Oracle Database: SQL
Fundamentals |

Volume | » Student Guide

D64258GC10
Edition 1.0
January 2010
D65027

ORACLE

Authors

Salome Clement
Brian Pottle
Puja Singh

Technical Contributors

and Reviewers

Anjulaponni Azhagulekshmi

Clair Bennett
Zarko Cesljas
Yanti Chang
Gerlinde Frenzen
Steve Friedberg
Joel Goodman
Nancy Greenberg
Pedro Neves
Manish Pawar
Surya Rekha
Helen Robertson
Lauran Serhal
Hilda Simon
Tulika Srivastava

Editor

Amitha Narayan

Graphic Designer
Rajiv Chandrabhanu

Publisher
Jobi Varghese

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Disclaimer

This document contains proprietary information and is protected by copyright and
other intellectual property laws. You may copy and print this document solely for your
own use in an Oracle training course. The document may not be modified or altered in
any way. Except where your use constitutes "fair use" under copyright law, you may
not use, share, download, upload, copy, print, display, perform, reproduce, publish,
license, post, transmit, or distribute this document in whole or in part without the
express authorization of Oracle.

The information contained in this document is subject to change without notice. If you
find any problems in the document, please report them in writing to: Oracle University,
500 Oracle Parkway, Redwood Shores, California 94065 USA. This document is not
warranted to be error-free.

Restricted Rights Notice

If this documentation is delivered to the United States Government or anyone using
the documentation on behalf of the United States Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS

The U.S. Government's rights to use, modify, reproduce, release, perform, display, or
disclose these training materials are restricted by the terms of the applicable Oracle
license agreement and/or the applicable U.S. Government contract.

Trademark Notice

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other
names may be trademarks of their respective owners.

Contents

I Introduction
Lesson Objectives 1-2
Lesson Agenda [-3
Course Objectives |-4
Course Agenda I-5
Appendixes Used in the Course |-7
Lesson Agenda I-8
Oracle Database 11g: Focus Areas [-9
Oracle Database 11g 1-10
Oracle Fusion Middleware [-12
Oracle Enterprise Manager Grid Control 1-13
Oracle Bl Publisher 1-14
Lesson Agenda [-15
Relational and Object Relational Database Management Systems 1-16
Data Storage on Different Media [-17
Relational Database Concept 1-18
Definition of a Relational Database 1-19
Data Models 1-20
Entity Relationship Model [-21
Entity Relationship Modeling Conventions 1-23
Relating Multiple Tables [-25
Relational Database Terminology 1-27
Lesson Agenda 1-29
Using SQL to Query Your Database [-30
SQL Statements [-31
Development Environments for SQL 1-32
Lesson Agenda 1-33
Human Resources (HR) Schema 1-34
Tables Used in the Course 1-35
Lesson Agenda [-36
Oracle Database Documentation [-37
Additional Resources [-38
Summary [-39
Practice I: Overview 1-40

1 Retrieving Data Using the SQL SELECT Statement
Objectives 1-2
Lesson Agenda 1-3
Capabilities of SQL SELECT Statements 1-4
Basic SELECT Statement 1-5
Selecting All Columns 1-6
Selecting Specific Columns 1-7
Writing SQL Statements 1-8
Column Heading Defaults 1-9
Lesson Agenda 1-10
Arithmetic Expressions 1-11
Using Arithmetic Operators 1-12
Operator Precedence 1-13
Defining a Null Value 1-14
Null Values in Arithmetic Expressions 1-15
Lesson Agenda 1-16
Defining a Column Alias 1-17
Using Column Aliases 1-18
Lesson Agenda 1-19
Concatenation Operator 1-20
Literal Character Strings 1-21
Using Literal Character Strings 1-22
Alternative Quote (q) Operator 1-23
Duplicate Rows 1-24
Lesson Agenda 1-25
Displaying the Table Structure 1-26
Using the DESCRIBE Command 1-27
Quiz 1-28
Summary 1-29
Practice 1: Overview 1-30

2 Restricting and Sorting Data
Objectives 2-2
Lesson Agenda 2-3
Limiting Rows Using a Selection 2-4
Limiting the Rows That Are Selected 2-5
Using the WHERE Clause 2-6
Character Strings and Dates 2-7
Comparison Operators 2-8
Using Comparison Operators 2-9

Range Conditions Using the BETWEEN Operator 2-10
Membership Condition Using the IN Operator 2-11
Pattern Matching Using the LIKE Operator 2-12
Combining Wildcard Characters 2-13

Using the NULL Conditions 2-14

Defining Conditions Using the Logical Operators 2-15
Using the AND Operator 2-16

Using the OR Operator 2-17

Using the NOT Operator 2-18

Lesson Agenda 2-19

Rules of Precedence 2-20

Lesson Agenda 2-22

Using the ORDER BY Clause 2-23

Sorting 2-24

Lesson Agenda 2-26

Substitution Variables 2-27

Using the Single-Ampersand Substitution Variable 2-29
Character and Date Values with Substitution Variables 2-31
Specifying Column Names, Expressions, and Text 2-32
Using the Double-Ampersand Substitution Variable 2-33
Lesson Agenda 2-34

Using the DEFINE Command 2-35

Using the VERIFY Command 2-36

Quiz 2-37

Summary 2-38

Practice 2: Overview 2-39

Using Single-Row Functions to Customize Output
Objectives 3-2

Lesson Agenda 3-3

SQL Functions 3-4

Two Types of SQL Functions 3-5

Single-Row Functions 3-6

Lesson Agenda 3-8

Character Functions 3-9

Case-Conversion Functions 3-11

Using Case-Conversion Functions 3-12
Character-Manipulation Functions 3-13

Using the Character-Manipulation Functions 3-14
Lesson Agenda 3-15

Number Functions 3-16

Using the ROUND Function 3-17

Using the TRUNC Function 3-18

Using the MOD Function 3-19

Lesson Agenda 3-20

Working with Dates 3-21

RR Date Format 3-22

Using the sYSDATE Function 3-24
Arithmetic with Dates 3-25

Using Arithmetic Operators with Dates 3-26
Lesson Agenda 3-27

Date-Manipulation Functions 3-28

Using Date Functions 3-29

Using ROUND and TRUNC Functions with Dates 3-30
Quiz 3-31

Summary 3-32

Practice 3: Overview 3-33

Using Conversion Functions and Conditional Expressions
Objectives 4-2

Lesson Agenda 4-3

Conversion Functions 4-4

Implicit Data Type Conversion 4-5

Explicit Data Type Conversion 4-7

Lesson Agenda 4-10

Using the TO_CHAR Function with Dates 4-11
Elements of the Date Format Model 4-12

Using the TO_CHAR Function with Dates 4-16

Using the TO_CHAR Function with Numbers 4-17
Using the TO_NUMBER and TO_DATE Functions 4-20
Using the TO_CHAR and TO_DATE Function with the RR Date Format 4-22
Lesson Agenda 4-23

Nesting Functions 4-24

Nesting Functions: Example 1 4-25

Nesting Functions: Example 2 4-26

Lesson Agenda 4-27

General Functions 4-28

NVL Function 4-29

Using the NVL Function 4-30

Using the NvL2 Function 4-31

Vi

Using the NULLIF Function 4-32
Using the COALESCE Function 4-33
Lesson Agenda 4-36
Conditional Expressions 4-37
CASE Expression 4-38

Using the CASE Expression 4-39
DECODE Function 4-40

Using the DECODE Function 4-41
Quiz 4-43

Summary 4-44

Practice 4: Overview 4-45

Reporting Aggregated Data Using the Group Functions
Objectives 5-2

Lesson Agenda 5-3

What Are Group Functions? 5-4

Types of Group Functions 5-5

Group Functions: Syntax 5-6

Using the AvG and suM Functions 5-7

Using the MIN and MAX Functions 5-8

Using the COUNT Function 5-9

Using the DISTINCT Keyword 5-10

Group Functions and Null Values 5-11

Lesson Agenda 5-12

Creating Groups of Data 5-13

Creating Groups of Data: GRoUP BY Clause Syntax 5-14
Using the GROUP BY Clause 5-15

Grouping by More Than One Column 5-17

Using the GROUP BY Clause on Multiple Columns 5-18
lllegal Queries Using Group Functions 5-19

Restricting Group Results 5-21

Restricting Group Results with the HAVING Clause 5-22
Using the HAVING Clause 5-23

Lesson Agenda 5-25

Nesting Group Functions 5-26

Quiz 5-27

Summary 5-28

Practice 5: Overview 5-29

Vii

6 Displaying Data from Multiple Tables Using Joins
Objectives 6-2
Lesson Agenda 6-3
Obtaining Data from Multiple Tables 6-4
Types of Joins 6-5
Joining Tables Using SQL:1999 Syntax 6-6
Qualifying Ambiguous Column Names 6-7
Lesson Agenda 6-8
Creating Natural Joins 6-9
Retrieving Records with Natural Joins 6-10
Creating Joins with the USING Clause 6-11
Joining Column Names 6-12
Retrieving Records with the USING Clause 6-13
Using Table Aliases with the UsING Clause 6-14
Creating Joins with the oN Clause 6-15
Retrieving Records with the oN Clause 6-16
Creating Three-Way Joins with the oN Clause 6-17
Applying Additional Conditions to a Join 6-18
Lesson Agenda 6-19
Joining a Table to Itself 6-20
Self-Joins Using the on Clause 6-21
Lesson Agenda 6-22
Nonequijoins 6-23
Retrieving Records with Nonequijoins 6-24
Lesson Agenda 6-25
Returning Records with No Direct Match Using OUTER Joins 6-26
INNER Versus OUTER Joins 6-27
LEFT OUTER JOIN 6-28
RIGHT OUTER JOIN 6-29
FULL OUTER JOIN 6-30
Lesson Agenda 6-31
Cartesian Products 6-32
Generating a Cartesian Product 6-33
Creating Cross Joins 6-34
Quiz 6-35
Summary 6-36
Practice 6: Overview 6-37

viii

7 Using Subqueries to Solve Queries
Objectives 7-2
Lesson Agenda 7-3
Using a Subquery to Solve a Problem 7-4
Subquery Syntax 7-5
Using a Subquery 7-6
Guidelines for Using Subqueries 7-7
Types of Subqueries 7-8
Lesson Agenda 7-9
Single-Row Subqueries 7-10
Executing Single-Row Subqueries 7-11
Using Group Functions in a Subquery 7-12
HAVING Clause with Subqueries 7-13
What Is Wrong with This Statement? 7-14
No Rows Returned by the Inner Query 7-15
Lesson Agenda 7-16
Multiple-Row Subqueries 7-17
Using the aNY Operator in Multiple-Row Subqueries 7-18
Using the ALL Operator in Multiple-Row Subqueries 7-19
Using the EXISTS Operator 7-20
Lesson Agenda 7-21
Null Values in a Subquery 7-22
Quiz 7-24
Summary 7-25
Practice 7: Overview 7-26

8 Using the Set Operators
Objectives 8-2
Lesson Agenda 8-3
Set Operators 8-4
Set Operator Guidelines 8-5
Oracle Server and Set Operators 8-6
Lesson Agenda 8-7
Tables Used in This Lesson 8-8
Lesson Agenda 8-12
UNION Operator 8-13
Using the UNION Operator 8-14
UNION ALL Operator 8-16
Using the UNION ALL Operator 8-17
Lesson Agenda 8-18

INTERSECT Operator 8-19

Using the INTERSECT Operator 8-20

Lesson Agenda 8-21

MINUS Operator 8-22

Using the MINUS Operator 8-23

Lesson Agenda 8-24

Matching the SELECT Statements 8-25
Matching the SELECT Statement: Example 8-26
Lesson Agenda 8-27

Using the ORDER BY Clause in Set Operations 8-28
Quiz 8-29

Summary 8-30

Practice 8: Overview 8-31

Manipulating Data

Objectives 9-2

Lesson Agenda 9-3

Data Manipulation Language 9-4

Adding a New Row to a Table 9-5

INSERT Statement Syntax 9-6

Inserting New Rows 9-7

Inserting Rows with Null Values 9-8

Inserting Special Values 9-9

Inserting Specific Date and Time Values 9-10
Creating a Script 9-11

Copying Rows from Another Table 9-12
Lesson Agenda 9-13

Changing Data in a Table 9-14

UPDATE Statement Syntax 9-15

Updating Rows in a Table 9-16

Updating Two Columns with a Subquery 9-17
Updating Rows Based on Another Table 9-18
Lesson Agenda 9-19

Removing a Row from a Table 9-20

DELETE Statement 9-21

Deleting Rows from a Table 9-22

Deleting Rows Based on Another Table 9-23
TRUNCATE Statement 9-24

Lesson Agenda 9-25

Database Transactions 9-26

10

Database Transactions: Start and End 9-27
Advantages of COMMIT and ROLLBACK Statements 9-28
Explicit Transaction Control Statements 9-29
Rolling Back Changes to a Marker 9-30

Implicit Transaction Processing 9-31

State of the Data Before COMMIT or ROLLBACK 9-33
State of the Data After coMMIT 9-34

Committing Data 9-35

State of the Data After ROLLBACK 9-36

State of the Data After ROLLBACK: Example 9-37
Statement-Level Rollback 9-38

Lesson Agenda 9-39

Read Consistency 9-40

Implementing Read Consistency 9-41

Lesson Agenda 9-42

FOR UPDATE Clause in a SELECT Statement 9-43
FOR UPDATE Clause: Examples 9-44

Quiz 9-46

Summary 9-47

Practice 9: Overview 9-48

Using DDL Statements to Create and Manage Tables
Objectives 10-2

Lesson Agenda 10-3

Database Objects 10-4

Naming Rules 10-5

Lesson Agenda 10-6

CREATE TABLE Statement 10-7
Referencing Another User’'s Tables 10-8
DEFAULT Option 10-9

Creating Tables 10-10

Lesson Agenda 10-11

Data Types 10-12

Datetime Data Types 10-14

Lesson Agenda 10-15

Including Constraints 10-16

Constraint Guidelines 10-17

Defining Constraints 10-18

NOT NULL Constraint 10-20

UNIQUE Constraint 10-21

Xi

11

PRIMARY KEY Constraint 10-23
FOREIGN KEY Constraint 10-24
FOREIGN KEY Constraint; Keywords 10-26
CHECK Constraint 10-27

CREATE TABLE: Example 10-28
Violating Constraints 10-29

Lesson Agenda 10-31

Creating a Table Using a Subquery 10-32
Lesson Agenda 10-34

ALTER TABLE Statement 10-35
Read-Only Tables 10-36

Lesson Agenda 10-37

Dropping a Table 10-38

Quiz 10-39

Summary 10-40

Practice 10: Overview 10-41

Creating Other Schema Objects

Objectives 11-2

Lesson Agenda 11-3

Database Objects 11-4

What Is a View? 11-5

Advantages of Views 11-6

Simple Views and Complex Views 11-7
Creating a View 11-8

Retrieving Data from a View 11-11

Modifying a View 11-12

Creating a Complex View 11-13

Rules for Performing DML Operations on a View 11-14
Using the WITH CHECK OPTION Clause 11-17
Denying DML Operations 11-18

Removing a View 11-20

Practice 11: Overview of Part 1 11-21

Lesson Agenda 11-22

Sequences 11-23

CREATE SEQUENCE Statement: Syntax 11-25
Creating a Sequence 11-26

NEXTVAL and CURRVAL Pseudocolumns 11-27
Using a Sequence 11-29

Caching Sequence Values 11-30

Xii

Modifying a Sequence 11-31

Guidelines for Modifying a Sequence 11-32
Lesson Agenda 11-33

Indexes 11-34

How Are Indexes Created? 11-36
Creating an Index 11-37

Index Creation Guidelines 11-38
Removing an Index 11-39

Lesson Agenda 11-40

Synonyms 11-41

Creating a Synonym for an Object 11-42
Creating and Removing Synonyms 11-43
Quiz 11-44

Summary 11-45

Practice 11: Overview of Part 2 11-46

Appendix A: Practices and Solutions
Appendix AP: Additional Practices and Solutions
Appendix B: Table Descriptions

Appendix C: Using SQL Developer
Objectives C-2
What Is Oracle SQL Developer? C-3
Specifications of SQL Developer C-4
SQL Developer 1.5 Interface C-5
Creating a Database Connection C-7
Browsing Database Objects C-10
Displaying the Table Structure C-11
Browsing Files C-12
Creating a Schema Object C-13
Creating a New Table: Example C-14
Using the SQL Worksheet C-15
Executing SQL Statements C-18
Saving SQL Scripts C-19
Executing Saved Script Files: Method 1 C-20
Executing Saved Script Files: Method 2 C-21
Formatting the SQL Code C-22
Using Snippets C-23
Using Snippets: Example C-24

xiii

Debugging Procedures and Functions C-25
Database Reporting C-26

Creating a User-Defined Report C-27
Search Engines and External Tools C-28
Setting Preferences C-29

Resetting the SQL Developer Layout C-30
Summary C-31

Appendix D: Using SQL*Plus
Objectives D-2
SQL and SQL*Plus Interaction D-3
SQL Statements Versus SQL*Plus Commands D-4
Overview of SQL*Plus D-5
Logging In to SQL*Plus D-6
Displaying the Table Structure D-7
SQL*Plus Editing Commands D-9
Using LIST, n, and APPEND D-11
Using the CHANGE Command D-12
SQL*Plus File Commands D-13
Using the SAVE, START Commands D-14
SERVEROUTPUT Command D-15
Using the SQL*Plus sPooL, Command D-16
Using the AUTOTRACE Command D-17
Summary D-18

Appendix E: Using JDeveloper
Objectives E-2
Oracle JDeveloper E-3
Database Navigator E-4
Creating Connection E-5
Browsing Database Objects E-6
Executing SQL Statements E-7
Creating Program Units E-8
Compiling E-9
Running a Program Unit E-10
Dropping a Program Unit E-11
Structure Window E-12
Editor Window E-13
Application Navigator E-14
Deploying Java Stored Procedures E-15

Xiv

Publishing Java to PL/SQL E-16
How Can | Learn More About JDeveloper 11g? E-17
Summary E-18

Appendix F: Oracle Join Syntax
Objectives F-2
Obtaining Data from Multiple Tables F-3
Cartesian Products F-4
Generating a Cartesian Product F-5
Types of Oracle-Proprietary Joins F-6
Joining Tables Using Oracle Syntax F-7
Qualifying Ambiguous Column Names F-8
Equijoins F-9
Retrieving Records with Equijoins F-10
Retrieving Records with Equijoins: Example F-11
Additional Search Conditions Using the AND Operator F-12
Joining More than Two Tables F-13
Nonequijoins F-14
Retrieving Records with Nonequijoins F-15
Returning Records with No Direct Match with Outer Joins F-16
Outer Joins: Syntax F-17
Using Outer Joins F-18
Outer Join: Another Example F-19
Joining a Table to Itself F-20
Self-Join: Example F-21
Summary F-22
Practice F: Overview F-23

Index

XV

‘sejel|ye sl Jo/pue ajoelO ‘010z GybuAdo) paligiyosd uonngusip Jo uononpoidal paziloyineun

XVi

Introduction

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Lesson Objectives

After completing this lesson, you should be able to do the
following:

« Define the goals of the course
» List the features of Oracle Database 11g

« Discuss the theoretical and physical aspects of a relational
database

» Describe Oracle server’'s implementation of RDBMS and
object relational database management system
(ORDBMS)

« ldentify the development environments that can be used
for this course

 Describe the database and schema used in this course

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Objectives

In this lesson, you gain an understanding of the relational database management system
(RDBMS) and the object relational database management system (ORDBMS). You are also
introduced to Oracle SQL Developer and SQL*Plus as development environments used for
executing SQL statements, and for formatting and reporting purposes.

Oracle Database: SQL Fundamentals| |-2

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

« Course objectives, agenda, and appendixes used in the
course

* Overview of Oracle Database 11g and related products

« Overview of relational database management concepts
and terminologies

* Introduction to SQL and its development environments
e The HR schema and the tables used in this course

* Oracle Database 11g documentation and additional
resources

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 1-3

Course Objectives

After completing this course, you should be able to:
* Identify the major components of Oracle Database
* Retrieve row and column data from tables with the SELECT
statement
* Create reports of sorted and restricted data

« Employ SQL functions to generate and retrieve customized
data

* Run complex queries to retrieve data from multiple tables
* Run data manipulation language (DML) statements to
update data in Oracle Database

* Run data definition language (DDL) statements to create
and manage schema objects

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Course Objectives

This course offers you an introduction to the Oracle Database technology. In this class, you learn
the basic concepts of relational databases and the powerful SQL programming language. This
course provides the essential SQL skills that enable you to write queries against single and
multiple tables, manipulate data in tables, create database objects, and query metadata.

Oracle Database: SQL Fundamentals| [|-4

Course Agenda

« Day 1:

— Introduction

— Retrieving Data Using the SQL SELECT Statement

— Restricting and Sorting Data

— Using Single-Row Functions to Customize Output

— Using Conversion Functions and Conditional Expressions
 Day 2:

— Reporting Aggregated Data Using the Group Functions

— Displaying Data from Multiple Tables Using Joins

— Using Subqueries to Solve Queries

— Using the Set Operators

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentalsl -5

Course Agenda

« Day 3:
— Manipulating Data
— Using DDL Statements to Create and Manage Tables
— Creating Other Schema Objects

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| |-6

Appendixes Used in the Course

* Appendix A: Practices and Solutions

* Appendix B: Table Descriptions

« Appendix C: Using SQL Developer

* Appendix D: Using SQL*Plus

* Appendix E: Using JDeveloper

* Appendix F: Oracle Join Syntax

* Appendix AP: Additional Practices and Solutions

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| |-7

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

« Course objectives, course agenda, and appendixes used
in this course

« Overview of Oracle Database 11g and related products

» Overview of relational database management concepts
and terminologies

* Introduction to SQL and its development environments
e The HR schema and the tables used in this course

* Oracle Database 11g documentation and additional
resources

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| |-8

Oracle Database 11g: Focus Areas

ORACLE 11 g

DATABASE

Infrastructure Information
Grids Management

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g: Focus Areas

Oracle Database 11g offers extensive features across the following focus areas:

* Infrastructure Grids: The Infrastructure Grid technology of Oracle enables pooling of
low-cost servers and storage to form systems that deliver the highest quality of service in
terms of manageability, high availability, and performance. Oracle Database 11g
consolidates and extends the benefits of grid computing. Apart from taking full advantage
of grid computing, Oracle Database 11g has unique change assurance features to manage
changes in a controlled and cost effective manner.

* Information Management: Oracle Database 11g extends the existing information
management capabilities in content management, information integration, and information
life-cycle management areas. Oracle provides content management of advanced data types
such as Extensible Markup Language (XML), text, spatial, multimedia, medical imaging,
and semantic technologies.

» Application Development: Oracle Database 11g has capabilities to use and manage all the
major application development environments such as PL/SQL, Java/JDBC, .NET and
Windows, PHP, SQL Developer, and Application Express.

Oracle Database: SQL Fundamentals| 1-9

Oracle Database 11g

ORACLE 11 g

DATABASE

Manageability
High availability
Performance
Security

Information integration

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database 11g

Organizations need to support multiple terabytes of information for users who demand fast and
secure access to business applications round the clock. The database systems must be reliable
and must be able to recover quickly in the event of any kind of failure. Oracle Database 11g is
designed along the following feature areas to help organizations manage infrastructure grids
easily and deliver high-quality service:

* Manageability: By using some of the change assurance, management automation, and fault
diagnostics features, the database administrators (DBAs) can increase their productivity,
reduce costs, minimize errors, and maximize quality of service. Some of the useful features
that promote better management are Database Replay facility, the SQL Performance
Analyzer, and the Automatic SQL Tuning facility.

* High availability: By using the high availability features, you can reduce the risk of down
time and data loss. These features improve online operations and enable faster database
upgrades.

Oracle Database: SQL Fundamentals| 1-10

Oracle Database 11g (continued)

* Performance: By using capabilities such as SecureFiles, compression for online transaction
processing (OLTP), Real Application Clusters (RAC) optimizations, Result Caches, and so
on, you can greatly improve the performance of your database. Oracle Database 11g
enables organizations to manage large, scalable, transactional, and data warehousing
systems that deliver fast data access using low-cost modular storage.

* Security: Oracle Database 11g helps organizations protect their information with unique
secure configurations, data encryption and masking, and sophisticated auditing capabilities.
It delivers a secure and scalable platform for reliable and fast access to all types of
information by using the industry-standard interfaces.

» Information integration: Oracle Database 11g has many features to better integrate data
throughout the enterprise. It also supports advanced information life-cycle management
capabilities. This helps you manage the changing data in your database.

Oracle Database: SQL Fundamentals | | -11

Oracle Fusion Middleware

Portfolio of leading, standards-based, and customer-proven software products
that spans a range of tools and services from Java EE and developer tools,
through integration services, business intelligence, collaboration, and content

management

User Interaction
Portals, Content, Search, Desktop, =
Mobile, VoIP I _
Business Intelligence ‘
ETL, Q&A, OLAP, Reports, Alerts, Systems Management

P, S Real Time System Application

B e b \:ﬁ | - Service

E“\T: X i Integration & Process Management

ARN —~

Messaging, ESB, BPM, B2B, BAM,

\ (=)
— - Mﬂ%

Application Server

Development Tools

SOA Tools &
Framework

Identity Management

Java EE, WS-*, Events, Rules

Directory
Provisioning, Single
Sign-0On, Identity
Clusters, Metadata, Registry, Administration
Security

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Fusion Middleware

‘| Grid Infrastructure

Oracle Fusion Middleware is a comprehensive and well-integrated family of products that offers
complete support for development, deployment, and management of Service-Oriented
Architecture (SOA). SOA facilitates the development of modular business services that can be
easily integrated and reused, thereby reducing development and maintenance costs, and
providing higher quality of services. Oracle Fusion Middleware’s pluggable architecture enables
you to leverage your investments in any existing application, system, or technology. Its
unbreakable core technology minimizes the disruption caused by planned or unplanned outages.
Some of the products from the Oracle Fusion Middleware family include:

* Enterprise Application Server: Application Server

* Integration and Process Management: BPEL Process Manager, Oracle Business Process

Analysis Suite

* Development Tools: Oracle Application Development Framework, JDeveloper, SOA Suite

* Business Intelligence: Oracle Business Activity Monitoring, Oracle Data Integrator

+ Systems Management: Enterprise Manager

+ Identity Management: Oracle Identity Management

» Content Management: Oracle Content Database Suite

» User Interaction: Portal, WebCenter

Oracle Database: SQL Fundamentals | [1-12

Oracle Enterprise Manager Grid Control

- Efficient Oracle Fusion Middleware management

« Simplifying application and infrastructure life-cycle
management

* Improved database administration and application
management capabilities

ENTERPRISE MANAGER

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Enterprise Manager Grid Control

Spanning applications, middleware, and database management, Oracle Enterprise Manager Grid
Control delivers integrated enterprise management for Oracle and non-Oracle systems.

Oracle Enterprise Manager Grid Control features advanced Oracle Fusion Middleware
management capabilities for the services that business applications rely upon, including SOA,
Business Activity Monitoring, and Identity Management.

* Wide-ranging management functionality is available for your applications including
service-level management, application performance management, configuration
management, and change automation

* Built-in grid automation capabilities means that information technology responds
proactively to fluctuating demand and implements new services more quickly so that
businesses can thrive.

* In-depth diagnostics and readily available remediation can be applied across a range of
applications including custom-built applications, Oracle E-Business Suite, PeopleSoft,
Siebel, Oracle Fusion Middleware, Oracle Database, and underlying infrastructure

+ Extensive life cycle management capabilities extend grid computing by providing
solutions for the entire application and infrastructure life cycle, including test, stage, and
production through operations. It has simplified patch management with synchronized
patching, additional operating system support, and conflict detection features.

Oracle Database: SQL Fundamentals| 1-13

Oracle Bl Publisher

* Provides a central architecture for authoring, managing,
and delivering information in secure and multiple formats

* Reduces complexity and time to develop, test, and deploy
all kinds of reports

— Financial Reports, Invoices, Sales or Purchase orders, XML,
and EDI/EFT(eText documents)

 Enables flexible customizations

— For example, a Microsoft Word document report can be
generated in multiple formats, such as PDF, HTML, Excel,

RTF, and so on. " PDF
Wl — ORACLE » HTML
) Bl PUBLISHER
Microsoft Word
> Excel

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Bl Publisher

Oracle Database 11g also includes Oracle BI Publisher—the enterprise reporting solution from
Oracle. Oracle BI Publisher (formerly known as XML Publisher) offers the most efficient and
scalable reporting solution available for complex, distributed environments.

Oracle BI Publisher reduces the high costs associated with the development, customization, and
maintenance of business documents, while increasing the efficiency of reports management. By
using a set of familiar desktop tools, users can create and maintain their own report formats
based on data queries created by the IT staff or developers.

Oracle BI Publisher report formats can be designed using Microsoft Word or Adobe Acrobat—
tools that most users are already familiar with. Oracle BI Publisher also enables you to bring in
data from multiple data sources into a single output document. You can deliver reports via
printer, email, or fax. You can publish your report to a portal. You can even allow users to
collaboratively edit and manage reports on the Web-based Distributed Authoring and Versioning
(WebDav) Web servers.

Oracle Database: SQL Fundamentals | |1-14

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

« Course objectives, course agenda, and appendixes used
in this course

* Overview of Oracle Database 11g and related products

« Overview of relational database management concepts
and terminologies

* Introduction to SQL and its development environments
e The HR schema and the tables used in this course

* Oracle Database 11g documentation and additional
resources

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| |1-15

Relational and Object Relational
Database Management Systems

* Relational model and object relational model
« User-defined data types and objects

* Fully compatible with relational database

* Supports multimedia and large objects

« High-quality database server features

ORACLE, 1 1§

DATABASE

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Relational and Object Relational Database Management Systems

The Oracle server supports both the relational and the object relational database models.

The Oracle server extends the data-modeling capabilities to support an object relational database
model that provides object-oriented programming, complex data types, complex business
objects, and full compatibility with the relational world.

It includes several features for improved performance and functionality of the OLTP
applications, such as better sharing of run-time data structures, larger buffer caches, and
deferrable constraints. Data warehouse applications benefit from enhancements such as parallel
execution of insert, update, and delete operations; partitioning; and parallel-aware query
optimization. The Oracle model supports client/server and Web-based applications that are
distributed and multitiered.

For more information about the relational and object relational model, refer to Oracle Database
Concepts for 10g or 11g database.

Oracle Database: SQL Fundamentals| |-16

Data Storage on Different Media

DEFARTMENT_ID | DEPARTMENT_NAME| MAMAGER_ID | LOCATION_ID
1 10 Administration 200 1700
z 200 Marketing z01 1800
3 50 Shipping CRADE_LEWEL | LOWEST_SAL| HICHEST_SAL
4 6017 1A 1000 2999
5 &0 sales ZE 3000 5E99
& 90 Executive 3 C &000 So99
7 110 Accounting 4D 1a000 14989
g 180 Contracting 5E 15000 Z4999

6 F 25000 40000
l el o
£© 4

Electronic Filing cabinet Database

spreadsheet

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Data Storage on Different Media

Every organization has some information needs. A library keeps a list of members, books, due
dates, and fines. A company needs to save information about its employees, departments, and
salaries. These pieces of information are called data.

Organizations can store data in various media and in different formats, such as a hard copy
document in a filing cabinet, or data stored in electronic spreadsheets, or in databases.

A database is an organized collection of information.

To manage databases, you need a database management system (DBMS). A DBMS is a program
that stores, retrieves, and modifies data in databases on request. There are four main types of
databases: hierarchical, network, relational, and (most recently) object relational.

Oracle Database: SQL Fundamentals| [|-17

Relational Database Concept

 Dr. E. F. Codd proposed the relational model for database
systems in 1970.

« ltis the basis for the relational database management
system (RDBMS).
« The relational model consists of the following:
— Collection of objects or relations
— Set of operators to act on the relations
— Data integrity for accuracy and consistency

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Relational Database Concept

The principles of the relational model were first outlined by Dr. E. F. Codd in a June 1970 paper
titled 4 Relational Model of Data for Large Shared Data Banks. In this paper, Dr. Codd
proposed the relational model for database systems.

The common models used at that time were hierarchical and network, or even simple flat-file
data structures. Relational database management systems (RDBMS) soon became very popular,
especially for their ease of use and flexibility in structure. In addition, a number of innovative
vendors, such as Oracle, supplemented the RDBMS with a suite of powerful, application
development and user-interface products, thereby providing a total solution.

Components of the Relational Model

» Collections of objects or relations that store the data
* A set of operators that can act on the relations to produce other relations
» Data integrity for accuracy and consistency

For more information, refer to An Introduction to Database Systems, Eighth Edition (Addison-
Wesley: 2004), written by Chris Date.

Oracle Database: SQL Fundamentals| 1-18

Definition of a Relational Database

A relational database is a collection of relations or
two-dimensional tables.

Oracle
server

L
L

]
]
]

Table name: EMPLOYEES Table name: DEPARTMENTS

EMPLOYEEID [FIRST_Mame [LasT_name[[] emai DEPARTMENT_ID ||| DEPARTMENT_MAME [§ MAMAGER_ID
100 Steven King FRING 10 Administration 200
101 Meena kKochhar MEDCHHAR 20 Marketing 201
102 Lex D& Haah LDEHAAN 50 Shipping 124

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Definition of a Relational Database

A relational database uses relations or two-dimensional tables to store information.

For example, you might want to store information about all the employees in your company. In a
relational database, you create several tables to store different pieces of information about your
employees, such as an employee table, a department table, and a salary table.

Oracle Database: SQL Fundamentals| |-19

Data Models

08—

Model of Entity model of M
system . \
AT client’s model >
in client’s
mind
Table model
of entity model Oracle
l ._server
0]
110
- -
Tables on disk
Copyright © 2010, Oracle and/or its affiliates. All rights reserved.
Data Models

Models are the cornerstone of design. Engineers build a model of a car to work out any details
before putting it into production. In the same manner, system designers develop models to
explore ideas and improve the understanding of database design.

Purpose of Models

Models help to communicate the concepts that are in people’s minds. They can be used to do the
following:

* Communicate

» Categorize

* Describe

* Specify

* Investigate

* Evolve

* Analyze

* Imitate

The objective is to produce a model that fits a multitude of these uses, can be understood by an
end user, and contains sufficient detail for a developer to build a database system.

Oracle Database: SQL Fundamentals | 1|-20

Entity Relationship Model

« Create an entity relationship diagram from business
specifications or narratives:

EMPLOYEE . DEPARTMENT

#* number as_5|_gEe_d_to_ __| # number
* name * name

o job title composed of| location

 Scenario:

— “. .. Assign one or more employees to a
department . . .”

— “. .. Some departments do not yet have assigned employees

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Entity Relationship Model

In an effective system, data is divided into discrete categories or entities. An entity relationship
(ER) model is an illustration of the various entities in a business and the relationships among
them. An ER model is derived from business specifications or narratives and built during the
analysis phase of the system development life cycle. ER models separate the information
required by a business from the activities performed within the business. Although businesses
can change their activities, the type of information tends to remain constant. Therefore, the data
structures also tend to be constant.

Oracle Database: SQL Fundamentals | | -21

Entity Relationship Model (continued)
Benefits of ER Modeling:

* Documents information for the organization in a clear, precise format
* Provides a clear picture of the scope of the information requirement

» Provides an easily understood pictorial map for database design

» Offers an effective framework for integrating multiple applications

Key Components

« Entity: An aspect of significance about which information must be known. Examples are
departments, employees, and orders.

Attribute: Something that describes or qualifies an entity. For example, for the employee
entity, the attributes would be the employee number, name, job title, hire date, department
number, and so on. Each of the attributes is either required or optional. This state is called
optionality.

Relationship: A named association between entities showing optionality and degree.
Examples are employees and departments, and orders and items

Oracle Database: SQL Fundamentals | |-22

Entity Relationship Modeling Conventions

Entity: Attribute:
- Singular, unique name ° Singular name

 Lowercase
- U
PPercase * Mandatory marked with “*”
« Soft box

* Optional marked with “0”
* Synonym in parentheses

EMPLOYEE] DEPARTMENT

#* number assigned to #* number
* name |/ "7 * name

o job title composed of| 4 location

Unique Identifier (UID)

Primary marked with “#’
Secondary marked with “(#)”

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

ER Modeling Conventions
Entities

To represent an entity in a model, use the following conventions:
* Singular, unique entity name
* Entity name in uppercase
* Soft box

* Optional synonym names in uppercase within parentheses: ()
Attributes

To represent an attribute in a model, use the following conventions:
* Singular name in lowercase
» Asterisk (*) tag for mandatory attributes (that is, values that must be known)
» Letter “o0” tag for optional attributes (that is, values that may be known)

Relationships
Symbol Description
Dashed line Optional element indicating “maybe”
Solid line Mandatory element indicating “must be”
Crow’s foot Degree element indicating “one or more”
Single line Degree element indicating “one and only one”

Oracle Database: SQL Fundamentals | |-23

ER Modeling Conventions (continued)
Relationships

Each direction of the relationship contains:
* A label: For example, taught by or assigned to
* An optionality: Either must be or maybe
* A degree: Either one and only one or one or more

Note: The term cardinality is a synonym for the term degree.

Each source entity {may be | must be} in relation {one and only one | one or more} with the
destination entity.

Note: The convention is to read clockwise.
Unique Identifiers

A unique identifier (UID) is any combination of attributes or relationships, or both, that serves to
distinguish occurrences of an entity. Each entity occurrence must be uniquely identifiable.

» Tag each attribute that is part of the UID with a hash sign “#”.

+ Tag secondary UIDs with a hash sign in parentheses (#).

Oracle Database: SQL Fundamentals | |-24

Relating Multiple Tables

- Each row of data in a table is uniquely identified by a
primary key.
* You can logically relate data from multiple tables using

foreign keys.
Table name: DEPARTMENTS

pePaRTMENT_ID [DEPARTMENT_MamME [{ mamaceriiD [LocaTion o
10 Administration 200 1700
Table name: EMPLOYEES S = =
empLovEEID [f FIRST_NaAME[E LasT_namME[E DEPARTMENT_ID ol A 30
LOCIIERen king 2l 50 Sales 143 2500
LOLIEENa fochhia &l 90 Executive 100 1700
e Belhizan =0 110 Accounting 205 1700
ATE} VT 7 punolg & 180 Cantracting {nully 1700
104 Bruce Ernzt 60 A

107 Diana Larentz [1]

124 Eevin Mourgos =]

141 Trenna Raj= 1]

142 Curtiz Davies 50

T T Primary key
Primary key Foreign key

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Relating Multiple Tables

Each table contains data that describes exactly one entity. For example, the EMPLOYEES table
contains information about employees. Categories of data are listed across the top of each table,
and individual cases are listed below. By using a table format, you can readily visualize,
understand, and use information.

Because data about different entities is stored in different tables, you may need to combine two
or more tables to answer a particular question. For example, you may want to know the location
of the department where an employee works. In this scenario, you need information from the
EMPLOYEES table (which contains data about employees) and the DEPARTMENTS table (which
contains information about departments). With an RDBMS, you can relate the data in one table
to the data in another by using the foreign keys. A foreign key is a column (or a set of columns)
that refers to a primary key in the same table or another table.

You can use the ability to relate data in one table to data in another to organize information in
separate, manageable units. Employee data can be kept logically distinct from the department
data by storing it in a separate table.

Oracle Database: SQL Fundamentals | |-25

Relating Multiple Tables (continued)
Guidelines for Primary Keys and Foreign Keys

* You cannot use duplicate values in a primary key.

* Primary keys generally cannot be changed.

» Foreign keys are based on data values and are purely logical (not physical) pointers.

» A foreign key value must match an existing primary key value or unique key value;
otherwise, it must be null.

» A foreign key must reference either a primary key or a unique key column.

Oracle Database: SQL Fundamentals | |-26

Relational Database Terminology

®

@ I8 empLovee o FIRST_NAME| LesT_WaME| satarv|B commission_pcT|[l DEPARTMENT_ID @

100Eteven King 24000

101peena Kaochhar 17000
1020 ex De Haan 17000
103 lexander Hunold 3000
104 Fruce Ernzt &000
107 Diana Lorentz 4200
124 K.evin Mourgos 5500
141fTrenna Rajs 3500
142 urtis Davies 3100
143 Randall Matos 2600
144 Peter Wargas 2500
149 Eleni Zlotkey 10500
174 Ellen Abel 11000 0. &0
176 fonathan Taylor 5600 0.3 a0
178 Kimberely Crant Fooo 0.15 {hull
Z200§ennifer Whalen 44008 Cnull 10
201 ichael Hartstein 13000 (nulll 20
202 Pat Fay B000) {hull 20
205Ehelley Higgins 12000 (nulll 1104
206 pivilliam Gietz 5300 {hull 110

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Relational Database Terminology

A relational database can contain one or many tables. A fable is the basic storage structure of an
RDBMS. A table holds all the data necessary about something in the real world, such as
employees, invoices, or customers.

The slide shows the contents of the EMPLOYEES table or relation. The numbers indicate the
following:

1. A single row (or tuple) representing all the data required for a particular employee. Each
row in a table should be identified by a primary key, which permits no duplicate rows. The
order of rows is insignificant; specify the row order when the data is retrieved.

2. A column or attribute containing the employee number. The employee number identifies a
unique employee in the EMPLOYEES table. In this example, the employee number column
1s designated as the primary key. A primary key must contain a value and the value must be
unique.

3. A column that is not a key value. A column represents one kind of data in a table; in this
example, the data is the salaries of all the employees. Column order is insignificant when
storing data; specify the column order when the data is retrieved.

Oracle Database: SQL Fundamentals | |-27

Relational Database Terminology (continued)

4. A column containing the department number, which is also a foreign key. A foreign key is a
column that defines how tables relate to each other. A foreign key refers to a primary key or
a unique key in the same table or in another table. In the example, DEPARTMENT ID
uniquely identifies a department in the DEPARTMENTS table.

5. A field can be found at the intersection of a row and a column. There can be only one value
in it.

6. A field may have no value in it. This is called a null value. In the EMPLOYEES table, only
those employees who have the role of sales representative have a value in the
COMMISSION PCT (commission) field.

Oracle Database: SQL Fundamentals | |-28

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

« Course objectives, course agenda, and appendixes used
in this course

* Overview of Oracle Database 11g and related products

« Overview of relational database management concepts
and terminologies

* Introduction to SQL and its development environments
 The HR schema and the tables used in this course

* Oracle Database 11g documentation and additional
resources

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals | |-29

Using SQL to Query Your Database

Structured query language (SQL) is:

« The ANSI standard language for operating relational
databases

- Efficient, easy to learn, and use

« Functionally complete (With SQL, you can define, retrieve,
and manipulate data in the tables.)

SELECT department name
FROM departments;

DEPARTMENT_NAME Oracle g
Administration < servghe
Marketing \'(

Shipping (\/

IT

Sales
Executive
Accounting

Contracting

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using SQL to Query Your Database

In a relational database, you do not specify the access route to the tables, and you do not need to
know how the data is arranged physically.

To access the database, you execute a structured query language (SQL) statement, which is the
American National Standards Institute (ANSI) standard language for operating relational
databases. SQL is a set of statements with which all programs and users access data in an Oracle
Database. Application programs and Oracle tools often allow users access to the database
without using SQL directly, but these applications, in turn, must use SQL when executing the
user’s request.

SQL provides statements for a variety of tasks, including:
* Querying data
* Inserting, updating, and deleting rows in a table
+ Creating, replacing, altering, and dropping objects
* Controlling access to the database and its objects
* Guaranteeing database consistency and integrity

SQL unifies all of the preceding tasks in one consistent language and enables you to work with
data at a logical level.

Oracle Database: SQL Fundamentals | 1|-30

SQL Statements

SELECT

INSERT

UPDATE Data manipulation language (DML)
DELETE

MERGE

CREATE

ALTER

DROP Data definition language (DDL)
RENAME

TRUNCATE

COMMENT

GRANT Data control language (DCL)
REVOKE

COMMIT
ROLLBACK Transaction control
SAVEPOINT

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

SQL Statements

SQL statements supported by Oracle comply with industry standards. Oracle Corporation
ensures future compliance with evolving standards by actively involving key personnel in SQL
standards committees. The industry-accepted committees are ANSI and International Standards
Organization (ISO). Both ANSI and ISO have accepted SQL as the standard language for
relational databases.

Statement Description

SELECT Retrieves data from the database, enters new rows, changes existing rows, and
INSERT removes unwanted rows from tables in the database, respectively. Collectively
UPDATE known as data manipulation language (DML)

DELETE

MERGE

CREATE Sets up, changes, and removes data structures from tables. Collectively known as
ALTER data definition language (DDL)

DROP

RENAME

TRUNCATE

COMMENT

GRANT Provides or removes access rights to both the Oracle Database and the structures
REVOKE within it

COMMIT Manages the changes made by DML statements. Changes to the data can be
ROLLBACK grouped together into logical transactions

SAVEPOINT

Oracle Database: SQL Fundamentals | |- 31

Development Environments for SQL

There are two development environments for this course:
* The primary tool is Oracle SQL Developer.
« SQL*Plus command-line interface can also be used.

Oracle SQL Developer

File Edit Yiew MNavigate Bun Source Versioning Migration Tools Help

Terminal

CEg 90 XEBE 0-0- '8 'Ev Fle Edit View Terminal Tabs Help

[:] &myconnectﬁon B
PERGR® 9E & |[mycon

[oracle@EDRSR17P1 ~]%sqlplus b=

50L*Plus: Release 11.2.0.0.2 Beta on Wed Jun 3 17:12:12 2009

- mycannection Copyright (c) 1982, 2009, Oracle. All rights reserved.

yaueag papualxg%

Enter user-name:

SQL Developer

Hesults:

SQL*Plus

a3

s1addiusg |§

- (5l saL History

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Development Environments for SQL

SQL Developer

This course is developed using Oracle SQL Developer as the tool for running the SQL
statements discussed in the examples in the lessons and the practices. SQL Developer version
1.5.4 is shipped with Oracle Database 11g, and is the default tool for this class.

SQL*Plus
The SQL*Plus environment can also be used to run all SQL commands covered in this course.
Note

* See Appendix C for information about using SQL Developer, including simple instructions

on installing version 1.5.4.
* See Appendix D for information about using SQL*Plus.

Oracle Database: SQL Fundamentals | |-32

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

« Course objectives, course agenda, and appendixes used
in this course

* Overview of Oracle Database 11g and related products

« Overview of relational database management concepts
and terminologies

* Introduction to SQL and its development environments
* The HR schema and the tables used in this course

* Oracle Database 11g documentation and additional
resources

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals | |-33

Human Resources (HR) Schema

DEPARTMENTS LOCATIONS
department_id location_id
department_name -—— street_address
manager_id postal_code
location_id city
state_province
country_id
JOB_HISTORY (_L%
employee_id
start_date - EMPLOYE.ES
end_date en_'nployee_ld
jol; id first_name
department_id Iast_name COUNTRIES
email country_id
)\ 4 phone_number country_name
1 hire_date — = region_id
I job_id -
salary
commission_pct
JOBS manager_id
job_id department_id
job_title \—)

REGIONS
region_id
region_name

min_salary

max_salary

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Human Resources (HR) Schema Description

The Human Resources (HR) schema is a part of the Oracle Sample Schemas that can be
installed in an Oracle Database. The practice sessions in this course use data from the HR
schema.

Table Descriptions

+ REGIONS contains rows that represent a region such as America, Asia, and so on.

« COUNTRIES contains rows for countries, each of which is associated with a region.

« LOCATIONS contains the specific address of a specific office, warehouse, or production
site of a company in a particular country.

« DEPARTMENTS shows details about the departments in which the employees work. Each
department may have a relationship representing the department manager in the
EMPLOYEES table.

« EMPLOYEES contains details about each employee working for a department. Some
employees may not be assigned to any department.

« JOBS contains the job types that can be held by each employee.

« JOB_ HISTORY contains the job history of the employees. If an employee changes
departments within a job or changes jobs within a department, a new row is inserted into
this table with the earlier job information of the employee.

Oracle Database: SQL Fundamentals | |-34

Tables Used in the Course

EMPLOYEES
emPLOYEE_ID [FIRsT_amE[f LasT_wame [saisrv [commission_pcT [l oeparTmENT_D [f] Email [H PHONE_NUMBER [B HIRE_DATE

100 Steven King 24000 thully 90 SKING 515.123.4567 17-JUN-57

101 Heena Kochhar 17000 tull) 90 MEOCHHAR 515.123.4568 21-5EP-80

102 Lex De Haan 17000 frull) 90 LDEHAAN 515.123.4569 13-JAN-53

103 Alexander Hunold 9000 tnully 60 AHUNOLD 590.423.4567 03-JAN-20

104 Bruce Ernst 6000 tull) GOEBERMST 580.423.4568 21-MAY-51

107 Diana Lorentz 4200 il 60 DLORENTZ 590.423.5567 07-FEE-99

124 Kevin Mourgos 5300 tnully 50 KMOURGOS 650.123.5234 16-NOY-93

141 Trenna Rajs 3500 tull) 50 TRAJS £50.121.5009 17-0CT-95

142 Curtis Davies 3100 il 50 COAVIES 650.121.2994 29-JAN-57

143 Randall Matos 2600 tnully SORMATODS 650.121.2874 15-MAR-95

144 Peter Vargas 2500 tull) SOPVARCAS 650.121.2004 09-JUL-358

149 Eleni Zlotkey 10500 0.z S0 EZLOTKEY 011.44.1344.425015 28-JAN-00

174 Ellen Abel 11000 03 80 EABEL 01144 1644 420267 11-MAY-56

176 Janathon Taylor 8600 0.z B0JTAYLOR OLL.44.1644.429265 24-MAR-93

178 Kimberely Grant 7000 015 (ully KGRANT 011.44.1644.429263 24-MAY-99

200 Jennifer Whalen 4400 tull) 10WHALEN 5151234444 17-SEP-67

201 Michael Hartstein 13000 tull) 20 MHARTSTE 515.123.5555 17-FEE-96

202 Pat Fay 5000 tnuly 20 PFAY 603.123.6666 17-AUG-37

205 Shelley Higgins 12000 tull) 110 SHIGGINS 515.123.8080 07-JUN-54

206 william Gietz 8300 tull) 110WGIETZ 515.123.8181 07-JUN-54
CRADE_LE\.'EL@ LOWEST_SAL | HICHEST_SAL DEPARTMENT_ID | IERA RTMENT_RLA ME | W& A GER_ID | LOCATION_ID
A 1000 2999 10 Administration 200 1700
B 2000 5509 20 harketing 201 1500
C 5000 9999 50 shipping 124 1500
D 10000 14993 60T 103 1400
E 15000 24993 80 Sales 149 2500
F 25000 40000 90 Executive 100 1700
110 Accounting 205 1700

JOB_GRADES 120 Contracting fhully 1700 DEPARTMENTS

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Tables Used in the Course

The following main tables are used in this course:
« EMPLOYEES table: Gives details of all the employees
« DEPARTMENTS table: Gives details of all the departments
« JOB_GRADES table: Gives details of salaries for various grades

Apart from these tables, you will also use the other tables listed in the previous slide such as the
LOCATIONS and the JOB_HISTORY table.

Note: The structure and data for all the tables are provided in Appendix B.

Oracle Database: SQL Fundamentals | |-35

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

« Course objectives, course agenda, and appendixes used
in this course

* Overview of Oracle Database 11g and related products

« Overview of relational database management concepts
and terminologies

* Introduction to SQL and its development environments
e The HR schema and the tables used in this course

* Oracle Database 11g documentation and additional
resources

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals | |-36

Oracle Database Documentation

* Oracle Database New Features Guide

* Oracle Database Reference

* Oracle Database SQL Language Reference
* Oracle Database Concepts

* Oracle Database SQL Developer User's Guide,
Release 1.5

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database Documentation

Navigate to http://www.oracle.com/pls/db102/homepage to access the Oracle Database 10g
documentation library.

Navigate to http://www.oracle.com/pls/db112/homepage to access the Oracle Database 11g
documentation library.

Oracle Database: SQL Fundamentals | |-37

Additional Resources

For additional information about racle Database 11g, refer to
the following:

* Oracle Database 11g: New Features eStudies

* Oracle by Example series (OBE): Oracle Database 11g
— http://www.oracle.com/technology/obe/11gr1_db/index.htm

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| |-38

Summary

In this lesson, you should have learned that:

Oracle Database 11g extends:
— The benefits of infrastructure grids
— The existing information management capabilities

— The capabilities to use the major application development
environments such as PL/SQL, Java/JDBC, .NET, XML, and
soon

« The database is based on ORDBMS

* Relational databases are composed of relations, managed
by relational operations, and governed by data integrity
constraints

« With the Oracle server, you can store and manage
information by using SQL

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Summary

Relational database management systems are composed of objects or relations. They are
managed by operations and governed by data integrity constraints.

Oracle Corporation produces products and services to meet your RDBMS needs. The main
products are the following:
* Oracle Database with which you store and manage information by using SQL
* Oracle Fusion Middleware with which you develop, deploy, and manage modular business
services that can be integrated and reused
* Oracle Enterprise Manager Grid Control, which you use to manage and automate
administrative tasks across sets of systems in a grid environment

SQL

The Oracle server supports ANSI-standard SQL and contains extensions. SQL is the language
that is used to communicate with the server to access, manipulate, and control data.

Oracle Database: SQL Fundamentals| |-39

Practice I: Overview

This practice covers the following topics:
- Starting Oracle SQL Developer
« Creating a new database connection
« Browsing the HR tables

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Practice I: Overview

In this practice, you perform the following:
 Start Oracle SQL Developer and create a new connection to the oral account.
» Use Oracle SQL Developer to examine data objects in the oral account. The oral account
contains the HR schema tables.

Note the following location for the lab files:
\home\oracle\labs\sqgll\labs
If you are asked to save any lab files, save them in this location.

In any practice, there may be exercises that are prefaced with the phrases “If you have time” or
“If you want an extra challenge.” Work on these exercises only if you have completed all other
exercises within the allocated time and would like a further challenge to your skills.

Perform the practices slowly and precisely. You can experiment with saving and running
command files. If you have any questions at any time, ask your instructor.

Note: All written practices use Oracle SQL Developer as the development environment.
Although it is recommended that you use Oracle SQL Developer, you can also use SQL*Plus
that is available in this course.

Oracle Database: SQL Fundamentals | |-40

Retrieving Data Using
the SQL sELECT Statement

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

« List the capabilities of SQL SELECT statements
« Execute a basic SELECT statement

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Objectives
To extract data from the database, you need to use the SQL SELECT statement. However, you
> may need to restrict the columns that are displayed. This lesson describes the SELECT statement
that is needed to perform these actions. Further, you may want to create SELECT statements that
can be used more than once.

Oracle Database: SQL Fundamentals| 1-2

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

« Basic SELECT statement

* Arithmetic expressions and NULL values in the SELECT
statement

e Column aliases

» Use of concatenation operator, literal character strings,
alternative quote operator, and the DISTINCT keyword

e DESCRIBE command

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 1-3

Capabilities of SQL SELECT Statements
Projection Selection
Table 1 Table 1
Join
Table 1 Table 2

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Capabilities of SQL SELECT Statements

A SELECT statement retrieves information from the database. With a SELECT statement, you
can do the following:
» Projection: Select the columns in a table that are returned by a query. Select as few or as
many of the columns as required.
* Selection: Select the rows in a table that are returned by a query. Various criteria can be
used to restrict the rows that are retrieved.
+ Joins: Bring together data that is stored in different tables by specifying the link between
them. SQL joins are covered in more detail in the lesson titled “Displaying Data from
Multiple Tables Using Joins.”

Oracle Database: SQL Fundamentals| 1-4

Basic SELECT Statement

SELECT *|{[DISTINCT] column|expression [alias],...}
FROM table;

* SELECT identifies the columns to be displayed.
* FROM identifies the table containing those columns.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Basic SELECT Statement

In its simplest form, a SELECT statement must include the following:
* A SELECT clause, which specifies the columns to be displayed

* A FROM clause, which identifies the table containing the columns that are listed in the
SELECT clause

In the syntax:

SELECT Is a list of one or more columns
* Selects all columns
DISTINCT Suppresses duplicates
column|expression Selects the named column or the expression
alias Gives the selected columns different headings
FROM table Specifies the table containing the columns

Note: Throughout this course, the words keyword, clause, and statement are used as follows:
* A keyword refers to an individual SQL element—for example, SELECT and FROM are
keywords.
* A clause is a part of a SQL statement—for example, SELECT employee id,
last name, and so on.
» A statement is a combination of two or more clauses—for example, SELECT * FROM
employees.

Oracle Database: SQL Fundamentalsl 1-5

Selecting All Columns

SELECT [*]
FROM departments;

DEPARTMENT_ID | DEPARTMENT_MAME | MAMACER_ID | LOCATION_ID
1 10 Administration 200 1700
2 20 Marketing 201 1500
3 50 Shipping 124 1500
4 60T 103 1400
5 g0 Sales 1449 2500
] 90 Executive 100 1700
7 110 Accounting 205 1700
g 190 Cantracting (null 1700

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Selecting All Columns

You can display all columns of data in a table by following the SELECT keyword with an
asterisk (*). In the example in the slide, the DEPARTMENTS table contains four columns:
DEPARTMENT ID, DEPARTMENT NAME, MANAGER 1ID, and LOCATION ID. The table
contains eight rows, one for each department.

You can also display all columns in the table by listing all the columns after the SELECT
keyword. For example, the following SQL statement (like the example in the slide) displays all
columns and all rows of the DEPARTMENTS table:
SELECT department id, department name, manager id, location id
FROM departments;

Note: In SQL Developer, you can enter your SQL statement in a SQL. Worksheet and click the
“Execute Statement” icon or press [F9] to execute the statement. The output displayed on the
Results tabbed page appears as shown in the slide.

Oracle Database: SQL Fundamentals| 1-6

Selecting Specific Columns

SELECT |department id, location id
FROM departments;

DEP&RTMENT_ID | LOCATION_ID
1 10 1700
z 20 1800
3 50 1500
4 &0 1400
5 &0 2500
& a0 1700
7 110 1700
& 190 1700

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Selecting Specific Columns

You can use the SELECT statement to display specific columns of the table by specifying the

column names, separated by commas. The example in the slide displays all the department
numbers and location numbers from the DEPARTMENTS table.

In the SELECT clause, specify the columns that you want in the order in which you want them
to appear in the output. For example, to display location before department number (from left to
right), you use the following statement:

SELECT location id, department id
FROM departments;

LoCATION_ID |[{ DEPARTMENT_ID
1 1700 10
2 1800 20
3 1500 50
4 1400 60

Oracle Database: SQL Fundamentals| 1-7

Writing SQL Statements

« SQL statements are not case sensitive.

« SQL statements can be entered on one or more lines.
« Keywords cannot be abbreviated or split across lines.
« Clauses are usually placed on separate lines.

* Indents are used to enhance readability.

« In SQL Developer, SQL statements can be optionally
terminated by a semicolon (;). Semicolons are required
when you execute multiple SQL statements.

* In SQL*Plus, you are required to end each SQL statement
with a semicolon (;).

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Writing SQL Statements

By using the following simple rules and guidelines, you can construct valid statements that are
both easy to read and edit:

* SQL statements are not case sensitive (unless indicated).

* SQL statements can be entered on one or many lines.

» Keywords cannot be split across lines or abbreviated.

» Clauses are usually placed on separate lines for readability and ease of editing.

* Indents should be used to make code more readable.

» Keywords typically are entered in uppercase; all other words, such as table names and

columns names are entered in lowercase.

Executing SQL Statements

In SQL Developer, click the Run Script icon or press [F5] to run the command or commands in
the SQL Worksheet. You can also click the Execute Statement icon or press [F9] to run a SQL
statement in the SQL Worksheet. The Execute Statement icon executes the statement at the
mouse pointer in the Enter SQL Statement box while the Run Script icon executes all the
statements in the Enter SQL Statement box. The Execute Statement icon displays the output of
the query on the Results tabbed page, whereas the Run Script icon emulates the SQL*Plus
display and shows the output on the Script Output tabbed page.

In SQL*Plus, terminate the SQL statement with a semicolon, and then press [Enter] to run the
command.

Oracle Database: SQL Fundamentals| 1-8

Column Heading Defaults

« SQL Developer:
— Default heading alignment: Left-aligned
— Default heading display: Uppercase
« SQL*Plus:
— Character and Date column headings are left-aligned.
— Number column headings are right-aligned.
— Default heading display: Uppercase

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Column Heading Defaults

In SQL Developer, column headings are displayed in uppercase and are left-aligned.
SELECT last name, hire date, salary
FROM employees;

LasT_MAME |[§ HIRE_DATE (§ caLapy
1 Whalen 17-SEP-&7 4400
2 Hartstein 17-FEB-96 13000
3 Fay 17-AUG-97 G000
4 Higgins 07-JUN-24 12000
5 Cietz 07-JUN-24 5300
& King 17-JUN-87 24000
7 Kochhar 21-SEP-G8 17000
& De Haan 13-JAN-23 17000
5 Hunold 03-JAN-20 000

You can override the column heading display with an alias. Column aliases are covered later in
this lesson.

Oracle Database: SQL Fundamentals| 1-9

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

« Basic SELECT statement

* Arithmetic expressions and NULL values in the SELECT
statement

e Column Aliases

» Use of concatenation operator, literal character strings,
alternative quote operator, and the DISTINCT keyword

e DESCRIBE command

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 1-10

Arithmetic Expressions

Create expressions with number and date data by using
arithmetic operators.

Operator Description

+ Add

- Subtract
* Multiply
/ Divide

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Arithmetic Expressions

You may need to modify the way in which data is displayed, or you may want to perform
calculations, or look at what-if scenarios. All these are possible using arithmetic expressions. An
arithmetic expression can contain column names, constant numeric values, and the arithmetic
operators.

Arithmetic Operators

The slide lists the arithmetic operators that are available in SQL. You can use arithmetic
operators in any clause of a SQL statement (except the FROM clause).

Note: With the DATE and TIMESTAMP data types, you can use the addition and subtraction
operators only.

Oracle Database: SQL Fundamentals| 1 -11

Using Arithmetic Operators

SELECT last name, salary,| salary + 300
FROM employees;

LasT_name [§ salary [saLarv+300
1 Whalen 4400 4700
2 Hartstein 13000 13300
3 Fay 6000 6300
4 Higgins 12000 12300
5 Gietz 8300 8600
& King 24000 24300
7 Kochhar 17000 17300
& De Haan 17000 17300
5 Hurold 9000 5300

10 Ernst £000 6300

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Arithmetic Operators

The example in the slide uses the addition operator to calculate a salary increase of $300 for all
employees. The slide also displays a SALARY+3 00 column in the output.

Note that the resultant calculated column, SALARY+300, is not a new column in the
EMPLOYEES table; it is for display only. By default, the name of a new column comes from the
calculation that generated it—in this case, salary+300.

Note: The Oracle server ignores blank spaces before and after the arithmetic operator.

Operator Precedence

If an arithmetic expression contains more than one operator, multiplication and division are
evaluated first. If operators in an expression are of the same priority, evaluation is done from left
to right.

You can use parentheses to force the expression that is enclosed by the parentheses to be
evaluated first.

Rules of Precedence
* Multiplication and division occur before addition and subtraction.
* Operators of the same priority are evaluated from left to right.
» Parentheses are used to override the default precedence or to clarify the statement.

Oracle Database: SQL Fundamentals| 1-12

Operator Precedence

SELECT last name, salary, |1l2*salary+100
FROM employees;

LasT_wame |[§ sacarr [§ 1zvsalarr+ioo
1 Whalen 4400 52900
2 Hartstein 13000 156100
3 Fay 6000 72100
SELECT last name, salary, |12*(salary+100)
FROM employees;

LasT_name [{ saLary|{ 12vsaLarr+100)
1 Whalen 4400 54000
2 Hartstein 13000 157200
3 Fay 6000 73200

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Operator Precedence (continued)

The first example in the slide displays the last name, salary, and annual compensation of
employees. It calculates the annual compensation by multiplying the monthly salary with 12,
plus a one-time bonus of $100. Note that multiplication is performed before addition.

Note: Use parentheses to reinforce the standard order of precedence and to improve clarity. For
example, the expression in the slide can be written as (12*salary) +100 with no change in
the result.

Using Parentheses

You can override the rules of precedence by using parentheses to specify the desired order in
which the operators are to be executed.

The second example in the slide displays the last name, salary, and annual compensation of
employees. It calculates the annual compensation as follows: adding a monthly bonus of $100 to
the monthly salary, and then multiplying that subtotal with 12. Because of the parentheses,
addition takes priority over multiplication.

Oracle Database: SQL Fundamentals| 1-13

Defining a Null Value

* Null is a value that is unavailable, unassigned, unknown,
or inapplicable.

* Null is not the same as zero or a blank space.

SELECT last name, job id, salary, |commission pct

FROM employees;

LasT_hame|f Joep B salare [l commission_pcT
1 Whalen AD_ASST 4400 (il
2 Hartstein ME_MAN 13000 frull
17 Zlotkey SA_MAN 10500 0.2
18 Abel SA_REP 11000 0.3
18 Taylor SA_REP 8600 0.2
20 Grant SA_REP 7000 0.15

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Defining a Null Value

If a row lacks a data value for a particular column, that value is said to be null or to contain a
null.

Null is a value that is unavailable, unassigned, unknown, or inapplicable. Null is not the same as
zero or a blank space. Zero is a number and blank space is a character.

Columns of any data type can contain nulls. However, some constraints (NOT NULL and
PRIMARY KEY) prevent nulls from being used in the column.

In the COMMISSION PCT column in the EMPLOYEES table, notice that only a sales manager

or sales representative can earn a commission. Other employees are not entitled to earn
commissions. A null represents that fact.

Note: By default, SQL Developer uses the literal, (null), to identify null values. However, you
can set it to something more relevant to you. To do so, select Preferences from the Tools menu.
In the Preferences dialog box, expand the Database node. Click Advanced Parameters and on the
right pane, for the “Display Null value As,” enter the appropriate value.

Oracle Database: SQL Fundamentals| 1-14

Null Values in Arithmetic Expressions

Arithmetic expressions containing a null value evaluate to null.

SELECT last name,| l12*salary*commission pct
FROM employees;

LAST_NAME| 122 ALARYCOMMISSION_PCT
1 Whalen (null
2 Hartstein (nully
3 Fay fnull)
17 Flotkey 25200
18 Abel 39600
19 Taylar 20640
20 Crant 12600

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Null Values in Arithmetic Expressions

If any column value in an arithmetic expression is null, the result is null. For example, if you
attempt to perform division by zero, you get an error. However, if you divide a number by null,
the result is a null or unknown.

In the example in the slide, employee Whalen does not get any commission. Because the
COMMISSION PCT column in the arithmetic expression is null, the result is null.

For more information, see the section on “Basic Elements of Oracle SQL” in Oracle Database
SOL Language Reference for 10g or 11g database.

Oracle Database: SQL Fundamentals| 1-15

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

« Basic SELECT statement

* Arithmetic expressions and NULL values in the SELECT
statement

* Column aliases

» Use of concatenation operator, literal character strings,
alternative quote operator, and the DISTINCT keyword

e DESCRIBE command

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 1-16

Defining a Column Alias

A column alias:
* Renames a column heading
* |s useful with calculations

* Immediately follows the column name (There can also be
the optional As keyword between the column name and
the alias.)

* Requires double quotation marks if it contains spaces or
special characters, or if it is case-sensitive

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Defining a Column Alias

When displaying the result of a query, SQL Developer normally uses the name of the selected
column as the column heading. This heading may not be descriptive and, therefore, may be
difficult to understand. You can change a column heading by using a column alias.

Specify the alias after the column in the SELECT list using blank space as a separator. By
default, alias headings appear in uppercase. If the alias contains spaces or special characters
(such as # or $), or if it is case-sensitive, enclose the alias in double quotation marks ("").

Oracle Database: SQL Fundamentals| 1-17

Using Column Aliases

SELECT last name AS commission pct
FROM employees;

maME [E oM
1 Whalen {nully
2 Hartstein (null
3 Fay (nully

SELECT last name["Name"| , salary*12 ["Annual Salary"]
FROM employees;

Name Annual Salary
1 Whalen 52800
£ Hartstein 15e000
3 Fay 72000

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Column Aliases

The first example displays the names and the commission percentages of all the employees.
Note that the optional AS keyword has been used before the column alias name. The result of the
query is the same whether the AS keyword is used or not. Also, note that the SQL statement has
the column aliases, name and comm, in lowercase, whereas the result of the query displays the
column headings in uppercase. As mentioned in the preceding slide, column headings appear in
uppercase by default.

The second example displays the last names and annual salaries of all the employees. Because
Annual Salary contains a space, it has been enclosed in double quotation marks. Note that
the column heading in the output is exactly the same as the column alias.

Oracle Database: SQL Fundamentals| 1-18

Lesson Agenda

« Basic SELECT Statement

* Arithmetic Expressions and NULL values in SELECT
statement

e Column Aliases

« Use of concatenation operator, literal character strings,
alternative quote operator, and the DISTINCT keyword

e DESCRIBE command

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 1-19

Concatenation Operator

A concatenation operator:
* Links columns or character strings to other columns
* Is represented by two vertical bars (||)
« Creates a resultant column that is a character expression

SELECT 1last name||job id AS "Employees"
FROM employees;

Employees
1 AbelSA_REP
2 DaviessT_CLERE
3 De HaanAD_WF
4 ErnstIT_PROC
5 FayME_REP
6 GietzAC_ACCOUNT

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Concatenation Operator

You can link columns to other columns, arithmetic expressions, or constant values to create a
character expression by using the concatenation operator (||). Columns on either side of the
operator are combined to make a single output column.

In the example, LAST NAME and JOB_ID are concatenated, and given the alias Employees.
Note that the last name of the employee and the job code are combined to make a single output
column.

The AS keyword before the alias name makes the SELECT clause easier to read.
Null Values with the Concatenation Operator

If you concatenate a null value with a character string, the result is a character string.
LAST NAME | | NULL results in LAST NAME.

Note: You can also concatenate date expressions with other expressions or columns.

Oracle Database: SQL Fundamentals| 1 -20

Literal Character Strings

 Aliteral is a character, a number, or a date that is included
in the SELECT statement.

 Date and character literal values must be enclosed within
single quotation marks.

« Each character string is output once for each row returned.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Literal Character Strings

A literal is a character, a number, or a date that is included in the SELECT list. It is not a column
name or a column alias. It is printed for each row returned. Literal strings of free-format text can
be included in the query result and are treated the same as a column in the SELECT list.

The date and character literals must be enclosed within single quotation marks (' '); number
literals need not be enclosed in a similar manner.

Oracle Database: SQL Fundamentals | 1 -21

Using Literal Character Strings

SELECT last name |||' is a '|||job id
AS "Employee Details"
FROM employees;

Employee Details

1 Ahelis a SA_REP

Z Davies iz a ST_CLERK

5 De Haan iz a AD_WP

4 Ernstiz alT_PROG

5 Fay iz a MKE_REP

A Gietz iz a A C_ACCOUNT

7 Grant iz a 34 _REP

g Hartstein is a ME_MARN

9 Higgins is a AC_MGR
10 Hunold iz & IT_PROG

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Literal Character Strings

The example in the slide displays the last names and job codes of all employees. The column has
the heading Employee Details. Note the spaces between the single quotation marks in the
SELECT statement. The spaces improve the readability of the output.

In the following example, the last name and salary for each employee are concatenated with a
literal, to give the returned rows more meaning;:

SELECT last name ||': 1 Month salary = '||salary Monthly
FROM employees;
MONTHLY

1 Whalen: 1 Month zalary = 4400
Hartstein: 1 Month zalary = 13000
Fay: 1 Manth zalary = 000
Higagins: 1 Manth zalary = 12000
Cietz: 1 Manth zalary = 8300
King: 1 Month salary = 24000
kochhar: 1 Maonth zalary = 17000
De Haan: 1 Manth zalary = 17000

L e I = T N L LR o

Oracle Database: SQL Fundamentals | 1 -22

Alternative Quote (q) Operator

« Specify your own quotation mark delimiter.
» Select any delimiter.
* Increase readability and usability.

SELECT department name ||| q'[Department's Manager Id:]
| | manager id
AS "Department and Manager"
FROM departments;

Department and Manager

1 Administration Department's Manager [d: 200
2 Marketing Department's Manager |d; 201

3 Shipping Department's Manager 1d: 124

4 |IT Department's Manager Id: 103

5 Sales Department's Manhager |d; 149

b Executive Department's Manager Id: 100

7 Accounting Department's Manager |d; 205

§ Contracting Department's Manager Id:

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Alternative Quote (q) Operator

Many SQL statements use character literals in expressions or conditions. If the literal itself
contains a single quotation mark, you can use the quote (q) operator and select your own
quotation mark delimiter.

You can choose any convenient delimiter, single-byte or multibyte, or any of the following
character pairs: [], { }, (), or <>,

In the example shown, the string contains a single quotation mark, which is normally interpreted
as a delimiter of a character string. By using the g operator, however, brackets [] are used as the

quotation mark delimiters. The string between the brackets delimiters is interpreted as a literal
character string.

Oracle Database: SQL Fundamentals| 1 -23

Duplicate Rows

The default display of queries is all rows, including duplicate

rows.

SELECT department id SELECT | DISTINCT |[department id
FROM employees; FROM employees;
DEPARTMENT_ID DEPARTMENT_ID
1 10 1 {null
2 20 2 20
3 20 3 a0
4 110 4 110
5 110 5 50

B a0
7 10
g &0

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Duplicate Rows

Unless you indicate otherwise, SQL displays the results of a query without eliminating the
duplicate rows. The first example in the slide displays all the department numbers from the
EMPLOYEES table. Note that the department numbers are repeated.

To eliminate duplicate rows in the result, include the DISTINCT keyword in the SELECT
clause immediately after the SELECT keyword. In the second example in the slide, the
EMPLOYEES table actually contains 20 rows, but there are only seven unique department
numbers in the table.

You can specify multiple columns after the DISTINCT qualifier. The DISTINCT qualifier
affects all the selected columns, and the result is every distinct combination of the columns.
SELECT DISTINCT department id, job id

DEPSRTMENT_ID ([JOB_ID

1 110 AC_ACCOUNT
2 a0 AD_WP
3 50 5T_CLERE

Note: You may also specify the keyword UNIQUE, which is a synonym for the keyword
DISTINCT.

Oracle Database: SQL Fundamentals | 1 -24

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

« Basic SELECT statement

* Arithmetic expressions and NULL values in the SELECT
statement

e Column aliases

» Use of concatenation operator, literal character strings,
alternative quote operator, and the DISTINCT keyword

e DESCRIBE command

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals | 1-25

Displaying the Table Structure

* Use the DESCRIBE command to display the structure of a
table.

 Or, select the table in the Connections tree and use the
Columns tab to view the table structure.

DESC[RIBE] tablename

aCunnectiuns
@7
Ela myconnection
=-[F8 Tables
E-4E COUNTRIES
Rz o Ers RTMENTS
[]"'g Caolum nsI Data | Constraints | Grants | Statistics |Triggers | Flashback | Dependencies | Details | Indexes | Sl
[: =
7 -
- & 17 W actions...
w-[A|@ columnName [Data Type (@ Muniable |Data Deault [§ coLumniD [Primary Key [CoMMENTS
- DEPARTMENT_ID MUMEBER{4,00 Mo {rully 1 1 Primary key calumn
- DEPARTMEMT_M... WARCHARZ(IOEYTE) Mo (hully 2 (hully A& not null column th
f A WA CER_ID MUMEBER{S, O) Tes {rully E] {nully Manager_id of a dep
LOCATION_ID MUMEBER{4, 0% Tes {rully 4 {nully Location id where a

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Displaying the Table Structure

You can display the structure of a table by using the DESCRIBE command. The command

displays the column names and the data types, and it shows you whether a column must contain
data (that is, whether the column has a NOT NULL constraint).

In the syntax, table name is the name of any existing table, view, or synonym that is
accessible to the user.

Using the SQL Developer GUI interface, you can select the table in the Connections tree and use
the Columns tab to view the table structure.

Note: The DESCRIBE command is supported by both SQL*Plus and SQL Developer.

Oracle Database: SQL Fundamentals | 1 -26

Using the DESCRIBE Command

DESCRIBE employees

DESCRIBE emplovees

Mame Mu11 Twpe
EMFLOYEE_ID NOT WULL WUMBEE(GD
FIRST_MNASME WARCHARZ {207
LAST_MAME NOT WULL WARCHARZ(25%
EMATL NOT HIULL WARCHARZ2 (257
PHONE_NUMBER. WARCHARZ (207
HIRE_DATE NOT NULL DATE

JOE_ID NOT WULL WARCHARZ (107
SALARY NUMBER (&, 23
COMMISSION_PCT NUMBEE{Z, 23
MANAGER_ID NUMBER (G
DEPARETMENT_ID NUMBER {43

11 rows selected

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the DESCRIBE Command

The example in the slide displays information about the structure of the EMPLOYEES table
using the DESCRIBE command.

In the resulting display, Null indicates that the values for this column may be unknown. NOT
NULL indicates that a column must contain data. 7ype displays the data type for a column.

The data types are described in the following table:

Data Type Description

NUMBER (p, s) Number value having a maximum number of digits p, with s
digits to the right of the decimal point

VARCHAR?2 (s) Variable-length character value of maximum size s

DATE Date and time value between January 1, 4712 B.C. and

December 31, A.D. 9999

Oracle Database: SQL Fundamentals | 1 -27

Quiz

|dentify the SELECT statements that execute successfully.

1.| SELECT first name, last name, job_ id, salary*12
AS Yearly Sal
FROM employees;

2.| SELECT first name, last name, job id, salary*12
"vearly sal"
FROM employees;

3.| SELECT first name, last name, job id, salary AS
"vearly sal"
FROM employees;

4 .| SELECT first name+last name AS name, job Id,
salary*12 yearly sal
FROM employees;

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Answer: 2, 3

Oracle Database: SQL Fundamentals| 1 -28

Summary

In this lesson, you should have learned how to:
* Write a SELECT statement that:
— Returns all rows and columns from a table
— Returns specified columns from a table

— Uses column aliases to display more descriptive column
headings

SELECT *|{[DISTINCT] column|/expression [alias],...}
FROM table;

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Summary

In this lesson, you should have learned how to retrieve data from a database table with the
SELECT statement.

SELECT *|{[DISTINCT] column [alias],...}

FROM table;

In the syntax:

SELECT Is a list of one or more columns
* Selects all columns
DISTINCT Suppresses duplicates
column|expression Selects the named column or the expression
alias Gives the selected columns different headings
FROM table Specifies the table containing the columns

Oracle Database: SQL Fundamentals| 1-29

Practice 1: Overview

This practice covers the following topics:
« Selecting all data from different tables
« Describing the structure of tables

« Performing arithmetic calculations and specifying column
names

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Practice 1: Overview

In this practice, you write simple SELECT queries. The queries cover most of the SELECT
2 clauses and operations that you learned in this lesson.

Oracle Database: SQL Fundamentals| 1 -30

Restricting and Sorting Data

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

« Limit the rows that are retrieved by a query
« Sort the rows that are retrieved by a query

« Use ampersand substitution to restrict and sort output at
run time

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Objectives

When retrieving data from the database, you may need to do the following:
* Restrict the rows of data that are displayed
* Specify the order in which the rows are displayed

This lesson explains the SQL statements that you use to perform the actions listed above.

Oracle Database: SQL Fundamentals| 2 -2

Lesson Agenda

* Limiting rows with:
— The WHERE clause

— The comparison conditions using =, <=, BETWEEN, IN, LIKE,
and NULL conditions

— Logical conditions using AND, OR, and NOT operators
* Rules of precedence for operators in an expression
« Sorting rows using the ORDER BY clause
» Substitution variables
* DEFINE and VERIFY commands

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 2 -3

Limiting Rows Using a Selection

EMPLOYEES
EMPLOYEEID || LasT_mameE [josio [§ DEPARTMENT_ID
1 200 Whalen AD_ASST 10
2 201 Hartstein ME_MAR 20
3 202 Fay MK_REP 20
4 205 Higagins AC_MGR 110
5 206 Gietz AC_ACCOUNT 110
“retrieve all
employees in
department 90”
v
EMPLOYEEID |[§ LasT_mame | JoBID |§ DEPARTMENT_ID
1 100 King AD_PRES 30
2 101 Kachhar AD_VP 30
3 102 De Haan AD_WP 90

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Limiting Rows Using a Selection

In the example in the slide, assume that you want to display all the employees in department 90.
The rows with a value of 90 in the DEPARTMENT _ID column are the only ones that are
returned. This method of restriction is the basis of the WHERE clause in SQL.

Oracle Database: SQL Fundamentals| 2-4

Limiting the Rows That Are Selected

* Restrict the rows that are returned by using the WHERE
clause:

SELECT *|{[DISTINCT] column|/expression [alias],...}
FROM table
[WHERE condition(s)];

* The WHERE clause follows the FROM clause.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Limiting the Rows That Are Selected

You can restrict the rows that are returned from the query by using the WHERE clause. A WHERE
clause contains a condition that must be met and it directly follows the FROM clause. If the
condition is true, the row meeting the condition is returned.

In the syntax:
WHERE Restricts the query to rows that meet a condition

condition Is composed of column names, expressions,
constants, and a comparison operator. A condition specifies a
combination of one or more expressions and logical (Boolean)
operators, and returns a value of TRUE, FALSE, or UNKNOWN.
The WHERE clause can compare values in columns, literal, arithmetic expressions, or functions.
It consists of three elements:
* Column name
* Comparison condition
e Column name, constant, or list of values

Oracle Database: SQL Fundamentalsl 2-5

Using the wHERE Clause

SELECT employee id, last name, job id, department id
FROM employees
WHERE department id = 90 |;

EMPLOYEEID |[§ LAST_MaME| J0BID [§ DEPARTMENT_ID
1 100 King AD_PRES 90
2 101 Kochhar AD_VP 30
3 102 De Haan AD_VP 30

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the WHERE Clause
In the example, the SELECT statement retrieves the employee ID, last name, job ID, and
department number of all employees who are in department 90.

Note: You cannot use column alias in the WHERE clause.

Oracle Database: SQL Fundamentals| 2 -6

Character Strings and Dates

« Character strings and date values are enclosed with single
quotation marks.

 Character values are case-sensitive and date values are
format-sensitive.

« The default date display format is DD-MON-RR.

SELECT last name, job id, department id
FROM employees
WHERE last name =|'Whalen'

~e

SELECT last name
FROM employees
WHERE hire date = |'17-FEB-96'|;

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Character Strings and Dates

Character strings and dates in the WHERE clause must be enclosed with single quotation marks
("). Number constants, however, need not be enclosed with single quotation marks.

All character searches are case-sensitive. In the following example, no rows are returned
because the EMPLOYEES table stores all the last names in mixed case:

SELECT last name, job_id, department id

FROM employees

WHERE last name = 'WHALEN';

Oracle databases store dates in an internal numeric format, representing the century, year,
month, day, hours, minutes, and seconds. The default date display is in the DD-MON-RR format.

Note: For details about the RR format and about changing the default date format, see the lesson
titled “Using Single-Row Functions to Customize Output.” Also, you learn about the use of
single-row functions such as UPPER and LOWER to override the case sensitivity in the same

lesson.

Oracle Database: SQL Fundamentals| 2 -7

Comparison Operators
= Equal to
> Greater than
>= Greater than or equal to
< Less than
<= Less than or equal to
<> Not equal to
BETWEEN Between two values (inclusive)
...AND. ..
IN (set) Match any of a list of values
LIKE Match a character pattern
1S NULL Is a null value

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Comparison Operators

Comparison operators are used in conditions that compare one expression with another value or
expression. They are used in the WHERE clause in the following format:

Syntax
WHERE expr operator value
Example
WHERE hire date = '01-JAN-95'
WHERE salary >= 6000
WHERE last name = 'Smith'

Remember, an alias cannot be used in the WHERE clause.

Note: The symbols ! = and = can also represent the not equal to condition.

Oracle Database: SQL Fundamentals| 2 -8

Using Comparison Operators

SELECT last name, salary
FROM employees
WHERE salary|<= 3000 |;

LasT_MAME | saLary
1 Mataosz Z&00
2 Wargas 2500

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Comparison Operators

In the example, the SELECT statement retrieves the last name and salary from the EMPLOYEES
table for any employee whose salary is less than or equal to $3,000. Note that there is an explicit
value supplied to the WHERE clause. The explicit value of 3000 is compared to the salary value
in the SALARY column of the EMPLOYEES table.

Oracle Database: SQL Fundamentals| 2-9

Range Conditions Using the BETWEEN Operator

Use the BETWEEN operator to display rows based on a range of
values:

SELECT last name, salary
FROM employees

WHERE SalarleETWEEN 2500 AND 3500|;

Lower limit Upper limit

B LasT_mame|f saLany
1 Rajs 3500
Z Davies 3100
3 Mataos Za00
4 Yargas 2500

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Range Conditions Using the BETWEEN Operator
You can display rows based on a range of values using the BETWEEN operator. The range that
you specify contains a lower limit and an upper limit.
The SELECT statement in the slide returns rows from the EMPLOYEES table for any employee
whose salary is between $2,500 and $3,500.
Values that are specified with the BETWEEN operator are inclusive. However, you must specify
the lower limit first.

You can also use the BETWEEN operator on character values:
SELECT last name
FROM employees
WHERE last name BETWEEN 'King' AND 'Smith';

LA ST_MAME
king
kochhar

Larentz

Matos

Mourgos

o N =

Raj=

Oracle Database: SQL Fundamentals| 2-10

Membership Condition Using the IN Operator

Use the IN operator to test for values in a list:

SELECT employee id, last name, salary, manager id
FROM employees
WHERE manager id|IN (100, 101, 201)| ;

emPLOYEELID |[§ LasT_mame|[] saiarr[§ manacer_iD
1 201 Hartstein 12000 100
z 101 Kochhar 17000 100
3 102 De Haan 17000 100
4 124 Mourgos 5300 100
5 149 Ziatkey 10500 100
6 200 Whalen 4400 101
7 205 Higgins 12000 101
5 202 Fay 6000 201

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Membership Condition Using the IN Operator

To test for values in a specified set of values, use the IN operator. The condition defined using
the IN operator is also known as the membership condition.

The slide example displays employee numbers, last names, salaries, and managers’ employee
numbers for all the employees whose manager’s employee number is 100, 101, or 201.
Note: The set of values can be specified in any random order—for example, (201,100,101).
The IN operator can be used with any data type. The following example returns a row from the
EMPLOYEES table, for any employee whose last name is included in the list of names in the
WHERE clause:

SELECT employee id, manager id, department id

FROM employees

WHERE last name IN ('Hartstein', 'Vargas');

If characters or dates are used in the list, they must be enclosed with single quotation marks
(1)

Note: The IN operator is internally evaluated by the Oracle server as a set of OR conditions,
such as a=valuel or a=value?2 or a=value3. Therefore, using the IN operator has no
performance benefits and is used only for logical simplicity.

Oracle Database: SQL Fundamentals | 2 -11

Pattern Matching Using the LIKE Operator

* Use the LIKE operator to perform wildcard searches of
valid search string values.

« Search conditions can contain either literal characters or
numbers:
— % denotes zero or many characters.
— __ denotes one character.

SELECT first name
FROM employees
WHERE first name|LIKE 'S%' |

~e

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Pattern Matching Using the LIKE Operator

You may not always know the exact value to search for. You can select rows that match a
character pattern by using the LIKE operator. The character pattern—matching operation is

referred to as a wildcard search. Two symbols can be used to construct the search string.
Symbol Description

3
s Represents any sequence of zero or more characters

Represents any single character

The SELECT statement in the slide returns the first name from the EMPLOYEES table for any
employee whose first name begins with the letter “S.” Note the uppercase “S.” Consequently,

[IP%2]

names beginning with a lowercase “s” are not returned.

The LIKE operator can be used as a shortcut for some BETWEEN comparisons. The following

example displays the last names and hire dates of all employees who joined between January,
1995 and December, 1995:

SELECT last name, hire date

FROM employees

WHERE hire date LIKE '%95';

Oracle Database: SQL Fundamentals| 2 -12

Combining Wildcard Characters

* You can combine the two wildcard characters (%, _) with
literal characters for pattern matching:
SELECT last name

FROM employees
WHERE last name |[LIKE ' 0o%'|;

LA ST_RAME
1 kachhar

2 Lorentz

3 Mourgos

* You can use the ESCAPE identifier to search for the actual
% and _ symbols.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Combining Wildcard Characters

The $ and _ symbols can be used in any combination with literal characters. The example in the
slide displays the names of all employees whose last names have the letter “o” as the second
character.

ESCAPE Identifier

When you need to have an exact match for the actual $ and _ characters, use the ESCAPE
identifier. This option specifies what the escape character is. If you want to search for strings
that contain SA_, you can use the following SQL statement:

SELECT employee id, last name, job_ id

FROM employees WHERE job id LIKE '$SA\ %' ESCAPE '\';

EMPLOVEE_ID | LasT_maME|(F JoB_ID
1 149 Zlotkey S _MAN
Z 174 fhel 54 _REP
3 176 Taylor 54_REP
4 178 Grant 54_REP

The ESCAPE identifier identifies the backslash (\) as the escape character. In the SQL statement,

the escape character precedes the underscore (). This causes the Oracle server to interpret the
underscore literally.

Oracle Database: SQL Fundamentals| 2-13

Using the NULL Conditions

Test for nulls with the IS NULL operator.

SELECT last name, manager id
FROM employees

WHERE |manager_id IS NULL |;

B LasT_mame|f MAMAGERID
1 King (rull

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the NULL Conditions
The NULL conditions include the TS NULL condition and the IS NOT NULL condition.

The IS NULL condition tests for nulls. A null value means that the value is unavailable,
unassigned, unknown, or inapplicable. Therefore, you cannot test with =, because a null cannot
be equal or unequal to any value. The example in the slide retrieves the last names and managers
of all employees who do not have a manager.

Here is another example: To display the last name, job ID, and commission for all employees
who are not entitled to receive a commission, use the following SQL statement:

SELECT last name, job id, commission pct

FROM employees

WHERE commission pct IS NULL;

LAST_MaME |[§ JoB_ID COMBMISSION_PCT
1 Whalen AD_ASST (il
Z Hartstein Pk _M1A R rrulh
3 Fay ME_REP frll
4 Higgins AC_MCER crulh
5 Gietz AC_ACCOUNT (rull)

Oracle Database: SQL Fundamentals | 2 -14

Defining Conditions Using the Logical Operators

Operator Meaning

AND Returns TRUE if both component conditions
are true

OR Returns TRUE if either component condition
is true

NOT Returns TRUE if the condition is false

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Defining Conditions Using the Logical Operators

A logical condition combines the result of two component conditions to produce a single result
based on those conditions or it inverts the result of a single condition. A row is returned only if
the overall result of the condition is true.

Three logical operators are available in SQL:
« AND

« OR
« NOT

All the examples so far have specified only one condition in the WHERE clause. You can use
several conditions in a single WHERE clause using the AND and OR operators.

Oracle Database: SQL Fundamentals| 2 -15

Using the AND Operator

AND requires both the component conditions to be true:

SELECT employee id, last name, job id, salary
FROM employees

WHERE |salary >= 10000
AND job id LIKE '%MANS%'| ;

EMPLOYEEID |[§ LasT_mame [JoeiD [§ saLary
1 201 Hartstein ME_MAN 13000
2 149 Zlotkey SA_MAR 10500

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the AND Operator

In the example, both the component conditions must be true for any record to be selected.
Therefore, only those employees who have a job title that contains the string ‘MAN’ and earn
$10,000 or more are selected.

All character searches are case-sensitive, that is, no rows are returned if ‘MAN’ is not uppercase.
Further, character strings must be enclosed with quotation marks.

AND Truth Table
The following table shows the results of combining two expressions with AND:

AND TRUE FALSE NULL
TRUE TRUE FALSE NULL
FALSE FALSE FALSE FALSE
NULL NULL FALSE NULL

Oracle Database: SQL Fundamentals| 2 -16

Using the OR Operator

OR requires either component condition to be true:

SELECT employee id, last name, job id, salary
FROM employees
WHERE | salary >= 10000

OR jOb_id LIKE '$MANS%'| ;

EMPLOYEEID |[§ LasT_mame [JoeiD [§ saLary
1 201 Hartstein ME_MAN 13000
z 205 Higgins AC_MGR 12000
3 100 King AD_PRES 24000
4 101 Kochhar AD_VP 17000
5 102 De Haan AD_VP 17000
& 124 Mourgos ST_MAN 5500
7 149 Ziotkey SA_MAN 10500
5 174 Abel SA_REP 11000

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the OR Operator

In the example, either component condition can be true for any record to be selected. Therefore,
any employee who has a job ID that contains the string ‘MAN’ or earns $10,000 or more is
selected.

OR Truth Table

The following table shows the results of combining two expressions with OR:

OR TRUE FALSE NULL
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE NULL
NULL TRUE NULL NULL

Oracle Database: SQL Fundamentals| 2 -17

Using the NOT Operator

SELECT last name, job id
FROM emPloyees

WHERE |job id
NOT IN ('IT PROG', 'ST CLERK', 'SA REP')

~e

B LasT_mame|f jos_iD
1 De Haan AD_WP
2 Fay ME_REP
3 Gietz AC_ACCOUNT
4 Hartztein MK _PA 1
5 Higgins AC_MCR
& king AD_PRES
7 kaochhar AD_WP
& Mourgos ST_MA
9 Whalen AD_ASST
10 Zlatkey SR AN

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the NOT Operator

The example in the slide displays the last name and job ID of all employees whose job ID is not
IT PROG, ST CLERK, or SA_REP.

NOT Truth Table

The following table shows the result of applying the NOT operator to a condition:

NOT TRUE FALSE NULL
FALSE TRUE NULL

Note: The NOT operator can also be used with other SQL operators, such as BETWEEN, LIKE,
and NULL.

WHERE job id NOT 1IN ('AC_ACCOUNT', 'AD VP')
WHERE salary NOT BETWEEN 10000 AND 15000
WHERE last name NOT LIKE 'S%A%'

WHERE commission pct IS NOT NULL

Oracle Database: SQL Fundamentals| 2 -18

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

* Limiting rows with:
— The WHERE clause

— The comparison conditions using =, <=, BETWEEN, IN, LIKE,
and NULL operators

— Logical conditions using AND, OR, and NOT operators
* Rules of precedence for operators in an expression
« Sorting rows using the ORDER BY clause
» Substitution variables
* DEFINE and VERIFY commands

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 2-19

1

Rules of Precedence

Operator Meaning

Arithmetic operators

Concatenation operator

Comparison conditions

IS [NOT] NULL, LIKE, [NOT] IN

[NOT] BETWEEN

Not equal to

NOT logical condition

AND logical condition

Ol | N|]ojabh]lwlDdN

OR logical condition

You can use parentheses to override rules of precedence.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Rules of Precedence

The rules of precedence determine the order in which expressions are evaluated and calculated.
The table in the slide lists the default order of precedence. However, you can override the default
order by using parentheses around the expressions that you want to calculate first.

Oracle Database: SQL Fundamentals |

2-20

Rules of Precedence

SELECT last name, job id, salary
FROM employees

WHERE job id = 'SA REP'
OR -[::job_id = 'AD PRES' (::)
AND salary > 15000;
LasT_mame [Joe_io [§ saLarr
1 king AD_PRES 24000
2 Ahbel SA_REP 11000
3 Taylor SA_REF ge0o
4 Grant b _REP Fooo
SELECT last name, job id, salary
FROM employees (::)
WHERE__, (job_id = 'SA REP'
OR »,job _id = 'AD PRES')
AND salary > 15000;

LasT_wame [Joe_io [§ saLarr
1 King AD_PRES 24000

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Rules of Precedence (continued)

1. Precedence of the AND Operator: Example
In this example, there are two conditions:
- The first condition is that the job ID is AD PRES and the salary is greater than
$15,000.
- The second condition is that the job ID is SA REP.
Therefore, the SELECT statement reads as follows:
“Select the row if an employee is a president and earns more than $15,000, or if the
employee is a sales representative.”
2. Using Parentheses: Example
In this example, there are two conditions:
- The first condition is that the job ID is AD_PRES or SA_REP.
- The second condition is that the salary is greater than $15,000.
Therefore, the SELECT statement reads as follows:
“Select the row if an employee is a president or a sales representative, and if the employee
earns more than $15,000.”

Oracle Database: SQL Fundamentals | 2 -21

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

* Limiting rows with:
— The WHERE clause

— The comparison conditions using =, <=, BETWEEN, IN, LIKE,
and NULL operators

— Logical conditions using AND, OR, and NOT operators
* Rules of precedence for operators in an expression
« Sorting rows using the ORDER BY clause
« Substitution variables
« DEFINE and VERIFY commands

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals | 2 -22

Using the ORDER BY Clause

» Sort the retrieved rows with the ORDER BY clause:
— ASC: Ascending order, default
— DESC: Descending order

e The ORDER BY clause comes last in the SELECT
statement:

SELECT last name, job id, department id, hire date
FROM employees
ORDER BY hire date|;

g tasT_mame(f josin (8 DEPARTMENT_ID [HIRE_DATE
1 King AD_PRES 90 17-JUN-57
2 Whalen AD_ASST 10 17-5EP-57
3 Kochhar AD_VP 90 21-5EP-59
4 Hunold IT_PROG 60 03-JAN-90
5 Ernst IT_PROG 60 Z1-MAY-91
& De Haan AD_VP 90 13-JAN-93

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the ORDER BY Clause

The order of rows that are returned in a query result is undefined. The ORDER BY clause can be
used to sort the rows. However, if you use the ORDER BY clause, it must be the last clause of the

SQL statement. Further, you can specify an expression, an alias, or a column position as the sort
condition.

Syntax
SELECT expr
FROM table
[WHERE condition(s)]

[ORDER BY {column, expr, numeric position} [ASC|DESC]];
In the syntax:

ORDER BY specifies the order in which the retrieved rows are displayed
ASC orders the rows in ascending order (This is the default order.)
DESC orders the rows in descending order

If the ORDER BY clause is not used, the sort order is undefined, and the Oracle server may not
fetch rows in the same order for the same query twice. Use the ORDER BY clause to display the
rows in a specific order.

Note: Use the keywords NULLS FIRST or NULLS LAST to specify whether returned rows
containing null values should appear first or last in the ordering sequence.

Oracle Database: SQL Fundamentals| 2 -23

Sorting

« Sorting in descending order:

SELECT last name, job id, department id, hire date
FROM employees
ORDER BY hire date|DESC|;

« Sorting by column alias:

SELECT employee id, last name, salary*12|annsal @

FROM employees

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Sorting
The default sort order is ascending:

* Numeric values are displayed with the lowest values first (for example, 1 to 999).

» Date values are displayed with the earliest value first (for example, 01-JAN-92 before
01-JAN-95).

 Character values are displayed in the alphabetical order (for example, “A” first and “Z”
last).

» Null values are displayed last for ascending sequences and first for descending sequences.

* You can also sort by a column that is not in the SELECT list.

Examples
1. To reverse the order in which the rows are displayed, specify the DESC keyword after the
column name in the ORDER BY clause. The example in the slide sorts the result by the most

recently hired employee.
2. You can also use a column alias in the ORDER BY clause. The slide example sorts the data

by annual salary.

Note: The DESC keyword used here for sorting in descending order should not be confused with
the DESC keyword used to describe table structures.

Oracle Database: SQL Fundamentals | 2 -24

Sorting

« Sorting by using the column’s numeric position:

SELECT last name, job id, department id, hire date
FROM employees
ORDER BY|[3; |

« Sorting by multiple columns:

SELECT last name, department id, salary

FROM employees @
ORDER BY department id, salary DESC;

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Sorting (continued)

Examples

3. You can sort query results by specifying the numeric position of the column in the SELECT
clause. The example in the slide sorts the result by the department id as this column is
at the third position in the SELECT clause.

4. You can sort query results by more than one column. The sort limit is the number of
columns in the given table. In the ORDER BY clause, specify the columns and separate the
column names using commas. If you want to reverse the order of a column, specify DESC
after its name. The result of the query example shown in the slide is sorted by
department _id in ascending order and also by salary in descending order.

Oracle Database: SQL Fundamentals | 2 -25

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

* Limiting rows with:
— The WHERE clause

— The comparison conditions using =, <=, BETWEEN, IN, LIKE,
and NULL operators

— Logical conditions using AND, OR, and NOT operators
* Rules of precedence for operators in an expression
« Sorting rows using the ORDER BY clause
* Substitution variables
« DEFINE and VERIFY commands

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals | 2 -26

Substitution Variables

...salary=? ...
| ...department_id=7?...
% ..last name=?..
1
'_\ | want
— to query
- . different
o \ values.
[Rt

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Substitution Variables

So far, all the SQL statements were executed with predetermined columns, conditions, and their
values. Suppose that you want a query that lists the employees with various jobs and not just
those whose job IDis SA REP. You can edit the WHERE clause to provide a different value
each time you run the command, but there is also an easier way.

By using a substitution variable in place of the exact values in the WHERE clause, you can run
the same query for different values.

You can create reports that prompt users to supply their own values to restrict the range of data
returned, by using substitution variables. You can embed substitution variables in a command
file or in a single SQL statement. A variable can be thought of as a container in which values are
temporarily stored. When the statement is run, the stored value is substituted.

Oracle Database: SQL Fundamentals | 2 -27

Substitution Variables

» Use substitution variables to:
— Temporarily store values with single-ampersand (&) and
double-ampersand (&&) substitution
* Use substitution variables to supplement the following:
— WHERE conditions
— ORDER BY clauses
— Column expressions
— Table names
— Entire SELECT statements

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Substitution Variables (continued)
You can use single-ampersand (&) substitution variables to temporarily store values.

You can also predefine variables by using the DEFINE command. DEFINE creates and assigns
a value to a variable.

Restricted Ranges of Data: Examples
» Reporting figures only for the current quarter or specified date range
» Reporting on data relevant only to the user requesting the report
» Displaying personnel only within a given department

Other Interactive Effects

Interactive effects are not restricted to direct user interaction with the WHERE clause. The same
principles can also be used to achieve other goals, such as:

 Obtaining input values from a file rather than from a person

 Passing values from one SQL statement to another

Note: Both SQL Developer and SQL* Plus support substitution variables and the
DEFINE/UNDEFINE commands. Neither SQL Developer nor SQL* Plus support validation
checks (except for data type) on user input. If used in scripts that are deployed to users,
substitution variables can be subverted for SQL injection attacks.

Oracle Database: SQL Fundamentals| 2 -28

Using the Single-Ampersand Substitution
Variable

Use a variable prefixed with an ampersand (&) to prompt the
user for a value:

SELECT employee id, last name, salary, department id
FROM employees

WHERE employee id = | &employee num | £

EMPLOYEE_MLIM:

| Ok | | Cancel |

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the Single-Ampersand Substitution Variable

When running a report, users often want to restrict the data that is returned dynamically.
SQL*Plus or SQL Developer provides this flexibility with user variables. Use an ampersand (&)
to identify each variable in your SQL statement. However, you do not need to define the value
of each variable.

Notation Description

&user_variable Indicates a variable in a SQL statement; if the variable
does not exist, SQL*Plus or SQL Developer prompts the
user for a value (the new variable is discarded after it is
used.)

The example in the slide creates a SQL Developer substitution variable for an employee number.
When the statement is executed, SQL Developer prompts the user for an employee number and
then displays the employee number, last name, salary, and department number for that
employee.

With the single ampersand, the user is prompted every time the command is executed if the
variable does not exist.

Oracle Database: SQL Fundamentals| 2 -29

Using the Single-Ampersand Substitution
Variable

e s e s e,]
|- Enter Substitution Variable [X|

EMPLOYEE_MLIM:

|10 |

| 0.4 k—l| | Cancel |

emPLOYEELID |[§ LasT_mame|§ saiary [§ DEPARTMENT_ID
1 101 Kachhar 17000 30

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the Single-Ampersand Substitution Variable (continued)

When SQL Developer detects that the SQL statement contains an ampersand, you are prompted
2 to enter a value for the substitution variable that is named in the SQL statement.

After you enter a value and click the OK button, the results are displayed in the Results tab of
your SQL Developer session.

Oracle Database: SQL Fundamentals| 2 -30

Character and Date Values with
Substitution Variables

Use single quotation marks for date and character values:

SELECT last name, department id, salary*12
FROM employees

WHERE job id =|'&job_tit1e1 ;

=]
|

[i et b bt A b o S A 10}
| B Enter Substitution Variable X

|CB_TITLE:
[IT_PROG |
| QE. |‘_| | Cancel| |
LAST_NAME| DEPARTMENT_ID | SALART*LZ
1 Hunold i 108000
Z Ernst &0 72000
3 Larentz &0 50400

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Character and Date Values with Substitution Variables
In a WHERE clause, date and character values must be enclosed with single quotation marks. The
same rule applies to the substitution variables.
Enclose the variable with single quotation marks within the SQL statement itself.

The slide shows a query to retrieve the employee names, department numbers, and annual
salaries of all employees based on the job title value of the SQL Developer substitution variable.

Oracle Database: SQL Fundamentals | 2 - 31

Specifying Column Names, Expressions, and Text

SELECT employee id, last name, job id/j&column name|
FROM employees

WHERE | &condition |

ORDER BY|&order_column| ;

COLUMR_MAME:

| salarﬂ

COMDITICN:

| Ok, *_J | salary »15000]

ORDER_COLURM:

| DK k‘_‘J |Iast_name |
| 614 =_‘J | Cancel |

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Specifying Column Names, Expressions, and Text

You can use the substitution variables not only in the WHERE clause of a SQL statement, but
also as substitution for column names, expressions, or text.

Example

The example in the slide displays the employee number, last name, job title, and any other
column that is specified by the user at run time, from the EMPLOYEES table. For each
substitution variable in the SELECT statement, you are prompted to enter a value, and then click

OK to proceed.
If you do not enter a value for the substitution variable, you get an error when you execute the
preceding statement.

Note: A substitution variable can be used anywhere in the SELECT statement, except as the first
word entered at the command prompt.

Oracle Database: SQL Fundamentals | 2 -32

Using the Double-Ampersand
Substitution Variable

Use double ampersand (&&) if you want to reuse the variable
value without prompting the user each time:

SELECT employee id, last name, job id, |&&colu.mn_name|

FROM employees
ORDER BYl&colu.m.n namel;

[I I I I I I I I I I I I S
|®m Enter Substitution Variable X/

COLURR_MAME:

|depar‘lment_id |

| Ck L.| | Cancel |
4]

B empLoveeD [§ LasT_mame § josan (@ DEPARTMENT_ID
1 200 Whalen AD_ASST 10
2 201 Hartstein ME_MAN 20
3 202 Fay ME_REP 20

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the Double-Ampersand Substitution Variable

You can use the double-ampersand (&&) substitution variable if you want to reuse the variable
value without prompting the user each time. The user sees the prompt for the value only once. In
the example in the slide, the user is asked to give the value for the variable, column name,
only once. The value that is supplied by the user (department id) is used for both display

and ordering of data. If you run the query again, you will not be prompted for the value of the
variable.

SQL Developer stores the value that is supplied by using the DEFINE command; it uses it again

whenever you reference the variable name. After a user variable is in place, you need to use the
UNDEFINE command to delete it:

UNDEFINE column name

Oracle Database: SQL Fundamentals| 2 -33

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

« Limiting rows with:
— The WHERE clause

— The comparison conditions using =, <=, BETWEEN, IN, LIKE,
and NULL operators

— Logical conditions using AND, OR, and NOT operators
* Rules of precedence for operators in an expression
« Sorting rows using the ORDER BY clause
* Substitution variables
 DEFINE and VERIFY commands

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals | 2 - 34

Using the DEFINE Command

 Use the DEFINE command to create and assign a value to
a variable.
 Use the UNDEFINE command to remove a variable.

DEFINElemployee_numl =| 200 |

SELECT employee id, last name, salary, department id
FROM employees v
WHERE employee id =|&employee num |;

UNDEFINE employee num

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the DEFINE Command

The example shown creates a substitution variable for an employee number by using the
DEFINE command. At run time, this displays the employee number, name, salary, and

department number for that employee.

Because the variable is created using the SQL Developer DEFINE command, the user is not
prompted to enter a value for the employee number. Instead, the defined variable value is
automatically substituted in the SELECT statement.

The EMPLOYEE_NUM substitution variable is present in the session until the user undefines it or
exits the SQL Developer session.

Oracle Database: SQL Fundamentals| 2 -35

Using the VERIFY Command

Use the VERIFY command to toggle the display of the
substitution variable, both before and after SQL Developer
replaces substitution variables with values:

SET VERIFY ONl

SELECT employee id, last name, salary
FROM employees
WHERE employee id = &employee num;

Lo s e e e s e A = == 5 =
| B Enter Substitution Variable [X| = ResultsISCript Outputl T Explain |f,:jAutotrace |EEDBMS Cutput | G OWA Cutput
¢d3a
EMPLOYEE_MUNM:
SELECT emplowee_id, last_name, salary
[z00] | ‘ .
\WHERE _emplovee dd = 200
EMPLOYEE_ID LAST_NAME SALARY
| Ok ‘| | Cancel | """ R = \ U
v 200 Whalen 4400
1 rows selected

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the VERIFY Command
To confirm the changes in the SQL statement, use the VERIFY command. Setting SET VERIFY
ON forces SQL Developer to display the text of a command after it replaces substitution
variables with values. To see the VERIFY output, you should use the Run Script (F5) icon in the
SQL Worksheet. SQL Developer displays the text of a command after it replaces substitution
variables with values, in the Script Output tab as shown in the slide.
The example in the slide displays the new value of the EMPLOYEE ID column in the SQL
statement followed by the output.

SQL*Plus System Variables

SQL*Plus uses various system variables that control the working environment. One of the
variables is VERIFY. To obtain a complete list of all the system variables, you can issue the
SHOW ALL command on the SQL*Plus command prompt.

Oracle Database: SQL Fundamentals| 2 -36

Quiz

Which of the following are valid operators for the WHERE

clause?
1. >=
2. IS NULL
3. I=
4. IS LIKE
5. IN BETWEEN
6. <>

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Answer: 1,2, 3,6

Oracle Database: SQL Fundamentals | 2 -37

Summary

In this lesson, you should have learned how to:
* Use the WHERE clause to restrict rows of output:
— Use the comparison conditions
— Use the BETWEEN, IN, LIKE, and NULL operators
— Apply the logical AND, OR, and NOT operators
* Use the ORDER BY clause to sort rows of output:

SELECT *|{[DISTINCT] column|/expression [alias],...}
FROM table

[WHERE condition(s)]
[ORDER BY {column, expr, alias} [ASC|DESCI]|;

* Use ampersand substitution to restrict and sort output at
run time

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Summary

In this lesson, you should have learned about restricting and sorting rows that are returned by the
SELECT statement. You should also have learned how to implement various operators and

conditions.

By using the substitution variables, you can add flexibility to your SQL statements. This enables
the queries to prompt for the filter condition for the rows during run time.

Oracle Database: SQL Fundamentals| 2 -38

Practice 2: Overview

This practice covers the following topics:

« Selecting data and changing the order of the rows
that are displayed

* Restricting rows by using the WHERE clause
« Sorting rows by using the ORDER BY clause

« Using substitution variables to add flexibility to your
SQL SELECT statements

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Practice 2: Overview

In this practice, you build more reports, including statements that use the WHERE clause and the
ORDER BY clause. You make the SQL statements more reusable and generic by including the
ampersand substitution.

Oracle Database: SQL Fundamentals| 2 -39

‘sejel|ye sl Jo/pue ajoelO ‘010z GybuAdo) paligiyosd uonngusip Jo uononpoidal paziloyineun

Using Single-Row Functions to
Customize Output

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

« Describe the various types of functions available in SQL

* Use the character, number, and date functions in SELECT
statements

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Objectives

Functions make the basic query block more powerful, and they are used to manipulate data
2 values. This is the first of two lessons that explore functions. It focuses on single-row character,
number, and date functions.

Oracle Database: SQL Fundamentals| 3 -2

Lesson Agenda

« Single-row SQL functions
» Character functions
 Number functions
 Working with dates

« Date functions

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 3 -3

SQL Functions

Input Output
> Function
arg 1 Function performs
action
arg 2
J Result
B, value
1]
arg n

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

SQL Functions

Functions are a very powerful feature of SQL. They can be used to do the following:
» Perform calculations on data
* Modify individual data items
* Manipulate output for groups of rows
* Format dates and numbers for display
* Convert column data types

SQL functions sometimes take arguments and always return a value.

Note: If you want to know whether a function 1s a SQL:2003 compliant function, refer to the
“Oracle Compliance to Core SQL:2003” section in Oracle Database SQL Language Reference
for 10g or 11g database.

Oracle Database: SQL Fundamentals| 3 -4

Two Types of SQL Functions

Functions
) Smgle.-row ., . Multlpl_e-row
functions functions
—_—
Return one resulit Return one result
per row per set of rows

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Two Types of SQL Functions

There are two types of functions:
+ Single-row functions
* Multiple-row functions

Single-Row Functions

These functions operate on single rows only and return one result per row. There are different
types of single-row functions. This lesson covers the following functions:

* Character

* Number

* Date

* Conversion

* General

Multiple-Row Functions

Functions can manipulate groups of rows to give one result per group of rows. These functions
are also known as group functions (covered in the lesson titled “Reporting Aggregated Data
Using the Group Functions™).

Note: For more information and a complete list of available functions and their syntax, see the
“Functions” section in Oracle Database SQL Language Reference for 10g or 11g database.

Oracle Database: SQL Fundamentalsl 3 -5

Single-Row Functions

Single-row functions:
* Manipulate data items
* Accept arguments and return one value
* Act on each row that is returned
* Return one result per row
« May modify the data type
« Can be nested
* Accept arguments that can be a column or an expression

function name [(argl, arg2,...)]

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Single-Row Functions

Single-row functions are used to manipulate data items. They accept one or more arguments and
return one value for each row that is returned by the query. An argument can be one of the
following:

» User-supplied constant

* Variable value

* Column name

* Expression

Features of single-row functions include:
» Acting on each row that is returned in the query
* Returning one result per row
» Possibly returning a data value of a different type than the one that is referenced
* Possibly expecting one or more arguments
e Can be used in SELECT, WHERE, and ORDER BY clauses; can be nested

In the syntax:
function name Is the name of the function
argl, arg2 Is any argument to be used by the function. This can be
represented by a column name or expression.

Oracle Database: SQL Fundamentals| 3 -6

Single-Row Functions

Character

Single-row
functions

General

Conversion Date

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Single-Row Functions (continued)

This lesson covers the following single-row functions:
* Character functions: Accept character input and can return both character and number
values
* Number functions: Accept numeric input and return numeric values
* Date functions: Operate on values of the DATE data type (All date functions return a value
of the DATE data type except the MONTHS BETWEEN function, which returns a number.)

The following single-row functions are discussed in the lesson titled “Using Conversion
Functions and Conditional Expressions”:
» Conversion functions: Convert a value from one data type to another
* General functions:
- NVL
- NVL2
- NULLIF
- COALESCE
- CASE
- DECODE

Oracle Database: SQL Fundamentals| 3 -7

Lesson Agenda

« Single-row SQL functions
* Character functions
 Number functions
 Working with dates

« Date functions

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 3-8

Character Functions

Character
functions
I I
Case-conversion Character-manipulation
functions functions
LOWER CONCAT
UPPER SUBSTR
INITCAP LENGTH
INSTR
LPAD | RPAD
TRIM
REPLACE

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Character Functions

Single-row character functions accept character data as input and can return both character and
numeric values. Character functions can be divided into the following:

» Case-conversion functions

» Character-manipulation functions

Function Purpose

LOWER (column [expression) Converts alpha character values to lowercase

UPPER (column|expression) Converts alpha character values to uppercase

INITCAP (column|expression) Converts alpha character values to uppercase for the first

letter of each word; all other letters in lowercase

CONCAT (columnl [expressionl, | Concatenates the first character value to the second
column2 |expression2) character value; equivalent to concatenation operator (||)

SUBSTR (column[expression, m[| Returns specified characters from character value starting at
,nj) character position m, n characters long (If m is negative, the
count starts from the end of the character value. If n is

omitted, all characters to the end of the string are returned.)

Note: The functions discussed in this lesson are only some of the available functions.

Oracle Database: SQL Fundamentals| 3 -9

Character Functions (continued)

Function Purpose

LENGTH (column|expression) Returns the number of characters in the expression
INSTR (column[expression, Returns the numeric position of a named string.
‘string’, [,m], [n]) Optionally, you can provide a position m to start

searching, and the occurrence » of the string. m and n
default to 1, meaning start the search at the beginning
of the string and report the first occurrence.
LPAD (column|expression, n, | Returnsan expression left-padded to length of 7
'string') , characters with a character expression.
RPAD (column | expression, n, Returns an expression right-padded to length of n
'string') . .
characters with a character expression.

TRIM(leading|trailing[both, | Enables you to trim leading or trailing characters (or

trim character FROM both) from a character string. If trim_character or

trim source) . . . - .,
- trim_source is a character literal, you must enclose it in

single quotation marks.

This is a feature that is available in Oracle8i and later

versions.
REPLACE (text, Searches a text expression for a character string and, if
search string, found, replaces it with a specified replacement string

replacement string)

Note: Some of the functions that are fully or partially SQL:2003 compliant are:
UPPER

LOWER
TRIM

LENGTH
SUBSTR
INSTR

For more information, refer to the “Oracle Compliance to Core SQL:2003” section in Oracle
Database SOL Language Reference for 10g or 11g database.

Oracle Database: SQL Fundamentals| 3-10

Case-Conversion Functions

These functions convert the case for character strings:

Function Result

LOWER ('SQL Course') sql course
UPPER ('SQL Course') SQL COURSE
INITCAP ('SQL Course') Sgl Course

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Case-Conversion Functions
LOWER, UPPER, and INITCAP are the three case-conversion functions.
« LOWER: Converts mixed-case or uppercase character strings to lowercase
« UPPER: Converts mixed-case or lowercase character strings to uppercase
o INITCAP: Converts the first letter of each word to uppercase and the remaining letters to

lowercase
SELECT 'The job id for '||UPPER(last name) ||' is
| | LOWER (job_id) AS "EMPLOYEE DETAILS"

FROM employees;

E EMPLOYEE DETAILS
1 The job id for ABEL iz za_rep
Z The job id for DAVIES is st_clerk
3 The job id for DEHAAN iz ad_wp
4 The job id for ERM5T iz it_prog
5 The job id for FAY iz mk_rep
& The job id for GIETZ iz ac_account

Oracle Database: SQL Fundamentals| 3 -11

Using Case-Conversion Functions

Display the employee number, name, and department number
for employee Higgins:

SELECT employee id, last name, department id
FROM employees
WHERE last name = 'higgins';

|D rows selected|

SELECT employee id, last name, department id
FROM employees
WHERE |LOWER (last name) = 'higgins'(;

H EMPLOYEEJD|E LAST_NAME|E DER& RTMERNT_ID
1 205 Higgins 110

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Case-Conversion Functions

The slide example displays the employee number, name, and department number of employee
Higgins.

The WHERE clause of the first SQL statement specifies the employee name as higgins.
Because all the data in the EMPLOYEES table is stored in proper case, the name higgins does
not find a match in the table, and no rows are selected.

The WHERE clause of the second SQL statement specifies that the employee name in the
EMPLOYEES table is compared to higgins, converting the LAST NAME column to lowercase
for comparison purposes. Because both names are now lowercase, a match is found and one row
is selected. The WHERE clause can be rewritten in the following manner to produce the same
result:

.. .WHERE last name = 'Higgins'
The name in the output appears as it was stored in the database. To display the name in
uppercase, use the UPPER function in the SELECT statement.

SELECT employee id, UPPER(last name), department id

FROM employees
WHERE INITCAP(last name) = 'Higgins';

Oracle Database: SQL Fundamentals| 3-12

Character-Manipulation Functions

These functions manipulate character strings:

Function Result

CONCAT ('Hello', 'World') HelloWorld
SUBSTR ('HelloWorld',1,5) Hello

LENGTH ('HelloWorld') 10

INSTR ('HelloWorld', 'W') 6
LPAD(salary, 10, '*") **A*x%24000
RPAD (salary, 10, '=*'") 24:00Q=w i
REPLACE BLACK and BLUE
('JACK and JUE','J', 'BL')

TRIM('H' FROM 'HelloWorld') elloWorld

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Character-Manipulation Functions

CONCAT, SUBSTR, LENGTH, INSTR, LPAD, RPAD, and TRIM are the character-manipulation
functions that are covered in this lesson.
« CONCAT: Joins values together (You are limited to using two parameters with CONCAT.)
« SUBSTR: Extracts a string of determined length
« LENGTH: Shows the length of a string as a numeric value
« INSTR: Finds the numeric position of a named character
« LPAD: Returns an expression left-padded to the length of n characters with a character
expression
« RPAD: Returns an expression right-padded to the length of n characters with a character
expression
« TRIM: Trims leading or trailing characters (or both) from a character string (If
trim characteror trim source is a character literal, you must enclose it within
single quotation marks.)

Note: You can use functions such as UPPER and LOWER with ampersand substitution. For
example, use UPPER ('&job_title')so that the user does not have to enter the job title in a
specific case.

Oracle Database: SQL Fundamentalsl 3-13

Using the Character-Manipulation Functions

@

SELECT employee_id,|CONCAT(first_name, last name) NAMq,
job_id, [LENGTH (last_name)s 2
| INSTR (1ast_name, 'a') "Contains 'a'?" [« 3
FROM employees
WHERE SUBSTR(job id, 4) = 'REP';
EMPLOYEE_ID [§ MAME JOB_ID|] LENGTH{LAST_MAME) ||E| Contains 'a’?
1 202|PatFay MK_REF 3 z
2 174[EllenAbel SA_RER 4 o
E] 176jlonathonTaylar| SA_REP 3] z
4 178 Kimberely Grant] SA_REP S 3

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the Character-Manipulation Functions

The example in the slide displays employee first names and last names joined together, the
length of the employee last name, and the numeric position of the letter “a” in the employee last
name for all employees who have the string, REP, contained in the job ID starting at the fourth
position of the job ID.

Example:

Modify the SQL statement in the slide to display the data for those employees whose last names
end with the letter “n.”
SELECT employee id, CONCAT (first name, last name) NAME,
LENGTH (last name), INSTR(last name, 'a') "Contains 'a'?"
FROM employees

WHERE SUBSTR(last name, -1, 1) = 'n';

EMPLOVEE_ID |[§ MAME LENGTH(LAST_MAME) (B Contains 'a?
1 102 LexDe Haan ¥ 5
a 200 Jenniferwhalen b 3
3 201 MichaelHartstein 4 2

Oracle Database: SQL Fundamentals| 3 -14

Lesson Agenda

« Single-row SQL functions
» Character functions

* Number functions

* Working with dates

» Date Functions

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentalsl 3 -15

Number Functions

* ROUND: Rounds value to a specified decimal
* TRUNC: Truncates value to a specified decimal
» MOD: Returns remainder of division

Function Result

ROUND (45.926, 2) 45.93
TRUNC (45.926, 2) 45.92
MOD (1600, 300) 100

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Number Functions

Number functions accept numeric input and return numeric values. This section describes some
of the number functions.

Function Purpose

ROUND (column|expression, n) | Rounds the column, expression, or value to n decimal
places or, if nn is omitted, no decimal places (If nn is
negative, numbers to the left of decimal point are rounded.)
TRUNC (column|expression, n) | Truncates the column, expression, or value to n decimal
places or, if nn is omitted, nn defaults to zero

MOD (m, nn) Returns the remainder of m divided by n

Note: This list contains only some of the available number functions.

For more information, see the “Numeric Functions” section in Oracle Database SQL Language
Reference for 10g or 11g database.

Oracle Database: SQL Fundamentals| 3 -16

Using the ROUND Function

© @

y
SELECT| ROUND (45.923, 2)|,/] ROUND (45.923,0), O
3

ROUND (45.923, -1) [«
FROM DUAL;

[rounDs 523,20 [ROUND(5.923,0) @ [i ROUND(45.923,- 1)
1 45.92 46 |

® @ @

DUAL is a public table that you can use to view results
from functions and calculations.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the ROUND Function

The ROUND function rounds the column, expression, or value to n decimal places. If the second
argument is 0 or is missing, the value is rounded to zero decimal places. If the second argument
is 2, the value is rounded to two decimal places. Conversely, if the second argument is —2, the
value is rounded to two decimal places to the left (rounded to the nearest unit of 100).

The ROUND function can also be used with date functions. You will see examples later in this
lesson.

DUAL Table

The DUAL table is owned by the user SYS and can be accessed by all users. It contains one

column, DUMMY, and one row with the value X. The DUAL table is useful when you want to
return a value only once (for example, the value of a constant, pseudocolumn, or expression that
1s not derived from a table with user data). The DUAL table is generally used for completeness of
the SELECT clause syntax, because both SELECT and FROM clauses are mandatory, and several
calculations do not need to select from the actual tables.

Oracle Database: SQL Fundamentals| 3 -17

Using the TRUNC Function

@ @

y v

SELECT| TRUNC (45.923, 2)|,/ TRUNC (45.923)|,

TRUNC (45.923, -1) |« @
FROM DUAL;

TRUNC(45.923,2) TRUMC(45.923) I]] TRUNC(45.923,-1)
1 45.82 45 40

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the TRUNC Function
The TRUNC function truncates the column, expression, or value to n decimal places.

The TRUNC function works with arguments similar to those of the ROUND function. If the
second argument is 0 or is missing, the value is truncated to zero decimal places. If the second
argument is 2, the value is truncated to two decimal places. Conversely, if the second argument
1s —2, the value is truncated to two decimal places to the left. If the second argument is —1, the
value is truncated to one decimal place to the left.

Like the ROUND function, the TRUNC function can be used with date functions.

Oracle Database: SQL Fundamentals| 3-18

Using the MOD Function

For all employees with the job title of Sales Representative,
calculate the remainder of the salary after it is divided by 5,000.

SELECT last name, salary,|MOD(salary, 5000)
FROM employees
WHERE job id = 'SA REP';

LAST_NAME| saLary B MODiSALARY,5000)
1 Abel 11000 1000
z Taylar 8600 3600
3 Grant 7000 z000

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the MOD Function

The MOD function finds the remainder of the first argument divided by the second argument. The

slide example calculates the remainder of the salary after dividing it by 5,000 for all employees
whose job ID is SA_ REP.

Note: The MOD function is often used to determine whether a value is odd or even. The MOD
function is also the Oracle hash function.

Oracle Database: SQL Fundamentalsl 3-19

Lesson Agenda

« Single-row SQL functions
» Character functions
 Number functions

* Working with dates

» Date functions

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 3 -20

Working with Dates

 The Oracle Database stores dates in an internal numeric
format: century, year, month, day, hours, minutes, and
seconds.

« The default date display format is DD-MON-RR.

— Enables you to store 21st-century dates in the 20th century
by specifying only the last two digits of the year

— Enables you to store 20th-century dates in the
21st century in the same way

SELECT last name, | hire_datel

FROM employees
WHERE hire date < '0l-FEB-88';

LasT NAME[E HIRE DATE
1 Whalen 17-5EP-57
2 king 17-JUN-57

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Working with Dates

The Oracle Database stores dates in an internal numeric format, representing the century, year,
month, day, hours, minutes, and seconds.

The default display and input format for any date is DD-MON-RR. Valid Oracle dates are
between January 1, 4712 B.C., and December 31, 9999 A.D.
In the example in the slide, the HIRE DATE column output is displayed in the default format

DD-MON-RR. However, dates are not stored in the database in this format. All the components
of the date and time are stored. So, although a HIRE DATE such as 17-JUN-87 is displayed as

day, month, and year, there is also time and century information associated with the date. The
complete data might be June 17, 1987, 5:10:43 PM.

Oracle Database: SQL Fundamentals| 3 -21

RR Date Format

Current Year Specified Date RR Format YY Format
1995 27-0OCT-95 1995 1995
1995 27-0OCT-17 2017 1917
2001 27-0CT-17 2017 2017
2001 27-0OCT-95 1995 2095
If the specified two-digit year is:
0-49 50-99
If two digits The return date is in | The return date is in
of the 0-49 | the current century | the century before
current the current one
year are: The return date is in | The return date is in
50-99 | the century after the current century
the current one

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

RR Date Format

The RR date format is similar to the YY element, but you can use it to specify different centuries.
Use the RR date format element instead of YY so that the century of the return value varies
according to the specified two-digit year and the last two digits of the current year. The table in
the slide summarizes the behavior of the RR element.

Current Year Given Date Interpreted (RR) Interpreted (YY)
1994 27-0CT-95 1995 1995
1994 27-OCT-17 2017 1917
2001 27-OCT-17 2017 2017
2048 27-OCT-52 1952 2052
2051 27-OCT-47 2147 2047

Note the values shown in the last two rows of the above table. As we approach the middle of the
century, then the RR behavior is probably not what you want.

Oracle Database: SQL Fundamentals | 3 -22

RR Date Format (continued)

This data is stored internally as follows:
CENTURY YEAR MONTH DAY HOUR MINUTE SECOND
19 87 06 17 17 10 43
Centuries and the Year 2000

When a record with a date column is inserted into a table, the century information is picked up
from the SYSDATE function. However, when the date column is displayed on the screen, the
century component is not displayed (by default).

The DATE data type uses 2 bytes for the year information, one for century and one for year. The
century value is always included, whether or not it is specified or displayed. In this case, RR
determines the default value for century on INSERT.

Oracle Database: SQL Fundamentals| 3 -23

Using the SYSDATE Function

SYSDATE is a function that returns:

« Date
e Time

SELECT sysdate
FROM dual;

SYSDATE
1 10-JUN-09

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the SYSDATE Function

SYSDATE is a date function that returns the current database server date and time. You can use
SYSDATE just as you would use any other column name. For example, you can display the
current date by selecting SYSDATE from a table. It is customary to select SYSDATE from a
public table called DUAL.

Note: SYSDATE returns the current date and time set for the operating system on which the

database resides. Therefore, if you are in a place in Australia and connected to a remote database
in a location in the United States (U.S.), the sysdate function will return the U.S. date and
time. In that case, you can use the CURRENT DATE function that returns the current date in the

session time zone.
The CURRENT DATE function and other related time zone functions are discussed in detail in
Oracle Database: SQL Fundamentals I1.

Oracle Database: SQL Fundamentals| 3 -24

Arithmetic with Dates

 Add or subtract a number to or from a date for a resultant
date value.

« Subtract two dates to find the number of days between
those dates.

* Add hours to a date by dividing the number of hours by 24.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Arithmetic with Dates

Because the database stores dates as numbers, you can perform calculations using arithmetic
operators such as addition and subtraction. You can add and subtract number constants as well
as dates.

You can perform the following operations:

Operation Result Description

date + number Date Adds a number of days to a date

date — number Date Subtracts a number of days from a date
date — date Number of days | Subtracts one date from another

date + number/24 Date Adds a number of hours to a date

Oracle Database: SQL Fundamentals| 3 -25

Using Arithmetic Operators
with Dates

SELECT last name, |(SYSDATE-hire_date)/7 AS WEEKSl

FROM employees
WHERE department id = 90;

LasT_ramE|fE weEks

1 King 1147.1024322069247059947053994705594703995
2 Kachhar 10258.9595750661537566137566137566137566135
3 De Haan 356.102432206994705994703994705594703995

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Arithmetic Operators with Dates

The example in the slide displays the last name and the number of weeks employed for all
employees in department 90. It subtracts the date on which the employee was hired from the
current date (SYSDATE) and divides the result by 7 to calculate the number of weeks that a

worker has been employed.

Note: SYSDATE is a SQL function that returns the current date and time. Your results may
differ depending on the date and time set for the operating system of your local database when
you run the SQL query.

If a more current date is subtracted from an older date, the difference is a negative number.

Oracle Database: SQL Fundamentals| 3 -26

Lesson Agenda

« Single-row SQL functions
» Character functions
 Number functions

* Working with dates

« Date functions

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals | 3 -27

Date-Manipulation Functions

Function Result

MONTHS BETWEEN Number of months between two dates
ADD MONTHS Add calendar months to date

NEXT DAY Next day of the date specified

LAST DAY Last day of the month

ROUND Round date

TRUNC Truncate date

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Date-Manipulation Functions

Date functions operate on Oracle dates. All date functions return a value of the DATE data type
except MONTHS BETWEEN, which returns a numeric value.

« MONTHS BETWEEN (datel, date2): Finds the number of months between datel
and date2. The result can be positive or negative. If datel is later than date2, the
result is positive; if datel is earlier than date2, the result is negative. The noninteger
part of the result represents a portion of the month.

« ADD MONTHS (date, n):Adds nnumber of calendar months to date. The value of n
must be an integer and can be negative.

« NEXT DAY (date, 'char'):Finds the date of the next specified day of the week

('char') following date. The value of char may be a number representing a day or a
character string.

« LAST DAY (date): Finds the date of the last day of the month that contains date

The above list is a subset of the available date functions. ROUND and TRUNC number functions
can also be used to manipulate the date values as shown below:

« ROUND (datel, 'fmt']): Returns date rounded to the unit that is specified by the
format model £mt. If the format model fmnt is omitted, date is rounded to the nearest day.

« TRUNC (date[, 'fmt']):Returns date with the time portion of the day truncated to
the unit that is specified by the format model £mt. If the format model £mt is omitted,
date is truncated to the nearest day.

The format models are covered in detail in the lesson titled “Using Conversion Functions and
Conditional Expressions.”

Oracle Database: SQL Fundamentals| 3 -28

Using Date Functions

Function Result

MONTHS BETWEEN 19.6774194
("01L-SEP-95','11-JAN-94")

ADD MONTHS (‘'31-JAN-96',1) '29-FEB-96"'
NEXT DAY ('01-SEP-95', 'FRIDAY') '08-SEP-95"
LAST DAY ("0O1L-FEB-95') '28-FEB-95'

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Date Functions

In the example in the slide, the ADD MONTHS function adds one month to the supplied date
value “31-JAN-96” and returns “29-FEB-96.” The function recognizes the year 1996 as the leap
year and, therefore, returns the last day of the February month. If you change the input date
value to “31-JAN-95,” the function returns “28-FEB-95.”

For example, display the employee number, hire date, number of months employed, six-month
review date, first Friday after hire date, and the last day of the hire month for all employees who
have been employed for fewer than 150 months.

SELECT employee id, hire date, MONTHS BETWEEN (SYSDATE, hire date)
TENURE, ADD MONTHS (hire date, 6) REVIEW, NEXT DAY (hire date,
'"FRIDAY'), LAST DAY (hire date)

FROM employees WHERE MONTHS BETWEEN (SYSDATE, hire date) < 150;

EMPLOYEEID |[§ HIREDATE|H TeEwure | Review [[§ wexT_pa. [LasT_pav.
1 20217-AUG-97 141.73757989..17-FEB-98 22-AUG-97 31-ALGC-97
2 107 07-FEB-88 124.12016054..07-ALIG-99 12-FEB-88 28-FEB-99
3 124 16-NOV-99 114.629683796.. 16-MAY-00 19-NOV-99 30-NOV-99
4 142 20-JAN-97 148.41048312..29-JUL-97 3Z1-JAN-97 31-JAN-97
5 14315-MAR-98 134.86209602..15-SEP-98 20-MAR-98 31-MAR-93
B 144 09-JUL-98 131.05564441 . 09-JAN-89 10-JUL-96 31-JUL-98
7 149 29-)AN-00 112.41048312..29-JUL-00 04-FEB-00 31-JAN-00
3 176 24-MAR-98 134.57177344..24-SEP-98 27-MAR-98 31-MAR-93
9 178 24-MAY-99 120.57177344.. 24-NOV-93 2B-MAT-99 31-MAY-99

Oracle Database: SQL Fundamentals| 3 -29

Using ROUND and TRUNC Functions with Dates

Assume SYSDATE = '25-JUL-03"':

Function Result

ROUND (SYSDATE, 'MONTH') 01-AUG-03
ROUND (SYSDATE , 'YEAR') 01-JAN-04
TRUNC (SYSDATE , 'MONTH') 01-JUL-03
TRUNC (SYSDATE , 'YEAR') 01-JAN-03

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using ROUND and TRUNC Functions with Dates

The ROUND and TRUNC functions can be used for number and date values. When used with
dates, these functions round or truncate to the specified format model. Therefore, you can round
dates to the nearest year or month. If the format model is month, dates 1-15 result in the first day
of the current month. Dates 16-31 result in the first day of the next month. If the format model is
year, months 1-6 result in January 1 of the current year. Months 7-12 result in January 1 of the
next year.

Example:

Compare the hire dates for all employees who started in 1997. Display the employee number,
hire date, and starting month using the ROUND and TRUNC functions.

SELECT employee id, hire date,

ROUND (hire date, 'MONTH'), TRUNC (hire date, 'MONTH')
FROM employees

WHERE hire date LIKE '%97';

EMPLOYEE_ID HIRE_DATE |[Bl ROUNDIHIRE_DATE,'MONTHY (B TRUMC(HIRE_DATE,'MONTH"
1 202 17-AUG-97 O1-5EP-97 01-AUG-97
2 142 29-|4N-97 01-FEB-97 O1-[AN-97

Oracle Database: SQL Fundamentals| 3 -30

Quiz

Which of the following statements are true about single-row
functions?

1. Manipulate data items

Accept arguments and return one value per argument
Act on each row that is returned

Return one result per set of rows

May not modify the data type

Can be nested

Accept arguments that can be a column or an expression

N o Ok wN

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Answer: 1, 3,6, 7

Oracle Database: SQL Fundamentals | 3 -31

Summary

In this lesson, you should have learned how to:
« Perform calculations on data using functions
* Modify individual data items using functions

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Summary

Single-row functions can be nested to any level. Single-row functions can manipulate the
following:

* Character data: LOWER, UPPER, INITCAP, CONCAT, SUBSTR, INSTR, LENGTH
* Number data: ROUND, TRUNC, MOD

* Date values: SYSDATE, MONTHS BETWEEN, ADD MONTHS, NEXT DAY, LAST DAY

Remember the following:
» Date values can also use arithmetic operators.
* ROUND and TRUNC functions can also be used with date values.

SYSDATE and DUAL

SYSDATE is a date function that returns the current date and time. It is customary to select
SYSDATE from a single-row public table called DUAL.

Oracle Database: SQL Fundamentals | 3 -32

Practice 3: Overview

This practice covers the following topics:

« Writing a query that displays the current date

« Creating queries that require the use of numeric,
character, and date functions

« Performing calculations of years and months of service for
an employee

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Practice 3: Overview

This practice provides a variety of exercises using different functions that are available for
character, number, and date data types.

Oracle Database: SQL Fundamentals| 3 -33

‘sejel|ye sl Jo/pue ajoelO ‘010z GybuAdo) paligiyosd uonngusip Jo uononpoidal paziloyineun

Using Conversion Functions and
Conditional Expressions

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:
» Describe the various types of conversion functions that are
available in SQL
 Use the TO CHAR, TO NUMBER, and TO DATE conversion
functions
* Apply conditional expressions in a SELECT statement

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Objectives
This lesson focuses on functions that convert data from one type to another (for example,
conversion from character data to numeric data) and discusses the conditional expressions in
SQL SELECT statements.

Oracle Database: SQL Fundamentals| 4 -2

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

« Implicit and explicit data type conversion
* TO CHAR, TO DATE, TO NUMBER functions
* Nesting functions
* General functions:

— NVL

— NVL2

— NULLIF

— COALESCE
« Conditional expressions:

— CASE

— DECODE

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 4 -3

Conversion Functions

Data type
conversion

Implicit data type Explicit data type
conversion conversion

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Conversion Functions

In addition to Oracle data types, columns of tables in an Oracle Database can be defined by
using the American National Standards Institute (ANSI), DB2, and SQL/DS data types.
However, the Oracle server internally converts such data types to Oracle data types.

In some cases, the Oracle server receives data of one data type where it expects data of a
different data type. When this happens, the Oracle server can automatically convert the data to
the expected data type. This data type conversion can be done implicitly by the Oracle server or
explicitly by the user.

Implicit data type conversions work according to the rules explained in the following slides.

Explicit data type conversions are performed by using the conversion functions. Conversion
functions convert a value from one data type to another. Generally, the form of the function
names follows the convention data type TO data type. The first data type is the input data

type and the second data type is the output.

Note: Although implicit data type conversion is available, it is recommended that you do the
explicit data type conversion to ensure the reliability of your SQL statements.

Oracle Database: SQL Fundamentals| 4 -4

Implicit Data Type Conversion

In expressions, the Oracle server can automatically convert the

following:
From To
VARCHAR2 or CHAR NUMBER
VARCHAR2 or CHAR DATE

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Implicit Data Type Conversion

Oracle server can automatically perform data type conversion in an expression. For example, the

2 expressionhire date > '01-JAN-90' results in the implicit conversion from the string
'01-JAN-90' to a date. Therefore, a VARCHAR2 or CHAR value can be implicitly converted
to a number or date data type in an expression.

Oracle Database: SQL Fundamentals| 4 -5

Implicit Data Type Conversion

For expression evaluation, the Oracle server can automatically
convert the following:

From To
NUMBER VARCHAR2 or CHAR
DATE VARCHAR2 or CHAR

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Implicit Data Type Conversion (continued)

In general, the Oracle server uses the rule for expressions when a data type conversion is needed.
For example, the expression grade = 2 results in the implicit conversion of the number 2 to
the string “2” because grade is a CHAR (2) column.

Note: CHAR to NUMBER conversions succeed only if the character string represents a valid
number.

Oracle Database: SQL Fundamentals| 4 -6

Explicit Data Type Conversion

TO NUMBER TO DATE
NUMBER CHARACTER DATE
TO CHAR TO_ CHAR

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Explicit Data Type Conversion
SQL provides three functions to convert a value from one data type to another:

Function Purpose

TO CHAR (number|date, [fmt],

Converts a number or date value to a VARCHAR?2
[nlsparams])

character string with the format model £mt

Number conversion: The nl sparams
parameter specifies the following characters,
which are returned by number format elements:

e Decimal character

e Group separator

e Local currency symbol

e International currency symbol

If nlsparams or any other parameter is omitted,
this function uses the default parameter values for
the session.

Oracle Database: SQL Fundamentals| 4 -7

Explicit Data Type Conversion

TO NUMBER TO DATE

aa

NUMBER CHARACTER DATE

NN

TO CHAR TO_ CHAR

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Explicit Data Type Conversion (continued)

Function Purpose

TO CHAR (number|date, [fmt],
[nlsparams])

Date conversion: The nlsparams parameter specifies
the language in which the month and day names, and
abbreviations are returned. If this parameter is omitted,
this function uses the default date languages for the
session.

TO_NUMBER (char, [fmt],

Converts a character string containing digits to a number
[nlsparams])

in the format specified by the optional format model £fm¢t.

The nlsparams parameter has the same purpose in this
function as in the TO_CHAR function for number
conversion.

TO_DATE (char, [fmt], [nispara

msT) Converts a character string representing a date to a date

value according to £mt that is specified. If £mt is
omitted, the format is DD-MON-YY.

The nlsparams parameter has the same purpose in this
function as in the TO_CHAR function for date conversion.

Oracle Database: SQL Fundamentals| 4 -8

Explicit Data Type Conversion (continued)

Note: The list of functions mentioned in this lesson includes only some of the available
conversion functions.

For more information, see the “Conversion Functions™ section in Oracle Database SQL
Language Reference for 10g or 11g database.

Oracle Database: SQL Fundamentals| 4-9

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

« Implicit and explicit data type conversion
* TO CHAR, TO DATE, TO NUMBER functions
* Nesting functions
* General functions:

— NVL

— NVL2

— NULLIF

— COALESCE
« Conditional expressions:

— CASE

— DECODE

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 4-10

Using the To CHAR Function with Dates

TO_CHAR(date, 'format model')

The format model:
« Must be enclosed with single quotation marks
* Is case-sensitive
* Caninclude any valid date format element

 Has an fm element to remove padded blanks or suppress
leading zeros

* |s separated from the date value by a comma

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the TO CHAR Function with Dates

TO__CHAR converts a datetime data type to a value of VARCHAR2 data type in the format
specified by the format model. A format model is a character literal that describes the format of
datetime stored in a character string. For example, the datetime format model for the string
'11-Nov-1999' is 'DD-Mon-YYYY'. You can use the TO _CHAR function to convert a date

from its default format to the one that you specify.

Guidelines
* The format model must be enclosed with single quotation marks and is case-sensitive.
* The format model can include any valid date format element. But be sure to separate the
date value from the format model with a comma.
* The names of days and months in the output are automatically padded with blanks.
* To remove padded blanks or to suppress leading zeros, use the fill mode fm element.

SELECT employee id, TO CHAR (hire date, 'MM/YY') Month Hired
FROM employees
WHERE last name = 'Higgins';

EMPLOVEE_ID | MONTH_HIRED
1 205 06,94

Oracle Database: SQL Fundamentals | 4 -11

Elements of the Date Format Model

Element Result

YYYY Full year in numbers

YEAR Year spelled out (in English)

MM Two-digit value for the month

MONTH Full name of the month

MON Three-letter abbreviation of the month

DY Three-letter abbreviation of the day of the week
DAY Full name of the day of the week

DD Numeric day of the month

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 4 -12

Sample Format Elements of Valid Date Formats

Element Description

SCC or CC Century; server prefixes B.C. date with -

Years indates YYYY or SYYYY | Year; server prefixes B.C. date with -

YYYorYYorY Last three, two, or one digit of the year

Y,YYY Year with comma in this position

IYYY,IYY,IY,I Four-, three-, two-, or one-digit year based on the ISO
standard

SYEAR or YEAR Year spelled out; server prefixes B.C. date with -

BC or AD Indicates B.C. or A.D. year

B.C. or A.D. Indicates B.C. or A.D. year using periods

Q Quarter of year

MM Month: two-digit value

MONTH Name of the month padded with blanks to a length of nine
characters

MON Name of the month, three-letter abbreviation

RM Roman numeral month

WW or W Week of the year or month

DDD or DD or D Day of the year, month, or week

DAY Name of the day padded with blanks to a length of nine
characters

DY Name of the day; three-letter abbreviation

J Julian day; the number of days since December 31, 4713
B.C.

W Weeks in the year from ISO standard (1 to 53)

Oracle Database: SQL Fundamentals| 4-13

Elements of the Date Format Model

» Time elements format the time portion of the date:

HH24 :MI:SS AM 15:45:32 PM

« Add character strings by enclosing them with double
quotation marks:

DD "of" MONTH 12 of OCTOBER

* Number suffixes spell out numbers:

ddspth fourteenth

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Elements of the Date Format Model

Use the formats that are listed in the following tables to display time information and literals,
and to change numerals to spelled numbers.

Element Description

AM or PM Meridian indicator

A.M. or P.M. Meridian indicator with periods

HH or HH12 or HH24 Hour of day, or hour (1-12), or hour (0-23)
MI Minute (0-59)

SS Second (0-59)

SSSSS Seconds past midnight (0-86399)

Oracle Database: SQL Fundamentals | 4 -14

Elements of the Date Format Model (continued)

Other Formats
Element Description
/., Punctuation is reproduced in the result.
“of the” Quoted string is reproduced in the result.

Specifying Suffixes to Influence Number Display

Element Description

TH Ordinal number (for example, DDTH for 4TH)

SP Spelled-out number (for example, DDSP for FOUR)

SPTH or THSP Spelled-out ordinal numbers (for example, DDSPTH for
FOURTH)

Oracle Database: SQL Fundamentals| 4 -15

Using the To CHAR Function with Dates

SELECT last name,

TO CHAR (hire date, 'fmDD Month YYYY')
AS HIREDATE

FROM employees;

B vasT_mame(] HIREDATE
1 Whalen 17 September 1957
Z Hartstein 17 February 19596
3 Fay 17 August 1997
4 Higgins 7 June 1994
5 Gietz Flune 1994
& king 17 June 1987
7 Eochhar 21 September 1959
g De Haan 13 January 1993
9 Hunold 3 January 1950
10 Ernst 21 May 1951

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the TO CHAR Function with Dates

The SQL statement in the slide displays the last names and hire dates for all the employees. The
hire date appears as 17 June 1987.

Example:

Modify the example in the slide to display the dates in a format that appears as “Seventeenth of
June 1987 12:00:00 AM.”

SELECT 1last name,
TO_CHAR (hire date,
'fmDdspth "of" Month YYYY fmHH:MI:SS AM')
HIREDATE
FROM employees;

LasT_mamE || HIREDATE
1 Whalen Seventeenth of September 1957 12:00:00 ANl
Z Hartztein Seventeenth of February 1998 12:00:00 20

Notice that the month follows the format model specified; in other words, the first letter is
capitalized and the rest are in lowercase.

Oracle Database: SQL Fundamentals| 4 -16

Using the TO CHAR Function with Numbers

TO CHAR (number, 'format model')

These are some of the format elements that you can use with
the TO CHAR function to display a number value as a

character:
9 Represents a number
0 Forces a zero to be displayed
$ Places a floating dollar sign
L Uses the floating local currency symbol
Prints a decimal point
, Prints a comma as a thousands indicator

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the TO CHAR Function with Numbers

When working with number values, such as character strings, you should convert those numbers
to the character data type using the TO _CHAR function, which translates a value of NUMBER
data type to VARCHAR?2 data type. This technique is especially useful with concatenation.

Oracle Database: SQL Fundamentals | 4 -17

Using the To CHAR Function with Numbers (continued)
Number Format Elements

If you are converting a number to the character data type, you can use the following format
elements:

Element | Description Example Result
9 Numeric position (number of 9s determine display | 999999 1234
width)
0 Display leading zeros 099999 001234
$ Floating dollar sign $999999 $1234
L Floating local currency symbol 1.999999 FF1234
D Returns the decimal character in the specified 99D99 99.99
position. The default is a period (.).
Decimal point in position specified 999999.99 1234.00
G Returns the group separator in the specified 9,999 9G999

position. You can specify multiple group
separators in a number format model.

, Comma in position specified 999,999 1,234
MI Minus signs to right (negative values) 999999M1 1234-
PR Parenthesize negative numbers 999999PR <1234>
EEEE Scientific notation (format must specify four Es) 99.999EEEE | 1.234E+03
U Returns in the specified position the “Euro” (or U9999 €1234
other) dual currency
Multiply by 10 # times (n = number of 9s after V) | 9999V99 123400
S Returns the negative or positive value S9999 -1234 or
+1234
B Display zero values as blank, not 0 B9999.99 1234.00

Oracle Database: SQL Fundamentals| 4 -18

Using the TO CHAR Function with Numbers

SELECT |TO_CHAR (salary, '$99,999.00') SALARY |

FROM employees
WHERE last name = 'Ernst';

SALARY
1 $6,000.00

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the To CHAR Function with Numbers (continued)

* The Oracle server displays a string of number signs (#) in place of a whole number whose
digits exceed the number of digits provided in the format model.

* The Oracle server rounds the stored decimal value to the number of decimal places
provided in the format model.

Oracle Database: SQL Fundamentals| 4 -19

Using the TO NUMBER and TO DATE Functions

« Convert a character string to a number format using the
TO NUMBER function:

TO_NUMBER (char[, 'format model'])

« Convert a character string to a date format using the
TO_DATE function:

TO DATE (char[, 'format model'])

 These functions have an £x modifier. This modifier

specifies the exact match for the character argument and
date format model of a TO DATE function.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the TO NUMBER and TO DATE Functions

You may want to convert a character string to either a number or a date. To accomplish this task,
use the TO_ NUMBER or TO DATE functions. The format model that you select is based on the

previously demonstrated format elements.

The £x modifier specifies the exact match for the character argument and date format model of
a TO_DATE function:
* Punctuation and quoted text in the character argument must exactly match (except for case)
the corresponding parts of the format model.
* The character argument cannot have extra blanks. Without £x, the Oracle server ignores
extra blanks.
* Numeric data in the character argument must have the same number of digits as the
corresponding element in the format model. Without £x, the numbers in the character
argument can omit leading zeros.

Oracle Database: SQL Fundamentals| 4 -20

Using the TO NUMBER and TO DATE Functions (continued)
Example:

Display the name and hire date for all employees who started on May 24, 1999. There are two
spaces after the month May and before the number 24 in the following example. Because the £x
modifier is used, an exact match is required and the spaces after the word May are not
recognized:

SELECT last name, hire date

FROM employees

WHERE hire date = TO DATE('May 24, 1999', 'fxMonth DD, YYYY');

The resulting error output looks like this:

Error encountered

o An errorwas encountered perfarming the requeszted aperation:

DORA-01858: a non-numeric character was found where a numeric wasz expected
01858, 00000 - "a non-numeric character was found where a numeric was expected"
"™_auze: The input datato be converted uzing a date farmat model wasz
incarrect. The input data did not contain a numberwhere a number was
required by the format model.
*Action: Fixthe input data aor the date format model to make sure the
elements match in number and type. Then retry the aperation.
Wendor code 1858Errar at Line; 1

8] 4

To see the output, correct the query by deleting the extra space between ‘May’ and ‘24°.
SELECT last name, hire date
FROM employees
WHERE hire date = TO DATE('May 24, 1999', 'fxMonth DD, YYYY');

LasT_MAME [B HIRE_DATE
1 Grant 24-MAT-90

Oracle Database: SQL Fundamentals | 4 -21

Using the TO CHAR and TO DATE Function
with the RR Date Format

To find employees hired before 1990, use the RR date format,
which produces the same results whether the command is run
in 1999 or now:

SELECT last name, TO CHAR(hire date, 'DD-Mon-YYYY')
FROM employees
WHERE hire date < TO DATE('0l-Jan-90', 'DD-Mon-RR') ;

LAST_NAME| TO_CHAR(HIRE_DATE, DD -MOM ="
1 whalen 17-5ep-19587
Z King 17-jun-19a87
3 Kochhar 21-5ep-1959

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the TO CHAR and TO DATE Function with the RR Date Format

To find employees who were hired before 1990, the RR format can be used. Because the current
year is greater than 1999, the RR format interprets the year portion of the date from 1950 to
1999.

Alternatively, the following command, results in no rows being selected because the YY format
interprets the year portion of the date in the current century (2090).

SELECT last name, TO CHAR (hire date, 'DD-Mon-yyyy')

FROM employees

WHERE TO DATE (hire date, 'DD-Mon-yy') < '01-Jan-1990';

0 rows selected

Oracle Database: SQL Fundamentals | 4 -22

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

« Implicit and explicit data type conversion
* TO CHAR, TO DATE, TO NUMBER functions
* Nesting functions
* General functions:

— NVL

— NVL2

— NULLIF

— COALESCE
« Conditional expressions:

— CASE

— DECODE

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals | 4 -23

Nesting Functions

« Single-row functions can be nested to any level.

* Nested functions are evaluated from the deepest level to
the least deep level.

F3 (F2(,arg2) ,arg3)

Step 1 = Result
Step 2 = Result 2
Step 3 = Result 3

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Nesting Functions

Single-row functions can be nested to any depth. Nested functions are evaluated from the
innermost level to the outermost level. Some examples follow to show you the flexibility of
these functions.

Oracle Database: SQL Fundamentals | 4 -24

Nesting Functions: Example 1

SELECT last name,

LUPPER(CONCAT(SUBSTR (LAST NAME, 1, 8), ' US'))
FROM employees

WHERE department id = 60;

LaST_MAME | LPPER(CONCATSUBSTR{LAST_MAME,L,5),'_USY

1 Hunold HUMOLD_US
2 Ernst ERMST_US
3 Lorentz LOREWNTZ_US

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Nesting Functions (continued)

The example in the slide displays the last names of employees in department 60. The evaluation
of the SQL statement involves three steps:
1. The inner function retrieves the first eight characters of the last name.
Resultl = SUBSTR (LAST NAME, 1, 8)
2. The outer function concatenates the result with _US.
Result2 = CONCAT (Resultl, ' US')
3. The outermost function converts the results to uppercase.

The entire expression becomes the column heading because no column alias was given.
Example:

Display the date of the next Friday that is six months from the hire date. The resulting date
should appear as Friday, August 13th, 1999. Order the results by hire date.

SELECT TO_CHAR(NEXT_DAY(ADD_MONTHS
(hire date, 6), 'FRIDAY'),
'fmDay, Month ddth, YYYy')
"Next 6 Month Review"

FROM employees

ORDER BY hire date;

Oracle Database: SQL Fundamentals | 4 -25

Nesting Functions: Example 2

SELECT | TO_ CHAR (ROUND ((salary/7), 2),'99G999D99',
'NLS NUMERIC CHARACTERS = '',.'' ')
"Formatted Salary"

FROM employees;

Formarted Salary
1 82857
£ 1.857,14
3 85714
4
3
&

1.714,29
1.185,71
3.428,57

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Nesting Functions (continued)

The example in the slide displays the salaries of employees divided by 7 and rounded to two
decimals. The result is then formatted to display the salary in Danish notation. That is, comma is
used for decimal point and a period for thousands.

First, the inner ROUND function is executed to round off the value of salary divided by 7 to two
decimal places. The TO_CHAR function is then used to format the result of the ROUND function.

Note: D and G specified in the TO CHAR function parameter are number format elements. D
returns a decimal character in the specified position. G is used as a group separator.

Oracle Database: SQL Fundamentals | 4 -26

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

« Implicit and explicit data type conversion
* TO CHAR, TO DATE, TO NUMBER functions
* Nesting functions
* General functions:

— NVL

— NVL2

— NULLIF

— COALESCE
» Conditional expressions:

— CASE

— DECODE

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals | 4 -27

General Functions

The following functions work with any data type and pertain to
using nulls:

* NVL (exprl, expr2)

* NVL2 (exprl, expr2, expr3)

* NULLIF (exprl, expr2)

* COALESCE (exprl, expr2, ..., exprn)

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

General Functions

These functions work with any data type and pertain to the use of null values in the expression
list.

Function Description
NVL Converts a null value to an actual value
NVL2 If exprl is not null, NVL2 returns expr2. If exprl is null, NVL2

returns expr3. The argument exprl can have any data type.

NULLIF Compares two expressions and returns null if they are equal; returns
the first expression if they are not equal

COALESCE | Returns the first non-null expression in the expression list

Note: For more information about the hundreds of functions available, see the “Functions”
section in Oracle Database SQL Language Reference for 10g or 11g database.

Oracle Database: SQL Fundamentals | 4 -28

NVL Function

Converts a null value to an actual value:

« Data types that can be used are date, character, and
number.
« Data types must match:
— NVL (commission pct, 0)
— NVL (hire date, '01-JAN-97")
— NVL(job_id, 'No Job Yet')

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

NVL Function

To convert a null value to an actual value, use the NVL function.
Syntax
NVL (exprl, expr2)

In the syntax:
« exprl is the source value or expression that may contain a null
« expr?2 is the target value for converting the null

You can use the NVL function to convert any data type, but the return value is always the same
as the data type of expri.

NVL Conversions for Various Data Types

Data Type Conversion Example

NUMBER NVL (number column,9)

DATE NVL (date column, '01-JAN-95'")

CHAR or VARCHAR2 NVL (character column, 'Unavailable')

Oracle Database: SQL Fundamentals| 4 -29

Using the NVL Function

SELECT last name, salary,lWL(comissionJct, 0)|:' C

|(sa1ary*12) + (salary*12*NVL (commission pct, 0)) AN_SALl,_@
FROM employees;

LasT_wame | satarr [§ wvicommission_pct,op [§ an_saL
1 Whaler 4400 0 52800
2 Hartstein 13000 0 156000
3 Fay 6000 0 72000
4 Higgins 12000 0 144000
5 Gietz 8300 0 99600
6 King 24000 0 288000
7 Kochhar 17000 0 204000
8 De Haan 17000 0 204000
3 Hunold 3000 0 108000
10 Ernst 6000 0 72000

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the NVL Function

To calculate the annual compensation of all employees, you need to multiply the monthly salary
by 12 and then add the commission percentage to the result:

SELECT last name, salary, commission pct,
(salary*12) + (salary*l2*commission pct) AN SAL
FROM employees;

LasT_manE (@ salary |[§ commission_pcT | an_sal

1 Whalen 4400 (rullh (rullh
16 Yargas 2500 frull frull
17 Zlotkey 10500 02 151200
18 Abel 11000 0.3 171&00
19 Taylor 2600 02 123840
20 Grant 7000 0.15 BEG00

Notice that the annual compensation is calculated for only those employees who earn a
commission. If any column value in an expression is null, the result is null. To calculate values
for all employees, you must convert the null value to a number before applying the arithmetic
operator. In the example in the slide, the NVL function is used to convert null values to zero.

Oracle Database: SQL Fundamentals| 4 -30

Using the NVL2 Function

SELECT last name, salary, |commission pct 1

NVL2 (commission pct,
'SAL+COMM', 'SAL') income

FROM employees WHERE department id IN (50, 80);

LasT_mame [satarr (B commission pcT (B NcoME
1 Mourgos 5500 {hully SAL
2 Rajs 3500 frully SAL
3 Davies 3100 {nully SAL
4 Matas 2600 fnully SAL
5 Vargas 2500 fhully SAL
& Zlotkey 10500 0.2 SAL+COMM
7 Abel 11000 0.3 SAL+COMM
& Taylor 8600 0.2 SAL+COMM

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the NvVL2 Function

The NVL2 function examines the first expression. If the first expression is not null, the NVL2
function returns the second expression. If the first expression is null, the third expression is
returned.

Syntax
NVL2 (exprl, expr2, expr3)

In the syntax:
« exprl is the source value or expression that may contain a null
« expr?2 is the value that is returned if expzr1 is not null
o expr3 is the value that is returned if expr1 is null

In the example shown in the slide, the COMMISSION PCT column is examined. If a value is
detected, the text literal value of SAL+COMM is returned. If the COMMISSION PCT column
contains a null value, the text literal value of SAL is returned.

Note: The argument exprl can have any data type. The arguments expr2 and expr3 can
have any data types except LONG.

Oracle Database: SQL Fundamentals | 4 - 31

Using the NULLIF Function

SELECT first name, |LENGTH(first name) "exprl"
last name, |[LENGTH(last name) "expr2", 2
|NULLIF (LENGTH (first_name), LENGTH(last_ name)) result<—<::>
FROM employees;

B rrsT_MaME| expri [§ LasT_mame|§ exprz|[§ REsuLT
1 Ellen 5 Abel 4 5
2 Curtiz b Davies B frully
5 Lex 3 De Haan 7 3
4 Eruce 5 Ernist 5 {hully
5 Pat 3 Fay 3 {rull
& William 7 Gietz 5 7
7 Kimberely 9 Grant 5 9
g Michael ¥ Hartstein 9 ¥
9 Shelley 7 Higgins 7 {nully

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the NULLIF Function

The NULLIF function compares two expressions.

Syntax
NULLIF (exprl, expr2)

In the syntax:

« NULLIF compares exprl and expr?2. If they are equal, the function returns null. If they
are not, the function returns expr1. However, you cannot specify the literal NULL for
exprl.

In the example shown in the slide, the length of the first name in the EMPLOYEES table is
compared to the length of the last name in the EMPLOYEES table. When the lengths of the
names are equal, a null value is displayed. When the lengths of the names are not equal, the
length of the first name is displayed.

Note: The NULLIF function is logically equivalent to the following CASE expression. The
CASE expression is discussed on a subsequent page:
CASE WHEN exprl = expr2 THEN NULL ELSE exprl END

Oracle Database: SQL Fundamentals | 4 - 32

Using the COALESCE Function

« The advantage of the COALESCE function over the NVL
function is that the COALESCE function can take multiple
alternate values.

« If the first expression is not null, the COALESCE function
returns that expression; otherwise, it does a COALESCE of
the remaining expressions.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the COALESCE Function
The COALESCE function returns the first non-null expression in the list.

Syntax
COALESCE (exprl, expr2, ... exprn)

In the syntax:
« exprl returns this expression if it is not null
« expr?2 returns this expression if the first expression is null and this expression is not null
« exprn returns this expression if the preceding expressions are null

Note that all expressions must be of the same data type.

Oracle Database: SQL Fundamentals| 4 -33

Using the COALESCE Function

SELECT last name, employee id,

COALESCE (TO_CHAR (commission pct),TO CHAR (manager id),
'No commission and no manager')
FROM employees;
LAST_NAME| EMPLOYEE_ID || COALESCECTO_CHAR(COMMISSI...
1 Whalen 200101
Z Hartstein 201 100
3 Fay 202 201
4 Higgins 205101
5 Gietz 206 205
& King 100 Mo commizsion and no manager
17 Zlotkey 140 2
18 Abel 174 .3
19 Taylor 176 .2
20 Grant 178 .15

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the COALESCE Function (continued)

In the example shown in the slide, if the manager id value is not null, it is displayed. If the
manager id value is null, the commission pct is displayed. If the manager id and
commission pct values are null, “No commission and no manager” is displayed. Note that
TO CHAR function is applied so that all expressions are of the same data type.

Oracle Database: SQL Fundamentals | 4 - 34

Using the COALESCE Function (continued)
Example:

For the employees who do not get any commission, your organization wants to give a salary
increment of $2,000 and for employees who get commission, the query should compute the new
salary that is equal to the existing salary added to the commission amount.

SELECT last name, salary, commission pct,

COALESCE ((salary+ (commission pct*salary)), salary+2000, salary)
"New Salary"
FROM employees;

Note: Examine the output. For employees who do not get any commission, the New Salary
column shows the salary incremented by $2,000 and for employees who get commission, the
New Salary column shows the computed commission amount added to the salary.

LasT_manE |[§ salary |[f commission pcT | Mewsalary
1 Whalen 4400 frully 6400
Z Hartstein 13000 (il 15000
3 Fay 6000 frully 5000
4 Higgins 12000 (il 14000
5 Gietz 5300 (il 10300
6 King 24000 frlly 26000
17 Zlotkey 10500 0.2 12600
18 Abel 11000 0.3 14300
19 Taylor 5600 0.2 10320
20 Grant 7000 0.15 5050

Oracle Database: SQL Fundamentals | 4 -35

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

« Implicit and explicit data type conversion
* TO CHAR, TO DATE, TO NUMBER functions
* Nesting functions
* General functions:

— NVL

— NVL2

— NULLIF

— COALESCE
» Conditional expressions:

— CASE

— DECODE

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals | 4 - 36

Conditional Expressions

* Provide the use of the IF-THEN-ELSE logic within a SQL
statement.

* Use two methods:
— CASE expression
— DECODE function

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Conditional Expressions

The two methods that are used to implement conditional processing (IF-THEN-ELSE logic) in
a SQL statement are the CASE expression and the DECODE function.

Note: The CASE expression complies with the ANSI SQL. The DECODE function is specific to
Oracle syntax.

Oracle Database: SQL Fundamentals | 4 - 37

CASE Expression

Facilitates conditional inquiries by doing the work of an
IF-THEN-ELSE statement:

CASE expr WHEN comparison exprl THEN return exprl
[WHEN comparison expr2 THEN return expr2
WHEN comparison exprn THEN return exprn
ELSE else expr]

END

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

CASE Expression

CASE expressions allow you to use the IF-THEN-ELSE logic in SQL statements without
having to invoke procedures.

In a simple CASE expression, the Oracle server searches for the first WHEN ... THEN pair for
which expr is equal to comparison expr and returns return_ expr. If none of the
WHEN ... THEN pairs meet this condition, and if an ELSE clause exists, the Oracle server
returns else expr. Otherwise, the Oracle server returns a null. You cannot specify the literal
NULL for all the return_exprs and the else expr.

The expressions expr and comparison_ expr must be of the same data type, which can be
CHAR, VARCHAR2, NCHAR, or NVARCHAR?2. All of the return values (return_expr) must
be of the same data type.

Oracle Database: SQL Fundamentals| 4 - 38

Using the CASE Expression

Facilitates conditional inquiries by doing the work of an

IF-THEN-ELSE statement:

SELECT last name, job id, salary,

CASE job id WHEN 'IT PROG' THEN 1l.l0*salary
WHEN 'ST CLERK' THEN 1l1l.l1l5*salary

WHEN 'SA REP' THEN 1.20*salary
ELSE salary END "REVISED SALARY"
FROM employees;

LAST_NAME| JOB_ID | salarvl]l REVISED_SALARY

1 Whalen AD_#55T 4400 4400
9 Huhald IT_PROG a0 8300
10 Ernst IT_PROG a0 G600
11 Loremz IT_PROG 420 4620
12 Mourgos ST_MARN 550 5500
13 Rajs ST_CLERK 350 4025
14 Davies ST_CLERK 310 3565
13 Taylor SA_REP 600 10320
20 Grant SA_REP 7000 400

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the CASE Expression

In the SQL statement in the slide, the value of JOB_ID is decoded. If JOB_IDis IT PROG,
the salary increase is 10%; if JOB_IDis ST CLERK, the salary increase is 15%; if JOB_IDis
SA REP, the salary increase is 20%. For all other job roles, there is no increase in salary.

The same statement can be written with the DECODE function.

The following code is an example of the searched CASE expression. In a searched CASE
expression, the search occurs from left to right until an occurrence of the listed condition is
found, and then it returns the return expression. If no condition is found to be true, and if an
ELSE clause exists, the return expression in the ELSE clause is returned; otherwise, a NULL is
returned.
SELECT last name, salary,
(CASE WHEN salary<5000 THEN 'Low'
WHEN salary<10000 THEN 'Medium'
WHEN salary<20000 THEN 'Good'
ELSE 'Excellent'
END) qualified salary
FROM employees;

Oracle Database: SQL Fundamentals| 4 -39

DECODE Function

Facilitates conditional inquiries by doing the work of a CASE
expression or an IF-THEN-ELSE statement:

DECODE (col |expression, searchl, resultl
[, search2, result2,...,]
[, default])

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

DECODE Function

The DECODE function decodes an expression in a way similar to the IF-THEN-ELSE logic that
is used in various languages. The DECODE function decodes expression after comparing it
to each search value. If the expression is the same as search, result is returned.

If the default value is omitted, a null value 1s returned where a search value does not match any
of the result values.

Oracle Database: SQL Fundamentals | 4 -40

Using the DECODE Function

SELECT last name, job id, salary,

DECODE (job_id, 'IT PROG', 1.10*salary,
'ST CLERK', l.15*salary,
'SA REP', 1.20*salary,

salary)
REVISED_SALARY
FROM employees ;

| g wast_mwame(josio § sacrr|@ rewiseD_salapr
10 Ernst T_PROG 6000 6600
11 Lorertz IT_PROG 4200 4620
12 Mourgas ST_MAN 5800 5800
13 Rajs ST_CLERK 3500 4025
19 Taylor SA_REP 8600 10320
20 Grant SA_REP 7000 8400

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the DECODE Function

In the SQL statement in the slide, the value of JOB_IDis tested. f JOB_IDis IT PROG, the
salary increase is 10%; 1f JOB_ID is ST CLERK, the salary increase is 15%; if JOB_ID is
SA REP, the salary increase is 20%. For all other job roles, there is no increase in salary.

The same statement can be expressed in pseudocode as an IF-THEN-ELSE statement:

IF job id = 'IT PROG' THEN salary = salary*1.10
IF job id = 'ST CLERK' THEN salary = salary*1.15
IF job id = 'SA REP' THEN salary = salary*1.20

ELSE salary = salary

Oracle Database: SQL Fundamentals | 4 - 41

Using the DECODE Function

Display the applicable tax rate for each employee in
department 80:

SELECT last name, salary,
DECODE (TRUNC (salary/2000, 0),
0, 0.00,
.09,
.20,
.30,
.40,
.42,
.44,
.45) TAX RATE

4

-

~

o Ul b W NP
~

~

-
O O O O O O o

FROM employees
WHERE department id = 80;

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the DECODE Function (continued)

This slide shows another example using the DECODE function. In this example, you determine
the tax rate for each employee in department 80 based on the monthly salary. The tax rates are as
follows:

Monthly Salary Range Tax Rate
$0.00-1,999.99 00%
$2,000.00-3,999.99 09%
$4,000.00-5,999.99 20%
$6,000.00-7,999.99 30%
$8,000.00-9,999.99 40%
$10,000.00-11,999.99 42%
$12,200.00-13,999.99 44%
$14,000.00 or greater 45%
B rasT_mame | sarary | Tax_RaTE
1 Zlotkey 10500 0.4z
2 Ahbel 11000 0.4z
3 Taylor geoo 0.4

Oracle Database: SQL Fundamentals | 4 -42

Quiz

The TO NUMBER function converts either character strings or
date values to a number in the format specified by the optional
format model.

1. True
2. False

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Answer: 2

Oracle Database: SQL Fundamentals| 4 -43

Summary

In this lesson, you should have learned how to:
« Alter date formats for display using functions

« Convert column data types using functions
« Use NVL functions

 Use IF-THEN-ELSE logic and other conditional
expressions in a SELECT statement

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Summary

Remember the following:
» Conversion functions can convert character, date, and numeric values: TO CHAR,
TO_DATE, TO NUMBER
* There are several functions that pertain to nulls, including NVL, NVL2, NULLIF, and
COALESCE.
* The IF-THEN-ELSE logic can be applied within a SQL statement by using the CASE
expression or the DECODE function.

Oracle Database: SQL Fundamentals | 4 -44

Practice 4: Overview

This practice covers the following topics:
« Creating queries that use TO CHAR, TO_DATE, and other
DATE functions

« Creating queries that use conditional expressions such as
DECODE and CASE

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Practice 4: Overview

This practice provides a variety of exercises using TO _CHAR and TO_DATE functions, and
conditional expressions such as DECODE and CASE. Remember that for nested functions, the
results are evaluated from the innermost function to the outermost function.

Oracle Database: SQL Fundamentals | 4 -45

‘sejel|ye sl Jo/pue ajoelO ‘010z GybuAdo) paligiyosd uonngusip Jo uononpoidal paziloyineun

Reporting Aggregated Data
Using the Group Functions

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:
* Identify the available group functions
« Describe the use of group functions
« Group data by using the GROUP BY clause
* Include or exclude grouped rows by using the HAVING
clause

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Objectives
This lesson further addresses functions. It focuses on obtaining summary information (such as
averages) for groups of rows. It discusses how to group rows in a table into smaller sets and how
to specify search criteria for groups of rows.

Oracle Database: SQL Fundamentals| 5-2

Lesson Agenda

* Group functions:
— Types and syntax
— Use AVG, SUM, MIN, MAX, COUNT
— Use the DISTINCT keyword within group functions
— NULL values in a group function
* Grouping rows:
— GROUP BY clause
— HAVING clause

« Nesting group functions

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 5-3

What Are Group Functions?

Group functions operate on sets of rows to give one result per

group.
EMPLOYEES
DEPARTMENT ID [§ saLary
1 10 4400
z z0 13000
3 z0 &000
4 110 12000
5 110 8300
& ag 24000 . .
7 an 17000 Maximum Salary in 0 MAXSALAR >\
8 0| 17000| EMPLOYEES table 24000
9 &0 8000 C
10 &0 &000 a\=)
15 80 11000
19 &0 8500
z0 frull 7000

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

What Are Group Functions?

Unlike single-row functions, group functions operate on sets of rows to give one result per
group. These sets may comprise the entire table or the table split into groups.

Oracle Database: SQL Fundamentals| 5-4

Types of Group Functions

e AVG
° COUNT
° MAX
° MIN —_—
Group
* STDDEV , functions
° SUM

* VARIANCE

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Types of Group Functions

Each of the functions accepts an argument. The following table identifies the options that you
can use in the syntax:

Function Description

AVG ([DISTINCT |ALL] n) Average value of n, ignoring null values

COUNT ({* | [DISTINCT|ALL] expr | Number of rows, where expr evaluates to

) something other than null (count all selected
rows using *, including duplicates and rows
with nulls)

MAX ([DISTINCT|ALL] expr) Maximum value of expzr, ignoring null values

MIN ([DISTINCT |ALL] expr) Minimum value of expr, ignoring null values

STDDEV ([DISTINCT |ALL] n) Standard deviation of n, ignoring null values

SUM ([DISTINCT |ALL] n) Sum values of n, ignoring null values

VARIANCE ([DISTINCT |ALL] n) Variance of n, ignoring null values

Oracle Database: SQL Fundamentalsl 5-5

Group Functions: Syntax

SELECT group function(column), ...
FROM table
[WHERE condition]

[ORDER BY column];

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Group Functions: Syntax
The group function is placed after the SELECT keyword. You may have multiple group
functions separated by commas.

Guidelines for using the group functions:

« DISTINCT makes the function consider only nonduplicate values; ALL makes it consider
every value, including duplicates. The default is ALL and, therefore, does not need to be
specified.

* The data types for the functions with an expr argument may be CHAR, VARCHAR2,
NUMBER, or DATE.

» All group functions ignore null values. To substitute a value for null values, use the NVL,
NVL2, COALESCE, CASE, or DECODE functions.

Oracle Database: SQL Fundamentals| 5-6

Using the AvG and suM Functions

You can use AVG and SUM for numeric data.

SELECT|AVG(salary), MAX(salary),

MIN(salary), SUM(salary)
FROM employees

WHERE job id LIKE 'SREP%';

AVG(SALARﬂ| maxgsalaryy B minsalarn [sumsalarn
1 5150 11000 000 32600

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the AvG and suM Functions

You can use the AVG, SUM, MIN, and MAX functions against the columns that can store numeric

data. The example in the slide displays the average, highest, lowest, and sum of monthly salaries
for all sales representatives.

Oracle Database: SQL Fundamentals| 5-7

Using the MIN and MAX Functions

You can use MIN and MAX for numeric, character, and date
data types.

SELECTlMIN(hire date), MAX (hire date)l

FROM employees;

{8 MINGHIRE_DATE) [MAXHIRE_DATE)
1 17-JUN-87 29-JAN-00

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the MIN and MAX Functions

You can use the MAX and MIN functions for numeric, character, and date data types. The
example in the slide displays the most junior and most senior employees.

The following example displays the employee last name that is first and the employee last name
that is last in an alphabetic list of all employees:

SELECT MIN(last name), MAX(last name)
FROM employees;

MINCLAST_MAME) ([MAXLAST_NAME)
1 Abel Zlotkey

Note: The AVG, SUM, VARIANCE, and STDDEV functions can be used only with numeric data
types. MAX and MIN cannot be used with LOB or LONG data types.

Oracle Database: SQL Fundamentals| 5-8

Using the COUNT Function

COUNT (*) returns the number of rows in a table:

SELECT| COUNT (*)
@ FROM employees

WHERE department id = 50;

COUNT™
1 5

COUNT (expr) returns the number of rows with non-null values
for expr:

FROM employees

@ SELECT | COUNT (commission_pct)|
WHERE department id = 80;

COUNT{COMMISSION_PCT)
1 3

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the COUNT Function

The COUNT function has three formats:
o COUNT (*)
« COUNT (expr)
e COUNT (DISTINCT expr)
COUNT (*) returns the number of rows in a table that satisfy the criteria of the SELECT

statement, including duplicate rows and rows containing null values in any of the columns. If a
WHERE clause is included in the SELECT statement, COUNT (*) returns the number of rows
that satisfy the condition in the WHERE clause.

In contrast, COUNT (expr) returns the number of non-null values that are in the column
identified by expr.

COUNT (DISTINCT expr) returns the number of unique, non-null values that are in the
column identified by expr.

Examples:
1. The example in the slide displays the number of employees in department 50.
2. The example in the slide displays the number of employees in department 80 who can earn
a commission.

Oracle Database: SQL Fundamentals| 5-9

Using the DISTINCT Keyword

* COUNT (DISTINCT expr) returns the number of distinct
non-null values of expr.

« To display the number of distinct department values in the
EMPLOYEES table:

SELECT | COUNT (DISTINCT department id) |
FROM employees;

COUNTEDISTINCTDERARTMENT_IDY)
1 7

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the DISTINCT Keyword
Use the DISTINCT keyword to suppress the counting of any duplicate values in a column.

The example in the slide displays the number of distinct department values that are in the
EMPLOYEES table.

Oracle Database: SQL Fundamentals|l 5-10

Group Functions and Null Values

Group functions ignore null values in the column:

SELECT |AVG (commission pct) |
FROM employees;

AWCICOMMISSION_PCT)
1 0.2125

The NVL function forces group functions to include null values:

SELECT |AVG (NVL (commission pct, 0))
FROM employees;

AYVGINYLOCOMMISSIOM_PCT, 00}
1 0.0425

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Group Functions and Null Values

All group functions ignore null values in the column.
However, the NVL function forces group functions to include null values.

Examples:

1. The average is calculated based on only those rows in the table in which a valid value is
stored in the COMMISSION PCT column. The average is calculated as the total
commission that is paid to all employees divided by the number of employees receiving a
commission (four).

2. The average is calculated based on all rows in the table, regardless of whether null values
are stored in the COMMISSION PCT column. The average is calculated as the total

commission that is paid to all employees divided by the total number of employees in the
company (20).

Oracle Database: SQL Fundamentals| 5-11

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

» Group functions:
— Types and syntax
— Use AVG, SUM, MIN, MAX, COUNT
— Use DISTINCT keyword within group functions
— NULL values in a group function
« Grouping rows:
— GROUP BY clause
— HAVING clause

* Nesting group functions

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentalsl 5-12

Creating Groups of Data
EMPLOYEES
DEPARTMENT_ID || saLary .
n " 2500|4400 Average salary in the
2 20 13000 EMPLOYEES table for
3 20 gooo) 9500 each department
4 50 2500
DEPARTMENT_ID| AVG{SALARY)

5 50 2600

1 fhuall) 7000
é 50 3100| 3500

z 20 8500
7 =0 3500

3 a0 19333.333333333333...
B 50 5G00

4 110 10150
9 &0 3000

6400 5 50 3500

10 &0 000

& &0 10033.333333333333...
11 &0 4200 . 10 4400
1z &0 11000

10033 g G 6400

13 &0 600
1& 110 &300
19 110 12000
20 fruall) 7000

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Creating Groups of Data

Until this point in the discussion, all group functions have treated the table as one large group of
information. At times, however, you need to divide the table of information into smaller groups.
This can be done by using the GROUP BY clause.

Oracle Database: SQL Fundamentalsl 5-13

Creating Groups of Data: GROUP BY Clause Syntax

You can divide rows in a table into smaller groups by using the
GROUP BY clause.

SELECT column, group function(column)
FROM table
[WHERE condition]

[GROUP BY group by expression]
[ORDER BY column] ;

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Creating Groups of Data: GROUP BY Clause Syntax

You can use the GROUP BY clause to divide the rows in a table into groups. You can then use
the group functions to return summary information for each group.
In the syntax:
group by expression Specifies the columns whose values determine the basis for
grouping rows
Guidelines
* Ifyou include a group function in a SELECT clause, you cannot select individual results as
well, unless the individual column appears in the GROUP BY clause. You receive an error
message 1f you fail to include the column list in the GROUP BY clause.
* Using a WHERE clause, you can exclude rows before dividing them into groups.
* You must include the columns in the GROUP BY clause.
* You cannot use a column alias in the GROUP BY clause.

Oracle Database: SQL Fundamentals| 5-14

Using the GROUP BY Clause

All the columns in the SELECT list that are not in group
functions must be in the GROUP BY clause.

SELECT department id,| AVG(salary)
FROM employees
| GROUP BY department id|;

DEPARTMENT_|D| ANGESALARY)
1 inully 7000
2 z0 8500
3 80 18333.333333333333..
4 110 10150
5 50 3500
8 50 10033.333333333333...
7 10 4400
8 &0 6400

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the GROUP BY Clause

When using the GROUP BY clause, make sure that all columns in the SELECT list that are not
group functions are included in the GROUP BY clause. The example in the slide displays the
department number and the average salary for each department. Here is how this SELECT
statement, containing a GROUP BY clause, is evaluated:
* The SELECT clause specifies the columns to be retrieved, as follows:
- Department number column in the EMPLOYEES table
- The average of all salaries in the group that you specified in the GROUP BY clause
» The FROM clause specifies the tables that the database must access: the EMPLOYEES table.
* The WHERE clause specifies the rows to be retrieved. Because there is no WHERE clause, all
rows are retrieved by default.
* The GROUP BY clause specifies how the rows should be grouped. The rows are grouped by
department number, so the AVG function that is applied to the salary column calculates the
average salary for each department.

Note: To order the query results in ascending or descending order, include the ORDER BY
clause in the query.

Oracle Database: SQL Fundamentals|l 5-15

Using the GROUP BY Clause

The GROUP BY column does not have to be in the SELECT list.

SELECT AVG(salary)
FROM employees
GROUP BY department id

~e

AVGSALSRT

Fooo

4500
19333.3333333333333333333...
10150

3500
10033.333353353353333333353333535..
4400

&400

L = T W B R T R o R

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the GROUP BY Clause (continued)

The GROUP BY column does not have to be in the SELECT clause. For example, the SELECT
statement in the slide displays the average salaries for each department without displaying the
respective department numbers. Without the department numbers, however, the results do not
look meaningful.

You can also use the group function in the ORDER BY clause:
SELECT department id, AVG(salary)
FROM employees
GROUP BY department id
ORDER BY AVG (salary) ;

DERARTMENT_ID ([Avcisalary
1 =0 3500
z 10 4400
3 a0 G400
7 110 10150
5 a0 19333.3333333333333333333333333333333333

Oracle Database: SQL Fundamentals| 5-16

Grouping by More Than One Column

EMPLOYEES Add the salaries in the EMPLOYEES
pEPARTMENT_ID [{ JosLD [saLamr fiaeb[::r:xeer?tCh job, grouped by
1 10 AD_ASST 4400 -
z 20 ME_MAN 13000 DEPARTMENT_ID | JOB_ID | SUM(SA LR
3 20 Mk_REP 000 1 110 AC_ACCOUNT 5300
4 50 ST_CLERK, 2500 5 120lAc_McR B
5 50 ST_CLERK, 2600 - 0[AD_ASST P
& 50 ST_CLERK, 3100 P 90 AD_PRES T
7 50 ST_CLERK 3500 c 20lAD_VP e
8 50 3T_MAN 500 6 60 [T_PROG 19200
3 60 IT_FROG 3000 5 T X o
10 60 IT_PROG 6000 = > 0|ME_REP T
11 &0 IT_PROC 4200 . S0[SA_MAN TR
12 50 54_REP 11000 " o0la e e
13 BO SA_REF 8600 11 (rully SA_REF 7000
14 BO 3A_MAN 10500 12 50 ST_CLERK 11700
"as 13 50 ST_MAN 500
19 110 AC_MGR. 12000
20 fnully 54_REP 7000

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Grouping by More Than One Column

Sometimes, you need to see results for groups within groups. The slide shows a report that
displays the total salary that is paid to each job title in each department.

The EMPLOYEES table is grouped first by the department number, and then by the job title
within that grouping. For example, the four stock clerks in department 50 are grouped together,
and a single result (total salary) is produced for all stock clerks in the group.

The following SELECT statement returns the result shown in the slide:

SELECT department id, job_ id, sum(salary)
FROM employees

GROUP BY department id, job id

ORDER BY job id;

Oracle Database: SQL Fundamentals| 5-17

Using the GROUP BY Clause on Multiple Columns

SELECT department id, job id, SUM(salary)
FROM employees

WHERE department id > 40

|GROUP BY department id, job id|

ORDER BY department_id;

pEPARTMENT_ID [{ JoBiD B sumgaLamn
1 50 ST_CLERK. 11700
z 50 ST_MAN 5300
3 &0 IT_PROG 19200
4 B0 SA_MAN 10500
5 B0 SA_REP 19600
é 90 AD_PRES 24000
7 90 AD_WP 34000
8 110 AC_ACCOUNT 300
8 110 AC_MGR 12000

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the Group By Clause on Multiple Columns

You can return summary results for groups and subgroups by listing multiple GROUP BY
columns. The GROUP BY clause groups rows but does not guarantee the order of the result set.
To order the groupings, use the ORDER BY clause.

In the example in the slide, the SELECT statement that contains a GROUP BY clause is evaluated
as follows:
* The SELECT clause specifies the column to be retrieved:
- Department ID in the EMPLOYEES table
- Job ID in the EMPLOYEES table
- The sum of all salaries in the group that you specified in the GROUP BY clause
» The FROM clause specifies the tables that the database must access: the EMPLOYEES table.
* The WHERE clause reduces the result set to those rows where department ID is greater than
40.
* The GROUP BY clause specifies how you must group the resulting rows:
- First, the rows are grouped by the department ID.
- Second, the rows are grouped by job ID in the department ID groups.
* The ORDER BY clause sorts the results by department ID.

Note: The SUM function is applied to the salary column for all job IDs in the result set in each
department ID group. Also, note that the SA_ REP row is not returned. The department ID for
this row is NULL and, therefore, does not meet the WHERE condition.

Oracle Database: SQL Fundamentals| 5-18

lllegal Queries Using Group Functions

Any column or expression in the SELECT list that is not an
aggregate function must be in the GROUP BY clause:

SELECT department id, COUNT (last name)
FROM employees;

L — , A GROUP BY clause must be added to
ORA-00937 not a single-group group function

00937, 00000 - "not a single-group group function® count the last names for each
department id.

SELECT department id, job id, COUNT (last name)
FROM employees
GROUP BY department id;

Either add job_ id in the GROUP BY or

ORA-D0375: not a GROUP BT expressian remove the job id column from the
00979, 00000 - "not a2 GROUP BY expreszion” 0 -
SELECT list.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

lllegal Queries Using Group Functions

Whenever you use a mixture of individual items (DEPARTMENT _ID) and group functions
(COUNT) in the same SELECT statement, you must include a GROUP BY clause that specifies
the individual items (in this case, DEPARTMENT ID). If the GROUP BY clause is missing, the
error message “not a single-group group function” appears and an asterisk (*) points to the
offending column. You can correct the error in the first example in the slide by adding the
GROUP BY clause:

SELECT department id, count (last name)
FROM employees
GROUP BY department id;

Any column or expression in the SELECT list that is not an aggregate function must be in the
GROUP BY clause. In the second example in the slide, job id is neither in the GROUP BY
clause nor is it being used by a group function, so there is a “not a GROUP BY expression” error.
You can correct the error in the second slide example by adding job id in the GROUP BY
clause.

SELECT department id, job id, COUNT (last name)

FROM employees
GROUP BY department id, job_ id;

Oracle Database: SQL Fundamentalsl 5-19

lllegal Queries Using Group Functions

* You cannot use the WHERE clause to restrict groups.
* You use the HAVING clause to restrict groups.
* You cannot use group functions in the WHERE clause.

SELECT department id, AVG(salary)
FROM employees

WHERE AVG(salary) > 8000

GROUP BY department id;

Error encountered

AR errorwas encountered performing the requested
0 o Cannot use the
WHERE clause to
ORA-00934: group function is not allowed here /
00934, 00000 - "group function is not allowed here" restrict groups
TCause:
"hction:

YWendor code 934Error at Line:3 Colummn:9

ook

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

lllegal Queries Using Group Functions (continued)
The WHERE clause cannot be used to restrict groups. The SELECT statement in the example in
the slide results in an error because it uses the WHERE clause to restrict the display of the
average salaries of those departments that have an average salary greater than $8,000.

However, you can correct the error in the example by using the HAVING clause to restrict
groups:

SELECT department id, AVG (salary)

FROM employees

GROUP BY department id

HAVING AVG(salary) > 8000;

B DEPARTMENT_ID |[{] avcrsalar
Z0 9500
a0 19333.3333333333...
110 10150
50 10033.3333333333...

EC R T N

Oracle Database: SQL Fundamentals| 5-20

Restricting Group Results
EMPLOYEES

DEPARTMENT_ID [§ saLary
1 10 4400
2 zo| 13000 The maximum salary per
3 20 e0ao department when it is
4 50 2500

greater than $10,000

5 50 2600
3] 50 3100
; = = DEPARTMENT_ID | MRS A LA R
g =0 =800 1 20 13000
5 &0 a000 2 an 24000
10 & &000 3 110 12000
11 a0 4200 4 g0 11000
12 go I 11000
13 g0 GE00
15 110 5300
19 110 I 12000‘
20 (rully Fooo

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Restricting Group Results

You use the HAVING clause to restrict groups in the same way that you use the WHERE clause to
restrict the rows that you select. To find the maximum salary in each of the departments that
have a maximum salary greater than $10,000, you need to do the following:

1. Find the average salary for each department by grouping by department number.

2. Restrict the groups to those departments with a maximum salary greater than $10,000.

Oracle Database: SQL Fundamentals| 5 -21

Restricting Group Results with the HAVING Clause

When you use the HAVING clause, the Oracle server restricts
groups as follows:

1. Rows are grouped.

2. The group function is applied.
3. Groups matching the HAVING clause are displayed.

SELECT column, group function
FROM table
[WHERE condition]

[GROUP BY group by expression]
| [HAVING group condition] |
[ORDER BY column] ;

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Restricting Group Results with the HAVING Clause

You use the HAVING clause to specify the groups that are to be displayed, thus further
restricting the groups on the basis of aggregate information.

In the syntax, group condition restricts the groups of rows returned to those groups for
which the specified condition is true.

The Oracle server performs the following steps when you use the HAVING clause:

1. Rows are grouped.
2. The group function is applied to the group.
3. The groups that match the criteria in the HAVING clause are displayed.

The HAVING clause can precede the GROUP BY clause, but it is recommended that you place
the GROUP BY clause first because it is more logical. Groups are formed and group functions are
calculated before the HAVING clause is applied to the groups in the SELECT list.

Note: The WHERE clause restricts rows, whereas the HAVING clause restricts groups.

Oracle Database: SQL Fundamentals| 5 -22

Using the HAVING Clause

SELECT department id, MAX(salary)
FROM employees

GROUP BY department id

[HAVING __ MAX (salary) >10000] ;

H DER&RTMENTJD|H bk (S L R
1 z0 13000
z a0 z4000
3 110 12000
4 &0 11000

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the HAVING Clause

The example in the slide displays the department numbers and maximum salaries for those
departments with a maximum salary greater than $10,000.

You can use the GROUP BY clause without using a group function in the SELECT list. If you
restrict rows based on the result of a group function, you must have a GROUP BY clause as well
as the HAVING clause.

The following example displays the department numbers and average salaries for those
departments with a maximum salary greater than $10,000:

SELECT department id, AVG(salary)

FROM employees

GROUP BY department id

HAVING max (salary) >10000;

B opeparTMENT_ID B AvGrsaLarn
20 8500
a0 19333.333333333..
110 10150
50 10033.333333333..

E R N TR N R

Oracle Database: SQL Fundamentals| 5-23

Using the HAVING Clause

SELECT job id, SUM(salary) PAYROLL
FROM employees

WHERE job id NOT LIKE 'S%REP%'
GROUP BY job id

[HAVING SUM(salary) > 13000 |

ORDER BY SUM(salary) ;

JoB_iD [PavROLL

1 IT_PROGC 19200
£ AD_PRES 24000
3 AD_WP 34000

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the HAVING Clause (continued)

The example in the slide displays the job ID and total monthly salary for each job that has a total
payroll exceeding $13,000. The example excludes sales representatives and sorts the list by the
total monthly salary.

Oracle Database: SQL Fundamentals| 5-24

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

» Group functions:
— Types and syntax
— Use AVG, SUM, MIN, MAX, COUNT
— Use DISTINCT keyword within group functions
— NULL values in a group function
* Grouping rows:
— GROUP BY clause
— HAVING clause

* Nesting group functions

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 5-25

Nesting Group Functions

Display the maximum average salary:

SELECT |MAX (AVG (salary))|
FROM employees
GROUP BY department id;

A GESA LA RY)
1 19333.3333333333333333333333333333333333

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Nesting Group Functions

Group functions can be nested to a depth of two functions. The example in the slide calculates
the average salary for each department id and then displays the maximum average salary.

Note that GROUP BY clause is mandatory when nesting group functions.

Oracle Database: SQL Fundamentals| 5 -26

Quiz

|dentify the guidelines for group functions and the GROUP BY
clause.

1. You cannot use a column alias in the GROUP BY clause.

2. The GROUP BY column must be in the SELECT clause.

3. By using a WHERE clause, you can exclude rows before
dividing them into groups.

4. The GROUP BY clause groups rows and ensures order of
the result set.

5. If you include a group function in a SELECT clause, you
cannot select individual results as well.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Answer: 1, 3

Oracle Database: SQL Fundamentals | 5 -27

Summary

In this lesson, you should have learned how to:

« Use the group functions COUNT, MAX, MIN, SUM, and AVG
* Write queries that use the GROUP BY clause

* Write queries that use the HAVING clause

SELECT column, group function
FROM table
[WHERE conditionl]

[GROUP BY group by expression]
[HAVING group condition]
[ORDER BY column] ;

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Summary
There are several group functions available in SQL, such as AVG, COUNT, MAX, MIN, SUM,
STDDEV, and VARIANCE.

You can create subgroups by using the GROUP BY clause. Further, groups can be restricted using
the HAVING clause.

Place the HAVING and GROUP BY clauses after the WHERE clause in a statement. The order of
the GROUP BY and HAVING clauses following the WHERE clause is not important. Place the
ORDER BY clause at the end.

The Oracle server evaluates the clauses in the following order:
1. If the statement contains a WHERE clause, the server establishes the candidate rows.
2. The server identifies the groups that are specified in the GROUP BY clause.
3. The HAVING clause further restricts result groups that do not meet the group criteria in the
HAVING clause.

Note: For a complete list of the group functions, see Oracle Database SQL Language Reference
for 10g or 11g database.

Oracle Database: SQL Fundamentals| 5 -28

Practice 5: Overview

This practice covers the following topics:
* Writing queries that use the group functions
« Grouping by rows to achieve more than one result
» Restricting groups by using the HAVING clause

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Practice 5: Overview

In this practice, you learn to use group functions and select groups of data.

Oracle Database: SQL Fundamentals| 5-29

‘sejel|ye sl Jo/pue ajoelO ‘010z GybuAdo) paligiyosd uonngusip Jo uononpoidal paziloyineun

Displaying Data
from Multiple Tables Using Joins

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

« Write SELECT statements to access data from more than
one table using equijoins and nonequijoins

« Join a table to itself by using a self-join

* View data that generally does not meet a join condition by
using OUTER joins

* Generate a Cartesian product of all rows from two or more
tables

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Objectives

This lesson explains how to obtain data from more than one table. A join is used to view

information from multiple tables. Therefore, you can join tables together to view information
from more than one table.

Note: Information about joins is found in the “SQL Queries and Subqueries: Joins” section in
Oracle Database SOL Language Reference for 10g or 11g database.

Oracle Database: SQL Fundamentals| 6 -2

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

« Types of JOINS and its syntax
* Natural join:
— TUSING clause
— ON clause
« Self-join
* Nonequijoins
 OUTER join:
— LEFT OUTER join
— RIGHT OUTER join
— FULL OUTER join
» Cartesian product
— Cross join

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 6 -3

Obtaining Data from Multiple Tables

EMPLOYEES DEPARTMENTS
EMPLOVEE_ID | LasT_WAME|F DEPARTMENT_ID DEPARTMENT_ID||E DEP&RTMENT_MAME] LoCATION_ID
1 2000 halen 10 1 104 Administration 1700
2 20YHartstein 20 Z 20 Marketing 1500
3 z02{Fay 0 3 = shipping 1500
4 & 1T 1400
LN]
5 8l sales Z500
I et R ED & ol Executive 1700
& dhels ety ED 7 114 Accounting 1700
ED i Crant fnuily B 194 Contracting 1700

| |

EMPLOYEE_ID | DEPARTMENT_ID | DEPARTMEMT_MAME
1 200 10 Administration
2 201 20 Marketing
3 202 20 Marketing
4 124 S0 Shipping
nan
158 205 110 Accounting
19 206 110 Accounting

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Obtaining Data from Multiple Tables

Sometimes you need to use data from more than one table. In the example in the slide, the report
displays data from two separate tables:

* Employee IDs exist in the EMPLOYEES table.

* Department IDs exist in both the EMPLOYEES and DEPARTMENTS tables.

* Department names exist in the DEPARTMENTS table.

To produce the report, you need to link the EMPLOYEES and DEPARTMENTS tables, and access
data from both of them.

Oracle Database: SQL Fundamentals| 6 -4

Types of Joins

Joins that are compliant with the SQL:1999 standard include
the following:
* Natural joins:
— NATURAL JOIN clause
— USING clause
— ON clause
* OUTER joins:
— LEFT OUTER JOIN
— RIGHT OUTER JOIN
— FULL OUTER JOIN

« Crossjoins

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Types of Joins
To join tables, you can use a join syntax that is compliant with the SQL:1999 standard.

Note
» Before the Oracle9i release, the join syntax was different from the American National
Standards Institute (ANSI) standards. The SQL:1999—compliant join syntax does not offer
any performance benefits over the Oracle-proprietary join syntax that existed in the prior
releases. For detailed information about the proprietary join syntax, see Appendix F: Oracle
Join Syntax.
» The following slide discusses the SQL:1999 join syntax.

Oracle Database: SQL Fundamentalsl 6 -5

Joining Tables Using SQL:1999 Syntax

Use a join to query data from more than one table:

SELECT tablel.column, table2.column
FROM tablel
[NATURAL JOIN table2] |
[JOIN table2 USING (column name)] |
[JOIN table2
ON (tablel.column name = table2.column name)] |
[LEFT | RIGHT | FULL OUTER JOIN table2
ON (tablel.column name = table2.column name)] |
[CROSS JOIN table2];

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Joining Tables Using SQL:1999 Syntax

In the syntax:

* tablel.column denotes the table and the column from which data is retrieved

* NATURAL JOIN joins two tables based on the same column name

*+ JOIN table2 USING column name performs an equijoin based on the column name

* JOIN table2 ON tablel.column name = table2.column name
performs an equijoin based on the condition in the ON clause

* LEFT/RIGHT/FULL OUTER is used to perform OUTER joins

* CROSS JOIN returns a Cartesian product from the two tables

For more information, see the section titled “SELECT” in Oracle Database SQL Language
Reference for 10g or 11g database.

Oracle Database: SQL Fundamentals| 6 -6

Qualifying Ambiguous Column Names

« Use table prefixes to qualify column names that are in
multiple tables.

* Use table prefixes to improve performance.
* Instead of full table name prefixes, use table aliases.

« Table alias gives a table a shorter name:
— Keeps SQL code smaller, uses less memory

* Use column aliases to distinguish columns that have
identical names, but reside in different tables.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Qualifying Ambiguous Column Names

When joining two or more tables, you need to qualify the names of the columns with the table
name to avoid ambiguity. Without the table prefixes, the DEPARTMENT ID column in the
SELECT list could be from either the DEPARTMENTS table or the EMPLOYEES table. It is
necessary to add the table prefix to execute your query. If there are no common column names
between the two tables, there is no need to qualify the columns. However, using the table prefix
improves performance, because you tell the Oracle server exactly where to find the columns.

However, qualifying column names with table names can be time consuming, particularly if the
table names are lengthy. Instead, you can use table aliases. Just as a column alias gives a column
another name, a table alias gives a table another name. Table aliases help to keep SQL code
smaller, therefore, using less memory.

The table name is specified in full, followed by a space, and then the table alias. For example,
the EMPLOYEES table can be given an alias of e, and the DEPARTMENTS table an alias of d.

Guidelines
» Table aliases can be up to 30 characters in length, but shorter aliases are better than longer
ones.
+ If atable alias is used for a particular table name in the FROM clause, that table alias must
be substituted for the table name throughout the SELECT statement.
» Table aliases should be meaningful.
* The table alias is valid for only the current SELECT statement.

Oracle Database: SQL Fundamentals| 6 -7

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

 Types of JOINS and its syntax
* Natural join:
— TUSING clause
— ON clause
« Self-join
* Nonequijoins
 OUTER join:
— LEFT OUTER join
— RIGHT OUTER join
— FULL OUTER join
» Cartesian product
— Cross join

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 6 -8

Creating Natural Joins

« The NATURAL JOIN clause is based on all the columns in
the two tables that have the same name.

* It selects rows from the two tables that have equal values
in all matched columns.

« If the columns having the same names have different data
types, an error is returned.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Creating Natural Joins

You can join tables automatically based on the columns in the two tables that have matching
data types and names. You do this by using the NATURAL JOIN keywords.

Note: The join can happen on only those columns that have the same names and data types in
both tables. If the columns have the same name but different data types, the NATURAL JOIN
syntax causes an error.

Oracle Database: SQL Fundamentals| 6 -9

Retrieving Records with Natural Joins

SELECT department id, department name,
location id, city

FROM departments

NATURAL JOIN locations

~e

DEPARTMENT _ID | DEPARTMEMT _MAME lﬂ LOCATION_ID | CITY
1 GOIT 1400 Southlake
2 S0 Shipping 1500 Zouth San Francisco
3 10 Administration 1700 Seattle
4 90 Execitive 1700 Seattle
] 110 Accounting 1700 Sesttle
E 190 Cortracting 1700 Seattle
7 20 Marketing 1800 Taranta
g g0 Sales 2500 Cecfard

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Retrieving Records with Natural Joins
In the example in the slide, the LOCATIONS table is joined to the DEPARTMENT table by the
LOCATION ID column, which is the only column of the same name in both tables. If other
common columns were present, the join would have used them all.
Natural Joins with a WHERE Clause
Additional restrictions on a natural join are implemented by using a WHERE clause. The
following example limits the rows of output to those with a department ID equal to 20 or 50:

SELECT department id, department name,
location id, city

FROM departments

NATURAL JOIN locations

WHERE department id IN (20, 50);

Oracle Database: SQL Fundamentals| 6 -10

Creating Joins with the UsING Clause

« If several columns have the same names but the data
types do not match, use the USING clause to specify the

columns for the equijoin.

* Use the USING clause to match only one column when
more than one column matches.

 The NATURAL JOIN and USING clauses are mutually
exclusive.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Creating Joins with the USING Clause

Natural joins use all columns with matching names and data types to join the tables. The USING
clause can be used to specify only those columns that should be used for an equijoin.

Oracle Database: SQL Fundamentals| 6 -11

Joining Column Names

EMPLOYEES DEPARTMENTS
EMPLOVEE_ID |§ DEPARTMENT_ID DEPARTMENT_ID | DEPARTMENT_MAME
1 200 10 1 10 Administration
Z 201 20 » 20 Marketing
3 z0z 20 _I 3 50 Shipping
4 205 110 T > 01T
5 206 110 5 g0 Sales
3 100 a0 f 90 Executive
7 101 g 7 110 Accounting
g 10z a0 g 190 Contracting
] 103 &0
10 104 B0 I
I Primary key

Foreign key

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Joining Column Names
To determine an employee’s department name, you compare the value in the DEPARTMENT _ID
column in the EMPLOYEES table with the DEPARTMENT _ID values in the DEPARTMENTS
table. The relationship between the EMPLOYEES and DEPARTMENTS tables is an equijoin; that
is, values in the DEPARTMENT ID column in both the tables must be equal. Frequently, this
type of join involves primary and foreign key complements.

Note: Equijoins are also called simple joins or inner joins.

Oracle Database: SQL Fundamentals| 6 -12

Retrieving Records with the UsING Clause

SELECT employee id, last name,
location id, department id

FROM employees JOIN departments

USING (departmentﬁid) ;

EmPLOYEEID |[§ LasT_MaME|f LocaTion D [§ DEPARTMENT_ID

1 200 Whalen 1700 10
2 201 Hartstein 1800 20
3 202 Fay 1800 20
4 144 vargas 1500 =1
5 143 Matas 1500 50
g 142 Davies 1500 50
7 141 Rajs 1500 50
g 124 Mourgos 1500 50
18 206 Gietz 1700 110
19 205 Higgins 1700 110

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Retrieving Records with the UsiNG Clause

In the example in the slide, the DEPARTMENT ID columns in the EMPLOYEES and
DEPARTMENTS tables are joined and thus the LOCATION ID of the department where an
employee works is shown.

Oracle Database: SQL Fundamentals| 6-13

Using Table Aliases with the UsING Clause

* Do not qualify a column that is used in the USING clause.

* If the same column is used elsewhere in the SQL
statement, do not alias it.

SELECT l.city, d.department name

FROM locations 1 JOIN departments d
USING (location id)

WHERE d.location id = 1400;

Error encountered

6 AR errorwas encountered perfarming the requested operation:

OFA-25154: column part of USING clause cannot have qualifier

25154, 00000 - "column part of USING clause cannot have qualifier”

*Cause: Columnsthat are used for a named-join {either a NATURAL join
or ajoin with a USING clausze) cannot have an explicit qualifier.

*Action: Remowe the qualifier.

Wendor code 25154Error at Line:4 Column:g

T

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Table Aliases with the USING clause

When joining with the USING clause, you cannot qualify a column that is used in the USING
clause itself. Furthermore, if that column is used anywhere in the SQL statement, you cannot
alias it. For example, in the query mentioned in the slide, you should not alias the
location_ id column in the WHERE clause because the column is used in the USING clause.

The columns that are referenced in the USING clause should not have a qualifier (table name or
alias) anywhere in the SQL statement. For example, the following statement is valid:

SELECT 1l.city, d.department name

FROM locations 1 JOIN departments d USING (location id)

WHERE location id = 1400;

The columns that are common in both the tables, but not used in the USING clause, must be
prefixed with a table alias; otherwise, you get the “column ambiguously defined” error.

In the following statement, manager id is present in both the employees and
departments table; if manager id is not prefixed with a table alias, it gives a “column
ambiguously defined” error.

The following statement is valid:
SELECT first name, d.department name, d.manager_ id

FROM employees e JOIN departments d USING (department id)
WHERE department id = 50;

Oracle Database: SQL Fundamentals| 6 -14

Creating Joins with the oN Clause

« The join condition for the natural join is basically an
equijoin of all columns with the same name.

« Use the ON clause to specify arbitrary conditions or specify
columns to join.

« The join condition is separated from other search
conditions.

* The ON clause makes code easy to understand.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Creating Joins with the oN Clause

Use the ON clause to specify a join condition. With this, you can specify join conditions separate
from any search or filter conditions in the WHERE clause.

Oracle Database: SQL Fundamentals| 6 -15

Retrieving Records with the oN Clause

SELECT e.employee id, e.last name, e.department id,
d.department id, d.location id
FROM employees e JOIN departments d

ON e.department id = d.department id)l;

EMPFLCYEE_ID |LAST_NAIU1E DEF‘ARTMENT_IDIDEF‘ARTMENT_ID_l Lo ATIOR_[D

1 200 Whalen 10 10 1700
z2 201 Hartstein 20 20 1300
3 202 Fay 20 20 1&00
g 144 Yargas 50 50 1500
=] 143 Matos =11 50 1500
[142 Davies 50 50 1500
7 141 Rajz 50 50 1500
g 124 Mourgos 50 50 1500
9 103 Hunold [0} [1400
10 104 Ernzt al a0 1400
11 107 Lorentz &0 &0 1400

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Retrieving Records with the oN Clause

In this example, the DEPARTMENT _ID columns in the EMPLOYEES and DEPARTMENTS table
are joined using the ON clause. Wherever a department ID in the EMPLOYEES table equals a
department ID in the DEPARTMENTS table, the row is returned. The table alias is necessary to
qualify the matching column names.

You can also use the ON clause to join columns that have different names. The parenthesis
around the joined columns, as in the example in the slide, (e.department id =
d.department id) is optional. So, even ON e.department id =
d.department id will work.

Note: When you use the Execute Statement icon to run the query, SQL Developer suffixes a
¢ 1’ to differentiate between the two department ids.

Oracle Database: SQL Fundamentals| 6 -16

Creating Three-Way Joins with the oN Clause

SELECT employee id, city, department name
FROM employees e

JOIN departments d
ON d.department id = e.department id
JOIN locations 1
ON d.location id = l.location id;
= =
EmPLOYEELID |[§ crTy [DEPARTMENT_mAME
1 100 Seattle Executive
2 101 Seattle Executive
3 102 Seattle Executive
L) 103 Southlake IT
5 104 Sauthlake IT
& 107 Sauthlake IT
7 124 South San Francizco Shipping
g 141 South San Francisco Shipping
9 142 South San Francisco Shipping

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Creating Three-Way Joins with the oN Clause

A three-way join is a join of three tables. In SQL:1999—compliant syntax, joins are performed
from left to right. So, the first join to be performed is EMPLOYEES JOIN DEPARTMENTS. The
first join condition can reference columns in EMPLOYEES and DEPARTMENTS but cannot
reference columns in LOCATIONS. The second join condition can reference columns from all
three tables.

Note: The code example in the slide can also be accomplished with the USING clause:

SELECT e.employee id, l.city, d.department name
FROM employees e

JOIN departments d

USING (department id)

JOIN locations 1

USING (location_ id)

Oracle Database: SQL Fundamentals| 6 -17

Applying Additional Conditions to a Join

Use the AND clause or the WHERE clause to apply additional
conditions:

SELECT e.employee id, e.last name, e.department id,
d.department id, d.location id
FROM employees e JOIN departments d

ON (e.department id = d.department id)
AND e.manager id = 149 |;
Or

SELECT e.employee id, e.last name, e.department id,
d.department id, d.location id

FROM employees e JOIN departments d

ON (e.department id = d.department id)

WHERE e.maﬁager_id = 149|;

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Applying Additional Conditions to a Join
You can apply additional conditions to the join.

The example shown performs a join on the EMPLOYEES and DEPARTMENTS tables and, in

addition, displays only employees who have a manager ID of 149. To add additional conditions
to the ON clause, you can add AND clauses. Alternatively, you can use a WHERE clause to apply

additional conditions.

EMPLOYEE_ID | LAST_MAME | DEPARTMENT_ID |DEPARTMENT_ID_1 |LOCATICMN_ID
1 174 Abel g0 g0 2500

2 176 Taylar ao 50 2500

Oracle Database: SQL Fundamentals| 6 -18

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

 Types of JOINS and its syntax
* Natural join:
— TUSING clause
— ON clause
« Self-join
* Nonequijoins
 OUTER join:
— LEFT OUTER join
— RIGHT OUTER join
— FULL OUTER join
» Cartesian product
— Cross join

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 6 -19

Joining a Table to Itself

EMPLOYEES (WORKER) EMPLOYEES (MANAGER)
EMPLOYEEID |[§ LAST_MAME|[MAMAGER_ID EMPLOYEEID |[§ LAST_MAME
200 Whalen 101 200 Whalen
201 Hartstein 100 201 Hartstein
202 Fay 201 202 Fay
205 Higgins 101 205 Higgins
206 Gietz 205 206 Gietz
100 King il 100 King
101 kochhar 100 101 kochhar
102 De Haan 1040 102 De Haan
103 Hunald 10z 103 Hunald
104 Ernst 103 104 Ernst

A a

MANAGER ID in the WORKER table is equal to
EMPLOYEE ID in the MANAGER table.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Joining a Table to Itself

Sometimes you need to join a table to itself. To find the name of each employee’s manager, you
need to join the EMPLOYEES table to itself, or perform a self-join. For example, to find the
name of Lorentz’s manager, you need to:

* Find Lorentz in the EMPLOYEES table by looking at the LAST NAME column

* Find the manager number for Lorentz by looking at the MANAGER _ID column. Lorentz’s

manager number is 103.
* Find the name of the manager with EMPLOYEE ID 103 by looking at the LAST NAME

column. Hunold’s employee number is 103, so Hunold is Lorentz’s manager.

In this process, you look in the table twice. The first time you look in the table to find Lorentz in
the LAST NAME column and the MANAGER _ID value of 103. The second time you look in the
EMPLOYEE_ID column to find 103 and the LAST NAME column to find Hunold.

Oracle Database: SQL Fundamentals| 6 -20

Self-Joins Using the ON Clause

SELECT worker.last name emp, manager.last name mgr
FROM employees worker JOIN employees manager
ON (worker.manager id = manager.employee id);

EMP MR

1 Hunold De Haan
2 Fay Hartstein
3 Cietz Higgins
4 Lorentz Hunald
5 Ernst Hunold
6 Zlotkey King

7 Mourgos King

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Self-Joins Using the oN Clause

The ON clause can also be used to join columns that have different names, within the same table
or in a different table.

The example shown is a self-join of the EMPLOYEES table, based on the EMPLOYEE ID and
MANAGER ID columns.

Note: The parenthesis around the joined columns as in the example in the slide,
(e.manager id = m.employee id) is optional. So, even ON e.manager id =
m.employee id will work.

Oracle Database: SQL Fundamentals | 6 -21

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

 Types of JOINS and its syntax
* Natural join:
— TUSING clause
— ON clause
« Self-join
* Nonequijoins
 OUTER join:
— LEFT OUTER join
— RIGHT OUTER join
— FULL OUTER join
» Cartesian product
— Cross join

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 6 -22

Nonequijoins

EMPLOYEES JOB GRADES

LasT_ramE|f saLary GRADE_LEVEL [[] LOWEST_SAL |} HIGHEST_sAL
1 Whalen 4400 1A 1000 2999
2 Hartstein 13000 2B 3000 59949
3 Fay &Oo0o % C &000 9999
4 Higgins 12000 4 D 10000 148999
5 Cietz 300 S5 E 15000 24999
B King 24000 6 F 25000 40000
7 Kaochhar 17000
e — The JOB_GRADES table defines the
oo 000 LOWEST SAL and HIGHEST SAL range

. of values for each GRADE LEVEL.

13 Taylor 8600 Therefore, the GRADE LEVEL column
20]Srant L can be used to assign grades to each

employee.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Nonequijoins

A nonequijoin is a join condition containing something other than an equality operator.

The relationship between the EMPLOYEES table and the JOB_GRADES table 1s an example of a
nonequijoin. The SALARY column in the EMPLOYEES table ranges between the values in the
LOWEST SAL and HIGHEST SAL columns of the JOB_GRADES table. Therefore, each
employee can be graded based on their salary. The relationship is obtained using an operator
other than the equality (=) operator.

Oracle Database: SQL Fundamentals| 6 -23

Retrieving Records with Nonequijoins

SELECT e.last name, e.salary, j.grade level
FROM employees e JOIN job grades j

ON e.;aléry

BETWEEN j.lowest sal AND j.highest sall;

LasT_NAME[[saiary [GRADE_LEVEL
1 vargas 2500 A
Z Matos 2600 A
3 Dawies 3100E
4 Rajz 35006
5 Lorentz 4200 B
& Whalen 4400 B
7 Mourgos S8300E
& Ernst /000 C
3 Fay &000 C

10 Cramt FoooC

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Retrieving Records with Nonequijoins

The example in the slide creates a nonequijoin to evaluate an employee’s salary grade. The
salary must be between any pair of the low and high salary ranges.

It is important to note that all employees appear exactly once when this query is executed. No
employee is repeated in the list. There are two reasons for this:

* None of the rows in the JOB_GRADES table contain grades that overlap. That is, the salary
value for an employee can lie only between the low salary and high salary values of one of
the rows in the salary grade table.

» All of the employees’ salaries lie within the limits provided by the job grade table. That is,
no employee earns less than the lowest value contained in the LOWEST SAL column or
more than the highest value contained in the HIGHEST SAL column.

Note: Other conditions (such as <= and >=) can be used, but BETWEEN is the simplest.
Remember to specify the low value first and the high value last when using the BETWEEN
condition. The Oracle server translates the BETWEEN condition to a pair of AND conditions.
Therefore, using BETWEEN has no performance benefits, but should be used only for logical
simplicity.

Table aliases have been specified in the slide example for performance reasons, not because of
possible ambiguity.

Oracle Database: SQL Fundamentals| 6 -24

Lesson Agenda

 Types of JOINS and its syntax
« Natural join:
— TUSING clause
— ON clause
« Self-join
* Nonequijoins
* OUTER join:
— LEFT OUTER join
— RIGHT OUTER join
— FULL OUTER join
» Cartesian product
— Cross join

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals | 6 -25

Returning Records with No Direct Match
Using OUTER Joins
DEPARTMENTS Equijoin with EMPLOYEES
DEPARTMENT_NAME| DERARTMENT_ID DER RTMERNT_ID | LA ST_RAME

1 Administratian 10 1 10 Whalen
2 Marketing 20 z 20 Hartstein
3 Shipping 50 3 20 Fay
417 &0 4 110 Higgins
5 Sales g0 5 110 Gietz
6 Executive an 3 90 Eing
7 Accounting 110 7 90 Kochhar
§ Contracting I 150 g 90 De Haan

9 50 Hunald

1 10 B0 Ernst

There are no employees
in department 190. 18 RICe!

19 50 Taylar
Employee “Grant” has I
not been assigned a
department ID.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Returning Records with No Direct Match Using OUTER Joins

If a row does not satisfy a join condition, the row does not appear in the query result.

In the slide example, a simple equijoin condition is used on the EMPLOYEES and
DEPARTMENTS tables to return the result on the right. The result set does not contain the
following:

* Department ID 190, because there are no employees with that department ID recorded in
the EMPLOYEES table

* The employee with the last name of Grant, because this employee has not been assigned a
department ID

To return the department record that does not have any employees, or employees that do not
have an assigned department, you can use an OUTER join.

Oracle Database: SQL Fundamentals| 6 - 26

INNER Versus OUTER Joins

* In SQL:1999, the join of two tables returning only matched
rows is called an INNER join.

* Ajoin between two tables that returns the results of the
INNER join as well as the unmatched rows from the left (or

right) table is called a left (or right) OUTER join.

* Ajoin between two tables that returns the results of an
INNER join as well as the results of a left and right join is a

full OUTER join.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

INNER Versus OUTER Joins

Joining tables with the NATURAL JOIN, USING, or ON clauses results in an INNER join. Any
unmatched rows are not displayed in the output. To return the unmatched rows, you can use an
OUTER join. An OUTER join returns all rows that satisfy the join condition and also returns
some or all of those rows from one table for which no rows from the other table satisfy the join
condition.

There are three types of OUTER joins:
« LEFT OUTER
« RIGHT OUTER
« FULL OUTER

Oracle Database: SQL Fundamentals| 6 - 27

LEFT OUTER JOIN

SELECT e.last name, e.department id, d.department name
FROM employees e| LEFT OUTER JOIN|departments d
ON (e.department id = d.department id) ;

LaST_MAME|[] DEPARTMENTID [§ DEPARTMENT_MAME
1 Whalen 10 Administration
2 Fay 20 Marketing
3 Hartstein 20 Marketing
4 Wargas 50 Shipping
5 Matoz 50 Shipping
16 kFochhar 90 Executive
17 EKing 90 Executive
18 Cietz 110 Accounting
19 Higgins 110 Accounting
20 Grant {hully Cnully

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

LEFT OUTER JOIN

This query retrieves all the rows in the EMPLOYEES table, which is the left table, even if there is
no match in the DEPARTMENTS table.

Oracle Database: SQL Fundamentals| 6 -28

RIGHT OUTER JOIN

SELECT e.last name, d.department id, d.department name
FROM employees e|RIGHT OUTER JOIN|departments d

ON (e.department id = d.department id) ;
LAST_NAME| DEPARTMENT_ID | DEPARTMENT_MAME

1 whalen 10 Administration
Z Hartstein 20 Marketing
3 Fay 20 Marketing
4 Davies 50 Shipping
5 “argas 50 Shipping
6 Rajs 50 Shipping
7 Mourgos 50 Shipping
5 Matos 50 Shipping

18 Higgins 110 Accounting

19 Gietz 110 Accounting

20 {null) 190 Contracting

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

RIGHT OUTER JOIN

This query retrieves all the rows in the DEPARTMENTS table, which is the table at the right,
even if there is no match in the EMPLOYEES table.

Oracle Database: SQL Fundamentals| 6 -29

FULL OUTER JOIN

SELECT e.last name, d.department id, d.department name
FROM employees e|FULL OUTER JOIN|departments d
ON (e.department id = d.department id) ;

L& ST_RIAME | DEPARTMENT_ID | DERARTMENT_MAME
1 Whalen 10 Administration
2 Hartstein 20 Marketing
3 Fay 20 Marketing
4 Higgins 110 Accounting
17 Zlotkey 50 Sales
15 Abel 50 Sales
19 Taylor G0 Sales
20 Grant fhully fnull)
21 {null) 190 Contracting

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

FULL OUTER JOIN

This query retrieves all rows in the EMPLOYEES table, even if there is no match in the
DEPARTMENTS table. It also retrieves all rows in the DEPARTMENTS table, even if there is no

match in the EMPLOYEES table.

Oracle Database: SQL Fundamentals| 6 - 30

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

« Types of JOINS and its syntax

* Natural join:
— USING clause
— ON clause
« Self-join
* Nonequiijoin
* OUTER join:
— LEFT OUTER join
— RIGHT OUTER join
— FULL OUTER join
« Cartesian product
— Cross join

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals | 6 - 31

Cartesian Products

* A Cartesian product is formed when:
— Ajoin condition is omitted
— A join condition is invalid
— All rows in the first table are joined to all rows in the second
table

« Always include a valid join condition if you want to avoid a
Cartesian product.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Cartesian Products

When a join condition is invalid or omitted completely, the result is a Cartesian product, in
which all combinations of rows are displayed. All rows in the first table are joined to all rows in
the second table.

A Cartesian product tends to generate a large number of rows and the result is rarely useful. You
should, therefore, always include a valid join condition unless you have a specific need to
combine all rows from all tables.

Cartesian products are useful for some tests when you need to generate a large number of rows
to simulate a reasonable amount of data.

Oracle Database: SQL Fundamentals | 6 - 32

Generating a Cartesian Product
EMPLOYEES (20 rows) DEPARTMENTS (8 rows)
EMPLOYEE_ID | LAST_NAME| DERARTMENT_ID DEPARTMENT_ID | DEPARTMENT_NAME| LOCATION_ID
1 200 'Whalen 10 1 10 Administration 1700
z 201 Hartstein 20 2 20 Marketing 1800
3 202 Fay 20 3 50 Shipping 1500
4 205 Higgins 110 4 a01T 1400
een 5 &0 Sales 2500
19 176 Tavlar = & a0 Executive 1700
t 7 110 Accounting 1700
20 178 Grant trully
g 190 Caontracting 1700
Cartesian prOdUCt' EMPLOYEE_ID | DEPARTMENT_ID| LOCATION_ID
- 1 200 10 1700
20 x 8 =160 rows 2 201 20 1700
LI
71 z00 10 1800
7z z01 z0 1800
LI
159 176 &0 1700
160 178 (nully 1700

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Generating a Cartesian Product

A Cartesian product is generated if a join condition is omitted. The example in the slide displays
the employee last name and the department name from the EMPLOYEES and DEPARTMENTS
tables. Because no join condition was specified, all rows (20 rows) from the EMPLOYEES table
are joined with all rows (8 rows) in the DEPARTMENTS table, thereby generating 160 rows in
the output.

Oracle Database: SQL Fundamentals| 6 -33

Creating Cross Joins

« The CROSS JOIN clause produces the cross-product of
two tables.

« This is also called a Cartesian product between the two
tables.

SELECT last name, department name
FROM employees
|CROSS JOIN degartmentsl;

LAST_NAME| DERARTMENT_MAME
1 Abel Adminiztration
Z Davies Administration
3 De Haan Administration
4 Ernst Adminiztration
5 Fay Administration
155 Vargas Contracting
159 wWhalen Contracting
160 Zlotkey Contracting

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Creating Cross Joins

The example in the slide produces a Cartesian product of the EMPLOYEES and DEPARTMENTS
tables.

The CROSS JOIN technique can be applied to many situations usefully. For example, to return
total labor cost by office by month, even if month X has no labor cost, you can do a cross join of
Offices with a table of all Months.

It is a good practice to explicitly state CROSS JOIN in your SELECT when you intend to create

a Cartesian product. Therefore, it is very clear that you intend for this to happen and it is not the
result of missing joins.

Oracle Database: SQL Fundamentals | 6 - 34

Quiz

The SQL:1999 standard join syntax supports the following
types of joins. Which of these join types does Oracle join syntax
support?
1. Equijoins
Nonequijoins
Left OUTER join
Right OUTER join
Full OUTER join
Self joins
Natural joins
Cartesian products

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Answer: 1,2, 3,4,6, 8

©®NO Ok wN

Oracle Database: SQL Fundamentals| 6 -35

Summary

In this lesson, you should have learned how to use joins to
display data from multiple tables by using:

* Equijoins

* Nonequijoins

* OUTER joins

« Self-joins

» Cross joins

* Natural joins

« Full (or two-sided) OUTER joins

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Summary

There are multiple ways to join tables.

Types of Joins

* Equijoins

* Nonequijoins

* OUTER joins

+ Self-joins

* Cross joins

* Natural joins

* Full (or two-sided) OUTER joins

Cartesian Products

A Cartesian product results in the display of all combinations of rows. This is done by either
omitting the WHERE clause or by specifying the CROSS JOIN clause.
Table Aliases

» Table aliases speed up database access.

» Table aliases can help to keep SQL code smaller by conserving memory.

» Table aliases are sometimes mandatory to avoid column ambiguity.

Oracle Database: SQL Fundamentals| 6 - 36

Practice 6: Overview

This practice covers the following topics:
« Joining tables using an equijoin
« Performing outer and self-joins
* Adding conditions

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Practice 6: Overview

This practice 1s intended to give you experience in extracting data from more than one table
2 using the SQL:1999—compliant joins.

Oracle Database: SQL Fundamentals | 6 - 37

‘sejel|ye sl Jo/pue ajoelO ‘010z GybuAdo) paligiyosd uonngusip Jo uononpoidal paziloyineun

Using Subqueries to Solve Queries

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:
* Define subqueries
« Describe the types of problems that the subqueries can
solve
« List the types of subqueries
* Write single-row and multiple-row subqueries

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Objectives
In this lesson, you learn about the more advanced features of the SELECT statement. You can
write subqueries in the WHERE clause of another SQL statement to obtain values based on an
unknown conditional value. This lesson also covers single-row subqueries and multiple-row

subqueries.

Oracle Database: SQL Fundamentals| 7 -2

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

« Subquery: Types, syntax, and guidelines
« Single-row subqueries:

— Group functions in a subquery

— HAVING clause with subqueries

* Multiple-row subqueries
— Use ALL or ANY operator.

* Using the EXISTS operator
* Null values in a subquery

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 7 -3

Using a Subquery to Solve a Problem

Who has a salary greater than Abel’s?

Main query:

Which employees have salaries greater than Abel’s

.."' “7 salary? T

Subquery: ‘

-

%,‘? What is Abel’s salary?

@

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using a Subquery to Solve a Problem
Suppose you want to write a query to find out who earns a salary greater than Abel’s salary.

To solve this problem, you need two queries: one to find how much Abel earns, and a second
query to find who earns more than that amount.

You can solve this problem by combining the two queries, placing one query inside the other
query.

The inner query (or subquery) returns a value that is used by the outer query (or main query).
Using a subquery is equivalent to performing two sequential queries and using the result of the
first query as the search value in the second query.

Oracle Database: SQL Fundamentalsl 7 -4

Subquery Syntax

SELECT select list

FROM table

WHERE expr operator
(SELECT select list
FROM table) ;

« The subquery (inner query) executes before the main
query (outer query).

* The result of the subquery is used by the main query.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Subquery Syntax
A subquery is a SELECT statement that is embedded in the clause of another SELECT
statement. You can build powerful statements out of simple ones by using subqueries. They can

be very useful when you need to select rows from a table with a condition that depends on the
data in the table itself.

You can place the subquery in a number of SQL clauses, including the following:
« WHERE clause
« HAVING clause
« FROM clause

In the syntax:
operator includes a comparison condition such as >, =, or IN

Note: Comparison conditions fall into two classes: single-row operators (>, =, >=, <, <>, <=)
and multiple-row operators (IN, ANY, ALL, EXISTS).

The subquery is often referred to as a nested SELECT, sub-SELECT, or inner SELECT
statement. The subquery generally executes first, and its output is used to complete the query
condition for the main (or outer) query.

Oracle Database: SQL Fundamentalsl 7 -5

Using a Subquery

SELECT last name, salary

FROM employees

WHERE salary > 11000 <]
(SELECT salary
FROM employees

WHERE last name = 'Abel');
LasT_NAME | saLARY
1 Hartztein 13000
Z Higgins 12000
3 king 24000
4 Kochhar 17000
5 Ce Haan 17000

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using a Subquery

In the slide, the inner query determines the salary of employee Abel. The outer query takes the

result of the inner query and uses this result to display all the employees who earn more than
employee Abel.

Oracle Database: SQL Fundamentals| 7 -6

Guidelines for Using Subqueries

« Enclose subqueries in parentheses.

« Place subqueries on the right side of the comparison
condition for readability. (However, the subquery can
appear on either side of the comparison operator.)

* Use single-row operators with single-row subqueries and
multiple-row operators with multiple-row subqueries.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Guidelines for Using Subqueries

* A subquery must be enclosed in parentheses.

 Place the subquery on the right side of the comparison condition for readability. However,
the subquery can appear on either side of the comparison operator.

» Two classes of comparison conditions are used in subqueries: single-row operators and
multiple-row operators.

Oracle Database: SQL Fundamentals| 7 -7

Types of Subqueries

« Single-row subquery

Main query

Subquery returns

A 4

ST CLERK

* Multiple-row subquery

Main query

returns
‘ Subquery > zz—CLERK

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Types of Subqueries
» Single-row subqueries: Queries that return only one row from the inner SELECT statement
* Multiple-row subqueries: Queries that return more than one row from the inner SELECT
statement

Note: There are also multiple-column subqueries, which are queries that return more than one
column from the inner SELECT statement. These are covered in the Oracle Database: SOL

Fundamentals 11 course.

Oracle Database: SQL Fundamentals| 7 -8

Lesson Agenda

 Subquery: Types, syntax, and guidelines
« Single-row subqueries:

— Group functions in a subquery

— HAVING clause with subqueries

* Multiple-row subqueries
— Use ALL or ANY operator

* Using the EXISTS operator
* Null values in a subquery

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 7 -9

Single-Row Subqueries

* Return only one row
« Use single-row comparison operators

Operator Meaning

= Equal to

> Greater than

== Greater than or equal to
< Less than

<= Less than or equal to
<= Not equal to

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Single-Row Subqueries
A single-row subquery is one that returns one row from the inner SELECT statement. This type
of subquery uses a single-row operator. The slide gives a list of single-row operators.

Example:

Display the employees whose job ID is the same as that of employee 141:
SELECT last name, job id
FROM employees
WHERE job id =
(SELECT job id
FROM employees
WHERE employee id = 141);

LasT_mManE B JoB_ID
1 Rajs ST_CLERK
2 Davies ST_CLERK
3 Matos ST_CLERK
4 Vargas ST_CLERE

Oracle Database: SQL Fundamentals| 7 -10

Executing Single-Row Subqueries

SELECT last name, job id, salary

FROM employees

WHERE job id = < 1 SA_REP

(SELECT job id

FROM employees

WHERE last name = 'Taylor')
AND salary > < 1 8600

(SELECT salary

FROM employees

WHERE last name = 'Taylor') ;

LasT_mame [Jos_in [§ saLarr
1 Abel SA_REP 11000

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Executing Single-Row Subqueries

A SELECT statement can be considered as a query block. The example in the slide displays
employees who do the same job as “Taylor,” but earn more salary than him.

The example consists of three query blocks: the outer query and two inner queries. The inner
query blocks are executed first, producing the query results SA_ REP and 8600, respectively.
The outer query block is then processed and uses the values that were returned by the inner
queries to complete its search conditions.

Both inner queries return single values (SA_REP and 8600, respectively), so this SQL
statement is called a single-row subquery.

Note: The outer and inner queries can get data from different tables.

Oracle Database: SQL Fundamentals| 7 -11

Using Group Functions in a Subquery

SELECT last name, job id, salary
FROM employees

WHERE salary = <] 2500
(SELECT MIN(salary)
FROM employees) ;

LasT_mamE | JoeD [saLary
1 vargas ST_CLERK 2500

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using Group Functions in a Subquery

You can display data from a main query by using a group function in a subquery to return a
single row. The subquery is in parentheses and is placed after the comparison condition.

The example in the slide displays the employee last name, job ID, and salary of all employees
whose salary is equal to the minimum salary. The MIN group function returns a single value
(2500) to the outer query.

Oracle Database: SQL Fundamentals|l 7 -12

HAVING Clause with Subqueries

* The Oracle server executes the subqueries first.

 The Oracle server returns results into the HAVING clause
of the main query.

SELECT department id, MIN(salary)

FROM employees

GROUP BY department id 2500

|[HAVING MIN(salary)| > <« ,
(SELECT MIN(salary)
FROM employees
WHERE department id = 50)|;

[DEPARTMENTJD|E MINESALARY)
fnully 7000

20 &000

a0 17000

110 5300

&0 8600

10 4400

&0 4200

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

HAVING Clause with Subqueries

L = N) RN T VI

You can use subqueries not only in the WHERE clause, but also in the HAVING clause. The
Oracle server executes the subquery and the results are returned into the HAVING clause of the
main query.

The SQL statement in the slide displays all the departments that have a minimum salary greater
than that of department 50.

Example:

Find the job with the lowest average salary.
SELECT job_id, AVG(salary)

FROM employees
GROUP BY job id
HAVING AVG (salary) = (SELECT MIN (AVG (salary))

FROM employees
GROUP BY job id);

JoB D (B AvGsALLRY
1 ST_CLERE 2525

Oracle Database: SQL Fundamentalsl 7 -13

What Is Wrong with This Statement?

SELECT employee id, last name
FROM employees
WHERE |sa1ary|=

(SELECT MIN(salary)
FROM employees

|GROUP BY department_idd;

Error encountered i Single-row operator
o An er:_orwas encountered perfarming the requested W|th multiple-row
operation:
subquery

ORA-01427: single-row subgquery returns more than
ane Fow

01427. 00000 - "single-row subgquery returns mare
than ane row"

*Cause:

*Actian:

Wendor code 1427Error at Line:1

T

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

What Is Wrong with This Statement?

A common error with subqueries occurs when more than one row is returned for a single-row
subquery.

In the SQL statement in the slide, the subquery contains a GROUP BY clause, which implies that
the subquery will return multiple rows, one for each group that it finds. In this case, the results of
the subquery are 4400, 6000, 2500, 4200, 7000, 17000, and 8300.

The outer query takes those results and uses them in its WHERE clause. The WHERE clause
contains an equal (=) operator, a single-row comparison operator that expects only one value.
The = operator cannot accept more than one value from the subquery and, therefore, generates
the error.

To correct this error, change the = operator to IN.

Oracle Database: SQL Fundamentals| 7 -14

No Rows Returned by the Inner Query

SELECT last name, job id
FROM employees
WHERE job id =

(SELECT job id
FROM employees
WHERE last name = 'Haas')|;

0 rows selected|

Subquery returns no rows because there is no
employee named “Haas.”

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

No Rows Returned by the Inner Query

Another common problem with subqueries occurs when no rows are returned by the inner query.

In the SQL statement in the slide, the subquery contains a WHERE clause. Presumably, the
intention is to find the employee whose name is Haas. The statement is correct, but selects no
rows when executed because there is no employee named Haas. Therefore, the subquery returns
Nno TOWS.

The outer query takes the results of the subquery (null) and uses these results in its WHERE
clause. The outer query finds no employee with a job ID equal to null, and so returns no rows. If

a job existed with a value of null, the row is not returned because comparison of two null values
yields a null; therefore, the WHERE condition is not true.

Oracle Database: SQL Fundamentals| 7 -15

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

» Subquery: Types, syntax, and guidelines
« Single-row subqueries:

— Group functions in a subquery

— HAVING clause with subqueries

* Multiple-row subqueries
— Use IN, ALL, Or ANY

* Using the EXISTS operator
* Null values in a subquery

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 7 -16

Multiple-Row Subqueries

* Return more than one row
« Use multiple-row comparison operators

Operator Meaning

IN Equal to any member in the list

ANY Must be preceded by =, !=, >, <, <=, >=. Compares
a value to each value in a list or returned by a query.
Evaluates to FALSE if the query returns no rows.

ALL Must be preceded by =, ! =, >, <, <=, >=. Compares
a value to every value in a list or returned by a
query. Evaluates to TRUE if the query returns no
rows.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Multiple-Row Subqueries

Subqueries that return more than one row are called multiple-row subqueries. You use a
multiple-row operator, instead of a single-row operator, with a multiple-row subquery. The
multiple-row operator expects one or more values:

SELECT last name, salary, department id

FROM employees

WHERE salary IN (SELECT MIN (salary)
FROM employees
GROUP BY department id) ;

Example:
Find the employees who earn the same salary as the minimum salary for each department.

The inner query is executed first, producing a query result. The main query block is then
processed and uses the values that were returned by the inner query to complete its search
condition. In fact, the main query appears to the Oracle server as follows:

SELECT last name, salary, department id

FROM employees

WHERE salary IN (2500, 4200, 4400, 6000, 7000, 8300,
8600, 17000) ;

Oracle Database: SQL Fundamentals | 7 -17

Using the ANY Operator
in Multiple-Row Subqueries

SELECT employee id, last name, job id, salary
FROM employees 9000, 6000, 4200

WHERE salary <|ANY||: |

(SELECT salary

FROM employees

WHERE jOb_id = 'IT PROG')
AND job id <> 'IT PROG';

EMPLOTEEID |[§ LasT_MaME|f Joeip [saLary

1 144 Vargas ST_CLERK. 2500

2 143 Matos ST_CLERK 2600

3 142 Davies ST_CLERK 3100

4 141 Rajs ST_CLERK, 3500

5 200 Whalen AD_ASST 4400

3 206 Gietz AC_ACCOUNT 8300

10 176 Taylar SA_REP 8600

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the ANY Operator in Multiple-Row Subqueries

The ANY operator (and its synonym, the SOME operator) compares a value to each value
returned by a subquery. The slide example displays employees who are not IT programmers and
whose salary is less than that of any IT programmer. The maximum salary that a programmer
earns is $9,000.

* <ANY means less than the maximum.

* >ANY means more than the minimum.

* =ANY is equivalent to IN.

Oracle Database: SQL Fundamentals| 7 -18

Using the ALL Operator
in Multiple-Row Subqueries

SELECT employee id, last name, job id, salary
FROM employees 9000, 6000, 4200

WHERE salary <|ALL||:]

(SELECT salary

FROM employees

WHERE job_id = 'IT PROG')
AND job id <> 'IT PROG';
EMPLOVEEID | LasT_Mame |{ Joe_io [§ saLarr
1 141 Rajs ST_CLERK. 3500
2 142 Davies ST_CLERK 3100
3 143 Matos ST_CLERK 2600
4 144 Vargas ST_CLERK, 2500

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the ALL Operator in Multiple-Row Subqueries

The ALL operator compares a value to every value returned by a subquery. The example in the

slide displays employees whose salary is less than the salary of all employees with a job ID of
IT PROG and whose job is not IT PROG.

>ALL means more than the maximum and <ALL means less than the minimum.

The NOT operator can be used with IN, ANY, and ALL operators.

Oracle Database: SQL Fundamentalsl 7 -19

Using the EX1STS Operator

SELECT * FROM departments

WHERE NOT EXISTS

(SELECT * FROM employees

WHERE employees.department id=departments.department id);

H DEPARTMENT_ID| DEPARTMENT_NAME| MANACERID| LOCATION_ID
1 190 Contracting (null 1700

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the EXISTS Operator

The EXISTS operator is used in queries where the query result depends on whether or not
certain rows exist in a table. It evaluates to TRUE if the subquery returns at least one row.

The example in the slide displays departments that have no employees. For each row in the
DEPARTMENTS table, the condition is checked whether there exists a row in the EMPLOYEES

table that has the same department ID. In case no such row exists, the condition is satisfied for
the row under consideration and it is selected. If there exists a corresponding row in the
EMPLOYEES table, the row is not selected.

Oracle Database: SQL Fundamentals | 7 -20

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

» Subquery: Types, syntax, and guidelines
« Single-row subqueries:

— Group functions in a subquery

— HAVING clause with subqueries

* Multiple-row subqueries
— Use ALL or ANY operator

* Using the EXISTS operator
* Null values in a subquery

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals | 7 - 21

Null Values in a Subquery

SELECT emp.last name

FROM employees emp

WHERE emp.employee id NOT IN
(SELECT mgr.manager id
FROM employees mgr) ;

0 rows selected

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Null Values in a Subquery

The SQL statement in the slide attempts to display all the employees who do not have any
subordinates. Logically, this SQL statement should have returned 12 rows. However, the SQL
statement does not return any rows. One of the values returned by the inner query is a null value
and, therefore, the entire query returns no rows.

The reason is that all conditions that compare a null value result in a null. So whenever null
values are likely to be part of the results set of a subquery, do not use the NOT IN operator. The
NOT IN operator is equivalent to <> ALL.

Notice that the null value as part of the results set of a subquery is not a problem if you use the
IN operator. The IN operator is equivalent to =ANY. For example, to display the employees who
have subordinates, use the following SQL statement:
SELECT emp.last name
FROM employees emp
WHERE emp.employee id 1IN
(SELECT mgr.manager id
FROM employees mgr) ;

Oracle Database: SQL Fundamentals | 7 -22

Null Values in a Subquery (continued)

Alternatively, a WHERE clause can be included in the subquery to display all employees who do
not have any subordinates:
SELECT last name FROM employees
WHERE employee id NOT IN
(SELECT manager id
FROM employees
WHERE manager id IS NOT NULL) ;

Oracle Database: SQL Fundamentals | 7 -23

Quiz

Using a subquery is equivalent to performing two sequential
queries and using the result of the first query as the search
values in the second query.

1. True
2. False

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Answer: 1

Oracle Database: SQL Fundamentals | 7 -24

Summary

In this lesson, you should have learned how to:
* Identify when a subquery can help solve a problem
* Write subqueries when a query is based on unknown

values
SELECT select list
FROM table
WHERE expr operator
(SELECT select list
FROM table) ;

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Summary
In this lesson, you should have learned how to use subqueries. A subquery is a SELECT
statement that is embedded in the clause of another SQL statement. Subqueries are useful when
a query is based on a search criterion with unknown intermediate values.

Subqueries have the following characteristics:

» Can pass one row of data to a main statement that contains a single-row operator, such as =,
<>, >, >=,<,0l <=

* Can pass multiple rows of data to a main statement that contains a multiple-row operator,
such as IN

» Are processed first by the Oracle server, after which the WHERE or HAVING clause uses the
results

 Can contain group functions

Oracle Database: SQL Fundamentals | 7 -25

Practice 7: Overview

This practice covers the following topics:
« Creating subqueries to query values based on unknown
criteria

« Using subqueries to find out the values that exist in one set
of data and not in another

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Practice 7: Overview
In this practice, you write complex queries using nested SELECT statements.

For practice questions, you may want to create the inner query first. Make sure that it runs and
produces the data that you anticipate before you code the outer query.

Oracle Database: SQL Fundamentals | 7 -26

Using the Set Operators

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:
* Describe set operators
« Use a set operator to combine multiple queries into a
single query
» Control the order of rows returned

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Objectives
In this lesson, you learn how to write queries by using set operators.

Oracle Database: SQL Fundamentals| 8 -2

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

« Set Operators: Types and guidelines
 Tables used in this lesson

« TUNION and UNION ALL operator

e INTERSECT operator

e MINUS operator

* Matching the SELECT statements

« Using the ORDER BY clause in set operations

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 8 -3

Set Operators

B A B

UNION/UNION ALL

INTERSECT

MINUS

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Set Operators

Set operators combine the results of two or more component queries into one result. Queries

2 containing set operators are called compound queries.

Operator Returns

UNION Rows from both queries after eliminating duplications

UNION ALL Rows from both queries, including all duplications
INTERSECT Rows that are common to both queries

MINUS Rows in the first query that are not present in the second query

All set operators have equal precedence. If a SQL statement contains multiple set operators, the
Oracle server evaluates them from left (top) to right (bottom)—if no parentheses explicitly
specify another order. You should use parentheses to specify the order of evaluation explicitly in

queries that use the INTERSECT operator with other set operators.

Oracle Database: SQL Fundamentals |

8-4

Set Operator Guidelines

* The expressions in the SELECT lists must match in
number.

* The data type of each column in the second query must
match the data type of its corresponding column in the first

query.

- Parentheses can be used to alter the sequence of
execution.

* ORDER BY clause can appear only at the very end of the
statement.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Set Operator Guidelines

* The expressions in the SELECT lists of the queries must match in number and data type.
Queries that use UNION, UNION ALL, INTERSECT, and MINUS operators in their
WHERE clause must have the same number and data type of columns in their SELECT list.
The data type of the columns in the SELECT list of the queries in the compound query
may not be exactly the same. The column in the second query must be in the same data
type group (such as numeric or character) as the corresponding column in the first query.

» Set operators can be used in subqueries.

* You should use parentheses to specify the order of evaluation in queries that use the
INTERSECT operator with other set operators. This ensures compliance with emerging
SQL standards that will give the INTERSECT operator greater precedence than the other
set operators.

Oracle Database: SQL Fundamentalsl 8 -5

Oracle Server and Set Operators

« Duplicate rows are automatically eliminated except in
UNION ALL.

« Column names from the first query appear in the result.

« The output is sorted in ascending order by default except
in UNION ALL.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Server and Set Operators

When a query uses set operators, the Oracle server eliminates duplicate rows automatically
except in the case of the UNION ALL operator. The column names in the output are decided by
the column list in the first SELECT statement. By default, the output is sorted in ascending order
of the first column of the SELECT clause.

The corresponding expressions in the SELECT lists of the component queries of a compound
query must match in number and data type. If component queries select character data, the data
type of the return values is determined as follows:

» Ifboth queries select values of CHAR data type, of equal length, the returned values have
the CHAR data type of that length. If the queries select values of CHAR with different
lengths, the returned value is VARCHAR?2 with the length of the larger CHAR value.

» Ifeither or both of the queries select values of VARCHAR?2 data type, the returned values
have the VARCHAR?2 data type.

If component queries select numeric data, the data type of the return values is determined by
numeric precedence. If all queries select values of the NUMBER type, the returned values have
the NUMBER data type. In queries using set operators, the Oracle server does not perform
implicit conversion across data type groups. Therefore, if the corresponding expressions of
component queries resolve to both character data and numeric data, the Oracle server returns an
error.

Oracle Database: SQL Fundamentals| 8 -6

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

» Set Operators: Types and guidelines

« Tables used in this lesson
« TUNION and UNION ALL operator

e INTERSECT operator

e MINUS operator

* Matching the SELECT statements

« Using the ORDER BY clause in set operations

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 8 -7

Tables Used in This Lesson

The tables used in this lesson are:
« EMPLOYEES: Provides details regarding all current
employees
* JOB_HISTORY: Records the details of the start date and

end date of the former job, and the job identification
number and department when an employee switches jobs

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Tables Used in This Lesson
Two tables are used in this lesson: the EMPLOYEES table and the JOB_ HISTORY table.

You are already familiar with the EMPLOYEES table that stores employee details such as a
unique identification number, email address, job identification (such as ST CLERK, SA REP,
and so on), salary, manager, and so on.

Some of the employees have been with the company for a long time and have switched to
different jobs. This is monitored using the JOB_ HISTORY table. When an employee switches
jobs, the details of the start date and end date of the former job, the job id (such as

ST CLERK, SA_REP, and so on), and the department are recorded in the JOB_HISTORY table.

The structure and data from the EMPLOYEES and JOB_HISTORY tables are shown on the
following pages.

Oracle Database: SQL Fundamentals| 8 -8

Tables Used in This Lesson (continued)

There have been instances in the company of people who have held the same position more than
once during their tenure with the company. For example, consider the employee Taylor, who
joined the company on 24-MAR-1998. Taylor held the job title SA REP for the period 24-
MAR-98 to 31-DEC-98 and the job title SA_MAN for the period 01-JAN-99 to 31-DEC-99.
Taylor moved back into the job title of SA_REP, which is his current job title.

DESCRIBE employees

DESCEIBE emplovees

Mame M1l Twhe
EMPLOYEE_ID MOT MULL WUMBER(GE)
FIEST_MNAME WARCHARZ (207
LAST_NAME MOT MULL WARCHAREZ(25)
EMAIL MOT MULL WARCHAREZ(25)
FHOWE_MUMBEE. WARCHARZ 207
HIKE_DATE MOT NULL DATE

10B_ID MOT NULL WARCHARZ (107
SALARY NUMBER. (S, 2
COMMISSION_PCT NUMBER(Z, 2
MANAGEE_ID NUMBER. (&)
DEPARTMENT_ID NUMBER {4

11 rows selected

Oracle Database: SQL Fundamentals| 8 -9

Tables Used in This Lesson (continued)

SELECT employee id,
FROM employees;

last name,

job _id, hire date, department id

EMPLOYEE_ID |[§ LAST_MWAME|E JoB_ID HIRE_DATE |[§ DEPARTMENT_ID
1 200 Whalen AD_ASST 17-5EP-87 10
2 201 Hartstein ME_MA R 17-FEE-96 Z0
3 202 Fay ME_REF 17-AUG-37 20
4 205 Higgins AC_MGR 07-JUN-94 110
5 206 Gietz AC_ACCOUNT 07-JUN-94 110
2 100 King AD_PRES 17-JUN-57 50
7 101 Kachhar AD_WP 21-SEP-89 an
z 102 De Haan AD_WP 13-JAN-93 an
9 103 Hunaold IT_PROG 03-JAN-90 q
10 104 Ernst IT_PROG 21-MaY-31 A
11 107 Lorentz IT_FROG 07-FEE-83 e
12 124 Mourgos ST_MAN 16-NOY-39 50
13 141 Rajs ST_CLERK 17-0CT-35 50
14 142 Davies ST_CLERK, 29-AN-97 50
15 143 Matos ST_CLERK, 15-MAR-35 50
16 144 Vargas ST_CLERE, 09-UL-98 50
17 149 Zlatkey SA_MAN 29-]AN-00 a0
15 174 Ahel 54 _REP 11-MaY-96 a0
19 176 Taylor S4_REP 2 4-MAR- 95 a0
20 178 Grant S4_REP 24-MaY -39 (null)
DESCRIBE job history
DESCREIBE joh_history
Mame M1l Twhe
EMPLOYEE_ID NOT WULL NUMBER(A]
START_DATE NOT MULL DATE
END_DATE MOT MWULL DATE
JOE_ID MOT MWULL WARCHARZ(103
DEFARTHENT_ID MUMBER.(4)
5 rows selected

Oracle Database: SQL Fundamentals |

8-10

Tables Used in This Lesson (continued)
SELECT * FROM job_ history;

EMPLOYEE_ID |[§ sTaRT_DATE|H EnD_DATE|E JoB_ID DERSRTMENT_ID

1 102 13-JAN-93 24-JUL-98 IT_PROG a0
Z 101 21-5SEP-89 27-0CT-33 AC_ACCOUNT 110
3 101 28-0CT-93 15-MAR-97 AC_MGR 110
4 201 17-FEB-96 19-DEC-93 ME_REP 20
5 114 Z4-MAR-96 31-DEC-98 ST_CLERK 50
2 122 01-JAN-99 31-DEC-9% ST_CLERK 50
7 200 17-SEP-87 17-JUMN-93 AD_ASST 50
A 176 24-MAR-98 31-DEC-28 SA_REF a0
5 176 01-JAN-99 31-DEC-83 Si4_MAN a0
10 200 01-)L-24 31-DEC-95 AC_ACCOUNT a0

Oracle Database: SQL Fundamentals| 8 -11

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

» Set Operators: Types and guidelines
 Tables used in this lesson

* UNION and UNION ALL operator

e INTERSECT operator

e MINUS operator

* Matching the SELECT statements

« Using the ORDER BY clause in set operations

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 8 -12

UNION Operator

The UNION operator returns rows from both queries after eliminating
duplications.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

UNION Operator

The UNION operator returns all rows that are selected by either query. Use the UNION operator
to return all rows from multiple tables and eliminate any duplicate rows.

Guidelines
* The number of columns being selected must be the same.
* The data types of the columns being selected must be in the same data type group (such as
numeric or character).
* The names of the columns need not be identical.
* TUNION operates over all of the columns being selected.
* NULL values are not ignored during duplicate checking.
* By default, the output is sorted in ascending order of the columns of the SELECT clause.

Oracle Database: SQL Fundamentals| 8 -13

Using the UNION Operator

Display the current and previous job details of all employees.
Display each employee only once.

SELECT employee id, job id
FROM employees

SELECT employee id, job id
FROM job history;

EMPLOYEE_ID |[] JOB_ID
1 100 AD_PRES
2 101 AC_ACCOUNT
2z 200 AC_ACCOUNT
23 200 AD_ASST
27 205 AC_MGR
2 206 AC_ACCOUNT

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the UNION Operator

The UNION operator eliminates any duplicate records. If records that occur in both the
EMPLOYEES and the JOB_HISTORY tables are identical, the records are displayed only once.
Observe in the output shown in the slide that the record for the employee with the
EMPLOYEE_ID 200 appears twice because the JOB_ID is different in each row.

Consider the following example:
SELECT employee id, job id, department id

FROM employees

UNION

SELECT employee id, job id, department id

FROM job_history;

EMPLOYEE_ID ([J0B_ID DEP&RTMENT_ID

1 100 AD_PRES a0
22 200 AC_ACCOUMT a0
23 200 AD_ASST 10
24 200 AD_ASST an
29 206 AC_ACCOUNT 110

Oracle Database: SQL Fundamentals| 8 -14

Using the UNION Operator (continued)
In the preceding output, employee 200 appears three times. Why? Note the DEPARTMENT ID
values for employee 200. One row has a DEPARTMENT ID of 90, another 10, and the third 90.
Because of these unique combinations of job IDs and department IDs, each row for employee

200 is unique and, therefore, not considered to be a duplicate. Observe that the output is sorted
in ascending order of the first column of the SELECT clause (in this case, EMPLOYEE_ID).

Oracle Database: SQL Fundamentals| 8 -15

UNION ALL Operator

The UNION ALL operator returns rows from both queries, including all
duplications.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

UNION ALL Operator

Use the UNION ALL operator to return all rows from multiple queries.
Guidelines

The guidelines for UNION and UNION ALL are the same, with the following two exceptions that
pertain to UNION ALL: Unlike UNION, duplicate rows are not eliminated and the output is not
sorted by default.

Oracle Database: SQL Fundamentals| 8 -16

Using the UNION ALL Operator

Display the current and previous departments of all employees.
SELECT employee id, job id, department id

FROM employees
|UNION ALL

SELECT employee id, job id, department id
FROM job history
ORDER BY employee id;

g empoveen | Joelo |B DEPARTMENT_ID

1 100 AD_PRES 90

17 148 SA_MAN a0

18 174 SA_REP a0

18 176 SA_REP a0

20 176 SA_MAN a0

21 176 SA_REP 80

22 178 SA_REP (il

23 200 AD_ASST 10
E: 206 AC_ACCOUNT 110]

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the UNION ALL Operator

In the example, 30 rows are selected. The combination of the two tables totals to 30 rows. The
UNION ALL operator does not eliminate duplicate rows. UNION returns all distinct rows
selected by either query. UNION ALL returns all rows selected by either query, including all
duplicates. Consider the query in the slide, now written with the UNION clause:

SELECT employee id, job id,department id

FROM employees

UNION

SELECT employee id, job id,department id
FROM job _history

ORDER BY employee 1id;

The preceding query returns 29 rows. This is because it eliminates the following row (because it
is a duplicate):

176 SA_REP ao

Oracle Database: SQL Fundamentals| 8 -17

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

» Set Operators: Types and guidelines
 Tables used in this lesson

« TUNION and UNION ALL operator

e INTERSECT operator

e MINUS operator

* Matching the SELECT statements
 Using ORDER BY clause in set operations

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 8 -18

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

INTERSECT Operator

The INTERSECT operator returns rows that are common to both queries.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

INTERSECT Operator
Use the INTERSECT operator to return all rows that are common to multiple queries.

Guidelines

The number of columns and the data types of the columns being selected by the SELECT
statements in the queries must be identical in all the SELECT statements used in the query.
The names of the columns, however, need not be identical.

Reversing the order of the intersected tables does not alter the result.

INTERSECT does not ignore NULL values.

Oracle Database: SQL Fundamentals| 8 -19

Using the INTERSECT Operator

Display the employee IDs and job IDs of those employees who
currently have a job title that is the same as their previous one
(that is, they changed jobs but have now gone back to doing
the same job they did previously).

SELECT employee id, job id
FROM employees
|INTERSECT|

SELECT employee id, job id
FROM job history;

H EMPLOYEEJD|E JOB_ID
1 176 SA_REP
2 200 AD_ASST

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the INTERSECT Operator

In the example in this slide, the query returns only those records that have the same values in the
selected columns in both tables.

What will be the results if you add the DEPARTMENT ID column to the SELECT statement
from the EMPLOYEES table and add the DEPARTMENT _ID column to the SELECT statement
from the JOB_HISTORY table, and run this query? The results may be different because of the
introduction of another column whose values may or may not be duplicates.

Example:
SELECT employee id, job id, department id
FROM employees
INTERSECT
SELECT employee id, job id, department id
FROM job_history;

EMPLOVEEID ([JoB_ID || DEPARTMENT_ID
1 176 SA_REP 50

Employee 200 is no longer part of the results because the EMPLOYEES.DEPARTMENT ID
value is different from the JOB_ HISTORY.DEPARTMENT ID value.

Oracle Database: SQL Fundamentals| 8 -20

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

» Set Operators: Types and guidelines
 Tables used in this lesson

« TUNION and UNION ALL operator

e INTERSECT operator

 MINUS operator

* Matching the SELECT statements

« Using the ORDER BY clause in set operations

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 8 -21

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

MINUS Operator

The MINUS operator returns all the distinct rows selected by the first
query, but not present in the second query result set.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

MINUS Operator

Use the MINUS operator to return all distinct rows selected by the first query, but not present in
the second query result set (the first SELECT statement MINUS the second SELECT statement).

Note: The number of columns must be the same and the data types of the columns being
selected by the SELECT statements in the queries must belong to the same data type group in all
the SELECT statements used in the query. The names of the columns, however, need not be

identical.

Oracle Database: SQL Fundamentals | 8 -22

Using the MINUS Operator

Display the employee IDs of those employees who have not
changed their jobs even once.

SELECT employee id
FROM employees
MINUS

SELECT employee id
FROM job history;

B emrLovEELID

1 100
z 103
3 104
13 z02
14 205
15 206

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the MINUS Operator

In the example in the slide, the employee IDs in the JOB_ HISTORY table are subtracted from
those in the EMPLOYEES table. The results set displays the employees remaining after the
subtraction; they are represented by rows that exist in the EMPLOYEES table, but do not exist in
the JOB_HISTORY table. These are the records of the employees who have not changed their
jobs even once.

Oracle Database: SQL Fundamentals| 8 -23

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

» Set Operators: Types and guidelines
 Tables used in this lesson

« TUNION and UNION ALL operator

e INTERSECT operator

e MINUS operator

* Matching the SELECT statements
 Using ORDER BY clause in set operations

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 8 -24

Matching the SELECT Statements

* Using the UNION operator, display the location ID,
department name, and the state where it is located.

* You must match the data type (using the TO CHAR
function or any other conversion functions) when columns
do not exist in one or the other table.

SELECT location id, department name "Department",
TO CHAR (NULL) "Warehouse location"

FROM departments

UNION

SELECT location id, TO CHAR(NULL) "Department",
state province

FROM locations;

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Matching the SELECT Statements

Because the expressions in the SELECT lists of the queries must match in number, you can use
the dummy columns and the data type conversion functions to comply with this rule. In the slide,
the name, Warehouse location, is given as the dummy column heading. The TO CHAR
function is used in the first query to match the VARCHAR?2 data type of the state province
column that is retrieved by the second query. Similarly, the TO CHAR function in the second
query is used to match the VARCHAR?2 data type of the department name column that is
retrieved by the first query.

The output of the query is shown:

LGCATIDN_ID Cepartment Warehouse location

140017 fhull)
1400 {null Texas
1500 Shipping frull)
1500 null California

1700 Accounting (rull)
1700 Administration {null)
1700 Cantracting (rull)
1700 Executive rrull

L e Lt L

Oracle Database: SQL Fundamentals | 8 -25

Matching the SELECT Statement: Example

Using the UNION operator, display the employee ID, job ID, and
salary of all employees.

SELECT employee id, job id,salary
FROM employees

UNION

SELECT employee id, job id,0

FROM job history;

EMPLOYEEID ||l JoBD |B saLarr

1 100 AD_PRES 24000
2 101 AC_ACCOUNT 0
3 101 AC_MGR 0
4 101 AD_WP 17000
5 102 AD_WP 17000
29 205 AC_MGR 12000
30 206 AC_ACCOUNT 8300

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Matching the SELECT Statement: Example

The EMPLOYEES and JOB_HISTORY tables have several columns in common (for example,
EMPLOYEE ID,JOB_1ID, and DEPARTMENT ID). But what if you want the query to display
the employee ID, job ID, and salary using the UNION operator, knowing that the salary exists
only in the EMPLOYEES table?

The code example in the slide matches the EMPLOYEE ID and JOB_ID columns in the
EMPLOYEES and JOB_HISTORY tables. A literal value of 0 is added to the JOB_ HISTORY
SELECT statement to match the numeric SALARY column in the EMPLOYEES SELECT
statement.

In the results shown in the slide, each row in the output that corresponds to a record from the
JOB_HISTORY table contains a 0 in the SALARY column.

Oracle Database: SQL Fundamentals| 8 - 26

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

» Set Operators: Types and guidelines
 Tables used in this lesson

« TUNION and UNION ALL operator

e INTERSECT operator

e MINUS operator

* Matching the SELECT statements

» Using the ORDER BY clause in set operations

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 8 - 27

Using the ORDER BY Clause in Set Operations

« The ORDER BY clause can appear only once at the end of
the compound query.

« Component queries cannot have individual ORDER BY
clauses.

 The ORDER BY clause recognizes only the columns of the
first SELECT query.

* By default, the first column of the first SELECT query is
used to sort the output in an ascending order.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the ORDER BY Clause in Set Operations

The ORDER BY clause can be used only once in a compound query. If used, the ORDER BY
clause must be placed at the end of the query. The ORDER BY clause accepts the column name
or an alias. By default, the output is sorted in ascending order in the first column of the first
SELECT query.

Note: The ORDER BY clause does not recognize the column names of the second SELECT
query. To avoid confusion over column names, it is a common practice to ORDER BY column
positions.

For example, in the following statement, the output will be shown in ascending order of
job_id.

SELECT employee id, job_ id,salary

FROM employees

UNION

SELECT employee id, job id,0

FROM job _history

ORDER BY 2;

If you omit ORDER BY, by default, the output will be sorted in ascending order of
employee id. You cannot use the columns from the second query to sort the output.

Oracle Database: SQL Fundamentals| 8 -28

Quiz

|dentify the set operator guidelines.

1. The expressions in the SELECT lists must match in
number.

2. Parentheses may not be used to alter the sequence of
execution.

3. The data type of each column in the second query must
match the data type of its corresponding column in the first
query.

4. The ORDER BY clause can be used only once in a
compound query, unless a UNION ALL operator is used.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Answer: 1, 3

Oracle Database: SQL Fundamentals| 8 -29

Summary

In this lesson, you should have learned how to use:

* TUNION to return all distinct rows

 UNION ALL to return all rows, including duplicates

 INTERSECT to return all rows that are shared by both
queries

* MINUS to return all distinct rows that are selected by the
first query, but not by the second

* ORDER BY only at the very end of the statement

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Summary

» The UNION operator returns all the distinct rows selected by each query in the compound
query. Use the UNION operator to return all rows from multiple tables and eliminate any
duplicate rows.

* Use the UNION ALL operator to return all rows from multiple queries. Unlike the case
with the UNION operator, duplicate rows are not eliminated and the output is not sorted by
default.

* Use the INTERSECT operator to return all rows that are common to multiple queries.

» Use the MINUS operator to return rows returned by the first query that are not present in
the second query.

* Remember to use the ORDER BY clause only at the very end of the compound statement.

* Make sure that the corresponding expressions in the SELECT lists match in number and
data type.

Oracle Database: SQL Fundamentals| 8 -30

Practice 8: Overview

In this practice, you create reports by using:
 The UNION operator

« The INTERSECT operator

 The MINUS operator

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Practice 8: Overview

In this practice, you write queries using the set operators.

Oracle Database: SQL Fundamentals | 8 - 31

‘sejel|ye sl Jo/pue ajoelO ‘010z GybuAdo) paligiyosd uonngusip Jo uononpoidal paziloyineun

Manipulating Data

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the

following:
« Describe each data manipulation language (DML)
statement

* Insert rows into a table

« Update rows in a table

* Delete rows from a table
» Control transactions

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Objective

In this lesson, you learn how to use the data manipulation language (DML) statements to insert
rows into a table, update existing rows in a table, and delete existing rows from a table. You also
learn how to control transactions with the COMMIT, SAVEPOINT, and ROLLBACK statements.

Oracle Database: SQL Fundamentals| 9 -2

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

* Adding new rows in a table
— INSERT statement

« Changing data in a table
— UPDATE statement

 Removing rows from a table:
— DELETE statement
— TRUNCATE statement

« Database transactions control using COMMIT, ROLLBACK,
and SAVEPOINT

 Read consistency
« FOR UPDATE clause in a SELECT statement

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 9-3

Data Manipulation Language

A DML statement is executed when you:
— Add new rows to a table
— Modify existing rows in a table
— Remove existing rows from a table

* A transaction consists of a collection of DML statements
that form a logical unit of work.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Data Manipulation Language

Data manipulation language (DML) is a core part of SQL. When you want to add, update, or
delete data in the database, you execute a DML statement. A collection of DML statements that
form a logical unit of work is called a transaction.

Consider a banking database. When a bank customer transfers money from a savings account to
a checking account, the transaction might consist of three separate operations: decreasing the
savings account, increasing the checking account, and recording the transaction in the
transaction journal. The Oracle server must guarantee that all the three SQL statements are
performed to maintain the accounts in proper balance. When something prevents one of the
statements in the transaction from executing, the other statements of the transaction must be
undone.

Note
* Most of the DML statements in this lesson assume that no constraints on the table are
violated. Constraints are discussed later in this course.
* In SQL Developer, click the Run Script icon or press [F5] to run the DML statements. The
feedback messages will be shown on the Script Output tabbed page.

Oracle Database: SQL Fundamentals| 9 -4

Adding a New Row to a Table

| 70 Public Relations 100 1?00| New
DEPARTMENTS row
DEPARTMENT_ID | DEPARTMENT_NAME| MANA GER_ID | LOCATION_ID

1 10 Administration 200 1700

2 20 Marketing zol 1800 Insert new row

3 S0 Shipping 174 1500 into the

‘ som 1w - DEPARTMENTS table.

5 i Sales 143 2500

& 90 Executive 100 1700

7 110 Accounting 2085 1700

g 190 Contracting frully 1700

A 4

| DEPARTMENT_ID [{] DEPARTMENT_MaAME[E Manacer D |8 LocaTion D |

| 1 70 Public Relations 100 1?DD|
2 10 Administration 200 1700
3 20 Marketing 201 1800
4 50 Shipping 124 1500
5 &0 T 103 1400
] g0 Sales 149 2500
7 490 Executive 100 1700
g 110 Accounting 205 1700
9 120 Contracting {nully 1700

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Adding a New Row to a Table

The graphic in the slide illustrates the addition of a new department to the DEPARTMENTS
table.

Oracle Database: SQL Fundamentalsl 9-5

INSERT Statement Syntax

* Add new rows to a table by using the INSERT statement:

INSERT INTO table [(column [, column...])]
VALUES (value [, value...l);

« With this syntax, only one row is inserted at a time.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

INSERT Statement Syntax

You can add new rows to a table by issuing the INSERT statement.

In the syntax:

table Is the name of the table
column Is the name of the column in the table to populate
value Is the corresponding value for the column

Note: This statement with the VALUES clause adds only one row at a time to a table.

Oracle Database: SQL Fundamentals| 9 -6

Inserting New Rows

Insert a new row containing values for each column.
List values in the default order of the columns in the table.
Optionally, list the columns in the INSERT clause.

INSERT INTO departments (department id,
department name, manager id, location id)
VALUES (70, 'Public Relations', 100, 1700);

|l Lows inserted|

Enclose character and date values within single quotation
marks.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Inserting New Rows

Because you can insert a new row that contains values for each column, the column list is not
required in the INSERT clause. However, if you do not use the column list, the values must be
listed according to the default order of the columns in the table, and a value must be provided for
each column.

DESCRIBE departments

Mame M1l Twpe
DEPARTHENT_ID MOT MWULL WUMBEE(4)
DEPARTHENT _MAME MOT MWULL WARCHARZ (307
MANAGER_ID NUMBER.(G)
LOCATION_ID NUMBER.(4)

For clarity, use the column list in the INSERT clause.
Enclose character and date values within single quotation marks; however, it is not
recommended that you enclose numeric values within single quotation marks.

Oracle Database: SQL Fundamentals| 9-7

Inserting Rows with Null Values

* Implicit method: Omit the column from the
column list.

INSERT INTO departments (department id,
department name)
VALUES (30, 'Purchasing'):;

|l Lows inserted|

* Explicit method: Specify the NULL keyword in the VALUES
clause.

INSERT INTO departments
VALUES (100, 'Finance', NULLl, NULL) ;

|l Lows inserted|

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Inserting Rows with Null Values

Method Description

Implicit Omit the column from the column list.

Explicit Specify the NULL keyword in the VALUES list;
specify the empty string (' ') in the VALUES list for character strings
and dates.

Be sure that you can use null values in the targeted column by verifying the Null status with
the DESCRIBE command.

The Oracle server automatically enforces all data types, data ranges, and data integrity
constraints. Any column that is not listed explicitly obtains a null value in the new row.

Common errors that can occur during user input are checked in the following order:

* Mandatory value missing for a NOT NULL column

* Duplicate value violating any unique or primary key constraint

* Any value violating a CHECK constraint

+ Referential integrity maintained for foreign key constraint

 Data type mismatches or values too wide to fit in column
Note: Use of the column list is recommended because it makes the INSERT statement more
readable and reliable, or less prone to mistakes.

Oracle Database: SQL Fundamentals| 9 -8

Inserting Special Values

The SYSDATE function records the current date and time.

INSERT INTO employees (employee id,

first name, last name,
email, phone number,

hire date,| job id, salary,
commission pct, manager id,
department id)

VALUES (113,

'Louis', 'Popp',

'LPOPP', '515.124.4567"',
SYSDATE,| 'AC_ACCOUNT', 6900,
NULL, 205, 110);

1l rows inserted

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Inserting Special Values
You can use functions to enter special values in your table.
The slide example records information for employee Popp in the EMPLOYEES table. It supplies
the current date and time in the HIRE DATE column. It uses the SYSDATE function that returns
the current date and time of the database server. You may also use the CURRENT DATE
function to get the current date in the session time zone. You can also use the USER function
when inserting rows in a table. The USER function records the current username.
Confirming Additions to the Table
SELECT employee id, last name, job id, hire date, commission pct
FROM employees
WHERE employee id = 113;

EMPLOYVEE_ID |[{ LasT_mame |§ JoE_iD HIRE_DATE | COMMISSION_PCT
1 113 Popp AC_ACCOUNT 10-JUL-03 (rully

Oracle Database: SQL Fundamentals| 9-9

Inserting Specific Date and Time Values

* Add a new employee.

INSERT INTO employees

VALUES (114,

'Den', 'Raphealy',

'DRAPHEAL', '515.127.4561"',

TO DATE('FEB 3, 1999', 'MON DD, YYYY')|,
'SA REP', 11000, 0.2, 100, 60);

|l romws inserted|

« Verify your addition.

emPLOYEE_ID [{ FIRsT_naME|[LasT wame|§ emaic [pHome_wumees[[Hire_DATE B Jos_iD [saLarv[§ commission_pcT
1 114 Den Raphealy DRAFHEAL 515.127.4561 | 03-FEB-23 fA_REP 11000 0z

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Inserting Specific Date and Time Values

The DD-MON-RR format is generally used to insert a date value. With the RR format, the
system provides the correct century automatically.

You may also supply the date value in the DD-MON-YYYY format. This is recommended
because it clearly specifies the century and does not depend on the internal RR format logic of

specifying the correct century.

If a date must be entered in a format other than the default format (for example, with another
century or a specific time), you must use the TO DATE function.

The example in the slide records information for employee Raphealy in the EMPLOYEES table.
It sets the HIRE DATE column to be February 3, 1999.

Oracle Database: SQL Fundamentals| 9-10

Creating a Script

« Use the & substitution in a SQL statement to prompt for
values.

* & is a placeholder for the variable value.

INSERT INTO departments

(department id, department name, location id)

VALUES (department id) | '&department_name'|/&location)|;

L e e s b]
|- Enter Substitution Variable [X|

= e
| B Enter Substitution Variable [X|
DEPARTMEMT_ID:

|4EI DEPARTMEMNT_MAME:

|Human Resources| LOCATICH:

\z500) |

e

| hOK J | Cancel |
X

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Creating a Script

You can save commands with substitution variables to a file and execute the commands in the
file. The example in the slide records information for a department in the DEPARTMENTS table.

Run the script file and you are prompted for input for each of the ampersand (&) substitution
variables. After entering a value for the substitution variable, click the OK button. The values
that you input are then substituted into the statement. This enables you to run the same script file
over and over, but supply a different set of values each time you run it.

Oracle Database: SQL Fundamentals| 9 -11

Copying Rows
from Another Table

Write your INSERT statement with a subquery:

INSERT INTO sales reps(id, name, salary, commission pct)
SELECT employee id, last name, salary, commission pct
FROM employees

WHERE job id LIKE '%REP%';

|4 rows inserted|

Do not use the VALUES clause.

Match the number of columns in the INSERT clause to
those in the subquery.

Inserts all the rows returned by the subquery in the table,
sales reps.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Copying Rows from Another Table

You can use the INSERT statement to add rows to a table where the values are derived from
existing tables. In the example in the slide, for the INSERT INTO statement to work, you must
have already created the sales reps table using the CREATE TABLE statement. CREATE
TABLE is discussed in the lesson titled “Using DDL Statements to Create and Manage Tables.”

In place of the VALUES clause, you use a subquery.

Syntax
INSERT INTO table [column (, column)] subquery;
In the syntax:
table Is the name of the table
column Is the name of the column in the table to populate
subquery Is the subquery that returns rows to the table

The number of columns and their data types in the column list of the INSERT clause must
match the number of values and their data types in the subquery. Zero or more rows are added
depending on the number of rows returned by the subquery. To create a copy of the rows of a
table, use SELECT * in the subquery:
INSERT INTO copy emp
SELECT *
FROM employees;

Oracle Database: SQL Fundamentals| 9-12

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

« Adding new rows in a table
— INSERT statement

» Changing data in a table
— UPDATE statement

 Removing rows from a table:
— DELETE statement
— TRUNCATE statement

« Database transactions control using COMMIT, ROLLBACK,
and SAVEPOINT

 Read consistency
« FOR UPDATE clause in a SELECT statement

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentalsl 9-13

Changing Data in a Table
EMPLOYEES
EMPLOYEEID |[§ FIRST_MAME|E LasT_name[f saisrr (@ mamacerin |f commission_pcT [§ DEPARTMENTID
100 Steven King 24000 (nully {rull an
101 Meena Kachhar 17000 100 {rull a0
102 Lex Ce Haan 17000 100 frull an
103 Alexander Hunold a0oo 10z {rull &0
104 Bruce Ernst /000 103 {rull &0
107 Diana Lorentz 4200 103 {rull &0
124 Kewin fMourgos 5800 100 {rull =1
Update rows in the EMPLOYEES table: !
EmPLOYEEID |[§ FIRsT_MaME|E LasT_mame|§ sacarr (@ manacerp[f commission_pcT [DEPARTMENT_ID
100 Stewen King 24000 (aull fauln 20
101 Meena kochhar 17000 100 il a0
102 Lex [De Haan 17000 100 {nully an
103 Alexander Hunold S00a0 10z {hully &0
104 Bruce Ernst 2000 103 fhully ao
107 Diana Lorentz 4200 103 {nully &0
124 Kewin Mourgos 5&0a0 100 {hully 50

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Changing Data in a Table

The slide illustrates changing the department number for employees in department 60 to
department 80.

Oracle Database: SQL Fundamentals| 9 -14

UPDATE Statement Syntax

* Modify existing values in a table with the UPDATE

statement:
UPDATE table
SET column = value [, column = value, ...]
[WHERE condition] ;

« Update more than one row at a time (if required).

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

UPDATE Statement Syntax

You can modify the existing values in a table by using the UPDATE statement.

In the syntax:

table Is the name of the table

column Is the name of the column in the table to populate

value Is the corresponding value or subquery for the column

condition Identifies the rows to be updated and is composed of column names,

expressions, constants, subqueries, and comparison operators
Confirm the update operation by querying the table to display the updated rows.
For more information, see the section on “UPDATE” in Oracle Database SOL Language
Reference for 10g or 11g database.
Note: In general, use the primary key column in the WHERE clause to identify a single row for

update. Using other columns can unexpectedly cause several rows to be updated. For example,
identifying a single row in the EMPLOYEES table by name is dangerous, because more than one

employee may have the same name.

Oracle Database: SQL Fundamentals|l 9-15

Updating Rows in a Table

« Values for a specific row or rows are modified if you
specify the WHERE clause:

UPDATE employees
SET department id = 50
|[WHERE __employee id = 113}

1l rows updated

« Values for all the rows in the table are modified if you omit
the WHERE clause:

UPDATE copy emp
SET department id = 110;

22 rows updated|

* Specify SET column name= NULL to update a column
value to NULL.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Updating Rows in a Table

The UPDATE statement modifies the values of a specific row or rows if the WHERE clause is
specified. The example in the slide shows the transfer of employee 113 (Popp) to department 50.

If you omit the WHERE clause, values for all the rows in the table are modified. Examine the
updated rows in the COPY EMP table.

SELECT last name, department id

FROM copy_emp;

LaST_MAME |E| DEPARTMENT_ID
1 whalen 110
Z Hartstein 11a
3 Fay 110

For example, an employee who was an SA REP has now changed his job to an IT PROG.
Therefore, his JOB_ ID needs to be updated and the commission field needs to be set to NULL.
UPDATE employees
SET job id = 'IT PROG', commission pct = NULL
WHERE employee id = 114;

Note: The COPY EMP table has the same data as the EMPLOYEES table.

Oracle Database: SQL Fundamentals| 9 -16

Updating Two Columns with a Subquery

Update employee 113’s job and salary to match those of

employee 205.
UPDATE employees
SET job id = |(SELECT job_ id
FROM employees
WHERE employee id = 205),
salary = |(SELECT salary
FROM employees
WHERE employee id = 205)
WHERE employee id = 113;
1 rows updated

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Updating Two Columns with a Subquery

You can update multiple columns in the SET clause of an UPDATE statement by writing
multiple subqueries. The syntax is as follows:
UPDATE table

SET column =
(SELECT column
FROM table
WHERE condition)
[,
column =

(SELECT column

FROM table

WHERE condition)]
[WHERE condition] ;

The example in the slide can also be written as follows:
UPDATE employees

SET (job_id, salary) = (SELECT Jjob id, salary
FROM employees
WHERE employee id = 205)
WHERE employee id = 113;

Oracle Database: SQL Fundamentals| 9 -17

Updating Rows Based on Another Table

Use the subqueries in the UPDATE statements to update row
values in a table based on values from another table:

UPDATE | copy emp
SET department id

(SELECT department id
FROM employees
WHERE |employee id
(SELECT job id
FROM employees
WHERE |employee 1d

100)|

WHERE job id

200)

1 rows updated

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Updating Rows Based on Another Table
You can use the subqueries in the UPDATE statements to update values in a table. The example
in the slide updates the COPY EMP table based on the values from the EMPLOYEES table. It

changes the department number of all employees with employee 200’s job ID to employee 100°s
current department number.

Oracle Database: SQL Fundamentals| 9-18

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

« Adding new rows in a table
— INSERT statement

« Changing data in a table
— UPDATE statement

* Removing rows from a table:
— DELETE statement
— TRUNCATE statement

« Database transactions control using COMMIT, ROLLBACK,
and SAVEPOINT

 Read consistency
« FOR UPDATE clause in a SELECT statement

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 9-19

Removing a Row from a Table

DEPARTMENTS

DER&RTMENT_ID | DER RTRMERT_R A ME | MANAGER_ID | LOCATION_ID
1 10 Administration 200 1700
z 20 Marketing 201 1800
3 50 Shipping 124 1500
4 80 1T 103 1400
5 B0 Sales 148 2500
|3 A0 Executive 1aad 1700
7 110 Accounting 205 1700
g 190 Contracting (rully 1700

Delete a row from the DEPARTMENTS table:
DEPARTMENT_ID| DEPARTMENT_NAME| MANAGER_ID | LOCATION_ID

1 10 Administration 200 1700
2 20 Marketing 201 1800
3 50 Shipping 124 1500
4 G0IT 103 1400
5 80 Sales 149 2500
3 90 Executive 100 1700
7 110 Accaunting 205 1700

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Removing a Row from a Table

The Contracting department has been removed from the DEPARTMENTS table (assuming no
constraints on the DEPARTMENTS table are violated), as shown by the graphic in the slide.

Oracle Database: SQL Fundamentals| 9 -20

DELETE Statement

You can remove existing rows from a table by using the
DELETE statement:

DELETE [FROM] table
[WHERE condition];

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

DELETE Statement Syntax

You can remove existing rows from a table by using the DELETE statement.
In the syntax:
table Is the name of the table
condition Identifies the rows to be deleted, and is composed of column names,
expressions, constants, subqueries, and comparison operators

Note: If no rows are deleted, the message “0 rows deleted” is returned (on the Script Output tab
in SQL Developer)

For more information, see the section on “DELETE” in Oracle Database SQL Language
Reference
for 10g or 11g database.

Oracle Database: SQL Fundamentals | 9 -21

Deleting Rows from a Table

« Specific rows are deleted if you specify the WHERE clause:

DELETE FROM departments
WHERE department name = 'Finance';

1 rows deleted

* All rows in the table are deleted if you omit the WHERE
clause:

DELETE FROM copy emp;

|22 rows deleted|

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Deleting Rows from a Table

You can delete specific rows by specifying the WHERE clause in the DELETE statement. The
first example in the slide deletes the Accounting department from the DEPARTMENTS table.
You can confirm the delete operation by displaying the deleted rows using the SELECT

statement.
SELECT *
FROM departments
WHERE department_name = 'Finance';

0 rows selected

However, if you omit the WHERE clause, all rows in the table are deleted. The second example
in the slide deletes all rows from the COPY EMP table, because no WHERE clause was specified.

Example:
Remove rows identified in the WHERE clause.

DELETE FROM employees WHERE employee id = 114;

|l rows dElEtEd|

DELETE FROM departments WHERE department id IN (30, 40);
|2 LOows dElEtEd|

Oracle Database: SQL Fundamentals| 9 -22

Deleting Rows Based
on Another Table

Use the subqueries in the DELETE statements to remove rows
from a table based on values from another table:

DELETE FROM employees

WHERE department id =

(SELECT department id

FROM departments

WHERE department name
LIKE '%Public%');

1 rows deleted

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Deleting Rows Based on Another Table

You can use the subqueries to delete rows from a table based on values from another table. The
example in the slide deletes all the employees in a department, where the department name
contains the string Public.

The subquery searches the DEPARTMENTS table to find the department number based on the
department name containing the string Public. The subquery then feeds the department
number to the main query, which deletes rows of data from the EMPLOYEES table based on this
department number.

Oracle Database: SQL Fundamentals| 9 -23

TRUNCATE Statement

* Removes all rows from a table, leaving the table empty
and the table structure intact

* Is a data definition language (DDL) statement rather than a
DML statement; cannot easily be undone

« Syntax:
TRUNCATE TABLE table name;

Example:

TRUNCATE TABLE copy emp;

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

TRUNCATE Statement

A more efficient method of emptying a table is by using the TRUNCATE statement.
You can use the TRUNCATE statement to quickly remove all rows from a table or cluster.
Removing rows with the TRUNCATE statement is faster than removing them with the DELETE
statement for the following reasons:
» The TRUNCATE statement is a data definition language (DDL) statement and generates no
rollback information. Rollback information is covered later in this lesson.
» Truncating a table does not fire the delete triggers of the table.

If the table is the parent of a referential integrity constraint, you cannot truncate the table. You
need to disable the constraint before issuing the TRUNCATE statement. Disabling constraints is

covered in the lesson titled “Using DDL Statements to Create and Manage Tables.”

Oracle Database: SQL Fundamentals| 9 -24

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

« Adding new rows in a table
— INSERT statement

« Changing data in a table
— UPDATE statement

 Removing rows from a table:
— DELETE statement
— TRUNCATE statement

« Database transactions control using COMMIT, ROLLBACK,
and SAVEPOINT

 Read consistency
* FOR UPDATE clause in a SELECT statement

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 9 -25

Database Transactions

A database transaction consists of one of the following:

« DML statements that constitute one consistent change to
the data

* One DDL statement
* One data control language (DCL) statement

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Database Transactions

The Oracle server ensures data consistency based on transactions. Transactions give you more
flexibility and control when changing data, and they ensure data consistency in the event of user
process failure or system failure.

Transactions consist of DML statements that constitute one consistent change to the data. For
example, a transfer of funds between two accounts should include the debit in one account and
the credit to another account of the same amount. Both actions should either fail or succeed
together; the credit should not be committed without the debit.

Transaction Types

Type Description

Data manipulation Consists of any number of DML statements that the Oracle
language (DML) server treats as a single entity or a logical unit of work
Data definition Consists of only one DDL statement

language (DDL)

Data control language Consists of only one DCL statement

(DCL)

Oracle Database: SQL Fundamentals| 9 - 26

Database Transactions: Start and End

« Begin when the first DML SQL statement is executed.
- End with one of the following events:
— A COMMIT or ROLLBACK statement is issued.
— A DDL or DCL statement executes (automatic commit).
— The user exits SQL Developer or SQL*Plus.
— The system crashes.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Database Transaction: Start and End

When does a database transaction start and end?

A transaction begins when the first DML statement is encountered and ends when one of the
following occurs:

* A COMMIT or ROLLBACK statement is issued.

* A DDL statement, such as CREATE, is issued.

* A DCL statement is issued.

* The user exits SQL Developer or SQL*Plus.

* A machine fails or the system crashes.

After one transaction ends, the next executable SQL statement automatically starts the next
transaction.

A DDL statement or a DCL statement is automatically committed and, therefore, implicitly ends
a transaction.

Oracle Database: SQL Fundamentals| 9 - 27

Advantages of COMMIT
and ROLLBACK Statements

With COMMIT and ROLLBACK statements, you can:
* Ensure data consistency
* Preview data changes before making changes permanent
* Group logically-related operations

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Advantages of COMMIT and ROLLBACK Statements

With the COMMIT and ROLLBACK statements, you have control over making changes to the
data permanent.

Oracle Database: SQL Fundamentals| 9 - 28

Explicit Transaction Control Statements

Time COMMIT

A

Transaction

DELETE
SAVEPOINT A <

INSERT

UPDATE
SAVEPOINT B ‘«————]

INSERT ROLLBACK ROLLBACK ROLLBACK

to SAVEPOINT B to SAVEPOINT A

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Explicit Transaction Control Statements
You can control the logic of transactions by using the COMMIT, SAVEPOINT, and ROLLBACK
statements.

Statement Description

COMMIT COMMIT ends the current transaction by making all pending
data changes permanent.

SAVEPOINT name SAVEPOINT name marks a savepoint within the current
transaction.

ROLLBACK ROLLBACK ends the current transaction by discarding all
pending data changes.

ROLLBACK TO ROLLBACK TO SAVEPOINT rolls back the current

SAVEPOINT name transaction to the specified savepoint, thereby discarding any

changes and/or savepoints that were created after the
savepoint to which you are rolling back. If you omit the TO
SAVEPOINT clause, the ROLLBACK statement rolls back the
entire transaction. Because savepoints are logical, there is no
way to list the savepoints that you have created.

Note: You cannot COMMIT to a SAVEPOINT. SAVEPOINT is not ANSI-standard SQL.

Oracle Database: SQL Fundamentals| 9 -29

Rolling Back Changes to a Marker

« Create a marker in the current transaction by using the
SAVEPOINT statement.

* Roll back to that marker by using the ROLLBACK TO
SAVEPOINT statement.

UPDATE. ..

|SAVEPOINT update done]
|SAVEPEIII-IT update_done succeeded. |
INSERT...

[ROLLBACK TO update_donej]

|ROLLEACK TO succeeded. |

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Rolling Back Changes to a Marker

You can create a marker in the current transaction by using the SAVEPOINT statement, which

divides the transaction into smaller sections. You can then discard pending changes up to that
marker by using the ROLLBACK TO SAVEPOINT statement.

Note that if you create a second savepoint with the same name as an earlier savepoint, the earlier
savepoint is deleted.

Oracle Database: SQL Fundamentals| 9 -30

Implicit Transaction Processing

* An automatic commit occurs in the following
circumstances:

— A DDL statement issued
— A DCL statement issued
— Normal exit from SQL Developer or SQL*Plus, without
explicitly issuing COMMIT or ROLLBACK statements
* An automatic rollback occurs when there is an abnormal
termination of SQL Developer or SQL*Plus or a system
failure.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Implicit Transaction Processing

Status Circumstances

Automatic commit DDL statement or DCL statement issued

SQL Developer or SQL*Plus exited normally, without
explicitly issuing COMMIT or ROLLBACK commands
Automatic rollback Abnormal termination of SQL Developer or SQL*Plus or
system failure

Note: In SQL*Plus, the AUTOCOMMIT command can be toggled ON or OFF. If set to ON, each
individual DML statement is committed as soon as it is executed. You cannot roll back the
changes. If set to OFF, the COMMIT statement can still be issued explicitly. Also, the COMMIT
statement is issued when a DDL statement is issued or when you exit SQL*Plus. The SET
AUTOCOMMIT ON/OFF command is skipped in SQL Developer. DML is committed on a
normal exit from SQL Developer only if you have the Autocommit preference enabled. To
enable Autocommit, perform the following:

* In the Tools menu, select Preferences. In the Preferences dialog box, expand Database and

select Worksheet Parameters.
* In the right pane, select the “Autocommit in SQL Worksheet” option. Click OK.

Oracle Database: SQL Fundamentals | 9 - 31

Implicit Transaction Processing (continued)
System Failures

When a transaction is interrupted by a system failure, the entire transaction is automatically
rolled back. This prevents the error from causing unwanted changes to the data and returns the
tables to the state at the time of the last commit. In this way, the Oracle server protects the
integrity of the tables.

In SQL Developer, a normal exit from the session is accomplished by selecting Exit from the
File menu. In SQL*Plus, a normal exit is accomplished by entering the EXIT command at the
prompt. Closing the window is interpreted as an abnormal exit.

Oracle Database: SQL Fundamentals | 9 -32

State of the Data Before COMMIT or ROLLBACK

« The previous state of the data can be recovered.

 The current user can review the results of the DML
operations by using the SELECT statement.

* Other users cannot view the results of the DML statements
issued by the current user.

* The affected rows are locked; other users cannot change
the data in the affected rows.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

State of the Data Before COMMIT or ROLLBACK

Every data change made during the transaction is temporary until the transaction is committed.

The state of the data before COMMIT or ROLLBACK statements are issued can be described as
follows:
» Data manipulation operations primarily affect the database buffer; therefore, the previous
state of the data can be recovered.
» The current user can review the results of the data manipulation operations by querying the
tables.
 Other users cannot view the results of the data manipulation operations made by the current
user. The Oracle server institutes read consistency to ensure that each user sees data as it
existed at the last commit.
» The affected rows are locked; other users cannot change the data in the affected rows.

Oracle Database: SQL Fundamentals| 9 -33

State of the Data After coMmMIT

- Data changes are saved in the database.
« The previous state of the data is overwritten.
* All users can view the results.

 Locks on the affected rows are released; those rows are
available for other users to manipulate.

« All savepoints are erased.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

State of the Data After COMMIT

Make all pending changes permanent by using the COMMIT statement. Here is what happens
after a COMMIT statement:

» Data changes are written to the database.

» The previous state of the data is no longer available with normal SQL queries.

* All users can view the results of the transaction.

* The locks on the affected rows are released; the rows are now available for other users to

perform new data changes.
» All savepoints are erased.

Oracle Database: SQL Fundamentals | 9 - 34

Committing Data

* Make the changes:

DELETE FROM employees
WHERE employee id = 99999;

1 rows deleted

INSERT INTO departments
VALUES (290, 'Corporate Tax', NULL, 1700);

|l romws inserted|

Commit the changes:

[Comaz

|CDHHIT succeedEdJ

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Committing Data

In the example in the slide, a row is deleted from the EMPLOYEES table and a new row is
inserted into the DEPARTMENTS table. The changes are saved by issuing the COMMIT
statement.

Example:

Remove departments 290 and 300 in the DEPARTMENTS table and update a row in the
EMPLOYEES table. Save the data change.

DELETE FROM departments
WHERE department id IN (290, 300);

UPDATE employees
SET department id = 80
WHERE employee id = 206;

COMMIT;

Oracle Database: SQL Fundamentals| 9 -35

State of the Data After ROLLBACK

Discard all pending changes by using the ROLLBACK
statement:

- Data changes are undone.
* Previous state of the data is restored.
* Locks on the affected rows are released.

DELETE FROM copy emp;
ROLLBACK ;

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

State of the Data After ROLLBACK

Discard all pending changes by using the ROLLBACK statement, which results in the following:
» Data changes are undone.
» The previous state of the data is restored.
* Locks on the affected rows are released.

Oracle Database: SQL Fundamentals| 9 - 36

State of the Data After ROLLBACK: Example

DELETE FROM test;
25,000 rows deleted.

ROLLBACK;
Rollback complete.

DELETE FROM test WHERE id = 100;
1l row deleted.

SELECT * FROM test WHERE id = 100;
No rows selected.

COMMIT;
Commit complete.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

State of the Data After ROLLBACK: Example

While attempting to remove a record from the TEST table, you may accidentally empty the
table. However, you can correct the mistake, reissue a proper statement, and make the data
change permanent.

Oracle Database: SQL Fundamentals | 9 - 37

Statement-Level Rollback

« If a single DML statement fails during execution, only that
statement is rolled back.

* The Oracle server implements an implicit savepoint.
« All other changes are retained.

« The user should terminate transactions explicitly by
executing a COMMIT or ROLLBACK statement.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Statement-Level Rollback

A part of a transaction can be discarded through an implicit rollback if a statement execution
error is detected. If a single DML statement fails during execution of a transaction, its effect is
undone by a statement-level rollback, but the changes made by the previous DML statements in
the transaction are not discarded. They can be committed or rolled back explicitly by the user.

The Oracle server issues an implicit commit before and after any DDL statement. So, even if
your DDL statement does not execute successfully, you cannot roll back the previous statement
because the server issued a commit.

Terminate your transactions explicitly by executing a COMMIT or ROLLBACK statement.

Oracle Database: SQL Fundamentals| 9 -38

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

« Adding new rows in a table
— INSERT statement
« Changing data in a table
— UPDATE statement
 Removing rows from a table:
— DELETE statement
— TRUNCATE statement
« Database transactions control using COMMIT, ROLLBACK,
and SAVEPOINT
* Read consistency
« FOR UPDATE clause in a SELECT statement

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 9 -39

Read Consistency

« Read consistency guarantees a consistent view of the data
at all times.

« Changes made by one user do not conflict with the
changes made by another user.
* Read consistency ensures that, on the same data:
— Readers do not wait for writers
— Writers do not wait for readers
— Writers wait for writers

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Read Consistency

Database users access the database in two ways:
* Read operations (SELECT statement)
* Write operations (INSERT, UPDATE, DELETE statements)

You need read consistency so that the following occur:
* The database reader and writer are ensured a consistent view of the data.
* Readers do not view data that is in the process of being changed.
» Writers are ensured that the changes to the database are done in a consistent manner.
* Changes made by one writer do not disrupt or conflict with the changes being made by
another writer.

The purpose of read consistency is to ensure that each user sees data as it existed at the last
commit, before a DML operation started.

Note: The same user can log in to different sessions. Each session maintains read consistency in
the manner described above, even if they are the same users.

Oracle Database: SQL Fundamentals| 9 -40

Implementing Read Consistency
User A
« UPDATE employees Data
8 " SET salary = 7000 blocks
= WHERE last name = 'Grant';
Undo
segments
Changed
SELECT * > N and
_*'- FROM userA.employees;| [Read- unchanged
consistent data
. image a(\c Before
=) ‘T‘ change
User B (“old” data)

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Implementing Read Consistency

Read consistency is an automatic implementation. It keeps a partial copy of the database in the
undo segments. The read-consistent image is constructed from the committed data in the table
and the old data that is being changed and is not yet committed from the undo segment.

When an insert, update, or delete operation is made on the database, the Oracle server takes a
copy of the data before it is changed and writes it to an undo segment.

All readers, except the one who issued the change, see the database as it existed before the
changes started; they view the undo segment’s “snapshot” of the data.

Before the changes are committed to the database, only the user who is modifying the data sees
the database with the alterations. Everyone else sees the snapshot in the undo segment. This
guarantees that readers of the data read consistent data that is not currently undergoing change.

When a DML statement is committed, the change made to the database becomes visible to
anyone issuing a SELECT statement affer the commit is done. The space occupied by the old
data in the undo segment file is freed for reuse.

If the transaction is rolled back, the changes are undone:
* The original, older version of the data in the undo segment is written back to the table.
» All users see the database as it existed before the transaction began.

Oracle Database: SQL Fundamentals | 9 -41

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

« Adding new rows in a table
— INSERT statement

« Changing data in a table
— UPDATE statement

 Removing rows from a table:
— DELETE statement
— TRUNCATE statement

« Database transactions control using COMMIT, ROLLBACK,
and SAVEPOINT

 Read consistency
e FOR UPDATE clause in a SELECT statement

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals | 9 -42

FOR UPDATE Clause in a SELECT Statement

* Locks the rows in the EMPLOYEES table where job_id s
SA REP.

SELECT employee id, salary, commission pct, job id
FROM employees

WHERE job id = 'SA REP'

FOR UPDATE

ORDER BY employee id;

* Lock is released only when you issue a ROLLBACK Or a
COMMIT.

* If the SELECT statement attempts to lock a row that is

locked by another user, the database waits until the row is
available, and then returns the results of the SELECT

statement.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

FOR UPDATE Clause in a SELECT Statement

When you issue a SELECT statement against the database to query some records, no locks are
placed on the selected rows. In general, this is required because the number of records locked at
any given time is (by default) kept to the absolute minimum: only those records that have been
changed but not yet committed are locked. Even then, others will be able to read those records as
they appeared before the change (the “before image” of the data). There are times, however,
when you may want to lock a set of records even before you change them in your program.
Oracle offers the FOR UPDATE clause of the SELECT statement to perform this locking.

When you issue a SELECT . . . FOR UPDATE statement, the relational database management
system (RDBMS) automatically obtains exclusive row-level locks on all the rows identified by
the SELECT statement, thereby holding the records “for your changes only.” No one else will be
able to change any of these records until you perform a ROLLBACK or a COMMIT.

You can append the optional keyword NOWATIT to the FOR UPDATE clause to tell the Oracle
server not to wait if the table has been locked by another user. In this case, control will be
returned immediately to your program or to your SQL Developer environment so that you can
perform other work, or simply wait for a period of time before trying again. Without the
NOWATIT clause, your process will block until the table is available, when the locks are released
by the other user through the issue of a COMMIT or a ROLLBACK command.

Oracle Database: SQL Fundamentals| 9 -43

FOR UPDATE Clause: Examples

* You can use the FOR UPDATE clause in a SELECT
statement against multiple tables.

SELECT e.employee id, e.salary, e.commission pct
FROM employees e JOIN departments d
USING (department id)

WHERE job id = 'ST CLERK"
AND location id = 1500
FOR UPDATE

ORDER BY e.employee id;

* Rows from both the EMPLOYEES and DEPARTMENTS tables
are locked.

* Use FOR UPDATE OF column name to qualify the column
you intend to change, then only the rows from that specific
table are locked.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

FOR UPDATE Clause: Examples

In the example in the slide, the statement locks rows in the EMPLOYEES table with JOB_ID set
to ST CLERK and LOCATION ID setto 1500, and locks rows in the DEPARTMENTS table
with departments in LOCATION ID setas 1500.

You can use the FOR UPDATE OF column_name to qualify the column that you intend to
change. The OF list of the FOR UPDATE clause does not restrict you to changing only those
columns of the selected rows. Locks are still placed on all rows; if you simply state FOR
UPDATE in the query and do not include one or more columns after the OF keyword, the
database will lock all identified rows across all the tables listed in the FROM clause.

The following statement locks only those rows in the EMPLOYEES table with ST CLERK
located in LOCATION ID 1500. No rows are locked in the DEPARTMENTS table:

SELECT e.employee id, e.salary, e.commission pct
FROM employees e JOIN departments d

USING (department id)

WHERE job id = 'ST CLERK' AND location id = 1500
FOR UPDATE OF e.salary

ORDER BY e.employee id;

Oracle Database: SQL Fundamentals| 9 -44

FOR UPDATE Clause: Examples (continued)

In the following example, the database is instructed to wait for five seconds for the row to
become available, and then return control to you.

SELECT employee id, salary, commission pct, job id

FROM employees

WHERE job id = 'SA REP'

FOR UPDATE WAIT 5

ORDER BY employee 1id;

Oracle Database: SQL Fundamentals| 9 -45

Quiz

The following statements produce the same results:

DELETE FROM copy emp;

TRUNCATE TABLE copy emp;

1. True
2. False

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Answer: 2

Oracle Database: SQL Fundamentals| 9 -46

Summary

In this lesson, you should have learned how to use the
following statements:

Function Description

INSERT Adds a new row to the table
UPDATE Modifies existing rows in the table
DELETE Removes existing rows from the table
TRUNCATE Removes all rows from a table
COMMIT Makes all pending changes permanent
SAVEPOINT Is used to roll back to the savepoint marker
ROLLBACK Discards all pending data changes
FOR UPDATE clause | Locks rows identified by the SELECT query
in SELECT

Summary

In this lesson, you should have learned how to manipulate data in the Oracle database by using
the INSERT, UPDATE, DELETE, and TRUNCATE statements, as well as how to control data
changes by using the COMMIT, SAVEPOINT, and ROLLBACK statements. You also learned
how to use the FOR UPDATE clause of the SELECT statement to lock rows for your changes
only.

Remember that the Oracle server guarantees a consistent view of data at all times.

Oracle Database: SQL Fundamentals| 9 -47

Practice 9: Overview

This practice covers the following topics:
* Inserting rows into the tables
« Updating and deleting rows in the table
« Controlling transactions

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Practice 9: Overview

In this practice, you add rows to the MY EMPLOYEE table, update and delete data from the
> table, and control your transactions. You run a script to create the MY EMPLOYEE table.

Oracle Database: SQL Fundamentals| 9 -48

Using DDL Statements
to Create and Manage Tables

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

« Categorize the main database objects

* Review the table structure

« List the data types that are available for columns
» Create a simple table

« Explain how constraints are created at the time of table
creation

« Describe how schema objects work

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Objectives

In this lesson, you are introduced to the data definition language (DDL) statements. You learn
the basics of how to create simple tables, alter them, and remove them. The data types available
in DDL are shown and schema concepts are introduced. Constraints are discussed in this lesson.
Exception messages that are generated from violating constraints during DML operations are
shown and explained.

Oracle Database: SQL Fundamentals| 10 -2

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

- Database objects
— Naming rules
e CREATE TABLE statement:
— Access another user’s tables
— DEFAULT option
« Data types
* Overview of constraints: NOT NULL, UNIQUE, PRIMARY
KEY, FOREIGN KEY, CHECK constraints
» Creating a table using a subquery
e ALTER TABLE
— Read-only tables
e DROP TABLE statement

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 10 -3

Database Objects

Object Description

Table Basic unit of storage; composed of rows

View Logically represents subsets of data from one or
more tables

Sequence Generates numeric values

Index Improves the performance of some queries

Synonym Gives alternative name to an object

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Database Objects

The Oracle Database can contain multiple data structures. Each structure should be outlined in
the database design so that it can be created during the build stage of database development.

* Table: Stores data

* View: Subset of data from one or more tables

* Sequence: Generates numeric values

* Index: Improves the performance of some queries

* Synonym: Gives alternative name to an object

Oracle Table Structures

» Tables can be created at any time, even when users are using the database.

* You do not need to specify the size of a table. The size is ultimately defined by the amount
of space allocated to the database as a whole. It is important, however, to estimate how
much space a table will use over time.

» Table structure can be modified online.

Note: More database objects are available, but are not covered in this course.

Oracle Database: SQL Fundamentals| 10 -4

Naming Rules

Table names and column names must:
« Begin with a letter
« Be 1-30 characters long
« Containonly A-Z, a—z,0-9, , %, and #

* Not duplicate the name of another object owned by the
same user

* Not be an Oracle server—reserved word

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Naming Rules

You name database tables and columns according to the standard rules for naming any Oracle
database object:
* Table names and column names must begin with a letter and be 1-30 characters long.
* Names must contain only the characters A—Z, a—z, 0-9, (underscore), $, and # (legal
characters, but their use is discouraged).
* Names must not duplicate the name of another object owned by the same Oracle server
user.
* Names must not be an Oracle server—reserved word.

- You may also use quoted identifiers to represent the name of an object. A quoted
identifier begins and ends with double quotation marks (*”’). If you name a schema
object using a quoted identifier, you must use the double quotation marks whenever
you refer to that object. Quoted identifiers can be reserved words, although this is not
recommended.

Naming Guidelines
Use descriptive names for tables and other database objects.

Note: Names are not case-sensitive. For example, EMPLOYEES is treated to be the same name
as eMPloyees or eMpLOYEES. However, quoted identifiers are case-sensitive.

For more information, see the “Schema Object Names and Qualifiers” section in the Oracle
Database SOL Language Reference for 10g or 11g database.

Oracle Database: SQL Fundamentals| 10-5

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

« Database objects
— Naming rules
* CREATE TABLE statement:
— Access another user’s tables
— DEFAULT option
« Data types
* Overview of constraints: NOT NULL, UNIQUE, PRIMARY
KEY, FOREIGN KEY, CHECK constraints
« Creating a table using a subquery
e ALTER TABLE
— Read-only tables
e DROP TABLE statement

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 10 -6

CREATE TABLE Statement

* You must have:
— The CREATE TABLE privilege

— A storage area

CREATE TABLE [schema.] table
(column datatype [DEFAULT exprl[, ...1):;

* You specify:
— The table name
— The column name, column data type, and column size

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

CREATE TABLE Statement

You create tables to store data by executing the SQL CREATE TABLE statement. This statement
is one of the DDL statements that are a subset of the SQL statements used to create, modify, or
remove Oracle Database structures. These statements have an immediate effect on the database
and they also record information in the data dictionary.

To create a table, a user must have the CREATE TABLE privilege and a storage area in which to
create objects. The database administrator (DBA) uses data control language (DCL) statements
to grant privileges to users.

In the syntax:

schema Is the same as the owner’s name

table Is the name of the table

DEFAULT expr Specifies a default value if a value is omitted in the INSERT
statement

column Is the name of the column

datatype Is the column’s data type and length

Oracle Database: SQL Fundamentals| 10 -7

Referencing Another User’s Tables
« Tables belonging to other users are not in the user’s
schema.
* You should use the owner’s name as a prefix to those
tables.
«
] » o) R » B
USERA USERB
SELECT * SELECT *
FROM userB.employees; FROM userA.employees;

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Referencing Another User’s Tables

A schema is a collection of logical structures of data or schema objects. A schema is owned by a
database user and has the same name as that user. Each user owns a single schema.

Schema objects can be created and manipulated with SQL and include tables, views, synonyms,
sequences, stored procedures, indexes, clusters, and database links.

If a table does not belong to the user, the owner’s name must be prefixed to the table. For
example, if there are schemas named USERA and USERB, and both have an EMPLOYEES table,
then if USERA wants to access the EMPLOYEES table that belongs to USERB, USERA must
prefix the table name with the schema name:

SELECT *

FROM userb.employees;
If USERB wants to access the EMPLOYEES table that is owned by USERA, USERB must prefix

the table name with the schema name:
SELECT *
FROM usera.employees;

Oracle Database: SQL Fundamentals| 10 -8

DEFAULT Option

« Specify a default value for a column during an insert.

. hire date DATE DEFAULT SYSDATE, ...

» Literal values, expressions, or SQL functions are legal
values.

* Another column’s name or a pseudocolumn are illegal
values.

« The default data type must match the column data type.

CREATE TABLE hire dates
(id NUMBER (8) ,
|hire date DATE DEFAULT SYSDATE); |

CREATE TABLE succeeded.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

DEFAULT Option

When you define a table, you can specify that a column should be given a default value by using
the DEFAULT option. This option prevents null values from entering the columns when a row is

inserted without a value for the column. The default value can be a literal, an expression, or a
SQL function (such as SYSDATE or USER), but the value cannot be the name of another column
or a pseudocolumn (such as NEXTVAL or CURRVAL). The default expression must match the
data type of the column.
Consider the following examples:

INSERT INTO hire dates values (45, NULL) ;
The above statement will insert the null value rather than the default value.

INSERT INTO hire dates(id) wvalues(35);
The above statement will insert SYSDATE for the HIRE DATE column.

Note: In SQL Developer, click the Run Script icon or press [F5] to run the DDL statements. The
feedback messages will be shown on the Script Output tabbed page.

Oracle Database: SQL Fundamentals| 10 -9

Creating Tables

* Create the table:

CREATE TABLE dept

(deptno NUMBER (2) ,
dname VARCHAR2 (14) ,
loc VARCHAR2 (13),

create date DATE DEFAULT SYSDATE) ;

|CREATE TAELE succeeded.|

Confirm table creation:

DESCRIBE dept

DESCRIBE dept

Name MUl Twpe

DEFTHO NUMBER{2Y
DHAME WARCHARZ {147
Loc WARCHARZ ({137
CREATE_DATE DATE

4 rows selected

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Creating Tables

The example in the slide creates the DEPT table with four columns: DEPTNO, DNAME, LOC, and
CREATE_DATE. The CREATE_DATE column has a default value. If a value is not provided for
an INSERT statement, the system date is automatically inserted.

To confirm that the table was created, run the DESCRIBE command.

Because creating a table is a DDL statement, an automatic commit takes place when this
statement is executed.

Note: You can view the list of tables you own by querying the data dictionary. For example:
select table name from user tables

Using data dictionary views, you can also find information about other database objects such as
views, indexes, and so on. You will learn about data dictionaries in detail in the Oracle
Database: SOQL Fundaments II course.

Oracle Database: SQL Fundamentals| 10 -10

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

« Database objects
— Naming rules
e CREATE TABLE statement:
— Access another user’s tables
— DEFAULT option
« Data types
* Overview of constraints: NOT NULL, UNIQUE, PRIMARY
KEY, FOREIGN KEY, CHECK constraints
« Creating a table using a subquery
e ALTER TABLE
— Read-only tables
e DROP TABLE statement

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 10 - 11

Data Types

Data Type Description

VARCHAR?2 (size) | Variable-length character data

CHAR (size) Fixed-length character data

NUMBER (p, s) Variable-length numeric data

DATE Date and time values

LONG Variable-length character data (up to 2 GB)

CLOB Character data (up to 4 GB)

RAW and LONG Raw binary data

RAW

BLOB Binary data (up to 4 GB)

BFILE Binary data stored in an external file (up to 4 GB)
ROWID A base-64 number system representing the unique

address of a row in its table

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Data Types

When you identify a column for a table, you need to provide a data type for the column. There
are several data types available:

Data Type Description

VARCHAR?2 (size) Variable-length character data (A maximum size must be
specified: minimum size is 1; maximum size is 4,000.)

CHAR [(size)] Fixed-length character data of length size bytes (Default and

minimum size is 1; maximum size is 2,000.)

NUMBER [(p, s)] Number having precision p and scale s (Precision is the total
number of decimal digits and scale is the number of digits to
the right of the decimal point; precision can range from 1 to
38, and scale can range from —84 to 127.)

DATE Date and time values to the nearest second between January 1,
4712 B.C., and December 31, 9999 A.D.

LONG Variable-length character data (up to 2 GB)

CLOB Character data (up to 4 GB)

Oracle Database: SQL Fundamentals| 10 -12

Data Types (continued)

Data Type Description
RAW (size) Raw binary data of length size (A maximum size must be specified: maximum
size is 2,000.)

LONG RAW Raw binary data of variable length (up to 2 GB)

BLOB Binary data (up to 4 GB)

BFILE Binary data stored in an external file (up to 4 GB)

ROWID A base-64 number system representing the unique address of a row in its table
Guidelines

* A LONG column is not copied when a table is created using a subquery.

A LONG column cannot be included in a GROUP BY or an ORDER BY clause.
Only one LONG column can be used per table.

No constraints can be defined on a LONG column.

You might want to use a CLOB column rather than a LONG column.

Oracle Database: SQL Fundamentals| 10-13

Datetime Data Types

You can use several datetime data types:

Data Type Description

TIMESTAMP Date with fractional seconds

INTERVAL YEAR TO Stored as an interval of years

MONTH and months

INTERVAL DAY TO Stored as an interval of days, hours, minutes,
SECOND and seconds

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Datetime Data Types

Data Type Description

TIMESTAMP Enables storage of time as a date with fractional seconds. It stores the
year, month, day, hour, minute, and the second value of the DATE data
type as well as the fractional seconds value

There are several variations of this data type such as WITH
TIMEZONE, WITH LOCALTIMEZONE.

INTERVAL YEAR TO Enables storage of time as an interval of years and months. Used to
MONTH represent the difference between two datetime values in which the only
significant portions are the year and month

INTERVAL DAY TO Enables storage of time as an interval of days, hours, minutes, and
SECOND seconds. Used to represent the precise difference between two datetime
values

Note: These datetime data types are available with Oracle9i and later releases. The datetime
data types are discussed in detail in the lesson titled “Managing Data in Different Time Zones’
in the Oracle Database: SQL Fundamentals II course.

Also, for more information about the datetime data types, see the sections on “TIMESTAMP
Datatype,” “INTERVAL YEAR TO MONTH Datatype,” and “INTERVAL DAY TO SECOND
Datatype” in Oracle Database SQL Language Reference for 10g or 11g database.

b

Oracle Database: SQL Fundamentals| 10 -14

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

« Database objects
— Naming rules
e CREATE TABLE statement:
— Access another user’s tables
— DEFAULT option
« Data types
* Overview of constraints: NOT NULL, UNIQUE, PRIMARY
KEY, FOREIGN KEY, CHECK constraints
» Creating a table using a subquery
e ALTER TABLE
— Read-only tables
e DROP TABLE statement

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 10 -15

Including Constraints

« Constraints enforce rules at the table level.

» Constraints prevent the deletion of a table if there
are dependencies.
« The following constraint types are valid:
— NOT NULL
— UNIQUE
— PRIMARY KEY
— FOREIGN KEY
— CHECK

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Constraints
The Oracle server uses constraints to prevent invalid data entry into tables.

You can use constraints to do the following:
» Enforce rules on the data in a table whenever a row is inserted, updated, or deleted from that
table. The constraint must be satisfied for the operation to succeed.
* Prevent the deletion of a table if there are dependencies from other tables.
» Provide rules for Oracle tools, such as Oracle Developer.

Data Integrity Constraints

Constraint Description
NOT NULL Specifies that the column cannot contain a null value
UNIQUE Specifies a column or combination of columns whose values

must be unique for all rows in the table

PRIMARY KEY Uniquely identifies each row of the table

FOREIGN KEY Establishes and enforces a referential integrity between the
column and a column of the referenced table such that values
in one table match values in another table.

CHECK Specifies a condition that must be true

Oracle Database: SQL Fundamentals| 10 -16

Constraint Guidelines

* You can name a constraint, or the Oracle server generates
a name by using the SYS Cn format.

» Create a constraint at either of the following times:
— At the same time as the creation of the table
— After the creation of the table

 Define a constraint at the column or table level.
* View a constraint in the data dictionary.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Constraint Guidelines

All constraints are stored in the data dictionary. Constraints are easy to reference if you give
them a meaningful name. Constraint names must follow the standard object-naming rules,
except that the name cannot be the same as another object owned by the same user. If you do not
name your constraint, the Oracle server generates a name with the format SYS Cn, where 7 is
an integer so that the constraint name is unique.

Constraints can be defined at the time of table creation or after the creation of the table. You can
define a constraint at the column or table level. Functionally, a table-level constraint is the same
as a column-level constraint.

For more information, see the section on “Constraints” in Oracle Database SQL Language
Reference
for 10g or 11g database.

Oracle Database: SQL Fundamentals| 10 -17

Defining Constraints

* Syntax:

CREATE TABLE [schema.] table
(column datatype [DEFAULT expr]
[column constraint],

[table constraint]l[,...1);

Column-level constraint syntax:

column [CONSTRAINT constraint name] constraint type,

Table-level constraint syntax:

column, ...
[CONSTRAINT constraint name] constraint type
(column, ...),

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Defining Constraints

The slide gives the syntax for defining constraints when creating a table. You can create
constraints at either the column level or table level. Constraints defined at the column level are
included when the column is defined. Table-level constraints are defined at the end of the table
definition and must refer to the column or columns on which the constraint pertains in a set of
parentheses. It is mainly the syntax that differentiates the two; otherwise, functionally, a column-
level constraint is the same as a table-level constraint.

NOT NULL constraints must be defined at the column level.
Constraints that apply to more than one column must be defined at the table level.

In the syntax:
schema Is the same as the owner’s name
table Is the name of the table
DEFAULT expr Specifies a default value to be used if a value is omitted in the
INSERT statement
column Is the name of the column
datatype Is the column’s data type and length
column constraint Is an integrity constraint as part of the column definition
table constraint Is an integrity constraint as part of the table definition

Oracle Database: SQL Fundamentals| 10 -18

Defining Constraints

« Example of a column-level constraint:

CREATE TABLE employees (

employee id NUMBER(6)
CONSTRAINT emp_emp_i d pk PRIMARY KEY, @
first name VARCHAR2 (20) ,

).
o o o I

Example of a table-level constraint:

CREATE TABLE employees (
employee id NUMBER(6),
first name VARCHAR2 (20) ,

job id VARCHAR2 (10) NOT NULL, @
CONSTRAINT emp emp id pk
PRIMARY KEY (EMPLOYEE ID));

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Defining Constraints (continued)

Constraints are usually created at the same time as the table. Constraints can be added to a table
after its creation and also be temporarily disabled.

Both examples in the slide create a primary key constraint on the EMPLOYEE _ID column of the
EMPLOYEES table.

1. The first example uses the column-level syntax to define the constraint.
2. The second example uses the table-level syntax to define the constraint.

More details about the primary key constraint are provided later in this lesson.

Oracle Database: SQL Fundamentals| 10 -19

NOT NULL Constraint

Ensures that null values are not permitted for the column:

emPLOVEEID [FIRST_NAME|E LasT_naME[E saarv[H commission_pcT [f DEPARTMENT_ID B EmaiL [PHONE_NUMBER f HIRE_DATE
100 Steven King 24000 (rully 90 SKING 515.123.4567 17-JUN-87
101 Neena Kochhar 17000 (rully 90 NKOCHHAR 515.123.4568 21-5EP-59
102 Lex De Haan 17000 (rully 90 LDEHAAN 515.123.4569 13-JAN-93
103 Alexander Hunold 000 (rully 60 AHUNOLD 590.423.4567 03-JAN-90
104 Bruce Ernst 6000 (rully GOBERNST 590.423.4568 21-MaY-91
107 Diana Larentz 4200 (rully 60 DLORENTZ 590.423.5567 07-FEB-99
124 Kevin Mourgos 5500 (rully 50 KMOURGOS 6501235234 16-NOV-99
141 Trenna Rajs 3500 (rully S0TRAJS 650.121.8009 17-0CT-95
142 Curtis Davies 3100 (rully SOCDAVIES 6501212994 29-JAN-97
143 Randall Matos 2600 (rully SORMATOS 6501212874 15-MAR-95
144 Peter vargas 2500 (rully SOPVARGAS 6501212004 09-JUL-95
149 Eleni Zlatkey 10500 0.z B0 EZLOTKEY 011.44.1344.429018 29-JAN-00
174 Ellen Abel 11000 0.3 50 EABEL 011.44.1644.429267 11-MAY-96
176 Jonathon Taylor 5600 0.z S0JTAYLOR 011.44.1644.4259265 24-MAR-95
178 Kimberely Grant 7000 0.15 fnull) KGRANT 011.44.1644.429263 24-MAY-99
200 Jennifer Whalen 4400 (rully 10WHALEN 5151234444 17-5EP-57
201 Michael Hartstein 13000 (rully 20 MHARTSTE 5151235555 17-FEB-96
202 Pat Fay 6000 (rully 20 PEAY 603.123.6666 17-AUG-97
205 Shelley Higgins 12000 (rully 110SHIGEINS 515.123.8080 07-JUN-94
206 William Gietz 5300 (rully 110WCIETZ 515.123.8181 07-JUN-94

L)
. Absence of NOT NULL constraint
NOT NULL constraint (Any row can contain a null

(Primary Key enforces value for this column
NOT NULL constraint.) NQU UL)
constraint

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

NOT NULL Constraint

The NOT NULL constraint ensures that the column contains no null values. Columns without the

NOT NULL constraint can contain null values by default. NOT NULL constraints must be defined
at the column level. In the EMPLOYEES table, the EMPLOYEE_ID column inherits a NOT NULL
constraint as it is defined as a primary key. Otherwise, the LAST NAME, EMAIL, HIRE DATE,

and JOB_ID columns have the NOT NULL constraint enforced on them.

Note: Primary key constraint is discussed in detail later in this lesson.

Oracle Database: SQL Fundamentals | 10 - 20

UNIQUE Constraint

____ UNIQUE constraint

EMPLOYEES
v
EMPLOYEEID |[{ LAST_MaME|] EmalL

1 100 King SKING

2 101 Kachhar NEQCHHAR

3 102 De Haan LDEHAAN

4 103 Hunold AHUNOLD

5 104 Ernst BERNST

6 107 Lorentz DLORENTZ

ﬁINSERT INTO

| 208 SMITH JSMITH | <+—— Allowed
| 209 SMITH s | «—— Not allowed: already exists

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

UNIQUE Constraint

A UNIQUE key integrity constraint requires that every value in a column or a set of columns
(key) be unique—that is, no two rows of a table can have duplicate values in a specified column
or a set of columns. The column (or set of columns) included in the definition of the UNIQUE
key constraint is called the unique key. If the UNIQUE constraint comprises more than one

column, that group of columns is called a composite unique key.

UNIQUE constraints enable the input of nulls unless you also define NOT NULL constraints for
the same columns. In fact, any number of rows can include nulls for columns without the NOT
NULL constraints because nulls are not considered equal to anything. A null in a column (or in
all columns of a composite UNIQUE key) always satisfies a UNIQUE constraint.

Note: Because of the search mechanism for the UNIQUE constraints on more than one column,
you cannot have identical values in the non-null columns of a partially null composite UNIQUE
key constraint.

Oracle Database: SQL Fundamentals | 10 - 21

UNIQUE Constraint

Defined at either the table level or the column level:

CREATE TABLE employees (

employee id NUMBER (6) ,

last name VARCHAR2 (25) NOT NULL,
email VARCHAR2 (25),

salary NUMBER (8, 2) ,
commission pct NUMBER (2, 2) ,

hire date DATE NOT NULL,

CONSTRAINT emp email uk UNIQUE (email))|;

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

UNIQUE Constraint (continued)

UNIQUE constraints can be defined at the column level or table level. You define the constraint
at the table level when you want to create a composite unique key. A composite key is defined
when there is not a single attribute that can uniquely identify a row. In that case, you can have a
unique key that is composed of two or more columns, the combined value of which is always
unique and can identify rows.

The example in the slide applies the UNIQUE constraint to the EMAIL column of the
EMPLOYEES table. The name of the constraint is EMP_EMAIL UK.

Note: The Oracle server enforces the UNIQUE constraint by implicitly creating a unique index
on the unique key column or columns.

Oracle Database: SQL Fundamentals | 10 - 22

PRIMARY KEY Constraint

PRIMARY KEY
DEPARTMENTS |

DEPARTMENT_ID | DEPARTMENT_MNAME | it A GER_ID | LOCATION_ID
1 10 Administration 200 1700
z 20 Marketing z01 1800
3 50 Shipping 124 1500
4 &01T 103 1400
g 80 Sales 148 Z500
2] 90 Executive 100 1700
7 110 Accounting 205 1700
g 190 Contracting (rull 1700
Not allowed INSERT INTO
(null value)
|(nu|l} Public Accaunting 124 2500|
| 50 Finance 124 1500|
Not aIIowedI

(50 already exists)

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

PRIMARY KEY Constraint

A PRIMARY KEY constraint creates a primary key for the table. Only one primary key can be
created for each table. The PRIMARY KEY constraint is a column or a set of columns that
uniquely identifies each row in a table. This constraint enforces the uniqueness of the column or
column combination and ensures that no column that is part of the primary key can contain a
null value.

Note: Because uniqueness is part of the primary key constraint definition, the Oracle server
enforces the uniqueness by implicitly creating a unique index on the primary key column or
columns.

Oracle Database: SQL Fundamentals| 10 -23

FOREIGN KEY Constraint
DEPARTMENTS
PRIMARY _[__, [perarTMENT_ID [§ DEPARTMENT_MAME | manaceriD|f LocATIONID
KEY 1 10 Administration 200 1700
z 20 Marketing 201 1800
3 50 Shipping 124 1500
4 60T 103 1400
5 80 Sales 149 2500
EMPLOYEES]
EMPLOYEE_ID| LAST_NAME| DEPARTMENT_ID |¢—— FOREIGN
1 200 Whalen 10 KEY
2 201 Hartstein 20
3 202 Fay 20
4 205 Higginsz 110
5 206 Cietz 110
ﬁ ?INSERT INTO Not allowed
(9 does not
| 200 Ford 9| ———— exist)
| 200 Ford s0| «—— Allowed

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

FOREIGN KEY Constraint

The FOREIGN KEY (or referential integrity) constraint designates a column or a combination of
columns as a foreign key and establishes a relationship with a primary key or a unique key in the
same table or a different table.

In the example in the slide, DEPARTMENT ID has been defined as the foreign key in the
EMPLOYEES table (dependent or child table); it references the DEPARTMENT _ID column of
the DEPARTMENTS table (the referenced or parent table).

Guidelines
A foreign key value must match an existing value in the parent table or be NULL.

* Foreign keys are based on data values and are purely logical, rather than physical, pointers.

Oracle Database: SQL Fundamentals| 10 -24

FOREIGN KEY Constraint

Defined at either the table level or the column level:

CREATE TABLE employees (

employee id NUMBER (6) ,

last name VARCHAR2 (25) NOT NULL,
email VARCHAR?2 (25) ,

salary NUMBER (8, 2) ,
commission pct NUMBER(2, 2) ,

hire date DATE NOT NULL,

department id NUMBER (4) ,

CONSTRAINT emp dept fk FOREIGN KEY (department id)
REFERENCES departments (department id),

CONSTRAINT emp email uk UNIQUE (email)) ;

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

FOREIGN KEY Constraint (continued)

FOREIGN KEY constraints can be defined at the column or table constraint level. A composite
foreign key must be created by using the table-level definition.

The example in the slide defines a FOREIGN KEY constraint on the DEPARTMENT _ID column
of the EMPLOYEES table, using table-level syntax. The name of the constraint is
EMP_DEPT_FK.

The foreign key can also be defined at the column level, provided that the constraint is based on
a single column. The syntax differs in that the keywords FOREIGN KEY do not appear. For
example:

CREATE TABLE employees

(...
department id NUMBER (4) CONSTRAINT emp deptid fk
REFERENCES departments (department id),

)

Oracle Database: SQL Fundamentals| 10 - 25

FOREIGN KEY Constraint: Keywords

* FOREIGN KEY: Defines the column in the child table at the
table-constraint level

 REFERENCES: |Identifies the table and column in the parent
table

* ON DELETE CASCADE: Deletes the dependent rows in the
child table when a row in the parent table is deleted

* ONDELETE SET NULL: Converts dependent foreign key
values to null

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

FOREIGN KEY Constraint: Keywords

The foreign key is defined in the child table and the table containing the referenced column is
the parent table. The foreign key is defined using a combination of the following keywords:
« FOREIGN KEY is used to define the column in the child table at the table-constraint level.
« REFERENCES identifies the table and the column in the parent table.
« ONDELETE CASCADE indicates that when a row in the parent table is deleted, the

dependent rows in the child table are also deleted.
« ONDELETE SET NULL indicates that when a row in the parent table is deleted, the foreign

key values are set to null.
The default behavior is called the restrict rule, which disallows the update or deletion of
referenced data.
Without the ON DELETE CASCADE or the ON DELETE SET NULL options, the row in the
parent table cannot be deleted if it is referenced in the child table.

Oracle Database: SQL Fundamentals| 10 - 26

CHECK Constraint

« Defines a condition that each row must satisfy

« The following expressions are not allowed:
— References to CURRVAL, NEXTVAL, LEVEL, and ROWNUM
pseudocolumns
— Calls to SYSDATE, UID, USER, and USERENV functions

— Queries that refer to other values in other rows

.oy salary NUMBER (2)
CONSTRAINT emp salary min
CHECK (salary > 0),...

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

CHECK Constraint

The CHECK constraint defines a condition that each row must satisfy. The condition can use the
same constructs as the query conditions, with the following exceptions:

» References to the CURRVAL, NEXTVAL, LEVEL, and ROWNUM pseudocolumns

* (alls to SYSDATE, UID, USER, and USERENV functions

* Queries that refer to other values in other rows

A single column can have multiple CHECK constraints that refer to the column in its definition.
There is no limit to the number of CHECK constraints that you can define on a column.

CHECK constraints can be defined at the column level or table level.
CREATE TABLE employees
(...
salary NUMBER (8,2) CONSTRAINT emp salary min
CHECK (salary > 0),

Oracle Database: SQL Fundamentals | 10 - 27

CREATE TABLE: Example

CREATE TABLE employees
(employee id NUMBER (6)
CONSTRAINT emp employee id PRIMARY KEY
, first name VARCHAR2 (20)
, last name VARCHAR2 (25)
CONSTRAINT emp last name nn NOT NULL
, email VARCHAR2 (25)
CONSTRAINT emp email nn NOT NULL
CONSTRAINT emp email uk UNIQUE
, phone number VARCHAR2 (20)
, hire date DATE
CONSTRAINT emp hire date nn NOT NULL
, job_id VARCHAR2 (10)
CONSTRAINT emp job nn NOT NULL
, salary NUMBER (8, 2)
CONSTRAINT emp salary ck CHECK (salary>0)
, commission pct NUMBER(2,2)
, manager id NUMBER (6)
CONSTRAINT emp manager fk REFERENCES
employees (employee id)
, department id NUMBER (4)
CONSTRAINT emp dept fk REFERENCES
departments (department id)) ;

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

CREATE TABLE: Example

The example in the slide shows the statement that is used to create the EMPLOYEES table in the
HR schema.

Oracle Database: SQL Fundamentals| 10 - 28

Violating Constraints

UPDATE employees
SET |department id
WHERE department id

55 |
110;

Error starting at Tine 1 in command:
UPDATE emplovees

SET department_id
WHERE department_id
Errar report:

S0L Error: ORA-DZ2291: integrity constraint (0ORAL.EMP_DEPT_FE) wiolated - parent key not found
02291, Q0000 - "integrity constraint (Hs.¥s) wiolated - parent key not found®

*ause: A Toreign keyw value has no matching primary key wvalue.

55
110

Department 55 does not exist.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Violating Constraints
When you have constraints in place on columns, an error is returned if you try to violate the
constraint rule. For example, if you try to update a record with a value that is tied to an integrity
constraint, an error is returned.
In the example in the slide, department 55 does not exist in the parent table, DEPARTMENTS,
and so you receive the “parent key not found” violation ORA-02291.

Oracle Database: SQL Fundamentals | 10 - 29

Violating Constraints

You cannot delete a row that contains a primary key that is
used as a foreign key in another table.

DELETE FROM departments
WHERE department id = 60;

Error starting at line 1 in command:
DELETE FROM departments
WHERE department_id = 60
Error report:
S0L Error: ORA-02292: integrity constraint (0RAL1. JHIST_DEPT_FE) wiolated - child record found
02292, 00000 - "integrity constraint (¥s.%s) wiolated - child record Tound®
*Cause: attempted to delete a parent kew walue that had a foreign
dependency.
*ACtion: delete dependencies first then parent or disable constraint.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Violating Constraints (continued)

If you attempt to delete a record with a value that is tied to an integrity constraint, an error is
returned.

The example in the slide tries to delete department 60 from the DEPARTMENTS table, but it
results in an error because that department number is used as a foreign key in the EMPLOYEES

table. If the parent record that you attempt to delete has child records, you receive the “child
record found” violation ORA-02292.

The following statement works because there are no employees in department 70:
DELETE FROM departments
WHERE department id = 70;

|l rows deleted|

Oracle Database: SQL Fundamentals| 10 -30

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

« Database objects
— Naming rules
e CREATE TABLE statement:
— Access another user’s tables
— DEFAULT option
« Data types
* Overview of constraints: NOT NULL, UNIQUE, PRIMARY
KEY, FOREIGN KEY, CHECK constraints
« Creating a table using a subquery
e ALTER TABLE
— Read-only tables
e DROP TABLE statement

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 10 - 31

Creating a Table Using a Subquery

« Create a table and insert rows by combining the CREATE
TABLE statement and the AS subquery option.

CREATE TABLE table
[(column, column...)]
AS subquery;

« Match the number of specified columns to the number of
subquery columns.

 Define columns with column names and default values.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Creating a Table Using a Subquery

A second method for creating a table is to apply the AS subgquery clause, which both creates
the table and inserts rows returned from the subquery.

In the syntax:

table Is the name of the table
column Is the name of the column, default value, and integrity constraint
subquery Is the SELECT statement that defines the set of rows to be inserted into

the new table
Guidelines

» The table is created with the specified column names, and the rows retrieved by the
SELECT statement are inserted into the table.

* The column definition can contain only the column name and default value.

 If column specifications are given, the number of columns must equal the number of
columns in the subquery SELECT list.

 If no column specifications are given, the column names of the table are the same as the
column names in the subquery.

* The column data type definitions and the NOT NULL constraint are passed to the new table.
Note that only the explicit NOT NULL constraint will be inherited. The PRIMARY KEY
column will not pass the NOT NULL feature to the new column. Any other constraint rules
are not passed to the new table. However, you can add constraints in the column definition.

Oracle Database: SQL Fundamentals | 10 - 32

Creating a Table Using a Subquery

CREATE TABLE dept80
AS

SELECT employee id, last name,
salary*12 ANNSAL,
hire date

FROM employees

WHERE department id = 80;

CREATE TABLE succeeded.

DESCRIBE dept80

Name MUl Twpe
EMPLOYEE_ID MUMBER{&)
LAST_NAME MOT WULL WARCHARZ (250
ANNSAL MUMEER,
HIRE_DATE MOT WULL DATE

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Creating a Table Using a Subquery (continued)
The example in the slide creates a table named DEPT80, which contains details of all the
employees working in department 80. Notice that the data for the DEPT80 table comes from the
EMPLOYEES table.

You can verify the existence of a database table and check the column definitions by using the
DESCRIBE command.

However, be sure to provide a column alias when selecting an expression. The expression
SALARY*12 is given the alias ANNSAL. Without the alias, the following error is generated:

Error starting at 1ine 1 in command:
CEEATE TABLE depti0
A5 SELECT emplovee_id, Tast_name,
calaryvls ,
hire_datel FEOM emplovees WHERE department_id = 80O
Error at Command Line:3 Column:l8
Error report:
SOL Error: OR&-00995: must name this expression with a column alias
QOS9SE, 00000 - "must name this expression with a column alias"
¥Caluse:
*ootion:

Oracle Database: SQL Fundamentals | 10 - 33

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

« Database objects
— Naming rules
e CREATE TABLE statement:
— Access another user’s tables
— DEFAULT option
« Data types
* Overview of constraints: NOT NULL, UNIQUE, PRIMARY
KEY, FOREIGN KEY, CHECK constraints
« Creating a table using a subquery
* ALTER TABLE
— Read-only tables
e DROP TABLE statement

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 10 - 34

ALTER TABLE Statement

Use the ALTER TABLE statement to:

* Add a new column

« Modify an existing column definition

* Define a default value for the new column
* Drop a column

* Rename a column

« Change table to read-only status

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

ALTER TABLE Statement

After you create a table, you may need to change the table structure for any of the following
reasons:

* You omitted a column.

* Your column definition or its name needs to be changed.
* You need to remove columns.

* You want to put the table into the read-only mode

You can do this by using the ALTER TABLE statement.

Oracle Database: SQL Fundamentals| 10 -35

Read-Only Tables

You can use the ALTER TABLE syntax to:

* Put a table into read-only mode, which prevents DDL or
DML changes during table maintenance

* Put the table back into read/write mode

ALTER TABLE employees READ ONLY;

-- perform table maintenance and then
-- return table back to read/write mode

ALTER TABLE employees READ WRITE;

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Read-Only Tables
With Oracle Database 11g, you can specify READ ONLY to place a table in the read-only mode.
When the table is in the READ-ONLY mode, you cannot issue any DML statements that affect
the table or any SELECT ... FOR UPDATE statements. You can issue DDL statements as
long as they do not modify any data in the table. Operations on indexes associated with the table
are allowed when the table is in the READ ONLY mode.
Specify READ/WRITE to return a read-only table to the read/write mode.

Note: You can drop a table that is in the READ ONLY mode. The DROP command is executed
only in the data dictionary, so access to the table contents is not required. The space used by the
table will not be reclaimed until the tablespace is made read/write again, and then the required
changes can be made to the block segment headers, and so on.

For information about the ALTER TABLE statement, see the course titled Oracle Database: SQL
Fundamentals I1.

Oracle Database: SQL Fundamentals | 10 - 36

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

« Database objects
— Naming rules
e CREATE TABLE statement:
— Access another user’s tables
— DEFAULT option
« Data types
* Overview of constraints: NOT NULL, UNIQUE, PRIMARY
KEY, FOREIGN KEY, CHECK constraints
« Creating a table using a subquery
e ALTER TABLE
— Read-only tables
 DROP TABLE statement

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals | 10 - 37

Dropping a Table

* Moves a table to the recycle bin
* Removes the table and all its data entirely if the PURGE
clause is specified

* Invalidates dependent objects and removes object
privileges on the table

DROP TABLE dept80;

[DROP TAELE deprtdd succeeded. |

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Dropping a Table
The DROP TABLE statement moves a table to the recycle bin or removes the table and all its
data from the database entirely. Unless you specify the PURGE clause, the DROP TABLE
statement does not result in space being released back to the tablespace for use by other objects,
and the space continues to count towards the user’s space quota. Dropping a table invalidates the
dependent objects and removes object privileges on the table.

When you drop a table, the database loses all the data in the table and all the indexes associated
with it.

Syntax

DROP TABLE table [PURGE]

In the syntax, table is the name of the table.

Guidelines
» All the data is deleted from the table.
* Any views and synonyms remain, but are invalid.
* Any pending transactions are committed.
* Only the creator of the table or a user with the DROP ANY TABLE privilege can remove a
table.

Note: Use the FLASHBACK TABLE statement to restore a dropped table from the recycle bin.
This is discussed in detail in the course titled Oracle Database: SOL Fundamentals I1.

Oracle Database: SQL Fundamentals | 10 - 38

Quiz

You can use constraints to do the following:

1. Enforce rules on the data in a table whenever a row is
inserted, updated, or deleted.

2. Prevent the deletion of a table.
Prevent the creation of a table.
4. Prevent the creation of data in a table.

W

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Answer: 1, 2,4

Oracle Database: SQL Fundamentals | 10 -39

Summary

In this lesson, you should have learned how to use the CREATE
TABLE statement to create a table and include constraints:

« Categorize the main database objects

* Review the table structure

- List the data types that are available for columns
* Create a simple table

« Explain how constraints are created at the time of table
creation

« Describe how schema objects work

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Summary

In this lesson, you should have learned how to do the following:
CREATE TABLE
* Use the CREATE TABLE statement to create a table and include constraints.
* Create a table based on another table by using a subquery.
DROP TABLE
* Remove rows and a table structure.
* When executed, this statement cannot be rolled back.

Oracle Database: SQL Fundamentals| 10 -40

Practice 10: Overview

This practice covers the following topics:
« Creating new tables

« Creating a new table by using the CREATE TABLE AS
syntax

« Verifying that tables exist
« Setting a table to read-only status
* Dropping tables

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Practice 10: Overview

Create new tables by using the CREATE TABLE statement. Confirm that the new table was
added to the database. You also learn to set the status of a table as READ ONLY and then revert
to READ/WRITE.

Note: For all the DDL and DML statements, click the Run Script icon (or press [F5]) to execute
the query in SQL Developer. This way you get to see the feedback messages on the Script
Output tabbed page. For SELECT queries, continue to click the Execute Statement icon or press
[F9] to get the formatted output on the Results tabbed page.

Oracle Database: SQL Fundamentals | 10 - 41

‘sejel|ye sl Jo/pue ajoelO ‘010z GybuAdo) paligiyosd uonngusip Jo uononpoidal paziloyineun

Creating Other Schema Objects

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

» Create simple and complex views

* Retrieve data from views

« Create, maintain, and use sequences
« Create and maintain indexes

» Create private and public synonyms

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Objectives

In this lesson, you are introduced to the view, sequence, synonym, and index objects. You learn
the basics of creating and using views, sequences, and indexes.

Oracle Database: SQL Fundamentals| 11 -2

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

* Overview of views:
— Creating, modifying, and retrieving data from a view
— Data manipulation language (DML) operations on a view
— Dropping a view
 Overview of sequences:
— Creating, using, and modifying a sequence
— Cache sequence values
— NEXTVAL and CURRVAL pseudocolumns
* Overview of indexes
— Creating, dropping indexes
« Overview of synonyms
— Creating, dropping synonyms

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals| 11 -3

Database Objects

Object Description

Table Basic unit of storage; composed of rows

View Logically represents subsets of data from one or
more tables

Sequence Generates numeric values

Index Improves the performance of data retrieval
queries

Synonym Gives alternative names to objects

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Database Objects

There are several other objects in a database in addition to tables.
With views, you can present and hide data from the tables.

Many applications require the use of unique numbers as primary key values. You can either
build code into the application to handle this requirement or use a sequence to generate unique
numbers.

If you want to improve the performance of data retrieval queries, you should consider creating
an index. You can also use indexes to enforce uniqueness on a column or a collection of
columns.

You can provide alternative names for objects by using synonyms.

Oracle Database: SQL Fundamentals | 11 -4

What Is a View?

EMPLOYEES table

EMPLOVEE D [FIRST_MAME|[LasT_naME|E emai [B PHone Numeer [B HIREDATE|E Josio [sasry
100 Steven King SKING 515.123.4567 17-JUN-87 AD_FRES 24000
101 Neena Kochhar NKOCHHAR 515.123.4568 Z1-SEP-89 AD_WP 17000
102 Lex De Haan LDEHAAN 5151234569 13-JAN-93 AD_WP 17000
103 Alexander Hunald AHUNOLD 590.423.4567 03-JAN-50 IT_PROG 9000
104 Br 6000
10 4200

6500

5500

3500

3100

2600

EMPLOYEEID |[{ FIRST_MaAME|[LasT_MaME|E saLary 2500
100 Steven King 24000 s
11000

101 Meena Kachhar 17000 4600
102 Lex De Haan 17000 7000
103 Alexander Hunald 000 17-SEP-87 - © ADASST 4400
104 Bruce Ernist 5000 LRRFERY ~ MEMAN 13000
666 17-AUG-57 MK_REP 6000

205 Shelley Higgins SHIGGING 515.123.6080 07-JUN-94 AC_MGR 12000
206 William Gietz WGIETZ 515.123.8181 07-JUN-94 AC_ACCOUNT 8300

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

What Is a View?

You can present logical subsets or combinations of data by creating views of tables. A view is a
logical table based on a table or another view. A view contains no data of its own, but is like a
window through which data from tables can be viewed or changed. The tables on which a view
is based are called base tables. The view is stored as a SELECT statement in the data dictionary.

Oracle Database: SQL Fundamentals| 11 -5

Advantages of Views

To restrict To make complex
data access queries easy

‘-____—4—,’:-’/ ~
To provide To present
data different views of
independence the same data

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Advantages of Views

* Views restrict access to the data because it displays selected columns from the table.

* Views can be used to make simple queries to retrieve the results of complicated queries. For
example, views can be used to query information from multiple tables without the user
knowing how to write a join statement.

* Views provide data independence for ad hoc users and application programs. One view can
be used to retrieve data from several tables.

* Views provide groups of users access to data according to their particular criteria.

For more information, see the “CREATE VIEW” section in Oracle Database SOQL Language
Reference for 10g or 11g database.

Oracle Database: SQL Fundamentals| 11 -6

Simple Views and Complex Views

Feature Simple Views Complex Views
Number of tables One One or more
Contain functions No Yes

Contain groups of data No Yes

DML operations through a Yes Not always

view

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Simple Views and Complex Views

There are two classifications for views: simple and complex. The basic difference is related to
the DML (INSERT, UPDATE, and DELETE) operations.
* A simple view is one that:
- Derives data from only one table
- Contains no functions or groups of data
- Can perform DML operations through the view
* A complex view is one that:
- Derives data from many tables
- Contains functions or groups of data
- Does not always allow DML operations through the view

Oracle Database: SQL Fundamentals| 11 -7

Creating a View

* You embed a subquery in the CREATE VIEW statement:

CREATE [OR REPLACE] [FORCE|NOFORCE] VIEW view
[(alias[, alias]...)]

AS subquery

[WITH CHECK OPTION [CONSTRAINT constraint]]

[WITH READ ONLY [CONSTRAINT constraint]];

* The subquery can contain complex SELECT syntax.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Creating a View
You can create a view by embedding a subquery in the CREATE VIEW statement.

In the syntax:

OR REPLACE Re-creates the view if it already exists
FORCE Creates the view regardless of whether or not the base tables exist
NOFORCE Creates the view only if the base tables exist (This is the default.)
view Is the name of the view
alias Specifies names for the expressions selected by the view’s query
(The number of aliases must match the number of expressions selected by
the view.)
subquery Is a complete SELECT statement (You can use aliases for the

columns in the SELECT list.)
WITH CHECK OPTION Specifies that only those rows that are accessible to the view can

be inserted or updated
constraint Is the name assigned to the CHECK OPTION constraint
WITH READ ONLY Ensures that no DML operations can be performed on this view

Note: In SQL Developer, click the Run Script icon or press [F5] to run the data definition
language (DDL) statements. The feedback messages will be shown on the Script Output tabbed

page.

Oracle Database: SQL Fundamentals| 11 -8

Creating a View

* Create the EMPVU80 view, which contains details of the
employees in department 80:

CREATE VIEW empvu80

AS SELECT employee id, last name, salary
FROM employees
WHERE department id = 80;

CREATE VIEW succeeded.]

» Describe the structure of the view by using the SQL*Plus
DESCRIBE command:

DESCRIBE empvu80

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Creating a View (continued)

The example in the slide creates a view that contains the employee number, last name, and
salary for each employee in department 80.

You can display the structure of the view by using the DESCRIBE command.

Nane NUTT Type

EMPLOYEE_ID NOT MNULL MUMBER(&E

LAST_MAME MOT NULL WARCHARZ(Z5)

SALARY NUMBEE.(E, 27
Guidelines

* The subquery that defines a view can contain complex SELECT syntax, including joins,
groups, and subqueries.

» Ifyou do not specify a constraint name for the view created with the WITH CHECK
OPTION, the system assigns a default name in the SYS Cn format.

* You can use the OR REPLACE option to change the definition of the view without dropping
and re-creating it, or regranting the object privileges previously granted on it.

Oracle Database: SQL Fundamentals| 11 -9

Creating a View

« Create a view by using column aliases in the subquery:

CREATE VIEW salwvu50
AS SELECT employee id ID NUMBER, last name NAME,
salary*12 ANN SALARY
FROM employees

WHERE department id = 50;
|CREATE VIEW succeeded4

« Select the columns from this view by the given alias
names.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Creating a View (continued)

You can control the column names by including column aliases in the subquery.

The example 1n the slide creates a view containing the employee number (EMPLOYEE ID) with
the alias ID NUMBER, name (LAST NAME) with the alias NAME, and annual salary (SALARY)
with the alias ANN SALARY for every employee in department 50.

Alternatively, you can use an alias after the CREATE statement and before the SELECT

subquery. The number of aliases listed must match the number of expressions selected in the
subquery.

CREATE OR REPLACE VIEW salvu50 (ID NUMBER, NAME, ANN SALARY)
AS SELECT employee id, last name, salary*12
FROM employees
WHERE department id = 50;

CREATE WIEW succeeded.

Oracle Database: SQL Fundamentals| 11 -10

Retrieving Data from a View

SELECT *
FROM
iD_MUMBER [§ MAME[§ ANN_saLARY
1 124 Mourgos 69600
z 141 Rajs 42000
3 142 Davies 37200
4 143 Matos 31200
5 144 Wargas 30000

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Retrieving Data from a View

You can retrieve data from a view as you would from any table. You can display either the
contents of the entire view or just specific rows and columns.

Oracle Database: SQL Fundamentals | 11 - 11

Modifying a View

* Modify the EMPVU80 view by using a CREATE OR REPLACE
VIEW clause. Add an alias for each column name:

CREATE OR REPLACE VIEW empvu80
(id number, name, sal, department id)
AS SELECT employee id, first name || '
| | last name, salary, department id
FROM employees

WHERE department id = 80;
[CREATE OR REPLACE VIEW succeeded. |

e Column aliases in the CREATE OR REPLACE VIEW clause
are listed in the same order as the columns in the
subquery.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Modifying a View
With the OR REPLACE option, a view can be created even if one exists with this name already,

thus replacing the old version of the view for its owner. This means that the view can be altered
without dropping, re-creating, and regranting object privileges.

Note: When assigning column aliases in the CREATE OR REPLACE VIEW clause, remember
that the aliases are listed in the same order as the columns in the subquery.

Oracle Database: SQL Fundamentals | 11 -12

Creating a Complex View

Create a complex view that contains group functions to display
values from two tables:

CREATE OR REPLACE VIEW dept sum wvu
(name, minsal, maxsal, avgsal)
AS SELECT d.department name, MIN(e.salary),
MAX (e.salary) ,AVG(e.salary)
FROM employees e JOIN departments d
ON (e.department id = d.department id)

GROUP BY d.department name;
[CREATE OR REPLACE VIEW succeeded.|

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Creating a Complex View

The example in the slide creates a complex view of department names, minimum salaries,
maximum salaries, and the average salaries by department. Note that alternative names have
been specified for the view. This is a requirement if any column of the view is derived from a
function or an expression.

You can view the structure of the view by using the DESCRIBE command. Display the contents
of the view by issuing a SELECT statement.

SELECT *
FROM dept sum vu;
A M E mirsaL (B maxsal (B awcsal

1 Administration 4400 4400 4400
2 Accounting a300 lz000 10150
30T 4200 5000 G400
4 Executive 17000 24000 19333.333333333...
5 Shipping 2500 5500 3500
& Sales 8600 11000 10033.333333333...
7 Marketing G000 13000 8500

Oracle Database: SQL Fundamentals| 11 -13

Rules for Performing DML Operations on a View

* You can usually perform DML operations on /
simple views.

* You cannot remove a row if the view contains the

following:
— Group functions @

— A GROUP BY clause
— The DISTINCT keyword
— The pseudocolumn ROWNUM keyword

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Rules for Performing DML Operations on a View

* You can perform DML operations on data through a view if those operations follow certain
rules.
* You can remove a row from a view unless it contains any of the following:
- Group functions
- A GROUP BY clause
- The DISTINCT keyword
- The pseudocolumn ROWNUM keyword

Oracle Database: SQL Fundamentals| 11 -14

Rules for Performing DML Operations on a View

You cannot modify data in a view if it contains:
* Group functions
A GROUP BY clause
* The DISTINCT keyword
* The pseudocolumn ROWNUM keyword

« Columns defined by expressions

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Rules for Performing DML Operations on a View (continued)

You can modify data through a view unless it contains any of the conditions mentioned in the
previous slide or columns defined by expressions (for example, SALARY * 12).

Oracle Database: SQL Fundamentals| 11 -15

Rules for Performing DML Operations on a View

You cannot add data through a view if the view includes:
* Group functions
« A GROUP BY clause
* The DISTINCT keyword
* The pseudocolumn ROWNUM keyword
* Columns defined by expressions

e NOT NULL columns in the base tables that are not selected
by the view

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Rules for Performing DML Operations on a View (continued)

You can add data through a view unless it contains any of the items listed in the slide. You
cannot add data to a view if the view contains NOT NULL columns without default values in the

base table. All the required values must be present in the view. Remember that you are adding
values directly to the underlying table through the view.

For more information, see the “CREATE VIEW” section in Oracle Database SQL Language
Reference for 10g or 11g database.

Oracle Database: SQL Fundamentals| 11 -16

Using the WITH CHECK OPTION Clause

* You can ensure that DML operations performed on the
view stay in the domain of the view by using the WITH
CHECK OPTION clause:

CREATE OR REPLACE VIEW empvu20

AS SELECT *
FROM employees
WHERE department id = 20

|WITH CHECK OPTION CONSTRAINT empvu20_ck|;

CRFEATE OFR FEFPLACE VIEW SuCCEEdEd.|

* Any attempt to INSERT a row with a department id
other than 20, or to UPDATE the department number for
any row in the view fails because it violates the WITH
CHECK OPTION constraint.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using the WITH CHECK OPTION Clause

It is possible to perform referential integrity checks through views. You can also enforce
constraints at the database level. The view can be used to protect data integrity, but the use is
very limited.

The WITH CHECK OPTION clause specifies that INSERTs and UPDATESs performed through
the view cannot create rows that the view cannot select. Therefore, it enables integrity
constraints and data validation checks to be enforced on data being inserted or updated. If there
is an attempt to perform DML operations on rows that the view has not selected, an error is
displayed, along with the constraint name if that has been specified.

UPDATE empvu20

SET department id = 10

WHERE employee id = 201;

causes:

Error report:
SOL Error: OREA-01402: wiew WITH CHECE OPTION where-clause wiolation
01402, o000 - "wiew WITH CHECK OPTION where-clause wiolation"

Note: No rows are updated because, if the department number were to change to 10, the view
would no longer be able to see that employee. With the WITH CHECK OPTION clause,
therefore, the view can see only the employees in department 20 and does not allow the
department number for those employees to be changed through the view.

Oracle Database: SQL Fundamentals | 11 -17

Denying DML Operations

* You can ensure that no DML operations occur by adding
the WITH READ ONLY option to your view definition.

* Any attempt to perform a DML operation on any row in the
view results in an Oracle server error.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Denying DML Operations

You can ensure that no DML operations occur on your view by creating it with the WITH READ
> ONLY option. The example in the next slide modifies the EMPVU10 view to prevent any DML
operations on the view.

Oracle Database: SQL Fundamentals| 11 -18

Denying DML Operations

CREATE OR REPLACE VIEW empvulO
(employee number, employee name, job title)

AS SELECT employee id, last name, job id
FROM employees
WHERE department id = 10

| WITH READ ONLY |;

[CREATE OR REPLACE VIEW succeeded.]

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Denying DML Operations (continued)

Any attempt to remove a row from a view with a read-only constraint results in an error:

DELETE FROM empvulO
WHERE employee number = 200;

Similarly, any attempt to insert a row or modify a row using the view with a read-only constraint
results in the same error.

Erraor report:
S0L Error: 0ORA-42399: cannot perform a DML operation on a read-onTy wiew

Oracle Database: SQL Fundamentals| 11 -19

Removing a View

You can remove a view without losing data because a view is
based on underlying tables in the database.

DROP VIEW view;

DROP VIEW empvu80;
[DROP VIEW empvudd succeeded. |

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Removing a View

You use the DROP VIEW statement to remove a view. The statement removes the view
definition from the database. However, dropping views has no effect on the tables on which the

view was based. Alternatively, views or other applications based on the deleted views become
invalid. Only the creator or a user with the DROP ANY VIEW privilege can remove a view.

In the syntax, view is the name of the view.

Oracle Database: SQL Fundamentals | 11 -20

Practice 11: Overview of Part 1

This practice covers the following topics:
« Creating a simple view
« Creating a complex view
« Creating a view with a check constraint
« Attempting to modify data in the view
* Removing views

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Practice 11: Overview of Part 1

Part 1 of this lesson’s practice provides you with a variety of exercises in creating, using, and
removing views. Complete questions 1-6 at the end of this lesson.

Oracle Database: SQL Fundamentals | 11 - 21

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

* Overview of views:
— Creating, modifying, and retrieving data from a view
— DML operations on a view
— Dropping a view
« Overview of sequences:
— Creating, using, and modifying a sequence
— Cache sequence values
— NEXTVAL and CURRVAL pseudocolumns
* Overview of indexes
— Creating, dropping indexes
« Overview of synonyms
— Creating, dropping synonyms

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals | 11 -22

Sequences

Object Description

Table Basic unit of storage; composed of rows

View Logically represents subsets of data from one or
more tables

Sequence Generates numeric values

Index Improves the performance of some queries

Synonym Gives alternative names to objects

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Sequences

A sequence is a database object that creates integer values. You can create sequences and then
use them to generate numbers.

Oracle Database: SQL Fundamentals | 11 -23

Sequences

A sequence:
« Can automatically generate unique numbers
* Is a shareable object
« Can be used to create a primary key value
* Replaces application code

« Speeds up the efficiency of accessing sequence values
when cached in memory

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Sequences (continued)

A sequence is a user-created database object that can be shared by multiple users to generate
integers.

You can define a sequence to generate unique values or to recycle and use the same numbers
again.

A typical usage for sequences is to create a primary key value, which must be unique for each
row. A sequence is generated and incremented (or decremented) by an internal Oracle routine.
This can be a time-saving object because it can reduce the amount of application code needed to
write a sequence-generating routine.

Sequence numbers are stored and generated independent of tables. Therefore, the same sequence
can be used for multiple tables.

Oracle Database: SQL Fundamentals | 11 -24

CREATE SEQUENCE Statement: Syntax

Define a sequence to generate sequential numbers
automatically:

CREATE SEQUENCE sequence
[INCREMENT BY n]
[START WITH nl]
[{MAXVALUE n | NOMAXVALUE}]
[{MINVALUE n | NOMINVALUE}]
[{CYCLE | NOCYCLE}]
[{CACHE n | NOCACHE}];

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

CREATE SEQUENCE Statement: Syntax
Automatically generate sequential numbers by using the CREATE SEQUENCE statement.

In the syntax:
sequence Is the name of the sequence generator

INCREMENT BY n Specifies the interval between sequence numbers, where
n is an integer (If this clause is omitted, the sequence
increments by 1.)

START WITH n Specifies the first sequence number to be generated (If this
clause is omitted, the sequence starts with 1.)

MAXVALUE n Specifies the maximum value the sequence can generate

NOMAXVALUE Specifies a maximum value of 10727 for an ascending
sequence and —1 for a descending sequence (This is the
default option.)

MINVALUE n Specifies the minimum sequence value

NOMINVALUE Specifies a minimum value of 1 for an ascending sequence
and —(10726) for a descending sequence (This is the default
option.)

Oracle Database: SQL Fundamentals| 11 -25

Creating a Sequence

« Create a sequence named DEPT DEPTID SEQ to be used
for the primary key of the DEPARTMENTS table.

* Do not use the CYCLE option.

CREATE SEQUENCE dept deptid seq
INCREMENT BY 10
START WITH 120
MAXVALUE 9999
NOCACHE
NOCYCLE;

CREATE SEQUENCE succeeded.‘

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Creating a Sequence (continued)

CYCLE | NOCYCLE Specifies whether the sequence continues to generate
values after reaching its maximum or minimum value
(NOCYCLE is the default option.)

CACHE n | NOCACHE Specifies how many values the Oracle server preallocates
and keeps in memory (By default, the Oracle server
caches 20 values.)

The example in the slide creates a sequence named DEPT DEPTID SEQ to be used for the
DEPARTMENT ID column of the DEPARTMENTS table. The sequence starts at 120, does not
allow caching, and does not cycle.

Do not use the CYCLE option if the sequence is used to generate primary key values, unless you
have a reliable mechanism that purges old rows faster than the sequence cycles.

For more information, see the “CREATE SEQUENCE” section in the Oracle Database SQL
Language Reference for 10g or 11g database.

Note: The sequence is not tied to a table. Generally, you should name the sequence after its
intended use. However, the sequence can be used anywhere, regardless of its name.

Oracle Database: SQL Fundamentals | 11 - 26

NEXTVAL and CURRVAL Pseudocolumns

* NEXTVAL returns the next available sequence value. It
returns a unique value every time it is referenced, even for
different users.

* CURRVAL obtains the current sequence value.

* NEXTVAL must be issued for that sequence before
CURRVAL contains a value.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

NEXTVAL and CURRVAL Pseudocolumns

After you create your sequence, it generates sequential numbers for use in your tables. Reference
the sequence values by using the NEXTVAL and CURRVAL pseudocolumns.

The NEXTVAL pseudocolumn is used to extract successive sequence numbers from a specified
sequence. You must qualify NEXTVAL with the sequence name. When you reference
sequence.NEXTVAL, a new sequence number is generated and the current sequence number
is placed in CURRVAL.

The CURRVAL pseudocolumn is used to refer to a sequence number that the current user has just
generated. However, NEXTVAL must be used to generate a sequence number in the current
user’s session before CURRVAL can be referenced. You must qualify CURRVAL with the
sequence name. When you reference sequence . CURRVAL, the last value returned to that
user’s process is displayed.

Oracle Database: SQL Fundamentals | 11 - 27

NEXTVAL and CURRVAL Pseudocolumns (continued)
Rules for Using NEXTVAL and CURRVAL

You can use NEXTVAL and CURRVAL in the following contexts:
* The SELECT list of a SELECT statement that is not part of a subquery
* The SELECT list of a subquery in an INSERT statement
* The VALUES clause of an INSERT statement
* The SET clause of an UPDATE statement

You cannot use NEXTVAL and CURRVAL in the following contexts:
* The SELECT list of a view
* A SELECT statement with the DISTINCT keyword
A SELECT statement with GROUP BY, HAVING, or ORDER BY clauses
* A subquery in a SELECT, DELETE, or UPDATE statement
* The DEFAULT expression in a CREATE TABLE or ALTER TABLE statement

For more information, see the “Pseudocolumns” and “CREATE SEQUENCE” sections in Oracle
Database SQL Language Reference for 10g or 11g database.

Oracle Database: SQL Fundamentals | 11 - 28

Using a Sequence

* Insert a new department named “Support” in location ID
2500:

INSERT INTO departments (department id,
department name, location id)

VALUES (dept deptid seq.NEXTVAL,
'Support', 2500);

|l romws inserted|

* View the current value for the DEPT DEPTID SEQ
sequence:

SELECT dept deptid seq.CURRVAL
FROM dual;

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Using a Sequence

The example in the slide inserts a new department in the DEPARTMENTS table. It uses the
DEPT DEPTID SEQ sequence to generate a new department number as follows.

You can view the current value of the sequence using the sequence name.CURRVAL, as shown
in the second example in the slide. The output of the query is shown below:

CLRRWAL
1 120

Suppose that you now want to hire employees to staff the new department. The INSERT

statement to be executed for all new employees can include the following code:
INSERT INTO employees (employee id, department id, ...)
VALUES (employees seq.NEXTVAL, dept deptid seq .CURRVAL, ...);

Note: The preceding example assumes that a sequence called EMPLOYEE SEQ has already
been created to generate new employee numbers.

Oracle Database: SQL Fundamentals | 11 -29

Caching Sequence Values

« Caching sequence values in memory gives faster access
to those values.
* Gaps in sequence values can occur when:
— Arollback occurs
— The system crashes
— A sequence is used in another table

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Caching Sequence Values

You can cache sequences in memory to provide faster access to those sequence values. The
cache is populated the first time you refer to the sequence. Each request for the next sequence
value is retrieved from the cached sequence. After the last sequence value is used, the next
request for the sequence pulls another cache of sequences into memory.

Gaps in the Sequence

Although sequence generators issue sequential numbers without gaps, this action occurs
independent of a commit or rollback. Therefore, if you roll back a statement containing a
sequence, the number is lost.

Another event that can cause gaps in the sequence is a system crash. If the sequence caches
values in memory, those values are lost if the system crashes.

Because sequences are not tied directly to tables, the same sequence can be used for multiple
tables. However, if you do so, each table can contain gaps in the sequential numbers.

Oracle Database: SQL Fundamentals | 11 -30

Modifying a Sequence

Change the increment value, maximum value, minimum value,
cycle option, or cache option:

ALTER SEQUENCE dept deptid seq
INCREMENT BY 20
MAXVALUE 999999
NOCACHE
NOCYCLE;

ALTER SEQUENCE dept_deptid zeq succeeded.|

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Modifying a Sequence
If you reach the MAXVALUE limit for your sequence, no additional values from the sequence are
allocated and you will receive an error indicating that the sequence exceeds the MAXVALUE. To
continue to use the sequence, you can modify it by using the ALTER SEQUENCE statement.

Syntax
ALTER SEQUENCE sequence

[INCREMENT BY n]

[{MAXVALUE n | NOMAXVALUE}]
[{MINVALUE n | NOMINVALUE}]
[{CYCLE | NOCYCLE}]
[{CACHE n | NOCACHE}] ;

In the syntax, sequence is the name of the sequence generator.

For more information, see the section on “ALTER SEQUENCE” in Oracle Database SQOL
Language Reference for 10g or 11g database.

Oracle Database: SQL Fundamentals | 11 - 31

Guidelines for Modifying a Sequence

* You must be the owner or have the ALTER privilege for the
sequence.

* Only future sequence numbers are affected.

 The sequence must be dropped and re-created to restart
the sequence at a different number.

« Some validation is performed.
« Toremove a sequence, use the DROP statement:

DROP SEQUENCE dept deptid seq;

DEOF SEQUENCE dept_deptid seq succeeded. |

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Guidelines for Modifying a Sequence

* You must be the owner or have the ALTER privilege for the sequence to modify it. You
must be the owner or have the DROP ANY SEQUENCE privilege to remove it.

* Only future sequence numbers are affected by the ALTER SEQUENCE statement.

* The START WITH option cannot be changed using ALTER SEQUENCE. The sequence must

be dropped and re-created to restart the sequence at a different number.
» Some validation is performed. For example, a new MAXVALUE that is less than the current
sequence number cannot be imposed.
ALTER SEQUENCE dept deptid seg

INCREMENT BY 20
MAXVALUE 90
NOCACHE
NOCYCLE;

e The error:

Error repaort:

SOL Error: ORA-04009: MAXMWALUE cannot be made to be 1ess than the current walue
04009, Qo000 - "MAXWALUE cannot he made to be less than the current walue"
¥Cause: the current value exceeds the given MAXWALUE

*ACtiaon: make sure that the new MANWALUE is Tarder than the current wvalue

Oracle Database: SQL Fundamentals | 11 -32

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

* Overview of views:
— Creating, modifying, and retrieving data from a view
— DML operations on a view
— Dropping a view
 Overview of sequences:
— Creating, using, and modifying a sequence
— Cache sequence values
— NEXTVAL and CURRVAL pseudocolumns
« Overview of indexes
— Creating, dropping indexes
« Overview of synonyms
— Creating, dropping synonyms

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals | 11 -33

Indexes

Object Description

Table Basic unit of storage; composed of rows

View Logically represents subsets of data from one or
more tables

Sequence Generates numeric values

Index Improves the performance of some queries

Synonym Gives alternative names to objects

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Indexes

Indexes are database objects that you can create to improve the performance of some queries.
Indexes can also be created automatically by the server when you create a primary key or a
unique constraint.

Oracle Database: SQL Fundamentals| 11 -34

Indexes

An index:
* Is a schema object

« Can be used by the Oracle server to speed up the retrieval
of rows by using a pointer

« Can reduce disk input/output (I/O) by using a rapid path
access method to locate data quickly

* Is independent of the table that it indexes
* Is used and maintained automatically by the Oracle server

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Indexes (continued)

An Oracle server index is a schema object that can speed up the retrieval of rows by using a
pointer. Indexes can be created explicitly or automatically. If you do not have an index on the
column, a full table scan occurs.

An index provides direct and fast access to rows in a table. Its purpose is to reduce the disk I/O
by using an indexed path to locate data quickly. An index is used and maintained automatically
by the Oracle server. After an index is created, no direct activity is required by the user.

Indexes are logically and physically independent of the table that they index. This means that
they can be created or dropped at any time, and have no effect on the base tables or other
indexes.

Note: When you drop a table, the corresponding indexes are also dropped.

For more information, see the section on “Schema Objects: Indexes” in Oracle Database
Concepts for 10g or 11g database.

Oracle Database: SQL Fundamentals| 11 -35

How Are Indexes Created?

« Automatically: A unique index is created automatically
when you define a PRIMARY KEY or UNIQUE constraint in

a table definition.

r.
e Ay

'

"
« Manually: Users can create nonunique indexes on
columns to speed up access to the rows.

\,y

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

How Are Indexes Created?

You can create two types of indexes.

* Unique index: The Oracle server automatically creates this index when you define a
column in a table to have a PRIMARY KEY or a UNIQUE constraint. The name of the index
is the name that is given to the constraint.

* Nonunique index: This is an index that a user can create. For example, you can create the
FOREIGN KEY column index for a join in a query to improve the speed of retrieval.

Note: You can manually create a unique index, but it is recommended that you create a unique
constraint, which implicitly creates a unique index.

Oracle Database: SQL Fundamentals | 11 - 36

Creating an Index

« Create an index on one or more columns:

CREATE [UNIQUE] [BITMAP] INDEX index
ON table (columnl[, column]...);

« Improve the speed of query access to the LAST NAME
column in the EMPLOYEES table:

CREATE INDEX emp last name idx
ON employees (last name) ;

|CREAIE INDEX succeeded.|

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Creating an Index
Create an index on one or more columns by issuing the CREATE INDEX statement.

In the syntax:

e index Is the name of the index
e table Is the name of the table
e column Is the name of the column in the table to be indexed

Specify UNIQUE to indicate that the value of the column (or columns) upon which the index is
based must be unique. Specify BITMAP to indicate that the index is to be created with a bitmap

for each distinct key, rather than indexing each row separately. Bitmap indexes store the
rowids associated with a key value as a bitmap.

For more information, see the section on “CREATE INDEX” in Oracle Database SOQL Language

Reference.

Oracle Database: SQL Fundamentals | 11 -37

Index Creation Guidelines

Create an index when:

A column contains a wide range of values

A column contains a large number of null values

One or more columns are frequently used together in a WHERE clause or
a join condition

SNESNE

The table is large and most queries are expected to retrieve less than 2%
to 4% of the rows in the table

Do not create an index when:

X | The columns are not often used as a condition in the query

The table is small or most queries are expected to retrieve more than 2%
to 4% of the rows in the table

The table is updated frequently

X|X| X

The indexed columns are referenced as part of an expression

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Index Creation Guidelines
More Is Not Always Better

Having more indexes on a table does not produce faster queries. Each DML operation that is
committed on a table with indexes means that the indexes must be updated. The more indexes
that you have associated with a table, the more effort the Oracle server must make to update all
the indexes after a DML operation.

When to Create an Index

Therefore, you should create indexes only if:
* The column contains a wide range of values
* The column contains a large number of null values
* One or more columns are frequently used together in a WHERE clause or join condition
» The table is large and most queries are expected to retrieve less than 2% to 4% of the rows

Remember that if you want to enforce uniqueness, you should define a unique constraint in the
table definition. A unique index is then created automatically.

Oracle Database: SQL Fundamentals | 11 - 38

Removing an Index

* Remove an index from the data dictionary by using the
DROP INDEX command:

DROP INDEX index;

 Remove the emp last name_ idx index from the data
dictionary:

DROP INDEX emp last name idx;
|DRDP INDEX emp_last_name idx succeeded.|

* To drop an index, you must be the owner of the index or
have the DROP ANY INDEX privilege.

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Removing an Index

You cannot modify indexes. To change an index, you must drop it and then re-create it.

Remove an index definition from the data dictionary by issuing the DROP INDEX statement. To
drop an index, you must be the owner of the index or have the DROP ANY INDEX privilege.

In the syntax, index is the name of the index.

Note: If you drop a table, indexes and constraints are automatically dropped but views and
sequences remain.

Oracle Database: SQL Fundamentals | 11 -39

Unauthorized reproduction or distribution prohibited. Copyright© 2010, Oracle and/or its affiliates.

Lesson Agenda

* Overview of views:
— Creating, modifying, and retrieving data from a view
— DML operations on a view
— Dropping a view
 Overview of sequences:
— Creating, using, and modifying a sequence
— Cache sequence values
— NEXTVAL and CURRVAL pseudocolumns
* Overview of indexes
— Creating, dropping indexes
* Overview of synonyms
— Creating, dropping synonyms

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Oracle Database: SQL Fundamentals | 11 -40

Synonyms

Object Description

Table Basic unit of storage; composed of rows

View Logically represents subsets of data from one or
more tables

Sequence Generates numeric values

Index Improves the performance of some queries

Synonym Gives alternative names to objects

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Synonyms

Synonyms are database objects that enable you to call a table by another name. You can create
2 synonyms to give an alternative name to a table.

Oracle Database: SQL Fundamentals | 11 - 41

Creating a Synonym for an Object

Simplify access to objects by creating a synonym (another
name for an object). With synonyms, you can:

» Create an easier reference to a table that is owned by
another user

« Shorten lengthy object names

CREATE [PUBLIC] SYNONYM synonym
FOR object;

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Creating a Synonym for an Object

To refer to a table that is owned by another user, you need to prefix the table name with the
name of the user who created it, followed by a period. Creating a synonym eliminates the need
to qualify the object name with the schema and provides you with an alternative name for a
table, view, sequence, procedure, or other objects. This method can be especially useful with
lengthy object names, such as views.

In the syntax:

PUBLIC Creates a synonym that is accessible to all users

synonym Is the name of the synonym to be created

object Identifies the object for which the synonym is created
Guidelines

* The object cannot be contained in a package.
* A private synonym name must be distinct from all other objects that are owned by the same
user.
For more information, see the section on “CREATE SYNONYM” in Oracle Database SOL
Language Reference for 10g or 11g database.

Oracle Database: SQL Fundamentals | 11 -42

Creating and Removing Synonyms

« Create a shortened name for the DEPT SUM_ VU view:

CREATE SYNONYM d sum
FOR dept sum vu;

|CREAIE SYNONYM succeeded,

« Drop a synonym:

DROP SYNONYM d sum;

DROP SYNONYH d_suu succeeded|

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Creating and Removing Synonyms

Creating a Synonym
The slide example creates a synonym for the DEPT SUM_VU view for quicker reference.

The database administrator can create a public synonym that is accessible to all users. The
following example creates a public synonym named DEPT for Alice’s DEPARTMENTS table:

CREATE PUBLIC SYNONYM dept
FOR alice.departments;

CREATE SYNONYTM succeeded.

Removing a Synonym
To remove a synonym, use the DROP SYNONYM statement. Only the database administrator can

drop a public synonym.
DROP PUBLIC SYNONYM dept;

For more information, see the section on “DROP SYNONYM” in Oracle Database SQL Language
Reference for 10g or 11g database.

Oracle Database: SQL Fundamentals | 11 -43

Quiz

Indexes must be created manually and serve to speed up
access to rows in a table.

1. True
2. False

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Answer: 2

Note: Indexes are designed to speed up query performance. However, not all indexes are created
2 manually. The Oracle server automatically creates an index when you define a column in a table
to have a PRIMARY KEY or a UNIQUE constraint.

Oracle Database: SQL Fundamentals| 11 -44

Summary

In this lesson, you should have learned how to:
« Create, use, and remove views

« Automatically generate sequence numbers by using a
sequence generator

« Create indexes to improve speed of query retrieval
« Use synonyms to provide alternative names for objects

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Summary

In this lesson, you should have learned about database objects such as views, sequences, indexes,
and synonyms.

Oracle Database: SQL Fundamentals| 11 -45

Practice 11: Overview of Part 2

This practice covers the following topics:
« Creating sequences
« Using sequences
« Creating nonunique indexes
* Creating synonyms

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Practice 11: Overview of Part 2

Part 2 of this lesson’s practice provides you with a variety of exercises in creating and using a
2 sequence, an index, and a synonym.

Complete questions 7—-10 at the end of this lesson.

Oracle Database: SQL Fundamentals | 11 -46

	Oracle Database: SQL Fundamentals I - Vol.1
	Table of Contents
	Lesson I: Introduction
	Lesson Objectives
	Lesson Agenda
	Course Objectives
	Course Agenda
	Appendixes Used in the Course
	Lesson Agenda
	Oracle Database 11g: Focus Areas
	Oracle Database 11g
	Oracle Fusion Middleware
	Oracle Enterprise Manager Grid Control
	Oracle BI Publisher
	Lesson Agenda
	Relational and Object Relational Database Management Systems
	Data Storage on Different Media
	Relational Database Concept
	Definition of a Relational Database
	Data Models
	Entity Relationship Model
	Entity Relationship Modeling Conventions
	Relating Multiple Tables
	Relational Database Terminology
	Lesson Agenda
	Using SQL to Query Your Database
	SQL Statements
	Development Environments for SQL
	Lesson Agenda
	Human Resources (HR) Schema
	Tables Used in the Course
	Lesson Agenda
	Oracle Database Documentation
	Additional Resources
	Summary
	Practice I: Overview

	Lesson 1: Retrieving Data Using the SQL SELECT Statement
	Objectives
	Lesson Agenda
	Capabilities of SQL SELECT Statements
	Basic SELECT Statement
	Selecting All Columns
	Selecting Specific Columns
	Writing SQL Statements
	Column Heading Defaults
	Lesson Agenda
	Arithmetic Expressions
	Using Arithmetic Operators
	Operator Precedence
	Defining a Null Value
	Null Values in Arithmetic Expressions
	Lesson Agenda
	Defining a Column Alias
	Using Column Aliases
	Lesson Agenda
	Concatenation Operator
	Literal Character Strings
	Using Literal Character Strings
	Alternative Quote (q) Operator
	Duplicate Rows
	Lesson Agenda
	Displaying the Table Structure
	Using the DESCRIBE Command
	Quiz
	Summary
	Practice 1: Overview

	Lesson 2: Restricting and Sorting Data
	Objectives
	Lesson Agenda
	Limiting Rows Using a Selection
	Limiting the Rows That Are Selected
	Using the WHERE Clause
	Character Strings and Dates
	Comparison Operators
	Using Comparison Operators
	Range Conditions Using the BETWEEN Operator
	Membership Condition Using the IN Operator
	Pattern Matching Using the LIKE Operator
	Combining Wildcard Characters
	Using the NULL Conditions
	Defining Conditions Using the Logical Operators
	Using the AND Operator
	Using the OR Operator
	Using the NOT Operator
	Lesson Agenda
	Rules of Precedence
	Lesson Agenda
	Using the ORDER BY Clause
	Sorting
	Lesson Agenda
	Substitution Variables
	Using the Single-Ampersand Substitution Variable
	Character and Date Values with Substitution Variables
	Specifying Column Names, Expressions, and Text
	Using the Double-Ampersand Substitution Variable
	Lesson Agenda
	Using the DEFINE Command
	Using the VERIFY Command
	Quiz
	Summary
	Practice 2: Overview

	Lesson 3: Using Single-Row Functions to Customize Output
	Objectives
	Lesson Agenda
	SQL Functions
	Two Types of SQL Functions
	Single-Row Functions
	Lesson Agenda
	Character Functions
	Case-Conversion Functions
	Using Case-Conversion Functions
	Character-Manipulation Functions
	Using the Character-Manipulation Functions
	Lesson Agenda
	Number Functions
	Using the ROUND Function
	Using the TRUNC Function
	Using the MOD Function
	Lesson Agenda
	Working with Dates
	RR Date Format
	Using the SYSDATE Function
	Arithmetic with Dates
	Using Arithmetic Operators with Dates
	Lesson Agenda
	Date-Manipulation Functions
	Using Date Functions
	Using ROUND and TRUNC Functions with Dates
	Quiz
	Summary
	Practice 3: Overview

	Lesson 4: Using Conversion Functions and Conditional Expressions
	Objectives
	Lesson Agenda
	Conversion Functions
	Implicit Data Type Conversion
	Explicit Data Type Conversion
	Lesson Agenda
	Using the TO_CHAR Function with Dates
	Elements of the Date Format Model
	Using the TO_CHAR Function with Dates
	Using the TO_CHAR Function with Numbers
	Using the TO_NUMBER and TO_DATE Functions
	Using the TO_CHAR and TO_DATE Function with the RR Date Format
	Lesson Agenda
	Nesting Functions
	Nesting Functions: Example 1
	Nesting Functions: Example 2
	Lesson Agenda
	General Functions
	NVL Function
	Using the NVL Function
	Using the NVL2 Function
	Using the NULLIF Function
	Using the COALESCE Function
	Lesson Agenda
	Conditional Expressions
	CASE Expression
	Using the CASE Expression
	DECODE Function
	Using the DECODE Function
	Quiz
	Summary
	Practice 4: Overview

	Lesson 5: Reporting Aggregated Data Using the Group Functions
	Objectives
	Lesson Agenda
	What Are Group Functions?
	Types of Group Functions
	Group Functions: Syntax
	Using the AVG and SUM Functions
	Using the MIN and MAX Functions
	Using the COUNT Function
	Using the DISTINCT Keyword
	Group Functions and Null Values
	Lesson Agenda
	Creating Groups of Data
	Creating Groups of Data: GROUP BY Clause Syntax
	Using the GROUP BY Clause
	Grouping by More Than One Column
	Using the GROUP BY Clause on Multiple Columns
	Illegal Queries Using Group Functions
	Restricting Group Results
	Restricting Group Results with the HAVING Clause
	Using the HAVING Clause
	Lesson Agenda
	Nesting Group Functions
	Quiz
	Summary
	Practice 5: Overview

	Lesson 6: Displaying Data from Multiple Tables Using Joins
	Objectives
	Lesson Agenda
	Obtaining Data from Multiple Tables
	Types of Joins
	Joining Tables Using SQL:1999 Syntax
	Qualifying Ambiguous Column Names
	Lesson Agenda
	Creating Natural Joins
	Retrieving Records with Natural Joins
	Creating Joins with the USING Clause
	Joining Column Names
	Retrieving Records with the USING Clause
	Using Table Aliases with the USING Clause
	Creating Joins with the ON Clause
	Retrieving Records with the ON Clause
	Creating Three-Way Joins with the ON Clause
	Applying Additional Conditions to a Join
	Lesson Agenda
	Joining a Table to Itself
	Self-Joins Using the ON Clause
	Lesson Agenda
	Nonequijoins
	Retrieving Records with Nonequijoins
	Lesson Agenda
	Returning Records with No Direct Match Using OUTER Joins
	INNER Versus OUTER Joins
	LEFT OUTER JOIN
	RIGHT OUTER JOIN
	FULL OUTER JOIN
	Lesson Agenda
	Cartesian Products
	Generating a Cartesian Product
	Creating Cross Joins
	Quiz
	Summary
	Practice 6: Overview

	Lesson 7: Using Subqueries to Solve Queries
	Objectives
	Lesson Agenda
	Using a Subquery to Solve a Problem
	Subquery Syntax
	Using a Subquery
	Guidelines for Using Subqueries
	Types of Subqueries
	Lesson Agenda
	Single-Row Subqueries
	Executing Single-Row Subqueries
	Using Group Functions in a Subquery
	HAVING Clause with Subqueries
	What Is Wrong with This Statement?
	No Rows Returned by the Inner Query
	Lesson Agenda
	Multiple-Row Subqueries
	Using the ANY Operator in Multiple-Row Subqueries
	Using the ALL Operator in Multiple-Row Subqueries
	Using the EXISTS Operator
	Lesson Agenda
	Null Values in a Subquery
	Quiz
	Summary
	Practice 7: Overview

	Lesson 8: Using the Set Operators
	Objectives
	Lesson Agenda
	Set Operators
	Set Operator Guidelines
	Oracle Server and Set Operators
	Lesson Agenda
	Tables Used in This Lesson
	Lesson Agenda
	UNION Operator
	Using the UNION Operator
	UNION ALL Operator
	Using the UNION ALL Operator
	Lesson Agenda
	INTERSECT Operator
	Using the INTERSECT Operator
	Lesson Agenda
	MINUS Operator
	Using the MINUS Operator
	Lesson Agenda
	Matching the SELECT Statements
	Matching the SELECT Statement: Example
	Lesson Agenda
	Using the ORDER BY Clause in Set Operations
	Quiz
	Summary
	Practice 8: Overview

	Lesson 9: Manipulating Data
	Objectives
	Lesson Agenda
	Data Manipulation Language
	Adding a New Row to a Table
	INSERT Statement Syntax
	Inserting New Rows
	Inserting Rows with Null Values
	Inserting Special Values
	Inserting Specific Date and Time Values
	Creating a Script
	Copying Rows from Another Table
	Lesson Agenda
	Changing Data in a Table
	UPDATE Statement Syntax
	Updating Rows in a Table
	Updating Two Columns with a Subquery
	Updating Rows Based on Another Table
	Lesson Agenda
	Removing a Row from a Table
	DELETE Statement
	Deleting Rows from a Table
	Deleting Rows Based on Another Table
	TRUNCATE Statement
	Lesson Agenda
	Database Transactions
	Database Transactions: Start and End
	Advantages of COMMIT and ROLLBACK Statements
	Explicit Transaction Control Statements
	Rolling Back Changes to a Marker
	Implicit Transaction Processing
	State of the Data Before COMMIT or ROLLBACK
	State of the Data After COMMIT
	Committing Data
	State of the Data After ROLLBACK
	State of the Data After ROLLBACK: Example
	Statement-Level Rollback
	Lesson Agenda
	Read Consistency
	Implementing Read Consistency
	Lesson Agenda
	FOR UPDATE Clause in a SELECT Statement
	FOR UPDATE Clause: Examples
	Quiz
	Summary
	Practice 9: Overview

	Lesson 10: Using DDL Statements to Create and Manage Tables
	Objectives
	Lesson Agenda
	Database Objects
	Naming Rules
	Lesson Agenda
	CREATE TABLE Statement
	Referencing Another User’s Tables
	DEFAULT Option
	Creating Tables
	Lesson Agenda
	Data Types
	Datetime Data Types
	Lesson Agenda
	Including Constraints
	Constraint Guidelines
	Defining Constraints
	NOT NULL Constraint
	UNIQUE Constraint
	PRIMARY KEY Constraint
	FOREIGN KEY Constraint
	FOREIGN KEY Constraint: Keywords
	CHECK Constraint
	CREATE TABLE: Example
	Violating Constraints
	Lesson Agenda
	Creating a Table Using a Subquery
	Lesson Agenda
	ALTER TABLE Statement
	Read-Only Tables
	Lesson Agenda
	Dropping a Table
	Quiz
	Summary
	Practice 10: Overview

	Lesson 11: Creating Other Schema Objects
	Objectives
	Lesson Agenda
	Database Objects
	What Is a View?
	Advantages of Views
	Simple Views and Complex Views
	Creating a View
	Retrieving Data from a View
	Modifying a View
	Creating a Complex View
	Rules for Performing DML Operations on a View
	Using the WITH CHECK OPTION Clause
	Denying DML Operations
	Removing a View
	Practice 11: Overview of Part 1
	Lesson Agenda
	Sequences
	CREATE SEQUENCE Statement: Syntax
	Creating a Sequence
	NEXTVAL and CURRVAL Pseudocolumns
	Using a Sequence
	Caching Sequence Values
	Modifying a Sequence
	Guidelines for Modifying a Sequence
	Lesson Agenda
	Indexes
	How Are Indexes Created?
	Creating an Index
	Index Creation Guidelines
	Removing an Index
	Lesson Agenda
	Synonyms
	Creating a Synonym for an Object
	Creating and Removing Synonyms
	Quiz
	Summary
	Practice 11: Overview of Part 2

