to the same class in Tt and is 
otherwise equal to 1, then for some collection of suitably chosen nonnegative weights, 
α 0 , α ι , . . . , α Γ _ ι , 

T - l 

D = Σ "tp* 
t=o 

Generally, the nonnegative weights α ο , α ι , · · · ,αχ-ι are given by the (differences 
in) partition increments that calibrate the vertical axis of the dendrogram. Moreover, 
because the ultrametric represented by Figure 3.1 was generated by optimizing a 
least-squares loss function in relation to a given proximity matrix P , an alternative 
interpretation for the weights obtained is that they solve the nonnegative least-squares 
task of 

min > 
{ a t > 0 , 0 < t < T - l } ¿-^ 

T - l 

Pij - Σ atP¡f 
t=0 

(3.1) 

for the fixed collection of dichotomous matrices Po, P i , · · · , P r - i - Although the 
solution to (1) is generated indirectly in this case from the least-squares optimal 
ultrametric fitted directly to P , in general (and especially for the extensions we 
pursue), for any fixed proximity matrix P and collection of dichotomous matrices 
P 0 , . . . , P T - I , however obtained, the nonnegative weights a t , 0 < t < T — 
1, that solve (1) can be obtained with any nonnegative least-squares method. We 
will routinely use in particular (and without further comment) the code rewritten in 
MATLAB for a subroutine originally provided by Wollan and Dykstra (1987, pp. 
238-240) based on a strategy for solving linear inequality constrained least-squares 
tasks by iterative projection (see also Dykstra, 1983). 

In the verbatim script below, we show how the M-file p a r t i t i o n f i t .m can be 
used to reconstruct the order-constrained ultrametric of Section 2.3. The crucial com-
ponent is in constructing the m X n matrix (member) that defines class membership 
for the m = 8 nontrivial partitions generating the ultrametric. Note in particular 
that we do not include the unnecessary conjoint partition involving a single class 
(in fact, its inclusion would produce a numerical error in the Wollan and Dykstra 
least-squares subcode integral to p a r t i t i o n f i t .m; thus, there would be a nonzero 
end_condition value). The M-file p a r t i t i o n f i t .m will be relied upon again in 
the sections to follow to generalize the type of structural representations possible for 
a proximity matrix beyond that of just an order-constrained ultrametric. 

» help partitionfit.m 

PARTITIONFIT provides a least-squares approximation to a proximity 
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matrix based on a given co l l ec t ion of p a r t i t i o n s . 

syntax: [ f i t ted ,vaf .weights ,end_condi t ion] = par t i t ionf i t (prox,member) 

PROX i s the n x n input proximity matrix (with a zero main diagonal 
and a d i s s i m i l a r i t y i n t e r p r e t a t i o n ) ; MEMBER i s the m x n matrix 
indica t ing c lu s t e r membership, where each row corresponds to a spec i f i c 
p a r t i t i o n ( there are m p a r t i t i o n s in genera l ) ; the columns of MEMBER 
are in the same input order used for PROX. 
FITTED i s an n x n matrix f i t t e d to PRQX (through l eas t - squares ) 
constructed from the nonnegative weights given in the m x 1 WEIGHTS 
vector corresponding to each of the p a r t i t i o n s . VAF i s the var iance-
accounted-for in the proximity matrix PROX by the f i t t e d matrix FITTED. 
END_C0NDITI0N should be zero for a normal termination of the optimizat ion 
process . 

» member = [ 1 1 1 1 2 2 2 2 2 ; 1 1 1 1 2 2 2 3 3 ; 1 2 2 2 3 3 3 4 4 ; ! 2 2 2 3 4 4 5 5; 
1 2 3 3 4 5 5 6 6 ; 1 2 3 3 4 5 6 7 7;1 2 3 4 5 6 7 8 8;1 2 3 4 5 6 7 8 9] 

member = 

1 
1 
2 
2 
2 
2 
2 
2 

1 
1 
2 
2 
3 
3 
3 
3 

1 
1 
2 
2 
3 
3 
4 
4 

2 
2 
3 
3 
4 
4 
5 
5 

2 
2 
3 
4 
5 
5 
6 
6 

2 
2 
3 
4 
5 
6 
7 
7 

2 
3 
4 
5 
6 
7 
8 
8 

2 
3 
4 
5 
6 
7 
8 
9 

» [fitted,vaf,weights,end_condition] = partitionfit(supreme_agree,member) 

fitted -

0 
0.3633 
0.3633 
0.3633 
0.6405 
0.6405 
0.6405 
0.6405 
0.6405 

0.3633 
0 

0.2850 
0.2850 
0.6405 
0.6405 
0.6405 
0.6405 
0.6405 

0.3633 
0.2850 

0 
0.2200 
0.6405 
0.6405 
0.6406 
0.6405 
0.6405 

0.3633 
0.2850 
0.2200 

0 
0.6405 
0.6405 
0.6405 
0.6405 
0.6405 

0.6405 
0.6405 
0.6405 
0.6405 

0 
0.3100 
0.3100 
0.4017 
0.4017 

0.6405 
0.6405 
0.6405 
0.6405 
0.3100 

0 
0.2300 
0.4017 
0.4017 

0.6405 
0.6405 
0.6405 
0.6405 
0.3100 
0.2300 

0 
0.4017 
0.4017 

0.6405 
0.6405 
0.6405 
0.6405 
0.4017 
0.4017 
0.4017 

0 
0.2100 

0.6405 
0.6405 
0.6405 
0.6405 
0.4017 
0.4017 
0.4017 
0.2100 

0 

vaf = 

0.7369 

weights = 

0.2388 
0.0383 
0.0533 
0.0250 
0.0550 
0.0100 
0.0100 
0.2100 

end_condition = 

0 
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3.3 ULTRAMETRIC EXTENSIONS BY FITTING PARTITIONS 
CONTAINING CONTIGUOUS SUBSETS 

The M-file p a r t i t i o n f i t .m of Section 3.2 is a very general routine giving a least-
squares approximation to a proximity matrix based on a given collection of partitions. 
Thus, no matter how the set of candidate partitions might be chosen, a least-squares 
fitted matrix to the given proximity matrix is achieved. For example, if we simply 
use the nested partitions constructed from an ultrametric, the ultrametric would be 
retrieved when the latter is used as the input proximity matrix. In this section we 
show how p a r t i t i o n f i t .m can also be used to select partitions from a predefined 
set (this selection is done by those partitions assigned nonnegative weights) that might 
serve to reconstruct the proximity matrix well. The M-file consec_subsetf i t .m 
defines (n(n — l ) / 2 ) — 1 candidate partitions each characterized by a single 
contiguous cluster of objects, with all objects before and after this contiguous set 
forming individual clusters of the partition [the minus 1 appears in the count since 
the (conjoint) partition defined by a single contiguous set is excluded]. The M-file 
consec_subsetf i t _a l t e r .m varies the specific definition of the partitions by in-
cluding all objects before and all objects after the contiguous set (when nonempty) 
in forming separate individual clusters of the partitions. 

As can be seen from the verbatim output provided below, the nonnegative weighted 
partitions from consec_subsetf i t .m, producing a fitted matrix with a VAF of 
92.61% are as follows: 

Partition Partition Increment 

{{St,Br,Gi,So} ,{Oc} ,{Ke} ,{Re} ,{Sc} ,{Th}} . 1939 
{{St,Br,Gi,So,Oc} ,{Ke} ,{Re} ,{Sc} ,{Th}} .0300 
{{St,Br,Gi,So,Oc,Ke} ,{Re} ,{Sc} ,{Th}} .0389 
{ {St,Br,Gi,So,Oc,Ke,Re} ,{Sc} ,{Th} } .1315 
{{St},{Br,Gi,So,Oc,Ke,Re,Sc,Th}} .1152 

{{St},{Br},{Gi,So,Oc,Ke,Re,Sc,Th}} .0052 
{{St},{Br},{Gi},{So,Oc,Ke,Re,Sc,Th}} .0153 

{{St},{Br},{Gi},{So},{Oc,Ke,Re,Sc,Th}} .2220 
{{St} ,{Br} ,{Gi} ,{So} ,{Oc} ,{Ke,Re,Sc,Th}} .0633 

{{St} ,{Br} ,{Gi} ,{So} ,{Oc} ,{Ke} ,{Re,Sc,Th}} .0030 

Similarly, we have a very high VAF of 98.12% based on the more numerous partitions 
generated from consec_subsetf i t _ a l t e r .m: 
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Partition Partition Increment 

{{St,Br} ,{Gi,So,Oc,Ke,Re,Sc,Th}} .0021 
{{St,Br,Gi} ,{So,Oc,Ke,Re,Sc,Th}} .0001 
{{St,Br,Gi,So} ,{Oc,Ke,Re,Sc,Th}} .0001 
{{St,Br,Gi,So,Oc,Ke},{Re,Sc,Th}} .0100 
{{St,Br,Gi,So,Oc,Ke,Re},{Sc,Th}} .1218 

{{St},{Br,Gi},{So,Oc,Ke,Re,Sc,Th}} .0034 
{{St},{Br,Gi,So,Oc},{Ke,Re,Sc,Th}} .0056 
{ {St} ,{Br,Gi,So,Oc,Ke,Re} ,{Sc,Th} } .0113 
{{St},{Br,Gi,So,Oc,Ke,Re,Sc},{Th}} .0038 

{{St} ,{Br,Gi,So,Oc,Ke,Re,Sc,Th}} .1170 
{{St,Br},{Gi,So},{Oc,Ke,Re,Sc,Th}} .0165 

{{St,Br} ,{Gi,So,Oc,Ke,Re,Sc,Th}} .0095 
{{St,Br,Gi},{So,Oc},{Ke,Re,Sc,Th}} .0197 
{{St,Br,Gi},{So,Oc,Ke,Re,Sc,Th}} .0115 
{{St,Br,Gi,So} ,{Oc,Ke,Re,Sc,Th}} .2294 
{{St,Br,Gi,So,Oc},{Ke,Re,Sc,Th}} .0353 
{{St,Br,Gi,So,Oc,Ke} ,{Re,Sc,Th}} .0400 
{{St,Br,Gi,So,Oc,Ke,Re} ,{Sc,Th}} .0132 

{{St} ,{Br} ,{Gi} ,{So} ,{Oc} ,{Ke} ,{Re} ,{Sc} ,{Th}} .2050 

» help consec_subsetfit.m 

CONSEC_SUBSETFIT defines a collection of partitions involving 

consecutive subsets for the object set and then calls partitionfit.m 

to fit a least-squares approximation to the input proximity matrix based 

on these identified partitions. 

syntax [f itted.vaf,weights,end_condition,member] = consec_subsetfit(prox) 

PR0X is the n x n input proximity matrix (with a zero main diagonal 

and a dissimilarity interpretation); MEMBER is the m x n matrix 

indicating cluster membership, where each row corresponds to a specific 

partition (there are m partitions in general); the columns of MEMBER 

are in the same input order used for PR0X. The partitions are defined 

by a single contiguous cluster of objects, with all objects before and 

after this contiguous set forming individual clusters of the partitions. 

The value of m is (n*(n-l)/2) - 1; the partition defined by a single 

contiguous partition is excluded. 

FITTED is an n x n matrix fitted to PR0X (through least-squares) 

constructed from the nonnegative weights given in the m x 1 WEIGHTS 

vector corresponding to each of the partitions. VAF is the variance-

accounted-for in the proximity matrix PR0X by the fitted matrix FITTED. 

END_C0NDITIDN should be zero for a normal termination of the optimization 

process. 

» load supreme_agree.dat 

» [fitted,vaf »weights,end_condition,member] = consec__subsetfit(supreme_agree); 

» fitted 

fitted = 

0 
0.4239 
0.4239 

0.4239 

0.6178 

0.4239 

0 
0.3087 

0.3087 

0.5026 

0.4239 

0.3087 

0 
0.3035 

0.4974 

0.4239 

0.3087 

0.3035 

0 
0.4821 

0.6178 

0.5026 
0.4974 

0.4821 

0 

0.6478 

0.5326 
0.5274 

0.5121 

0.2901 

0.6866 

0.5715 

0.5663 

0.5510 

0.3290 

0.8181 

0.7029 

0.6977 

0.6824 

0.4604 

0.8181 

0.7029 

0.6977 

0.6824 

0.4604 
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0.6478 
0.6866 
0.8181 
0.8181 

0.5326 
0.5715 
0.7029 
0.7029 

0.5274 
0.5663 
0.6977 
0.6977 

0.5121 
0.5510 
0.6824 
0.6824 

0.2901 
0.3290 
0.4604 
0.4604 

0 
0.2657 
0.3972 
0.3972 

0.2657 
0 

0.3942 
0.3942 

0.3972 
0.3942 

0 
0.3942 

0.3972 
0.3942 
0.3942 

0 

» vaf 

0.9261 

» weights 

weights = 

0 
0 

0.1939 
0.0300 
0.0389 
0.1315 

0 
0 
0 
0 
0 
0 
0 

0.1152 
0 
0 
0 
0 
0 

0.0052 
0 
0 
0 
0 

0.0153 
0 
0 
0 

0.2220 
0 
0 

0.0633 
0 

0.0030 
0 
0 

» end_condition 

end_condition = 

0 

» member 

member = 
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1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

1 
1 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

1 
1 
4 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 

1 
1 
5 
5 
2 
2 
2 
2 
2 
5 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
5 
5 
5 
5 
6 
5 
5 
5 
5 
5 

1 
1 
6 
6 
6 
2 
2 
2 
2 
6 
6 
3 
3 
3 
3 
6 
4 
4 
4 
4 
5 
5 
5 
5 
6 
6 
6 
6 
6 
6 

1 
1 
7 
7 
7 
7 
2 
2 
2 
7 
7 
7 
3 
3 
3 
7 
7 
4 
4 
4 
7 
5 
5 
5 
6 
6 
6 
7 
7 
7 

8 
1 
8 
8 
8 
8 
8 
2 
2 
8 
8 
8 
8 
3 
3 
8 
8 
8 
4 
4 
8 
8 
5 
5 
8 
6 
6 
7 
7 
8 

9 
9 
9 
9 
9 
9 
9 
9 
2 
9 
9 
9 
9 
9 
3 
9 
9 
9 
9 
4 
9 
9 
9 
5 
9 
9 
6 
9 
7 
8 

» help consec_subsetfit_alter.m 

CONSEC_SUBSETFIT_ALTER defines a collection of partitions involving 

consecutive subsets for the object set and then calls partitionfit.m 

to fit a least-squares approximation to the input proximity matrix based 

on these identified partitions. 

syntax [fitted,vaf.weights,end_condition,member] = ... 

consec_subsetfit_alter(prox) 

PROX is the n x n input proximity matrix (with a zero main diagonal 

and a dissimilarity interpretation); MEMBER is the m x n matrix 

indicating cluster membership, where each row corresponds to a specific 

partition (there are m partitions in general); the columns of MEMBER 

are in the same input order used for PROX. The partitions are defined 

by a single contiguous cluster of objects, with all objects before and 

all objects after this contiguous set (when nonempty) forming 

separate individual clusters of the partitions. 

(These possible three-class partitions when before and after subsets are 

both nonempty) distinguish consec_subsetfit_alter.m from consec_subsetfit.m). 

The value of m is (n*(n-l)/2) - 1; the partition defined by a single 

contiguous partition is excluded. 

FITTED is an n x n matrix fitted to PROX (through least-squares) 

constructed from the nonnegative weights given in the m x 1 WEIGHTS 

vector corresponding to each of the partitions. VAF is the variance-

accounted-for in the proximity matrix PROX by the fitted matrix FITTED. 

END__C0NDITI0N should be zero for a normal termination of the optimization 

process. 

>> [fitted,vaf,weights,end_condition,member] = consec_subsetfit_alter(supreme_agree) 

0 0.3460 0.3740 0.4053 0.6347 0.6700 0.7200 0.8550 0.8550 

0.3460 0 0.2330 0.2677 0.4971 0.5380 0.5880 0.7342 0.7380 
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0.3740 
0.4053 
0.6347 
0.6700 
0.7200 
0.8550 
0.8550 

0.2330 
0.2677 
0.4971 
0.5380 
0.5880 
0.7342 
0.7380 

0 
0.2396 
0.4855 
0.5264 
0.5764 
0.7227 
0.7264 

0.2396 
0 

0.4509 
0.5114 
0.5614 
0.7076 
0.7114 

0.4855 
0.4509 

0 
0.2655 
0.3155 
0.4617 
0.4655 

0.5264 
0.5114 
0.2655 

0 
0.2550 
0.4012 
0.4050 

0.5764 
0.5614 
0.3155 
0.2550 

0 
0.3512 
0.3550 

0.7227 
0.7076 
0.4617 
0.4012 
0.3512 

0 
0.2087 

0.7264 
0.7114 
0.4655 
0.4050 
0.3550 
0.2087 

0 

0.9812 

weights = 

0.0021 
0.0001 
0.0001 

0 
0.0100 
0.1218 

0 
0.0034 

0 
0.0056 

0 
0.0113 
0.0038 
0.1170 
0.0165 

0 
0 
0 
0 

0.0095 
0.0197 

0 
0 
0 

0.0115 
0 
0 
0 

0.2294 
0 
0 

0.0353 
0 

0.0400 
0.0132 
0.2050 

end_condition 

0 

member = 
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1 1 
1 2 
1 2 
1 2 
1 2 
1 2 
1 2 
1 2 

1 2 

1 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 

3 

1 
9 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 

4 

1 
9 
9 
2 
2 
2 
2 
2 
9 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
5 
5 
5 
5 

5 

1 
9 
9 
9 
2 
2 
2 
2 
9 
9 
3 
3 
3 
3 
9 
4 
4 
4 
4 
5 
5 
5 
5 
6 
6 
6 
1 
1 
1 
6 

1 
9 
9 
9 
9 
2 
2 
2 
9 
9 
9 
3 
3 
3 
9 
9 
4 
4 
4 
9 
5 
5 
5 
6 
6 
6 
7 
7 
1 
7 

1 
9 
9 
9 
9 
9 
2 
2 
9 
9 
9 
9 
3 
3 
9 
9 
9 
4 
4 
9 
9 
5 
5 
9 
6 
6 
7 
7 
8 
8 

9 
9 
9 
9 
9 
9 
9 
2 
9 
9 
9 
9 
9 
3 
9 
9 
9 
9 
4 
9 
9 
9 
5 
9 
9 
6 
9 
7 
8 
9 

To see how well we might do in relation to choosing only eight partitions to consider 
(i.e., the same number defining the order-constrained best-fitting ultrametric), we 
chose in both instances the single (disjoint) partition defined by nine separate classes 
plus seven partitions that have the highest assigned weights. For those picked from 
the partition pool identified by consec_subsetf i t .m, the VAF drops slightly from 
92.61% to 92.51% using the partitions 

Partition 

{{St,Br,Gi,So} ,{Oc} ,{Ke} ,{Re} ,{Sc} ,{Th}} 
{{St,Br,Gi,So,Oc},{Ke},{Re},{Sc},{Th}} 

{{St,Br,Gi,So,Oc,Ke},{Re},{Sc},{Th}} 
{{St,Br,Gi,So,Oc,Ke,Re},{Sc},{Th}} 

{{St} ,{Br,Gi,So,Oc,Ke,Re,Sc,Th}} 
{{St} ,{Br} ,{Gi} ,{So} ,{Oc,Ke,Re,Sc,Th}} 

{{St},{Br},{Gi},{So},{Oc},{Ke,Re,Sc,Th}} 
{{St} ,{Br} ,{Gi} ,{So} ,{Oc} ,{Ke} ,{Re} ,{Sc} ,{Th}} 

Partition Increment 

.1923 

.0301 

.0396 

.1316 

.1224 

.2250 

.0671 

.0000 

For those selected from the set generated by consec_subsetf i t _ a l t e r . m, the VAF 
again drops slightly, from 98.12% to 97.97%. But in some absolute sense given the 
size of the VAF, the eight partitions listed below seem to be about all that can be 
extracted from this particular justice data set. 
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Partition 

{{St,Br,Gi,So,Oc,Ke,Re},{Sc,Th}} 
{{St},{Br,Gi,So,Oc,Ke,Re,Sc,Th}} 

{{St,Br} ,{Gi,So} ,{Oc,Ke,Re,Sc,Th}} 
{{St,Br,Gi},{So,Oc},{Ke,Re,ScJh}} 

{{St,Br,Gi,So} ,{Oc,Ke,Re,Sc,Th}} 
{{St,Br,Gi,So,Oc},{Ke,Re,Sc,Th}} 
{{St,Br,Gi,So,Oc,Ke},{Re,Sc,Th}} 

{{St} ,{Br} ,{Gi} ,{So} ,{Oc} ,{Ke} ,{Re} ,{Sc} ,{Th}} 

Partition Increment 

.1466 

.1399 

.0287 

.0326 

.2269 

.0316 

.0500 

.2051 

The three highest weighted partitions have very clear interpretations: {Sc,Th} versus 
the rest; {St} versus the rest; {St,Br,Gi,So} as the left versus {Oc,Ke,Re,Sc,Th} 
as the right. The few remaining partitions revolve around several other less salient 
(adjacent) object pairings that are also very interpretable in relation to the object 
ordering from liberal to conservative. We give a graphical representation of the latter 
culled collection of partitions in Figure 3.3. Again, the partition increments are not 
included in a fitted value whenever a continuous horizontal line encompasses the 
relevant objects in a defining cluster of the partition. 

» member = [ 1 1 1 1 5 6 7 8 9 ; 1 1 1 1 1 6 7 8 9 ; 1 1 1 1 1 1 7 8 9 ; 1 1 1 1 1 1 1 8 9; 
1 2 2 2 2 2 2 2 2 ; ! 2 3 4 5 5 5 5 5 ; ! 2 3 4 5 6 6 6 6 ; ! 2 3 4 5 6 7 8 9] 

1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
2 
2 
2 
2 

1 
1 
1 
1 
2 
3 
3 
3 

1 
1 
1 
1 
2 
4 
4 
4 

5 
1 
1 
1 
2 
5 
5 
5 

6 
6 
1 
1 
2 
5 
6 
6 

7 
7 
7 
1 
2 
5 
6 
7 

8 
8 
8 
8 
2 
5 
6 
8 

9 
9 
9 
9 
2 
5 
6 
9 

>> [f i t ted ,vaf ,weights ,end_condi t ion] = parti t ionfit(supreme_agree,member) 

f i t t e d = 

0 0.4245 0.4245 0.4245 0.6168 0.6469 0.6865 0.8181 0.8181 
0.4245 
0.4245 
0.4245 
0.6168 
0.6469 
0.6865 
0.8181 
0.8181 

0 
0.3021 
0.3021 
0.4944 
0.5245 
0.5641 
0.6957 
0.6957 

0.3021 
0 

0.3021 
0.4944 
0.5245 
0.5641 
0.6957 
0.6957 

0.3021 
0.3021 

0 
0.4944 
0.5245 
0.5641 
0.6957 
0.6957 

0.4944 
0.4944 
0.4944 

0 
0.2895 
0.3291 
0.4607 
0.4607 

0.5245 
0.5245 
0.5245 
0.2895 

0 
0.2620 
0.3936 
0.3936 

0.5641 
0.5641 
0.5641 
0.3291 
0.2620 

0 
0.3936 
0.3936 

0.6957 
0.6957 
0.6957 
0.4607 
0.3936 
0.3936 

0 
0.3936 

0.6957 
0.6957 
0.6957 
0.4607 
0.3936 
0.3936 
0.3936 

0 

vaf = 

weights = 

0.1923 
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Figure 3.3 Representation for the fitted values of the (generalized) structure described in the 
text (having a VAF of 97.97%). 

O O O O O O O O O 

St Br Gi So Oc Ke Re Sc Th 
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end 

0 
0 
0 
0 
0 
0 

0301 
0396 
1316 
1224 
2350 
0671 

0 

„condition 

» member = [ 1 1 1 1 1 1 1 9 9 ; 1 2 2 2 2 2 2 2 2 ; 1 1 3 3 9 9 9 9 9 ; 1 1 1 4 4 9 9 9 9; 
1 1 1 1 5 5 5 5 5 ; ! 1 1 1 1 6 6 6 6 ; ! 1 1 1 1 1 7 7 7 ; ! 2 3 4 5 6 7 8 9] 

1 
2 
3 
1 
1 
1 
1 
3 

1 
2 
3 
4 
1 
1 
1 
4 

1 
2 
9 
4 
5 
1 
1 
5 

1 
2 
9 
9 
5 
6 
1 
6 

1 
2 
9 
9 
5 
6 
7 
7 

9 
2 
9 
9 
5 
6 
7 
8 

9 
2 
9 
9 
5 
6 
7 
9 

» [f i t t e d , vaf , weights, end_cond.it ion] = pa r t i t ionf i t (supreme_agree, member) 

f i t t e d = 

0 
0.3450 
0.3736 
0.4062 
0.6331 
0.6647 
0.7147 
0.8613 
0.8613 

0.3450 
0 

0.2337 
0.2664 
0.4933 
0.5248 
0.5748 
0.7215 
0.7215 

0.3736 
0.2337 

0 
0.2377 
0.4933 
0.5248 
0.5748 
0.7215 
0.7215 

0.4062 
0.2664 
0.2377 

0 
0.4606 
0.5248 
0.5748 
0.7215 
0.7215 

0.6331 
0.4933 
0.4933 
0.4606 

0 
0.2693 
0.3193 
0.4659 
0.4659 

0.6647 
0.5248 
0.5248 
0.5248 
0.2693 

0 
0.2551 
0.4017 
0.4017 

0.7147 
0.5748 
0.5748 
0.5748 
0.3193 
0.2551 

0 
0.3517 
0.3517 

0.8613 
0.7215 
0.7215 
0.7215 
0.4659 
0.4017 
0.3517 

0 
0.2051 

0.8613 
0.7215 
0.7215 
0.7215 
0.4659 
0.4017 
0.3517 
0.2051 

0 

weights 

0.1466 
0.1399 
0.0287 
0.0326 
0.2269 
0.0316 
0.0500 
0.2051 

end_condition = 

0 
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3.3.1 Ordered Partition Generalizations 

Given the broad characterization of the properties of an ultrametric described earlier, 
the generalization mentioned in this subsection rests on merely altering the type of 
partition allowed in the sequence T>o,Vi,..., VT- Specifically, we will still use an 
object order Op(i) - < · · · - < Ορ(„) , and a collection of partitions with fewer and 
fewer classes consistent with this order by requiring the classes within each partition 
to contain contiguous objects. However, the constraint will be removed that the new 
classes in Vt be formed by uniting only existing classes in Vt-i- Thus, although 
class contiguity is maintained with respect to the same object order in the partitions 
we identify, the requirement that the classes be nested is relaxed so that if a class 
is present in Vt-i, it will no longer need to appear either as a class by itself or 
be properly contained within some class in V±. In comparison to an ultrametric, 
the extension pursued also requires no more than n — 1 estimated parameters, but 
because differing subsets of parameters will be combined additively, more than n — 1 
distinct values in a matrix fitted to P is possible. The resulting fitted matrix will be 
SAR, so a consistent graphical representation can be provided, and ultrametrics will 
be included as a special case. 

The M-file we propose to construct the collection of partitions respecting the given 
object order is called p a r t i t i o n f nd_averages. m, and uses dynamic programming 
to construct a set of partitions with from 1 to n ordered classes (see Hubert, Arabie, 
& Meulman, 2001). The criterion minimized is the maximum over clusters of the 
average proximities within subsets. In the verbatim listing below, we note that the 
collection of partitions constructed is hierarchical and actually produces the same 
order-constrained classification as that discussed in Section 3.2. This will not neces-
sarily (or even usually) be the case for other data sets that we might consider. 

» help partitionfnd_averages.m 

PARTITIONFND.AVERAGES uses dynamic programming to 

construct a linearly constrained cluster analysis that 

consists of a collection of partitions with from 1 to 

n ordered classes. 

syntax: [membership,objectives] = partitionfnd_averages(prox) 

PROX is the input proximity matrix (with a zero main diagonal 

and a dissimilarity interpretation); 

MEMBERSHIP is the n x n matrix indicating cluster membership, 

where rows correspond to the number of ordered clusters, 

and the columns are in the identity permutation input order 

used for PROX. 

OBJECTIVES is the vector of merit values minimized in the 

construction of the ordered partitions, each defined by the 

maximum over clusters of the average proximities within subsets. 

» [membership,objectives] = partitionfnd_averages(supreme_agree) 

¡rs] 

1 
2 
3 
4 
5 

tiip = 

1 
2 
3 
3 
4 

1 
2 
3 
3 
4 

1 
2 
3 
3 
4 

1 
1 
2 
2 
3 

1 
1 
2 
2 
2 

1 
1 
2 
2 
2 

1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
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object ives = 

0.5044 
0.3470 
0.3133 
0.2833 
0.2633 
0.2300 
0.2200 
0.2100 

0 

>> member = membership(2:9,:) 

member = 

2 
3 
4 
5 
6 
7 
8 
9 

2 
3 
3 
4 
5 
6 
7 
8 

2 
3 
3 
4 
4 
5 
6 
7 

2 
3 
3 
4 
4 
5 
5 
6 

1 
2 
2 
3 
3 
4 
4 
5 

1 
2 
2 
2 
2 
3 
3 
4 

1 
2 
2 
2 
2 
2 
2 
3 

1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
2 1 

» [fitted, vaf , weights, end_cond.it ion] = partitionf it (supreme_agree, member) 

fitted = 

0 
0.3633 
0.3633 
0.3633 
0.6405 
0.6405 
0.6405 

0.3633 
0 

0.2850 
0.2850 
0.6405 
0.6405 
0.6405 

0.3633 
0.2850 

0 
0.2200 
0.6405 
0.6405 
0.6405 

0.3633 
0.2850 
0.2200 

0 
0.6405 
0.6405 
0.6405 

0.6405 
0.6405 
0.6405 
0.6405 

0 
0.3100 
0.3100 

0.6405 
0.6405 
0.6405 
0.6405 
0.3100 

0 
0.2300 

0.6405 
0.6405 
0.6405 
0.6405 
0.3100 
0.2300 

0 

0.6405 
0.6405 
0.6405 
0.6405 
0.4017 
0.4017 
0.4017 

0.6405 
0.6405 
0.6405 
0.6405 
0.4017 
0.4017 
0.4017 

0.6405 
0.6405 
0.6405 0.6405 0.6405 0.4017 0.4017 

weights = 

0.2388 
0.0383 
0.0533 
0.0250 
0.0550 
0.0100 
0.0100 
0.2100 

encLcondition = 

0 
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3.4 EXTENSIONS TO ADDITIVE TREES: INCORPORATING CENTROID 
METRICS 

A currently popular alternative to the use of a simple ultrametric in classification, 
which might be considered an extension of the notion of an ultrametric, is that of 
an additive tree metric (again, comprehensive discussions can be found throughout 
all of Barthélemy & Guénoche, 1991). Generalizing the earlier characterization of 
an ultrametric, an n X n matrix D = {d¿·,} can be called an additive tree metric 
{matrix) if the ultrametric inequality condition (C) is replaced by dij + dki < 
max{<á¿fc + dji,du + djk} for 1 < i,j,k,l < n (the additive tree metric 
inequality). Or equivalently, for any object quadruple 0 ¿ , Oj, Ok, and Οι, the 
largest two values among the sums dij + d^i, <2¿fc + dji, and du + djk are equal. 
Any additive tree metric matrix D can be represented (in many ways) as a sum of two 
matrices, say U = {UÍJ} and C = { c ^ } , where U is an ultrametric matrix, and 
dj = gi + 9j for 1 < i φ j < n and cu = 0 for 1 < i < n , based on some 
set of values gi,...,gn- The multiplicity of such possible decompositions results 
from the choice of where to place the root in the type of graphical representation we 
give in Figure 3.4. 

To eventually construct the type of graphical additive tree representation of Figure 
3.4, the process followed is first to graph the dendrogram induced by U , where (as for 
any ultrametric) the chosen root is equidistant from all terminal nodes. The branches 
connecting the terminal nodes are then lengthened or shortened depending on the signs 
and absolute magnitudes of g i , . . . ,gn. If one were willing to consider the (arbitrary) 
inclusion of a sufficiently large additive constant to the entries in D , the values of 
g i , . . . , gn could be assumed nonnegative. In this case, the matrix C would represent 
what is called a centroid metric, and although a nicety (particularly for some of the 
graphical representations we give later in avoiding the issue of presenting negative 
branch lengths), such a restriction is not absolutely necessary for the extensions we 
pursue. In any case, the number of parameters in the extended sense alluded to 
earlier that an additive tree metric requires could be equated to the maximum number 
of branch lengths that a representation such as Figure 3.4 might necessitate (i.e., n 
branches attached to the terminal nodes, and n — 3 to the internal nodes only, for a 
total of In - 3). 

One of the difficulties with working with additive trees and displaying them graph-
ically is to find some sensible spot to site a root for the tree. Depending on where 
the root is placed, a differing decomposition of D into an ultrametric and a centroid 
metric is implied. The ultrametric components induced by the choice of root can 
differ widely, with major substantive differences in the branching patterns of the hi-
erarchical clustering. The two M-files discussed below, cent_ul t raf nd_conf i t . m 
and cent_ultrafnd_confnd.m, both identify best-fitting additive trees to a given 
proximity matrix but where the terminal nodes of (an) ultrametric portion of the 
fitted matrix are then ordered according to a constraining order (conperm) that is 
either input (in cent_ul t raf nd_conf i t .m) or is identified as a good one to use (in 
cent_ultrafnd_confnd.m) and then given as an output vector. In both cases, a 
centroid metric is first fit to the input proximity matrix; the residual matrix is carried 
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Figure 3.4 Graph-theoretic representation for the ordered-constrained additive tree described 
in the text (having a VAF of 98.41%). 
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over to the order-constrained ultrametric identifying routines (u l t raf nd_conf i t .m 
or ultrafnd_confnd.m), and thus, the root is chosen naturally for the ultrametric 
component. The entire process then iterates with a new centroid metric estimation, an 
order-constrained ultrametric reestimation, and so on, until convergence is achieved 
for the VAF values. 

We illustrate below what occurs for our supreme_agree data and the imposition of 
the identity permutation (1:9) for the terminal nodes of the ultrametric. The relevant 
outputs are the ultrametric component in targtwo and the lengths for the centroid 
metric in lengthsone. To graph the additive tree, we first add .60 to the entries in 
targtwo to make them all positive and graph this ultrametric as in Figure 3.5. Then 
(l/2)(.60) = .30 is subtracted from each term in lengthsone; the branches attached 
to the terminal nodes of the ultrametric are then stretched or shrunk accordingly to 
produce Figure 3.4. [These stretching/shrinking factors are as follows: St: (.07); 
Br: (-.05); Gi: (-.06); So: (-.09); Oc: (-.18); Ke: (-.14); Re: (-.10); Sc: 
(.06); Th: (.06)]. We note that if cent_ultrafnd_confnd.m were used to find a 
good constraining order for the ultrametric component, the VAF could be increased 
slightly (to 98.56%) when the conperm of [3 1 4 2 5 6 7 9 8] is used. No real 
substantive interpretative difference, however, is apparent from the structure given in 
Figure 3.4. 

» help cent „ultraf nd_confit.m 

CENT_ULTRAFND_C0NFIT finds and fits an additive tree by first fitting 

a centroid metric and secondly an ultrametric to the residual 

matrix where the latter is constrained by a given object order. 

syntax: [find.vaf,outperm,targone,targtwo.lengthsone] = ... 

cent_ultrafnd_confit(prox,inperm,conperm) 

PR0X is the input proximity matrix (with a zero main diagonal 

and a dissimilarity interpretation); CONPERM is the given 

input constraining order (permutation) which is also given 

as the output vector 0UTPERM; 

INPERM is a permutation that determines the order in which the 

inequality constraints are considered in identifying the ultrametric; 

FIND is the found least-squares matrix (with variance-accounted-for 

of VAF) to PROX satisfying the additive tree constraints. TARGTWO is 

the ultrametric component of the decomposition; TARG0NE is 

metric component defined by the lengths in LENGTHSONE. 

» [f ind,vaf,outperm,targone,targtwo,lengthsone] 

= cent_ultrafnd_confit(supreme_agree,randperm(9),1:9) 

find = 

0 
0.3800 

0.3707 

0.3793 

0.6307 

0.6643 

0.7067 
0.8634 

0.8649 

0.3800 

0 
0.2493 

0.2579 

0.5093 

0.5429 

0.5852 
0.7420 

0.7434 

0.3707 

0.2493 

0 
0.2428 

0.4941 

0.5278 

0.5701 
0.7269 

0.7283 

0.3793 

0.2579 

0.2428 

0 
0.4667 

0.5003 
0.5427 

0.6994 

0.7009 

0.6307 

0.5093 

0.4941 

0.4667 

0 
0.2745 

0.3168 

0.4736 

0.4750 

0.6643 

0.5429 

0.5278 

0.5003 

0.2745 

0 
0.2483 

0.4051 

0.4065 

the centroid 

0. 
0. 
0. 
0. 
0 
0 

0 
0 

.7067 

.5852 

.5701 

.5427 

.3168 

.2483 

0 
.3293 

.3307 

0.8634 

0.7420 

0.7269 

0.6994 

0.4736 

0.4051 

0.3293 

0 
0.2100 

0.8649 

0.7434 

0.7283 

0.7009 

0.4750 

0.4065 

0.3307 

0.2100 

0 

vaf = 
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Figure 3.5 Dendrogram representation for the ordered-constrained ultrametric component 
of the tree represented in Figure 3.4 
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0.9841 

outperm = 

1 2 

targone 

0 
0.6246 

0.6094 

0.5820 

0.4977 

0.5313 

0.5737 

0.7304 

0.7319 

0.6246 

0 
0.4880 

0.4606 

0.3763 
0.4099 

0.4522 

0.6090 

0.6104 

0.6094 

0.4880 

0 
0.4454 

0.3611 

0.3948 

0.4371 

0.5939 

0.5953 

0.5820 

0.4606 
0.4454 

0 
0.3337 

0.3673 

0.4097 

0.5664 
0.5679 

0.4977 

0.3763 

0.3611 

0.3337 

0 
0.2830 

0.3253 

0.4821 

0.4836 

0.5313 

0.4099 

0.3948 

0.3673 

0.2830 

0 
0.3590 

0.5158 
0.5172 

0.5737 

0.4522 

0.4371 

0.4097 

0.3253 

0.3590 

0 
0.5581 

0.5595 

0.7304 

0.6090 

0.5939 

0.5664 

0.4821 

0.5158 

0.5581 

0 
0.7163 

0.7319 

0.6104 

0.5953 

0.5679 

0.4836 

0.5172 

0.5595 

0.7163 

0 

targtwo 

0 
■0.2446 

■0.2387 

-0.2027 

0.1330 

0.1330 

0.1330 

0.1330 

0.1330 

-0.2446 

0 
-0.2387 

-0.2027 

0.1330 

0.1330 

0.1330 

0.1330 

0.1330 

-0.2387 

-0.2387 

0 
-0.2027 

0.1330 

0.1330 

0.1330 

0.1330 

0.1330 

-0.2027 

-0.2027 

-0.2027 

0 
0.1330 

0.1330 

0.1330 

0.1330 

0.1330 

0.1330 

0.1330 

0.1330 

0.1330 

0 
-0.0085 

-0.0085 

-0.0085 

-0.0085 

0.1330 

0.1330 

0.1330 

0.1330 

-0.0085 

0 
-0.1107 

-0.1107 

-0.1107 

0.1330 

0.1330 

0.1330 

0.1330 

-0.0085 

-0.1107 

0 
-0.2288 

-0.2288 

0.1330 

0.1330 

0.1330 

0.1330 

-0.0085 

-0.1107 

-0.2288 

0 
-0.5063 

0.1330 

0.1330 

0.1330 

0.1330 

-0.0085 

-0.1107 

-0.2288 

-0.5063 

0 

lengthsone = 

0.3730 0.2516 0.2364 0.2090 0.1247 0.1583 

» help cent_ultrafnd_confnd.m 

0.2007 

CENT_ULTRAFND_C0NFND finds and fits an additive tree by first fitting 

a centroid metric and secondly an ultrametric to the residual 

matrix where the latter is displayed by a constraining object order that 

is also identified in the process. 

syntax: [find.vaf,outperm,targone,targtwo.lengthsone] = ... 

cent_ultrafnd_confnd(prox,inperm) 

PR0X is the input proximity matrix (with a zero main diagonal 

and a dissimilarity interpretation); 

INPERM is a permutation that determines the order in which the 

inequality constraints are considered in identifying the ultrametric; 

FIND is the found least-squares matrix (with variance-accounted-for 

of VAF) to PR0X satisfying the additive tree constraints. TARGTWO is 

the ultrametric component of the decomposition; TARGONE is the centroid 

metric component defined by the lengths in LENGTHSONE; OUTPERM is the 

identified constraining object order used to display the ultrametric 

component. 

» [f ind,vaf.outperm,targone,targtwo,lengthsone] 
= cent_ultrafnd_confnd(supreme_agree,randperm(9)) 

find = 

0 
0.3400 

0.2271 

0.3400 

0 
0.3629 

0.2271 

0.3629 

0 

0.2794 

0.4151 

0.2556 

0.4974 

0.6331 

0.4736 

0.5310 

0.6667 

0.5072 

0.5734 

0.7091 

0.5495 

0.7316 

0.8673 

0.7078 

0.7301 

0.8659 

0.7063 
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0.2794 
0.4974 
0.5310 
0.5734 
0.7316 
0.7301 

0.4151 
0.6331 
0.6667 
0.7091 
0.8673 
0.8659 

0.2556 
0.4736 
0.5072 
0.5495 
0.7078 
0.7063 

0 
0.4967 
0.5303 
0.5727 
0.7309 
0.7294 

0.4967 
0 

0.2745 
0.3168 
0.4750 
0.4736 

0.5303 
0.2745 

0 
0.2483 
0.4065 
0.4051 

0.5727 
0.3168 
0.2483 

0 
0.3307 
0.3293 

0.7309 
0.4750 
0.4065 
0.3307 

0 
0.2100 

0.7294 
0.4736 
0.4051 
0.3293 
0.2100 

0 

outperm 

3 

targone 

0 
0.6151 
0.4556 
0.4787 
0.3644 
0.3980 
0.4404 
0.5986 
0.5971 

targtwo = 

0 
-0.2751 
-0.2284 
-0.1993 
0.1330 
0.1330 
0.1330 
0.1330 
0.1330 

lengthsone = 

0.2397 

0.6151 
0 

0.5913 
0.6144 
0.5001 
0.5337 
0.5761 
0.7343 
0.7329 

-0.2751 
0 

-0.2284 
-0.1993 
0.1330 
0.1330 
0.1330 
0.1330 
0.1330 

0.3754 

0.4556 
0.5913 

0 
0.4549 
0.3406 
0.3742 
0.4165 
0.5748 
0.5733 

-0.2284 
-0.2284 

0 
-0.1993 
0.1330 
0.1330 
0.1330 
0.1330 
0.1330 

0.2159 

0.4787 
0.6144 
0.4549 

0 
0.3637 
0.3973 
0.4397 
0.5979 
0.5964 

-0.1993 
-0.1993 
-0.1993 

0 
0.1330 
0.1330 
0.1330 
0.1330 
0.1330 

0.2390 

0.3644 
0.5001 
0.3406 
0.3637 

0 
0.2830 
0.3253 
0.4836 
0.4821 

0.1330 
0.1330 
0.1330 
0.1330 

0 
-0.0085 
-0.0085 
-0.0085 
-0.0085 

0.1247 

0.3980 
0.5337 
0.3742 
0.3973 
0.2830 

0 
0.3590 
0.5172 
0.5158 

0.1330 
0.1330 
0.1330 
0.1330 
-0.0085 

0 
-0.1107 
-0.1107 
-0.1107 

0.1583 

0.4404 
0.5761 
0.4165 
0.4397 
0.3253 
0.3590 

0 
0.5595 
0.5581 

0.1330 
0.1330 
0.1330 
0.1330 
-0.0085 
-0.1107 

0 
-0.2288 
-0.2288 

0.2007 

0.5986 
0.7343 
0.5748 
0.5979 
0.4836 
0.5172 
0.5595 

0 
0.7163 

0.1330 
0.1330 
0.1330 
0.1330 
-0.0085 
-0.1107 
-0.2288 

0 
-0.5063 

0.3589 

0.5971 
0.7329 
0.5733 
0.5964 
0.4821 
0.5158 
0.5581 
0.7163 

0 

0.1330 
0.1330 
0.1330 
0.1330 
-0.0085 
-0.1107 
-0.2288 
-0.5063 

0 

0.3574 
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CHAPTER 4 

MULTIOBJECTIVE MULTIDIMENSIONAL 
(CITY-BLOCK) SCALING 

4.1 INTRODUCTION 

Combinatorial data analysis (CDA) encompasses a wide class of models and methods 
that can be applied to a number of quantitative problems in psychology, as well as 
other disciplines. For example, Arabie and Hubert (1992) outlined important CDA 
problems related to seriation, cluster analysis, additive trees, and network models. 
Their review captured both the various classes of combinatorial optimization problems 
in each of these areas, as well as available solution procedures for such problems. In a 
recent monograph, Hubert, Arabie, and Meulman (2001) provided an updated review 
of hierarchical clustering, partitioning, and seriation, as well as a general dynamic 
programming paradigm that can be used to obtain optimal solutions for problems 
of modest size. Recent developments in CDA have also emphasized the need for 
multiobjective programming methods that enable the quantitative analyst to make 
trade-offs among competing objective criteria. Delattre and Hansen (1980) presented 
an algorithm for a bicriterion partitioning problem that focused on the identification of 
clusters that were both homogeneous and well separated. Ferligoj and Batagelj (1992) 
described a number of approaches for multiobjective programming in cluster analysis, 
emphasizing a direct clustering algorithm for multiobjective hierarchical clustering. 
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More recently, Krieger and Green (1996), DeSarbo and Grisaffe (1998), Brusco, 
Cradit, and Stahl (2002), and Brusco, Cradit, and Tashchian (2003) have presented 
multiobjective partitioning models that seek to identify homogeneous clusters, while 
maintaining sufficient explanation of one or more exogenous dependent variables in 
each of those clusters. 

Brusco and Stahl (2001) presented a multiobjective dynamic programming proce-
dure for seriation that can be used to identify a permutation of objects that provides a 
good structural fit to a single proximity matrix. The objective function of their model 
was to optimize a weighted function of two or more structural indices. Within the 
context of seriation of a set of M proximity matrices, A = {Αχ, Α 2 , . . . , A M } , 
available for the same stimulus set, Brusco (2002) observed that an optimal permuta-
tion of objects for any particular matrix in Λ, or a matrix based on pooling the matrices 
in A, can provide a poor representation for one or more of the other matrices in A. 
He subsequently proposed a multiobjective programming model for finding a permu-
tation that provides a good fit for each of the matrices in A. Using the multiobjective 
programming model and a dynamic programming-based solution algorithm, Brusco 
demonstrated the possibility of finding a single permutation that fit each of the ma-
trices in A extremely well, even when antagonistic relationships existed among some 
of the matrices in A. Motivated by the recent success for multiobjective clustering 
and seriation, our current paper focuses on a natural extension of the multiobjective 
programming paradigm to another important CDA application in multidimensional 
scaling (MDS). Although many MDS problems are particularly amenable to continu-
ous optimization techniques, the inherent combinatorial structure of city-block MDS 
is well recognized (Brusco, 2001; Carroll & Arabie, 1998; Heiser, 1989; Hubert 
& Arabie, 1988; Hubert, Arabie, & Hesson-Mclnnis, 1992). The extension of the 
multiobjective CDA paradigm to city-block MDS presents a formidable challenge 
because we must obtain object permutations on multiple dimensions, as well as co-
ordinates for each object on each dimension. Dynamic programming-based optimal 
solution procedures for multiobjective seriation are not feasible for city-block MDS 
because the inherent recursive structure is no longer present, and heuristic methods 
are therefore necessary. 

Despite the computational challenges, extension of the multiobjective program-
ming paradigm to city-block MDS is particularly worthwhile because of the well-
recognized problems of pooling across multiple proximity matrices in MDS analyses 
(Ashby, Maddox, & Lee, 1994; Furnas, 1989; Lee & Pope, 2003; Siegler, 1987). Al-
though the multiobjective programming approach described herein does not provide 
a definitive remedy for the problem of pooling across many subjects, our proposed 
method will enable quantitative analysts to apply a systematic procedure for obtain-
ing good structural fits for each of several proximity matrices. As noted by Davison 
(1983, pp. 121-122), there are frequently situations where researchers collect data for 
differing experimental settings, treatment conditions, or other collection occasions. 
The proximity matrices obtained from the multiple sources are subsequently pooled 
for further analysis. Examples from the literature include pooling across different 
voices in auditory recognition tasks (Morgan, Chambers, & Morton, 1973), and pool-
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ing across active and passive touch in tactile experiments (Vega-Bemudez, Johnson, 
& Hsiao, 1991). 

The multiobjective programming models for city-block MDS that are presented in 
this chapter provide sufficient flexibility to handle either a metric loss function or a 
stress measure (Kruskal, 1964a,b) for nonmetric relaxations. Solutions to the multi-
objective problems are provided by a heuristic procedure that is based on previously 
published combinatorial methods for city-block MDS (Brusco, 2001; Hubert et al., 
1992). To demonstrate their efficacy, the multiobjective models are applied to two 
published data sets from the psychological literature. A brief review of city-block 
MDS is reported in Section 4.2. In Section 4.3 we present the multiobjective city-
block MDS model and in Section 4.4 provide a description of the solution algorithm 
for the multiobjective problem. Demonstrations of the multiobjective programming 
model are presented in Section 4.5, and the chapter concludes with a brief summary 
in Section 4.6. 

4.2 CITY-BLOCK MDS 

When the dimensions of psychological stimuli are separable, a common observation 
with MDS models is that city-block distances provide the preferred representation of 
stimulus space (Arabie, 1991; Attneave, 1950; Carroll & Arabie, 1980,1998; Garner, 
1974; Lee, 2001; MacKay, 2001; Myung & Shepard, 1996; Nosofsky, 1992; Shepard, 
1964, 1987; Shepard & Arabie, 1979; Suppes, Krantz, Luce, & Tversky, 1989). Re-
search on the perception of objects is one particular area that provides strong support 
for the tenability of the city-block metric. For example, Borg and Leutner (1983) and 
Hubert et al. (1992) successfully fitted two-dimensional city-block models to dissim-
ilarity data related to the perception of the similarity of rectangles. Similarly, Shepard 
and Cermak (1973) found city-block properties in judgments regarding toroidal forms, 
and Dunn (1983) observed that the dimensions of parallelogram size and tilt were 
combined on the basis of a city-block metric. More recently, results reported by 
Kruschke (1993) and Lee (2001) indicated the appropriateness of a city-block metric 
for data related to categorization tasks involving rectangles. Wuerger, Maloney, and 
Krauskopf (1995) found evidence that subject judgments regarding the proximity of 
colored lights were consistent with the city-block metric. The relevance of city-block 
MDS even extends to animal research. For example, Ronacher (1992) observed that 
bees used the city-block (as opposed to Euclidean) metric in their discrimination of 
ring patterns. 

As noted by Arabie (1991, p. 572), even previous studies that have not revealed 
support for the city-block metric (e.g., Hoben, 1968; Melara, 1989; Monahan & 
Lockhead, 1977; Tversky & Gati, 1982) must be viewed cautiously because of an 
algorithmic issue. One of the well-documented problems of city-block MDS is the 
potential for relatively poor local optima, especially when traditional gradient-based 
methods are used (Arabie, 1973, 1991; Grau & Nelson, 1988; Groenen & Heiser, 
1996; Hubert & Arabie, 1988; Hubert et al., 1992; Shepard, 1974). When employed 
to minimize loss functions (or Stress indices in the nonmetric case) in city-block 
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MDS, gradient-based methods exhibit convergence problems and often fail to move 
very far from the starting configuration. As a result, the solutions provided by gradient-
based methods frequently yield loss functions (or Stress values) that are much larger 
than those corresponding to global optima. Hubert and Arabie (1988) and Hubert et 
al. (1992) provide particularly good discussions and demonstrations of the reason 
gradient-based methods are apt to fail in the two-dimensional city-block context. 

The well-recognized problem of poor local minima has stimulated the development 
of a number of alternative solution procedures for city-block MDS, thus contributing 
to the effort to overcome the limitations of gradient-based methods and corresponding 
inferior local optima. In addition to combinatorial methods (Brusco, 2001; Heiser, 
1989; Hubert et al., 1992), these procedures include majorization (Heiser, 1989), 
the tunneling method (Groenen & Heiser, 1996), and distance smoothing heuristics 
(Groenen, Heiser, & Meulman, 1998,1999). Although none of these methods guaran-
tee the identification of a globally optimal solution, simulation experiments do seem 
to suggest that they are at least capable of finding very good locally optimal solutions. 

4.3 MULTIOBJECTIVE CITY-BLOCK MDS 

4.3.1 The Metric Multiobjective City-Block MDS Model 

We initially present a multiobjective programming model for multidimensional scal-
ing in the city-block metric assuming a least-squares loss function (Brusco, 2001; 
Hubert et al., 1992). The extension of the model for nonmetric MDS, which assumes 
the optimization of a weighted stress measure, is straightforward and is described in 
Section 4.3.2. 

We specify S = {1 , 2 , . . . , n} as the set of indices for a collection of n objects, 
and A. = {Ai , A 2 , . . . , AJVÍ} is more specifically defined as a collection of M 
symmetric (n X n) dissimilarity matrices with nonnegative off-diagonal elements 
a,Íjm = a,jim representing the dissimilarity between objects i and j for matrix m. 
We further denote Φ as the set of all permutations of the n object indices, and ij>d = 
{i/>d(l), ψα(2),..., ^ d ( n ) } as the permutation of the objects on dimension d for 
d — 1 , . . . , D. Hereafter, we refer to ψ = {ψ±, 'ψι, · · · ·, ΦΌ} as a dimension 
permutation set, containing the permutations for each dimension. The values of φ^ 
are based on a one-to-one function with ipd such that φ^ = fe 3 i¡>d{k) — 3\ 
thus, (/>φ· is the sequence position of object j on dimension d. We also establish 
otdij = min((/>di, </>φ·) and ßd%j = (πΐΆχ(φαί, </>φ) — 1) for d — 1,...,D, 
i = 1 , . . . , n — l,and j = i + 1 , . . . , n. The spacing (or distance) between objects 
in positions k and k + 1 on dimension d is denoted as Sdkm for fc = 1 , . . . , n — 1, 
d — Ι,.,.,Ό, and m = 1 , . . . , M. Finally, we define user-specified parameters 
wm and MUm, which represent objective function weights and upper bounds on the 
least-squares loss function for matrix m(m = 1 , . . . , M) .respectively. Consistent 
with previous multiobjective programming implementations (Brusco, 2002; Brusco 
& Stahl, 2001), we select a set of positive weights that sum to 1. The least-squares 
loss functions for each of the M matrices can be considered as functions of the given 
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dimension permutations as 

fmW = Σ 
1 n 

Σ 
i=l j=i+l 

-, 2 
ßdij 

for m = 1 , . . . , M f'm / y / J Sdkr, 

d=l k=ocdij 

(4.1) 
For each matrix m, /m(i/>) represents the sum-of-squared differences between 

the dissimilarity measures and the city-block distances between objects in multidi-
mensional space. The distance for any pair of objects i and j on a particular dimension 
d is computed as the sum of the spacings for each pair of adjacent objects between the 
objects i and j . The city-block distance between i and j is then computed as the sum 
of the D dimension distances. For any fixed set of dimension permutations, the opti-
mal spacings that minimize fm (ip) can be obtained using a nonnegative least-squares 
algorithm (Hubert et al., 1992; Lawson & Hanson, 1974, pp. 304-309). The search 
for a global minimum solution for /m(■»/>) can be conducted by evaluating different 
dimension permutations. Unfortunately, this process is inherently combinatorial in 
nature, and we must therefore rely on heuristic solution methods. Our situation is 
further complicated by the fact that it is necessary to find a single-dimension permu-
tation set (ψ) that provides a good structural fit for each matrix m = 1 , . . . , M. 
For this reason, we consider the following metric multiobjective city-block MDS 
optimization problem (MCB1): 

M 

m m Σ Wrnfm(*P) (4.2) 
T T O = 1 

M 

subject to: \_. wm = 1 (4.3) 
ro=l 

wm > 0 for m = 1 , . . . , M (4.4) 

fmW < MUm for m = 1 , . . . , M (4.5) 

The objective function (4.2) of MCB1 is to minimize a weighted function of least-
squares loss values across the M dissimilarity matrices. This weighted function is 
minimized subject to constraints (4.3) and (4.4), which guarantee the selection of 
positive weights that sum to 1. Constraint (4.5) allows the specification of a raw 
upper bound for one or more loss functions. In many implementations, the typical 
assumption is that MUm = oo for all m = 1 , . . . , M. If it were possible to 
obtain optimal solutions for MCB1 for a given set of weights, the resulting solution 
would be a nondominated (or efficient) solution for the multiobjective problem. A 
solution corresponding to the dimension permutation set φ is dominated by a solution 
corresponding to another dimension permutation set φ if/(t/; ) < f{ip)iorm = 
1 , . . . ,M,and/(i /> ) < /(■»/>) for at least one m. Unfortunately, obtaining optimal 
solutions to MCB 1 is not practical, and the resulting heuristic solutions for different 
sets of weights are only providing estimates of the efficient frontier. 
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In some circumstances, one beneficial tactic is to modify the objective function 
of MCB1 with normalized loss functions. Specifically, using an effective city-block 
MDS heuristic procedure, a quantitative analyst could obtain near-optimal solutions 
for each of the single-objective problems associated with matrices m = 1 , . . . , M. 
Denoting the best-found loss function identified for matrix m as / ^ , an alternative 
objective function is 

M 

This normalized objective function, which is comparable to those used in recent 
multiobjective data analysis implementations (Brusco, 2002; Brusco & Stahl, 2001), 
expresses the loss function value for a matrix in relation to the best-found loss function 
for that matrix. One advantage of this representation is that, assuming the best-found 
solutions provide optimal index values, possible values of (4.6) range from zero to 1. 
For the rare situations where f^ — 0, we recommend eliminating the component 
for matrix m from the objective function and incorporating a constraint of type (4.5) 
with some appropriate MUm. Hereafter, we refer to the normalized metric city-block 
MDS model as MCB2. 

4.3.2 The Nonmetric Multiobjective City-Block MDS Model 

Because of the prevalence of nonmetric MDS (Kruskal, 1964a,b; Shepard, 1962a,b) in 
the psychological literature, we deemed it necessary to allow for nonmetric relaxations 
of the proximity data when using the multiobjective paradigm. For nonmetric MDS, 
we can replace the least-squares loss function (4.1) with a stress function for matrix 
m. For example, using Kruskal's (1964a,b) stress measure (stress type 1), we have 

9τη(Ψ) 

\ 

n — 1 n Í ( D ßdij \ \ 
Σ Σ Σ Σ sdkm — OCijm 

i = l j=i+l \ \d=l k=adij J / ^ 

n—1 n ί D ßdij \ 

Σ Σ I Σ Σ sdkm I 
i = l ¿ = ¿ + 1 \ d = l k=a<iij j 

for m = 1 , . . . , M, where the á ¿ j m values are the transformed proximities (or 
disparities) that, using monotone regression, are obtained so as to preserve the same 
order as the original proximities. The nonmetric multiobjective city-block MDS 
optimization problem (NMCB1) is represented as 

M 

min V wmgm(xp) (4.8) 
W = i * i * * D e « } ^ 

subject to: fm{i>) < MLm for m = 1 , . . . , M (4.9) 
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and (4.3) and (4.4), where MLm is an upper bound on the stress for matrix m. 
Problem NMCB1 is also an extremely difficult combinatorial optimization problem 
and we must resort to heuristic procedures. As was the case for MCB1, we can modify 
the objective function to capture normalized objective function values as follows: 

M 

(, t, 7"" / ^ Σ Wm (9*m/9mW) (4.10) 
7 7 1 = 1 

where g^ represents the best stress value found by applying an appropriate heuristic 
to the single-objective problem posed by matrix m. We refer to the normalized 
nonmetric city-block model as NMCB2. 

4.4 COMBINATORIAL HEURISTIC 

Hubert et al. (1992) provided convincing arguments regarding the inherent com-
binatorial structure of city-block MDS, specifically observing that the problem can 
be decomposed into two interrelated stages: (a) finding an appropriate permutation 
for each dimension, and (b) solving for the optimal coordinates given a set of fixed 
dimension permutations. The method we employ for multiobjective city-block MDS 
is a direct extension of Hubert et al.'s (1992) combinatorial heuristic paradigm, and 
consists of the following steps: 

Step 1. Generate an initial permutation of objects, ψα, for each dimension d = 
Ι , . , . , Ζ λ 

Step 2. For each dissimilarity matrix, use nonnegative least-squares to find the optimal 
spacing between each pair of objects on each dimension, Sdkm > so as to mini-
mize the least-squares difference between the dissimilarities and distances. If 
a nonmetric relaxation is desired, go to step 5; otherwise, go to step 3. 

Step 3. Compute the multiobjective loss function value (4.2) or the normalized index 
(4.6), and store this value and corresponding dimension permutations as the 
incumbent solution. 

Step 4. For each dimension, evaluate the effect of all possible pairwise interchanges of 
objects by cycling through steps 2 and 3. Each time an interchange is identified 
such that the value of (4.2) or (4.6) is improved, accept the interchange and 
store the new solution and its corresponding objective function value as the 
incumbent solution. Continue this process until no pairwise interchange of 
objects on any dimension will improve the value of (4.2) or (4.6). The algorithm 
terminates when no pairwise interchange will further improve the objective 
function. 

Step 5. For each dissimilarity matrix, use iterative monotone regression to find the 
disparities, äijm, that minimize stress (4.7). 
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Step 6. Compute the multiobjective stress function value (4.8) or the normalized index 
(4.10), and store this value and corresponding dimension permutations as the 
incumbent solution. 

Step 7. For each dimension, evaluate the effect of all possible pairwise interchanges of 
objects by cycling through steps 2, 5, and 6. Each time an interchange is iden-
tified such that the value of (4.8) or (4.10) is improved, accept the interchange 
and store the new solution and its corresponding objective function value as 
the incumbent solution. Continue this process until no pairwise interchange 
of objects on any dimension will improve the value of (4.8) or (4.10). The 
algorithm terminates when no pairwise interchange will further improve the 
objective function. 

The heuristic algorithm begins in step 1 by obtaining a permutation of objects on 
each dimension. These initial permutations can be obtained by randomly selecting 
object positions for each dimension from a uniform distribution of the integers [1, n] 
(without replacement). Alternatively, much better starting solutions can be obtained 
by using lattice-search heuristics for placement of the objects in continuous space 
(Brusco, 2001; Hubert & Busk, 1976); however, these heuristics substantially in-
crease computational effort. In step 2, for each dissimilarity matrix, a nonnegative 
least-squares algorithm (Lawson & Hanson, 1974, pp. 304—309) was used to obtain 
the optimal spacing between each pair of adjacent objects on each dimension. These 
spacings are computed such that the squared differences between the city-block dis-
tances (which are an additive function of the distances) and the dissimilarity measures 
are minimized. 

In the case of metric city-block MDS, the weighted least-squares loss function 
(4.2) or the normalized index (4.6) for the multiobjective problem is computed in 
step 3. Pairwise interchange of objects on each dimension are evaluated at step 
4, and each interchange that improves (4.2) or (4.6) is accepted. The algorithm 
terminates when no pairwise interchange of objects on any dimension will further 
improve (4.2) or (4.6). Pairwise interchange can be augmented by other local search 
operations, such as object block reversals and object insertions (Hubert & Arabie, 
1994; Hubert, Arabie, & Meulman, 1997). Our investigation of these additional 
operations confirmed the findings of Hubert et al. (1992), which suggested that they 
tended to increase computation time with little or no improvement in solution quality. 

If a nonmetric relaxation is desired, then control passes from step 2 to step 5. At this 
point, iterative monotone regression is used to minimize Stress for each dissimilarity 
matrix. An up-and-down blocks algorithm (Kruskal, 1964b) is used to obtain the 
disparities, a ¿ j m , and these disparities iteratively replace the dissimilarity measures 
until convergence of the stress measure (tolerance = .00001). The weighted stress 
function is obtained in step 6, and pairwise interchange is implemented in step 7. One 
important distinguishing factor of the nonmetric MDS algorithm used herein is that a 
relaxation is obtained after each pairwise interchange. This is slightly different from 
Hubert et al.'s (1992) original implementation, which employed monotone regres-
sion only after no pairwise interchanges could further improve the least-squares loss 
function. Our implementation is therefore much more computationally intensive than 
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Hubert et al.'s (1992) original procedure for single-objective problems, but we found 
that the additional calculation tended to be worthwhile for multiobjective problems. 

Because the combinatorial heuristic is sensitive to the initial permutations, we use 
at least 20 replications of the heuristic in our experimental analyses. The choice 
regarding the number of replications is based on the number of objects, the number 
of dissimilarity matrices, the number of dimensions, and, most important, whether 
a nonmetric relaxation of the proximities is desired. Nonmetric implementations 
require considerably more CPU time than metric ones because of the need to use 
monotone regression when testing each pairwise interchange. Each replication uses 
a different randomly generated set of dimension permutations to initiate the heuristic. 
The combinatorial heuristic was written in Fortran and implemented on a 2.2-GHz 
Pentium II PC with 1 GB of RAM. 

4.5 NUMERICAL EXAMPLES 

4.5.1 Example 1 

The first numerical example corresponds to auditory recognition data originally col-
lected and analyzed by Morgan et al. (1973), and also studied by Hubert and Baker 
(1977) and Brusco (2002). The stimuli consist of spoken digits 1, 2 , . . . , 9, and 
M = 2 dissimilarity matrices were derived from two auditory confusion matrices 
(9 x 9) among the nine digits (Morgan et al., 1973, p. 376). The two dissimilarity 
matrices were obtained from similar experiments, differentiated primarily by the gen-
der of the person speaking the digits. It should also be noted that based on the results 
of cluster and nonmetric MDS analyses of the two matrices, Morgan et al. (1973, p. 
379) "...felt justified in basing further analysis on the data obtained by pooling over 
voices to give a single confusion matrix for the recognition task." For this reason, we 
considered three dissimilarity matrices in our analyses: (a) female, the dissimilarity 
matrix associated with the female voice,; (b) male, the dissimilarity matrix associ-
ated with the male voice; and (c) pooled, a dissimilarity matrix obtained by pairwise 
averaging of the female and male dissimilarity matrices. 

Nonmetric two-dimensional city-block solutions were obtained for each of the 
three matrices using the combinatorial heuristic developed by Hubert et al. (1992). 
For each matrix, the best local minimum (or best found) stress value was identified for 
at least 22 of the 100 replications. The best-found dimension permutations for each of 
the three matrices are shown in Table 4.1. Each of these dimension permutations were 
then used to obtain nonmetric two-dimensional fits for all three matrices. For example, 
the best-found dimension permutations for female were used to obtain nonmetric 
solutions for male and pooled. Applying this approach for each of the three best-
found sets of dimension permutations resulted in a total of nine stress values that are 
shown in Table 4.2. The main diagonal of the stress value matrix shown in Table 4.2 
represents the best-found stress value for the matrix, and the off-diagonal elements 
represent the stress value that results when the best-found dimension permutations 
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corresponding to the data matrix associated with the row are used to fit the data matrix 
associated with the column. 

Table 4.1 Best-Found Dimension Permutations for Each Dissimilarity Matrix and the 
Multiobjective Solution for Numerical Example 1 

Best-found permutation for: Permutation 

Female recognition matrix 

Male recognition matrix 

Pooled recognition matrix 

Multiobjective solution using 
equal weights 

Dimension 1 
Dimension 2 
Dimension 1 
Dimension 2 
Dimension 1 
Dimension 2 
Dimension 1 
Dimension 2 

5-9-1-4-8-3-7-2-6 
4-7-5-1-6-2-9-3-8 
5-9-1-4-2-3-8-7-6 
4-8-6-5-1-9-7-3-2 
5-9-1-4-2-3-8-7-6 
4-8-5-6-1-7-9-3-2 
5-9-1-4-3-8-7-2-6 
4-8-6-7-5-1-9-3-2 

Table 4.2 Stress Values for Each Dissimilarity Matrix in Numerical Example 1 
Obtained Using the Best-Found Dimension Permutations for Each Matrix 

Female Male Pooled 

Using Female dim. permutations .07305 .13704 .10869 
Using Male dim. permutations .10765 .05218 .06722 
Using Pooled dim. permutations .10541 .05705 .06322 

The stress values in Table 4.2 reveal that reasonably good two-dimensional fits can 
be obtained for both the female and male dissimilarity matrices, as well as the pooled 
dissimilarity matrix. However, the off-diagonal elements suggest that the solutions 
for the pooled matrix more closely correspond to the solution for the male matrix. 
For example, a within-column examination of the submatrix of stress values corre-
sponding to male and pooled reveals very little variation. This finding is attributable 
to the fact that the best-found dimension permutations for these two matrices are 
quite similar and, therefore, they yield rather similar solutions for each other. The 
best-found dimension permutations for the male and pooled matrices differ only by 
the interchange of adjacent objects 6 and 5 and adjacent objects 9 and 7 on the second 
dimension. 

The best-found dimension permutations for the female dissimilarity matrix exhibit 
some marked differences from the corresponding permutations for the other two 
matrices. These differences manifest themselves in the form of somewhat larger 
stress values ( > .10) when the dimension permutations for male and pooled are 
applied to the female matrix. Perhaps a clearer representation of the differences can 
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be observed from Figure 4.1, which displays the two-dimensional solutions for female 
and male. Although there is clearly some similarity between the two solutions (e.g., 
the positions of objects 5,9,1, and 4), there are also some notable differences. Objects 
2 and 3 are more separated from the remaining objects in the male solution, and object 
8 is more centrally positioned among objects 4, 7, and 6 in the male solution. 

The key finding in our analysis thus far is that the MDS solution for the pooled 
matrix closely resembles the MDS solution for the male matrix, but differs from the 
solution for the female matrix. Thus, pooling the data has incorporated information 
from the male matrix while mitigating the information from the female matrix. The 
multiobjective programming approach provides a means of possibly identifying di-
mension permutations that can yield good structural fits for both the female and male 
matrices. In the absence of any additional information, we began our multiobjective 
analysis using NMCB1 and weights of w\ = .5 and w2 — .5. This seemed logical 
because the best-found stress values for female and male were reasonably close, and 
we wanted to maintain good solutions for each. Methods for interactively searching 
for good weights are described by Brusco (2002) and Brusco and Stahl (2001). 

Using weights of ΐϋχ = .5andw;2 = .5 , one ofthebest multiobjective solutions 
obtained across 100 replications of the combinatorial heuristic provided stress values 
of .08434 and .06895 for the female and male dissimilarity matrices, respectively. 
The optimal permutation for the first dimension of the multiobjective solution was 
5-9-1-4-3-8-7-2-6, whereas the second dimension permutation was 4-8-6-7-5-1-9-3-
2. An interesting observation is that the permutation for the first dimension of the 
multiobjective solution is very close to the first-dimension of the female solution, 
as these permutations differ only by the interchange of adjacent objects 3 and 8. 
(The difference between the multiobjective solution and the first dimension 'male' 
solution is the relocation of object '2'.) The permutation for the second-dimension 
of the multiobjective solution is very close to the second dimension of the male 
solution, with the only difference being that object 7 moved up three positions in 
the multiobjective ordering. Several second-dimension differences exist between the 
multiobjective solution and the female solution. This multiobjective solution clearly 
illustrates the nature of the trade-offs between the female and male matrices. 

Figure 4.2 presents the two-dimensional multiobjective city-block MDS solutions 
for the female and male dissimilarity matrices. The two maps in Figure 4.2 exhibit 
greater similarity than the two maps in Figure 4.1 because the dimension permutations 
are restricted to be the same. We observe that both of the maps in Figure 4.2 provide 
fairly strong separation of objects 2 and 3 from the remaining objects, as well as the 
centralized location of object 8 with objects 4, 7, and 6. Both of these properties are 
consistent with the male map from Figure 4.1. The influence from the female matrix 
in the multiobjective solution is observed by the placement of object 2 on dimension 
1, as well as the placement of object 7 on dimension 2. 
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Figure 4.1 Two-dimensional nonmetric city-block MDS solution for male and female 
recognition matrices. 
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4.5.2 Example 2 

For our second example we used data pertaining to visual identification tasks for 
textured materials originally collected by Cho, Yang, and Hallett (2000). The stimuli 
consist of n = 20 textured objects, and M = 3 dissimilarity matrices were derived 
from three confusion matrices (20 X 20) among the objects (Cho et al., 2000, pp. 750-
751). Table 4.3 identifies the 20 objects using both their numeric code from previous 
studies (Cho et al., 2000; Rao & Lohse, 1996) as well as a letter representation 
used herein. The three confusion matrices correspond to the same identification task 
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Figure 4.2 Two-dimensional nonmetric city-block MDS solution from the multiobjective 
programming model for male and female recognition matrices. 
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measured at three different distances (8.2,15.5, and 22.9 m) between the subjects and 
the stimuli. The three confusion matrices were converted to symmetric dissimilarity 
matrices using the procedure described by Cho et al. (2000, p. 738). Specifically, 
each confusion matrix was added to its transpose to form a symmetric similarity 
matrix. The largest element in each similarity matrix (we ignored the main diagonal) 
was stored, and each of the dissimilarity matrices were formed by subtracting the 
similarity elements from the largest element associated with that matrix. 
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Table 4.3 Textures Used in Numerical Example 2 

Label Number Description | Label Number Description 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 

4 
9 

12 
16 
20 
22 
29 
34 
37 
52 

pressed cork 
grass lawn 
bark of tree 
herringbone weave 
French canvas 
reptile skin 
beach sand 
netting 
water 
oriental straw cloth 

K 
L 
M 
N 
O 
P 

Q 
R 
S 
T 

55 
66 
68 
76 
86 
87 
93 
98 

109 
112 

straw matting 
plastic pellets 
wood grain 
oriental glass fiber 
ceiling tile 
sea fan 
fur 
crushed rose quartz 
handmade pepper 
plastic bubbles 

Source: Cho et al. (2000). 

Nonmetric MDS results reported by Cho et al. (2000) suggested the need for 
spatial representations of at least three dimensions. We therefore began our analyses 
by running 50 replications of Hubert et al.'s (1992) combinatorial heuristic to obtain 
single-objective, three-dimensional solutions for each of the three dissimilarity matri-
ces. The minimum stress values across the 50 replications were .05647, .06653, and 
.04825 for the dissimilarity matrices corresponding to distances of 8.2,15.5, and 22.9 
m, respectively. These values compared favorably to graphically depicted stress re-
sults from Cho et al. (2000, p. 747) and supported the tenability of a three-dimensional 
solution. 

We also used 50 replications of Hubert et al.'s (1992) combinatorial heuristic to 
produce a solution for the dissimilarity matrix obtained from pooling the dissimilar-
ity matrices. The best solution identified across the 50 replications provided a Stress 
value of .09263 for the pooled dissimilarity matrix. When the dimension permu-
tations corresponding to this solution were applied to each of the three individual 
matrices, the resulting stress values were .09421, .09945, and .07259, for the ma-
trices corresponding to distances of 8.2, 15.5, and 22.9 m, respectively. Thus, for 
this particular set of dissimilarity matrices, the solution for the pooled matrix did not 
provide an especially poor fit for any of the matrices. Nevertheless, we implemented 
a three-dimensional tri-criterion version of the nonmetric multiobjective city-block 
MDS model in an effort to find a set of dimension permutations that yielded even 
lower stress values. 

We applied 20 replications of the multiobjective combinatorial heuristic using both 
NMCB1 and NMCB2 and equal weights of wx = w2 = w3 = 1/3. For each 
of these replications, the stress function values for each of the three dissimilarity 
matrices are displayed in Table 4.4 and 4.5, respectively. These results suggest that 
the combinatorial heuristic tends to find good solutions on most replications, but the 
solutions for NMCB1 were typically superior. When using NMCB1 as the objective 
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criterion, there were three replications that provided a set of stress values that domi- 
nated the solution obtained using the pooled matrix. One of these was a solution that 
provided stress values of .08786, .08528, and .06463, for the matrices correspond- 
ing to distances of 8.2, 15.5, and 22.9 m, respectively. Although a comprehensive 
analysis of visual recognition of textures is beyond the scope of this chapter, our 
multiobjective analyses did produce results consistent with those previously reported 
in the literature (Cho et al., 2000; Rao & Lohse, 1996). 

Table 4.4 
20 Replications of the Combinatorial Heuristic for NMCBl Assuming Equal Weights 

Multiobjective City-Block MDS Results for Texture Recognition Data Using 

Repl. 8.2 m 15.5 m 22.9 m Eq. (4.8) Eq. (4.10) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

.07354 

.08472 

.06877 
,08158 
.08464 
.08268 
.09797 
.08946 
.0765 1 
.09586 
,06675 
.09338 
.08786 
.lo39 1 
.I0114 
,10667 
,1001 1 
.08788 
,08094 
.07682 

.09996 
,08374 
.0795 1 
.lo804 
.lo085 
.092 19 
.lo174 
.093 10 
.0946 1 
.lo307 
.lo975 
.07494 
.08528 
.08083 
.11012 
.11119 
,11932 
.08933 
.lo443 
,09820 

.08335 

.09964 

.08841 
,08635 
,07989 
.07201 
.085 19 
.08459 
,07569 
.095 17 
.09375 
.07696 
.06463 
.07734 
.08607 
,1096 1 
.12464 
.07770 
,08834 
.07026 

.OW61 .6707 1 

.08936 .64836 

.07889 ,73448 

.09 198 ,62219 

.08845 .64354 

.08229 .69150 

.09496 ,59884 

.08904 .63868 
,08226 ,69285 
.09802 33046 
.09007 .65555 
.08175 .I0642 
,07925 .72307 
.08735 .66340 
.099 10 .57430 
.lo915 ,52259 
. 1 1468 50287 
.08496 ,66937 
.09 123 ,62692 
.08 175 .69970 

Based on cluster analyses and MDS solutions obtained by Rao and Lohse (1996), 
dimension 1 might be described as degree of coarseness. According to the hierarchical 
clustering solution and attribute analyses reported by Rao and Lohse (p. 1656), the 
leftmost object on dimension 1 (object H, netting) is perceived as very fine, whereas the 
two rightmost objects (Q, fur and T, plastic bubbles) are perceived of as very course. 
The smallest coordinate for dimension 2 corresponds to object K, straw matting, 
which was in a group of objects perceived as highly regular in Rao and Lohse’s study. 
Objects 0, ceiling tile, and R, crushed rose quartz, have the largest coordinate values 
on dimension 2, and these objects tended to be characterized as highly irregular in Rao 
and Lohse’s study. Thus, Dimension 2 might be interpreted as degree of regularity. 
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Table 4.5 Multiobjective City-Block MDS Results for Texture Recognition Data Using 
20 Replications of the Combinatorial Heuristic for NMCB2 Assuming Equal Weights 

Repl. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

8.2 m 

.08491 

.07153 

.09824 

.08764 

.08393 

.05678 

.10444 

.09042 

.09369 

.10330 

.06421 

.12422 

.10445 

.09475 

.10189 

.09369 

.06515 

.07666 

.07708 

.10149 

15.5 m 

.14195 

.14910 

.09459 

.11513 

.10544 

.13063 

.09147 

.08939 

.14059 

.07672 

.13393 

.08201 

.07357 

.09944 

.09640 

.10592 

.08396 

.10060 

.10974 

.12350 

22.9 m 

.15367 

.14302 

.11101 

.11657 

.10471 

.11170 

.07550 

.07358 

.14959 

.07696 

.12520 

.06753 

.06262 

.09894 

.10266 

.10311 

.09538 

.08794 

.09805 

.11114 

Eq. (4.8) 

.12683 

.12120 

.10127 

.10644 

.09802 

.09969 

.09046 

.08445 

.12794 

.08565 

.10777 

.09124 

.08021 

.09770 

.10031 

.10090 

.08149 

.08839 

.09495 

.11203 

Eq. (4.10) 

.48253 

.52429 

.57088 

.54532 

.58814 

.64520 

.63564 

.67478 

.46612 

.68019 

.58714 

.66005 

.73842 

.58418 

.57140 

.56621 

.72161 

.64881 

.61026 

.50970 

Finally, dimension 3 could be interpreted as degree of directionality because the 
objects with the smallest (I, water) and second-largest (O, ceiling tile) coordinates on 
this dimension were associated with the highest and lowest directionality groups in 
Rao and Lohse's study. 

4.6 SUMMARY AND CONCLUSIONS 

In this chapter, we have presented a multiobjective programming approach for multi-
dimensional scaling in the city-block metric. The model is designed to find a permu-
tation for each dimension that will enable a good structural fit to be obtained for each 
of a set of M dissimilarity matrices. A combinatorial heuristic for the multiobjective 
programming problem was presented, and demonstrations were provided for two sets 
of empirical data matrices from the literature. The results suggest that the multiob-
jective programming approach can find dimension permutations that yield good fits 
for multiple matrices. A related finding, which supports recent observations in the 
literature (Ashby, Maddox, & Lee 1994; Lee & Pope, 2003), is that pooling across 
multiple matrices can yield misleading results. Our findings suggest that solutions for 
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pooled matrices might represent one matrix in the set very well, yet provide inferior 
solutions for others. 

The biggest limitation of the multiobjective programming approach described in 
this chapter is its computational feasibility for large data sets. This is especially true 
for nonmetric analyses, which require monotone regression when testing pairwise 
interchanges. As noted by Hubert et al. (1992) and Brusco (2001), even single-
objective combinatorial procedures can require considerable computational effort 
when D > 2. Although this problem is alleviated somewhat by significant improve-
ments in processing speed, the need for more efficient optimization procedures per-
sists. In this chapter, we provided a numerical demonstration for a three-dimensional 
(D = 3) nonmetric MDS scenario for a set of n = 20 objects measured on M = 3 
dissimilarity matrices. Implementations for nonmetric MDS scenarios with values 
of D, M, and n that are larger than those in our demonstration would probably 
require considerable computation time. This is particularly true if the examination is 
of multiple sets of objective function weights. Fortunately, we were able to obtain 
good solutions using equal weights in both of our numerical examples; however, a 
more refined weighting scheme might be needed for other sets of data. For two to 
four matrices, finding a good set of weights does not present a daunting challenge. 
When attempting to find a set of weights that yields good solutions for more than four 
matrices, the search for such weights can be especially cumbersome. 

One straightforward alternative for implementing the multiobjective procedure is 
to obtain a good solution for the pooled data matrix and then supply that solution as a 
starting point for the multiobjective programming model. We employed this strategy 
for the data in our second numerical example and were able to find a solution that 
was nearly as good as the best solution we found across 20 random starting solutions. 
Other methods for finding good initial permutations would undoubtedly be beneficial. 

Although we have focused on city-block MDS, an analyst needs to recognize 
that the multiobjective programming paradigm presented herein is not necessarily 
restricted to this context. Multiobjective programming principles have broad appli-
cability and might be appropriate for a variety of other MDS problems. We have 
demonstrated these principles for the case of finding a set of dimension permutations 
that provide good fits for each matrix in a set of dissimilarity matrices. However, mul-
tiobjective programming techniques can also be used to find a solution for a single 
matrix that provides a good fit as measured by two or more loss functions (or Stress 
measures in the case of nonmetric MDS). Our hope is that this chapter will stimulate 
further development of applications and methods for multiobjective MDS. 

Michael J. Brusco 
Florid State University 

Stephanie Stahl 
Tallahassee, FL 

J. Dennis Cradit 
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CHAPTER 5 

CRITICAL DIFFERENCES IN BAYESIAN 
AND NON-BAYESIAN INFERENCE AND 
WHY THE FORMER IS BETTER 

5.1 INTRODUCTION 

In this chapter we provide an introduction to Bayesian statistics directed at research 
in the social sciences, with an emphasis on how this approach differs from traditional 
statistical procedures. We present the mechanics of Bayesian inference along with 
the underlying theoretical justification. Included is an illustrative application using 
real data. 

There are three primary differences between Bayesian and non-Bayesians that are 
highlighted here. First, all unknown values are treated probabilistically in Bayesian 
statistics by assigning and updating an associated probability distribution. Second, 
since we always have unknown values (i.e., model parameters) at the start of the 
process, Bayesians need to stipulate such distributions prior to analyzing the data. This 
is both an encumbrance and a feature, as we will see. Third, inference proceeds in the 
Bayesian fashion by updating (i.e., conditioning) these prior distributions on the data at 
hand. Conversely, non-Bayesian inferential procedures assume total ignorance about 
the distribution of unknown quantities, other than their role in an assumed likelihood 
function, and produce the single value that is maximally likely to occur given a single 
data set. Frequentists and likelihoodists differ here primarily in the context of the data 
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generation procedure. It is either from an infinitely reoccurring stream according to 
the same mechanism (frequentists), or it is a one-off entity (likelihoodists). 

So why might one be especially interested in using the Bayesian approach just de-
scribed in the social sciences? Consider the manner in which data typically come to us. 
Many sociologists, political scientists, economists, and others obtain high-reliability 
survey or other cross-sectional data sets from government sources, academic projects, 
or collaborative ventures. These observational data sets are almost always created 
in a particular time/place setting such that exact replication is impossible. Unfortu-
nately, a key theoretical basis of the twentieth century statistical inference assumes that 
the data are plucked from an ongoing stream of independent, identically distributed 
(i.i.d.) values (i.e., frequentism). This is not only impossible in many settings, it 
is misleading in that surveys or other collection instruments that are repeated even 
days or weeks apart cannot be assumed to replicate human thinking or attitudes with 
replicable precision. It makes much more sense, then, to assume that the data are 
unique and fixed at this point in time. 

The key difference, therefore, for the social sciences is that the underlying phe-
nomena of interest are typically not fixed physical constants, but, rather, aggregated 
human characteristics. These are, by nature, fluid and probabilistic. This is not to say 
that for some particular circumstance in space and time the unknown parameter value 
is not a fixed value, but that generalizations should be treated more broadly. Even in 
the circumstances where we are focused enough to be interested in a fixed, unknown 
value, there are intuitive advantages to evaluating these quantities probabilistically to 
express our obvious uncertainty. 

Another critical difference lies in the treatment of knowledge that exists before 
the data collection and modeling enterprise. Very few, if any, scientists approach the 
statistical component of the research process with no existing knowledge of the effects 
under study. Although this is sometimes very general or vague information, often it 
is relatively informed about phenomena of interest. So how do researchers include 
such information? One way is the required stipulation of a probabilistic statement, 
probability distribution function or probability mass function, to describe the data 
generation process. For instance, specifying a Poisson PMF distribution for data that 
counts events means making the following four assumptions. 

1. The time interval of interest can be divided into arbitrarily many small subin-
tervals. 

2. The probability of an event remains constant throughout the time interval of 
study. 

3. The probability of more than one occurrence in a small subinterval can be 
ignored. 

4. Events are independent. 

(These assumptions will actually apply to our running example in this chapter.) Now 
how many authors do we see justifying each of these assumptions! To be fair, most 
readers have read and accept them implicitly for common situations, although it is 



THE MECHANICS OF BAYESIAN INFERENCE 137 

possible to name instances in the social sciences that violate each of these where 
the Poisson distribution is used anyway. Probably the most routinely violated of the 
four is the last (e.g., instances of coups tends to breed other instances of coups either 
within-country or across neighbors). However, specifying the PDF or PMF alone 
often does not fully provide the prior information at the researcher's hand. In the 
Poisson example, we might know with some confidence that the intensity parameter 
is small or large based on previous observations. If we are counting government 
dissolutions in Italy, a large value is expected, but if we are counting nuclear weapons 
tests by developing nations, a small value is expected. Such information, even with 
reliable justification, is ignored completely in standard parameter estimation in such 
cases. 

So how do Bayesian differ here? As noted above, Bayesians must provide dis-
tributional information on unknown parameters at the start of the modeling process. 
This is exactly how the researcher's information is inserted into the specification. 
If one believes that a count of cabinet dissolutions in Italy is going to be relatively 
high based on the number of events since World War II, it makes sense to assert a 
prior distribution for the Poisson intensity parameter that has a relatively high mean. 
Furthermore, since this is a distribution, not a single point, it is possible to provide 
different views of uncertainty around this mean by adjusting the variance of the prior 
distribution given. This, it turns out, is a marvelous way to express limited knowledge 
about various research quantities. We can state what we know or believe and at the 
same time express relative uncertainty in rigorous and overt fashion. 

Finally, the inference process differs in Bayesian statistics in substantial ways. 
The key underlying philosophy is that of updating degrees of belief We start with a 
prior distribution, which can be as vague as we like, and then condition on the newly 
obtained data at hand. The result is a new probability statement that we will call a 
posterior distribution since it is produced after these data are accounted for in the 
model. But wait, since this is also a regular distributional statement in the standard 
Kolmogorov sense (Billingsley, 1986), it too can be treated as a prior distribution if an 
additional set of data arrives. So prior and posterior are just relative terms that apply 
to one iteration of updating based on a single data set and the process can continue 
as long as we like (or as long as relevant data arrive). This process conforms exactly 
to the definition of scientific progress: current knowledge produces, theories which 
are tested, and knowledge is updated for future purposes. Great, right? How about 
an opposing paradigm that assumes that anything worth studying cannot be dynamic 
(except in the time-series context), data are produced in the same fashion forever, and 
it is better to assume prior ignorance at the start of the modeling process? 

5.2 THE MECHANICS OF BAYESIAN INFERENCE 

So far we have been relatively loose about the actual process of building Bayesian 
models and making inferences, which will now be rectified. To begin with, two 
explicit probability statements (PMF or PDF) are required: 
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• A probability model for the data (given the parameters of such model) which 
is used to construct a likelihood function for the given sample 

Unconditional probability distributions for unknown parameters 

So the data get a standard assumption, but we now provide specific parameter forms 
for the unknowns. There are several caveats here. First, missing data are treated like 
parameters and estimated, therefore requiring priors themselves (see Little and Rubin, 
1983, 1987; Rubin, 1987; Schaefer, 1997). Second, while the prior distributions 
cannot be conditioned on the data hand (except with empirical Bayes, see Morris, 
1983; and Carlin and Louis, 2001), they can be conditioned on each other. For instance 
in cases where the data are assumed to be normally distributed, an unconditional prior 
is commonly stipulated for σ 2 , but for the mean, a conditional prior of the form 
μ.|σ2 is necessary for useful computational properties. 4 Third, although this is 
a completely parametric process, nonparametric Bayes is an increasingly appealing 
alternative (Ferguson, 1973; Antoniak, 1974; Dalai and Hall, 1980; Liu, 1996). 

So now that we have a likelihood function for the observed data and a set of priors 
for the unknown quantities, these priors are conditioned on the data by multiplication 
in an application of Bayes' law to obtain the posterior distribution, which is the joint 
distribution of the parameters of interest conditioned on the data. This proceeds as 
follows: 

p(0)L(0 |x) 
7T(0 |X) = /ep(0)£(0|x)d0 

oc p ( 0 ) i ( 0 | x ) 

posterior probability oc prior probability x likelihood function 

Note that proportionality is used here since the denominator has no inferential value 
for the parameter 0, but simply ensures that the posterior is standardized in the sense 
of summing or integrating to 1. This last issue can easily be solved by rescaling after 
the Bayes' law process, and it is often easier to disregard this part for now. So we see 
that Bayesian inference proceeds through the use of Bayes' law to obtain the inverse 
probability of interest, which is the joint posterior. The last step is to evaluate the fit 
of this model and to test its sensitivity to the choice of both priors and likelihood. The 
latter process usually involves comparing the posterior produced to alternatives that 
come from more diffuse or general prior forms. The model-checking process seems 
like an obvious step, but it is actually one where Bayesian standards are much more 
cautious than non-Bayesian processes, where this step is rarely considered. 

4Specifically, this setup gives the conjugacy property where the prior and posterior distributions belong 
to the same distributional family form. This is very convenient and was once important to Bayesians since 
it readily produced an analytically tractable posterior form. The advent of modern Bayesian stochastic 
simulation (Markov chain Monte Carlo) has made conjugacy less important but still appealing. 
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5.2.1 Example with Count Data 

As an example of this model-building process, consider a data set consisting of counts, 
for which we specify a Poisson likelihood function: 

— 1 

/(YIM) = Π y- exP log(M) ] T yi 
¿ = 1 

exp[—ημ] (5.1) 

A convenient form of the prior for μ (the intensity parameter) is a gamma distribution 
Q(a, β) with prior parameters a and β which the researcher specifies: 

/ (μ |α , β) = — L / T μ « - ^ - ^ , μ,α,β>0 (5.2) 
Γ(α) 

This is handy because the gamma distribution is conjugate to the Poisson likelihood 
in Bayesian analysis, meaning that the posterior is also a gamma form: 

ττ(μ|γ) <χρ(μ |α , /3) Ι , (γ |μ) 

βαμ<*-1 —i 

Γ(α) 

oc μα—* exp(— βμ) exp 

βχρ(-/3μ) r f [ y i ! e x p 

U = l 

log(M) 53 ^ 
i=X 

i= 

exp[—ημ] 

i = l 

exp[—τιμ] 

oc μ 
(α+Tiy) —l β χ ρ [ - ( / 3 + η)μ] (5.3) 

Therefore, the posterior distribution for μ is Q(a + ny , ¿9 + n ) , and thus has mean 
( a + ny)/(ß + «■) and variance ( a + ny)/(ß + n ) 2 . The neat part about this is 
that we now have everything we need to know about the posterior and can either rely 
upon known properties of the gamma distribution or simply simulate values according 
to this parameterization and summarize empirically. 

As an illustration, consider counts of U.S. testing of thermonuclear devices up 
until the 1992 Test Ban Treaty, which the United States signed.5 The first genuinely 
thermonuclear device, "Mike," was detonated November 1, 1952 on the former Islet 
of Elugelab (it apparently no longer exists) [see DeGroot (2004, pp. 175-8) for 
interesting details on the history and policy of testing in the United States], so the 
data set for hydrogen bombs is set to start in calendar year 1953. The data are given 
in Table 5.1 

The data have mean y = 25.55 over this period. Suppose that we set a = 50 
and ß = 2, to be somewhat sympathetic with the data. Let us also set a = 5 and 
ß = 1 as a cynical prior to serve as a comparison specification and thus a test of how 
influential the first prior turns out to be. These priors and the associated posterior 
summaries are given in Table 5.2 

5The data are available at http://artsci.wustl.eduT jgill/replication.html. 
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Table 5.1 Counts of U.S. Thermonuclear Tests By Year 

Year Count 

1953 11 
1958 77 
1963 47 
1968 56 
1973 24 
1978 21 
1983 19 
1988 15 

Source: U.S. D« 

Year 

1954 
1959 
1964 
1969 
1974 
1979 
1984 
1989 

;partment 

Count 

6 
0 
47 
46 
23 
16 
20 
12 

of Ener 

Year 

1955 
1960 
1965 
1970 
1975 
1980 
1985 
1990 

ay-

Count 

18 
0 
39 
39 
22 
17 
18 
9 

Year 

1956 
1961 
1966 
1971 
1976 
1981 
1986 
1991 

Count 

18 
10 
48 
24 
21 
17 
15 
8 

Year 

1957 
1962 
1967 
1972 
1977 
1982 
1987 
1992 

Count 

32 
98 
42 
27 
20 
19 
15 
6 

Table 5.2 Gamma-Poisson Model for Thermonuclear Tests 

Prior Parameters 

a = 50,/3 = 2 
a = 5,/3 = 1 

Prior 

Mean 

25 
5 

Variance 

12.5 
5.0 

Posterior 

Mean 

25.52 
25.05 

Variance 

0.60 
0.61 

What this shows is that the posterior distribution is relatively insensitive to the 
form of the prior that we select. This robustness property is reassuring in that it 
demonstrates that we are letting the data speak clearly here. To further illustrate 
these results, consider Figure 5.1. We see here how dramatically "wrong" the second 
prior specification is, yet how it changes relatively little in the final analysis. The 
darker curve is the posterior distribution, and the lighter curve is the associated prior 
distribution. 

So how would a non-Bayesian analysis of these data proceed? We know that the 
maximum likelihood estimate of the intensity parameter from a Poisson specification 
is the data mean, y = 25.55, which differs little from the analysis above except that 
it buries the assumption of a uniform prior over the support of μ. More specifically, 
every non-Bayesian result is equivalent to a Bayesian result where the prior is an 
appropriately bounded uniform distribution. So non-Bayesians assume a priori that 
all possible outcomes are equally likely. This does not seem like a terrible assump-
tion except that we know something about anticipated thermonuclear tests here. For 
instance, five is much more likely than 500, and so on. Many people can still live 



THE MECHANICS OF BAYESIAN INFERENCE 141 

Figure 5.1 Prior and posterior distributions for thermonuclear tests 
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with such uniform assumptions, but the usual sin here is not stating this overtly as a 
model component, and therefore having to defend it. 

5.2.2 Comments on Prior Distributions 

So where do prior distributions come from? We see above that they are part of the 
Bayesian process, and the only practical guidance provided so far is, for the purpose 
of argument, to compare the chosen prior to a more cynical form. Prior distributions 
come from varied sources, such as: previous studies and published work, researcher 
intuition, information provided by substantive experts, convenience (i.e. conjugacy, 
vagueness), nonparametrics and other data sources, and those that give diagnostic 
information. Nothing limits the sources of these priors other than an ability for 
the author to justify what is used in a particular model. A standard rule here is 
that if pertinent information exists that affects the quantities of interest, it should be 
expressed in the prior. One would not think that the last sentence is controversial, but 
it remains so. The heart of this controversy is the idea of what is "objective" and what 
is "subjective." Although it may disappoint some, all statistical models are subjective 
in the sense that the data used are chosen rather than required, a likelihood function is 
also user-selected, and the form of testing is also a personal decision. Thus the prior 
simply joins this list as another subjective choice among many. Bayesians therefore 
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prefer all these decisions to be overt, so "hiding" behind a veneer of objectivity does 
not make sense. 

5.3 SPECIFIC DIFFERENCES BETWEEN BAYESIANS AND 
NON-BAYESIANS 

In this section we highlight the important philosophical and practical differences 
between Bayesian methods and the traditional forms. First, let us delineate the three 
important branches of statistical reasoning. 

• Frequentists: From the Neyman-Pearson (1928a,b, 1933a,b, 1936a,b) and 
Wald (1950) setup. An orthodox view that sampling is infinite and decision 
rules can be sharp. 

• Bayesians: From the original Bayes( 1763), Laplace (1774,1781,1811,1814) 
and de Finetti (1972, 1974, 1975) tradition. Unknown quantities are treated 
probabilistically and the state of the world can always be updated. 

• Likelihoodists: From Fisher's (1925a, 1934,1955) basis. Single sample infer-
ence based on maximizing the likelihood function and relying on the Birnbaum 
(1962) theorem. Bayesians who don't know that they are. 

Thus, the important distinction is between the frequentist approach and the Bayesian 
paradigm, since Fisher's idea of using the likelihood as a data reduction device merely 
ignores the associated uniform prior. So for the time-being we concentrate on the 
greater contrast between Bayesian inference and Neyman-Pearson testing before we 
move on to the null hypothesis significance test. The summary of the main differ-
ences discussed in this section is given in Table 5.3 For further discussions of such 
differences, see the excellent recent essay by Little (2006) and the classic discussion 
by Efron (1986). 

The first important difference relates to what is considered fixed in the model. 
In frequentist inference the data are random in the form of an iid sample from a 
continuous stream and the parameters are fixed (but generally unknown) by nature. 
Conversely, the Bayesian treats data as fixed since they are observed and therefore 
non-changing in the analysis, and the unknown parameters are considered random to 
reflect uncertainty. Since the unknown parameters are considered random unknown 
quantities, they are described with distributional forms conditional on the most re-
cently acquired information. 

Surprisingly, Bayesians and frequentists actually differ on the definition of proba-
bility. To a frequentist, probability is just the long-run proportion of times that some 
event occurs in a controlled setting that assures iid sampling, which comes from their 
fundamental idea of replicability of the data generation process. This means that 
the probabilistic quantity of interest is the distribution of these data under various 
hypotheses. On the other hand, Bayesians see probability as the researcher/observer 
"degree of belief" before or after the data are observed. So a Bayesian view of prob-
ability is personal and represents an individual willingness to gamble given some 
payout. 
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Table 5.3 Critical Differences Between Inference Paradigms 

Bayesian treatment Frequentist treatment 

Starting point P(&) Feigned ignorance 
Fixed quantity Data Unknown parameters 
Stochastic quantity Unknown parameters Data 
Focus of interest p(0\data) p(data\Ho) 
Inference tool Probabilistic description Deduction from p(data\Ho), 

of p(9\data) by setting a in advance 
Summarization HPD intervals and Acceptance rules based on 

probability statements p(data\Ho) < a 

Inference differs dramatically, as we will see in detail below. Frequentists use 
point estimates for unknown parameters along with standard errors or 95% confidence 
intervals. Deduction is then from p(data\H0), by setting a in advance. The rule 
is to accept Hi if p(data]H0) < a , and accept Ho if p(data\Ho) > a. 
These are firm rules. A Bayesian eschews hard-and-fast rules in favor of finding the 
weight of evidence in some direction. Induction comes from p(6\data), starting 
with ρ(θ), and broad descriptions of the posterior distribution such as means and 
quantiles constitute scientific evidence in some direction. Often, highest posterior 
density intervals, indicating region of highest posterior probability regardless of 
contiguity, are used to summarize most likely values of the unknown parameters. 

Both frequentists and Bayesians perform post-hoc model quality checks to increase 
reliability. Frequentists typically use calculation of type I and type II errors, setting a 
in advance. Sometimes effect size and/or power are calculated, although much more 
rarely in the social sciences. Usually, there is just fixation with small differences 
in p-values despite large measurement error in the social sciences relative to other 
scientific disciplines. Bayesian tools here include: posterior predictive checks from 
integrating over posterior, sensitivity checks to forms of the prior, and more formal 
tools for model comparison such as the Bayes factor, Bayesian information criterion 
(BIC), and the more recent deviance information criterion (DIC). 

5.4 PARADIGMS FOR TESTING 

Our purpose here is actually not to contrast canonical frequentism with Bayesian 
approaches since few, if any, social science researchers practice the pure form of 
Neyman-Pearson (1928a,b, 1933a,b, 1936a,b) testing. Instead, a strange animal 
called the null hypothesis significance test (NHST) dominates. The social sciences 
are burdened with this synthesis of the Fisher's test of significance and Neyman and 
Pearson's hypothesis test. In the NHST hybrid procedure, two hypotheses are posited: 
a null or restricted hypothesis, H0, which competes with an alternative or research 
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hypothesis, H i , describing two complementary notions about some unknown param-
eter of interest. The researcher's hypothesis is the model that asserts some nonzero 
effect and is operationalized through statements about the associated parameter, ß 
here. Most commonly, the null asserts that ß = 0, and the complementary research 
hypothesis is that β φ 0. This fits well with standard regression models, even though 
more generally, the test evaluates a parameter vector: β = {βχ, β?,···, ßm}. and 
the null hypothesis places i restrictions on some subset (I < m) of the vector, such 
as ßi — kißj + fe2 with constants fci and fc2. 

The NHST uses a test statistic (£?), which is some function of ß and the data, 
and is calculated and compared with its known distribution under the assumption 
that H0 is true. Typical test statistics are sample means (X), χ2 statistics from 
contingency tables, and i-statistics from linear or nonlinear regression. The test 
procedure then assigns one of two decisions (Do, £)χ) to all possible values in the 
sample space of B, each supporting either H0 or H± respectively. The p-value is 
equal to the area in the tail (or tails) of the assumed distribution under H0 which starts 
at the point designated by the placement of B on the horizontal axis and continues 
to infinity. A predetermined a level is usually not specified and the p-value is, 
instead, positioned on a scale between Fisher's convenient cut-offs, according to the 
categories: [{> 0.1}, {0.1 : 0.05}, {0.05 : 0.01}, { < 0.01}], with great 
joy produced from placement toward the right of this spectrum. Stars (asterisks) 
are sometimes given in place of these intervals. This test, as described, is really an 
accidental hybrid between Fisher's test of significance and Neyman and Pearson's 
hypothesis test, without any known author or creator. 

Fisher (1925a, 1934, 1955) gives a single hypothesis, H0, with a known distri-
bution of the test statistic B. The further this test statistic is away from its expected 
value under the null, the less plausible H0 becomes. The location of the test statis-
tic establishes density in the tail or tails of the distribution, the size of which is the 
p-value. So the Fisher steps are: 

• Specify the distribution implied by the null hypothesis. 

• Fix the test statistic and its distribution under the assumption that the null 
hypothesis is true. 

• Calculate this test statistic from the data. 

• Determine the p-value level that corresponds to the test statistic. 

• Reject H0 if this p-value is sufficiently small. 

• Otherwise, reach no conclusion. 

The obvious question that remains is what constitutes a sufficiently small p-value 
as to reject the null. Fisher gives us the familiar thresholds but was surprisingly 
flexible about choosing levels: "The value for Q is therefore significant on the higher 
standard (1 per cent) and that for N2 at the lower standard (5 per cent)." (1971, 
pp.152-153). 
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Neyman and Pearson (1928a,b, 1933b, 1936a) do not follow Fisher's supposition 
that only the null hypothesis needs to be tested, and they propose two complemen-
tary hypotheses: © A and ©jg, neither of which needs to be a "null" in Fisher's 
sense. Furthermore, in this construct it is possible to specify multiple Θ β alterna-
tives against a single © A - With two competing hypotheses in any one test, Neyman 
and Pearson define an a priori selected a , the probability of falsely rejecting Θ A 
under the assumption that it is true (type I error) , and β, the probability of failing to 
reject ΘΑ when it is false (type II error). It is important to remember that a and β 
are probabilities conditional on two mutually exclusive events: a is conditional on 
ΘΑ being true, and β is conditional on © A being false. Also, Neyman and Pearson 
(1933a, 1936a) call 1 — β the power of the test: the long-run probability of accurately 
rejecting a false null hypothesis given a point alternative hypothesis, and they seek 
tests with the highest possible power for a given sample and desired significance level 
chosen in advance. So the Neyman-Pearson steps are: 

• Identify the hypothesis of interest, θ β , and its complement, © A · 

• Determine the test statistic and its distribution under the assumption that ΘΑ 
is true. 

• Specify a significance level. 

• Determine the corresponding critical value of the test statistic under the as-
sumption that © A is true. 

• Calculate the test statistic from the data. 

• Reject © A and accept &B if the test statistic is further than the critical value 
from the expected value of the test statistic. 

• Otherwise accept © A -

Note that the level a is chosen in advance and applied rigidly. For instance, if 
.05 is desired as a long-run probability, it is necessary to reject © A for an achieved 
significance level of .0499 and accept © A for an achieved significance of .05001. 
This dogmatism surprises many people and does not seem to fit well in the social 
sciences, where measurement error typically exceeds any such distinctions. 

The null hypothesis significance test as practiced in the social sciences tries to blend 
these two approaches, but produces an inconsistent product with several pathologies. 
It uses Fisher's null idea but also includes a specific alternative, which he did not 
advocate. Fisher has no definition of the power of the test nor of accepting alter-
native hypotheses in the final interpretation, whereas Neyman and Pearson state that 
rejection of one implies acceptance of the other, and this rejection is based on a prede-
termined a level. The NHST has no provision for acceptance, and graduate students 
are indoctrinated to say things like "there is evidence in support of the hypothesis " 
Furthermore, Neyman and Pearson's hypothesis test defines the significance level a 
priori as a function of the test, but Fisher's test of significance defines the signifi-
cance level afterwords as a function of the data. The NHST straddles this difference 
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by pretending to select a in advance, but actually binning p-values into categories 
as strength of evidence. Thus there is an implied alternative hypothesis but no de-
termination of power. The result is confusion about long-run probabilities and the 
definition of the p-value. Since most social scientists do not perform repeated con-
trolled experiments, the probability of a type I error does not constitute a long-range 
probability of rejection. The pathologies that emerge are truly damaging: a logical 
inconsistency coming from probabilistic modus tollens, confusion over the order of 
the conditional probability, chasing significance but ignoring effect size, adherence to 
the completely arbitrary significance thresholds, and confusion about the probability 
of rejection. An excellent recent essay on these issues can be found in Denis (2005). 
More important, all of these issues are avoided with Bayesian inference, which suffer 
from none of the foregoing problems or misinterpretations. 

The bottom line is that the pseudo-frequentist NHST is not just suboptimal; it is 
actually wrong. More than a few authors have noted this. For reference, consider a 
small sample of these works: Barnett, 1973; Berger, Boukai, & Wang, 1997; Berger 
& Sellke, 1987; Berkhardt & Schoenfeld, 2003; Bernardo, 1984; Carver, 1978,1993; 
Cohen, 1962, 1977, 1988, 1992, 1994; Denis, 2005; Falk & Greenbaum, 1995; 
Gelman, Carlin, Stern, & Rubin, 2003; Gigerenzer, 1987, 1993, 1998; Gigerenzer 
& Murray, 1987; Gill, 1999, 2007; Gliner, Vaske & Morgan, 2004; Grayson, 1998; 
Greenwald, 1975; Greenwald, Gonzalez, Harris & Guthrie, 1996; Hager, 2000; How-
son & Urbach, 1993; Hunter, 1997; Hunter & Schmidt, 1990; Jeffreys, 1961; Kirk, 
1996; Krueger, 2001; Lecoutre, Lecoutre & Poitevineau 2001; Lindsay, 1995; Loftus, 
1991,1993a,b, 1994,1996; Loftus & Bamber, 1990; López, 2003; Macdonald, 1997; 
Meehl, 1967, 1978, 1990; Menon, 1993; Nickerson, 2000; Oakes, 1986; Pollard, 
1993; Pollard & Richardson, 1987; Robinson & Levin, 1997; Rosnow & Rosen-
thai, 1989; Rozeboom, 1960; Schmidt, 1996; Schmidt & Hunter, 1977; Sedlmeier & 
Gigerenzer, 1989; Thompson, 2002; Wilkinson, 1977;Yoccoz, 1991. 

Take, for instance, the idea of confidence intervals derived from the NHST. The 
basis for confidence intervals comes purely from the Neyman-Pearson construct since 
replicability is implied. As an illustration, which of these is the correct interpretation 
of a (1 — a) confidence interval? 

• An interval that has a 1 — a.% chance of containing the true value of the 
parameter. 

• An interval that over 1 — a% of replications contains the true value of the 
parameter, on average. 

The correct response is the second one. That is, a 95% CI covers the true parameter 
19 times out of 20. However, even though the first response is incorrect, this is the 
interpretation that people really want. In fact, the first response is the interpretation of 
the Bayesian credible interval since the parameter is described probabilistically. This 
is the big distinction between Bayesian and non-Bayesian approaches: All Bayesian 
hypothesis testing produces probability statements about the parameters of interest 
or the hypotheses. Therefore, there are no pathologies related to repeated trials, the 
interpretation of tail values, or a priori versus posthoc determination of significance 
levels. 
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For instance, suppose that we want to test various hypotheses about the first pos-
terior distribution from the U.S. thermonuclear testing example. This posterior was 
foundtobeC^a + n y ^ + n ) . Witha = 5 0 , ß — 2,n = 40,and y = 25.25, 
this is ö(1072,42) . Knowing this, we can calculate analytically any desired sum-
mary statistic. It turns out be much easier to produce a summary by simulation 
(simulation is actually what set the Bayesians free, as we will see in the next section). 
A single line of R code produces a useful summary: 

quantile(rgamma(100000,shape=1072,rate=42),c(.01,.1,.25,.5,.75,.9,.99)) 

1'/. 10X 25V. 50V. 75V. 90V. 99V. 

23.74844 24.52746 24.99852 25.51865 26.04424 26.52773 27.37058 

Now suppose that we want to test the hypothesis that the unknown intensity pa-
rameter is less than 24 against a complement: 

H0 : μ > 24 versus Hx : μ < 24 

Thus we want the posterior probability that μ is less than 24, π ( μ < 24|y). Again 
this can be performed analytically but it is easier to use R: 

pganuna(24,shape=1072,rate=42) 
[1] 0.02358382 

So we have a very low probability that H\ is true and therefore a very large 
probability that Ho is true. Notice how much cleaner this is than the NHST. Every 
statement is based on probabilities, no hypothesis holds a special asymmetrical posi-
tion like the null in the NHST, and (credible) intervals based on the quantiles above 
are interpreted the intuitive way that people prefer. 

Models themselves are also described probabilistically, so we can compute the 
ratio of model probabilities as a test of alternative specifications, M i versus M2 

using the same data y. This is called the Bayes factor, and is calculated according to 

= π(Μ1 |Υ) /ρ(Μ1) = ¡βι A(y|fli)Pi(fli)dfli 
(y) 7 r (M 2 |y ) /p (M 2 ) ¡θ2 / 2 ( y | ö 2 ) p 2 ( ö 2 ) d ö 2 

where P(Mi) is the prior probability put on the zth model with parameter vector 0¿ 
(Gill, 2007). Very large B(y) numbers imply strong support for the first model, and 
very small B (y) numbers imply strong support for the second model, but values near 
1 give inconclusive answers [see the categorization in Jeffreys (1961, p. 432) and 
Kass and Raftery (1995, p. 777)]. The Bayes factor is actually a generalization of 
the likelihood ratio that incorporates prior information and does not require nesting. 
Suppose that we run a Bayes factor test of the two models summarized in Table 5.2 
Let the model with priors [a = 50, ß — 2] be Μχ and the model with priors 
[a. = 5, ß = 1] be M 2 . From (5.3), we get a Bayes factor for model 1 over model 
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2 (with equal model prior probabilities) from 

B, s _ |Μ/ι(γ|μ)ρι(μι)^Μ 

¡M /2(γ |μ)Ρ2(μ 2 ) ί ίμ 

= Jo" repP?1^1-1 e * P ( - / ^ ) (ΠΓ=ι W O " 1 

/o°° r ^ T ^ M 0 2 - 1 e x p ( - Ä M ) ( Π ? = 1 t /i«)"1 

exp [log(/x) ΣΓ=ι ϊ/i] β χ ρ [ - η μ ] ^ μ 

exp [log(^) Σ?=ι Vi] β χρ [ -ημ ] ί ίμ 

= Γ ( α ι + ny) /3Γ Q33 + n ) " 2 / / 3 2 + n \ " g 

Γ ( α 2 + ny ) β%* (βι + n)«* \fa + n) 

= 612,049.7 (5.5) 

which gives obvious support to model 1. Bayes factors can be more difficult to 
calculate than that in this example, but a host of simulation and approximation tools 
help and the related Bayesian information criterion is computationally simple (Kass 
and Raftery, 1995). 

5.5 CHANGE-POINT ANALYSIS OF THERMONUCLEAR TESTING DATA 

Returning to the example of U.S. thermonuclear tests, we can easily notice that the 
later years have sharply reduced testing relative to the first two-thirds (roughly) of 
the data. The question that arises is: When did a change occur? We could do the 
appropriate historical research looking for treaties or changes in technology, but even 
armed with this information we cannot necessarily make a firm determination of the 
change year. Is there a fixed year that constitutes a firm change point? Probably not. 
So it seems logical to put a distribution on this change point to reflect a likely era of 
change. Thus the Bayesian model is substantively appropriate here. The point of this 
example is to demonstrate how some problems are naturally amenable to Bayesian 
analysis where non-Bayesian methods can be awkward. 

The objective is to use this test data sequence to estimate the change point and also 
to obtain posterior estimates of the two Poisson intensity parameters since we hereby 
claim two eras. Now t/i, y2 5 · · · 5 Vn are a series of count data where we hypothesize 
the existence of a change point at some year, fe, along the series. This defines the two 
Poisson data-generating processes: 

Xi\\~V{\) ¿ = l , . . . , f e 

Χί\φ ~ ~Ρ(φ) i = k + 1 , . . . , n 

where the determination of which to apply depends on the location of the change 
point fe. This means that there are three parameters to estimate: λ , φ, and fe, and the 
different role of fe makes this estimation process more challenging. The non-Bayesian 
approach has an awkward joint likelihood function in terms of maximization. 
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Our modeling exercise stipulates three independent priors: 

λ ~ £ ( α , / 3 ) 

k ~ discrete uniform on[l, 2 , . . . , n] 

and the prior parameters are assigned according t o a = l , /3 = l , 7 = l , 5 = l . 
These values deliberately disadvantage the estimation process by asserting no change 
and a small number of values, and varying them produces little change in the resulting 
posterior distribution. Thus, we have a skeptical starting point, and reliable findings 
implies a strong statement by the data and therefore little concern that the priors are 
selected to be influential. For details on these models, see Gill (2007). From this we 
get the following joint posterior and its proportional simplification: 

π (λ , φ, fc|y) xL(X, φ, k\y)n(X\a, β)π(φ\Ί, S)Tv(k) 

\i=l Vi}. / Vr(a) 

\Τ(Ί)
Ψ ) η 

This turns out to be a difficult estimation problem (Bayesian or non-Bayesian), but 
if we can express this joint distribution as a set of full conditional distributions, 
we can use modern Bayesian stochastic simulation. The Gibbs sampler (Gelfand & 
Smith 1990) iterates through these conditional distributions until the resulting Markov 
chain converges to the limiting distribution. Thus, we replace a difficult integration 
process with summarizing empirical draws from π ( λ , φ, fe|y). The associated full 
conditional distributions for λ and φ are 

fc 

X^,k^g(a + Yiyi,ß + k) (5.6) 
i = l 

n 

0 |Ä,fc~ö( 7 + Σ yi,S + n-k) (5.7) 
¿=fe+l 

and with greater work (Gill, 2007), 

/(y,0)L(y|fc)p(fc) 
p(fe|y) = 

E7=if(y^)L(y\ke)p(ke) 
L(y\k)p(k) 

E?=i£(y|**)p(fc/)' 
(5.8) 
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where L(y\k) = exp[fc(<£ - λ)] ( λ / φ ) 2 ^ 1 m [i.e. λ and φ were suppressed 
from the notation only to make (5.8) visually clear]. Therefore, each iteration of 
the Gibbs sampler will calculate an n-length probability vector for k and draw a 
value accordingly. The Gibbs sampler is run for 1 million iterations, discarding the 
first 500,000 as a conservative burn-in period. Clearly, these are overly cautious 
numbers, but the algorithm runs very quickly in R. All standard diagnostics support 
the conjecture of convergence of the Markov chain, and the trace plots for these last 
500,000 values are shown in Figure 5.2. Empirical summaries of these last 500,000 
values are provided in Table 5.4 

Table 5.4 Testing Change point Analysis 

Quantile 

Minimum 
First quartile 
Median 
Third quartile 
Maximum 

Mean 

λ 

26.62 
31.94 
32.87 
33.82 
39.03 

32.89 

Φ 

14.40 
18.94 
19.83 
20.73 
25.42 

19.83 

k 

16.00 
18.00 
19.00 
20.00 
26.00 

19.36 

First notice that the posterior median (and the rounded posterior mean) indicate 
that the center of the posterior distribution for the change point (fc) is the year 1971. 
Notice that this is probably the year that one would guess for a change since there 
were 46 and 39 tests in 1969 and 1970, respectively, and 24 and 27 tests in 1971 
and 1972, where these patterns are typical in those directions. Also, the posterior 
mean for the intensity parameter of the first period is noticeably larger than that for 
the second period, as expected. So it appears that the early 1970s saw a change 
of testing regimes for the United States. It turns out that the United States and 47 
other nations, including Great Britain and the Soviet Union, signed the Treaty for the 
Nonproliferation of Nuclear Weapons in 1970. Shortly thereafter, the Comprehensive 
Test Ban Treaty was proposed, which would have the world's nuclear powers cease 
testing completely. Although it was not implemented at the time, its introduction may 
have had a chilling effect on testing procedures in the United States. 

Consider the difficulty in approaching this problem from a non-Bayesian perspec-
tive. Maximizing the joint likelihood function, 

(π^Η,π^) 
is not straightforward, due to the position of fc in the two products. Common solutions 
involve making suspect normality assumptions (Sen & Srivastava 1975a,b), äü0ö'i 
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Figure 5.2 Traceplots for U.S. thermonuclear testing sampler. 

0*+00 2e*W 4e»04 6e*04 8 e * M 1β-Ό5 

Oe+00 2e*04 4e*04 6e>04 Be+04 1e*Q5 

nonparametric models (Pettitt, 1979) and cumulative sums (Page, 1957; McGilchrist, 
and Woodyer 1975). The central problem in this context is testing the null hypothesis 
of no change point versus all possible change-point alternatives when the pertinent 
distribution is unknown. This explains why change-point problems are now gener-
ally tackled from either a Bayesian perspective or using more complex time-series 
tools to allow serial dependence and the accompanying assumptions that they imply 
[Darkhovsky, 1994; Brodsky and Darkhovosky, 1993; Woodward and Gray, 1993; 
see also the nice annotated bibliography of Shaban (1980)]. Complications include 
allowing multiple change points, admitting an unknown number of change points, 
multidimensional outcome variables, nonconstant hazards, and the inclusion of co-
variates. 

5.6 CONCLUSION 

In this brief chapter, we have outlined the basics of Bayesian statistical methodology 
and noted some important distinctions from classical statistical approaches. Our 
purpose is to persuade quantitative social scientists that the Bayesian view is not 
only superior; it is inevitable. The obvious cost is additional formalism and more 
complicated calculations, due to the inclusion of prior distributions and probabilistic 
interpretations. However, a host of computational tools have emerged to handle such 
problems, and since 1990, Bayesian models have not had any serious restrictions in 
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producing and summarizing models. Bayesian stochastic simulation is used here in 
the running example to highlight the freedom that MCMC now provides. 

As a last sales pitch, consider the following description of Bayesian procedures. 
Resulting models are characterized by: 

• Direct statement model assumptions 

• Rigorous probability statements about the quantities of theoretical interest 

• The ability to update inferential statements (i.e. learn) as new data are received 

• Systematic incorporation of qualitative or narrative knowledge 

• Straightforward assessment of both model quality and sensitivity to assump-
tions 

• Summary statements based on probabilities 

We have noted that typical social science statistical reporting is deficient on every 
one of these items. It is curious, therefore, that non-Bayesian thinking and the deeply 
flawed null hypothesis significance test have dominated empirical social science. To 
be fair, we should also list reasons to eschew Bayesian approaches in the social 
sciences. These include: 

• Population parameters are truly fixed and unchanging under all realistic cir-
cumstances 

• Researchers do not have any information prior to model development 

• Results need to be reported as if data were from a controlled experiment 

• Statistical "significance" is more important than effect size 

• Computers and other tools are either slow or unavailable 

• Automated, "cookbook"-type procedures are preferred to individualized anal-
ysis 

Hopefully, these points will prove to be thought-provoking to introspective re-
searchers who might not otherwise have considered the underlying paradigm that 
they rely upon in regular empirical work. 

Finally, the Bayesian view condenses down to three philosophical principles that 
adherents believe. First, the world should be viewed probabilistically, either because 
the subject of inquiry actually has a distribution or because uncertainty has a natural 
description via distributions. Second, every statistical model ever created in the 
history of the human race is subjective, so it is better to admit this and defend all 
model assumptions. Third, prior information abounds in the social sciences and it is 
important and helpful to use it. None of these ideas seems particularly controversial 
in the course of social science research, and the purpose of this chapter has been 
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to introduce the associated procedures along with contrasts to their non-Bayesian 
alternatives. 

Jeff Gill 
Washington University, St. louis 
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CHAPTER 6 

A BOOTSTRAP TEST OF SHAPE 
INVARIANCE ACROSS DISTRIBUTIONS 

Response time (RT), the time taken to complete a task, is a common dependent variable 
that has been used to draw inferences about the nature of mental processing. While 
many researchers tend to analyze only mean RT, a growing number are examining 
entire RT distributions to provide constraint on cognitive and perceptual theories (e.g., 
Ashby, Tien, & Balakrishnan, 1993; Dzhafarov, 1992; Hockley, 1984; Logan, 1992; 
Ratcliff, 1978; Ratcliff & Rouder, 1998, 2000; Rouder, 2000; Rouder, Ratcliff, & 
McKoon, 2000; Theeuwes, 1992, 1994; Townsend & Nozawa, 1995; Van Zandt, 
Colonius, & Proctor, 2000). 

Although there are several methods of analyzing distributions, we advocate that 
researchers consider how properties of location, scale, and shape change across con-
ditions or populations (Rouder, et al., 2003, 2005). Figure 6.1 provides an example 
of these properties. The left panel shows the case when only location differs be-
tween distributions; the center and right panels show the same for scale and shape, 
respectively. 

Location and scale can be given precise meanings. Let the density of a continuous 
random variable exist everywhere and be expressed as f(t \ 0 i , . . . , 0 P ) , where 
0 i , . . . , θρ are parameters. Let z = (t — 0i) /02- We refer to the density as being 
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in location-scale form if there exists a density g such that 

1 / t - 0 i \ 
f(t\elt...,ep) = —g\—— | 03 , . . . , 0 P J (6.1) 

If Equation (6.1) holds, θ\ is referred to as the location parameter and #2 as the scale 
parameter. We will say that 03 through θρ are shape parameters. Many random 
variables have densities that can be expressed in location-scale form. For the normal, 
for example, θχ = μ, θ? = σ, and g(z) = ( 2 π ) _ 1 β _ ζ I"1. The location 
parameter corresponds to the mean, the scale parameter corresponds to the standard 
deviation, and there are no shape parameters. For the exponential with f(x | r ) = 
r~1e~x/T, x > 0, there is no location parameter (θχ = 0), 02 = τ , and 
g(z) — e~z. The scale parameter corresponds to r , and there are no shape or 
location parameters. Neither the location parameter nor the scale parameter are 
unique. For example, the location parameter may be the mean, mode, or point at 
which a distribution first attains mass. 

There is an asymmetric relationship between location, scale, and shape parameters 
and the central moments of a distribution. Changes in location certainly imply changes 
in mean but not in central moments of higher order than the mean. Changes in scale 
imply changes in even central moments, including the variance. Changes in scale, in 
general, may also imply changes in the mean too. For example, the exponential has 
a single parameter, the rate, whose inverse is a scale parameter. Increasing the rate 
not only decreases the variance, but decreases the mean as well. Changes in shape, 
in general, may imply changes in all moments. The left panel shows the case when 
only location differs between distributions; the center and right panels show the same 
for scale and shape, respectively. 

Figure 6.1 Location-scale-shape taxonomy of differences between distributions. The left, 
center, and right panels show distributions that differ in location, scale, and shape, respectively. 
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We have advocated the following processing interpretation to these properties. 
Shape is the most important, as it reflects the underlying mental architecture. Shape 
changes may be associated with changes in architecture, such as changes in mixtures, 
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adding latent stages, or switching algorithms (e.g., from serial to parallel processing). 
If shape does change across manipulations, then documenting, exploring, and ex-
plaining these changes is surely a good route to better psychological theory. If shape 
is invariant across manipulations, this invariance licenses the analysis of scale. If 
shape does not change, and one distribution dominates another, as in the center panel 
of Figure 6.1, scale is an index of processing speed. It makes little sense to analyze 
scale across two distributions if they do not share the same shape. For example, it is 
not meaningful to compare the scale of a normal distribution to that of an exponential 
distribution. Finally, shift indexes peripheral processes such as traducing the stimulus 
and executing motor commands (cf. Dhzafarov, 1992; Hsu, 1999; Ratcliff, 1978). 

The interpretation above of location, scale, and shape places priority on shape. It 
makes little sense to compare scale (speeds) of distributions if shape varies. There-
fore, it is important to develop methods of assessing shape invariance while allowing 
location and scale to vary. There are two approaches to the problem: the first is to 
specify a parametric form with an explicit shape parameter. Examples include the 
Weibull, log-normal, and inverse Gaussian. We show in the next section that the 
parametric approach is not robust to misspecification, and therefore is not appropri-
ate. The second approach is nonparametric. The nonparametric approach would be 
straightforward if the analyst knew the mean and variance of distributions to infinite 
precision. In this case, the distributions could be shifted and scaled until they had a 
mean of 0.0 and a variance of 1.0. Then any shape differences would be manifest as 
differences in the shifted-scaled distributions. Recent developments in testing distri-
bution equalities (e.g., Lombard, 2005; Wilcox, 2006) could then be used to test for 
shape invariance. Unfortunately, the analyst only knows sample means and variances. 
The problem is therefore more complex than the problem of assessing distribution 
equality. 

6.1 LACK OF ROBUSTNESS OF A PARAMETRIC TEST 

Before developing the nonparametric test, we highlight the problems of a parametric 
approach by exploring the robustness of a shape test that assumes a Weibull parametric 
form. The density of a three-parameter Weibull distribution may be given as 

/(t;V,6>,/3) = Φ 
Θ 

ß-i 

exp -
Φ 

Θ 

β^ 

t>tl>, θ,β>0 

In this parameterization, parameters φ, θ, and β serve as the location, scale, and shape 
of the distribution, respectively. To test the robustness of a Weibull parametric shape 
test, we performed two simulated experiments, each consisting of 50 participants who 
each observed 100 trials. In the first experiment, each participant's data came from 
the Weibull distribution with location, scale, and shape parameter values of .262 s, 
.199 s, and 1.7, respectively. Because the test assumes Weibull parametric forms, the 
test is well specified for this experiment. In the second experiment, each participant's 
data came from an inverse Gaussian distribution. The density of a three-parameter 
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inverse-Gaussian distribution may be given as 

^^=^--*^M~l%:-;n 
where x > φ and ψ,θ,β > 0. In this parameterization, parameters φ, Θ, and 
β serve as the location, scale, and shape of the distribution, respectively. Each 
participant's data had inverse-Gaussian location, scale, and shape parameters of .2 s, 
1.2 s, and 5, respectively. Because the test assumes the Weibull form, it is misspecified 
for these data. The contrast between the two experiments allows for study of the effects 
of misspecification. The solid and dashed lines in the left panel of Figure 6.2 show 
the densities of an inverse Gaussian and a Weibull distribution, respectively, with 
the parameter values given above. These distributions are highly similar, indicating 
that there is only a small degree of misspecification. Hence, we would hope that the 
Weibull parametric shape test yields reasonable results, even when applied to inverse 
Gaussian data. 

We fit two Weibull models. The general model consists of individualized location, 
scale, and shape parameters. Across the 50 participants, therefore, there are 3 X 50 = 
150 parameters. The restricted model specified that each participant had the same 
shape; hence, the restricted model had 50 shift parameters, 50 scale parameters, 
and a single shape parameter (a total of 101 parameters). Whereas "true" shapes 
did not vary across participants, a well-calibrated test should yield a rate of type I 
errors close to the nominal value. We estimated the Weibull models with maximum 
likelihood and assessed the validity of shape invariance with a likelihood ratio test 
(G2; Reed & Cressie, 1988; Wilks, 1938). Details of maximization are as follows. 
For the general model, the negative log-likelihood was minimized for each individual 
separately. For each individual, there are three parameters, and the three-parameter 
minimization was performed with the Nedler-Meade simplex algorithm (Nedler & 
Mead, 1967) in R with the opt im 0 command. The case is a bit more complicated 
for the restricted model. We used a nested optimization design. In the inner loop 
we minimized location and scale for each individual separately for a fixed common 
shape with the simplex algorithm. Then, in the outer loop, we found the best common 
shape that minimized negative log-likelihood with the algorithm from Brent (1973) 
as implemented in R with the optimizeO command. Because each minimization 
call is done with respect to a small number of parameters, minimization was quick 
and reliable. 

The Weibull model is not regular, and therefore the asymptotic distribution of the 
test statistic is not guaranteed to follow the chi-square distribution with 49 degrees 
of freedom (df„eneraj — dfrestrjcte(j = 150 — 101 = 49). To assess the effects 
of irregularity, we simulated the first experiment (Weibull-generated data) 300 times. 
The cumulative distribution function of the sampling distribution of G2 across these 
300 replicates is shown as line "W" in the right panel of Figure 6.2. The dashed 
line shows the theoretical chi-square distribution with 49 degrees of freedom. As can 
be seen, the observed distribution is fairly close to the chi-square distribution even 
though regularity is violated. The vertical line shows the criterial value for a nominal 
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type I error rate of .05. The observed type I error rate for this nominal value is .083, 
which represents only a modest inflation. 

Figure 6.2 Effects of misspecification on a Weibull parametric test. Left: Weibull (dashed) 
and inverse-Gaussian (solid) probability density functions are fairly similar. Right: Cumulative 
distribution functions of the sampling distribution of log-likelihood ratio statistic (G2) of 
Weibull test of shape invariance. Lines labeled "W" and "IG" are for Weibull-generated and 
inverse-Gaussian-generated data, respectively. The dashed line is the theoretical chi-square 
distribution with 49 df. The vertical line indicates the nominal a = .05 criterion; the 
observed type I error rates are .083 and .853 for the Weibull and inverse-Gaussian-generated 
data, respectively. 
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To assess how this seemingly small misspecification of parametric form affected 
the true sampling distribution of G2, we performed 300 replications of the second 
experiment. Line "IG" shows the cumulative distribution function (CDF) of the 
sampling distribution of G2. Most of the distribution (85% of the 300 simulation 
experiments) is above the nominal a = .05 criterial value, indicating a massive type 
I error inflation. Even though the data were generated with shape invariance, the para-
metric Weibull test is useless, as even small misspecification drive an unreasonably 
high type I error rate. It is this uselessness that motivates the need for a nonparametric 
test. 

6.2 DEVELOPMENT OF A NONPARAMETRIC SHAPE TEST 

We first develop a nonparametric shape test for the case for a single participant who 
provides data in each of two conditions. Let x = X\,..., xj and y = Vi, ■ · · ,yj 
denote vectors of J observations in the first and second conditions, respectively. 
Assume that the data in each condition are independent and identically distributed 

(e.g., Xj ~ X and yj ~ Y, j = 1 , . . . , J ) . The main question is whether 
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distributions X and Y have the same shape [i.e., whether (X — μχ)/σχ and (Y — 
μγ)/&γ have the same distribution]. The first stage of the test is the construction 
of a statistic for shape change; the second stage is the estimation of the sampling 
distribution of the statistic through resampling. 

6.2.0.1 Step 1: Transform the data If one knew the population means and 
standard deviations for distributions X and Y, one could form the standardized 
samples, say 

X- = ^ ^ , y- = y-^^, j = i,...,J (6.2) 
J σχ J σγ 

and perform a nonparametric test for equality of two distributions, such as the Kolmo-
gorov-Smirnov two-sample test (Conover, 1971) or the Cramer-von Mises two-
sample test (Anderson, 1962). Since the population means and standard deviations 
are unknown, it is natural to use the sample means and standard deviations estimated 
from the data, x,y,ax, and σν, and consider 

Xj — x yj — y 
Xj = — - , yj = — ; , j = l , . . . , J (6.3) 

σχ συ 

Our strategy is to use the standardized data in (6.3) in place of the ideal standardized 
samples in (6.2) in a two-sample test. 

Figure 6.3 provides examples of how shape differences in X and Y affect the 
relationship between X and Y. The top-left plot shows two distributions that differ 
in location and scale, but not in shape. For this example, 500 samples from each of 
these distributions serve as data. These data were normalized with Equation (6.3); the 
resulting empirical cumulative distribution functions (ECDFs) are displayed in the 
top-center plot. As can be seen, these ECDFs are quite similar. The bottom-left panel 
of Figure 6.3 shows two distributions that differ in location, scale, and shape. Once 
again, 500 samples from each served as data. The ECDFs of the normalized data are 
shown in the bottom-center plot. These ECDFs are not as similar as the ECDFs in the 
top-center panel. When the shapes are the same in data, the normalized distributions 
are the same; when the shapes are different, the normalized distributions are different. 
Therefore, to test for shape differences, we test for differences among the normalized 
data. 

6.2.0.2 Step 2: Quantify differences One plausible statistic for describing 
the difference between two sets of normalized samples is a sum-squared difference 
statistic, 

j 

da = E ( í Ü ) - ! / Ü ) ) a (6·4) 

where X(j) and yy) denote the j th-order statistic of the respective normalized sample. 
If we view x(j) and y^y as sample quantile estimates for the TTjth quantile with 
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Figure 6.3 The shape test. Left: Densities underlying data for shape invariance (top row) 
and shape change (bottom row). Center: Empirical cumulative distribution functions of 500 
normalized samples for shape invariance (top row) and shape change (bottom row). Right: 
Differences in normalized data for shape invariance (top row) and shape change (bottom row). 
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■Kj = j/(J + 1), then x¡¿) — y^ is the difference in sample quantiles for the 
two (normalized) samples. The right panels plot these differences as a function of 
■Kj. If distributions X and Y have the same shape, these segments should be small 
(top-right panel); as X and Y vary in shape, these segments increase (bottom-right 
panel). The distance, d2, is the sum of the squares of these segments. 

As an aside, the d2 statistic is related to the Shapiro-Wilk (1965) one-sample 
goodness-of-fit test statistic for normality. The Shapiro-Wilk test statistic, denoted 
r , is the sample correlation coefficient for the order statistics of the sample and the 
expected value of the order statistics for the standard normal distribution. The sample 
correlation coefficient is independent of location and scale and can be computed 
from standardized samples as in Equation (6.3). In our case, if rxy is the sample 
correlation coefficient for the sorted original data, it is straightforward to show that 
d2 = 2 ( J - 1)(1 - rxy). 

The next stage is estimating a sampling distribution for d2. To our knowledge, 
this distribution has not appeared in the literature. Thus we implement the test using 
the bootstrap (Efron, 1979; see Efron & Tibshirani, 1993) to estimate critical values. 

6.2.0.3 Step 3: A bootstrap The bootstrap method is based on resampling from 
the original data set in some fashion to obtain a "bootstrap" sample. The test statistic 
is computed for the bootstrap sample. The procedure is repeated many times, and the 
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empirical distribution of the test statistics computed for the bootstrap samples is used 
to estimate the true sampling distribution of the test statistic. 

Let z be the vector of all the normalized data [i.e., z = (x, y)]. Under the null hy-
pothesis, the elements of z are approximately independent and identically distributed. 
[They would be exactly independent if z were computed with equation (6.2) instead 
of equation (6.3).] The simple bootstrap is based on taking M independent bootstrap 
samples from z as follows. To obtain the mth bootstrap sample, sample two new 
vectors of data of length J from z with replacement. Suppose that these vectors are 
denoted x^m^ and y^m^, respectively. Regardless of whether the null hypothesis is 
true or not, the bootstrap samples x(m) and y^m^ come from the same distribution, 
hence they have the same shape. Now equations equation (6.3) and equation (6.4) 
are applied to each bootstrap sample to compute a bootstrap test statistic, which we 
denote d2^. Note that d"^ is a test statistic computed from two samples from distri-
butions with the same shape, so the null hypothesis is true. The bootstrap idea is to 
use these samples to estimate the distribution of d2 under the null. 

6.2.0.4 Step 4: Get the p-value The collection of d2
m, m = 1 , . . . , M , 

serves to estimate the sampling distribution of d2 under shape invariance. If d2 is in 
the upper tail of the sampling distribution, the null may be rejected. The bootstrap 
estimate of the p-value is w/M, where w is the number of bootstrap samples for 
which d ^ > d2. Hence, the decision rule for a desired type I error rate of ot may 
be constructed by rejecting the null when p < a . 

6.3 EXAMPLE 

Table 6.1 provides an example of the bootstrap shape test. A single participant pro-
vides 10 observations in each of two conditions. The first two rows, labeled x and 
y, display the data. The rows labeled x and y are normalized in accordance with 
equation equation (6.3). The distance statistic d2 is computed in accordance with 
equation (6.4); for these data, d2 = 1.66. 

The rows labeled x(m) and y (m) show a bootstrap step; these values were sampled 
from the concatenation of x and y with replacement. Note how values from x and 
y appear in both x^m^ and y^m^. The following rows show normalized bootstrap 
samples x^m^ and y^m\ The d2 statistic for these two vectors is d ^ = 1.49. We 
repeated the process for another 999 bootstrap cycles samples and calculated a squared 
distance for each. The squared distance from the original sample, d2 = 1.79, is less 
than 634 of the squared distances from the 1000 bootstrap cycles; hence the p-value 
for the test is .634. For any reasonable α , the null hypothesis of shape invariance 
cannot be rejected. 

6.4 EXTENSION OF THE SHAPE TEST 

It is quite straightforward to extend the test to multiple participants. Consider the case 
in which each participant provides a set of response times in each condition. Let CCJJ 
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Table 6.1 Sample Data, Transformed Data, and Bootstrapped Samples Provide an 
Example of the Shape Test 

X 

0.073 
0.580 
0.410 
0.419 
1.107 
0.515 
0.074 
0.233 
0.205 
0.079 

y 

1.272 
0.903 
0.524 
0.827 
0.827 
1.308 
0.835 
0.598 
1.087 
0.634 

X 

-0.928 
0.659 
0.127 
0.155 
2.308 
0.455 

-0.925 
-0.427 
-0.515 
-0.909 

y 

1.448 
0.080 

-1.326 
-0.202 
-0.202 
1.581 

-0.172 
-1.051 
0.762 

-0.918 

x ( m ) 

0.762 
-1.051 
-0.928 
0.080 

-0.202 
0.155 
0.455 

-0.909 
-0.202 
0.127 

y ( m ) 

-0.925 
-0.515 
0.127 

-0.515 
0.127 

-1.326 
0.659 
1.581 
2.308 

-0.202 

x<»> 

1.515 
-1.428 
-1.229 
0.408 

-0.050 
0.530 
1.017 

-1.198 
-0.050 
0.484 

y ( m ) 

-0.943 
-0.577 
-0.004 
-0.577 
-0.004 
-1.301 
0.047 
1.293 
1.942 

-0.298 

and yij denote the jth response for the ¿th participant, i = 1, . . . , J , in the control 
and treatment conditions, respectively. We assume that each participant has his or 
her own characteristic shift, scale, and shape in each condition. The hypothesis under 
consideration is that while this shift and scale may vary across conditions and people, 
shape only varies across people; it does not vary across conditions. The first step in 
the bootstrap test for this hypothesis is to sum square distance over participants: 

i 

where d? is the squared distance statistic for each participant. The same summing 
is applied to each cycle of the bootstrap (i.e., dP = V . d? , where d? is the 
bootstrapped squared distance for the ¿th person on the mth cycle). 

A second extension covers the case in which there are different numbers of ob-
servations in the control and treatment conditions. Two modifications are needed. 
First, the number of samples comprising x(m) and y^m^ are adjusted to reflect the 
numbers of samples in each condition. Second, the distance statistic is modified to 
account for unequal numbers of samples. Let J* be the smaller sample size and let 
7Tj = j/(J* + 1), j = 1 , . . . , J* be an estimate of the CDF of the jth ordered 
observation for the smaller sample. Next, compute the sequence of njth quantiles 
for x(m) and y(m>. These sequences are ordered and the test proceeds as before. 

6.5 CHARACTERISTICS OF THE BOOTSTRAP SHAPE TEST 

We ran a set of simulations to assess the level (type I error rate) and the power of 
the bootstrap shape test. The reported simulations consisted of 40 participants each 
observing 200 trials in each of two conditions. These values denote a moderately 
large scale experiment in cognitive and perceptual psychology. We repeated this 
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experiment 5000 times with M = 1000 resampling cycles. In appplication, we 
would recommend a much larger value of M, but the current value provides sufficient 
accuracy to ascertain the approximate level and power of the tests. 

The tests were performed across three distributions that have been useful in model-
ing RT: the Weibull, the ex-Gaussian, and the inverse-Gaussian or Wald. The density 
of the ex-Gaussian may be given as 

/ ( i ;V ,0 , /3 )=0 
^expjzß-1) + .δβ 

ß 

1-2 

-Φ^-β'1), θ,β>0 

where z = t — φ/θ and Φ is the cumulative distribution function of the standard 
normal. For both of these distributions, φ,θ, and beta serve as location, scale, and 
shape parameters, respectively. 

The first set of simulations was performed to assess the level or type I error-rate 
of the shape bootstrap test. In this case, true shape values were held constant across 
people and conditions. These shape values were chosen such that the skewness of 
the distributions was approximately .9. The Weibull with this skewness is the middle 
density in Figure 6.4. In our initial simulations, shifts and scales were varied across 
each participant-by-item pairing, but this variation had, as expected, no effect on the 
level and power obtained. 

The results of the simulations are shown in Table 6.2. We report the proportion 
of times the null was rejected at a = ( .01, .05, .10). The first three rows of 
Table 6.2 show the case for shape invariance. For these distributions the bootstrap 
test is conservative for the Weibull and inverse-Gaussian and well-calibrated for the 
ex-Gaussian. 

Figure 6.4 
variances). 

Weibull distributions with skewnesses of .7, .9, and 1.1 (equated means and 
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Table 6.2 Proportion of Rejections of the Null Hypothesis Observed in Simulations 

Distribution 

Weibull 
Ex-Gaussian 
inverse-Gaussian 
Weibull 
Ex-Gaussian 
Inverse-Gaussian 

Normal 
Logistic 
Exponential 
Pareto 

Shape Parameter Value 

Cond. 1 

1.66 
1.19 

11.00 
1.48 
1.00 
7.40 

— 
— 
— 

3.00 

Cond. 2. 

Type 
a 

.01 

RT Distributions 
1.66 
1.19 

11.00 
1.90 
1.43 

18.30 

.001 

.008 

.003 
— 
— 
— 

Other Distributions 
— 
— 
— 

3.00 

.001 

.005 

.015 

.720 

: I Error 
Level 

.05 

.001 

.051 

.022 
— 
— 
— 

.004 

.040 

.080 

.860 

.10 

.030 

.109 

.061 
— 
— 
— 

.015 

.098 

.159 

.920 

Power 
Q 

.01 

— 
— 
— 

.957 

.440 

.722 

— 
— 
— 
— 

: Level 

.05 

— 
— 
— 

.992 

.725 

.904 

— 
— 
— 
— 

.10 

— 
— 
— 

.998 

.836 

.954 

— 
— 
— 
— 

We ran a second set of simulations to assess power. To model a large shape change, 
we chose shape parameter values that correspond to a skewness of .7 and 1.1 in the 
two conditions, respectively. Weibull densities with these skewnesses are drawn as 
the outer lines in Figure 6.4. As shown in the Table 6.2, the power is quite high, even 
when the level is too conservative. 

Although the bootstrap shape test is reasonable for the RT distributions explored, 
the level of the test depends on the distribution. We ran an additional set of simulations 
with the normal, logistic, exponential, and Pareto distribution with density given as 

f(t\i/,,ß)=ß t > ψ, β > 0 

As can be seen, the level varies dramatically over these forms. For thin-tailed distribu-
tions, such as the normal and Weibull with a shape of 1.7, the bootstrap test is highly 
conservative. It is much better calibrated for exponential tailed distributions (logis-
tic, ex-Gaussian, inverse-Gaussian, exponential) and ridiculously liberal for fat-tailed 
distributions (Pareto with a shape of 3.0). Fortunately, RT distribution tails tend to 
be no fatter than an exponential, as indicated by either flat or rising hazard functions 
(Burbeck & Luce, 1982; Wolfe, 1998). Therefore, while the bootstrap shape test is 
appropriate for RT distributions, it may not be so for other domains. 

6.6 APPLICATION 

To demonstrate the utility of the bootstrap shape test in realistic contexts, we tested 
empirical data from a priming experiment (Pratte & Rouder, submitted). Participants 
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observed single-digit numbers (2, 3, 4, 6, 7, 8) as targets and had to classify each 
as being either greater than or less than 5. Prior to target, single-digit primes were 
displayed for 25 ms and masked. These primes, while barely visible, affected the 
time it took to classify target. Targets preceded by congruent primes, that is, those 
primes that elicit the same response as the target, were speeded by 13 ms relative 
to targets preceded by incongruent primes. In Pratte and Rouder's experiment, 43 
participants observed 288 congruent and 288 incongruent trials. Pratte and Rouder 
excluded responses if (a) they were incorrect (5%), (b) response time was outside a 
range of 200 ms to 3 s (.3%), or the prime and target were the same digit (so as to 
preclude repetition priming effects). After exclusions there were an average of 270 
incongruent trials and 184 congruent trials per participant. 

Data in priming experiments are often displayed as delta plots (e.g., de Jong, Liang, 
& Lauber, 1994; Ridderinkhof, Scheres, Ooserlaan, & Sergeant, 2005). Delta plots 
are rotated quantile-quantile (QQ) plots; the diagonal of the QQ plot is rotated to the 
x-axis (Zhang & Kornblum, 1997). To draw a delta plot, RT deciles are computed for 
each participant in each condition. For each person and each decile, the difference 
in RT and the average RT between the incongruent and congruent condition are 
calculated. The difference score is plotted on the y-axis; the average score is plotted 
on the a;-axis. The left panel of Figure 6.5 is the delta plot for this experiment. The 43 
gray lines in the center plot show this relationship between difference and average RT. 
The result is that the priming effect is greatest for the quickest responses and falls off 
as responses slow. The points show averages at each decile. The y-axis value is the 
average difference across conditions; the a;-axis value is the average of the average 
across conditions. The decline in priming effect with slower responses is clear; 
moreover, this decline has previously been observed in near-liminal number priming 
experiments (Greenwald, Abrams, Naccache, & Dehaene, 2003). It is not clear that 
the priming effect reverses for the slowest responses. One prevailing interpretation of 
the decline is that the priming effect is relatively short lived (e.g., Greenwald, Draine, 
& Abrams, 1996; Neely, 1977). We provide an alternative explanation below after 
exploring the possibility of shape effects. 

The result of a bootstrap shape test is a significant difference in shape across prim-
ing conditions (p < .001). The right panel of Figure 6.5 provides a supplemental 
graphical view of the shape test; the ECDF of all 43 participant's p-values is plotted. 
Under the shape invariance null, this ECDF should be that of a standard uniform and 
lie on the diagonal. It does not, indicating that values of p¿ are less than expected 
under shape invariance. 

The difference in shape across congruent and incongruent conditions is a primary 
marker of processing. One fruitful avenue to pursue is a mixture explanation. We 
speculate that participants are consciously aware of the 25-ms primes for some trials 
and not for others. Indeed, in a separate block, participants were able to classify 
the prime accurately as greater than or less than 5 on 61% of the trials. Those 
trials that generate awareness may have a priming effect (e.g., congruent primes that 
generate awareness result in quicker responses than incongruent primes that generate 



CONCLUSION 171 

Figure 6.5 Result of a bootstrap shape test. Left: Light gray lines show individual delta 
plots; the solid line with dots is a group average. The late dip below zero is not reliable at the 
group level. Right: ECDF of pi. Under the null, the pi are distributed as a standard uniform 
(diagonal line). The departure is substantial; shape invariance is rejected. 

Average Response Time (sec) Shape Test p-value 

awareness). Primes that do not generate awareness do not generate a congruency 
effect. This mixture model would produce shape differences. It is also reasonable 
to speculate that those primes generating awareness happen on trials in which the 
participants are paying peak attention to the set of events. Such peak attention will 
lead to relatively fast responses to the target. This explanation accounts for both the 
decline in delta plots (congruent effects happen when there is peak awareness and 
short response times) and a shape change. 

Our explanation is admittedly post hoc and speculative. The exercise demonstrates 
how shape testing provides important leads for theoretical development. A shape dif- 
ference is an indicator to the researcher that there is an important marker of processing 
that needs further exploration. In this case, we would propose a mixture, but clearly 
more experimentation is needed. A priming researcher may try to localize the com- 
ponents of the mixture though some manipulation, perhaps through manipulating 
stimulus-to-target asynchronies (SOAs) or the relative proportion of incongruent to 
congruent primes. 

6.7 CONCLUSION 

Understanding the shape of RT distributions is critical for linking models of infor- 
mation processing to data. In this chapter, we show how parametric tests may not be 
robust to misspecification and provide a nonparametric alternative. The developed 
test makes use of modem resampling techniques and is relatively easy to implement. 
The test proves powerful while maintaining adequate control of type I error for RT 
distributions with tails no fatter than an exponential. 
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There are two large drawbacks to the current test: First, the calibration of the 
test depends too greatly on the underlying distribution. It would be desirable to 
have a test whose level was not so dramatically dependent on the form of the tail. 
Second, the test applies only to paradigms in which all participants observe stimuli 
in two conditions. It is not yet evident how to expand the test to factorial designs 
or continuously measured independent variables. Nonetheless, many experiments 
in cognition and perception obey the two-condition restriction; in these cases, the 
bootstrap shape test is appropriate for RT distributions. 

Jeffrey N. Rouder, Paul L. Speckman, Douglas Steinley, Michael S. Pratte and 
Richard D. Morey 
University of Missouri, Columbia 
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CHAPTER 7 

STATISTICAL SOFTWARE FOR THE 
SOCIAL SCIENCES 

Contemporary social science research and evaluation require access to a statistical 
package that has the data management capabilities, graphical support, and statistical 
functions and procedures necessary to perform required analyses. In fact, many 
research endeavors necessitate the use of more than one statistical package, as well 
as several ancillary utility packages. In this chapter, we describe the most popular 
software applications used in social science research as well as a few that probably 
should get more use. 

In the 10 years I have served as the software reviews editor for The American 
Statistician, a publication of the American Statistical Association, I have had the 
opportunity to become acquainted with a large number of statistical software packages 
and support utilities. In the latter category I place software such as Stat/Transfer, 
which is used to convert file formats between nearly every major statistical application, 
ePrint 5 Professional, a low-cost program used to convert any Windows format to a 
PDF image, and nQuery Advisor, used to access appropriate sample size and power 
for a given research project. These types of programs typically provide the user with 
a single capability, which they do well. Of course, some are better than others, and 
some may have more capability, but not enough to warrant the excess cost compared 
with similar packages. 
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In any case, I have found that several heavily advertised and well-used applications 
may not in fact provide the research scientist with the statistical capabilities needed 
to evaluate their data properly, at least not as well as perhaps some lesser known 
packages. I hope to provide the reader with some of the insights I have gained over 
the years in determining which package may be most appropriate for particular needs. 

I first outline various statistical capabilities that an appropriate software application 
should have for proper social science analysis. Subsequently, I provide an overview 
of the major statistical software applications with the view of how they meet the 
requirements detailed for social science research. Of course, an analyst may need 
only one statistical procedure when working on a particular project. In this case they 
may find that several of the applications listed suit their specific requirements. 

7.1 SOCIAL SCIENCE RESEARCH: PRIMARY CAPABILITIES 

• Data management 

Data transformations, appending, merging, sorting, labeling, file conversion, 
import and export, data verification, row and column management, subset 
defining 

• Graphical support 

Line charts; area plots; histograms; scatterplots; bar charts; pie charts; hi-
lo charts; regression diagnostic graphs; spike plots; stem-and-leaf plots; 
survival plots; nonparametric smoothers; distribution Q-Q plots; other 
distribution diagnostic plots; ROC graphics 

• Descriptive statistics 

Summary statistics, cross-tabulations, correlations, t-tests, proportion tests, 
association statistics, equality-of-variance tests, confidence intervals, non-
parametric tests, normality tests, random number generation, equality of 
variance tests 

• ANOVA-type DOE 

One-way, two-way, n-way ANOVA and analysis of covariance, randomized 
block designs, contrasts, factorial, unbalanced, mixed, and nested designs, 
repeated measures 

• Regression modeling 

Continuous response models: OLS; lognormal; two- and three-stage least 
squares; polynomial; fractional polynomial 

Generalized linear models: Gaussian; gamma; inverse Gaussian; binomial 
(logit, probit, clog-log, log-log); Poisson; geometric; negative binomial; 
power 
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Binary response models: logit; probit; clog-log 

Proportional of grouped response models: logit; probit clog-log 

Count response models: Poisson and Poisson with rates; negative binomial 
(NB1 and NB2); zero-inflated models; truncated; censored, hurdle models 

Ordered response models: multinomial logit, probit 

Unordered response models: ordered binomial; generalized ordered binomial 
models 

Panel models: unconditional and conditional fixed effects; random effects; 
generalized estimating equations 

Mixed linear models: random intercept; random coefficient of parameter; 
hierarchical models; spatial analysis 

Nonparametric models: generalized additive models; smoothed regressions; 
quantile regression 

Nonlinear models 

• Multivariate models 

Multivariate analysis of variance 

• Survival or event history models 

Kaplan-Meier; life tables; Cox proportional hazards models, with time-varying 
covariates; parametric models; Mantel-Haenszel tests; discrete response 
models 

• Classification models 

Discriminant analysis, cluster analysis, PCA, factor analysis, correspondence 
analysis, multidimensional scaling; classification trees 

• Nonparametric tests 

Wilcoxon-Mann-Whitney and Wilcoxon signed rank tests; logrank tests; 
Kruskal-Wallis tests; Spearman and Kendall correlations; Kolmogorov-
Smirnov tests; exact binomial CIs 

• Resampling statistics 

Bootstrap; jackknife; permutation tests; Monte Carlo simulation 

• Exact statistical analysis 

For small and/or unbalanced tables; logistic and Poisson regression models 
having few observations, or where covariates are highly unbalanced 

• Programming language 
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Batch file processing; statistical procedure creation; matrix programming, 
function creation; low-level graphic programming 

• Other capabilities relevant for most social science research 

Survey methods; time-series methods; quality control; six sigma 

• Utilities useful for analysis 

Sample-size analysis; built-in spreadsheet; built-in text editor for program cre-
ation; built-in Internet accessibility; Web download of updates; technical 
support; permanent license; free technical and user support 

7.2 STATISTICAL SOCIAL SCIENCE STATISTICAL APPLICATIONS 

The following statistical packages are those most used in applications in the social sci-
ences, not counting econometrics. If we include econometrics, we must add LIMDEP 
to the following list: SAS, SPSS, Stata, R, Statistics, StatXact/LogXact. Useful utilities 
include: Stat/Transfer, ePrint Professional, and nQuery Advisor. 

7.2.1 R 

Risa freeware package. R is at present the most commonly used software application 
among academicians at the larger universities. R is based on a programming language 
similar to that of S and the commercial S-Plus and has become extremely popular 
both in the United States and Canada as well as abroad. Since the application is 
dependent on user-created statistical procedures and functions, the number of its 
statistical capabilities grows each month. 

A major drawback with R is that there is no error-catching system other than peer 
review. There exists a group of R experts who devote considerable time to assuring 
appropriate user interface as well as evaluating primary functionality, but their work 
is purely gratis. Although overseeing cadres of statisticians have thus far worked hard 
to guarantee the accuracy of the foremost R procedures, they still cannot evaluate all 
of the libraries of programs that have been attached to the overall application. That is, 
the user should employ caution when analyzing or modeling data with newly created 
libraries or programs. 

On the other hand, procedures that have been with the package for some time have 
probably been evaluated by peers. The Journal of Statistical Software, of which I am 
an editor, evaluates submissions of R software to the archives. This helps assure the 
quality of the software, but again, not all prepared procedures are given to review. 

R provides the user with a vast range of statistical capabilities. Nearly all sub-
missions to the R archives reflect the interests of the creator. I suspect that programs 
have been designed for nearly every traditional descriptive statistic in the literature. 
Moreover, few procedures or functions found in commercial software are not in R. 
There are a few, to be sure, but not many. At present I know of no R program for the 
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canonical negative binomial, nor for censored survival count models. There is little 
doubt that such R capabilities will be forthcoming, but it does indicate that R is not a 
finished product. 

It appears to me that most of the libraries submitted to R deal with some type 
of modeling procedure, or with goodness-of-fit and model testing concerns. This is 
certainly advantageous for those engaged in social science research. Many of our 
research endeavors relate in some manner to the modeling of data. R provides the 
social statistician with an easy-to-use, inexpensive, tool by which to understand and 
graph the data at hand. 

It appears that R will be a well-used statistical application for many years to come. 
Many universities require their graduate statistics students, as well as those taking 
graduate statistics courses in the social sciences, to learn R. In fact, universities such 
as UCLA and Stanford University make R competence mandatory for obtaining a 
graduate-level degree in statistically related disciplines. 

See http://www.r-project.org/ for instructions on downloading and other document 
information. R software may be downloaded from a number of mirror sites from 
around the world. Some are faster than others. If you find that downloading the 
software is taking an inordinate amount of time, I suggest breaking out of the download 
process and trying another site. Generally speaking, the closer the mirror site, the 
faster the download. The only caveat is the download speed that is listed with the 
mirror. Be sure that you have the maximum download speed compatible with your 
computer. 

7.2.2 SAS 

S AS is perhaps the father of statistical and data management systems. For the past 30 
years it has been the predominant statistical application in the business and pharma-
ceutical industries. Some of this dominance has dwindled in the past 10 years with 
the rise in popularity of packages such as Stata and, of course, R. But it is still the 
franca lingua of the big business world. 

SAS wants to foster the notion that it is not just a statistical application but, rather, 
an integrated statistics-data management-graphics system that is to be used as the 
only business tool at a site. As such, it is has rather extensive capabilities, having 
few major omissions. The downside is its extremely high cost and the difficulty in 
mastering SAS programming. In fact, at the majority of large businesses using SAS, 
statisticians and SAS programmers are hired into and work in separate departments. 
SAS programmers are an entity unto themselves. 

SAS is rarely purchased by individuals, due to its high cost. However, academics 
are typically able to use SAS via a site license through their university bookstore or 
computing center. For an average cost of some $120, faculty members may obtain a 
license to use SAS on their personal computer, but they typically have access to only 
the previous-to-current version. Many site license users are therefore precluded from 
using SAS's newest offerings. 

A license for use is typically for one year only. After a year, the user is required to 
pay an update fee for each software module acquired. New options generally required 
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payment of full new-user fees. Technical support is not free; one must purchase access 
to maintenance support. Requests for support are submitted via the Web or phone, 
with a response forthcoming within a few days. Other more responsive plans are 
available, but only for a substantially higher fee. 

If one does not have access to a site license, the software will impose a considerable 
setback on one's checkbook. The software must be renewed each year, with a cost 
attached to each unit acquired. The first-year license for the modules required to 
deal with most types of decent social science research can cost well in excess of 
$5000. SAS has numerous fee plans; it is therefore not possible to cite an absolute 
license cost that hold for all situations. The bottom line, though, is that it is an 
expensive application. For large corporate entities, I have heard of yearly SAS charges 
approximating $1,000,000. 

SAS comes with a host of technical support books and booklets. Annual SUGI 
conferences are held where users can discuss problems among themselves and obtain 
hints from SAS experts and from SAS staff themselves. I have myself presented a 
paper at one of the SUGI meetings. There are literally hundreds of papers shared, 
and workshops given, to assist users with SAS programming and statistical issues. 

Many textbooks discuss the particular subject of concern using SAS for examples. 
Together with this support, this all, of course, creates an atmosphere amenable to the 
SAS user. 

On the downside I have observed that SAS seems to be losing its user base in areas 
such as social science research and in health outcomes analysis. Journal articles on 
straightforward biostatistical analysis also seem to be leaning away from SAS. As we 
shall find shortly, Stata has taken a substantial share of statistical research from SAS. 

7.2.3 SPSS 

SPSS (http://www.spss.com/) has been a mainstay among social scientists for over 
30 years. Although found in the business community, it is not nearly as prevalent 
as is SAS. However, it does have a good product share. SPSS, like SAS, is highly 
modularized. One purchases the basic package, consisting of data management and 
graphical and basic statistical capabilities. Advanced statistical modules, including 
more sophisticated statistical modeling tools such as missing values analysis, exact 
statistics, time series, classification trees, categorical data analysis, and so on, are 
available for an extra charge. The charge to a commercial entity for the advanced 
statistics module, which includes programs for generalized linear models, generalized 
estimating equations, and generalized linear mixed models, is $899. If already part of 
your package, an update is $125. The regression package, including binary logistic 
regression, multinomial logistic regression, probit analysis, and nonlinear regression, 
is an additional $899. The base package is $1599. Maintenance (technical support) 
costs an additional $400. If the user desires a well-rounded statistical package, the 
cost will come to some $6000 to $8000. Yearly updates will be somewhere in the 
range of $2000. It is not an inexpensive application. 

SPSS has since its inception had major shortcomings in particular areas of statis-
tics. Some of these areas have been extremely important, and have resulted, in my 
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opinion, in SPSS losing thousands of users. For example, until the current 15.0 
version, SPSS had no Poisson regression procedure. In fact, it had no standard re-
gression model for counts (e.g., Poisson, negative binomial, geometric, ZIP/ZINB). 
The makeshift workaround provided by SPSS technical support for a simple Poisson 
regression model was simply tortuous. Aside from the complexity, one could not 
have a combination of continuous and binary predictors; and zero counts were not 
allowed. The workaround was for all purposes useless. Both the Poisson and negative 
binomial models were made part of version 15 after continuous criticisms that I made 
in my reviews of SPSS. 

Moreover, SPSS was one of the last major software packages to provide its users 
with the ability to model using generalized linear models (GLM). Generalized linear 
models have been part of SAS, Stata, S-Plus (and R), GENSTAT, and several other 
major software applications since at least the early 1990s. It is a covering algorithm 
allowing the user to select an exponential family-based regression model by simply 
choosing a family and link function. The Gaussian family, with the canonical identity 
link, where the linear predictor, xb, is identical to the fitted value, m or y is the same 
model as OLS regression. Selecting the binomial family and logit link from the GLM 
menu, provides the user with a logistic regression. A Poisson family and log link is 
a Poisson regression. 

There were several other major procedures unavailable to SPSS users prior to ver-
sion 15; however, SPSS has made a substantial effort to respond to user requests. Pro-
cedures such as generalized linear models, generalized estimating equations, Poisson 
regression, and several other important procedures are now available to SPSS users. 
To be sure, there are other important procedures of interest to social scientists still 
unavailable to SPSS users. If SPSS is as responsive to user requests for version 16 as 
they were in version 15, SPSS will be nearly as competitive as SAS and STATA. 

SPSS now has a wide variety of statistical, data management, and graphical capa-
bilities. It is suitable for most social scientific projects. Faculty can purchase a site 
license for SPSS through their university bookstore or computing center for about 
the same cost as SAS. However, not all universities have entered into a site license 
agreement with SAS or SPSS. If not purchased through a site license, SPSS is quite 
expensive, but not nearly so much as SAS (see Hübe, 2005a). 

7.2.4 Stata 

Stata is over 20 years old, but did not start to take off until 1991, with the initial issue 
of the Stata Technical Bulletin (STB). The STB was a user-based journal in which 
Stata users published new statistical procedures, novel data management capabilities, 
functions and random number generators, and a host of entries useful to the Stata 
community. The capability of the software skyrocketed such that in five years it was 
a leading statistical application worldwide. It did not hurt that Stata was adopted 
by the Health Care Financing Administration (HCFA), which regulates Medicare, as 
the official software for Medicare patient cost and care outcomes analysis. Health 
care statisticians wrote many new procedures as well, making it one of the most 
comprehensive statistical applications on the market. In fact, it currently has a greater 
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range of regression and modeling procedures than any other software. For a thorough 
review of the package, read Hübe (2005b). 

The key to Stata is its programming language. The higher language programming 
facility provides users with an easy way to expand Stata's statistical offerings and 
provides an easy way for users to shape the application to their own liking. It has a 
comprehensive menu-based system which can be used to find the most appropriate 
model to employ with a particular data situation. Each command has its own help 
file, which can be requested by the menu by typing at the command line: 

help <command:> 

For example, 

. help poisson 

will help on the Poisson regression procedure. 
Stata comes with free technical support as well as a vast cadre of users who regularly 

communicate with one another over the Stata Listserver, located at Harvard University. 
If one does not know how to use a particular application, or has a question regarding 
statistical methodology in general, an answer can usually be found to a query placed 
on the server within a day. An 800 number provides immediate—and free—contact 
to Stata's support. 

Stata Corp, located in College Station, Texas, also owns Stata Press, which has 
published some 10 full-fledged books dealing with such subjects as Generalized Lin-
ear Models and Extensions, Multilevel and Longitudinal Modeling Using Stata, An 
Introduction to Survival Analysis Using Stata, An Introduction to Modern Econo-
metrics Using Stata, Regression Models for Categorical Dependent Variables Using 
Stata, and five others, several of which are in their second and third editions. Five 
more are scheduled for publication in 2007. 

Stata Corp also provides users with Web-based courses on programming, survival 
analysis, and other areas of interest. These are just some of the resources Stata users 
have to learn both statistics in general and how to engage in statistics using Stata. In a 
sense, Stata is like R in that users have authored numerous procedures and functions 
that are now part of the official package. The difference, of course, is on the one 
hand, the widespread technical support offered by Stata Corp and other Stata users, 
and on the other hand, the cost compared with R. R is free; Stata costs $895 for the 
top-ranked educational single-user package (SE/ 9), which includes 15 reference and 
application manuals, much of which is already on the Web site. The most expensive 
single computer commercial application is $1595, a truly small cost for what one 
gets. 

Readers should go to www.stata.com and www.stata-press.com for more infor-
mation about the product, as well as Hübe (2005b). The latter is a comprehensive 
overview of the Stata 9 package and includes multiple examples of use and pro-
gramming: for example, matrix program code, maximum likelihood program code, 
iteratively re-weighted least squares (IRLS)-based program code, nonlinear program 
code, and function program code. 
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7.2.5 STATISTICA 

STATISTICA is primarily a multivariate modeling and data mining application, but 
also has the ability to provide nearly all basic statistical procedures. Currently in 
version 7.0, the basic STATISTICA costs $1195, which includes two printed ref-
erence books and 50 Mfl of compressed electronic documentation. The separate 
STATISTICA Data Miner package is quite expensive at $15,000, with a 20% yearly 
maintenance license fee. Computing laboratory centers at large universities, research 
institutes, and health care outcomes centers are the foremost Data Miner users. 

The basic STATISTICA 7 package provides a vast number of statistical procedures, 
functions, and data management capabilities. Some of the procedures, however, do 
not have the scope or functionality for in-depth analysis that an application such as 
Stata or SAS may have. On the other hand, these two packages provide the user with 
nearly every option conceived of for many of their respective procedures; few software 
applications have their depth of options. For example, Stata and SAS provide the 
ability for those modeling a logistic regression to employ bootstrapped, jackknifed, 
robust, or even Newy-West standard errors to its parameter estimates. All of the 
analyses detailed in Hosmer and Lemeshow's Applied Logistic Regression, perhaps 
the most noted text in the area, are viable Stata options. But because STATISTICA 
does not have as many options as Stata or SAS does not take away from its use or 
value in social science research. 

To reiterate, STATISTICA has a full range of standard statistical package proce-
dures, functions, graphics, and data management tools. It emphasizes multivariate 
statistics, but offers a comprehensive design-of-experiment (DOE) facility, with a 
clear industrial application bent. It also offers a very nice range of ANOVA designs, 
comparable to those of SAS. Complementing STATISTICAL DOE capability, the 
software provides truly comprehensive statistical support for industrial and business 
uses. In fact, it is an excellent business application, with obvious value to social 
scientists. 

The STATISTICA Data Miner provides the following major capabilities: inde-
pendent components analysis, support vector machines, k-nearest neighbor cluster 
analytic methods, stochastic gradient boosted tree analysis, EM clustering, multi-
variate adaptive regression splines, classification and regression trees, CHAID trees, 
neural networks, intelligent problem solvers, generalized additive models, a general 
slicer/dicer and drill/down explorer, plus all the features of the basic STATISTICA 
package. Without a doubt, the STATISTICA Data Miner is the most complete data 
mining application on the market. The graphical support accompanying the data min-
ing facility is unequaled. The only prohibitive feature is the cost, especially for small 
work units or for individuals. 

Mention should be made of the excellent reference manual, authored independently 
by Thomas Hill and Pawel Lewicki, both of Tulsa University. The authors are recog-
nized authorities in the area of Data Mining and multivariate methods, which readily 
comes through when reading how examples are evaluated. The text is a valuable 
resource in itself, independent of the software. 
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I recommend reading Hilbe's overview (Hübe, 2007a) for a review of the major 
capabilities and limitations of both the base package and the Data Miner. 

7.2.6 StatXact/LogXact 

As of this writing, version 7 is the current version of both StatXact and LogXact. 
However, version 8 of both applications will be released in the near future. My 
remarks relate to the final beta version of the software, with the expectation that no 
changes will be made in the interim. 

StatXact is software with a specific purpose. Concerned primarily with the anal-
ysis of contingency tables, the software calculates the highly iterative permutations 
that result in exact nonparametric p-values for F, χ2, and related statistics. In ad-
dition, exact nonparametric p-values are produced for nearly every conceivable test 
statistic, including, for example, logrank tests, generalized Wilcoxon-Gehan tests, 
Kolmogorov-Smirov tests, runs and signs tests, if-sample median tests, two related 
and two independent binomial samples tests, general permutation tests, and tests of 
correlated samples. The user is provided with literally hundreds of permutational 
inference tests. 

The StatXact reference manual reads like a textbook on exact statistical methods. 
There is even a section taking the reader step by step through an analysis concluding 
with an exact p-value. In fact, I used the reference manual as a text for a course I 
taught in exact statistical methods. 

A drawback of using highly iterative techniques is the computer itself. That is, 
the computer hosting the analysis may not have sufficient residual RAM to run the 
routine. In such cases, the software drops out of the algorithm for calculating exact 
statistics and uses a Monte Carlo method instead. Monte Carlo methods are sometimes 
confused with bootstrap. They are not the same. Monte Carlo samples are taken from 
the true permutation distribution of the test statistic, resulting in an accurate estimate 
of the exact p-value. In Monte Carlo simulation, samples are taken from an assumed 
distribution. Bootstrapping, on the other hand, resamples population data in order to 
obtain an empirical sampling distribution of the parameter estimates. The important 
point here is that Monte Carlo methods provide p-values that are typically very close 
to the true exact values. Therefore, if the data set is too large for the computer's RAM, 
Monte Carlo algorithms provide accurate p-values, at least more accurate than can be 
obtained by using standard asymptotic methods. 

StatXact provides output on all three p-values, if possible: exact, Monte Carlo, and 
asymptotic. Unfortunately, though, StatXact does not provide the ability to calculate 
exact parametric p-values (e.g., t-tests). Only one package does such calculations: 
XPro. This software limits itself to the calculation of basic OLS regression, ANOVA, 
i-tests, and a few other parametric models. Unfortunately XPro's interface is poor, 
and it acts only on text data set up in a specific manner. XPro resembles state-of-the-
art 1995 software. Researchers would be benefited if the manufacturerers of XPro 
would update the interface, or if Cytel, the manufacturers of StatXact, would integrate 
parametric methods into its application. 
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This brings us to LogXact, the Cytel application that provides researchers with 
exact p-values for logistic and Poisson regression parameter estimates. When the 
data to be analyzed are small or highly unbalanced, traditional asymptotic methods 
fail. In addition, if there is perfect prediction, of if all observations having the same 
covariate pattern have the same response (i.e, all one or all zero), asymptotic methods 
will fail. The algorithm will simply not converge, or if it does, the parameter estimates 
yield exorbitant values. Monte Carlo p-values are given on output if the data are such 
that exact statistics cannot be calculated. 

Logistic regression can be parameterized with the response taking only binary 1/0 
values, or by having the response take the form of a proportion. That is, a grouped or 
proportional logistic regression may have a response in which a numerator contains 
the number of times a covariate pattern has a response of 1, with the denominator 
containing the value representing the number of covariate patterns with an identi-
cal configuration. If a binary response logistic regression model has no continuous 
predictors, converting a binary response model to a grouped model is comparatively 
simple. There are very good reasons why a researcher may want to do this, but this 
takes us beyond the present discussion. In any case, STATISTICA does not have 
the capability to model grouped logistic models, and SPSS gained the capability 
only through its new GLZ (its name for the generalized linear models command). 
Interested readers should access Hardin and Hübe (2007) for a complete discussion. 

LogXact also provides the user with the capability to model Poisson regression, 
with or without rates. Neither SPSS nor STATISTICA allows for a rate parameter-
ization; SAS and Stata do. In addition, users can employ LogXact to engage in a 
variety of standard asymptotic statistical modeling tasks. Included are probit and 
complementary loglog regression, polytomous response regression models, and the 
ability to appropriately adjust models with missing values. 

StatXact and LogXact products come with a covering module called Cytel Studio. 
Aside from providing extensive data management and graphing capabilities, Studio 
allows users to engage in all of the major types of univariate modeling, as well as the 
following multivariate models: canonical correlation analysis, discriminant analysis, 
PCA and factor analysis, and MANOVA. It also gives the user a complete sample 
size analysis program, thus saving the cost of purchasing a stand-a-lone sample size 
application; such as nQuery Advisor. 

The combination of the two applications, plus Cytel Studio, ranks the product in 
the realm of full-fledged statistical packages; it is no longer a niche product. The fact 
that it is so comprehensive warrants its licensing fees: 

StatXact LogXact 

Commercial $1400 $860 
Academic $995 $510 
Yearly support $350 $240 

The Cytel web site is www.cytel.com 
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7.3 STATISTICAL APPLICATION UTILITIES 

I next provide an overview of three utilities, each of which has proved useful to the 
social science researcher. The first is a file conversion package, the second primarily 
a package to convert any Windows application to PDF format, and the last, nQuery 
Advisor, a sample-size utility. 

7.3.1 Stat/Transfer 

Stat/Transfer, by Circle Systems in Seattle, is a low-cost file conversion program that 
allows researchers to convert one file to another. For example, most of my corporate 
clients give me data in the form of an Excel spreadsheet. Less frequently, they present 
it to me in Access. Rather than use the extremely limited statistical capabilities offered 
by Excel or Access, I convert the data to the statistical application I believe to be most 
suitable for analysis. If the data are in the form of a table, with relatively few counts 
in specific cells, I'll probably convert it for use with StatXact. If the data consist of 
a large number of observations, I will probably convert data from Excel or Access to 
Stata. Finally, if huge numbers of data elements are involved, and I want to search 
the data for trends or to employ various classification analyses, then I'll probably turn 
to STASTISTICA's Data Miner. The conversion of choice is Stat/Transfer. 

Stat/Transfer converts observations, variables, labels, definitions, and so on, be-
tween older as well as the current versions of: Lotus 123, Access, ASCII text, dBase, 
Epilnfo, Excel, FoxPro, Gauss, JMP, LIMDEP, MatLab, Mineset, Minitab, Nlogit, 
ODBC Data Source, Osiris, Paradox, Quattro Pro, R Workspace, SAS (all varieties 
of format), S-Plus, SPSS data file and portable, Stata, STATISTICA, and Systat. 

Stat/Transfer has impressive data management capabilities. Variables can be trans-
formed to a wide variety of forms, merging, matching, and observation/variable selec-
tion are allowed, variable labels can be assigned, and variables may have their formats 
changed. Selection of files to be converted, as well as the many options, are easily 
manipulated—quite unlike some of Stat/Transfer's competitors (e.g., DBMS/COPY). 

Stat/Transfer version 9.0, which came out in April 2007, comes with a corporate 
cost of $295 and an academic rate of $179. Upgrade charges are comparatively 
minimal. 

The application is available to try out. If one wishes to have it on a permanent 
basis, a license key is provided via the Web after payment of the cost. Readers can 
learn more about the package by going to: http://www.stattransfer.com/. 

7.3.2 ePrint Professional 

Currently in version 5, ePrint Professional, by Leadtools, is an expensive utility (i.e., 
$49) that converts between Windows files. In addition, the application provides 
an easy mechanism to convert a Windows file to a PDF image. The image can be 
watermarked in a manner specified by the user and can have embedded URLs to allow 
easy access to references. Therefore, if a teacher constructs an MS Word document 
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for use with a class, the document may be converted to a PDF image together with 
URLs. HTML pages can also be designed, and converted from Word format. 

Although the vendor claims that the application can easily convert between any 
Windows applications, when one uses it to convert a PDF document to Word or Excel 
format, the results may not be what the user expects. Each line in a Word document 
is encased in a box for formatting purposes. One cannot edit such a document or 
change it in any manner from how it appeared in PDF image form. One may de-
select formatting boxes, but the resulting document can then take any form, so it is 
not recommended. 

For the cost involved, I use the package strictly for the creation of PDF documents. 
In this regard, ePrint has essentially the same capabilities as those of Adobe but at 
substantially less cost. 

PDF images are easy ways to protect a document from change and reformatting 
when transferred over the Web. Document ownership is easily maintained as well. 

ePrint is compatible with all Windows platforms, including Vista. More informa-
tion can be obtained by going to the vendor web site: http://www.eprintdriver.com/. 
Additionally, those interested can review Hübe (2007b) for a more detailed evaluation 
of the package. 

7.3.3 nQuery Advisor 

nQuery Advisor, by Statistical Solutions, has been in existence for many years. With-
out a doubt, it is the premiere stand-a-lone sample-size application on the market. 
Other applications, including SAS, SPSS, Stata, STATISTICA, and StatXact have 
excellent sample-size calculation capabilities, but nQuery Advisor provides the user 
with graphical representations of differential p-value and power values for a range 
of specified observations or cases, or any combination of the above. nQuery Advisor 
also provides tutorials to assist the user in deciding between alternatives. All in all it 
is a fine and reliable sample-size package. 

nQuery Advisor version 6 is not inexpensive. The commercial price of the package 
is $1195, with a hardcopy of the reference manual costing an additional $100. An 
upgrade from a previously licensed version 5.0 is $595, rather steep for an upgrade 
price. The academic price is $750, a substantial reduction. The reference manual still 
costs $100, but the upgrade from version 5 is $495. 

If a researcher is using one of the general-purpose applications that have been 
discussed in this chapter, they will be able to use the built-in sample-size calculation 
algorithms that come with the respective package. This should, in practice, be all that 
is required, but if one desires the advice and graphics, and believes the extra cost to 
be worth it, nQuery Advisor is a fine utility package. 

Readers can obtain more information about the application by accessing the ven-
dors web site at 

http://www.statsol.ie/html/nquery/nquery_h.ome.html 
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7.4 SUMMARY COMMENTS 

Social scientists have requirements that are in many respects different from those 
in many other disciplines. They typically deal with data having large numbers of 
observations and variables. In fact, there is perhaps no other discipline that handles 
more variables than in social science research. This is due to the fact that the majority 
of social surveys include items on a number of issues. 

This brings us to another point. Social scientists often deal specifically with survey 
data. Analysis of survey data requires that the software being used for analysis 
has the capability of employing probability or sample weights and allows the user 
to create stratified designs, including stratified multiple-stage designs with primary, 
secondary, and lower-stage sampling units. Of course, survey analysis sometimes 
requires fixed and random effects designs as well. In addition, poststratification 
methods which provide for more efficient variance estimates are vital to social science 
research. At the very least, software used for social science research must provide a 
variety of methods for adjusting the standard errors of parameter estimates, including 
jackknifing, bootstrapping, and implementation of Newey-West and other robust 
variance estimators. Stratification techniques must be easily applied to data, together 
with defining of the appropriate adjustments. Few software packages provide these 
capabilities. 

SAS and the survey modules designed for SPSS have a wide range of survey 
statistics. Stata has a comprehensive repertoire of procedures and adjustments for 
survey modeling, and R is gaining new methods each year. Even LogXact incorporates 
a number of survey adjustments into its capabilities. STATISTICA does not support 
detailed survey analysis, but, as has been discussed, does provide the means to prune 
data to obtain the most meaningful set of predictors for a given study. 

Unfortunately, some of the more popular statistical packages on the market fail 
to incorporate needed survey methods. In my opinion, S-Plus, SYSTAT, Minitab, 
StatGraphics, JMP, NCSS base, and similar packages probably should not be used 
for serious social science research. S-Plus has a variety of user-created commands 
that are used for such research, but they are not built-in as part of the application. 

I will end here with my recommendations. However, they are simply recommen-
dations, based on my own observations and predilections gained through use as well 
as in my role as software reviews editor for The American Statistician since 1997. 

Like a long-used toolbox, a statistical application or utility program may have a 
personal element attached. If an application was used throughout graduate school, or 
if the application has been used for many years with good success, it may be difficult 
to convert to another package, even if one's current software does not provide the 
tools necessary to engage in appropriate analysis. We tend to acquiesce to that to 
which we are accustomed. In addition, learning curves for all applications, with the 
exception of utilities, are at times quite steep. Few have the time or desire to devote 
learning the in's and out's a new application. However, at times it must be done if we 
are to maintain statistical credibility. 

For my own work in social science and health outcomes research, I have found 
that Stata is superior to any other general purpose statistical package. I again refer 
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the reader to my review (Hübe, 2005b). Most statisticians with whom I work or with 
whom I am associated professionally, use Stata as their primary statistical application. 
This is not to say, however, that other packages are not used for special purposes. I use 
StatXact for nearly all cross-tabulation analysis and LogXact when modeling small or 
unbalanced data. Even though I did not discuss it in this chapter, I have used LIMDEP, 
a leading econometric application, when modeling certain types of complex count 
response models (e.g., negative binomial random coefficient mixed models). But for 
all else I use Stata. If it does not have the built-in model I desire, I usually program 
it myself using Stata's maximum likelihood and matrix programming capabilities. 
There are very few procedures, however, that cannot be found in Stata or that cannot 
be downloaded from user sites. However, I must reiterate that my conclusions may 
not be shared by all. 

The important message in this chapter is that appropriate social science research 
necessitates the use of software that maximizes our understanding of the data. One 
must employ methods that not only provide, for example, a table of parameter esti-
mates and confidence intervals, but also allow the researcher to evaluate the goodness 
of fit of a model and compare it to other possible models. When modeling, the appro-
priate software should allow the user to adjust standard errors if necessary, to evaluate 
the model using an AIC or BIC statistic, to provide likelihood ratio tests, to provide 
a complement of residuals appropriate to the model, and so on. This is what makes 
modeling an art and makes modeling a challenge. If ones software does not have 
these capabilities, it should be exchanged for one that does, regardless of the cost of 
the learning curve involved. It is the price of being a research statistician. 

Joseph M. Hübe 
Arizona State University 
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CHAPTER 8 

CONCLUSION: ROUNDTABLE 
DISCUSSION 

On the last day of the conference, a round table was held with about three dozen 
participants. A few common themes have arisen and were discussed enthusiastically, 
One of them was communication between statisticians, methodologists in social sci-
ences, and applied researchers in substantive fields. It was noted that the approach that 
mathematical statisticians sometimes take is that of patronizing, which is hardly pro-
ductive, especially when the quantitative fields have developed their own specialized 
methods. There is also an issue of interests and incentives: statistical departments 
can make themselves irrelevant to social science researchers if the former concen-
trate on mathematics while the latter need methods to work with their data. There is 
a mismatch between the tools used traditionally in statistics and quantitative social 
sciences, and the push to develop new techniques valued for tenure and promotion. 
This mismatch is especially troublesome as the temporal lags of penetration, even 
into relatively close areas, are usually on the order of decades, and the literacy of 
an average applied researcher is often confined to a two-semester methodological 
sequence at a social science department. 

With the lack of dedicated social science statistics programs and departments, joint 
appointments in statistics and social sciences seemed to be one of the ways to resolve 
the problem. Mark Handcock (University of Washington) shared his experiences 
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working at the Center for Statistics and Social Sciences (CSSS) at the University of 
Washington. The role of CSSS is to provide a middle ground where social science 
researchers can bring their problems and statisticians can help develop new statistical 
methods. At the time, CSSS had seven core faculty members who shared time between 
the Department of Statistics and a social science department. With each faculty, it 
is clearly delineated which department is considered to be the primary one. It is the 
department that evaluates the faculty member's research productivity, publications, 
and grantsmanship and provides the main venue for tenure and promotion. The 
other department provides accompanying letters of support. John Eltinge (Bureau 
of Labor Statistics) provided another example of a possible arrangement. At Iowa 
State University Department of Statistics, another top 10 department in the United 
States, mathematical statisticians whose main contributions are (or expected to be) 
theoretical, and aimed for the top statistical journals, have 100% time appointments 
in statistics, while applied statisticians have joint appointments with the departments 
of their respective application. Generally, however, joint appointments are difficult to 
set up and involve extensive discussions with department chairs and deans regarding 
what is to be valued in the research output of the faculty taking those positions. 

Another setting in which statisticians and social sciences often meet in an academic 
environment is that of statistical consulting. Most large departments have consulting 
centers and/or offer graduate courses on consulting where initial interactions often 
occur. A challenge that statisticians frequently face in this situation is that of providing 
the question of an appropriate level of sophistication. It has been argued at the round 
table that when there is a prospective for real research, those consulting projects may 
be converted to full-scale collaborations. 

An important issue that a lot of participants connected to was that of funding. Mark 
Handcock described the funding process at CSSS. The positions of the core faculty of 
CSSS are funded as hard lines. Additional funding is obtained through federal, state, 
and campus sources. A part of the overhead money generated from those grants is laid 
out for seed grants, where statisticians collaborate with social scientists on setting up 
an agenda at early stages of research. The typical format of those grants is a two-page 
paper coauthored jointly by a statistician, a social scientist, and a graduate student 
affiliated with CSSS. This joint work allows the contributors to recognize each others' 
strengths, and even if the proposal is not funded, this joint work lays the groundwork 
for getting a clear picture of the substantive problems in a social science field, and of 
methods that might be available or that need to be developed to solve them. 

Peter Bentler (UCLA) commented that similar initiatives at UCLA were less suc-
cessful, and attributed that fact to the lack of both physical location and the real 
budget for a stand-alone institution. In turn, the lack of funding might arise from the 
general treatment of social sciences statistics problems by mathematical statisticians 
as being less fundable than medical and biological problems that are currently at the 
forefront of federal funding initiatives. This, in turn, bears on research models and 
coauthorship patterns: while most papers with applications in medicine and biology 
carry a long list of authors with probably one or two consulting statisticians, papers 
in the social sciences tend to be single-authored, and thus methodology is generally 
limited to whatever tools were available to that sole author. 



193 

The structure of positions at Iowa State University became feasible due to the 
revenue streams from agricultural experiments that started there in the 1940s. Since 
then, the focus in the design of experiments has shifted to clinical trials. Substantial 
demand for statistical expertise was generated by the Federal Drug Administration 
drug approval process requirements whose foundations were laid out in 1940s. Un-
fortunately, it is not at all clear whether similar streams of funding exist in the social 
sciences. Some of them might be associated with survey research, which is one of 
the largest applied statistical areas, as evidenced by the number of members in the 
Survey Research Methods Section of the American Statistical Association, the largest 
of all sections. Other streams can be found on interfaces with the biological sciences, 
such as functional MRI, which enjoys growing popularity in psychology. 

The next theme that a lot of participants also deemed crucial was that of education 
and training: Where do social science methodologists come from now, and where will 
they be coming from in the future? Obviously, to provide examples and motivation 
as well as model causal relations, one needs to know the substantive field. But 
without sufficient statistical background, development of innovative methods will be 
also hindered. There are very few programs that explicitly offer degrees in social 
science statistics; the CSSS at the University of Washington in the United States and 
the social statistics program at Southampton in the UK are the only two examples 
among top schools. Notably, the number of top programs in quantitative psychology 
or sociology is quite limited. Again, Mark Handcock reported on the perspective at 
the CSSS. There, about 20 courses are cross-listed between the statistics department 
and a social science field, with additional CSSS course number attached. The CSSS 
also offers camps in mathematics, statistics, and computing for the incoming graduate 
students before the fall semester. The courses and camps are advertised throughout 
affiliated departments. 

When discussing the foregoing issues, the round-table participants agreed that 
much of the problem comes from a lack of incentives for interdisplinary collaboration. 
Different disciplines tend to give different weights to research, training, publication, 
and grant activities toward tenure and promotion. Publications in journals outside 
the home department discipline generally count very low. The appearance of strong 
collaborative centers appears to be related primarily to the good will of university 
administrators, as it is only the top managers who can provide better incentive structure 
for collaboration. 

The next big theme raised by the round-table participants was the diversity of 
branches of quantitative social sciences that complement their common underlying 
principles. The main presentations of the conference covered such areas as struc-
tural equation modeling, multilevel modeling, cluster analysis, psychological and 
educational measurement, social networks, Bayesian methods, missing data, sur-
vey statistics, and computing. Contributed and topic-contributed sessions had also 
touched upon program evaluation and spatial methods, among others. Even though 
extensive, this list does not cover all of the fields that are of interest and relevance to 
researchers in the social sciences. Other areas that could have been mentioned are 
metaanalysis, generalized linear models, latent class analysis and mixture modeling, 
multidimensional scaling, causal modeling, and multiple-hypothesis testing. 
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Some common themes can be identified across all of those diverse areas: most 
important, the issue of identification of latent structures. With rare exceptions, so-
cial science studies and the data they generate are observational. The interest of the 
researcher often lies in unobservable characteristics and their role in the observed 
phenomena. Thus, structural equation models and item-response theory operate with 
continuous latent variables; cluster and latent class analysis work with discrete latent 
variables; and multidimensional scaling and social networks work with hidden geom-
etry of the mental or social space. Program evaluation and treatment effect estimation 
procedures need to provide counterfactuals in situations where only one out of sev-
eral possible outcomes can be observed; the estimation problem in question is that of 
differences between those outcomes. In some situations, identification problems can 
be resolved by fixing some model parameters at reasonable values, such as having a 
mean of zero and a variance of 1. In other cases, identification needs to be established 
from complicated nonlinear procedures. 

Another common issue that most quantitative social sciences face is that of soft-
ware reliance. Applied researchers tend to use a general-purpose software such as 
SAS or SPSS for basic analysis and one of a handful of highly specialized software 
packages that implement a specific data analysis procedure. Eventually, researchers 
find themselves squeezing the data into the models and routines available in these 
packages, instead of adapting open-ended approaches that lead to the development of 
new methods. This situation can probably be traced back to the basic mathematical 
and computer literacy of students coming out of social science graduate programs, and 
eventually, researchers applying the commonly used methods. Whereas statisticians 
and econometricians are usually expected to be familiar with one or more statistical 
packages and proficient enough to program their own routines, this is not necessarily 
the case for graduate programs in quantitative social sciences. 

The round table provided a thoughtful closure to a stimulating conference. 

Stanislav Kolenikov 
Douglas Steinley 
Lori Thombs 
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